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László Lovász and his wife Katalin Vesztergombi, in Beijing 2010. Photo taken by Jianshe Zhang.
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Preface

László Lovász turned seventy on 9 March 2018. To celebrate his birthday, a
mathematical conference was held in Budapest, 2 to 6 July 2018, with invited
speakers only and with well over three hundred participants. On this meeting,
several world-class mathematicians and computer scientists gave talks about their
latest results and paid tribute to Laci (as he is called by his friends). Some of them
also dedicated a research or survey paper on this occasion. This volume is the
collection of their articles.

László Lovász is a towering mathematician of our time. He has been a defining
force in the field of combinatorics over the past half-century, ever since his highly
influential early gems appeared. His influence has decisively contributed to the
general appeal and expansion of the field and its closer integration with classical
mathematics. He solved a long list of major open problems, each time tackling the
problem with powerful new techniques whose significance went far beyond their
original target. Lovász’s work has changed the landscape not only in combinatorics
but in a number of related fields, including discrete and convex optimization, the
theory of algorithms, and complexity theory, and has contributed significant new
tools to other fields, including the geometry of numbers, information theory, and
functional analysis. Lovász has been one of the pioneers of the interplay between
discrete and continuous mathematics, a master at establishing unexpected con-
nections, “building bridges” between seemingly distant fields. His invariably ele-
gant and powerful ideas have produced new subfields in many areas.

Here is a list of some of his breakthrough results and achievements: (1) the
perfect graph conjecture; (2) topological methods in graph theory, Kneser’s con-
jecture; (3) geometric graph theory, Shannon capacity, Lovász number;
(4) semidefinite programming and its effect on the theory of algorithms; (5) Lovász
Local Lemma; (6) the ellipsoid method in combinatorial optimization; (7) the lattice
basis reduction algorithm; (8) hardness of approximation; (9) rapid mixing and
algorithms; (10) graph homomorphisms and graph limits. Several items from this
list have become very active and central research areas in mathematics, in computer
science, and even in quantum physics. On pages 595–611 of this volume, his list of

vii



publications (up to 2019) is given. It shows the variety and depth of his
achievements.

The present volume is dedicated to Laci on his 70th birthday. Several articles in
it are connected to his achievements. For instance, Noga Alon’s paper “Lovász,
vectors, graphs and codes” is related to topic (3) above. It is mainly a survey, but it
contains several new results about triangle-free pseudo-random Cayley graphs.
Anders Björner’s article “Continuous matroids revisited” is about infinite or con-
tinuous matroids, which is connected to topic (10). Christian Borgs, Jennifer T.
Chayes, Henry Cohn, and László Miklós Lovász write about graphexes and the
weak kernel metric, which is related to (10) again. This applies to Péter Csikvári’s
paper “Statistical matching theory” which deals with statistical properties of
matchings in very large and infinite graphs. Persi Diaconis writes about his “on-
going conversations with Laci”: estimating the number of perfect matchings in
bipartite graphs, a favourite subject of Lovász. Sequential importance sampling
offers an alternative way to approximately evaluate the permanent. Uriel Feige’s
paper “Tighter bounds for online bipartite matching” is about matchings again. The
paper by David Conlon, Jacob Fox, Andrey Grinshpun, and Xiaoyu He “Online
Ramsey numbers and the subgraph query problem” is about an online Ramsey-type
game. It is also related to topic (5) above as it contains an exponential improvement
of the lopsided Lovász Local Lemma. The contribution of Tibor Jordán and András
Mihálykó is connected to (8) and combinatorial optimization plus rigidity. Peter
Keevash writes about “Coloured and directed designs” with several illustrative
applications of his recent result on decompositions of labelled complexes. The
article by Jaroslav Nešetřil and Patrice Ossona de Mendez “Approximations of
mappings” is related to topic (10), graph limits, from the point of view of first-order
convergence and logic. Lex Schrijver writes about the partially disjoint paths
problem and shows, among other things, that it is solvable in polynomial time if the
directed graph is planar. Miklós Simonovits and Endre Szemerédi survey results on
“Embedding graphs into larger graphs”. It emphasizes the surprising connections of
this problem to extremal graph theory and to other areas of mathematics. The paper
by Yin Tat Lee, Aaron Sidford, and Santosh S. Vempala “Efficient convex opti-
mization with oracles” is about a basic algorithmic problem: minimizing a convex
function over a convex set and is related to topics (6) and (9). Avi Wigderson and
Orit E. Raz’s article “Derandomization through submodular optimization” presents
a deterministic, strongly polynomial time algorithm for computing the matrix rank
for a class of symbolic matrices and is connected to Lovász’s flats problem.

Besides being a superb mathematician, Laci is an extremely nice person and a
pleasant colleague. He is friendly and helpful and has inspired several young and
not so young mathematicians. His modesty is legendary. As Victor Klee put it once
“among the best mathematicians he is the most modest, and among the modest
ones, he is the best”.

Lovász has had a distinguished academic career. His employments and visiting
positions include Szeged, Budapest, Waterloo, Bonn, Princeton, Yale, and
Microsoft Research. He returned to Budapest again in 2016 and became Director
of the Mathematical Institute at Eötvös University and later President of the
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Hungarian Academy of Sciences (from 2014), in a difficult and turbulent time in
Hungarian politics.

In 2006, Lovász was elected President of the International Mathematical Union
for the period 2007–2010. His international reputation is stellar as shown by
prestigious prizes and honours given to him. They include the Grünwald, Pólya,
Fulkerson (twice), Knuth, Gödel, von Neumann, Kyoto, Bolyai, and Széchenyi
prizes and various honorary degrees and professorships. A very brief Curriculum
Vitae is presented on pages 593–594 of this volume.

Laci has always been a family man, a loving husband and father and by now
grandfather. His wife, Kati Vesztergombi, has been a reference point in Laci’s life
since their highschool years in the Fazekas Mihály Gimnázium in Budapest.
Together they shared family and friends and also the love for mathematics for the
last fifty or more years. We dedicate this volume to Laci’s 70th birthday and wish
him many happy returns and many more beautiful results.

Budapest, Hungary Imre Bárány
March 2019 Gyula O. H. Katona

Attila Sali
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Lovász, Vectors, Graphs and Codes

Noga Alon

Dedicated to László Lovász, for his seventieth birthday

Abstract A family of high-degree triangle-free pseudo-random Cayley graphs has
been constructed in (Alon, Electro J Combin 1(R12):8, 1994 [2]), motivated by a
geometric question of Lovász. These graphs turned out to be useful in tackling a
variety of additional extremal problems in Graph Theory and Coding Theory. Here
we describe the graphs and their applications, and mention several intriguing related
open problems. This is mainly a survey, but it contains several new results as well.
One of these is a construction showing that the Lovász θ -function of a graph cannot
be bounded by any function of its Shannon capacity.

Keywords Cayley graphs · The θ -function · Shannon capacity of graphs ·
Ramsey graphs · Maxcut · List decodable codes
Subject Classifications 05C35 · 05C50

1 Introduction

• What is the maximum possible (Euclidean) norm of a sum of n unit vectors so that
any 3 of them contain 2 which are orthogonal?

N. Alon (B)
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
e-mail: nalon@math.princeton.edu

Schools of Mathematics and Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
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2 N. Alon

• What is the minimum possible size of the maxcut of a triangle-free graph with m
edges?

• What is the maximum possible number of words in a binary code of length n
so that there is no Hamming ball of radius (1/4 + ε)n containing more than two
words?

The first question is geometric, and was posed by Lovász motivated by the study
of the θ -function of a graph. The second question is in Extremal Graph Theory, it
was first considered by Erdős and Lovász. The third question is in Coding theory, and
was first studied by Blinovskii, extending earlier results of Plotkin and Levenshtein.
Somewhat surprisingly it turns out that all three questions, and several related ones,
can be solved asymptotically using a single construction of a family of triangle-free
Cayley graphs with extremal spectral properties. Here we describe this construction,
show how it is used in the solution of these problems and more, and describe their
connection to Ramsey theory and to questions about the Shannon capacity of graphs.

2 The Graphs

For a positive integer k, let Fk = GF(2k) denote the finite field with 2k elements
whose elements are represented, as usual, by binary vectors of length k. If a, b and
c are three such vectors, let (a, b, c) denote their concatenation. Suppose k is not
divisible by 3 and put n = 23k . Let W0 be the set of all nonzero elements α ∈ Fk so
that the leftmost bit in the binary representation of α7 is 0, and let W1 be the set of
all nonzero elements α ∈ Fk for which the leftmost bit of α7 is 1. Since 3 does not
divide k, 7 does not divide 2k − 1 and hence |W0| = 2k−1 − 1 and |W1| = 2k−1, as
when α ranges over all nonzero elements of Fk so does α7.

LetGn be the Cayley graph of the elementary abelian 2-group Z3k
2 with the gener-

ating set S = U0 +U1 = {u0 + u1 : u0 ∈ U0, u1 ∈ U1}, whereU0 = {(w0,w3
0,w

5
0) :

w0 ∈ W0}, and U1 = {(w1,w3
1,w

5
1) : w1 ∈ W1} with the powers computed in the

finite field Fk .
The following theorem is proved in [2].

Theorem 2.1 If k is not divisible by 3 and n = 23k then Gn is a Cayley graph of
Z3k
2 , it has n vertices, is regular of degree

dn = 2k−1(2k−1 − 1) = (
1

4
+ o(1))n2/3,

and satisfies the following properties

1. Gn is triangle-free.
2. Every eigenvalue μ of Gn, besides the largest, satisfies

−9 · 2k − 3 · 2k/2 − 1/4 ≤ μ ≤ 4 · 2k + 2 · 2k/2 + 1/4.
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The detailed proof can be found in [2]. Here is a sketch. The graph Gn is the Cayley
graph of Z3k

2 with respect to the generating set S = Sn = U0 +U1, where Ui are
defined as above. As the elements of U0 ∪U1 are the columns of the parity check
matrix of a binary BCH-code of designed distance 7 (see, e.g., [40], Chap. 9), every
set of six of them is linearly independent. Therefore the elements of Sn are distinct
and Gn is regular of degree |Sn| = |U0||U1|.

The fact that Gn is triangle-free is equivalent to the fact that the sum (in Z3k
2 ) of

any set of 3 elements of Sn is not the zero-vector. Let u0 + u1, u′
0 + u′

1 and u
′′
0 + u′′

1
be three distinct elements of Sn , where u0, u′

0, u
′′
0 ∈ U0 and u1, u′

1, u
′′
1 ∈ U1. If the

sum (modulo 2) of these six vectors is zero then, since every set of six members
of U0 ∪U1 is linearly independent, every vector must appear an even number of
times in the sequence (u0, u′

0, u
′′
0, u1, u

′
1, u

′′
1). However, sinceU0 andU1 are disjoint

this implies that every vector must appear an even number of times in the sequence
(u0, u′

0, u
′′
0) and this is clearly impossible. This proves part 1 of the theorem.

The proof of part 2 is based on the fact that the eigenvalues of Gn are given by
the following character sums: ∑

s∈Sn
χ(s),

whereχ ranges over all characters of the group Z3k
2 . Indeed, such an expression holds

for any Cayley graph of an abelian group (see, e.g., [39]), where the eigenvectors
are the characters. The bounds in part 2 can now be deduced from the known results
about the weight distribution of dual BCH codes, proved using the Carlitz-Uchiyama
bound (see [40], pp. 280–281). The details can be found in [2].

An (n, d, λ)-graph is a d regular graph on n vertices in which all eigenvalues
but the first are of absolute value at most λ. This notation was introduced by the
author in the late 80s, motivated by the fact that if λ is much smaller than d, then the
graph exhibits strong pseudo-random properties. In particular, as shown in [8], the
average degree of every induced subgraph on a set of xn vertices deviates from xd
by less than λ. By considering the trace of the square of the adjacency matrix of any
(n, d, λ)-graph, which is nd and is also the sum of squares of its eigenvalues, it is
easy to see that λ ≥ √

d(n − d)/(n − 1) which is �(
√
d) whenever, say, d < n/2.

Thus the smallest possible value of λ is�(
√
d). The graph G = Gn described above

is an (n, d, λ) where d = �(n2/3) and λ = �(
√
d), that is, λ is as small as possible

up to a constant factor. Note that by the above fact about the distribution of edges in
subsets of (n, d, λ)-graphs, it follows that any set of cn2/3 vertices of G spans many
edges, provided c > 36, implying that such a graph with somewhat larger degrees
which are still �(n2/3) cannot be triangle-free. Note also that in a random graph
with degrees �(n2/3), every edge is typically contained in �(n1/3) triangles, that is,
the graph includes lots of triangles. The fact that the graphs Gn are triangle-free and
yet have strong pseudo-random properties derived from their spectrum make them
useful in tackling various extremal problems. Some of these are described in the
following sections.
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3 Shannon Capacity and the Lovász θ-Function

3.1 Shannon and Ramsey

The (and)-product of two undirected graphs G = (V, E) and G ′ = (V ′, E ′) is the
graph whose vertex set is V × V ′ in which two distinct vertices (u, u′) and (v, v′)
are adjacent iff (either u = v or uv are adjacent in G) and (either u′ = v′ or u′, v′ are
adjacent in G ′). The power Gn of G is defined with respect to this product. It is thus
the graph whose vertex set is V n in which two distinct vertices (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are adjacent if and only if for all i between 1 and n either ui = vi or
uivi ∈ E . The Shannon capacity S(G) of G is the limit limn→∞(α(Gn))1/n , where
α(Gn) is the maximum size of an independent set of vertices in Gn . This limit exists,
by super-multiplicativity, it is equal to the supremum over n of (α(Gn))1/n and hence
is always at least α(G). The Shannon capacity of a graph may be significantly larger
than its independence number. In particular, there are graphs on n vertices with
independence number smaller than 2 log2 n and Shannon capacity at least

√
n, see

[12, 25]. It is not known, however, if the Shannon capacity is bounded by any function
of the independence number, that is, whether or not the maximum possible value of
the Shannon capacity of a graph whose independence number is a constant c is finite.
This is equivalent to a well known question on multicolored Ramsey numbers. Let
r(c + 1 : 	) denote the maximum number r so that there is a coloring of the edges
of the complete graph Kr on r vertices by 	 colors with no monochromatic copy
of Kc+1. As shown in [25], (see also [12]), the maximum possible value of α(G	)

as G ranges over all graphs with independence number c is exactly r(c + 1 : 	). It
follows that the maximum possible Shannon capacity of a graph with independence
number c is exactly the limit as 	 tends to infinity of r(c + 1 : 	)1/	. In particular, the
question of deciding whether or not the maximum possible Shannon capacity of a
graph with independence number 2 is finite is equivalent to an old problem of Erdős
(see, e.g., [17]) asking whether or not the Ramsey number r(3 : 	) grows faster than
any exponential in 	.

This question is wide open. Indeed, our understanding of the Shannon capacity
of graphs is very limited. In view of this fact it is natural to replace in the question
the Shannon capacity invariant by the best known upper bound for it, which is much
better understood, and can be computed efficiently, namely by the Lovász θ -function
of the graph.

3.2 The θ-Function and Nearly Orthogonal Vectors

If G = (V, E) is a graph, an orthonormal labeling (also called orthogonal represen-
tation) of G is a family (bv)v∈V of unit vectors in an Euclidean space so that if u and
v are distinct non-adjacent vertices, then bTu bv = 0, that is, bu and bv are orthogonal.
The θ -function θ(G) of G is the minimum, over all orthonormal labelings bv of G
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and over all unit vectors c (called here a handle), of

maxv∈V
1

(cT bv)2
.

It is easy to check that for every G, α(G) ≤ θ(G). Indeed, in any orthonormal
labeling of G the vectors bv assigned to the vertices of any independent set are
pairwise orthogonal, and therefore for any unit vector c the square of the inner product
of at least one of them with c is at most the reciprocal of the size of the set. It is also
not difficult to check that for any two graphs G and G ′, θ(G · G ′) ≤ θ(G) · θ(G ′).
(It is a bit more difficult to show that in fact equality holds, see [38].) This is proved
by considering the tensor product of orthogonal representations of G and G ′ and the
tensor product of the two handles. Therefore for every n, α(Gn) ≤ (θ(G))n implying
that the Shannon capacity of G satisfies S(G) ≤ θ(G).

The following lemma is proved in [38].

Lemma 3.1 Let G = (V, E) be a d-regular graph on n vertices and suppose that
the most negative eigenvalue of the adjacency matrix A of G is at least −λ. Then

θ(G) ≤ nλ

d + λ
.

Proof The matrix B = (A + λI )/λ is positive semi-definite and hence it is the gram
matrix of vectors (bv)v∈V . It is easy to check that these vectors form an orthogonal
representation of G. Define

c =
∑

v∈V bv
‖∑

v∈V bv‖ .

Then for every vector bv

(cT bv)
2 = (1 + d/λ)2

n + nd/λ
= λ + d

nλ
,

completing the proof. �
By Theorem 2.1 and the above lemma, for the graph Gn in the theorem,

θ(Gn) ≤ (1 + o(1))36n2/3. The complement Gn of Gn is a graph with n vertices,
and independence number 2. Since the product Gn · Gn contains an independent set
of size n (consisting of all vertices (v, v) for v ∈ V (Gn)), it follows that

n ≤ α(Gn · Gn) ≤ θ(Gn · Gn) ≤ θ(Gn)θ(Gn) ≤ (1 + o(1))36n2/3θ(Gn).

Therefore θ(Gn) ≥ (1/36 + o(1))n1/3. We have thus shown that the maximum pos-
sible value of the θ -function of an n-vertex graph with independence number 2 is
at least �(n1/3). This is tight, up to a multiplicative constant, answering a ques-
tion of Lovász and improving earlier estimates of Konyagin [34] and of Kashin and
Konyagin [32]. See [2] for more details.
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The n unit vectors bv described above have the following interesting geometric
property. Among any three of them, some two are orthogonal (since the graph Gn

is triangle-free). On the other hand, the square of the norm of their sum is n +
n d

λ
where d = (1/4 + o(1))n2/3 and λ = (9 + o(1))n1/3. This square norm is thus

( 1
36 + o(1))n4/3. Therefore the norm of this sum is �(n2/3) which is also tight, up to
a multiplicative constant, improving the estimates in [32, 34].

Here is a quick proof of the tightness (see [34] for another proof). Let v1, . . . , vn
be n unit vectors in an Euclidean space so that among any three of them some two
are orthogonal. Let A be the gram matrix of these vectors and let λ1 ≥ · · · ≥ λn ≥ 0
be its eigenvalues (which are all nonnegative as A is positive semi-definite). Then
the square of the norm of the sum of the vectors is j t A j where j is the all 1 vector.
This is at most λ1n. The assumption implies that the trace of (A − I )3 is 0, that is,∑

i (λi − 1)3 = 0.Asλi − 1 ≥ −1 for all i this implies thatλ1 ≤ (n − 1)1/3 implying
the required bound.

3.3 Lovász and Shannon

As described above, for every graph G, α(G) ≤ S(G) ≤ θ(G) where α(G) is the
independence number of G, S(G) is its Shannon capacity, and θ(G) is the Lovász
θ -function of G. As mentioned it is not known whether or not the Shannon capacity
S(G) is bounded by any function of the independence number α(G). On the other
handby thediscussion in the previous subsection theLovász θ function is not bounded
by any function of the independence number, and can be as large as �(n1/3) for an
n-vertex graph with independence number 2. Can it be bounded by any function of
the Shannon capacity S(G)? The next result shows that the answer is negative.

Theorem 3.2 There is a sequence of graphs Hn with the following properties. Hn

has n vertices, its Shannon capacity is 3 and its θ -function is at least (1 + o(1))n1/4.

Proof Let F = GF(2k) be the finite field with q = 2k elements, and letU = Un be
the set of all vectors x = (x0, x1, x2) ∈ F3 so that the sum x0 + x1 + x2 (computed in
F) is nonzero, and x is not of the form (y, y, y) for some y ∈ F .Define an equivalence
relation on U by calling two vectors equivalent if one is a multiple of the other by
a field element. The vertex set V = Vn of the graph Hn is the equivalence classes
of U with respect to this relation. Therefore |V | = n = (q3 − q2 − q + 1)/(q −
1) = q2 − 1. Two vertices x = (x0, x1, x2) and y = (y0, y1, y2) are not connected
iff x0y0 + x1y1 + x2y2 = 0, where the sum and product are computed in F and x, y
are any two representatives of the corresponding equivalence classes. Note that this
is an induced subgraph of the complement of the Erdős-Rényi graph (which is the
polarity graph of a projective plane) considered in [26]. For our purpose here it is
convenient to define it over a field of characteristic 2, see [9] for a close variant.
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Claim The Shannon capacity of Hn is at most 3.

Proof Weuse a variant of the argument in [5, 31]. By definitionwe can assign to each
vertex v of Hn a vector xv in F3 so that the inner product of each vector with itself
(over F) is nonzero and for any two nonadjacent vertices u, v, the inner product of xu
and xv is zero. By taking tensor powers this supplies, for every k, an assignment with
similar properties for the vertices of the power Hk

n . For each vertex we get a vector
in F3k so that the inner product of any vector with itself is nonzero and the inner
product of any two vectors associated to non-adjacent vertices is 0. This implies that
the vectors corresponding to an independent set are linearly independent and hence
the size of each such set is at most 3k , establishing the claim. �

Claim The θ -function of Hn is at least
√
q > n1/4.

Proof The complement of Hn is an induced subgraph of the polarity graph of the
projective plane of orderq. The eigenvalues of this polarity graph are easy to compute,
as for its adjacency matrix A, AT A = q I + J where I is the identity matrix and J
is the all 1 matrix. Thus the eigenvalues of At A are q + 1 + q2 + q = (q + 1)2

(with multiplicity 1) and q (with multiplicity q2 + q). It follows that the smallest
eigenvalue of A is −√

q , and by eigenvalues interlacing, the smallest eigenvalue of
the adjacency matrix of the complement of Hn is at least −√

q . It is not difficult to
check that this complement is regular of degree q. Thus, by Lemma 3.1,

θ(Hn) ≤ n
√
q

q + √
q

.

It follows that

θ(Hn) ≥ q + √
q√

q
= √

q + 1 > n1/4.

This completes the proof of the claim, which together with the previous claim imply
the assertion of the theorem. �

4 Ramsey Graphs and Maxcut

4.1 The Ramsey Number r(3,m)

Let r(3,m) denote the maximum number of vertices of a triangle-free graph
whose independence number is at most m. The problem of determining or esti-
mating this function is a well studied Ramsey type problem. Ajtai, Komlós and
Szemerédi proved in [1] that r(3,m) ≤ O(m2/ logm), (see also [43] for an esti-
mate with a better constant). Improving a result of Erdős who showed in [22] that
r(3,m) ≥ �((m/ logm)2), Kim [33] proved that the upper bound is tight up to a
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constant factor, that is: r(3,m) = �(m2/ logm). Proofs providing a better constant
appear in [14, 28]. All these lower bound proofs are probabilistic, and do not supply
any explicit construction of the corresponding graphs.

The problem of finding an explicit construction of triangle-free graphs of inde-
pendence number m and many vertices has also received a considerable amount of
attention. Erdős [23] gave an explicit construction of such graphs with

�(m(2 log 2)/3(log 3−log 2)) = �(m1.13)

vertices. This has been improved by Cleve and Dagum [16], and further improved
by Chung, Cleve and Dagum in [15], where the authors present a construction with

�(m log 6/ log 4) = �(m1.29)

vertices. A better explicit construction is given in [3], where the number of vertices
is �(m4/3).

The graphs Gn described in Sect. 2 provide the best known explicit construction,
as shown in [2]. Indeed, the graphGn is triangle-free, and as described in the previous
section its Shannon capacity is at most m = O(n2/3), where n is the number of its
vertices. As the Shannon capacity is an upper bound for the independence number,
these are explicit graphs showing that r(3,m) ≥ �(m3/2). A different construction
providing the same asymptotic bound has been given a few years later in [18]. See
also [19, 35] for more recent variants.

4.2 Maxcut in Triangle-Free Graphs

For a graphG, let f (G) denote themaximumnumber of edges in a bipartite subgraph
of G, that is, the size of the maxcut of G. Edwards [20, 21] proved that for any graph
G with m edges,

f (G) ≥ m

2
+ −1 + √

8m + 1

8
= m

2
+ �(m1/2).

This is tight for every m = (s
2

)
where s is an integer.

Erdős and Lovász (see [24]) showed that if G is a triangle-free graph with m
edges, then

f (G) ≥ m/2 + �

(
m2/3

(
logm

log logm

)1/3
)

.

This has been improved by a logarithmic factor by Poljak and Tuza [41], and further
improved by Shearer [44], who proved that ifG is a triangle-free graph withm edges
then
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f (G) ≥ m

2
+ �(m3/4). (1)

In [4] the exponent 3/4 is improved to 4/5.Moreover, it is shown that this is tight up
to the multiplicative constant in the error term. That is, there exists a constant C > 0
so that for every m there exists a triangle-free graph G with m edges satisfying

f (G) ≤ m

2
+ Cm4/5.

This is proved using the graphs Gn described in Sect. 2 together with the following
simple lemma, whose proof can be found, for example, in [4].

Lemma 4.1 Let G = (V, E) be a d-regular graph with n vertices and m = nd/2
edges, and let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G. Then

f (G) ≤ (d − λn)n/4 = m

2
− λnn/4.

The graph G = Gn is triangle-free, has n vertices, is d = ( 14 + o(1))n2/3-regular
and its most negative eigenvalue is λn = −λ where λ ≤ (9 + o(1)n1/3. Therefore
the number of edges of G is m = �(n5/3) and

f (G) ≤ m

2
+ O(n4/3) = m

2
+ O(m4/5).

5 List Decodable Zero-Rate Codes

A binary code C ⊂ {0, 1}n is < L-list decodable with normalized radius τ if any
Hamming ball with radius τn contains less than L codewords.

Define

τL = 1

2
−

(2k
k

)

22k+1
if L = 2k or L = 2k + 1. (2)

Blinovskii [13] proved that for any fixed radius τ < τL the largest possible < L-
list decodable codewith normalized radius τ in {0, 1}n is exponentially large in n, that
is of size at least 2bn for some b = b(τ, L) > 0. On the other hand he showed that for
any fixed radius τ > τL the largest < L-list decodable code with normalized radius
τ (of any length n) is of constant size, that is, of size at most some b′ = b′(τ, L).
Therefore, the maximum possible rate is positive for τ < τL , and is zero for τ > τL .
How large can C be when τ is just above the threshold τL? Let m(L , ε) denote the
maximum possible size of a < L list decodable code with normalized radius at least
τL + ε, where the maximum is taken over all values of the length n.

Levenshtein [36] showed that the so-called Plotkin bound is sharp in the unique
decoding case (L = 2), namely
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m(2, ε) = 1

4ε
+ O(1).

For larger values of L the situation is more complicated. The result of [13] is proved
by iterating Ramsey’s theorem, providing a very large (finite) bound for m(L , ε).
In a recent paper with Bukh and Polyanskiy [7] it is proved that for every even L ,
m(L , ε) = �(1/ε). This implies that for every L , m(L , ε) ≥ �(1/ε). In addition,
the value of m(3, ε) is determined up to a constant factor, as stated in the following
theorem.

Theorem 5.1 ([7])

m(3, ε) = �(
1

ε3/2
).

The lower bound is proved using the graphs described in Sect. 2. Here is the
argument.

Proof of the lower bound: Let G = Gm = (V, E) be the graph described in Sect. 2,
where m is the number of its vertices. Recall it is a Cayley graph of an elementary
abelian 2-group Zr

2, let A be its adjacency matrix, and let d = λ1 ≥ λ2 ≥ · · · λm =
−λ be its eigenvalues, where d is the degree of regularity and −λ is the smallest
eigenvalue. Thus d = (1/4 + o(1))m2/3, λ = (9 + o(1))m1/3 and G is triangle-free.
As it is a Cayley graph of an elementary abelian 2-group, it has an orthonormal
basis of eigenvectors v1, v2, ..., vm in which each coordinate of each vector is in
{−1/

√
m, 1/

√
m}. Indeed, the eigenvectors are simply the (normalized) characters

of the group. Define B = (A + λI )/λ where I is the m-by-m identity matrix. Then
B is a positive semidefinite matrix, its diagonal is the all-1 vector, its eigenvalues
are μi = (λi + λ)/λ and the corresponding eigenvectors are the vectors vi . Let P be
the m-by-m orthogonal matrix whose columns are the vectors vi , and note that the
first v1 is the constant vector 1/

√
m. Let D be the diagonal matrix whose diagonal

entries are the eigenvalues μi and let
√
D denote the diagonal matrix whose entries

are
√

μi . Then PT BP = D and thus B = (P
√
D)(

√
DPT ).

The rows of thematrix P
√
D are vectors x1, x2, . . . , xm where xi = (xi1, xi2, . . . ,

xim). Note that for each j , xi j ∈ {−√
μ j/m,

√
μ j/m} for all i , and that xi1 is positive

for all i . In addition xTi x j = Bi j for all i, j implying that the 	2-norm of each vector
xi is 1 and that among any three vectors xi there is an orthogonal pair. Let yi be the
vector obtained from xi by removing its first coordinate (the one which is

√
μ1/m =√

(d + λ)/mλ). Then each yi is a vector of 	2-norm
√
1 − μ1/m and among any

three of them there is a pair with inner product−μ1/m.We can normalize the vectors
by dividing each entry by

√
1 − μ1/m to get m unit vectors z1, z2, . . . , zm , where

any three of them contain a pair with inner product −δ, where δ = μ1/(m − μ1).
Moreover, for the vectors zi = (zi j ), for each fixed j the absolute value of all zi j
is the same for all i . Denote this common value by t j . We can now use the vectors
zi to define functions mapping [0, 1] to {1,−1} as follows. Split [0, 1] into disjoint
intervals I j of length t2j and define fi to be sign(zi j ) on the interval I j . It is clear that
the 	2-norm of each fi is 1 and the inner product between fi and f j is exactly that
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between zi and z j . In particular, each three functions fi contain a pair whose inner
product is at most −δ.

One can replace the functions by vectors of 1,−1 with essentially the same prop-
erty, using an obvious rational approximation to the lengths of the intervals. Let n
denote the length of these vectors.

Put, say, ε = δ
4.01 . Plugging d = (1/4 + o(1)m2/3 and λ = (9 + o(1)m1/3 we get

ε = �(m−2/3) and hence the number of vectors is m = �
(
(1/ε)3/2

)
. This gives a

binary code with m = �
(
(1/ε)3/2

)
codewords of length n so that among any three

codewords there are two such that the Hamming distance between them exceeds
(1/2 + 2ε)n. Thus no Hamming ball of radius (1/4 + ε)n = (τ3 + ε)n can contain
three vectors, completing the proof. �

6 Extensions and Open Problems

As described in the previous sections, if G is a graph with independence number
α(G), Shannon capacity S(G) and θ -function θ(G), then α(G) ≤ S(G) ≤ θ(G).
Already in his original paper introducing S(G) Shannon [42] proved that if χ∗(G)

is the fractional chromatic number of the complement of G, and χ(G) is the chro-
matic number of this complement, then S(G) ≤ χ∗(G) ≤ χ(G). Lovász showed that
θ(G) ≤ χ∗(G). Therefore, for every graph G,

α(G) ≤ S(G) ≤ θ(G) ≤ χ∗(G) ≤ χ(G).

As mentioned in Sect. 3, it is not known whether or not S(G) can be bounded by
any function of α(G). On the other hand, for any other pair of invariants among the
above five, the larger one is not bounded by any function of the smaller one. Indeed
as shown in Sect. 3, there are graphs G on n vertices where θ(G) ≥ �(n1/4) and
S(G) ≤ 3, and graphs G on n vertices with θ(G) = �(n1/3) and α(G) = 2.

We next show that for any ε > 0 there is a δ > 0 and n-vertex graphs for which
χ∗(G) ≥ nδ and θ(G) ≤ (2 + ε). Such graphs are constructed in [10], based on a
theorem of Frankl and Rödl [29].

For a pair of integers q > s > 0 let G(q, s) denote the graph on n = (2q
q

)
vertices

corresponding to all q-subsets of the 2q-element set Q = {1, 2, . . . , 2q}, where two
vertices are adjacent iff the intersection of their corresponding subsets is of cardinality
precisely s. By the main result of Frankl and Rödl in [29], for every γ > 0 there is a
μ = μ(γ ) > 0 so that if (1 − γ )q > s > γ q then every family of more than 22q(1−μ)

subsets of cardinality q of Q contains some pair of subsets whose intersection is of
cardinality s. This means that the independence number of the graph G(q, s) for q
and s that satisfy (1 − γ )q > s > γ q satisfies

α(G(q, s)) ≤ nc (3)
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for some c = c(γ ) < 1, where n = (2q
q

)
is the number of vertices. Therefore, the

fractional chromatic number of G(q, s) is at least n1−c = nδ .
It is shown in [10] that the parameter γ can be chosen to ensure that θ(G(q, s)) ≥

n
2+ε

, where n is the number of vertices of G(q, s). Lovász proved in [38] that if a
graph has a vertex transitive automorphism group then the product of its θ -function
with that of its complement is the number of vertices. Since the graph G(q, s) is
clearly vertex transitive, this implies that the θ -function of its complement is at most
2 + ε. Thus, this complement is a graph showing that θ may be fixed (in fact close to
2) while the fractional chromatic number of the complement grows as a small fixed
power of the number of vertices.

The existence of graphs with a fixed fractional chromatic number and large chro-
matic number is well known. Here the gap can be only logarithmic in the number of
vertices. The Kneser graphs provide examples of graphs with fractional chromatic
number 2 + ε and chromatic number �(log n) where n is the number of vertices.
The Kneser graph K (m, r) is the graph whose vertices are all subsets of cardinality
r of an m-element set, where two are adjacent if they are disjoint. Lovász proved in
[37] that the chromatic number of K (m, r) ism − 2r + 2, and it is easy to see that its
fractional chromatic number is m/r . Taking r = m

2+ε
we get the required example.

It will be interesting to find a construction of Kk-free graphswith extremal spectral
properties for k > 3, extending that of the graphs Gn described in Sect. 2. It is not
difficult to show (see [9]) that if dk−1 > nk−2λ then any (n, d, λ)-graph G contains
a clique of size k. Therefore, if λ = O(

√
d) and G contains no copy of Kk , then

d ≤ O(n1−
1

2k−3 ).

This is tight for k = 3, as shown by the graphs Gn . Is it tight for larger values of k
as well?

What is the largest possible value of the θ -function of an n vertex graph with
independence number smaller than k? In [10] it is shown that this maximum is at
most O(n1−2/k). This is tight for k = 3 but is not known to be tight for any larger
value of k. The results in [27] imply that this maximum is at least �(n1−O(1/ log k)).
It will be interesting to close the gap here. In a somewhat different direction it is
proved in [10] that if the odd girth of the complement of an n vertex graph G exceeds
2s + 1, then its θ -function is at most O(n1/(2s+1)). As mentioned in [10], this is tight
for all values of s, by a natural extension of the construction of the graphs Gn .

What is the maximum possible Euclidean norm of a sum of n unit vectors in
an Euclidean space (of any dimension) so that among any k of them some two are
orthogonal? This extends the question discussed in Sect. 3.2 and is closely related
to the question about the maximum possible θ -function of a graph on n vertices
with independence number smaller than k. Denote this maximum possible norm by
f (n, k). It is clear that f (n, 2) = √

n and as discussed in Sect. 3, f (n, 3) = �(n2/3).
In [10] it is shown that f (n, k) ≤ O(n1−1/k) for all k. The following theorem can be
proved following the approach in [27].
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Theorem 6.1 For any k > k0, n > n(k),

f (n, k) ≥ n1−O(1/ log k).

Here is an outline of the proof. Let t = 4p, p a prime, and let F be the set of all
vectors in {−1, 1}t with an even number of −1 entries which is at most n/3. Let G
denote the tensor product of s copies ofF , normalized to be unit vectors. Each vector
inG has projection at least (1/3)s in the direction of the all 1 vector. Put q = 2−0.85st

and let X be a random subset of G obtained by taking each member of G, randomly
and independently, to be a member of X with probability q. Let n denote the number
of vectors in X . Clearly their sum is of norm at least n/3s , and n is at least 2st/25

(say), with high probability. By a result of [30], any set of more than 2H(1/4)t vectors
in F contains an orthogonal pair. Now any set in the tensor power of s copies of F
that contains no such pair is a subset of a product of its projections on the copies
of F , namely of a box of the form F1 × F2 · · · × Fs , with Fi ⊂ F with no pair of
orthogonal vectors. The number of choices for such a product is smaller than 22

t s

and the probability that for, say, k = 30 · 2t/t , k members of such a product belong
to X is small, by the union bound, as

22
t s

(
2H(1/4)ts

k

)
qk < 1.

This completes the proof. �
As described in Sect. 4, every triangle free graph withm edges contains a bipartite

subgraph with at least m
2 + cm4/5 edges. The graphs Gn show that this is tight up to

the absolute constant c. It is natural to extend the question for other forbidden graphs
H . Let f (G) denote the maximum number of edges in a bipartite subgraph of G
and let f (m, H) denote the minimum possible value of f (G), as G ranges over all
H -free graphs with m edges. It is proved in [11] that f (m, H) = m

2 + c(H)m4/5 for
all graphs H obtained by joining a vertex to all vertices of any nontrivial forest, and
this is tight up to the value of c(H). Here, too, the tightness follows from the graphs
Gn . It is also proved in the same paper that

f (m,C2r ) ≥ m

2
+ c(r)m

r
r+1 (4)

for every even cycle C2r , and this is tight for 2r ∈ {4, 6, 10}. For complete bipartite
graphs with 2 or 3 vertices in the smaller color class it is shown that

f (m, K2,s) ≥ m

2
+ c(s)m5/6

and
f (m, K3,s) ≥ m

2
+ b(s)m4/5
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and both results are tight up to the constants c(s), b(s). See also [6] for some related
results. An intriguing conjecture raised in [6] is that for every fixed graph H there
is an ε = ε(H) so that f (m, H) ≥ m

2 + �(m3/4+ε). This, as well as the conjecture
that for every even cycle the estimate (4) is tight, remain open.

Recall that the function m(L , ε) defined in Sect. 5 is the maximum possible size
of a binary code (of any length) in which every Hamming ball of normalized radius
τL + ε contains less than L codewords. Here τL , defined in (2), is the threshold
normalized radius between positive and zero rate for< L-list decodable codes.While
it is proved in [7] that for every even L , m(L , ε) = �L(1/ε) and that m(3, ε) =
�(1/ε3/2), the problemof determining or estimatingm(L , ε) for odd values of L > 3
is open. The lower bound is �L(1/ε) and the upper bound is an iterated exponential
in 1/ε. It seems plausible to conjecture that m(n, ε) is bounded by a polynomial in
ε, for any fixed L . This remains open.

Thucydides, who is widely considered to be the father of scientific history, wrote
in the introduction to his book on the History of the Peloponnesian War between
Sparta and Athens (431–404 BC): “With reference to the speeches in this history;
some I heard myself, others I got from various quarters; it was in all cases difficult
to carry them word for word in one’s memory, so my habit has been to make the
speakers say what was in my opinion demanded of them by the various occasions.”

In analogy, let me conclude this short paper stating that many of the results de-
scribed here are due to Lovász, others are inspired by his questions and proofs.
Regarding the statements that are difficult to derive directly by following his work
word for word, my habit has been to try to find out how Laci would have established
them. I hope this has been at least somewhat successful.

Acknowledgements Research supported in part by NSF grant DMS-1855464, ISF grant 281/17,
GIF grant G-1347-304.6/2016 and the Simons Foundation.
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1 Introduction

From the world of finite sets [n] := {1, . . . , n} and structures there are two basic
ways of “going to infinity”: either by stepwise extensions [n] ↪→ [n + 1] (leading
to the natural numbersN, formal power series, infinite permutation group S∞, etc) or
by subdivision (leading to the reals R, the unit interval [0, 1], measure, integral,…).

In the case of matroids, the first road leads to what is usually meant by an “infinite
matroid”, namely amatroid on an infinite ground set having a bounded integer-valued
semimodular rank function. In this paper we are interested in taking the second road,
leading to continuous matroids.

What then is a continuous matroid? While we leave open a precise answer to this
question (see the discussion in Sect. 6), a quick answer is that a continuous matroid
is a semimodular lattice with a real-valued rank function such that maximal chains
are isometric to the unit interval.

Various investigations in incidence geometry, by Dedekind, Menger, Veblen,
Young, and others, culminated in a theorem of Birkhoff from 1935 [1], which char-
acterises projective geometries in lattice-theoretic terms. By “projective geometry”
is here understood the full subspace lattice of some finite-dimensional vector space
over a skew field. The main content of Birkhoff’s theorem is that the characteristic
lattice-theoretic feature of these geometries is modularity.

Generally speaking, two lines of development were inspired by Birkhoff’s the-
orem and its roots. These lines of research, both extending the class PG of finite-
dimensional projective geometries, were motivated by different concerns and headed
in different directions. On the one hand, PG was embedded into the class of con-
tinuous geometries, in the sense of von Neumann, the motivation here coming from
operator theory and quantum physics. In another direction, PG was embedded into
the class of geometric lattices or matroids, an important class of combinatorial struc-
tures.

PG – projective geometries → vN Continuous geometries

↓ ↓

Matroids → ???

A natural question then is, can the two directions be merged in any fruitful way?
Is there a common concept that allows both the semimodularity characteristic of
matroids and the continuous rank functions of von Neumann geometries??

Along these lines, in the papers [2, 3] we presented conditions guaranteeing, for
certain classes C of finite matroid lattices, the existence of embedding schemes that
allow passing to the limit C∞. The purpose of the present paper is to review this
work from a viewpoint 30 years hence. This will be done in Sects. 4–6, following a
short recapitulation of background material in Sects. 2 and 3. With the current flurry
of interest in limits of combinatorial objects, much of it due to Lovász [6], a review
of such matroid limits seems timely.
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A basic and beautiful example of the kindwe have inmind is whenC is the class of
finite Boolean lattices. ThenC∞ is the sigma algebra of Lebesguemeasurable subsets
of the unit interval, and the rank function is Lebesgue measure. Another example
is the class PG of finite projective geometries over a finite field, for which PG∞ is
the corresponding hyperfinite von Neumann geometry. These measure-theoretic and
dimension-theoretic interpretations suggest probabilistic and geometric connections.

From a combinatorial point of view, these examples, both due to von Neumann,
can be thought of as continuous analogues of free matroids and linear matroids. We
show that also partition lattices and field extensions have such continuous analogs,
corresponding to the classes of graphic and algebraic matroids, respectively.

The main problem one faces when trying to construct embedding schemes and
limits for matroids is the absence of a key technical property: modularity. We intro-
duced in [3] a somewhat weaker notion, called pseudomodularity, that does the job
for us in several cases where modularity is missing.

2 Geometry, Matroids and Lattices

Matroids, a concept generalising configurations in projective geometry, were intro-
duced around1935byBirkhoff,MacLane andWhitney.As iswell known, the concept
has been spectacularly successful. We assume some familiarity with the concepts of
lattices and matroids, and refer to Birkhoff [1] and Oxley [7] as standard references.

Recall that a lattice is said to be modular if it satisfies the modular law:

x ≤ z =⇒ (x ∨ y) ∧ z = x ∨ (y ∧ z)

for all x, y, z ∈ L. A lattice of finite rank is called semimodular if

x and y cover x ∧ y =⇒ x ∨ y covers x and y,

for all x, y ∈ L. In a semimodular lattice all maximal chains are of equal length,
which induces a rank function. This satisfies the the semimodular inequality:

r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y)

A semimodular lattice is modular if and only if for all x, y:

r(x ∨ y) + r(x ∧ y) = r(x) + r(y)

There aremanyways to definematroids.We use the characterisation via geometric
lattices [1, 7], that is via the poset of its closed subsets. These lattices, sometimes
also called matroid lattices, are defined by being semimodular and atomic.

Aswasmentioned in the Introduction, the following characterization of projective
geometries, also known as full linear matroids, has been of great importance.
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Theorem 2.1 (Birkhoff, [1]) A latticeL of finite rank r ≥ 4 is a projective geometry
of dimension r − 1 over a skew field k if and only if

L is complete, complemented, irreducible, and modular.

In rank 3 there are also the non-Desarguesian planes.

In this characterization, the first three conditions mean that
• (complete) joins and meets exist for arbitrary subsets (not only for pairs),
• (complemented) for each x ∈ L there is y ∈ L such that x ∨ y = 1̂ and x ∧ y = 0̂
• (irreducible) L is not a direct product.
It is however the fourth condition—modularity—that is the core of the result. The
absense of modularity initially posed a serious technical challenge to our attempts at
creating continuous limits of matroids.

It can be convenient to present geometric facts in lattice-theoretic terms. For
instance, consider the following property of a line configuration:

Suppose that we have 3 lines x, y and z in 3-dimensional space, and that they are pairwise
coplanar but all three are not coplanar. Then the 3 lines intersect in a point.

This property, depicted in Fig. 1, was shown by Ingleton and Main [7] to hold for
all algebraic matroids. However, it is not true for linear matroids in general. As we
shall see, this kind of structure is of interest for matroid limits.

Definition 2.2 A semimodular lattice L is pseudomodular if it satisfies:

Let x, y, z, u ∈ L and assume that u covers x, y, z, z covers x ∧ z and z covers y ∧ z. Then,
r(x ∧ y) − r(x ∧ y ∧ z) ≤ 1.

This definition is illustrated in Fig. 2, which is perhaps easier to take in and remem-
ber than the verbal description. Notice the similaritywith the Ingleton-Main property.

Why do we need this peculiar-looking concept? The reason is the trouble that
comes from lack of modularity, and in particular from the fact that meets x ∧ y are
not necessarily continuous, see Theorem 4.1. Pseudomodularity has another char-
acterization in terms of certain “pseudointersections” x � y that helps repair the
shortcomings of the meet function, see [3] for this.

Thus, we now have these lattice properties:

Fig. 1 Ingleton-Main property
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Fig. 2 Pseudomodularity

Boolean ⇒ Modular ⇒ Pseudomodular ⇒ Semimodular

Lattices in the following classes were shown to be pseudomodular in [3].

• rank ≤ 3
• Boolean
• Full linear
• Full algebraic (due to Dress and Lovász [4])
• Full graphic (partition lattices)
• Full transversal

3 Work of von Neumann

The idea of continuous geometries is due to John vonNeumann.He gave an axiomatic
definition, building on that of Birkhoff. To help keeping distinct but similar-sounding
concepts apart, we add a prefix “JvN-”. These are his axioms:

Definition 3.1 A lattice L is a JvN-geometry if it is complete, complemented, irre-
ducible and modular, and if in addition it satisfies x ∨ (∧C) = ∧(x ∨ C) for all
chains (totally ordered subsets) C ⊆ L and for all x ∈ L.

For this class of lattices, von Neumann proved two main theorems, concerning
the existence of a dimension function and concerning coordinatization.

Theorem 3.2 (von Neumann) For a JvN-geometry L there exists a dimension func-
tion d : L → [0, 1] with range either

{0, 1
n
,
2

n
, . . . ,

n − 1

n
, 1} or [0, 1]

The first case is, of course, projective geometry with normalized dimension func-
tion. The other case is something new: continuous geometry. Just as Birkhoff’s the-
orem provides an algebraic representation of projective geometries, so algebraic
representations for all JvN-geometries were given by von Neumann.
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Theorem 3.3 (von Neumann) For a JvN-geometry L there exists a regular ring R
such that L is isomorphic to the lattice of left ideals in R.

We refer to the literature1 for definitions and ramifications surrounding von Neu-
mann’s concepts of continuous geometries and of regular ring. Suffice it to say that
his results put classical projective geometry of euclidean space and newer operator
geometry in Hilbert space under one hat.

It is an intriguing fact that the background to von Neumann’s interest in contin-
uous geometry came from quantum mechanics. Around 1930 he initiated study of
the algebra of bounded linear operators on Hilbert space and its subalgebras. The
reason for this study was the belief that the right mathematical apparatus for quantum
mechanics was in terms of operators on Hilbert space, a belief that he later came to
question. Operator theory was then developed in a series of papers by von Neumann
and Murray (1936–1943) and expanded by Gelfand, Naimark (mid-1940s on) and
others.

So called “von Neumann algebras” are central objects in operator theory. There
exists a class of such algebras, called factors, such that the study of von Neumann
algebras reduces to the study of factors. Murray and von Neumann gave a classifi-
cation of factors and showed that every factor has a dimension function. For factors
of type II1 the range of its dimension function is the full unit interval.

The relevance of all this for JvN-geometries is the following. The lattice of pro-
jections in a factor of type II1 is a continuous JvN-geometry. It is concrete in the
sense that it is not reached as a limit. See Sect. 6 for more about this.

4 Hyperfinite Continuous Matroids

In [3] we described a method for constructing continuous analogues, that works for
several important classes of matroids. They are obtained by the following procedure.
We begin by assuming that (Ln)n=1,2,... is a sequence of matroid lattices, one for
each positive integer n. Suppose also that rank(Ln) = n.

Suppose that n = qm. We define a stretch embedding of Lm in Ln to be a lattice
embedding φ = φn

m : Lm → Ln such that r(φ(x)) = qr(x) for each x ∈ Lm . That
is, a stretch embedding preserves joins, meets and normalized rank.

By an embedding scheme we mean a system of stretch embeddings φn
m : Lm →

Ln such that the mappings φn
m form a directed system, i.e., if k | m and m | n then

φn
m ◦ φm

k = φn
k . With this one can pass to the direct limit L(∞).

To finish the construction of a “continuous limit” L∞ we need to make a metric
completion. For this, define distance in terms of the rank function by

d(x, y) = 2r(x ∨ y) − r(x) − r(y),

1The extended abstracts in Proc. Natl. Acad. Sci. [10, 11] are very informative.
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which is a valid metric for any semimodular lattice. Note that in case of a modular
lattice this specializes to

d(x, y) = r(x ∨ y) − r(x ∧ y),

which is the metric used by von Neumann.
Summarizing, we have a procedurewith the following steps, beginning from some

suitable class of finite matroid lattices L.
Step 1. Construct scheme of stretch embeddings φm

n : Ln → Lm

Step 2. Direct limit: lim(Ln,φ
m
n ) = L(∞)

Step 3: Metric completion: L(∞) → L∞.
We call the lattices L∞ produced by this method hyperfinite.

Theorem 4.1 A hyperfinite continuous matroid L∞ has an induced rank function
r : L∞ → [0, 1] and satisfies the following properties:

• L∞ is a complete lattice.
• It is strongly complemented: for any x ∈ L∞ there is y ∈ L∞ such that x ∨ y = 1̂,

x ∧ y = 0̂, and r(x) + r(y) = 1.
• Semimodular inequality: r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y).

• Monotonicity: x < y implies r(x) < r(y).

• Metric: d(x, y) = 2r(x ∨ y) − r(x) − r(y) is a metric on L∞.
• The rank function r : L∞ → [0, 1] is surjective and continuous (in the metric

topology).
• Restricted to any maximal chain C in L∞, the rank function is an isometric bijec-

tion r : C → [0, 1].
• The join function is uniformly continuous, since d(x ∨ y, z ∨ u) ≤ d(x, z) +

d(y, u).

The meet function is in general not continuous. It may happen that in L∞ \ {1̂}
there are two sequences a1, a2, . . . and b1, b2, . . . such that lim a j = 1̂, lim b j = 1̂
and a j ∧ b j = 0̂ for all a j .

To produce stretch embeddings is simpler than one might think, using the follow-
ing result.

Theorem 4.2 Suppose that L is a semimodular lattice and a1, . . . , ak elements of L
such that r(a1) + · · · + r(ak) = r(a1 ∨ · · · ∨ ak). Suppose furthermore that either
(i) L is pseudomodular, or
(ii) all the elements ai are modular.
Then the sublattice generated by the intervals [0̂, ai ] is isomorphic to the direct
product of these intervals.

Consider again a sequenceL1,L2, . . . of pseudomodular geometric lattices such
that Ln has height n. Assume that when n = qm, there exist in Ln some q elements
a1, . . . , aq of rank m such that a1 ∨ · · · ∨ aq = 1̂ and [0̂, ai ] ∼= Lm , for all i . We call
these elements the representatives ofLm inLn . Letφi : Lm → [0̂, ai ] (i = 1, . . . , q)
be any isomorphisms, and define
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φ(x) = φ1(x) ∨ · · · ∨ φq(x).

By Theorem 4.2 this is a stretch embedding.
As was argued before, to construct the “continuous limit”L∞ of this sequence of

geometric lattices, we have to assume that the stretch embeddings φn
m form a directed

system, i.e., if k | m and m | n then φn
m ◦ φm

k = φn
k . One may assure this by choosing

the representatives compatibly.

5 Examples

5.1 The Hyperfinite Continuous Matroids We Know

To make the machinery of the previous section work and produce hyperfinite con-
tinuous lattices one needs pseudomodularity and a good choice of representatives.

All the hyperfinite matroids we know, listed in Table1, are pseudomodular, and
are constructed upon the universal complete geometries of its kind. By this we mean
that for each rank there is a “full” matroid into which the other matroids embed.
Think e.g. of graphs: all graphs embed into the complete graph on the same number
of vertices.

5.2 Continuous Free Matroid

Let Bn denote the lattice of subsets of an n-element set, which we take to be [n] =
{1, 2, . . . , n}. This is the unique Boolean lattice of rank n.

Let n = qm. The subsets Gi = {(i − 1)m + 1, (i − 1)m + 2, . . . , im}, for i =
1, 2, . . . , q, are good representatives ofBm inBn . Thus, via the machinery of stretch
embeddings a continuous limitB∞ is reached. Boolean lattices are modular, so these
lattices are covered by the theory of JvN-geometries.

Table 1 Hyperfinite continuous matroids

Continuous matroid Limit of this class of finite matroids

Lebesgue meas. σ-algebra B∞
rank = Lebesgue measure

Free (Boolean)
rank = normalized cardinality

Hyperfinite L∞(k) (vNeumann)
rank = dimension (oper alg)

Linearly representable over k
rank = normalized dimension

Algebraic A∞(k) Algebraically representable over k

Partition lattice �∞ Graphs

Transversal Transversal matroids
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A nice fact, see von Neumann [11], is thatB∞ is isomorphic to the lattice of mea-
surable subsets of the unit interval modulo subsets of measure zero. The continuous
rank function of B∞ is Lebesgue measure.

This can be “seen” by letting the ground set be the n-element set of half-open
subintervals of the unit interval

(0,
1

n
], (

1

n
,
2

n
], . . . , (

n − 1

n
, 1].

Label these intervals by their right endpoint, construct the representative sets Gi as
before, and identify the subsets of [n]with the union of the respective intervals which
is a measurable subset of the unit interval.

Another nice fact, also due to von Neumann [9], is that the automorphism group
of B∞ is isomorphic to the group of all measure-preserving permutations of the
unit interval (mod 0). Since the automorphism group of Bn is the symmetric group
Sn , this underscores that the correct continuous analogs of finite permutations are
measure-preserving mappings of the unit interval to itself (mod 0).

5.3 Continuous Linear Matroid

LetLn(k) be the lattice of linear subspaces of an n-dimensional vector spaceVn over
some field k. Choose a basis {x1, . . . , xn} for Vn , and let Si be the linear subspace
of Vn generated by {x(i−1)m+1, . . . , xim} (i = 1, . . . , n/m). Then S1, . . . , Sn/m are
representatives of Lm in Ln , and one checks that the induced mappings form a
directed system. Since Ln(k) is pseudomodular, the embedding scheme produces a
continuous analogue L∞(k).

The continuous matroids produced this way are the hyperfinite ones coming from
lattices of projections in factors of type II1, as discussed in [11].

5.4 Continuous Algebraic Matroid

Suppose that k is an algebraically closed field and let Kn be an algebraically closed
field extension of k of transcendence degree n ≥ 1. Let An(k) be the geometric
lattice of algebraically closed subfields of Kn containing k.

Let {x1, . . . , xn} be a transcendence basis for Kn , and let Gi be the algebraically
closed subfield of Kn generated by {x(i−1)m+1, . . . , xim} (i = 1, . . . , n/m). Then
G1, . . . , Gn/m are appropriate representatives of Am in An , and it is easy to check
that the inducedmappings form a directed system. So, sinceAn(k) is pseudomodular,
the machinery produces a continuous analogue A∞(k).

One is left wondering if these “continuous field extensions” have some algebraic
meaning.
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Fig. 3 The partition lattice �3

5.5 Continuous Partition Lattice

Let �n denote the lattice of partitions of an (n + 1)-element set, which we take to
be Fn = {0, 1, . . . , n}.2

The normalized rank of a partition π with k blocks is r(π) = n−k
n , so

r(�n) = {0, 1
n
,
2

n
, . . . ,

n − 1

n
, 1}

To generate stretch embeddings, suppose that n = qm, and for i = 1, 2, . . . , q
let γi be the partition of Fn whose only non-singleton block is Gi = {0, (i − 1)m +
1, . . . , im}, These partitions γi are suitable representatives of �m in �n , so a stretch
embedding is induced. The system of such stretch embeddings form a scheme, so
we can pass to the limit �∞.

There exists another approach to the problem of constructing continuous analogs
of partition lattices, due to Haiman [5], see also [8]. This uses the concept of “mea-
surable partition” from ergodic theory. Haiman defines a certain kind of measurable
partitions of the unit interval, which he calls “continuous partitions”, and shows that
these form a lattice ̂�∞ with all the expected properties.

Two particularly interesting facts about the lattice ̂�∞ of continuous partitions
are that

• the hyperfinite �∞ is a proper sublattice of ̂�∞,
• the automorphism group of ̂�∞ is isomorphic to the group of all measure-
preserving mappings of the unit interval (mod 0), the same as for B∞.

2The labeling of elements in Fig. 3 is off by one.
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5.6 Continuous Transversal Matroid

This is the limit of matchings in full bipartite graphs. See [3] for details.

6 Epilogue

What then is a continuousmatroid?Or rather, what should it be?We have seen several
examples, all constructed as limits of embedding schemes – thus, all belonging to
what we have called the hyperfinite case. But there are other possibilities, namely
there are continuous matroids that arise via a direct construction, let us call them
“concrete”.

The sigma algebra of Lebesgue measurable subsets of the unit interval as usually
defined is one example of a continuous matroid. The continuous-dimensional JvN-
geometries coming from factors of type I I1 is another. A third example is Haiman’s
continuous partition lattice ̂�∞ [5]. In the first two cases, the presentations as hyper-
finite limits and by concrete construction lead to isomorphic objects. That is not true
in the third case. The hyperfinite partition lattice is a proper sublattice of Haiman’s
concrete lattice of measurable partitions. See [5, 8] for detailed discussions.

A well chosen definition of continuous matroids should of course keep the door
open for concrete as well as hyperfinite examples. Perhaps a fruitful definition can be
put together from some of the properties stated in Theorem 4.1. We choose however
to refrain from any such speculation for lack of insight.

The situation reminds of a saying of the late Gian-Carlo Rota: “Starting from
definitions and deducing theorems is mathematics, whereas starting from theorems
and deducing definitions is philosophy.”
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1 Introduction

The theory of graph limits has been extensively developed for dense graph sequences
[7–10, 21, 22], but the sparse case is not as well understood. In this paper, we
study a model introduced and studied in a sequence of papers [3, 4, 11, 17, 18,
25, 26] based on the notion of graphexes. In contrast to the graphons of the dense
theory, which are symmetric two-variable functions defined over a probability space,
graphexes are defined over σ -finite measure spaces, and, in addition to a graphon
part W , contain two other components: a function S taking values in R+, and a
parameter I ∈ R+. Formally, the graphex is then the quadruple W = (W, S, I,�),
where � = (�,F , μ) is the underlying measure space.

A graphex then leads to a process (GT (W))T≥0 of randomgraphs as follows: start-
ing from a Poisson process over � with intensity Tμ, one attaches Poisson(T S(xi ))
leaves to each Poisson point xi , and in addition, joins two Poisson points xi , x j

with probability W (xi , x j ). Finally, one adds Poisson(T 2 I ) isolated edges not con-
nected to any of the other points. Removing isolated vertices as well as the labels
of the remaining vertices gives a graphex process (GT (W))T≥0 of unlabeled graphs
sampled from W.

Several notions of convergence for graphexes were introduced in [3, 25] and
further studied in [18]. Among these notions, we will be particularly interested in
graphex process convergence (GP-convergence), which was introduced in [25]. A
sequence of graphexes is GP-convergent if the random graph processes generated
by the graphexes in the sequence converge. It was pointed out in [18] that GP-
convergence can be metricized using the abstract theory of probability measures
over Polish spaces, but this does not give a very explicit metric on graphexes; in fact,
it does not even allow us to determine when two graphexes lead to the same random
graph process.

In this paper, we introduce a concrete notion of distance for graphexes that is
equivalent to GP-convergence, which can be thought of as corresponding to the “cut
distance” in the dense case. For reasons we explain in the next section, we call it the
“weak kernel distance”. We show that convergence in this distance is equivalent to
GP-convergence.

In general, the set of all graphexes is not compact. Indeed, it is not difficult to show
that for a set to be compact under GP-convergence, certain uniform boundedness
assumptions are necessary on the set of graphexes, which we call “tightness”. As
a part of our proof that our weak kernel distance metricizes GP-convergence, we
develop a (Frieze–Kannan-type) regularity lemma for graphexes and show that the
sets that are precompact under the weak kernel metric are precisely those that are
tight.

Finally, we prove an identifiability theorem, showing to what extent a graphex
can be identified from its graphex process. Formulated differently, we give a charac-
terization of the equivalence classes of graphexes, where two graphexes are called
equivalent if they give rise to the same graphex process. Generalizing a construction
that was developed by Janson for the dense case [16], we assign to each graphex
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W a “canonical version” ̂W such that W is a pullback of ̂W and show that if two
graphexes are equivalent, then their canonical versions are isomorphic up to measure
zero changes. This in turn will imply that two graphexesW1 andW2 are equivalent
if and only if there is a third graphex W3 (which can be taken to be their canoni-
cal graphex) such that after restricting the two graphexes to their “support” (strictly
speaking, we have to restrict them to their “degree support”, a notion we will define
in the next section) both W1 and W2 are pullbacks of W3. We note that this proves
a conjecture of Janson; see Remark 5.4 in [17].

Wenote that in this paperwe treat graphexes slightly differently from the definition
in [4, 17, 18, 25, 26]. Namely, as in [3], we follow the convention from the theory
of dense graph limits, and define the graphex process corresponding to a graphex
as a process of graphs without loops. Indeed, we believe that a theory with loops
is most naturally embedded into a more general theory of graphex processes with
multi-edges and loops, which is beyond the scope of this paper.

Nonetheless, it is worth pointing out that the reader interested in the theory with
loops (but not multi-edges) can derive many results for this theory from those devel-
oped here, even though some of the theorems will need to be modified to accommo-
date additional technical complications. For the identifiability theorem, this is done
in Appendix A.2.

Finally, we note that while signed graphexes (i.e., graphexes for which W , S and
I are not necessarily non-negative) do not make much sense if we want to use them
to generate a random graph process, they are quite natural from an analytic point of
view. Indeed, we will prove several of our results for signed graphexes. Still, the goal
of this paper is to study unsigned graphexes, and our results on signed graphexes
should be considered more of an aside at this point.

2 Definitions and Statements of Main Results

Definition 2.1 A graphex W = (W, S, I,�) consists of a σ -finite measure space
� = (�,F , μ), a symmetric measurable function W : � × � → [0, 1], a measur-
able function S : � → R+, and a nonnegative real number I such that the following
local finiteness conditions hold:

(1) W (·, x) is integrable for almost all x ∈ �, and
(2) there exists a measurable subset �′ ⊆ � such that μ(� \ �′) < ∞ and W|�′

is integrable.

The quadruple will be called a signed graphex if instead of taking values in [0, 1] and
R+,W , S and I take values inR. The graphexW = (W, S, I,�) is called integrable
if

‖W‖1 :=
∫

�×�

|W (x, y)| dμ(x) dμ(y) + 2
∫

�

|S(x)| dμ(x) + 2|I | < ∞,
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and the restriction W|�′ of W to �′ ⊆ � is defined as the quadruple W
′ =

(W ′, S′, I ′,�′) with �′ = (�′,F ′, μ′), where F ′ = {A ∈ F : A ⊆ �′}, μ′ is the
restriction of μ to F ′, W ′ is the restriction of W to �′ × �′, S′ is the restriction of S
to �′, and I ′ = I .

We often refer toW as a signed graphex over �, and we will refer to the function
W as a graphon, or the graphon part ofW. Similarly, S will be called a star intensity,
or the star part ofW, and I will be called a dust density, or the dust part ofW. (The
reason for this terminology will become clear when we discuss the random graph
process generated by an unsigned graphexW; as we will see, the star part ofW will
lead to stars, and the dust part will lead to isolated edges, whichwe call dust following
[18].) If two signed graphexesW1,W2 are defined on the same space�, then we say
that W1 = W2 almost everywhere if W1 = W2 almost everywhere, S1 = S2 almost
everywhere, and I1 = I2.

We define the marginal of a graphex W = (W, S, I,�) over � = (�,F , μ) as
the a.e. finite function DW : � → R+ defined by

DW(x) = DW (x) + S(x) where DW (x) =
∫

�

W (x, y) dμ(y).

We say that W has D-bounded marginals if ‖DW‖∞ ≤ D. Finally, we define its
degree support as the set

dsuppW = {x ∈ � : DW(x) > 0} .

Note that W is integrable if and only if its marginals are integrable.
Given a graphex W, we will define a stochastic process (GT (W))T≥0 indexed by

T ∈ R+ and taking values in the set of graphs with labels inR+. Tomake this precise,
we need to define a σ -algebra over the set of countable graphs with vertices in R+.
To this end, we first define the adjacency measure ξG of a countable graph G with
vertices in R+ as the measure ξG on R

2+ given by

ξG =
∑

t,t ′∈V (G):{t,t ′}∈E(G)

δ(t,t ′).

We call ξ an adjacency measure if there exists a countable graphG such that ξ = ξG .
We then equip the set of adjacency measures with the smallest σ -algebra such that
the maps ξ 
→ ξ(A) are measurable for all bounded Borel sets A ⊆ R

2+, and the set
of countable graphs with vertices in R+ with the smallest σ -algebra such that the
maps G 
→ ξG are measurable.

A graphex W = (W, S, I,�) then generates a family (GT (W))T≥0 of random
graphs as follows: we start with a Poisson point process with intensity λ × μ on
R+ × �, where λ is the Lebesgue measure onR+, and then connect two points (t, x)
and (t ′, x ′) of the Poisson process with probability W (x, x ′), independently for all
pairs of points. For each point of the Poisson process (t, x), we take another Poisson
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point process on R+ with intensity S(x)λ, and connect (t, x) to a vertex with “birth
time” ti for each point ti in the process. We also take a Poisson process with intensity
I (λ × λ) onR2+, and for each point (tx , ty)we take an isolated edge between vertices
with birth time tx and ty . If we ignore the labels in the feature space � and delete
the vertices with degree zero, this leads to an infinite graph G∞(W) with vertices
labeled by their birth time t ∈ R+. We then define GT (W) by first taking the induced
subgraph on the set of vertices which lie in [0, T ] and then deleting vertices whose
neighbors in G∞(W) all lie outside the interval [0, T ].

We will refer to the part of G∞(W) generated with the help of the dust intensity I
as the dust part of G∞(W), and as the part generated with the help of the star intensity
S as the stars in G∞(W). While it may not be a priori clear whether these parts can
be inferred from just observing the infinite graph G∞(W), this is actually the case, a
fact which was first noted in Remark 5.4 in [17]: almost surely, the dust part consists
of all edges in G∞(W) that are isolated, the star part consists of all edges with one
vertex of degree one and a second vertex of infinite degree, and the remaining edges
are generated by the graphon part ofW and have two endpoints with infinite degree.

Definition 2.2 LetW be a graphex, let (GT (W))T≥0 be the random family of graphs
defined above, and let ξ [W] be the random adjacency measure ξG∞(W). We call the
stochastic process (GT (W))T≥0 the graphex process generated by W, and the adja-
cency measure ξ [W] the adjacency measure generated byW. We say two graphexes
are equivalent, if the graphex processes generated by these graphons are equal in
law.

Remark 2.3 (1) Following [4], we defined a graphex process as a stochastic process
taking values in a space of graphs with labels in R+. Alternatively, one might want
to define a graphex process as a process taking values in the space of unlabeled
graphs without isolated vertices. In our current context, this would correspond to
ignoring the time labels of the graphs in GT (W), leading to a graph which we denote
by GT (W). When it is important to distinguish them, we will refer to the process
(GT (W))T≥0 as the unlabeled graphex process corresponding toW, and to the pro-
cess (GT (W))T≥0 as the labeled graphex process corresponding to W. Note that it
is easy to recover GT (W) from GT (W): just assign i.i.d. labels chosen uniformly at
random in [0, T ] to all vertices. A related observation is the fact that GT (W) can be
generated by first choosing (xi )i≥1 according to a Poisson process with intensity Tμ

in �, then connecting i and j with probability W (xi , x j ), then adding a star whose
number of leaves are chosen as a Poisson random variable with mean T S(xi ) to each
point of the process (xi )i≥1, and finally adding independent edges with rate I T 2.
Forgetting the labels then gives us GT (W). Relabeling each vertex in the resulting
graph independently by a uniform t ∈ [0, T ], we obtain GT (W).

(2) It is sometimes convenient to assign a feature value to the endpoints of the
isolated edges generated from the dust part I in the graphex, as well as to the leaves
of the stars generated using the function S. For our purpose, we will say that these
vertices have the feature label ∞, and we will extend the marginal DW to � ∪ {∞}
by setting
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DW(∞) =
∫

�

S(x) dμ(x) + 2I.

Note that with this notation, ‖W‖1 = ∫

�
DW(x) dμ(x) + DW(∞).

(3) In view of (2), one might want to equip the extended feature space ˜� =
� ∪ {∞}with aσ -finitemeasure by keeping the originalmeasure on�, and assigning
somefinitemeasure Q = μ̃(∞) to the feature value∞, giving a newσ -finitemeasure
space ˜�Q . On ˜�Q , one can then define a graphex of the form ˜WQ = (˜WQ, 0, 0,˜�)

by setting ˜WQ equal to W on � × � and to 2I/Q2 on {∞} × {∞}, and by set-
ting ˜W (x,∞) = S(x)/Q and ˜W (∞, y) = S(y)/Q if only one of the two features
x, y lies in �. With this construction, D

˜WQ
(∞) = DW(∞)/Q, D

˜WQ
(x) = DW(x) if

x ∈ �, and ‖W‖1 = ‖˜WQ‖1 = ∫

dμ(x)D
˜W1

+ QD
˜W (∞), with the notation in (2)

corresponding to the case Q = 1. It is clear that the graphon process generated from
˜W cannot have exactly the same distribution as the one generated from W unless I
and S are zero (to see this, note that in G∞(˜W), all vertices have infinite degrees,
while G∞(W) has vertices of degree one). But one might wonder whether the pro-
cess generated from the “pure graphon” ˜W approximates the one generated fromW.
As we will see in Remark 7.7, this is indeed the case, in the sense that for any fixed
T , the distribution of GT (˜WQ) converges to GT (W).

It is relatively easy to see that the local finiteness conditions (1) and (2) from
Definition 2.1 imply that the adjacency measure ξ [W] is a.s. locally finite (i.e.,
ξ [W](A) < ∞ for all bounded Borel sets A ⊂ R

2+), or equivalently, that for all
T < ∞, the graphs GT (W) are a.s. finite. It turns out that these conditions are also
necessary for the local finiteness of ξ [W]. This is the main statement of the following
proposition, which we will prove in Appendix A.1. For graphexes overR+ equipped
with the Lebesgue measure, a similar condition was established in [26], building on
the work of [19] (the condition considered by [19, 26] is the same as our condition
(E) below, specialized to the case D = 1, even though it is clear that both [19, 26]
knew that for graphexes over R+, conditions (D) and (E) are equivalent). To state
the proposition, we use the notation {DW > D} for the set {x ∈ � : DW(x) > D},
while {DW > D}, {DW ≤ D}, and {DW ≤ D} are defined analogously.

Proposition 2.4 Let W = (W, S, I,�) be a 4-tuple consisting of a σ -finite mea-
sure space � = (�,F , μ), a symmetric measurable function W : � × � → [0, 1],
a measurable function S : � → R+, and a nonnegative real number I . Then the local
finite conditions (1) and (2) from Definition 2.1 are equivalent to the local finiteness
of the adjacency measure generated byW. If we assume condition (1), then following
are equivalent:

(A) The graphex W obeys the local finiteness condition (2).
(B) For all D > 0, μ({DW > D}) < ∞ and W|{DW≤D} is integrable.
(C) There exists a D > 0 such that μ({DW > D}) < ∞ and W|{DW≤D} is inte-

grable.
(D) For all D > 0, μ({DW > D}) < ∞, and both W |{DW≤D} and min{S, 1} are

integrable.
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(E) There exists a D > 0 such that μ({DW > D}) < ∞, and both W |{DW≤D} and
min{S, 1} are integrable.

Note that this proposition implies in particular that a graphex with bounded
marginals is integrable, since for graphexes with ‖DW‖∞ ≤ D the graphex W and
the graphex W|{DW}≤D are the same.

Having defined the graphex process associatedwith a graphexW, there are several
natural questions one might want to answer. In particular, one might want to char-
acterize when two graphexes lead to the same process, i.e., when ξ [W] and ξ [W′]
have the same distribution. More generally, one might want to define a metric on the
set of graphexes such that the distributions of ξ [W] and ξ [W′] are close if W and
W

′ are close. Addressing these questions is one of the main goals of this paper.
Before discussing this further, it will be useful to embed the theory of graphex

processes into the general theory of locally finite point processes. To this end, we first
introduce the setN = N (R2+) of locally finite counting measures onR2+ (i.e., the set
ofmeasures ξ such that ξ(A) is a finite, non-negative integer for all boundedBorel sets
A ⊂ R

2+), and equip it with the Borel σ -algebra inherited from the vague topology
(defined as the coarsest topology for which the maps ξ 
→ ∫

f dξ are continuous for
all continuous functions f : R2+ → R+ with compact support). As shown in, e.g.,
[13], Appendix A2.6, the vague topology onN can be metricized in such a way that
N becomes a complete, separable metric space, making N into a Polish space, and
the Borel σ -algebra inherited from this topology is the smallest σ -algebra such that
for all bounded Borel sets A ⊂ R

2+ the maps μ 
→ μ(A) are measurable.
As usual, a locally finite point process on R

2+ is then defined as a random mea-
sure on N (R2+) equipped with this Borel algebra, and convergence in distribution
is defined as weak convergence in the set of probability measures on N , so that
convergence in distribution of a sequence of locally finite point process ξn on R2+ to
a locally finite point process ξ is defined by the condition that E[F(ξn)] → E[F(ξ)]
for all continuous, bounded functions F , with continuity defined with respect to the
vague topology onN . As observed in [18], the fact thatN is Polish makes the set of
probability distributions onN a Polish space as well (see, e.g., [1], Appendix III for
a proof), showing that convergence in distribution for locally finite point processes
on R2+ can be metricized.

Next we consider the set Ĝ of simple graphs G with vertices in R+ such that
(a) no vertex in G is isolated, and (b) for all T < ∞, the induced subgraph of
G on V (G) ∩ [0, T ] is finite. We also consider the subset Ĝ0 of finite graphs in
Ĝ. The map G 
→ ξ(G) then gives a one-to-one map between graphs in Ĝ and
adjacency measures. In particular, Ĝ and its subset Ĝ0 inherit the vague topology
and corresponding Borel σ -algebra from N . In this language, the graphex process
(GT (W))T≥0 then becomes a CADLAG stochastic process with values in Ĝ0 indexed
by a time T ∈ R+.

Note that Ĝ should be distinguished from the set of unlabeled countable graphs
without isolated vertices, G. While we will not equip G with any topology, the set
of finite unlabeled graphs without isolated vertices, denoted by G0, will be given



36 C. Borgs et al.

the discrete topology. In this language, the unlabeled graphex process (GT (W))T≥0

introduced in Remark 2.3 is then a CADLAG process with values in G0.
In [18], various notions of convergence for graphons and graphexes (proposed

originally in [3, 25])were studied.Herewearemost interested inwhat [25] introduces
as GP-convergence, where GP stands for graphex process. This notion is closely
related to the notionof sampling convergence for graphs introduced in [4]; seeLemma
5.4 in that paper, as well as the discussion at the end of this section. Janson showed
that the following are equivalent if W,W1,W2, . . . are graphexes:

(1) ξ(G(Wn)) → ξ(G(W)) in distribution.
(2) For every T < ∞, ξ(GT (Wn)) → ξ(GT (Wn)) in distribution.
(3) For every T < ∞, GT (Wn) → GT (W ) in distribution.

Following [25] we call this notion of convergence GP-convergence, and say thatWn

is GP-convergent toW if one of these equivalent conditions holds.
As already alluded to above, Janson also observed that by the abstract theory of

probability measures over Polish spaces, this notion of convergence can be metri-
cized, turning the set of graphexes into a complete, separable metric space. But this
abstract theory does not give a very explicit metric on the space of locally finite
graphexes; in fact, it does not even address the question of when two graphexes are
equivalent in the sense that the resulting point processes are equal in law.

To discuss the second question, we define measure-preserving transformations,
pullbacks, and couplings. Given two σ -finite spaces � = (�,F , μ) and �′ =
(�′,F ′, μ′), we say that a map ϕ : �′ → � is a measure-preserving transforma-
tion if ϕ is measurable and μ′(ϕ−1(A)) = μ(A) for all A ∈ F . IfW = (W, S, I,�)

is a signed graphex over �, we define its pullback under ϕ to be the graphex W
ϕ =

(W ϕ, Sϕ, I,�′) where W ϕ(x ′, y′) = W (ϕ(x ′), ϕ(y′)) and Sϕ(x ′) = S(ϕ(x ′)). It is
clear that for unsigned graphexes W and W

ϕ give rise to the same process of
random graphs. Note that we can define the pullback even when ϕ is measur-
able but not measure-preserving, but in this case the two graphexes do not nec-
essarily give rise to the same random process. Nevertheless, we will sometimes
use pullbacks in this situation. If we do, we will write W

ϕ,μ′
to emphasize the

dependence on the measure on �′. Given two σ -finite spaces �1 = (�1,F1, μ1)

and �2 = (�2,F2, μ2), we say that μ is a coupling of μ1 and μ2 if μ is a mea-
sure on F1 × F2 such that μ(�1 × S2) = μ2(S2) and μ(S1 × �2) = μ1(S1) for all
S1 ∈ F1 and all S2 ∈ F2. Note that the existence of such a coupling implies that
μ1(�1) = μ(�1 × �2) = μ2(�2). It turns out that this condition is both necessary
and sufficient for the existence of a coupling; see [3] for a proof.

Based on the known results for dense graphs, one might conjecture that two
graphexes are equivalent if and only if there exists a third graphex such that both are
pullbacks of this third graphex. It turns out that this is not quite correct, but that it
is correct once we remove the part of the underlying space on which DW = 0. This
is the statement of the following theorem, which is one of the main results of this
paper, and will be proved in Sect. 8.
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Theorem 2.5 Let W1 = (W1, S1, I1,�1) and W2 = (W2, S2, I2,�2) be
graphexes, where �i = (�i ,Fi , μi ) are σ -finite spaces. Then Gt (W1) and Gt (W2)

have the same distribution for all t ∈ R+ if and only if there exists a third graphex
W = (W, S, I,�) over a σ -finite measure space � = (�,F , μ) and measure pre-
serving maps ϕi : dsuppWi → � such that Wi |dsuppWi = W

ϕi almost everywhere.

Remark 2.6 If the twographexes are defined overBorel spaces,we can prove an anal-
ogous statement where the measure-preserving maps are turned around. Specifically,
for the casewhere�1 and�2 are σ -finite Borel spaces, we can prove thatGt (W1) and
Gt (W2) have the same distribution for all t ∈ R+ if and only if there exists a σ -finite
Borel space � = (�,F , μ) and measure preserving maps πi : � → dsuppWi such
that (W1|dsuppW1)

π1 = (W2|dsuppW2)
π2 almost everywhere. In this case, the space �

can be chosen to be a coupling of �1 and �2, with πi being the coordinate projec-
tions from �1 × �2 to �i . See Theorem 8.2 in Sect. 8. For graphexes without a dust
and star part, this was independently established in [3] (using a different proof); see
also [17], which establishes a similar result (with yet another proof), this time giv-
ing a coupling of the two graphexes (again without dust and star part) after trivially
extending them rather than restricting them to the support of their marginals.

To address the first question, concerning the relationship between graphexes and
the point processes generated by them, we would like to define an analogue of
the cut distance for graphons between graphexes, so that two graphexes are close
if and only if their graphex processes are close. To this end, we first define some
norms of a functionU over �1 × �2 for two σ -finite spaces �1 = (�1,F1, μ1) and
�2 = (�2,F2, μ2).Wedenote by‖U‖p the L p normofU as a functionover�1 × �2

(so we forget the product structure). Given two measurable functions f : �1 → R

and g : �2 → R, let

f ◦U (y) =
∫

�1

f (x)U (x, y) dx,

U ◦ g(x) =
∫

�2

U (x, y)g(y) dy,

and

f ◦U ◦ g =
∫

�1×�2

f (x)U (x, y)g(y) dx dy.

We will also use the notation Ux for the function y 
→ U (x, y).

Definition 2.7 Given a function U defined on �1 × �2 for two σ -finite measure
spaces �i = (�i ,Fi , μi ) for i = 1, 2, we define

‖U‖2→2 = sup
f,g:‖ f ‖2=‖g‖2=1

f ◦U ◦ g = sup
g:‖g‖2=1

‖U ◦ g‖2.

Note that the norm ‖U‖2→2 is simply the operator norm when we considerU the
kernel of an operator ̂U from L2(�2) to L2(�1). We will therefore call it the kernel
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norm of U . Our next norm is a modification of the standard cut norm; in the dense
graph setting, it was first systematically used in [20], where it was defined as a norm
for functions defined over a probability space.

Definition 2.8 Given a measurable function U defined on � × � for a σ -finite
measure space �, we define the jumble norm

‖U‖� = sup
S,T⊆�

∣

∣

∣

∣

1√
μ(S)μ(T )

∫

S×T
U (x, y) dμ(x) dμ(y)

∣

∣

∣

∣

.

Here the supremum is over subsets with finite and nonzero measure.

It is easy to show that these are norms; in particular, they satisfy the triangle
inequality, and are equal to 0 if and only if U is zero almost everywhere. If we want
to stress the dependence of these norms on the measure μ and the function U , we
write ‖U‖∗,μ instead of ‖U‖∗, where ∗ is replaced by the appropriate norm.

We will see later that for graphexes with uniformly bounded marginals and uni-
formly bounded ‖ · ‖1 norms, the ‖ · ‖2→2 norm and the ‖ · ‖� norm are equivalent
(Lemma 3.22), implying in particular that they are equivalent in the theory of dense
graph limits (where � has bounded measure). In the dense setting, the above two
norms are also equivalent to the standard cut norm, defined as

‖U‖� = sup
S,T⊆�

∣

∣

∣

∣

∫

S×T
U (x, y) dμ(x) dμ(y)

∣

∣

∣

∣

= sup
f,g : �→[0,1]

| f ◦U ◦ g|.

Indeed, ‖U‖� ≤ ‖U‖�μ(�) and ‖U‖� ≤ √‖U‖�‖U‖∞, where the second bound
follows from the fact that

∣

∣

∣

∣

∫

S×T
U (x, y) dμ(x) dμ(y)

∣

∣

∣

∣

≤ inf{λ(S)λ(T )‖U‖∞, ‖U‖�}.

Therefore, in the theory of dense graph limits all three norms are equivalent.However,
although the cut norm is the simplest to state, we believe that the kernel norm ‖ · ‖2→2

norm is the correct extension to graphexes.
We now define some distances between graphexes. First, we define the δ2→2 dis-

tance, whichwill define a notion of convergence that is equivalent toGP-convergence
for graphexes with uniformly bounded marginals. The definition of δ2→2 will make
sense for signed graphexes, provided both the graphon parts and the absolute
marginals are in L1 ∩ L2. We will therefore define the δ2→2 metric in this more
general1 setting.

1To see that this setting is indeed more general than the assumption of bounded marginals for
(unsigned) graphexes we recall that by Proposition 2.4, a graphex with bounded marginals is inte-
grable. Using this, and the fact that by definition, the graphon part of a graphex is bounded, the
claim is easy to verify.
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Definition 2.9 A signed graphex W = (W, S, I,�) over � = (�,F , μ) is said to
be in L1 ∩ L2 if both W and D|W| are in L1 ∩ L2. Here |W| is the graphex |W| =
(|W |, |S|, |I |,�).

SupposeW1 = (W1, S1, I1,�) andW2 = (W2, S2, I2,�) are defined on the same
underlying space �. We then define their d2→2-distance as

d2→2(W1,W2) = max
(

‖W1 − W2‖2→2,
√‖DW1 − DW2‖2, 3

√|ρ(W1) − ρ(W2)|
)

,

(1)
where ρ(Wi ) is the “edge density” of the signed graphex Wi ,

ρ(Wi ) =
∫

Wi + 2
∫

Si + 2I. (2)

The reason we take the roots will become clearer later when we define the gen-
eral distance δ�. Since

√
c1 + c2 ≤ √

c1 + √
c2 and 3

√
c1 + c2 ≤ 3

√
c1 + 3

√
c2, this is

indeed a metric.
Next, suppose two signed graphexes in L1 ∩ L2, W1 = (W1, S1, I1,�1) and

W2 = (W2, S2, I2,�2), are defined over two σ -finite spaces �1 = (�1,F1, μ1) and
�2 = (�2,F2, μ2) with μ1(�1) = μ2(�2). Let π1 : �1 × �2 → �1 and π2 : �1 ×
�2 → �2 be the projections. Then we define˜δ2→2(W1,W2) as the infimum

˜δ2→2(W1,W2) = inf
μ

d2→2(W
π1,μ
1 ,W

π2,μ
2 ), (3)

where the infimum is over all couplings μ of μ1 and μ2.
To define the δ2→2-distance we need one more notion, that of a trivial extension of

W = (W, S, I,�), where � = (�,F , μ) is a σ -finite measure space. It is defined
as a quadruple W′ = (W ′, S′, I ′,�′) where �′ = (�′,F ′, μ′) is a σ -finite measure
space such that � ∈ F ′, F = {A ∈ F ′ : A ⊆ �}, and μ is the restriction of μ′ to
F , while W ′ is the extension of W that is 0 on the complement of � × �, S′ is the
extension of S that is 0 on the complement of �, and I ′ = I . It is easy to see that
taking a trivial extension of a graphex has no effect on GT or G∞ (since Poisson
points sampled in the complement of � will be isolated for all T ).

Definition 2.10 Let W1 and W2 be signed graphexes in L1 ∩ L2. Then we define

δ2→2(W1,W2) =˜δ2→2(W
′
1,W

′
2), (4)

whereW′
1 andW

′
2 are trivial extensions ofW1 andW2 to measure spaces of infinite

total mass. We refer to δ2→2(W1,W2) as the kernel distance ofW1 andW2 and call
δ2→2 the kernel metric.

The existence of these extensions is trivial, sincewe can always append an interval
equippedwith the Lebesguemeasure. Nevertheless, it is not clear that δ2→2(W1,W2)

is well defined, since the right side of (4) could depend on the particular choice of the
extensionsW′

1 andW
′
2. In a similar way, while it is clear that δ2→2 is symmetric and



40 C. Borgs et al.

that δ2→2(W,W) = 0, it is not clear that it is a metric (even after factoring out the
null space), since it is not clear that it satisfies the triangle inequality. The following
theorem addresses both questions, and will be proved in Sect. 3.

Theorem 2.11 Let W1 and W2 be signed graphexes in L1 ∩ L2. Then the right
side of (4) does not depend on the choice of the trivial extensions W

′
1 and W

′
2.

Furthermore, given three signed graphexes W1,W2,W3 in L1 ∩ L2,

δ2→2(W1,W3) ≤ δ2→2(W1,W2) + δ2→2(W2,W3).

Therefore, δ2→2 is a well-defined pseudometric.

Remark 2.12 In [3], when defining the cut distance between two graphons, it was
only necessary to extend the smaller space to the larger one, and it was not necessary
to extend further. It is natural to ask whether a trivial extension to a space of infinite
metric is necessary, or, equivalently, whether for two graphexesW1,W2 defined on
spaces with the same (finite) measure,˜δ2→2(W1,W2) = δ2→2(W1,W2). In contrast
to the cut distance discussed in [3], for the kernel metric it is sometimes necessary
to take trivial extensions of both spaces, not just an extension of the smaller space to
one of the same measure as the larger one. See Example 3.11 in Sect. 3.

Our next theorem states that on sets with uniformly bounded marginals, the
topology induced by the kernel metric δ2→2 is equivalent to the topology of GP-
convergence. We will prove it in Sects. 6 and 7.

Theorem 2.13 For any D > 0, δ2→2-convergence is equivalent to GP-convergence
on the space of graphexes with D-bounded marginals.

In general, δ2→2-convergence implies GP-convergence, but the reverse is not true.
This is because if we do not assume bounded marginals, it is possible to have a very
small measure set with very large degree. This will have a non-negligible effect on
δ2→2 distance; however, for a fixed T , the chances of obtaining a vertex in the small set
is small, and thus has a small effect on sampling. To give a more concrete example,
let Wn be equal to 1 on [0, 1/n] × [1, 1 + n] and [1, 1 + n] × [0, 1/n], and zero
everywhere else. LetWn = (Wn, 0, 0,R+). Then for any fixed T , the probability of
seeing a single edge in GT (Wn) converges to 0, and thereforeWn is GP-convergent
to 0. However, it is easy to see that δ2→2(Wn, 0) does not converge to 0. To address
this issue, we will define a new distance such that two graphexes whose graphex
processes can be obtained from each other by removing a small set of vertices are
close in the new metric. Our construction is loosely motivated by the construction
of the usual metric of weak convergence. For that reason, we will refer to the new
metric as the weak kernel metric.

Before defining this distance, we introduce the notation μ − r ≤ μ′ ≤ μ when-
ever μ,μ′ are two measures over the same measurable space (�,F) such that

μ(B) − r ≤ μ′(B) ≤ μ(B)
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for all measurable sets B. Note that this property is equivalent to the existence of a
function h : � → [0, 1] such thatμ′(B) = ∫

B h dμ and ‖1 − h‖1,μ ≤ r . An example
of such a function, which we will often use, is the indicator function of a set �′ ⊆ �

such that μ(� \ �′) ≤ r .
We will define the weak kernel metric for arbitrary graphexes (removing the

condition that they are in L1 ∩ L2), and in fact will again allow for signed graphexes.
We will assume that the graphon parts of these signed graphexes are bounded in
the L∞ norm, a condition which is true for unsigned graphexes, since for these, the
graphon part takes values in [0, 1].
Definition 2.14 Let W1 = (W1, S1, I1,�1) and W2 = (W2, S2, I2,�2) be signed
graphexes, where �i = (�i ,Fi , μi ) and ‖Wi‖∞ < ∞ for i = 1, 2. We define
δ�(W1,W2) as the infimum of the set of real numbers c such that there exist two
measures μ̃1 and μ̃2 over (�1,F1) and (�2,F2) that satisfy the following: the signed
graphexes ˜W1 and ˜W2 obtained fromW1 andW2 by replacing μ1 and μ2 by μ̃1 and
μ̃2, respectively, are in L1 ∩ L2, and

(1) for i = 1, 2, we have μi − c2 ≤ μ̃i ≤ μi , and
(2) δ2→2(˜W1, ˜W2) ≤ c.

We refer to δ�(W1,W2) as the weak kernel distance between W1 and W2 and call
δ� the weak kernel metric.

Note that for unsigned graphexes, the weak kernel distance is well defined and
finite. Indeed, given 0 < D < ∞, choose μ̃i as the restriction of μi to {DWi ≤ D}.
Proposition 2.4 then implies that {DWi > D} has finite measure, and Wi |{DWi ≤D}
is integrable and hence in L1 ∩ L2. The fact that δ�(W1,W2) is well defined for
signed graphexeswith bounded graphon part follows fromProposition 2.4 and further
arguments, and is deferred to Sect. 3; see in particular Lemma 3.12 in that section.

We will show that δ� is a pseudometric. It is clear that it is symmetric, and that
δ�(W,W) = 0. It is not obvious that it satisfies the triangle inequality. We will prove
this fact in Sect. 3.

Theorem 2.15 Given three signed graphexes W1,W2,W3 with bounded graphon
part,

δ�(W1,W3) ≤ δ�(W1,W2) + δ�(W2,W3).

Therefore, δ� is a pseudometric.

Remark 2.16 Given a signed graphex W = (W, S, I,�) with � = (�,F , μ) and
a measure-preserving map ϕ : �′ → �, let W′ = W

ϕ almost everywhere. We can
take a coupling μ̃ on �′ × � defined by μ̃(A × B) = μ′(A ∩ ϕ−1(B)). It is easy to
see that then the pullbacks of the two signed graphexes to�′ × �will be equal almost
everywhere, which implies that δ2→2(W,W′) =˜δ2→2(W

′,W) = δ�(W′,W) =
˜δ�(W′,W) = 0.

With this new metric, we now have a definition of distance for any pair of
graphexes. Note that in general, the metrics δ2→2 and δ� are not be the same, even if
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both are finite. However, we will show that for graphexes with uniformly bounded
marginals, the two metrics provide the same topology. This is the content of the next
proposition, which will be proved in Sect. 3.

Proposition 2.17 Fix D < ∞. Then δ� and δ2→2 give an equivalent topology on the
space of graphexes with D-bounded marginals.

We will also show that convergence in the weak kernel metric δ� is indeed equiv-
alent to GP-convergence. This is the statement of the next theorem, and is one of
the two main results of this paper. It will be proved using three main ingredients:
a compactness statement stemming from a suitable analogue of the Frieze–Kannan
regularity lemma, a counting lemma showing that subgraph counts in the graphs
GT (W) are close if the corresponding graphexes are close in the metric δ2→2 (and
the graphexes have uniformly bounded marginals), and a sampling lemma showing
that as T → ∞, the suitably rescaled graphex process GT (W) converges to W in
probability. These techniques are developed in Sects. 5–7, and are combined to prove
the theorem at the end of Sect. 7, where we will also prove Theorem 2.13.

Theorem 2.18 Given a sequence of graphexes Wn and a graphex W, Wn is GP-
convergent toW if and only if δ�(Wn,W) → 0.

Remark 2.19 The reader might wonder whether instead of building our metric for
GP-convergence around the kernel norm ‖ · ‖2→2, one could equivalently build it
around the cut norm, ‖ · ‖�. Concretely, one might want to define d� by replacing
the kernel norm in (1) by the cut normand the L2 normby the L1 norm, thenproceed as
in (3) and (4) to obtain a cut distance δ� between graphexes with boundedmarginals,
and finally proceed as in Definition 2.14 to obtain a “weak cut metric” for arbitrary
graphexes.

The following example shows that this approach does not work, in that it will not
metricize GP-convergence. Define Wn to be the graphex that is constant and equal
to n−2 over [0, n]2 and 0 everywhere else, and set Wn = (Wn, 0, 0,R+), where R+
is equipped with the Lebesgue measure. The marginal DWn of Wn is then equal to
1/n times the indicator function of the interval [0, n], and its L1 norm is equal to 1.
It is then not hard to check thatWn converges to the pure dust graphex (0, 0, 1,R+)

in the metric δ�. Indeed, ‖Wn‖2→2 → 0 and ‖DWn‖2 = n−1/2 → 0, while ‖Wn‖1 =
1 → 1 = ‖W‖1, which immediately implies convergence in the metric δ� and hence
GP-convergence (based on the proof of equivalence in this paper, though for this
specific case it is simple to check GP-convergence directly). By contrast, ‖Wn‖� =
‖Wn‖1 = 1 stays bounded away from zero, showing in particular that Wn does not
converge to W in the cut metric δ�. Since changing the Lebesgue measure to a
measure μn such that λ − εn ≤ μn ≤ λ with εn → 0 will asymptotically not change
the cut norm of Wn , the graphexesWn do not converge toW in the weak cut metric
either. Note that this can’t be cured by choosing a different norm for the marginal
difference DW1 − DW2 , e.g., by keeping the L2 norm for that part, since the above
counter example works independently of the norm used for that part.
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In studying the general topology of graphexes, we define a notion of tightness for
sets of graphexes. Tight sets play an important role, in particular, they are the precom-
pact sets in our topology: any sequence that is tight has a convergent subsequence,
and any convergent sequence must be tight.

Definition 2.20 A set S of graphexes is tight if for every ε > 0, there exist C and
D such that for every W ∈ S, W = (W, S, I,�) with � = (�,F , μ), there exists
�ε ⊆ � such that μ(�ε) ≤ ε and the graphex W

′ = W|�\�ε
is (C, D)-bounded.

Here a graphex W
′ is called (C, D)-bounded if its marginals are D-bounded and

‖W′‖1 ≤ C .

Note that Proposition 2.4 implies that every finite set of graphexes is tight. In
Sect. 4, we will prove that a set S of graphexes is tight if and only if for all fixed T ,
the corresponding set {GT (W)}W∈S of unlabeled graphex processes at time T is tight
(whichwill also be equivalent to the existence of some T > 0 such that {GT (W)}W∈S
is tight; see Theorem 4.1 below). Here, as usual, a collection S of distributions on
finite graphs is called tight if for every ε > 0, there exists a finite set T of graphs
such that for each of the random graphs inS , the probability that the random graph
is not isomorphic to a graph in T is at most ε. This is equivalent to the set of random
measures being tight under the discrete topology on the set of isomorphism classes
of finite graphs, or the set of distributions of the number of edges being tight.

Ourmain theorem concerning tightness is the following theorem. It will be proved
in Sect. 5,wherewewill establish a version of theweak (or Frieze–Kannan) regularity
lemma for graphexes. Note that while our regularity lemma will hold for signed
graphexes, the following is only stated for unsigned graphexes. The reason is that
our proof relies heavily on the notionof tightness,whichweonly develop for unsigned
graphexes; see also Remark 4.8 in Sect. 4.

Theorem 2.21 The space of all graphexes is complete under the topology induced
by the weak kernel metric δ�. A subset is relatively compact if and only if it is tight. In
particular, for any C and D, the set of graphexes with ‖W‖1 ≤ C is compact under
δ�, and the set of (C, D)-bounded graphexes is compact under both δ� and δ2→2.

Remark 2.22 As mentioned above, we only develop the theory of tightness for
unsigned graphexes. In particular, we don’t characterize the set of precompact signed
graphexes. That notwithstanding, some of our compactness results do hold for signed
graphexes. Here we only mention that the analogue of the statement for the set of
graphexes with ‖W‖1 ≤ C holds for signed graphexes as well, provided we restrict
the L∞ norm of the graphon part (which by definition is bounded by 1 for unsigned
graphexes). To be explicit, any sequence of signed graphexesWn = (Wn, Sn, In,�n)

with ‖Wn‖∞ ≤ B and ‖Wn‖1 ≤ C has a subsequence converging to a signed graphex
W = (W, S, I,�) with ‖W‖∞ ≤ B and ‖W‖1 ≤ C . See Remark 5.10 in Sect. 5
below.

The advantage of (C, D)-bounded (unsigned) graphexes is that although there is
no a priori bound on the size of GT (W) at any given time T , for any finite graph
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F , the expected number of copies of F in GT (W) is finite. Furthermore, it turns out
that under the assumption of (C, D)-boundedness, if two graphexes have the same
subgraph densities, then they are equivalent, i.e., have δ2→2 distance 0. In thisway,we
can heuristically think of these subgraph densities as being analogous to moments
of random variables: it is well known that moments determine the distribution of
random variables, provided the moments do not grow too quickly.

To make these statements precise, we will define homomorphism densities for a
graphexW. To this end, we first consider a finite, labeled graph F and a graphonW ,
and define

t (F,W ) =
∫

�V (F)

∏

(i, j)∈E(F)

W (xi , x j )
∏

i∈V (F)

dμ(xi ).

Given a connected multigraph F = (V, E) on k ≥ 2 vertices with no loops, and a
graphex W = (W, S, I,�), we define t (F,W) as follows. First, if F consists of a
single edge, we define

t (F,W) =
∫

�2
W (x, y) dμ(x) dμ(y) + 2

∫

�

S(x) dμ(x) + 2I = ρ(W).

Otherwise, let V≥2 be the set of vertices of F with degree at least 2, and for each
such vertex v, let d1(v) be the number of neighbors of v that have degree 1. Then

t (F,W) =
∫

�V≥2

∏

{v,w}∈E(F(V≥2))

W (zv, zw)
∏

v∈V≥2

DW(zv)
d1(v)dμ(zv).

Finally, for anymultigraph F withno isolatedvertices andno loops, let F1, F2, . . . , Fk

be the components of F . Then we define the homomorphism density of F in W as

t (F,W) =
k

∏

i=1

t (Fi ,W).

As we will see in Proposition 3.24, these homomorphism densities are defined in
such a way that for a simple graph F and a graphexW, they are equal to the expected
number of injective homomorphisms from F into GT (W) times T−|V (F)|.

Having defined the subgraph densities t (F,W), we can summarize the main rela-
tionship between convergence in the metric δ2→2, convergence of subgraph counts,
and GP-convergence in the following theorem. Its proof will also be given at the end
of Sect. 7.

Theorem 2.23 Assume that W and Wn for n ≥ 1 are graphexes whose marginals
are D-bounded for some finite D. Then the following are equivalent.

(1) δ2→2(Wn,W) → 0.
(2) For every graph F with no isolated vertices, t (F,Wn) → t (F,W).
(3) For every connected graph F, t (F,Wn) → t (F,W).
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(4) GT (Wn) → GT (W) in distribution for every T .
(5) GT (Wn) → GT (W) in distribution for some T .

Remark 2.24 The above theorem implies in particular that in order to check whether
a sequenceWn of graphexes with uniformly bounded marginals is GP-convergent, it
is enough to check convergence ofGT (Wn) for a single T > 0. In a similar way, sev-
eral other properties of sequences or sets of graphexes can be equivalently stated for
all T > 0 or some T > 0 (see, in particular, the alreadymentionedTheorem4.1 about
tightness and Theorem 9.1 about uniform integrability). But for general sequences of
graphexes, we do not knowwhetherGP-convergence is equivalent to the convergence
of GT (Wn) for just one T > 0.

It is instructive to compare our notions of convergence to the notions of graph
convergence introduced in [3, 4]. Before defining these notions, we first introduce the
notion of a dilated empirical graphon corresponding to a finite graph G. It involves
a “dilation parameter” ρ ∈ R+ and is defined as the graphex W(G, ρ) consisting
of a zero dust part, a zero star part, a measure space consisting of the vertex set
V (G)where each vertex has measure ρ, and a graphonW (G, ρ)which is simply the
adjacency matrix of G. The usual way to embed graphs into the space of graphons
in the dense case corresponds to ρ = 1/|V (G)|.

By contrast, in [3],ρ was chosen to be 1/
√
2|E(G)|; the resulting dilated empirical

graphon was called the stretched empirical graphon, and a sequence was said to
converge in the stretched cut metric if the graphonsW (G, 1/

√
2|E(G)|) converge in

the cut metric δ�. It was then shown that this leads to completeness (every Cauchy
sequence has a limit), that convergence implies a certain condition called uniform tail
regularity, and that any uniformly tail regular sequence has a convergent subsequence.

The notion of convergence in [4] is slightly different. It does not start from a
metric, and instead tries to emulate the notion of subgraph convergence from dense
graphs. Roughly speaking, it asks that certain random subgraphs of the graphs in the
sequence converge in distribution to somewell-defineddistribution over finite graphs.
More precisely, given a parameter p ∈ [0, 1], define Smpl(G, p) as the unlabelled
graph obtained by first taking each vertex i.i.d. with probability p, then removing
all isolated vertices in the resulting subgraph, and finally discarding all the labels. A
sequence Gn is then said to be sampling convergent if for all t > 0, the samples

Smpl(Gn,min{1, t/√2|E(Gn)|})

converge in distribution. It was then shown that any sequence of finite graphs has a
convergent subsequence, and that the limiting distribution can be expressed asGt (W)

for some integrable graphexWwith ‖W‖1 ≤ 1. It was also shown that this inequality
holds with equality if and only if the sequence has a property called uniform sampling
regularity.

It is instructive to relate the results and notions from [4] to those developed in
this paper. To this end, we first note that—as already observed in [4]—a sequence
of graphs is sampling convergent if and only if the stretched canonical graphexes
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W(Gn, 1/
√
2|E(Gn)|) are GP-convergent. Since by definition, the stretched canon-

ical graphex has L1 norm 1, this sequence is tight. By our compactness theorem,
Theorem 2.21, it therefore has a convergent subsequence.

To relate some of the other notions and results from [3, 4] to those of this paper,
we introduce a couple of definitions. The first notion is that of uniform integrability.
Recall that a set S of random variables with values inR is called uniformly integrable
if for every ε > 0, there exists K ∈ R such that for every X ∈ S,

E[|X |1|X |>K ] < ε.

Note that this implies thatE[|X |] ≤ ε + K , so the set of random variables consists of
integrable variables with uniformly bounded integrals. This motivates the following
definition.

Definition 2.25 A set of graphexes S is called uniformly integrable if the graphexes
in S have uniformly bounded ‖ · ‖1-norms, and for every ε > 0, there exists a D
such that for all W ∈ S, ‖DW1DW>D‖1 < ε.

As wewill see in Theorem 9.1 below, uniform integrability of a setS of graphexes
is equivalent to uniform integrability of the random variables {E(GT (W)) : W ∈ S}
for all T > 0 (which is also equivalent to uniform integrability of this set of random
variables for some T > 0).

The notion of uniform sampling regularity from [4] is then simply uniform inte-
grability of the stretched empirical graphexes, and the following theorem is a more
or less straightforward generalization of Corollary 3.10 in [4], which states that the
limiting graphex of a sampling convergent sequence of graphs has norm 1 if and only
if it is uniformly sampling regular. We will prove the theorem in Sect. 9.

Theorem 2.26 Suppose Wn is a sequence of integrable graphexes with uniformly
bounded ‖ · ‖1-norms that converges to a graphexW in the weak kernel metric. Then

‖W‖1 ≤ lim inf
n→∞ ‖Wn‖1.

In particular, W is integrable. We furthermore have that

lim
n→∞ ‖Wn‖1 = ‖W‖1

if and only if the sequence Wn is uniformly integrable.

Our next set of theorems relates the notion of sampling convergence from [4]
to the notion of convergence in the cut metric from [3]. We start by recalling the
definition of uniform tail regularity from [3] (see also Lemma 9.3 in Sect. 9 for other,
equivalent definitions).

Definition 2.27 ([3]) Given a set of signed, integrable graphons S, we say that they
are uniformly tail regular if for any ε > 0, there exists M such that for each W ∈ S
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with the usual notation, there exists �0 ⊆ � such that μ(�0) ≤ M and ‖W‖1 −
‖W |�0‖1 ≤ ε.

Note that uniform tail regularity is more restrictive than uniform integrability (for
the set of graphexes obtained by setting the dust and star part to zero). For sequences
of graphs, the corresponding result was shown in [4], but it holds in our more general
setting as well, with essentially the same proof; see Lemma 9.2 in Sect. 9 below.
More interestingly, any sequence of graphons that is convergent in cut metric has
uniformly regular tails, and any sequence of graphons with uniformly regular tails
has a subsequence that converges in cut metric. Motivated by this (which is one of
the central results of [3]), here we prove the following.

Theorem 2.28 Given a sequence of integrable graphexes of the form

Wn = (Wn, 0, 0,�n),

the following are equivalent.

(1) The sequence Wn converges to a graphon W in cut metric.
(2) The sequence Wn is uniformly tail regular, and in the weak kernel metric, the

sequence Wn converges to a graphex of the form W = (W, 0, 0,�).
(3) The sequence Wn is uniformly tail regular, and in the weak kernel metric, the

sequence Wn converges to some graphex W.

This theorem, as well as our next theorem, will also be proved in Sect. 9.

Theorem 2.29 Given a sequence of uniformly integrable graphexes

Wn = (Wn, Sn, In,�n),

which converge to a graphex W = (W, S, I,�) in the weak kernel metric, the fol-
lowing are equivalent.

(1) The graphex W is of the form W = (W, 0, 0,�).
(2) ‖Sn‖1 → 0 and In → 0, and the sequence of graphons Wn has uniformly regular

tails.
(3) ‖Sn‖1 → 0 and In → 0, and the sequence of graphons Wn converges in the cut

metric.

Recall that a sequence of graphs is sampling convergent if and only if the stretched
canonical graphexes are GP-convergent. This fact, Theorems 2.26, 2.29 together
imply that given a sequence of graphs that is sampling convergent to a graphex of
norm one, the sequence converges to a pure graphon if and only if the sequence
is uniformly tail regular. We have therefore given a characterization of when the
notion of sampling convergence from [4] reduces to the notion of convergence in the
stretched cut metric from [3].
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Remark 2.30 In the above theorem, the assumption of uniform integrability is nec-
essary. To see this, let Wn be the graphon defined by being 1 on the set [0, 1/n] ×
[1, n + 1] and its transpose, and 0 otherwise, and let Wn = (Wn, 0, 0,R+). Then
the sequence Wn converges to the zero graphex in the weak kernel metric, which is
a pure graphon. However, the sequence is clearly not uniform tail regular (or even
uniformly integrable). We can also let Sn(x) = 1/n on the set [0, n], and 0 every-
where else. In that case the sequence still converges to 0 in the weak kernel metric,
but ‖Sn‖1 does not converge to 0.

We close this section by discussing possible extensions of our theory. First, as
already discussed in the introduction, it would be natural to extend the theory of
graphexes to a theory that naturally generates multigraphs. Note that a priori, this
falls plainly in the framework of exchangeable randommeasures onR2+ as developed
by Kallenberg; in fact, it falls into the framework of exchangeable random counting
measures. Generalizing the approach of [3, 26], this will give a natural notion of
“multigraphexes” characterizing all exchangeable multigraphs with vertices labelled
byR+. But extending the current work to multigraphexes is beyond the scope of this
paper, in particular given that it would require to generalize at least some of the
results from [4, 17, 18, 25, 26] to this setting in a first step. See [6] for some very
preliminary steps in this direction.

The next extension one might want to consider is the extension of our analytical
results (i.e., those of our results which do not refer to the graphex process generated
by a graphex) to signed graphexes. In contrast to the theory of cut metric convergence
for graphons over σ -finite measure spaces developed in [3], which works as well for
signed, unbounded graphons as for graphons with values in [0, 1], here we focused
most of the theory of graphex convergence on unsigned graphexes (with graphon
parts taking values in [0, 1]). While several of our technical proofs and results hold
for signed graphexes (in particular, all of Sect. 3, as well as parts of Sects. 5 and 6 are
formulated in this language), the core analytic concepts and results such as tightness,
precompactness, etc., have only been formulated for unsigned graphexes. Indeed,
we believe that the generalization of Theorem 2.21 to signed graphexes requires
modifications to either our topology or our notions of tightness; see Remark 4.8
below. In a similar way, while the identification theorem of [3] works for signed
graphons, our identification theorem requires non-negative graphexes, even though
onemight conjecture that when stated as a characterization of the equivalence classes
under the weak kernel metric, it should hold for signed graphexes as well, at least
when suitably formulated.

Finally, one might want to consider graphexes where the graphon part W is
unbounded, whether non-negative or signed. For non-negative graphexes, one could,
for example, follow the approach in [6] and use such a graphex to generate multi-
graphs by addingPois(W (xi , yi ))many edges to a pair of Poisson pointswith features
xi and x j , or one could try to generalize the approach of [5] to the setting of graphexes,
by taking a decreasing “dilution probability” pt , and then connect two Poisson points
with features xi and x j with probability min{1, ptW (xi , x j )} (see [2] for a related
approach). But it is far from obvious what the analogue of the weak kernel metric
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should be, and how to generalize our other results to this setting. As the other open
questions discussed here, we leave these questions as open research problems.

3 Preliminaries

In this section, we study the metrics δ2→2 and δ�. In particular, we will prove Theo-
rems 2.11 and 2.15, as well as Proposition 2.17 relating the two for graphexes with
bounded marginals (in fact, we will prove its generalization to signed graphexes,
stated as Proposition 3.15 below).

In addition, we study the metric δ� obtained from δ2→2 by replacing d2→2 as
defined in (1) by

d�(W1,W2) = max
{‖W1 − W2‖�, ‖DW1 − DW2‖�, |ρ(W1) − ρ(W2)|

}

. (5)

Here we use the norm ‖ · ‖� both for functions from �2 → R (see Definition 2.8)
and functions from � → R, where it is defined as

‖F‖� = sup
S⊆�

∣

∣

∣

∣

1√
μ(S)

∫

S
F(x)dμ(x)

∣

∣

∣

∣

.

We will in particular show that the analogue of Theorem 2.11 holds for this metric.

Theorem 3.1 LetW1 andW2 be signed graphexes in L1 ∩ L2. Define δ� by replac-
ing the right side of (4) with˜δ�, which in turn is obtained from˜δ2→2 by replacing
d2→2 with d�. Then the value of δ�(W1,W2) does not depend on the choice of the
trivial extensions W

′
1 and W

′
2, and δ� obeys the triangle inequality, making it a

well-defined pseudometric.

This jumble metric will be particularly useful when establishing the regularity
lemma for graphexes, which takes a nicer form when stated in terms of the distance
d� instead of the distance d2→2, both because of the absence of the various roots,
and because the proof of the regularity lemma leads more naturally to bounds in term
of ‖ · ‖� rather than ‖ · ‖2→2. To obtain our compactness results for the metric δ�
(which is derived from d2→2), we will then need to compare the two. We will do this
in Proposition 3.19 and Remark 3.23 below.

We will also establish a simple lemma relating the kernel norm to 4-cycle counts
(Lemma 3.22). Finally, we will prove that the homomorphism densities t (F,W)

indeed describe the expected number of injective homomorphisms from F into
GT (W) (Proposition 3.24).

Except for the last result, all results in this section are as easily derived for signed
graphexes as for unsigned graphexes. We therefore formulate everything in this
section in the language of signed graphexes. To do so, we need very little extra
notation, except for the following.

First, we define the absolute marginal of a signed graphex W as D|W|, and say
that W has D-bounded absolute marginals if ‖D|W|‖∞ ≤ D. We say that W is
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(C, D)-bounded if in addition ‖W‖1 ≤ C . Furthermore, we introduce the notion
of (B,C, D)-boundedness of a graphex W = (W, S, I,�) by requiring that

‖W‖∞ ≤ B, ‖W‖1 ≤ C, and ‖D|W|‖∞ ≤ D, (6)

and finally, we say thatW has a bounded graphon part if ‖W‖∞ < ∞.
We use the following standard facts about measure-preserving transformations,

which we prove for completeness.

Lemma 3.2 Suppose ϕ : � → �′ is a measure preserving map between two σ -finite
measure spaces (�,F , μ) and (�′,F ′, μ′).

(1) For any σ -algebra G ⊆ F , L1(�,G, μ) is a closed subspace in L1(�,F , μ).
(2) If f ∈ L1(�, ϕ−1(F ′), μ), then there exists a function f ′ ∈ L1(�′,F ′, μ′) such

that f = f ′ϕ = f ′ ◦ ϕ almost everywhere.
(3) The map ϕ∗ : L1(�′,F ′, μ′) → L1(�, ϕ−1(F ′), μ) with f ′ 
→ f ′ϕ is an iso-

metric isomorphism, implying that ϕ∗ and its inverse are continuous and hence
Borel measurable.

Proof (1) L1(�,G, μ) is clearly a subspace of L1(�,F , μ). Since they are both
Banach spaces, they are both complete. Since L1(�,G, μ) ⊆ L1(�,F , μ) is an
isometric embedding, the only way we can have a complete subset of a complete
space is if the subset itself is closed.

(2) The map sending A ⊆ � to
∫

A f defines a finite, signed measure ν on �,
absolutely continuous with respect to μ. This measure pushes forward to a
signed measure ν ′ on �′. If B ⊆ �′ has μ′(B) = 0, then μ(ϕ−1(B)) = 0, so
ν ′(B) = ν(ϕ−1(B)) = 0. Therefore ν ′ is absolutely continuous with respect to
μ′, so it has a Radon-Nikodym derivative f ′. It is straightforward to check that,
since f is ϕ−1(F ′)measurable, we have f = f ′ϕ almost everywhere.We remark
that this proof is basically the same as the standard proof of the existence of con-
ditional expectations on probability spaces, except here our space is σ -finite.

(3) This follows from the previous parts. �

We will also need the following lemma.

Lemma 3.3 Suppose that � = (�,F , μ) with μ(�) < ∞, and suppose that g ∈
L2(�). Let

S = sup
f ∈L∞(�),0≤ f ≤1

∣

∣

∣

∣

∣

∣

∫

�
f g dμ

√

∫

�
f dμ

∣

∣

∣

∣

∣

∣

. (7)

Then S ≤ ‖g‖2 < ∞, and there exists X ⊆ � such that

S =
∣

∣

∫

X g dμ
∣

∣

√
μ(X)

.

Note that this expression is the same as taking f = 1X in (7).
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Proof First, note that if 0 ≤ f ≤ 1, then

∣

∣

∣

∣

∣

∣

∫

�
f gdμ

√

∫

�
f dμ

∣

∣

∣

∣

∣

∣

≤
√

∫

�
f 2dμ

∫

�
g2dμ

∫

�
f dμ

= ‖g‖2
√

∫

�
f 2 dμ

∫

�
f dμ

≤ ‖g‖2 < ∞.

Next, we will show that there exists a δ > 0 such that in (7), it suffices to consider
f with ‖ f ‖1 ≥ δ. Let ˜� = � × [0, 1] and μ̃ = μ × λ, where λ is the Lebesgue
measure, and let g̃(x, t) = g(x). Then the expression in (7) is the same as taking the
supremum of

∣

∣

∫

X g̃ dμ̃
∣

∣

√

μ̃(X)

over X ⊆ ˜�. Indeed, given X ⊆ ˜�, we can plug in the function f (x) = λ({t :
(x, t) ∈ X}) into (7), which is defined almost everywhere, and given f as in (7),
we can take X = {(x, t) : t ≤ f (x)}. It is straightforward to check that (7) and the
above expression give the same value. Note that we have

∣

∣

∫

X g̃ dμ̃
∣

∣

√

μ̃(X)
≤ ‖g̃|X‖2.

Since ‖g̃‖2 < ∞, for any ε > 0, there exists a K such that

∫

X
g̃2 dμ̃ ≤

∫

g̃21g̃>
√
K dμ̃ + K μ̃(X) ≤ ε2

2
+ K μ̃(X).

Thus, given ε > 0, we can find a δ > 0 such that if μ̃(X) < δ, then ‖g̃|X‖2 ≤ ε.
Taking ε = S/2 (note that unless g = 0, S > 0), we obtain a δ such that if

∫

�
f dμ <

δ, then the expression in (7) is less than S/2. This means that it suffices to take the
supremum over f with ‖ f ‖1 ≥ δ.

Recall that we assumed that � has finite measure. The set of f ∈ L∞(�) with
0 ≤ f ≤ 1 and ‖ f ‖1 ≥ δ is weak-∗ closed and therefore weak-∗ compact. The
expression in (7) is weak-∗ continuous; therefore, there exists an f which maxi-
mizes the expression.

Clearly such an f is supported either on the set {g > 0} or {g < 0}. Assume
without loss of generality that it is supported on {g > 0}. Suppose that f is not equal
to 0 or 1 almost everywhere. Thenwe can find 0 ≤ h ≤ ˜h ≤ 1, supported on {g > 0},
such that f = (˜h + h)/2, and it is not the case that˜h = h almost everywhere. This
implies that

∫

�

(˜h − h) dμ > 0

and
∫

�

(˜h − h)g dμ > 0.
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Let ht = t˜h + (1 − t)h. Note that for t ∈ [0, 1], 0 ≤ ht ≤ 1 almost everywhere. Let

p(t) =
∫

�
ht g

√

∫

�
ht

.

We have

d

dt
p(t) =

∫

�(˜h − h)g dμ
∫

�(t˜h + (1 − t)h) dμ − 1
2

∫

�(˜h − h) dμ
∫

�(t˜h + (1 − t)h)g dμ
(∫

�(t˜h + (1 − t)h) dμ
)3/2 .

Notice that the denominator above is always positive, and the numerator above is of
the form At + B, where

A =
∫

�

(˜h − h)g dμ

∫

�

(˜h − h) dμ − 1

2

∫

�

(˜h − h) dμ

∫

�

(˜h − h)g dμ

= 1

2

∫

�

(˜h − h) dμ

∫

�

(˜h − h)g dμ > 0.

This means that there are three possibilities for d
dt p(t): it can be positive for every

t ∈ (0, 1), it can be negative for every t ∈ (0, 1), or it can be negative and then
positive. Either of these cases implies that the maximum of p on [0, 1] is attained at
one or both of the endpoints, and therefore either p(0) or p(1) is strictly greater than
p(1/2). This contradicts the assumption that f was maximal, completing the proof
of the lemma. �

Using the previous two lemmas, we prove the following proposition.Wewill use it
for functions which arise as the difference of two graphons with bounded marginals.

Proposition 3.4 Let � = (�,F , μ) and �′ = (�′,F ′, μ′) be σ -finite measure
spaces, and let ϕ : �′ → � be measurable. If U : � × � → R and F : � → R

are square integrable, then

‖U‖2→2 = ‖Uϕ‖2→2, ‖F‖� = ‖Fϕ‖�, and ‖U‖� = ‖Uϕ‖�.

If instead of square integrability, we assume that U is integrable, then

‖U‖� = ‖Uϕ‖�.

Proof For any f, g ∈ L2(�), it is easy to see that f ◦U ◦ g = f ϕ ◦Uϕ ◦ gϕ , and
we furthermore have that f ϕ, gϕ ∈ L2(�′) with ‖ f ϕ‖2 = ‖ f ‖2 and ‖gϕ‖2 = ‖g‖2.
This implies that

‖U‖2→2 ≤ ‖Uϕ‖2→2.
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To prove the opposite inequality, let ̂f , ĝ ∈ L2(�′), and assume first that ̂f , ĝ ∈
L1(�′) as well. Let f ′ = E[̂f |ϕ−1(F)] and g′ = E[̂g|ϕ−1(F)]. That is, f ′ is a
ϕ−1(F)-measurable function such that for any ϕ−1(F)-measurable set S′ ⊆ �′,
∫

S′ f ′ = ∫

S′ ̂f , and same for g′. These functions exist by the Radon-Nikodym theo-
rem (since all measures are σ -finite). Then ‖ f ′‖2 ≤ ‖̂f ‖2, ‖g′‖2 ≤ ‖ĝ‖2. We claim
that f ′ ◦Uϕ ◦ g′ = ̂f ◦Uϕ ◦ ĝ. Indeed, for any x ′ ∈ �′,

(Uϕ)x ′(y′) = Uϕ(x ′, y′) = U (ϕ(x ′), ϕ(y′)) = Uϕ(x ′)(ϕ(y′)) = (Uϕ(x ′))
ϕ(y′),

showing that (Uϕ)x ′ is the pullback of anF-measurable function, and is thusϕ−1(F)-
measurable. Therefore, for every x ′ ∈ �′,

∫

�′
Uϕ(x ′, y′)ĝ(y′) dμ′(y′) =

∫

�′
Uϕ(x ′, y′)g′(y′) dμ′(y′),

which shows that ̂f ◦Uϕ ◦ ĝ = ̂f ◦Uϕ ◦ g′. We can analogously show that ̂f ◦
Uϕ ◦ g′ = f ′ ◦Uϕ ◦ g′. Then, since f ′ and g′ are ϕ−1(F)-measurable, there exist by
Lemma 3.2 f, g ∈ L1(�)with f ′ = f ϕ and g′ = gϕ . This implies that ‖ f ‖2 ≤ ‖̂f ‖,
‖g‖2 ≤ ‖ĝ‖2, and f ◦U ◦ g = ̂f ◦Uϕ ◦ ĝ, which shows that

̂f ◦Uϕ ◦ ĝ ≤ ‖U‖2→2

whenever ̂f , ĝ ∈ L2(�′) ∩ L1(�′) and ‖̂f ‖2, ‖ĝ‖2 ≤ 1. Since �′ is σ -finite, any
function in L2(�′) can be written as a limit of functions in L2(�′) ∩ L1(�′). A
dominated convergence argument then shows that the above bound holds whenever
̂f , ĝ ∈ L2(�′) and ‖̂f ‖2, ‖ĝ‖2 ≤ 1, proving that

‖Uϕ‖2→2 ≤ ‖U‖2→2.

To prove the statement for the cut norm, we use the representation ‖U‖� =
sup f,g : �→[0,1] | f ◦U ◦ g|. Using this representation, the proof for the cut norm pro-
ceeds along the same lines as the proof for the ‖ · ‖2→2 norm.

Next, let us prove that ‖F‖� = ‖Fϕ‖�. First, for any measurable X ⊆ � with
μ(X) < ∞, since μ is the pushforward of μ′,

∫

ϕ−1(X)
Fϕ dμ′

√

μ′(ϕ−1(X))
=

∫

X F dμ√
μ(X)

.

This shows that ‖F‖� ≤ ‖Fϕ‖�. Suppose now that X ′ ⊆ �′, and let f ′ =
E[1X |ϕ−1(F)]. Then there exists f ∈ L1(�) so that f ′ = f ϕ . Since Fϕ is ϕ−1(F)-
measurable,

∫

X ′ Fϕ dμ′
√

μ′(X)
=

∫

�′ f ′Fϕ dμ′
√

∫

�
f ′ dμ′

=
∫

�
f F dμ

√

∫

�
f dμ

.
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Fix ε > 0. Since � is σ -finite, there exists �0 ⊆ � with μ(�0) < ∞ and

∫

�0
f F dμ

√

∫

�0
f dμ

≥ (1 − ε)

∫

�
f F dμ

√

∫

�
f dμ

.

By the previous lemma, there exists a measurable set X ⊆ �0 so that

∫

X F dμ√
μ(X)

≥
∫

�0
f F dμ

√

∫

�0
f dμ

≥ (1 − ε)

∫

�
f F dμ

√

∫

�
f dμ

.

Since this holds for any ε > 0, this proves that ‖F‖� ≥ ‖Fϕ‖�.
Finally, we show that ‖U‖� = ‖Uϕ‖�. As before, for any measurable X,Y ⊆ �

with μ(X), μ(Y ) < ∞, since μ is the pushforward of μ′,
∫

ϕ−1(X)×ϕ−1(Y )
Uϕ (dμ′)2

√

μ′(ϕ−1(X))
√

μ′(ϕ−1(Y ))
=

∫

X×Y U (dμ)2√
μ(X)

√
μ(Y )

.

This shows that ‖U‖� ≤ ‖Uϕ‖�. For the other direction, let X ′,Y ′ ⊆ �′ with finite
measure. By the previous argument, there exist functions f, g : � → [0, 1] such that

∫

�2 f (x)U (x, y)g(y) dμ(x) dμ(y)
√

∫

�
f dμ

∫

�
g dμ

=
∫

X ′×Y ′ Uϕ (dμ′)2√
μ′(X ′)μ′(Y ′)

.

Fix ε > 0. By the previous argument, there exists X ⊆ � such that

∫

X×�
U (x, y)g(y) dμ(x) dμ(y)

√

μ(X)
∫

�
g dμ

≥ (1 − ε)

∫

�2 f (x)U (x, y)g(y) dμ(x) dμ(y)
√

∫

�
f dμ

∫

�
g dμ

.

Then, applying it again, there exists Y ⊆ � such that

∫

X×Y U (x, y) dμ(x) dμ(y)√
μ(X)μ(Y )

≥ (1 − ε)

∫

X×�
U (x, y)g(y) dμ(x) dμ(y)

√

μ(X)
∫

�
g dμ

.

Combining these, we obtain

∫

X×Y U (x, y) dμ(x) dμ(y)√
μ(X)μ(Y )

≥ (1 − ε)2

∫

X ′×Y ′ Uϕ (dμ′)2√
μ′(X ′)μ′(Y ′)

.

Since this holds for any ε > 0, we obtain that ‖U‖� ≥ ‖Uϕ‖�. �
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Next we establish a sequence of lemmas leading to the proof of Theorem 2.11,
which states that δ2→2 is a pseudometric. To state the first lemma, we define the
vectors

�2→2(W1,W2) = (‖W1 − W2‖2→2, ‖DW1 − DW2‖2, |ρ(W1) − ρ(W2)|
)

and

��(W1,W2) = (‖W1 − W2‖�, ‖DW1 − DW2‖�, |ρ(W1) − ρ(W2)|
)

,

where again we require the signed graphexes W1 and W2 to be in L1 ∩ L2. Note
that each coordinate satisfies the triangle inequality. We will also use the following
property.

Lemma 3.5 Let � = (�,F , μ) and �′ = (�′,F ′, μ′) be σ -finite measure spaces,
let ϕ : � → �′ be a measure-preserving map, and letW1,W2 be signed graphexes
in L1 ∩ L2. Then

�2→2(W1,W2) = �2→2(W
ϕ
1 ,W

ϕ
2 ) and ��(W1,W2) = ��(W

ϕ
1 ,W

ϕ
2 ).

Proof Clearly ρ(W1) = ρ(W
ϕ
1 ) and ρ(W2) = ρ(W

ϕ
2 ), which means that their dif-

ferences are equal too. We also have for every x ∈ �, DWi (ϕ(x)) = DW
ϕ

i
(x), which

implies that ‖DW1 − DW2‖2 = ‖DW
ϕ
1
− DW

ϕ
2
‖2. Therefore it remains to show that

‖W1 − W2‖2→2 = ‖W ϕ
1 − W ϕ

2 ‖2→2

as well as

‖DW1 − DW2‖� = ‖DW
ϕ
1
− DW

ϕ
2
‖� and ‖W1 − W2‖� = ‖W ϕ

1 − W ϕ
2 ‖�.

Note that DW
ϕ
1
− DW

ϕ
2

= (

DW1 − DW2

)ϕ
and W ϕ

1 − W ϕ
2 = (W1 − W2)

ϕ , so by
Proposition 3.4, we are done. �

To prove the triangle inequality, we would like to take a coupling of �1 and �2

and a coupling of �2 and �3, and use them to obtain a coupling of �1 and �3.
Unfortunately this cannot be done for general signed graphexes. We can, however
do it if the signed graphexes involved are step graphexes. To define these, we first
define a subspace partition of a measure space � = (�,F , μ) as a partition of a
measurable subset�′ ⊆ � into countablymanymeasurable subsets. Such a subspace
partition is called finite if it is a partition into finitely many sets of finite measure.
A signed graphex U is then called a step graphex over the subspace partition P =
(P1, . . . , Pm) if P is a finite subspace partition, dsuppU ⊆ P1 ∪ P2 ∪ · · · ∪ Pm , and
for all x, x ′ ∈ Pi , S(x) = S(x ′) and Wx = Wx ′ , where, as before, Wx is the function
y 
→ W (x, y).

Remark 3.6 Given a signed step graphex W = (W, S, I,�) over a finite sub-
space partition P = (P1, P2, . . . , Pm), we can define another signed graphex W

′
= (W ′, S′, I ′,�′) with �′ = (�′,F ′, μ′), where �′ = [m], F ′ consists of all sub-
sets, and the measure is defined byμ′({i}) = μ(Pi ). Setting I ′ = I , S′(i) = S(x) for
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any x ∈ Pi (they are all equal), andW ′(i, j) = W (x, y) for x ∈ Pi , y ∈ Pj (again the
choice of x and y does not matter), we obtain that W = (W′)ϕ where ϕ : � → �′
is the map with ϕ(x) = i for x ∈ Pi . In particular, by Remark 2.16, the distance
between W and W

′ is zero (for any of the distance notions). Suppose now that
W

′′ = (W ′′, S′′, I ′′,�′′)with�′′ = (�′′,F ′′, μ′′) is another signed step graphex over
a finite subspace partition Q = {Q1, Q2, . . . , Qm}, with I ′′ = I , μ′′(Qi ) = μ(Pi ),
and S′′(x ′′) = S(x), W ′′(x ′′, y′′) = W (x, y) for x ∈ Pi , x ′′ ∈ Qi , y ∈ Pj , y′′ ∈ Q j .
Then �′′ can also be mapped to �′ so thatW′′ is the pullback ofW′ (by mapping Qi

to i). This implies that the distance of both W and W
′′ from W

′ is 0, which (by the
still to be proven triangle inequality) implies that their distance from each other is 0
(again for any of the notions of distance).

Returning to the proof of the triangle inequality, we will in fact consider signed
graphexes that are countable step graphexes, i.e., the number of “steps” is countable,
and each step has finite measure. First, however, we need the following technical
lemma:

Lemma 3.7 Let W1 = (W1, S1, I1,�) and W2 = (W2, S2, I2,�) be signed
graphexes in L1 ∩ L2. Assume that both are countable step graphexes on � =
(�,F , μ)with common refinementP = {P1, P2, . . . , Pm, . . . }, supposeμ′ is another
measure on � with μ(Pi ) = μ′(Pi ), and let �′ = (�,F , μ′) and W

′
i = (Wi , Si ,

Ii ,�
′). Then

�2→2(W1,W2) = �2→2(W
′
1,W

′
2) and ��(W1,W2) = ��(W′

1,W
′
2).

Proof Let�P = (�P ,FP , μP)where�P = {x1, x2, . . . , xm, . . . },FP is the set of
all subsets of �P , and μP(xi ) = μ(Pi ). Let ϕ, ϕ′ : � → �P with ϕ(x) = ϕ′(x) =
xi for x ∈ Pi . Then ϕ : � → �P and ϕ′ : �′ → �P are both measure preserving
(these are the same function on� but as maps betweenmeasure spaces are different).
Define Wi,P = (Wi,P , Si,P , Ii ) with Si,P(x j ) = Si (x) for any x ∈ Pj (they are all
equal), and Wi,P(x j , xk) = W (x, y) for x ∈ Pj , y ∈ Pk (again, they are all equal).

Then W
ϕ

i,P = Wi and W
ϕ′
i,P = W

′
i . Therefore, by Lemma 3.5, we have

�2→2(W1,W2) = �2→2(W1,P ,W2,P) = �2→2(W
′
1,W

′
2),

and similarly for ��. �

To state the next lemma, we use the symbol πi j,k to denote the coordinate projec-
tion from a product space �i × � j to �k , where k = i or k = j .

Lemma 3.8 Let Wi = (Wi , Si , Ii ,�i ), for i = 1, 2, 3, be countable step
graphexes in L1 ∩ L2. Let μ12 be a coupling measure on �1 × �2, and μ23 be a
coupling measure on �2 × �3. Then there exists a coupling measure μ13 on �1 and
�3 such that
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�2→2(W
π13,1,μ13

1 ,W
π13,3,μ13

3 )

≤ �2→2(W
π12,1,μ12

1 ,W
π12,2,μ12

3 ) + �2→2(W
π23,2,μ23

1 ,W
π23,3,μ23

3 )

and

��(W
π13,1,μ13

1 ,W
π13,3,μ13

3 )

≤ ��(W
π12,1,μ12

1 ,W
π12,2,μ12

3 ) + ��(W
π23,2,μ23

1 ,W
π23,3,μ23

3 ),

where the inequalities hold coordinate-wise.

Proof Let the steps of W1 be A1, A2, . . . , the steps of W2 be B1, B2, . . . , and the
steps of W3 be C1,C2, . . . . Without loss of generality, we may assume that each
μ1(Ap) > 0, each μ2(Bq) > 0, and each μ3(Cr ) > 0. First, take the measure μ123

on �1 × �2 × �3 where

μ123(E) =
∑

p,q,r

μ12(Ap × Bq )μ23(Bq × Cr )

μ1(Ap)μ2(Bq )2μ3(Cr )
(μ1 × μ2 × μ3) (E ∩ Ap × Bq × Cr ).

Then

μ123(Ap0 × Bq0 × �3) =
∑

p,q,r

μ12(Ap × Bq)μ23(Bq × Cr )

μ1(Ap)μ2(Bq)2μ3(Cr )

· (μ1 × μ2 × μ3) (Ap0 × Bq0 × �3 ∩ Ap × Bq × Cr )

= μ12(Ap0 × Bq0)
∑

r

μ23(Bq0 × Cr )

μ1(Ap0)μ2(Bq0)
2μ3(Cr )

μ1(Ap0)μ2(Bq0)μ3(Cr )

= μ12(Ap0 × Bq0)
∑

r

μ23(Bq0 × Cr )

μ2(Bq0)
= μ12(Ap0 × Bq0).

In other words, if π123,12 is the projection from �1 × �2 × �3 to �1 × �2 and
μ′
12 = μ

π123,12

123 , then μ′
12(Ap × Bq) = μ12(Ap × Bq). Analogously, if μ′

23 = μ
π123,23

123 ,
then μ′

23(Ap × Bq) = μ23(Ap × Bq). Furthermore, for any F ⊆ �1,

μ123(F × �2 × �3)

=
∑

p,q,r

μ12(Ap × Bq )μ23(Bq × Cr )

μ1(Ap)μ2(Bq )2μ3(Cr )
(μ1 × μ2 × μ3) (F × �2 × �3 ∩ Ap × Bq × Cr )

=
∑

p,q,r

μ12(Ap × Bq )μ23(Bq × Cr )

μ1(Ap)μ2(Bq )2μ3(Cr )
μ1(F ∩ Ap)μ2(Bq )μ3(Cr )

=
∑

p,q,r

μ12(Ap × Bq )μ23(Bq × Cr )

μ1(Ap)μ2(Bq )
μ1(F ∩ Ap) =

∑

p,q

μ12(Ap × Bq )

μ1(Ap)
μ1(F ∩ Ap)

=
∑

p

μ12(Ap × �2)

μ1(Ap)
μ1(F ∩ Ap) =

∑

p
μ1(F ∩ Ap) = μ1(F).
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Analogously, for any G ⊆ �3, μ123(�1 × �2 × G) = μ3(G). Therefore, μ13 =
μ

π123,13

123 is a coupling measure on �1 × �3 of μ1 and μ3. By Lemma 3.5 and the
triangle inequality for the coordinates of �2→2, we then have

�2→2(W
π13,1,μ13

1 ,W
π13,3,μ13

3 )

= �2→2(W
π123,1,μ123

1 ,W
π123,3,μ123

3 )

≤ �2→2(W
π123,1,μ123

1 ,W
π123,2,μ123

2 ) + �2→2(W
π123,2,μ123

2 ,W
π123,3,μ123

3 )

= �2→2(W
π12,1,μ

′
12

1 ,W
π12,2,μ

′
12

2 ) + �2→2(W
π23,2,μ

′
23

2 ,W
π23,3,μ

′
23

3 )

= �2→2(W
π12,1,μ12

1 ,W
π12,2,μ12

2 ) + �2→2(W
π23,2,μ23

2 ,W
π23,3,μ23

3 ).

The proof for �� is the same. �

We are now ready to prove that˜δ2→2 and the distance˜δ� (obtained by replacing
d2→2 in (3) with d�) obey the triangle inequality.

Lemma 3.9 Suppose that Wi = (Wi , Si , Ii ,�i ) with �i = (�i ,Fi , μi ), for i =
1, 2, 3, are signed graphexes in L1 ∩ L2, and assume that μ1(�1) = μ2(�2) =
μ3(�3). Then

˜δ2→2(W1,W3) ≤˜δ2→2(W1,W2) +˜δ2→2(W2,W3)

and
˜δ�(W1,W3) ≤˜δ�(W1,W2) +˜δ�(W2,W3).

Proof We first claim that it is enough to prove that for any coupling measure μ12

on �1 × �2, any coupling measure μ23 on �2 × �3 and any ε > 0, there exists a
coupling measure μ13 on �1 × �3, such that

�2→2(W
π13,1,μ13

1 ,W
π13,3,μ13

3 )

≤ �2→2(W
π12,1,μ12

1 ,W
π12,2,μ12

2 ) + �2→2(W
π23,2,μ23

2 ,W
π23,3,μ23

3 ) + (ε, ε, ε)
(8)

and

��(W
π13,1,μ13

1 ,W
π13,3,μ13

3 )

≤ ��(W
π12,1,μ12

1 ,W
π12,2,μ12

2 ) + ��(W
π23,2,μ23

2 ,W
π23,3,μ23

3 ) + (ε, ε, ε).
(9)

Indeed, given that ε > 0 is arbitrary, (9) clearly implies the triangle inequality for
˜δ�. To see that (8) implies the triangle inequality for˜δ2→2, observe that (x + y)1/k ≤
x1/k + y1/k whenever k ≥ 1.

Next, we claim that for any ε > 0, any W = (W, S, I,�) in L1 ∩ L2 can be
approximated by a signed step graphex W

′ such that

��(W,W′) ≤ �2→2(W,W′) ≤ (ε, ε, ε).
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Indeed, let � = (�,F , μ), let �1 ⊆ �2 ⊆ · · · ⊆ � be such that μ(�n) < ∞ and
� = ⋃

n �n , and let Wn = (Wn, Sn, I,�), where Wn = W1�n×�n and Sn = S1�n .
Using the dominated convergence theorem and the assumption thatW is in L1 ∩ L2,
we then have that

|ρ(W) − ρ(Wn)| ≤ ‖W − Wn‖1 = ‖ |W |(1 − 1�n×�n )‖1 → 0,

‖W − Wn‖2→2 ≤ ‖W − Wn‖2 = ‖W (1 − 1�n×�n )‖2 → 0,

and
‖S − Sn‖2 = ‖ S(1 − 1�n )‖2 → 0

as n → ∞. Next, defining χn by χn(x, y, z) = (1 − 1�n×�n (x, y))(1 − 1�n×�n

(y, z)), we bound

‖DW − DWn‖2 ≤
√

∫

|W (x, y)||W (y, z)|χn(x, y, z) dμ(x) dμ(y) dμ(z).

Since χn goes to zero pointwise and D|W | is in L2, the right side again goes to zero
by the dominated convergence theorem. Therefore,

‖DW − DWn‖2 ≤ ‖DW − DWn‖2 + ‖S − Sn‖2 → 0.

This shows that for n large enough �2→2(W,Wn) ≤ ε/4.
Fixing n such that this holds, we now define W (k) = Wn1|Wn |≤k and S(k) =

Sn1|Sn |≤k . Another application of the dominated convergence theorem then shows
that for k large enough, �2→2(W

(k),Wn) ≤ ε/4, giving us a graphex
W

′′ = (W ′′, S′′, I,�) such that the degree support ofW′′ has finitemeasure, bothW ′′
and DW′′ are bounded, and�2→2(W

′′,W) ≤ ε/2. But such a graphex can be approx-
imated to arbitrary precision by a step graphex with finitely many steps, proving the
claim for �2→2. Since on two variable functions, ‖ · ‖� is bounded by ‖ · ‖2→2, and
on functions of one variable it is bounded by ‖ · ‖2, the claim for�� follows as well.

Fix ε > 0, and letW′
1,W

′
2,W

′
3 be approximations ofW1,W2,W3 by signed step

graphexes such that for k = 1, 2, 3,

�2→2(Wk,W
′
k) ≤ (ε/6, ε/6, ε/6).

If μi j is a coupling measure on �i × � j and πi j,k is the projection onto �k , k = i
or j , then πi j,k is measure preserving. Therefore, by Lemma 3.5,

�2→2

(

(Wk)
πi j,k ,μi j , (W′

k)
πi j,k ,μi j

)

≤ (ε/6, ε/6, ε/6).
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Combined with Lemma 3.8, we conclude that there exists a coupling measure μ13

on �1 × �3 such that

�2→2(W
π13,1,μ13

1 ,W
π13,3,μ13

3 ) ≤ �2→2

(

(W′
1)

π13,1,μ13 , (W′
3)

π13,3,μ13

)

+ (ε/3, ε/3, ε/3)

≤ �2→2

(

(W′
1)

π12,1,μ12 , (W′
2)

π12,2,μ12

)

+ �2→2

(

(W′
2)

π23,2,μ23 , (W′
3)

π23,3,μ23

)

+ (ε/3, ε/3, ε/3)

≤ �2→2(W
π12,1,μ12

1 ,W
π12,2,μ12

2 ) + �2→2(W
π23,2,μ23

2 ,W
π23,3,μ23

3 ) + (ε, ε, ε)

proving (8) and hence the first statement of the lemma. The proof of (9) and the
second statement follows in the same way. �

The proof of Theorems 2.11 and 3.1 will be an easy corollary of Lemma 3.9 and
the following extension lemma.

Lemma 3.10 LetW = (W, S, I,�) be a signed graphex in L1 ∩ L2, with possibly
unbounded graphon parts, and let � = (�,F , μ).

(1) IfW′ andW′′ are trivial extensions ofW by σ -finite spaces of infinite measure,
then

˜δ�(W′,W′′) =˜δ2→2(W
′,W′′) = 0.

(2) If μ(�) = ∞ and ˜W = (˜W ,˜S, I,˜�) is obtained fromW by appending an arbi-
trary σ -finite space of infinite measure, then

˜δ2→2(W, ˜W) =˜δ�(W, ˜W) = 0.

Proof To prove the first statement, let �′ = (�′,F ′, μ′) and �′′ = (�′′,F ′′, μ′′) be
the spaces � has been extended by. Let μ̂ be the measure on � × � which couples
μ to itself along the diagonal, choose an arbitrary coupling μ̃ of μ′ and μ′′, and let
μ̂′ be the measure on (� ∪ �′) × (� ∪ �′′) defined by

μ̂′(A) = μ̂(A ∩ (� × �)) + μ̃(A ∩ (�′ × �′′)).

Using the fact that μ̂′(� × �′′) = μ̂′(�′ × �) = 0, it is easy to see that

˜δ2→2(W
′,W′′) ≤ d2→2((W

′)π1,μ̂
′
, (W′′)π2,μ̂

′
) = d2→2(W

π1,μ̂,Wπ2,μ̂) = 0.

This proves the first statement for the metric˜δ2→2. The proof for the metric˜δ� is
identical.

To prove the second statement, let ˜� = (˜�, ˜F , μ̃). Since � is σ -finite, we can
find a sequence of measurable subsets�n ⊆ � such that� = ⋃

�n and each�n has
finite measure. Replacing �n by �1 ∪ · · · ∪ �n , we may further assume that �n is
an increasing sequence of sets. LetWn be equal toW on �n × �n and 0 everywhere
else, and let Sn = S on�n and 0 outside of�n . LetWn be the corresponding graphex
on � (with the same value I ), and ˜Wn be its trivial extension to ˜�. By monotone
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convergence, Wn → W in both L1 and L2, and Sn → S in L1 and L2, implying that
˜δ2→2(Wn,W) ≤ d2→2(Wn,W) → 0. For the same reason,˜δ2→2(˜Wn, ˜W) → 0. But
since ˜Wn andWn can both be obtained from the restriction ofWn to�n by appending
a space of infinite total measure, we have˜δ2→2(Wn, ˜Wn) =˜δ2→2(Wn,Wn) = 0 by
the first statement of the lemma. Using the triangle inequality for˜δ2→2, this proves
the second statement for the distance˜δ2→2. The proof for the metric˜δ� follows from
the fact that the jumble norm is bounded by the kernel norm, which in turn implies
that d�(Wn,W) → 0 whenever d2→2(Wn,W) → 0. �

We are now ready to prove Theorems 2.11 and 3.1.

Proof (Theorems 2.11 and 3.1) The first statement of Lemma 3.10 implies that if
W

′
1 andW

′
2 are trivial extensions ofW1 andW2 obtained by appending two σ -finite

spaces of infinite measure, then˜δ2→2(W
′
1,W

′
2) and˜δ�(W′

1,W
′
2) do not depend on

the choice of these extensions, and the second (combinedwith the triangle inequality)
allows us to conclude that this remains true for extensions to spaces of infinite
measure, which completes the proof of the first statements of the two theorems.

Since clearly δ2→2 is symmetric and δ2→2(W,W) = 0 for all integrable graphexes,
all that remains to be proved is the triangle inequality for δ2→2, which follows from
the (already established) triangle inequality for˜δ2→2. The same holds for˜δ�. �

The following example shows that the extension to infinite spaces in the definition
of δ2→2 is really needed.

Example 3.11 Let W1 = (W1, 0, 0,�1) where �1 consists of just two atoms a and
b, with weight p and 1 − p, where 0 < p < 1/2, and W1(a, a) = W1(b, b) = 0,
W1(a, b) = W1(b, a) = 1. Furthermore, letW2 = (W2, 0, 0,�2) where �2 consists
of just one atom c with weight 1, and W2 is the constant a = √

p(1 − p). Then
we have just one choice of coupling. For this coupling, W π1

1 − W π2
2 will have two

atoms, and it will be equal to −√
p(1 − p) on the diagonal, and 1 − √

p(1 − p) off
the diagonal. It is then not difficult to see that ‖W1 − W2‖2→2 is equal to the largest
eigenvalue (in absolute value) of the matrix

( −pa (1 − p)(1 − a)

p(1 − a) −(1 − p)a

)

.

The trace of this matrix is −a, and the determinant is

p(1 − p)a2 − p(1 − p)(1 − a)2 = p(1 − p)(2a − 1) < 0.

Here we used that a = √
p(1 − p) < 1/2. We then have that the two eigenvalues of

the matrix have opposite signs, and their sum is −a, which implies that the negative
one must be less than −a; i.e., it must have larger absolute value than a.
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On the other hand, clearly ‖W1‖2→2 = a, and ‖W2‖2→2 is equal to the largest
eigenvalue (in absolute value) of the matrix

(

0 1 − p
p 0

)

,

which can easily be seen to be equal to
√
p(1 − p) = a.

Therefore, if we extend W1 and W2 by spaces of total measure at least 1, and
couple each �i to the extension, then

‖˜W1 − ˜W2‖2→2 = max{‖˜W1‖2→2, ‖˜W2‖2→2} = a.

Therefore, by extending, we can obtain a better coupling.
Finally, note that in (1), if we multiply the measure of the underlying space by c,

then the first term is multiplied by c, the second by c3/4, and the third by c2/3. We
can therefore take c large enough so that the maximum in the term is dominated by
‖W1 − W2‖2→2. Therefore, we obtain that also for minimizing d2→2, we obtain a
better coupling if we extend by trivial extensions than if we do not.

Next, we would like to prove Theorem 2.15. Before doing so, we note that the dis-
tance δ� is well defined and finite for signed graphexes as well, provided the graphon
part is bounded in the L∞ norm. As the reader may easily verify, this immediately
follows from the following lemma, which is an easy corollary to Proposition 2.4.

Lemma 3.12 Let W be a signed graphex with bounded graphon part, and let 0 <

D < ∞. Then the set {D|W| > D} has finite measure, and W|{D|W|≤D} is integrable
and hence in L1 ∩ L2.

Proof Let W = (W, S, I,�) with � = (�,F , μ), and assume that ‖W‖∞ ≤ K .
If K ≤ 1, the lemma follows from Proposition 2.4 applied to W

′ = |W|. Oth-
erwise, we define W

′ = (W ′, S′, I ′,�) where W ′ = |W |/K , S′ = |S|, and I ′ =
|I |. Applying Proposition 2.4 to this graphex, and noting that 1

K D|W| ≤ DW′ ≤
D|W|, we see that μ({D|W| > D}) ≤ μ({D|W′| > D/K }) < ∞ and ‖W|D|W|≤D‖1 ≤
‖W|DW′ ≤D‖1 ≤ K‖W′

|DW′ ≤D‖1 < ∞, as claimed. �

To prove Theorem 2.15, we need to establish the triangle inequality. The reason
it is not obvious is because when we decrease the measure on the underlying set,
the δ2→2 distance can increase. In the following lemma, we show that although it
can increase under restrictions to subsets or decreasing of the underlying measure,
it cannot increase too much.

Lemma 3.13 Let W1 = (W1, S1, I1,�) and W2 = (W2, S2, I2,�) be signed
graphexes in L1 ∩ L2, let � = (�,F , μ), and let

(1) ‖W1 − W2‖2→2,μ = a,
(2) ‖DW1 − DW2‖2,μ = b, and
(3) |ρ(W1) − ρ(W2)| = c.
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If W
′
1 = (W1, S1, I1,�

′) and W
′
2 = (W2, S2, I2,�

′) where �′ = (�,F , μ′) for
some measure μ′ such that μ − r ≤ μ′ ≤ μ for some r < ∞, then

(1) ‖W1 − W2‖2→2,μ′ ≤ a,
(2) ‖DW

′
1
− DW

′
2
‖2,μ′ ≤ b + a

√
r , and

(3)
∣

∣

∣|ρ(W′
1) − ρ(W′

2)| − c
∣

∣

∣ ≤ 2b
√
r + ar.

We recall that μ − r ≤ μ′ ≤ μ if and only if there exists a measurable func-
tion h : � → [0, 1] such that μ′(B) = ∫

B h dμ for all measurable sets B, and
‖1 − h‖1,μ ≤ r < ∞. An interesting special case is the case where h is the charac-
teristic function of� \ R for a set R of measure r , in which caseW′

i is the restriction
of W to � \ R, after neglecting points outside the degree support.

Proof To show property (1), let f, g be such that ‖ f ‖2,μ′ = ‖g‖2,μ′ = 1. In other
words,

1 =
∫

�

f 2 dμ′ =
∫

�

h f 2 dμ,

and

1 =
∫

�

g2 dμ′ =
∫

�

hg2 dμ.

Let U = W1 − W2. We then have

∣

∣

∣

∣

∫

�×�
f (x)U (x, y)g(y) d(μ′ × μ′)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

�×�
f (x)U (x, y)g(y)h(x)h(y) d(μ × μ)

∣

∣

∣

∣

≤ ‖U‖2→2,μ‖ f h‖2,μ‖gh‖2,μ.

We also have

‖ f h‖22,μ =
∫

�

f (x)2h(x)2 dμ(x) ≤
∫

�

f (x)2h(x) dμ(x) = 1.

Similarly, ‖gh‖2,μ ≤ 1. Therefore,

∣

∣

∣

∣

∫

�×�

f (x)U (x, y)g(y) d(μ′ × μ′)
∣

∣

∣

∣

≤ a.

Since this holds for any f, g such that ‖ f ‖2,μ′ = ‖g‖2,μ′ = 1, we have ‖U‖2→2,μ′ ≤
‖U‖2→2,μ = a.

For (2), let

Di (x) = DWi (x) − DW
′
i
(x) =

∫

�

Wi (x, y)(1 − h(y)) dμ(y).
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Then

‖D
W

′
1

− D
W

′
2
‖2,μ′ ≤ ‖D

W
′
1

− D
W

′
2
‖2,μ

= sup
g:‖g‖2,μ=1

∫

�
(D

W
′
1

− D
W

′
2
)(x)g(x) dμ(x)

= sup
g:‖g‖2,μ=1

∫

�

(

(DW1 − DW2 )(x)g(x) − (D1 − D2)(x)g(x)
)

dμ(x)

= sup
g:‖g‖2,μ=1

(∫

�
(DW1 − DW2 )(x)g(x) dμ(x)

−
∫

�×�
g(x)(W1 − W2)(x, y)(1 − h(y)) d(μ × μ)

)

≤ b + a‖g‖2,μ‖1 − h‖2,μ ≤ b + a
√
r .

To prove (3), we use that

ρ(W′
i ) =

∫

�×�

h(x)Wi (x, y)h(y) dμ(x) dμ(y) + 2
∫

�

Si (x)h(x) dμ(x) + Ii

= ρ(Wi ) −
∫

�×�

(1 − h(x))Wi (x, y) dμ(x) dμ(y)

−
∫

�×�

Wi (x, y)(1 − h(y)) dμ(x) dμ(y)

+
∫

�×�

(1 − h(x))Wi (x, y)(1 − h(y)) dμ(x) dμ(y)

− 2
∫

�

(1 − h(x))S(x) dμ(x)

= ρ(Wi ) − 2
∫

�

(1 − h(x))DWi (x) dμ(x)

+
∫

�×�

(1 − h(x))Wi (x, y)(1 − h(y)) dμ(x) dμ(y).

Therefore,

∣

∣

∣

∣

∣ρ(W′
1)−ρ(W′

2)
∣

∣ − ∣

∣ρ(W1) − ρ(W2)
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

2
∫

�

(1 − h(x))(DW1 − DW2)(x) dμ(x)

−
∫

�×�

(1 − h(x))(W1 − W2)(x, y)(1 − h(y)) dμ(x) dμ(y)

∣

∣

∣

∣

≤ 2b
√
r + ar.

Here we used the fact that ‖1 − h‖2 ≤ √‖1 − h‖1 ≤ √
r . This implies the claim. �
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We also use the following equivalent representation of the weak kernel distance
δ�.

Lemma 3.14 For i = 1, 2, let Wi be graphexes over �i = (�i ,Fi , μi ), and let
W

′
i be trivial extensions of Wi to σ -finite measure spaces �′

i = (�′
i ,F ′

i , μ
′
i ) with

μ′
i (�

′
i ) = ∞. Then δ�(W1,W2) =˜δ�(W′

1,W
′
2), where ˜δ�(W′

1,W
′
2) is defined as

the infimum over all c such that there exists a measure μ′ over �′
1 × �′

2 obeying the
conditions

(1) μ′
i − c2 ≤ (μ′)πi ≤ μ′

i for i = 1, 2, and
(2) d2→2((W

′
1)

π1,μ
′
, (W′

2)
π2,μ

′
) ≤ c.

Proof Let μ′ and c be such that they obey the conditions in the statement of the
lemma. For i = 1, 2, let μ̃i be the restriction of (μ′)πi to �i , and let ˜Wi be obtained
from Wi by replacing μi by μ̃i . Then μi − c2 ≤ μ̃i ≤ μi . Furthermore, (μ′)πi

extends μ̃i to �′
i , and (μ′)πi (�′

i \ �i ) ≥ μ′
i (�

′
i \ �i ) − c2 = ∞, showing that this

defines an extension by a space of infinite measure. Finally, μ′ is a coupling of
(μ′)π1 and (μ′)π2 . Together, these facts imply that δ2→2(˜W1, ˜W2) ≤ c, proving that
δ�(W1,W2) ≤ c. This shows that δ�(W1,W2) ≤˜δ�(W′

1,W
′
2).

To prove the reverse inequality, assume that c is such that there are measures
μ̃1 and μ̃2 over �1 and �2 such that δ2→2(˜W1, ˜W2) ≤ c and μi − c2 ≤ μ̃i ≤ μi for
i = 1, 2, where ˜Wi is again obtained fromWi by replacingμi by μ̃i . If we transform
�′

i into a space ˜�
′
i by setting μ̃′

i to μ̃i on �i , and to μ′
i on �i \ �′

i , and define ˜W
′
i as

the trivial extension of ˜Wi to ˜�
′
i , then Theorem 2.11 implies that˜δ2→2(˜W

′
1,

˜W
′
2) =

δ2→2(˜W1, ˜W2) ≤ c. This means that for all ε > 0, there is a couplingμ′ of μ̃′
1 and μ̃′

2
such that d2→2((W

′
1)

π1,μ
′
, (W′

2)
π2,μ

′
) ≤ c + ε. Observing that the bound μi − c2 ≤

μ̃i ≤ μi and our construction of μ̃′
i imply thatμ′

i − c2 ≤ μ̃′
i = (μ′)πi ≤ μ′

i , and that
(˜W′

i )
πi ,μ̃

′ = (W′
i )

πi ,μ̃
′
, this shows that˜δ�(W′

1,W
′
2) ≤ c + ε. Since ε was arbitrary,

this shows that δ�(W1,W2) ≥˜δ�(W′
1,W

′
2). �

We are now ready to prove Theorem 2.15.

Proof (Theorem 2.15) It is clear that δ� is symmetric, and that δ�(W,W) = 0. So
we have to prove the triangle inequality. By Lemma 3.14, taking trivial extensions of
each graphex to a space of infinite measure, it suffices to prove the triangle inequality
for˜δ�.

Let W1,W2,W3 be three graphexes with the usual notation, defined over mea-
sure spaces which all have infinite measure. Let μ12 be a measure on �1 × �2 that
shows that ˜δ�(W1,W2) ≤ c1, let μ23 be a measure on �2 × �3 that shows that
˜δ�(W1,W2) ≤ c2, let μ′

1 and μ′
2 be the marginals of μ12, and let μ′′

2 and μ′′
3 be the

marginals of μ23. We would like to use Lemma 3.9 to create a coupling of μ′
1 and

μ′′
3, but unfortunately, the conditions of the lemma require that μ′

2 = μ′′
2, which we

cannot guarantee. To deal with this problem, we will slightly decrease μ12 and μ23

so that after this perturbation, the second marginal of the first is equal to the first
marginal of the second.

Let πi j,i be the projection map from �i × � j to �i for i, j ∈ [3], and letWi j,i =
W

πi j,i ,μi j

i . Let μ′
2 = μ12

π12,2 and μ′′
2 = μ23

π23,2 . Let h′ = dμ′
2

dμ2
and h′′ = dμ′′

2
dμ2

. Then



66 C. Borgs et al.

we can assume that 0 ≤ h′, h′′ ≤ 1, ‖1 − h′‖1,μ2 ≤ c21, and ‖1 − h′′‖1,μ2 ≤ c22. Let
˜h(x) = min(h′(x), h′′(x)), and let μ̃2 be the measure defined by

μ̃2(A) =
∫

A

˜h dμ2.

Then ‖h′ −˜h‖1,μ2 ≤ ‖1 − h′′‖1,μ2 ≤ c22. For x ∈ �1 × �2, let h12(x) = ˜h(π12,2(x))
h′(π12,2(x))

≤
1, and let μ̃12 be the measure defined by

μ̃12(A) =
∫

A
h12(x) dμ12.

Note that μ̃π12,2

12 = μ̃2. Furthermore, since h̃(x) ≤ h′(x),

∫

�1×�2

(

1 − h12(x)
)

dμ12(x) =
∫

�2

(

1 − ˜h(x)

h′(x)

)

dμ′
2(x)

=
∫

�2

(

1 − ˜h(x)

h′(x)

)

h′(x) dμ2(x) = ‖h′ −˜h‖1,μ2 ≤ c22 .

This means that for any set A ⊆ �1 × �2,

μ12(A) − c22 ≤ μ̃12(A) ≤ μ12(A).

This implies that for any A ⊆ �1,

μ1(A) − c21 − c22 ≤ μ
π12,1

12 (A) − c22 ≤ μ̃
π12,1

12 (A) ≤ μ
π12,1

12 (A) ≤ μ1(A).

We similarly construct μ̃23 and �2 × �3 so that μ̃
π23,2

23 = μ̃2 and for any set A ⊆
�2 × �3,

μ23(A) − c21 ≤ μ̃23(A) ≤ μ23(A),

which implies that for any A ⊆ �3,

μ3(A) − c21 − c22 ≤ μ
π23,3

23 (A) − c21 ≤ μ̃
π23,3

23 (A) ≤ μ
π23,3

23 (A) ≤ μ3(A).

Let μ̃1 = μ̃
π12,1

12 and μ̃3 = μ̃
π23,3

23 , and note that μ̃12 is a coupling of μ̃1 and μ̃2, μ̃23 is a
coupling of μ̃2 and μ̃3, and μ1 − c21 − c22 ≤ μ̃1 ≤ μ1 and μ3 − c21 − c22 ≤ μ̃3 ≤ μ3.

Let ˜Wi be equal to Wi but with the measure μi replaced by μ̃i . Fix ε > 0.
By Lemma 3.9, there exists a measure μ̃13 on �1 × �3 such that μ̃

π13,1

13 = μ̃1 and
μ̃

π13,3

13 = μ̃3, and we have

�2→2(˜W
π13,1

1 , ˜W
π13,3

3 ) ≤ �2→2(˜W
π12,1

1 , ˜W
π12,2

2 ) + �2→2(˜W
π23,2

2 , ˜W
π23,3

3 ) + (ε, ε, ε).

Note that by the above inequalities,
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μ1 − (c1 + c2)
2 ≤ μ1 − c21 − c22 ≤ μ̃1 = μ̃

π13,1

13 ≤ μ1

and
μ3 − (c1 + c2)

2 ≤ μ3 − c21 − c22 ≤ μ̃3 = μ̃
π13,3

13 ≤ μ3.

By Lemma 3.13,

‖˜W π12,1

1 − ˜W π12,2

2 ‖2→2,μ̃12 ≤ ‖W12,1 − W12,2‖2→2,μ12 ≤ c1,

‖D
˜W

π12,1
1

− D
˜W

π12,2
2

‖2,μ̃12 ≤ ‖DW12,1 − DW12,2‖2,μ12 + ‖W12,1 − W12,2‖2→2,μ12c2

≤ c21 + c1c2,

and finally

∣

∣ρ(˜W
π12,1
1 ) − ρ(˜W

π12,2
2 )

∣

∣ ≤ ∣

∣ρ(W12,1) − ρ(W12,2)
∣

∣ + 2‖DW12,1 − DW12,2‖2,μ12c2

+ ‖W12,1 − W12,2‖2→2,μ12c
2
2

≤ c31 + 2c21c2 + c1c
2
2.

To summarize, this means that

�2→2(˜W
π12,1

1 , ˜W
π12,2

2 ) ≤ (c1, c
2
1 + c1c2, c

3
1 + 2c21c2 + c1c

2
2).

Similarly,

�2→2(˜W
π23,2

2 , ˜W
π23,3

3 ) ≤ (c2, c
2
2 + c1c2, c

3
2 + 2c1c

2
2 + c21c2).

Therefore,
‖˜W π13,1

1 − ˜W π13,3

3 ‖2→2,μ̃13 ≤ c1 + c2 + ε,

‖D
˜W1

− D
˜W3

‖2,μ̃13 ≤ c21 + c1c2 + c22 + c1c2 + ε = (c1 + c2)
2 + ε,

and finally

∣

∣ρ(˜W1) − ρ(˜W3)
∣

∣ ≤ c31 + 2c21c2 + c1c
2
2 + c32 + 2c1c

2
2 + c21c2 + ε = (c1 + c2)

3 + ε.

Since this can be done for any ε > 0, this completes the proof that˜δ� is a metric.
With the help of Lemma 3.14 the triangle inequality for˜δ� implies that for δ�. �

NextweproveProposition2.17, aswell the followingversion for signedgraphexes.

Proposition 3.15 Fix B,C, D < ∞. Then δ� and δ2→2 define the same topology on
the space of (B,C, D)-bounded signed graphexes.
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To prove these propositions, we need a lemma complementing the bounds from
Lemma 3.13. Recall that in Lemma 3.13, we showed that the distance between two
graphexes defined on the same measure space cannot increase too much when we
decrease of the underlying measure. Our next lemma shows that if the graphexes
involved are signed graphexes that are (B,C, D)-bounded, we can also go in the
other direction.

Lemma 3.16 Let Wi = (Wi , Si , Ii ,�), for i = 1, 2, be (B,C, D)-bounded signed
graphexes on the same measure space �, and let μ′, r , W′

1, and W
′
2 be as in

Lemma 3.13. Then

(1) ‖W1 − W2‖2→2,μ′ ≤ ‖W1 − W2‖2→2,μ ≤ ‖W1 − W2‖2→2,μ′ + 4
√
BDr,

(2)
∣

∣

∣‖DW1 − DW2‖22,μ − ‖DW
′
1
− DW

′
2
‖22,μ′

∣

∣

∣ ≤ (4D2 + 8BC)r , and

(3)
∣

∣

∣

∣

∣ρ(W′
1) − ρ(W′

2)
∣

∣ − ∣

∣ρ(W1) − ρ(W2)
∣

∣

∣

∣

∣ ≤ 4Dr.

Proof Let U = W1 − W2. Then for any f, g with ‖ f ‖2,μ = ‖g‖2,μ = 1,

∫

�×�

f (x)U (x, y)g(y) dμ(x) dμ(y)

=
∫

�×�

f (x)h(x)U (x, y)h(y)g(y) dμ(x) dμ(y)

+
∫

�×�

f (x)((1 − h(x))U (x, y)h(y))g(y) dμ(x) dμ(y)

+
∫

�×�

f (x)U (x, y)(1 − h(y))g(y) dμ(x) dμ(y).

We have
∫

�×�

f (x)h(x)U (x, y)h(y)g(y) dμ(x) dμ(y)

=
∫

�×�

f (x)U (x, y)g(y) dμ′(x) dμ′(y) ≤ ‖ f ‖2,μ′ ‖U‖2→2,μ′ ‖g‖2,μ′

≤ ‖ f ‖2,μ‖U‖2→2,μ′ ‖g‖2,μ ≤ ‖U‖2→2,μ′ .

Furthermore,

∫

�×�

f (x)U (x, y)(1 − h(y))g(y) dμ(x) dμ(y)

≤ ‖ f ‖2,μ
∫

�

‖Uy‖2,μ(1 − h(y))|g(y)| dμ(y)

≤ ‖ f ‖2,μ2
√
BD

∫

�

(1 − h(y))|g(y)| dμ(y)

≤ 2
√
BD‖ f ‖2,μ‖1 − h‖2,μ‖g‖2,μ ≤ 2

√
BDr .
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Here we used the fact that ‖U‖∞ ≤ 2B and ‖D|U |,μ‖∞ ≤ 2D, which implies that
‖Uy‖2,μ ≤ 2

√
BD. Analogously, we have

∫

�×�

f (x)((1 − h(x))U (x, y)h(y))g(y) dμ(x) dμ(y)

≤ 2
√
BD‖ f ‖2,μ‖1 − h‖2,μ‖hg‖2,μ ≤ 2

√
BDr .

Adding this all up, we have

∫

�×�

f (x)U (x, y)g(y) dμ(x) dμ(y) ≤ ‖U‖2→2,μ′ + 4
√
BDr .

This proves the upper bound in the first claim. The lower bound follows from
Lemma 3.13.

To prove the second claim, we observe that

0 ≤
∫

�
(DW1 (x) − DW2 (x))

2 dμ(x) −
∫

�
(DW1 (x) − DW2 (x))

2 dμ′(x)

=
∫

�
(DW1 (x) − DW2 (x))

2(1 − h(x)) dμ(x) ≤
∫

�
4D2(1 − h(x)) dμ(x) ≤ 4D2r.

Furthermore, since ‖U‖∞ ≤ 2B, we have that for any x ∈ �,

∣

∣

∣

∣

(

DW1(x) − DW
′
1
(x)

) − (

DW2(x) − DW
′
2
(x)

)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

�

(1 − h(y))U (x, y) dμ(y)

∣

∣

∣

∣

≤ 2Br.

Therefore,

∣

∣

∣

∣

∫

�

(

DW1(x) − DW2(x)
)2

dμ′(x) −
∫

�

(

DW
′
1
(x) − DW

′
2
(x)

)2
dμ′(x)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

�

(

(

DW1(x) − DW2(x)
) − (

DW
′
1
(x) − DW

′
2
(x)

)

)

(

(

DW1(x) − DW2(x)
) + (

DW
′
1
(x) − DW

′
2
(x)

)

)

dμ′(x)
∣

∣

∣

∣

≤ 2Br
∫

�

(

∣

∣DW1(x)
∣

∣ + ∣

∣DW2(x)
∣

∣ + ∣

∣DW
′
1
(x)

∣

∣ + ∣

∣DW
′
2
(x)

∣

∣

)

dμ′(x) ≤ 8BCr.

Combining these two inequalities proves the second claim.
To prove the third claim, we use the following bound, where the first inequality

was already established when proving the last claim of Lemma 3.13:
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∣

∣

∣

∣

∣ρ(W′
1)−ρ(W′

2)
∣

∣ − ∣

∣ρ(W1) − ρ(W2)
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

2
∫

�

(1 − h(x))(DW1 − DW2)(x) dμ(x)

−
∫

�×�

(1 − h(x))(W1 − W2)(x, y)(1 − h(y)) dμ(x) dμ(y)

∣

∣

∣

∣

=
∣

∣

∣

∣

2
∫

�

(1 − h(x))(S1 − S2)(x) dμ(x)

+
∫

�×�

(1 − h(x))(W1 − W2)(x, y)(2 − 1 + h(y)) dμ(x) dμ(y)

∣

∣

∣

∣

≤ 2
∫

�

(1 − h(x))(D|W1| + D|W2|)(x) ≤ 4Dr.

�

Our next lemma is an easy corollary to Lemma 3.16, and in turn immediately
implies Propositions 2.17 and 3.15.

Lemma 3.17 Suppose Wi = (Wi , Si , Ii ,�i ), for i = 1, 2, are signed graphexes
with ‖Wi‖∞ ≤ B and ‖D|W|‖∞ ≤ D, and let δ�(W1,W2) ≤ ε. Then |ρ(W1) −
ρ(W2)| ≤ ε3 + 4ε2D. If, in addition, ‖Wi‖1 ≤ C, then δ2→2(W1,W2) ≤ f (ε),
where

f (ε) = max

{

ε + 4ε
√
BD,

(

ε2 + 2ε
√

D2 + 2BC
)1/2

,
(

ε3 + 4ε2D
)1/3

}

Proof We first note that by Lemma 3.12, ‖Wi‖1 < ∞, so even without the assump-
tion that ‖Wi‖1 ≤ C , we always have that ‖Wi‖1 ≤ C for some C < ∞.

Next, let �i = (�i ,Fi , μi ), for i = 1, 2, and let c > ε. By the definition of δ�,
there exist measures μ̃i such that μ̃i ≤ μi and δi = μi (�i ) − μ̃i (�i ) ≤ c2 and such
that δ2→2(˜W1, ˜W2) < c for the signed graphexes ˜Wi obtained fromWi by replacing
μi by μ̃i .

Consider an arbitrary σ -finite space �′′
i of infinite measure, and two intervals Ji

of length c − δi . Define �′
i by appending �′′

i and the interval Ji equipped with the
Lebesguemeasure to�i , and define˜�

′
i by appending the same spaces, except that we

equip Ji with the zero measure. By Lemma 3.10 and the definition of δ2→2, we then
have that˜δ2→2(˜W

′
1,

˜W
′
2) = δ2→2(˜W1, ˜W2) < c, where ˜W

′
i are the trivial extensions

to ˜�
′
i . Furthermore, by our construction, �′

i = (�i ,F ′
i , μ

′
i ) and ˜�

′
i = (˜�i , ˜F ′

i , μ̃
′
i )

are such that (�′
i ,F ′

i ) = (˜�i , ˜F ′
i ), μ̃

′
i ≤ μ′

i , and μ′
i (�

′
i ) − μ̃′

i (�
′
i ) = c2.

Given a coupling μ̃′ of μ̃′
1 and μ̃′

2, let˜U
′
i be the pullback of ˜W

′
i under the coordinate

projections onto �′
i . By the definition of the distance˜δ2→2, we can find a coupling

μ̃′ such that d2→2(˜U
′
1,

˜U
′
2) ≤ c2. Choose a coupling μ′ of μ′

1 and μ′
2 by coupling
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μ′
i − μ̃′

i arbitrarily. Then μ′ − c ≤ μ̃′ ≤ μ′. Defining U
′
i to be the pullbacks of W′

i
under the coordinate projections onto �′

i , we may then apply Lemma 3.16 with
r = c2 to conclude that |ρ(W1) − ρ(W2)| = |ρ(U′

1) − ρ(U′
2)| ≤ c3 + 4c2D and

δ2→2(W1,W2) ≤ d2→2(U
′
1,U

′
2)

≤ max

{

c + 4c
√
BD,

(

c2 + 2c
√

D2 + 2BC
)1/2

,
(

c3 + 4c2D
)1/3

}

Since c > ε was arbitrary, this concludes the proof. �
Proof (Propositions 2.17 and 3.15) By the definition of δ�, we clearly have that
δ� ≤ δ2→2. For signed graphexes that are (B,C, D)-bounded, a bound in the oppo-
site direction follows immediately from Lemma 3.17, proving Proposition 3.15. To
prove Proposition 2.17 we note that if δ�(Wn,W) → 0 and both Wn and W are
(unsigned) graphexes with D-bounded marginals, then ‖W‖1 ≤ C for some C < ∞
by Proposition 2.4. Since ‖Wn‖1 = ρ(Wn) converges to ρ(W) = ‖W‖1 ≤ C by the
first statement of the lemma, we must have that ‖Wn‖1 ≤ ˜C for some ˜C < ∞, at
which point the proof proceeds as the proof for the signed case. �

Our next lemma relates the kernel norm ‖ · ‖2→2 of a two variable function U to
the 4-cycle counts of U .

Lemma 3.18 Let U : � × � → R be a measurable function. Then

‖U‖42→2 ≤ t (C4,U ) ≤ ‖U‖22→2‖U‖22.

Proof For any f, g with ‖ f ‖2 = ‖g‖2 = 1, we have (using Cauchy’s inequality)

‖ f ◦U ◦ g‖42 ≤ ‖U ◦ g‖42 = (g ◦U ◦U ◦ g)2

=
(∫

�2
g(x)U ◦U (x, y)g(y) dμ(x) dμ(y)

)2

≤
(∫

�2
g(x)2g(y)2 dμ(x) dμ(y)

)(∫

�2
(U ◦U (x, y))2 dμ(x) dμ(y)

)

= t (C4,U ).

This proves the first inequality. For the second, we have

t (C4,U ) =
∫

�4
U (x, y)U (y, z)U (z,w)U (w, x) dμ(x) dμ(y) dμ(z) dμ(w)

=
∫

�

∫

�

(U ◦Uz)(x)
2 dμ(x) dμ(z) =

∫

�

dμ(z)‖U ◦Uz‖22

≤
∫

�

‖U‖22→2‖Uz‖22 = ‖U‖22→2‖U‖22.

Our next goal is to relate the jumble and the kernel distances. The next proposi-
tion shows that for (B,C, D)-bounded graphexes, they are equivalent. As we will
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see, similarly to the proof of Propositions 2.17 and 3.15, the proof also gives that
for (unsigned) graphexes, the metrics δ2→2 and δ� are equivalent on the space of
graphexes with D-bounded marginals; see Remark 3.23 below.

Proposition 3.19 Given B,C, D < ∞, there exists a constant c < ∞ such that if
W1 and W2 are (B,C, D)-bounded signed graphexes, then the following hold.

(1) If d2→2(W1,W2) ≤ ε̃, then d�(W1,W2) ≤ max{̃ε, ε̃3}.
(2) If d�(W1,W2) ≤ ε, then d2→2(W1,W2) ≤ max{ 3

√
ε, c 4

√
ε}.

If the graphexes are such that ρ(W1) = ρ(W2), then these bounds can be replaced
by d�(W1,W2) ≤ ε̃ and d2→2(W1,W2) ≤ c 4

√
ε.

To prove the proposition, we establish three preliminary lemmas.

Lemma 3.20 Given a bounded, nonnegative, measurable function f on some mea-
sure space (�,F , μ), we have

‖ f ‖22√‖ f ‖1‖ f ‖∞
≤ sup

S⊆�

1√
μ(S)

∫

S
f dμ ≤ ‖ f ‖2.

In particular, the second and third term define equivalent norms, for any C, D, on
the space of nonnegative functions with ‖ f ‖1 ≤ C, ‖ f ‖∞ ≤ D.

Proof The second inequality follows from Cauchy’s inequality. For the first one, let
‖ f ‖∞ = K . First, note that

∫ K

0
dc

∫

{ f ≥c}
f dμ =

∫

�

dμ(x) f (x)
∫ f (x)

0
dc =

∫

�

f 2 dμ.

We then have

‖ f ‖42 =
(∫

�

f 2 dμ

)2

=
(∫ K

0

∫

{ f ≥c}
f dμ dc

)2

=
(

∫ K

0
dc

√

μ({ f ≥ c})
∫

{ f ≥c} f dμ√
μ({ f ≥ c})

)2

≤
∫ K

0

(

∫

{ f ≥c} f dμ
)2

μ({ f ≥ c}) dc
∫ K

0
μ({ f ≥ c}) dc.

Using the fact that
∫ K

0
μ({ f ≥ c}) dc =

∫

�

f dμ,
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we have that
∫ K

0

(

∫

{ f ≥c} f dμ
)2

μ({ f ≥ c}) dc ≥ ‖ f ‖42
‖ f ‖1 ,

which means that there exists some c such that

(

∫

{ f ≥c} f dμ
)2

μ({ f ≥ c}) ≥ ‖ f ‖42
‖ f ‖1K = ‖ f ‖42

‖ f ‖1‖ f ‖∞
.

Taking S to be { f ≥ c}, the lemma is proved. �

The following lemma is an easy corollary of Lemma 3.20.

Lemma 3.21 Given a bounded, measurable, not necessarily nonnegative function
f on some measure space (�,μ), we have

‖ f ‖22√
2‖ f ‖1‖ f ‖∞

≤ sup
S⊆�

1√
μ(S)

∣

∣

∣

∣

∫

S
f dμ

∣

∣

∣

∣

≤ ‖ f ‖2.

Proof The second inequality again follows from Cauchy’s inequality, so we just
have to prove the first one. Note that the left term is not affected by replacing f with
| f |. Let S be any subset of�, let S+ consist of the points in S where f is nonnegative,
and let S− be the rest. Then

1√
μ(S)

∫

S
| f | dμ =

∣

∣

∫

S+ f dμ
∣

∣

√
μ(S+)

√
μ(S+)√
μ(S)

+
∣

∣

∫

S− f dμ
∣

∣

√
μ(S−)

√
μ(S−)√
μ(S)

≤ max

(∣

∣

∫

S+ f dμ
∣

∣

√
μ(S+)

,

∣

∣

∫

S− f dμ
∣

∣

√
μ(S−)

)

(√
μ(S+)√
μ(S)

+
√

μ(S−)√
μ(S)

)

≤ max

(∣

∣

∫

S+ f dμ
∣

∣

√
μ(S+)

,

∣

∣

∫

S− f dμ
∣

∣

√
μ(S−)

)√
2 ≤ √

2 sup
S⊆�

1√
μ(S)

∣

∣

∣

∣

∫

S
f dμ

∣

∣

∣

∣

.

Therefore, we have

sup
S⊆�

1√
μ(S)

∣

∣

∣

∣

∫

S
f dμ

∣

∣

∣

∣

≥ sup
S⊆�

1√
2

1√
μ(S)

∫

S
| f | dμ ≥ ‖ f ‖22√

2‖ f ‖1‖ f ‖∞
.

This completes the proof. �

Lemma 3.22 For any measurable U : � × � → R,

‖U‖2→2 ≥ ‖U‖� ≥ ‖U‖42→2

8‖U‖3/4∞ ‖D|U |‖3/4∞ ‖D|U |‖3/22

≥ ‖U‖42→2

8‖U‖3/4∞ ‖D|U |‖3/2∞ ‖U‖3/41

.
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Proof Fix f and g with ‖ f ‖2 = ‖g‖2 = 1 and recall that we use Ux to denote the
function y 
→ U (x, y). First, we have

‖U ◦ g‖∞ ≤ sup
x

‖Ux‖2 ≤ √‖U‖∞‖D|U |‖∞.

We also have

‖U ◦ g‖1 ≤ 2 sup
S⊆�

∣

∣

∣

∣

∫

S
dx

∫

�

U (x, y)g(y) dy

∣

∣

∣

∣

= 2 sup
S⊆�

∣

∣

∣

∣

∫

�

dy g(y)
∫

S
U (x, y) dx

∣

∣

∣

∣

≤ 2
∫

�

|g(y)|D|U |(y) ≤ 2‖D|U |‖2.

Combined with the first bound from Lemma 3.21 and the fact that | f ◦U ◦ g| ≤
‖U ◦ g‖2, this shows that

sup
S⊆�

1√
μ(S)

∣

∣

∣

∣

∫

S
U ◦ g(x) dμ(x)

∣

∣

∣

∣

≥ ‖U ◦ g‖22√
2‖U ◦ g‖∞‖U ◦ g‖1

≥ ( f ◦U ◦ g)2

2‖U‖1/4∞ ‖D|U |‖1/4∞ ‖D|U |‖1/22

.

Analogously, defining gS as the function x 
→ 1√
μ(S)

1x∈S , and observing that
1√

μ(S)

∣

∣

∫

S(U ◦ g) dμ
∣

∣ = |g ◦U ◦ gS| ≤ ‖U ◦ gS‖2, we have

sup
T⊆�

∣

∣

∣

∣

1√
μ(T )μ(S)

∫

S×T
dμ(x)dμ(y)U (x, y)

∣

∣

∣

∣

= sup
T⊆�

1√
μ(T )

∣

∣

∣

∣

∫

T
(U ◦ gS)(y) dμ(y)

∣

∣

∣

∣

≥ ‖U ◦ gS‖22
2‖U‖1/4∞ ‖D|U |‖1/4∞ ‖D|U |‖1/22

≥ ( f ◦U ◦ g)4

8‖U‖3/4∞ ‖D|U |‖3/4∞ ‖D|U |‖3/22

.

Therefore,

‖U‖� ≥ ‖U‖42→2

8‖U‖3/4∞ ‖D|U |‖3/4∞ ‖D|U |‖3/22

≥ ‖U‖42→2

8‖U‖3/4∞ ‖D|U |‖3/2∞ ‖U‖3/41

,

where in the last step we used that ‖D|U |‖22 ≤ ‖D|U |‖1‖D|U |‖∞ = ‖U‖1‖D|U |‖∞.�
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Proof (Proposition 3.19) The proposition follows immediately from
Lemmas 3.21 and 3.22 and the definition of the distances d2→2 and d�, with c
being the constant c = max{ 8

√
8CD,

4
√
64B3/4D3/2C3/4}. �

Remark 3.23 The above proof can easily bemodified to see that for any 0 < D < ∞
the metrics δ2→2 and δ� are equivalent on the space of (unsigned) graphexes with D-
boundedmarginals. Indeed, ifW has boundedmarginals, it is integrable, and if either
δ2→2(Wn,W) → 0 or δ�(Wn,W) → 0, then ‖Wn‖1 = ρ(Wn) → ρ(W) = ‖W‖1.
This shows that we can assume that the sequences are (C, D)-bounded for some C ,
which means they are (B,C, D)-bounded for B = 1.

We close this section with the (straightforward) proof that the homomorphism
densities t (F,W) indeed describe the expected number of injective homomorphisms
from F into GT (W).

Proposition 3.24 For any simple graph F with no isolated vertices and graphexW,

E
[

inj(F,GT (W))
] = T |V (F)|t (F,W).

If the marginals of W are bounded, then the right side is finite, with

t (F,W) ≤
∏

i

‖W‖1‖DW‖v(Fi )−2
∞ ,

where the product runs over the components of F and vi is the number of vertices
in Fi .

Proof Recall that we extended the feature space � to include an additional point
∞, and that we labeled the vertices corresponding to the leaves of a star generated
by S, as well as the two endpoints of the isolated edges coming from I , by ∞. Let
k = |V (F)|. First, suppose that � has finite measure. Then the probability that there
are n points sampled from � is e−μ(�)T (Tμ(�))n

n! . Let V2 be the set of vertices of F of
degree at least 2, let V1 be the set of vertices of degree 1 whose neighbor is in V2, and
let V0 be the set of vertices that belong to an isolated edge. Each vertex in V2 must be
mapped to a vertex with feature label in �. Each vertex in V1 must be mapped either
to a vertex with feature label in � or a vertex coming from the leaves of a the star
attached to such a vertex (in which case its feature label is ∞). For an isolated edge,
there are three possibilities: either it is mapped to two vertices with feature label in
�, one endpoint is mapped to such a vertex and the other to a leaf of a star whose
center is the first vertex, or it is mapped to an isolated edge generated by I (in which
case both feature labels are ∞). Let us fix for each vertex in V1 and V0 whether its
feature label is∞ or lies in�, noting that this uniquely determines all the choices we
just discussed. Let V ′

0 ⊆ V0 and V ′
1 ⊆ V1 be the sets of vertices mapped to a vertex

coming from �, and let V ′ = V ′
0 ∪ V ′

1 ∪ V2. Let U be the set of remaining vertices.
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Let J be the set of isolated edges, and J ′′ the set of isolated edges where we have
fixed that they are mapped to an edge generated by I ; i.e., they have both endpoints
in U . For a vertex i ∈ V ′, let dU (i) be its degree to U . Conditioned on V ′, we have

E[inj(F,GT )|V ′] =
∞
∑

n=0

e−μ(�)T (Tμ(�))n

n!
(n)|V ′|

μ(�)|V ′|
∫

�V ′

∏

{i, j}∈E(F |V ′ )

W (xi , x j )
∏

i∈V ′
(T S(xi ))

dU (i)(2T 2 I )|J
′′ |

=
∞
∑

n=|V ′|
T |V ′|e−μ(�)T (Tμ(�))n−|V ′|

(n − |V ′|)!
∫

�V ′
T |U | ∏

{i, j}∈E(F |V ′ )

W (xi , x j )
∏

i∈V ′
(S(xi ))

dU (i)(2I )|J
′′ |

= T |V |
⎛

⎝

∞
∑

n=|V ′|
e−μ(�)T (Tμ(�))n−|V ′|

(n − |V ′|)!

⎞

⎠

⎛

⎝

∫

�V ′

∏

{i, j}∈E(F |V ′ )

W (xi , x j )
∏

i∈V ′
(S(xi ))

dU (i)(2I )|J
′′ |
⎞

⎠

= T |V |
∫

�V ′

∏

{i, j}∈E(F |V ′ )

W (xi , x j )
∏

i∈V ′
(S(xi ))

dU (i)(2I )|J
′′ |.

Therefore,

E[inj(F,GT )] = T |V | ∑

V ′
0⊆V0

V ′
1⊆V1

∫

�V ′

∏

{i, j}∈E(F |V ′ )

W (xi , x j )
∏

i∈V ′
(S(xi ))

dU (i)(2I )|J
′′ |.

Now, it is not difficult to check that this is multiplicative over connected components
of F . Indeed, each term with fixed V ′

0, V
′
1 is multiplicative, and the choice of which

vertices to put in V ′
0, V

′
1 from each of the components is independent. Therefore, we

may assume that F is connected.
If F consists of a single edge {i, j}, then the above expression gives

E[inj(F,GT )] = T 2

(∫

�2
W (x, y) dx dy + 2

∫

�

S(x) dx + 2I

)

= T 2t (F,W),

as required. Otherwise, F has no isolated edges, so V0 is empty (and so is J ′′). We
then have
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E[inj(F,GT )] = T |V | ∑

V ′
1⊆V1

∫

�V ′

∏

{i, j}∈E(F |V ′ )

W (xi , x j )
∏

i∈V2

(S(xi ))
dU (i)

= T |V |
∫

�V2

∏

{i, j}∈E(FV2 )

W (xi , x j ) ·

∏

i∈V2

⎛

⎝

∑

Ti⊆NV1 (i)

∫

�Ti

∏

j∈Ti
W (xi , x j )S(xi )

|NV1 (i)|−|Ti |
⎞

⎠

= T |V |
∫

�V2

∏

{i, j}∈E(FV2 )

W (xi , x j ) ·

∏

i∈V2

(∫

�

W (xi , x j )dx j + S(xi )

)|NV1 (i)|

= T |V |t (F,W).

This completes the proof of the first statement if� has finite measure. The general σ -
finite case follows by monotone convergence, with both sides being possibly infinite
in the limit.

To prove the second statement we consider the components of F separately. Fur-
thermore, given a component F ′ of F , we use the fact that ‖W‖∞ ≤ 1 to delete edges
from F ′ until F ′ becomes a tree. At this point, we can remove the leaves of the tree
at the cost of a factor D for each leaf, getting a new tree with less edges. We continue
until we are left with a single edge, at which point we bound the remaining integral
by ‖W‖1. �

4 Tightness

The goal of this section is to establish various equivalent notions of tightness, and
to then use tightness to relate convergence in the kernel and the weak kernel metric.
In particular, we will relate the convergence of a sequence of graphexes in the weak
kernelmetric δ� to convergence of a “regularized” sequence in the kernelmetric δ2→2,
where the regularized sequence is obtained from the original one by discarding the
part of the space which has large marginals; see Proposition 4.6 below. In contrast to
the last section, in this section we restrict ourselves to unsigned graphexes since we
believe that the obvious generalization of the notion of tightness to signed graphexes
will not be the right notion of tightness for the metric δ�; see Remark 4.8 at the end
of this section.

We start by establishing the equivalence of various formulations of tightness.

Theorem 4.1 Given a set of graphexes S, the following are equivalent:
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(1) S is tight. In other words, for every ε > 0, there exist C and D such that for every
graphex W ∈ S, W = (W, S, I,�) with � = (�,F , μ), there exists �ε ⊆ �

such that μ(�ε) ≤ ε and W
′ = W|�\�ε

has ‖W′‖1 ≤ C, ‖DW′ ‖∞ ≤ D.
(2) For every ε > 0, there exists a C such that for every graphex W ∈ S,W =

(W, S, I,�), there exists �ε ⊆ � such that μ(�ε) ≤ ε and W
′ = W|�\�ε

has
‖W′‖1 ≤ C.

(3) For every ε, there is a D and C such that for any W ∈ S, taking �≤D to be the
set of points with DW(x) ≤ D, μ(� \ �≤D) ≤ ε, and ‖W|�≤D‖1 ≤ C.

(4) For every T > 0, the set of random unlabeled finite graphs GT (W) withW ∈ S
is tight.

(5) There exists T > 0 such that the set of random unlabeled finite graphs GT (W)

withW ∈ S is tight.

Corollary 4.2 Let S be a set of graphexes.

(1) If there exists a C < ∞ such that ‖W‖1 ≤ C for all W ∈ S, then S is tight.
(2) If S is tight and has uniformly bounded marginals, then there exist C, D < ∞

such that S is (C, D)-bounded.

Proof (1) Taking �ε = ∅ for any ε, the set S clearly satisfies condition (2) from the
theorem.

(2)Choose ε arbitrarily, say ε = 1, and letC ′, D′ be such that (3) fromTheorem4.1
holds. Furthermore, let D be such that themarginals of all graphexes inS are bounded
by D. Then

‖W‖1 ≤ ‖W|�≤D′ ‖1 + 2
∫

W (x, y)1DW(x)>D′ dμ(x)dμ(y) + 2
∫

DW>D′
S(x) dμ(x)

≤ C ′ + 2
∫

DW>D′
DW(x) dμ(x) ≤ C ′ + 2Dε = C ′ + 2D =: C,

proving the claim. �

In order to prove Theorem 4.1, we will use the following lemma.

Lemma 4.3 The probability that GT (W) has more than KT 2‖W‖1 edges is at most

T 2‖W‖1/2 + T 3‖DW‖22
(K − 1/2)2T 4‖W‖21

,

and the probability that it has less than T 2‖W‖1/4 edges is at most

16(T 2‖W‖1/2 + T 3‖DW‖22)
T 4‖W‖21

Proof Let XT be the number of edges of GT (W). By Proposition 3.24, XT has
expectation T 2‖W‖1/2. To calculate the variance, note that we have
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X2
T = inj(F1,GT )

2
+ inj(F2,GT )

4
+ inj(F3,GT ),

where F1 consists of a single edge, F2 consists of a pair of disjoint edges, and F3 con-
sists of two edges joined at one vertex. Therefore, we can again use Proposition 3.24
to conclude that

Var(XT ) = E[X2
T ] − E[XT ]2

= T 2‖W‖1
2

+ T 4‖W1‖2
4

+ T 3‖DW‖22 −
(

T 2‖W‖1
2

)2

= T 2‖W‖1
2

+ T 3‖DW‖22.

The bounds on the probabilities of having too many or too few edges follow from
Chebyshev’s inequality. �

Proof (Theorem 4.1) (1) ⇒ (2) is obvious.
(2) ⇒ (1): Suppose S satisfies (2), and let ε > 0. Take C from property (2) for

ε/2, and take D = 2C/ε. For each W ∈ S with underlying space �, there is a set
�′ ⊆ � with μ(� \ �′) ≤ ε/2 so that the restriction W

′ = W|� has ‖W′‖1 ≤ C .
Suppose μ(x ∈ �′ : DW′(x) > D) > ε/2. Then we would have ‖W ′‖1 > Dε/2 =
C , a contradiction. Therefore, removing the set of points with DW′(x) > D, we have
removed points with total measure at most ε, and the restricted graphex is (C, D)-
bounded.

(3) ⇒ (1) is obvious.
(1) ⇒ (4): Fix T > 0 and ε > 0. Take ε′ such that e−T ε′

> 1 − ε/2, and takeC, D
for S from the definition of tightness. Given W ∈ S, there exists �ε′ ⊆ � such that
μ(�ε′) ≤ ε′ andW′ = W|�\�ε′ has ‖W′‖1 ≤ C , ‖DW′ ‖∞ ≤ D. The probability that
GT (W) samples a point in� \ �ε′ during the Poisson process is at most 1 − e−T ε′

<

ε/2. Conditioned on this not happening, the sample is equivalent to a sample from
GT (W′). For this, we have that ‖DW′ ‖22 ≤ CD; therefore we can take K = K (C, D)

large enough so that the probability that there are more than KT 2C edges inGT (W′)
is at most ε/2 (independently of W′). Therefore, the probability that there are more
than KT 2C edges in GT (W) is at most ε.

(4) ⇒ (5) is obvious.
(5) ⇒ (3): Let ε > 0. First, we show that there exists a D so that for every

W ∈ S, the measure of the set {DW > D} is at most ε. Suppose not. We will show
that this implies that for each M we can find aW ∈ S such with probability at least
1
2 (1 − e−εT/2), the number of edges in GT (W) is at least M . This contradicts the
assumption that the set of random graphs GT (W) is tight.

Assume thus that for every D, there exists a W = W(D) ∈ S such that the set
{DW > D} has measure larger than ε. Take GT (W) and randomly color the vertices
red and blue. With probability at least 1 − e−εT/2, there exists at least one blue
point whose feature label falls into the set {DW > D}. Conditioned on this, taking
a blue point with feature label x ∈ {DW > D}, the number of red neighbors it has
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is a Poisson random variable with mean T DW(x)/2. Given M < ∞, choose D =
D(M, T ) in such a way that a Poisson random variable with mean at least T D/2 has
probability at least 1/2 of being greater than M . As a consequence, given T and an
arbitrary largeM andwe can find a D andW = W(D) ∈ S such that with probability
at least 1

2 (1 − e−εT/2), the number of edges in GT (W) is at least M , contradicting
tightness.

We claim that ‖W|�≤D‖1 can’t be arbitrarily large. Set W′ = W|�≤D and assume
that ‖W′‖1 = C . Then the probability that GT (W′) has less than T 2C/4 edges is at
most

8 + 16T D

T 2C
.

IfC is large enough, this is less than 1/2. But then for large enoughC with probability
at least 1/2, the number of edges is at least T 2C/4, contradicting the assumption of
tightness. This means that C can’t be arbitrarily large.

This completes the proof of the theorem. �

Remark 4.4 It will sometimes be useful to transform a graphexW over an arbitrary
σ -finite space � = (�,F , μ) into a graphex over an atomless space by mapping �

to the product space � × [0, 1] equipped with the measure μ × λ, with λ denoting
the Lebesgue measure, and mapping W to �(W) = W

ϕ , with ϕ : � × [0, 1] → �

denoting the coordinate projection onto �. It is easy to see that δ�(W,�(W)) = 0,
which together with the triangle inequality implies that the map � does not change
distances between graphons. It is also easy to check that ifS is a tight set of graphexes,
then the set of graphexes obtained by mapping each graphex W ∈ S to the corre-
sponding atomless graphex �(W) is tight as well.

Let us analyze when graphexes converge under δ�. To this end, we first prove a
few lemmas.

Lemma 4.5 GivenC, D, M ∈ (0,∞), there exists a function f : [0,∞)2 → [0,∞)

such that f (x) → 0 as x → 0 and such that the following holds

(1) LetW be a graphex over (�,F , μ), and let μ̃ be a second measure over (�,F)

such that μ − r ≤ μ̃ ≤ μ. If ˜W is obtained fromW by replacing μ with μ̃ then

μ(DW > D + r) − r ≤ μ̃(D
˜W

> D) ≤ μ(DW > D)

for all D > 0.
(2) Let W1 and W2 be graphexes with bounded marginals, defined over the same

space (�,F , μ). Suppose that d2→2(W1,W2) < ε. Then

μ({|DW1 − DW2 | ≥ ε}) < ε2.

(3) Let ˜W1 and ˜W2 be graphexeswith boundedmarginals, defined over (�1,F1, μ̃1)

and (�2,F2, μ̃2). If δ2→2(˜W1, ˜W2) < ε and D > ε, then
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μ̃1({D˜W1
> D + ε}) − ε2 ≤ μ̃2({D˜W2

> D}) ≤ μ̃1({D˜W1
> D − ε}) + ε2.

(4) For i = 1, 2, let Wi be graphexes defined over (�i ,Fi , μi ), and let Wi,≤D be
the restriction of Wi to the subset {DWi ≤ D} of �i . Assume that ε + ε2 <

D, μ1({DW1 > D}) + μ2({DW2 > D}) ≤ M, ‖W2,≤D‖1 ≤ C, δ�(W1,W2) ≤
ε, and μ2({D − ε − ε2 < DW2 ≤ D + ε + ε2}) ≤ δ. Then

δ2→2(W1,≤D,W2,≤D) ≤ f (ε, δ).

Proof (1) The assumption μ − r ≤ μ̃ ≤ μ clearly implies that for all x ∈ �,

DW(x) − r ≤ D
˜W
(x) ≤ DW(x).

As a consequence,

μ(DW > D + r) − r ≤ μ̃(DW > D + r) ≤ μ̃(D
˜W

> D)

and
μ̃(D

˜W
> D) ≤ μ̃(DW > D) ≤ μ(DW > D).

(2) By the definition of d2→2, ‖DW1 − DW2‖22 < ε4, which clearly implies that

μ({|DW1 − DW2 | ≥ ε}) < ε2.

(3) For i = 1, 2, let (˜�′
i ,

˜F ′
i , μ̃

′
i ) be a measure space obtained from (�i ,Fi , μ̃i )

by appending some space of infinite total measure, and let ˜W′
i be the trivial extension

of ˜Wi onto (˜�′
i ,

˜F ′
i , μ̃

′
i ). Furthermore, let μ′ be a coupling of μ̃′

1 and μ̃′
2 such that

d2→2(W
′
1,W

′
2) ≤ ε, where W′

i = (˜W′
i )

πi ,μ
′
for i = 1, 2. Then by (2),

μ̃1({D˜W1
> D + ε}) = μ̃′

1({D˜W
′
1
> D + ε})

= μ′({DW
′
1
> D + ε})

≤ μ′({DW
′
2
> D}) + μ′({|DW

′
1
− DW

′
2
| ≥ ε})

≤ μ′({DW
′
2
> D}) + ε2

= μ̃2({DW2 > D}) + ε2,

proving the first bound in (3). The second is proved analogously.
(4) For i = 1, 2, let W′

i be the trivial extension of Wi to a space (�′
i ,F ′

i , μ
′
i )

obtained from (�i ,Fi , μi ) by appending some σ -finite space of infinite total mass.
Recalling Lemma 3.14, we can use the assumption δ�(W1,W2) < ε to infer the exis-
tence of a measure μ′ over �′

1 × �′
2 such that d2→2((W

′
1)

π1,μ
′
, (W′

2)
π2,μ

′
) < ε and

μ′
i − ε2 ≤ (μ′)πi ≤ μ′

i , i = 1, 2. For i = 1, 2, define μ̃i = (μ′)πi ,
U

′
i = (W′

i )
πi ,μ

′
, and �′

i,≤D = {x ∈ �′
i : DW

′
i
(x) ≤ D}. Then W

′
1,≤D := (W′

1)|�′
1,≤D

andW′
2,≤D := (W′

2)|�′
2,≤D

are extensions ofW1,≤D andW2,≤D by spaces of infinite
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measure. Let μ′
1,D and μ′

2,D be the marginals of the measure μ′|�′
1,≤D×�′

2,≤D
. We then

have thatμ′
1,D ≤ μ′

1. Observing that DW
′
i
(πi (x)) − ε2 ≤ DU

′
i
(x) ≤ DW

′
i
(πi (x)), we

furthermore have that

0 ≤ (μ′
1 − μ′

1,D)(�′
1,≤D) ≤ ε2 + (μ̃′

1 − μ′
1,D)(�′

1,≤D)

= ε2 + μ′(π−1
1 ({DW

′
1
≤ D}) × π−1

2 ({DW
′
2
> D}))

≤ ε2 + μ′({DU
′
1
≤ D} ∩ {DU

′
2
> D − ε2})

≤ 2ε2 + μ′({D − ε2 < DU
′
2
≤ D + ε})

≤ 2ε2 + μ2({D − ε2 < DW2 ≤ D + ε + ε2}) ≤ 2ε2 + δ =:˜δ.

Here we used the fact that d2→2(U
′
1,U

′
2) < ε, which meant that we could apply (2).

Similarly, μ′
2,D ≤ μ′

2 and

0 ≤ (μ′
2 − μ′

2,D)(˜�′
2,≤D)

≤ ε2 + μ′({DU
′
1
> D − ε2} ∩ {DU

′
2
≤ D})

≤ 2ε2 + μ′({D − ε − ε2 < DU
′
2
≤ D})

≤ 2ε2 + μ2({D − ε − ε2 < DW2 ≤ D + ε2}) ≤˜δ.

Next we claim that we may assume without loss of generality that

(μ′
1 − μ′

1,D)(�1,≤D) = (μ′
2 − μ′

2,D)(�′
2,≤D) ≤˜δ.

Indeed, we can trivially extend either W′
1 or W′

2 by appending a space of total
measure δ′ ≤˜δ (e.g., the interval [0, δ′)), setting μ′ to zero on the additional set.
This corresponds to trivially extending both U

′
1 and U

′
2 by either [0, δ′] × �′

2 or
�′

1 × [0, δ′]. Since μ′ = 0 on the extension, this does not change d2→2(U
′
1,U

′
2).

Note also that

μ′(�′
1 × �′

2 \ �′
1,≤D × �′

2,≤D) ≤ μ′({DW
′
1
> D} × �′

2) + μ′(�′
1 × {DW

′
2
> D})

≤ μ1({DW1 > D}) + μ2({DW2 > D}) ≤ M.

If U′′
1 and U

′′
2 are the restrictions of U′

1 and U
′
2 to �′

1,≤D × �′
2,≤D , and μ′′ is the

restriction of μ′, then by Lemma 3.13,

‖U′′
1 − U

′′
2‖2→2,μ′′ ≤ ε,

‖DU
′′
1
− DU

′′
2
‖2,μ′′ ≤ ε2 + √

Mε,

and
|‖U′′

1‖1 − ‖U′′
2‖1| ≤ ε3 + 2

√
Mε2 + Mε.



Identifiability for Graphexes and the Weak Kernel Metric 83

Next, we increase μ′′ to a measure μ on �′
1,≤D × �′

2,≤D by coupling μ′
1 − μ′

1,D

and μ′
2 − μ′

2,D arbitrarily. Then μ has marginals μ′
1|�′

1,≤D
and μ′

2|�′
2,≤D

and μ −˜δ ≤
μ′′ ≤ μ. If we apply Lemma 3.16, we then obtain a coupling of W′

1,≤D and W
′
2,≤D

such that the pullbacks U′′′
1 and U

′′′
2 obey the bounds

‖U′′′
1 − U

′′′
2 ‖2→2,μ ≤ ε + 2

√

2D˜δ,

and
|‖U′′′

1 ‖1 − ‖U′′′
2 ‖1| ≤ ε3 + 2

√
Mε2 + Mε + 2D˜δ.

Setting
˜C = C + ε3 + 2

√
Mε2 + Mε + 2D˜δ,

we then have max{‖U′′′
1 ‖1, ‖U′′′

2 ‖1} ≤ ˜C and hence

‖DU
′′′
1

− DU
′′′
2
‖22,μ ≤

(

ε2 + √
Mε

)2 + 4˜C˜δ + D2
˜δ.

This completes the proof of (4). �

Suppose (Wn)
∞
n=1 and W are graphexes over the σ -finite measure spaces �n =

(�n,Fn, μn) and � = (�,F , μ). Define, for any D > 0,

�n,≤D = {x ∈ �n : DWn (x) ≤ D} and �n,>D = {x ∈ �n : DWn (x) > D}.

Recall that we have μn(�n,>D) < ∞. LetWn,≤D consist ofWn restricted to �n,≤D .
Define �≤D , �>D , and W≤D similarly. We then have the following.

Proposition 4.6 Given a sequence of graphexes Wn and a graphex W over the σ -
finite measure spaces �n = (�n,Fn, μn) and � = (�,F , μ), respectively, define
Wn,≤D and W≤D as above. Then the following are equivalent.

(1) For all D > 0 such that μ({DW = D}) = 0, we have δ2→2(Wn,≤D,W≤D) → 0
and μn(�n,>D) → μ(�>D).

(2) The sequence is tight, and for all D > 0 such that μ({DW = D}) = 0, we have
δ2→2(Wn,≤D,W≤D) → 0.

(3) For every ε > 0 and n ∈ N there exist subsets �n,ε ⊆ �n and a subset �ε ⊆
� with μn(�n \ �n,ε) ≤ ε and μ(� \ �ε) ≤ ε, such that δ2→2(W

′
n,W

′) → 0,
where W′

n = (Wn)|�n ,ε and W
′ = W|�ε

.
(4) δ�(Wn,W) → 0.

Proof (1) ⇒ (2): We have to prove tightness. For any ε, there exists a D such that
μ(�>D) ≤ ε/2. Assuming without loss of generality that D is chosen in such a way
that μ({DW = D}) = 0, we further have μn(�n,>D) → μ(�>D). This means that
for all but a finite set of n, μn(�n,>D) ≤ ε. By increasing D, we can guarantee this
for all n. Since δ2→2 convergence implies in particular that ‖Wn,≤D‖1 → ‖W≤D‖1,
we have that ‖Wn,≤D‖1 is bounded. This proves property 3 from Theorem 4.1.
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(2) clearly implies (3), because tightness implies that for any ε, there exists a D
such that the measure of points with degree greater than D is at most ε, and we can
increase D to make sure that μ({DW = D}) = 0.

To show that (3) implies (4), we note that the conditions in (3) imply that
lim supn→∞ δ�(Wn,W) ≤ √

ε. Since ε is arbitrary, this gives (4).
It remains to show that (4) implies (1). The assumption δ�(Wn,W) → 0 implies

that for all ε > 0 there exists an n0 such that for n ≥ n0, δ�(Wn,W) < ε. Recalling
Definition 2.14 and combining statements (1) and (3) of the previous lemma, this
implies that for D > ε + ε2 > 0 and n ≥ n0,

μ(DW > D + ε + ε2) − 2ε2 ≤ μn(DWn > D) ≤ μ(DW > D − ε2 − ε) + 2ε2.

By our assumption that μ({DW = D}) = 0, we have that D is a continuity point of
the function x 
→ μ({DW > x}), showing that the upper and lower bound converge
to μ({DW > D}) as ε → 0. This shows that μn(DWn > D) → μ({DW > D}) as
n → ∞.

Next we define

M = sup
n

μn
(

�n,>D
) + μ(�>D) and δ(ε) = μ({D − ε − ε2 < DW ≤ D + ε + ε2}).

Note that M is finite by the fact that μn(�n,>D) → μ(�>D), and that δ(ε) → 0 as
ε → 0 by the fact that μ({DW = D}) = 0. We now apply the previous lemma (with
W1 replaced by Wn and W2 replaced by W) to conclude the proof. �

The following proposition is an easy corollary of Proposition 4.6.

Proposition 4.7 Given two graphexes W1,W2, let Wi,≤D be the graphex Wi

restricted to �i,≤D = {x ∈ �i : DWi (x) ≤ D}. Then the following are equivalent.

(1) For any D > 0,

μ1(�1 \ �1,≤D) = μ2(�2 \ �2,≤D) and δ2→2(W1,≤D,W2,≤D) = 0.

(2) For any D > 0, δ2→2(W1,≤D,W2,≤D) = 0.
(3) For any ε > 0, there exist subsets�1,ε ⊆ �1,�2,ε ⊆ �2 withμi (�i \ �i,ε) ≤ ε,

such that ifW′
i is the restriction to �i \ �i,ε, then δ2→2(W

′
1,W

′
2) ≤ ε.

(4) δ�(W1,W2) = 0.

It is easy to see that this is an equivalence relation.

Proof Observing that the functions fi : R+ → R+ defined by D 
→ μi (�i \ �i,≤D)

for i = 1, 2 are equal if and only if f1(D) = f2(D) for all continuity points of f1,
this follows by applying Proposition 4.6 withW = W1 and each Wn = W2. �

Remark 4.8 It is not a priori clear how to generalize the notion of tightness to
signed graphexes, even if we restrict ourselves to the case where the graphon parts
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are uniformly bounded, for example by taking graphons that take values in [−1, 1].
Indeed, recalling Lemma 3.12 and the role it played in showing that δ� is finite for
signed graphexes with bounded graphon part, one might want to modify Defini-
tion 2.20 for such graphexes by replacing the notion of D-bounded marginals by that
of D-bounded absolute marginals, since this would, in particular, guarantee that a
finite set of signed graphexes with graphon parts in [−1, 1] is tight. It would also
make the generalization of several of our results straightforward, since this definition
just reduces the notion of tightness of a set of graphexes S to the set of graphexes
S ′ = {|W| : W ∈ S}.

The following example shows that this straightforward generalization of Defini-
tion 2.20 to signed graphexes does not give a characterization of precompact sets
with respect to the metric δ�, as it did for unsigned graphexes; see Theorem 2.21.

Let Wn be equal to n−3/4 on [0, 1) × [1, n + 1) ∪ [1, n + 1) × [0, 1), equal to
−n−3/4 on [0, 1) × [n + 1, 2n + 2) ∪ [n + 1, 2n + 1) × [0, 1), and zero everywhere
else onR2+. DefineWn to be the graphex with graphon partWn and zero star and dust
part. Then DWn is equal to n

−3/4 on [1, n + 1), equal to −n−3/4 on [n + 1, 2n + 1),
and 0 everywhere else. Finally, ρ(Wn) = 0 for all n. Since ‖Wn‖2 = 2n−1/2 and
‖DWn‖2 = √

2n−1/2,Wn tends to the zero graphex in the metric δ2→2 and hence also
in δ�. But‖Wn‖1 = ‖W‖1 = 4n1/4 → ∞, a factwhich can’t be changedby removing
just a part of measure ε from the underlying space, R+. This shows that with the
obvious generalization of Definition 2.20 to signed graphexes not all sequences of
signed graphexes that are convergent in δ2→2 or δ� are tight.

We therefore believe that a complete theory of signed graphexes, even in the sim-
plified case where all graphons take values in [−1, 1], requires either a modification
of the metric, or modification of the notion of tightness. We leave this problem as an
open research problem.

5 Regularity Lemma and Compactness

In this section, we will prove a regularity lemma (Theorem 5.3 below), and use it to
prove Theorem 2.21, which in turn is an important ingredient in our proof that GP-
convergence and δ�-convergence are equivalent. To state the regularity lemma, we
recall that a finite subspace partition of a measure space� = (�,F , μ) is a partition
of a measurable subset of � into finitely many measurable subsets of finite measure.
Throughout this section, wewill use the notationP = (�P ,P) for a finite subspace
partition, with �P denoting the subset of �, and P = (P1, . . . , Pm) denoting the
partition of �P . We will also need the notion of refinement.

Definition 5.1 Given two subspace partitions P = (�P ,P) and Q = (�Q,Q),
we say that P refines Q if �Q ⊆ �P and P is a refinement of Q ∪ {�P \ �Q}.

Given an integrable, signedgraphexW, a subspace partitionP naturally generates
a step function WP by “averaging”. The precise definition is as follows.
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Definition 5.2 Given a signed graphex W = (W, S, I,�) and a finite
subspace partition P = (�P ,P), take WP to be the signed graphex WP =
(WP , SP , IP ,�) defined by

IP = 1

2

∫

(�\�P )×(�\�P )

W (x, y) dμ(x) dμ(y) +
∫

�\�P

S(x) dμ(x) + I,

SP (x) = 1

μ(Pi )

∫

Pi

(

S(x) +
∫

�\�P

W (x, y) dμ(y)

)

dμ(x) if x ∈ Pi

for some i ∈ {1, . . . , k}, and 0 everywhere else, and

WP (x, y) = 1

μ(Pi )μ(Pj )

∫

Pi×Pj

W (x ′, y′) dμ(x ′) dμ(y′) if (x, y) ∈ Pi × Pj

for some i, j ∈ {1, . . . , k} and WP (x, y) = 0 everywhere else.

Note that with this definition, for x ∈ Pi ,

DWP (x) = 1

μ(Pi )

∫

Pi

DW(x) dμ(x).

We also have ρ(WP ) = ρ(W), as well as ‖WP‖1 ≤ ‖W‖1, ‖DWP ‖∞ ≤ ‖DW‖∞,
and ‖WP ‖∞ ≤ ‖W‖∞.

Theorem 5.3 For any B,C, D < ∞, and ε > 0, there exists an M(ε) and N (ε)

such that for any signed graphexW that is (B,C, D)-bounded there exists a partition
(�P ,P) with P = {P1, . . . , Pm}, m ≤ M(ε), and μ(�P ) ≤ N (ε) such that

d�(W,WP ) ≤ ε.

We can take

M(ε) = 2(2BC+CD)/ε2 and N (ε) = (4C3D + 8BC2D)/ε4.

Given any finite subspace partition Q = (�Q ,Q), we can require the subspace
partition P = (�P ,P) to be a refinement of Q. In this case, the bound on the
number of parts is |Q|M(ε) and the bound on μ(�P ) is μ(�Q) + N (ε).

Proof Motivated by the original proof of theweak regularity lemma (see in particular
the proof of Theorem 12 in [14], which to our knowledge is the first place where a
weak regularity lemma for functionsW : [0, 1]2 → Rwas established), we construct
a sequence of partitions P0,P1, . . . ,P� such that eventually, we must have that
d�(W,WP �

) ≤ ε. We start with the trivial partition P0 = (∅,∅) (so that WP 0 is
the graphex with zero graphon and star part, and dust part ρ(W)), and then construct
a sequence of refinements P0,P1, . . . ,P�.
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In a preliminary step, we claim that for any partition P ,

〈W − WP ,WP 〉 =
∫

�×�

(W (x, y) − WP (x, y))WP (x, y) dx dy = 0

and

〈DW − DWP , DWP 〉 =
∫

�

(DW(x) − DWP (x))DWP (x) dx = 0

This follows from the fact that for any pair of finite parts Pi , Pj , WP and DWP are
constant, and the integral of W − WP and DW − DWP is zero. Since WP is zero
between pairs of parts where at least one is non-finite, and DWP is zero on non-finite
parts, this implies the claim. Therefore, we have

‖W‖22 = ‖WP ‖22 + ‖W − WP ‖22
and

‖DW‖22 = ‖DWP ‖22 + ‖DW − DWP ‖22.

If we have a finite subspace partitionP = (�P ,P) and a refinementP ′, it is then
easy to check that (WP ′)P = WP ; therefore, the same properties hold for WP

and WP ′ .
Supposenow thatwehave constructed a sequenceof refinementsP0,P1, . . . ,Pi

such that d�(W,WP j ) > ε for all j ≤ i . Then we in particular have that
d�(W,WP i ) > ε, which implies that ‖DW − DWP i

‖� > ε or ‖W − WP i ‖� > ε.
If the former holds, then there exists a set S ⊆ � (of finite measure) such that

1√
μ(S)

∣

∣

∣

∣

∫

S
DW(x) dμ(x) −

∫

S
DWP i

(x) dμ(x)

∣

∣

∣

∣

= A > ε. (10)

LetPi+1 = (�P i+1 ,Pi+1) with �P i+1 = �P i ∪ S and let Pi+1 be the partition that
refines each part of Pi by the intersection with S; in particular, this divides each part
into at most 2 parts, and μ(�P i+1) ≤ μ(�P i ) + μ(S). We also have

1√
μ(S)

∣

∣

∣

∣

∫

S
DWP i+1

(x) dμ(x) −
∫

S
DWP i

(x) dμ(x)

∣

∣

∣

∣

= A.

Therefore,

‖DWP i+1
− DWP i

‖22 ≥
〈

DWP i+1
− DWP i

,
χS√
μ(S)

〉2

= A2.

Overall, this implies that we have

‖DWP i
‖22 + ε2 ≤ ‖DWP i+1

‖22 ≤ ‖DW‖22.
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We also have
‖WP i ‖22 ≤ ‖WP i+1‖22 ≤ ‖W‖22.

If ‖W − WP i ‖� > ε, then there exist sets S, T ⊆ � (of finite measure) such that

1√
μ(S)μ(T )

∣

∣

∣

∣

∫

S×T
W (x, y) dμ(x) dμ(y) −

∫

S×T
WP i (x, y) dμ(x) dμ(y)

∣

∣

∣

∣

> ε.

(11)
LetPi+1 = (�P i+1 ,Pi+1) with �P i+1 = �P ∪ S ∪ T and let Pi+1 be the partition
that refines each part ofPi by the intersection with S and T , in particular, this refines
each part into at most 4 parts, andμ(�P i+1) ≤ μ(�P i ) + μ(S) + μ(T ). Proceeding
as before, we have

‖WP i ‖22 + ε2 ≤ ‖WP i+1‖22 ≤ ‖W‖22,

and furthermore,
‖DWP i

‖2 ≤ ‖DWP i+1
‖2 ≤ ‖DW‖2.

The first step can occur at most ‖DW‖2/ε2 times, and the second at most ‖W‖22/ε2
times. Since in the first step, the number of partition classes at most doubles, and
in the second it goes up by at most a factor of four, this proves that there exists a
partitionP with at most

2(2‖W‖22+‖DW‖22)/ε2 ≤ 2(2BC+CD)/ε2 = M(ε)

classes such that d�(W,WP ) ≤ ε.
To prove that μ(�P ) ≤ N (ε), we claim that in each step, (10) implies that

μ(S) ≤ 4C2

ε2
,

and (11) implies that

μ(S), μ(T ) ≤ 4CD

ε2
.

Indeed, for any S ⊆ �,

∣

∣

∣

∣

∫

S
DW(x) − DWPi

(x)

∣

∣

∣

∣

≤ 2C.

This implies that if

1√
μ(S)

∣

∣

∣

∣

∫

S
DW(x) dμ(x) −

∫

S
DWP i

(x) dμ(x)

∣

∣

∣

∣

≥ ε
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then

μ(S) ≤ 4C2

ε2
.

On the other hand,

∣

∣

∣

∣

∫

S×T
W − WP

∣

∣

∣

∣

≤ 2C and

∣

∣

∣

∣

∫

S×T
W − WP

∣

∣

∣

∣

≤ 2Dμ(T ).

Therefore,
∣

∣

∣

∣

∫

S×T
W − WP

∣

∣

∣

∣

≤ 2
√

CDμ(T ).

This implies that if
1√

μ(S)μ(T )

∣

∣

∣

∣

∫

S×T
W − WP i

∣

∣

∣

∣

≥ ε

then

μ(S) ≤ 4CD

ε2
.

The bound for μ(T ) follows similarly.
Since first step can occur at most ‖DW‖2/ε2 times, and the second at most

‖W‖22/ε2 times, this shows that

μ(�P ) ≤ 4C2

ε2

‖DW‖22
ε2

+ 2
4CD

ε2

‖W‖22
ε2

≤ 4

ε4

(

C3D + 2BC2D
)

= N (ε).

The second statement follows by choosing P0 = Q. �

Remark 5.4 With the help of Proposition 3.19, Theorem 5.3 can immediately be
transformed into a similar statement for the kernel distance d2→2(W,WP ), provided
N (ε) and M(ε) are replaced by bounds of the form M(ε) = 2c/ε

8
and N (ε) = d/ε16

where c and d are constants depending on B, C and D.

We would like to prove a version of this “regularity lemma” for d2→2 where the
parts have equal size. We first show some preliminary lemmas.

Lemma 5.5 Let W1,W2 be two graphexes on the same space �, and let P be a
finite subspace partition of �. Then

‖W1,P − W2,P ‖2→2 ≤ ‖W1 − W2‖2→2

and
‖DW1,P − DW2,P ‖2 ≤ ‖DW1 − DW2‖2.
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Proof Note that

‖W1,P − W2,P ‖2→2 = sup
f,g∈L2(�)

‖ f ‖2=‖g‖2=1

f ◦ (W1,P − W2,P ) ◦ g

= sup
f,g∈L2(�P )

‖ f ‖2=‖g‖2=1

f ◦ (W1,P − W2,P ) ◦ g.

If we let fP and gP consist of the average values of f and g on each part of P and
zero outside �P , then

f ◦ (W1,P − W2,P ) ◦ g = fP ◦ (W1,P − W2,P ) ◦ gP = fP ◦ (W1 − W2) ◦ gP ,

which implies the first claim. The second claim follows similarly. �

Corollary 5.6 Suppose that W is a graphex, and that U is a step graphex over the
same space as W. If P = (�P ,P) is a finite subspace partition such that U is
constant on each part of P and zero outside �P , then

‖WP − W‖2→2 ≤ 2‖U − W‖2→2

and
‖DWP − DW‖2 ≤ 2‖DU − DW‖2.

Proof Note that UP = U. We have

‖WP − W‖2→2 ≤ ‖WP −U‖2→2 + ‖U − W‖2→2

= ‖WP −UP ‖2→2 + ‖U − W‖2→2 ≤ 2‖U − W‖2→2.

Similarly,

‖DWP − DW‖2 ≤ ‖DWP − DU‖2 + ‖DU − DW‖2
= ‖DWP − DUP ‖2 + ‖DU − DW‖2 ≤ 2‖DU − DW‖2.

�

Theorem 5.7 Given B, C, D, and ε > 0, there exists ρ0 = ρ0(ε, B,C, D) > 0 and
N0 = N0(ε, B,C, D) such that for any ρ < ρ0, any m ≥ N0/ρ, and any (B,C, D)-
bounded signed graphex W on an atomless space with infinite measure, there
exists a subspace partition P = (�P ,P) with exactly m parts of size ρ such that
d2→2(W,WP ) ≤ ε. If P0 = (�P 0 ,P0) is an arbitrary finite subspace partition,
we can require P to refine P0, as long as each part of P0 is divisible by ρ (and
increasing the bound on N0(ε) and decreasing ρ0 appropriately depending on |P0|
and μ(�P 0)).
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Proof Apply Theorem 5.3 and Proposition 3.19 to obtain a subspace partition P ′
with at most M(ε/3) parts and size at most N (ε/3) such that d2→2(W,WP ′) ≤ ε/3.
We first construct a refinementQ = (�Q ,Q) as follows. Add a part from � \ �P ′

so that the total measure of �Q is equal to mρ (this will require m ≥ N (ε/3)/ρ),
and divide each part of P ′ ∪ {�Q \ �P ′ } into parts of size ρ, with perhaps one part
remaining of smaller size. We then defineP by combining the parts ofQ that have
size smaller than ρ, including the part added from � \ �P ′ , into a single set �′, and
then dividing �′ into parts of size ρ (and keeping the remaining parts of Q). Then
WQ and WP differ only on �′, which has size at most (M(ε/3) + 1)ρ, implying
that

‖WQ − WP ‖22→2 ≤ ‖WQ − WP ‖22
≤ 2

∫

�×�′
(WQ − WP )2 ≤ 2

∫

�×�′
B(|WQ | + |WP |)

≤ 4B
∫

�′
D|W | ≤ 4(M(ε/3) + 1)ρBD.

We also have

‖DWQ − DWP ‖2 ≤ 2

√

∫

�′
D|W|(x)2 dμ(x) ≤ 2

√

(M(ε/3) + 1)ρD.

Furthermore, we know thatWP ′ is constant on each part ofQ. Therefore, applying
Corollary 5.6, we have

‖W − WQ‖2→2 ≤ 2‖W − WP ′ ‖2→2 ≤ 2ε/3

and
‖DW − DWQ ‖2 ≤ 2‖DW − DWP ′ ‖2 ≤ 2ε2/9.

Therefore, if ρ is small enough, then

‖W − WP ‖2→2 ≤ ε

and
‖DW − DWP ‖2 ≤ ε2.

Wecan add parts of zeromeasure and the above argument still works. If wewantP to
be a refinement of a starting partitionP0, we apply Theorem5.3 and Proposition 3.19
and make sure to combine the leftover parts so that they are within the same part of
P0, this can be done since each part of P0 is divisible by ρ. �

We close this section by proving Theorem 2.21. To this end, we will first establish
two lemmas.
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Lemma 5.8 Let S be a set of signed graphexes over atomless spaces of infinite
measure such that the following condition holds:

(a) For every ε > 0, there exists B,C, D such that for anyW = (W, S, I, (�,F , μ))

∈ S, taking �≤D to be the set of points with D|W|(x) ≤ D, we have that
μ(� \ �≤D) ≤ ε, ‖W |�≤D‖∞ ≤ B, and ‖W|�≤D‖1 ≤ C.

Then there exist strictly increasing sequences of integers ak ≥ 2k and bk ≥ k
and sequences of positive real numbers Bk, Ck, and Dk such that the follow-
ing holds. For any graphex W ∈ S, W = (W, S, I,�) with � = (�,F , μ), there
exists a sequence of subsets Pk,0 ⊆ � and subspace partitions Pk = (�P k ,Pk),
Pk = {Pk,1, . . . , Pk,mk } with mk = 2ak+bk , such that for all k, �P k is disjoint from
Pk,0 and

(1) Pk+1,0 ⊆ Pk,0 and μ(Pk,0) = 2−2k ,
(2) Wk = W|�\Pk,0 is (Bk,Ck, Dk)-bounded,
(3) Pk+1 refines Pk ,
(4) Pk,i for i ≥ 1 has measure 2−ak , and
(5) d2→2(Wk, (Wk)P k ) ≤ 2−k .

Note that by property (3) from Theorem 4.1, every tight set of unsigned graphexes
obeys the condition (a) (with B = 1), showing that the conclusions of the theorem
hold for any tight set S of graphexes over atomless spaces of infinite measure.

Proof Define

Dk = inf{D : for allW ∈ S, μ(� \ �≤D) ≤ 2−2k},

and let Bk = sup
W∈S ‖W |�≤Dk

‖∞ and Ck = sup
W∈S ‖W|�≤Dk

‖1. By the condition
(a) these are finite, and by construction they are monotone non-decreasing functions
of k. Given a graphex, we then first set each P ′

k,0 to be the set of points with degree
greater than Dk . In this way we have each P ′

k+1,0 ⊆ P ′
k,0; however, they may be

strictly smaller than the required size. We therefore extend them one by one, starting
with P0,0, and make sure that we still have each Pk+1,0 ⊆ Pk,0. TakingWk to be the
restrictions, properties (1) and (2) are satisfied.

Next, apply Theorem 5.7 with ε = 1 to obtain N0 and ρ0. Increasing N0 (if
needed) so that it is of the form 2b0 for some nonnegative integer b0, we then
choose a0 such that 2−a0 < ρ0. For any graphex, take P0 according to the theorem
with ρ = 2−a0 . Keep iterating the theorem, in each step applying Theorem 5.7 with
B = Bk , C = Ck , D = Dk , ε = 2−k , and P0 = (�P k−1 ∪ (Pk−1,0

\ Pk,0),Pk ∪ {Pk−1,0 \ Pk,0}), ensuring in each step that ak ≥ max{2k, ak−1 + 1},
2−ak < ρk , and bk > bk−1. �

Lemma 5.9 Every tight sequence of graphexes has a subsequence that is δ�-
convergent. More generally, every sequence of signed graphexes obeying the con-
dition (a) from Lemma 5.8 has a δ�-convergent subsequence. If condition (a) holds
with one or more of the constants B,C, D not depending on ε, then the subsequential
limit inherits the corresponding bound.
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During the proof, we will use the following.

Claim Suppose that W = (W, S, I,�) is a signed graphex, P = (�P ,P) is a
finite subspace partition, andP0 ⊆ P . Let�0 = ⋃

P∈P0
P,P ′ = P \ P0, andP ′ =

(�′
P ′ ,P ′), where �′

P ′ = �P \ �0. Then (WP )|�′ = (W|�′)P ′ .

Proof Note that� \ �P = �′ \ �′
P ′ (since�0 is disjoint from both). First, we have

IP = 1

2

∫

(�\�P )×(�\�P )
W (x, y) dμ(x) dμ(y) +

∫

(�\�P )
S(x) dμ(x) + I

= 1

2

∫

(�′\�′
P ′ )×(�′\�′

P ′ )
W (x, y) dμ(x) dμ(y) +

∫

(�′\�′
P ′ )

S(x) dμ(x) + I = IP ′ .

We also have for x ∈ �′, if x ∈ Pi , then

SP (x) = 1

μ(Pi )

∫

Pi

(

S(x) +
∫

�\�P

W (x, y) dμ(y)

)

dμ(x)

= 1

μ(Pi )

∫

Pi

(

S(x) +
∫

�′\�′
P

W (x, y) dμ(y)

)

dμ(x) = SP ′(x),

and SP (x) = 0 = SP ′(x) if x ∈ �′ \ �′
P ′ . Finally, if x, y ∈ �′ and x ∈ Pi , y ∈ Pj

with Pi , Pj ∈ P ′, then

WP (x, y) = 1

μ(Pi )μ(Pj )

∫

Pi×Pj

W (x ′, y′) dμ(x ′) dμ(y′) = (W |�′)sP ′ ,

and 0 otherwise. �

Proof (Lemma 5.9) Let W1,W2, . . . ,Wn, . . . be a sequence of signed graphexes
obeying the condition (a), and let ˜Wi be obtained fromWi by appending an arbitrary
σ -finite space of infinite measure. Then ˜W1, ˜W2, . . . , ˜Wn, . . . obeys the condition
(a) as well, and arguing as in Remark 4.4, we can assume without loss of generality
that ˜W1, ˜W2, . . . , ˜Wn, . . . are all defined over atomless spaces. We want to show
that they have a subsequence that converges to a graphex.

We can take for each n and k sets ˜Pn,k,0 and subspace partitions ˜Pn,k as in Lemma
5.8, defining in particular ˜Wn,k as the restriction of ˜Wn to˜�n \ ˜Pn,k,0. For k ≥ k0, we
will also define ˜Wn,k,k0 as the restriction of (˜Wn,k) ˜P n,k

to ˜�n \ ˜Pn,k0,0. By the above

claim, ˜Wn,k,k0 = (˜Wn,k0) ˜P n,k,k0
, where ˜Pn,k,k0 consists of the classes in ˜Pn,k which

are subsets of ˜�n \ ˜Pn,k0,0. This implies in particular that ˜Wn,k,k0 is (Bk0 ,Ck0 , Dk0)-
bounded.

Furthermore, in view of Remark 3.6, we can replace each (˜Wn,k)P n,k by an equiv-
alent step function Wn,k over R+, where the first part is Pn,k,0 := [0, 2−2k) (which
is disjoint from dsuppWn,k), the remaining parts Pn,k,i for i ≥ 1 are of the form
[�/2ak , (� + 1)/2ak ) for some nonnegative integer �, and we extend Wn,k to zero
above Nk + 2−2k , where Nk = 2bk .
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Let P ′
k = ([2−2k, Nk + 2−2k),P ′

k

)

, where P ′
k partitions [2−2k, Nk + 2−2k) into

intervals of length 2−ak . Note that after this change, the bound (5) from Lemma
5.8 becomes the bound δ2→2(˜Wn,k,Wn,k) ≤ 2−k . In this way, we have mapped the
“steps” of each step graphex to P ′

k . For each k, the graphex Wn,k then just depends
on a finite number of parameters, each bounded. We can then use a diagonalization
argument to take a subsequence so that for every k, Wn,k converges to some Wk as
n → ∞, in the sense thatWk is a step graphex with the same parts and each value of
the function converges, which also implies that ‖Wn,k‖1 → ‖Wk‖1 andWn,k → W

k

in the metric δ2→2 (since there are a finite number of steps).
Given k ≥ k0, let Wk,k0 be equal to W

k restricted to [2−2k0 ,∞), let Pk,k0 consist
of those intervals in P ′

k which are above 2
−2k0 , and finally, letPk,k0 = (�k,k0 ,Pk,k0)

where �k,k0 = [2−2k0 , Nk + 2−2k). We claim that Wk,k0 = W
k+1,k0
P k,k0

. This follows

from the fact that for any n, if Wn,k,k0 is Wn,k restricted to [2−2k0 ,∞), then
(

Wn,k+1,k0

)

P k,k0
= Wn,k,k0 , by the above claim.

Next, recalling that ˜Wn,k,k0 is (Bk0 ,Ck0 , Dk0)-bounded for each n and k, we have
thatWk,k0 is (Bk0 ,Ck0 , Dk0)-bounded as well, implying in particular that ‖Wk,k0‖1 ≤
Ck0 . Also note that if Pi , Pj ∈ Pk,k0 , then

∫

Pi×Pj

|Wk,k0(x, y)| dμ(x) dμ(y) ≤
∫

Pi×Pj

|Wk+1,k0(x, y)| dμ(x) dμ(y).

Since Wk,k0 is supported on the union of Pi × Pj for all choices of Pi and Pj , this
implies that ‖Wk,k0‖1 cannot decrease as k increases. Together, these observations
imply that the limit limk ′→∞ ‖Wk ′,k0‖1 exists and is at most Ck0 . Given ε > 0, we
can therefore find k(ε, k0) < ∞ such that limk ′→∞ ‖Wk ′,k0‖1 − ‖Wk,k0‖1 < ε for all
k ≥ k(ε, k0). Furthermore, because �2

k,k0
is the support of Wk,k0 ,

∫

�2
k,k0

|Wk,k0(x, y)| dμ(x) dμ(y) ≤
∫

�2
k,k0

|Wk+1,k0(x, y)| dμ(x) dμ(y).

As a consequence, for all k ′ ≥ k(ε, k0),

∫

R
2+\�2

k,k0

|Wk ′,k0(x, y)| dμ(x) dμ(y) < ε.

Therefore, the random variables Wk,k0 are uniformly integrable. By the martingale
convergence theorem (applied to each [2−2k0 , 2−2k ′ + Nk ′ ] × [2−2k0 , 2−2k ′ + Nk ′ ]
with k ′ ≥ k0), the graphon partWk,k0 ofWk,k0 is pointwise convergent almost every-
where to a function ˜Wk0 defined on [2−k0 ,∞)2, and it also converges to ˜Wk0 in
L1. Since ‖Wk,k0‖∞ ≤ Bk0 , this implies convergence in L2, and hence in the kernel
metric ‖ · ‖2→2. Furthermore, the graphon marginals converge in L1, because

‖DWk,k0 − D
˜Wk0 ‖1 ≤ ‖Wk,k0 − ˜Wk0‖1 −−−→

k→∞ 0.
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We also have
∫

Pi

|DWk,k0 (x)| dμ(x) ≤
∫

Pi

|DWk+1,k0 (x)| dμ(x).

This implies that ‖DWk,k0 ‖1 cannot decrease as k increases. Since�k,k0 is the support
of DWk,k0 ,

∫

�k,k0

|DWk,k0 (x)| dμ(x) ≤
∫

�k,k0

|DWk+1,k0 (x)| dμ(x).

As before, this implies that the functions DWk,k0 are uniformly integrable and uni-
formly bounded (by Dk0 ). We can again use the martingale convergence theorem
(applied to each [2−2k0 , 2−2k ′ + Nk ′ ]) to show that DWk,k0 converges pointwise and
in L1, and therefore in L2, to a function DWk0 taking values in [−Dk0 , Dk0 ]. Define

˜Sk0(x) = D
˜Wk0 (x) − D

˜Wk0 (x).

Since we also have
Sk,k0(x) = DWk,k0 (x) − DWk,k0 (x),

and since both terms in the difference converge in L1, Sk,k0 converges in L1 to ˜Sk0 .
By Theorem 3.12 in [24] this implies that some subsequence converges pointwise
almost everywhere, showing in particular that in the unsigned case, ˜Sk0 ≥ 0 almost
everywhere.

We also have that ρ := ρ(Wk,k0) is constant in k. Define

I k0 = ρ − 2
∫

˜Sk0 −
∫

˜Wk0 .

Since for each k,

I k,k0 = ρ − 2
∫

Sk,k0 −
∫

Wk,k0 ,

and since Sk,k0 andWk,k0 converge in L1 to˜Sk0 and ˜Wk0 , respectively, this implies that
I k,k0 converges to ˜I k0 . Because Wk,k0 , Sk,k0 , and Dk,k0

W
converge in L1 (and hence

pointwise almost everywhere on some subsequence), the limit inherits (Bk0 ,Ck0 ,

Dk0)-boundedness fromW
k,k0 .

Since for each k, Wk,k0+1, when restricted to [2−2k0 ,∞), is equal to W
k,k0 , and

since ˜W
k0+1 and ˜W

k0 are pointwise limits along some subsequence, ˜Wk0 is also the
restriction of ˜W

k0+1 to [2−2k0 ,∞). Therefore, we can define a signed graphexW on
R+ as the “union” of the signed graphexes ˜W

k0 . Note that the limitW is locally finite
by the fact that ˜W

k0 is (Bk0 ,Ck0 , Dk0)-bounded. This also implies that W inherits
any of these bounds from ˜W

k0 that do not depend on k0.
We claim that on the subsequence whereWn,k converges toWk in δ2→2 for each

k, Wn → W in the weak kernel metric δ�. To see this, we first note that ˜W
k0 is



96 C. Borgs et al.

obtained from W by removing a set of measure 2−2k0 , and W
k,k0 is obtained from

W
k by removing a set of the same measure, showing that for any k0,

δ�(W,Wk) ≤ max{2−k0 , δ2→2(˜W
k0 ,Wk,k0)}.

Given ε > 0, choose k0 such that 2−k0 ≤ ε/2. Since δ2→2(W
k,k0 , ˜W

k0) → 0 for each
k0 as k → ∞, this shows that for k large enough, δ�(W,Wk) ≤ ε/2. In a similar
way,

δ�(Wn,W
k) = δ�(˜Wn,W

k) ≤ max{2−k, δ2→2(˜Wn,k,W
k)}.

Since δ2→2(˜Wn,k,Wn,k) ≤ 2−k and δ2→2(Wn,k,W
k) → 0 for each k as n → ∞, we

can first choose k and then n large enough to guarantee that the right side is smaller
than ε/2. Combined with the triangle inequality for δ�, this shows that for all ε > 0
we can find an n0 such that for n ≥ n0, we have δ�(Wn,W) ≤ ε, as claimed. �

Remark 5.10 It is not hard to see that a sequence of signed graphexes Wn =
(Wn, Sn, In,�n) with ‖Wn‖∞ ≤ B and ‖Wn‖1 ≤ C obeys the condition (a) from
Lemma 5.8. If B ≤ 1, this follows by applying Corollary 4.2 (1) to the sequence
|Wn|, and for B > 1 it follows by applying Corollary 4.2 (1) to the sequence
(|Wn|/B, |Sn|/B, |In|/B,�n). Choosing a convergent subsequence, it is clear from
the last proof that the limiting graphex W = (W, S, I,�) must obey the bound
‖W‖∞ ≤ B. The statement from Remark 2.22 therefore is a direct consequence of
Lemma 5.9.

Proof (Theorem 2.21) By Corollary 4.2 (1), any set of graphexes whose L1 norms
are bounded by C is tight, so by Lemma 5.9 any such sequence of graphexes has
a subsequence with a limit W in the metric δ�. Lemma 5.9 also implies that the
limit inherits the bound on the L1 norm, and therefore the set of graphexes whose
L1 norms are bounded by C is compact. The same proof gives the statement of the
theorem for (C, D)-bounded graphexes.

Suppose now that W1,W2, . . . ,Wn, . . . is a Cauchy sequence in δ�. We first
claim that it must be tight. Indeed, for any ε > 0, there exists n such that for any
m > n, δ�(Wn,Wm) < ε. Fix such an n and an m > n. By Lemma 3.14, we can
then decrease the measures μn, μm by at most ε2 such that the δ2→2 distance of the
resulting graphexes ̂Wn and ̂Wm is less than ε. Let W′

n , W
′
m be trivial extensions of

the modified graphexes by spaces of infinite measure, and let ˜W′
n , ˜W

′
m be pullbacks

according to a coupling so that d2→2(˜W
′
n,

˜W
′
m) < ε, which exists by the definition

of δ2→2. Furthermore, since every finite set of graphexes is tight, we can find (C, D)

such that we can remove a set of measure ε2 from ̂Wn to make it (C, D)-bounded
(independent of m). If we remove the pullback of this set from the underlying space
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of ˜W
′
n and ˜W

′
m and replace them by the restrictions, then the two graphexes will

still have δ2→2 distance at most 2ε by Lemma 3.13. In particular, this means that
‖˜W

′
m‖1 ≤ C + 8ε3. We also have

‖D
˜W′

m
‖2 ≤ ‖D

˜W′
n
‖2 + ‖D

˜W′
m

− D
˜W′

n
‖2 ≤ √

CD + 4ε2 ≤ 2
√
CD.

Therefore, the measure of the points x for which D
˜W′

m
(x) >

√
CD/ε is at most 4ε.

Taking C ′ = C + ε and D′ = √
CD/ε, we have obtained that for anym > n we can

remove a set of measure at most 6ε so that the remainder is (C ′, D′)-bounded. Since
any finite set is tight, and the union of two tight sets is tight, this means that the entire
sequence is tight. Therefore, it must have a convergent subsequence that converges
to a graphex W. But then because the original sequence was a Cauchy sequence,
the entire sequence must converge to W. This proves that the space of graphexes is
complete.

The above lemma implies that every tight set is relatively compact, and the fact
that any Cauchy sequence must be tight implies that every relatively compact set is
tight. �

6 Subgraph Counts

In this section we will prove that convergence in the weak kernel metric implies GP-
convergence. The main technical tool for this proof will be the following counting
lemma, which says that given any C, D < ∞, two (C, D)-bounded graphexes that
are close in kernel metric δ2→2 must have close subgraph counts.

While this lemma and its corollary are formulated only for unsigned graphexes,
we note that both have natural generalizations to signed graphexes. See Remark 6.9
at the end of Sect. 6.1 below.

Lemma 6.1 Let F be a simple, connected graph with m edges and n ≥ 3 vertices,
and let C, D < ∞. Suppose thatW1 andW2 are graphexes on the same underlying
space �, with ‖Wi‖1 ≤ C and ‖DWi ‖∞ ≤ D for i = 1, 2, and let ε = max{‖W1 −
W2‖2→2, ‖DW1−W2‖2}. Then

|t (F,W1) − t (F,W2)| ≤ mε˜CDn−3,

where ˜C = max{C,
√
CD}.

Corollary 6.2 Suppose Wn,W have uniformly bounded marginals. If

δ2→2(Wn,W) → 0,

then for any finite graph F with no isolated vertices, t (F,Wn) converges to t (F,W).
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Proof By the definition of δ2→2, if F is an edge, then t (F,Wn) → t (F,W). This
implies in particular that ‖W‖1 and ‖Wn‖1 are uniformly bounded. By Lemma 6.1, it
follows that t (F,Wn) → t (F,W) for any connected graph F . Since homomorphism
densities factor over connected components of the graph F , this means that if F is a
finite graph without isolated vertices, then t (F,Wn) → t (F,W). �

In addition to the above counting lemma, we will need to show that convergence
of subgraph counts implies GP-convergence. Thinking of the subgraph counts as
the moments of a graphex, this result is similar to standard moment theorems for
random variables that show that under suitable growth conditions, the distribution of
a random variable is determined by its moments.

Theorem 6.3 Assume that the marginals of Wn and W are bounded by some finite
constant D. Then the following are equivalent:

(1) GT (Wn) → GT (W) in distribution for every T .
(2) GT (Wn) → GT (W) in distribution for some T .
(3) For every graph F with no isolated vertices, t (F,Wn) → t (F,W).
(4) For every connected graph F, t (F,Wn) → t (F,W).

Wewill prove the counting lemma in Sect. 6.1 below, andTheorem6.3 in Sect. 6.2.
In the final subsection, Sect. 6.3, we use these results to first show that under
the assumption of uniformly bounded marginals, δ2→2-convergence implies GP-
convergence (Theorem 6.16 below). With the help of the results about tightness
established in Sect. 4, this in turn allows us to show that without any assumption on
the marginals, δ�-convergence implies GP-convergence (Theorem 6.17 below).

6.1 Proof of the Counting Lemma

In order to prove the counting lemma, it will be convenient to consider several
variants of the homomorphism densities. For these variants, it will be natural to
consider signed graphexes, since we will need to consider differences of graphexes
for the proof of the counting lemma anyway. Note that our proof of the counting
lemma can easily be generalized to signed graphons; see Remark 6.9 below.

Definition 6.4 Suppose we have a connected multigraph F , and signed graphexes
We assigned to each edge e ∈ E(F) (refer to this vector of graphexes asWF ), each
with the same feature space �. Let V≥2 be the set of vertices with degree at least 2.
If V≥2 is nonempty (i.e., F does not consist of a single edge), then we define

t (F,WF ) =
∫

�V≥2

dzV≥2

∏

{v,w}∈E(F(V≥2))

W{v,w}(zv, zw)

·
∏

v∈V≥2

∏

w∈V \V≥2:{v,w}∈E(F)

DW{v,w}(zv).
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If F consists of just a single edge f , then

t (F,WF ) = ρ(W f ),

with ρ(W f ) as in (2). Note that for signed graphexes t (F,WF ) is in general only
well defined if the integrals are absolutely convergent, a condition which can, e.g.,
be guaranteed by requiring that t (F,Wabs

F ) < ∞, where Wabs
F is obtained from WF

by replacing the graphexes W f by |W f |.
Note that t (F,WF ) is a multilinear function of the signed graphexesWe inWF .

If each We is equal to some fixed W, then this is just the previous definition.
We also define a conditional density where we fix the image of a single vertex.

Definition 6.5 Suppose we have a connected multigraph F with a labeled vertex v0,
more than one edge, and signed graphexes We assigned to each edge as before. Let
x ∈ �, and define zv0 = x . Take, furthermore, V ′≥2 = V≥2 \ {v0} and ˜V≥2 = V≥2 ∪
{v0}. Then we define tx (F,WF ) to be

∫

�
V ′≥2

dzV ′≥2

∏

{v,w}∈E(F(˜V≥2))

W{v,w}(zv, zw)
∏

v∈V≥2

∏

w∈V \(˜V≥2):{v,w}∈E(F)

DW{v,w}(zv).

If F consists of just a single edge f adjacent to v0, then we set tx (F,W) = DW(x).
Again, for signed graphexes, this is in general only well defined if the integrals are
absolutely convergent.

Note that if v0 ∈ V≥2, then tx (F,WF ) is obtained from t (F,WF ) by simply fixing
the feature corresponding to v0 to be x , implying in particular that

∫

tx (F,WF ) dx =
t (F,WF ) (assuming the integrals defining these are absolutely convergent). If v0 /∈
V≥2, i.e., if v0 has degree 1, and if F has more than one edge, then the situation
is slightly more complicated, since the “feature” of the image of v0 could be either
an element of �, or the special value ∞, interpreted earlier as the feature of the
leaves of the star part of a graphon process. With this reinterpretation, tx (F,WF ) is
still obtained from t (F,WF ) by fixing the feature corresponding to v0 to be x , but
the integral

∫

tx (F,WF ) dx now misses the contribution of x = ∞, and hence is in
general only bounded above by t (F,WF ). It is, however, equal to t (F,W′

F ), where
W

′
F is obtained fromWF by setting the star part of the graphex corresponding to the

edge containing v0 to 0.

Lemma 6.6 Suppose F is a connectedmultigraphwith no loops and a labeled vertex
v0, T is a spanning tree, and We is a signed graphex corresponding to each edge
e, each with the same feature space �. Let f ∈ T be an edge adjacent to v0, and
x ∈ �. Then

|tx (F,WF )| ≤ D|W f |(x)
∏

e∈T \ f
‖D|We|‖∞

∏

e∈E(F)\T
‖We‖∞.



100 C. Borgs et al.

Proof Replacing all signed graphexes We by the non-negative versions |We|, and
noting that |tx(F,WF )| ≤ tx (F,Wabs

F ), we may without loss of generality assume
that We and Se are non-negative.

Next, assume that F is a tree, i.e., F = T . We then prove the claim by induction
on the number of edges. If F consists of a single edge, then by definition tx (F,W) =
DW(x), which is exactly the bound in the lemma. Otherwise, we can find an edge
{v,w} not equal to f , such that v has degree at least two, and w has degree 1 and is
different from v0. The edge {v,w} then contributes DW{v,w}(zv) to the second product
in the integral representing tx (F,WF ). For each zv, this is at most ‖DW{v,w}‖∞. Taking
a factor ‖DW{v,w}‖∞ out of the integral, and defining F ′ to be the restriction of F to
V (F) \ {w}, we therefore have that

tx (F,WF ) ≤ ‖DW{v,w}‖∞tx (F
′,WF ′).

Note that this bound is actually weaker than necessary if the vertex v becomes a
vertex of degree one in F ′, in which case we could have obtained a contribution of
DW{v,v′ }(zv′) for its neighbor v′ instead of the contribution DW{v,v′ }(zv′) implicit in the
above bound.

Suppose now that F has edges outside T . Let {v,w} be such an edge. Note that
both v and w must be in V≥2. Therefore, this edge contributes W{v,w}(zv, zw) to
the product, which is at most ‖W{v,w}‖∞. We can therefore conclude the lemma by
induction on the number of edges of F outside T . �

Lemma 6.7 Suppose F is a connected multigraph with no loops, and we have a
signed graphex We corresponding to each edge e ∈ F. Let T be any spanning tree
in F, and f ∈ T . Then

|t (F,WF )| ≤ ‖W f ‖1
∏

e∈T \ f
‖D|We|‖∞

∏

e∈E(F)\T
‖We‖∞.

Proof If F consists of a single edge f , then |t (F,WF )| = |ρ(W f )| ≤ ‖W f ‖1 by
definition, and if F has more than one edge, then

|t (F,WF )| ≤
∫

�

|tx (F,WF )| dμ(x)

≤
∫

�

D|W f |(x)
∏

e∈T \ f
‖D|We|‖∞

∏

e∈E(F)\T
‖We‖∞ dμ(x)

≤ ‖W f ‖1
∏

e∈T \ f
‖D|We|‖∞

∏

e∈E(F)\T
‖We‖∞.

�

Proof (Lemma 6.1) Let f = {u, v} be an edge in F , and let WF, f be a vec-
tor of graphexes where we assign one of W1 or W2 to each edge e �= f , and
(W1 − W2, S1 − S2, 0,�) to f (since F is a connected graph with at least 2 edges,
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the dust parts of W1 and W2 don’t contribute to t (F,W1) − t (F,W2) and can be
set to 0). We would like to bound |t (F,WF, f )|.

First, assume both endpoints of f have degree at least 2. Let the components
of F restricted to V (F) \ {u, v} be C1,C2, . . . ,Ck , with corresponding vertex sets
V1, . . . , Vk . There can be three types of components: those with at least one edge to
u but none to v, those with at least one edge to v but none to u, and those with at
least one edge to both. Let Cu be the set of components connected to u, Cv the set
of those connected to v, and Cuv the set connected to both. For each i ∈ Cu , let Fi
be the labeled graph where we add u back to Ci as the labeled vertex, and for each
i ∈ Cy , let Fi be the labeled graph where we add v back to Ci as the labeled vertex.
Furthermore, for each i ∈ Cu ∪ Cv, choose an additional vertex vi ∈ Vi such that vi
is incident to an edge in Fi . Let Vuv consist of vertices that belong to a component
in Cuv.

Given a set of vertices U , let U ′ be the set of vertices in U that have degree at
least 2 in F , and let

WF,U,u(zu, zU ′) =
∏

w∈U ′
{u,w}∈E(F)

W{u,w}(zu, zw)

and
WF,U,v(zv, zU ′) =

∏

w∈U ′
{v,w}∈E(F)

W{v,w}(zv, zw).

Let us also use the notation

WF,U (zU ′) =
∏

{w,w′}∈E(F(U ′))

W{w,w′}(zw, zw′)
∏

w∈U ′

∏

w′∈U\U ′
{w,w′}∈E(F)

DW{w,w′ }(zw).

Observe that if a vertex in Vuv is adjacent to u or v, it must be in V ′
uv. We therefore

express t (F,WF, f ) as

∫

�V ′
uv

WF,Vuv (zV ′
uv
)

∫

�2

(

WF,Vuv,v(zv, zV ′
uv
)WF,Vuv,u(zu, zV ′

uv
)W f (zu, zv)

∏

i∈Cu

tzu (Fi ,WF, f )
∏

i∈Cv

tzv (Fi ,WF, f )

)

,

and bound the inner integral by
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∥

∥

∥

∥

∥

∥

WF,Vuv,u(·, zV ′
uv
)
∏

i∈Cu

t·(Fi ,WF, f )

∥

∥

∥

∥

∥

∥

2
∥

∥

∥

∥

∥

∥

WF,Vuv,v(·, zV ′
uv
)
∏

i∈Cv

t·(Fi ,WF, f )

∥

∥

∥

∥

∥

∥

2

‖W f ‖2→2

≤
∥

∥

∥

∥

∥

∥

WF,Vuv,u(·, zV ′
uv
)
∏

i∈Cu

DWuvi

∥

∥

∥

∥

∥

∥

2
∥

∥

∥

∥

∥

∥

WF,Vuv,v(·, zV ′
uv
)
∏

i∈Cv

DWvvi

∥

∥

∥

∥

∥

∥

2

‖W f ‖2→2

∏

i∈Cv∪Cu

D|Vi |−1,

where in the last step we used Lemma 6.6 and the fact that the number of edges
in a spanning tree for Fi is |V (Fi )| − 1 = |Vi |. Inserting this bound into the outer
integral, an application of the Cauchy–Schwartz inequality then gives the bound

t (F,WF, f ) ≤ ‖W f ‖2→2

√

√

√

√

√

∫

�V ′
uv

WF,Vuv (zV ′
uv
)

∥

∥

∥

∥

∥

∥

WF,Vuv,u(·, zV ′
uv
)
∏

i∈Cu

DWuvi

∥

∥

∥

∥

∥

∥

2

2

·

√

√

√

√

√

∫

�V ′
uv

WF,Vuv (zV ′
uv
)

∥

∥

∥

∥

∥

∥

WF,Vuv,v(·, zV ′
uv
)
∏

i∈Cv

DWvvi

∥

∥

∥

∥

∥

∥

2

2

∏

i∈Cv∪Cu

D|Vi |−1

We claim that the expressions under the square roots can be written as t (F ′
u,WF, f )

and t (F ′
v,WF, f ) for some suitable multigraphs F ′

u and F ′
v. Indeed, starting from

F(Vuv ∪ {u}), we first duplicate every edge in this graph that joins u to some vertex
in Vuv, keeping the edges between vertices in Vuv as simple edges. The graph F ′

u
is obtained from this graph by adding two more edges for each component i ∈ Cu :
the edge uvi , and a second edge uv′

i , with v′
i being a new vertex we should think

of as a twin of vi (in F ′
u , they both have degree one and are connected to u). This

gives a connected multigraph on V ′
u = V (F ′

u) with |Vuv| + 1 + 2ku many vertices
and |E(F(Vuv))| + 2du + 2ku many edges where du is the number of vertices v′ ∈
Vuv such that uv′ is an edge in F , and ku = |Cu |. Define F ′

v (as well as dv and kv)
analogously. We then can reexpress the above bound as

t (F,WF, f ) ≤ ‖W f ‖2→2

√

t (F ′
u,WF, f )t (F ′

v,WF, f )
∏

i∈Cv∪Cu

D|Vi |−1

≤ ‖W f ‖2→2CD|Vuv |+ku+kv−1
∏

i∈Cv∪Cu

D|Vi |−1

= ‖W f ‖2→2CDn−3.
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If f has one endpoint with degree 1, and the other endpoint with degree at least
2, then let v be the endpoint with degree at least 2, and let u′ �= u be a neighbor of v.
Let WF− f be the graphex assignment restricted to the edges in F − f . Then

|t (F,WF, f )| =
∣

∣

∣

∣

∫

�

txv (F − f,WF− f )DW1−W2(xv) dμ(xv)

∣

∣

∣

∣

≤ ‖DW1−W2‖2‖t·(F − f,WF− f )‖2
≤ ‖DW1−W2‖2‖DWvu′ ‖2Dn−3 ≤ √

CDDn−3‖DW1−W2‖2.

Now, let e1, e2, . . . , em be the edges of F . LetWF,i be the vector of graphexes where
we assign W1 − W2 to ei ,W1 to e j with j < i , and W2 to e j with j > i . Then,

∣

∣

∣t (F,W1) − t (F,W2)

∣

∣

∣ ≤
m

∑

i=1

∣

∣

∣t (F,WF,i )

∣

∣

∣ ≤ mε˜CDn−3.

Remark 6.8 It is instructive to note that the bound in Lemma 6.1 can be tightened
to give the constant

˜C = max
i

max{‖Wi‖2, ‖DWi ‖2}

instead of the constant ˜C = max{C,
√
CD}. To see this, we first note that near the

end of the proof, we bounded ‖DWvu′ ‖2 by
√
CD, even though it is possible that

the first term is finite while the second is infinite. In a similar way, bounding the
integral representing t (F ′

u,WF, f ) and t (F ′
v,WF, f ) with the help of Lemma 6.7 is

suboptimal. Indeed, the multigraph F ′
v always contains at least one double edge, or

contain at least one edge uvi and its twin uv′
i , with both vi and v

′
i having degree one.

In the first case, Lemma 6.7 can be improved to extract a factor ‖W f ‖2 instead of a
factor ‖W f ‖1, in the second it can be improved to extract a factor ‖DW f ‖2. Inserted
into the proof of Lemma 6.1, this gives the claimed improvement.

Remark 6.9 As the reader can easily verify, the above proof immediately gener-
alizes to signed graphexes, showing that Lemma 6.1 holds for (B,C, D) bounded
graphexes, provided we include a factor of Bm−(n−1) on the right side. As a con-
sequence, Corollary 6.2 holds for sequences of (B,C, D)-bounded graphexes that
converge in the kernel distance δ2→2.

6.2 GP-Convergence and Subgraph Counts

In this subsection, we prove Theorem 6.3. We start by establishing the following
theorem.

Theorem 6.10 Let G and Gn, for n ≥ 1, be random finite graphs with no isolated
vertices, and let X and Xn, for n ≥ 1, be the random variables that correspond to the
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number of vertices inG andGn, respectively. If, for every t > 0, E[et X ] and E[et Xn ]
are finite and uniformly bounded, then the following are equivalent:

(1) For any graph G, the probability that Gn is isomorphic to G converges to the
probability that G is isomorphic to G.

(2) For every graph F, E[inj(F,Gn)] → E[inj(F,G)].
(3) For every graph F with no isolated vertices, E[inj(F,Gn)] → E[inj(F,G)].

To prove the theorem, we will first establish a couple of lemmas. As a preparation,
note that if E[et X ] ≤ C , then for any graph F on k vertices,

E[inj(F,G)] ≤
∞
∑

n=0

P(X = n)nk ≤
∞
∑

n=0

P(X = n)
k!
t k
etn = k!

t k
E[et X ] ≤ C ′.

Here we use the fact that etn ≥ (tn)k

k! . The same bound holds for Gn . In other words,
for any graph F the values E[inj(F,Gn)] and E[inj(F,G)] are bounded uniformly
in n.

Our first lemma roughly says that if a random graph model does not have isolated
vertices, and the number of vertices is not too large with high probability, then the
expected number of counts of finite graphs without isolated vertices determines the
expected number of counts of all graphs.

Lemma 6.11 Suppose we have two random finite graphs with no isolated ver-
tices, G and G

′. Suppose that for every finite graph F with no isolated vertices,
E[inj(F,G)] = E[inj(F,G′)]. Let X be the random variable that gives the number
of vertices inG, and suppose that for every t , E[et X ] is finite. Then E[inj(F,G)] and
E[inj(F,G′)] are equal for every finite graph F.

Proof We prove this by induction on the number of isolated vertices in F . If F has
zero isolated vertices, the claim is true by the assumptions of the lemma. Other-
wise, let F consist of F ′ plus an isolated vertex w0. For every k, and graph G, let
inj∗(F ′, k,G) be equal to the number of ways we can take an injective image of F ′
in G, take a vertex v0 not in the image of F ′, and take a k-term sequence of distinct
neighbors of v0 (which may or may not be in the image of F ′). If G has no isolated
vertices, then

inj(F,G) =
∞
∑

k=1

(−1)k−1

k! inj∗(F ′, k,G).

This follows from the fact that for each injective copy of F , if v0 is the image of w0,
then this contributes (d(v0))k to inj∗(F ′, k,G). Since G is finite and has no isolated
vertices, we must have 0 < d(v0) < ∞; therefore,

∞
∑

k=1

(−1)k−1

k! (d(v0))k =
d(v0)
∑

k=1

(−1)k−1

(

d(v0)

k

)

= 1.
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Next, we claim that

E[inj(F,G)] =
∞
∑

k=1

(−1)k−1

k! E[inj∗(F ′, k,G)].

To show this, it suffices to show that

∞
∑

k=1

E[inj∗(F ′, k,G)]
k! < ∞.

Fix k. Then inj∗(F ′, k,G) is the sum of terms of the form inj(F ′′,G). The terms
are obtained as follows. Let L = V (F ′) ∪ z0, where z0 is disjoint from V (F ′). Let
� = (�1, �2, . . . , �k) be a sequence of k elements of L . Suppose further that any vertex
in V (F ′) appears at most once in �. Then we define F ′′(�) by taking a copy of F ′, a
disjoint vertex w0, for each �i ∈ V (F ′), we add an edge from w0 to �i , for each other
�i we add an edge going to a new vertex. For example, if � = (z0, z0, z0, . . . , z0),
then F ′′(�) is the disjoint union of F ′ and a star with k edges. It is then not difficult
to see that

inj∗(F ′, k,G) =
∑

�

inj(F ′′(�),G).

Let a = |L|. For each k, the number of such sequences is at most ak . Furthermore,
for each such F ′′(�), the number of vertices is at most a + k. Thus,

inj∗(F ′, k,G) ≤ ak(|V (G)|)(a+k).

Therefore, recalling that X = |G|, we have that
∞
∑

k=1

E[inj∗(F ′, k,G)]
k! ≤

∞
∑

k=1

akE[(X)(a+k)]
k!

=
∞
∑

k=1

E

[

ak X(a)

(

X − a

k

)]

= E
[

X(a)(a + 1)X−a
]

< ∞.

Finally, we claim that E[inj∗(F ′, k,G)] = E[inj∗(F ′, k,G′)] for every k. This
follows from the fact that the graphs F ′′(�) above each have fewer isolated vertices
than F , so E[inj(F ′′(�),G)] = E[inj(F ′′(�),G′)] for each F ′′(�), and inj∗(F ′, k,G)

and inj∗(F ′, k,G′) are each a finite sum of such terms. Therefore, for G′,

∞
∑

k=1

E[inj∗(F ′, k,G′)]
k! < ∞.

We therefore have
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E[inj(F,G)] =
∞
∑

k=1

(−1)k−1

k! E[inj∗(F ′, k,G)]

=
∞
∑

k=1

(−1)k−1

k! E[inj∗(F ′, k,G′)] = E[inj(F,G′)].

�

Lemma 6.12 Supposewe have two randomfinite graphs,G andG′. Suppose that for
every finite graph F, E[inj(F,G)] = E[inj(F,G′)]. Let X be the random variable
that gives the number of vertices in G, and suppose that for some ε > 0, E[(2 +
ε)X ] is finite. Then G and G

′ give rise to the same distribution on graphs (up to
isomorphism).

We would like to emphasize that in these two lemmas, it suffices to assume the
finiteness condition for G, not G′ (for which it follows).

Proof For graphs F and G, let X (F,G) be equal to the random variable which is
equal to inj(F,G) if G has the same number of vertices as F , and gives 0 otherwise.
Fix a graph F with k vertices, and let Fi be the graph obtained by adding i isolated
vertices to F . We can then write

X (F,G) =
∞
∑

i=0

(−1)i

i ! inj(Fi ,G).

Indeed, if G has the same number of vertices as F , then each term with i > 0 is zero,
and the i = 0 term gives inj(F0,G) = inj(F,G). If G has fewer vertices, then the
entire expression is zero. If G has k + � vertices where � > 0, then each injective
copy of G contributes (since

(

�

i

) = 0 if i > �)

�
∑

i=0

(−1)i
(

�

i

)

= 0;

therefore the entire expression is 0. Next, we claim that

∞
∑

i=0

E[inj(Fi ,G)]
i ! < ∞.

To see this, note that for every i ,

E[inj(Fi ,G)] ≤
∑

n

P(X = n)(n)k+i .

By the condition on X , there exists an ε > 0 and c such thatP(X = n) ≤ c(2 + ε)−n .
Therefore,
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∞
∑

i=0

E[inj(Fi ,G)]
i ! ≤

∑

i

∑

n

c(2 + ε)−n(n)k

(

n − k

i

)

=
∑

n

c(2 + ε)−n2n−k(n)k < ∞.

We therefore have that

E[X (F,G)] =
∞
∑

i=0

(−1)i

i ! E[inj(Fi ,G)] =
∞
∑

i=0

(−1)i

i ! E[inj(Fi ,G′)] = E[X (F,G′)].

Thus, by an inclusion-exclusion formula, we can express the probability that G and
G

′ is isomorphic to a graph F for any F , and the two probabilities must also be equal.
This completes the proof. �

Proof (Theorem 6.10) We first show that (1) implies (2). Recall that for any graph
F , E[inj(F,Gn)] and E[inj(F,G)] are uniformly bounded. Fix a graph F on k
vertices. We claim that E[inj(F,Gn)

2] and E[inj(F,G)2] are uniformly bounded.
This follows from the fact that for a graph G, inj(F,G)2 is a linear combination of
the form

∑

F ′ cF ′ inj(F ′,G), where cF ′ is independent of G and zero for all but a
finite number of graphs F ′. We also know that inj(F,Gn) converges to inj(F,G) in
distribution. Since their second moments are uniformly bounded, their expectations
must converge as well.

It is clear that (2) implies (3). Let us show that (3) implies (1). AssumeGn satisfies
(3). We first claim that the sequence Gn is tight. That is, we claim that for every ε,
there exists a finite set of graphs such that for each n, with probability at least 1 − ε,
Gn is in this set. Indeed, the expected number of edges E[inj(K2,Gn)] is uniformly
bounded, which means that for any ε, there exists an M such that the probability of
having more than M edges is at most ε. But the number of graphs with M edges and
no isolated vertices is finite; therefore Gn is tight.

This means that there is a subsequence that converges to a random graph H in
the sense of (1), which also has no isolated vertices. First, we claim that for any F
with no isolated vertices, E[inj(F,H)] is finite, and E[inj(F,Gn)] converges to it.
This again follows from the fact that E[inj(F,Gn)

2] is uniformly bounded. But then
this implies that E[inj(F,H)] = E[inj(F,G)] for every graph F with no isolated
vertices. Therefore, the two distributions are equal by Lemmas 6.11 and 6.12. �

Lemma 6.13 Given t > 0, let t ′ = 2t + log 4. Then the following holds for any
positive integer n and any graph G on n vertices with no isolated vertices. Suppose
we randomly color the vertices red and blue, and let X be the number of vertices
that are colored red, and have at least one blue neighbor. Then

E[et ′X ] ≥ etn .

Proof Without loss of generality, we may assume G is the disjoint union of stars,
since otherwise we can delete an edge and G will still have no isolated vertices.
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Suppose that G is the disjoint union of stars with edge count s1, s2, . . . , sk , where
each si ≥ 1 and

∑

i si = n − k. Note that k ≤ n/2. Then

E

[

et
′X
]

=
k

∏

i=1

(

1

2

(

et
′ + 1

2

)sk

+ 1

2

(

et
′ + 2sk − 1

2sk

))

≥
(

et
′ + 1

2

)n−k

2−k ≥ (et
′ + 1)n/22−n ≥ etn,

given that our choice of t ′ implies that (et
′ + 1)/4 ≥ e2t . �

Lemma 6.14 For any T, t,C, D ∈ R+, there exists a finite B such that the following
holds. Suppose we have a graphexW, with ‖DW‖∞ ≤ D and ‖W‖1 ≤ C. Let X be
the number of vertices (that are not isolated) of GT (W). Then E[et X ] ≤ B.

Proof Note that since X is nonnegative, we only need to worry about t > 0. First,
let X ′ be obtained by randomly coloring the vertices of GT red and blue, and taking
the red vertices with at least one blue neighbor. By the above lemma, for t ′ = 2t +
log 4 > 0, we have

E[et ′X ′ ] ≥ E[et X ].

We claim that

E[et ′X ′ ] ≤ e
T 2 I
2 (et

′ −1) exp

(

T

2

∫

�

(

e
T
2 DW(x)(et

′ −1) − 1
)

dμ(x)

)

. (12)

Let us show how this implies uniform boundedness. We know that DW is bounded
by D. Since the function z → ez − 1 is 0 at z = 0 and convex, there exists a constant
K depending only on t ′, T , and D such that

e
T
2 DW(x)(et

′ −1) − 1 ≤ DW(x)

D
e

T
2 D(et

′−1) = K DW(x).

Therefore,

T 2 I

2
(et

′ − 1)+ T

2

∫

�

(

e
T
2 DW(x)(et

′ −1) − 1
)

dμ(x)

≤ T 2 I

2
(et

′ − 1) + T

2

∫

�

K DW(x) dμ(x)

≤ T 2C

4
(et

′ − 1) + KTC

2
.

In order to prove (12), we first show that it is enough to consider the case where
μ(�) < ∞. To see this, we write a general σ -finite measure space as the union of
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finite spaces, � = ⋃

n �n where �n is an increasing sequence with μ(�n) < ∞
for all n. For a fixed T , let GT,n consist of the induced graph on those vertices
which were born in �n , come from a star of a vertex born in �n , or come from a
dust edge, and define X ′

n to be the number of red vertices in GT,n with at least one
blue neighbor in GT,n . It is easy to see that 0 ≤ X ′

1 ≤ X ′
2 ≤ · · · ≤ X ′

n ≤ · · · . By
monotone convergence, the expectation of et

′X ′
n converges to E[et ′X ′ ]. The bound we

obtain also converges, giving the required bound on E[et ′X ′ ].
Assume thus that μ(�) < ∞. In this case, almost surely, a finite number of blue

points will be created. Suppose that these are x1, x2, . . . , xk . Conditioned on this,
red vertices that have blue neighbors can be created as follows. They can be created
by the Poisson process on �, and then be connected to at least one of the xi . If a
point is created at x , the probability that it is connected to at least one of the xi is
1 − ∏

(1 − W (xi , x)). It can also be created as a leaf of a star created at one of the xi .
Finally, it can be created by a dust edge being colored red and blue. Since the number
of red vertices coming from each of these cases is independent, the number of red
vertices with at least one blue neighbor is a Poisson distribution with expectation

f (x1, . . . , xk) := T

2

∫

�

(

1 −
k

∏

i=1

(1 − W (xi , x))

)

dμ(x) + T

2

k
∑

i=1

S(xi ) + T 2 I

2

≤ T

2

∫

�

(

k
∑

i=1

W (xi , x)

)

dμ(x) + T

2

k
∑

i=1

S(xi ) + T 2 I

2

= T

2

k
∑

i=1

DW(xi ) + T 2 I

2
.

In particular, this means that (for t ′ > 0) we have

E[et ′X ′ |x1, x2, . . . , xk] = e f (x1,...,xk )(et
′−1) ≤ e

T
2

(

T I+∑k
i=1 DW(xi )

)

(et
′ −1)

.

Therefore

E[et ′X ′ ] =
∞
∑

k=0

e−
T
2 μ(�) (μ(�)T/2)k

k!
1

μ(�)k

∫

�k
e f (x1,x2,...,xk )(e

t ′−1) dμ(x1) . . . dμ(xk )

≤
∞
∑

k=0

e−
T
2 μ(�) (T/2)k

k!
∫

�k
e
T
2

(

T I+∑k
i=1 DW(xi )

)

(et
′−1)

dμ(x1) . . . dμ(xk )

= e
T 2 I
2 (et

′−1)
∞
∑

k=0

e−
T
2 μ(�) (T/2)k

k!
(∫

�
e
T
2 DW(x)(et

′−1) dμ(x)

)k
.

Here we think of �0 as consisting of a single point on which f is 0. We then have
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E[et ′X ′ ] ≤ e
T 2 I
2 (et

′−1)e
T
2

∫

�
e
T
2 DW(x)(et

′ −1) dμ(x)− T
2 μ(�)

= e
T 2 I
2 (et

′−1)e
T
2

∫

�

(

e
T
2 DW(x)(et

′ −1)−1

)

dμ(x)
.

So we know that (12) is true for any � with finite measure. This completes the proof
of the lemma. �

After these preparations, the proof of Theorem 6.3 is straightforward.

Proof (Theorem 6.3) We first note that it is enough to prove the lemma for the case
thatWn andW are (C, D)-bounded for some finite C, D < ∞. Indeed, both (3) and
(4) clearly imply a bound on the ‖ · ‖1-norm, but also (2) (and therefore (1)) does,
since (2) implies that the random graphs GT (Wn) are tight, which implies that the
set of graphexes is tight, which by Corollary 4.2 (2) implies uniform boundedness
of the ‖ · ‖1-norms.

Assume thus thatWn andW are (C, D)-bounded for some finite C, D < ∞. The
equivalence of (3) and (4) follows from the fact that t is multiplicative over compo-
nents of F . (1) ⇒ (2) is obvious. Using Lemma 6.14, we can apply the equivalence
in Theorem 6.10 and Proposition 3.24 to show that (2) ⇒ (3) and (3) ⇒ (1). �

A slight modification of the above proof gives the following theorem.

Theorem 6.15 Given two graphexesW,W′ with bounded marginals, the following
are equivalent:

(1) GT (W) and GT (W′) have the same distribution for every T .
(2) GT (W) and GT (W′) have the same distribution for some T .
(3) For every graph F with no isolated vertices, t (F,W) = t (F,W′).
(4) For every connected graph F, t (F,W) = t (F,W′).

Proof As before, the equivalence of (4) and (3) follows from the product prop-
erty of t . The implication (1) ⇒ (2) is obvious. To prove (2) ⇒ (3), we use the
fact that t (F,W) = T−|V (F)|

E[inj(F,GT (W))] and the same holds for W′. Since
inj(F,GT (W)) and inj(F,GT (W′)) have the same distribution, their expectations
must be equal. With the help of Proposition 3.24, this implies (3). (3) ⇒ (1) follows
from Proposition 3.24, the observation that graphexes with bounded marginals are
integrable, and Lemmas 6.14, 6.11, and 6.12. �

6.3 Metric Convergence Implies GP-Convergence

We close this section by proving that under the assumption of uniformly bounded
marginals, δ2→2-convergence implies GP-convergence. We then use this result to
show that without any assumptions on the marginals, δ�-convergence implies GP-
convergence.
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Theorem 6.16 Suppose Wn and W have uniformly bounded marginals, and

δ2→2(Wn,W) → 0.

Then Wn is GP-convergent toW.

Proof Note that δ2→2 convergence implies that ‖Wn‖1 → ‖W‖; therefore the
sequence is (C, D)-bounded for someC, D. If F is a graph without isolated vertices,
then t (F,Wn) → t (F,W) by Corollary 6.2. Therefore, by Theorem 6.3, for any T ,
GT (Wn) converges to GT (W) in distribution. �

Theorem 6.17 Suppose that graphexes W and (Wn)
∞
n=1 have the property that

δ�(Wn,W) → 0. Then Wn is GP-convergent toW.

Proof By Proposition 4.6, the sequence is tight, and for all D such that μ({DW =
D}) = 0, we have that μn(�n,>D) → μ(�>D) and δ2→2(Wn,≤D,W≤D) → 0.

Fix T and ε > 0, and take δ small enough so that for all sets�δ of measure at most
δ the probability that any of the vertices inGT has a feature in�δ is at most ε/3. Take
D large enough so that for all n,μn(�n,>D) andμ(�>D) are at most δ. Then the total
variation distance between GT (Wn,≤D) and GT (Wn) is at most ε/3, and the same
is true for GT (W≤D) and GT (W). We also know that δ2→2(Wn,≤D,W≤D) → 0,
which in particular implies that the sequence is uniformly (C, D)-bounded for some
C . Therefore, it is GP-convergent. In particular, for n large enough, the total variation
distance between GT (Wn,≤D) and GT (W≤D) is at most ε/3. This implies that for n
large enough, the total variation distance between GT (Wn) and GT (W) is at most
ε, which shows that the sequence is GP-convergent. �

7 Sampling

In this section,we prove thatGP-convergence implies convergence in theweak kernel
metric, completing the proof of the equivalence of convergence in the metric δ� and
GP-convergence (Theorem 2.18). The main technical tool to establish this will be
a “sampling lemma”, showing that as T → ∞, the graphs GT (W) sampled from a
graphex W converge to the generating graphex according to δ�.

To make this precise, we need a way to compare graphs to graphexes. As in
[3, 4], we do this by transforming the graph into a suitable “empirical graphon”
and corresponding “empirical graphex”. Differing slightly from both [3, 4], where
the empirical graphon was a graphon over R+, here we define it to be a graphon
over the vertex set of the graph. Explicitly, given a finite graph G and ρ > 0, we
define the graphon W (G, ρ) as follows. Let � = (�,F , μ), where � is the set of
vertices, F is the σ -algebra consisting of all subsets, and μ is the measure where
each vertex has weight ρ. Set W (x, y) to be 1 if there is an edge between the
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corresponding vertices, and 0 otherwise. This gives us the graphon W (G, ρ). We
then setW(G, ρ) = (W, 0, 0,�). Similarly, if H is a weighted graph with countably
many vertices, we define � to be the set of vertices,F to be the σ -algebra consisting
of all subsets of �, and μ to be the σ -finite measure which gives weight ρ to each
vertex;W (H, ρ) andW(H, ρ) are then the graphon and graphex obtained by taking
W according to edge weights.

With these definitions, we are ready to state the sampling lemma.

Theorem 7.1 For every graphex W and ε > 0,

lim
T→∞P[δ�(W(GT (W), 1/T ),W) > ε] = 0.

For a set of graphexes that is tight, the convergence is uniform.

Remark 7.2 The above theorem only claims convergence in probability. However,
once we establish equivalence of GP-convergence and convergence in the weak
kernel norm, the results of [18] imply convergence with probability one (since there
convergence with probability one is proved for GP-convergence). Nevertheless, to
establish the equivalence, all we need is convergence in probability, so this is all we
will prove here.

7.1 Closeness of Graphexes Implies Closeness of Samples

In order to prove the sampling lemma, we will first prove that two graphexes with
bounded marginals that are close in the kernel metric lead to samples that are close.
This is formalized in the following theorem.

Theorem 7.3 Suppose W1,W2 are two (C, D)-bounded graphexes on the same
space�, and suppose that d2→2(W1,W2) ≤ c for some 0 < c < 1. Then there exists
a T0 (depending only on c, C, and D) such that for any T > T0, there exists a coupling
of the random graphs GT (W1) and GT (W2) so that

P

[

δ2→2(W(GT (W1), 1/T ),W(GT (W2), 1/T )) > min
(

(31cC)1/4, 2c3/4, 3√3c
)]

< c.

For graphons, or graphexes with only a graphon part, we can think of obtaining
GT as having two phases: first we sample the set of vertices, and then we sample
the edges according to the edge probability. If we do not do the second phase, we
obtain aweighted graph.Wewill workwith this intermediate graph in this section. To
make this precise, given a graphon (W,�), define HT (W ) as the random weighted
graph where we take a Poisson process on � × [0, T ], set these to be the vertices of
HT (W ), and for each pair of vertices (xi , ti ) and (x j , t j ), put a weighted edge with
weight W (xi , x j ) (with 0 weights on the diagonals).
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In order to prove the theorem, we need to find a coupling of the random processes
that provide GT (W1) and GT (W2). Since W1 and W2 have the same underlying
space, it is natural to couple the Poisson processes that generate the vertices into
a single Poisson process. Conditioned on this, we generate the two random graphs
independently (this is not optimal but it is satisfactory for our purposes). Let W′

i =
Wi (GT (Wi ), 1/T ) = (W ′

i , S
′
i , I

′
i ,�

′
i ). The underlying space of W′

i consists of the
vertex set of GT (Wi ), everything with weight 1/T . We couple the two underlying
spaces by matching vertices that correspond to the same point in �, and couple the
other vertices arbitrarily (adding points with degree 0 if necessary). We will show
that in this way, all three components of our distance will be close.

Let us first show that ‖W ′
1 − W ′

2‖2→2 is small, with high probability. Note that
GT (W) consists of the edges in GT (W ), and the edges generated by the stars and the
independent edges. In the following lemma, we show that the extra edges generated
have a small effect on this distance.

Lemma 7.4 Let W = (W, S, I,�) be a (C, D)-bounded graphex, and T > 1/D.
Let GT (W) be the usual sample at time T , and let ˜GT (W) consist of only those edges
which come from I or S. Then

P

[

‖W (˜GT (W), 1/T )‖2→2 >

(

2CD√
T

)1/4
]

<
1√
T

.

Proof Suppose we have sampled stars with s1, s2, . . . , s� leaves, and we have sam-
pled m isolated edges. Let U = W (˜GT (W), 1/T ). Then

t (C4,U ) = 1

T 4

(

2
∑

i

s2i + 2m

)

.

Therefore,

E[t (C4,U )] = 2T
∫

�(T 2S(x)2 + T S(x)) dμ(x)

T 4 + 2T 2 I

T 4 ≤ C(D + 1/T )

T
≤ 2CD

T
,

and hence

P

[

t (C4,U ) >
2CD√

T

]

<
1√
T

.

Using the fact that ‖U‖2→2 ≤ t (C4,U )1/4 (Lemma 3.18), the lemma follows. �

This lemma implies that for the 2 → 2 component of the distance,we can compare
GT (W1) and GT (W2) instead of GT (W1) and GT (W2). The following lemma will
imply that it in fact suffices to compare HT (W1) and HT (W2), because GT is close
to HT , as long as HT (Wi ) satisfies certain boundedness conditions (which, by the
boundedness of the Wi , will be satisfied with high probability).
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Lemma 7.5 Suppose H is a weighted graph on N with weights Hi, j ∈ [0, 1], and
Hi,i = 0. Suppose that G is generated by taking an edge between i and j with
probability Hi, j , independently for every pair of vertices. Suppose that

∑

i, j Hi, j ≤ E
and

∑

i, j,k Hi, j Hj,k ≤ F where the sum goes over pairwise distinct vertices. Let
0 < ρ. Then

P[‖W(G, ρ) − W(H, ρ)‖2→2 > ρ7/8(E + 2F)1/4] <
√

ρ.

Proof Let Xi, j = Gi, j − Hi, j . Notice that EXi, j = 0 and Xi, j over different pairs
are independent. Also, each Xi,i = 0. Therefore,

E[t (C4,W(G, ρ) − W(H, ρ))] = ρ4
E

[

∑

i, j

X4
i, j + 2

∑

i, j,k

X2
i, j X

2
j,k

+
∑

i, j,k,l

Xi, j X j,k Xk,l Xl,i

]

,

where in each of the sums, all indices are pairwise distinct. Here

∑

i, j

E[X4
i, j ] =

∑

i, j

(

Hi, j (1 − Hi, j )
4 + (1 − Hi, j )H

4
i, j

)

≤
∑

i, j

Hi, j ≤ E .

Also,

∑

i, j,k

E
[

X2
i, j X

2
j,k

] =
∑

i, j,k

(

Hi, j − 2H 2
i, j + H 2

i, j

) (

Hj,k − 2H 2
j,k + H 2

j,k

)

=
∑

i, j,k

Hi, j (1 − Hi, j )Hj,k(1 − Hj,k) ≤
∑

i, j,k

Hi, j Hj,k

≤ F.

Finally, for any pairwise distinct i, j, k, �,

E[Xi, j X j,k Xk,�X�,i ] = 0.

Therefore,
0 ≤ E[t (C4,W(G, ρ) − W(H, ρ))] ≤ ρ4(E + 2F). (13)

This implies that

P
[

t (C4,W(G, ρ) − W(H, ρ)) > ρ7/2(E + 2F)
]

<
√

ρ.

Using the fact that ‖U‖2→2 ≤ (t (C4,U ))1/4 (Lemma 3.18), the lemma follows. �
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Proof (Theorem 7.3) We are now ready to show that with high probability, ‖W ′
1 −

W ′
2‖2→2 is small. Recall that we have a coupling of HT (W1) and HT (W2) such that

HT (W1) − HT (W2) = HT (W1 − W2) with probability one. Let U = W1 − W2, so
that HT (W1) − HT (W2) = HT (U ).

Let us first show that ‖W (HT (U ), 1/T )‖2→2 is small. First, suppose that μ =
μ(�) is finite. Let

X =
∫

�2
U (x1, x2)

4 dμ(x1) dμ(x2) ≤ 2C,

Y =
∫

�3
U (x1, x2)

2U (x2, x3)
2 dμ(x1) dμ(x2) dμ(x3) ≤ 4CD,

and

Z =
∫

�4
U (x1, x2)U (x2, x3)U (x3, x4)U (x4, x1) = t (C4,U )

≤ ‖W1 − W2‖22→2‖W1 − W2‖22
≤ ‖W1 − W2‖22→2‖W1 − W2‖1
≤ 2c2C,

where we used Lemma 3.18, the fact that both graphexes are (C, D)-bounded, and
the fact that d2→2(W1,W2) ≤ c. If T > max{16 D

c2 , 2/c}, then

E[t (C4, HT (U ))] =
∞
∑

n=0

e−Tμ (Tμ)n

n!
(

n(n − 1)

T 4μ2
X + 2

n(n − 1)(n − 2)

T 4μ3
Y

+ n(n − 1)(n − 2)(n − 3)

T 4μ4
Z

)

≤ 2C

T 2
+ 8CD

T
+ 2c2C ≤ 3c2C.

In general, we can take a sequence of finite measure subsets �1 ⊆ · · · ⊆ �n ⊆ · · ·
with

⋃

n �n = � to show that the above bound on the expectation holds for general
�. Therefore,

P[‖HT (U )‖2→2 > (30cC)1/4] ≤ P[t (C4, HT (U )) > 30cC] <
c

10
.

Next, let P2 be the star with two leaves. If T is large enough, then

E[t (P2, HT (W1))] = (

t (P2,W1)T
3 + T 2‖W1‖1

) ≤ CDT 3 + CT 2 ≤ 2CDT 3.

Therefore,
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P

[

t (P2, HT (W1)) >
20CDT 3

c

]

≤ c

10
.

Also, since
E[‖HT (W1)‖1] ≤ CT 2,

we also have

P

[

‖HT (W1)‖1 >
10CT 2

c

]

≤ c

10
.

Conditioned on neither of these happening, we can apply Lemma 7.5 with

E + 2F ≤ 10CT 2

c
+ 2

20CDT 3

c
≤ 50CDT 3

c
.

This means that

P

[

‖W(GT (W1), 1/T ) − W(HT (W1), 1/T )‖2→2 >

(

50CD

c
√
T

)1/4
]

≤ 1√
T

.

Clearly the analogous statements hold for HT (W2). Let ˜Wi = W (˜GT (Wi ), 1/T )

(i.e., the part consisting of edges generated by the stars and independent edges).
Also, let ̂Wi = W (GT (Wi ), 1/T ) − W (HT (Wi ), 1/T ). Assuming none of the bad
events happen, if T is large enough, then

‖W ′
1 − W ′

2‖2→2 ≤ ‖˜W1‖2→2 + ‖˜W2‖2→2

+ ‖̂W1‖2→2 + ‖̂W2‖2→2 + ‖W (HT (U ), 1/T )‖2→2

≤ 2

(

2CD√
T

)1/4

+ 2

(

(50CD)1/4

c
√
T

)1/4

+ (30cC)1/4 ≤ (31cC)1/4.

The probability of one of the bad events happening is at most

2√
T

+ 4
c

10
+ 2√

T
+ c

10
≤ 6c

10
.

Let us now bound the probability that ‖DW
′
1
− DW

′
2
‖2 is large. For x ∈ �, let

DW1W2(x) =
∫

�

W1(x, y)W2(x, y) dμ(y).

With our coupling,
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E

⎡

⎣

∑

v∈VT
dGT (W1)(v)

2

⎤

⎦ =
∫

�
T

(

(T DW1 (x))
2 + T DW1 (x)

)

dμ(x),

E

⎡

⎣

∑

v∈VT
dGT (W1)(v)dGT (W2)(v)

⎤

⎦ =
∫

�
T

(

(T DW1 (x))(T DW2 (x)) + T DW1W2 (x)
)

dμ(x),

E

⎡

⎣

∑

v∈VT
dGT (W2)(v)

2

⎤

⎦ =
∫

�
T

(

(T DW2 (x))
2 + T DW2 (x)

)

dμ(x).

Therefore,

E

[

∑

v∈VT

(

dGT (W1)(x) − dGT (W2)(x)
)2

]

= T 3
∫

�

(

DW1(x) − DW2(x)
)2

dμ(x)

+ T 2
∫

�

(

DW1(x) + DW2(x) − 2DW1W2(x)
)

dμ(x)

≤ T 3‖DW1 − DW2‖22 + T 2‖W1‖1 + T 2‖W2‖1,

This means that if T is large enough,

E
[‖DW

′
1
− DW

′
2
‖22

] ≤ c4 + 2C/T ≤ 2c4.

Therefore,

P[‖DW
′
1
− DW

′
2
‖2 > 4c3/2] ≤ c

8
.

Finally, recall that by Lemma 4.3, the number of edges of GT (Wi ) has expectation
T 2‖Wi‖1/2 and variance T 2‖Wi‖1/2 + T 3‖DWi ‖22. Therefore, the probability that
GT (Wi ) has more than T 2(‖Wi‖1 + c3)/2 or less than T 2(‖Wi‖1 − c3)/2 edges is
less than

T 2‖Wi‖1/2 + T 3‖DWi ‖22
c6T 4/4

≤ 2C + 4TCD

c6T 2
≤ c

8
.

Here we used the fact that ‖DWi ‖22 ≤ ‖DWi ‖1‖DWi ‖∞ = ‖Wi‖1‖DWi ‖∞, and we
are assuming that T is large. Assuming neither of these events happens, ‖W′

i‖1 is
between ‖Wi‖1 − c3 and ‖Wi‖1 + c3. Since |‖W1‖1 − ‖W2‖1| ≤ c3, we have that
|‖W′

1‖1 − ‖W′
2‖1| ≤ 3c3.

To summarize, we have that with high probability,

d2→2(W
′
1,W

′
2) ≤ min(31cC)1/4, 2c3/4, 3

√
3c).
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The probability that this does not happen is at most

6c

10
+ c

8
+ 2

c

8
≤ c.

This completes the proof. �

7.2 Samples Converge to Graphex

In this subsection, we prove the sampling lemma, Theorem 7.1. To this end, we will
first establish two lemmas. The first one states that each (C, D)-bounded graphex
can be approximated by a step graphon, i.e., a graphex where the star and dust part
is zero, and the graphon part is a step graphon.

Lemma 7.6 For every ε, C, and D, there exist M, N, and ρ such that the following
holds. For every (C, D)-bounded graphexW, there exists a (C, D)-bounded graphex
Wε = (Wε, 0, 0,�ε), where �ε = (�ε,Fε, με) and με(�ε) ≤ N, and furthermore
the graphon Wε is a step function with at most M steps, with each part having size
equal to ρ, and δ2→2(W,Wε) ≤ ε.

Proof By Remark 4.4, we may assume that W is a graphex over an atomless mea-
sure space � = (�,F , μ). By Theorem 5.7, there exists M(ε) and ρ such that
there is a partition P = {P1, P2, . . . , Pm} of �P ⊆ � with m ≤ M(ε) such that
δ2→2(WP ,W) ≤ ε/2 and each part has size ρ. Let �ε = �P ∪ Q where Q is any
set disjoint from �P , and obtain με by extending μ to Q (with measure to be
determined later). Let Wε = (Wε, 0, 0,�ε) with

Wε(x, y) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

WP (x, y) if x ∈ Pi , y ∈ Pj ,
SP (x)
μ(Q)

if x ∈ Pi , y ∈ Q,
SP (y)
μ(Q)

if x ∈ Q, y ∈ Pi , and
2IP

μ(Q)2
if x, y ∈ Q.

ExtendWP by 0 to Q. SinceWP is (C, D)-bounded, there exists K depending only
on ε,C, D such that if μ(Q) ≥ K , then Wε − WP is at most ε2/(4C) everywhere,
which implies that

‖Wε − WP ‖2→2 ≤ ‖Wε − WP ‖2
≤ √‖Wε − WP ‖1‖Wε − WP ‖∞ ≤

√

Cε2/(4C) = ε/2.

For x ∈ �P ,

DWε
(x) = DWP (x) + μ(Q)

SP(x)

μ(Q)
= DWP (x).
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We also have that for x ∈ Q,

DWε
(x) = μ(Q)

2IP
μ(Q)2

+
∑

i

∫

Pi

SP (y)

μ(Q)
dμ(y) = DWP (∞)

μ(Q)
.

Therefore, there exists a K ′ depending only on ε, C , and D such that if μ(Q) ≥ K ′,
then

‖DWε
− DWP ‖22 =

∫

�P ∪Q

(

DWε
(x) − DWP (x)

)2
dμ(x)

=
∫

Q

(

DWP (∞)

μ(Q)

)2

= DWP (∞)2

μ(Q)
≤ ε4/16.

Also, by construction, ‖Wε‖1 = ‖WP ‖1. Therefore δ2→2(Wε,WP ) ≤ ε/2, and
hence δ2→2(Wε,W) ≤ ε. �

Remark 7.7 Using the ideas of the previous proof, it is not hard to see that in distri-
bution, the process generated from the graphex ˜WQ = (˜WQ, 0, 0,˜�D) constructed
in Remark 2.3 (3) converges to the one generated fromW. Indeed, we claim that

δ�(˜WQ,W) → 0 as Q → ∞.

To see this, fix ε > 0 and choose D in such a way that the set �>D = {DW >

D} has measure at most ε2. Let �≤D = � \ �>D and ˜�≤D = �≤D ∪ {∞} = ˜� \
�>D . Setting ˜WQ,≤D = (˜WQ)|˜�\�>D

and W≤D = W|�\�>D and defining ˜W≤D as
the trivial extension of W≤D to ˜�≤D , we will want to show that for Q large
enough, d2→2(˜W≤D, ˜WQ,≤D) ≤ ε, since this implies that δ2→2(W≤D, ˜WQ,≤D) ≤ ε

and hence δ�(˜WQ,W) ≤ ε. But this follows by essentially the same argument as
the one in the previous proof; all that is needed is that by Proposition 2.4, ˜W≤D is
(C, D)-bounded for some C < ∞.

Our second lemma estimates the distance between the empirical graphex corre-
sponding to a weighted graph H with weights in [0, 1] and the one corresponding
to the graph G obtained from H by choosing the edge in G randomly according to
H . More precisely, given a finite weighted graph H with weights Hi, j ∈ [0, 1] and
Hi,i = 0, define G(H) as the graph generated by taking an edge between i and j
with probability Hi, j , independently for every pair of vertices. Our next lemma esti-
mates the distance between the empirical graphon of H and the empirical graphon
of G(H).

Lemma 7.8 For every N0, ε, and δ, there exists n0 such that the following holds. For
any weighted graph H on n ≥ n0 vertices with weights in [0, 1], and any N ≤ N0,
the probability that δ2→2(W(H, N/n),W(G(H), N/n)) > ε is at most δ.

Proof We first extend both H and G trivially to N, and then define U as the
graphon U = W (G(H), N/n) − W (H, N/n). Then ‖U‖2→2 ≤ (t (C4,U ))1/4 by
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Lemma 3.18. As a consequence, the probability that ‖U‖2→2 > ε is bounded by
ε−4

E[t (C4,U )]. Using the bound (13) from the proof of Lemma 7.5 with E = n2,
F = n3, and ρ = N/n, we get that the probability that ‖U‖2→2 > ε is bounded by

ε−4
E[t (C4,U )] ≤ ε−4 N

4

n4
(

n2 + 2n3
) ≤ 3ε−4n3

N 4

n4
≤ 3ε−4 N

4
0

n0
≤ δ/2,

provided n0 ≥ 6ε−4δ−1N 4
0 . Let us now bound the other two components of �2→2.

For a fixed vertex v, by Hoeffding’s inequality [15],

P[|dG(H)(v) − dH (v)| > ε′n] ≤ 2e−2ε′2n.

Therefore, by a union bound,

P[there exists a vertex v such that |dG(H)(v) − dH (v)| > ε′n] ≤ 2ne−2ε′2n.

For any fixed ε′, if n is large enough, this probability is less than δ/2. If this does not
happen, then for every vertex v,

∣

∣

∣DW (G(H), N
n )(v) − DW (H, N

n )(v)
∣

∣

∣ ≤ Nε′.

Therefore, for ε′ small enough,

‖DW (G(H),N/n) − DW (H,N/n)‖2 ≤ N 3/2ε′ ≤ε2,

and

|‖W (G(H), N/n)‖1 − ‖W (H, N/n)‖1| = ∣

∣‖DW (G(H),N/n)‖1 − ‖DW (H,N/n)‖1
∣

∣

≤ N 2ε′ ≤ ε3.

This completes the proof of the lemma. �

With these preparations, we are ready to prove the sampling lemma.

Proof (Theorem 7.1) Fix ε > 0. We know from the definition of tightness that there
exist C and D so that we can remove a set �ε of measure at most ε2/2 to obtain a
(C, D)-bounded graphex. Then the expected number of points in GT whose feature
lies inside �ε is ε2T/2. Therefore, since it is a Poisson distribution, the probability
that GT (W) has more than ε2T points in �ε is at most

e
ε2T
2 (1−2 log 2).

This converges to 0 as T → ∞. If GT (W) does not have more than ε2T points, then
we can remove those points from GT (W) and the sample is equivalent to a sample
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from the graphex restricted to � \ �ε. (It may have isolated vertices but this does
not affect our distance.) Since a set of ε2T points in GT (W) corresponds to a set
of measure ε2 in W(GT (W, 1/T )), this shows that we may assume without loss of
generality that the original set is (C, D)-bounded, and prove Theorem 7.1 for δ2→2

instead of δ�.
Choose Wδ as in Lemma 7.6 (with δ taking the role of ε) so that in particular

δ2→2(W,Wδ) ≤ δ. For sufficiently small δ, Theorem 7.3 then implies that there
exists a T0 such that if T > T0, then the samples fromW andWδ can be coupled so
that

P[δ2→2(W(GT (W), 1/T ),W(GT (Wδ), 1/T )) > (31Cδ)1/4] < δ.

This means that it suffices to prove Theorem 7.1 for step function graphons with
equal size parts, uniformly over any set of graphons with a bounded number of parts
with the same size. Indeed, for any ε > 0, let δ > 0 be such that

2δ + (31δC)1/4 < ε.

If we then take Wδ as above, then δ2→2(Wδ,W) ≤ δ, so by Theorem 7.3, for large
enough T , we can coupleW(GT (Wδ, 1/T )) andW(GT (W, 1/T )) so that the proba-
bility that they have δ2→2 distance more than (31δC)1/4 is at most δ. Furthermore, we
can take T large enough so that the probability that δ2→2(W(GT (Wδ), 1/T ),Wδ) >

δ is at most δ (detailed below). Overall, by the triangle inequality, this implies that
the probability that δ2→2(W(GT (W), 1/T ),W) ≥ ε is at most 2δ. Since this works
for arbitrarily small δ, the theorem follows.

Suppose therefore that W = (W, 0, 0,�), where W is a step graphon with step
size ρ and m steps total. Fix ε > 0 and δ > 0. For a fixed part Pi and T , let XT,i be
the number of points in Pi in the Poisson process. The expectation of each XT,i is
ρT . For ε′ > 0, we have

P
[

XT,i > (1 + ε′)ρT
]

< eρT (ε′−(1+ε′) log(1+ε′)) = e−ρT c(ε′)

for a nonnegative number c(ε′). We also have

P
[

XT,i < (1 − ε′)ρT
]

< eρT (−ε′+(1−ε′) log( 1
1−ε′ ) = e−ρT c′(ε′)

for a nonnegative number c′(ε′). Therefore, if T is large enough, then the probability
that any part Pi has more than (1 + ε′)ρT or less than (1 − ε′)ρT points is less
than δ/2. Note that in particular this means that the total measure of nonzero points
is at most (1 + ε′)ρm. Therefore, with probability at least 1 − δ/2, we can add or
delete points with total measure at most ε′ρm to obtainW fromW (HT (W ), ρ). This
means that we can couple W(HT (W ), ρ) and W so that they differ on points with
total measure at most ε′ρm, and hence

‖W (HT (W ), ρ) − W‖1 ≤ 2ε′(1 + ε′)ρ2m2.
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Therefore, we have the same bound for |‖W (HT (W ), ρ)‖1 − ‖W‖1|. Since both
graphons are between 0 and 1, we also have

‖W (HT (W ), ρ) − W‖2→2 ≤ ‖W (HT (W ), ρ) − W‖2
≤ √‖W (HT (W ), ρ) − W‖1 ≤ √

2ε′(1 + ε′)ρm.

Finally, we have

‖DW(HT (W ),ρ) − DW‖22 ≤ ρm(ε′ρm)2 + ε′ρm((1 + ε′)ρm)2 = (ε′3 + 3ε′2 + ε′)ρ3m3.

We can therefore take ε′ small enough that δ2→2(W(HT (W ), ρ),W) < ε/2 with
probability at least 1 − δ/2.

Using Lemma 7.8 for ε/2 and δ/2, we have that with probability at least 1 − δ/2,

δ2→2(W, HT (W, 1/T )) ≤ ε

2
,

and with probability at least 1 − δ/2,

δ2→2(W(HT (W ), 1/T ),W(GT (W), 1/T )) ≤ ε

2
.

Therefore, with probability at least 1 − δ,

δ2→2(W,W(GT (W), 1/T ))

≤ δ2→2(W, HT (W, 1/T )) + δ2→2(W(HT (W ), 1/T ),W(GT (W), 1/T ))

≤ ε

2
+ ε

2
= ε.

This completes the proof of Theorem 7.1. �

7.3 Proofs of Theorem 2.18, Proposition 2.13, and
Theorem 2.23

Having completed the proof of Theorem 7.1, we are finally ready to establish that
δ� convergence is equivalent to GP-convergence, together with several of the other
equivalences stated in Sect. 2. To this end, we first prove the following theorem.

Theorem 7.9 Given a pair of graphexesW,W′, we have δ�(W,W′) = 0 if and only
if for every T > 0, GT (W) and GT (W′) have the same distribution.

Proof If δ�(W′,W) = 0, then taking Wn = W ′ for each n, Theorem 6.17 implies
that GT (W) and GT (W′) must have the same distribution for every T . Suppose
now that GT (W) and GT (W′) have the same distribution for every T . By Theorem
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7.1, we can choose T such that with probability at least 0.99, δ�(GT (W),W) < ε/2
and δ�(GT (W′),W′) < ε/2. Since GT (W) and GT (W′) have the same distribution,
the two graphexes have distance at most ε. Since this holds for every ε, the lemma
follows. �

Proof (Theorems 2.18, Proposition 2.13, and Theorem 2.23) We start with the proof
of Theorem 2.18. One direction follows from Theorem 6.17. Suppose now that
Wn is GP-convergent to W. We know by Theorem 4.1 that then the set Wn is
tight. By Theorem 2.21, Wn therefore has a subsequence that converges accord-
ing to δ� to a graphex W

′, which in turn implies the subsequence is GP-convergent
to W

′. This implies that for any T > 0, GT (W) and GT (W′) have the same dis-
tribution. By Theorem 7.9, δ�(W,W′) = 0, so δ�(Wn,W) → 0. Next recall that
by Proposition 2.17, the distances δ� and δ2→2 give equivalent topologies on sets
with uniformly bounded marginals, showing that Theorem 2.18 implies Proposi-
tion 2.13. We conclude by noting that Theorem 2.23 follows from Corollary 6.2 and
Proposition 2.13. �

8 Identifiability

In this section, we prove Theorem 2.5. In fact, we will prove the following version,
which by Theorem 7.9 is equivalent.

Theorem 8.1 Let W1 = (W1, S1, I1,�1) and W2 = (W2, S2, I2,�2) be
graphexes, where �i = (�i ,Fi , μi ) are σ -finite spaces. Suppose δ�(W1,W2) =
0. Then there exists a third graphex W = (W, S, I,�) over a σ -finite measure
space � = (�,F , μ) and measure preserving maps ϕi : dsuppWi → � such that
Wi |ϕ−1(�) = W

ϕi (and Wi , Si = 0 everywhere else) for i = 1, 2.

To prove the theorem, we will first prove the following theorem, which may be
of independent interest. We recall that a Borel measure space is a measure space
that is isomorphic to a Borel subset of a complete separable metric space equipped
with a Borel measure, where, as usual, two measure spaces � = (�,F , μ) and
�′ = (�′,F ′, μ′) are called isomorphic if there exists a bijective map ϕ : � → �′
such that both ϕ and its inverse are measure preserving.

Theorem 8.2 Let W1 = (W1, S1, I1,�1) and W2 = (W2, S2, I2,�2) be
graphexes, where �i = (�i ,Fi , μi ) are σ -finite Borel spaces. Suppose further that
DWi > 0 everywhere for i = 1, 2, and δ�(W1,W2) = 0. Then μ1(�1) = μ2(�2),
I1 = I2, and there exists a coupling of �1 and �2, that is, a measure ν on
(�1 × �2,F1 × F2) with marginals μ1 and μ2, such that if πi : �1 × �2 → �i is
the projectionmap, then W π1

1 = W π2
2 ν-almost-everywhere, and Sπ1

1 = Sπ2
2 ν-almost-

everywhere.

Theorem 8.2 should be compared to Proposition 8 from [3] which states the
analogous result for integrable Borel graphons that have cut distance zero (without
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the assumption that W1 and W2 are non-negative), using a different proof technique.
Using still different proof techniques, Janson proved a similar result (again without
assuming non-negativity), showing that after trivially extending two integrable Borel
graphons with cut distance zero they can be coupled so that the projections are equal
almost everywhere; see [17]. We will prove Theorem 8.2 in Sect. 8.1.

Remark 8.3 Throughout this paper, we have considered graphexes where all three
parts are non-negative. While this makes sense when considering graphexes as gen-
erators of a graphex process, from an analytical point of view, it is less natural.
Indeed, it is easy to define the kernel and weak kernel distance for graphexes where
the three parts take values in R. Taking, e.g., the kernel distance d2→2 defined in
(1), all we need to do is replace the L1 norms in the third part by a signed “edge
density” ρ(Wi ) = ∫

W dμ × dμ + 2
∫

S dμ + 2I , and then use the third root of
|ρ(W1) − ρ(W2)| instead of the third root of |‖W1‖1 − ‖W2‖|. In particular in
view of the just discussed results from [3, 17], we conjecture that Theorem 8.2 holds
for signed graphexes as well, provided the condition DWi > 0 is replaced by the
condition D|Wi | > 0, where |Wi | is obtained from Wi by replacing all three com-
ponents of Wi by their absolute values. We leave the proof of this conjecture as an
open problem.

Once we have established Theorem 8.2, we will then prove Theorem 8.1 by
generalizing a construction which was developed by Janson for the dense case in
[16]. To this end, we will assign to each graphex W a “canonical version” ̂W such
that W is a pullback of ̂W and show that if two graphexes are equivalent, then their
canonical versions are isomorphic up to measure zero changes. This will be carried
out in Sect. 8.2.

Remark 8.4 Section8.2 does not use nonnegativity in any essential way, and should
be easily generalizable to signed graphexes. This should give a relatively straight-
forward proof of the analogue of Theorem 8.1 for graphons of cut distance zero, and
also allow for the more general setting of signed graphexes, once the above conjec-
tured generalization of Theorem 8.2 is established. Again we leave this as an open
problem.

8.1 Infimum Is Minimum

In this subsection, we will prove Theorem 8.2. The proof will be based on a series
of lemmas.

Let ˜Wi = (˜Wi ,˜Si ,˜Ii ,˜�i ), for i = 1, 2, be trivial extensions of Wi to spaces of
infinite measure, where ˜�i = (˜�i , ˜Fi , μ̃i ), and let ε > 0. By Proposition 4.7 (3),
there exist ˜�ε

i ⊆ ˜�i such that ˜�i \ ˜�ε
i has measure at most ε, and a measure νε on

˜�ε
1 × ˜�ε

2 with marginals μ̃1|˜�ε
1
and μ̃2|˜�ε

2
such that for the restricted graphexes ˜Wi,ε,

‖˜W π1
1,ε − ˜W π2

2,ε‖2→2,νε
≤ ε
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and
∫

˜�ε
1×˜�ε

2

(

D
˜W1,ε

(x) − D
˜W2,ε

(y)
)2

dνε(x, y) ≤ ε4.

With a slight abuse of notation, we extend νε to ˜�1 × ˜�2 by zero. This means that
in fact

‖˜W π1
1 − ˜W π2

2 ‖2→2,νε
≤ ε

and
‖D

˜W
π1 ,νε
1

− D
˜W

π2 ,νε
2

‖2 ≤ ε2.

We first prove the following lemma.

Lemma 8.5 For any c,

(1) limε→0 νε(�1,>c × �2,>c) = μi (�i,>c) for i = 1, 2 (regardless of the choice of
νε), and

(2) μ1(�1,>c) = μ2(�2,>c).

Proof We first prove (1). By symmetry, it suffices to prove it for i = 1. Note that for
any x ∈ ˜�ε

i ,
D

˜Wi,ε
(x) ≤ D

˜Wi
(x) ≤ D

˜Wi,ε
(x) + ε

and that ˜�i,>c = �i,>c. Therefore,

ενε

(

�1,>c × (˜�2\�2,>c−(
√

ε+ε))

)

≤
∫

�1,>c×(˜�2\�2,>c−(
√

ε+ε))

(

DW1,ε (x) − DW2,ε (y)
)2 ≤ ε4,

which implies that

νε(�1,>c × (˜�2 \ �2,>c−(
√

ε+ε))) < ε3.

Now, for any ε,

|μ1(�1,>c) − νε(�1,>c × �2,>c)| ≤ ε + |νε(�1,>c × ˜�2) − νε(�1,>c × �2,>c)|
= ε + νε(�1,>c × (˜�2 \ �2,>c))

= ε + νε(�1,>c × (˜�2 \ �2,>c−(
√

ε+ε))) + νε(�1,>c × (�2,>c−(
√

ε+ε) \ �2,>c))

< ε + ε3 + μ2(�2,>c−(
√

ε+ε) \ �2,>c).

This last expression is finite, and tends to 0 as ε → 0, so

lim
ε→0

νε(�1,>c × �2,>c) = μ1(�1,>c).
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This proves (1). From this, (2) is obvious. �

Lemma 8.6 For any n ≥ 1, there exists a measure νn on �1,>1/n × �2,>1/n such
that the following hold:

(1) νn is a coupling of �1,>1/n and �2,>1/n,
(2) νn+1|�1,>1/n×�2,>1/n = νn,
(3) W π1

1 and W π2
2 are equal when restricted to (�1,>1/n × �2,>1/n)

2, νn × νn-almost
everywhere, and

(4) D
W

π1
1
and D

W
π2
2
are equalwhen restricted to�1,>1/n × �2,>1/n, νn-almost every-

where.

Proof It is well known that any two Borel measurable spaces with the same car-
dinality are isomorphic; see, e.g., Theorem 8.3.6 in [12]. As a consequence, each
Borel measure space (�,F , μ) with μ(�) < ∞ is either empty or isomorphic to
a finite set (with the discrete topology), the countable set {0} ∪ {1/n : n ∈ N} (with
the induced topology from R), or the Cantor cube C = {0, 1}∞ (with the product
topology), equipped with the Borel σ -algebras generated by the topologies, and a
measure that is a finite Borel measure with full support.

We can therefore assume without loss of generality that for each i , �i,>1 and
each set �i,>1/(n+1) \ �i,>1/n are of this form. This means we may without loss of
generality assume the following properties:

(1) Each �i,>1/n , and thus each �2
i,>1/n , is compact.

(2) For any i1, i2 = 1, 2 and n1, n2 ∈ N
+, and any finite Borel measure ν on

�i1,>1/n1 × �i2,>1/n2 , the set of all step functions on �i1,>1/n1 × �i2,>1/n2 cor-
responding to partitions of �i j ,>1/n j into clopen sets for j = 1, 2 is dense in
L1(�i1,>1/n1 × �i2,>1/n2).

Now, take a sequence εk → 0, and recall that we have an almost couplingmeasure
νεk on ˜�1 × ˜�2 with

‖˜W π1
1 − ˜W π2

2 ‖2→2,νεk
≤ εk

and
‖D

˜W
π1,νεk
1

− D
˜W

π2 ,νεk
2

‖2 ≤ ε2k .

Weknow that for each n,�1,>1/n × �2,>1/n is compact, and for any K > 0, the set
of measures on it bounded by K is compact under the topology of weak convergence
of measures. Since for any c,

lim
k→∞ νεk (�1,>c × �2,>c) = μ1(�1,>c) = μ2(�2,>c) < ∞,

we can take a subsequence of νεk such that for each n, the measure is convergent
when restricted to �1,>1/n × �2,>1/n . Without loss of generality we assume that the
original sequence has this property. For each n, we then define νn as the limit measure
on �1,1/n × �2,>1/n . Having defined νn we now prove (1)–(4).

(1) We have seen in Lemma 8.5 that
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νn(�1,>1/n × �2,>1/n) = μ1(�1,>1/n) = μ2(�2,>1/n).

For any clopen F ⊆ �1,>1/n , F × �2,>1/n is clopen in�1,>1/n × �2,>1/n . Therefore,

lim
k→∞ νεk (F × �2,>1/n) = νn(F × �2,>1/n).

On the other hand, by Lemma 8.5,

νεk (F × (˜�2 \ �2,>1/n)) ≤ νεk (�1,>1/n × (˜�2 \ �2,>1/n))
k→∞−−−→ 0.

We also have that
|νεk (F × ˜�2) − μ1(F)| ≤ εk

k→∞−−−→ 0.

Therefore for any clopen set, μ1(F) = νn(F × �2,>1/n). This implies that μ1 and
the projection of νn onto �1,>1/n are the same, which proves (1).

(2) Since �1,>1/n × �2,>1/n is clopen in �1,>1/(n+1) × �2,>1/(n+1),

νn+1(�1,>1/n × �2,>1/n) = lim
k→∞ νεk (�1,>1/n × �2,>1/n) = νn(�1,>1/n × �2,>1/n).

Furthermore, for any closed F ⊆ �1,>1/n × �2,>1/n , F is also closed in�1,1/(n+1) ×
�2,1/(n+1), which implies that

lim sup
k→∞

νεk (F) ≤ νn+1(F).

This implies that νεk converges weakly to νn+1|�1,>1/n×�2,>1/n , but since it also con-
verges to νn , the two must be equal.

(3) Let Wi,n = ˜Wi |(�i,>1/n)2 . Since

‖˜W π1
1 − ˜W π2

2 ‖2→2,νεk
≤ εk,

we have that in particular, for any n,

‖W π1
1,n − W π2

2,n‖2→2,νεk
≤ εk .

This implies that
‖W π1

1,n − W π2
2,n‖�,νεk

≤ εkμ1(�1,>1/n).

Since�i,>1/n each have finite measure, we can use Janson’s argument in [16]. We
present the argument for completeness. Fix ε. We can find step graphons U1,n and
U2,n on (�1,>1/n)

2 and (�2,>1/n)
2, with each part in the partition being a clopen set,

such that
‖Ui,n − Wi,n‖1 ≤ ε.



128 C. Borgs et al.

This means that for any coupling measure on �1,>1/n × �2,>1/n ,

‖Uπi
i,n − W πi

i,n‖1 ≤ ε.

Now, Uπ1
1,n −Uπ2

2,n is a step function on (�1,>1/n × �2,>1/n)
2 with a partition into

clopen parts. This means that since the restrictions of νεk weakly converge to νn ,

‖Uπ1
1,n −Uπ2

2,n‖�,νεk

k→∞−−−→ ‖Uπ1
1,n −Uπ2

2,n‖�,νn .

Take k large enough so that εkμ1(�1,>1/n) ≤ ε and

∣

∣

∣

∣

‖Uπ1
1,n −Uπ2

2,n‖�,νεk
− ‖Uπ1

1,n −Uπ2
2,n‖�,νn

∣

∣

∣

∣

≤ ε.

We then have

‖W π1
1,n − W π2

2,n‖�,νn

≤ ‖W π1
1,n −Uπ1

1,n‖1,νn + ‖Uπ1
1,n −Uπ2

2,n‖�,νn + ‖Uπ2
2,n − W π2

2,n‖1,νn
≤ 3ε + ‖Uπ1

1,n −Uπ2
2,n‖�,νεk

≤ 3ε + ‖W π1
1,n −Uπ1

1,n‖1,νεk
+ ‖W π1

1,n − W π2
2,n‖�,νεk

+ ‖Uπ2
2,n − W π2

2,n‖1,νεk

≤ 6ε.

Since this holds for any ε, this proves (3).
(4) Fix ε > 0 and assume that εk ≤ ε. Since D

˜Wi,εk
(x) ≤ DWi (x) ≤ D

˜Wi,εk
(x) +

εk for all x ∈ �i ∩ ˜�ε
i ,

νε

({

x ∈ �1,>1/n × �2,>1/n :
∣

∣

∣DW
π1
1

(x) − D
W

π2
2

(x)
∣

∣

∣ ≥ 2ε
})

≤ νε

({

x ∈ �1,>1/n × �2,>1/n :
∣

∣

∣D
˜W

π1 ,νεk
1

(x) − D
˜W

π2 ,νεk
2

(x)
∣

∣

∣ ≥ ε
})

≤ ε−2‖D
˜W

π1 ,νεk
1

− D
˜W

π2 ,νεk
2

‖22 ≤ ε−2ε4k .

Since for all ε > 0 the right side converges to 0 as k → ∞ this shows that νn is
supported on {x ∈ �1,>1/n × �2,>1/n : D

W
π1
1

(x) = D
W

π2
2

(x)}. �

Proof (Theorem 8.2) After these preparations, we are ready to define the measure μ

on �1 × �2. Note that since before the extensions DWi > 0 almost everywhere, we
have that

⋃

n �i,>1/n = �i . For A ⊆ �1 × �2, let

ν(A) = lim
n→∞ νn(A ∩ (�1,>1/n × �2,>1/n))

=
∞
∑

n=1

νn(A ∩ ((�1,>1/n × �2,>1/n) \ (�1,>1/(n−1) × �2,>1/(n−1)))).
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Here with a slight abuse of notation we think of �i,1/0 as the empty set. To show that
this is a coupling, note that for any measurable set X ⊆ �1,

μ1(X) = lim
n→∞ μ1(X ∩ �1,>1/n)

= lim
n→∞ νn((X ∩ �1,>1/n) × �2,>1/n)

= lim
n→∞ νn((X × �2) ∩ (�1,>1/n × �2,>1/n)) = ν(X × �2),

where in the second step we used that for each n, the restriction of ν to �1,>1/n ×
�2,>1/n is equal to νn , which is a coupling. Clearly the analogous argument works
for subsets Y ⊆ �2.

Now, let

N = {(x, y) = ((x1, x2), (y1, y2)) ∈ (�1 × �2)
2 : W π1

1 (x, y) �= W π2
2 (x, y)}

and
M = {x = (x1, x2) ∈ (�1 × �2) : D

W
π1
1

(x) �= D
W

π2
2

(x)}.

Let
Nn = {(x, y) ∈ (�1,>1/n × �2,>1/n)

2 : W π1
1 (x, y) �= W π2

2 (x, y)}

and
Mn = {x = (x1, x2) ∈ (�1,>1/n × �2,>1/n) : D

W
π1
1

(x) �= D
W

π2
2

(x)}.

Since
⋃

n�i,>1/n = �i and�i,>1/n ⊆ �i,1/(n+1), we have that N = ⋃

n Nn and M =
⋃

n Mn . By Lemma 8.6 (3,4), (ν × ν)(Nn) = (νn × νn)(Nn) = 0 and ν(Mn) = 0,
which implies that (ν × ν)(N ) = 0 and ν(M) = 0, and hence W π1

1 = W π2
2 and

D
W

π1
1

= D
W

π2
2

almost everywhere. Since W π1
1 = W π2

2 almost everywhere implies
that DW

π1
1

= DW
π2
2

almost everywhere, this in turn implies that Sπ1
1 = Sπ2

2 ν-almost
everywhere.

To prove that I1 = I2, we again use Proposition 4.7, but instead of (3) we this
time use (2). Fix D > 0. Since δ2→2(W1,≤D,W2,≤D) = 0, we in particular have that
‖W1,≤D‖1 = ‖W2,≤D‖1. But since W π1

1 = W π2
2 and D

W
π1
1

= D
W

π2
2

almost every-
where,

∫

(�1,≤D)2
W1 dμ1 × dμ1 =

∫

(�1×�2)2
W π1

1 1D
W

π1
1

≤D dν × dν

=
∫

(�1×�2)2
W π2

2 1D
W

π2
2

≤D dν × dν

=
∫

(�2,≤D)2
W2 dμ2 × dμ1.
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In a similar way,
∫

�1,≤D S1 = ∫

�2,≤D S2. Therefore ‖W1,≤D‖1 = ‖W2,≤D‖1 implies
I1 = I2. �

Corollary 8.7 Let W = (W, S, I,�) and W
′ = (W ′, S′, I ′,�′) be graphexes that

are equivalent, and suppose that DW, DW′ > 0 everywhere. Then there exist a posi-
tive integer n and a chain of graphexesWi = (Wi , Si , Ii ,�i ) for i = 0, . . . , n, with
DWi > 0 everywhere for each i = 0, . . . , n,W0 = W,Wn = W

′, and for each i ≥ 1,
either Wi−1 = W

ϕi
i almost everywhere for some measure preserving map ϕi from

�i−1 to �i , orWi = W
ϕi
i−1 almost everywhere for some ϕi from �i to �i−1. In fact,

we can take n = 4.

Proof By the construction in the next section (which itself does not use Corol-
lary 8.7), there exists W1 = (W1, S1, I1,�1) such that �1 is Borel and a measure-
preserving map ϕ1 from �0 to �1 with W = W0 = W ϕ1

1 almost everywhere. Then
�0 = dsuppW0 = ϕ−1(dsuppW1), so by replacing�1 by its restriction to dsuppW2,
we may assume that DW1 > 0 everywhere. Similarly, there exists (W3,�3) with �3

Borel and a measure preserving map ϕ4 from�4 to�3 withW ′ = W4 = W ϕ4
3 almost

everywhere and DW3 > 0 everywhere. Now, we can apply Theorem 7.1 to show that
δ�(W1,W3) = 0. We can then apply Theorem 8.2 to (W1,�1) and (W3,�3) to find
a Borel space �2 and measure preserving maps ϕ2 from �2 to �1 and ϕ3 from �2 to
�3 such that W ϕ3

3 = W ϕ2
1 almost everywhere. We can then take W2 to be, say, W ϕ2

1 .
�

8.2 Canonical Graphex

In this section, we prove Theorem 8.1. We follow the approach of Janson in [16],
based on the construction of Lovász and Szegedy in [23].

Concretely, given a graphex W = (W, S, I,�), where � = (�,F , μ), define
a map ψW : � → L1(�,F , μ) by x 
→ W (x, ·), and define a map ψW : � →
L1(�,F , μ) × R by x 
→ (W (x, ·), S(x)), where we equip L1(�,F , μ) with the
standard Borel σ -algebra and L1(�,F , μ) × R with the standard product Borel σ -
algebra. Note that in general, we only know thatψW (x) ∈ L1(�,F , μ) for almost all
x ∈ �, but by changing W on a set of measure zero, we may assume that this holds
for all x ∈ �; we will assume that throughout this section. We will see in Lemma 8.9
that ψW , and thus ψW, is measurable. Defining μW and μW as the pushforward of
μ under ψW and ψW respectively, and �W and �W as the corresponding supports,
we then construct a graphex ̂W over �W (equipped with the Borel σ -algebra and
the measure μW) such that W is almost everywhere equal to a pullback of ̂W. Fur-
thermore, we will show that if W′ is a.e. equal to a pullback of W, then we can
find a measure preserving bijection ϕ∗ from �W to �′

W
such that ̂W = (̂W′)ϕ∗

a.e.
Combined with Corollary 8.7, this will establish Theorem 8.1.

We first state some preliminary lemmas. Recall that if (�,F , μ) is a measure
space, then L1(�,F , μ) is a Banach space where each point is an equivalence class
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consisting of integrable measurable functions from � to R, where two functions are
equivalent if they are equal almost everywhere (or equivalently their L1 distance is
0). Note that in general, the space L1(�,F , μ) is not separable, a fact whichwill lead
to technical complications when consideringmeasurable functions into L1(�,F , μ)

(e.g., the sum of two such functions is in general not measurable). As in [16], we will
avoid these difficulties by carefully constructing separable subspaces of L1(�,F , μ)

such that the functions of interest take values in these subspaces. See Lemma 8.8
below.

Throughout this section, we will frequently consider two measure spaces
(�,F , μ) and (�′,F ′, μ′), where � = �′, F ′ ⊆ F , and μ′ is the restriction of
μ to F ′. With a slight abuse of notation, we will often denote the second space by
(�,F ′, μ), rather than (�,F ′, μ|F ′).

As already noted, the space L1(�,F , μ) is in general not separable (if � is a
Borel space, it is, but we want to define this construction for general �). We will
therefore need the following lemma.

Lemma 8.8 Suppose that (�,F , μ) and (�′,F ′, μ′) are σ -finite measure spaces,
W : � × �′ → R ismeasurable, and for all x ∈ �, the functionW (x, ·) is integrable.
Let ψW : � → L1(�,F , μ) be the map x 
→ W (x, ·). Then we can find a separable
closed subspace B of L1(�′,F ′, μ′) such that ψW (x) ∈ B for all x ∈ �.

Proof First, assume that W is bounded and both μ(�) < ∞ and μ(�′) < ∞. The
statement of the lemma then clearly holds for all step functions, and by a monotone
class argument it holds for all bounded W .

Next, relax the condition that μ′(�′) < ∞. Let �′
1 ⊆ �′

2 ⊆ · · · ⊆ �′
n ⊆ · · · be a

sequence of measurable subsets of �′ with finite measure and
⋃∞

n=1 �′
n = �′. Then

for every n we can find a separable closed subspace Bn ⊆ L1(�′
n,F ′|�′

n
, μ′|�′

n
) such

that for every x ∈ �, W (x, ·)|�′
n
∈ Bn . Let ˜Bn consist of those f ∈ L1(�′,F ′, μ′)

that have f |�′
n
∈ Bn and f |�′−�′

n
≡ 0. Clearly ˜Bn is isomorphic to Bn , and thus

separable. Let B be the closure of the space generated by
⋃

n
˜Bn; this is sep-

arable. We claim that for any x ∈ �, the function W (x, ·) is contained in B.
It suffices to show that for any ε, there is an n ∈ N and a g ∈ ˜Bn such that
‖W (x, ·) − g‖1 < ε. Since W (x, ·) ∈ L1(�′,F ′, μ′), we can take n large enough
that ‖W (x, ·) − W (x, ·)χ(�′

n)‖1 < ε. But then by the definition of ˜Bn , we have
W (x, ·)χ(�′

n) ∈ ˜Bn , so taking g = W (x, ·)χ(�′
n), we are done.

In a similar way, we can approximate an unbounded W by the function W1|W |≤n

to relax the condition that W is bounded.
Finally, for general � and �′, we can write � as the disjoint union of finite

measure sets �1,�2, . . . , �n, . . . . We know that the image of each �n is contained
in a separable closed subspace Bn ⊆ L1(�′,F ′). Therefore, taking B to be the closure
of the subspace generated by

⋃

n Bn , the image of the map ψW is contained in B. �

Lemma 8.9 Suppose (�,F , μ)and (�′,F ′, μ′)areσ -finitemeasure spaces,W : � ×
�′ → R is F × F ′-measurable, and that for all x ∈ �, the function W (x, ·) is inte-
grable. Then the map ψW : � → L1(�′,F ′, μ′) with x 
→ W (x, ·) is measurable
with respect to the standard Borel σ -algebra on L1(�,F , μ).
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Proof Our goal is to show that for any c ∈ [0,∞) and f ∈ L1(�′,F ′, μ′), the set

B( f,W, c) = {x ∈ � : ‖W (x, ·) − f ‖1 ≤ c}

is measurable.
Assume that x ∈ B( f,W, c), and let FW ⊂ L1(�′,F ′, μ′) be a countable set

such that W (x, ·) lies in the closure of FW for all x ∈ � (the existence of such a set
follows fromLemma8.8).Given any ε > 0,we can thenfind an ̂f ∈ FW such that x ∈
B(̂f ,W, ε), and ‖ f − ̂f ‖1 ≤ c + ε. If, on the other hand, ‖ f − ̂f ‖1 ≤ c + ε and
x ∈ B(̂f ,W, ε) then x ∈ B( f,W, c + 2ε). Since B( f,W, c) = ⋂

i B( f,W, c + εi )

whenever εi → 0, this proves that it is enough to prove measurability of B(̂f ,W, εi )

for all ̂f ∈ FW and an arbitrary sequence εi ∈ (0,∞) such that εi → 0.
Using this observation, it is easy to see that ifW1 andW2 obey the conclusions of

the lemma, then so does any linear combination. The lemma is clearly also true for
all step functions. A standard monotone class argument then implies that the lemma
holds for all bounded, measurable W .

If W is unbounded, we use that by assumption, ψW (x) ∈ L1(�′,F ′, μ′) for all
x ∈ �. Using this fact, one easily shows that

B( f,W, c) =
∞
⋂

n=1

B( f,W (x, ·)1|W (x,·)|≤n, c).

Since B( f,W (x, ·)1|W (x,·)|≤n, c) is measurable, this proves the statement for
unbounded W . �

We will also use the following technical lemma, which is Lemma G.1 in [16] (the
proof also works for σ -finite measures):

Lemma 8.10 Let (�,F , μ) be any σ -finite measure space, and B ⊆ L1(�,F , μ)

a closed separable subspace. Then there exists a measurable evaluation map

� : B × � → R

such that for any f ∈ B, for almost every x ∈ �, f (x) = �( f, x) (note that f (x) is
only defined almost everywhere). In particular, if L1(�,F , μ) is separable, we can
take B = L1(�,F , μ).

We need one more lemma.
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Lemma 8.11 Suppose that (�,F , μ) and (�′,F ′, μ′) are σ -finite measure
spaces, W : � × �′ → R is measurable, and for all x ∈ � and x ′ ∈ �′, both
W (x, ·) and W (·, x ′) are integrable. Let ψW be the map � → L1(�′,F ′, μ′) with
x 
→ W (x, ·), and ψ ′

W be the map �′ → L1(�,F , μ) with y 
→ W (·, y). Further,
let G be the Borel σ -algebra on L1(�,F , μ), and let

F ′
W = ψ ′−1

W (G).

Then for almost every x ∈ �, ψW (x) ∈ L1(�′,F ′
W , μ′).

Proof By Lemma 8.8, the image of ψ ′
W is contained in a separable subspace B ⊆

L1(�,F , μ). By Lemma 8.10, there exists a measurable map � : B × � → R such
that for any f ∈ B and almost any x ∈ �, f (x) = �( f, x). Define ˜W on � × �′ by

˜W (x, y) = �(ψ ′
W (y), x).

Then for every y and almost every x , ˜W (x, y) = W (x, y), so ˜W = W almost every-
where on � × �′. Thus, if we define ψ

˜W analogously to ψW , then for almost
every x ∈ �, ‖ψ

˜W (x) − ψW (x)‖L1(�′,F ′,μ′) = 0; that is, for almost all x , ψW (x) =
ψ

˜W (x) as elements of L1(�′,F ′, μ′). However, since � is B × �-measurable, and
ψ ′

W : �′ → B is measurable, ˜W is F × F ′
W -measurable, so in particular ψ

˜W (x) is
F ′

W -measurable for all x . Since ψW (x) = ψ
˜W (x) ∈ L1(�′,F ′, μ′) for almost every

x , it follows that ψW (x) ∈ L1(�′,F ′
W , μ′) for almost every x ∈ �. �

Let (W, S, I,�) be a graphex over� = (�,F , μ) such thatW (x, ·) is integrable
for all x . For each x ∈ �, we have the sectionWx ∈ L1(�,F , μ) defined byWx (y) =
W (x, y), giving us the map

ψW : � → L1(�,F , μ)

defined by x 
→ Wx . Let

ψW : � → L1(�,F , μ) × R

be defined by x 
→ (Wx , S(x)). By Lemma 8.9,ψW , and thusψW, is measurable. Let
μW = μψW and μW = μψW , and let �W ⊆ L1(�,F , μ) and �W ⊆ L1(�,F , μ) ×
R be the supports of μW and μW, respectively, i.e.,

�W = { f ∈ L1(�,F , μ) : μW (U ) > 0 for every openU ⊆ L1(�,F , μ)with f ∈ U },

and

�W = {( f, c) ∈ L1(�,F , μ) × R :
μW(U ) > 0 for every openU ⊆ L1(�,F , μ) × Rwith ( f, c) ∈ U }.
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Alternatively, we can also defineψW andμW as follows. Let (˜�, ˜F , μ̃) be defined as
˜� = � ∪ {�∞}, where �∞ is an atom with measure 1. Then we can think of ψW(x)
as a function in L1(˜�, ˜F , μ̃), with ψW(x)(y) = W (x, y) if y ∈ � and ψW(x)(y) =
S(x) if y = �∞, and ‖ψW(x)‖1 = DW(x). This gives a bijection L1(˜�, ˜F , μ̃) ≡
L1(�,F , μ) × R and ψW as a map from � to L1(˜�, ˜F , μ̃). Note that μW is the
projection ofμW, and thus�W is the closure of the projection of�W. Equipping�W

with the standard Borel σ -algebra GW , this gives us a measure space (�W ,GW , μW ),
and similarly we obtain �W = (�W,GW, μW).

LetG and˜G be theBorelσ -algebra on L1(�,F , μ) and L1(˜�, ˜F , μ̃), respectively.
Via the maps ψW and ψW they induce two different σ -algebras on �, the σ -algebras

FW = ψ−1
W (G)

and
FW = ψ−1

W
(˜G).

We also define ˜FW = FW × B and ˜FW = FW × B. Note that FW ⊆ FW, with the
example of a zero graphon but a nonconstant S function showing that strict inequality
is possible.

It is easy to see that ifW′ is equal toW almost everywhere, then μW = μW′ and
hence �W = �W′ . Indeed, if W = W

′ a.e., then for almost all x , ψW(x) = ψW′(x)
when viewed as vectors in L1. This implies that there exists a set N ⊆ � of measure
zero such that for all A ∈ ˜G, the symmetric difference of ψ−1

W
(A) and ψ−1

W′ (A) lies
in N , which shows that μW = μW′ . Furthermore, under the same change, FW ,FW

andFW ′ ,FW′ only change on a set of measure zero, implying that the Banach spaces
L1(�,FW , μ) and L1(�,FW, μ) remain unchanged.

Note that in general, μW is not σ -finite. Indeed, choosing W to be the graphon 0
over any space of infinite measure, and I, S to be 0, we have that ψ−1

W
(A) = � for

every A containing the origin (0) ∈ L1(˜�, ˜F , μ̃), soμW(A) = μ(�) = ∞ if 0 ∈ A,
and μW(A) = 0 otherwise. So in particular �W = {(0)} and μW(�W) = ∞. This
also means μW is not σ -finite.

It turns out, however, that this problem can be avoided if we require that the set
where DW = 0 has measure zero; see Lemma 8.13 below. Before stating the lemma,
we prove the following:

Proposition 8.12 The space �W as defined above is a complete, separable metric
space, with the metric induced by L1(˜�, ˜F , μ̃), andμW has full support in�W. Fur-
thermore,�W ⊆ L1(˜�, ˜FW , μ̃) ⊆ L1(˜�, ˜FW, μ̃). Finally, after modifying W and S
on a set of measure zero ψW becomes an everywhere defined, measure-preserving
map from (�,F , μ) to (�W,GW, μW), and we furthermore have ψ−1

W
(GW) = FW.

Proof By Lemma 8.8, the image of ψW is contained in a closed separable subspace
B of L1(�,F , μ). This means that the image of ψW is contained in ˜B = B × R,
which is a closed separable subspace of L1(˜�, ˜F , μ̃). We will show that in fact

�W = { f ∈ B : μW (U ) > 0 for every openU ⊆ B with f ∈ U }.
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and

�W = {( f, c) ∈ ˜B : μW(U ) > 0 for every openU ⊆ ˜B with ( f, c) ∈ U }.

Indeed, since ψ−1
W (L1(�,F , μ) \ B) = ∅, we have μW (L1(�,F , μ) \ B) = 0,

which in turn implies that support of μW is contained in B. Let, for a moment, the
above defined set be �′

W . First, if f ∈ �′
W , then for any open set U ⊆ L1(�,F , μ)

with f ∈ U , we have μW (U ) ≥ μW (U ∩ B) > 0. Conversely, if f ∈ �W , we know
wemust have f ∈ B, and for any openU ⊆ B with f ∈ U , we can find an open V ⊆
L1(�,F , μ) withU = V ∩ B, so in particular f ∈ V . Then μW (V ) > 0, and since
μW (L1(�,F , μ) \ B) = 0, we have μW (U ) = μW (V ) > 0, showing that f ∈ �′

W .
A similar, argument shows the second claim, noting that �W ⊆ ˜B = B × R.

Now take the union V of all open sets U ⊆ ˜B with μW(U ) = 0. Then �W =
˜B \ V . Since ˜B is separable and thus second countable, we can find a countable
collection U1,U2, . . . ,Un, . . . with μW(Un) = 0 and

⋃

n Un = V . This means that
μW(V ) = 0, soμ(ψ−1

W
(V )) = 0, and thus almost every point in� is mapped to�W.

Since V is open, �W is closed in ˜B, so it is a closed subset of a separable Banach
space; thus it is a complete, separable metric space.

To see thatμW has full support, consider an open subsetU ⊆ �W withμW(U ) =
0. Since �W is closed in ˜B and μW(˜B \ �W) = 0, we can find an open subset
Ũ ⊆ ˜B such that U = Ũ ∩ �W and μW(Ũ ) = μW(U ) = 0, so in particular Ũ ⊆
V = ˜B \ �W. But this implies U = Ũ ∩ �W = ∅, as required.

Next, we use Lemma 8.11 to infer that ψW (x) ∈ L1(�,FW , μ) for almost all
x ∈ �, which in turn implies that ψW(x) ∈ L1(˜�, ˜FW , μ̃) for almost all x ∈ �. As
a consequence, the open set U = L1(˜�, ˜F , μ̃) \ L1(˜�, ˜FW , μ̃) has measure zero:

μW(U ) = μ(ψ−1
W

(U )) = μ({x ∈ � : ψW(x) /∈ L1(˜�, ˜FW , μ̃)}) = 0.

Since μW has full support on �W, the open set U ∩ �W ⊆ �W is empty, showing
that �W ⊆ L1(˜�, ˜FW , μ̃).

Let N = ψ−1
W

(V ), where as above V = ˜B \ �W. We have seen that μ(N ) = 0.
Furthermore, for A ∈ GW, A ⊆ �W and hence ψ−1

W
(A) ⊆ � \ N . Finally,

μ(ψ−1
W

(A)) = μW(A) by the definition ofμW. Fix some f ∈ �W. On N × (� \ N ),
changeW (x, y) to f (y), and change it on (� \ N ) × N tomake it symmetric. Finally,
change it to 0 on N × N , and on N , change S to f (�∞). Clearly it is still the case
that W and S are measurable and W (x, ·) integrable for every x . We have changed
W and S on a set of measure zero, so �W and μW did not change, and we now
have that ψW is an everywhere defined, measure-preserving map from (�,F , μ) to
(�W,GW, μW).

To complete the proof, we need to show that ψ−1
W

(GW) = FW. To this end, we
note that for each open A ⊆ L1(˜�, ˜FW , μ̃),ψ−1

W
(A) = ψ−1

W
(A ∩ �W), which shows

that ψ−1
W

(˜G) = ψ−1
W

(GW). This proves the last claim. �
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Lemma 8.13 Let �W and μW be as defined above, and let GW be the Borel σ -
algebra over �W. If W is locally finite, W (x, ·) is integrable for all x ∈ �, and
μ(� \ dsuppW) < ∞, then (�W,GW, μW) is σ -finite.

Remark 8.14 Note that the condition μ(� \ dsuppW) < ∞ is necessary, since oth-
erwise the point {(0, 0)} becomes an atom with infinite measure.

Proof By Proposition 8.12, we can change W on a set of measure zero such that it
still satisfies the conditions of the lemma, and ψW becomes a measure-preserving
map from (�,F , μ) to (�W,GW, μW). Let�0 ⊂ L1(�,F , μ) × R be the subspace
consisting of just the origin, i.e., �0 = {(0, 0)}. Then

μW(�0) = μ(ψ−1
W

(�0)) = μ({x ∈ � : ‖ψW(x)‖1 = 0}) = μ(� \ dsuppW) < ∞.

Next define �n = {( f, c) ∈ �W : ‖ f ‖1 + c ≥ 1/n} for n ≥ 1. Then

μW(�n) = μ({x ∈ � : ‖ψW(x)‖1 + S(x) ≥ 1/n}) = μ({x ∈ � : DW(x) ≥ 1/n}) < ∞.

Here the last inequality follows from Proposition 2.4. Since �W = �0 ∪ �1 ∪ · · · ,
this proves that μW is σ -finite. �

Next, we would like to show that we can define a graphex ̂W on �W such that its
pullback is equal almost everywhere to W. Using Proposition 8.12, we can without
loss of generality assume that ψW is a measure-preserving map from (�,F , μ) to
(�W,GW, μW). By Lemma 3.2, this implies that the mapψ∗

W
: L1(�W,GW, μW) →

L1(�,FW, μ) with f 
→ f ψW and FW = ψ−1
W

(GW) is an isometric isomorphism.
Note that this in particular implies that ψ∗

W
and (ψ∗

W
)−1 are continuous, and hence

measurable.
Now, since �W is a separable metric space, L1(�W,GW, μW) is separable, so

there exists an evaluation map

� : L1(�W,GW, μW) × �W → R

such that for everyα ∈ L1(�W,GW, μW) and almost every g ∈ �W,α(g) = �(α, g).
Note that by definition, we also have that for every fixed α and almost every y ∈ �,
ψ∗

W
(α)(y) = α(ψW(y)) = �(α,ψW(y)).
By Proposition 8.12, �W ⊆ L1(˜�, ˜FW, μ̃) = L1(�,FW, μ) × R, which means

that (ψ∗
W

)−1( f |�) is well defined for all f ∈ �W. We therefore may define

̂W0( f, g) = �
(

(ψ∗
W

)−1( f |�), g
)

and
̂W ( f, g) = 1

2

(

̂W0( f, g) + ̂W0(g, f )
)

.

Since (ψ∗
W )−1 is measurable, ̂W0 and hence ̂W is measurable.
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Suppose ψW(x) ∈ �W. Then, noting that for all x , ψW(x)|� = ψW (x), we have
for almost all y,

̂W0(ψW(x), ψW(y)) = �(
(

ψ∗
W

)−1(ψW(x)|�), ψW(y)
)

= ψ∗
W

(

(ψ∗
W

)−1(ψW(x)|�)
)

(y) = ψW (x)(y) = W (x, y),

where the third and the fourth terms are only defined for almost all y. Thus ̂WψW

0
and hence ̂WψW is equal toW almost everywhere on � × �. We also definêS( f ) =
f (�∞), which gives us that for x ∈ �,

̂S(ψW(x)) = ψW(x)(�∞) = S(x),

implying that SψW = S. Finally, we take ̂I = I , giving us a graphex ̂W = (̂W ,̂S,
̂I ,�W) such that ̂WψW = W almost everywhere.

Note that this implies in particular that ̂W inherits the local finiteness property
fromW, so ̂W is a bona fide graphex over the σ -finite Borel space (�W ,GW , μW ).

Note that the requirement that ̂WψW = W and ̂SψW = S almost everywhere
uniquely determines ̂W up to changes on a set of measure zero. Indeed, if ̂W ′
is another graphon with ̂W ′ψW = ̂WψW (μ × μ)-almost everywhere, then by the
definition of pullbacks and the definition of μW, the equality ̂W ′ = ̂W must hold
(μW × μW)-almost everywhere. Similarly, if̂S′ is another functionwitĥS′ψW = ̂SψW

μ-almost everywhere, then ̂S′ = ̂S μW-almost everywhere. Also by definition we
must have ̂I ′ = ̂I .

On the other hand, suppose we have two graphexesW1 andW2 on the same space
� with W1 = W2 almost everywhere, S1 = S2 almost everywhere, and I1 = I2. We
have seen that �W1 = �W2 and μW1 = μW2 . Since their pullbacks are equal almost
everywhere, we must have ̂W1 = ̂W2 almost everywhere for any choices of ̂W1 and
̂W2, and ̂S1 = ̂S2 and ̂I1 = ̂I2 by definition.

Finally, if the graphex W only has the property that W (x, ·) is integrable for
almost every x , we can still define �W and μW in the same way, and find a ̂W such
that the pullback is defined almost everywhere on � × � and equal to W almost
everywhere. Again, it is easy to see that we obtain the same �W and μW if we first
modify W on a set of measure zero to make W (x, ·) integrable for every x , and any
choice of ̂W will be equal almost everywhere. Therefore, this construction gives a
graphex ̂W on (�W,GW, μW) for any graphex W.

Next, we show the following:

Lemma 8.15 For i = 1, 2, let Wi = (Wi , Si , Ii ,�i ) be graphexes with �i =
(�1,Fi , μi ) and μi (�i \ dsuppWi ) = 0. Suppose that there exists a measure-
preserving map ϕ : �1 → �2 such that W1 = W

ϕ
2 almost everywhere. Extend ϕ

to ϕ̃ : ˜�1 → ˜�2 by ϕ̃(�1,∞) = �2,∞. Then the map ϕ̃∗ : L1(˜�2) → L1(˜�1) defined
by f 
→ f ◦ ϕ̃ restricts to a map �W2 → �W1 , which is an isometric measure-
preserving bijection between (�W2 ,GW2 , μW2) and (�W1 ,GW1 , μW1), and ̂W2 =
̂W

ϕ∗
1 almost everywhere, for any choices of ̂W1 and ̂W2.
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Proof By the remarks before the lemma,wemay assume thatW1 = W
ϕ
2 everywhere,

not just almost everywhere, andW1(x, ·) andW2(x ′, ·) are always integrable. Since ϕ

and thus ϕ̃ is measure preserving, ϕ̃∗ is isometric and injective from L1(˜�2, ˜F2, μ̃2)

to L1(˜�1, ϕ̃
−1(˜F2), μ̃2) by Lemma 3.2. If x ∈ �1, then for almost every y ∈ �1

(note that the first two terms below are only defined for almost every y),

(ϕ∗ ◦ ψW2 ◦ ϕ)(x)(y) = (ψW2 ◦ ϕ)(x)(ϕ(y)) = W2(ϕ(x), ϕ(y)) = W1(x, y).

Therefore ϕ∗ ◦ ψW2 ◦ ϕ = ψW1 a.e. Furthermore,

(id ◦S2 ◦ ϕ)(x) = S2(ϕ(x)) = S1(x),

which implies that (id ◦S2 ◦ ϕ) = S1. Since ϕ̃∗ = ϕ∗ × id and ψWi = ψWi × S, this
implies that ϕ̃∗ ◦ ψW2 ◦ ϕ = ψW1 almost everywhere. Now let A ⊆ L1(˜�1) be Borel
measurable. Then

μW2((ϕ̃
∗)−1(A)) = μ2(ψ

−1
W2

((ϕ̃∗)−1(A)))

= μ1(ϕ
−1(ψ−1

W2
((ϕ̃∗)−1(A)))) = μ1(ψ

−1
W1

(A)) = μW1(A).

So ϕ∗ × id : L1(�2) × R → L1(�1) × R is a measure preserving isometry. Since it
is an isometry, in particular, it is continuous. Thus, (ϕ∗ × id)−1(L1(�1) × R \ �W1)

is an open set with measure zero, so it is disjoint from �W2 . This implies that ϕ∗
restricts to a measure-preserving injection �W2 → �W1 . Since �W2 is complete,
(ϕ∗ × id)(�W2) is a complete subset of �W1 , which is itself complete. Therefore
ϕ∗(�W2) is a closed subset of �W1 . However, we also have that

μW1 (�W1 \ ϕ∗(�W2 )) = μW2 ((ϕ
∗)−1(�W1 \ ϕ∗(�W2 ))) = μW2 ((ϕ

∗)−1(�W1 ) \ �W2 ) = 0.

But �W1 \ ϕ∗(�W2) is an open subset of �W1 of measure 0, which means it must be
the empty set because μW1 has full support in �W1 . Therefore, ϕ

∗ : �W2 → �W1 is
a measure-preserving isometry of metric measure spaces.

Now, we want to show that ̂W ϕ̃∗
1 = ̂W2. We have that almost everywhere on �1 ×

�1,
((̂W ϕ̃∗

1 )ψW2 )ϕ = ̂W
ϕ̃∗◦ψW2◦ϕ

1 = ̂W
ψW1
1 = W1 = W ϕ

2 .

Therefore (̂W ϕ∗
1 )ψW2 = W2 almost everywhere, but then ̂W ϕ∗

1 = ̂W2 almost every-
where. By definition, we also have ̂Sϕ∗

1 = ̂S2, and ̂I1 = I1 = I2 = ̂I2. �

Now, supposeW1 andW2 are equivalent. Then their restrictions to their respective
degree supports are also equivalent. ByCorollary 8.7, there exists a chain of pullbacks
that link W1 and W2. We have seen that if a graphex is a pullback of another, then
the construction above yields an isomorphism between the corresponding graphexes,
up to almost everywhere changes. This clearly extends to chains of pullbacks; thus,
we may find an isomorphism between �W1 and �W2 so that ̂W1 and ̂W2 are equal
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almost everywhere.Wecan extend themapψWi : �i → �Wi ,which is defined almost
everywhere, to be defined everywhere, by mapping the rest of the points in �i to an
arbitrary point.

9 Uniform Integrability and Uniform Tail Regularity

9.1 Uniform Integrability

The goal of this subsection is to prove Theorem 2.26. Before doing this we establish
that several alternative definitions of uniform integrability are equivalent to Defini-
tion 2.25.

Theorem 9.1 Given a set of integrable graphexes S, the following are equivalent.

(1) S is uniformly integrable.
(2) The graphexes in S have uniformly bounded ‖ · ‖1-norms, and for every ε > 0,

there exists a D such that for all W ∈ S, ‖W‖1 − ‖W≤D‖1 < ε.
(3) For any T > 0, the random variables E(GT (W)) with W ∈ S are uniformly

integrable.
(4) There exists T > 0 such that the random variables E(GT (W)) withW ∈ S are

uniformly integrable.

Proof Throughout this proof, let �>D , �≤D ,W>D ,W≤D , etc, be defined as before.
Let us first show (1) ⇒ (2). We have that

‖W1‖1 − ‖W≤D‖1 = 2
∫

�>D

S(x) dμ(x) + 2
∫

�>D×�≤D

W (x, y) dμ(x) dμ(y)

+
∫

�>D×�>D

W (x, y) dμ(x) dμ(y)

= 2
∫

�>D

DW(x) dμ(x) −
∫

�>D×�>D

W (x, y) dμ(x) dμ(y)

≤ 2
∫

�

DW1DW>D dμ.

Therefore, taking D for ε/2 in uniform integrability gives a good D for ε in (2).
To show that (2) ⇒ (3), we first show that if a set of graphexes has uniformly

bounded marginals, then the set of random variables is uniformly integrable. Let
ET be the random variable for a fixed W ∈ S that gives the number of edges of
GT (W). Recall that by Lemma 4.3, ET has expectation T 2‖W‖1/2 and variance
T 2‖W‖1/2 + T 3‖DW‖22. Let C be a bound on ‖W‖1 forW ∈ S. We then have that
for any K > T 2‖W‖1/2,
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P[ET > K ] ≤ T 2‖W‖1/2 + T 3‖DW‖22
(K − T 2‖W‖1/2)2 ≤ T 2C/2 + T 3CD

(K − T 2C/2)2
.

If K ≥ T 2C , then this gives

P[ET > K ] ≤ T 2C/2 + T 3CD

(K − T 2C/2)2
≤ T 2C/2 + T 3CD

(K/2)2
= 2T 2C + 4T 3CD

K 2
.

Therefore, for K0 ≥ T 2C ,

E[ET 1ET >K0 ] =
∞
∑

K=K0+1

P[ET ≥ K ]

≤
∞
∑

K=K0+1

2T 2C + 4T 3CD

K 2
≤ 2T 2C + 4T 3CD

K0
.

Suppose now that instead of uniformly bounded marginals, we have only (2). For
D > 0, let ET,D be the number of edges that either have both endpoints labeled
with a vertex in �≤D , one endpoint is labeled with a vertex in �≤D and the edge is
generated as a star from that vertex, or the edge is a dust edge. We then have that for
all D > 0,

E[ET 1ET >2K0 ] = E[ET 1ET >2K0,ET,D>K0 ] + E[ET 1ET >2K0,ET,D≤K0 ]
≤ E[ET − ET,D] + E[ET,D1ET,D>K0 ]

+ E[ET,D1ET,D≤K0,ET −ET,D>K0 ]
≤ E[ET − ET,D] + 2T 2C + 4T 3CD

K0
+ K0P[ET − ET,D > K0]

≤ 2E[ET − ET,D] + 2T 2C + 4T 3CD

K0
,

provided K0 ≥ T 2C . Condition (2) now implies that for any ε > 0, there exists a D
such that E[ET,D − ET ] < ε. Given such a D, we choose K0 in such a way that the
last term in the above bound is at most ε, implying that for each ε > 0 we can find
a K0 such that E[ET 1ET >2K0 ] ≤ 3ε. This proves that the set of random variables ET

are indeed uniformly integrable.
It is clear that (3) implies (4). Suppose now that (4) holds. Since the expectation

of ET is T 2‖W‖1/2, ‖W‖1 must be uniformly bounded for W ∈ S. Let C be an
upper bound. Suppose that (1) is false. Then there exists a fixed ε > 0, such that for
any D, there exists a graphex W ∈ S such that

∫

�>D

DW1DW>D dμ ≥ ε.
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Since E[DW] ≤ ‖W‖1 ≤ C , we have that μ(�>D) ≤ C/D. By taking D large
enough, we can assume that C/D ≤ D/2. Let FT,D be the number of edges in
GT (W) that have exactly one endpoint in �>D . Then

E[FT,D] ≥
∫

�>D

T 2 (DW(x) − C/D) dμ(x) ≥ T 2
∫

�>D

(DW(x)/2) dμ(x) ≥ T 2ε/2.

If there are no points sampled in �>D , then FT,D = 0. Conditioned on there being at
least one point sampled in �>D , the number of neighbors of a point whose feature
is x ∈ �>D is a Poisson random variable with mean equal to T DW(x)/2 ≥ T D/2.
Therefore,

E[FT,D|FT,D > 0] ≥ T D/2.

We also have that
E[FT,D1FT,D≤T D/4|FT,D > 0] ≤ T D/4.

Therefore,

E[FT,D1FT,D>T D/4|FT,D > 0] ≥ 1

2
E[FT,D|FT,D > 0].

We then have

E[FT,D1FT,D>T D/4] = E[FT,D1FT,D>T D/4|FT,D > 0]P[FT,D > 0]
≥ 1

2
E[FT,D|FT,D > 0]P[FT,D > 0] = 1

2
E[FT,D] ≥ T 2ε/4.

Since D can be arbitrary (above some D0), this contradicts Condition (4). �

Theorem 2.26 is an easy corollary of Theorem 9.1.

Proof (Theorem 2.26) By Theorem 2.18, Wn is GP-convergent to W. Fix a sub-
sequence ni such that lim infn→∞ ‖Wn‖1 = limi→∞ ‖Wni ‖1, and fix T > 0. Let ei
be the number of edges in GT (Wni ), and let e be the number of edges in GT (W).
Following the proof of Corollary 3.10 in [4], for λ > 0 define fλ : R+ → R+ by
fλ(x) = x1x≤λ. Then E[ fλ(ei )] ≤ E[ei ] = T 2‖Wni ‖1. Since ei → e in distribution,
E[ fλ(e)] = limi→∞ E[ fλ(ei )] ≤ T 2 limi→∞ ‖Wi‖1 = lim infn→∞ ‖Wn‖1. Themono-
tone convergence theorem then gives that T 2‖W‖1 = E[e] = limλ→∞ E[ fλ(e)]
≤ T 2 lim infn→∞ ‖Wn‖1, proving the first part of the theorem.

To prove the second part, assume first that Wn is uniformly integrable, and fix
ε > 0. By Theorem 9.1 (2), for every ε > 0, there exists a D such that eachWn has

∣

∣‖Wn‖1 − ‖Wn,≤D‖1
∣

∣ ≤ ε.

Since W is integrable, after possibly increasing D, we can also assume that

∣

∣‖W‖1 − ‖W≤D‖1
∣

∣ ≤ ε.
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Increasing D further, we may also assume that μ({DW = D}) = 0. By Proposi-
tion 4.6, δ2→2(Wn,≤D,W≤D) → 0, which implies in particular that ‖Wn,≤D‖1 →
‖W≤D‖1. Therefore, we can take n0 so that if n ≥ n0, then

∣

∣‖W≤D‖1 − ‖Wn,≤D‖1
∣

∣ ≤ ε.

These three inequalities imply that if n ≥ n0, then

|‖Wn‖1 − ‖W‖1| ≤ 3ε.

Since ε was arbitrary, this completes the proof of the first direction.
For the other direction, fix ε. SinceW is integrable, there exists D > 0 such that

‖W≤D‖1 ≥ ‖W‖1 − ε/2.

By increasing D, we can assume that μ({DW = D}) = 0. By Proposition 4.6,

‖Wn,≤D‖1 → ‖W≤D‖1.

We then have that

lim sup
n→∞

(

‖Wn‖1 − ‖Wn,≤D‖1
)

= lim sup
n→∞

(

(‖Wn‖1 − ‖W‖1) + (‖W‖1 − ‖W≤D‖1)

+ (‖W≤D‖1 − ‖Wn,≤D‖1)
)

≤ ε/2.

Therefore, there exists an n0 such that if n > n0, then

‖Wn‖1 − ‖Wn,≤D‖1 < ε.

SinceW1,W2, . . . ,Wn0 is a finite set of graphexes, each of which is integrable, we
can increase D so that the above inequality holds for each n, which by Theorem 9.1
means that they are uniformly integrable. �

9.2 Uniform Tail Regularity

The goal of this subsection is to prove Theorem 2.28. Before doing this, we show
that uniform tail regularity implies uniform integrability.

Lemma 9.2 Suppose that a set of graphexes consisting only of graphons is uniformly
tail regular. Then the set is uniformly integrable.

Proof Fix ε > 0. By the definition of tail regularity, we can find an M < ∞ such
that for each graphonW in the set there exists a subset�0 of measure at most M such
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that ‖W‖1 − ‖W |�0‖1 ≤ ε/3. Note that clearly ‖W‖1 ≤ M2 + ε/3, so in particular
the set of graphons has uniformly bounded L1 norm. Let

A = {x ∈ �0, DW (x) > 2M}.

Note that for any x ∈ A,

∫

�\�0

W (x, y) dμ(y) ≥ DW (x) −
∫

�0

W (x, y) dμ(y) ≥ DW (x) − M ≥ M,

which implies that

μ(A) ≤ 1

M

∫

A×�\�0

W dμ2 ≤ 1

M

∫

�\�0

DW dμ ≤ ε

3M
.

We then have
∫

�

DW1DW>2M dμ ≤
∫

�\�0

DW dμ +
∫

A
DW dμ

=
∫

�\�0

DW dμ +
∫

A×(�\�0)

W (x, y) dμ(x) dμ(y)

+
∫

A×�0

W (x, y) dμ(x) dμ(y)

≤ 2
∫

�\�0

DW dμ +
∫

A×�0

W (x, y) dμ(x) dμ(y)

≤ 2ε/3 + μ(A)μ(�0) ≤ ε.

�

Next, we show the following lemma. As before, �>δ is the set {x ∈ � :
DW(x) > δ}.
Lemma 9.3 Given a set of graphons S, the following are equivalent:

(1) The set of graphons is uniformly tail regular.
(2) The set of graphons has a uniform bound on their ‖ · ‖1-norm, and for every ε,

there exists a δ such that ‖W‖1 − ‖W |�>δ
‖1 ≤ ε.

(3) The set of graphons has a uniform bound on their ‖ · ‖1-norm, and for every ε,
there exists a δ such that ‖DW1DW≤δ‖1 ≤ ε.

Corollary 9.4 Given a set of graphons S, suppose that we replace each graphon
with a pullback. Let S ′ be the new set. Then S ′ is uniformly tail regular if and only
if S is uniformly tail regular.

Proof Property (2) in Lemma 9.3 is unaffected by taking pullbacks. �
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Proof (Lemma 9.3) We first show that (1) implies (2). Fix ε > 0. Take M for ε/2 as
in the definition of uniform tail regularity, let δ = ε/4M . Fix an arbitrary graphon
W ∈ S, and let �0 be a set of measure M such that

‖W‖1 − ‖W |�0‖1 ≤ ε/2.

Note that W has L1 norm at most M2 + ε/2, which proves that the graphs have a
uniform bound on their ‖ · ‖1-norm. Now, we have

‖W‖1 − ‖W |�>δ
‖1 ≤ ‖W‖1 − ‖W |�0‖1 + ‖W |�0‖1 − ‖W |�0∩�>δ

‖1 ≤ ε/2 + 2δM ≤ ε.

This shows that (1) implies (2).
The fact that (2) implies (1) follows from the observation that

μ(�>δ) =
∫

dμ(x)1DW (x)>δ ≤
∫

dμ(x)
DW (x)

δ
= 1

δ
‖W‖1.

Finally, (2) and (3) are equivalent by the fact that

∫

�×�\�>δ

W ≤
∫

�×�

W −
∫

�>δ×�>δ

W ≤ 2
∫

�×�\�>δ

W.

�

To prove Theorem 2.28 we establish three more lemmas.

Lemma 9.5 Suppose that a sequence of integrable graphons Wn converges to a
graphon W in the cut metric. Then for any D > 0 such that μ(DW = D) = 0, the
graphons Wn,≤D converge to W≤D in the cut metric.

Proof Let μ̃n be a coupling of trivial extensions of Wn and W , and let ˜�n be the
product space on which the coupling is defined. Let ˜Wn and ˜W be the pullbacks of
the trivial extensions to ˜�n , and suppose that

‖˜Wn − ˜W‖� < ε.

Defining A = {D
˜Wn

− D
˜W > 0} and B = {D

˜W − D
˜Wn

> 0}, we then have that

μ̃n({|D˜Wn
− D

˜W | >
√

ε}) ≤ 1√
ε
‖D

˜Wn
− D

˜W‖1

= 1√
ε

(

∫

A×˜�n

(˜Wn − ˜W ) +
∫

B×˜�n

(˜W − ˜Wn)
)

< 2
√

ε.

As a consequence,
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μ̃n({D˜Wn
> D, D

˜W ≤ D})
≤ μ̃n({|D˜Wn

− D
˜W | >

√
ε}) + μ̃n({D − √

ε < D
˜W ≤ D})

< 2
√

ε + μ({D − √
ε < DW ≤ D}).

For any δ > 0, we can take ε small enough so that this is at most δ. Similarly, we
have

μ̃n({D˜Wn
≤ D, D

˜W > D})
≤ μ̃n({|D˜Wn

− D
˜W | >

√
ε}) + μ̃n({D < D

˜W ≤ D + √
ε})

< 2
√

ε + μ({D < DW ≤ D + √
ε}),

which is also at most δ if ε is small enough.
Next we trivially extendWn,≤D andW≤D first to the spacesWn andW are defined

on, and then to the spaces used in the coupling μ̃n . Let ˜Wn,≤D and ˜W≤D be the
pullbacks, let ˜W ′

n,≤D be equal to ˜Wn,≤D on {D
˜W ≤ D}2 and 0 otherwise, and let ˜W ′

≤D

be equal to ˜W≤D on {D
˜Wn

≤ D}2 and 0 otherwise. Then ˜Wn,≤D and ˜W ′
n,≤D differ

only on {D
˜Wn

≤ D, D
˜W > D} × {D

˜Wn
≤ D} and its transpose. Indeed, if D

˜Wn
> D

in either coordinate, then both graphons are zero, and if D
˜W ≤ D in both coordinates,

then by the definition they are the same. Since ˜Wn,≤D has maximum degree D, this
implies that

‖˜Wn,≤D − ˜W ′
n,≤D‖� ≤ ‖˜Wn,≤D − ˜W ′

n,≤D‖1 ≤ 2μ̃n({D
˜Wn

≤ D, D
˜W > D})D ≤ 2δD.

Analogously,
‖˜W≤D − ˜W ′

≤D‖� ≤ 2δD.

Note that ˜W ′
n,≤D and ˜W ′

≤D are equal to ˜Wn and ˜W , respectively, on {D
˜Wn

≤ D, D
˜W ≤

D}2, and zero everywhere else, which implies that ˜W ′
n,≤D − ˜W ′

≤D is the restriction
of ˜Wn − ˜W to {DWn ≤ D, DW ≤ D}2. This implies that

‖˜W ′
n,≤D − ˜W ′

≤D‖� ≤ ‖˜Wn − ˜W‖� < ε,

which in turn implies that

‖˜Wn,≤D − ˜W≤D‖� ≤ ‖˜Wn,≤D − ˜W ′
n,≤D‖� + ‖˜W ′

n,≤D − ˜W ′
≤D‖�

+ ‖˜W ′
≤D − ˜W≤D‖�

≤ 4δD + ε.

Taking ε small enough, this can bemade arbitrarily small, which completes the proof.
�

We also have the following:
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Lemma 9.6 Suppose that a sequence of integrable graphons Wn has uniformly
bounded marginals, and converges to a (necessarily integrable) graphon W in the
cut metric. Then W has the same bound on its marginals, and δ2→2(Wn,W) → 0.

Proof Suppose that for each n, DWn ≤ D almost everywhere, but DW > D on a set
of positive measure. Then there exists D′ ≥ D such that μ({DW > D′}) > 0 and
μ({DW = D′}) = 0. By Lemma 9.5, Wn,≤D′ converges to W≤D′ in the cut metric,
but the cut distance of Wn,≤D′ from Wn is 0, since DWn ≤ D almost everywhere.
Therefore, the cut distance of W≤D′ and W is 0, which is a contradiction.

Now, we have the following. Since ‖Wn‖1 → ‖W‖1, there exists a uniform bound
C on ‖Wn‖1 and ‖W‖1, which implies that ‖Wn − W‖1 ≤ 2C . Furthermore, for
any x , |D|Wn−W |(x)| ≤ DWn (x) + DW (x) ≤ 2D. By Lemma 3.22, and recalling that
‖U‖� ≤ √‖U‖�‖U‖∞, we have

‖Wn − W‖2→2 ≤
(

8‖Wn − W‖�‖Wn − W‖3/4∞ ‖D|Wn−W |‖3/2∞ ‖Wn − W‖3/41

)1/4

≤
(

8‖Wn − W‖1/2� ‖Wn − W‖5/4∞ ‖D|Wn−W |‖3/2∞ ‖Wn − W‖3/41

)1/4

≤
(

100D3/2C3/4‖Wn − W‖1/2�
)1/4 → 0.

Furthermore, note that

‖DWn − DW‖1 ≤ 2 sup
S

{∣

∣

∣

∣

∫

S
DWn − DW

∣

∣

∣

∣

}

≤ 2‖Wn − W‖�.

Therefore,

‖DWn − DW‖2 = ‖DWn − DW‖2
≤ √‖DWn − DW‖1‖DWn − DW‖∞ ≤ √

4D‖Wn − W‖� → 0.

Finally,
‖Wn‖1 = ‖Wn‖1 → ‖W‖1 = ‖W‖1.

�

The last lemma we need to prove Theorem 2.28 is the following.

Lemma 9.7 Suppose that δ�(W,W′) = 0 for two integrable graphexes, and sup-
pose that W = (W, 0, 0,�). Then W

′ = (W ′, 0, 0,�′) and δ�(W,W ′) = 0.

Proof Since δ�(W,W′) = 0, ξ(G(W)) and ξ(G(W′)) have the same distribution.
But, as already observed in Remark 5.4 in [17], almost surely, the dust part of W′
generates edges which are isolated, the star part generates edges with one vertex of
degree one and a second vertex of infinite degree, and the graphon part generates
edges with two endpoints of infinite degree. Since ξ(G(W)) has no star or dust edges,
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ξ(G(W′)) doesn’t have these either, showing thatW′ = (W ′, 0, 0,�′). Finally, since
the graphonprocess generated byW andW ′ have the samedistribution, δ�(W,W ′) =
0 by Theorem 27 in [3]. �

We are now ready to prove Theorem 2.28.

Proof (Theorem 2.28) First, we show that if a sequence converges in the cut metric,
then it converges in δ�.We showproperty (2) fromProposition 4.6. Since the graphons
converge in cut metric, wemust have in particular that ‖Wn‖1 = ‖Wn‖1 → ‖W‖1 =
‖W‖1, which implies that the set {‖Wn‖}n is uniformly bounded; therefore, the
sequence is tight by Corollary 4.2 (1). By Lemma 9.5, for any D > 0 withμ({DW =
D}) = 0,Wn,≤D converges toW≤D in cut metric, and by Lemma 9.6, they must also
converge in δ2→2, which completes the proof that cut metric convergence implies
weak kernel convergence. Since we know that any cut metric convergent sequence
is uniformly tail regular, this completes that proof that (1) implies (2). It is clear that
(2) is stronger than (3), so it remains to show that (3) implies (1).

To this end, we first note that uniform tail regularity implies uniformly bounded L1

norms, which by Theorem 2.26 implies thatW is integrable. Suppose thatW does not
consist of only a graphon part, or that Wn does not converge to it in the cut metric.
Since the sequence Wn is uniformly tail regular, we may choose a subsequence
that converges to an integrable graphon W ′, such that either δ�(W ′,W ) �= 0, or
W is not just a graphon. In either case, letting W

′ = (W ′, 0, 0,�′), we have by
Lemma 9.7 that δ�(W,W′) �= 0. However, since δ�(Wn,W ′) → 0, we must have
that δ�(Wn,W

′) → 0, which implies that δ�(W′,W) = 0, which is a contradiction.
This completes the proof that (3) implies (1), and thus we have proven the theorem.

�

Proof (Theorem 2.29) First, assume that W = (W, 0, 0,�), and let us prove (2).
Assume first that the sequence has uniformly bounded marginals. In this case,
δ2→2(Wn,W) → 0. Take a sequence of couplings of trivial extensions of Wn and
W which show that their kernel distance goes to zero, let �′

n be the space for each
n, and W

′
n and W

n the pulled back graphexes, and let W ′
n and Wn be their graphon

parts. By Corollary 9.4, it is enough to prove uniform tail regularity for W ′
n . Given

ε > 0, let δ > 0 be such that

‖W‖1 − ‖W |Mδ
‖1 ≤ ε,

where Mδ is the set
Mδ = {x ∈ � : DW (x) ≥ δ}.

Let Mn
δ be the pullback to �′

n . We then have that

‖W ′
n − Wn‖2→2 → 0.

Since Mn
δ has finite measure, this implies that
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∫

Mn
δ ×Mn

δ

W ′
n →

∫

Mδ×Mδ

W.

Since ‖W′
n‖1 = ‖Wn‖1 → ‖W‖1 = ‖W‖1, this implies that

lim sup
n→∞

(

‖W ′
n‖1 −

∫

Mn
δ ×Mn

δ

W ′
n

)

≤ lim sup
n→∞

(

‖W′
n‖1 −

∫

Mn
δ ×Mn

δ

W ′
n

)

≤ ε.

This can be made arbitrarily small by taking δ small enough, which proves uniform
tail regularity under the assumption of uniformly bounded marginals. On the other
hand,

2 lim sup
n→∞

(

‖Sn‖1 + In
)

= lim sup
n→∞

(

‖Wn‖1 − ‖W ′
n‖1

)

≤ ‖W‖1 − lim
n→∞

∫

Mn
δ ×Mn

δ

W ′
n ≤ ε,

which implies that ‖Sn‖1 → 0 and In → 0, completing the proof of (2) under the
assumption of uniformly bounded marginals.

If instead of uniformly bounded marginals, we have uniform integrability, then
the claims follow from the fact that for each D > 0, δ2→2(Wn,≤D,W≤D) → 0, and
we can take D large enough so that each

∫

�n,>D
Sn is less than ε and

∫

�×�>D

Wn < ε,

and In is unaffected by the restriction.
Conversely, assume (2). Let, for each n,W′

n = (Wn, 0, 0,�) (so we are replacing
Sn and In with 0). Since ‖Sn‖1 → 0 and In → 0,

δ�(Wn,W
′
n) → 0

Indeed, clearly |‖Wn‖1 − ‖W′
n‖1| → 0, and for any D > 0, we have that

∫

�≤D
S2n ≤

D‖Sn‖1 → 0. Taking D large enough that �>D has small measure, we can show
that δ�(Wn,W

′
n) is arbitrarily small for large enough n. Now, the statement follows

from Theorem 2.28; specifically, we have shown that (3) holds for the sequenceW′
n ,

which by (2) implies that the limit is a pure graphon.
The equivalence of (2) and (3) follows fromTheorem 2.28 applied to the sequence

W
′
n . �
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Appendices

A.1: Local Finiteness

In this appendix, we prove Proposition 2.4.
Throughout this appendix, � = (�,F , μ) will be a σ -finite measure space,

S : � → R+ will be measurable, W : � × � → [0, 1] will be a symmetric, mea-
surable function, η = ∑

i δxi will be a Poisson point process on � with intensity μ,
and

η(S) =
∑

i

S(xi ) and η2(W ) =
∑

i �= j

W (xi , x j ).

We start with the following lemma, which is the analogue of Lemma A.3.6 from
[19] for general measure spaces. We use E to denote expectations with respect to the
Poisson point process andW ◦ W to denote the function (x, y) 
→ ∫

W (x, z)W (z, y)
dμ(z).

Lemma A.1.1 Let ψ(x) = 1 − e−x . Then the following hold, with both sides of the
various identities being possibly infinite:

(1) E[η(S)] = ‖S‖1 and E[η2(W )] = ‖W‖1,
(2) E[ψ(η(S))] = ψ(‖ψ(S)‖1), and
(3) E[(η2(W ))2] = ‖W‖21 + 4‖W ◦ W‖2 + 2‖W 2‖1.
Proof We first assume that m = μ(�) is finite and S is bounded. Then η can be
generated by first choosing N as a Poisson random variable with rate m and then
choosing x1, . . . , xN i.i.d. according to the distribution 1

mμ. Conditioned on N , the
expectations of η(S) and η2(W ) are N

m ‖S‖1 and N (N−1)
m2 ‖W‖1, respectively, and the

expectation of ψ(η(S)) is

E[ψ(η(S)) | N ] = 1 − E[e−∑N
i=1 S(xi )]

= 1 −
N
∏

i=1

1

m

∫

�

dμ(xi )e
−S(xi ) = 1 −

( 1

m

∫

�

dμ(x)e−S(x)
)N

.

Therefore,
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E[η(S)] =
∞
∑

N=0

e−m mN

N !
N

m
‖S‖1 =

∞
∑

N=1

e−m mN−1

(N − 1)! ‖S‖1 = ‖S‖1.

Also,

E[η2(W )] =
∞
∑

N=0

e−m mN

N !
N (N − 1)

m2
‖W‖1 =

∞
∑

N=2

e−m mN−2

(N − 2)! ‖W‖1 = ‖W‖1.

Finally,

E[ψ(η(S))] =
∞
∑

N=0

e−m mN

N !
(

1 −
( 1

m

∫

�

dμ(x)e−S(x)
)N

)

= 1 −
∞
∑

N=0

e−m mN

N !
( 1

m

∫

�

dμ(x)e−S(x)
)N

= 1 − exp

(∫

�

e−S(x) dμ(x) − m

)

= 1 − exp

(∫

�

−ψ(S(x)) dμ(x)

)

= 1 − e‖ψ(S)‖1 = ψ(‖ψ(S)‖1).

To calculate the expectation of

(η2(W ))2 =
∑

i �= j

∑

k �=�

E[W (xi , x j )W (xk, x�)]

we distinguish whether {i, j} and {k, �} intersect in 0, 1, or 2 elements, leading to
the expression

E[(η2(W ))2 | N ] = N (N − 1)(N − 2)(N − 3)

m4
‖W‖21

+ 4N (N − 1)(N − 2)

m3
‖W ◦ W‖1 + 2N (N − 1)

m2
‖W 2‖1.

Taking the expectation over N gives the expression in the lemma similarly. This
completes the proof for spaces of finite measure and bounded functions S. The
general case follows by the monotone convergence theorem. �

Using Lemma A.1.1, we now prove the following proposition, which is the ana-
logue of the relevant parts for us of Theorem A3.5 from [19] for general σ -finite
measure spaces.

Proposition A.1.2 Let S : � → R+ be measurable, and let W : � × � → [0, 1] be
symmetric and measurable. Then the following hold:

(1) η(S) < ∞ a.s. if and only if ‖min{S, 1}‖1 < ∞, and
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(2) η2(W ) < ∞ a.s. if and only if there exists a finite D > 0 such that the following
three conditions hold:

(a) DW < ∞ almost surely,
(b) μ({x ∈ � : DW (x) > D}) < ∞, and
(c) ‖W |{x∈�:DW (x)≤D}‖1 < ∞.

Proof Since 1
2 min{1, x} ≤ ψ(x) ≤ min{1, x}, the condition ‖min{S, 1}‖1 < ∞ in

(1) is equivalent to the statement that ‖ψ(S)‖1 < ∞, which is equivalent to the
statement thatψ(‖ψ(S)‖1) < 1.ByLemmaA.1.1 (2), this is equivalent to saying that
E[ψ(η(S))] < 1, which holds if and only if η(S) < ∞ with positive probability. By
Kolmogorov’s zero-one law, we either have η(S) < ∞ almost surely, or η(S) = ∞
almost surely; therefore we have obtained that ‖min{S, 1}‖1 < ∞ if and only if
η(S) < ∞ almost surely.

To prove the second statement, assume first that the conditions (a)–(c) hold. Con-
dition (a) then implies that a.s., no Poisson point falls into the set {DW = ∞}, which
means we may replace � by a space such that DW (x) < ∞ for all x ∈ �. Let
�>D = {x ∈ � : DW (x) > D} and �≤D = � \ �>D . Since �>D has finite mea-
sure by assumption (b), we have that a.s., only finitely many Poisson points fall into
this set, which in particular implies that the contribution of the points xi , x j ∈ �>D

to η2(W ) is a.s. finite. Next let us consider the contributions to η2(W ) from pairs of
points xi , x j such that one lies in �>D and the other one lies in �≤D . Observing that
the Poisson process in �>D and �≤D are independent, and that a.s., there are only
finitely many points in �>D , it will clearly be enough to show that for all x ∈ �>D ,
a.s. with respect to the Poisson process in �≤D ,

∑

j :x j∈�≤D

W (x, x j ) < ∞.

But by Lemma A.1.1 (1) applied to the function S′ : �≤D → R+ defined by S′(y) =
W (x, y), the expectation of this quantity is equal to

∫

�≤D

S′(y) dμ(y) =
∫

�≤D

W (x, y) dμ(y).

This is bounded by DW (x) and hence finite, which proves that the sum is a.s. finite.
We are thus left with estimating η2(W |�≤D ). Again by Lemma A.1.1 (1), we have
that E[η2(W |�≤D )] = ‖W |�≤D‖1 which is finite by assumption (c), showing that
η2(W |�≤D ) is a.s. finite.

Conversely, let us assume that a.s., η2(W ) < ∞. First we will prove that this
implies μ({DW = ∞}) = 0. Assume for a contradiction that this is not the case.
Since μ is σ -finite, we can find a measurable set N ⊆ � such that DW (x) = ∞ for
all x ∈ N and 0 < μ(N ) < ∞. Consider the contribution to η2(W ) by all Poisson
points (xi , x j ) such that xi ∈ N and x j ∈ Nc = � \ N . Since the Poisson processes
on N and Nc are independent, the finiteness of η2(W ) implies that for almost all
x ∈ N , the sum

∑

j :x j∈Nc W (x, x j ) is a.s. finite. Applying statement (1) of the current
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proposition to W (x, ·) (and recalling that W is bounded by 1), we conclude that for
almost all x ∈ N ,

∫

Nc W (x, y) dμ(y) < ∞, which implies that for almost all x ∈
N ,

∫

N W (x, y) dμ(y) = DW (x) − ∫

Nc W (x, y) dμ(y) = ∞. This is a contradiction
since μ(N ) < ∞ and W ≤ 1.

Wenext prove (b) (for anyvalue of D). Suppose for a contradiction thatμ({x ∈ � :
DW (x) > D}) = ∞. We then claim that almost surely, η2(W ) = ∞. After obtaining
the Poisson process, color each point randomly red or blue, with equal probability,
independently. We can then obtain the red and blue points equivalently by taking
two independent Poisson processes, both with intensity μ/2. We claim that almost
surely, the sum of W (x, y) just over red-blue pairs is already ∞. We know that
almost surely, there are an infinite number of red points xi with DW (xi ) > D. Let xn
be such a sequence, and given y ∈ �, let S′(y) = ∑∞

n=1 W (xn, y). Then the sum of
W over red-blue edges is equal to η(S′) for the Poisson process with intensity μ/2.
Therefore, it suffices to prove that ‖min{S′, 1}‖1,μ/2 = ∞. First, note that if either
μ({y ∈ � : S′(y) = ∞}) > 0 orμ({y ∈ � : S′(y) > 1}) = ∞, then it clearly holds.
Otherwise,we have that as D′ → ∞,μ({y ∈ � : S′(y) > D′}) → 0; therefore, there
exists some D′ (without loss of generality, we may assume D′ ≥ 1) such thatμ({y ∈
� : S′(y) > D′}) < D/2. Let �′ be the complement of {y ∈ � : S′(y) > D′}. We
then have that for each xn ,

∫

�′
W (xn, y)

dμ(y)

2
=

∫

�

W (xn, y)
dμ(y)

2
−

∫

�\�′
W (xn, y)

dμ(y)

2

≥ 1

2
DW (xn) − 1

2
μ(� \ �′) ≥ D

2
− D

4
.

We also have that

∫

�′
S′(y)

dμ(y)

2
=

∫

�′

∞
∑

n=1

W (xn, y)
dμ(y)

2

=
∞
∑

n=1

∫

�′
W (xn, y)

dμ(y)

2
≥

∞
∑

n=1

D/4 = ∞.

Therefore,

∫

�
min{S′(y), 1} dμ(y)

2
≥

∫

�′ min{S′(y), 1} dμ(y)

2

≥ 1

D′
∫

�′ min{S′(y), D′} dμ(y)

2
= 1

D′
∫

�′ S
′(y)dμ(y)

2
= ∞.

This contradiction completes the proof.
We are left with proving (c) (we will again prove it for any value of D). Assume

the opposite, and let �n ⊆ � be an increasing sequence such that μ(�n) < ∞
and

⋃

n �n = �≤D . Let Un = W |�n . Then ‖Un‖1 < ∞, ‖Un‖1 ↑ ‖W |�≤D‖1 = ∞,
and ‖DUn‖∞ ≤ D, implying in particular that ‖Un ◦Un‖1 = ‖DUn‖22 ≤ D‖DUn‖1 =
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D‖Un‖1. Given an arbitrary constant λ, we claim that

P

(

η2(W |�≤D ) > λ
)

≥ (‖Un‖1 − λ)2

‖Un‖21 + (4D + 2)‖Un‖1 , (14)

provided n is large enough to ensure that ‖Un‖1 > λ. Indeed, writing

E[η2(Un)] = E[η2(Un)1η2(Un)≤λ] + E[η2(Un)1η2(Un)>λ],

we can bound the first term by λ and the second by
√

E[(η2(Un))2]P[η2(Un) > λ],
using Cauchy’s inequality. We therefore obtain that

E[η2(Un)] ≤ λ +
√

E[(η2(Un))2]P[η2(Un) > λ].

Rearranging, we obtain the bound

P

(

η2(Un) > λ
)

≥ (E[η2(Un)] − λ)2

E[(η2(Un))2] = (‖Un‖1 − λ)2

‖Un‖21 + 4‖Un ◦Un‖1 + ‖U 2
n ‖1 ,

where we used Lemma A.1.1 (1) and (3) in the last step. Observing that

Pr(η2(W |�≤D ) > λ) ≥ Pr(η2(Un) > λ)

and bounding 4‖Un ◦Un‖1 + ‖U 2
n ‖1 by (4D + 2)‖Un‖1, we obtain (14). Since the

right side of (14) goes to 1 as n → ∞, we get that with probability one, η2(W |�≤D ) >

λ for all λ, which contradicts the assumption that η2(W |�≤D ) < ∞ a.s. �

Proof (Proposition 2.4) We first prove the equivalence of (A) – (E). Clearly (B) ⇒
(C) ⇒ (A) and (D) ⇒ (E). It is also not hard to see that (E) ⇒ (A). Indeed, note
first that for any D, the condition on S is equivalent to the condition that min{S, D} is
integrable (which implies that μ({S > D}) < ∞.) Set �′ = {DW ≤ D} ∩ {S ≤ D}.
Then (E) implies that

‖W|�′ ‖1 ≤ 2I + ‖W{DW≤D}‖1 + 2‖S1S≤D‖1
≤ 2I + ‖W{DW≤D}‖1 + 2‖min{S, D}‖1 < ∞

and μ(� \ �′) ≤ μ({DW > D}) + μ({S > D}) < ∞, proving (A). So it will be
enough to show (A) ⇒ (B) and (A) ⇒ (D).

Suppose that (A) holds, and let�′ be a set such thatμ(� \ �′) < ∞,W′ = W|�′ ,
and ‖W′‖1 = C < ∞. Let D > 0. First, assume that D > D0 = μ(� \ �′). Then

{x ∈ � : DW(x) > D} ⊆ (� \ �′) ∪ {x ∈ �′, DW′(x) > D − D0}.

Since ‖DW′ ‖1 ≤ ‖W′‖1 = C , this set has measure at most
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D0 + C

D − D0
.

Now, letW′′ = W|{x :DW(x)≤D}. Then

‖W′′‖1 ≤ ‖W′‖1 + 2
∫

{x∈�\�′ :DW(x)≤D}
DW(x) ≤ ‖W′‖1 + 2DD0.

We have thus proven that (B) holds for all D larger than some D0, andmore generally
for any D for which there exists an�′ ⊆ �withμ(� \ �′) < D and ‖W|�′ ‖1 < ∞.

Note that ifW|{x :DW(x)≤D} is integrable for D > D0, then it must remain integrable
if we decrease D, since that is just a restriction to a subset. Therefore, this implies
that W|{x :DW(x)≤D} is integrable for all D. Since DW < ∞ almost everywhere, we
further have that μ({x ∈ � : DW(x) ≥ λ}) tends to 0 as λ tends to ∞ (since we at
least know that it is finite for large enough λ). Fixing D > 0, we can therefore take
D′ large enough so thatμ({x ∈ � : DW(x) ≥ D′}) < D. Taking�′ := � \ {x ∈ � :
DW(x) ≥ D′}, we get a set �′ such that μ(� \ �′) < D and ‖W|�′ ‖1 < ∞ proving
that (B) holds for all D > 0.

On the other hand if (A) holds for some�′, then ‖W |�′ ‖1 < ∞ and ‖S1�′ ‖1 < ∞.
Proceeding exactly as above we conclude that for all D, μ({DW > D}) < ∞ and
‖W |{DW≤D}‖1 < ∞, as well as μ({S > D}) < ∞ and ‖S1{S≤D}‖1 < ∞. Since

‖min{S, D}‖1 = Dμ({S > D}) + ‖S1{S≤D}‖1 < ∞,

the latter condition is equivalent to ‖min{S, D}‖1 < ∞, as required.
We are left with proving that the local finiteness conditions in Definition 2.1 are

necessary and sufficient for the almost sure finiteness of GT (W) for all T < ∞. It
is easy to check that the local finiteness conditions are not affected if we multiply
the underlying measure by T and S by T . We therefore assume that T = 1. Let
η = ∑

i δxi be a Poisson process of intensity μ on �, let Yi be Poisson random
variable with mean S(xi ), and let Yi j be Bernoulli with mean W (xi , x j ), all of them
independent of each other. We will have to show that the local finiteness conditions
onW are equivalent to the a.s. finiteness of the sums

eS =
∑

i

Yi and eW =
∑

i> j

Yi j .

We next use the fact that a sum of independent, non-negative random variables
∑

k Zk is a.s. finite if and only if
∑

i E[min{Zi , 1}] < ∞. In the case of eW , Yi, j is
bounded, and therefore we immediately have that eW is a.s. finite if and only if η2(W )

is a.s. finite. Proposition A.1.2 (b) then proves this case. In the case of eS , setting
S′ = min{S, 1}, applying Proposition A.1.2 to S′, and noting that S′ is bounded, we
have that

∑

i S
′(xi ) is almost surely finite if and only if ‖S′‖1 < ∞. This is exactly

the condition on S. �
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A.2: Sampling with Loops

In this section, we discuss how to handle samples with loops. The sampling process is
adjusted as follows.We follow the same process as for GT (W) and G∞(W); however,
for each vertex labeled as (t, x), with probabilityW (x, x), we add a loop to the vertex.
Deleting isolated vertices as before, and then removing the feature labels from the
vertices, we obtain a family (˜GT (W))T≥0 of labelled graphs with loops, as well as
the infinite graph ˜G∞(W) = ⋃

T≥0
˜GT (W).

Note that a vertex that was previously isolated may not be isolated anymore if it
receives a loop, so a vertex may have been deleted from GT (W) but not from ˜GT (W).
We add a further condition for local finiteness:

∫

�

W (x, x) dμ(x) < ∞.

Note that ifW is atomless, then the values W (x, x) do not have an effect on GT and
G∞, and the diagonal constitutes a zero measure set in � × �.

As stated, Theorem 2.5 is false for sampling with loops. Since the diagonal may
be a zero measure set, almost everywhere equal pullbacks do not imply having the
same looped samples. We could further add the condition that W (x, x) is equal to
the pullback almost everywhere, but the theorem would still be false. This is demon-
strated by the following example. Let �1 = �2 = [0, 1]. Take W1 to be constant
1/2 on [0, 1] × [0, 1], and let W2 be constant 1/2 off the diagonal, 0 if x < 1/2, 1
otherwise. Let Wi = (Wi , 0, 0,�i ). Then we claim that ˜GT (W1) and ˜GT (W2) have
the same distribution. Indeed, both are equivalent to taking Poisson(T ) vertices,
adding a loop to each vertex with probability 1/2, independently, and also taking an
edge between each pair of vertices with probability 1/2, independently over different
pairs.

It turns out that in general, allowing diagonal values strictly between 0 and 1 is
not necessary, because we could extend the feature space to determine whether each
vertex has loops. For graphexes where the diagonal is 0 or 1, we can then conclude
an analogous theorem from Theorem 2.5.

We first show the following:

Proposition A.2.1 For any graphexW = (W, S, I,�), there exists a graphex ˜W =
(˜W ,˜S,˜I ,˜�) on an atomless space ˜� such that on the diagonal, ˜W is {0, 1} valued
and such that ˜G∞(˜W) and ˜GT (˜W) are equivalent to ˜G∞(W) and ˜GT (W), respectively.

Proof Let ˜� = � × [0, 1], and let π1, π2 be the projection maps. Note that we
can obtain a Poisson process on ˜� × R+ by taking a Poisson process on � × R,
and independently labeling each point with a uniform random real number from
[0, 1], which becomes the second coordinate. Clearly ˜� is atomless, so the diagonal
values only affect the generation of the loops. Define˜I = I ,˜S = S ◦ π1, ˜W (x, y) =
W (π1(x), π1(y)) if x �= y, and
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˜W (x, x) =
{

1, if π2(x) ≤ W (π1(x), π1(x))

0, otherwise.
.

Then the sampling of edges between vertices is not affected by the second coordinate
of a vertex. Note that the probability that there exist two vertices corresponding to
the same point in ˜� is zero, since ˜� is atomless. For the loops, since we can obtain
the vertices by first taking the Poisson process on� × R and then randomly labeling
each vertex with a [0, 1] real number, we can see that for a point y ∈ �, if it ends
up as a point, there is a W (y, y) probability that the point x corresponding to it
has ˜W (x, x) = 1, and 1 − W (y, y) that ˜W (x, x) = 0, and this is independent over
different points. Therefore, the distribution of loops is the same. �

Using this proposition, sampling loops according to the diagonal is equiva-
lent to the following theory. The objects are graphexes with special subsets W =
(W, S, I,�, A) where W , S, I , and � are as before, and the special set A ⊆ � is
a measurable subset with finite measure. We sample ˜G∞(W) in the same way as
G∞(W), except that we add a loop to each vertex with a feature label in A. We then
take the non-isolated vertices with time label at most T for ˜GT (W). We can extend
the definition of measure-preserving map by requiring that points in the special set
be mapped to points in the special set, and points not in the special set be mapped
to points not in the special set. We also define dsupp as earlier, except it contain all
points in A (even if otherwise they would not be included).

Theorem A.2.2 Let W1 and W2 be graphexes with special subsets as above. Then
˜GT (W1) and ˜GT (W2) have the same distribution for all T ∈ R+ if and only if there
exists a third graphex with special subset W such that W1 and W2 are pullbacks of
W.

Proof It is clearly enough to prove the only if direction. Suppose therefore thatW1

andW2 have the same distribution. Then for any 0 < c < 1, cW1 and cW2 have the
same distributions (i.e., W, S, I are all multiplied by c, and the special set stays the
same). Then let ˜Wi be obtained by takingWi/2, adding a set Bi of measure 1 to �i ,
and extending Wi to be 1 on Bi × Bi , 1 between Bi and Ai , and 0 between Bi and
�i \ Ai . Then we can obtain GT (˜Wi ) from ˜GT (Wi ) by the following process. We
first keep each edge that is not a loop with probability 1/2, and delete it otherwise,
independently. We keep all the loops. Then we take Poisson(T ) new vertices, put
an edge between every pair, and put an edge between each new vertex and each
vertex that had a loop (and delete loops). It is clear that in this way, the distributions
GT (˜W1) and GT (˜W2) are the same for every T . Therefore, there exists a graphex
˜W = (˜W ,˜S,˜I ,˜�) such that ˜W1 and ˜W2 are both pullbacks of ˜W. It is clear that
˜W must have a set of measure 1, call it B, which has ˜W (x, y) = 1 if x, y ∈ B, and
˜W (x, y) is either 0 or 1 if x ∈ B, y /∈ B, and only depends on y, and ˜W (x, y) ≤ 1/2
if x, y /∈ B, and B must pullback to exactly B1 and B2. If we let A be the set of points
x with ˜W (x, y) = 1 for any and all y ∈ B, then A must pullback to A1 and A2. If
we therefore letW have underlying set ˜� \ B, and be equal to 2˜W restricted to this
set, and special set A, then W pulls back to bothW1 and W2. �
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Online Ramsey Numbers and the
Subgraph Query Problem

David Conlon, Jacob Fox, Andrey Grinshpun and Xiaoyu He

Abstract The (m, n)-online Ramsey game is a combinatorial game between two
players, Builder and Painter. Starting from an infinite set of isolated vertices, Builder
draws an edge on each turn and Painter immediately paints it red or blue. Builder’s
goal is to force Painter to create either a red Km or a blue Kn using as few turns
as possible. The online Ramsey number r̃(m, n) is the minimum number of edges
Builder needs to guarantee a win in the (m, n)-online Ramsey game. By analyzing
the special case where Painter plays randomly, we obtain an exponential improve-
ment r̃(n, n) ≥ 2(2−√

2)n+O(1) for the lower bound on the diagonal online Ramsey
number, as well as a corresponding improvement r̃(m, n) ≥ n(2−√

2)m+O(1) for the
off-diagonal case, where m ≥ 3 is fixed and n → ∞. Using a different randomized
Painter strategy, we prove that r̃(3, n) = �̃(n3), determining this function up to a
polylogarithmic factor. We also improve the upper bound in the off-diagonal case for
m ≥ 4. In connection with the online Ramsey game with a random Painter, we study
the problem of finding a copy of a target graph H in a sufficiently large unknown
Erdős–Rényi random graph G(N , p) using as few queries as possible, where each
query reveals whether or not a particular pair of vertices are adjacent. We call this
problem the Subgraph Query Problem. We determine the order of the number of
queries needed for complete graphs up to five vertices and prove general bounds for
this problem.
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1 Introduction

The Ramsey number r(m, n) is the minimum integer N such that every red/blue-
coloring of the edges of the complete graph KN on N vertices contains either a
red Km or a blue Kn . Ramsey’s theorem guarantees the existence of r(m, n) and
determining or estimating Ramsey numbers is a central problem in combinatorics.
Classical results of Erdős–Szekeres and Erdős imply that 2n/2 ≤ r(n, n) ≤ 22n for
n ≥ 2. The only improvements to these bounds over the last seventy years have been
to lower order terms (see [9, 26]), with the best known lower bound coming from an
application of the Lovász local lemma [14].

Off-diagonal Ramsey numbers, where m is fixed and n tends to infinity, have
also received considerable attention. In progress that has closely mirrored and often
instigated advances on the probabilistic method, we now know that

r(3, n) = �(n2/ log n).

The lower bound here is due to Kim [21] and the upper bound to Ajtai, Komlós
and Szemerédi [1]. Recently, Bohman and Keevash [8] and, independently, Fiz Pon-
tiveros, Griffiths and Morris [18] improved the constant in Kim’s lower bound via
careful analysis of the triangle-free process, determining r(3, n) up to a factor of
4 + o(1).

More generally, for m ≥ 4 fixed and n growing, the best known lower bound is

r(m, n) = �m(n
m+1
2 /(log n)

m+1
2 − 1

m−2 ),

proved by Bohman and Keevash [7] using the H -free process, while the best upper
bound in this setting is

r(m, n) = Om(nm−1/(log n)m−2),

again due to Ajtai, Komlós and Szemerédi [1]. Here the subscripts denote the vari-
able(s) that the implicit constant is allowed to depend on.

There are many interesting variants of the classical Ramsey problem. One such
variant is the size Ramsey number r̂(m, n), defined as the smallest N for which there
exists a graph G with N edges such that every red/blue-coloring of the edges of G
contains either a red Km or a blue Kn . It was shown by Chvátal (see Theorem 1 in
the foundational paper of Erdős, Faudree, Rousseau and Schelp [13]) that r̂(m, n) is
just the number of edges in the complete graph on r(m, n) vertices, that is,
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r̂(m, n) =
(
r(m, n)

2

)
.

Wewill be concernedwith amuch-studied game-theoretic variant of the sizeRam-
sey number, introduced independently by Beck [4] and by Kurek and Ruciński [25].
The (m, n)-online Ramsey game is a game between two players, Builder and Painter,
on an infinite set of initially isolated vertices. Each turn, Builder places an edge
between two nonadjacent vertices and Painter immediately paints it either red or
blue. The online Ramsey number r̃(m, n) is then the smallest number of turns N that
Builder needs to guarantee the existence of either a red Km or a blue Kn .

It is a simple exercise to show that r̃(m, n) is related to the usual Ramsey number
r(m, n) by

1

2
r(m, n) ≤ r̃(m, n) ≤

(
r(m, n)

2

)
. (1)

In the diagonal case, the upper bound in (1) has been improved by Conlon [10], who
showed that for infinitely many n,

r̃(n, n) ≤ 1.001−n

(
r(n, n)

2

)
.

The main result of this paper is a new lower bound for online Ramsey numbers.

Theorem 1.1 If, for some m, n, N ≥ 1, there exist p ∈ (0, 1), c ≤ 1
2m, and d ≤ 1

2n
for which

p(
m
2)−c(c−1)(2N )m−c + (1 − p)(

n
2)−d(d−1)(2N )n−d ≤ 1

2
,

then r̃(m, n) > N.

In particular, if r̃(n) := r̃(n, n) is the diagonal online Ramsey number, Theo-
rem 1.1 can be used to improve the classical bound r̃(n) ≥ 2n/2−1 by an exponential
factor. Indeed, taking p = 1

2 and c = d ≈ (1 − 1√
2
)n in Theorem 1.1, we get the

following immediate corollary.

Corollary 1.2 For the diagonal online Ramsey numbers r̃(n),

r̃(n) ≥ 2(2−√
2)n−O(1).

As for the off-diagonal case, when m is fixed and n → ∞, Theorem 1.1 can be
also used to substantially improve the best-known lower bound. In this case, we take
c ≈ (1 − 1√

2
)m, d = 0, and p = C m log n

n for a sufficiently large C > 0 to obtain the
following corollary.

Corollary 1.3 For fixed m ≥ 3 and n sufficiently large in terms of m,

r̃(m, n) ≥ n(2−√
2)m−O(1).
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For general m, Corollary 1.3 gives the best known lower bounds for the off-
diagonal online Ramsey number. However, it is possible to do better for m = 3 by
using a smarter Painter strategy which deliberately avoids building red triangles.

Theorem 1.4 For n → ∞,

r̃(3, n) = �

(
n3

log2 n

)
.

Roughly speaking, Painter’s strategy is to paint every edge blue initially, but
to switch to painting randomly if both endpoints of a freshly built edge have high
degree. Also, when presentedwith an edge that would complete a red triangle, Painter
always paints it blue. The bound given in Theorem 1.4 is n times the bound on the
usual Ramsey number that comes from applying the Lovász Local Lemma [14].
However, our argument is closer in spirit to an earlier proof of the same bound given
by Erdős [12] using alterations. This method for lower bounding r(3, n) was later
generalized to all r(m, n) by Krivelevich [22] and we suspect that Theorem 1.4 can
be generalized to r̃(m, n) in the same way.

In the other direction, we prove a new upper bound on the off-diagonal online
Ramsey number.

Theorem 1.5 For any fixed m ≥ 3,

r̃(m, n) = Om

(
nm

(log n)	m/2
−1

)
.

In particular, note that Theorems 1.4 and 1.5 determine the asymptotic growth
rate of r̃(3, n) up to a polylogarithmic factor, namely,

�

(
n3

log2 n

)
≤ r̃(3, n) ≤ O

(
n3

)
.

Theorem 1.5 has a similar flavor to the improvement on diagonal online Ramsey
numbersmade by the first author [10] andwork on the so-called vertex onlineRamsey
numbers due toConlon, Fox and Sudakov [11]. It is obtained by adapting the standard
Erdős–Szekeres proof of Ramsey’s theorem to the online setting and applying a
classical result of Ajtai, Komlós and Szemerédi [1] bounding r(m, n).

In order to prove Theorem 1.1, we specialize to the case where Painter plays
randomly. This is sufficient because Builder, who we may assume has unlimited
computational resources, will always respond in the best possiblemanner to Painter’s
moves. Therefore, if a random Painter can stop this perfect Builder from winning
within a certain number of moves with positive probability, an explicit strategy exists
by which Painter can delay the game up to this point. This motivates the following
key definition.



Online Ramsey Numbers and the Subgraph Query Problem 163

Definition 1.6 For m, n ≥ 3 and p ∈ (0, 1), define r̃(m, n; p) to be the number of
turns Builder needs to win the (m, n)-online Ramsey game with probability at least
1
2 against a Painter who independently paints each edge red with probability p and
blue with probability 1 − p. The online random Ramsey number r̃rand(m, n) is the
maximum value of r̃(m, n; p) over p ∈ (0, 1).

We note that there is a rich literature on simplifying the study of various combi-
natorial games by specializing to the case where one or both players play randomly
(see [5, 20, 23]). For example, a variant of the online Ramsey game with random
Builder instead of random Painter was studied by E. Friedgut, Y. Kohayakawa, V.
Rödl, A. Ruciński and P. Tetali [19].

We make the following conjectures about the growth rate of r̃rand(m, n).

Conjecture 1.7 (a) The diagonal online random Ramsey numbers satisfy

r̃rand(n, n) = 2(1+o(1)) 2
3 n.

(b) The off-diagonal online random Ramsey numbers (m ≥ 3 fixed and n → ∞)
satisfy

r̃rand(m, n) = n(1+o(1)) 2
3m .

These conjectures are motivated by a connection with another problem, which we
now describe.

Let p ∈ (0, 1) be a fixed probability and suppose Builder plays the following
one-player game, which we call the Subgraph Query Game, on the random graph
G(Z, p) with infinitely many vertices. The edges of the graph are initially hidden.
At each step, Builder queries a single pair of vertices and is told whether the pair is
an edge of the graph or not. Equivalently, the graph starts out empty and each edge is
successfully built by Builder with probability p (each edge may be queried at most
once). In what follows, we use the terms “query” and “build” interchangeably.

Builder’s goal is to find a copy of a given graph H in the ambient random graph
as quickly as possible. We call this problem of minimizing the number of steps in
the Subgraph Query Game the Subgraph Query Problem. When H = Km , this may
be seen as a variant of the online random Ramsey game, but where Builder is only
interested in finding a red copy of Km .

A version of this problem was studied independently by Ferber, Krivelevich,
Sudakov and Vieira [16, 17], although they were interested in querying for long
paths and cycles in G(n, p). For instance, they showed that if p ≥ log n+log log n+ω(1)

n ,
then it is possible to find a Hamiltonian cycle with high probability in G(n, p) after
(1 + o(1))n positive answers. In contrast, we are mainly interested in the setting
where H is a fixed graph to be found in a much larger random graph.

Definition 1.8 If p ∈ (0, 1), define f (H, p) to be the minimum (over all Builder
strategies) number of turns Builder needs to be able to build a copy of H with
probability at least 1/2 in the SubgraphQueryGame, if each edge is built successfully
with probability p.
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It might appear equally reasonable to study theminimumnumber of turns inwhich
one can build at least one copy of H in expectation. However, for certain H , such as
a clique Km together with many leaves off a single vertex, it is possible to describe
a strategy which has a tiny probability of successfully constructing copies of H , but
upon success immediately builds a large number of copies, attaining low success
probability but high expectation. Such a strategy is undesirable for application to
online random Ramsey numbers, so we use the first definition instead.

Conjecture 1.7 is motivated by the following conjecture regarding f (Km, p). The
upper bound in this conjecture is proved in Sect. 5.2.

Conjecture 1.9 For any m ≥ 4,

f (Km, p) = 2o(m) p− 2
3m+cm ,

where

cm =

⎧⎪⎨
⎪⎩

m
2m−3 m ≡ 0 (mod 3)
2
3 m ≡ 1 (mod 3)
2m+8
6m−3 m ≡ 2 (mod 3).

The following result shows that the Subgraph Query Problem and the online
random Ramsey game are closely related.

Theorem 1.10 For any m, n ≥ 3 and p ∈ (0, 1),

r̃(m, n; p) ≤ min{ f (Km, p), f (Kn, 1 − p)} ≤ 3r̃(m, n; p).

Using Theorem 1.10, we can show that Conjecture 1.9 implies both cases of Con-
jecture 1.7.We can also determine an approximately optimal value for the probability
parameter p in the online Ramsey game with random Painter.

Theorem 1.11 For m ≥ 3 fixed and n → ∞, there exists a p = �(m/n log(n/m))

for which
r̃rand(m, n) ≤ 3r̃(m, n; p).

We say that a graph has a k-matching if it contains k vertex-disjoint edges. Our
main result on the Subgraph Query Problem shows that graphs with large matchings
are hard to build in few steps. We write V (H) and E(H) for the vertices and edges
of H and let v(H) = |V (H)| and e(H) = |E(H)|.
Theorem 1.12 If H is a graph that contains a k-matching, then

f (H, p) = �H (p−(e(H)−k(k−1))/(v(H)−k)).

Together with the upper bound construction described in Sect. 5.2, this is enough
to settle the growth rate of f (Km, p) form ≤ 5. In particular, it proves Conjecture 1.9
for m = 4, 5.
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Theorem 1.13 The asymptotic growth rates of f (Km, p) for m = 3, 4, 5 are

f (K3, p) = �(p−3/2)

f (K4, p) = �(p−2)

f (K5, p) = �(p−8/3).

Asymptotically, k = (1 − 1/
√
2)m is the optimal k to pick in Theorem 1.12.

With this value, we get the following bound on f (Km, p) which corresponds to
Corollaries 1.2 and 1.3 in the online Ramsey number setting.

Corollary 1.14 For all m ≥ 3,

f (Km, p) = �m(p−(2−√
2)m+O(1)).

In studying the function f (H, p), we were naturally led to consider the following
function. When H is a graph with no isolated vertices, define t (H, p, N ) to be
the maximum expected number of copies of H that can be built in N moves in
the Subgraph Query Game with parameter p, the maximum taken over all possible
Builder strategies.

However, if H has isolated vertices, the expected value is zero or infinite. Instead,
if H has exactly k isolated vertices v1, . . . , vk , we define

t (H, p, N ) := (2N )k t (H\{v1, . . . , vk}, p, N )

to capture the fact that the game with N turns involves at most 2N vertices and
therefore might as well be played on 2N fixed vertices.

Studying the threshold value of N for which t (H, p, N ) ≥ 1 leads to Theo-
rem 1.12 above. Intuitively, we expect the best strategy for building a copy of H
to be the same as the one which expects to build a single copy of H in as few turns
as possible.

Another natural question about the function t (H, p, N ) is: if N is very large, what
is the maximum number of copies Builder can expect to build in the Subgraph Query
Game? Here we show that for N sufficiently large the strategy of taking O(

√
2N )

vertices and building all pairs of edges between them is asymptotically optimal for
maximising t (Km, p, N ), even though it is decidedly suboptimal for trying to build
a single copy of Km .

Theorem 1.15 For all m ≥ 2, p ∈ (0, 1), ε > 0, there exists C > 0 such that if N ≥
Cp−(2m−1)(log(p−1))2, then

t (Km, p, N ) = (1 ± ε)p(
m
2)(2N )

m
2 .

The rest of the paper is organized as follows. In Sect. 2, we motivate and prove
Theorem 1.1, our lower bound on the online Ramsey number, via the method of
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conditional expectations. In Sect. 3, we prove the lower bound Theorem 1.4 for
r̃(3, n) using a Painter strategy designed to avoid red triangles. We prove the upper
bound Theorem 1.5 in Sect. 4. Then, in Sect. 5, we study the Subgraph Query Prob-
lem for its own sake, proving the upper bound in Conjecture 1.9 as well as Theo-
rems 1.10, 1.11, 1.12, 1.13 and 1.15. We include a handful of open problems raised
by our research in the closing remarks.

Unless otherwise indicated, all logarithms are base e. For clarity of presentation,
we omit floor and ceiling signs when they are not crucial. We also do not attempt to
optimize constant factors in the proofs.

2 General Lower Bounds

2.1 Motivation

In this section, we prove Theorem 1.1 via a weighting argument, motivated by the
method of conditional expectations and a result of Alon [2] on the maximum number
of copies of a given graph H in a graph with a fixed number of edges.

The first idea, the derandomization technique known as the method of conditional
expectations (see Alon and Spencer [3]), can be used to give the following “deter-
ministic” proof of the classical lower bound on diagonal Ramsey numbers. We will
show that (

r(n, n)

n

)
2−(n2)+1 ≥ 1.

Suppose that for some N ,

(
N

n

)
2−(n2)+1 < 1. (2)

Paint the edges of KN one at a time as follows. To each vertex subset U of order
n, assign a weight w(U ) which is the probability that U becomes a monochromatic
clique if the edges which remain uncolored at that time are colored uniformly at
randomly. That is, writing e(U ) for the number of edges already colored in U ,

w(U ) =

⎧⎪⎨
⎪⎩
2−(n2)+1 e(U ) = 0

2−(n2)+e(U ) e(U ) > 0 and all colored edges in U are the same color

0 otherwise.

At every step, the total weight
∑

U w(U ) is equal to the expected number of
monochromatic cliques if the remaining edges are painted uniformly at random.
It is therefore possible to paint each edge so as not to increase the total weight. Since
the condition

∑
U w(U ) < 1 is initially guaranteed by (2), we can maintain this con-
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dition throughout the course of the game, ending with a coloring where there is no
monochromatic clique of order n.

We now wish to apply such a weighting argument to the online Ramsey game.
The key observation is that if r̃(n, n) is close to r(n, n), then, since the graph built by
Builder has at least r(n, n) vertices, it must be extremely sparse. In particular, most
of the weight should be concentrated on setsU almost none of whose edges are ever
built.

This is where the idea behind Alon’s result [2] comes in. For any fixed graph
H , that paper solves the problem of determining the maximum possible number of
copies of H in a graph with a prescribed number of edges. Roughly speaking, Alon
showed that the maximum number of copies of H can be controlled by the size of
the maximum matching in H . We show that this heuristic also applies to the online
Ramsey game, though it will be more convenient for our calculations to work with
minimum vertex covers instead of maximum matchings.

Tomake this ideawork, instead of controlling the total weight function
∑

U w(U ),
we restrict the sum to subsets U with a large minimum vertex cover, which are
comparatively few in number. Even if the total weight

∑
U w(U ) becomes large, the

amount of weight supported on setsU with a large vertex cover is much smaller, and
this is the only weight that stands a chance to make it to the finish line and complete
a monochromatic clique.

2.2 The Proof

Using the weighting argument described informally above, we now prove a lower
bound on the value of r̃(m, n; p), where Painter plays randomly, independently
coloring each edge red with probability p and blue with probability 1 − p.

Theorem 2.1 If, for some m, n, N ≥ 1 and p ∈ (0, 1), there exist c ≤ 1
2m and d ≤

1
2n for which

p(
m
2)−c(c−1)(2N )m−c + (1 − p)(

n
2)−d(d−1)(2N )n−d ≤ 1

2
,

then r̃(m, n; p) > N.

We would like to show that regardless of Builder’s strategy, the online random
Ramsey game lasts for more than N steps with probability at least 1/2.

Suppose the game ends in atmost N turns and, without loss of generality, is played
on 2N vertices. Let Gt , for 0 ≤ t ≤ N , be the state of the graph after t turns. Assign
to each subset U ⊂ V (G) an evolving weight function

w(U, t) =
{
p(

|U |
2 )−e(Gt [U ]) Gt [U ] is monochromatic red

0 otherwise.
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The value ofw(U, t) is the probability thatU becomes a red clique if the remaining
edges are built.

We say that C ⊂ V (G) is a vertex cover of G if every edge is incident to some
vertex v ∈ C . If U ⊂ V (G), let c(U, t) be the size of the minimum vertex cover of
Gt [U ]. Note that c(U, t) is a nondecreasing function of t . For each pair (k, c) with
k ≥ 2c, we will be interested in the total weight supported on sets of order k with
c(U, t) ≥ c,

wk,c(t) =
∑

|U |=k,c(U,t)≥c

w(U, t).

Sincew(U, N ) is nonnegative andw(U, N ) = 1 if and only ifU is a red clique, we
see that for all c ≤ m/2, wm,c(N ) is an upper bound for the number of red copies of
Km built after N turns. We would like to upper bound the expected value ofwm,c(N ).

Lemma 2.2 With wm,c(t) as above, regardless of Builder’s strategy,

Ewm,c(N ) ≤ p(
m
2)−c(c−1)(2N )m−c.

Proof Each U with the property c(U, N ) ≥ c first achieves this property at a time
tc(U ). We say that U is c-critical at this time. Write

w∗
k,c(t) =

∑
|U |=k,tc(U )=t

w(U, t)

to be the contribution of the c-critical sets U to wk,c(t). Crucially, if we focus on
the family of U for which tc(U ) = t , their expected total weight will remain w∗

k,c(t)
indefinitely. Thus,

Ewk,c(N ) =
∑
t≤N

Ew∗
k,c(t).

Now, a set U which is c-critical at time t must be the vertex-disjoint union of the
edge et that Builder builds at time t and a set U ′ of size k − 2 with a vertex cover
of order c − 1. Also, because U has a vertex cover of order c − 1 before adding this
edge et , the edges incident to et must also be incident to one of the c − 1 vertices in
the vertex cover of U ′, so et is incident to a total of at most 2c − 2 edges in U . It
follows that after turn t = tc(U ),

w(U, t) ≤ p2k−2c−2w(U ′, t),

where in particular if U ′ is already not monochromatic then neither is U . The expo-
nent comes from the fact that among the total 2(k − 2) edges between et and U ′
at least 2(k − 2) − 2(c − 1) = 2k − 2c − 2 are thus far unbuilt and still contribute
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factors of p to the weight of w(U, t). Thus, since each U ′ completes at most one set
U which is c-critical at time t ,

w∗
k,c(t) ≤ p2k−2c−2wk−2,c−1(t).

Further, note that there can only be c-critical sets at time t if et is colored red,
which occurs with probability p. Otherwise, w∗

k,c(t) = 0. Taking expectations and
using the fact that Ewk,m(t) is nondecreasing in t gives

Ew∗
k,c(t) ≤ p · E[p2k−2c−2wk−2,c−1(t)]

≤ p2k−2c−1
Ewk−2,c−1(N ).

Summing over all t ,

Ewk,c(N ) ≤ N · p2k−2c−1
Ewk−2,c−1(N ).

Iterating this last inequality, we conclude that

Ewm,c(N ) ≤ Nc · p2mc−3c2
Ewm−2c,0(N )

≤ Nc · p2mc−3c2 · (2N )m−2c p(
m−2c

2 )

≤ p(
m
2)−c(c−1)(2N )m−c,

as desired. �

The same analysis with the blue weight function

w′(U, t) =
{

(1 − p)(
|U |
2 )−e(Gt [U ]) Gt [U ] is monochromatic blue

0 otherwise

leads to the conclusion that Ew′
n,d(N ) ≤ (1 − p)(

n
2)−d(d−1)(2N )n−d for all n ≥ 2d.

The assumption of Theorem 2.1 then implies that the expected number of red Km plus
the expected number of blue Kn is at most 1/2. This implies that the probability of
containing either is at most 1/2, completing the proof of Theorem 2.1. Theorem 1.1
follows as an immediate corollary.

3 Lower Bound via Alterations

In this section, we improve the lower bound for the off-diagonal online Ramsey
numbers r̃(3, n) using a different Painter strategy. Our proof extends an alteration
argument of Erdős [12] which shows that
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r(3, n) ≥ cn2

log2 n
,

for some constant c > 0. The main idea of Erdős’ proof was to show that in a random
graphG(r, p)with p ≈ r−1/2, only a small fraction of the edges need to be removed to
destroy all triangles. Moreover, with high probability, removing these edges doesn’t
significantly affect the graph’s independence number.

Our proof involves a randomized strategywhich pays particular attention to avoid-
ing red triangles. Instead of painting entirely randomly, Painter’s strategy is modified
in twoways to avoid creating red triangles. First, if an edge is built incident to a vertex
of degree less than (n − 1)/4, Painter always paints it blue. Second, if painting an
edge red would create a red triangle, Painter again always paints it blue. In all other
cases, Painter paints edges red with probability p and blue with probability 1 − p.

In order to show that this Painter strategy works, we first prove a structural result
about Erdős–Rényi random graphs. Roughly speaking, this lemma implies that if an
edge is removed from each triangle in G(r, p), the remaining graph still has small
independence number.

Lemma 3.1 Suppose n is sufficiently large, p = 20 log n/n, r = 10−6n2/(log n)2

andG ∼ G(r, p) is anErdős–Rényi randomgraph. Then, with high probability, there

does not exist a set S ⊂ V (G) of order n such that more than n2

10 pairs of vertices in
S have a common neighbor outside S.

Proof Let E1 be the event that the maximum degree of G is at most 2rp. For a given
vertex subset S of order n, let E1(S) be the event that every vertex outside S has at
most 2rp neighbors in S. Thus, E1 implies E1(S) for all S.

For a set S of size n, let E2(S) be the event that at most n2

10 pairs of vertices in S
have a common neighbor outside S and let E2 be the event that E2(S) holds for all
S. We will show E1 ∧ E2 occurs w.h.p. which in turn implies that E2 itself occurs
w.h.p.

The distribution of deg(v) for a single vertex v ∈ G is the binomial distribution
B(r − 1, p). Using the Chernoff bound (see, e.g., Appendix A in [3]), we find that

Pr[deg(v) > 2rp] <
( e
4

)rp
< exp

(
− n

5 · 105 log n
)

.

Taking the union over all vertices of G, it follows that

Pr[E1] < r exp

(
− n

5 · 105 log n
)

,

so E1 occurs w.h.p.
Fix a set S of n vertices. For v ∈ V (G)\S, define degS(v) to be the number of

neighbors of v in S. Since E1 implies E1(S), we have

Pr[E1 ∧ E2(S)] ≤ Pr[E1(S) ∧ E2(S)].



Online Ramsey Numbers and the Subgraph Query Problem 171

We will show that this last probability is so small that we may union bound over
all S.

For E1(S) to occur, the possible values of degS(v) range through [0, 2rp].
We will cut off the bottom of this range and divide the rest into dyadic inter-
vals. Let D0 = −1, D1 = 4enp, D2 = 8enp, D3 = 16enp, . . . , Dk = 2rp so that
Di = 2Di−1 for each 2 ≤ i ≤ k − 1 and Dk ≤ 2Dk−1. The number of intervals k
satisfies k ≤ log2(r/n) ≤ 2 log n.

Define di to be the number of v ∈ V (G)\S satisfying Di−1 < degS(v) ≤ Di . For
E2(S) to occur, it must be the case that

∑
v/∈S

(
degS(v)

2

)
≥ n2

10
,

as the left hand side counts each pair in S with a common neighbor outside S at least
once. In particular,

k∑
i=1

di

(
Di

2

)
≥ n2

10
. (3)

Notice that since D1 = 4enp = 80e log n and d1 ≤ r ,

d1

(
D1

2

)
≤ r · D2

1 = 64e2

104
n2 <

n2

20
,

so at least half the contribution of (3) must come from i ≥ 2. Thus,

k∑
i=2

di

(
Di

2

)
≥ n2

20
. (4)

We would like to bound the probability that E1(S) and (4) occur simultaneously.
Let T be the family of all sequences (di )ki=1 which sum to r − n and satisfy (4).
Given the choice of (di )ki=1, the number of ways to assign vertices to dyadic intervals
(Di−1, Di ] is at most

( r−n
d1,d2,...,dk

)
.

If i ≥ 2 and a vertex v is assigned to (Di−1, Di ], the probability that degS(v) lies
in that interval is at most

Pr[degS(v) > Di−1] ≤
(

n

Di−1

)
pDi−1 ≤

(
enp

Di−1

)Di−1

.

If i = 1, then we simply use the trivial bound Pr[degS(v) ∈ (D0, D1]] ≤ 1. Thus,

Pr[E1(S) ∧ E2(S)] ≤
∑

(di )∈T

(
r − n

d1, d2, . . . , dk

) k∏
i=1

Pr[degS(v) ∈ (Di−1, Di ]]
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≤
∑

(di )∈T

(
r − n

d1, d2, . . . , dk

) k∏
i=2

((
enp

Di−1

)Di−1
)di

≤
∑

(di )∈T

k∏
i=2

(
r ·

(
enp

Di−1

)Di−1
)di

,

where we used
( r−n
d1,d2,...,dk

)
< rd2+···+dk . Next, the number of compositions of r − n

into k parts is at most rk , so |T | ≤ rk and we have

Pr[E1(S) ∧ E2(S)] ≤ rk max
(di )∈T

k∏
i=2

(
r ·

(
enp

Di−1

)Di−1
)di

≤ rk max
(di )∈T

exp

(
k∑

i=2

di log Ai

)
, (5)

where

Ai = r ·
(

enp

Di−1

)Di−1

.

It remains to maximize the exponent in (5) subject to (4). Consider the function

f (D) = 1

D2
log

(
r ·

(enp
D

)D
)

= log r

D2
+ log(enp)

D
− log D

D
.

Notice that D1 = 4enp = 80e log n so that for D ≥ D1,

r ·
(enp

D

)D ≤ r ·
(
enp

D1

)D1

≤ r · 2−80e log n < 1.

Thus, f (D) takes negative values on [D1, Dk]. Its derivative is

f ′(D) = −2 log r

D3
− log enp

D2
+ log D

D2
− 1

D2
= D(log D − log(e2np)) − 2 log r

D3
.

Since r ≤ n2, we find that whenever D ≥ D1 = 4enp = 80e log n,

f ′(D) ≥ D log(4/e) − 2 log r

D3
≥ 80e log(4/e) · log n − 4 log n

D3
> 0,

and so f (D) is monotonically increasing on [D1, Dk] and attains its maximum value
at Dk = 2rp. With 2rp = 4 · 10−5n/ log n and n sufficiently large, observe that
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(
enp

2rp

)2rp

=
(
106e(log n)2

2n

)4·10−5n/ log n

≤ exp(−2 · 10−5n),

so that this maximum value is

f (2rp) ≤ 1010(log n)2

16n2
· log(n2 · exp(−2 · 10−5n)) ≤ −105(log n)2

16n
.

In particular, because
(D
2

) ≥ D2/3 for D ≥ 3 and f (D) is always negative,

k∑
i=2

di log Ai =
k∑

i=2

di

(
Di

2

)
· log Ai(Di

2

)

≤ 3
k∑

i=2

di

(
Di

2

)
· f (Di )

≤ 3 f (Dk)

k∑
i=2

di

(
Di

2

)

≤ 3 f (2rp) · n
2

20
≤ −n(log n)2

for any (di ) ∈ T .
Returning to (5), it follows that

Pr[E1(S) ∧ E2(S)] ≤ rk max
(di )∈T

exp

(
k∑

i=2

di log Ai

)
≤ rk exp(−n(log n)2).

There are at most
(r
n

) ≤ e2n log n subsets S of size n to consider and rk ≤ rn ≤ e2n log n

as well, so

Pr[E1 ∧ E2] = Pr[E1 ∨
∨
S

E2(S)]

≤ Pr[E1] +
∑
S

Pr[E1 ∧ E2(S)]

≤ Pr[E1] +
∑
S

Pr[E1(S) ∧ E2(S)]

≤ Pr[E1] + exp(4n log n) · exp (−n(log n)2
)
.

Both summands on the right vanish rapidly, so E2 holds w.h.p., as desired. �
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With this lemma in hand, we are now ready to prove Theorem 1.4.

Proof of Theorem 3.2 Let p = 20 log n/n, r = 10−6n2/(log n)2 and N = (n−1)r
8 .

We will give a randomized strategy for Painter such that, regardless of Builder’s
strategy, after N edges are colored there is neither a red K3 nor a blue Kn w.h.p.
Thus, there exists a strategy for Painter which makes the game last more than N
steps and the desired bound r̃(3, n) > N follows. Note that proving the result with
positive probability suffices, but our argument shows it w.h.p. for no additional cost.

We now describe Painter’s strategy. Initially, all vertices are considered inactive; a
vertex is activated when its degree reaches at least (n − 1)/4. The active vertices are
labeled with the natural numbers in [r ] when they reach degree at least (n − 1)/4,
using an arbitrary underlying order on the vertices to break ties. Since N = (n −
1)r/8, there will never be more than r active vertices.

When Builder builds an edge (u, v), this edge is considered inactive if either u or
v is inactive immediately after (u, v) is built and active otherwise. The status of an
edge remains fixed once it is built, so that inactive edges remain inactive even if both
of its incident vertices are active at a later turn. Painter automatically colors inactive
edges blue.

If Builder builds an active edge (u, v), Painter first checks if u and v have a
common neighbor w such that (u,w) and (v,w) are both red. For brevity’s sake, we
call such a vertex w a red common neighbor of u and v. If so, Painter paints (u, v)
blue so as to not build a red triangle and we call such an edge altered. Otherwise,
Painter paints it red with probability p and blue with probability 1 − p. Following
this strategy, Painter guarantees that no red triangles are built. It suffices to show that
w.h.p. no blue Kn is built either.

Here is an equivalent formulation of Painter’s strategy. At the start of the game,
Painter samples an Erdős–Rényi graph G = G([r ], p) on the labels which he keeps
hidden from Builder. Inactive edges are painted blue. When an active edge between
vertices labelled i and j is built, it is painted red if and only if i ∼ j in G and these
two vertices currently have no red common neighbor.

Now, we apply Lemma 3.1 to the graphG. Letting E2(S) be the event that an n-set
S has at most n2/10 pairs with outside common neighbors and E2 = ∧

S E2(S), we
see that Pr[E2] → 0 as n → ∞.

For a set S ⊆ [r ] of labels, write T (S) for the set of active vertices with labels in S.
We seek to bound the probability of the event B(T (S)) that T (S) is a blue n-clique at
the end of the game. Because any blue n-clique would have all of its vertices active
(as each vertex of the n-clique would have degree at least n − 1 ≥ (n − 1)/4), if
none of the events B(T (S)) occurs, then no blue Kn is ever built. Once we show
that the probability of a single B(T (S)) is sufficiently small, we will apply the union
bound over all S to show that w.h.p. no blue Kn is built.

First, note that if any edge (u, v) in T (S) is altered (and hence blue), we may
assume that their red common neighbors lie outside T (S). Otherwise, there must be
two red edges inside T (S) already and T (S) can never become a blue n-clique.
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With this in mind, conditioning on the event E2(S), at most n2/10 altered blue
edges are built in T (S). Within T (S) there can be at most n2/4 inactive edges.
Assuming B(T (S)) occurs, there are at least

(
n

2

)
− n2

4
− n2

10
≥ n2

8

edges between vertices of T (S) that are both active and unaltered. For B(T (S)) to
occur, each of these active and unaltered edges would have to be colored blue on its
turn. On the other hand, each of these edges has a chance p of being colored red on
that turn.

Thus, we find that

Pr[B(T (S))|E2(S)] ≤ (1 − p)
n2

8 ,

with one factor of 1 − p for each unaltered active edge built in T (S). Thus,

Pr[
∨
S

B(T (S))] ≤ Pr[E2 ∧
∨
S

B(T (S))] + Pr[E2].

The second summand goes to zero, so it suffices to show the first does as well. We
have

Pr[E2 ∧
∨
S

B(T (S))] ≤
∑
S

Pr[E2 ∧ B(T (S))]

≤
∑
S

Pr[E2(S) ∧ B(T (S))]

≤
∑
S

Pr[B(T (S))|E2(S)]

≤
(
r

n

)
(1 − p)

n2

8 .

Using 1 − p ≤ e−p, the right-hand side is at most

rne−pn2/8 ≤ en log r−pn2/8 = e−( 1
2 +o(1))n log n,

also tending to zero as n → ∞. Thus, the probability that either E2 or some B(T (S))

occurs tends to zero. Therefore, with high probability no blue Kn is built.
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4 Off-Diagonal Upper Bounds

In Sect. 2, we proved lower bounds of the form r̃(m, n) ≥ �(n(2−√
2)m+o(m)) on the

off-diagonal online Ramsey numbers through an analysis of the online randomRam-
sey number. It is easy to give an upper bound of the form r̃(m, n) ≤ O(n2m−2) simply
by applying the Erdős–Szekeres bound for classical Ramsey numbers and the trivial
observation that r̃(m, n) ≤ (r(m,n)

2

)
.

However, the simple inductive proof of the Erdős–Szekeres bound suggests a
Builder strategy that does considerably better. Namely, build many edges from one
vertex until it has a large number of edges of one color, then proceed inductively in
that neighborhood. This strategy is particularlywell suited to the onlineRamsey game
because the number of edges built is only slightly more than linear in the number of
vertices used, allowing us to derive a bound of the form r̃(m, n) ≤ O(nm).

A slight variation on this argument allows us to bound the online Ramsey number
in terms of the bounds for classical Ramsey numbers.

Lemma 4.1 Let m ≤ n be positive integers with m fixed. Let m0 = 	m/2
 + 1 and
n0 = 	√n
. Suppose L is a positive real such that for all m0 ≤ m ′ ≤ m and n0 ≤
n′ ≤ n,

r(m0, n
′) ≤ 1

L

(
m0 + n′ − 2

m0 − 1

)
,

r(m ′, n0) ≤ 1

L

(
m ′ + n0 − 2

m ′ − 1

)
.

Then

r̃(m, n) ≤ Cmn

L

(
m + n − 2

m − 1

)

for a constant Cm depending only on m.

Proof We describe a general Builder strategy for the online Ramsey game with
parametersm and n and some savings parameter L . Let f (m, n) = 1

L

(m+n−2
m−1

)
, so we

have f (m − 1, n) + f (m, n − 1) = f (m, n) by Pascal’s identity.
Begin by building f (m, n) − 1 edges out of a given initial vertex v1. If f (m −

1, n) of these edges are colored red, we proceed to the red neighborhood of v1;
otherwise, we proceed to the at least f (m, n − 1) vertices in the blue neighborhood
of v1. If at some step we reach a neighborhood with f (m − i, n − j) vertices, we
build f (m − i, n − j) − 1 edges inside this neighborhood from one of the vertices,
which we label vi+ j+1. If f (m − i − 1, n − j) of these edges are colored red, we
proceed to the red neighborhood of vi+ j+1; otherwise, we proceed to the at least
f (m − i, n − j − 1) vertices in the blue neighborhood of vi+ j+1. We stop once
m reaches m0 or n reaches n0, ending up with either f (m0, n′) vertices for some
n0 ≤ n′ ≤ n or f (m ′, n0) vertices for somem0 ≤ m ′ ≤ m. Once we reach this stage,
we build all edges in the remaining set.
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Suppose now that we arrive at a set S of order f (m0, n′). By construction, there
are � = m + n − m0 − n′ vertices v1, . . . , v� such that m − m0 of the vertices vi are
joined in red to every v j with j > i and every w ∈ S. The remaining n − n′ vertices
vi are joined in blue to every v j with j > i and every w ∈ S. But since

r(m0, n
′) ≤ 1

L

(
m0 + n′ − 2

m0 − 1

)
= f (m0, n

′),

the complete graph on S contains either a red Km0 or a blue Kn′ , either of which can
be completed to a red Km or a blue Kn by using the appropriate subset of v1, . . . , v�.
If we had instead arrived at a set of order f (m ′, n0), a similar analysis would have
applied.

Note that the total number of edges built in the branching phase is at most
(m + n) f (m, n), while the number built by filling in the final clique is at most
max( f (m0, n)2, f (m, n0)2). Using the choice of m0 and n0, the total number
of edges built is easily seen to be at most a constant in m times the previous
expression. �

From here we derive Theorem 1.5.

Proof of Theorem 4.2 We apply the bound

r(m, n) = Om(nm−1/ logm−2 n),

due to Ajtai, Komlós and Szemerédi [1]. In particular, suppose m0 = 	m/2
 + 1,
n0 = 	√n
 and m ′, n′ satisfy m0 ≤ m ′ ≤ m and n0 ≤ n′ ≤ n. Then, for some con-
stants C,C ′ > 0 depending only on m, we have

r(m0, n
′) ≤ C

logm0−2 n′ (n
′)m0−1 ≤ C ′

log	m/2
−1 n

(
m0 + n′ − 2

m0 − 1

)

and

r(m ′, n0) ≤ C

logm
′−2 n0

nm
′−1

0 ≤ C ′

log	m/2
−1 n

(
m ′ + n0 − 2

m ′ − 1

)
,

verifying the conditions of Lemma 4.1 with L = �m(log	m/2
−1 n). It follows by that
lemma that there exists another constant C ′′ > 0 depending only on m for which

r̃(m, n) ≤ C ′′n
log	m/2
−1 n

(
m + n − 2

m − 1

)
.

Fixing m ≥ 3 and taking n → ∞, this implies

r̃(m, n) = Om

(
nm

(log n)	m/2
−1

)
,

as desired. �
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We remark that while the statement and proof of Lemma 4.1 are designed for the
case where m is a constant, they can be easily modified to make them meaningful
for all m and n.

5 The Subgraph Query Problem

The vertex cover argument in Sect. 2 was motivated by our study of the closely-
related Subgraph Query Problem. Indeed, one can view this problem as an instance
of the online Ramsey game with a random Painter where Builder single-mindedly
tries to build a clique in one color, ignoring the other color entirely.

Let p ∈ (0, 1) be the probability that Builder successfully builds any given edge
in the Subgraph Query Problem.We are primarily interested in the quantity f (H, p),
which we defined as the minimum N for which there exists a Builder strategy which
builds a copy of H with probability at least 1

2 in N turns. Of secondary interest is the
quantity t (H, p, N ), which we define as the maximum, over all Builder strategies,
of the expected number of copies of H that can be built in N turns. It is easy to see
that

t (H, p, N ) <
1

2
=⇒ f (H, p) > N .

Thus, upper bounds on t (H, p, N ) yield lower bounds on f (H, p).

5.1 Connection with Online Ramsey Numbers

We first check that the Subgraph Query Problem gets easier when edges are built
with higher probability.

Lemma 5.1 For any m ≥ 3, f (Km, p) is a nonincreasing function of p ∈ (0, 1).

Proof Suppose p < q and f (Km, p) = N . This means that in the Subgraph Query
Problemwith parameter p, Builder has an N -move strategy S to win with probability
at least half. Strategy S is defined by Builder’s choice of edge to build at each step,
given the data of which edges were successfully built in previous steps.

Builder’s strategy for the SubgraphQuery Problemwith parameter q is as follows.
For each edge that Builder successfully builds, Builder then flips a biased coin that
comes up heads p

q of the time. If the coin comes up tails, Builder pretends the edge
actually failed to build, and acts according to strategy S with respect to only the
edges for which the coin came up heads. Just looking at the edges which come up
heads, Builder is exactly following strategy S, and so builds a Km with probability
at least 1/2 in N steps. �

We now prove Theorem 1.10, which connects the Subgraph Query Problem to
the online Ramsey game. Recall the statement:



Online Ramsey Numbers and the Subgraph Query Problem 179

r̃(m, n; p) ≤ min{ f (Km, p), f (Kn, 1 − p)} ≤ 3r̃(m, n; p).

Proof of Theorem 5.2 We first show the left side of the inequality. Let N = min
{ f (Km, p), f (Kn, 1 − p)} and suppose that f (Km, p) is the smaller of the two.
Then there exists an N -move Builder strategy which builds a Km with probability at
least half. Now, let Builder play the online Ramsey game against a random Painter
with the same probability parameter p. Builder’s strategy will be to treat red edges
as successfully built and blue edges as failed. In this way, Builder wins the online
Ramsey game in N moves with probability at least half, by constructing a red Km .
Similarly, if f (Kn, 1 − p) were smaller, Builder would instead treat blue edges as
successfully built and red edges as failed. This would then guarantee the construction
of a blue Kn with probability at least half.

Now we show the right side of the inequality. Suppose N = r̃(m, n; p), so in
the online Ramsey game against random Painter with parameter p, there exists an
N -move Builder strategy which builds a red Km or blue Kn with probability at least
half. In particular, this same strategy guarantees either a red Km with probability at
least 1

4 or a blue Kn with probability at least 1
4 .

Suppose the first is true. Then Builder plays the Subgraph Query Game using this
same strategy, treating red edges as successfully built and blue as failed. In N moves,
he has at least a 1

4 chance of successfully building a Km . Repeating this strategy three
independent times on three different vertex sets, Builder uses 3N moves to build a
Km with probability at least

1 −
(
1 − 1

4

)3 = 37

64
>

1

2
,

showing that f (Km, p) ≤ 3r̃(m, n; p) in this case. Similarly, if the second case
occurs, f (Kn, 1 − p) ≤ 3r̃(m, n; p). Either way, the smaller of f (Km, p) and
f (Kn, 1 − p) is bounded above by 3r̃(m, n; p).
Now we show that Conjecture 1.9 about the Subgraph Query Problem directly

implies Conjecture 1.7 about online random Ramsey numbers.

Proof that Conjecture 1.9 implies Conjecture 1.7. Assume Conjecture 1.9, i.e.,
f (Km, p) = 2o(m) p− 2

3m+cm for all m ≥ 3, p ∈ (0, 1). By Theorem 1.10, we have

r̃(m, n; p) = �(min{ f (Km, p), f (Kn, 1 − p)}). (6)

In the diagonal case of the online Ramsey game, (6) together with Lemma 5.1
implies that p = 1

2 gives the online random Ramsey number to within a constant
factor. Thus,

r̃rand(n, n) = 2
2
3 n+o(n).

This proves part (a).
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In the off-diagonal case, a value of p nearly optimizing the right hand side of (6)
satisfies p = �(mn log n

m ) by Theorem 1.11, which is proved in Sect. 5.3. Plugging
in this value of p, we get

r̃rand(m, n) = 2o(m)
(
�

(m
n
log

n

m

) )− 2
3m+cm

,

which implies case (b) of Conjecture 1.7. �

5.2 The Branch and Fill Strategy

We now prove the upper bound in Conjecture 1.9.
We will say it is possible to build a graph H in O(T ) turns, where T = T (p) is a

function of p, if for any p ∈ (0, 1) it is possible, in the Subgraph Query Game played
with probability p, to build a copy of H in O(T ) time with probability at least 1

2 .
It is a simple fact about randomized algorithms that if one can achieve any constant
success probability in O(T ) time then one can iterate the algorithm to succeed with
probability 1 − ε in O(T log ε−1) time.

We describe a Builder strategy to prove the upper bound in Conjecture 1.9 and
conjecture that this is essentially the optimal strategy for theSubgraphQueryProblem
for cliques.

Lemma 5.3 Let a ≥ 1, b ≥ 2 and n = a + b + 1 satisfy 2a + 3 − b ≥ 0. Then

f (Kn, p) = On(p
− 2a+b+1

2 + α
b ),

where α = min(1, b(2a+3−b)
2(b−1) ).

Proof To build a clique Kn in O(T ) turns, where T = p− 2a+b+1
2 + α

b , we follow a
strategy with three phases:

1. Build a clique U on a vertices. By induction, the number of turns needed will be
negligible.

2. Find paT common neighbors of U in On(T ) time with high probability. This is
done by repeatedly picking a new vertex v and trying to build each of the edges
between v and the vertices in U until one fails. Let W be the set of common
neighbors found in this way.

3. Among the vertices of W , pick a vertex w1 and try to build all edges incident
to w1 within W . Let W1 = N (w1) ∩ W be the neighborhood determined. Try to
build all

(|W1|
2

)
edges within W1. Remove {w1} ∪ W1 from W and repeat a total of

p−α times, picking w2, . . . ,wp−α , finding their neighborhoods, and filling them
in. Here, α ∈ [0, 1] is a parameter which we have not yet specified.

After the process is complete, if any one of the Wi contains a b-clique W ′
i , then we

are done, since U ∪ {wi } ∪ W ′
i forms an n-clique.
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It remains to determine the success probability and the number of steps taken
in the above process. By the standard Chernoff bounds, the sizes of all the sets Wi

concentrate around their means with high probability. Hence, with high probability,

|Wi | = (1 + o(1))pa+1(1 − p)i−1T .

Astandard application of Janson’s inequality (seeChaps. 8 and 10 of [3]) then implies

Pr[Wi contains a b-clique] = �b

(
min(p(

b
2)|Wi |b, 1)

)

= �b

(
min(p(a+1)b+(b2)(1 − p)(i−1)bT b, 1)

)
.

If i ranges up to p−α and α ≤ 1, then the decay factor (1 − p)(i−1)b is�b(1) and can
be safely ignored. Since the event that eachWi contains a b-clique is independent of
all the others, we need only pick p, T, α for which the expression p−α p(a+1)b+(b2)T b

is a positive constant. If this is the case, then with at least constant probability our
strategy constructs an n-clique.

We also need to know that the total number of turns taken is On(T ). This is true in
Phases 1 and 2 by design. With high probability, the number of turns taken in filling
out each Wi is Oa(paT + p2(a+1)T 2). Since this is repeated p−α times, it suffices to
have

T = Oa(p
α−2(a+1))

for the number of turns to be O(T ). It remains to optimize the value of T subject
to the constraints T = Oa(pα−2(a+1)) and p−α p(a+1)b+(b2)T b = �b(1). As long as
2a + 3 − b ≥ 0, this system has solutions. Solving for α which minimizes T , we
find that any

α ≤ b(2a + 3 − b)

2(b − 1)

works, as long as the decay condition α ≤ 1 was also satisfied. �

Lemma 5.3 provides upper bounds for f (Km, p) for all m ≥ 4, where the shape
of the power of p depends on the residue class of m modulo 3.

Theorem 5.4 If p ∈ (0, 1), then f (K3, p) = O(p−3/2) and, for m ≥ 4,

f (Km, p) = Om(p− 2
3m+cm ),

where

cm =

⎧⎪⎨
⎪⎩

m
2m−3 m ≡ 0 (mod 3)
2
3 m ≡ 1 (mod 3)
2m+8
6m−3 m ≡ 2 (mod 3).
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Proof For m = 3, the bound is simple. Query �(p−3/2) pairs containing a given
vertex v1 and then, among the �(p−1/2) neighbors successfully found, query all
pairs. For sufficiently large implied constants, the probability that we build a triangle
containing v1 is at least 1/2.

When m ≥ 4, we use Lemma 5.3, taking

(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m−3
3 , 2m

3

)
m ≡ 0 (mod 3)(

m−4
3 , 2m+1

3

)
m ≡ 1 (mod 3)(

m−2
3 , 2m−1

3

)
m ≡ 2 (mod 3).

This gives the required result. �

We conjecture that the bounds in Theorem 5.4 are best possible up to the constant
factor. In the next two subsections, we prove this is the case for m ≤ 5.

5.3 Recursive Graph Building

Recall that f (H, p) is the number of queries needed in the Subgraph Query Problem
to build a copy of H with probability at least 1

2 . When H = Km , we can prove a
lower bound on f (H, p) by combining Theorem 1.10 with Theorem 2.1.

Proposition 5.5 If m ≥ 3 and c ≤ 1
2m, then

f (Km, p) ≥ 1

4
p−((m2)−c(c−1))/(m−c).

Proof Take N = 1
4 p

−((m2)−c(c−1))/(m−c), which is chosen so that

p(
m
2)−c(c−1)(2N )m−c ≤ 1

4
.

Since (1 − p)(
n
2)(2N )n → 0 as n → ∞, there is some n sufficiently large for which

p(
m
2)−c(c−1)(2N )m−c + (1 − p)(

n
2)(2N )n ≤ 1

2
.

With d = 0, this choice of m, n, N , p, c, d satisfies the conditions of Theorem 2.1,
so r̃(m, n; p) > N . By Theorem 1.10, f (Km, p) ≥ r̃(m, n; p), giving the required
result. �

Wenowdescribe a generalmethod for obtaining a similar lower bound on f (H, p)
when H is not a clique. As before, define t (H, p, N ) to be the maximum expected
number of copies of H that can be constructed in N queries. The main result of this
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section bounds t (H, p, N ) when H contains a large matching. To this end, recall
that a graph has a k-matching if it contains k disjoint edges.

Theorem 5.6 Let H be a graph containing a k-matching. Then there exists an abso-
lute constant A > 1 for which

t (H, p, N ) ≤ (Ae(H))e(H) pe(H)−k(k−1)(2N )v(H)−k,

whenever pN ≥ 1.

For any edge e ∈ H , write H\e for the graph formed by removing the edge e
from H . If U is a subset of the vertices of H , write H\U for the induced subgraph
of H on the complement of U . We begin by proving the following pair of recursive
bounds on t (H, p, N ).

Lemma 5.7 If H is a simple labeled graph, then

t (H, p, N ) ≤ p
∑

e∈E(H)

t (H\e, p, N ) (7)

and
t (H, p, N ) ≤ (1 + o(1))pN min

(u,v)∈E(H)
t (H\{u, v}, p, N ), (8)

where the o(1) term tends to 0 as pN → ∞.

Proof Suppose Builder follows an optimal strategy which achieves t (H, p, N )

expected copies of H in N turns. For each copy Hi of H that appears during the game,
distinguish the edge ei which is built last in Hi . For each e ∈ E(H), let te(H, p, N ) be
the maximum expected number of copies of H that Builder can build, only counting
those copies of H in which e is the last edge built. Then, clearly,

t (H, p, N ) ≤
∑

e∈E(H)

te(H, p, N ).

Furthermore, te(H, p, N ) ≤ pt (H\e, p, N ), since each copy of H\e can become
exactly one copy of H with success rate p if e is built. Inequality (7) follows.

As for recursion (8), note simply that the number of copies of H is bounded by
the number of choices for the images of the vertices u, v which are connected by an
edge times the number of copies of H\{u, v}. By the Chernoff bound, the number of
choices of an edge is tightly concentrated around pN , so the inequality follows. �

It remains to apply these inequalities recursively.

Proof of Theorem 5.8 By (8), there is an absolute constant A > 1 for which

t (H, p, N ) ≤ ApN min
(u,v)∈E(H)

t (H\{u, v}, p, N ) (9)
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whenever pN ≥ 1.
We proceed by induction on the number of edges in H . When H is an empty

graph on m vertices, the result is trivial with k = 0. Let H be a labeled graph for
which the induction hypothesis is true for every graph with fewer edges than H . Let
e ∈ E(H) run over all edges of H . We break into two cases:

Case 1. Every H\e contains a k-matching. Then, by induction and (7), it follows
that

t (H, p, N ) ≤ p
∑

e∈E(H)

t (H\e, p, N )

≤ pe(H)(A(e(H) − 1))e(H)−1 · pe(H)−1−k(k−1)(2N )v(H)−k

≤ (Ae(H))e(H) pe(H)−k(k−1)(2N )v(H)−k,

as desired.
Case 2. There exists e ∈ E(H) for which H\e contains no k-matching. Then,

let e2, . . . , ek be k − 1 edges which complete a k-matching of H containing e. The
edges incident to e must all be incident to one of the ei or else H\e would contain
a k-matching. Also, e cannot form a 4-cycle with any ei for the same reason. From
these two facts one finds that e can be incident to at most 2(k − 1) other edges in
total. Let H ′ be the graph obtained from H by removing the two vertices of e from
H . Applying the induction hypothesis on H ′, which is a graph on v(H) − 2 vertices
with at least e(H) − (2k − 1) edges and a (k − 1)-matching, we find that

t (H ′, p, N ) ≤ (Ae(H ′))e(H
′) pe(H)−(2k−1)−(k−1)(k−2)(2N )v(H)−2−(k−1).

Combining this with inequality (9), we have

t (H, p, N ) ≤ ApN · t (H ′, p, N )

≤ (Ae(H))e(H) pe(H)−k(k−1)(2N )v(H)−k,

as desired.

For our purposes, we will always assume pN ≥ 1. Otherwise, with high prob-
ability at most a constant number of edges are built successfully in the Subgraph
Query Game, so t (H, p, N ) will be negligibly small.

Since t (H, p, N ) < 1/2 implies f (H, p) > N , Theorem5.6 immediately implies
Theorem1.12. Comparing thiswith Proposition 5.5,we note thatwhile Theorem1.12
gives a bound for all graphs H , it gives an inferior quantitative dependence on e(H).
While this stronger quantitative dependence in Proposition 5.5 seems to be only a
minor benefit, it was needed in the proof of Theorem 1.11, which is why we retained
the proof.

For large m, this bound only gives Corollary 1.14, that

f (Km, p) = �m(p−(2−√
2)m+O(1)),
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which is still far from the conjectured growth rate p− 2
3m+O(1). However, for m ≤ 5,

Theorem 1.12 can be used to pin down the asymptotic growth rate of f (Km, p),
proving Theorem 1.13.

Proof of Theorem 5.9 The upper bounds for these cases are proved in Sect. 5.2.
Apply Theorem 1.12 by taking k = 1 for m = 3 and k = 2 for m = 4, 5 to get
the desired lower bounds. �

When m ≥ 6, the matching argument of Theorem 5.6 does not seem sufficient
for determining the exact growth rate of f (Km, p). Indeed, we will now exhibit an
infinite family of graphs for which Theorem 5.6 is tight.

For k ≥ 1, let Hk be the graph on 2k vertices ai , bi , 1 ≤ i ≤ k, such that ai ∼ a j

for all i �= j , bi � b j for all i �= j , and ai ∼ b j if and only if i ≤ j . Thus Hk is a
split graph consisting of a k-clique, a k-independent set, and a half graph between
them. We show that Theorem 5.6 is tight for Hk up to a constant factor.

Note that the construction below requires N to grow like a tower of p−1’s of
height k. It is possible that the same lower bound is false in the regime N ≤ p−C for
any C = C(k) > 0.

Theorem 5.10 For every k ≥ 1, the graph Hk defined above contains a k-matching
and, for any p ∈ (0, 1),

t (Hk, p, N ) = �k(p
e(Hk )−k(k−1)Nv(Hk )−k),

provided N is sufficiently large in terms of p.

Proof In fact, Hk has k2 edges, 2k vertices, and contains a unique k-matching
(ai , bi )i≤k . It will suffice to show that for all p ∈ (0, 1) and N sufficiently large
in terms of p,

t (Hk, p, N ) = �k(p
kNk).

Builder’s strategy will involve constructing a nested sequence of vertex sets
U1,U2, . . . ,Uk . Thefirst setU1 is just an arbitrary set of N/k vertices. In each succes-
sive Ui , assuming |Ui | ≥ √

N we can pick Ni = N/(k|Ui |) vertices a(1)
i , a(2)

i , . . . ,

a(Ni )
i ∈ Ui and try to build all edges from each a( j)

i to every other vertex in Ui .
This step takes at most N/k turns. The set Ui+1 is then defined to be the common
neighborhood of a(1)

i , . . . , a(Ni )
i within Ui .

Repeating this process k times, we use at most N turns. For N sufficiently large,
with high probability the edge density from a(1)

i , a(2)
i , . . . , a(Ni )

i to the rest of |Ui | is
(1 + o(1))p. Thus, the number of copies of Hk built in this way is bounded below
by

∏
i

(Ni · p|Ui |) ≥ (1 + o(1))(pN )k/kk,

since we can choose ai out of any of the Ni vertices a
(1)
i , . . . , a(Ni )

i and bi out of
any of its (1 + o(1))p|Ui | neighbors. As long as N is large enough that |Uk | ≥ √

N
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with high probability, there will be enough vertices in the last set Uk to perform the
strategy. This argument successfully constructs �k(pkNk) copies of Hk . Taking N
to be a tower of (2 + 2p−1)’s of height k is sufficient. �

We finish the subsection with an application of the preceding results and prove
Theorem 1.11. Recall that this theorem states that for m fixed and n → ∞, a value
of p for which r̃rand(m, n) ≤ 3r̃(m, n; p) satisfies p = �(mn log n

m ).

Proof of Theorem 5.11 By Theorem 5.4,

f (Km, p) = Om(p−2m/3),

and in fact it can be checked from the proof that the explicit dependence on m is
polynomial. Moreover, using Proposition 5.5 with c = 0, we have that

f (Km, p) ≥ 1

4
p− m−1

2 ≥ 1

4
p−m/3,

since m−1
2 ≥ m

3 for m ≥ 3. Putting all this together, there exists an absolute constant
A > 0 for which

1

4
p−m/3 ≤ f (Km, p) ≤ mA p−2m/3 (10)

for all m ≥ 3, p ∈ (0, 1).
By Theorem 1.10, we have

r̃(m, n; p) ≤ min{ f (Km, p), f (Kn, 1 − p)} ≤ 3r̃(m, n; p).

Pick some p0 ∈ (0, 1)whichmaximizes the functionmin{ f (Km, p), f (Kn, 1 − p)}.
Such a p0 exists because f (Km, p) is nonincreasing in p, f (Kn, 1 − p) is nonde-
creasing, and both are integer-valued. Then, r̃rand(m, n) ≤ 3 · r̃(m, n; p0). It remains
to check that we could have chosen p0 = �(mn log n

m ). By (10) and the fact that the
bounds are continuous, we have

1

4
p

− 1
3m

0 ≤ nA(1 − p0)
− 2

3 n

and
1

4
(1 − p0)

− 1
3 n ≤ mA p

− 2
3m

0 .

Sincem ≥ 3 isfixed andn → ∞, thefirst inequality implies p0 → 0. In particular,
log(1 − p0) = −p0 + O(p20). Taking the logarithm of both sides in the inequalities
above, we have

−1

3
m log p0 − log 4 ≤ A log n + 2

3
n(p0 + O(p20))



Online Ramsey Numbers and the Subgraph Query Problem 187

and
1

3
n(p0 + O(p20)) − log 4 ≤ A logm − 2

3
m log p0.

Taking n → ∞ and dividing through bymp0, these inequalities combine to show

log(1/p0)

p0
= �

( n

m

)

and it follows that p0 = �(mn log n
m ), as desired. �

5.4 The Value of t(Km, p, N) for Large N

In this section, we investigate the behavior of the function t (Km, p, N ) as N → ∞.
We find that when N is very large, the essentially optimal strategy for building as
many copies of Km as possible is to fill in the edges of a clique on

√
2N vertices.

This is in stark contrast with the rather delicate procedure described in Sect. 5.2 to
build a single copy of Km .

5.4.1 Chernoff Bounds and Subjumbledness

We will need a standard lemma (see, for example, [24, Theorem 2.1]) saying that
with high probability all moderately large induced subgraphs of a random graph
G(N , p) have the expected number of edges. Recall that if U ⊂ V (G) is a vertex
subset of G, we write G[U ] for the induced subgraph on U .

Lemma 5.12 If G = G(N , p) and ε > 0, then, with high probability,

e(G[U ]) = (1 ± ε)p

(|U |
2

)

for all |U | = �ε(p−1 log N ).

In the literature (see [24] and its references), this pseudorandomness property is
usually called jumbledness. We also use this term, though in a slightly different way
to how it is usually used.

Definition 5.13 A graph G is (p, M, ε)-jumbled if, for every U ⊆ V (G) with
|U | ≥ M ,

e(G[U ]) = (1 ± ε)p

(|U |
2

)
.

A graph G is (p, M, ε)-subjumbled if it is a subgraph of some (p, M, ε)-jumbled
graph.
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In what follows, we will show that subjumbled graphs cannot have too many
cliques. For the graph-building problem, the heuristic is that it’s not possible to build
more copies of H in a known jumbled graph G with pN queries than it is with N
queries in G(N , p).

5.4.2 Degeneracy

Define a graph to be d-degenerate if there exists an ordering of the vertices v1, . . . , vn
such that |N (vi ) ∩ {v1, . . . , vi−1}| ≤ d for all i . The following simple lemma is well
known.

Lemma 5.14 Every graph with E edges is
√
2E-degenerate.

Proof We exhibit the degenerate ordering by picking the vertices backwards from
vn to v1. At each step, pick vi to be the minimal degree vertex in the current graph
and delete it. Note that d(vi ) ≤ i − 1 because there are only i points left and also
d(vi ) ≤ 2E

i because the sum of the degrees is at most 2E and vi has minimal degree.

It follows that at every step d(vi ) ≤ min(i, 2E
i ) ≤ √

2E , as desired. �
This is not quite sufficient for our purposes, but it gives the main idea. What

we really need is a better understanding of degeneracy in jumbled graphs. In what
follows, given a candidate ordering v1, . . . , vn of the vertices, we write N−(vi ) =
N (vi ) ∩ {v1, . . . , vi−1} and d−(vi ) = |N−(vi )|.
Lemma 5.15 Any (p, M, ε)-subjumbledgraphon N edges ismax((1 + ε)M

√
p, (1

+ ε)
√
2pN )-degenerate.

Proof Let H be a graph on N edges that is a subgraph of some (p, M, ε)-jumbled
graph G. We again pick vertices of the graph H in order of increasing degree
among the remaining vertices. Let the resulting order be v1, . . . , vn and write
Ui = {v1, . . . , vi }. The construction guarantees that vi is of minimal degree inG[Ui ].

If i ≤ M , then the subgraph H [v1, . . . , vi ] has at most as many edges as
H [v1, . . . , vM ], which has at most (1 + ε)pM2/2 edges. Thus,

d−(vi ) ≤ min
(
i,

(1 + ε)pM2

i

)

≤ (1 + ε)M
√
p.

Otherwise, if i > M , the induced subgraph H [v1, . . . , vi ] has at most (1 + ε)pi2/2
edges and it clearly cannot havemore than e(H) = N edges. Because vi is ofminimal
degree in this induced subgraph,

d−(vi ) ≤ 2

i
min

( (1 + ε)pi2

2
, N

)

= min((1 + ε)pi, 2Ni−1)

≤ (1 + ε)
√
2pN

and so every vertex has d−(vi ) ≤ max((1 + ε)M
√
p, (1 + ε)

√
2pN ), as desired. �
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5.4.3 Counting Cliques

Weare ready to prove the following lemma. Recall the standard notation that t (K , H)

is the number of labeled graph homomorphisms from K to H . Up to a lower order
term, this is the same as counting labeled copies of K in H . In fact, the equality is
exact in the case we care about, where K is a clique and H is a simple graph without
self-loops.

Lemma 5.16 For all p ∈ (0, 1), m, M ≥ 2 and 0 < ε < 1, if H is a (p, M, ε)-
subjumbled graph with N edges, then

t (Km , H) ≤ (1 + Om(ε + p1/2N−1/2))p(
m
2)(2p−1N )

m
2 + Om

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k · N k
2

)
.

Proof Take a degenerate ordering v1, . . . , vn of H such that vi is of minimum degree
in H [v1, . . . , vi ]. By Lemma 5.15,

d−(vi ) ≤ max((1 + ε)M
√
p, (1 + ε)

√
2pN ),

where the second term dominates as soon as N ≥ M2/2. Conditioning on whether
or not vn is in the copy of Km+1 we are counting, we see that

t (Km+1, H) − t (Km+1, H\vn) = (m + 1)t (Km, H [N−(vn)]).

In particular, writing t (m, N ) = max∗
e(H)=N t (Km, H), where the maximum is taken

over all graphs H with N edges that are subgraphs of some (p, M, ε)-jumbled graph,
we find that

t (m + 1, N ) ≤ max
d≤U (N )

[
t (m + 1, N − d) + (m + 1)t (m, e+(d))

]
, (11)

where U (N ) = max((1 + ε)M
√
p, (1 + ε)

√
2pN ) and e+(d) is any upper bound

on the number of edges in a graph on d vertices that is a subgraph of a (p, M, ε)-
jumbled graph. The function e+ we take is

e+(d) =

⎧⎪⎨
⎪⎩

d2

2 d < M
√
p

(1 + ε)
pM2

2 M
√
p ≤ d < M

(1 + ε)
pd2

2 d ≥ M.

To see that e+(d) is indeed an upper bound on the number of edges in a graph on
d vertices that is a subgraph of a (p, M, ε)-jumpled graph, we use the trivial bound
when d is small, extend to a size M set to use jumbledness when d is somewhat close
to M , and use jumbledness directly for d larger than M .
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We are left to bound t using the system of inequalities (11). Write

t∗(m, N ) = p(
m
2)(2p−1N )

m
2

for the approximate optimum value of t (m, N ). We induct on m. The base case is
t (2, N ) = 2N . Assume, by induction, that for some m ≥ 2,

t (m, N ) ≤ (1 + Om(ε + p1/2N−1/2))t∗(m, N ) + Om

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k · N k
2

)
.

We would like to show that the same inequality holds for m + 1. Iterating (11),
there exists a sequence (di )i≥1 of positive integers summing to N for which

di ≤ U
(
N −

∑
1≤ j<i

d j

)

and
t (m + 1, N ) ≤ (m + 1)

∑
i≥1

t (m, e+(di )),

which implies, by the induction hypothesis, that

t (m + 1, N ) ≤ (1 + Om(ε + p1/2N−1/2))(m + 1)
∑
i≥1

t∗(m, e+(di ))

+ Om+1

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k ·
[∑

i≥1

e+(di )
k
2

])
. (12)

Since e+(d) is constant on the range M
√
p ≤ d < M , the optimal choice of di

will never have any points in this range. The main term of (12) can thus be separated
into the sum over di < M

√
p and the sum over di ≥ M :

∑
i≥1

t∗(m, e+(di )) ≤
∑
di≥M

t∗
(
m, (1 + ε)pd2

i /2
)

+
∑

di<M
√
p

t∗
(
m, (1 + ε)d2

i /2
)
.

(13)
Note that m ≥ 2, so t∗(m, N ) is a convex nondecreasing function in N . Also, the
function e+(d) is nondecreasing and convex in d except for the jump discontinuity
at d = M

√
p. Therefore, in each of the ranges above, t∗(m, ·) and e+(·) are both

convex nondecreasing functions.
To bound the first sum in (13), we pass to an integral. Write

Ni = N −
∑
j≤i

di .
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Then

∑
di≥M

t∗(m, e+(di )) ≤
∑
i≥1

t∗
(
m, (1 + ε)pd2

i /2
)

=
∑
i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)pd2
i /2)

di
dx .

Because t∗(m, (1 + ε)pd2/2)/d is an increasing function of d and di ≤ U (Ni−1) =
(1 + ε)

√
2pNi−1, we have

∑
i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)pd2i /2)

di
dx ≤

∑
i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)3 p(
√
2pNi−1)

2/2)√
2pNi−1

dx

≤
∑
i≥1

∫ Ni−1+(1+ε)
√
2pN

Ni+(1+ε)
√
2pN

t∗(m, (1 + ε)3 p2x

(1 + ε)
√
2px

dx

≤
∫ N+(1+ε)

√
2pN

0

t∗(m, (1 + ε)3 p2x)√
2px

dx .

We had to shift integrals in the second step to guarantee that every value of x in the
range of integration is at least Ni−1.

Next, t∗(m, N ) is a polynomial in N , so we can absorb the (1 + ε) into the error
term. Similarly, we can pull out an error term of (1 + (1 + ε)

√
2p/N ) from the

bounds of the integral to simplify. Reorganizing various error terms, we get

∫ N+(1+ε)
√
2pN

0

t∗(m, (1 + ε)p2x)√
2px

dx ≤ (1 + Om+1(ε + p1/2N−1/2))

∫ N

0

t∗(m, p2x)√
2px

dx .

Finally, explicitly evaluating the integral, we have

∫ N

0

t∗(m, p2x)√
2px

dx =
∫ N

0
p(

m
2)(2p−1 p2x)

m
2

dx√
2px

= 2
m−1
2 p

m2−1
2

∫ N

0
x

m−1
2 dx

= 1

m + 1
2

m+1
2 p

m2−1
2 x

m+1
2

∣∣∣N
0

= 1

m + 1
p(

m+1
2 )(2p−1N )

m+1
2

= 1

m + 1
t∗(m + 1, N ).
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Estimating the second sum in (13) trivially, we get

∑
i≥1

t∗(m, e+(di )) ≤ (1 + Om+1(ε + p1/2N−1/2))t∗(m + 1, N ) + Om+1

( N

M
√
p
t∗

(
m,

pM2

2

))
.

To check the error terms in (12) match up is similar: break up each sum into the
sums over di ≥ M and di < M

√
p. The first sum is estimated by an integral and the

second trivially. The result is

Om+1

( m−1∑
k=2

p
m+k(k−3)

2 · Mm−k ·
[ ∑
i≥1

e+(di )
k
2

])
≤ Om+1

( m∑
k=2

p
m+1+k(k−3)

2 · Mm+1−k N
k
2

)
,

which is the right error term for t (m + 1, N ), completing the induction. �

In particular, and this is essential, the implicit constants in this lemma do not
depend on M . As an immediate corollary, we now prove Theorem 1.15. Note that
the N above is the number of edges in H , which will correspond to (1 + o(1))pN
below if N is the number of queries made in the Subgraph Query Game.

Proof of Theorem 5.17 Applying the Chernoff bound fromLemma 5.12, we see that
for any ε > 0we can take someM = Cp−1 log N so that the randomgraphG(2N , p)
is (p, M, ε)-jumbled with high probability. Also with high probability, the number
of edges built in N queries is (1 + o(1))pN . It is easy to check that the exponentially
small probabilities with which either of these are false have negligible impact on the
value of t (Km, p, N ). The subgraph H built by Builder must therefore satisfy the
hypotheses of Lemma 5.16 with (1 + o(1))pN edges.

The main term dominates the error terms for N sufficiently large, giving the
expected answer which is just p(

m
2)(2N )

m
2 , the number of m-cliques in G(

√
2N , p).

This happens once the main term outgrows the largest error term, the term with
k = m − 1. This happens at N = �(p−(2m−3)M2), so it suffices to have N ≥
ω(p−(2m−1) log2 (p−1)). This proves the upper bound in Theorem 1.15. Of course,
the lower bound is proved by the strategy of building all edges among

√
2N vertices.

�

6 Concluding Remarks

It is an interesting problem to close the gap in the bounds for the online Ram-
sey number r̃(m, n). In particular, we know that there are positive constants c, c′
for which cn3/(log n)2 ≤ r̃(3, n) ≤ c′n3 and it seems plausible that these bounds
could be brought closer together. Indeed, we conjecture that the lower bound can
be improved to cn3/ log n by considering the following Painter strategy motivated
by the triangle-free process [6]. Painter applies the triangle-free process to obtain
an auxiliary triangle-free graph G on vertex set {1, 2, . . . , r} with r = c0n2/ log n.
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Painter does not reveal this auxiliary graph. As before, we label vertices that reach
degree n/4 with 1, . . . , r as they arrive at degree n/4. When Builder adds an edge
between two vertices in which both vertices have degree at least n/4, then these
vertices have labels, say i and j , and Painter paints the edge with the color of the
edge i j in G. Otherwise, they color the edge blue. This coloring clearly contains no
red triangles, but it remains to show that it contains no blue Kn .

In studying the online Ramsey number, we were usually led by the idea that
Builder’s optimal strategy is to fill out an extremely sparse graph on the vertex set
they touch. However, if Builder is restricted to play on a small vertex set, this intuition
seems to go awry. If we define r̃(m, n; N ) in the same manner as the online Ramsey
number but with the additional restriction that only N vertices are allowed, then we
conjecture that the function r̃(m, n; N ) increases substantially as N decreases from
2r̃(m, n), the maximum number of vertices in a graph with r̃(m, n) edges, down to
its minimal meaningful value r(m, n).

The order of growth of f (Km, p) is still open for m ≥ 6. In particular, The-
orems 1.12 and 5.4 show that f (K6, p) = �(p−13/4) and f (K6, p) = O(p−10/3)

and we conjecture that the upper bound is correct. This belief is rooted in our con-
viction that the upper bound for t (H, p, N ) given by Theorem 5.6, upon which
Theorem 1.12 relies, is not tight when N is on the order of f (H, p). Because of the
examples in Theorem 5.10, these upper bounds can be tight when N is very large,
so further progress on this problem would need to be more sensitive to the size of
N . It is plausible that any advance on this question and its generalizations could also
impinge on our estimates for online Ramsey numbers.
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Statistical Matching Theory

Péter Csikvári

Abstract In this paper, we survey some recent developments on statistical properties
of matchings of very large and infinite graphs. We discuss extremal graph theoretic
results like Schrijver’s theorem on the number of perfect matchings of regular bipar-
tite graphs and its variants from the point of view of graph limit theory.We also study
the number of matchings of finite and infinite vertex-transitive graphs.

Keywords Matchings · Permanent ·Graph limits · Lattices · Bethe approximation

1 Introduction

In this paper, we survey some recent developments on statistical properties of match-
ings of very large and infinite graphs.

We will focus on two topics: extremal graph theory and vertex-transitive bipartite
graphs. Both topics are intimately related to graph limit theory. In the first case, when
we consider extremal graph theoretical problems, it turns out that in certain extremal
problems concerning matchings of d–regular bipartite graphs, the extremal graph
is not a finite graph, but the infinite d–regular tree. The proper understanding of
this phenomenon leads not only to new proofs of classical theorems, but also to
new results such as the Lower Matching Conjecture and other new theorems. In the
second case, when we study matchings of finite vertex-transitive bipartite graphs,
the direction is, in some sense, exactly the opposite: we would like to understand the
matchings of infinite lattices through finite graphs. These finite graphs exhibit certain
properties that can be utilized to study their matchings. Then these new observations
transfer to the original lattices.
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Extremal graph theory. To give an example for the discussed problems we
offer the following theorem of A. Schrijver. This theorem asserts that if G is a d–
regular bipartite graph on v(G) vertices, and pm(G) denotes the number of perfect
matchings, then

pm(G)1/v(G) ≥
(

(d − 1)d−1

dd−2

)1/2

.

It is a natural question whether we can improve on the constant on the right hand
side. The answer is no. Then it is natural to ask whether there is a finite graph G for
which

pm(G)1/v(G) =
(

(d − 1)d−1

dd−2

)1/2

.

The answer is again no! The two negative answers together mean that

inf
G

pm(G)1/v(G) =
(

(d − 1)d−1

dd−2

)1/2

,

where the infimum is taken over all d–regular bipartite graphs, but this infimum is
never achieved by a finite graph. Can we still use classical extremal graph theoretic
arguments to prove Schrijver’s theorem? The answer is yes, and this is what Sect. 4 is
about. On the other hand, there will be a little twist in the argument, and this is where
graph limit theory comes into the picture. In extremal graph theory it is a natural idea
to find a graph transformation ϕ such that for a given graph parameter p(·) we have

p(G) ≤ p(ϕ(G)),

and the studied class of graphs is closed under ϕ. An example for this strategy is
Zykov’s symmetrization which does not decrease the number of edges and the size
of the largest clique, and so it provides a powerful tool to prove Turán’s theorem,
and as it turns out, many other theorems where we expect the Turán-graph to be
extremal. In general, we apply this transformation as long as we can, and then we
solve an optimization problem on amuch restricted class of graphs. In case of Turán’s
theorem, this restricted class is the class of complete multipartite graphs. This is the
point where we will deviate from this strategy.

We will find a graph transformation ϕ such that for the graph parameter p(G) =
pm(G)1/v(G) we have p(G) ≥ p(ϕ(G)). In general, we will be able to apply ϕ in
many different ways, so ϕ(G) refers to one of the possible applications of the graph
transformation ϕ to G. As a next step we prepare a graph sequence Gi such that
G0 = G, Gi+1 = ϕ(Gi ), and consequently we have

p(G0) ≥ p(G1) ≥ p(G2) ≥ p(G3) ≥ . . . .
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The point is that the sequence (Gi ) will not stabilize as in the proof of Turán’s theo-
rem using Zykov’s symmetrization, but it will converge in the sense of Benjamini–
Schramm. We will explain this convergence in Sect. 3. This convergence enables us
to extend the universe of finite graphs with some new elements which we will call
random unimodular graphs. We will define p(·) for these new elements as well.
It turns out that in this extended topological space there will be a minimizer of the
parameter p(G), namely the infinite d–regular treeTd . Section2 contains a brief sur-
vey on related results and in Sect. 4 we give an almost complete proof of Schrijver’s
theorem along these lines.

Vertex-transitive bipartite graphs. To motivate the other main topic of this sur-
vey let us consider the following classical result of Kasteleyn [34] and independently
Fisher and Temperley [50]. Let Zm,n be the number of perfect matchings of them × n
grid. Then

Zm,n =
⎛
⎝ m∏

j=1

n∏
k=1

(
4 cos2

(
π j

m + 1

)
+ 4 cos2

(
πk

n + 1

))⎞
⎠

1/4

.

This leads to the limit formula

lim
m,n→∞
2 | mn

1

mn
log Zm,n = 4

π2

∫ π/2

0

∫ π/2

0
log(4 cos2(x) + 4 cos2(y)) dx dy.

It is intuitively clear that the grids converge to the lattice Z2. To make this statement
precise once again we need the concept of Benjamini–Schramm convergence (see
Sect. 3). Benjamini–Schramm convergence primarily grasps the local structure of a
graph. It turns out that perfect matchings are especially fragile: a small change in
the graph can lead to a dramatic change in the number of perfect matchings even
if we restrict our attention to graphs with even number of vertices, or even if we
only consider bipartite regular graphs. Fortunately, vertex-transitive bipartite graphs
behave well in this respect, and so we can build a graph limit theory using them.
More details can be found in Sect. 5.

This paper is organized as follows: in the next section we survey extremal
graph theoretic results concerning matchings of finite (regular) graphs. In the third
section we give the definition of Benjamini–Schramm convergence together with
some examples. In the fourth section we give a sample proof of an extremal graph
theoretic result on matchings that utilizes graph limit theory. In the fifth section we
will study matchings of vertex-transitive bipartite graphs. In the final section we
mention some results about matchings of dense graphs that are naturally connected
to our discussion.

Basic notations: Throughout the paper, G denotes a graph, and v(G) denotes the
number of vertices of G. Recall that a matching of size k is set of k edges covering 2k
vertices together. In other words, the edges e1, . . . , ek form a matching of size k, or
shortly a k-matching if ei and e j have disjoint set of endpoints for any 1 ≤ i, j ≤ k.
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The number of matchings of size k will be denoted by mk(G). The size of the largest
matching is denoted by ν(G). A matching is called perfect if it covers all vertices,
that is, it has size v(G)/2. The number of perfect matchings will be denoted by
pm(G).

2 Extremal Graph Theory

In this section we will consider lower and upper bounds for the number of (perfect)
matchings of bipartite graphs. Recall thatmk(G) denotes the number of matchings of
size k, and pm(G) denotes the number of perfect matchings. When G is a bipartite
graph with classes of size n, then the problem of counting the number of perfect
matchings of G is equivalent to computing the permanent of a 0 − 1 matrix of size
n by n. Recall that the permanent of a matrix A is defined as follows:

per(A) =
∑
π∈Sn

a1,π(1)a2,π(2) . . . an,π(n).

Let us suppose for a moment that all ai j ∈ {0, 1}, and define a graph G on the vertex
set R ∪ C , where R = {r1, r2, . . . , rn} and C = {c1, c2, . . . , cn} correspond to the
rows and columns of the matrix, respectively. If ai j = 1, then put an edge between
the vertices ri and c j . Now it is clear that per(A) = pm(G), the number of perfect
matchings of G.

A well-known result concerning permanents of 0 − 1 matrices is due to L. M.
Brégman [8].

Theorem 2.1 (L. M. Brégman [8]) Let A be a 0 − 1 matrix of size n × n, and let
ri denote the number of 1’s in the i-th row. Then

per(A) ≤
n∏

i=1

(ri !)1/ri .

Since pm(Kd,d) = d!, Theorem 2.1 immediately implies the following result about
d–regular bipartite graphs.

Theorem 2.2 Let pm(G) denote the number of perfect matchings. Then for a d–
regular (bipartite) graph we have

pm(G)1/v(G) ≤ pm(Kd,d)
1/v(Kd,d ).

A priori Brégman’s theorem implies the above result only for bipartite graphs but
using the observation

pm(G)2 ≤ pm(G × K2) (1)
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one can deduce the general case from the bipartite case. Here G × K2 is the graph
with vertex set V (G) × {0, 1}, in which (u, i) and (v, j) are adjacent if i �= j and
(u, v) ∈ E(G). This is clearly a bipartite graph. Observation 1 was rediscovered
several times, see, for instance, [4]. A generalization of this observation will be
proved in Theorem 4.3.

Let us mention that one can prove an analogue of Brégman’s result for the number
of all matchings, or even for weighted sums of matchings. Let

M(G,λ) =
	v(G)/2
∑

k=0

mk(G)λk .

It is thematching generating function of the graph G. In statistical physics it is known
as the partition function of the monomer-dimer model.

Theorem 2.3 (E. Davies, M. Jenssen, W. Perkins, B. Roberts [16]) For a d–regular
graph G and λ > 0 we have

M(G,λ)1/v(G) ≤ M(Kd,d ,λ)1/v(Kd,d ).

For λ = 1 this result simplifies to the number of all matchings, and as λ → ∞ it
also implies Theorem 2.2.

Concerning lower bounds for perfect matchings of regular graphs, M. Voorhoeve
(d = 3) and A. Schrijver (general d) proved the following result.

Theorem 2.4 (A. Schrijver [45], for d = 3 M. Voorhoeve [52]) Let G be a d–
regular bipartite graph on v(G) = 2n vertices, and let pm(G) denote the number of
perfect matchings of G. Then

pm(G) ≥
(

(d − 1)d−1

dd−2

)n

.

In other words, for every d–regular bipartite graph G we have

ln pm(G)

v(G)
≥ 1

2
ln

(
(d − 1)d−1

dd−2

)
.

There are various different proofs for Schrijver’s theorem and its generalizations
in the literature. Schrijver’s original proof is elementary but tricky. L. Gurvits [27]
gave another proof using stable polynomials. For an account of this proof, see also
[37]. This is a beautiful proof, probably one from The Book. D. Straszak and N.
Vishnoi [49] found a generalization for certain graphical models also using stable
polynomials. Another proof, revealing the extremal graph, was given in [13] and
is sketched in this survey. M. Lelarge [38] gave a variant of this proof for another
generalization of Schrijver’s theorem.
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A result of Wilf [53] (see also [6, 46]) shows that the constant 1
2 ln

(
(d−1)d−1

dd−2

)
is the best possible. This can be shown by computing the expected value of pm(G)

for d–regular random bipartite graphs. There was no explicit construction for regular
bipartite graphswith small number of perfectmatchings for a long time.Very recently
it turned out that if a d–regular bipartite graph has a small number of short cycles, then
it has asymptotically the same number of perfect matchings as a random d–regular
graph, the more precise formulation is the following.

Theorem 2.5 (M. Abért, P. Csikvári, P. E. Frenkel, G. Kun [1]) Let (Gi ) be a
sequence of d–regular graphs such that g(Gi ) → ∞, where g denotes the girth, that
is, the length of the shortest cycle.
(a) For the number of perfect matchings pm(Gi ), we have

lim sup
i→∞

ln pm(Gi )

v(Gi )
≤ 1

2
ln

(
(d − 1)d−1

dd−2

)
.

(b) If, in addition, the graphs Gi are bipartite, then

lim
i→∞

ln pm(Gi )

v(Gi )
= 1

2
ln

(
(d − 1)d−1

dd−2

)
.

We note that it is enough to assume that (Gi ) converges to Td in Benjamini–
Schramm sense. See Sect. 3 for more details.

In [28] L. Gurvits derived a version of Schrijver’s theorem for permanents using
Schrijver’s theorem itself.

Theorem 2.6 (L. Gurvits [28]) Let A be an n by n non-negative matrix. Then

per(A) ≥ sup
B∈DSn

exp

⎛
⎝∑

i, j

Bi j ln
Ai j

Bi j
+

∑
i, j

(1 − Bi j ) ln(1 − Bi j )

⎞
⎠ ,

where DSn is the set of doubly stochastic matrices of size n by n.

In the same paper [28] L. Gurvits also extended Schrijver’s theorem from perfect
matchings to matchings of arbitrary size.

Theorem 2.7 (L. Gurvits [28]) Let G be an arbitrary d-regular bipartite graph on
v(G) = 2n vertices. Let mk(G) denote the number of k-matchings. Set p = k

n . Then

lnmk(G)

v(G)
≥ 1

2

(
p ln

(
d

p

)
+ (d − p) ln

(
1 − p

d

)
− 2(1 − p) ln(1 − p)

)
+ ov(G)(1).

Gurvits’s theoremwas previously conjectured by Friedland, Krop andMarkström
[22] under the name Asymptotic Lower Matching Conjecture. They also had a more
precise form of this conjecture known as Lower Matching Conjecture.
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Conjecture 2.8 (Lower Matching Conjecture [22]) Let G be a d–regular bipartite
graph on v(G) = 2n vertices, and let mk(G) denote the number of matchings of size
k, then

mk(G) ≥
(

n

k

)2 (
d − p

d

)n(d−p)

(dp)np,

where p = k
n .

To see the connection between the LowerMatching Conjecture and its asymptotic
version, it is worth introducing two notations. The first one is the function appearing
in Gurvits’s theorem:

Gd(p) = 1

2

(
p ln

(
d

p

)
+ (d − p) ln

(
1 − p

d

)
− 2(1 − p) ln(1 − p)

)
.

Furthermore, let p = k
n , and let pμ = (n

k

)
pk(1 − p)n−k . This is the probability that

a random variable X with distribution Binomial(n, p) takes its mean value. It turns
out that (

n

k

)2 (
d − p

d

)n(d−p)

(dp)np = p2
μ · exp(2nGd(p)).

Using these notationsGurvits’s theoremsays thatmk(G) ≥ exp(2n(Gd(p) + on(1))),
while the Lower Matching Conjecture claims that mk(G) ≥ p2

μ · exp(2nGd(p)). It
turns out that the truth is even more beautiful.

Theorem 2.9 ([13]) Let G be a d–regular bipartite graph on v(G) = 2n vertices,
and let mk(G) denote the number of matchings of size k, then

mk(G) ≥ pμ · exp(2nGd(p)),

where p = k
n .

Furthermore, there exists a d–regular bipartite graph G on 2n vertices such that

mk(G) ≤
√
1 − p/d

1 − p
· pμ · exp(2nGd(p)).

Next we introduce the function λG(p), called the entropy function in statistical
physics, which is closely related to counting matchings. The simplest way to define
it is as follows: let rG be the disjoint union of r copies of G and let the sequence kr

be chosen in such a way that

lim
r→∞

2kr

v(rG)
= p;

then

λG(p) := lim
r→∞

lnmkr (rG)

v(rG)
.
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If G contains a perfect matching, then the limit indeed exists whenever p < 1, and
for p = 1 one can define it as

λG(1) := ln pm(G)

v(G)
.

The above definition for λG(p) is not the original definition and is really hard to
work with, but at least it is very easy to explain. Intuitively, it counts a normalized
number of matchings covering p fraction of the vertices, but it has the advantage that
it is meaningful even if p is irrational, thereby providing a continuous function. We
also mention that it is really easy to extend λG(p) to random rooted graphs G. One
can prove that for p = k

n the following inequalities hold true:

pμ · exp(2nλG(p)) ≤ mk(G) ≤ exp(2nλG(p)).

This means that

λG(p) ≈ lnmk(G)

v(G)
.

Surprisingly, it turns out that Gurvits’s theorem is equivalent to λG(p) ≥ Gd(p) for
all 0 ≤ p ≤ 1 provided that G is a d–regular bipartite graph, see [13] for details. So
practically Gurvits’s theorem implies its more precise form.

At this moment, it may be mysterious why and how the functionGd(p) appears in
these theorems. The mystery vanishes as soon as we realize that the function Gd(p)

is nothing else but the entropy function of the infinite d–regular tree:

λTd (p) = Gd(p).

We offer three more results in the spirit of Theorem 2.9. In Sect. 4 we will give
a detailed sketch of the proof of Theorem 2.10. One can prove Theorems 2.11 and
2.12 with similar tools.

Theorem 2.10 ([13]) Let G be a d–regular bipartite graph on v(G) = 2n vertices,
and let mk(G) denote the number of matchings of size k. For λ ≥ 0 let M(G,λ) =∑n

k=0 mk(G)λk . Then
1

v(G)
ln M(G,λ) ≥ 1

2
ln Sd(λ),

where

Sd(λ) = 1

η2
λ

(
d − 1

d − ηλ

)d−2

and ηλ =
√
1 + 4(d − 1)λ − 1

2(d − 1)λ
.

Alternatively, for 0 ≤ p ≤ 1 we have

n∑
k=0

mk(G)
( p

d

(
1 − p

d

))k
(1 − p)2(n−k) ≥

(
1 − p

d

)nd
.
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Note that this theorem directly reduces to Schrijver’s theorem if p = 1, and
strongly suggests that there might be some probabilistic proofs for some results
appearing in this survey.

The following theorem shows that one can extend a few theorems from d–regular
bipartite graphs to arbitrary bipartite graphs or even to the permanent of a non-
negative matrix. Before we state this result we need some notations.

The matching polytope MP(G) of a graph G is defined as the convex hull of
incidence vectors of matchings in G. We define the fractional matching polytope as

FMP(G) =
{

x ∈ R
E(G)

∣∣∣∣ xe ≥ 0 ∀e ∈ E(G),
∑
e:v∈e

xe ≤ 1 ∀v ∈ V (G)

}
.

It is known that MP(G)=FMP(G) if and only if G is bipartite. Similarly, we can
definebyMPk(G) the convexhull of incidencevectors ofmatchings inG of size k, and

FMPk(G) =
⎧⎨
⎩x ∈ FMP(G)

∣∣∣∣
∑

e∈E(G)

xe = k

⎫⎬
⎭ .

Again, if G is bipartite, then MPk(G) = FMPk(G). Finally, let ν(G) be the size of
the largest matching in G.

Theorem 2.11 (M. Lelarge [38]) For a vector x ∈ [0, 1]E let

FG(x) =
∑
e∈E

(−xe ln xe + (1 − xe) ln(1 − xe)) −
∑

v∈V (G)

(
1 −

∑
e:v∈e

xe

)
ln

(
1 −

∑
e:v∈e

xe

)
.

Then for any bipartite graph G and λ ≥ 0 we have

ln M(G,λ) ≥ max
x∈MP(G)

⎧⎨
⎩

⎛
⎝ ∑

e∈E(G)

xe

⎞
⎠ ln λ + FG(x)

⎫⎬
⎭ .

Furthermore, for all k < ν(G) we have

mk(G) ≥ bν(G),k

(
k

ν(G)

)
exp

(
max

x∈MPk (G)
FG(x)

)
,

where bn,k(p) = (n
k

)
pk(1 − p)n−k , that is, the probability that a binomial random

variable Bin(n, p) takes the value k.

This theorem has a counterpart for permanents. For a non-negative matrix A of
size n by n let

allper(A) =
∑

|I |=|J |
per(AI,J ),

where AI,J is the submatrix of A induced by the rows I and J .
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Theorem 2.12 (M. Lelarge [38]) Let A be a non-negative matrix of size n by n. Let
SDSn be the set of non-negative matrices such that in each row and each column the
sum of the elements is at most 1. For B ∈ SDSn let

Bi,0 = 1 −
n∑

j=1

Bi, j and B0, j = 1 −
n∑

i=1

Bi, j ,

and

FA(B) =
∑

1≤i, j≤n

Bi j ln
Ai j

B2
i j

+
n∑

i=1

Bi0 ln
1

Bi0
+

n∑
j=1

B0 j ln
1

B0 j

+
∑

1≤i, j≤n

(Bi j ln Bi j + (1 − Bi j ) ln(1 − Bi j )).

Then for any non-negative matrix A we have

allper(A) ≥ sup
B∈SDSn

exp(FA(B))

Remark 2.13 Theorems 2.6 and 2.12 are special cases of a more general phe-
nomenon. Permanents, the number of matchings or the number of homomorphisms
of graphs can be expressed as partition functions of so-called graphical models. To
a graphical model one can associate two objects: the partition function Z(G) and
the Bethe partition function Z B(G). There is no general inequality between them,
but in certain cases Z(G) ≥ Z B(G). This happens for attractive graphical models
[44], and for certain bipartite graphical models [49]. In Theorems 2.6 and 2.12 Z(G)

appears on the left hand side, and Z B(G) on the right hand side. For more details on
this subject see [44, 49].

3 Graph Limits and Examples

In the previous section we have seen that Gd(p) = λTd (p) gives a lower bound on
λG(p) if G is a d–regular bipartite graph. This establishes a claim to handle infinite
graphs and connect them to the theory of finite graphs. This is exactly the goal
of this section. In what follows we introduce the concept of Benjamini–Schramm
convergence with some examples. Before we define this concept one more remark
is in order: in this paper we will always assume that there is some Δ such that the
largest degree of any graph Gi in a given sequence of graphs is at most Δ. In such a
case we say that the graph sequence (Gi ) is a bounded-degree graph sequence. This
assumption simplifies our task significantly.
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Definition 3.1 Let L be a probability distribution on (infinite) connected rooted
graphs; we will call L a random rooted graph. For a finite connected rooted graph α
and a positive integer r , let P(L ,α, r) be the probability that the r -ball centered at
the root vertex is isomorphic to α, where the root is chosen from the distribution L .

For a finite graph G, a finite connected rooted graph α and a positive integer r ,
let P(G,α, r) be the probability that the r -ball centered at a uniform random vertex
of G is isomorphic to α.

We say that a bounded-degree graph sequence (Gi ) is Benjamini–Schramm con-
vergent if for all finite rooted graphs α and r > 0, the probabilities P(Gi ,α, r)

converge. Furthermore, we say that (Gi ) Benjamini–Schramm converges to L , if for
all positive integers r and finite rooted graphs α, P(Gi ,α, r) → P(L ,α, r).

The Benjamini–Schramm convergence is also called local convergence as it pri-
marily grasps the local structure of the graphs (Gi ).

Note that if (Gi ) is a sequence of d–regular graphs such that the girth g(Gi ) tends
to infinity, then it is Benjamini–Schramm convergent and we can even see its limit
object: the rooted infinite d-regular tree Td , so the corresponding random rooted
graph L is simply the distribution which takes a rooted infinite d-regular tree with
probability 1. When L is a certain rooted infinite graph with probability 1, then we
simply say that this rooted infinite graph is the limit without any further reference
on the distribution.

There are other very natural graph sequences that are Benjamini–Schramm con-
vergent, for instance if we take larger and larger boxes in the d-dimensional grid Zd ,
then it will converge to the rooted Z

d .
The following problem is one of the main problems in the area, and will be

especially crucial for us.

Problem. For which graph parameters p(G) is it true that the sequence (p(Gi ))
∞
i=1

convergeswhenever the graph sequence (Gi )
∞
i=1 is Benjamini–Schrammconvergent?

The problem in such a generality is intractable, but there are various tools to attack
it in special cases. One of the most popular tools is the so-called belief propagation.
For matchings we will use another way to attack this problem using certain empirical
measures called matching measures.

Concerning the general problem the reader might wish to consult with the papers
[7, 17–19, 47, 48] and the book [40] and the references therein.

4 A Proof Strategy

We have seen in Sect. 2 that many results suggest that the extremal graph for match-
ings is not finite but the infinite d–regular tree. This raises the question: how can we
attack a problem if we conjecture that the d–regular tree is the extremal graph for a
given graph parameter:
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Problem: Given a graph parameter p(G). We would like to prove that among d–
regular graphs we have

p(G) ≥ p(Td).

Proof (A possible two-step solution.)

• Find a graph transformation ϕ for which p(G) ≥ p(ϕ(G)), and for every graph
G there exists a sequence of graphs (Gi ) such that G = G0 and Gi = ϕ(Gi−1),
and Gi → Td .

• Show that if (Gi ) is Benjamini–Schramm-convergent, then p(Gi ) is convergent,
and compute p(Td). (Or at least, show it in the case of Gi → Td .) Then

p(G) = p(G0) ≥ p(G1) ≥ p(G2) ≥ · · · ≥ p(Td).

Concerning the first step we will be more explicit: it seems that the 2-lift transfor-
mation can be used in a wide range of problems. Experience shows that the second
step can be the most difficult, but the first step can also be tricky. Nevertheless, in
the special case when we only consider a graph sequence converging to Td , there
are many available tools: see for instance the paper of D. Gamarnik and D. Katz
[24]. If p(G) = ln τ (G)/v(G), where τ (G) denotes the number of spanning trees,
then the second step is carried out in [41], and B. McKay proved [43] that p(G)

is maximized by the d–regular infinite tree among d–regular graphs. However, to
prove McKay’s result with our approach, the first step requires some modification. If
p(G) = ln I (G)/v(G), where I (G) denotes the number of independent sets, then the
first step is very easy for d-regular bipartite graphs, while the second step concerning
the limit theorem was established by A. Sly and N. Sun [47].

In this section we demonstrate this approach by sketching the proof of Theo-
rem 2.10. In the following sections we study each step separately.

4.1 First Step: Graph Transformation

In this section we introduce the concept of 2-lift (Fig. 1).

Definition 4.1 A k-cover (or k-lift) H of a graph G is defined as follows. The vertex
set of H is V (H) = V (G) × {0, 1, . . . , k − 1}, and if (u, v) ∈ E(G), thenwe choose
a perfect matching between the vertices (u, i) and (v, j) for 0 ≤ i, j ≤ k − 1. If
(u, v) /∈ E(G), then there are no edges between (u, i) and (v, j) for 0 ≤ i, j ≤ k − 1.

When k = 2 one can encode the 2-lift H by putting signs on the edges of the graph
G: the + sign means that we use the matching ((u, 0), (v, 0)), ((u, 1), (v, 1)) at the
edge (u, v), the− signmeans thatweuse thematching ((u, 0), (v, 1)), ((u, 1), (v, 0))
at the edge (u, v). For instance, if we put + signs to every edge, then we simply get
G ∪ G as H , and if we put − signs everywhere, then the obtained 2-cover H is
simply G × K2.

The following result will be crucial for our argument.
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Fig. 1 A 2-lift

Lemma 4.2 (N. Linial [39]) For any graph G, there exists a graph sequence (Gi )
∞
i=0

such that G0 = G, Gi is a 2-lift of Gi−1 for i ≥ 1, and g(Gi ) → ∞, where g(H) is
the girth of the graph H, that is, the length of the shortest cycle. In particular, if G0

is d–regular, then Gi → Td .

Proof It is clear that if H ′ is a 2-lift of H , then g(H ′) ≥ g(H). Hence it is enough to
show that for every H there exists an H ′′ obtained from H by a sequence of 2-lifts
such that g(H ′′) > g(H). We show that if the girth g(H) = k, then there exists a
lift of H with fewer k-cycles than H . Let X be the random variable counting the
number of k-cycles in a random 2-lift of H . Every k-cycle of H lifts to two k-cycles
or a 2k-cycle with probability 1/2 each, so EX is exactly the number of k-cycles of
H . But H ∪ H has two times as many k-cycles than H , so there must be a lift with
strictly fewer k-cycles than H has. Choose this 2-lift and iterate this step to obtain
an H ′′ with girth at least k + 1. �

Note that if G is a bipartite d–regular graph, and H is a 2-lift of G, then H is
again a d–regular bipartite graph.

The following theorem shows that the first step of the plan works for matchings
of bipartite graphs.

Theorem 4.3 Let G be a graph, and let H be an arbitrary 2-lift of G. Then

mk(H) ≤ mk(G × K2),

where mk(.) denotes the number of matchings of size k.
In particular, if H = G ∪ G, then mk(G ∪ G) ≤ mk(G × K2) for every k. It fol-

lows that pm(G)2 ≤ pm(G × K2).
Furthermore, if G is a bipartite graph and H is a 2-lift of G, then

ln M(G,λ)

v(G)
= ln M(G ∪ G, t)

v(G ∪ G)
≥ ln M(H,λ)

v(H)
,



208 P. Csikvári

where M(G,λ) = ∑
k mk(G)λk . (Note that M(G ∪ G,λ) = M(G,λ)2.)

Proof Let M be any matching of a 2-lift of G. Let us consider the projection of M
to G, then it will consist of cycles, paths and “double-edges” (i.e, when two edges
project to the same edge). Let R be the set of these configurations. Then

mk(H) =
∑
R∈R

|φ−1
H (R)|

and
mk(G × K2) =

∑
R∈R

|φ−1
G×K2

(R)|,

where φH and φG×K2 are the projections from H and G × K2 to G. Note that

|φ−1
G×K2

(R)| = 2k(R),

where k(R) is the number of cycles and paths of R. Indeed, in each cycle or path we
can lift the edges in two different ways. The projection of a double-edge is naturally
unique. On the other hand,

|φ−1
H (R)| ≤ 2k(R),

since in each cycle or path if we know the inverse image of one edge, then we
immediately know the inverse images of all other edges. Clearly, there is no equality
in general for cycles. Hence

|φ−1
H (R)| ≤ |φ−1

G×K2
(R)|

and consequently,
mk(H) ≤ mk(G × K2).

Note that if G is bipartite, then G × K2 = G ∪ G, and so

1

v(H)
ln M(H,λ) ≤ 1

v(G ∪ G)
ln M(G ∪ G,λ) = 1

v(G)
ln M(G,λ).

This finishes the proof. �

Remark 4.4 In certain cases it is also possible to prove that for a graph parameter
p(·) one has p(G) ≥ p(H) for all k-cover H of G. Such a result was given by N.
Ruozzi in [44] for attractive graphicalmodels. The advantage of using k-covers is that
one can spare the graph limit step in the above approach, and replace it with a much
simpler averaging argument over all k-covers of G with k converging to infinity.
For homomorphisms this averaging argument was given by P. Vontobel [51]. For
matchings such a result was established by C. Greenhill, S. Janson and A. Ruciński
[26].
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4.2 Second Step: Graph Limit Theory

In this subsection we carry out the second step of our plan. First we develop the
necessary terminology.

Recall that if G = (V, E) is a finite graph, then v(G) denotes the number of
vertices, and mk(G) denotes the number of k-matchings (m0(G) = 1). Let

μ(G, x) =
	v(G)/2
∑

k=0

(−1)kmk(G)xv(G)−2k .

We call μ(G, x) the matching polynomial. Clearly, the matching generating func-
tion M(G,λ) introduced in Sect. 2 and the matching polynomial encode the same
information.

The following theorem is crucial in the development of the theory of matching
measure.

Theorem 4.5 (O. J. Heilmann and E. H. Lieb [32]) The zeros of the matching
polynomial μ(G, x) are real, and if the largest degree Δ is greater than 1, then all
zeros lie in the interval [−2

√
Δ − 1, 2

√
Δ − 1].

Now we introduce a key concept of this theory, the matching measure.

Definition 4.6 (M. Abért, P. Csikvári, P. E. Frenkel, G. Kun [1]) The matching
measure of a finite graph G is defined as

ρG = 1

v(G)

∑
zi : μ(G,zi )=0

δ(zi ),

where δ(s) is the Dirac-delta measure on s, and we take every zi into account with
its multiplicity. In other words, it is the uniform distribution on the zeros of μ(G, x).

Example: Let us consider the matching measure of the cycle on 6-vertices, C6.

μ(C6, x) = x6 − 6x4 + 9x2 − 2 =

=
(

x − √
2
) (

x + √
2
) (

x −
√
2 + √

3

) (
x +

√
2 + √

3

) (
x −

√
2 − √

3

)(
x +

√
2 − √

3

)
.

Hence ∫
f (z) dρC6(z) =

1

6

(
f
(√

2
)

+ f
(
−√

2
)

+ f

(√
2 + √

3

)
+ f

(
−

√
2 + √

3

)
+ f

(√
2 − √

3

)
+ f

(
−

√
2 − √

3

))
.
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The following theorem enables us to consider the matching measure of a unimod-
ular random graph which can be obtained as a Benjamini–Schramm limit of finite
graphs. In particular, it provides an important tool to establish the second step in our
plan.

Theorem 4.7 (M. Abért, P. Csikvári, P. E. Frenkel, G. Kun [1]) Let (Gi ) be a
Benjamini–Schramm convergent bounded degree graph sequence. Let ρGi be the
matching measure of the graph Gi . Then the sequence (ρGi ) is weakly convergent,
that is, there exists some measure ρG such that for every bounded continuous function
f , we have

lim
i→∞

∫
f (z) dρGi (z) =

∫
f (z) dρG(z).

Theorem 4.7 is originated in the work of M. Abért and T. Hubai [3]. They showed
a similar result for measures arising from the chromatic polynomial. This result
has been generalized to a wide class of graph polynomials including the chromatic
polynomial and thematching polynomial by P.Csikvári andP. E. Frenkel [14]. It turns
out that for the matching polynomial, one does not need to use this general theorem
as it also follows from a result of C. Godsil [25], for details see [2]. Theorem 4.5
asserts that the matching measure is supported on a bounded interval. Then to show
that ρGi is weakly convergent, it is enough to show that for every fixed k the sequence∫

zk dρGi (z) is convergent. For many graph polynomials one can show that knowing
only the statistics of the k-balls already determines this integral. For instance, for
the matching polynomial the integral is directly related to the enumeration of the
so-called tree-like walks of length k, see [25]. A better-known example is that for
the spectral measure, that is, the probability measure of uniform distribution on the
eigenvalues of the adjacency matrix of the graph, this integral is determined by the
number of closed walks of length k.

To illustrate the power of Theorem 4.7, let us consider an application that also
provides us the second step of our plan.

Theorem 4.8 (M. Abért, P. Csikvári, T. Hubai [2]) Let (Gi ) be a Benjamini–
Schramm convergent graph sequence of bounded degree graphs. Then the sequences
of functions

ln M(Gi ,λ)

v(Gi )

is pointwise convergent.

Proof If G is a graph on v(G) = 2n vertices and

M(G,λ) =
v(G)/2∏

i=1

(1 + γiλ),
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then

μ(G, x) =
v(G)/2∏

i=1

(x − √
γi )(x + √

γi ).

Thus

ln M(G,λ)

v(G)
= 1

v(G)

v(G)/2∑
i=1

ln(1 + γiλ) =
∫

1

2
ln(1 + λz2) dρG(z).

Since 1
2 ln(1 + λz2) is a continuous function for every fixed positive λ, the theorem

immediately follows from Theorem 4.7. �

It is worth introducing the notation

pλ(G) = ln M(G,λ)

v(G)
.

We can even introduce pλ(G) if G is a Benjamini–Schramm-limit of sequence of
finite graphs (Gi ). (In fact, it is possible to define the function pλ(G) even if G is not
the Benjamini–Schramm-limit of finite graphs.) In particular, we can speak about
pλ(Td).

If we know the matching measure of a random unimodular graph, then it is just a
matter of computation to derive various results on matchings.

In the particular case when the sequence (Gi ) converges to the infinite d–regular
tree Td , the limit measure ρTd turns out to be the so-called Kesten–McKay measure.
It is true in general that for any finite tree or infinite random rooted tree the matching
measure coincides with the so-called spectral measure, for details see [1]. In partic-
ular, this is true for the infinite d–regular tree Td . Its spectral measure is computed
explicitly in the papers [36, 42]. The Kesten–McKay measure is given by the density
function

fd(x) = d
√
4(d − 1) − x2

2π(d2 − x2)
χ[−ω,ω],

where ω = 2
√

d − 1. Hence for any continuous function h(z) we have

∫
h(z) dρTd (z) =

∫ ω

−ω

h(z) fd(z) dz.

In particular,

pλ(Td) =
∫

1

2
ln(1 + λz2) dρTd (z) = 1

2
ln Sd(λ),
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where

Sd(λ) = 1

η2
λ

(
d − 1

d − ηλ

)d−2

and ηλ =
√
1 + 4(d − 1)λ − 1

2(d − 1)λ
.

It is worth introducing the following substitution:

λ =
p
d

(
1 − p

d

)
(1 − p)2

.

As p runs through the interval [0, 1), λ runs through the interval [0,∞) and we have

ηλ = 1 − p

1 − p
d

and Sd(λ) =
(
1 − p

d

)d

(1 − p)2
.

One can also prove that

λTd (p) = 1

2

(
p ln

(
d

p

)
+ (d − p) ln

(
1 − p

d

)
− 2(1 − p) ln(1 − p)

)
.

Remark 4.9 Instead of using measures one can use belief propagation to establish
the convergence of certain graph parameters. For instance, M. Lelarge [38] used this
method to prove Theorems 2.11 and 2.12. In general, one can choose the sequence
G = G0, G1, . . . of covering graphs such that the sequence (Gi ) converges to the
universal cover tree of G. The advantage of belief propagation over matching mea-
sures is that it is not always easy to compute the matching measure of such a tree.
On the other hand, when it is possible to compute the limiting measure, integration
yields a wide variety of results without any difficulty.

4.3 The End of the Proof of Theorem 2.10

For every sequence of 2-covers we know from Theorem 4.3 that

pλ(G0) ≥ pλ(G1) ≥ pλ(G2) ≥ pλ(G3) ≥ . . .

Furthermore, fromTheorems 4.2 and 4.8we know thatwe can choose the sequence of
2-covers such that the sequence pλ(Gi ) converges to pλ(Td), hence pλ(G) ≥ pλ(Td)

for any d–regular bipartite graph G. In other words,

1

2n
ln M(G,λ) ≥ 1

2
ln Sd(λ).
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With the substitution λ = p
d (1− p

d )
(1−p)2

we obtain the inequality

M

(
G,

p
d

(
1 − p

d

)
(1 − p)2

)
≥ 1

(1 − p)2n

(
1 − p

d

)n
.

After multiplying by (1 − p)2n , we get that

n∑
k=0

mk(G)
( p

d

(
1 − p

d

))k
(1 − p)2(n−k) ≥

(
1 − p

d

)nd
.

This is true for all p ∈ [0, 1) and so by continuity it is also true for p = 1, where it
directly reduces to Schrijver’s theorem since all but the last term vanish on the left
hand side.

5 Perfect Matchings of Vertex-Transitive Bipartite Graphs
and Lattices

The starting point of this section is the following theoremofR.Kenyon,A.Okounkov,
S. Sheffield [35]. We will not be able to fully understand this theorem as we did not
define the characteristic function of a lattice. On the other hand, we can see that this
theorem provides a sufficient condition ensuring the convergence of

lim
i→∞

ln pm(Gi )

v(Gi )

for a given graph sequence (Gi ). Moreover, it also provides a way of computing this
limit explicitly (as long as we accept an integral as an explicit expression).

Theorem 5.1 (R. Kenyon, A. Okounkov, S. Sheffield [35]) Let G be a Z
2-periodic

bipartite planar graph, and let Gi be the quotient graph of G by the action of iZ2.
Let P(z, w) be the characteristic function of G. Assume that P(z, w) has a finite
number of zeros on the unit torus T2 = {(z, w) ∈ C

2 : |z| = |w| = 1}. Then

lim
i→∞

ln pm(Gi )

v(Gi )
= 1

(2πi)2

∫
T2
ln P(z, w)

dz

z

dw

w
.

To help one understand the setting of this theorem we provide a figure of the
square-octagon lattice, and its quotient graph by the action of (4Z)2. The fundamental
domain is given by the dotted lines (Fig. 2).
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Fig. 2 The 4–8 lattice

Fig. 3 Boxes, Aztec diamonds and modified Aztec diamonds

In particular cases, the characteristic function P(z, w) can be computed (but not
the integral!). For instance, for the square-octagon graph we have

P(z, w) = z + 1

z
+ w + 1

w
+ 5.

This theorem naturally raises the question why we needed such a special graph
sequence, why did we simply not choose larger and larger subgraphs of the lattice?
The problem is that in case of perfect matchings the boundary of the graph heavily
affects the number of perfect matchings. Let us look at the following three sequences
of graphs. All of them are Benjamini–Schramm convergent to Z2 (Fig. 3).

The first graph sequence is the sequence of boxes Bi (the graph B8 is depicted
in the figure). A classical result of Kasteleyn [34] and independently Fisher and
Temperley [50] claims that

lim
i→∞

ln pm(Bi )

v(Bi )
= 1

π

∞∑
k=0

(−1)k

(2k + 1)2
≈ 0.291.
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The second sequence of graphs are called Aztec diamonds, A4 is depicted in the
figure. A surprising fact due to N. Elkies, G. Kuperberg, M. Larsen and J. Propp [20]
is that for all i we have

pm(Ai ) = 2i(i+1)/2.

Therefore,

lim
i→∞

ln pm(Ai )

v(Ai )
= ln pm(Ai )

v(Ai )
= ln 2

4
≈ 0.173.

In the third sequence, we slightly modify the Aztec diamonds. Now it turns out that
pm(Di ) = 1 for all i , since one has to include the dotted edges in the perfectmatching
and this completely determines the whole perfect matching. Hence

lim
i→∞

ln pm(Di )

v(Di )
= ln pm(Di )

v(Di )
= 0.

This example shows that some nice boundary conditions are required for the graphs
appearing in our convergent graph sequence. Unfortunately, it is unclear what would
be such a boundary condition for nonplanar graph. One way to overcome this diffi-
culty is to consider vertex-transitive bipartite graphs.

Theorem 5.2 ([12]) Let (Gi ) be a Benjamini–Schramm convergent sequence of
vertex-transitive bipartite graphs. Then the sequence

ln pm(Gi )

v(Gi )

is convergent.

One might wonder whether vertex-transitivity is really necessary or it suffices to
assume regularity. The next theorem shows that regularity is actually not sufficient.

Theorem 5.3 (M.Abért, P.Csikvári, P. E. Frenkel,G.Kun [1]) Fix d ≥ 3. Then there
exists a sequence of d–regular bipartite graphs (Gi ) such that (Gi ) is Benjamini–
Schramm convergent and

ln pm(Gi )

v(Gi )

is not convergent.

Let us see what goes wrong with the proof of Theorem 4.8 if we apply it to perfect
matchings. If G is a graph on v(G) = 2n vertices and

M(G,λ) =
v(G)/2∏

i=1

(1 + γiλ),
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then

μ(G, x) =
v(G)/2∏

i=1

(x − √
γi )(x + √

γi ),

and therefore

ln pm(G)

v(G)
= 1

v(G)

v(G)/2∑
i=1

ln(γi ) =
∫

ln |z| dρG(z).

Now we see that ln |z| is not a bounded continuous function and this causes the
problem.

On the other hand, we also see that the situation is not as bad as one might have
previously thought. The function ln |z| is only discontinuous at 0. If we could prove
that only a small measure is supported on the neighborhood of 0, then it would
immediately resolve our problem. This is exactly the case when we consider vertex-
transitive bipartite graphs.

Theorem 5.4 ([12]) Let G be a d-regular vertex-transitive bipartite graph on 2n
vertices, and

M(G, t) =
n∏

i=1

(1 + γi t),

where γ1 ≤ γ2 ≤ · · · ≤ γn. Then

γk(G) ≥ d2

d − 1

k2

4n2
.

Consequently,

ρG([−s, s]) ≤ 2
√

d − 1

d
s

for all s ∈ R.

For vertex-transitive graphs one can also extend certain extremal graph theoretic
results. For instance, the following theorem is a strengthened form of the fact that
the infinite d–regular tree plays the role of the extremal graph for regular bipartite
graphs.

Theorem 5.5 ([12]) Let G be a finite d–regular vertex-transitive bipartite graph,
where d ≥ 2. Furthermore, let the gap function g(p) be defined as

g(p) = λG(p) − Gd(p).

Then g(p) is a monotone increasing function with g(0) = 0, and hence g(p) is non-
negative. Furthermore, if G contains an �-cycle, then
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g(p) ≥
∫ p

0
f (x)� dx,

where

f (x) = 1

4d
min(x, (1 − x)2).

5.1 Computational Results

In statistical physics matchings of large and infinite graphs are studied under the
name monomer-dimer model. Let Bn be a box of size n × n × · · · × n in Zd , and let
M(Bn) be the number of all matchings in Bn . It has been known for a long time that
the limit

λ̃(Zd) := lim
n→∞

ln M(Bn)

v(Bn)

exists. When we count only perfect matchings, then the corresponding model is
called the dimer model:

λ(Zd) := lim
2|n, n→∞

ln pm(Bn)

v(Bn)
.

The quantities λ̃(Zd) and λ(Zd) are called monomer-dimer and dimer free energies.
The computation of monomer-dimer and dimer free energies has a long history.

The precise value is known only in very special cases. Such an exceptional case is
the Fisher-Kasteleyn-Temperley formula [34, 50] for the dimer model on Z2. There
is no such exact result for monomer-dimer models if d ≥ 2. The first approach for
getting estimates was the use of the transfer matrix method. Hammersley [29, 30],
Hammersley and Menon [31] and Baxter [5] obtained the first (non-rigorous) esti-
mates for the free energy.ThenFriedland andPeled [23] proved the rigorous estimates
0.6627989727 ± 10−10 for d = 2 and the range [0.7653, 0.7863] for d = 3. Here the
upper bounds were obtained by the transfer matrix method, while the lower bounds
relied on the Friedland-Tverberg inequality. The lower bound in the Friedland-Peled
paper was subsequently improved by newer and newer results (see e.g. [21]) on
Friedland’s asymptotic matching conjecture which was finally proved by L. Gurvits
[28]. Meanwhile, a non-rigorous estimate [0.7833, 0.7861] was obtained via matrix
permanents [33]. Concerning rigorous results, the most significant improvement was
obtained recently by D. Gamarnik and D. Katz [24] via their new method which they
called sequential cavity method. They obtained the range [0.78595, 0.78599]. More
precise but non-rigorous estimates can be found in [10]. This paper usesMayer-series
with many coefficients computed in the expansion. The related paper [9] may lead
to further development through the so-called Positivity conjecture of the authors.
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Here we give some computational results arising from estimating certain integrals
along matching measures.

Theorem 5.6 ([2]) We have

λ̃(Z3) = 0.7859659243 ± 9.88 · 10−7,

λ̃(Z4) = 0.8807178880 ± 5.92 · 10−6.

λ̃(Z5) = 0.9581235802 ± 4.02 · 10−5.

The bounds on the error terms are rigorous.

6 Dense Graphs and Matchings

It is possible to extend several ideas of this paper to dense graph limits. Here we
assume some partial familiarity with the theory of dense graph limits. We only
mention some simple results.

Theorem 6.1 Suppose that (Gn) is a sequence of graphs convergent in the dense
model. Let πn be the uniform probability measure on roots of the matching polynomial
μ(Gn, x). Then the rescaled measures 1√

v(Gn)
· πn converge weakly.

In particular, this allows us to associate “matching measures” to graphons. For
instance, with this method one can prove the following result for the constant p
graphon, in other words, the limiting distribution of Erdős–Rényi random graphs.
This result was independently and prior proved in [11].

Theorem 6.2 ([11, 15]) Let p ∈ (0, 1), and let (Gn)n be a sequence of Erdős–Rényi
random graphs Gn ∼ Gn,p. Let πn be the uniform probability distribution on the roots
of the matching polynomial of Gn. Then almost surely, the measures λn := 1√

n
πn

converge weakly to the semicircle distribution SC p whose density function is

ρp(x) := 1

2π

√
4 − x2

p , −2p ≤ x ≤ 2p .
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Sequential Importance Sampling for
Estimating the Number of Perfect
Matchings in Bipartite Graphs: An
Ongoing Conversation with Laci

Persi Diaconis

Abstract Sequential importance sampling offers an alternative way to approxi-
mately evaluate the permanent. It is a stochastic algorithm which seems to work
in practice but has eluded analysis. This paper offers examples where the analysis
can be carried out and the first general bounds for the sample size required. This uses
a novel importance sampling proof of Brégman’s inequality due to Lovász.

Keywords Brégman’s inequality · Permanent

MSC 2010 05A16 · 60C05

1 Introduction

Let G = (V,W, E) be a bipartite graph with |V | = |W | = n and E a set of edges
from V to W . Let M be the set of perfect matchings. Assume throughout that
M is non-empty. There is a large literature on computing and approximating M =
|M|. See [6] for background and applications in statistics. The magisterial [14]
covers every aspect of matching theory. This paper studies an importance sampling
algorithm for Monte Carlo approximation of M .

Algorithm 1 Let v1, v2, . . . , vn be an enumeration of the vertices in V . Beginning
at v1 and proceeding in order:

• Check each edge coming out of v1 to see if its removal, and the subsequent removal
of the adjacent edges, leaves a graph allowing a perfect matching. Let J1 be the
set of available edges. Pick e ∈ J1 uniformly and delete this edge.

• Repeat with v2, forming J2, and continue until a perfect matching is found. (The
last step is forced.)
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• This generates a random matching π with probability

P(π) =
n∏

i=1

|Ji |−1.

Let T (π) = 1/P(π). Then
∑

π∈M P(π) = 1 and

E (T (π)) =
∑

π∈M
T (π)P(π) = M.

This gives an unbiased estimate of M and one proceeds to generate π1, π2, . . . , πN

independently to give T1, T2, . . . , TN . The estimate is

M̂ = 1

N

N∑

j=1

Ti .

This is a sequential importance sampling algorithm: sequential because π is built
up one step at a time, and importance sampling because 1/P(π) is used to weight π .
A host of similar algorithms are in active use to estimate things like the number of
graphs with given degree sequences [1], or the number of zero/one tables with given
row and column sums [3], or the number of self-avoiding paths in a graph [10]. See
[2] or [13] for surveys.

These importance sampling algorithms have notoriously large variability and it
is natural to ask how large a sample N is required to assure M̂ is accurate, e.g.,
P{|M̂ − M | > ε} is small. A fresh approach to this problem is suggested by [2]. We
use their notation in the following.

If X is a measurable space, ν a probability on X , f : X → R, with I ( f ) =∫
f (x)ν(dx) < ∞. Let μ be a second probability on X which is “easy to sample

from”, and with μ � ν. Set ρ = dμ/dν so

∫
fρ dμ =

∫
f
dν

dμ
dμ = I ( f ).

If X1, X2, . . . , XN is an i.i.d. sample from μ, the importance sampling estimator is

ÎN ( f ) = 1

N

N∑

i=1

f (Xi )ρ(Xi ).

Define the Kullback–Leibler divergence by

L = D(ν | μ) =
∫

ρ log ρ dμ =
∫

log ρ dν = Eν {log ρ(Y )} .
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The main result of [2] shows that “eL steps are necessary and sufficient for conver-
gence” in the following sense:

(a) If ‖ f ‖2,L2(ν) < ∞ and N = eL+t for t > 0,

E
∣∣ ÎN ( f ) − I ( f )

∣∣ ≤ ‖ f ‖2,L2(ν)

[
e−t/4 + 2P1/2

ν

(
log ρ(Y ) > L + t

2

)]
.

(b) Conversely, if f ≡ 1 and N = eL−t , t > 0, for any δ > 0,

P
{
ÎN ( f ) > (1 − δ)

} ≤ e−t/2 + Pν (log ρ(Y ) ≤ L − t/2)
/
(1 − δ).

Remarks

1. To help think about this, suppose ‖ f ‖2,ν ≤ 1, e.g., f is the indicator function
of a set. Part (a) says that if N > eL+t and log ρ(Y ) is concentrated about its
mean (Eν{log ρ(Y )} = L), then ÎN ( f ) is close to I ( f ) with high probability.
(Use Markov’s inequality with (a).)

2. Conversely, part (b) shows that if N = eL−t and log ρ(Y ) is concentrated about
its mean, then of course I (1) = 1, but there is only a small probability that ÎN (1)
is correct.

In the special case of perfect matchings, X is the set of perfect matchings

ν(π) = 1/|X |, μ(π) =
n∏

i=1

|Ji (π)|−1 (π ∈ M in the earlier notation),

and

ρ(π) = dν

dμ
(π) =

n∏

i=1

|Ji (π)|/|X |, (1)

L = 1

|X |
∑

π∈M
log ρ(π) = −Eν log P(π) − log |X |. (2)

The questions now become, “Given a graph G what is L , and is log ρ(Y ) concen-
trated?”

In the next section, Lovász’s proof of Brégman’s inequality is used to show that
if the ordering v1, v2, . . . , vn is chosen randomly,

N = eL ≤
∏

(di !)1/di
/|X |,

with di the degree of vi in G. Section3 works out a simple example using Fibonacci
permutations where much can be computed. Section4 suggests related research.

This paper began during a birthday conference for Donald Knuth in January
2018. Knuth had used sequential importance sampling to estimate the number of
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self-avoiding walks in an n × n grid [10] and often uses it to estimate the running
time of backtracking algorithms [11]. At the conference I presented my work with
Chatterjee applied to these problems. After my talk, Laci came up and said, “I once
did some things that seem related. I hadn’t heard about your topics but maybe they
will be useful.” He sent me some class notes using sequential importance sampling
as a proof technique for Brégman’s inequality which led to the bound outlined in
this section. These sequential importance algorithms are widely used and this is the
first case of a useful general theorem. Laci’s book with Plummer is filled with a
host of problems “equivalent to matchings.” Thus Hall’s marriage theorem (When
does a graph have a perfect matching?), the Gale–Ryser theorem (When are two
sets of numbers the row and column sums of a zero/one table?), and the Erdős–
Gallai theorem (When is a given set of numbers the degree sequence of a graph?)
are derivable from one another. All are used in the sequential sampling applications
to guarantee that the algorithm doesn’t “get stuck.” Are there analogs of Brégman’s
inequality to these related problems? Does there exist a stochastic proof technique
that allows parallel bounds on required sample size? I know that Laci has things to say
about such questions and hope this paper will allow us to continue the conversation.

2 Brégman’s Inequality

This section begins with Lovász’s communication and then applies it to sequential
importance sampling.

2.1 Lovász Communication

On January 10, 2018, Lovász sent the following communication (probably course
notes). There are similar proofs of Brégman’s inequality [15] but these gave just what
was needed.

Branching Counting

Let F be a rooted tree of depth k, such that all N leaves of F are on the lowest level.
For every leaf u let Pu be the path from the root to u. Let X be a random leaf, obtained
by starting from the root, and wherever we are, selecting one child uniformly. Let Y
be a uniformly selected leaf.

For every path P from the root to a leaf, let d(P) be the product of the down-
degrees of its node (except the leaf). Then

P(X = u) = 1

d(Pu)
.
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Hence ∑

u

1

d(Pu)
= 1

and
E(d(PX )) = N .

The variance of the random variable d(PX ) can be very large, so the following
inequalities may be more useful:

Lemma
E(log d(PX )) ≤ log N ≤ E(log d(PY )).

Proof Since log x is a concave function, Jensen’s inequality gives

E(log d(PY )) = − 1

N

∑

u

log
1

d(Pu)
≥ − 1

N
· N · log 1

N
= log N .

On the other hand, x log x is convex, so

E(log d(PX )) = −
∑

u

1

d(Pu)
log

1

d(Pu)
≤ N

(
− 1

N
log

1

N

)
= log N .

Note: E(log d(PX )) is the entropy of X . �

Brégman’s Theorem

Theorem 2.1 (Brégman) Let G be a simple bipartite graph with bipartition
{U,W }. Let d1, . . . , dn be the degrees of the nodes in W. Then the number of
perfect matchings in G is at most

(d1!)1/d1 . . . (dn!)1/dn .

Proof Let π = (v1, . . . , vn) be a permutation of W . Construct the following tree
Fπ : its nodes are those partial matchings that can be extended to a perfect matching,
and match v1, . . . , vk for some k among the nodes ofW . A node’s parent is obtained
by deleting the edge from vk .

For a perfect matching M , permutation π , and w ∈ W , let a(M, π,w) be the
number of those neighbors ofw that are matched by M to a node inW not preceding
w in π . Let Mπ,w be the submatching of M covering exactly those nodes of W that
precede w, then the degree in Fπ of Mπ,w is at most a(M, π,w). Hence for every
perfect matching M ,
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log d(PM) =
∑

w∈W
log dFπ

(F(Mpi,w) ≤
∑

w∈W
log a(M, π,w).

Hence
log N ≤ EY (log d(PY )) ≤

∑

w∈W
EY (log a(Y, π,w)).

Averaging over all permutations π ,

log N ≤
∑

w∈W
Eπ EY (log a(Y, π,w)) =

∑

w∈W
EY Eπ (log a(Y, π,w)).

In a randompermutationπ , the nodes inW matchedwith neighbors ofw, the position
of w is first, second, etc., with the same probability. Hence

Eπ (log a(Y, π,w)) = 1

d(w)

d(w)∑

j=1

log j = 1

d(w)
log(d(w)!),

and so

log N ≤
∑

w∈W
EY

(
1

d(w)
log(d(w)!)

)
=

∑

w∈W

1

d(w)
log(d(w)!). �

2.2 Application to Importance Sampling

Consider the algorithm of Sect. 1 where the ordering v1, v2, . . . , vn is chosen uni-
formly at random. Lovász’s argument above shows

−Eν log P(π) ≤
n∑

i=1

1

d(vi )
log(d(vi )!).

Using this in expression (2) gives

L ≤
n∑

i=1

1

d(vi )
log(d(vi )!) − log |X |, (3)

so
eL ≤

∏
(d!)1/di /|X |.

In a practical application of the algorithm one might use a deterministic order-
ing of the vertices, say by increasing degree. Also, there is no need to make the
choices uniform; again, matching to low-degree edges makes some sense. As long
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as the chance of π is computable, 1/P(π) gives an unbiased estimator. In the par-
allel problems of graphs with given degree sequences and contingency tables, these
practical choices can make a large difference. It seems difficult to give useful explicit
bounds for the N required in these variations.

3 Example: Fibonacci Matchings

Here is a simple example where all the ingredients can be computed. Consider a
tridiagonal restriction matrix An: ones on the main, super-, and subdiagonal, and
zeros elsewhere.

A4 =

⎛

⎜⎜⎝

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⎞

⎟⎟⎠ .

The number of perfect matchings is the Fibonacci number Fn+1. Indeed, 1 can only
be matched to 1’ or 2’. If it is matched to 1’ the deleted graph is An−1. If it is
matched to 2’, then 2 must be matched to 1’ and the deleted graph is An−2. These
matchings are illustrated in Fig. 1. Thus there are five perfect matchings consistent
with A4; these are shown in Table1 along with their associated probabilities if the
vertices are tried in order 1, 2, 3, 4 for P1(π) and 2, 3, 4, 1 for P2(π). For larger n
the possible matching probabilities can be quite different. In what follows the vertex
order 1, 2, . . . , n is studied.

Figure2 shows a histogramof 1000 Ti when n = 10; then Fn+1 = 89. Themean of
86.72 is reasonable but the minimum of 24, maximum of 288, and standard deviation
of 45.3 give an indication of large variability.

Lemma 3.1 The random matching algorithm of Sect.1 for vertex order 1, 2, . . . , n
and the Fibonacci restriction matrix An results in choosing matching π with proba-
bility

P1(π) = 1

2n−1−k
,

Fig. 1 Fibonacci matchings 1

2

1’

2’

3

4

3’

4’
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Table 1 Perfect matchings

π 1234 2134 1324 1243 2143

P1(π) 1/8 1/4 1/4 1/8 1/4

P2(π) 1/6 1/6 1/3 1/6 1/6

Fig. 2 Histogram of
importance sampling weights

with kn = k(π) the number of transpositions in π not counting (n, n − 1).

Proof Working in order, if 1 ↔ 2 is chosen then 2 ↔ 1 is forced. If 1 ↔ 1 is chosen
then 2 ↔ 2 or 2 ↔ 3 is possible. This restarts after each transposition. The last move
is always forced. �

Corollary 3.2 For the ordering 1, 2, . . . , n, with ρ(π) defined at (1),

log ρ(π) = log 2 [(n − 1) − k(π)] − log Fn+1.

The behavior of k(π) follows from work of [6]. If κ(π) is the number of trans-
positions in a Fibonacci permutation, under the uniform distribution u(π) = 1/Fn+1

they show, as n tends to infinity,
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Eu(κ) = n(
√
5 − 1)

2
√
5

+ O(1),

Varu(κ) = n

5
√
5

+ O(1),

Pu

{
κ − mean

s.d.
≤ x

}
−→ 1√

2π

∫ x

−∞
e−t2/2 dt,

since k(π) = κ(π) − ε with ε = 1 or 0. This proves:

Corollary 3.3 Under the uniform distribution on perfect matchings, log ρ(π) is
concentrated about its mean.

It follows that the “N = eL” sample size theorems of Sect. 1 are in force.

Corollary 3.4 Let N̂1 and N̂2 be the sample sizes required from sequential impor-
tance sampling using the fixed order, Case 1, or a random order, Case 2. Then

N̂1 = 2
n
(

1
2 + 1

2
√
5

)
+O(n1/2)

Fn+1
= en(0.5016... )+O(n1/2)

Fn+1
= en(0.0204)+O(n1/2),

N̂2 = 6n/3+O(n1/2)

Fn+1
= en(0.5973... )+O(n1/2)

Fn+1
= en(0.1161)+O(n1/2).

Remarks From these calculations, both algorithms require exponential sample sizes.
However, the exponential constants are small, 0.02 and 0.11, and the deterministic
ordering is slightly better. The Brégman is just an upper bound. Indeed, in joint work
with Brett Kolesnik, we have computed−Er log p(π) = xn when a random ordering
of the vertices is used in Algorithm 1. The result is

xn = cn (1 + o(1)) , c =
(
13

6
− 2√

5

)
log 2

5
+

(
1 + 1√

5

)
log 3

5
.= 0.4944.

Note that c < (log 2)(1 + 1/
√
5)/2

.= 0.5016 so random ordering is (slightly) better
than deterministic, i.e., N̂ = en(0.0132)+O(n1/2).

4 Final Remarks

There are other methods for estimating the number of matchings in bipartite graphs,
chief among them theMarkov chainMonte Carlo algorithms. See [7, 9]. These come
with provable guarantees but don’t seem towork aswell in practice. Extensions of the
present approach with many further examples and theorems are in [4, 5]. A review
of other algorithms and the need for random generation (as opposed to counting) is
in [6].
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Use of sequential importance sampling as a proof technique, as in Lovász’s
proof of Brégman’s inequality, is interesting. [12] prove inequalities of Hoffman
and Sidorenko for counting graph homomorphisms this way and [8] settle a graph
coloring conjecture of Tomescu this way.

Finally, there are many classes of graphs where the number of perfect matchings
is known. These include Ferris-type restrictions and dimer covering problems. These
are grist for the mill of understanding sequential importance sampling. Fortunately,
the wonderful book of [14] can lead us through this part of the maze.

Acknowledgements Support is acknowledged by National Science Foundation award DMS
1608182. My thanks to Paulo Ornstein for trying these estimators out; to Sourav Chatterjee for
help with importance sampling; and to Joe Blitzstein whose thesis work suggested using sequen-
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Tighter Bounds for Online Bipartite
Matching

Uriel Feige

Abstract We study the online bipartite matching problem, introduced by Karp,
Vazirani and Vazirani [1990]. For bipartite graphs with matchings of size n, it is
known that the Ranking randomized algorithm matches at least (1 − 1

e )n edges in
expectation. It is also known that no online algorithmmatches more than (1 − 1

e )n +
O(1) edges in expectation, when the input is chosen from a certain distribution that
we refer to as Dn . This upper bound also applies to fractional matchings. We review
the known proofs for this last statement. In passing we observe that the O(1) additive
term (in the upper bound for fractionalmatching) is 1

2 − 1
2e + O( 1n ), and that this term

is tight: the online algorithmknown asBalance indeed produces a fractionalmatching
of this size.Weprovide a newproof that exactly characterizes the expected cardinality
of the (integral) matching produced by Ranking when the input graph comes from
the support of Dn . This expectation turns out to be (1 − 1

e )n + 1 − 2
e + O( 1

n! ), and
serves as an upper bound on the performance ratio of any online (integral) matching
algorithm.

Keywords Online matching · Ranking algorithm · Fractional matching · Integer
sequences

Subject Classifications 68W27 · 68Q25

1 Introduction

Given a bipartite graph G(U, V ; E), where U and V are the sets of vertices and
E ∈ U × V is the set of edges, a matching M ⊂ E is a set of edges such that every
vertex is incident with at most one edge of M . Given a matching M , a vertex is
referred to as either matched or exposed, depending on whether it is incident with
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an edge of M . A maximum matching in a graph is a matching of maximum car-
dinality, and a maximal matching is a matching that is not a proper subset of any
other matching. Maximal matchings can easily be found by greedy algorithms, and
maximummatchings can also be found by various polynomial time algorithms, using
techniques such as alternating paths or linear programming (see [9] and references
therein). In every graph, the cardinality of every maximal matching is at least half
of that of the maximum matching, because every matched edge can exclude at most
two edges from the maximum matching.

For simplicity of notation, for every n we shall only consider the following class
of bipartite graphs, that we shall refer to as Gn . For every G(U, V ; E) ∈ Gn it holds
that |U | = |V | = n and that E contains a matching of size n (and hence G has a
perfect matching). The vertices of U will be denoted by ui (for 1 ≤ i ≤ n) and the
vertices of V will be denoted by vi (for 1 ≤ i ≤ n). All results that we will state for
Gn hold without change for all bipartite graphs, provided that n denotes the size of
the maximum matching in the graph.

Karp, Vazirani and Vazirani [7] introduced an online version of the maximum
bipartite matching problem. This setting can be viewed as a game between two
players: a maximizing player who wishes the resulting matching to be as large as
possible, and aminimizing playerwhowishes thematching to be as small as possible.
First, the minimizing player choosesG(U, V ; E) in private (without the maximizing
player seeing E), subject to G ∈ Gn . Thereafter, the structure of G is revealed to the
maximizing player in n steps, where at step j (for 1 ≤ j ≤ n) the set N (u j ) ⊂ V of
vertices adjacent to u j is revealed. At every step j , upon seeing N (u j ) (and based on
all edges previously seen and all previous matching decisions made), the maximizing
player needs to irrevocably either match u j to a currently exposed vertex in N (u j ),
or leave u j exposed.

There is much recent interest in the online bipartite matching problem and vari-
ations and generalizations of it, as such models have applications for allocation
problems in certain economic settings, in which buyers (vertices of U ) arrive online
and are interested in purchasing various items (vertices of V ). For more details, see
for example the survey by Metha [11].

An algorithm for the maximizing player in the online bipartite matching setting
will be called greedy if the only vertices of U that it leaves unmatched are those
vertices u ∈ U that upon their arrival did not have an exposed neighbor (and hence
could not be matched). It is not difficult to see that every non-greedy algorithm A can
be replaced by a greedy algorithm A′ that for every graphG matches at least as many
vertices as A does. Hence we shall assume that the algorithm for the maximizing
player is greedy, and this assumption is made without loss of generality, as far as the
results in this manuscript are concerned.

Every greedy algorithm (for the maximizing player) produces a maximal match-
ing, and hence matches at least half the vertices. For every deterministic algorithm,
the minimizing player can select a bipartite graph G (that admits a perfect match-
ing) that guarantees that the algorithm matches only half the vertices. (Sketch: The
first |U |

2 arriving vertices have all of V as their neighbors, and the remaining |U |
2
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are neighbors only of the |V |
2 vertices that the algorithm matched with the first |U |

2
vertices.)

To improve the size of the matching beyond n
2 , Karp, Vazirani and Vazirani [7]

considered randomized algorithms for the maximizing player. Specifically, they pro-
posed an algorithm called Ranking that works as follows. It first selects uniformly
at random a permutation π over the vertices V . Thereafter, upon arrival of a vertex
u, it is matched to its earliest (according to π ) exposed neighbor if there is one (and
left unmatched otherwise). As the maximizing algorithm is randomized (due to the
random choice of π ), the number of vertices matched is a random variable, and we
consider its expectation.

Let A be a randomized algorithm (such as Ranking) for the maximizing player.
As such, for every bipartite graph G it produces a distribution over matchings. For a
bipartite graph G ∈ Gn , we use the following notation:

• ρn(A,G) is the expected cardinality of matching produced by A when the input
graph is G.

• ρn(A,−) is the minimum over all G ∈ Gn of ρn(A,G). Namely, ρn(A,−) =
minG∈Gn [ρn(A,G)].

• ρn is the maximum over all A (randomized online matching algorithms for the
maximizing player) of ρn(A,−). Namely, ρn = maxA[ρn(A,−)]. (Showing that
the maximum is attained is a technicality that we ignore here.)

• ρ = infn
ρn

n . Namely, ρ is the largest constant (independent of n) such that ρ · n ≤
ρn for all n. (One might find a definition such as ρ = limn→∞ ρn

n more natural, but
it turns out that both definitions of ρ give the same value, which will be seen to be
1 − 1

e .)

Karp,Vazirani andVazirani [7] showed thatρn(Ranking,−) ≥ (1 − 1
e )n − o(n),

where e is the base of the natural logarithm (and (1 − 1
e ) 	 0.632). Unfortunately,

that paper had only a conference version and not a journal version, and the proof
presented in the conference version appears to have gaps. Later work (e.g., [2, 4,
12]), motivated by extensions of the online matching problem to other problems such
as the adwords problem, presented alternative proofs, and also established that the
o(n) term is not required. There have also been expositions of simpler versions of
these proofs. See [1, 3, 10], for example. Summarizing this earlier work, we have:

Theorem 1.1 For every bipartite graph G ∈ Gn, the expected cardinality of the
matching produced by Ranking is at least (1 − 1

e )n. Hence ρn(Ranking,−) ≥ (1 −
1
e )n, and ρ ≥ 1 − 1

e 	 0.632.

Karp, Vazirani and Vazirani [7] also presented a distribution over Gn , and
showed that for every online algorithm, the expected size of the matching produced
(expectation taken over random choice of graph from this distribution) is at most
(1 − 1/e)n + o(n). This distribution, that we shall refer to as Dn , is defined as fol-
lows. Select uniformly at random a permutation τ over V . For every j , the neighbors
of vertex u j are {vτ( j), . . . , vτ(n)}. The unique perfect matching M is the set of edges
(u j , vτ( j)) for 1 ≤ j ≤ n.



238 U. Feige

To present the known results regarding Dn more accurately, let as extend previous
notation.

• ρn(A, Dn) is the expected cardinality of matching produced by A when the input
graph G is selected according to distribution Dn . (Hence expectation is taken
both over randomness of A and over selection from Dn .) By definition, for every
algorithm A, ρn(A, Dn) is an upper bound on ρn(A,−).

• ρn(−, Dn) � maxA[ρn(A, Dn)] is the maximum over all A (randomized online
algorithms for the maximizing player) of ρn(A, Dn). By definition, for every n,
ρn(−, Dn) is an upper bound on ρn .

It is not hard to see (and was shown also in Lemma 13 of [7]) that for every two
greedy online algorithms A and A′ it holds that ρn(A, Dn) = ρn(A′, Dn). As greedy
algorithms are optimal among online algorithms, and Ranking is a greedy algorithm,
we have the following proposition.

Proposition 1.2 For Dn defined as above,

ρn(Ranking, Dn) = ρn(−, Dn) ≥ ρn .

The result of [7] can be stated as showing that ρn(−, Dn) ≤ (1 − 1
e )n + o(n).

Later analysis (see for example [12], or the lecture notes ofKleinberg [8] orKarlin [6])
replaced the o(n) term by O(1). Moreover, this upper bound holds not only for online
randomized integral algorithms (that match edges as a whole), but also for online
fractional algorithms (that match fractions of edges). Let us provide more details.

A fractional matching for a bipartite graph G(U, V ; E) is a nonnegative weight
functionw for the edges such that for every vertex u ∈ U wehave

∑
v∈N (u) w(u, v) ≤

1, and likewise, for every vertex v ∈ V we have
∑

u∈N (v) w(u, v) ≤ 1. The size of
a fractional matching is

∑
e∈E w(e). It is well known (see [9], for example) that in

bipartite graphs, the size of the maximum fractional matching equals the cardinality
of the maximum (integral) matching.

In the online bipartite fractional matching problem, as vertices of U arrive, the
maximizing player can add arbitrary positiveweights to their incident edges, provided
that the result remains a fractional matching. We extend the ρ notation used for the
integral case also to the fractional case, by adding a subscript f . Hence for example,
ρ f,n(A,G) is the size of the fractional matching produced by an online algorithm A
when G ∈ Gn is the input graph.

It is not hard to see that in the fractional setting, randomization does not help
the maximizing player, in the sense that any randomized online algorithm A for
fractional matching can replaced by a deterministic algorithm A′ that on every input
graph produces a fractional matching of at least the same size. (Upon arrival of vertex
u, the fractional weight that A′ adds to edge (u, v) equals the expected weight that A
adds to this edge, where expectation is taken over randomness of A.) Consequently,
ρ f,n ≥ ρn , and every upper bound on ρ f,n is also an upper bound on ρn .

The following theorem summarizes the known upper bounds on ρ f,n , which are
also the strongest known upper bounds on ρn .



Tighter Bounds for Online Bipartite Matching 239

Theorem 1.3 For Dn as defined above, ρ f,n(−, Dn) ≤ (1 − 1
e )n + O(1). Conse-

quently, ρn(−, Dn) ≤ (1 − 1
e )n + O(1).

The combination of Theorems 1.1 and 1.3 implies the following corollary:

Corollary 1.4 Using notation as above, ρ = 1 − 1
e and ρ f = 1 − 1

e . The Ranking
algorithm (which produces an integral matching) is asymptotically optimal (for the
maximizing player) for online bipartite matching both in the integral and in the
fractional case. The distribution Dn is asymptotically optimal for the minimizing
player, both in the integral and in the fractional case.

In this manuscript, we shall be interested not only in the asymptotic ratios ρ

and ρ f , but also in the exact ratios ρn and ρ f,n . Every (integral) matching is
also a fractional matching, hence one may view Ranking also as an online algo-
rithm for fractional matching. As such, Ranking is easily seen not to be opti-
mal for some n. For example, when n = 4, tedious but straightforward analysis
shows that a different known algorithm referred to as Balance (see Sect. 2) satisfies
ρ f,4(Balance,−) > ρ f,4(Ranking,−) (details omitted). However, for the integral
case, it was conjectured in [7] that both Ranking and Dn are optimal for every n.
Namely, the conjecture is:

Conjecture 1.5 ρn = ρn(Ranking, Dn) for every n.

The above conjecture, though still open, addsmotivation (beyond Proposition 1.2)
to determine the exact value of ρn(Ranking, Dn). This is done in the following
theorem.

Theorem 1.6 Let the function a(n) be such that ρn(Ranking, Dn) = a(n)

n! for all n.
Then a(n) = (n + 1)! − d(n + 1) − d(n), where d(n) is the number of derange-
ments (permutations with no fixed points) on the numbers [1, n]. Consequently,
ρn(−, Dn) = (1 − 1

e )n + 1 − 2
e + O( 1

n! ) 	 (1 − 1
e )n + 0.264, and this is also an

upper bound on ρn.

The rest of this paper is organized as follows. In Sect. 2 we review a proof of
Theorem 1.3. In doing so, we determine the value of the O(1) term stated in the
theorem, and also show that the upper bound is tight. Hence we end up proving the
following theorem:

Theorem 1.7 For every n, Balance is the fractional online algorithm with best
approximation ratio, Dn is the distribution over graphs for which the approximation
ratio is worst possible, and

ρ f,n = ρ f,n(Balance, Dn) = (1 − 1

e
)n + 1

2
− 1

2e
+ O(

1

n
) 	 (1 − 1

e
)n + 0.316 .

InSect. 3weproveTheorem1.6.The combinationofTheorems1.6 and1.7 implies
that ρn < ρ f,n for sufficiently large n. It also implies that ρ f,n(Balance, Dn) >
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ρ f,n(Ranking, Dn) for sufficiently large n. Hence Proposition 1.2 does not extend
to online fractional matching.

In an appendix (Sect. 4) we review a proof (due to [3]) of Theorem 1.1, and derive
from it an upper bound of (1 − 1

e )n + 1
e on ρn(Ranking, Dn). This last upper bound

is weaker than the upper bounds of Theorems 1.6 and 1.7, but its proof is different,
and hence might turn out useful in attempts to resolve Conjecture 1.5.

1.1 Preliminaries—MonotoneG

When analyzing ρn(Ranking, Dn) we shall use the following observation so as to
simplify notation. Because Ranking is oblivious to names of vertices, the expected
size of the matching produced by Ranking on every graph in the support of Dn is the
same. Hence we shall consider one representative graph from Dn , that we refer to
as the monotone graphMonotoneG, in which γ (in the definition of Dn) is the iden-
tity permutation. The monotone graph G(U, V ; E) satisfies E = {(ui , v j ) | j ≥ i},
and its unique perfect matching is M = {(ui , vi ) | 1 ≤ i ≤ n}. Statements involving
ρn(Ranking, Dn) will be replaced by ρn(Ranking, MonotoneG), as both expres-
sions have the same value.

Likewise, the algorithm Balance is oblivious to names of vertices, and ρ f,n

(Balance, Dn) will be replaced by ρ f,n(Balance, MonotoneG).

2 Online Fractional Matchings

Let us present a specific online fractional matching algorithm that is often referred
to as Balance, which is the natural fractional analog of an algorithm by the same
name introduced in [5]. Balancemaintains a load �(v) for every vertex v ∈ V , equal
to the sum of weights of edges incident with v. Hence at all times, 0 ≤ �(v) ≤ 1.
Upon arrival of a vertex u with a set of neighbors N (u), Balance distributes a weight
of min[1, |N (u)| − ∑

v∈N (u) �(v)] among the edges incident with u, maintaining the
resulting loads as balanced as possible. Namely, one computes a threshold t such that∑

v∈N (u)|�(v)<t (t − �(v)) = min[1, |N (u)| − ∑
v∈N (u) �(v)], and then adds fractional

value t − �(v) to each edge (u, v) for those vertices v ∈ N (u) that have load below t .
We first present a proof of Theorem 1.3 based on previous work. The theorem is

restated below, with the additive O(1) term instantiated. Previous work either did
not specify the O(1) additive term (e.g., in [6]), or derived an O(1) term that is not
tight (e.g., in [8]).

Theorem 2.1 For every n it holds that

ρ f,n(−, Dn) = (1 − 1

e
)n + 1

2
− 1

2e
+ O(

1

n
) 	 (1 − 1

e
)n + 0.316 .
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Moreover, ρ f,n(−, Dn) = ρ f,n(Balance, Dn).

Proof For all graphs in the support of Dn , the size of the fractionalmatchingproduced
by Balance is the same (by symmetry). Hence for simplicity of notation, consider the
fractionalmatching produced byBalancewhen the input graph is themonotone graph
MonotoneG (see Sect. 1.1). It is not hard to see that when vertex ui arrives, Balance
raises the load of each vertex in {vi , . . . , vn} by 1

n−i+1 . This can go on until the largest

k satisfying
∑k

i=1
1

n−i+1 ≤ 1. Thereafter, when vertex uk+1 arrives,Balance can raise

the load of its n − k neighbors from
∑k

i=1
1

n−i+1 to 1. Hence altogether the size of

the fractional matching is precisely k + (n − k)(1 − ∑k
i=1

1
n−i+1 ), for k as above.

The value of k can be determined as follows. It is known that the harmonic
number Hn = ∑n

i=1
1
i satisfies Hn = ln n + γ + 1

2n + O( 1
n2 ), where γ 	 0.577 is

the Euler-Mascheroni constant. k is the largest integer such that Hn − Hn−k ≤ 1.
Defining α � n−k

n , we have that

Hn − Hn−k = ln n + γ + 1

2n
+ O(

1

n2
) − ln αn − γ − 1

2αn
+ O(

1

n2
)

= ln
1

α
−

1
α

− 1

2n
+ O(

1

n2
) .

Choosing α = 1
e (and temporarily ignoring the fact that in this case k = (1 − 1

e )n is
not an integer), we get that Hn − Hn−k = 1 − e−1

2n + O( 1
n2 ). The size of a matching

is then

(1 − 1

e
)n + n

e
(
e − 1

2n
+ O(

1

n2
)) = (1 − 1

e
)n + 1

2
+ 1

2e
+ O(

1

n
)

as desired.
The fact that k = (1 − 1

e )n above was not an integer requires that we round k
down to the nearest integer. The effect of this rounding is bounded by the effect of
changing the number of neighbors available to uk and to uk+1 by one (compared
to the computation without the rounding). Given that the number of neighbors is
roughly n

e , the overall effect on the size of the fractional matching is at most O( 1n ).
We conclude that ρ f,n(Balance, Dn) = (1 − 1

e )n + 1
2 + 1

2e + O( 1n ), implying
that ρ f,n(−, Dn) ≥ (1 − 1

e )n + 1
2 + 1

2e + O( 1n ). In remains to show that ρ f,n(−, Dn)

≤ (1 − 1
e )n + 1

2 + 1
2e + O( 1n ). This follows because Balance is the best possible

online algorithm (for fractional bipartite matching) against Dn . Let us provide more
details.

Given an input graph from the support of Dn , we shall say that a vertex v ∈ V
is active in round i if it is a neighbor of ui . Initially all vertices are active, and after
every round, one more vertex (chosen at random among the active vertices) becomes
inactive, and remains inactive forever. Let a(i) denote the number of active vertices at
the beginning of round i , and note that a(i) = n − i + 1. Consider an arbitrary online
algorithm. Let L(i) denote the average load of the active vertices at the beginning of
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round i . Then in round i , the average load first increases by at most 1
a(i) (as long as

it does not exceed 1) by raising weights of edges, and thereafter, making one vertex
inactive keeps the average load unchanged in expectation (over choice of input from
Dn). Hence in expectation, in every round, the average load does not exceed the
value of the average load obtained by Balance. This means that in every round, in
expectation, the amount of unused load of the vertex that became inactive is smallest
when the online maximizing algorithm is Balance. Summing over all rounds and
using the linearity of expectation, Balance suffers the smallest sum of unused load,
meaning that it maximizes the final expected sum (over all V ) of loads. The sum of
loads equals the size of the fractional matching. �

We now prove Theorem 1.7.

Proof (Theorem 1.7) Given Theorem 2.1, it suffices to show that Dn is the worst
possible distribution over input graphs for the algorithm Balance. Moreover, given
that Balance is oblivious to the names of vertices, it suffices to show thatMonotoneG
is the worst possible graph for Balance.

Let G ∈ Gn be a graph for which ρ f,n(Balance,G) = ρ f,n(Balance,−). As
Balance is oblivious to the names of vertices, we may assume that {(ui , vi )|1 ≤ i ≤
n} is a perfect matching in G = G(U, V ; E).

We use the notation N (w) to denote the set of neighbors of a vertexw in the graph
G. When running Balance on G, we use the notation m(i, j) to denote the weight
that the fractional matching places on edge (ui , v j ) (andm(i, j) = 0 if (ui , v j ) /∈ E),
and mi ( j) to denote

∑
1≤�≤i m(u�, v j ). Clearly, mi ( j) is non-decreasing in i . The

size of the final fractional matching is m = ∑n
j=1 mn( j). When referring to a graph

G ′, we shall use the notation N ′ and m ′ instead of N and m.
An edge (ui , v j ) with j < i is referred to as a backward edge. �

Proposition 2.2 Without loss of generality, we may assume that G has no backward
edges. Hence mi ( j) = m j ( j) for all i > j . �

Proof Suppose otherwise, and let i be largest so that ui has backward edges. Modify
G by removing all backward edges incident with ui , thus obtaining a graph G ′.
Compare the performance of Balance against the two graphs, G and G ′. On vertices
u1, . . . , ui−1, both graphs produce the same fractional matching. The extent to which
ui is matched is at least as large in G as it is in G ′ (because also backward edges
may participate in the fractional matching). Moreover, for every vertex v j for i <

j ≤ n, it holds that m ′
i ( j) ≥ mi ( j). It follows that for every vertex u� for � > i , its

marginal contribution to the fractionalmatching inG is at least as large as itsmarginal
contribution in G ′. Hence the fractional matching produced by Balance for G ′ is not
larger than that produced for G. Repeating the above argument, all backward edges
can be eliminated from G without increasing the size of the fractional matching. �

Lemma 2.3 Without loss of generality we may assume that:

1. mi (i) ≤ m j ( j) (or equivalently, mn(i) ≤ mn( j)) for all i < j .
2. mi (i) ≥ mi ( j) for all i and j . �
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Proof We first present some useful observations. For 1 ≤ i < n, consider the set
N (ui ) of neighbours of ui in G (and recall that vi ∈ N (ui ), and that there are no
backward edges). Thenwithout loss of generalitywemay assume thatmi (i) ≥ mi ( j)
for all v j ∈ N (ui ). This is because if there is some vertex v j ∈ N (ui ) with mi ( j) >

mi (i), then it must hold (by the properties of Balance) that m(i, j) = 0. Hence the
run of Balance would not change if the edge (ui , v j ) is removed from G (and then
v j /∈ N (ui )).

Moreover, we may assume thatmi (i) = mi ( j) for all v j ∈ N (ui ). Suppose other-
wise. Then for v j ∈ N (ui ) with smallest mi ( j), modify G to a graph G ′ as follows.
For all � < i , make u� a neighbor of vi if it was a neighbor of v j , and make u� a
neighbor of v j iff it was a neighbor of vi . The final size of the fractional matching in
G ′ (which is

∑n
j=1 m

′
n( j)) cannot be larger than inG. This is becausem ′

i (i) < mi (i),
m ′

i ( j) > mi ( j) and for � 
= j satisfying � > i it holds that m ′
i (�) = mi (�). More-

over, as mi (i) < mi ( j) ≤ 1, ui is fully matched in G and hence also in G ′, so the
total size of fractional matching after step i is the same in both graphs. Thereafter,
the marginal increase of the fractional matching at each step cannot be larger in G ′
than it is in G.

By the same arguments as above we may assume that mi+1(i + 1) = mi+i ( j) for
all v j ∈ N (ui+1).

Suppose now that item 1 fails to hold. Then for some 1 ≤ i ≤ n − 1 it holds that
mi (i) > mi+1(i + 1). Vertices ui and ui+1 cannot have a common neighbor because
if they do (say, v�) it holds thatmi+1(i + 1) = mi+1(�) ≥ mi (�) = mi (ii ). Hence we
may exchange the order of ui and ui+1 (and likewise vi and vi+1) without affecting
the size of the fractional matching produced by Balance.

Repeating the above argument whenever needed we prove item 1 of the lemma.
For j < i item 2 holds because mi ( j) = m j ( j) ≤ mi (i) (the last inequality fol-

lows from item 1). For j > i item 2 holds because at the first point in time � ≤ i
in which m�( j) = mi ( j) it must be that m�( j) = m�(�), and item 1 implies that
m�(�) ≤ mi (i). �

It is useful to note that Lemma 2.3 implies that there is some round number t such
that for all � ≥ t vertex v� is fully matched (namely,mn(�) = 1), and for every � < t
vertex v� is not fully matched (namely, mn(�) < 1). As to vertices in u, for � < t
vertex u� is fully matched, for � > t vertex u� contributes nothing to the fractional
matching, and ut is either partly matched or fully matched. Recalling that m denotes
the size of the final fractional matching, we thus have (for t as above):

m = t − 1 +
∑

j≥t

m(t, j) . (1)

At every step i , the contribution of vertex vi towards the fractional matching is
finalized at that step, namely, mn(i) = mi (i). Lemma 2.3 implies that for the worst
graph G, this vertex vi is the one with largest mi value at this given step. Hence
mi (i) = max j≥i [mi ( j)] and we have:
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m =
n∑

i=1

mn(i) =
n∑

i=1

mi (i) =
n∑

i=1

max
j≥i

[mi ( j)] .

At this point it is intuitively clear why MonotoneG is the graph in Gn on which
Balance produces the smallest fractionalmatching. This is becausewithMonotoneG,
at each step i the fractional matching gets credited a value mi (i) that is the average
of the values mi ( j) for j ≥ i , whereas for G its gets credited the maximum of these
values. Below we make this argument rigorous.

Consider an alternative averaging process replacing algorithmBalance. It uses the
same fractional matching as in Balance and the same m(i, j) values, but maintains
values m ′

i (i) that may differ from mi (i). At round 1, instead of being credited the
maximumm1(1) = max j≥1[m1( j)], the process is credited only the averagem ′

i (1) =
1
n

∑n
j=1 mi ( j). The remaining max j≥1[m1( j)] − 1

n

∑n
j=1 m1( j) is referred to as the

slackness s(1). More generally, at every round i > 1, instead of being credited by
max j≥i [mi ( j)] at step i , the averaging process gets credit from two sources. One
part of the credit is the average 1

n−i+1

∑n
j=i mi ( j), where s(i) = max j≥i [mi ( j)] −

1
n−i+1

∑n
j=i mi ( j) is the slackness generated at round i . In addition, the process gets

credit also for the slackness accumulated in previous rounds � < i , in such a way
that each slackness variable s(�) gets distributed evenly among the n − � rounds that
follow it. Hence we set

m ′
i (i) = 1

n − i + 1

n∑

j=i

mi ( j) +
i−1∑

�=1

s(�)

n − �
. (2)

The averaging process continues until the first round t ′ at whichm ′
t ′(t

′) ≥ 1, at which
point m ′

j ( j) is set to 1 for all j ≥ t ′, and the process ends. The size of the fractional
matching associated with the averaging process is m ′ = ∑n

i=1 m
′
i (i). Computing m ′

using the contributions of the vertices from U , for t ′ as above, we get that:

m ′ = t ′ − 1 +
∑

j≥t ′
m(t ′, j) . (3)

Proposition 2.4 For the graph G, the size of the fractional matching produced by
the averaging process is no larger than that produced by Balance. Namely, m ′ ≤ m.
�

Proof Compare Equations (1) and (3). If t ′ = t then m ′ = m, and if t ′ < t then
m ′ < m. Hence it suffices to show that the assumption t ′ ≥ t implies that t ′ = t . This
follows because mt ( j) = 1 for all j ≤ t (as noted above), and so:

m ′
t (t) = 1

n − t + 1

n∑

j=t

mt ( j) +
t−1∑

�=1

s(�)

n − �
= 1 +

t−1∑

�=1

s(�)

n − �
≥ 1



Tighter Bounds for Online Bipartite Matching 245

where the last inequality holds because all slackness variables s(�) are
non-negative. �

Proposition 2.5 For MonotoneG, running the averaging process and running Bal-
ance give the same process. Hence m ′(MonotoneG) = m(MonotoneG). �

Proof This is because when running Balance on MonotoneG, at every round i we
have that mi (i) = mi ( j) for all j > i . Hence there is no difference between the
average and the maximum of the mi ( j) for j ≥ i . �

Proposition 2.6 The size of the fractional matching produced by the averaging pro-
cess for graph G is not smaller than the size it produces for MonotoneG. Namely,
m ′(G) ≥ m ′(MonotoneG). �

Proof Running the averaging process on graph G, we claim that for every round
i < t ′ we have that:

m ′
i (i) =

∑

k≤i

1

n − k + 1
. (4)

The equality can be proved by induction. For i = 1 both sides of the equality
are 1

n . For the inductive step, recalling Eq.2 one can infer that

m ′
i+1(i + 1) = 1

n − i

(
(n − i + 1)m ′

i (i) − m ′
i (i) + 1

)

where the +1 term is because i < t ′. Likewise, the right hand side develops in the
same way:

∑

k≤i+1

1

n − k + 1
= 1

n − i

(

(n − i + 1)
∑

k≤i

1

n − k + 1
−

∑

k≤i

1

n − k + 1
+ 1

)

.

The left hand side of Equation (4) concerns graph G. Observe that m ′
i (i) for

MonotoneG exactly equals the right hand side of Equation (4). It follows that the
averaging process ends at the same step t ′ both on the graph G and on MonotoneG,
and up to step t ′ the accumulated fractional matching m ′ is identical. For rounds
j ≥ t ′ we have that m ′

j ( j) = 1 for G and it cannot be larger than 1 forMonotoneG,
proving the proposition. �

Combining the three propositions above we get that:

m(G) ≥ m ′(G) ≥ m ′(MonotoneG) = m(MonotoneG) .

This completes the proof of Theorem 1.7. �
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3 Online Integral Matching

The first part of Theorem 1.6 is restated in the following theorem (recall the definition
of the monotone graph MonotoneG in Sect. 1.1).

Theorem 3.1 Let the function a(n) be such that ρn(Ranking, MonotoneG) = a(n)

n!
for all n. Then a(n) = (n + 1)! − d(n + 1) − d(n), where d(n) is the number of
derangements (permutations with no fixed points) on the numbers [1, n].
Proof When the input isMonotoneG, then for every permutationπ used byRanking,
the matching M ′ produced satisfies the following two properties:

• All vertices in some prefix ofU are matched, and then no vertices in the resulting
suffix are matched. This is because all neighbors of u j+1 are also neighbors of u j ,
so if u j+1 is matched then so is u j .

• The order in which vertices of V are matched is consistent with the order π (for
those vertices that are matched—some vertices of V may remain unmatched). In
other words, if two vertices vi and v j arematched andπ(i) < π( j), then the vertex
u ∈ U matched with vi arrived earlier (has smaller index) than the vertex u′ ∈ U
matched with v j .

Some arguments in the proof that follows make use of the above properties,
without explicitly referring to them.

Fix n and MonotoneG as input. Let Πn denote the set of all permutations over
V . Hence |Πn| = n!. Ranking picks one permutation π ∈ Πn uniformly at random.
Recall our notation that π(i) is the rank of vi under π . We shall use πi to denote the
item of rank i in π (namely, πi = π−1(i)). For i ≤ n, let a(n, i) denote the number
of permutations π ∈ Πn under which πi is matched.

Proposition 3.2 For a(n) as defined in Theorem 3.1 and a(n, i) as defined above,
it holds that a(n) = ∑n

i=1 a(n, i). �

Proof For a permutation π ∈ Πn , let x(π) denote the size of the greedy match-
ing produced when Ranking uses π and the input graph in MonotoneG. Then by
definition:

a(n) =
∑

π∈Πn

x(π) .

By changing the order of summation:

∑

π∈Πn

x(π) =
n∑

i=1

a(n, i) .

Combining the above equalities proves the proposition. �

Proposition 3.2 motivates the study of the function a(n, i).
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Lemma 3.3 The function a(n, i) satisfies the following:

1. a(n, 1) = n! for every n ≥ 1.
2. a(n, i) = a(n, i + 1) + a(n − 1, i) for every 1 ≤ i < n. �

Proof The first statement in the lemma holds because in every permutation π , the
item π1 is matched with u1. Hence it remains to prove the second statement.

Fixing n > 1 and i < n, consider the following bijection Bi : Πn −→ Πn , where
given a permutation π ∈ Πn , Bi (π) flips the order between locations i and i + 1.
Namely, Bi (π)i = πi+1 and Bi (π)i+1 = πi (we use Bi (π)i as shorthand notation for
(Bi (π))i ). We compare the events that πi is matched by the greedy matching when
Ranking uses π with the event that Bi (π)i+1 is matched by the greedy matching
when Ranking uses Bi (π).

There are four possible events:

1. Both πi and Bi (π)i+1 are matched.
2. Neither πi nor Bi (π)i+1 are matched.
3. πi is matched but Bi (π)i+1 is not matched.
4. πi is not matched but Bi (π)i+1 is matched.

Though any of the first three events may happen, the fourth event cannot possibly
happen. This is because the item in location i + 1 in Bi (π) is moved forward to
location i in π , so if the greedy algorithm matches it (say to u j ) in Bi (π), then the
greedy algorithm must match it (either to the same u j or to the earlier u j−1) in π .

It follows that a(n, i) − a(n, i + 1) exactly equals the number of permutations in
which the third event happens. Hence we characterize the conditions under which
the third event happens. Let u j be the vertex matched with πi in π . Up to the arrival
of u j , the behavior of Ranking on Bi (π) and π is identical. Thereafter, for u j not to
be matched to Bi (π)i+1 = πi , it must be matched to the earlier Bi (π)i . Thereafter,
for u j+1 not to be matched to Bi (π)i+1, it must be that Bi (π)i+1 is not a neighbor
of u j+1. But Bi (π)i+1 = πi is a neighbor of u j (it was matched to u j under π ), and
hence it must be that πi = v j . Summarizing, the third event happens if and only if the
permutation Bi (π) comes from the following class Π̂ , where permutations π̂ ∈ Π̂

are those that have the property that π̂i is matched, and π̂i+1 = v j , for the same j for
which u j is the vertex matched with π̂i . Consequently, a(n, i) = a(n, i + 1) + |Π̂ |.

To complete the proof of the lemma, it remains to show that |Π̂ | = a(n − 1, i).
Let Π ′ ⊂ |Πn−1| be the set of these permutations π ′ ∈ Πn−1 under which Ranking
(when |U | = |V | = n − 1) matches the item π ′

i . �

Claim For Π̂ and Π ′ as defined above it holds that |Π̂ | = |Π ′|. �

Proof We first show a mapping from Π̂ to Π ′. Given π̂ ∈ Π̂ , let v j = π̂i+1. To
obtain permutation π ′ ∈ Πn−1 from π̂ , remove v j from π̂ , identify location k in π̂

with location k − 1 in π ′ (for i + 2 ≤ k ≤ n), and identify item v� of π̂ with item
v�−1 of π ′ (for j + 1 ≤ � ≤ n). We show now that π ′ ∈ Π ′ (namely, π ′

i is matched,
when the input graph isMonotoneG with |U | = |V | = n − 1).
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The vertices u1, . . . , u j−1 arematched to exactly the same locations inπ ′ and in π̂ ,
because the only vertices whose indices were decremented had index � ≥ j + 1, and
are neighbors of u1, . . . , u j−1 both before and after the decrement. Let vk = π̂i and
note that k > j , because vk is matched to u j and it is not v j = π̂i+1. Hence π ′

i = vk−1

and it too is a neighbor of u j , because j ≤ k − 1. Hence π ′
i will be matched to u j .

Conversely, we have the following mapping from Π ′ to Π̂ . Given π ′ ∈ Π ′, let u j

be the vertex matched π ′
i . To obtain permutation π̂ ∈ Π̂ from π ′, identify location k

in π̂ with location k − 1 in π ′ (for i + 2 ≤ k ≤ n), identify item v� of π̂ with item
v�−1 of π ′ (for j + 1 ≤ � ≤ n), and set π̂i+1 = v j . We show now that π̂ ∈ Π̂ .

As in the first mapping, the vertices u1, . . . , u j−1 are matched to exactly the same
locations in π ′ and in π . Let vk = π ′

i and note that k ≥ j , because vk was matched
to u j . Hence π̂i = vk+1 is neighbor of u j , and will be matched to u j . On the other
hand, π̂i+1 = v j will not be matched because it is not a neighbor of any of [u j+1, un].
Hence π̂ ∈ Π̂ .

Given the two mappings described above (one is the inverse of the other) we have
a bijection between Π ′ and Π̂ , proving the claim. �

The claim above implies that |Π̂ | = |Π ′| = a(n − 1, i), and consequently that
a(n, i) = a(n, i + 1) + a(n − 1, i), proving the lemma. �

In passing, we note the following corollary.

Corollary 3.4 For a(n, i) and a(n) as defined above, a(n) = (n + 1)! − a(n + 1,
n + 1).

Proof Using item 1 of Lemma 3.3 we have that a(n + 1, 1) = (n + 1)!. Apply-
ing item 2 of Lemma 3.3 iteratively for all 1 ≤ i ≤ n we have that a(n + 1, 1) −
a(n + 1, n + 1) = ∑n

i=1 a(n, i). Proposition 3.2 shows that
∑n

i=1 a(n, i) = a(n).
Combining these three equalities we obtain a(n) = (n + 1)! − a(n + 1, n + 1), as
desired. �

To obtain expressions for the values a(n, i), let us introduce additional notation.
A fixpoint (or fixed point) in a permutation π is an item that does not change its
location under π (namely, π(i) = i). For n ≥ 1 and 1 ≤ i ≤ n define d(n, i) be the
number of permutations over [n] in which the only fixpoints (if any) are among the
first i items. For example, d(3, 1) = 3 due to the permutations 132 (only 1 is a fixed
point) 231 (no fixpoints) and 312 (no fixpoints).

Lemma 3.5 The function d(n, i) satisfies the following:

1. d(n, n) = n! for every n ≥ 1.
2. d(n, i + 1) = d(n, i) + d(n − 1, i) for every 1 ≤ i < n. �

Proof d(n, n) denotes the number of permutations on [n] with no restrictions, and
hence d(n, n) = n!, which is the first statement of the lemma.

Consider now the second statement of the lemma. Let Πn,i denote the set of
permutations in which the only fixpoints (if any) are among the first i items. Then
the second statement asserts that |Πn,i+1| = |Πn,i | + |Πn−1,i |. The set Πn,i+1 can be
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partitioned in two. In one part i + 1 is not a fixpoint. This part is preciselyΠn,i . In the
second part, i + 1 is a fixpoint. To specify a permutation in this part we need to spec-
ify the location of the remaining n − 1 items, where the only fixpoints allowed are
among the first i items. The number of permutations satisfying these constraints
is Πn−1,i , by definition. Hence indeed |Πn,i+1| = |Πn,i | + |Πn−1,i |, proving the
lemma. �

Corollary 3.6 For every n ≥ 1 and 1 ≤ i ≤ n it holds that a(n, i) = d(n, n +
1 − i). �

Proof The proof is by induction on n, and for every value of n, by induction on i .
For the base case n = 1, necessarily i = 1 (and hence also n + 1 − i = 1) and

indeed we have a(1, 1) = 1 = d(1, 1). Fixing n > 1, the base case for i is i = 1 (and
n + 1 − 1 = n) and indeed we have that a(n, 1) = n! = d(n, n). For the inductive
step, consider a(n, i)with n > 1 and 1 < i ≤ n, and assume the inductive hypothesis
for n′ < n and the inductive hypothesis for n and i ′ < i . Then we have:

a(n, i) = a(n, i − 1) − a(n − 1, i − 1)

= d(n, n − i + 2) − d(n − 1, n − i + 1) = d(n, n − i + 1) .

The first equality is by Lemma 3.3, the second equality is by the inductive hypoth-
esis, and the third equality is by Lemma 3.5. �

We can now complete the proof of Theorem 3.1. By Corollary 3.4 we have that
a(n) = (n + 1)! − a(n + 1, n + 1). By Corollary 3.6 we have that a(n + 1, n +
1) = d(n + 1, 1). By definition, d(n + 1, 1) is the number of permutations on
[n + 1] in which only item 1 is allowed to be a fixpoint. This number is pre-
cisely d(n + 1) + d(n) (where d( j) are the derangement numbers), where the term
d(n + 1) counts those permutations in which there is no fixpoint, and the term d(n)

counts those permutations in which item 1 is the only fixpoint. �

The second part of Theorem 1.6 is restated in the following Corollary.

Corollary 3.7 For every n,

ρn(Ranking, MonotoneG) = (1 + 1

e
)n + (1 − 2

e
) + ν(n)

where |ν(n)| < 1
n! .

Proof Theorem 3.1 shows that a(n) = (n + 1)! − d(n + 1) − d(n), where d(n)

are the derangement numbers. It is known that d(n) = n!
e rounded to the near-

est integer. Hence |d(n) − n!
e | < 1

2 and |d(n + 1) + d(n) − (n+1)!
e − n!

e | < 1. Hence
|a(n) − (1 − 1

e )(n + 1)! − n!
e | < 1. Dividing by n! and replacing (1 − 1

e )(n + 1) by
(1 − 1

e )n + 1 − 1
e the corollary is proved. �
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3.1 Some Related Sequences

To illustrate the values of some of the parameters involved in the proof of The-
orem 3.1, consider a triangular table T where row n has n columns. The entries
(for 1 ≤ i ≤ n) are d(n, i), as defined prior to Lemma 3.5. Recall that d(n, i) =
a(n, n + 1 − i), hence the table also provides the a(n, i) values. We initialize the
diagonal of the table by d(n, n) = n!. Thereafter we fill the remaining cells of table
row by row, by using the relation d(n, i) = d(n, i + 1) − d(n − 1, i), implied by
Lemma 3.5. Finally, compute a(n) = ∑n

i=1 a(n, i) = ∑n
i=1 d(n, i) by summing up

each row. The table below shows the computation of a(n) for n ≤ 6.

n d(n,1)=a(n,n) d(n,2) d(n,3) d(n,4) d(n,5) d(n,6) a(n)
1 1 1
2 1 2 3
3 3 4 6 13
4 11 14 18 24 67
5 53 64 78 96 120 411
6 309 362 426 504 600 720 2921

The table T is identical in its definition to Sequence A116853, named Difference
triangle of factorial numbers read by upward diagonals, in The Online Encyclopedia
of Integer Sequences [13]. The row sums (and hence a(n)) in this table give Sequence
A180191 (with an offset of 1 in the value of n), named Number of permutations of
[n] having at least one succession. The first column (which equals a(n, n)) is the
sequence A000255. These relations between a(n) and the various sequences in [13]
helped guide the statement and proof of Theorem 3.1.

The derangement numbers d(n) (which form the sequenceA000166) can be easily
computed by the recurrence d(n) = n · d(n − 1) + (−1)n (due to Euler). The table
below shows the computation of a(n) = (n + 1)! − d(n + 1) − d(n) for n ≤ 7.

n n! d(n) a(n)
1 1 0 1
2 2 1 3
3 6 2 13
4 24 9 67
5 120 44 411
6 720 265 2921
7 5040 1854 23633
8 40320 14833
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4 Appendix: A Performance Guarantee for Ranking

For completeness, we review here a proof of Theorem 1.1. The proof that we present
uses essentially the same mathematical expressions as the proof presented in [2]. A
simple presentation of the proof of [2] appeared in a blog post of Claire Mathieu [10]
(with further slight simplifications made possible by a comment provided there by
Pushkar Tripathi). We shall give an arguably even simpler presentation, due to Eden,
Feldman, Fiat and Segal [3]. The proofs in [2, 10] make use of linear programming
duality. Theproof below is basedon an economic interpretation, and aproof technique
that splits welfare into the sum of utility and revenue. These last two terms turn out
to be scaled versions of the dual variables used in [2, 10], but the proof does not need
to make use of LP duality.

Proof (Theorem 1.1) Fix an arbitrary perfect matching M in G. Given a vertex
v ∈ V , we use M(v) to denote the vertex in U matched with v under M .

Recall that Ranking chooses a random permutation π over V . Equivalently, we
may assume that every vertex vi ∈ V chooses independently uniformly at random
a real valued weight wi ∈ [0, 1], and then the vertices of V are sorted in order of
increasingweight (lowestweight first). This gives a randompermutationπ . The same
permutation π is also obtained if each weight wi is replaced by a “price” pi = ewi−1

and vertices are sorted by prices (because ex−1 is amonotonically increasing function
in x). Observe that pi ∈ [ 1e , 1], though it is not uniformly distributed in that range.
The expected price that Ranking assigns to an item is:

E[pi ] =
∫ 1

0
ewi−1dwi = 1

e
(e − 1) = 1 − 1

e
. (5)

It is convenient to think of the vertices of U as buyers and the vertices of V as
items. Suppose that given G(U, V ; E), each vertex (buyer) u ∈ U desires only items
v ∈ V that are neighbors of u (namely, u desires v iff (u, v) ∈ E), is willing to pay 1
for any such item, and wishes to buy exactly one item. The seller holding the items is
offering to sell each item vi for a price of pi . Then given G, the matching produced
by executing the Ranking algorithm is the same as the one that would be produced
in a setting in which each buyer u j , upon arrival, buys its cheapest exposed desired
item, if there is any. If pi is the price of the purchased item vi , then the revenue that
the seller extracts from the sale of vi to u j is r(vi ) = pi , whereas the utility that the
buyer extracts is y(ui ) = 1 − pi . Consequently, the revenue plus utility extracted
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from a sale is 1, and the total revenue extracted from all sales plus the total utility
sum up to exactly the cardinality of the matching.

To lower bound the expected cardinality of the matching, we consider each
edge (M(vi ), vi ) ∈ M separately, and consider the expectation E[r(vi ) + y(M(vi ))],
where expectation is taken over the choice ofπ . Using the linearity of the expectation,
we will have that ρn(Ranking,G) = ∑

vi∈V E[r(vi ) + y(M(vi ))]. �

Lemma 4.1 For every vi ∈ V it holds that E[r(vi ) + y(M(vi ))] ≥ 1 − 1
e . More-

over, this holds even if expectation is taken only over the choice of random weight
wi (and hence of random price pi ) of item vi , without need to consider other aspects
of the random permutation π . �
Proof Fix an arbitrary graph G(U, V ; E) ∈ Gn , an arbitrary perfect matching M ,
and arbitrary prices p j ∈ [ 1e , 1] for all items v j 
= vi . The price pi for item vi is
set at random. Let M ′ denote the greedy matching produced by this realization of
the Ranking algorithm (where each buyer upon its arrival is matched to the exposed
vertex of lowest price among its neighbors, if there is any). Suppose as a thought
experiment that item vi is removed from V , and consider the greedy matching M ′

−i
that would have been produced in this setting. Let p denote the price of the item in V
matched to M(vi ) under M ′

−i , and set p = 1 if M(vi ) is left unmatched under M ′
−i .

Now we make two easy claims.

1. If pi < p, then vi is matched in M ′. This follows because at the time that M(vi )

arrived, either vi was alreadymatched (as desired), or itwas available formatching
with M(vi ) and preferable (in terms of price) over all other items that M(vi )

desires (as all have price at least p > pi ).
2. The utility of M(vi ) in M ′ satisfies y(M(vi )) ≥ 1 − p. This follows because

under M ′
−i the utility of M(vi ) is 1 − p, and under the greedy algorithm consid-

ered, the introduction of an additional item (the item vi when considering M ′)
cannot decrease the utility of any agent. (At every step of the arrival process, the
set of exposed vertices under M ′ contains the set of exposed vertices under M ′

−i ,
and one more vertex.)

Using the above two claims and taking z to be the value satisfying p = ez−1, we
have:

E[y(M(vi )) + r(vi )] ≥ 1 − p + Pr [pi < p]pi = 1 − ez−1 +
∫ z

wi=0
ewi−1dwi

= 1 − ez

e
+ ez − 1

e
= 1 − 1

e
.

This completes the proof of Lemma 4.1. �
Using the linearity of the expectation, we have that

ρn(Ranking,G) =
∑

vi∈V
E[r(vi ) + y(M(vi ))] ≥ (1 − 1

e
)n .
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This completes the proof of Theorem 1.1. �
One can adapt the proof presented above to the special case in which the input

graph is MonotoneG (or more generally, comes from the distribution Dn). In this
case one can upper bound the slackness involved in the proof of Theorem 1.1, and
infer the following theorem. �

Theorem 4.2 For every n it holds that ρn(Ranking, MonotoneG) ≤ (1 − 1
e )n +

1
e .

Proof Recall the two properties mentioned in the beginning of the proof of Theo-
rem 3.1. Recall also that the analysis of Ranking in the proof of Theorem 1.1 (within
Lemma 4.1) involved the matching M ′ and other matchings M ′

−i , and two claims.
Let us analyse the slackness involved in these claims when the input is the monotone
graph. The claims are restated with M(vi ) replaced by ui , because for the monotone
graph M(vi ) = ui .

The first claim stated that if pi < p, then vi is matched in M ′. When the input is
the monotone graph, then a converse also holds: if pi > p, then vi is not matched in
M ′. This follows because up to the time that ui arrives and is matched, only vertices
of V priced at most p are matched, and thereafter, no other vertex in U desires vi .
The event that pi = p has probability 0. Hence there is no slackness involved in the
first claim—it is an if and only if statement.

The second claim stated that the utility of ui in M ′ is y(ui ) ≥ 1 − p. This inequal-
ity is not tight. Rather, the utility of ui in M ′

−i is 1 − p, and y(ui ) is not smaller.
Let us quantify the slackness involved in this inequality by introducing slackness
variables s(u). For a vertex u ∈ U we shall use the notation y(u) to denote the utility
of u under Ranking, and y−v(u) for the utility of u when vertex v ∈ V is removed.
The slackness s(ui ) of vertex ui is defined as s(ui ) = y(ui ) − y−vi (ui ). �

Lemma 4.3 For the monotone graph and an arbitrary vertex u j ∈ U, the expected
utility of u j (expectation taken over choices of wi for all 1 ≤ i ≤ n by the Ranking
algorithm) is identical in the following two settings: when v j is removed, and when
vn is removed. Namely, E[y−v j (u j )] = E[y−vn (u j )]. �

Proof Both v j and vn are neighbors of all vertices uk arriving up to u j (for 1 ≤
k ≤ j). Hence whichever of the two vertices, v j or vn , is removed, the distributions
of the outcomes of Ranking on the first j arriving vertices (including u j ) are the
same. �

As a consequence of Lemma 4.3 we deduce that for the monotone graph, the
expected slackness of everyvertexu ∈ U satisfies E[s(u)] = E[y(u)] − E[y−vn (u)].
Lemma 4.4 For the monotone graph and arbitrary setting of prices for the items (as
chosen at random by Ranking),

∑
u∈U s(u) ≤ 1 − pn. Consequently,

∑
u∈U E[s(u)]

≤ 1
e , where expectation is taken over choice of weights wi for vertices in V . �

Proof Fix the prices pi (hence π ). Let u1, . . . , uk be the vertices of U matched
under Ranking, and let m(u1), . . . ,m(uk) be the vertices in V to which they are
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matched. Observe that the prices p(m(ui )) (where 1 ≤ i ≤ k) of these vertices form
a monotonically increasing sequence. Necessarily, vn is one of the matched vertices,
because it is a neighbor of all vertices in U . Let j be such that vn = m(u j ).

Consider now what happens when vn is removed. The vertices u1, . . . , u j−1 are
matched tom(u1), . . . ,m(u j − 1) as before. As to the vertices u j , . . . , uk−1, they can
be matched to m(u j+1), . . . ,m(uk), hence the algorithm will match them to vertices
of no higher price. Specifically, for every i in the range j ≤ i ≤ k − 1, vertex ui will
be matched either to m(ui+1) or to an earlier vertex, though not earlier than m(ui ).
The vertex uk may either bematched or be left unmatched. For simplicity of notation,
we say that uk is matched to either m(uk+1) or to an earlier vertex, where m(uk+1)

is an auxiliary vertex of price 1 than indicates that uk is left unmatched.
Note that:

∑

u∈U
y(u) =

k∑

i=1

y(ui ) = k −
k∑

i=1

p(m(ui )) ,

and that:

∑

u∈U
y−vn (u) =

k∑

i=1

y−vn (ui ) ≥ k −
j−1∑

i=1

p(m(ui )) −
k+1∑

i= j+1

p(m(ui )) .

Hence we have that:

∑

u∈U
s(u) =

∑

u∈U
y(u) −

∑

u∈U
y−vn (u) ≤ p(m(uk+1)) − p(vn) .

Finally, noting that p(m(uk+1)) ≤ 1 and that E[p(vn)] = 1 − 1
e (see Eq. (5)), the

lemma is proved. �
As in the proof of Theorem 1.1 we have:

E[y(ui ) + r(vi )] = 1 − p + s(ui ) + Pr [pi < p]pi = 1 − 1

e
+ s(ui ) .

Using the linearity of the expectation and Lemma 4.4 we have that:

ρn(Ranking, MonotoneG) =
∑

vi∈V
E[r(vi ) + y(ui )]

= (1 − 1

e
)n +

∑

u∈U
E[s(u)] ≤ (1 − 1

e
)n + 1

e
.

This completes the proof of Theorem 4.2. �
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Minimum Cost Globally Rigid Subgraphs
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Abstract A d-dimensional framework is a pair (G, p), where G = (V, E) is a
graph and p is a map from V to R

d . The length of an edge of G is equal to the
distance between the points corresponding to its end-vertices. The framework is
said to be globally rigid if its edge lengths uniquely determine all pairwise dis-
tances in the framework. A graph G is called globally rigid in R

d if every generic
d-dimensional framework (G, p) is globally rigid. Global rigidity has applications
in wireless sensor network localization, molecular conformation, formation con-
trol, CAD, and elsewhere. Motivated by these applications we consider the follow-
ing optimization problem: given a graph G = (V, E), a non-negative cost function
c : E → R+ on the edge set of G, and a positive integer d. Find a subgraph
H = (V, E ′) of G, on the same vertex set, which is globally rigid in R

d and for
which the total cost c(E ′) := ∑

e∈E ′ c(e) of the edges is as small as possible. This
problem is NP-hard for all d ≥ 1, even if c is uniform or G is complete and c
is metric. We focus on the two-dimensional case, where we give 3

2 -approximation
(resp. 2-approximation) algorithms for the uniform cost and metric versions. We
also develop a constant factor approximation algorithm for the metric version of the
d-dimensional problem, for every d ≥ 3.
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1 Introduction

A d-dimensional framework is a pair (G, p), where G = (V, E) is a graph and p is
a map from V to Rd . We also call (G, p) a realization of G in Rd . Two realizations
(G, p) and (G, q) are equivalent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all
pairs u, vwith uv ∈ E , where ||.|| denotes the Euclidean norm inRd . The frameworks
(G, p) and (G, q) are congruent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all
pairs u, v with u, v ∈ V . This is the same as saying that (G, q) can be obtained from
(G, p) by an isometry of Rd .

We say that (G, p) is globally rigid in R
d if every d-dimensional realization

(G, q) of G which is equivalent to (G, p), is congruent to (G, p). In other words,
the framework is globally rigid if its edge lengths uniquely determine all pairwise
distances. This property makes the notion of global rigidity a fundamental concept in
problems where we are given partial information on the pairwise distances between
pairs of a finite point set and our goal is to determine the configuration of the points,
up to trivial transformations, see Sect. 1.3 below.

Saxe [24] showed that it is NP-hard to decide if even a 1-dimensional framework is
globally rigid. The analysis and characterizationof globally rigid frameworks become
more tractable if we consider generic frameworks, i.e. frameworks (G, p) for which
the set of coordinates of the points p(v), v ∈ V (G), is algebraically independent over
the rationals. Results of Connelly [6] and Gortler, Healy and Thurston [12] imply
that the global rigidity of a generic framework (G, p) in R

d depends only on the
graph G, for all d ≥ 1. Hence we may define a graph G to be globally rigid in Rd if
every (or equivalently, if some) generic realization of G in Rd is globally rigid. The
problem of finding a polynomially verifiable characterization for graphs which are
globally rigid in Rd has been solved for d = 1, 2, but is a major open problem when
d ≥ 3.

1.1 The Minimum Cost Globally Rigid Subgraph Problem

In this paper we consider the following algorithmic problem. The input is a graph
G = (V, E), a non-negative cost function c : E → R+ on the edge set of G, and a
positive integer d. The task is to find a subgraph H = (V, E ′) ofG, on the samevertex
set, which is globally rigid in R

d and for which the total cost c(E ′) := ∑
e∈E ′ c(e)

of the edges is as small as possible.
We call this optimization problem the Minimum cost globally rigid spanning

subgraph problem (or MCGRSS, for short). We shall focus on the following special
cases of this problem: (i) if c is uniform, the goal is to find a minimum size globally
rigid spanning subgraph (ii) in the metric MCGRSS problem the input graph G is
complete and c satisfies the triangle inequality.

The Minimum cost globally rigid spanning subgraph problem (already in the
special cases mentioned above) is NP-hard for all d ≥ 1. The proof of this hardness
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result is given in Sect. 7. Therefore our aim is to design efficient approximation
algorithms. We shall first consider the two-dimensional version of the problem and
give a 3

2 -approximation algorithm for the minimum size globally rigid spanning
subgraph problem as well as a 2-approximation algorithm for the metric version. We
also show how the latter factor can be improved to 1.61 when the costs are defined
by Euclidean distances in the plane.

In the second part of the paperwe design constant factor approximation algorithms
for the d-dimensional problem in the metric case, for all d ≥ 3.

We can define—and we shall also consider—similar optimization problems by
replacing global rigidity with redundant rigidity or rigidity (defined in Sect. 2 below)
in the definition ofMCGRSS.These problems are denoted byMCRRSSandMCRSS,
respectively. It turns out that MCRRSS in R

d is also NP-hard for all d ≥ 1. On the
other hand, MCRSS is solvable in polynomial time in R

1 and R
2. The complexity

status of MCRSS is open in R
d for d ≥ 3.

1.2 Previous Work

It is a well-known folklore result in rigidity theory that a graphG is redundantly rigid
(resp. globally rigid) in R1 if and only if it is 2-edge-connected (resp. 2-connected).
Thus in the one-dimensional case of MCRRSS (resp. MCGRSS) we search for
a minimum cost 2-edge-connected (resp. 2-connected) spanning subgraph. These
problems, even in the uniform or metric version, are NP-hard, as they contain the
Hamilton cycle problem as a special case. There are several constant factor approx-
imation algorithms in the literature that deal with these problems, see e.g. [21]. In
light of this connection the MCGRSS problem is a natural extension of these core
problems from graph connectivity.

The only higher dimensional result we are aware of is due to García and Tejel
[11]. They consider the minimum size redundantly rigid augmentation problem in
the plane, which corresponds toMCRRSS in the special casewhenG is complete and
c(e) ∈ {0, 1} for all e ∈ E(G). They show that this problem is NP-hard in general but
can be solved in polynomial time if the graph to be augmented—that is, the graph
of the edges of cost zero—is minimally rigid in R

2. The minimum size globally
rigid augmentation problem is briefly mentioned in [9, 17], along with some related
results.

1.3 Motivation and Applications

One of the applications that inspired our research is the localization problem of
two- and three-dimensional wireless sensor networks. In this problem the goal is to
compute the locations of all sensors, when only a subset of the pairwise distances and
locations is available. The network is localizable (that is, the localization problem
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has a unique solution) if and only if the corresponding framework is globally rigid
[3]. In this framework the vertices correspond to the sensors and two vertices are
adjacent if and only if the distance between them is known.Methods and results from
rigidity theory have been used to solve a number of related problems. In particular,
the characterization of localizability (assuming generic locations in the plane) and
inductive constructions of localizable networks have been identified, see e.g. [1, 16].
Similar questions (concerning global rigidity or redundant rigidity) arise inmolecular
conformation, where the shape of a molecule is to be determined based on a subset
of inter-atomic distances [26], in formation control [27], and elsewhere.

The minimum cost globally (or redundantly) rigid spanning subgraph problem
may emerge in these applications when one wants to achieve, say, global rigidity
by measuring (or recomputing, fixing, etc.) some pairwise distances in an optimal
way. For example, it may happen that (i) certain distances are not computable, or
more generally, the cost or time of computing pairwise distances may be different
for different pairs, or preferences may be given to some pairs, or (ii) the level of
noise in the distance data may be different, or (iii) the total length of the edges is a
relevant factor, etc. These properties and parametersmay be encodable in the cost and
objective functions and then, assuming that the costs are uniform or metric, a near
optimal solution can be obtained by using the approximation algorithms designed in
this paper.

2 Rigid and Globally Rigid Graphs

In this section we collect the basic definitions and results from rigidity theory that
we shall use. The framework (G, p) is rigid in Rd if there exists an ε > 0 such that,
if (G, q) is equivalent to (G, p) and ||p(v) − q(v)|| < ε for all v ∈ V , then (G, q)

is congruent to (G, p). It is known that, informally speaking, this is equivalent to
saying that every continuous motion of the vertices of the framework in R

d which
preserves all edge-lengths takes the framework to a congruent realization of G. It is
clear that global rigidity implies rigidity.

As for global rigidity, the rigidity of frameworks in R
d is a generic property

for all d ≥ 1 [2]. We say that a graph G is rigid in R
d if every (or equivalently, if

some) generic realization of G in Rd is rigid. See Fig. 1 for examples. A rigid graph
G = (V, E) in Rd is called minimally rigid if G − e is not rigid for all e ∈ E .

It is known that the edge sets of the minimally rigid graphs on vertex set V
correspond to the bases of the so-called d-dimensional rigidity matroid, defined on
the edge set of a complete graph on V . Hence they have the same number of edges:
for example, a minimally rigid graph in R2 on vertex set V has 2|V | − 3 edges. The
problem of finding a polynomially verifiable characterization for graphs which are
rigid in Rd has been solved for d = 1, 2, but is a major open problem for d ≥ 3. We
refer the reader to [18, 19] for more details on rigid and globally rigid frameworks
and graphs.
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(a) (b) (c)

Fig. 1 Graphs which are a not rigid, b rigid but not globally rigid, c globally rigid in the plane

Fig. 2 The graphs obtained
from K3 (left) by a
0-extension operation
(middle) followed by a
1-extension operation (right)

In the plane we have the following key result. Let G = (V, E) be a graph. For a
subset X ⊆ V we use i(X) to denote the number of edges induced by X . We say that
G is sparse if

i(X) ≤ 2|X | − 3 for all X ⊆ V with |X | ≥ 2. (1)

The operation 0-extension adds a new vertex v to G and two new edges vx, vy for
two distinct vertices x and y ofG. The 1-extension operation on edge uw and vertex z
with z /∈ {u,w} adds a new vertex v, deletes uw, and adds three new edges vu, vw, vz.
See Fig. 2.

The characterization of (minimally) rigid graphs is due to Laman.

Theorem 2.1 ([22]) Let G = (V, E) be a graph with |E | = 2|V | − 3. Then the
following are equivalent:
(i) G is minimally rigid in R2,
(ii) G is sparse,
(iii) G can be obtained from K2 by a sequence of 0-extensions and 1-extensions.

As far as global rigidity is concerned, Hendrickson found the following necessary
conditions for global rigidity in R

d . We call a graph G redundantly rigid in R
d if

G − e is rigid in Rd for all e ∈ E(G). A graph G is said to be k-connected if G − X
is connected for all X ⊂ V (G) with |X | ≤ k − 1.

Theorem 2.2 ([13]) Let G be a globally rigid graph inRd on at least d + 2 vertices.
Then G is
(i) (d + 1)-connected, and
(ii) redundantly rigid in R

d .

These conditions together are also sufficient in R
1 and R

2. The one-dimensional
result is folklore, see [14] for a proof. In the plane we have the following character-
ization.
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Theorem 2.3 ([15]) Let G = (V, E) be a graph on at least four vertices. Then the
following are equivalent:
(i) G is globally rigid in R

2,
(ii) G is 3-connected and redundantly rigid in R2,
(iii) G can be obtained from K4 by a sequence of 1-extensions and edge additions.

We shall also use the following result of Nash-Williams [23]. Note that the graphs
in the next theorem may have multiple edges.

Theorem 2.4 ([23]) Let G = (V, E) be a graph and let k be a positive integer. Then
the edge set of G can be partitioned into k forests if and only if i(X) ≤ k|X | − k
holds for all non-empty vertex sets X ⊆ V .

2.1 Algorithms

The structural results presented in this section give rise to efficient combinatorial
algorithms for testing whether a given graph G = (V, E) is rigid, redundantly rigid,
or globally rigid in the plane. These algorithms use the fact that the edge sets of the
sparse subgraphs of a graph form the independent sets of the 2-dimensional rigidity
matroid and boil down to the existence of an efficient subroutine for checkingwhether
a graph is sparse or not. The matroidal property makes it possible to find a minimum
cost rigid spanning subgraph of a rigid graph in R

2 with respect to an arbitrary cost
function on the edge set, in polynomial time. Each of these basic problems can be
solved in O(|V |3) time or faster, see e.g. [4] for more details.

3 Minimum Size Globally Rigid Spanning Subgraphs

In this section we present two simple approximation algorithms for the minimum
size globally (resp. redundantly) rigid spanning subgraph problems. We show that if
we delete edges as long as possible, in a greedy fashion, maintaining the global (or
redundant) rigidity of the graph, then we end up with a close-to-optimal solution.

A graph G = (V, E) is called minimally globally (resp. redundantly) rigid in
R

2 if it is globally (resp. redundantly) rigid in R
2 but G − e is not globally (resp.

redundantly) rigid in R2 for all e ∈ E .

Theorem 3.1 Suppose that G = (V, E) is minimally globally rigid inR2 with |V | ≥
4. Then |E | ≤ 3|V | − 6.

Proof Consider a sequence of graphs G1,G2, . . . ,Gt for which G1 = K4, Gt = G,
and Gi is obtained from Gi−1 by an edge addition or 1-extension for all 2 ≤ i ≤ t .
Such a sequence exists by Theorem 2.3. Since G is minimally globally rigid, every
edge addition operation used in this sequence adds an edge which will be split
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into two edges later by a 1-extension operation. This leads to a pairing, that is, a
bijection between the added edges and a subset of the 1-extension operations. Each
pair increases the number of vertices by one and the number of edges by three. A
1-extension operation alone increases the number of vertices by one and the number
of edges by two. Thus, since K4 satisfies |E(K4)| = 3|V (K4)| − 6, and the total
number of edges added by the operations is not more than three times the number of
added vertices, Gt = G satisfies |E | ≤ 3|V | − 6, as required. �

A globally (or redundantly) rigid graph G in R
2 on vertex set V has at least

2|V | − 2 edges by Theorems 2.2 and 2.1. Since testing global rigidity can be done
in polynomial time, Theorem 3.1 leads to an efficient constant factor approximation
algorithm.

Theorem 3.2 There is a polynomial time 3
2 -approximation algorithm for the mini-

mum size globally rigid spanning subgraph problem in R
2.

A similar situation holds for redundant rigidity. Here we use the following result
(whose proof is substantially more complicated than that of Theorem 3.1).

Theorem 3.3 ([18]) Suppose that G = (V, E) is minimally redundantly rigid in
R

2 with |V | ≥ 7. Then |E | ≤ 3|V | − 9.

As a corollary, we obtain:

Theorem 3.4 There is a polynomial time 3
2 -approximation algorithm for the mini-

mum size redundantly rigid spanning subgraph problem in R2.

4 Structural Properties of Minimally Rigid Graphs

In the next two sections we consider the metric versions of the two-dimensional
MCRRSS and MCGRSS problems. Our algorithms will first identify a minimum
cost (minimally) rigid spanning subgraph of the input graph and then extend it to a
feasible solution by adding new edges. In order to keep the total cost of these added
edges lowwe need structural results on the minimally rigid subgraphs of a minimally
rigid graph. We shall rely on some results of García and Tejel from [11] and also
prove a number of new properties. In what follows a minimally rigid graph in the
plane will be called a Laman graph.

4.1 The Extreme Classes of a Laman Graph

Let G = (V, E) be a rigid graph. We say that an edge e ∈ E is redundant in G if
G − e is rigid. Thus G is redundantly rigid if every edge of G is redundant. As we
noted above, the Laman graphs on vertex set V are the bases of the two-dimensional



264 T. Jordán and A. Mihálykó

rigidity matroid defined on the edge set of a complete graph on V . In particular, if
G is Laman then G + e has a unique (matroid) circuit, the fundamental circuit of
e with respect to G. From this viewpoint the next lemma easily follows from some
basic properties of matroids.

Lemma 4.1 Let G = (V, E) be a Laman graph and let e = i j be an edge for some
i, j ∈ V . Then
(i) There is a unique fundamental circuit in G + e, denoted by C(i j) or C(e). This
circuit contains e. (V (C(e)), E(C(e)) − e) is a Laman subgraph of G, denoted by
L(i j) = (V (i j), E(i j)) or simply L(e).
(ii) For every edge e′ ∈ E(i j) the graph (V, E + e − e′) is a Laman graph, in which
the fundamental circuit of e′ is C(i j). Moreover, if e′ /∈ E(i j) then (V, E + e − e′)
is not a Laman graph,
(iii) If G ′ is a Laman subgraph of G with {i, j} ⊆ V (G ′) then L(i j) is a subgraph
of G ′. Thus L(i j) is equal to the intersection of all Laman subgraphs Lh of G with
{i, j} ⊆ V (Lh).

In other words E(i j) is equal to the set of edges of G that become redundant in
G + e. We may define L(i j) even if i j ∈ E(G). In this case L(i j) is the single edge
i j and C(e) is a graph consisting of two parallel copies of i j .

For every i, j ∈ V (G) we say that L(i j) is a generated Laman subgraph of G
whose generator is the edge i j . A Laman graph G is called narrow if G = L(i j)
for some i, j , that is, if it can be made redundantly rigid by adding one new edge.
See Fig. 3. Otherwise it is said to be wide. We note that the authors in [11] use
generated and non-generated, respectively, instead of narrow and wide. We feel the
new terminology makes the statements and proofs more transparent.

Given a Laman graphG and a set e1, e2, . . . , ek of new edges, let L(e1, e2, . . . , ek)
be the subgraph of G consisting of those edges of G that are redundant in G +
{e1, e2, . . . , ek}.
Lemma 4.2 ([11, Lemma 4]) Let G be a Laman graph. Then L(e1, e2, . . . , ek) =
L(e1) ∪ L(e2) ∪ . . . ∪ L(ek).

Fig. 3 A narrow Laman
graph (solid edges). Adding
the dotted edge makes it
redundantly rigid



Minimum Cost Globally Rigid Subgraphs 265

Fig. 4 The extreme classes in a Laman graph. This graph has four extreme classes: {A1}, {B1},
{C1,C2,C3}, and {D1, D2.D3}. The edges of the MGL subgraph generated by an edge connecting
A1 to some Ci (1 ≤ i ≤ 3) are thick

Thus adding a set of new edges e1, e2, . . . , ek to a Laman graph G yields a redun-
dantly rigid graph if and only if the union of the fundamental circuits of the edges ei ,
1 ≤ i ≤ k, contains every edge of G. In a smallest redundantly rigid augmentation
of G we may assume that for every new edge ei the fundamental circuit of ei is a
maximal (with respect to inclusion) generated Laman subgraph, or simply anMGL.
A vertex i of G is said to be extreme if there is a vertex j for which L(i j) is an MGL
of G.

Let G = (V, E) be a Laman graph and let X be the set of its extreme vertices. We
say that i, i ′ ∈ X are equivalent if there exists a vertex j ∈ X for which L(i j) is an
MGLand L(i j) = L(i ′ j).García andTejel verified that this is an equivalence relation
on X , assuming that G is wide [11, Lemma 8]. We call the equivalence classes of
X defined by this relation the extreme classes of G. See Fig. 4. The extreme vertices
satisfy the following properties:

Lemma 4.3 ([11, Lemma 9]) Let G be a wide Laman graph and let i1, i2 be extreme
vertices of G. Then
(i) if i1 and i2 are not equivalent then L(i1i2) is an MGL,
(ii) if i1 and i2 are equivalent then L(i1i2) is not an MGL,
(iii) if L ′ is MGL then L ′ contains extreme vertices from exactly two extreme classes
of G. If i1, i2 are vertices from these two classes then L ′ = L(i1i2).
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The next result gives rise to an edge set whose addition makes every edge redun-
dant.

Lemma 4.4 ([11, Lemma 10]) Let G be a wide Laman graph. Suppose that G has h
extreme classes with representative vertices i1, i2, . . . , ih . Then G = ⋃h

r=2 L(i1ir ).

Thus G can be made redundantly rigid by adding h − 1 well chosen edges, based
on the extreme classes. A more detailed analysis in [11] shows that in fact the
optimum—the size of a smallest augmenting set—is equal to 
 h

2 �, and that a set
of representative vertices from the extreme classes as well as an optimal solution can
be found in O(n2) time. We shall not use these facts concerning optimal augmenta-
tions but will rely on, and extend, some of the structural results on extreme classes
from [11]. We shall use the following lemmas. The first one is well-known, see e.g.
[15, Lemma 2.3].

Lemma 4.5 Let G = (V, E) be a Laman graph and let L1, L2 be Laman subgraphs
of G with at least two vertices in common. Then their union as well as their inter-
section are also Laman subgraphs of G.

Lemma 4.6 ([11, Lemma 5]) Let G be a Laman graph on at least four vertices
and let L(i j) be an MGL subgraph of G. Then for every vertex k �= j the subgraphs
L(i j) and L( jk) have at least one edge in common. In particular, L(i j) contains all
edges incident with i or j .

A simple corollary is as follows.

Lemma 4.7 ([11]) Let i, j, k be extreme vertices chosen from three different extreme
classes. Then L(ik) ⊂ L(i j) ∪ L( jk).

Proof Since L(i j) and L( jk) are MGL subgraphs of G, Lemma 4.6 implies that
every edge incident with j belongs to both. Thus they have at least two vertices in
common, which gives, by Lemma 4.5, that L(i j) ∪ L( jk) is a Laman subgraph of
G. As it contains i and j , we must have L(ik) ⊂ L(i j) ∪ L( jk) by Lemma 4.1(iii).

�

4.2 Extreme Classes and Separating Pairs

Since the globally rigid graphs in the plane are 3-connected, a new set of edges whose
addition to a Laman graph makes it globally rigid must eliminate all separating pairs.
In order to handle this condition we next prove new structural results on the relation
between extreme classes and separating pairs. We start with two preliminary lemmas
about wide Laman graphs.

Lemma 4.8 Let i1, i2, . . . , iq be extreme vertices chosen from q different extreme
classes. Then L(i1iq) ⊂ L(i1i2) ∪ L(i2i3) · · · ∪ L(iq−1iq).
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Proof Weapply induction on q. For q = 3 the lemma follows fromLemma 4.7. Now
suppose that q ≥ 4 and the lemma holds up to q − 1. Then L(i1iq) ⊂ L(i1iq−1) ∪
L(iq−1iq) ⊂ L(i1i2) ∪ · · · ∪ L(iq−2iq−1) ∪ L(iq−1iq). �
Lemma 4.9 Let T be a set of extreme vertices of G that contains exactly one vertex
from each extreme class and let F be a set of edges for which (T, F) is connected.
Then G + F is redundantly rigid.

Proof It follows from Lemma 4.4 that there exists an edge set J for which every
edge of J is induced by T and G + J is redundantly rigid. By Lemma 4.8 and the
connectivity of (T, F) it follows that G + F is redundantly rigid. �

Let G = (V, E) be a 2-connected graph. We say that a pair {u, v} ⊂ V is a sepa-
rating pair in G if G − {u, v} is disconnected. If X is the vertex set of a connected
component ofG − {u, v}, for some separating pair {u, v}, then X is called a fragment.
For a vertex set Z ⊆ V a vertex w ∈ V − Z is called a neighbour of Z if there is an
edge from w to some vertex of Z . The set of neighbours of Z is denoted by N (Z).
Thus N (X) forms a separating pair for every fragment X . A minimal fragment of
G (with respect to inclusion) is an end. A separating pair {u1, v1} crosses another
separating pair {u2, v2} if u1 and v1 belong to different components of G − {u2, v2}.
It is not hard to see that if {u1, v1} crosses {u2, v2} then {u2, v2} crosses {u1, v1}.
Hence these pairs are said to be crossing separating pairs. The next lemma is easy to
verify.

Lemma 4.10 Let G be 2-connected and suppose that v is a vertex of some end B of
G. If {u, v} is a separating pair for some vertex u then N (B) and {u, v} are crossing
separating pairs.

Lemma 4.11 ([15, Lemmas 2.6(a), 3.5(b)]) Let G be a rigid graph on at least three
vertices. Then
(i) G is 2-connected, and
(ii) there are no crossing separating pairs in G.

Given two disjoint vertex sets X,Y ⊆ V in a graph, the number of edges from X
to Y is denoted by d(X,Y ).

Lemma 4.12 Let G = (V, E) be a Laman graph and let X,Y ⊂ V with |X ∩ Y | =
{u, v} and d(X − Y,Y − X) = 0. Then
(i) if uv ∈ E and V = X ∪ Y then G[X ] and G[Y ] are both Laman,
(ii) if uv /∈ E then at most one of G[X ] and G[Y ] is Laman. Furthermore, if V =
X ∪ Y then exactly one of G[X ] and G[Y ] is Laman.
Proof First suppose that uv ∈ E and V = X ∪ Y . Thenwe have 2|V | − 3 = i(X) +
i(Y ) − 1 ≤ 2|X | − 3 + 2|Y | − 3 − 1 = 2|V | − 3. This implies (i). Next suppose
that uv /∈ E . If G[X ] and G[Y ] are both Laman then we have 2|X ∪ Y | − 3 ≥
i(X ∪ Y ) = i(X) + i(Y ) = 2|X | − 3 + 2|Y | − 3 = 2|X ∪ Y | − 2, a contradiction.
This proves the first part of (ii). By assuming that V = X ∪ Y and that neither of
G[X ]orG[Y ] is Lamanwehave2|V | − 3 = i(X) + i(Y ) ≤ 2|X | − 4 + 2|Y | − 4 =
2|V | − 4, a contradiction. This completes (ii). �
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Fig. 5 In this graph A1 is an
extreme vertex that belongs
to a separating pair

For a separating pair {u, v} and a component C of G − {u, v} let
C̄ = G[V (C) ∪ {u, v}] be its closure.
Lemma 4.13 Let G be a Laman graph and {u, v} be a separating pair in G. Let the
components of G − {u, v} be denoted by C1,C2, . . . ,Ct . Then
(i) if uv ∈ E then C̄i is Laman for all 1 ≤ i ≤ t ,
(ii) if uv /∈ E then there is a unique component, say C1, for which C̄1 is Laman,
(iii) if uv /∈ E then L(uv) intersects exactly one component of G − {u, v}.
Proof First observe that (i) followsby applyingLemma4.12(i) to the sets X = V (C̄i )

and Y = V − V (Ci ). Next we assume uv /∈ E . Then Lemma 4.12(ii) gives that at
most one C̄i is Laman. For a contradiction suppose that no C̄i is Laman. Then 2|V | −
3 = |E | = ∑t

1 i(C̄ j ) = ∑t
1(2|V (C̄ j )| − 4) = 2|V | + 4(t − 1) − 4t = 2|V | − 4, a

contradiction. Finally, (iii) follows from (ii), since if C̄1 is Laman then it must contain
the unique smallest Laman subgraph L(uv) containing u, v. �

In a Laman graph an extreme vertex may belong to some separating pair, see
Fig. 5. The next lemmas will show that it cannot happen to all vertices of an extreme
class.

Lemma 4.14 Let G be a Laman graph and let {u, v} be a separating pair in G.
Consider a pair x, y of verticeswith x ∈ A, y ∈ B,where A, B are distinct connected
components of G − {u, v}. Then L(uv) ⊆ L(xy) and L(ux) ⊆ L(xy).

Proof By Lemma 4.1(iii), L(xy) is a (smallest) Laman subgraph that contains x and
y. Since xy /∈ E , L(xy) is 2-connected by Lemma 4.11(i). Thus we have {u, v} ⊆
L(xy). Hence L(uv) ⊆ L(xy). A similar argument gives L(ux) ⊆ L(xy). �

Lemma 4.15 Suppose that G is a wide Laman graph. Then every extreme class of
G contains at least one vertex which is not part of any separating pair in G.
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Proof Consider an extreme class P of G and fix an extreme vertex u ∈ P . Suppose
that {u, v} is a separating pair for some v ∈ V . Since u is extreme, there exists an
MGL L(u j) for some extreme vertex j . Fix two components A, B of G − {u, v} and
a pair of vertices x ∈ A, y ∈ B.

We claim that j �= v. To see this first note that ifuv ∈ E , then L(uv) is not anMGL,
and hence j �= v follows. Next suppose that uv /∈ E . Then we have L(uv) ⊆ L(xy)
by Lemma 4.14. Furthermore, the inclusion must be proper by Lemma 4.13(iii). This
shows that that L(uv) is not an MGL. Hence j �= v and the claim follows.

By symmetry we may assume that j /∈ B. Then it follows from Lemma 4.14 that
for every vertex y ∈ B we have L(u j) = L(y j) and hence y is also in P . By taking
y to be a vertex of some end within B the lemma follows from Lemmas 4.10 and
4.11(ii). �

A similar result holds for narrow Laman graphs.

Lemma 4.16 Let G = (V, E) be a narrow Laman graph. Then there is a pair u, v ∈
V which is disjoint from all separating pairs and for which G + uv is redundantly
rigid.

Proof SinceG is narrow, there is a pairu1, v1 ∈ V forwhichG + u1v1 is redundantly
rigid. Suppose that {u1,w} is a separating pair for some vertex w ∈ V . By Lemma
4.13(iii) we must have w �= v1. Let A, B be two connected components of G −
{u1,w}with v1 ∈ A and consider a vertex u ∈ B. ByLemma4.14we have L(u1v1) ⊆
L(uv1). Since L(u1v1) = G, it follows that G + uv1 is redundantly rigid. L(xv1) =
G. By choosing u to be a vertex of some end within B, we may assume that u is
disjoint from all separating pairs. Now applying a similar argument to the pair {u, v1}
we obtain that there is a pair {u, v} which is disjoint from all separating pairs and for
which L(uv) = G. This completes the proof. �

5 Minimum Cost Globally Rigid Spanning Subgraphs

In this section we consider the metric MCRRSS and MCGRSS problems in the
plane. To illustrate the main ideas, we start with the minimum cost redundantly rigid
subgraph problem, for which we have a simpler approximation algorithm. Recall
that the input of both problems is a complete graph K = (V, E(K )) on at least four
vertices and a metric cost function c : E(K ) → R+.

Algorithm MinCostRedRig2

(i) Compute a minimum cost spanning Laman subgraph G = (V, E) of K .
(ii) If G is a wide Laman graph, then find a set S of extreme vertices of G that
contains exactly one vertex from each extreme class and compute a minimum cost
spanning tree (S, F) of K [S], where K [S] is the subgraph of K induced by S. Output
(V, E + F).
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(iii) If G is a narrow Laman graph, then find a new edge e for which G + e is
redundantly rigid. Output (V, E + e).

Theorem 5.1 Algorithm MinCostRedRig2 is a polynomial time 2-approximation
algorithm for the metric MCRRSS in R2.

Proof Consider an instance of MCRRSS. If G is wide, the output is a feasible
solution by Lemma 4.9. If G is narrow, the output is feasible by construction. To
verify the approximation ratio consider an optimal solutionG∗. Let OPT denote the
total cost of the edges ofG∗. SinceG∗ is rigid, we have c(E) ≤ OPT . We claim that
G∗ contains two edge-disjoint spanning trees. Indeed, since G∗ is redundantly rigid,
there exists a minimally rigid spanning subgraph H of G∗ − e, for any fixed edge e
of G∗: now Theorems 2.1 and 2.4 imply that H + e is the union of two edge-disjoint
spanning trees.

Suppose thatG iswide and the output is obtained in step (ii). SinceG∗ contains two
edge-disjoint spanning trees, aminimumcost spanning tree F∗ of K satisfies c(F∗) ≤
OPT
2 . Furthermore, it is well-known that if c is metric and S ⊆ V (G) then the cost

of a minimum cost spanning tree in K [S] has cost at most 2c(F∗). This follows
by doubling the edges of F∗ to obtain an Eulerian graph J and then shortcutting
an Eulerian walk of J to obtain a spanning cycle C on S. Since c is metric and C
contains a spanning tree of K [S], it follows that the minimum cost spanning tree on
S has cost at most 2c(F∗). Hence if G is wide then we have c(E + F) ≤ 2OPT , as
required.

Next suppose that G is narrow and the output is obtained in step (iii). Let e = uv
be the edge found for which G + e is redundantly rigid. Since G∗ contains two
edge-disjoint uv-paths, there is a uv-path P with c(P) ≤ OPT

2 . By using that c is
metric, we obtain c(e) ≤ c(P) ≤ OPT

2 and hence c(E + e) ≤ 3
2OPT ≤ 2OPT , as

claimed.
The polynomial running time of the algorithm follows by noting that a minimum

cost spanning tree or a minimum cost spanning Laman subgraph can be found effi-
ciently by a greedy algorithm. Moreover, as we remarked earlier, the extreme classes
of G can also be found in polynomial time. �

Next we consider the metricMCGRSS inR2. The following algorithm is a refined
version of Algorithm MinCostRedRig2.

Algorithm MinCostGlobRig2

(i) Compute a minimum cost spanning Laman subgraph G = (V, E) of K .
(ii) If G is a wide Laman graph then find a set S of extreme vertices of G that
contains exactly one vertex from each extreme class, so that the vertex belongs to no
separating pair of G.
(iii) If G is a narrow Laman graph then find a pair S = {i, j} of vertices, for which
G + i j is redundantly rigid and i, j belong to no separating pair of G.
(iv) Find a set T of vertices of G that contains exactly one vertex from each end W
of G which is disjoint from S,
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(v) Compute a minimum cost spanning tree (R, F) of K [R], where R = S ∪ T .
Output (V, E + F).

The steps of the algorithm are well-defined by Lemmas 4.15 and 4.16. We next
show that the output is a feasible solution.

Lemma 5.2 The output of Algorithm MinCostGlobRig2 is
(i) 3-connected, and
(ii) redundantly rigid.

Proof First we prove (i). By the choice of the vertices in S (c. f. Lemmas 4.15,
4.16) and the vertices in T added from the ends (c.f. Lemmas 4.10, 4.11) no vertex
in R belongs to a separating pair of G. Furthermore, for every end (and hence for
every fragment) X we must have X ∩ R �= ∅. This implies that adding a tree on R
eliminates every separating pair of G and hence makes it 3-connected.

Next we prove (ii) simultaneously for the two cases, that depend on whether G is
wide or narrow. Let us fix two vertices i, j ∈ S for which every internal vertex of the
path P from i to j in (R, F) is a vertex in T . Let P = i, t1, t2, . . . , tr , j and Li =
L(ti ti+1) for 1 ≤ i ≤ r − 1. The key observation, which follows from Lemma 4.14,
is that in the sequence L(i t1), L1, L2,…Lr−1, L(tr j) each pair of consecutive Laman
subgraphs have at least two vertices in common. By Lemma 4.5 this implies that their
union is Laman. Hence L(i j) ⊆ L(i t1) ∪ L(t1t2) ∪ . . . ∪ L(tr−1tr ) ∪ L(tr j). Then
it follows that by adding the edges of P we make every edge of L(i j) redundant.
Therefore, by Lemma 4.9, adding F makes every edge of G redundant. �

An analysis similar to that of MinCostRedRig2, together with Lemma 5.2 above,
gives our main result in R2.

Theorem 5.3 Algorithm MinCostGlobRig2 is a polynomial time 2-approximation
algorithm for the metric MCGRSS in R2.

We have a family of instances showing that the approximation ratio of Algorithm
MinCostRedRig2 (and of MinCostGlobRig2) is not better than 3

2 . Consider a com-
plete graph K on 2s + 1 vertices, for some integer s ≥ 2. Fix a subset E of vertices
of size s and define the costs of the edges of K so that the edges between vertices
in E are of cost 2 while the cost of every other edge is equal to 1. The algorithm

Fig. 6 The solid edges
correspond to the spanning
Laman subgraph. The dotted
edges form a tree on its
extreme vertices
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may find, as the minimum cost spanning Laman subgraph, a graph in which each
vertex in E is an extreme vertex of degree two. See Fig. 6 for the case s = 5. The
minimum cost tree on these vertices has total cost 2s − 2. Thus the output has cost
4s − 1 + 2s − 2 = 6s − 3. On the other hand it is not hard to see that a feasible
solution of cost 4s exists.

5.1 The Euclidean Case

In the Euclidean version of our problems the vertices correspond to points in R2 and
the cost of an edge is the Euclidean distance of its endpoints. In this version, which
may occur for example in the network localization problem, our algorithm has a
better approximation ratio.

In order to show this, recall that in the Euclidean Steiner Tree Problem we are
given a set S of points in the plane and the goal is to find a tree of minimum total
length, which contains S. The tree may use points not in S. The ratio of the total
length of a shortest spanning tree on S and the total length of a shortest Steiner tree
with respect to S is the so called Steiner ratio. It was proved in [5] that the Steiner
ratio is at most 1.22.

We can use this fact in the analysis of our algorithm and deduce that c(F) ≤
1.22c(F∗) ≤ 0.61OPT , following the notation of Theorem 5.1. Thus the approxi-
mation ratio of the Euclidean version of MinCostRedRig2 (and MinCostGlobRig2)
is 1.61.

6 Higher Dimensions

In this section we design an approximation algorithm for the d-dimensional metric
MCGRSS problem, which works for every d ≥ 2, with an approximation ratio that
depends only on d.

The algorithm is rather simple and is based on the idea of graph powers. The kth

power of graph G, denoted by Gk , is the graph on the same vertex set, in which two
vertices are adjacent if and only if their distance in G is at most k. The input of the
algorithm is an integer d ≥ 2, a complete graph K = (V, E(K )) on at least d + 2
vertices and a metric cost function c : E(K ) → R+.

Algorithm MinCostGlobRigGen

(i) Compute a minimum cost spanning tree T of K .
(ii) By shortcutting 2T create a Hamilton cycle C on vertex set V .
(iii) Output Cd .

In step (ii) the graph 2T is obtained from T by replacing every edge of T by
two parallel edges. The shortcutting operation is standard and we already used in
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Fig. 7 A graph obtained in
the process of constructing a
globally rigid spanning
subgraph of C3

13 by
1-extensions. The last vertex
added up to this point is vi .
The dotted edges have been
deleted by the previous
1-extensions

the analysis of Theorem 5.1: we find an Eulerian walk of 2T and by shortcutting
repeated vertices we turn it into a Hamilton cycle.

The fact that the output is a feasible solution follows from the next lemma. Let
Cn denote a cycle on n vertices.

Lemma 6.1 Cd
n is globally rigid in Rd .

Proof If n ≤ 2d + 1 thenCd
n is complete, and hence globally rigid inRd . So wemay

assume that n ≥ 2d + 2 ≥ d + 2.We shall prove that a spanning subgraph ofCd
n can

be obtained from Kd+2, which is globally rigid, by a sequence of (d-dimensional)
1-extensions. This operation adds a new vertex v to the graph, deletes an edge uw,
and adds d + 1 new edges incident with v, so that the set of new edges includes vu
and vw. It is known that this operation preserves global rigidity in Rd , see [6].

Label the vertices of Cd
n by v1, . . . , vn and start with a Kd+2 on vertex set

v1, . . . , vd+2. In the first iteration perform a 1-extension which adds vertex vd+3,
deletes the edge v1vd+2, and connects vd+3 to vd+2, vd+1, . . . , v3 and v1. In the next
iteration add vd+4 by a 1-extension on edge v1vd+3 so that the new vertex is connected
to the preceding d vertices and to v1, and so on. After n − d − 2 iterations all vertices
of Cd

n are included and the graph constructed is a globally rigid spanning subgraph
of Cd

n . See Fig. 7. This completes the proof. �

The analysis of the algorithm will also use the following claim.

Lemma 6.2 Suppose that G = (V, E) is rigid inRd with |E | = d|V | − d and |V | ≥
d + 1, for some d ≥ 1. Then the edge set of G can be decomposed into d spanning
trees.

Proof Since |E | = d(|V | − 1), it suffices to show that the edge set of G can be
partitioned into d forests. We shall verify that G satisfies the condition in Theorem
2.4 for k = d. Before counting edges let us fix a minimally rigid spanning subgraph
H of G. It is known that H has d|V | − (d+1

2

)
edges and for every vertex set X ⊆ V

with |X | ≥ d + 1 we have iH (X) ≤ d|X | − (d+1
2

)
. The number of edges of G which

do not belong to H is equal to
(d+1

2

) − d.
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Let X ⊆ V be a non-empty vertex set. First suppose |X | ≥ d + 1. Then, by using
the above bounds, we have iG(X) ≤ iH (X) + (d+1

2

) − d ≤ d|X | − d, as required.
Next suppose |X | ≤ d. Then, sinceG has no parallel edges, we have iG(X) ≤ (|X |

2

) =
|X |(|X |−1)

2 ≤ d(|X | − 1) = d|X | − d. This completes the proof. �

We are ready to analyse the algorithm. For simplicity we shall assume that |V | ≥(d
2

)
. We remark that if the input graph is smaller, a similar analysis gives the upper

bound 2d + 2 for the approximation ratio. Moreover, in this case enumerating all
feasible solutions would also be an option for d fixed.

Theorem 6.3 Algorithm MinCostGlobRigGen is a polynomial time (d + 2d
d−1 )-

approximation algorithm for the metric MCGRSS problem in R
d , assuming that

the size of the input graph is at least
(d
2

)
.

Proof The output is a feasible solution by Lemma 6.1. The polynomial running time
is also clear. It remains to verify the approximation ratio.

Let G∗ = (V, E) be an optimal solution. Since it is globally rigid in Rd , it is also
redundantly rigid inRd by Theorem 2.2. Thus we have |E | ≥ d|V | − (d+1

2

) + 1. Fur-
thermore, G∗ = (V, E) is rigid inRd−1, too (an observation that follows easily from
e.g. by the coning theorem of [7]). Also, since |V | ≥ (d

2

)
, we have |E | ≥ d|V | −

(d+1
2

) + 1 = (d − 1)|V | − (
(d
2

) + d) + 1 + |V | ≥ (d − 1)|V | − (d − 1). Thus we
can apply Lemma 6.2 to G∗ and deduce that it contains d − 1 pairwise edge-disjoint
spanning trees. Hence c(F) ≤ OPT

d−1 .
Therefore c(C) ≤ 2OPT

d−1 . By using the metric property of c, the total cost of the
edges ofCd that connect vertices which are of distance exactly k inC can be bounded
by kc(C). Thus

c(Cd) ≤ (1 + 2 + · · · + d)c(C) = d(d + 1)

2
c(C) ≤ d(d + 1)

2

2

d − 1
OPT

= d(d + 1)

d − 1
OPT =

(

d + 2d

d − 1

)

OPT,

as claimed. �

Note that the approximation ratio of MinCostGlobRigGen for d = 2 (and for d =
3) is equal to 6,which is substantiallyworse than that of algorithmMinCostGlobRig2.
In the next subsection we show how to improve on this ratio in the three-dimensional
case by using a more sophisticated analysis.

6.1 Improving the Ratio for d = 3

We start with a technical lemma.
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Lemma 6.4 Let K = (V, E) be a complete graph and let c : E → R+ be a metric
cost function. Suppose that G = (V, F) is a 3-connected spanning subgraph of K
which contains no subgraph isomorphic to K6. Then for every p > 0 there is an
Np such that if |V | ≥ Np then there exists a pair {e, f } ⊂ E − F of edges with
c(e) + c( f ) ≤ c(G)p.

Proof First suppose that there is a vertex v with dG(v) ≥ 3 + 4
 1
p �. Let X = NG(v).

We claim that X induces at least 2
 1
p � pairwise disjoint non-edges. Indeed, such a

collection M of non-edges can be obtained in a greedy manner, using the fact that
any subset of six vertices of X induces at least one non-edge. By using the metric
property of c we can now deduce that

c(F) ≥
∑

vu:u∈NG (v)

c(vu) ≥
∑

e∈M
c(e).

Thus the two edges e, f of M with the smallest cost satisfy c(e) + c( f ) ≤ c(G)p,
as required.

Next suppose that dG(v) < 3 + 4
 1
p � for all v ∈ V . Then, assuming |V | >

∑
i=0,...,k(3 + 4
 1

p �)i for some integer k, it follows that there exist two vertices
v1, v2 ∈ V for which the length of a shortest path from v1 to v2 in G is at least k + 1.

Take three internally disjoint chordless paths from v1 to v2. Let P be one of them
with minimum total cost. Then we have c(P) ≤ 1

3c(G). Furthermore, by taking a
path of non-edges connecting every second vertex along P and using the fact that
c is metric we obtain a set N of at least � k+1

2 � non-edges with c(N ) ≤ c(P) ≤
1
3c(G). Thus the two edges e, f of N with the smallest cost satisfy c(e) + c( f ) ≤
1
3

2
� k+1

2 �c(G) ≤ 1
3k c(G).Henceby choosing k ≥ 1

3p and k ≥ 4,wehave c(e) + c( f ) ≤
c(G)p, as required. �

The next lemma leads to an improved bound by choosing arbitrary small p < 3
2 .

Lemma 6.5 Let K = (V, E) be a complete graph and let c : E → R+ be a metric
cost function. Suppose that G = (V, F) is a globally rigid subgraph of K in R3 and
let H = (V, T ) be a minimum cost spanning tree. Then for every p > 0 there is an
Np such that if |V | ≥ Np then c(T ) ≤ 1

3 (1 + p)c(G).

Proof We shall use that, since G is globally rigid in R3, G is 3-connected and has a
spanning proper subgraph G ′ with 3|V | − 6 edges satisfying iG ′(X) ≤ 3|X | − 6 for
all X ⊆ V with |X | ≥ 3. Let’s fix p.

First suppose |F | ≥ 3|V | − 3. Then we can add three edges from F to G ′ and
obtain a subgraph of G which contains three edge-disjoint spanning trees (by Nash-
Williams’ theorem). Hence c(T ) ≤ 2

3c(G).
Next suppose 3|V | − 5 ≤ |F | ≤ 3|V | − 4. Then the sparsity property of G ′ im-

plies that G contains no subgraph isomorphic to K6. Now we may apply Lemma
6.4 to G and deduce that there is an Np such that if |V | ≥ Np then there ex-
ists a pair {e, f } ⊂ E − F of edges with c(e) + c( f ) ≤ c(G)p. A similar argu-
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ment gives that G + e + f contains three edge-disjoint spanning trees, and hence
c(T ) ≤ 1

3 (1 + p)c(G). �

We can now deduce an upper bound on the approximation ratio of MinCostGlo-
bRigGen for d = 3, at least for large enough graphs, which can be arbitrarily close
to 4.

Theorem 6.6 Let K = (V, E) be a complete graph and let c : E → R+ be a metric
cost function. For every p > 0 there is an Np such that if |V | ≥ Np then the approx-
imation ratio of MinCostGlobRigGen for d = 3 is at most 21

3 (1 + p)6 = 4(1 + p).

7 Concluding Remarks

In this paper we introduced the Minimum cost globally rigid spanning subgraph
problem in R

d and gave polynomial time approximation algorithms for the metric
version. It remains an open problem to find similar results for general cost functions.

For Euclidean costs we obtained a somewhat better approximation ratio. It might
be possible to find a polynomial time approximation scheme, like in the case of the
k-connected spanning subgraph problem, see e.g. [8].

Finally we remark that a long list of similar problems can be obtained by replacing
global rigidity inR2 (or equivalently, 3-connectivity and redundant rigidity) by other
types of connectivity and sparsity requirements. The matroid on the edge set of a
graph defined by the sparsity count of (1) happens to be a specific example of the
so-called count matroids. These matroids can defined in a similar way by replacing
i(X) ≤ 2|X | − 3 by i(X) ≤ k|X | − l for some integers k, l with l ≤ 2k, see [10, 25].
One can also define “redundant rigidity” with respect to these more general counts in
a natural way. Partial results, extending the work in [11], have already been obtained
by Király [20].

7.1 Hardness Results

For completeness we show that the problems considered in this paper are NP-hard.
Since global rigidity is equivalent to 2-connectivity inR1, finding a smallest globally
rigid spanning subgraph of a graph G on the line is more general than the Hamilton
cycle problem. Hence MCGRSS is NP-hard in R1. By applying a sequence of d − 1
coning operations1 to G, and assigning cost zero to each of the new edges, we
can reduce the problem to the d-dimensional MCGRSS problem, for any given d,

1The cone of graph G is obtained from G by adding a new vertex v and new edges from v to all
vertices of G. See Fig. 8. Connelly and Whiteley [7] proved that a graph G in globally rigid in R

d

if and only if the cone of G is globally rigid in Rd+1.
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Fig. 8 The cone graph of a
graph

showing that MCGRSS is NP-hard in Rd . A similar argument shows that MCRRSS
is also NP-hard in Rd for all d.

A slightly more involved argument shows that these problems remain NP-hard in
the metric case. Here we give the proof for MCGRSS in R

2. Similar arguments can
be used to extend the result to higher dimensions and to prove the hardness of metric
MCRRSS in Rd .

Theorem 7.1 It is NP-hard to find aminimum cost globally rigid spanning subgraph
in R

2 of a given complete graph G = (V, E) with respect to a metric cost function
c : E → R.

Proof We shall reduce the Hamilton cycle problem to our problem. Consider an
instance H = (V, E) of the Hamilton cycle problem. Let G be the cone of H , where
the new vertex is denoted by v, and let K be the complete graph on vertex set V ∪ {v}.
We assign costs to the edges of K as follows.

For every edge e = uv with u, v ∈ V we let c(e) = 1.1 (resp. c(e) = 1.9) if
uv ∈ E (resp. if uv /∈ E). For the remaining edges e of K , which are incident with v,
we define c(e) = 1.We claim that H has a Hamilton cycle if and only if theminimum
cost globally rigid spanning subgraph of K , with respect to c, has total cost 2.1|V |.

To see this first suppose that H has aHamilton cycleC . It is easy to see that the cone
graph ofC is globally rigid inR2. The total cost of the cone is 1.1|V | + |V | = 2.1|V |.
Next suppose that there is a globally rigid spanning subgraph F of K with cost at
most 2.1|V |. Since every globally rigid subgraph of K has at least 2|V | edges, the
definition of c implies that F has exactly 2|V | edges and that it contains every edge
incident with v.

Thus F is the cone graph of a 2-connected spanning subgraph C of H with |V |
edges. This shows that C is a Hamilton cycle in H . This completes the proof. �
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Coloured and Directed Designs

Peter Keevash

To László Lovász on his seventieth birthday

Abstract We give some illustrative applications of our recent result on decompo-
sitions of labelled complexes, including some new results on decompositions of
hypergraphs with coloured or directed edges. For example, we give fairly general
conditions for decomposing an edge-coloured graph into rainbow triangles, and for
decomposing an r -digraph into tight q-cycles.

Keywords Hypergraphs · Decompositions · Designs
Subject Classifications 05C65 · 05C70 · 05B05

1 Introduction

When can we decompose an object into copies of some other object? This vague
question suggests a number of mathematical problems. Within graph theory, a fun-
damental instance of this question asks for a decomposition (i.e. partition of the
edge set) of the complete graph Kn into copies of Kq . We require n ≥ q2 − q + 1
by Fisher’s inequality (see e.g. [28, Theorem 19.6]). If q is one more than a prime
power then the lines of a projective plane give a construction with n = q2 − q + 1,
but we do not know any construction with n = q2 − q + 1 when q is not of this
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Fig. 1 Orthogonal and magic squares

form; the Prime Power Conjecture suggests that there are none. On the other hand,
we may fix q and ask for conditions on n that guarantee a decomposition (perhaps
only for large n > n0(q) so as to exclude the difficulties associated with the Prime
Power Conjecture). The first such result, obtained by Kirkman in 1846 (see [30]),
shows that Kn has a triangle decomposition iff n is 1 or 3 modulo 6.

These beginnings suggest several possible directions for further generalisation.
From the combinatorial perspective (taken in this paper), one may ask for a decom-
position of G by copies of H where G and H are any given graphs, or hypergraphs,
or indeed other related structures (we will consider coloured and directed hyper-
graphs). On the other hand, the above questions also have natural interpretations in
Design Theory, which suggests many further questions (some of which also have
natural combinatorial interpretations). Perhaps the oldest topic in this area is that of
Latin and Magic squares, which have their roots in antiquity (see [3, Chap. 2]); they
were given prominence in the Western mathematical tradition by Euler in 1776, who
posed the 36 officer’s puzzle, which was open until its solution by Tarry in 1900. In
modern terminology, the result is that there is no pair of orthogonal Latin squares of
order 6. A pair of orthogonal Latin squares of order 4 is illustrated in Fig. 1, together
with an associated magic square (obtained by assigning values 1, 2, 3, 4 to a, b, c, d
and 0, 4, 8, 12 to α, β, γ, δ).

In general, a Latin square of order n is a labelling of the cells of an n by n
square with n symbols so that every symbol appears once in each row and once in
each column. An equivalent combinatorial description is a triangle decomposition
of K3(n), the complete tripartite graph with parts of size n. Indeed, we identify
the three parts with the sets of rows, columns and symbols of the square, and then
each cell corresponds to a triangle in the obvious way. For a pair of orthogonal
Latin squares of order n we require two such squares with the extra condition that
every pair of symbols appears together once; this is analogously equivalent to a
K4-decomposition of K4(n) (and similarly for larger numbers ofmutually orthogonal
Latin squares). We have chosen the pair in Fig. 1 with the extra property that both
diagonals use all symbols in both squares, so as to obtain a magic square (all rows,
columns and diagonals have the same sum). In Fig. 2 we illustrate the popular puzzle
of completing a partially filled Sudoku square, which is a Latin square of order 9
partitioned into 3 by 3 subsquares each of which uses every symbol once.
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Fig. 2 A completed Sudoku
puzzle

We now consider the generalisations of the above problems from graphs to
r -graphs (hypergraphs inwhich every edge has size r ).When does an r -multigraphG
have a decomposition into copies of some fixed r -graph H? The case that H = K r

q is
the complete r -graph on q vertices is of particular interest, as a K r

q -decomposition of
K r

n is equivalent to a Steiner (n, q, r) system, i.e. a collection of blocks of size q in a
set of size n covering every set of size r exactly once. For example, if (q, r) = (3, 2)
a triangle decomposition of Kn is equivalent to a Steiner Triple System. More gen-
erally, giving each edge of K r

n some fixed multiplicity λ, a K r
q -decomposition of

λK r
n is equivalent to a (n, q, r, λ) design. Some necessary conditions for the exis-

tence of a K r
q -decomposition of an r -multigraph G may be observed by considering

the degrees. The degree of e ⊆ V (G) is the number of edges of G containing e,
i.e. the size of the neighbourhood G(e) = { f ⊆ V (G) \ e : e ∪ f ∈ G}. We say G
is K r

q -divisible if |G(e)| is divisible by
(q−|e|

r−|e|
)
for all e ⊆ V (G); this is a neces-

sary condition for a K r
q -decomposition, as every copy of K r

q containing e contains
(q−|e|

r−|e|
)
edges that contain e. For example, a necessary condition for the existence of a

(n, q, r, λ) design is
(q−i

r−i

) | λ
(n−i

r−i

)
for all 0 ≤ i ≤ r − 1. The Existence Conjecture,

proved in [10], is that if n > n0(q, r, λ) is large and this divisibility condition holds
then there is a (n, q, r, λ) design. More generally, we can find a K r

q -decomposition
in any K r

q -divisible r -multigraph G that is sufficiently dense and quasirandom.
The Existence Conjecture has had a long history in Design Theory since 1853

when Steiner asked about the existence of Steiner (n, q, r) systems. Here we briefly
mention a few highlights that are relevant to our discussion here. The case r = 2 was
proved by Wilson [31–33] in the 1970s. Around the same time, Graver and Jurkat
[6] and Wilson [34] showed that the divisibility condition suffices for an integral
(n, q, r, λ) design, i.e. an assignment of integer weights wQ to copies Q of K r

q in
K r

n such that
∑{wQ : e ∈ Q} = λ for all e ∈ K r

n . Rödl [24] showed the existence
of approximate Steiner systems, i.e. that there are edge-disjoint copies of K r

q in
K r

n such that only o(nr ) edges are not covered; his semi-random (nibble) method
is now an indispensable tool of modern Probabilistic Combinatorics. Teirlinck [26]
was the first to show that there are any non-trivial (n, q, r, λ) designs for arbitrary r .
Kuperberg, Lovett and Peled [14] gave an alternative probabilistic proof of this result
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(and the existence of many other regular combinatorial structures); their method was
extendedbyLovett, Rao andVardy [18] to show the existence of ‘large sets’ of designs
(for certain parameter sets). Glock, Kühn, Lo and Osthus [4] gave an alternative
combinatorial proof of the Existence Conjecture (the proof in [10] used a randomised
algebraic construction); they alsoweakened the typicality hypothesis of [10] (version
1) to an extendability hypothesis, similar to that subsequently used in [10] (version
2). Furthermore, in [5] they obtained analogous results on H -decompositions where
H is any r -graph and G is an r -graph that is H -divisible, i.e. each degree |G(e)| is
divisible by the gcd of all degrees |H( f )| with | f | = |e|.

Having discussed some hypergraph generalisations of Kirkman’s result on trian-
gle decompositions of Kn (Steiner Triple Systems), let us now consider such gen-
eralisations for triangle decompositions of K3(n) (Latin Squares). Besides being a
combinatorially natural direction, this also has practical applications. For example,
in software testing (see [9]), a K r

q -decomposition of1 K r
q(n) can be thought of as a

sequence of tests to a program taking q inputs from [n], so that for every r inputs
all possible combinations are tested once (so an efficient K r

q -covering of K r
q(n) suf-

fices in this context). Another example is to a secret sharing scheme that distributes
information to q − 1 bank clerks so that any r of them can open the safe but any
r − 1 cannot: pick a random copy of K r

q in the decomposition, give one vertex to
each clerk, and make the final vertex the combination for the safe. High-dimensional
permutations (also called Latin Hypercubes) are equivalent to K r

r+1-decompositions
of K r

r+1(n). In Sect. 2 wewill show how the result of [11] implies an approximate for-
mula for the number of such decompositions, thus confirming a conjecture of Linial
and Luria [16]. The method applies in greater generality: as an other illustration we
will give an approximate formula for the number of generalised Sudoku squares, via
H -decompositions of H(n) for an auxiliary 4-graph H .

In Sect. 3 we consider a common generalisation of the nonpartite and partite
decompositions discussed above to a generalised partite setting in which the edges
of H andG have the same intersection patternswith respect to some partitions of their
vertex sets. This general setting encodes several further problems in Design Theory.
For example, Kirkman’s Schoolgirl Problem (a popular puzzle in the 19th century)
asks for the construction of a Steiner Triple System that is resolvable, meaning that its
blocks can be partitioned into perfect matchings (sets of triples covering every vertex
exactly once). We will illustrate the generalisation to hypergraph decompositions
given in [11]. We will also illustrate the construction in [11] of large sets of designs,
i.e. decomposition of K q

n into (n, q, r, λ) designs. An application of the latter (see
[29]) is to the following ‘Russian Cards’ problem in information security. From a
deck of n cards, we randomly deal cards so that Alice receives a cards, Eve e < a
cards and Bob b = n − a − e cards. Alice wants to make a public announcement
from which Bob can learn her cards (given the cards that he holds) while limiting the
information that Eve receives (e.g. for any card that she does not hold she should not
learn which of Alice or Bob holds it). A strategy for this problem can be identified
with a partition of K a

n , where edges represent the possible sets of cards for Alice, and

1For any hypergraph H we write H(n) for its n-blowup.
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Alice announces to which part her actual set belongs. An optimal (minimum number
of parts) strategy such that Bob can learn Alice’s hand corresponds to a partition of
K a

n into Steiner (n, a, a − e) systems; furthermore, if n > n0(a, e) is large then it
is secure against Eve, as for any card x that she does not hold, among the blocks
disjoint from her hand in any of the Steiner systems, at least one contains x and at
least one does not.

We will explain the statement of the result of [11] in Sect. 4, and illustrate it with
two new applications in the subsequent two sections. In Sect. 5 we generalise the
results on hypergraph decomposition discussed above to decompositions of hyper-
graphs where edges have colours which must be respected by the decomposition.
As well as being combinatorially natural, such generalisations encode other prob-
lems of Design Theory (e.g. Whist Tournaments) and also fit within the large lit-
erature on rainbow versions of classical combinatorial results, which can encode
seemingly unrelated questions (see e.g. [22]). In Sect. 6 we give a different gen-
eralisation, namely to decompositions of directed hypergraphs. This illustrates the
following important feature of the result of [11]: it is fundamentally concerned with
sets of functions (which we call labelled edges), so to apply it to sets of (unlabelled)
edges (i.e. hypergraphs) we must encode an edge by a suitable set of labelled edges.
This general setting has more applications, albeit at the expense of considerable
effort required in setting up the theory in Sect. 4. However, this seems unavoidable,
as there are divisibility phenomena even for unlabelled coloured hypergraphs that
require labels to analyse (see [11, Sect. 1.5]). In Sect. 7 we give a common gener-
alisation of the previous results for convenient use in applications. We conclude in
Sect. 8 by discussing some directions for potential future research.

2 Partite Decompositions, Hypermutations, Sudoku

Over the next three sections we will gradually move from examples to the general
setting. We start with this section by illustrating some results on hypergraph decom-
positions and some of their applications discussed in introduction. First we consider
the nonpartite setting with the typicality condition from [10], which describes an
r -graph where the common neighbourhood of small set of (r − 1)-sets behaves
roughly as one would expect in a random r -graph of the same density.

Definition 2.1 Suppose G is an r -graph on [n]. The density of G is2 d(G) =
|G|(n

r

)−1
. We say that G is (c, s)-typical if for any set A of (r − 1)-subsets of V (G)

with |A| ≤ s we have
∣∣∩ f ∈AG( f )

∣∣ = (1 ± |A|c)d(G)|A|n.

The following result of [5] (see also [11, Theorem 1.5]) shows that any dense
typical r -graph has an H -decomposition provided that it satisfies the necessary divis-
ibility condition discussed above. Henceforth we fix parameters

2We identify any hypergraph with its edge-set, so |G| is the number of edges.
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h = 250q3
and δ = 2−103q5

.

Theorem 2.2 Let H be an r-graph on [q] and G be an H-divisible (c, hq)-typical
r-graph on [n], where n > n0(q) is large, d(G) > 2n−δ/hq

, c < c0d(G)h30q
and c0 =

c0(q) is small. Then G has an H-decomposition.

Next we set up some notation for stating the partite analogue of the previous
result.

Definition 2.3 Let H be an r -graph. We call an r -graph G an H -blowup if V (G)

is partitioned as (Vx : x ∈ V (H)) and each e ∈ G is f -partite for some f ∈ H , i.e.
f = {x : e ∩ Vx �= ∅}.
We write G f for the set of f -partite e ∈ G. For f ∈ H let d f (G) = |G f | ∏x∈ f

|Vx |−1. We call G a (c, s)-typical H -blowup if for any s ′ ≤ s and distinct e1, . . . , es ′

where each e j is f j -partite for some f j ∈ (V (H)

r−1

)
, and any x ∈ ∩s ′

j=1H( f j ) we have∣∣∣Vx ∩ ⋂s ′
j=1 G(e j )

∣∣∣ = (1 ± s ′c)|Vx | ∏s ′
j=1 d f j ∪{x}(G).

We say G has a partite H -decomposition if it has an H -decomposition using
copies of H with one vertex in each part Vx .

We say G is H -balanced if for every f ⊆ V (H) and f -partite e ⊆ V (G) there is
some ne such that |G f ′(e)| = ne for all f ⊆ f ′ ∈ H .

Note in particular that the H -balance condition for e = f = ∅ implies equality
of all |G f ′ | with f ′ ∈ H . If G has a partite H -decomposition then G must be H -
balanced; the following result ([11, Theorem 1.7]) shows the converse for typical
H -blowups.

Theorem 2.4 Let H be an r-graph on [q] and G be an H-balanced (c, hq)-typical
H-blowup on (Vx : x ∈ V (H)), where each n/h ≤ |Vx | ≤ n for some large n >

n0(q) and d f (G) > d > 2n−δ/hq
for all f ∈ H and c < c0dh30q

, where c0 = c0(q)

is small. Then G has a partite H-decomposition.

In the previous result, we can not only show that G has a partite H -decomposition,
but also give an approximate formula for the number of such decompositions. We
will show some applications of this when G is a complete H -blowup. We start by
considering the upper bound, which comes from the following result of Luria [20].

Theorem 2.5 Let R be fixed and D = D(N ) → ∞ as N → ∞. Suppose A is an R-
graph on N vertices such that all vertex degrees are3 D + o(D) and all pair degrees
are o(D). Then the number of perfect matchings in A is at most (De1−R + o(D))N/R.

When applying Theorem 2.5 to the setting of Theorem 2.4, we consider the aux-
iliary R-graph A on V (A) = E(G) where edges correspond to copies of H , so
N = |G| and R = |H |. If we let G = H(n) be the complete H -blowup of size n then
N = |H |nr and the degree conditions of Theorem2.5 holdwith D = nq−r . In fact, all

3The statement in [20] has D here, but the proof works with D + o(D).
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pair degrees are at most nq−r−1. We deduce that the number of H -decompositions of
H(n) is at most ((e1−|H | + o(1))nq−r )nr

. We will show below how a matching lower
bound follows from Theorem 2.4. Before doing so, we discuss two applications.

First we consider the number Nr (n) of r -dimensional permutations of order n,
which is also the number of K r

r+1-decompositions of K r
r+1(n). For r = 2 (Latin

squares), Van Lint andWilson [28, Theorem 17.3] obtained the approximate formula
N2(n) = (n/e2 + o(n))n2

; this was a short deduction from two celebrated break-
throughs on permanents (the proof of the Van der Waerden Conjecture by Falikman
and by Egorychev and of the Minc Conjecture by Bregman). The upper bound can
be obtained more simply by entropy inequalities, by which means Linial and Luria
[20] showed Nr (n) ≤ (n/er + o(n))nr

, and Luria obtained the more general result in
Theorem 2.5. However, the lower bound argument appeared not to generalise, even
from Latin squares to Steiner Triple Systems, for which the approximate formula
was a conjecture of Wilson [35], proved in [12]. In [11] we established the lower
bound, thus giving the following approximate formula.

Theorem 2.6 The number of r-dimensional permutations of order n is (n/er +
o(n))nr

.

Our second application is to the number of generalised Sudoku squares, which are
Latin squares of order n2 partitioned into n by n subsquares each of which uses every
symbol once (the usual Sudoku squares have n = 3).We encode these by the 4-graph
H with V (H) = {x1, x2, y1, y2, z1, z2} and E(H) = {x1x2y1y2, x1x2z1z2, y1y2z1z2,
x1y1z1z2}. Then an H -decomposition of the complete n-blowup of H can be
viewed as a Sudoku square, where we represent rows by pairs (a1, a2), columns
by (b1, b2), symbols by (c1, c2) and boxes by (a1, b1); a copy of H with vertices
{a1, a2, b1, b2, c1, c2} represents a cell in row (a1, a2) and column (b1, b2)with sym-
bol (c1, c2). The following estimate then follows from the estimate for general H
given below.

Theorem 2.7 The number of Sudoku squares with n2 boxes of order n is (n2/e3 +
o(n2))n4

.

We conclude this section with the general formula that implies the two examples
discussed above.

Theorem 2.8 For any r-graph H on [q], the number of H-decompositions of H(n)

is ((e1−|H | + o(1))nq−r )nr
.

Proof The upper bound comes fromTheorem 2.5 applied to the auxiliary R-graph A
described above (following the statement of Theorem 2.5). For the lower bound, we
consider the random greedy matching process, in which we construct a sequence of
vertex-disjoint edges e0, e1, . . . in A and subgraphs A0, A1, . . . , where A0 = A, ei is
a uniformly random edge of Ai , and Ai+1 is obtained from Ai by deleting the vertices
of ei and all edges that intersect ei . We will estimate the number of runnings of this
process, stopped at some subgraph At which is quite sparse, but sufficiently dense
and typical that Theorem 2.4 applies to show that At has a perfect matching. This will
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give a lower bound on the number of perfect matchings of A, i.e. H -decompositions
of H(n), which matches Luria’s upper bound.

Bennett and Bohman [1] showed if A is a D-regular R-graph on N vertices with
all pair degrees at most L = o(D log−5 N ) then whp4 the process persists until the
proportion of uncovered vertices is at most (L/D)1/2(R−1)+o(1). (Their proof applies
verbatim under the weaker assumption that all vertex degrees are D ± √

DL .) Here
we have L/D = n−1 and R = |H |, so we could run the process until the uncovered
proportion is e.g. n−1/2|H |, but we stop it when the remaining r -graph Gt = V (At )

has density d = 3n−δ/hq
. Furthermore, one can show that whp throughout the process

the r -graphs Gi = V (Ai ) are (c, hq)-typical H -blowups with c < c0dh30q
(similar

lemmas in the nonpartite setting are well-known, see e.g. [2]). Then Theorem 2.4 can
be applied to Gt , and we have a good estimate for the number of choices at each step
of the process: at step i when all densities d f (Gi ) with f ∈ H are d(i) = 1 − in−r

there are (1 ± 2|H |c)d(i)|H |nq edges of Ai (i.e. copies of H in Gi ).
A simple counting argumentwill nowgive the required lower boundon the number

of H -decompositionsof H(n). For 0 ≤ j ≤ j ′ ≤ t , let us say that a runningof thepro-
cess from A0, . . . , A j ′ is j-good if Gi is (c, hq)-typical for 1 ≤ i ≤ j . Let R j

j ′ be the

number of such runnings. Then R j
j+1/R j

j = (1 ± 2|H |c)d( j)|H |nq by typicality and

R j+1
j+1/R j

j+1 = 1 ± c (say)aswhptypicalitydoesnotfirst failatstep j + 1.Multiplying
theseestimates, thenumberof t-goodrunningsisRt

t = ∏t
j=0((1 ± 3|H |c)d( j)|H |nq).

By Theorem 2.4, each t-good running can be completed to an H -decomposition of
H(n). We obtain a lower bound on the number of H -decompositions of H(n) by
dividing Rt

t by an upper bound of
∏t

j=0(n
r − j) = ∏t

j=0(d( j)nr ) on the number of
runnings giving rise to any fixed decomposition. A short calculation using Stirling’s
estimateonfactorialsgivestheclaimedlowerbound

∏t
j=0((1 ± 3|H |c)d( j)|H |−1nq−r )

= ((e1−|H | + o(1))nq−r )nr
. �

3 Generalised Partite Decompositions

In this section we state and give applications of a result that generalises both the
nonpartite and partite decomposition results of the previous section to the gener-
alised partite setting of the definition below (which is followed by some explanatory
remarks).

Definition 3.1 Let H be an r -graph on [q] and P = (P1, . . . , Pt ) be a partition of
[q]. Let G be an r -graph and P ′ = (P ′

1, . . . , P ′
t ) be a partition of V (G). We say G

has a P -partite H -decomposition if it has an H -decomposition using copies φ(H)

of H with all φ(Pi ) ⊆ P ′
i .

4We say that an event E holds with high probability (whp) if P(E) = 1 − e−�(nc) for some c > 0
as n → ∞; by union bounds we can assume that any specified polynomial number of such events
all occur.
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For S ⊆ [q] the P -index of S is iP (S) = (|S ∩ P1|, . . . , |S ∩ Pt |); similarly, we
define the P ′-index of subsets of V (G), and also refer to both as the ‘index’.

For i ∈ N
t we let Hi and G i be the edges in H and G of index i . Let I = I (H) =

{i : Hi �= ∅}. We call G an (H, P )-blowup if G i �= ∅ ⇒ i ∈ I .
For e ⊆ V (G) we define the degree vector G I (e) ∈ N

I by G I (e)i = |G i (e)| for
i ∈ I . Similarly, for f ⊆ [q] we define HI ( f ) by HI ( f )i = |Hi ( f )|. For i ′ ∈ N

t let
H I

i ′ be the subgroup of Z
I generated by {HI ( f ) : iP ( f ) = i ′}. We say G is (H, P )-

divisible if G I (e) ∈ H I
i ′ whenever iP ′(e) = i ′.

For i ∈ N
t let di (G) = |G i | ∏ j∈[t]

(|P ′
j |

i j

)−1
. We call G a (c, s)-typical (H, P )-

blowup if for any s ′ ≤ s, { f1, . . . , fs ′ } ⊆ (V (G)

r−1

)
, j ∈ [t]wehave5

∣∣∣P ′
j ∩ ⋂s ′

k=1 G( fk)

∣∣∣

= (1 ± s ′c)|P ′
j |

∏s ′
k=1 di( fk )+e j (G).

The simplest examples of the previous definition are given by the trivial partitions
with t = 1 (non-partite decompositions) or t = q (partite decompositions). The latter
is instructive for understanding the divisibility condition. We will illustrate it in
the case that H is a (graph) triangle on [3], with parts Pi = {i} for i ∈ [3] and
G is a tripartite graph with parts P ′

i for i ∈ [3]. Then I = {i1, i2, i3} with i1 =
(1, 1, 0), i2 = (1, 0, 1), i3 = (0, 1, 1). For each i ∈ I we have G(∅)i = |G i | and
H(∅)i = |Hi | = 1, so the 0-divisibility condition is that the three bipartite pieces
of G all have the same number of edges. For the 1-divisibility condition, we note
that H(1)i1 = H(1)i2 = 1, H(1)i3 = 0 and G(x1)i = |G i (x1)| for x1 ∈ P ′

1, so we
require every vertex in P ′

1 to have equal degrees into P ′
2 and P ′

3 (and similarly for
each part). The 2-divisibility condition is trivially satisfied, so this completes the
description. Our final remark on Definition 3.1 is that the typicality condition is a
direct generalisation of that in Definition 2.3, allowing the possibility that both sides
are zero if some i( fk) + e j /∈ I .

Next we state a decomposition result in the generalised partite setting (a case
of [11, Theorem 7.8]); the case P = ([q]) implies Theorem 2.2 and the case P =
({1}, . . . , {q}) implies Theorem 2.4.

Theorem 3.2 Let H be an r-graph on [q] and P = (P1, . . . , Pt ) be a partition of
[q]. Let n > n0(q), d > 2n−δ/hq

and c < c0dh30q
, where c0 = c0(q) is small. Suppose

G is an (H, P )-divisible (c, h)-typical (H, P )-blowup wrt P ′ = (P ′
1, . . . , P ′

t ), such
that each n/h ≤ |P ′

i | ≤ n and di (G) > d for all i ∈ I (H). Then G has a P -partite
H-decomposition.

In the remainder of this section we give two applications of the following simpli-
fied version of the preceding result (the case that G is complete).

Theorem 3.3 Let H be an r-graph on [q] and P = (P1, . . . , Pt ) be a parti-
tion of [q]. Suppose G is an (H, P )-divisible complete (H, P )-blowup wrt P ′ =
(P ′

1, . . . , P ′
t ) such that each n/h ≤ |P ′

i | ≤ n with n > n0(q). Then G has a P -partite
H-decomposition.

5Let {e1, . . . , et } be the standard basis of Z
t .
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As our first application we reprove the result of [23] in the case that n is large on
the existence of resolvable Steiner Triple Systems (for a hypergraph generalisation
see [11, Theorem 7.9]).

Theorem 3.4 Suppose n = 6k + 3 with k ∈ N is large. Then there is a resolvable
Steiner Triple System of order n.

Proof Let H = K4 be the complete graph on 4 vertices,withV (H) = [4] partitioned
as P = (P1, P2), where P1 = [3] and P2 = {4}. Let P ′

1 and P ′
2 be disjoint sets with|P ′

1| = n and |P ′
2| = (n − 1)/2. Let G be the graph with V (G) = P ′

1 ∪ P ′
2 whose

edges are all pairs in P ′
1 ∪ P ′

2 not contained in P ′
2. Then G is a complete (H, P )-

blowup.
We claim that a resolvable Steiner Triple System of order n is equivalent to a

P -partite H -decomposition of G. To see this, suppose first that we have some P -
partite H -decomposition H of G. This means that H partitions E(G), and each
φ(H) ∈ H has φ([3]) ⊆ P ′

1 and φ(4) ∈ P ′
2. Then T := {φ(H − 4) : φ(H) ∈ H } is

a triangle decomposition of the complete graph on P1, i.e. a Steiner Triple System of
order n. We can partition H as (Hy : y ∈ P ′

2), where each Hy = {φ(H) : φ(4) = y}.
Note that each Ty = {φ([3]) : φ(H) ∈ Hy} is a perfect matching on P1; indeed, for
each x ∈ P1, as H partitions E(G), there is a unique φ(H) ∈ H containing xy, and
then φ([3]) is the unique triple in Ty containing x . Thus T is a resolvable Steiner
Triple System. Conversely, the same construction shows that any resolvable Steiner
Triple System gives rise to a P -partite H -decomposition of G. Indeed, given a Steiner
Triple System T on P1 partitioned into perfect matchings, we arbitrarily label the
perfect matchings as (Ty : y ∈ P ′

2) and form a P -partite H -decomposition of G by
taking all φ(H) with φ([3]) ∈ Ty and φ(4) = y for some y ∈ P ′

2. This proves the
claim.

To complete the proof of the theorem, we show that Theorem 3.3 applies to give a
P -partite H -decomposition of G. In the notation of Definition 3.1, we have I =
I (H) = {(2, 0), (1, 1)} and need to show that G I (e) ∈ H I

i ′ whenever iP ′(e) = i ′.
First we consider iP ′(e) = (0, 0), i.e. e = ∅. We have HI (∅) = (3, 3), as H contains
3 edges of each of the indices (2, 0) and (1, 1). Thus H I

(0,0) ≤ Z
2 is generated by

(3, 3). We have G I (∅) = (
(n
2

)
,
(n
2

)
), as G contains

(n
2

)
edges inside P ′

1 and
(n
2

)
edges

between P ′
1 and P ′

2. As 3 | n we have G I (∅) ∈ H I
(0,0).

Next we consider iP ′(e) = (1, 0), i.e. e ∈ P ′
1. We have iP ( f ) = (1, 0) iff f ∈ [3],

and for any such f we have HI ( f ) = (2, 1), as f is contained in 2 edges of index
(2, 0) and 1 edge of index (1, 1). Thus H I

(1,0) ≤ Z
2 is generated by (2, 1). We have

G I (e) = (n − 1, (n − 1)/2), as e has degree n − 1 in P ′
1 and degree (n − 1)/2 in

P ′
2. As n is odd, G I (e) ∈ H I

(1,0). The only remaining non-trivial case is that iP ′(e) =
(0, 1), i.e. e ∈ P ′

2. We have iP ( f ) = (0, 1) iff f = 4, and HI (4) = (0, 3), as f is
contained in no edges of index (2, 0) and 3 edges of index (1, 1). Thus H I

(0,1) ≤ Z
2

is generated by (0, 3). We have G I (e) = (0, n), as e has degree 0 in P ′
2 and degree

n in P ′
1. As 3 | n we have G I (e) ∈ H I

(1,0). �

Our second application is to reprove the existence of large sets of Steiner Triple
Systems for large n (due to Lu, completed by Teirlinck, see [27]); see [11, Theorem
1.2] for the hypergraph version.
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Theorem 3.5 Suppose n is large and 1 or 3 mod 6. Then K 3
n can be decomposed

into Steiner Triple Systems.

Proof Let H = K4 be the complete 3-graph on 4 vertices, with V (H) = [4] par-
titioned as P = (P1, P2), where P1 = [3] and P2 = {4}. Let P ′

1 and P ′
2 be disjoint

sets with |P ′
1| = n and |P ′

2| = n − 2. Let G be the 3-graph with V (G) = P ′
1 ∪ P ′

2
whose edges are all triples e ⊆ P ′

1 ∪ P ′
2 with |e ∩ P ′

1| ≥ 2. Then G is a complete
(H, P )-blowup.

We claim that a decomposition of K 3
n into Steiner Triple Systems is equivalent

to a P -partite H -decomposition of G. To see this, suppose we have some P -partite
H -decomposition H of G. We can partition H as (Hy : y ∈ P ′

2), where each Hy =
{φ(H) : φ(4) = y}. Note that each Ty = {φ([3]) : φ(H) ∈ Hy} is a Steiner Triple
System on P1; indeed, for each pair xx ′ in P1, asH partitions E(G), there is a unique
φ(H) ∈ H containing xx ′y, and then φ([3]) is the unique triple in Ty containing xx ′.
Furthermore, each triple in P ′

1 belongs to exactly one element ofH , and so to exactly
one Ty . Thus {Ty : y ∈ P ′

2} is a decomposition of K 3
n into Steiner Triple Systems.

Conversely, the same construction converts any decomposition of K 3
n into Steiner

Triple Systems into a P -partite H -decomposition of G.
To complete the proof of the theorem, we show that Theorem 3.3 applies to give a

P -partite H -decomposition of G. We have I = I (H) = {(3, 0), (2, 1)} and need to
show that G I (e) ∈ H I

i ′ whenever iP ′(e) = i ′. First we consider iP ′(e) = (a, 0) with
0 ≤ a ≤ 2. For any f ⊆ V (H) with iP ( f ) = (a, 0) we have HI ( f ) = (1, 3 − a),
as f is contained in 1 edge of H with index (3, 0) and 3 − a edges of H with index
(2, 1). Thus H I

(a,0) ≤ Z
2 is generated by (1, 3 − a). We have G I (e) = (

(n−a
3−a

)
, (3 −

a)
(n−a
3−a

)
), as e is contained in

(n−a
3−a

)
edges of G with index (3, 0) and

(n−a
2−a

)
(n − 2) =

(3 − a)
(n−a
3−a

)
edges of G with index (2, 1). Therefore G I (e) ∈ H I

(a,0).
Next consider iP ′(e) = (0, 1), i.e. e ∈ P ′

2. We have iP ( f ) = (0, 1) iff f = 4, and
HI (4) = (0, 3), as 4 is contained in 0 edges of index (3, 0) and 3 edges of index
(2, 1). Thus H I

(0,1) ≤ Z
2 is generated by (0, 3). We have G I (e) = (0,

(n
2

)
), as e is

contained in no edges of G with index (3, 0) and
(n
2

)
edges of G with index (2, 1).

As 3 | (n
2

)
we have G I (e) ∈ H I

(0,1).
The only remaining non-trivial case is iP ′(e) = (1, 1). We have iP ( f ) = (1, 1)

iff f = a4 for some a ∈ [3]. Then HI ( f ) = (0, 2), as f is contained in 0 edges of
index (3, 0) and 2 edges of index (2, 1). Thus H I

(1,1) ≤ Z
2 is generated by (0, 2). We

have G I (e) = (0, n − 1), as e is contained in no edges of G with index (3, 0) and
n − 1 edges of G with index (2, 1). As n is odd, G I (e) ∈ H I

(1,1). �

4 General Theory

In this section we state the main result of [11], from which all the other results in
this paper follow. Most of the section will be occupied with preparatory definitions
for the statement of the result, which we will illustrate with the following running
example. Consider a graph G with V (G) = [n] partitioned as (V1, V2), where there
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are no edges within V2, edges within V1 are red, and edges between V1 and V2 are
blue or green. When does G have a decomposition into rainbow triangles?

4.1 Labelled Complexes and Embeddings

All decomposition problems that fit in our general framework are encoded by labelled
complexes, which are sets of functions (which we think of as labelled edges) closed
under taking restriction; this is analogous to (simplicial) complexes, which are sets
of sets closed under taking subsets.

Definition 4.1 Wecall	 = (	B : B ⊆ R) an R-systemonV ifφ : B → V is injec-
tive for each φ ∈ 	B .

We call 	 an R-complex if whenever φ ∈ 	B and B ′ ⊆ B we have φ |B ′∈ 	B ′ .
Let 	◦

B = {φ(B) : φ ∈ 	B}, 	◦
j = ⋃{	◦

B : B ∈ (R
j

)}, 	 j = ⋃{	B : B ∈ (R
j

)},
V (	) = 	◦

1 and 	◦ = ⋃{	◦
B : B ⊆ R}.

To apply Definition 4.1 in our example we take V = V (G), R = [3] and for each
B ⊆ [3]we let	B consist of all injections φ : B → V with φ(B ∩ {1, 2}) ⊆ V1 and
φ(B ∩ {3}) ⊆ V2: we also call 	 the complete ({1, 2}, 3)-partite [3]-complex wrt
(V1, V2). We think of φ ∈ 	3 as an embedding of the triangle on [3] where 12 is red,
13 is blue and 23 is green. It is useful to consider all such embeddings, even though
the only ones that can appear in a decomposition of G are those that are contained
in G with φ(12) red, φ(13) blue and φ(23) green.

Next we consider the functional analogue of the subgraph notion for hypergraphs.
Just as an embedding of a hypergraph H in a hypergraph G is an injection from V (H)

to V (G) taking edges to edges, an embedding of labelled complexes is an injection
taking labelled edges to labelled edges.

Definition 4.2 Let H and	 be R-complexes. Suppose φ : V (H) → V (	) is injec-
tive. We call φ a 	-embedding of H if φ ◦ ψ ∈ 	 for all ψ ∈ H .

In our example, 	 is as above, and H is the complete ({1, 2}, 3)-partite [3]-
complex wrt ({1, 2}, 3), i.e. each HB with B ⊆ [3] consists of all injections φ : B →
[3] with φ(B ∩ {1, 2}) ⊆ {1, 2} and φ(B ∩ {3}) ⊆ {3}. We think of an edge e of
the triangle on [3] as being encoded by the set of labelled edges of H with image
e, thus 12 is encoded by {(1 �→ 1, 2 �→ 2), (1 �→ 2, 2 �→ 1)}, 13 by {(1 �→ 1, 3 �→
3), (2 �→ 1, 3 �→ 3)}, and 23 by {(2 �→ 2, 3 �→ 3), (1 �→ 2, 3 �→ 3)}. If φ is a 	-
embedding of H we encode the edges of the triangle on φ([3]) by the corresponding
sets of labelled edges: 12 by {(1 �→ φ(1), 2 �→ φ(2)), (1 �→ φ(2), 2 �→ φ(1))}, 13
by {(1 �→ φ(1), 3 �→ φ(3)), (2 �→ φ(1), 3 �→ φ(3))}, and 23 by {(2 �→ φ(2), 3 �→
φ(3)), (1 �→ φ(2), 3 �→ φ(3))}.
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4.2 Extensions and Extendability

Next we will formulate our extendability condition.

Definition 4.3 Let R(S) be the R-complex of all partite maps from R to R × S,
i.e. whenever i ∈ B ⊆ R and ψ ∈ R(S)B we have ψ(i) = (i, x) for some x ∈ S. If
S = [s] we write R(S) = R(s).

Definition 4.4 Suppose J ⊆ R(S) is an R-complex and F ⊆ V (J ). Define J [F] ⊆
R(S) by J [F] = {ψ ∈ J : I m(ψ) ⊆ F}. Suppose φ is a 	-embedding of J [F]. We
call E = (J, F, φ) a 	-extension of rank s = |S|. We write X E (	) for the set or
number of 	-embeddings of J that restrict to φ on F . We say E is ω-dense (in 	)
if X E (	) ≥ ω|V (	)|vE , where vE := |V (J ) \ F |. We say 	 is (ω, s)-extendable if
all 	-extensions of rank s are ω-dense.

In our example, we could consider extending some fixed rainbow triangle to an
octahedron in which every triangle is rainbow. To implement this in the preced-
ing two definitions, we let J = [3](2) and F = [3] × {1}. We identify F with [3]
by identifying each (i, 1) with i . Then J [F]B = {idB} for B ⊆ [3] and φ is a 	-
embedding of J [F] iff φ ∈ 	3. We think of I m(φ) as our fixed rainbow triangle,
which has 2 vertices in V1 and 1 vertex in V2. Now consider any φ+ ∈ X E (	) where
E = (J, F, φ), i.e. φ+ is a 	-embedding of J that restricts to φ on F . For each
i ∈ [3] we have (i �→ (i, 2)) ∈ J1, so (i �→ φ+((i, 2)) ∈ 	1; thus φ+((i, 2)) ∈ V1 if
i ∈ [2] or φ+((i, 2)) ∈ V2 if i = 3. We think of {φ+((i, 1)), φ+((i, 2))} for i ∈ [3]
as the opposite vertices of an octahedron extending the fixed triangle I m(φ). (We do
not yet consider the colours; these will come into play when we consider Definition
4.5.)We have X E (	) = (|V1| − 2)(|V1| − 3)(|V2| − 1), as we choose 2 new vertices
in V1 and 1 in V2, so E is �(1)-dense if |V1| and |V2| are both �(n).

Next we augment our extendability condition to allow for various restrictions
(coloured edges in our example).

Definition 4.5 Let 	 be an R-complex and 	′ = (	t : t ∈ T ) with each 	t ⊆ 	.
Let E = (J, F, φ) be a	-extension and J ′ = (J t : t ∈ T ) for somemutually disjoint
J t ⊆ J \ J [F]; we call (E, J ′) a (	,	′)-extension. If |T | = 1 we identify 	′ ⊆ 	

with (	′).
We write X E,J ′(	,	′) for the set or number of φ+ ∈ X E (	) with φ+ ◦ ψ ∈

	t
B whenever ψ ∈ J t

B and 	t
B is defined. We say (E, J ′) is ω-dense in (	,	′) if

X E,J ′(	,	′) ≥ ω|V (	)|vE .
We say (	,	′) is (ω, s)-extendable if all (	,	′)-extensions of rank s areω-dense

in (	,	′).
For G ′ = (Gt : t ∈ T ) with each Gt ⊆ 	◦ and J ′ as above we write X E,J ′(	, G)

= X E,J ′(	,	′), where 	′ = (	t : t ∈ T ) with each 	t = {φ ∈ 	 : I m(φ) ∈ Gt }.
We say that (	, G ′) is (ω, s)-extendable if (	,	′) is (ω, s)-extendable.



292 P. Keevash

We continue the above example of extending a fixed rainbow triangle to an octa-
hedron of rainbow triangles. We continue to ignore colours and first consider how
the preceding definition can ensure that the octahedron is a subgraph of G. Indeed,
if φ+ ∈ X E,J\J [F](	,	′) with 	′ = {φ ∈ 	 : I m(φ) ∈ G} then 	′

B is only defined
when |B| = 2, and for allψ ∈ J2 \ J [F]wehaveφ+ ◦ ψ ∈ 	′, i.e.φ+(I m(ψ)) ∈ G,
as required. We also note for future reference that if for some r we have all 	t ⊆ 	r

then when checking extendability we can assume J ′ ⊆ Jr \ J [F].
To implement colours, we let T = {12, 13, 23}, and for t ∈ T let Gt be the set of

edges of G of the appropriate colour (red if t = 12, blue if t = 13, green if t = 23),
	t = {φ ∈ 	 : I m(φ) ∈ Gt } and J t = Jt \ J [F] for t ∈ T . If φ+ ∈ X E,J ′(	,	′)
then for each t ∈ T , ψ ∈ Jt \ J [F] we have φ+(I m(ψ)) ∈ Gt , as required. The
extendability condition says that there are at least ωn3 such octahedra of rainbow
triangles containing φ (and similarly for any other extension of bounded size).

4.3 Adapted Complexes

A common feature of the decomposition results obtained from our main theorem is
that they are implemented by a labelled complex equipped with a permutation group
action, and the decomposition respects the orbits of the action, as in the following
definitions.

Definition 4.6 Suppose � is a permutation group on R. For B, B ′ ⊆ R we write
�B ′

B = {σ |B : σ ∈ �, σ(B) = B ′}, �B ′ = ∪B�B ′
B and �≤ = ∪B,B ′�B ′

B .

Definition 4.7 Suppose 	 is an R-complex and � is a permutation group on R. For
σ ∈ � and φ ∈ 	σ(B) let φσ = φ ◦ σ |B . We say 	 is �-adapted if φσ ∈ 	 for any
φ ∈ 	, σ ∈ �.

Definition 4.8 Forψ ∈ 	B with B ⊆ R we define the orbit ofψ byψ� := ψ�B =
{ψσ : σ ∈ �B}. We denote the set of orbits by 	/�. We write I m(O) = I m(ψ)

for ψ ∈ O ∈ 	/�.

Definition 4.9 Let � be an abelian group. For J ∈ �	r and O ∈ 	r/� we define
J O by J O

ψ = Jψ1ψ∈O . The orbit decomposition of J is J = ∑
O∈	r /� J O .

The simplest example is when the permutation group is the entire symmetric
group, e.g. if R = [3] and � = S3 then any φ ∈ 	3 has an orbit consisting of all six
bijections from [3] to e = I m(φ), which we would think of as encoding the edge e
in a 3-graph. In our running example, we have � = {id, (12)} ≤ S3. We recall that
if φ is a 	-embedding of H then the edge φ(12) of 	◦

2 is encoded by the labelled
edges (1 �→ φ(1), 2 �→ φ(2)) and (1 �→ φ(2), 2 �→ φ(1)), and note that these form
an orbit (and similarly for the other edges).
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4.4 Decompositions

Now we set up the general framework for decompositions.

Definition 4.10 Let A be a set of R-complexes; we call A an R-complex family.
If each A ∈ A is a copy of �≤ we call A a �≤-family. For r ∈ N we write Ar =⋃{AB : B ∈ (R

r

)} and Ar = ∪A∈A Ar .
Let 	 be an R-complex. We let A(	) denote the set of 	-embeddings of A. We

let A(	)≤ denote the V (A)-complex where each A(	)
≤
F for F ⊆ V (A) is the set of

	-embeddings of A[F].
We let A(	)≤ denote the V (A)-complex family (A(	)≤ : A ∈ A).
Let γ ∈ �Ar for some abelian group �.
For φ ∈ A(	)≤ with A ∈ A we define γ (φ) ∈ �	r by γ (φ)φ◦θ = γθ for θ ∈ Ar

(zero otherwise). For φ ∈ A(	) we call γ (φ) a γ -molecule. We let γ (	) be the set
of γ -molecules.

Given � ∈ Z
A(	) we define ∂� = ∂γ � = ∑

φ �φγ (φ) ∈ �	r . We also call �

an integral γ (	)-decomposition of ∂� and call 〈γ (	)〉 the decomposition lattice. If
furthermore � ∈ {0, 1}A(	) (i.e. � ⊆ A(	)) we call � a γ (	)-decomposition.

In our example, A = {A} consists of a single copy of the [3]-complex �≤ on [3],
which is identical with H as above, i.e. the complete ({1, 2}, 3)-partite [3]-complex
wrt ({1, 2}, 3).We let� = Z

3 and denote the standard basis by e12, e13, e23, which we
think of as the colours red, blue and green. We define γ ∈ �A2 by γθ = eI m(θ). The
constituent parts of our decompositions areγ -moleculesγ (φ),which encode rainbow
triangles in 	: we have φ ∈ A(	) (which can be identified6 with 	3), i.e. φ ◦ θ ∈ 	

for all θ ∈ A = �≤, and e.g. the blue edge φ(1)φ(3) is encoded by the coordinates
γ (φ)φ◦θ = γθ = e13 for θ ∈ A2 with I m(θ) = {1, 3}, i.e. θ = (1 �→ 1, 3 �→ 3) and
θ = (2 �→ 1, 3 �→ 3). We encode any coloured graph G by G∗ ∈ (Z3)	2 defined by
G∗

ψ = e12 if I m(ψ) is a red edge, G∗
ψ = e13 if I m(ψ) is a blue edge, G∗

ψ = e23
if I m(ψ) is a green edge. Then a γ (	)-decomposition of G∗ encodes a rainbow
triangle decomposition of G.

Now we formalise in general the objects (atoms) that are being decomposed into
molecules.

Definition 4.11 (Atoms) For any φ ∈ A(	) and O ∈ 	r/� such that γ (φ)O �= 0
we call γ (φ)O a γ -atom at O . We write γ [O] for the set of γ -atoms at O . We say
γ is elementary if all γ -atoms are linearly independent. We define a partial order
≤γ on �	r where H ≤γ G iff G − H can be expressed as the sum of a multiset of
γ -atoms.

In our example, atoms represent coloured edges. To see this, consider again the
encoding of the blue edge φ(1)φ(3) described above. The relevant orbit O ∈ 	2/�

consists of the two labelled edges (1 �→ φ(1), 3 �→ φ(3)) and (2 �→ φ(1), 3 �→

6This identification is convenient but perhaps potentially confusing: depending on the context, we
may identify the domain of φ with either the domain or the range of maps in �.
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φ(3)), and the relevant γ -atom at O is γ (φ)O which is a vector supported on O
with both coordinates equal to e13. There are two other γ -atoms at O , which are
vectors supported on O with both coordinates equal to e12 (meaning red edge), or
both coordinates equal to e23 (meaning green edge). Thus γ is elementary, which
is an important assumption in our main theorem, ensuring that our decomposition
problems do not exhibit arithmetic peculiarities (as seen e.g. in the Frobenius coin
problem).

4.5 Lattices

We conclude with a characterisation of the decomposition lattice 〈γ (	)〉, with con-
ditions that are somewhat analogous to the degree-based divisibility conditions con-
sidered above, but also account for the labels on the edges and the orbits of the group
action. Throughout we let 	 be a �-adapted [q]-complex for some � ≤ Sq , let A be
a �≤-family and γ ∈ �Ar .

Definition 4.12 For J ∈ �	r we define J � ∈ (�Q)	 by7 (J �

ψ ′)B = ∑{Jψ : ψ ′ ⊆
ψ ∈ 	B} for B ∈ Q := ([q]

r

)
, ψ ′ ∈ 	. We define γ � ∈ (�Q)∪A by (γ

�

θ ′)B = ∑{γθ :
θ ′ ⊆ θ ∈ AB} for B ∈ Q, θ ′ ∈ A ∈ A . We let Lγ (	) be the set of all J ∈ �	r such
that (J �)O ∈ 〈γ �[O]〉 for any O ∈ 	/�.

We illustrate Definition 4.12 with our running example. We start with the orbit
O = {∅}, where ∅ denotes the unique function with domain ∅ (also denoting the
empty set). Recall that we encode our coloured graph G by G∗ ∈ (Z3)	2 and write
Gi j for the edges ofG with colour corresponding to i j . Then ((G∗)�∅)i j = ∑

ψ∈	i j
G∗

ψ

equals 2|G12|e12 if i j = 12 or |G13|e13 + |G23|e23 otherwise. Similarly, (γ
�

∅ )i j =∑
θ∈�

≤
i j

γθ equals 2e12 if i j = 12 or e13 + e23 otherwise. The 0-divisibility condition

is that (2|G12|e12, |G13|e13 + |G23|e23, |G13|e13 + |G23|e23) is an integer multiple of
(2e12, e13 + e23, e13 + e23), i.e. G has an equal number of edges of each colour.

Next consider the 1-divisibility condition for any orbit O = {(1 → x), (2 → x)}
with x ∈ V1. For i, i ′ ∈ [2], j �= i we have ((G∗)�i→x)i j = ∑{G∗

ψ : ψ ∈ 	i j , ψ(i) =
x}, which equals |G12(x)|e12 if j ∈ [2] or |G13(x)|e13 + |G23(x)|e23 if j = 3. Also,
(γ �(i ′ → x)i→x )i j = (γ

�

i→i ′)i j = ∑{γθ : θ ∈ �
≤
i j , θ(i) = i ′}, which equals e12 if

j ∈ [2] or ei ′3 if j = 3. Thus we need (|G12(x)|e12, |G13(x)|e13 + |G23(x)|e23, |G13

(x)|e13 + |G23(x)|e23) to lie in the group generated by (e12, e13, 0), (e12, e23, 0),
(e12, 0, e13) and (e12, 0, e23), which holds iff |G(x) ∩ V1| = |G(x) ∩ V2|, i.e. each
x ∈ V1 has equal degrees in V1 and in V2.

The other 1-divisibility conditions are for orbits O = {3 → x} with x ∈ V2.
For i ∈ [2] we have ((G∗)�3→x )i3 = ∑{G∗

ψ : ψ ∈ 	i3, ψ(3) = x} = |G13(x)|e13 +
|G23(x)|e23 and (γ �(3 → x)3→x )i3 = (γ

�
3→3)i3 = ∑{γθ : θ ∈ �

≤
i3, θ(3) = 3} = e13

7The notation ψ ′ ⊆ ψ means that ψ ′ is a restriction of ψ .
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+ e23, so we need |G13(x)| = |G23(x)|, i.e. each x ∈ V2 has blue degree equal to
green degree. There are no further conditions, as the 2-divisibility conditions hold
trivially (we leave this verification to the reader).

Returning to the general setting, it is not hard to see 〈γ (	)〉 ⊆ Lγ (	). The fol-
lowing result ([11, Lemma 5.19]) shows that the converse inclusion holds under an
extendability assumption on 	.

Lemma 4.13 Let � ≤ Sq ,A be a �≤-family and γ ∈ (ZD)Ar . Let 	 be a �-adapted
(ω, s)-extendable [q]-complex with s = 3r2, n = |V (	)| > n0(q, D) large and ω >

n−1/2. Then 〈γ (	)〉 = Lγ (	).

4.6 Types and Regularity

Next we will formulate our regularity assumption, which can be thought of as robust
fractional decomposition. First we give another notation for atoms.

Definition 4.14 For ψ ∈ 	B and θ ∈ AB we define γ [ψ]θ ∈ �ψ� by γ [ψ]θψσ =
γθσ .

We will illustrate the various notations in our example for the atom γ (φ)O

representing a blue edge φ(1)φ(3) as above. In the notation of Definition 4.10,
we write γ (φ)O = γ (φ′) where φ′ = φ |{1,3} has domain {1, 3}, so if θ ∈ A2 with
I m(θ) ⊆ Dom(φ′) then θ = (1 �→ 1, 3 �→ 3) or θ = (2 �→ 1, 3 �→ 3). In the nota-
tion of Definition 4.14, we write γ (φ)O = γ [φ′]θ with θ = (1 �→ 1, 3 �→ 3), as
γ [φ′]θ is supported on φ′ = (1 �→ φ(1), 3 �→ φ(3)) with value γθ = e13 and on
φ′ ◦ (12) = (2 �→ φ(1), 3 �→ φ(3)) with value γθ◦(12) = e13. We also think of this
notation as ‘an atom of type θ on ψ’, where we define types in general as follows.

Definition 4.15 (Types) For θ ∈ AB we define γ θ ∈ ��B
by γ θ

σ = γθσ .
A type t = [θ ] in γ is an equivalence class of the relation ∼ on any AB with

B ∈ Q = ([q]
r

)
where θ ∼ θ ′ iff γ θ = γ θ ′

. We write TB for the set of types in AB .
For θ ∈ t ∈ TB and ψ ∈ 	B we write γ t = γ θ and γ [ψ]t = γ [ψ]θ .
If γ t = 0 call t a zero type and write t = 0.
If φ ∈ A(	) with γ (φ)ψ� = γ [ψ]t we write tφ(ψ) = t .

To illustrate the preceding definition on the above example of γ [φ′]θ with
θ = (1 �→ 1, 3 �→ 3) we think of {θ} ∈ T13 as the ‘blue edge’ type with (γ [φ′]θφ′ ,

γ [φ′]θφ′◦(12)) = (γ θ
id , γ

θ
(12)) = (γ1�→1,3�→3, γ2 �→1,3�→3) = (e13, e13). The possibility of

a zero type is not relevant to our example, as it allows for non-edges when decom-
posing into copies of a non-complete graph. The ‘red edge’ type in T12 is {(1 �→
1, 2 �→ 2), (1 �→ 2, 2 �→ 1)}, as (γ

1�→1,2 �→2
id , γ

1�→1,2 �→2
(12) ) = (γ1�→1,2 �→2, γ1�→2,2 �→1) =

(e12, e12) and (γ
1�→2,2 �→1
id , γ

1�→2,2 �→1
(12) ) = (γ1�→2,2 �→1, γ1�→1,2 �→2) = (e12, e12).

Now we formulate our regularity assumption. The following definition can be
roughly understood as saying that the vector J can be approximated by a non-
negative linear combination of molecules, where all molecules that can be used
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(in that J contains all their atoms) are used with comparable weights (up constant
factors).

Definition 4.16 (Regularity) Suppose γ is elementary and J ∈ (ZD)	r with J O ∈
〈γ [O]〉 for all O ∈ 	r/�. For ψ ∈ 	B with |B| = r we define integers J t

ψ for
all nonzero t ∈ TB by Jψ� = ∑

0 �=t∈TB
J t
ψγ [ψ]t . Any choice of orbit representa-

tives ψ O ∈ 	BO for each orbit O ∈ 	r/� defines an atom decomposition J =∑
O∈	r /�

∑
0 �=t∈TBO

J t
ψ O γ [ψ O ]t .

Let A(	, J ) = {φ ∈ A(	) : γ (φ) ≤γ J }. We say J is (γ, c, ω)-regular (in 	) if
there is y ∈ [ωnr−q , ω−1nr−q ]A(	,J ) such that for all B ∈ Q, ψ ∈ 	B , 0 �= t ∈ TB

we have
∂ t yψ :=

∑
{yφ : tφ(ψ) = t} = (1 ± c)J t

ψ.

For example, suppose J = G∗ ∈ (Z3)	2 encodes G as above. An atom decompo-
sition expresses J as a sum where each summand encodes a coloured edge of G by
some atom γ [ψ O ]t as discussed above. We have φ ∈ A(	, J ) iff the molecule γ (φ)

encodes a rainbow triangle in G. Then G∗ is (γ, c, ω)-regular if we can assign each
rainbow triangle in G a weight between ωn−1 and ω−1n−1 so that the total weight
of triangles on any edge is 1 ± c.

We require one further definition, used in the extendability hypothesis of
Theorem 4.18 below.

Definition 4.17 For L ∈ �	r we let γ [L] = (γ [L]A : A ∈ A) where each γ [L]A is
the set of ψ ∈ A(	)≤r such that γ (ψ) ≤γ L .

In our example, the extendability hypothesis says that for any 	-extension E =
(J, F, φ) of rank h there are many φ+ ∈ X E (	) such that all edges I m(φ+ψ) with
ψ ∈ J2 \ J [F] are edges ofG with the correct colour (red ifψ ∈ J12, blue ifψ ∈ J13,
green ifψ ∈ J23).We illustrate this for extensions of somefixed rainbow triangle to an
octahedron of rainbow triangles (recall J = [3](2), F = [3] × {1} = [3] and let J ′ =
J2 \ J [F]). If (	, γ [G∗]A) is (ω, 2)-extendable we have at least ω|V1|2|V2| choices
of φ+ ∈ X E,J ′(	, γ [G∗]A). For each ψ ∈ J2 \ J [F] we have φ+ψ ∈ γ [G∗]A, i.e.
γ (φ+ψ) ≤γ G∗. For example, ifψ ∈ J13 withψ(1) = (1, 1) andψ(3) = (3, 2) then
γ (φ+ψ) is the blue atom at I m(φ+ψ), i.e. the vector supported on the orbit with the
two labelled edges (1 �→ φ+((1, 1)), 3 �→ φ+((3, 2))) and (2 �→ φ+((1, 1)), 3 �→
φ+((3, 2))), where both nonzero coordinates are e13. For this ψ , the condition
γ (φ+ψ) ≤γ G∗ says that G has a blue edge at φ+((1, 1))φ+((3, 2)). As ψ varies
over J2 we see that I m(φ+) spans an octahedron of rainbow triangles.

Finally we can state the main result (Theorem 3.1) of [11] (recall h = 250q3
and

δ = 2−103q5
).

Theorem 4.18 For any q ≥ r and D there are ω0 and n0 such that the following
holds for n > n0, n−δ < ω < ω0 and c ≤ ωh20

. Let A be a �≤-family with � ≤ Sq .
Suppose γ ∈ (ZD)Ar is elementary. Let 	 be a �-adapted [q]-complex on [n]. Let
G ∈ 〈γ (	)〉 be (γ, c, ω)-regular in 	 such that (	, γ [G]A) is (ω, h)-extendable for
each A ∈ A . Then G has a γ (	)-decomposition.
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5 Coloured Hypergraphs

When can an edge-coloured graph be decomposed into rainbow triangles? In this
section we illustrate the application of Theorem 4.18 to this question, and a hyper-
graph generalisation thereof. We start by formulating the general problem of decom-
posing an edge-coloured r -multigraph G by an edge-coloured r -graph H . For sim-
plicity we assume that H is simple (one could allow multiple copies of edges in H
provided they have distinct colours, but not multiple edges of a given colour, as then
the associated γ in Definition 5.8 below is not elementary).

Definition 5.1 Suppose H is an r -graph on [q], edge-coloured as H = ∪d∈[D] H d .
We identify H with a vector H ∈ (ND)Q , where each (H f )d = 1 f ∈H d (indicator
function) and Q = ([q]

r

)
.

Let 	 be an Sq -adapted [q]-complex on [n]. For φ ∈ 	q we define φ(H) ∈
(ND)	

◦
r by φ(H)φ( f ) = H f . Let H be an family of [D]-edge-coloured r -graphs

on [q]. Let H (	) = {φ(H) : φ ∈ 	q , H ∈ H }.
Let G ∈ N

	◦
r be an r -multigraph [D]-edge-coloured as G = ∪d∈[D]Gd , identified

with G ∈ (ND)	
◦
r . We call H ′ ⊆ H (	) with

∑
H ′ = G an H -decomposition of G

in 	. We call � ∈ Z
H (	) with

∑
H ′ �H ′ H ′ = G an integral H -decomposition of G

in 	.

Note that copies of H in an integral H -decomposition of G can use edges e ∈ 	◦
r

with Ge = 0 or with the wrong colour, but all such terms must cancel. Before con-
sidering the general setting of the previous definition, we warm up by specialising
to graphs (r = 2) and the case that 	 is the complete [q]-complex on [n]. We for-
mulate a typicality condition for coloured graphs and a result on rainbow triangle
decompositions analogous to that given in [12] for triangle decompositions of typical
graphs.

Definition 5.2 Let G be a [D]-edge-coloured graph on [n]. For α ∈ [D], the
α-density of G is d(Gα) = |Gα|(n

2

)−1
. The density of G is d(G) = |G|(n

2

)−1
. The

density vector of G is d(G)∗ ∈ [0, 1]D with d(G)∗α = d(Gα). Given vectors x ∈ [n]t

of vertices and α ∈ [D]t of colours we define the α-degree dα
G(x) of x in G as the

number of vertices y such that xi y ∈ Gαi for all i ∈ [t].
We say G is (c, h)-typical if dα

G(x) = (1 ± tc)n
∏t

i=1 d(Gαi ) for any such x and
α with t ≤ h.

Theorem 5.3 Suppose G is a tridivisible (c, h)-typical [D]-edge-coloured graph
on [n], where D ≥ 4, n > n0(D) is large, h = 210

3
, δ = 2−106 , c < c0d(G)h90

where
c0 = c0(D) is small, and each n−δ/2h3

< d(Gα) < (1/3 − n−δ/2h3
)d(G). Then G has

a rainbow triangle decomposition.

Note that the tridivisibility condition (G has all degrees even and 3 | e(G)) in
Theorem 5.3 is necessary, as if we ignore the colours then we obtain a triangle
decomposition of G; it is perhaps surprising that the colours do not impose any
additional condition. We will deduce Theorem 5.3 from a more general result on
typical r -multigraphs, as in the following definition.
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Definition 5.4 Let G be a [D]-edge-coloured r -multigraph on [n]. For α ∈ [D], the
α-density of G is d(Gα) = |Gα|(n

r

)−1
. The density of G is d(G) = |G|(n

r

)−1
. The

density vector of G is d(G)∗ ∈ R
D with d(G)∗α = d(Gα).

For e ⊆ [n], the degree of e in G is |G(e)|; the degree vector is G(e)∗ ∈ N
D with

G(e)∗α = |Gα(e)|.
Given vectors f ∈ ( [n]

r−1

)t
of (r − 1)-sets and α ∈ [D]t of colours we define the

α-degree of f in G as dα
G( f ) = ∑

v∈[n]
∏t

i=1 Gαi
fi ∪{v}.

We say G is (c, h)-typical if dα
G( f ) = (1 ± tc)n

∏t
i=1 d(Gαi ) for any such f and

α with t ≤ h.
Given a family H of [D]-edge-coloured r -graphs on [q], we say G is (b, c)-

balanced wrt H if there is p ∈ [b, b−1]H with d(G)∗ = (1 ± c)
∑

H pH d(H)∗.
We say G is H -divisible if each G(e)∗ ∈ 〈H( f )∗ : f ∈ ([q]

|e|
)
, H ∈ H 〉.

In the next lemma we show that in the case of rainbow triangles, the conditions
in Definition 5.4 follow from the assumptions of Theorem 5.3.

Lemma 5.5 Let H be the family of all [D]-edge-coloured rainbow triangles and G
be a [D]-edge-coloured graph on [n], with D ≥ 4. Then

i. G is H -divisible iff G is tridivisible, and
ii. If each bD2 < d(Gα) < d(G)/3 − bD3 then G is (b, 0)-balanced wrt H .

Proof For (i), we need to know the integer span Z(r, s) of the rows of a matrix
M(r, s) whose rows are indexed by

([s]
r

)
and columns by [s], with M(r, s)e,i =

1i∈e. It follows from [36, Theorem 2] (and is not hard to show directly) that
Z(r, s) = {x ∈ Z

s : r | ∑
i xi } for s > r . To apply this to the divisibility conditions,

first consider G(∅)∗ = (|G1|, . . . , |G D|) and note that H(∅)∗ = (|H 1|, . . . , |H D|)
for H ∈ H are the rows of M(3, D). We have G(∅)∗ ∈ 〈H(∅)∗ : H ∈ H 〉 iff
3 | ∑

α |Gα| = |G|. Next, for any v ∈ [n]we have G(v)∗ = (|G1(v)|, . . . , |G D(v)|).
As H(x)∗ = (|H 1(x)|, . . . , |H D(x)|) for x ∈ [q], H ∈ H are the rows of M(2, D)

we have G(v)∗ ∈ 〈H(x)∗ : x ∈ [q], H ∈ H 〉 iff 2 | ∑
α |Gα(v)| = |G(v)|. Finally,

for any uv ∈ ([n]
2

)
we have G(uv)∗ = (G1

uv, . . . , G D
uv) and H(xy)∗ for xy ∈ ([q]

2

)
,

H ∈ H is the standard basis, so the 2-divisibility condition is trivial. Thus G is
H -divisible iff G is tridivisible.

For (ii), we note that the set of density vectors d(H)∗ for H ∈ H consists of all
probability distributions on [D] with 3 coordinates equal to 1/3 and the rest zero.
By [8, Theorem 46], any probability distribution x on [D] is a convex combina-
tion of the vectors d(H)∗ iff xα ≤ 1/3 for all α ∈ [D]. Thus for any x ∈ [0, 1]D

with each 3xα′ ≤ ∑
α xα ≤ 1 there is some p ∈ [0, 1]H with x = ∑

H pH d(H)∗
and

∑
H pH = ∑

α xα . We apply this to x = d(G)∗ − b
∑

H d(H)∗, noting that∑
α xα = d(G) − b

(D
3

)
and each 0 ≤ xα = d(Gα) − b

3

(D−1
2

) ≤ 1
3

∑
α xα . Then p′ =

p + b1 ∈ [b, b−1]H has d(G)∗ = ∑
H p′

H d(H)∗. �

Next we consider how to encode decompositions of coloured multigraphs in the
labelled edge setting of Theorem 4.18; this is similar to the running example used in
the previous section.
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Definition 5.6 Given a set e of size r , we write er→q for the set of all π−1 where π :
e → [q] is injective. Given a [D]-edge-coloured r -multigraph G = (Gd : d ∈ [D])
we define Gr→q = ((Gr→q)d : d ∈ [D]) where each (Gr→q)d is the (disjoint) union
of all er→q with e ∈ Gd .

Lemma 5.7 Let H and G be [D]-edge-coloured r-multigraphs, H ∗ = Hr→q and
G∗ = Gr→q . Then an (integral) H-decomposition of G is equivalent to an (integral)
H∗-decomposition of G∗.

Proof We associate any H -decomposition D of G with an H∗-decomposition D∗
of G∗, associating each φ(H) ∈ D with φH∗ := {φ ◦ θ : θ ∈ H∗} ∈ D∗. Then e ∈
φ(H d) iff er→q ⊆ φH∗d , as if e = φ( f ) for some f ∈ H d and π−1 ∈ er→q then
π−1 = φθ , where θ = φ−1π−1 ∈ H∗d , and conversely. The same proof applies to
integral decompositions (defined in Definition 5.1). �

Definition 5.8 Given a family H of [D]-edge-coloured r -graphs on [q], let A =
AH = {AH : H ∈ H } with each AH = S≤

q and γ = γ H ∈ (ZD)Ar with γθ = ed

(standard basis vector) if θ ∈ AH
r , H ∈ H , d ∈ [D] with I m(θ) ∈ H d or γθ = 0

otherwise.

Lemma 5.9 In the notation of Definitions 5.1, 5.6 and 5.8, an (integral) H -
decomposition of G in 	 is equivalent to an (integral) γ (	)-decomposition of G∗.

Furthermore, if 	 is (ω, s)-extendable with s = 3r2, ω > n−1/2 and n > n0(q)

large then G has an integral H -decomposition in 	q iff G is H -divisible.

Proof For the first statement, the same argument as in Lemma 5.7 shows that
an H -decomposition of G in 	 is equivalent to an H ∗-decomposition of G∗ in
	 (whereH ∗ = {H∗ : H ∈ H }), i.e. someD ⊆ H ∗(	) = {φH∗ : H ∈ H , φ ∈ 	q}
with

∑
D = G∗ ∈ (ND)	r . We can also view D as a γ (	)-decomposition of G∗

by identifying each φH∗ ∈ D with the molecule γ (φ) where φ ∈ AH (	): indeed,
if φπ−1 ∈ φH∗d with d ∈ [D], where e ∈ H d and π : e → [q] is injective, then
γ (φ)φπ−1 = γπ−1 = ed . This proves the equivalence for decompositions, and the
same argument applies to integral decompositions.

For the second statement, by Lemma 4.13 we have 〈γ (	)〉 = Lγ (	). By Defi-
nition 4.12 we need to show that G is H -divisible iff ((G∗)�)O ∈ 〈γ �[O]〉 for any
O ∈ 	/Sq .

Fix any O ∈ 	/Sq , write e = I m(O) ∈ 	◦ and i = |e|. Then ((G∗)�)O ∈
((ZD)Q)O = (ZD)Q×O is a vector supported on the coordinates (B, ψ ′) with B ′ ⊆
B ∈ Q andψ ′ ∈ O ∩ 	B ′ with each ((G∗)�ψ ′)B) = ∑{G∗

ψ : ψ ′ ⊆ ψ ∈ 	B} = (r −
i)!G(e)∗ ∈ N

D .
Also, 〈γ �[O]〉 is generated by γ �-atoms γ �(υ) at O , each of which is supported

on the same coordinates (B, ψ ′) as ((G∗)�)O , with each (γ �(υ)ψ ′)B) equal to some
(r − i)!H( f )∗ with f ∈ ([q]

|e|
)
, H ∈ H . The lemma follows. �

Now we state our theorem on decompositions of typical coloured r -multigraphs.
By Lemma 5.5 it implies Theorem 5.3. We will deduce it from Theorem 5.13 below.
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Theorem 5.10 Let H be a family of [D]-edge-coloured r-graphs on [q]. Suppose
G is a (c, hq)-typical [D]-edge-coloured r-multigraph on [n] with all Gd

e < b−1

that is (b, c)-balanced wrt H , where n > n0(q, D) is large, d(G) > b := n−δ/hq
,

c < c0d(G)h30q
and c0 = c0(q) is small. Then G has an H -decomposition iff G is

H -divisible.

The next definition formulates the extendability and regularity conditions for
coloured hypergraph decompositions; we will see below that they both follow from
typicality. We remark that the extendability condition is stronger than simply requir-
ing that each (	, Gi ) is extendable (it is roughly equivalent to certain lower bounds
on degree vectors dγ

G(x) as in Definition 5.2).

Definition 5.11 With notation as in Definition 5.1, we say G ∈ (ND)	
◦
r is (H , c, ω)-

regular in 	 if there are yH
φ ∈ [ωnr−q , ω−1nr−q ] for each H ∈ H , φ ∈ 	q with

φ(H) ≤ G (coordinate-wise) so that
∑{yH

φ φ(H)} = (1 ± c)G (sum over all valid
(H, φ), approximation coordinate-wise).

We say that (	, G) is (ω, h)-extendable if (	, G ′) is (ω, h)-extendable, where
G ′ = (G1, . . . , G D).

The next theorem shows extendability and regularity suffice for the equivalence
of decomposition and integral decomposition. For wider applicability we formulate
it in the setting of exactly adapted complexes, as in the following definition, which
allows for an Sq -adapted [q]-complex (such as the complete [q]-complex, suppressed
in the statement of Theorem 5.10), or a generalised partite complex, which is exactly
�-adapted for some subgroup � of Sq (such as that in the running example of the
previous section).

Definition 5.12 We say that an R-complex 	 is exactly �-adapted if whenever
φ ∈ 	B and τ ∈ Bi j (B ′, B) (set of bijections from B ′ to B) we have φ ◦ τ ∈ 	B ′

iff σ ∈ �B
B ′ .

We say 	 is exactly adapted if 	 is exactly �-adapted for some �.

Theorem 5.13 Let H be an family of [D]-edge-coloured r-graphs on [q]. Let 	

be an (ω, h)-extendable exactly adapted [q]-complex on [n] where n > n0(q, D) is
large, n−δ < ω < ω0(q, D) is small and c = ωh20

. Suppose G ∈ (ND)	
◦
r is (H , c, ω)-

regular in 	 and (	, G) is (ω, h)-extendable. Then G has an H -decomposition in
	q iff G has an integral H -decomposition in 	q .

Proof By Lemma 5.9, it is equivalent to consider γ (	)-decompositions of G∗, with
notation as in Definitions 5.6 and 5.8. There are D + 1 types in γ for each B ∈ Q: the
colour d type {θ ∈ AH

B : I m(θ) ∈ H d , H ∈ H } for each d ∈ [D], and the nonedge
type {θ ∈ AH

B : I m(θ) /∈ H ∈ H }. Each γ θ is ed in all coordinates for θ in a colour
d type or 0 in all coordinates for θ in a nonedge type, so γ is elementary. The atom
decomposition of G∗ is G∗ = ∑

f ∈	◦
r

∑
d∈[D](G f )d f d , where f d

ψ = ed f r→q .

As G is (H , c, ω)-regular in 	 we have
∑{yH

φ φ(H)} = (1 ± c)G for some
yH
φ ∈ [ωnr−q , ω−1nr−q ] for each H ∈ H , φ ∈ 	q with φ(H) ≤ G. As in the proof
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of the first part of Lemma 5.9, we can identify any such φ(H) with φH∗ ≤ G∗,
and so (regarding φ ∈ AH (	)) with γ (φ) ≤γ G∗, so φ ∈ A(	, G∗). Let yφ = yH

φ

for φ ∈ AH (	). For any B ∈ Q, ψ ∈ 	B , d ∈ [D], writing td ∈ TB for the colour
d type, ∂ td yψ = ∑{yφ : tφ(ψ) = td} = ∑{yH

φ : I m(ψ) ∈ φ(H d), H ∈ H } = (1 ±
c)(G∗)td

ψ , so G∗ is (γ, c, ω)-regular.
To apply Theorem 4.18, it remains to show that each (	, γ [G∗]H ) is (ω, h)-

extendable. If B /∈ H then γ [G∗]H
B = 	B and if B ∈ H d for d ∈ [D] then γ [G∗]H

B =
{ψ ∈ 	B : I m(ψ) ∈ Gd}. Consider any 	-extension E = (J, F, φ) of rank h and
J ′ ⊆ Jr \ J [F]. Let J ′′ = (J d : d ∈ [D]) with each J d = ⋃{J ′

B : B ∈ H d}. As
(	, G) is (ω, h)-extendable we have X E,J ′′(	, G) > ωnvE . Consider any φ+ ∈
X E,J ′′(	, G). For any ψ ∈ J d we have φ+ψ ∈ 	 and I m(φ+ψ) ∈ Gd , so φ+ψ ∈
γ [G∗]H . Thus φ+ ∈ X E,J ′(	, γ [G∗]H ), so (	, γ [G∗]H ) is (ω, h)-extendable. �

Now we show that the extendability and regularity conditions follow from typi-
cality, thus deducing our decomposition result for typical coloured r -multigraphs.

Proof of Theorem 5.14 Suppose G is an H -divisible (c, hq)-typical [D]-edge-
coloured r -multigraph on [n] that is (b, c)-balanced wrt H , where n > n0(q, D)

is large, d(G) > b := 2n−δ/hq
, c < c0d(G)h30q

and c0 = c0(q) is small. We need to
show that G has an H -decomposition.

Let 	 be the complete [q]-complex on [n]. By Lemma 5.9 and H -divisibility,
G has an integral H -decomposition in 	q . Let p ∈ [b, b−1]H with d(G)∗ = (1 ±
c)

∑
H pH d(H)∗. We can assume each colour α ∈ [D] is used at least once by H ,

so d(Gα) ≥ b/2Q, where Q = (q
r

)
. To apply Theorem 5.13, it remains to check

extendability and regularity.
We claim that (	, G) is (ω, h)-extendable with ω > n−δ . To see this, consider

any 	-extension E = (J, F, ψ) with J ⊆ [q](h) and J ′ = (J d : d ∈ [D]) for some
mutually disjoint J d ⊆ Jr \ J [F]. Let V (J ) \ F = {x1, . . . , xvE }. For i ∈ [vE ] we
list the neighbourhood of xi as f i = ( f i

1 , . . . , f i
ti ) and let αi ∈ [D][ti ] be such

that each f i
j ∪ {xi } has colour αi

j . Then the number of choices for xi (weighted

by edge-multiplicities) given any previous choices φ′ |{x j : j<i} is dαi

G (φ′( f i )) =
(1 ± ti c)n

∏ti
j=1 d(Gαi

j ). As each d(Gd) > b/2Q with b = n−δ/hq
, we deduce

X E,J ′(	, G) =
∑

φ∈X E (	)

∏

d∈[D]

∏

f ∈J d

Gd
φ( f ) > nvE −δ.

For regularity, taking E = (J, F, ψ) as above with J = [q](1), J ′ = (H d : d ∈
[D]), F = f ∈ Hα with H ∈ H , α ∈ [D], and ψ ∈ Bi j ( f, e) with e ∈ Gα , we
obtain

X E,J ′(	, G) = (1 ± Qc)d(Gα)−1nq−r
∏

d∈[D]
d(Gd)|H

d |.

Let Z = nq−r
∏

d∈[D] d(Gd)|H d | and yφ = pH (q)−1
r Z−1 ∏

d∈[D]
∏

f ∈H d Gd
φ( f ) for

each φ ∈ AH (	), H ∈ H . Then each such yφ ∈ [ωnr−q , ω−1nr−q ], as all d(Gδ) >
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b/2Q, pH < b−1 and Gd
φ( f ) < b−1. Letting f vary over Hα , we have

∑

H

∑

φ

yφ(φ(H)e)α =
∑

H

pHr !(q)−1
r

∑

f ∈Hα

Z−1
∑

φ∈X E (	)

∏

d∈[D]

∏

f ∈H d

Gd
φ( f )

=
∑

H

pH Q−1
∑

f ∈Hα

(1 ± 2Qc)d(Gα)−1Gα
e = (1 ± qr c)Gα

e .

Thus G is (H , qr c, ω)-regular in 	. �
We conclude with a theorem on coloured generalised partite decompositions,

which can be used (we omit the details) to obtain a common generalisation of
Theorems 3.2 and 5.10.

Definition 5.15 Let H be a family of [D]-edge-coloured r -graphs on [q] and P =
(P1, . . . , Pt ) be a partition of [q]. Let I d = {i ∈ N

t : ∪H H d
i �= ∅} and I = ∪d I d .

Let � be the group of all σ ∈ Sq with all σ(Pi ) = Pi . Let 	 be an exactly
�-adapted [q]-complex with parts P ′ = (P ′

1, . . . , P ′
t ), where each P ′

i = {ψ( j) : j ∈
Pi , ψ ∈ 	{ j}}.

Let G ∈ (ND)	
◦
r . We call G an (H , P )-blowup if Gd

i �= ∅ ⇒ i ∈ I d .
For e ⊆ [n], f ⊆ [q] we define G(e)∗, H( f )∗ ∈ (ND)I by (G(e)∗i )d = |Gd

i (e)|
and (H( f )∗i )d = |H d

i ( f )|.
We say G is (H , P )-divisible if each G(e)∗ ∈ 〈H( f )∗ : f ∈ ([q]

|e|
)
, H ∈ H 〉.

In the following extendability hypothesis we consider Gd
i undefined for i /∈

I (H d).

Theorem 5.16 With notation as in Definition 5.15, suppose n/h ≤ |P ′
i | ≤ n with

n > n0(q, D), G is an (H , P )-divisible (H , P )-blowup, G is (H , c, ω)-regular in 	,
and (	, G) is (ω, h)-extendable, where n−δ < ω < ω0(q, D) and c = ωh20

. Then G
has a P -partite H -decomposition.

Proof By Theorem 5.13 it suffices to show that G has an integral H -decomposition
in 	q , i.e. G∗ ∈ 〈γ (	)〉 = Lγ (	) (by Lemmas 5.9 and 4.13). Consider any i ∈ I
and i ′ ∈ N

t with all i ′
j ≤ i j . Let m i

i ′ = ∏
j∈[t](i j − i ′

j )!. For any B ′ ⊆ B ∈ Q with

iP (B ′) = i ′ and iP (B) = i and ψ ′ ∈ 	B ′ with I m(ψ ′) = e we have ((G∗)�ψ ′)B) =
∑{G∗

ψ : ψ ′ ⊆ ψ ∈ 	B} = m i
i ′ G i (e)∗ ∈ N

D . Writing O = ψ ′�, for any ψ ∈ O we

have ((G∗)�ψ)B) = m i
i ′ G i (e)∗. Thus we obtain ((G∗)�)O from G(e)∗ by copying

coordinates and multiplying all copies of each i-coordinate by m i
i ′ . Similarly,

for any H ∈ H , θ ′ ∈ AH
B ′ , f = I m(θ ′) we have (γ

�

θ ′)B) = ∑{γθ : θ ′ ⊆ θ ∈ AH
B } =

m i
i ′ Hi ( f )∗, so 〈γ �[O]〉 is generated by vectors vH f ∈ (ZQ)O where H ∈ H , f ⊆ [q]

with iP ( f ) = i ′ and for each ψ ∈ O , B ∈ Q we have (vH f
ψ )B = m i

i ′ Hi ( f )∗, where
i = iP (B). Thus all vectors in 〈γ �[O]〉 are obtained from vectors H( f )∗ with
H ∈ H and iP ( f ) = iP ′(e) by the same transformation that maps G(e)∗ to ((G∗)�)O .
As G is (H , P )-divisible we deduce ((G∗)�)O ∈ 〈γ �[O]〉 for any O ∈ 	/�, as
required. �
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6 Directed Hypergraphs

Our second illustration of Theorem 4.18 will be to decompositions of directed hyper-
graphs.

Definition 6.1 Let R be a set. An R-graph on V is a set G of injections from R to
V . We call the elements of G arcs. If R = [r ] we call G an r -digraph. We say G is
simple if (I m(e) : e ∈ G) are all distinct. A copy of an R-graph H in an R-graph G is
defined by an injection φ : V (H) → V (G) such that φH := {φ ◦ e : e ∈ H} ⊆ G.
An H -decomposition of G is a partition of G into copies of H .

Note that if r = 2 then a 2-digraph is equivalent to a digraph in the usual sense:
we can think of an injection f : [2] → V as an arc directed from f (1) to f (2).

We will restrict our attention to H -decomposition problems in which H is simple;
otherwise we obtain a non-elementary functional decomposition problem, which has
arithmetic structure, and to which Theorem 4.18 does not apply.

Next we will state an example of our later theorem on r -digraph decompositions.
Let K Dr

n denote the complete r -digraph on [n], i.e. each of the (n)r = r !(n
r

)
injections

from [r ] to [n] is an arc. The r -digraph tight q-cycle �r
q has vertex set [q] and arc

set {φ j : j ∈ [q]} with each φ j (i) = i + j , where addition wraps (we identify q + i
with i).

Theorem 6.2 Suppose q > r ≥ 2 and n > n0(q) with q | (n)r . Then K Dr
n has a

�r
q -decomposition.

Now we will describe the divisibility conditions in the general setting, and then
illustrate them in the case H =�r

q .

Definition 6.3 Let G be an r -digraph on [n] and H be an r -digraph on [q].
Given an injection f : R′ → [n] with R′ ⊆ R, we let G | f = {e ∈ G : e |R′= f }.

The neighbourhood of f in G is the (R \ R′)-graph G( f ) = {e |R\R′ : e ∈ G | f }. The
degree of f in G is |G( f )|.

Wewrite I s
t for the set of injectionsπ : [s] → [t]. Forψ ∈ I i

n we define the degree
vector G(ψ)∗ ∈ N

I i
r by G(ψ)∗π = |G(ψπ−1)|.

We say G is H -divisible if G(ψ)∗ ∈ 〈H(θ)∗ : θ ∈ I i
q〉 for all 0 ≤ i ≤ r , ψ ∈ I i

n .

Nowwe illustrate Definition 6.3 in the case H =�r
q . For example, suppose r = 2,

so H andG are digraphs.Writing∅ for the element of I 0n , we haveG(∅)∗ = (|G|) and
H(∅)∗ = (|H |) = (q), so the 0-divisibility condition is q | |G|. Next, for ψ ∈ I 1n ,
writing x = ψ(1) ∈ [n], we have G(ψ)∗ = (d+

G (x), d−
G (x)), where d+

G (x) = |G(ψ)|
is the number of arcs with 1 �→ x and d−

G (x) = |G(ψ ◦ (1 �→ 2)−1)| is the number
of arcs with 2 �→ x . Also, for θ ∈ I 1q , writing a = θ(1) ∈ [q], we have H(θ)∗ =
(d+

H (a), d−
H (a)) = (1, 1), so the 1-divisibility condition is thatG is vertex-regular, i.e.

d+
G (x) = d−

G (x) for all x ∈ [n]. Finally, for ψ ∈ I 2n , θ ∈ I 2q writing xi = ψ(i), ai =
θ(i), we have G(ψ)∗ = (1x1x2∈G, 1x2x1∈G) and H(θ)∗ = (1a1a2∈H , 1a2a1∈H ), so the
2-divisibility condition holds trivially. Next we describe the general �r

q -divisibility
conditions (proved in Lemma 6.5 below).
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Definition 6.4 We define an equivalence relation∼ on each I i
r with i ≤ r by θ ∼ θ ′

if for some c ∈ Z we have θ ′( j) = θ( j) + c for all j ∈ [i] (where addition does
not wrap). We say that G is shift regular if G(ψ)∗θ = G(ψ)∗θ ′ whenever ψ ∈ I i

n and
θ ∼ θ ′.

We note that G = K Dr
n is shift regular, indeed G(ψ)∗θ = (n)r/(n)i for any θ ∈ I i

r ,
ψ ∈ I i

n . We also note that there is redundancy (symmetry) in the above definitions.
Indeed, for ψ ∈ I i

n , σ ∈ Si , π ∈ I i
r we have G(ψσ)∗π = |G(ψσπ−1)| = G(ψ)∗

πσ−1 ,

i.e. G(ψσ)∗ = G(ψ)∗σ , where Si acts on I i
n by ψ �→ ψσ = ψ ◦ σ and on N

I i
r

by (vσ)π = vπσ−1 . Note that the latter is a right action as (v(στ))π = vπ(στ)−1 =
vπτ−1σ−1 = (vσ)πτ−1 = ((vσ)τ)π . For any expression G(ψ)∗ = ∑

θ nθ H(θ)∗ with
n ∈ Z

I i
q we have G(ψσ)∗ = G(ψ)∗σ = ∑

θ nθ H(θ)∗σ = ∑
θ nθ H(θσ )∗, so it suf-

fices to check H -divisibility on a system of coset representatives for the action of
Si on I i

n . Furthermore, as θ ∼ θ ′ iff θσ ∼ θ ′σ , and as G(ψ)∗θσ = |G(ψ(θσ )−1)| =
G(ψσ−1)∗θ , it suffices to check shift regularity on a system of coset representatives
for the action of Si on I i

q , e.g. all order-preserving elements.

Lemma 6.5 G is �r
q -divisible iff G is shift regular and q | |G|.

Proof The 0-divisibility condition is q | |G|. Fix 0 < i ≤ r . We classify the degree
vectors H(θ)∗ with θ ∈ I i

q . Note that H(θ)∗ is the all-0 vector unless I m(θ) is
contained in a cyclic interval of length r . By the cyclic symmetry of �r

q we
have H(θ)∗ = H(θ + c)∗ for any c ∈ [q], defining θ + c ∈ I i

q by θ( j) = θ ′( j) + c
(where addition wraps). Thus we can assume R := I m(θ) ⊆ [r ], i.e. θ ∈ I i

r . Note
that id[r ] is the unique arc of H containing idR , so 1 = |H(idR)| = H(θ)∗θ . Similarly,
for each c ∈ Z such that R + c ⊆ [r ] (where addition does not wrap), id[r ] − c is
the unique arc of H containing idR+c − c, so 1 = |H(idR+c − c)| = H(θ)∗θ+c. All
other coordinates of H(θ)∗ are zero. We deduce that H(θ)∗ = H(θ ′)∗ if θ ∼ θ ′, or
otherwise H(θ) and H(θ ′)∗ have disjoint support. Thus G(ψ)∗ ∈ 〈H(θ)∗ : θ ∈ I i

q〉
iff G is constant on the support of each H(θ)∗, i.e. G is shift regular. �

Given Lemma 6.5, the case H =�r
q of the following result implies Theorem 6.2.

Theorem 6.6 Suppose H is a simple r-digraph on [q] and n > n0(q) is large. Then
K Dr

n has an H-decomposition iff it is H-divisible.

Wewill deduce Theorem 6.6 from amore general result in which we replace K Dr
n

by any r -digraph G supported in a [q]-complex 	 that satisfies certain extendability
and regularity conditions. The regularity condition is similar to those used earlier in
the paper:

Definition 6.7 Let	 be a [q]-complex on [n], H be an r -digraph on [q] and G be an
r -digraph on [n]. We say G is (H, c, ω)-regular in 	 if there are yφ ∈ [ωnr−q ,

ω−1nr−q ] for each φ ∈ 	q with φH ⊆ G so that
∑

φ yφφH = (1 ± c)G.

Next we introduce some notation for the extendability condition and illustrate it
for digraphs.
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Definition 6.8 With notation as in Definition 6.7, let Q H be the set of B ∈ Q = ([q]
r

)

such that there is some θB ∈ H with I m(θB) = B. Suppose H is simple, so that each
θB is unique.DefineG H ⊆ 	r byG H

B = {ψ ◦ θ−1
B : ψ ∈ G} if B ∈ Q H orG H

B = 	B

otherwise.

Examples Let q = 3, r = 2, G be a digraph on [n] and 	 be the complete
[3]-complex on [n].
i. Let H = {(1 �→ 1, 2 �→ 2), (1 �→ 2, 2 �→ 3), (1 �→ 3, 2 �→ 1)} be a cyclic tri-

angle. For each i ∈ [3] we have G H
{i,i+1} = {(i �→ x, i + 1 �→ y) : xy = (1 �→

x, 2 �→ y) ∈ G} (interpreting i + 1 mod 3).
If (	, G H ) is (ω, h)-extendable then for any disjoint sets Si ⊆ Ti , i ∈ [3] of size
at most h and injection φ : S := ⋃3

i=1 Si → [n] there are at least ωn|T \S| injec-
tions φ+ : T := ⋃3

i=1 Ti → [n] extending φ such that for any i ∈ [3], xi ∈ Ti ,
xi+1 ∈ Ti+1 (addition mod 3) with xi xi+1 � S we have (i �→ φ+(xi ), i + 1 �→
φ+(xi+1)) ∈ G H

{i,i+1}, i.e. φ+(xi )φ
+(xi+1) ∈ G.

This is roughly equivalent to the following property: say that G is fully (ω, h)-
extendable if for any disjoint A, B ⊆ [n] of size at most h there are at least ωn
vertices c such that ca ∈ G for all a ∈ A and bc ∈ G for all b ∈ B. Indeed, if
(	, G H ) is (ω, h)-extendable then G is fully (ω, h)-extendable (take S1 = T1 =
A, S2 = T2 = B, S3 = ∅, |T3| = 1), and conversely, ifG is fully (ω, h)-extendable
then (	, G H ) is (ω3h, h)-extendable (construct φ+ one vertex at a time).

ii. Now let H = {(1 �→ 1, 2 �→ 2), (1 �→ 1, 2 �→ 3)} be an outstar of degree two.
For i = 2, 3 we have G H

1i = {(1 �→ x, i �→ y) : xy ∈ G}, and G H
23 = 	23 is com-

plete. If (	, G H ) is (ω, h)-extendable then given Si , Ti and φ as above, there are
at least ωn|T \S| extensions φ+ such that for any i = 2, 3, x1 ∈ T1, xi ∈ Ti with
x1xi � S we have φ+(x1)φ+(xi ) ∈ G.
This is roughly equivalent to the following property: say that G is directedly
(ω, h)-extendable if for any A ⊆ [n] of size at most h there are at least ωn ver-
tices c such that ca ∈ G for all a ∈ A, and at least ωn vertices c such that ac ∈ G
for all a ∈ A.

The rough equivalence illustrated in the previous examples takes the following
general form: if (	, G H ) is (ω, h)-extendable then (	, G) is (ω, h, H)-vertex-
extendable (as in the next definition), and conversely, if G is (ω, h, H)-vertex-
extendable then (	, G H ) is (ωqh, h)-extendable.

Definition 6.9 With notation as inDefinition 6.7,we say (	, G) is (ω, h, H)-vertex-
extendable if for any x ∈ [q] and disjoint sets Ai , i ∈ [q] \ {x} of size at most h such
that (i �→ vi : i ∈ [q] \ {x}) ∈ 	whenever each vi ∈ Ai , there are at leastωn vertices
v ∈ 	◦

x such that

i. (i �→ vi : i ∈ [q]) ∈ 	 whenever vx = v and vi ∈ Ai for each i �= x ,
ii. for each arc θ of H with x ∈ I m(θ), we have all arcs (i �→ vi : i ∈ [r ]) in G

where v j = v for j = θ−1(x) and vi ∈ Aθ(i) for all i �= j .

The following theoremwhen	 and G are complete implies Theorem 6.6. Indeed,
extendability is clear, and for regularity we let yφ = |H |−1(n)r/(n)q for each φ ∈ I q

n ,
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so that for each ψ ∈ I r
n we have

∑
φ yφ(φH)ψ = ∑

θ∈H |H |−1(n)r (n)−1
q |{φ : ψ =

φθ}| = 1.

Theorem 6.10 Let H be a simple r-digraph on [q], G be an r-digraph on [n] and
	 be an (ω, h)-extendable Sq-adapted [q]-complex on [n] where n > n0(q) is large,
n−δ < ω < ω0(q) is small and c = ωh20

. Suppose G is (H, c, ω)-regular in 	 and
(	, G H ) is (ω, h)-extendable. Then G has an H-decomposition in 	q iff G is H-
divisible.

To deduce this from Theorem 4.18 we will use the following equivalent encoding.

Definition 6.11 Given an injection f : [r ] → X , we write f r→q for the set of all
f ◦ π−1 whereπ : [r ] → [q] is order-preserving.Given an r -digraphG, we letGr→q

be the (disjoint) union of all f r→q with f ∈ G.

Lemma 6.12 Let H and G be r-digraphs, H ∗ = Hr→q and G∗ = Gr→q . Then an
(integral) H-decomposition of G is equivalent to an (integral) H∗-decomposition of
G∗.

Proof We associate any H -decomposition H of G with an H∗-decomposition H ∗
of G∗, associating each φH ∈ H with φH∗ ∈ H ∗. Then e ∈ φH iff er→q ⊆ φH∗, as
if e = φθ for some θ ∈ H and eπ−1 ∈ er→q then eπ−1 = φθ∗, where θ∗ = θπ−1 ∈
H∗, and conversely. The same proof applies to integral decompositions. �

Proof of Theorem 6.13 Let H∗ = Hr→q and G∗ = Gr→q . Let A = {A} with A =
S≤

q and γ ∈ Z
Ar where each γθ = 1θ∈H∗ . Then a γ (	)-decomposition of G∗ is equiv-

alent to an H∗-decomposition ofG∗, and so (by Lemma 6.12) to an H -decomposition
of G.

Next we claim that γ is elementary. To see this, we describe the type vectors γ θ ∈
{0, 1}(Sq )B

for θ ∈ AB , B ∈ Q = ([q]
r

)
. If γ θ �= 0 then we can write θ = θ0π0σ0 with

θ0 ∈ H , π0 ∈ Sr and σ0 ∈ Bi j (B, [r ]) order-preserving; this expression is unique, as
θ0 is determined by θ (as H is simple). For any σ ∈ �B we have γ θ

σ = γθσ equal to 1
iff σ = σ−1

0 π−1
0 π−1 where π : [r ] → [q] is order-preserving. Thus there are r ! + 1

types: the 0 type, and types tπ0 for each π0 ∈ Sr , describing the r ! possible arcs with
any given image. The supports of the tπ0 are mutually disjoint, so γ is elementary,
as claimed.

The atom decomposition is G∗ = ∑
e∈G e∗, where e∗ = er→q . As G is (H, c, ω)-

regular in 	, we have
∑

φ yφφH = (1 ± c)G (equivalently,
∑

φ yφφH∗ = (1 ±
c)G∗) for some yφ ∈ [ωnr−q , ω−1nr−q ] for eachφ ∈ 	q withφH ⊆ G (equivalently,
φH∗ ⊆ G∗). For any such φ we have γ (φ) ≤γ G∗, so φ ∈ A(	, G∗). Also, for any
B ∈ Q,ψ ∈ 	B and 0 �= t ∈ TB , say with t supported on the set of all τ−1π−1 where
π : [r ] → [q] is order-preserving, we have ∂ t yψ = ∑{yφ : tφ(ψ) = t} = ∑{yφ :
ψτ ∈ φH∗} = (1 ± c)G∗

ψτ = (1 ± c)(G∗)t
ψ , so G∗ is (γ, c, ω)-regular.

Next we consider extendability. We have γ [G∗] = {ψ ∈ 	r : γ (ψ) ≤γ G∗}, so
ψ ∈ 	B is in γ [G∗] iff (a) no arc in H has image B, or (b)ψθB ∈ G for the unique arc
θB in H with I m(θB) = B. Let E = (J, F, φ) be any	-extension of rank h and J ′ ⊆
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Jr \ J [F]. As (	, G H ) is (ω, h)-extendable we have X E,J ′(	, G H ) > ωnvE . Con-
sider anyφ+ ∈ X E,J ′(	, G H ). For anyψ ∈ J ′

B wehaveφ+ψ ∈ G H
B , soφ+ψθB ∈ G,

so φ+ψ ∈ γ [G∗]. Thus φ+ ∈ X E,J ′(	, γ [G∗]), so (	, γ [G∗]) is (ω, h)-extendable.
To deduce the theorem from Theorem 4.18, it remains to consider divisibility. By

Lemma 4.13we have 〈γ (	)〉 = Lγ (	). ByDefinition 4.12we need to show that G is
H -divisible iff ((G∗)�)O ∈ 〈γ �[O]〉 for any orbit O ∈ 	/Sq . To describe ((G∗)�)O ∈
(ZQ)O , recall that if ψ ′ ∈ O ∩ 	B ′ then ((G∗)�ψ ′)B) is the number of ψ ∈ G∗ ∩ 	B

withψ |B ′= ψ ′. We can assume B ′ ⊆ B, otherwise this number is 0. Let πB : [r ] →
B be order-preserving and R = π−1

B (B ′). Then ψ ∈ G∗ ∩ 	B iff ψπB ∈ G, and
ψ |B ′= ψ ′ iff (ψπB) |R= ψ ′πB , so ((G∗)�ψ ′)B = |G(ψ ′πB)|. Similarly, to describe
〈γ �[O]〉, recall that it is generated by vectors γ �(φ) ∈ (ZQ)O where ifψ ′ = φθ ′ with
θ ′ ∈ AB ′ then (γ �(φ)ψ ′)B = (γ

�

θ ′)B is the number of θ ∈ H∗
B with θ |B ′= θ ′, which

is |H(θ ′πB)|.
Now fix ψ ∈ O ∩ 	[i], where O ∈ 	i/Sq . As G is H -divisible, there is n ∈

Z
I i
q with G(ψ)∗ = ∑

θ nθ H(θ)∗. Writing φ = ψθ−1, we claim that ((G∗)�)O =∑
θ nθγ

�(φ). To see this, note that it suffices to prove ((G∗)�)O
[r ] = ∑

θ nθγ
�(φ)[r ], as

((G∗)�ψ ′)B = |G(ψ ′πB)| = ((G∗)�ψ ′πB
)[r ] and (γ �(φ)ψ ′)B = (γ

�

φ−1ψ ′)B = |H(φ−1ψ ′

πB)| = (γ �(φ)ψ ′πB )[r ]. Now for anyψ ′ ∈ O ∩ 	R with R ⊆ [r ], writingπ = (ψ ′)−1

ψ ∈ I i
r , we have ((G∗)�ψ ′)[r ] = |G(ψ ′)| = G(ψ)∗π = ∑

nθ H(θ)∗π , where each
H(θ)∗π = |H(θπ−1)| = (γ

�

θπ−1 )[r ] = (γ �(φ)ψ ′ )[r ], so ((G∗)�
ψ ′ )[r ] = ∑

nθ (γ
�(φ)ψ ′ )[r ]. �

7 All of the Above

For use in future applications (e.g. [13]), in this section we present a general theorem
that simultaneously allows for the various flavours of decomposition considered in
this paper (generalised partitions, colours and directions). We start with a definition
that generalises our previous setting of simple r -digraphs to allow for colours, index
vectors with respect to a partition, and different types of ‘generalised arcs’; it is
followed by some illustrative examples.

Definition 7.1 Let P = (P1, . . . , Pt ) be a partition of [q] such that if x ∈ Pj ,
x ′ ∈ Pj ′ , j < j ′ then x < x ′. Let H be a family of [D]-edge-coloured r -digraphs
on [q]. For i ∈ N

t with
∑t

j=1 i j = r and j ∈ [t] we define a partition R(i) =
(R(i)1, . . . , R(i)t ) of [r ] so that each |R(i) j | = i j and x < x ′ whenever x ∈ R(i) j ,
x ′ ∈ R(i) j ′ , j < j ′. Suppose there are vectors id ∈ N

t and permutation groups �d
j

on R(i) j for all d ∈ [D] and j ∈ [t] such that if H ∈ H and θ ∈ H d then

i. each θ(R(i) j ) ⊆ Pj (so8 iP (I m(θ)) = id ), and
ii. for θ ′ ∈ Bi j ([r ], I m(θ)) we have θ ′ /∈ H \ H d , and θ ′ ∈ H d iff θ−1θ ′ ∈ �d :=∏

j �d
j .

We say that H is (P ,�)-canonical, where � := (�d : d ∈ D).

8Recall index vectors from Definition 3.1.
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Examples

i. Let q = 3, r = 2 and t = 1, so P = ([3]) and R(2) = ([2]). Let D = 2 and
H = {H}, where H 1 = {(1 �→ 1, 2 �→ 2), (1 �→ 1, 2 �→ 3)} and H 2 = {(1 �→
2, 2 �→ 3), (1 �→ 3, 2 �→ 2)}. Then H is canonical with �1

1 = {id} and �2
1 =

S2 = {id, (12)}. One can interpret H as a mixed triangle, with arcs from 1 to 2
and 1 to 3 and an undirected edge between 2 and 3. In this interpretation, we are
free to ignore the colours, as they do not affect whether a mixed graph G has an
H -decomposition (the role of the colours is to ensure that under the encoding by
arcs, an undirected edge encoded by two arcs cannot be decomposed into two
actual arcs). In general, we think of an atom in some colour d as a ‘generalised
arc’, which is encoded by some set of arcs invariant under the action of �d on
[r ]. An actual arc corresponds to the case �d = {id} and an undirected edge to
the case that each �d

j = Sym(R(i) j ).
ii. Let q = 3, r = 2, t = 1, D = 2 and H = {H}, where H 1 = {(1 �→ 1, 2 �→

2), (1 �→ 2, 2 �→ 3)} and H 2 = {(1 �→ 3, 2 �→ 1)}. Then H is canonical with
�1 = �2 = {id}. One can interpret H as a two-coloured cyclic directed trian-
gle, with arcs of colour 1 from 1 to 2 and 2 to 3, and an arc of colour 2 from 3
to 1.

iii. Let q = 3, r = 2, t = 2, P = ({1, 2}, {3}), D = 3 and H = {H}, where H 1 =
{(1 �→ 1, 2 �→ 2)}, H 2 = {(1 �→ 1, 2 �→ 3)} and H 3 = {(1 �→ 2, 2 �→ 3)}. We
have i1 = (2, 0), R((2, 0)) = ([2],∅), i2 = i3 = (1, 1), R((1, 1)) = ({1}, {2})
and �1 = �2 = �3 = {id}. One possible uncoloured interpretation of H is as
a cyclic triangle 1 → 2 → 3 → 1 under the vertex partition P . Here we are
taking the natural interpretation of the colour 3 arc from 2 to 3 and the opposite
interpretation of the colour 2 arc from 1 to 3, instead thinking of it as an arc
from 3 to 1. Changing the direction of all arcs of colour 2 in both H and G
has no effect on whether G has an H -decomposition, so this interpretation is
equivalent to the natural interpretation in which we retain the given colours and
directions. This illustrates the fact that in general there is no loss of generality
from the assumption that the partitions P and R(i) respect the orders of [q] and
[r ], as we are free to interpret different colours as encoding arcs with alternative
partitions. We also note that there is no loss of generality in assuming that the
index of an edge is determined by its colour (and indeed, we could have done so
earlier in the paper).

For the main result of this section we adopt the setting of the following definition
(see below for how it applies to the above examples).

Definition 7.2 LetH be a (P ,�)-canonical family of [D]-edge-coloured r -digraphs
on [q]. We identify each H ∈ H with a vector H ∈ (ND)I r

q , where each (H f )d =
1 f ∈H d .

Let � be the group of all σ ∈ Sq with all σ(Pi ) = Pi . Let 	 be an exactly �-
adapted [q]-complex with V (	) = [n] and parts P ′ = (P ′

1, . . . , P ′
t ), where each

P ′
i = {ψ( j) : j ∈ Pi , ψ ∈ 	{ j}}. For φ ∈ 	q and H ∈ H we define φH ∈ (ND)	[r ]

by (φH)φ f = H f . Let H (	) = {φH : φ ∈ 	q , H ∈ H }.
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Let G ∈ (ND)	[r ] be an r -multidigraph [D]-edge-coloured as G = ∪d∈[D]Gd .
We call H ′ ⊆ H (	) with

∑
H ′ = G an H -decomposition of G in 	, and � ∈

Z
H (	) with

∑
H ′ �H ′ H ′ = G an integral H -decomposition of G in 	.

For ψ ∈ I i
n (injections [i] → [n]) and θ ∈ I i

q write iP ′(ψ) = iP ′(I m(ψ)) and

iP (θ) = iP (I m(θ)). For ψ ∈ I i
n we define the degree vector G(ψ)∗ ∈ N

[D]×I i
r by

G(ψ)∗dπ = |Gd(ψπ−1)|. Similarly, for θ ∈ I i
q wedefine H(θ)∗ ∈ N

[D]×I i
r by H(θ)∗dπ

= |H d(θπ−1)|.
For i ′ ∈ N

t we let H〈i ′〉 = 〈H(θ)∗ : iP (θ) = i ′〉. We say G is H -divisible (in 	)
if G(ψ)∗ ∈ H〈i ′〉 whenever iP ′(ψ) = i ′.

We say G is (H , c, ω)-regular in 	 if there are yH
φ ∈ [ωnr−q , ω−1nr−q ] for each

H ∈ H , φ ∈ 	q with φH ≤ G so that
∑{yH

φ φH} = (1 ± c)G.
For each H ∈ H and B ∈ Q fix any θB ∈ H with I m(θB) = B if one exists.
For each d ∈ [D] let (G H )d = ⋃{ψ ◦ θ−1

B : θB ∈ H d , Gd
ψ > 0}.

We say that (	, G H ) is (ω, h)-extendable if (	, ((G H )d : d ∈ [D])) is (ω, h)-
extendable.

Examples

i. Recall the example of themixed triangle: q = 3, r = 2, t = 1, D = 2,H = {H},
H 1 = {(1 �→ 1, 2 �→ 2), (1 �→ 1, 2 �→ 3)}, H 2 = {(1 �→ 2, 2 �→ 3), (1 �→ 3,
2 �→ 2)}, �1

1 = {id}, �2
1 = {id, (12)}. Let 	 be the complete [3]-complex on

[n] and G ∈ (N2)	2 be a [2]-edge-coloured 2-multidigraph. For the 2-divisibility
condition we consider any ψ ∈ I 2n , so that G(ψ)∗ ∈ N

[2]×I 22 . Ordering coordi-
nates as (1, id), (1, (12)), (2, id), (2, (12))wehaveG(ψ)∗ = (G1

ψ, G1
ψ◦(12), G2

ψ,

G2
ψ◦(12)). The possible H(θ)∗ with θ ∈ I 23 are (1, 0, 0, 0), (0, 1, 0, 0) and

(0, 0, 1, 1). Thus the 2-divisibility condition is that G2
ψ = G2

ψ◦(12) for allψ ∈ I 2n ,
i.e. arcs of colour 2 always come in opposite pairs (which we interpret as an
edge when we think of G as a mixed multigraph). As for 0-divisibility, writ-
ing ∅ for the function with empty domain, we have G(∅)∗ = (|G1|, |G2|) and
H(∅)∗ = (|H 1|, |H 2|) = (2, 2), so we need |G1| = |G2|. In terms of mixed
multigraphs, we need twice as many arcs as edges (each edge corresponds to a
pair of arcs in G2).
For the 1-divisibility conditions, consider any ψ ∈ I 1n , so G(ψ)∗ ∈ N

[2]×I 12 . Let
x = I m(ψ) ∈ [n]. Ordering coordinates as (1, 1 �→ 1), (1, 1 �→ 2), (2, 1 �→
1), (2, 1 �→ 2) we have G(ψ)∗ = (|G1(1 �→ x)|, |G1(2 �→ x)|, |G2(1 �→ x)|,
|G2(2 �→ x)|) = (d+

G (x), d−
G (x), dG(x), dG(x)), where in themixed graph inter-

pretation d±
G (x) denote in/outdegrees in arcs and dG(x) denotes degree in

edges. We have H(1 �→ 1)∗ = (2, 0, 0, 0) and H(1 �→ 2)∗ = H(1 �→ 3)∗ =
(0, 1, 1, 1). Thus the 1-divisibility conditions are that each outdegree d+

G (x)

is even and each dG(x) = d−
G (x).

Now consider extendability. We have (G H )112 = G1, (G H )113 = G1 ◦ (1 �→ 1,
3 �→ 2) = {(1 �→ x, 3 �→ y) : xy ∈ G1)} and (G H )223 = G2 (for either choice of
θ23 if arcs of colour 2 always come in opposite pairs). All other (G H )d

B are unde-
fined. If (	, G H ) is (ω, h)-extendable then for any sets Si ⊆ Ti , i ∈ [3] of size at
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most h and an injection φ : S := ⋃3
i=1 Si → [n] there are at least ωn|T \S| injec-

tions φ+ : T := ⋃3
i=1 Ti → [n] extending φ such that for any 1 ≤ i < j ≤ 3,

xi ∈ Ti , x j ∈ Tj with xi x j � S we have (i �→ φ+(xi ), j �→ φ+(x j )) ∈ (G H )d
i j ,

i.e. φ+(xi )φ
+(x j ) ∈ Gd , where d = 2 if i j = 23 or d = 1 otherwise.

This is roughly equivalent to the following property: for any disjoint A, B ⊆ [n]
of size at most h there are at least ωn vertices c such that ca ∈ G2 for all a ∈ A
and bc ∈ G1 for all b ∈ B, and at least ωn vertices c such that ca ∈ G1 for all
a ∈ A ∪ B.

ii. Recall the example of the two-coloured cyclic directed triangle: q = 3, r =
2, t = 1, D = 2, H = {H}, H 1 = {(1 �→ 1, 2 �→ 2), (1 �→ 2, 2 �→ 3)}, H 2 =
{(1 �→ 3, 2 �→ 1)}, �1 = �2 = {id}. Let 	 be the complete [3]-complex on [n]
and G ∈ (N2)	2 . The 2-divisibility condition is trivial. As G(∅)∗ = (|G1|, |G2|)
and H(∅)∗ = (2, 1) the 0-divisibility condition is |G1| = 2|G2|. Forψ ∈ I 1n , x =
I m(ψ) ∈ [n] we have G(ψ)∗ = (|G1(1 �→ x)|, |G1(2 �→ x)|, |G2(1 �→ x)|,
|G2(2 �→ x)|) = (d+

G1(x), d−
G1(x), d+

G2(x), d−
G2(x)). We have H(1 �→ 1)∗ =

(1, 0, 0, 1), H(1 �→ 2)∗ = (1, 1, 0, 0) and H(1 �→ 3)∗ = (0, 1, 1, 0), which
generate H〈1〉 = {v ∈ Z

4 : v1 + v3 = v2 + v4}, so the 1-divisibility condition is
d+

G1(x) + d+
G2(x) = d−

G1(x) + d−
G2(x), i.e. the degree regularity condition

d+
G (x) = d−

G (x) needed for decomposition into cyclic triangles ignoring the
colours.
As for extendability, we have (G H )112 = G1, (G H )123 = {(2 �→ x, 3 �→ y) :
xy ∈ G1)} and (G H )213 = {(3 �→ x, 1 �→ y) : xy ∈ G2)}. If (	, G H ) is (ω, h)-
extendable then for any Si , Ti and φ as above there are at leastωn|T \S| extensions
φ+ such that for any 1 ≤ i < j ≤ 3, xi ∈ Ti , x j ∈ Tj with xi x j � S we have
φ+(xi )φ

+(x j ) ∈ G1 if i j �= 13 or φ+(x3)φ+(x1) ∈ G2 if i j = 13.
This is roughly equivalent to: for any disjoint A, B ⊆ [n] of size at most h there
are

(1) at least ωn vertices c such that ca ∈ G1 for all a ∈ A and bc ∈ G1 for all
b ∈ B,

(2) at least ωn vertices c such that ca ∈ G1 for all a ∈ A and bc ∈ G2 for all
b ∈ B, and

(3) at least ωn vertices c such that ca ∈ G2 for all a ∈ A and bc ∈ G1 for all
b ∈ B.

iii. Recall the example of the cyclic triangle 1 → 2 → 3 → 1 with vertex partition
P = ({1, 2}, {3}): we have q = 3, r = 2, t = 2, D = 3,H = {H}, H 1 = {(1 �→
1, 2 �→ 2)}, H 2 = {(1 �→ 1, 2 �→ 3)}, H 3 = {(1 �→ 2, 2 �→ 3)}, i1 = (2, 0),
R((2, 0)) = ([2],∅), i2 = i3 = (1, 1), R((1, 1)) = ({1}, {2}), �1 = �2 = �3

= {id}. Let 	 be a complete P -partite [3]-complex and G ∈ (N3)	2 . Note that
P ′
1 = 	◦

{1} = 	◦
{2} and P ′

2 = 	◦
{3}. The 2-divisibility condition is that arcs of

G must respect the partition according to their colour, i.e. if G1
θ �= 0 then

I m(θ) ⊆ P ′
1 and if G2

θ �= 0 or G3
θ �= 0 then θ(1) ∈ P ′

1 and θ(2) ∈ P ′
2. As

G(∅)∗ = (|G1|, |G2|, |G3|) and H(∅)∗ = (1, 1, 1) the 0-divisibility condition
is |G1| = |G2| = |G3|, i.e. in the uncoloured interpretation we have equal num-
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bers of arcs (1) within P ′
1, (2) from P ′

1 to P ′
2, and (3) from P ′

2 to P ′
1.

Now consider the 1-divisibility conditions. Let G ′ denote the arcs between
P ′
1 and P ′

2 according to the uncoloured interpretation, where arcs from P ′
1 to

P ′
2 correspond to G3 and arcs from P ′

2 to P ′
1 correspond to G2. Let ψ ∈ I 1n

and x = I m(ψ). Suppose first that x ∈ P ′
1. Then G(ψ)∗ = (|G1(1 �→ x)|, |G1

(2 �→ x)|, |G2(1 �→ x)|, |G2(2 �→ x)|, |G3(1 �→ x)|, |G3(2 �→ x)|) = (d+
G1(x),

d−
G1(x), d−

G ′(x), 0, d+
G ′(x), 0). As H(1 �→ 1)∗ = (1, 0, 1, 0, 0, 0) and H(1 �→

2)∗ = (0, 1, 0, 0, 1, 0), we obtain the conditions d+
G1(x) = d−

G ′(x) and d−
G1(x) =

d+
G ′(x) for all x ∈ P ′

1. Now suppose x ∈ P ′
2. We have G(ψ)∗ = (0, 0, 0, d+

G ′(x),

0, d−
G ′(x)) and H(1 �→ 3)∗ = (0, 0, 0, 1, 0, 1), so we need d+

G ′(x) = d−
G ′(x) for

all x ∈ P ′
2.

As for extendability, we have (G H )112 = G1, (G H )213 = {(1 �→ x, 3 �→ y) :
xy ∈ G2)} and (G H )323 = {(2 �→ x, 3 �→ y) : xy ∈ G3)}. If (	, G H ) is (ω, h)-
extendable then for any Si , Ti and φ as above with φ(S1), φ(S2) ⊆ P ′

1 and
φ(S3) ⊆ P ′

2 there are at leastω|P ′
1||T1\S1|+|T2\S2||P ′

2||T3\S3| extensionsφ+ such that
for any 1 ≤ i < j ≤ 3, xi ∈ Ti , x j ∈ Tj with xi x j � S we have φ+(xi )φ

+(x j ) ∈
Gdi j , where d12 = 1, d13 = 2, d23 = 3. This is roughly equivalent to:

(1) for any disjoint A, B ⊆ P ′
1 of size at most h there are at least ω|P ′

2| vertices
c ∈ P ′

2 such that ca ∈ G ′ for all a ∈ A and bc ∈ G ′ for all b ∈ B, and
(2) for any disjoint A ⊆ P ′

1, B ⊆ P ′
2 of size at most h there are at least ω|P ′

1|
vertices c ∈ P ′

1 such that ca ∈ G ′ for all a ∈ A and bc ∈ G1 for all b ∈ B,
and at leastω|P ′

1|vertices c ∈ P ′
1 such that ca ∈ G1 for alla ∈ A andbc ∈ G ′

for all b ∈ B.

Similarly to Definition 6.9, we have the following general rough equivalence: if
(	, G H ) is (ω, h)-extendable then (	, G) is (ω, h, H)-vertex-extendable (as in the
next definition), and conversely, if G is (ω, h, H)-vertex-extendable then (	, G H )

is (ωqh, h)-extendable.

Definition 7.3 With notation as inDefinition 7.2,we say (	, G) is (ω, h, H)-vertex-
extendable if for any x ∈ [q] and disjoint sets Ai , i ∈ [q] \ {x} of size at most h such
that (i �→ vi : i ∈ [q] \ {x}) ∈ 	whenever each vi ∈ Ai , there are at leastωn vertices
v ∈ 	◦

x such that

i. (i �→ vi : i ∈ [q]) ∈ 	 whenever vx = v and vi ∈ Ai for each i �= x ,
ii. for each d ∈ [D] and arc θ of H d with x ∈ I m(θ), we have all arcs (i �→ vi :

i ∈ [r ]) in Gd where v j = v for j = θ−1(x) and vi ∈ Aθ(i) for all i �= j .

The main theorem of the section provides the above general setting with our
usual conclusion (divisibility, regularity and extendability suffice for the existence
of decompositions).

Theorem 7.4 With notation as in Definition 7.2, suppose all n1/h ≤ |P ′
i | ≤ n1 with

n1 > n0(q, D), that G is H -divisible and (H , c, ω)-regular in 	, and all (	, G H )

are (ω, h)-extendable, where n−δ
1 < ω < ω0(q, D) and c = ωh20

. Then G has an
H -decomposition in 	.
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Proof For ψ ∈ 	[r ] we let ψ∗ be the set of all ψ ◦ π−1 where π : [r ] → [q] is
order-preserving and iP (π) = iP ′(ψ). Similarly, for θ ∈ Hr we let θ∗ be the set
of all θ ◦ π−1 where π : [r ] → [q] is order-preserving and iP (π) = iP (θ). Let
G∗ = ∑

ψ∈	[r ] Gψψ∗ and H = {H∗ : H ∈ H } with each (H∗)d = (H d)∗ = {θ∗ :
θ ∈ H d}. Let A = {AH : H ∈ H } with each AH = �≤ and γ ∈ Z

Ar where each
γθ is ed if θ ∈ H d∗ for some H ∈ H , d ∈ [D], otherwise zero. Then a γ (	)-
decomposition of G∗ is equivalent to an H ∗-decomposition of G∗, and so, we claim,
to an H -decomposition of G.

For the latter equivalence, similarly to Lemma 6.12, we need to show for any
H ∈ H , d ∈ [D], φ ∈ 	q that ψ ∈ φH d

r iff ψ∗ ⊆ φH d∗
r . To see this, write ψ = φθ ,

where θ ∈ H d
r and let i = iP ′(ψ) = iP (θ). For any ψ ′ ∈ ψ∗ we can write ψ ′ =

ψπ−1 where π : [r ] → [q] is order-preserving with iP (π) = i , so ψ ′ = φθ ′ with
θ ′ = θπ−1 ∈ θ∗. Thus ψ ∈ φH d

r implies ψ∗ ⊆ φH d∗
r . The converse is similar, so

the claimed equivalence holds (and also for integral decompositions).
Next we claim that γ is elementary. To see this, we describe the type vectors γ θ for

θ ∈ AH
B , B ∈ Q. If γ θ �= 0 then we can write θ = θ0τ0π

−1
0 with θ0 ∈ H , τ0 ∈ Sr and

π0 ∈ Bi j ([r ], B) order-preserving. Say θ0 ∈ H d . AsH is (P ,�)-canonical, for θ ′ ∈
Bi j ([r ], I m(θ0)) we have θ ′ ∈ H d iff θ−1θ ′ ∈ �d . Fix a set Xd of representatives
for the right cosets of �d in Sr . Then we have a unique expression θ = θ0τ0π

−1
0

with θ0 ∈ H d and τ0 ∈ Xd . For any σ ∈ �B we have γ θ
σ = γθσ ∈ {0, ed} equal to

ed iff σ = π0(λτ0)
−1π−1 where λ ∈ �d and π : [r ] → [q] is order-preserving with

iP (π) = i := iP (B). Thus, besides the 0 type, for each B ∈ Q and d ∈ [D] with
id = i we have |Xd | = r !/|�d | types (tτ0 : τ0 ∈ Xd) describing all generalised arcs
with any given image. Given d, the supports of the tτ0 for τ0 ∈ Xd are mutually
disjoint, so γ is elementary, as claimed.

As G is (H , c, ω)-regular in 	 we have yH
φ ∈ [ωnr−q , ω−1nr−q ] for each H ∈

H , φ ∈ 	q with φH ≤ G (equivalently, φH∗ ≤ G∗) so that
∑{yH

φ φH} = (1 ±
c)G. (equivalently,

∑{yH
φ φH∗} = (1 ± c)G∗). We identify any such φH∗ ≤ G∗

with γ (φ) ≤γ G∗ (regarding φ ∈ AH (	)), so φ ∈ A(	, G∗). Let yφ = yH
φ for φ ∈

AH (	). For any B ∈ Q, ψ ∈ 	B , d ∈ [D] with id = i := iP ′(ψ) and 0 �= t ∈ TB ,
say with t supported on the set of all (λτ)−1π−1 where λ ∈ �d and π : [r ] → [q]
is order-preserving with iP (π) = i , we have ∂ t yψ = ∑{yφ : tφ(ψ) = t} = ∑{yH

φ :
ψτ ∈ φH d∗, H ∈ H } = (1 ± c)Gd∗

ψτ = (1 ± c)(G∗)t
ψ , so G∗ is (γ, c, ω)-regular.

Next we consider extendability. Fix H ∈ H . We have γ [G∗]H = {ψ ∈ AH (	)r :
γ (ψ) ≤γ G∗}, so ψ ∈ 	B is in γ [G∗]H iff (a) no arc in H has image B, or (b)
ψθB ∈ Gd (i.e. Gd

ψθB
> 0) for some (equivalently, all) θB ∈ H d

r with I m(θB) = B.
Let E = (J, F, φ) be any	-extension of rank h and J ′ ⊆ Jr \ J [F]. Let J ′′ = (J d :
d ∈ [D]) with each J d = ⋃{J ′

B : θB ∈ H d
r }. As (	, G H ) is (ω, h)-extendable we

have X E,J ′′(	, G H ) > ωnvE . Consider any φ+ ∈ X E,J ′′(	, G H ). For any ψ ∈ J d
B ,

d ∈ [D] we have φ+ψ ∈ (G H )d
B , so φ+ψθB ∈ Gd , so φ+ψ ∈ γ [G∗]H . Thus φ+ ∈

X E,J ′(	, γ [G∗]H ), so (	, γ [G∗]) is (ω, h)-extendable.
To deduce the theorem from Theorem 4.18, it remains to show for any orbit O ∈

	/� that ((G∗)�)O ∈ 〈γ �[O]〉. Fix ψ ∈ O ∈ 	i/�. Let i ′ = iP ′(ψ) and I ′ = {θ ∈
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I i
q : iP (θ) = i ′}. Write ψ = ψ0π

−1
0 with ψ0 ∈ I i

n and π0 : [i] → Dom(ψ) order-
preserving.AsG isH -divisible, there is n ∈ Z

H×I ′
withG(ψ0)

∗ = ∑
H,θ nHθ H(θ)∗,

i.e. |Gd(ψ0π
−1)| = ∑

H,θ nHθ |H d(θπ−1)| for all d ∈ [D] and π ∈ I i
r . Writing φ =

ψ0θ
−1 ∈ AH (	), we claim ((G∗)�)O = ∑

H,θ nH,θ γ
�(φ). To see this, fix ψσ ∈ O ,

B ∈ Q and let i = iP (B). We need to show for any d ∈ [D] with id = i that
|Gd∗

B (ψσ)| = ∑
H,θ nH,θ |H d∗

B (θπ−1
0 σ)|, i.e. |Gd(ψ0π

−1)| = ∑
H,θ nHθ |H d(θπ−1)|,

where π−1 = π−1
0 σπB with πB : [r ] → B order-preserving; this is a case of the pre-

vious identity. �

8 Perspectives

The existence of designs established in [10] has seen several subsequent applica-
tions, some of which are particularly instructive as they require not only the exis-
tence but also that designs can be ‘almost entirely random’, in that the semi-random
(nibble) construction of approximate designs by Rödl [24] can be completed to an
actual design by an absorption process (Randomised Algebraic Construction in [10]
or Iterative Absorption in [4]). In this vein, we mention the proof by Kwan [15]
that almost all Steiner triple systems have perfect matchings, results on discrepancy
of high-dimensional permutations by Linial and Luria [17], and the existence of
bounded degree coboundary expanders of every dimension by Lubotzky, Luria and
Rosenthal [19]. These results suggest that the new results in [11] may create more
fruitful connections with the theory of high-dimensional expanders and other topics
in high-dimensional combinatorics.

In Design Theory, the most fundamental problems that remain open are those
concerning designs with large block sizes. Here we recall from the introduction the
Prime Power Conjecture on projective planes, where we know that the divisibility
conditions do not always suffice; the conjecture seems to reflect a philosophy that a
combinatorial description of a sufficient rich structure somehow implies an algebraic
characterisation. On the other hand, a conjecture that reflects the opposite philosophy
is that Hadamard matrices (see [7]) of order n should exist whenever the trivially
necessary conditions are satisfied (i.e. n is 1, 2 or divisible by 4). It is not clear how
the methods of [4, 5, 10, 11] could apply to such problems, where a more fruitful
direction may be the development of the approach of [14], which can allow for large
block sizes. There are also many well-known open problems in Design Theory that
do not involve large block sizes, and so may be more approachable by absorption
techniques. Here we mention Ryser’s Conjecture [25] that every Latin square of odd
order should have a transversal; equivalently, any triangle decomposition of K3(n)

for n odd should contain a triangle factor (perfect matching of triangles).
In Combinatorics, there are several natural directions in which one may seek to

generalise the existence of various types of design, from extremal and/or probabilis-
tic perspectives. A basic class of extremal questions is to determine the minimum
degree threshold (which has various possible definitions) for decompositions (see
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e.g. [5, 21]). Natural probabilistic directions are thresholds for the existence of cer-
tain designs in random hypergraphs (e.g. Steiner Triple Systems in G3(n, p)) or a
theory of Random Designs analogous to the rich theory of Random Graphs.

Acknowledgements I would like to thank an anonymous referee for very detailed and helpful
comments on the presentation of this paper.
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Efficient Convex Optimization
with Oracles

Yin Tat Lee, Aaron Sidford and Santosh S. Vempala

Abstract Minimizing a convex function over a convex set is a basic algorithmic
problem. We give a simple algorithm for the general setting in which the function
is given by an evaluation oracle and the set by a membership oracle. The algorithm
takes ˜O(n2) oracle calls and ˜O(n3) additional arithmetic operations. This results in
more efficient reductions among the five basic oracles for convex sets and functions
defined by Grötschel, Lovász and Schrijver (Algorithms Comb 2, (1988), [5]).

Keywords Convex optimization · Separation · Membership · Reductions
Subject Classifications 68W20 · 90C25

1 Introduction

Minimizing a convex function over a convex set is a basic algorithmic problem with
special cases of independent interest motivated by a variety of applications. The
classic book by Grötschel, Lovász and Schrijver [5] explored the problem and its
applications in a very general setting, when the input instance is specified by one of
a set of oracles. They show how convex optimization can be solved using variants
of the Ellipsoid method, with only a polynomial number of calls to an oracle for
the input set and a polynomial number of additional arithmetic operations. They use
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this approach to establish polynomial-time algorithms for a range of combinatorial
optimization problems. In the decades since then, themethods developed in this book
have served as a foundation for the field of algorithmic complexity and continue to do
so. Convex optimization today stands at the forefront of polynomial-time tractability.
Recent algorithmic improvements to important problems (e.g., maxflow, submodular
function minimization) have been closely tied to ideas and improvements for linear
and convex optimization [4, 7–11, 13, 16, 17].

The motivation of this paper is to understand the best possible complexity of
convex optimization in the setting of oracles. While [5] provided polynomial-time
reductions, some reductions entail rather high degree polynomials, and our goal
is to improve them. In particular, our focus is on the complexity of optimization
using a membership oracle for the feasible set of solutions and an evaluation ora-
cle for the objective function. The input is given by query access to the member-
ship and evaluation oracles, along with bounds 0 < r < R, and a point x0 ∈ K s.t.
B(x0, r) ⊆ K ⊆ B(x0, R), where B(x0, r) denotes the ball of radius r centered at
x0 ∈ R

n . The reduction in [5] from linear optimization to membership appears to
take �

(

n10
)

calls to the membership oracle. This bound was improved using the
random walk method and simulated annealing to n4.5 [6, 12] (for structured convex
sets, [1] provides improvements of up to a factor of

√
n.). On the other hand, it is

well-known that with a separation oracle for the set (and a subgradient oracle for
the function), this problem can be solved with Õ(n) oracle queries using any of [2,
11, 19], which improve on Õ(n2) query complexity obtained via the Ellipsoid algo-
rithm [5]. Nesterov and Spokoiny [14] have also given an algorithm with quadratic
dependence on the dimension, but a polynomial dependence on the error parameter.

Our main result in this paper is a randomized algorithm that minimizes a con-
vex function over a convex set using Õ(n2) membership and evaluation queries.
We obtain this result implementing a separation oracle for a convex set (and a sub-
gradient oracle for a convex function) using only Õ(n) membership and evaluation
queries (Sect. 3) and then using the known reduction from optimization to separation
(Sect. 4). We state the result informally below. The formal statements, which allow
an approximate membership oracle, are Theorems 3.6 and 4.1.

Theorem 1.1 Let K be a convex set specified by a membership oracle, a point x0 ∈
R

n, and numbers 0 < r < R such that B(x0, r) ⊆ K ⊆ B(x0, R). For any convex
function f given by an evaluation oracle and any ε > 0, there is a randomized
algorithm that computes a point z ∈ B(K , ε) such that.

f (z) ≤ min
x∈K f (x) + ε

(

max
x∈K f (x) − min

x∈K f (x)

)

with constant probability using O
(

n2 log2
(

nR
εr

))

calls to the membership oracle and
evaluation oracle and O(n3 logO(1)

(

nR
εr

)

) total arithmetic operations. �
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Fig. 1 The top diagram illustrates the relationships of the five oracles defined in [5]. The bottom
diagram illustrates the relationships of oracles for a convex function f and its convex conjugate f ∗

Protasov [15] gives an algorithm for approximately minimizing a convex function
defined over an explicit convex body in R

n , using O(n2 log(n) log(1/ε)) function
evaluations. Each iteration of his algorithm requires computing the convex hull, the
John ellipsoid and the centroid of a set maintained by the algorithm, which would
result in a very large number of calls to themembership oracle (in [15], the focus is on
the number of function calls and it is assumed that the set is known to the algorithm).
We remark that using the main idea from our algorithm, Protasov’s method can be
made more efficient, resulting in oracle complexity that is only a logarithmic factor
higher, although still with a much higher arithmetic complexity than the results of
this paper.

In Sect. 5 we develop two consequences of our main result. Grötschel, Lovász
and Schrijver [5] define five basic problems over convex sets as oracles (OPTi-
mization, SEParation, MEMbership, VIOLation and VALidity, see Sect. 2) and give
polynomial-time reductions between them. With our new algorithm, several of these
reductions become significantly more efficient, as summarized in Theorem 5.6. In
discussing these reductions, it is natural to introduce oracles for convex functions. The
relationships between set oracles and function oracles are described in Lemma 5.4
and those between function oracles in Lemma 5.5. Figure1 illustrates these relation-
ships and is an updated version of Fig. 4.1 from [5]. We suspect that the resulting
complexities of reductions are all asymptotically optimal in terms of the dimension,
up to logarithmic factors.
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2 Preliminaries

Our notation and conventions are chosen for simplicity and consistency with
Grötschel, Lov’asz and Schrijver [5]. We use [n] def= {1, ..., n}. For a convex function
f : Rn → R and x ∈ R

n we use ∂ f (x) to denote the set of subgradients of f at x :

∂ f (x) = {

v : ∀y, f (y) − f (x) ≥ vT (y − x)
}

.

For p > 1,δ ≥ 0, and K ⊆ R
n we denote the set of points at distance at most δ from

K in �p norm as follows:

Bp(K , δ)
def= {

x ∈ R
n : ∃y ∈ K such that ‖x − y‖p ≤ δ

}

For convenience, we overload notation by letting Bp(x, δ)
def= Bp({x}, δ) denote the

ball of radius δ around x . We also define

Bp(K ,−δ)
def= {x ∈ R

n : Bp(x, δ) ⊆ K },

i.e., the set of points such that the δ radius balls around them are contained in K .
Whenever p is omitted it is assumed that p = 2. Moreover, for any set K ⊆ R

n , we
let 1K denote a function from R

n to R ∪ {+∞} such that 1K (x) = 0 if x ∈ K and
1K (x) = ∞ otherwise.

We use ∗ to denote the convolution operator, i.e.

( f ∗ g)(x) =
∫

Rn

f (y)g(x − y)dy.

2.1 Oracles for Convex Sets

We recall the five basic oracles for a convex set, K ⊆ R
n defined in [5].

Definition 2.1 (Optimization Oracle (OPT)) Queried with a unit vector c ∈ R
n and

real numbers δ, δ′ > 0, with probability 1 − δ′, the oracle either

• finds a vector y ∈ R
n such that y ∈ B(K , δ) and cT x ≤ cT y + δ for all x ∈

B(K ,−δ), or
• asserts that B(K ,−δ) is empty.

We let OPTδ,δ′(K ) be the time complexity of this oracle. �

Definition 2.2 (Violation Oracle (VIOL)) Queried with a unit vector c ∈ R
n , a real

number γ and real numbers δ, δ′ > 0, with probability 1 − δ′, the oracle either

• asserts that cT x ≤ γ + δ for all x ∈ B(K ,−δ), or
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• finds a vector y ∈ B(K , δ) with cT y ≥ γ − δ.

We let VIOLδ,δ′(K ) be the time complexity of this oracle. �

Definition 2.3 (Validity Oracle (VAL)) Queried with a unit vector c ∈ R
n , a real

number γ , and real numbers δ, δ′ > 0, with probability 1 − δ′, the oracle either

• asserts that cT x ≤ γ + δ for all x ∈ B(K ,−δ), or
• asserts that cT x ≥ γ − δ for some x ∈ B(K , δ).

We let VALδ,δ′(K ) be the time complexity of this oracle. �

Definition 2.4 (Separation Oracle (SEP)) Queried with a vector y ∈ R
n and real

numbers δ, δ′ > 0, with probability 1 − δ′, the oracle either

• assert that y ∈ B(K , δ), or
• find a unit vector c ∈ R

n such that cT x ≤ cT y + δ for all x ∈ B(K ,−δ).

We let SEPδ,δ′(K ) be the time complexity of this oracle. �

Definition 2.5 (Membership Oracle (MEM)) Queried with a vector y ∈ R
n and real

numbers δ, δ′ > 0, with probability 1 − δ′, either

• assert that y ∈ B(K , δ), or
• assert that y /∈ B(K ,−δ).

We let MEMδ,δ′(K ) be the time complexity of this oracle. �

In themain reductions, we simplify notation by using δ = δ′, i.e., the same param-
eter δ > 0 to denote both the approximation error and the probability of failure.

2.2 Oracles for Convex Functions

Let f be a function from R
n to R ∪ {+∞}. Recall that the dual function f ∗is the

convex (Fenchel) conjugate of f , defined as

f ∗(y) = sup
x∈Rn

〈y, x〉 − f (x).

In particular f ∗(0) = inf f . We will use the following two oracles for functions.

Definition 2.6 (Evaluation Oracle (EVAL)) Queried with a vector y with ‖y‖2 ≤ 1
and real numbers δ, δ′ > 0, with probability 1 − δ′, the oracle finds an extended real
number α such that

min
x∈B(y,δ)

f (x) − δ ≤ α ≤ max
x∈B(y,δ)

f (x) + δ. (1)

We let EVALδ( f ) be the time complexity of this oracle. �
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Algorithm 1: SubgradConvexFunc( f, x, r1, ε)
Require: r1 > 0, ‖∂ f (z)‖∞ ≤ L for any z ∈ B∞(x, 2r1).

Set r2 =
√

εr1√
nL

.

Sample y ∈ B∞(x, r1) and z ∈ B∞(y, r2) independently and uniformly at random.
for i = 1, 2, · · · , n do

Let αi and βi denote the end points of the interval B∞(y, r2) ∩ {z + sei : s ∈ R}.
Set g̃i = f (βi )− f (αi )

2r2
where we compute f to withing ε additive error.

end
Output g̃ as the approximate subgradient of f at x .

Definition 2.7 (SubgradientOracle (GRAD))Queriedwith a vector ywith‖y‖2 ≤ 1
and real numbers δ, δ′ > 0, with probability 1 − δ′, the oracle outputs an extended
real number α satisfying (1) and a vector c ∈ R

n such that

α + cT (x − y) < max
z∈B(x,δ)

f (z) + δ for all x ∈ R
n (2)

We let GRADδ( f ) be the time complexity of this oracle. �

3 From Membership to Separation

In this section, we show that how to implement a separation oracle for a convex set
using a nearly linear number of queries to a membership oracle. We divide this into
two steps. In the first step (Sect. 3.1), we compute an approximate subgradient of a
given Lipshitz convex function. Using this, in the second step (Sect. 3.2), we compute
an approximate separating hyperplane. The algorithms are stated inAlgorithms 1 and
2. In the algorithms below when we refer to ‖∂ f (z)‖, we mean the supremum over
all elements of the set ∂ f (z). The parameter ρ below is a bound on the probability
of failure.

The output of the algorithm for separation is a halfspace that approximately con-
tains K , and the input point x is close to its bounding hyperplane. It uses a call to
the subgradient function above.

3.1 Subgradient for a Lipschitz Convex Function

Here we show how to construct an approximate subgradient (or approximate separa-
tion) for a Lipschitz convex function given an evaluation oracle. Our construction is
motivated by the following property of convex functions proved byBubeck andEldan
[3, Lemma 6]: for any Lipschitz convex function f , there exists a small ball B such
that f restricted to B is close to a linear function. By a small modification of their
proof, we show this property in fact holds for almost every small ball (Lemma 3.1).
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Algorithm 2: Separateε,ρ(K , x)

Require: B2(0, r) ⊂ K ⊂ B2(0, R).
if MEMε(K ) asserts that x ∈ B(K , ε) then

Output: “x ∈ B(K , ε)”.
else if x /∈ B2(0, R) then

Output: the halfspace {y : 0 ≥ 〈y − x, x〉}.
end
Let κ = R/r , αx (d) = maxd+αx∈K α and hx (d) = −αx (d) ‖x‖2.
The evaluation oracle of αx (d) can be implemented via binary search and MEMε(K ).
Compute g̃ = SubgradConvexFunc(hx , 0, r1, 4ε) with r1 = n1/6ε1/3R2/3κ−1 and the
evaluation oracle of αx (d).
Output: the halfspace

{

y : 56
ρ
n7/6R2/3κε1/3 ≥ 〈g̃, y − x〉

}

Leveraging this powerful fact, our algorithm is simple: we compute a random
partial difference in each coordinate to get a subgradient (Algorithm1).We prove that
as long as the box we compute over is sufficiently small and the additive error of our
evaluation oracle is sufficiently small, this yields an accurate separation/subgradient
oracle in expectation (Lemma 3.2). We then obtain high probability bounds using
Markov’s inequality.

Lemma 3.1 Let 0 < r2 ≤ r1 and f be a twice-differentiable convex function with
‖∇ f (z)‖∞ ≤ L for any z∈B∞(x, r1 + r2). For y ∈ B∞(x, r1), let g(y) = Ew∼B∞(y,r2)

(∇ f (w)) be the average of the gradient of f over over B∞(y, r2). Then,

Ey∈B∞(x,r1)Ez∈B∞(y,r2) ‖∇ f (z) − g(y)‖1 ≤ n3/2
r2
r1
L .

Proof Let h = 1
(2r2)n

f ∗ χB∞(0,r2) where χB∞(0,r2) is 1 on the set B∞(0, r2) and 0
outside. Using the divergence theorem, we have that

∫

B∞(x,r1)
�h(y)dy =

∫

∂B∞(x,r1)
〈∇h(y), n(y)〉 dy

where�h(y) = ∑

i
∂2

∂x2i
h(y) and n(y) is the normal vector on ∂B∞(x, r1) the bound-

ary of the box B∞(x, r1), i.e. standard basis vectors. Since f is L-Lipschitz with
respect to ‖·‖∞ so is h, i.e. ‖∇h(z)‖∞ ≤ L . Hence, we have that

Ey∈B∞(x,r1)�h(y) ≤ 1

(2r1)n

∫

∂B∞(x,r1)
‖∇h(y)‖∞ ‖n(y)‖1 dy

≤ 1

(2r1)n
· 2n(2r1)

n−1 · L

= nL

r1
.
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By the definition of h, we have that

Ey∈B∞(x,r1)Ez∈B∞(y,r2)� f (z) = Ey∈B∞(x,r1)�h(y) ≤ nL

r1
. (3)

Let ωi (z) = 〈∇ f (z) − g(y), ei 〉 for all i ∈ [n]. Since ∫

B∞(y,r2)
ωi (z)dz = 0, the

Poincare inequality for a box (see e.g. [18]) shows that

∫

B∞(y,r2)
|ωi (z)| dz ≤ r2

∫

B∞(y,r2)
‖∇ωi (z)‖2 dz.

Since f is convex, we have that
∥

∥∇2 f (z)
∥

∥

F ≤ Tr∇2 f (z) = � f (z) and hence

∑

i∈[n]
‖∇ωi (z)‖2 =

∑

i∈[n]

∥

∥∇2 f (z)ei
∥

∥

2 ≤ √
n

∥

∥∇2 f (z)
∥

∥

F ≤ √
n� f (z).

Using this with ‖∇ f (z) − g(y)‖1 = ∑

i |ωi (z)|, we have that
∫

B∞(y,r2)
‖∇ f (z) − g(y)‖1 dz ≤ √

nr2

∫

B∞(y,r2)
� f (z)dz.

Combining with the inequality (3) completes the proof. �

With the above fact in hand, asserting that on average, the gradient is approximated by
its average in a small ball, we now proceed to construct an approximate subgradient.

Lemma 3.2 Let r1 > 0 and f be a convex function. Suppose that ‖∇ f (z)‖∞ ≤ L
for any z ∈ B∞(x, 2r1) and suppose that we can evaluate f to within ε additive
error for ε ≤ r1

√
nL. Let g̃ = SubgradConvexFunc( f, x, r1, ε). Then, there is

random variable ζ ≥ 0 with Eζ ≤ 2
√

Lε
r1
n5/4 such that for any q

f (q) ≥ f (x) + 〈g̃, q − x〉 − ζ ‖q − x‖∞ − 8nr1L .

Proof We assume that f is twice differentiable. For general f , we can reduce to this
case by viewing it as a limit of twice-differentiable functions.

First, we assume that we can compute f exactly, namely ε = 0. Fix i ∈ [n]. Let
g(y) be the average of ∇ f over B∞(y, r2). Then, for the function g̃ computed by
the algorithm, we have that

Ez |g̃i − g(y)i | = Ez

∣

∣

∣

∣

f (βi ) − f (αi )

2r2
− g(y)i

∣

∣

∣

∣

≤ Ez
1

2r2

∫
∣

∣

∣

∣

d f

dxi
(z + sei ) − g(y)i

∣

∣

∣

∣

ds

= Ez

∣

∣

∣

∣

d f

dxi
(z) − g(y)i

∣

∣

∣

∣
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where we used that both z + sei and z are uniform distribution on B∞(y, r2) in the
last line. Hence, we have

Ez ‖g̃ − ∇ f (z)‖1 ≤ Ez ‖∇ f (z) − g(y)‖1 + Ez ‖g̃ − g(y)‖1 ≤ 2Ez ‖∇ f (z) − g(y)‖1 .

Now, applying the convexity of f yields that

f (q) ≥ f (z) + 〈∇ f (z), q − z〉
= f (z) + 〈g̃, q − x〉 + 〈∇ f (z) − g̃, q − x〉 + 〈∇ f (z), x − z〉
≥ f (z) + 〈g̃, q − x〉 − ‖∇ f (z) − g̃‖1 ‖q − x‖∞ − ‖∇ f (z)‖∞ ‖x − z‖1 .

Now, using f is L-Lipschitz between x and z, we have that f (z) ≥ f (x) − L ·
‖x − z‖1. Hence, we have

f (q) ≥ f (x) + 〈g̃, q − x〉 − ‖∇ f (z) − g̃‖1 ‖q − x‖∞ − 2L ‖x − z‖1 .

Note that ‖x − z‖1 ≤ n · ‖x − z‖∞ ≤ 2n(r1 + r2) by assumption.Moreover, we can

apply Lemma 3.1 to bound ‖∇ f (z) − g̃‖1 and use r2 =
√

εr1√
nL

≤ r1 to get

f (q) ≥ f (x) + 〈g̃, q − x〉 − ζ ‖q − x‖∞ − 8nr1L

with Eζ ≤ 2n3/2 r2r1 L .
Since we only compute f up to ε additive error, it introduces ε

2r2
additive error in

g̃i . Hence, we instead have that

Eζ ≤ 2n3/2
r2
r1
L + εn

2r2
.

Setting r2 = 1
2

√

εr1√
nL

completes the proof. �

3.2 Separation for a Convex Set

Throughout this subsection, let K ⊆ R
n be a convex set that contains B2(0, r) and

is contained in B2(0, R). Given some point x /∈ K , we wish to separate x from K
using a halfspace. To do this, we reduce this problem to computing an approximate
subgradient of a Lipschitz convex function hx (d) defined for points in K . Roughly
speaking, it is the “height” (or distance from the boundary) of a point d in the direction
of x . Let

αx (d) = max
d+αx∈K α and hx (d) = −αx (d) ‖x‖2 .
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Fig. 2 The convex height
function hx

Note that d + αx (d)x is the last point in K on the line through d ∈ K in the direction
of x , and −hx (d) is the �2 distance from this boundary point to d (Fig. 2).

Lemma 3.3 hx (d) is convex over K . �

Proof Let d1, d2 ∈ K and λ ∈ [0, 1]. Now d1 + αx (d1)x ∈ K and d2 + αx (d2)x ∈
K . Consequently,

[λd1 + (1 − λ)d2] + [λ · αx (d1) + (1 − λ) · αx (d2)] x ∈ K .

Therefore, if we let d
def= λd1 + (1 − λ)d2 we see that αx (d) ≥ λ · αx (d1) + (1 − λ) ·

αx (d2) and hx (λd1 + (1 − λd2) ≤ λhx(d1) + λhx(d2) as claimed. �

Lemma 3.4 hx is
(

R+δ
r−δ

)

-Lipschitz over points in B2(0, δ) for any δ < r . �

Proof Let d1, d2 be arbitrary points in B(0, δ). We wish to upper bound
|hx (d1) − hx (d2)| in terms of ‖d1 − d2‖2. We assume without loss of generality
that αx (d1) ≥ αx (d2) and therefore

|hx (d1) − hx (d2)| = |αx (d1) ‖x‖2 − αx (d2) ‖x‖2| = (αx (d1) − αx (d2)) ‖x‖2 .

Consequently, it suffices to lower bound αx (d2). We split the analysis into two cases.
Case 1: ‖d2 − d1‖2 ≥ r − δ. Since 0 ≥ hx (d1), hx (d2) ≥ −R − δ, we have that

|hx(d1) − hx (d2)| ≤ R + δ ≤ R + δ

r − δ
‖d2 − d1‖2 .

Case 2: ‖d2 − d1‖2 ≤ r − δ. We consider the point d3 = d1 + d2−d1
λ

with λ =
‖d2 − d1‖2 /(r − δ). Note that

‖d3‖2 ≤ ‖d1‖2 + 1

λ
‖d2 − d1‖2 ≤ δ + 1

λ
‖d2 − d1‖2 ≤ r.
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Hence, d3 ∈ K . Since λ ∈ [0, 1] and K is convex, we have that λ · d3 + (1 − λ) ·
[d1 + αx (d1)x] ∈ K . Now, we note that

λ · d3 + (1 − λ) · [d1 + αx (d1)x] = d2 + (1 − λ) · αx (d1)x

and this shows that

αx (d2) ≥ (1 − λ) · αx (d1) =
(

1 − ‖d2 − d1‖2
r − δ

)

· αx (d1).

Since d1 + αx (d1)x ∈ K ⊂ B2(0, R), we have thatαx (d1) · ‖x‖2 ≤ R + δ and hence

|hx (d1) − hx (d2)| = (αx (d1) − αx (d2)) · ‖x‖2
≤ αx (d1) · ‖x‖2 ‖d2 − d1‖2

r − δ

≤ R + δ

r − δ
‖d2 − d1‖2 .

In either case, as claimed we have

|hx(d1) − hx (d2)| ≤ R + δ

r − δ
‖d2 − d1‖2 .

Lemma 3.5 Let K be a convex set satisfying B2(0, r) ⊂ K ⊂ B2(0, R). Given any
0 < ρ < 1 and 0 ≤ ε ≤ r . With probability 1 − ρ, Separateε,ρ(K , x) outputs a
half space that contains K . �

Proof When x /∈ B2(0, R), the algorithm outputs a valid separation for B2(0, R).
For the rest of the proof, we assume x /∈ B(K ,−ε) (due to the membership oracle)
and x ∈ B2(0, R).

By Lemmas 3.3 and 3.4, hx is convex with Lipschitz constant 3κ on B2(0, r
2 ).

By our assumption on ε and our choice of r1, we have that B∞(0, 2r1) ⊂ B2(0, r
2 ).

Hence, we can apply Lemma 3.2 to get that

hx(y) ≥ hx (0) + 〈g̃, y〉 − ζ ‖y‖∞ − 24nr1κ (4)

for any y ∈ K . Note that − x
κ

∈ K and hx (− x
κ
) ≥ hx (0) − 1

κ
‖x‖2. Hence, we have

hx(0) − 1

κ
‖x‖2 = hx(− 1

κ
x) ≥ hx (0) +

〈

g̃,− 1

κ
x

〉

− 1

κ
ζ ‖x‖∞ − 24nr1κ.

Therefore, we have

〈g̃, x〉 ≥ ‖x‖2 − ζ ‖x‖∞ − 24nr1κ
2. (5)
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Now, we note that x /∈ B(K ,−ε). Using that B(0, r) ⊂ K , we have

(

1 − ε

r

)

K ⊂ B(K ,−ε).

Hence,
hx (0) ≥ −

(

1 − ε

r

)

‖x‖2 ≥ −‖x‖2 + εκ.

Therefore, we have

hx (0) + 〈g̃, x〉 ≥ −ζ ‖x‖∞ − 24nr1κ
2 − εκ

Combining this with (4), we have that

hx(y) ≥ 〈g̃, y − x〉 − ζ ‖y‖∞ − ζ ‖x‖∞ − 24nr1κ − 24nr1κ
2 − εκ

≥ 〈g̃, y − x〉 − 2ζ R − 48nr1κ
2 − εκ

for any y ∈ K . Recall fromLemma 3.2 that ζ is a positive random scalar independent

of y satisfying Eζ ≤ 2
√

3κε
r1
n5/4. For any y ∈ K , we have that hx (y) ≤ 0 and hence

ζ̃ ≥ 〈g̃, y − x〉 where ζ̃ is a random scalar independent of y satisfying

Eζ̃ ≤ 4

√

3κε

r1
n5/4R + 48nr1κ

2 + εκ

≤ 55n7/6R2/3ε1/3κ + εκ

≤ 56n7/6R2/3ε1/3κ

where we used r1 = n1/6ε1/3R2/3/κ and 0 ≤ ε ≤ r . The result then follows using
Markov’s inequality. �

Theorem 3.6 Let K be a convex set satisfying B2(0, 1/κ) ⊂ K ⊂ B2(0, 1). For any
0 ≤ η < 1

2 , we have that

SEPη(K ) ≤ O

(

n log

(

nκ

η

))

MEM(η/nκ)O(1) (K ).

Proof First, we bound the running time. Note that the bottleneck is to compute hx

with ε additive error. Since −O(1) ≤ hx (y) ≤ 0 for all y ∈ B2(0, O(1)), one can
compute hx (y) by binary search with O(log(1/δ)) calls to the membership oracle.

Next, we check that Separateδ,ρ(K , x) is indeed a separation oracle. Note that
g̃ may not be an unit vector and we need to re-normalize the g̃ by 1/ ‖g̃‖2. So, we
need to lower bound ‖g̃‖2.
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From (5) and our choice of r1, if δ ≤ ρ3

106n6κ6 , then we have that

〈g̃, x〉 ≥ ‖x‖2 − ζ ‖x‖∞ − 24nr1κ
2 ≥ r

4
.

Hence, we have that ‖g̃‖2 ≥ 1
4κ . Therefore, this algorithm is a separation oracle with

error 400
ρ
n7/6κ2δ1/3 and failure probability O(ρ + log(1/δ)δ).

SEP�(max(n7/6κ2δ1/3/ρ+ρ+log(1/δ)δ)(K ) ≤ O(log(1/δ))MEMδ(K ).

Setting ρ = √
n7/6κ2δ1/3 and δ = �

(

η6

n7/2κ6

)

, we have that

SEPη(K ) ≤ O

(

log

(

nκ

η

))

MEMη6/(n7/2κ6)(K ).

4 From Separation to Optimization

Once we have a separation oracle, our running times follow by applying a recent
convex optimization algorithm by Lee, Sidford and Wong [11]. Previous algorithms
[2, 19] also achieved Õ(n) oracle complexity, but with a higher polynomial number
of arithmetic operations. We remark that the theorem stated in [11] is slightly more
general then the one we give below, but since we only need to minimize linear
functions over convex sets, we state a simplified version here.

Theorem 4.1 (Theorem 42 of [11] Rephrased) Let K be a convex set satisfying
B2(0, r) ⊂ K ⊂ B2(0, 1) and let κ = 1/r . For any 0 < ε < 1, with probability 1 −
ε, we can compute x ∈ B(K , ε) such that

cT x ≤ min
x∈K cT x + ε ‖c‖2

with an expected running time of

O
(

n log
(nκ

ε

))

SEPδ(K ) + O
(

n3 logO(1)
(nκ

ε

))

,

where δ = ( ε
nκ

)�(1). In other words, we have that

OPTε(K ) = O
(

n log
(nκ

ε

))

SEP( ε
nκ

)�(1) (K ) + O
(

n3 logO(1)
(nκ

ε

))

.
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5 Reductions Between Oracles

In this section, we provide all other reductions among oracles defined in Sect. 2.1.
To simplify notation we assume the convex set is contained in the unit ball and the
convex function is defined on the unit ball. This can be donewithout loss of generality
by scaling and shifting.

We remark that it is known that OPT and VIOL are equivalent up to the cost of a
binary search.

Lemma 5.1 (Equivalence between OPT and VIOL) Given a convex set K con-
tained in the unit ball, we have that VIOLδ(K ) ≤ OPTδ(K ) and OPTδ(K ) ≤
O

(

log
(

1 + 1
δ

)) · VIOLδ(K ) for any δ > 0. �

5.1 Relationships Between Set Oracles and Function Oracles

Next, to handle all these relationships efficiently, we find it convenient to instead look
at oracles for convex functions and connect them to oracles for sets. For this purpose
we note the following simple relationship between MEM(K ) and EVAL(1K ) and
between SEP(K ) and GRAD(1K ).

Lemma 5.2 (MEM(K) and SEP(K)) are membership and subgradient oracle of 1K ]
For any convex set K ⊆ R

n, we have that MEMδ(K ) = EVALδ(1K ) and SEPδ(K ) =
GRADδ(1K ) for any δ > 0. �

Next, we note that the relationship between VAL(K ) and EVAL(1∗
K ) and between

OPT(K ) and GRAD(1∗
K ).

Lemma 5.3 (VAL(K) and OPT(K)) are membership and subgradient oracle of 1∗
K ]

Let K be a convex set such that B(0, r) ⊂ K ⊂ B(0, 1) and let κ = 1/r . For any
δ > 0, we have that

• VALδ(K ) ≤ EVALδ(1∗
K ) and EVALδ(1∗

K ) ≤ O(log(κ/δ)) · VAL�(δ/(κ log(1/δ))(K ).
• OPTδ(K ) ≤ GRADδ/4(1∗

K ) and GRADδ(1∗
K ) ≤ OPTδ/(3+κ)(K ).

where the oracle for 1∗
K is only defined on the unit ball. �

Proof For the first inequality, to implement the validity oracle, we need to compute
β such that

max
x∈B(K ,−δ)

cT x − δ ≤ β ≤ min
x∈B(K ,δ)

cT x + δ (6)

for any unit vector c and δ > 0. We note that

min
x∈B(c, δ

R )

1∗
K (x) ≥ 1∗

K (c) − δ = max
x∈K cT x − δ ≥ max

x∈B(K ,−δ)
cT x .
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Therefore, (1) shows that the output α by EVALδ(1∗
K ) with input −c satisfies

maxx∈B(K ,−δ) cT x ≤ α + δ. Similarly, we have that minx∈B(K ,δ) cT x ≥ α − δ. Thus,
the output of EVALδ(1∗

K ) satisfies the condition (6). Hence, we have that VALδ(K ) ≤
EVALδ(1∗

K ).
For the second inequality, to implement the evaluation oracle of 1∗

K , we need to
compute 1∗

K (c) = maxx∈K cT x for any vector c with ‖c‖2 ≤ 1. Using that B(0, r) ⊂
K , we have (1 − δ

r )K ⊂ B(K ,−δ). Hence, we have that

max
x∈B(K ,−δ)

cT x ≥ (1 − δ

r
)max

x∈K cT x ≥ max
x∈K cT x − κδ.

On the other hand, we have that

max
x∈B(K ,δ)

cT x ≤ max
x∈K cT x + δ.

Hence, by binary search on γ , VALδ(K ) allows us to estimate maxx∈K cT x up to
2(2 + κ)δ additive error.

For the third inequality, to implement the optimization oracle, we let c be the
vector we want to optimize. Let x be the output of GRADη(1∗

K ) on input c. Using
(2) and (1), we have that

min
z∈B(c,η)

1∗
K (z) + xT (d − c) < max

z∈B(d,η)
1∗
K (z) + 2η

for any vector d. Since 1∗
K is R-Lipschitz, we have that

1∗
K (c) + xT (d − c) < 1∗

K (d) + 4η.

Putting d = 0, we have

max
x∈K cT x = 1∗

K (c) ≤ cT x + 4η.

Setting η = δ/4, we see that x is a maximizer of maxx∈K cT x up to δ additive error.
For the fourth inequality, to implement the subgradient oracle, we let c be the

point we want to compute the subgradient such that ‖c‖2 ≤ 1. Let y be the output of
OPTδ(K ) with input c. Since (1 − δ

r )K ⊂ B(K ,−δ), we have that

max
x∈K cT x ≤ cT y + δ + κδ.

Therefore,

cT y + (d − c)T y ≤ max
x∈K cT x + δ + (d − c)T y ≤ dT y + (2 + κ)δ ≤ max

x∈K dT x + (3 + κ)δ.
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Let α = cT y. Since y ∈ B(K , δ) and satisfies the guarantee of optimization oracle,
α satisfies (1) with additive error δ. Furthermore, we note that

α + yT (d − c) ≤ 1∗
K (d) + (3 + κ)δ.

Hence, it satisfies (2) with additive error (3 + κ)δ. �

Given a convex function f : Bn → [0, 1], define the convex set

K f =
{(

x

2
,
t

4

)

such that x ∈ B(0, 1) and f (x) ≤ t ≤ 2

}

.

Lemma 5.4 • MEMδ(K f ) ≤ EVALδ/10( f ) and

EVALδ( f ) ≤ O(log(1/δ))MEM�(δ/ log(1/δ))(K f ).

• SEPδ(K f ) ≤ GRADδ/10( f ) and GRADδ( f ) ≤ O(log(1/δ))SEP�(δ/ log(1/δ))(K f ).
• GRADδ( f ∗) ≤ OPTδ/6(K f ).

�

Proof The first two sets of reductions are clear.
For the last one, to implement the subgradient oracle, we let c be the point we

want to compute the subgradient such that ‖c‖2 ≤ 1. Let (y, t ′) be the output of
OPTδ(K f ) with input (c,−1). Since (1 − 4δ)K f ⊂ B(K f ,−δ), we have that

max
(x,t)∈K f

(cT x − t) ≤ cT y − t ′ + 5δ.

Since (y, t ′) ∈ B(K f , δ), for any vector d, we have that

(cT y − t ′) + (d − c)T y ≤ max
(x,t)∈K f

(cT x − t) + (d − c)T y ≤ dT y − t ′ + 5δ ≤ max
(x,t)∈K f

(dT x − t) + 6δ.

Let α = cT y − t ′. Since y ∈ B(K , δ) and satisfies the guarantee of optimization
oracle, α is a good enough approximation of f ∗(c). Furthermore, we note that

α + yT (d − c) ≤ max
(x,t)∈K f

dT x + 5δ = f ∗(d) + 6δ

Hence, it satisfies (2) with additive error 6δ. �

5.2 Relationships Between Convex Function Oracles

Due to the equivalences above, we can focus on the more general problem of the
relationships between the following four function oracles:
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• EVALδ( f ), GRADδ( f ), EVALδ( f ∗), GRADδ( f ∗).

Lemma 5.5 Let f be a convex function defined on the unit ball with value between
0 and 1. For any 0 ≤ δ ≤ 1

2 , we have that

• EVALδ( f ) ≤ GRADδ( f ) ≤ O(n log2( n
δ
))MEM(δ/n)O(1) (K f )

≤ O(n log2(
n

δ
))EVAL(δ/n)O(1) ( f )

• GRADδ( f ∗) ≤ OPTδ/6(K f ) and

OPTδ/6(K f ) ≤ O
(

n log
(n

δ

))

SEP(δ/n)O(1) (K f ) + O
(

n3 logO(1)
(n

δ

))

≤ O
(

n log
(n

δ

))

· GRAD(δ/n)O(1) ( f ) + O
(

n3 logO(1)
(n

δ

))

.

Proof The bound EVALδ,η( f ) ≤ GRADδ,η( f ) is immediate from their definition.
To bound GRAD( f ) by EVAL( f ), we use Lemma 5.4 and get that

GRADδ( f ) ≤ O(log(δ−1))SEP�(δ/ log(δ−1))(K f ).

Next, we note that for every x ∈ Bn(0, 1),the point
(

x
2 , t

) ∈ K f for every t ∈
[

f (x)
4 , 1

2

]

. Therefore, B
((

0, 3
8

)

, 0.1
) ⊂ K f ⊂ B(0, 1). Hence (after a small shift

to center the inner ball at zero, which doesn’t affect the outcome), Theorem 3.6
shows that

SEPδ(K f ) ≤ O(n log(
n

δ
))MEM(δ/n)O(1) (K f ).

Hence, we have that

GRADδ( f ) ≤ O(n log2(
n

δ
))MEM(δ/n)O(1) (K f ).

Applying Lemma 5.4 again, we have the result.
To bound GRAD( f ∗) by GRAD( f ), we again use Lemma 5.4 and Theorem 4.1

to get

GRADδ( f
∗) ≤ OPTδ/6(K f ) ≤ O

(

n log
(n

δ

))

SEP(δ/n)O(1) (K f ) + O
(

n3 logO(1)
(n

δ

))

≤ O
(

n log
(n

δ

))

· GRAD(δ/n)O(1) ( f ) + O
(

n3 logO(1)
(n

δ

))

.
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5.3 Relationships Between Convex Set Oracles

Theorem 5.6 For any convex set K such that B(0, 1/κ) ⊂ K ⊂ B(0, 1), for any
0 < δ < 1

2 , we have that

1. VIOLδ(K ) ≤ OPTδ(K ) and OPTδ(K ) ≤ O(log(1 + 1
δ
)) · VIOL�(δ/ log(1/δ))(K ).

2. MEMδ(K ) ≤ SEPδ(K ) and SEPδ(K ) ≤ O(n log( nκ
δ

)) · MEM(δ/nκ)O(1) (K ).

3. VALδ(K ) ≤ OPTδ(K ) and OPTδ(K ) ≤ O(n log3( nκ
δ

)) · VAL(δ/nκ)O(1) (K ).

4. OPTδ(K ) = O
(

n log
(

nκ
δ

) · SEP(δ/(nκ))O(1) (K ) + n3 logO(1)
(

nκ
δ

))

.
5. SEPδ(K ) = O

(

n log
(

n
δ

) · OPT(δ/(nκ))O(1) (K ) + n3 logO(1)
(

n
δ

))

. �

Proof (1) follows from Lemma 5.1. (2) follows from Theorem 3.6. (4) follows from
Theorem 4.1.

For (3), we use Lemmas 5.3, 5.5 and 5.3 to get

OPTδ(K ) ≤ GRADδ/4(1
∗
K ) ≤ O(n log(

n

δ
))EVAL(δ/n)O(1) (1∗

K )

≤ O(n log2(
nκ

δ
))VAL(δ/nκ)O(1) (K )

where we used that 1∗
K is a function between 0 and 1.

For (5), we use Lemmas 5.2, 5.5 and 5.3

SEPδ(K ) = GRADδ(1K ) ≤ O
(

n log
(n

δ

)

· GRAD(δ/n)O(1) (1∗
K ) + n3 logO(1)

(n

δ

))

≤ O
(

n log
(n

δ

)

· OPT(δ/(nκ))O(1) (K ) + n3 logO(1)
(n

δ

))

where we used that 1∗
K is a function between 0 and 1. �

Acknowledgements We thank Sebastien Bubeck, Ben Cousins, Sham Kakade and Ravi Kannan
for helpful discussions, Yan Kit Chim for making the illustrations, and Xiaodi Wu for pointing out
some typos in a previous version of the paper. This work was supported in part by NSF Awards
CCF-1563838, CCF-1717349 and CCF1740551.

References

1. Jacob D. Abernethy and Elad Hazan. Faster convex optimization: Simulated annealing with an
efficient universal barrier. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2520–2528, 2016.

2. Dimitris Bertsimas and Santosh Vempala. Solving convex programs by randomwalks. Journal
of the ACM (JACM), 51(4):540–556, 2004.

3. Sébastien Bubeck and Ronen Eldan. Multi-scale exploration of convex functions and bandit
convex optimization. arXiv preprint arXiv:1507.06580, 2015.

4. Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in undi-

http://arxiv.org/abs/1507.06580


Efficient Convex Optimization with Oracles 335

rected graphs. In Proceedings of the forty-third annual ACM symposium on Theory of comput-
ing, pages 273–282. ACM, 2011.

5. Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combi-
natorial optimization, volume 2. Algorithms and Combinatorics, 1988.

6. A. T. Kalai and S. Vempala. Simulated annealing for convex optimization. Math. Oper. Res.,
31(2):253–266, 2006.

7. Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicommodity gener-
alizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 217–226. SIAM, 2014.

8. Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing maximum flows
using electrical flows. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 755–764. ACM, 2013.

9. Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o(sqrt(rank)) iterations and faster algorithms for maximum flow. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 424–433. IEEE,
2014.

10. Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear
programming. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Sympo-
sium on, pages 230–249. IEEE, 2015.

11. Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 1049–1065. IEEE, 2015.

12. L. Lovász and S. Vempala. Fast algorithms for logconcave functions: sampling, rounding,
integration and optimization. In FOCS, pages 57–68, 2006.

13. AleksanderMadry. Navigating central path with electrical flows: From flows to matchings, and
back. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on,
pages 253–262. IEEE, 2013.

14. Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics, 17(2):527–566, Apr 2017.

15. V. Yu. Protasov. Algorithms for approximate calculation of the minimum of a convex function
from its values. Mathematical Notes, 59(1):69–74, 1996.

16. Jonah Sherman. Nearly maximum flows in nearly linear time. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 263–269. IEEE, 2013.

17. Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity flow. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 452–460, 2017.

18. Stefan Steinerberger. Sharp l 1-poincaré inequalities correspond to optimal hypersurface cuts.
Archiv der Mathematik, 105(2):179–188, 2015.

19. P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets.Math. Prog.,
73:291–341, 1996.



Approximations of Mappings

Jaroslav Nešetřil and Patrice Ossona de Mendez

Abstract We consider mappings, which are structure consisting of a single function
(and possibly some number of unary relations) and address the problem of approxi-
mating a continuous mapping by a finite mapping. This problem is the inverse prob-
lem of the construction of a continuous limit for first-order convergent sequences
of finite mappings. We solve the approximation problem and, consequently, the full
characterization of limit objects for mappings for first-order (i.e. FO) convergence
and local (i.e. FOlocal) convergence. This work can be seen both as a first step in the
resolution of inverse problems (like Aldous–Lyons conjecture) and a strengthening
of the classical decidability result for finite satisfiability in Rabin class (which con-
sists of first-order logic with equality, one unary function, and an arbitrary number
of monadic predicates). The proof involves model theory and analytic techniques.

Keywords Structural limit ·Mappings ·MSC: 03C13 (Finite structures)

1 Introduction

We consider the following approximation problems: Given an infinite structure with
given first-order properties, as well as satisfaction probabilities for every first-order
formula, can one find a finite structure with approximately similar properties and
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satisfaction probabilities? What if we are not given the infinite structure, but only
the satisfaction probability of first-order formulas?

These problems are in general intractable, as (even when considering no prob-
abilities of satisfaction) it is known that deciding whether a sentence satisfied by
an infinite structure is also satisfied by a finite structure is (in general) undecidable.
Intensive studies have been conducted to determine decidable classes of structures
and fragments of first-order logic. A maximal example is the Rabin class, which
consists of all first-order sentences with arbitrary quantifier prefix and equality, one
unary function symbol, and an arbitrary number of unary relation symbols (but no
function or relation symbols of higher arity). The satisfiability problem and the finite
satisfiability problem for this class are both decidable, but not elementary recur-
sive [1].

Another particular case of our problem was considered extensively in the con-
text of topological group theory, ergodic theory and graph limits, and concerns the
class of bounded degree graphs (one binary symmetric symbol) and local first-order
formulas with a single free variable. It can be formulated as follows: consider a
unimodular probability measure μ defined on the set G∗ of all countable rooted
connected graphs endowed with the metric defined by the rooted neighborhood iso-
morphisms. Can μ be approximated by finite graphs? This question is known as
the Aldous–Lyons conjecture. It is not just an isolated problem as a positive solu-
tion would have far-reaching consequences, by implying that all finitely generated
groups are sofic (answering a question byWeiss [24]), the direct finiteness conjecture
of Kaplansky [11] on group algebras, a conjecture of Gottschalk [8] on surjunctive
groups in topological dynamics, the Determinant Conjecture on Fuglede–Kadison
determinants, and Connes’ Embedding Conjecture for group von Neumann algebras
[3]. It is easily shown that Aldous-Lyons conjecture can be reduced to the approxi-
mation problem for quantifier-free formulas on structures with two functions f and
g satisfying f 2 = g3 = Id.

In this paper we solve the approximation problem for mappings, i.e. structures
consisting of a set X and an (endo)function f : X → X , and more generally we
solve it for the whole Rabin class. At lest at first glance it is perhaps surprising that
such a seemingly special case is quite difficult to handle.

Approximation problems recently appeared in the context of graph limits as so
called inverse problems. In order to make the connection clear, we take time for
a quick review of some of the fundamental notions and problems encountered in
the domain of graph limits, and how they are related to the study of limits and
approximations of algebras (that is of functional structures).

A sequence of (colored) graphs with maximum degree at most d converges if,
for every integer r , the distribution of the isomorphism type of the ball of radius r
rooted at a random vertex (drawn uniformly at random) converges. The limit object
of a local convergent sequence of graphs is a graphing, that is a graph on a standard
Borel space, which satisfies a Mass Transport Principle, which amounts to say that
for every Borel subsets A, B it holds that
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∫
A
degB(v) dv =

∫
B
degA(v) dv.

An alternative description of graphings is as follows: a graphing is defined by a finite
number of measure preserving involutions f1, . . . , fD on a standard Borel space,
which define the edges of the graphing as the union of the orbits of size two of
f1, . . . , fD .
The idea to conceptualize limits of structures by means of convergence of the

satisfaction probability of formulas in a fixed fragment of first-order logic has been
introduced by the authors in [17]. In this setting, a sequence (An)n∈N of structures is
convergent (or X-convergent) if, for every first-order formula φ in a fixed fragment X
the probability 〈φ, An〉 that φ is satisfied in An for a random assignment of elements
of An to the free variables of φ converges as n grows to infinity. If X is the set of all
first-order formulas, then we speak about FO-convergence. This definition allowed
us to consider limits of general combinatorial structures, and was applied to limits of
sparse graphs with unbounded degrees [7, 18, 20, 21], matroids [12], and tree semi
lattices [2].

The main result of [19] is the construction of a limit object for FO-convergent
sequences of mappings (a mapping being an algebra with a single function symbol
and—possibly—finitely many unary predicates).

Theorem 1.1 Every FO-convergent sequence (Fn)n∈N of finite mappings such that
limn→∞ |Fn| = ∞ has a modeling mapping limit L, such that

1. the probability measure νL is atomless;
2. the complete theory of L has the finite model property;
3. L satisfies the finitary mass transport principle.

Let us explain the (undefined) notions appearing in this theorem:

(i) A modeling L is a totally Borel structure—that is a structure whose domain L
is a standard Borel space, such that every definable set is Borel—endowed with
a probability measure νL.

(ii) The measure νL is atomless (or continuous, or diffuse) if for every v ∈ L it
holds νL({v}) = 0. (As we consider only standard Borel spaces, this condition
is equivalent to the condition that for every Borel subset A with νL(A) > 0
there exists a Borel subset B of A with νL(A) > νL(B) > 0.) The necessity
of this condition is witnessed by the formula x1 = x2, as 〈x1 = x2, F〉 = 1/|F |
holds for every finite mapping F. This conditions is thus required as soon as we
consider QF-convergence.

(iii) the finitary mass transport principle (FMTP) means that for every Borel subsets
X, Y of L and every positive integer k it holds

(∀v ∈ Y ) | f −1(v) ∩ X | = k ⇒ νL( f −1(Y ) ∩ X) = kνL(Y )

(∀v ∈ Y ) | f −1(v) ∩ X | > k ⇒ νL( f −1(Y ) ∩ X) > kνL(Y )
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This condition can be reformulated as follows: the set of all y such that f −1
F (y)

is infinite has zero νF-measure, and for every Borel subsets X and Y of L (with
| f −1

F (y)| < ∞ for all y ∈ Y ) we have

νF(X ∩ f −1
F (Y )) =

∫
Y
| f −1

F (y) ∩ X | dνF(y). (1)

When X and Y are definable subsets, the above condition is clearly required for
being a limit.

(iv) the finite model property means that for every sentence θ satisfied by L there
exists a finite mapping F that satisfies θ . This is indeed a necessary condition for
L to be an elementary limit of finite mappings hence necessary as soon as we
consider FO-convergence. As mentioned, the problem of existence of a finite
mapping F satisfying a given sentence θ is decidable, though with huge time
complexity.

Theorem 1.1 was proved as a combination of general results about limit distribu-
tions from [17] and methods developed in [18] for the purpose of graph-trees. This
theorem has the following corollary.

Corollary 1.2 Every FOlocal-convergent sequence (Fn)n∈N of finite mappings (with
limn→∞ |Fn| = ∞) has a modeling mapping FOlocal-limit L, such that

1. the probability measure νL is atomless;
2. L satisfies the finitary mass transport principle.

Proof Consider an FO-convergent subsequence. Such a subsequence exists by
(sequential) compactness of FO-convergence. According to Theorem 1.1 this subse-
quencehas amodelingmapping limitL satisfying all the requirements. Thismodeling
limit is then a modeling FOlocal-limit of (Fn)n∈N.

The inverse problems aim to determine which objects are limits of finite mappings
(for given types of convergence). The main contribution of this paper is the solution
of such inverse problems. Namely, for FO and FOlocal-convergence we show how
to approximate a modeling mapping by a finite mapping. (For QF-convergence the
inverse problem is much easier and was solved in [19].) The following are the main
results of this paper.

Theorem 1.3 Every atomless modeling mapping L that satisfies the finitary mass
transport principle is the FOlocal-limit of an FOlocal-convergent sequence of finite
mappings.

Theorem 1.4 Every atomless modeling mapping L with the finite model property
that satisfies the finitary mass transport principle is the FO-limit of an FO-convergent
sequence of finite mappings.
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Here is a rough outline of the proof of Theorem 1.4:

1. reduce to the case where the mapping modeling L has no connected component
of measure greater than ε;

2. consider a derived modeling mapping L′ obtained by removing all the elements
with zero-measure rank-R local type;

3. cut all the short circuits by means of interpretation;
4. approximate the measure on the rank-R local types by a rational measure μ;
5. construct a finite mapping F such that the measure of each rank-r local type t is

equal to what is derived from μ;
6. consider a finite mappingM, which is equivalent toL up to a huge quantifier rank,

and merge it with a great number of copies of F to form an FO-approximation of
L;

7. deduce, using interpretation, an FO-approximation of the original mapping mod-
eling.

Theorem 1.3 is then proved by considering separately large and small connected
components, and following a similar strategy as the proof of Theorem 1.4:

1. every connected modeling mapping is close (in the sense of local conver-
gence) to a modeling mapping with finite height; such a modeling map-
ping has the finite model property, hence maybe FO-approximated thanks to
Theorem 1.4;

(2–5) for a mapping modeling without connected components of measure greater
than ε, construct a finite mapping F as in the steps (2)–(5) of the proof of
Theorem 1.4;

6. then complete F by means of small models of missing necessary local types,
merged with a great number of copies of F;

7. the FOlocal approximation is obtained as the disjoint union of the FOlocal

approximations of large connected components and the FOlocal
1 approxima-

tion of the remaining components (after careful tuning of the respective
orders).

It should be noted that Theorems 1.3 and 1.4 allow to obtain approximations from
a mapping modeling, which may have only finitely many unary predicates in its
signature. The case where we allow infinitely many unary predicates easily restricts
to this case, as (for given metrization of FO- and FOlocal-convergence) for every
ε > 0 there exist ε′ > 0 and C ∈ N such that any ε′-approximation of the mapping
considering only the first C unary predicates is an ε-approximation of the mapping
when considering all the unary predicates. Hence Theorems 1.4 and 1.3 solves the
approximation problem for the Rabin class modelings, too.

As a pleasing consequence of our general methods we believe that Theorems 1.3
and 1.4 can be formulated in a setting where we do not approximate a particular
modeling L but rather consider the satisfaction probability of formulas. This would
give a full solution of the second type approximation problem for the Rabin class.
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2 Preliminaries

2.1 Facts from Finite Model Theory

We recall some basic definitions and facts from finite model theory. The interested
reader is refereed to [4, 9, 10, 14–16].

A signature σ is a list function or relation symbols with their arities. A σ -structure
A is defined by its domain A, its signature σ , and the interpretation in A of all the
relations and functions in σ . The Gaifman graph of a σ -structure A is the graph with
vertex set A, where two elements are adjacent if they belong to a same relation or
are related by a function application. When we speak about the neighborhood of an
element x in A or about the distance between two elements x and y in A, we mean
the set of elements adjacent to x in the Gaifman graph of A or the graph distance
between x and y in the Gaifman graph of A. Also, for u ∈ A and r ∈ N we denote
by Br (A, u) the r-ball of u in A, that is the set of all elements of A at distance at
most r from u.

We denote by FO(σ ) the set of all first-order formulas (in the language defined by
the signature σ ). A formula φ (with p free variables) is local if its satisfaction only
depends on a fixed r -neighborhood of its free variables, and we denote by FOlocal(σ )

the set of all local formulas. Also, we denote by QF(σ ) the set of all quantifier
free formulas. When we consider sub-fragments where we restrict free variables to
x1, . . . , x p, we will add p as a subscript, as in FOp(σ ) or FOlocal

p (σ ).
For a first-order formula φ with p free variables and a σ -structure A be define

φ(A) as the set of all p-tuples of elements ofA that satisfy the formula φ inA, that is:

φ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}.

In the following definition we consider signatures with a function symbol and
finitely many unary predicates. Although Rabin class allows infinitely many unary
predicates, this is not a real restriction in the context of approximation problems, but
this assumption will make the definitions and notations simpler.

Definition 2.1 A mapping is a σ -structure, where the signature σ consists of
a single unary function symbol f and (possibly) finitely many unary relation
symbols M1, . . . , Mc.

Let F be a mapping. We denote by F the domain of F and by fF the interpretation
of the symbol f in F (thus fF : F → F). Unary relations will be denoted by MF

i
(or simply just Mi ). Note that the distance dist(u, v) between two elements u, v in a
mapping F is the minimum value a + b such that a, b ≥ 0 and f a

F (u) = f b
F (v).

Every formulaφ ∈ FOlocal
1 (σ ) is logically equivalent to a formulawith no function

composition. Such formulas we call clean.
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Definition 2.2 The quantifier rank of a formula φ, denoted by qrank(φ), is
the minimum number of nested quantifiers in a clean formula equivalent to φ.

The local rank of a local formula φ, denoted by lrank(φ), is the minimum
number of nested quantifiers in a clean formula equivalent to φ in which
quantification is restricted to previously defined variables and their neighbors.

It is easily checked that for a given finite signature σ there exist only finitely
many local formulas φ ∈ FOlocal

1 (σ ) that have local rank at most r (up to logical
equivalence).

A local type is any maximal consistent subset t of FOlocal
1 (σ ). The local type of

an element v of a mapping F is the local type t such that F |= φ(v) holds for every
φ ∈ t . A rank r local type is the subset of a all formulas with rank at most r in a local
type. We denote by Tr (σ ) the set of all rank r local types for signature σ . We denote
by TypeF

r (v) the rank r local type of an element v in a mapping F.
Note that for every rank r local type t ∈ Tr there exists a clean formula ϕt ∈ t (in

which quantification is restricted to previously defined variables and their neighbors)
such that ϕt is logically equivalent to the conjunction of all the formulas in t . (The
formula ϕt will always have this meaning.) Thus for every σ -structure F and every
v ∈ F it holds that

TypeF
r (v) = t ⇐⇒ F |= ϕt (v).

For r < r ′, t ∈ Tr (σ ) and t ′ ∈ Tr ′(σ ) we say that t ′ refines t , and write t ′ ≺ t , if
ϕt ′ � ϕt (i.e. if t ′ ⊇ t).

Given two mappings F and F′, it is well known that F and F′ satisfy the same
sentences with quantifier rank at most r , what is denoted by F ≡r F′, if and only if
Duplicator has a winning strategy for the r -rounds Ehrenfeucht–Fraïssé game.

Given two elements v ∈ F and v′ ∈ F ′, testing whether TypeF
r (v) = TypeF′

r (v′)
can be done using a variant of a Ehrenfeucht–Fraïssé game: We start by defining
u0 = v and u′

0 = v′. At each round 1 ≤ k ≤ r , Spoiler chooses in F an element
uk adjacent to some of u0, . . . , uk−1 (or in F ′ an element u′

k adjacent to some of
u′
0, . . . , u′

k−1). Then Duplicator should choose u′
k ∈ F ′ (or uk ∈ F) so that for every

0 ≤ i, j ≤ k it holds

F |= ui = u j ⇐⇒ F′ |= u′
i = u′

j

F |= f (ui ) = u j ⇐⇒ F′ |= f (u′
i ) = u′

j

Spoiler wins if Duplicator cannot make such a choice and k ≤ r ; otherwise, Dupli-
cator wins. It is easily checked that TypeF

r (v) = TypeF′
r (v′) if and only if Duplicator

has a winning strategy. We call this variant of Ehrenfeucht–Fraïssé game the local
Ehrenfeucht–Fraïssé game.

For r ≤ r ′ we define the natural projection πr mapping an r ′-type t to the r -type
πr (t), which is just the subset of all formulas in t with rank at most r . Obviously, if
r ′ > r then πr (Type

F
r ′(v)) = TypeF

r (v).
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Let σ, σ ′ be signatures of mappings. Let M1, . . . , Ma be the symbols of the unary
symbols in σ ′ (as usual f is the function symbol). The following is a standard
definition.

Definition 2.3 A basic interpretation I of σ ′-structures into σ -structures is
defined by a formulas κ1, . . . , κa with a single free variable, and a formula η

with two free variables defining the graph of an endofunction, that is such that

� ∀x ∃y
(
η(x, y) ∧ (∀z)(η(x, z) → (z = y))

)
.

For every σ -structure A, the σ ′-structure B = I(A) has same domain as A
(i.e. B = A), its relations are defined by

B |= Mi (v) ⇐⇒ A |= κi (v)

and fB is (implicitly) defined by

B |= f (u) = v ⇐⇒ A |= η(u, v).

The interpretation I is trivial if η(x, y) := ( f (x) = y) (hence fB = fA).

For every first order formula φ with p free variables (on the language of σ ′-
structures) the first-order formula I(φ) is obtained by replacing (in a clean formula
logically equivalent to φ) terms Mi (x) by κi (x) and terms f (x) = y by η(x, y). The
formula I(φ) is such that for every σ -structure A and every v1, . . . , vp ∈ B it holds

B |= φ(v1, . . . , vp) ⇐⇒ A |= I(φ)(v1, . . . , vp).

Note that if φ and all the formulas defining I are local then I(φ) is local and

lrank(I(φ)) ≤ lrank(φ) +max(lrank(κ1), . . . , lrank(κa), lrank(η)).

2.2 Structural Limits

We recall here some definitions and notations from [17].
Recall that a σ -structure is Borel if its domain is a standard Borel space, and all

the relations and functions of the structure are Borel. For instance, the mapping F
is Borel if the function fF : F → F and the subsets Mi (F) = {v ∈ F : F |= Mi (v)}
are Borel;
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A stronger notion has been proposed in [17]:

Definition 2.4 A σ -modeling (or a modeling when σ is implied) is a σ -
structure M, whose domain M is a standard Borel space endowed with a
probability measure νM, and with the property that every definable subset of a
power of M is Borel.

If F is a finite structure, it will be practical to implicitly consider a uniform
probability measure νF on F , for the sake of simplifying the notations.

Note that every modeling mapping is obviously Borel, but the converse does not
hold true in general, as shown by the next example.

Remark 2.5 A counter-example of Lebesgue’s belief that the projection to R of a
Borel subset ofR2 is Borel has been given by Suslin [22]. It follows that there exits a
Borel subset S ⊆ (0, 1] × (0, 1], whose first projection (on (0, 1]) is not Borel. Con-
sider the mapping F with domain [0, 1] × [0, 1], and signature σ = ( f, M) (where
f is the function symbol and M is a unary relation), with M(F) = S and

fF(x, y) =
{

(x, 0) if y �= 0

(0, 0) otherwise

The mapping M is obviously Borel, but fails to be a modeling, as the set fF(S) is
first-order definable but not Borel.

Definition 2.6 Let F be a Borel σ -structure with associated probability mea-
sure νF, and let φ ∈ FO(σ ) be a formula with p free variables, such that φ(F)

is a Borel subset of F p.
The Stone pairing of φ and F is the satisfaction probability of φ in F for

independent random assignments of elements of F to the free variables of φ

with probability distribution νF, that is:

〈φ, F〉 = ν
⊗p
F (φ(F)), (2)

where ν
⊗p
F stands for the product measure

p times︷ ︸︸ ︷
νF ⊗ · · · ⊗ νF on F p.

Note that if F is finite (meaning that F is finite) it holds that

〈φ, F〉 = |φ(F)|
|F |p

.
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Definition 2.7 Given a fragment X of FO(σ ), a sequence (Fn)n∈N of finite σ -
structures is X-convergent if, for every φ ∈ X the limit limn→∞〈φ, Fn〉 exists.

Moreover, a modeling L is a modeling X-limit of the sequence (Fn)n∈N and

we note Fn
X−→ L if, for every first-order formula φ ∈ X it holds that

〈φ, L〉 = lim
n→∞〈φ, Fn〉.

Note that if L is a modeling X -limit of (Fn)n∈N, the pairing 〈φ, L〉 is
defined for every first-order formula φ, but its value is required to be equal to
limn→∞〈φ, Fn〉 only when φ is in X .

Given a fragment X of FO(σ ) (closed under ∨,∧, and¬) the equivalence classes
of formulas in X with respect to logical equivalence form an at most countable
Boolean algebra, the Lindenbaum–Tarski algebra LX of X . The Stone dual to this
algebra is denoted by S(LX ). This is a Polish space, the clopen sets of which are in
bijection with the elements of LX , the topology of which is generated by its clopen
sets, and the points ofwhich are themaximal consistent subsets ofLX (that is Boolean
algebra homomorphisms fromLX to the 2 elements Boolean algebra). For instance, if
X = FOlocal

1 then S(LX ) is the space of local types. Considering the Borel σ -algebra
gives S(LX ) the structure of a standard Borel space.

The following representation theorem was proved in [17] (for general σ and
fragment X ):

Theorem 2.8 To every finite σ -structure or σ -modeling F corresponds a
unique probability measure μF on S(LX ), such that for every formula φ ∈ X
it holds that

〈φ, F〉 =
∫

S(LX )

IK (φ)(t) dμF(t), (3)

where IK (φ) denotes the indicator function of the clopen subset K (φ) of
S(LX ) dual to φ. Moreover, a sequence (Fn)n∈N is X-convergent if and only
if the corresponding sequence of probability measures on S(LX ) is weakly
convergent.

Note that if the fragment X includes all the fragment FO0 of all first-order sen-
tences the support of μF projects into a single point Th(μF) of S(LFO0), which is
(equivalently) characterized by the property

∀t ∈ Supp(μF) Th(μF) = t ∩ QF0. (4)

We call Th(μF) the complete theory of μF, as this is nothing but the complete theory
of F retrieved from μF.
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In this paper we shall be particularly interested by the probability measures μloc
F

defined by a σ -structure F on the space T∞(σ ) of local types (which is dual to the
Lindenbaum–Tarski algebra of local formulas with a single free variable) and μ

loc(r)
F

defined by a σ -structure F on the (finite) space Tr (σ ) of rank r local types (which is
dual to the Lindenbaum–Tarski algebra of local formulas with a single free variable
and local rank at most r ).

We denote by πr the projection from the space of consistent subsets of FOlocal
1 to

the space of consistent subsets of FOlocal
1 with maximum quantifier rank at most r .

πr (t) = {φ ∈ t : lrank(φ) ≤ r}.

Note that πr maps local types to local types with local rank at most r .
The mapping t �→ πr (t) is measurable and it is immediate that μloc(r)

F is the push-
forward π∗

r (μloc
F ) by πr of the probability measure μloc

F (and that a similar statement

holds with any of the probability measures μ
loc(r ′)
F with r ′ > r ).

For an integer r and a σ -modeling F, the following easy consequence of (2) and
(3) will be helpfull: for every t ∈ Tr (σ ) it holds that

μ
loc(r)
F (t) = νF(ϕt (F)) = 〈ϕt , F〉. (5)

2.3 Measuring Proximity

The topology of FO-convergence can be metrized by using the following ultrametric

dFO(M, N) =
∑
p≥0

∑
r≥0

2−(p+r)Dist p,r (M, N), (6)

where

Dist p,r (M, N) = sup
{
|〈φ, M〉 − 〈φ, N〉| : φ ∈ FOp, qrank(φ) ≤ r

}
. (7)

The following lemma is a direct consequence of [20, Theorem 13], which in turn
follows from Gaifman locality theorem.

Lemma 2.9 A mapping modeling L is the FOp-limit of a sequence of finite
mappings if and only if it is both the FOlocal

p -limit of a sequence of finite map-
pings and the elementary limit of a sequence of finite mappings.

For elementary convergence, the appropriate notion of proximity is the notion of
r -equivalence, and it holds that Dist0,r (M, N) = 0 if and only M ≡r N.
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For local convergence, we define the following distances (for integers p ≥ 1 and
r ≥ 0):

Distlocalp,r (M, N) = sup
{
|〈φ, M〉 − 〈φ, N〉| : φ ∈ FOlocal

p , lrank(φ) ≤ r
}
. (8)

Note that (by Theorem 2.8) this is nothing but twice the total variation distance
between the probabilitymeasures defined byM andN on the Stone dual of the algebra
of local formulas with free variables within x1, . . . , x p and local rank at most r .

The following lemma is a direct consequence of Lemma 2.9.

Lemma 2.10 For every fixed signature σ , every integers p, r , and every pos-
itive real ε > 0 there exist an integer r ′ and a positive real ε′ > 0, such that
for every σ -modelings M, N it holds

M ≡r ′ N and Distlocalp,r ′ (M, N) < ε′ =⇒ Dist p,r (M, N) < ε. (9)

In sufficiently sparse structures, where the probability that two random elements
are close is small, we can further reduce the computation of the local distance to the
case of local formulas with a single free variable:

Lemma 2.11 Let δr (x1, x2) be the formula dist(x1, x2) ≤ r . Then for every
integers p, r and every modelings M, N it holds

Distlocalp,r (M, N) ≤ 2p Distlocal1,r (M, N) +
(

p

2

)(〈δ2r , M〉 + 〈δ2r , N〉). (10)

Proof Let φ be a local formula with local rank at most r . The satisfaction of φ

only depends on the r -neighborhood of the free variables x1, . . . , x p. It follows that
there exists a finite family of types F ⊆ T p

r such that if dist(vi , v j ) > 2r) for every
1 ≤ i < j ≤ p then it holds that

M |= φ(v1, . . . , vp) ⇐⇒ M |= φ̂(x1, . . . , x p),

where φ̂ is the local formula

φ̂(x1, . . . , x p) :=
∨

(t1,...,tp)∈F

p∧
i=1

ϕti (xi ).

Moreover, φ̂(M) only differs from
⋃

(t1,...,tp)∈F
∏p

i=1 ϕti (M) on tuples (v1, . . . , vp)

with dist(vi , v j ) ≤ 2r for some 1 ≤ i < j ≤ p. It follows that
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∣∣∣〈φ, M〉 −
∑

(t1,...,tp)∈F

p∏
i=1

〈φti , M〉
∣∣∣ <

(
p

2

)
〈δ2r , M〉,

as the probability that two random elements of M are at distance at most 2r is
bounded (by union bound) by

(p
2

)
times the probability that two random elements

are at distance at most 2r , that is by the right hand side of the inequality.
Of course, the same holds for the modeling N.
Let μM (resp. μN) be the probability measure defined by M (resp. N) on Tr (σ ).

As ∑
(t1,...,tp)∈F

p∏
i=1

〈φti , M〉 = μ
⊗p
F (F ),

and as it is well known that if ρ, λ are probability measures on a finite set it holds
that

‖ρ⊗p − λ⊗p‖TV ≤ p‖ρ − λ‖TV
we deduce

1

2

∣∣∣ ∑
(t1,...,tp)∈F

p∏
i=1

〈φti , M〉 −
∑

(t1,...,tp)∈F

p∏
i=1

〈φti , N〉
∣∣∣ ≤ ‖μ⊗p

M − μ
⊗p
N ‖TV

≤ p Distlocal1,r (M, N).

The statement of the lemma follows. �

2.4 The Finitary Mass Transport Principle

The domain of a mapping F is partitioned into countably many subsets

Fi = {x ∈ F : | f −1
F (x)| = i}

for i = 0, 1, . . . , and
F∞ = {x ∈ F : | f −1

F (x)| = ∞}.

The mass transport principle for mappings takes the following form.

Definition 2.12 The Finitary Mass Transport Principle (FMTP) for F is the
satisfaction of the following conditions:

• νF(F∞) = 0;
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• for every measurable subsets A, B of F \ F∞ it holds that

νF(A ∩ f −1
F (B)) =

∫
B
| f −1

F (y) ∩ A| dνF(y) (11)

Note that a direct consequence of the FMTP is that for every measurable subset
A of F it holds that νF(A) ≥ νF( fF(A)).

Intuitively, the FMTP describes the interplay of two measures: the probability
measure νF on F used to randomly select an element, and the counting measure
(implicitly) used to count, for instance, the degree of an element. This principle
ultimately relies of the fact that the local type of an element is (at least partly)
determined by the local type of any of its neighbors.

Definition 2.13 The transport operator ξ is a mapping from the space of
consistent subsets of FOlocal

1 to itself, defined by

ξ(t) = {φ(x) ∈ FOlocal
1 : [(∃z) (z = f (x) ∧ φ(z))] ∈ t}.

A fundamental property of the transport operator is that if r ′ > r then for
every σ -structure F it holds that

TypeF
r ◦ fF = πr ◦ ξ ◦ TypeF

r ′ , (12)

what is depicted by the following diagram:

F
fF

TypeF

r ′

F

TypeF

r

Tr (σ ) rank r local types

ξ(Tr ′(σ ))

πr

Tr ′(σ )

ξ

rank r ′ local types

In other words, the rank r local type of the image by f of an element v is exactly
the projection of the image by the transport operator of the rank r + 1 (or any rank
r ′ > r ) local type of v.

We now focus on another aspect of the FMTP.
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Let R > 2r be positive integers, and let ρ be a probability measure on TR(σ ) (and
by extension on Tr (σ )). Define

TR(ρ) = {τ ∈ Tr : ρ(τ) > 0}.

For τ ∈ TR(ρ) and t ∈ Tr (ρ) define

adm+(τ, t) =
{
1 if ϕτ (v) � ϕt ( f (v))

0 otherwise

and let adm−(τ, t) be the maximum integer a ∈ {0, . . . , r + 1} such that

ϕτ (v) � ∃x1, . . . , xa

⎛
⎝ ∧

1≤i≤a

(
ϕt (xi ) ∧ f (xi ) = v

) ∧
∧

1≤i< j≤a

(xi �= x j )

⎞
⎠ .

Definition 2.14 The probability measure ρ satisfies the (R, r)-restricted
FMTP if there exists a function s : TR(ρ) × Tr (ρ) → {0, 1, . . . , r} ∪ (r,∞),
called companion function of ρ, such that for every τ ∈ TR(ρ) and t ∈ Tr (ρ)

it holds

min(r, adm−(τ, t)) = min(r, s(τ, t)) (13)∑
τ1≺t1

adm+(τ1, t2)μ(τ1) =
∑
τ2≺t2

s(τ2, t1)μ(τ2). (14)

This notion is justified by the next lemma.

Lemma 2.15 Let R > 2r be positive integers.
Let L be mapping modeling L that satisfies the FMTP and let μ be the probability

measure on TR defined by μ(τ) = νL(ϕτ (L)).
Then μ satisfies the (R, r)-restricted FMTP.

Proof For τ ∈ TR(μ) and t ∈ Tr (μ) define

w(τ, t) = νL( f −1
L (ϕτ (L)) ∩ ϕt (L))

νL(ϕτ (L))
. (15)
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According to FMTP we have the following set of equations (where τ ∈ TR(μ)

and t ∈ Tr (μ)):

min(adm−(τ, t), r) = min(w(τ, t), r) (16)∑
τ1≺t1

adm+(τ1, t2)μ(τ1) =
∑
τ2≺t2

w(τ2, t1)μ(τ2). (17)

2.5 The Finite Model Property

An infinite σ -structure M has the Finite Model Property if every sentence θ satisfied
by M has a finite model. In other words, M has the Finite Model Property if, for
every integer r , there exists a finite σ -structure F with F ≡r M.

Deciding whether an infinite structure has the finite model property is extremely
difficult, as deciding wether a sentence has a finite model is undecidable in general,
see Trakhtenbrot [23].

However, it is clear from our definition that if a modeling M is an FO-limit of
a sequence of finite structures then M does have the finite model property. When
considering the problem of constructing an FO-approximation of a modeling M, we
will not only assume that the modeling M has the finite model property, but that
we can ask an oracle to provide us (for each integer r ) with a finite structure F
that is F ≡r M.

In some very particular cases, deciding whether a structure has the finite model
property and constructing an elementary approximation can be easy. For instance,
Lemma 4.3 below asserts that every mapping with finite height has the finite model
property and describes how to construct an elementary approximation. The case of
mappings is intermediate between the case of bounded height trees (which have the
finite model property) and the case of relational structures with at least one relation
symbol with arity at least two, for which satisfiability problem is undecidable. The
Rabin class [all, (ω), (1)]= of first-order logic with equality, one unary function and
monadic predicates does not have the finite model property. (For instance, one can
consider a sentence expressing that there exists a unique element which is not the
image of another element, but that every other element is the image of exactly one
element.) However, satisfiability problem and finite satisfiability problem for Rabin
class are both decidable, though with huge complexity (the first-order theory of one
unary function is not elementary recursive). For a general discussion on classical
decision problems we refer the reader to [1].

2.6 Derived Modelings

Let F be a modeling mapping and let X be a non-zero measure first-order definable
subset of F . We denote by F �X the restriction of F, which is the modeling mapping
with domain X , probability measure νF�X = 1

νF(X)
νF and
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fF�X (v) =
{

fF(v) if fF(v) ∈ X

v otherwise

Remark 2.16 The condition that X is first-order definable ensures that F �X is a
modeling. The condition that X is a Borel subset of F would not be sufficient. This
may be seen analogously as in Example 2.5 above:

Consider the modeling mapping F with F = [0, 1] × [0, 1] and fF maps (x, y)

to (x, 0), and νF be the usual measure. Then F is clearly a modeling. Let X0 be a
Borel subset of (0, 1) × (0, 1) such that fF(X) is not a Borel subset of [0, 1] × {0}
(such a set can be derived from a standard example of non-Borel �1

1 sets), and let
X = X0 ∪ [0, 1] × {0}. Then F �X is not a modeling as the definable subset {v :
(∃x) (x �= v) ∧ ( f (x) = v)} is not Borel.
Lemma 2.17 Let F be a mapping modeling and let X be a non zero-measure first-
order definable subset of F. If F satisfies the FMTP then so does F �X .

Proof Let A, B be Borel subsets of X . Let Z = {v ∈ X : fF(v) /∈ X}. As F satisfies
the FTMP it holds

νF�X (A ∩ f −1
F�X

(B)) = νF�X (A ∩ f −1
F�X

(B \ Z)) + νF�X (A ∩ f −1
F�X

(B ∩ Z))

= 1

νF(X)

(
νF(A ∩ f −1

F (B \ Z)) + νF(A ∩ B ∩ Z)
)

= 1

νF(X)

(∫
B\Z

| f −1
F (y) ∩ A| dνF(y) + νF(A ∩ B ∩ Z)

)

=
∫

B
| f −1

F�X
(y) ∩ A| dνF�X (y)

Thus the FMTP holds for F �X . �

We also note the following:

Lemma 2.18 Let M be a modeling and let M+ be obtained from M by marking
exactly one element of M with a new unary relation. Then

1. M+ is a modeling;
2. M+ satisfies the FMTP if and only if M satisfies the FMTP;
3. M+ has the finite model property if and only if M has the finite model property.

Proof The first item was proved in [17]. The second item is obvious as M and M+
have the same Gaifman graph. As M is a trivial interpretation of M+, the finite
model property for M+ implies the finite model property for M. Conversely, assume
F ≡r+1 M and start a Ehrenfeucht–Fraïssé game by choosing the element that is
marked inM+. AssumeDuplicator follows a winning strategy for the (r + 1)-rounds
game, and mark the vertex chosen by Duplicator in F. Then (continuing the game)
we get that the marked structure is r -equivalent to M+. �
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2.7 List of Symbols

For the benefit or the readers we include here a list of the main symbols used in this
section.

Symbol Signification
Introduced in Sect. 2.1
σ signature
F mapping (Definition 2.1)
F domain of structure F
φ(F) set of tuples satisfying φ in F
Br (F, u) r -ball of u in F
FO all first-order formulas
FOp first-order formulas with free variables within x1, . . . , x p
FO0 sentences
FOlocal local first-order formulas
FOlocal

p local first-order formulas with free variables within x1, . . . , x p

QF quantifier free first-order formulas
lrank(φ) local rank of formula φ (Definition 2.2)
t, τ Local types
Tr (σ ) set of all rank r local types
TypeF

r (v) rank r local type of v in F
ϕt (x1) characteristic formula of local type t
δr (x1, x2) formula expressing dist(x1, x2) ≤ r
I interpretation (Definition 2.3)

Introduced in Sect. 2.2
νF Probability measure on the domain F of F (Definition 2.4)
〈φ, F〉 Stone pairing of φ and F (Definition 2.6)
S(LX ) Stone dual of Lindenbaum–Tarski algebra of X
μF Representation measure of F (Theorem 2.8)
μloc

F Representation measure of structure F for FOlocal
1 fragment

Th(μF) Complete theory of μF
πr Projection to consistent subsets of FOlocal

1 with quantifier rank at most r

μ
loc(r)
F Pushforward of μloc

F by πr

Introduced in Sect. 2.4
ζ Transport operator (Definition 2.13)
adm+(τ, t) Does ϕτ (v) imply ϕt ( f (v))?
adm−(τ, t) How many distinct u with ϕt (u) and f (u) = v if ϕτ (v)?

3 First-Order Approximation

The aim of this section is to prove Theorem 1.4. The general strategy of the proof is
depicted in Fig. 1:
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Fig. 1 Strategy for the proof of Theorem 1.4

1. Reduction L → L1, where L1 is ε2-residual (i.e. has no connected component of
measure greater than ε2), with recovery interpretation I1.

2. restriction L1 �→ L2 to no zero-measure rank-r3 local types.

3. Transformation L2 �→ L3 killing all short circuits. Interpretation L3
I2−→ L̃2, with

local statistics close to L2.
4. Approximation of the rank-R local type measure μ of L3 by a rational measure

μ̂, still satisfying mass transport principle.
5. Construction of an exact model F3 of μ̂, providing a finite approximation F3 of

L3.
6. Rewiring the short cycles by means of interpretation I2, leading to an approxima-

tion F2 of L2.
7. Construction of an elementary approximation E1 of L1.
8. Merge of E1 with a great number of copies of F2 to form an FO-approximation

F1 of L1.

9. Interpretation F1
I1−→ F to get an FO-approximation of the original mapping

modeling L.

We shall reduce the complexity of the approximation problem by requiring more
andmore properties on the mappingmodeling wewant to approximate. The different
properties we will consider for our mapping modeling are:

(P1) the modeling measure is atomless;
(P2) the modeling satisfies the FMTP;
(P3) the modeling has the finite model property;
(P4) the modeling is ε2-residual;
(P5) the modeling is r3-clean;
(P6) the modeling has no cycle of length smaller than r4.
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During the reduction process, we shall make use of additional unary relations to
keep track of the properties of the original mapping. Therefore we shall consider
larger and larger signatures:

σ is the signature of both L and F. This signature contains a single unary function
symbol f and (possibly) finitely many unary relation symbols.

σ1 is the signature of L1, E1, and F1. It is obtained by adding to σ the unary relation
symbols (Ai )1≤i≤2�ε−1

2 � and (Bi )1≤i≤2�ε−1
2 �.

σ2 is the signature of L2, L̃2 and F2. It is obtained by adding to σ1 unary relations
(Rt )t∈Tr3 (σ1).

σ3 is the signature of L3 and F3. It is obtained by adding to σ2 unary relations
(Ui )1≤i≤r4 and unary relations (Tt )t∈Tr3 (σ2).

We fix integers p, r and a positive real ε > 0. Our aim is to construct a finite
mapping F such that Dist p,r (L, F) < ε, that is such that for every first-order formula
φ with at most p free variables and quantifier rank at most r , it holds that

|〈φ, L〉 − 〈φ, F〉| < ε.

We first reduce the problem by separately considering local first-order formulas
and sentences. It follows fromLemma 2.10 that there exist an integer r1 and a positive
real ε1 > 0 such that ifL ≡r1 F andDistlocalp,r1 (L, F) < ε1 then it holds Dist p,r (L, F) <

ε. We further require ε1 < 1/16.
Let r2 = 4r21 , r3 = 2r2 + 1, r4 = r3!, ε2 = ε1/p2, ε3 = ε1/4p, ε4 = ε5 = ε1/4p,

N1 = 2�ε−1
2 �, r5 = r1r3N1|Tr3(σ3)|.

3.1 From L to L1: Reduction to ε-Residual Case

We consider a signature augmented by 4�ε−1
2 � marks A1, . . . , A2�ε−1

2 � and B1, . . . ,

B2�ε−1
2 �, and the basic interpretation I1 defined by

η(x, y) :=
⎡
⎣( f (x) = y)) ∧ ¬

2�ε−1
2 �∨

i=1

Ai (x)

⎤
⎦ ∨

2�ε−1
2 �∨

i=1

(Ai (x) ∧ Bi (y)).

We construct a mapping modeling L1 from L as follows.
We start by letting L1 be a copy of L, j = �ε−1

2 � + 1, and we modify L1 as
follows: We consider the connected component Ci (1 ≤ i ≤ N ≤ 1/ε) of L1 with
measure ci = νL(Ci ) > ε2. If Ci contains a non-trivial cycle, we arbitrarily select a
vertex v on it, mark v with mark Ai , mark fL1(v) by mark Bi , and let fL1(v) = v.
For u ∈ Ci let

E(u) =
⋃
i≥1

f −k
L1

(u).
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Suppose there exists v ∈ Ci s.t. νL1(E(v)) > ε2. As

νL1(E(v)) = lim
k→∞ νL1

( ⋃
1≤i≤k

f −k
L1

(u)

)
,

there exists some k s.t.

∑
u∈ f −k (v)

νL1(E(u)) = νL1

(
E(v) \

⋃
1≤i≤k

f −k
L1

(v)

)
≤ ε2.

Therefore, there is some u s.t. νL1(E(u)) > ε2 and νL1(E(x)) ≤ ε2 for all x ∈
f −1
L1

(u).
Note that there exist at most ci/ε2 elements u ∈ Ci such that νL1(E(u)) ≥ ε2

and νL1(E(x)) < ε for every x ∈ f −1
L1

(u). For each such element u, denoting W =
fL1(u), we mark u by a mark B j , every element in W by mark A j , increase j by
one, and redefine fL1(w) = w for every w ∈ W . As W is first-order definable with
a parameter, the structure L1 is still a modeling. Doing this, the component C gives
rise to (possibly uncountablymany) small connected components of measure smaller
than ε2, and at most one connected component with measure ε2. At the end of the
day, we have used up to 2�ε−1

2 � pairs of marks Ai and Bi , L1 is ε2-residual, and
L = I1(L1).

Lemma 3.1 L1 satisfies the properties (P1) to (P4) and L = I1(L1).

Proof As νL1 = νL, (P1) holds for L1. The satisfaction of the FMTP for L obviously
implies the satisfaction of the FMTP for L1 hence (P2) holds for L1.

The Finite Model Property for L implies the one for L1 (thus (P3) holds): For r ∈
N, letFbe afinitemapping such thatF ≡r+2�ε−1

1 � L. Start aEhrenfeucht–Fraïssé game

of length r + 2�ε−1
1 � by selecting in L the elements v1, . . . , vN marked B1, . . . , BN

(N ≤ 2�ε−1
1 �) in L1, and let z1, . . . , zN be the corresponding elements of F chosen

by Duplicator. We construct F1 from F by marking zi by mark Bi , by marking
every element in Yi = f −1

F (zi ) by mark Ai and letting fF1(y) = y for every y ∈ Yi

(for 1 ≤ i ≤ N ). Then it is easily checked that Duplicator’s winning strategy for
the remaining r steps of the Ehrenfeucht–Fraïssé game between L and F defines a
winning strategy for the r -step Ehrenfeucht–Fraïssé game between L1 and F1 hence
F1 ≡r L1.

Property (P4) holds by construction, as well as the property that L = I1(L1). �

3.2 From L1 to L2: Cleaning-Up

Definition 3.2 Let r ∈ N. A mapping modeling L is r-clean if, for every formula
φ ∈ FOlocal

1 with rank at most r it holds that
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L |= (∃x)φ(x) ⇐⇒ 〈φ, L〉 > 0.

In other words, a mapping modeling L is r -clean if every local type realized in L
occurs with non zero probability.

We have proved that L1 satisfies (P1)–(P4). We now construct L2.
Define

T = {t ∈ Tr3(σ1) : 〈ϕt , L1〉 > 0},

let X =∨
t∈T ϕt (L1)—that is X is the subset of elements of L1 whose r3-local type

appears inL1 with no zero probability—and letL2 be obtained fromL1 �X by adding
marks Rt (t ∈ Tr3(σ1)), in such a way that for all t ∈ Tr3(σ1) and v ∈ L2 it holds that

L2 |= Rt (v) ⇐⇒ L1 |= ϕt (v) ⇐⇒ TypeL1
r3 (v) = t.

Lemma 3.3 The mapping modeling L2 satisfies properties (P1)–(P5).

Proof Let L̂1 be the σ2-mapping obtained by the trivial interpretation adding marks
Rt in such a way that Rt (L̂1) = ϕt (L1). As we made use of a trivial interpretation,
L̂1 is a modeling and properties (P1) to (P4) still hold. Note that L2 = L̂1 �X . It is
immediate that (P1) and (P4) hold. According to Lemma 2.17, (P2) holds. If F is a
finite elementary approximation of L̂1 thenF �X is a finite elementary approximation
ofL2 henceL2 has the finitemodel property (P3). An easy r3-step local Ehrenfeucht–
Fraïssé game easily shows that if u, v ∈ L2 have same rank ε2 local type in L1 then
they have the same rank r3 local type in L2. It follows that L2 is r3-clean thus (P5)
holds. �

3.3 From L2 to L3: Cutting the Short Cycles

Cutting the short cycles will allow to handle mapping modelings that are locally
acyclic, which will strongly simplify the proofs. A natural procedure would be to
consider a Borel transversal of all short cycles (which exists thanks to Borel selection
theorem [13, p. 78]), to mark it, and to use an interpretation to kill the cycles at the
mark. However, such an approach fails as marking a Borel subset of a modeling does
not in general keep the property of being a modeling (see Remark 2.5). We shall use
a different approach. Let � be the set [r4]. We consider the σ3-mapping modeling
L3 with domain L3 = L2 × �, measure νL3 = νL2 ⊗ δ� (where δ� is the uniform
measure on �), with (x, i) marked by Ui , TTypeL2

r3
(x)
, and

fL3(x, i) = ( fL2(x), i + 1 mod r4).

An example of construction of L3 is shown on Fig. 2.

Lemma 3.4 The mapping modeling L3 satisfies (P1)–(P6).
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Fig. 2 Construction of L3

Proof Property (P1) obviously holds.
As L2 satisfies the FMTP, so does L3. Indeed, let A, B be Borel subsets of L3

such that degL3
B (v) is bounded for v ∈ A and degL3

A (v) is bounded for v ∈ B. Then
we can write A =⋃

i Ai × {i} and B =⋃
j B j × { j}, where the Ai ’s and the B j ’s

are Borel subsets of L2. Then it holds that

νL3(A ∩ f −1
L3

(B)) = 1

r4

∑
i

νL2(Ai ∩ f −1
L2

(Bi+1 mod r4))

= 1

r4

∑
j

∫
B j

| f −1
L2

(y) ∩ A j−1 mod r4 | dνL2(y)

=
∫

B
| f −1

L3
(y) ∩ A| dνL3(y)

Hence (P2) holds.
It is immediate that if for some R ∈ N it holds that F ≡R L2 then if F′ is obtained

from F in the same way that L3 is obtained from L2 it holds that F′ ≡R L3 (Duplica-
tor’s strategy immediately follows from its strategy in an Ehrenfeucht–Fraïssé game
between F and L2). Thus (P3) holds.
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It is easily checked that the measure of a connected component of L3 is at most
the measure of its projection on L2. Thus (P4) holds.

As r4 > r3, an easy Ehrenfeucht–Fraïssé game shows that if two elements x, y of
L2 have the same r3 local type in L2 and 1 ≤ i, j ≤ the (x, i) and (y, j) have the
same r3 local type in L3. Thus, as L2 is r3-clean so is L3. Hence (P5) holds for L3.

By construction, L3 has no cycle of length smaller than r4 thus (P6) holds. �

For 1 ≤ � ≤ r3 let Z� be the subset of all the t ∈ Tr3(σ2) that contain the formula[
( f �(x) = x) ∧∧i<�( f i (x) �= x)

]
(which means that x belongs to a cycle of length

�).
Now we consider the basic interpretation I2, with

η(x, y) :=
[ r3∨

�=1

(ζ�(x) ∧ (y = f �−1(x))

]
∨
[
(y = f (x)) ∧ ¬

r3∨
�=1

Ui (x)

]
,

where
ζl(x) := Ul(x) ∧

∨
t∈Z�

Tt (x),

which also forgets the marks Ui and Tt . Let L̃2 = I2(L3).

Lemma 3.5 For every φ ∈ FOlocal
1 with rank at most r3 it holds that

〈φ, L̃2〉 = 〈φ, L2〉.

Proof It is straightforward that for every v ∈ L2 and every i ∈ � it holds that

TypeL̃2
r3 (v, i) = TypeL2

r3 (v).

Hence for every φ ∈ FOlocal
1 with rank at most r3 it holds that

〈φ, L̃2〉 = 〈φ, L2〉.

3.4 From μ to μ̂: Approximating the Stone measure

Letμ = μ
loc(r3)
L3

. As L3 satisfies the FMTP, according to Lemma 2.15, the probability
measure μ satisfies the (r3, r2)-restricted FMTP.

Lemma 3.6 There exists a rational probability measure μ̂ on Tr3(σ3) with same
support as μ, that satisfies the (r3, r2)-restricted MTP, and such that ‖μ − μ̂‖TV <

ε5.
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Proof Let w be a companion function for μ, and let

Q1 = {(τ, t) ∈ Tr3(μ) × Tr2(μ) : w(τ, t) ≤ r2}
Q2 = {(τ, t) ∈ Tr3(μ) × Tr2(μ) : w(τ, t) > r2}

Consider the following set of Diophantine equations and inequalities with variables
xτ (τ ∈ Tr3(μ)) and yτ,t ((τ, t) ∈ Q2):

xτ > 0,
∑
τ∈Tr3

xτ = 1, yτ,t ≥ 0,

∑
τ1≺t1

adm+(τ1, t2)xτ1 =
∑
τ2≺t2

(τ1,t2)∈Q1

adm−(τ1, t2)xτ2 +
∑
τ2≺t2

(τ1,t2)∈Q2

(r2xτ2 + yτ1,t2)

Then this set defines a convex polytope containing a solution for xτ = μ(τ) and
yτ,t = (w(τ, t) − r2)μ(τ).

Since this polytope has rational vertices, either the aforementioned solution is
rational, or there is a strictly positive rational solution in any of its neighborhood.
Let (̂xτ , ŷτ,t ) be such a rational solution, such that

∑
τ∈Tr3 (σ3)

|xτ − x̂τ | < ε5.
Define μ̂(τ ) = x̂τ . Then μ̂ has same support as μ and ‖μ− μ̂‖TV < ε5, and

μ̂, with companion function s(τ, t) = r2 + ŷτ,t/x̂τ , satisfies the (r3, r2)-restricted
FMTP. �

3.5 Constructing F3

It is possible, by means of a (relatively low local rank) local formula, to specify that
in the neighborhood of an element v, related in a given way (by means of a digraph
D indicating which element is the image of which element), one finds an element
u1 with rank ρ1 local type t1, an element u2 with rank ρ2 local type t2,…, and an
element uk with rank ρk local type tk . This is the aim of the following definition.

Definition 3.7 Let σ be a mapping signature, let k ∈ N, ρ1 > ρ2 > · · · > ρk ≥ 0,
t1 ∈ Tρ1(σ ), . . . , tk ∈ Tρk (σ ), and let D ⊆ [k + 1] × [k + 1] be the arc set of a
digraph with outdegrees at most 1 and connected underlying graph. We define
the characteristic formula θ ∈ FOlocal

1 (σ ) of ((ρi )i∈[k], (ti )i∈[k], D) inductively as
follows:

θk+1(x1, . . . , xk+1) :=
∧

1≤i< j≤k+1

(xi �= x j ) ∧
∧

(i, j)∈D

f (xi ) = x j

θi (x1, . . . , xi ) := ∃yi [ϕρi
ti (yi ) ∧ θi+1(x1, . . . , xi , yi )] (1 ≤ i ≤ k)

θ(x) := θ1(x)
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Note that the rank of θ is at most ρ1 + 1 = max{ρi + i : 1 ≤ i ≤ k}.
Lemma 3.8 Let F be a σ3-mapping with no cycle of length 1 < � ≤ r4, and let
ϒ : F → Tr3(σ ) be such that

1. for every unary mark M in the signature and every v ∈ F, M(v) holds in F if
and only if M(x) ∈ ϒ(v);

2. for every 1 ≤ � ≤ r4 and every v ∈ F it holds that [ f i (x) = x] /∈ ϒ(v).
3. for every v ∈ F it holds that

adm+(ϒ(v), πr2(ϒ( fF(v)))) = 1;

4. for every v ∈ F and t ∈ Tr2(σ3) it holds that

min
(
r2, adm

−(ϒ(v), t)
) = min

(
r2, |{u ∈ f −1

F (v) : πr2(ϒ(u)) = t}|).
Then for every v ∈ F it holds that TypeF

r2(v) = πr2(ϒ(v)).

Proof First note that Property 3 implies that for every 0 ≤ i ≤ r2 and every v ∈ F
it holds that

(πi ◦ϒ) ◦ fF = ξ ◦ (πi+1 ◦ ϒ)x .

Note that this is analog to (12), which states that for every non-negative integer i
and every mapping M it holds that

TypeM
i ◦ fM = ξ ◦ TypeM

i+1.

For v ∈ F , let M be a countable model of (∃x) ϕϒ(v)(x), and let z ∈ M be such
thatM0 |= ϕϒ(v)(z), that isType

M0
r3 (z) = ϒ(v). By Property 3 it holds that f d(x) = x

belongs to no ϒ(u) at distance at most r3 − d from z. Considering the ball of radius
r3 + 1 around z we deduce that there exists a connected mapping M with a special
element z, which has no cycle of length> 1 (hence the Gaifman graph ofM is a tree),
at most one fixed point at distance r3 + 1 from z, and such that TypeM

r3(z) = ϒ(v).
In order to prove TypeF

r2(v) = πr2 ◦ ϒ(v) = TypeM
r2(z) it is sufficient to prove that

Duplicator has a winning strategy for the r2 steps local Ehrenfeucht–Fraïssé game
between (F, v) and (M, z).

Assume that for some 0 ≤ k < r2 we have v0, . . . , vk ∈ F and z0, . . . , zk ∈ M
with v0 = v and z0 = z, such that vi �→ zi is a partial isomorphism, and such that for
every 0 ≤ i ≤ k it holds that

TypeM
r2−i (zi ) = πr2−i ◦ϒ(vi ).

Now consider a Spoiler move. There are six cases:

(i) Spoiler chooses vk+1 ∈ F , and there exists 0 ≤ a < k + 1 such that fF(va) =
vk+1.
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In this case, TypeM
r2−a(za) = πr2−a ◦ ϒ(va) implies

TypeM
r2−a−1 ◦ fM(za) = ξ ◦ TypeM

r2−a(za)

= ξ ◦ πr2−a ◦ϒ(va)

= πr2−a−1 ◦ϒ ◦ fF(va)

Thus we can let zk+1 = fM(za).
(ii) Spoiler chooses vk+1 ∈ F , there exists 0 ≤ a < k + 1 such that fF(vk+1) = va ,

and for every 0 ≤ i < a it holds fF(vi ) �= va .
Let b1 < b2 < · · · < b�+1 = k + 1 be such that f −1

F (va) ∩ {v0, . . . , vk+1} =
{vb1 , . . . , vb�+1}. Note that b1 > a by assumption.
For 1 ≤ i ≤ �+ 1, let ρi = r2 − bi and ti = πρi ◦ ϒ(vbi ). Let D be the set
of pairs (i, 1) for 2 ≤ i ≤ �+ 2, and let θ(x) be the characteristic formula
of ((ρi )i∈[�+1], (ti )i∈[�+1], D). This formula has rank at most ρ1 + 1 ≤ r2 − a
so it holds that θ(x) ∈ πr2−a ◦ϒ(va) = TypeM

r2−a(za). Thus there exist z′b1 ,
. . . , z′b�

, z′k+1 in f −1
M (za) \ {za}, such that

TypeM
ρi
(z′bi

) = πr2−bi ◦ϒ(vbi ) (1 ≤ i ≤ �+ 1). (18)

If z′bi
is not equal to zbi for every 1 ≤ i ≤ �, let i beminimum such that z′bi

�= zbi .

• If zbi = z′b j
for some j > i then it holds that

t j = TypeM
ρ j

(zb′j ) = TypeM
ρ j

(zbi ) ⊆ TypeM
ρi
(zbi ) = ti

and we deduce that (19) still holds after exchange of z′bi
and z′b j

.
• Otherwise, we let z′bi

= zbi and remark that (19) still holds.

We repeat this process until we get z′bi
= zbi for every 1 ≤ i ≤ �. Then we let

zk+1 = z′k+1.
(iii) Spoiler chooses vk+1 ∈ F , there exists 0 ≤ a < k + 1 such that fF(vk+1) = va ,

and there exists 0 ≤ i < a such that it holds that fF(vi ) = va .
Let b1 < b2 < · · · < b�+1 = k + 1 be such that f −1

F (va) ∩ {v0, . . . , vk+1} =
{vb1 , . . . , vb�+1}.
Note that there can be only one 0 ≤ i < a s.t. fF(vi ) = va , as otherwise the two
vertices would not be connected before step a, so b1 < a < b2.
For 1 ≤ i ≤ �+ 1, let ρ1 = r2 − a, t1 = πr2−a ◦ ϒ(va), and ρi = r2 − bi , ti =
πρi ◦ϒ(vbi ) for 2 ≤ i ≤ �+ 1.
Let D be the set of pairs (i, 2) for i ∈ {1, . . . , � + 2} \ {2}, and let θ(x) be
the characteristic formula of ((ρi )i∈[�+1], (ti )i∈�+1, D). This formula has rank at
most ρ1 + 1 ≤ r2 − a + 1 ≤ r2 − b1 so it holds that θ(x) ∈ πr2−b1 ◦ϒ(vb1) =
TypeM

r2−b1(zb1). Thus, there exists z′a, z′b2 , . . . , z′b�
, z′k+1 ∈ f −1

M ◦ fM(zb1), all dis-
tinct, such that fM(zb1) = za and
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TypeM
ρi
(z′bi

) = πr2−bi ◦ ϒ(vbi ) (2 ≤ i ≤ �+ 1). (19)

As in the previous case, we can assume z′bi
= zbi for 2 ≤ i ≤ � and let zk+1 =

z′k+1.
(iv) Spoiler chooses zk+1 ∈ M , and there exists 0 ≤ a < k + 1 such that fM(za) =

zk+1.
As in Case (i), TypeM

r2−a(za) = πr2−a ◦ϒ(va) implies

TypeM
r2−a−1 ◦ fM(za) = πr2−a−1 ◦ϒ ◦ fF(va).

Thus we can let vk+1 = fF(va).
(v) Spoiler chooses zk+1 ∈ M , there exists 0 ≤ a < k + 1 such that fM(zk+1) = za ,

and for every 0 ≤ i < a it holds fM(zi ) �= za .
Let τ = ϒ(va), let t = TypeM

r2−(k+1)(zk+1), and let p be the number of elements
of f −1

M (za) ∩ {z0, . . . , zk+1} with rank (r2 − (k + 1)) local type t .
By assumption, it holds that TypeM

r2−a(za) = πr2−a(τ ). Thus

∑
t ′≺t

adm−(τ, t ′) ≥ p,

where the sum is over local types t ′ ∈ Tr2(σ3) such that t ′ ≺ t . According to
Property 4, it holds that

∑
t ′≺t

adm−(τ, t ′) = |{u ∈ f −1
F (va) : πr2−(k+1)(ϒ(u)) = t}|.

It follows that there exists vk+1 ∈ f −1
F (va), distinct from v0, . . . , vk , such that

πr2−(k+1)(ϒ(vk+1)) = TypeM
r2−(k+1)(zk+1).

(vi) Spoiler chooses zk+1 ∈ M , there exists 0 ≤ a < k + 1 such that fM(zk+1) = za ,
and there exists 0 ≤ i < a such that it holds that fM(zi ) = za .
This case is solved similarly, by considering the element zi such that fM(zi ) =
za , and showing that the number of elements of f −1

F (vi ) with same rank
(r2 − (k + 1)) local type as zk+1 is at least equal to the number of elements
of f −1

F (zi ) ∩ {z0, . . . , zk+1} with same rank (r2 − (k + 1)) local type as zk+1.

Lemma 3.9 Let r3 > 2r2 be positive integers, and let μ̂ be a rational probability
measure on Tr3(σ3), such that

1. μ̂ is clean: for every τ ∈ Tr3(σ3) with μ̂(τ ) > 0 and for every t ∈ Tr3−1(σ3), if
φt ( f (x)) ∈ τ then

∑
τ ′≺t μ̂(τ ′) > 0;

2. for every 1 < i ≤ r3 the formula f i (x) = x does not belong to any τ ∈ Tr3(σ3)

with positive μ̂-measure;
3. the measure μ̂ satisfies the (r3, r2)-restricted MTP.
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Then there exists a finite σ3-mapping F3 such that for every local formula φ ∈
FOlocal

1 (σ3) with local rank at most r2 it holds that

〈φ, F3〉 =
∑
τ�φ

μ̂(τ ). (20)

Proof Let Tr3 = {τ ∈ Tr3(σ3) : μ̂(τ ) > 0} and Tr2 = {πr2(τ ) : τ ∈ Tr3}.
Let N2 ∈ N be such that N2 μ̂ is integral, and let ζ : [N2] → Tr3 be such that for

every τ ∈ Tr3 it holds |ζ−1(τ )| = N2 μ̂(τ ).
We construct a (partial) mapping g : [N2] → [N2] inductively. We start with an

emptydomain. For each i ∈ [N ] (not yet in the domain), let t = πr (ζ(i)).Weconsider
the elements of [N2] such that adm−(ζ( j), t) is either r2 + 1, or greater than the
number of k ∈ g−1( j) such that ζ(k) ≺ t . Among these elements, we choose one
element j such that adm−(t, ζ( j) is minimal, and let g(i) = j .

Now we prove that the above construction never gets stuck and that, at the end of
the day, for every j ∈ [N2] and every t ∈ Tr2(σ3) it holds that

min
(
r2, adm

−(ζ( j), t)
) = min

(
r2, |{k ∈ g−1( j) : ζ(k) ≺ t}|). (21)

Assume for contradiction that the construction gets stuck when trying to extend
the domain of g to some i ∈ [N2]. Let τ = ζ(i), let t1 = πr2(τ ), and let t2 be the
unique rank r2 local type such that ϕt2( f (x)) ∈ τ1. By assumption, for every τ2 ∈ Tr3
with τ2 ≺ t2 it holds that adm−(τ2, t1) ≤ r2. Hence, by the (r3, r2)-restricted MTP,
it holds that ∑

τ1≺t1

adm+(τ1, t2)μ(τ1) =
∑
τ2≺t2

adm−(τ2, t1).

Thus
|{i : πr2(ζ(i)) = t1}| =

∑
j

|{k ∈ g−1( j) : ζ(k) ≺ t1}|,

which contradicts the hypothesis that the construction gets stuck.
Now assume for contradiction that (21) does not hold. Then there exists t1 and j0

such that
|{k ∈ g−1( j0) : ζ(k) ≺ t1}| < min

(
r2, adm

−(ζ( j0), t1)
)
.

Let t2 = πr2(ζ( j0)). According to the construction of g, it holds for every j such that
ζ( j) ≺ t2 that

|{k ∈ g−1( j) : ζ(k) ≺ t1}| ≤ min
(
r2, adm

−(ζ( j), t1)
)
.
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Hence we have

∑
τ2≺t2

min
(
r2, adm

−(ζ( j), t)
)
μ̂(τ2) >

1

N2

∑
τ2≺t2

∑
j :ζ( j)=τ2

|{k ∈ g−1( j) : ζ(k) ≺ t1}|

= 1

N2

∑
τ1≺t1

∑
i :ζ(i)=τ1

adm+(ζ(i), t2)

=
∑
τ1≺t1

adm+(τ1, t2) μ̂(τ1)

which contradicts the (r3, r2)-restricted MTP. Thus (21) holds.
The σ3-mapping F3 has domain [N2]. For every unary relation symbol S ∈ σ3 we

let S(F3) = {i ∈ F3 : S(x) ∈ ζ(i)}, and define fF3 = g.
Note that F has no cycle of length � with 1 ≤ � ≤ r4: as f (x) ∧ Ui (x) →

U(i+1) mod r4( f (x)) holds with probability 1. Hence, all the cycles have their length
a multiple of r4.

That TypeF
r2(v) = πr2(ζ(v)) holds for every v ∈ F3 then follows from Lemma 3.8.

As a consequence of Lemma 3.6 and Eq.20 it holds that

Distlocal1,r2 (F3, L3) < ε5. (22)

3.6 From F3 to F2: Rewiring Short Cycles

We now let F2 = I2(F3). Every local formula φ ∈ FOlocal
1 (σ2)with local rank at most

2r1 corresponds (for the I2 interpretation) to a local formula φ̂ with local rank at most
2r1(2r1 − 1) < r2. Then it holds that

|〈φ, F2〉 − 〈φ, L̃2〉| = |〈φ̂, F3〉 − 〈φ̂, L3〉|.

Thus
Distlocal1,2r1(L2, F2) ≤ Distlocal1,2r1(L2, L̃2) + Distlocal1,2r1(L̃2, F2) < ε5. (23)

3.7 The Mapping E1: A Finite Model

A terminal of TR is a type τ such that if t ′ is such that adm+(τ, t ′) = 1 then∑
τ ′≺t ′ μ(τ ′) = 0. Importance of terminal types will be a consequence of the fol-

lowing useful fact:

Claim 3.10 Let τ1 be such that μ(τ1) > 0, and let t2 be such that adm+(τ1, t2) = 1.
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Then at least one of the following holds:

1. there exists τ2 ≺ t2 such that μ(τ2) > 0;
2. there exists τ2 ≺ t2 such that adm−(t1, τ2) > r .

Proof Let t1 be such that τ1 ≺ t1. Assume that for every τ2 ≺ t2 such that
adm+(τ1, t2) = 1 it holds adm−(t1, τ2) ≤ r . Then, according to the FMTP, it holds

r
∑
ϑ2≺t2

μ(ϑ2) ≥
∑
ϑ2≺t2

adm−(ϑ2, t1)μ(ϑ2)

=
∑
ϑ1≺t1

adm+(ϑ1, t2)μ(ϑ1)

≥ μ(τ1) > 0

Thus there exists τ2 ≺ t2 such that μ(τ2) > 0. �

A type τ ′ is a hub type if there exists τ ≺ t such that τ is a terminal and
adm−(τ ′, t) > r . Let τ1, . . . , τk be the terminal types of L, and let τ ′1, . . . , τ ′k be
associated hub types.

Lemma 3.11 There exists a finite mapping M such that M ≡r5 L, and such that
there are elements

h1,1, . . . , h1,N1 , . . . , hk,1, . . . , hk,N1 ∈ M,

pairwise at distance at least 2r , such that TypeM
r2(hi, j ) = τ ′i .

Proof We consider the formula ζ with free variables

x1,1, . . . , x1,N1 , . . . , xk,1, . . . , xk,N1 ,

defined by

ζ :=
( ∧

(i, j)�=(i ′, j ′)

dist(xi, j , xi ′, j ′) > 2r1
)
∧
( ∧
1≤i≤k

∧
1≤ j≤N1

ϕτ ′i (xi, j )
)

and the sentence

θ := (∃x1,1, . . . , x1,N2 , . . . , xk,1, . . . , xk,N1)ζ

The hub types can be chosen in such a way that θ is satisfied in L. Indeed, for each
τ ′ < t ′ such that adm(τ, t ′) = 1 the connected component of any v ∈ φτ ′(L) has
measure 0 (as L is residual) hence it is possible, for each terminal τ to choose τ ′
in such a way that there are in L uncountably many connected components with an
element in φτ ′(L).
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3.8 From E1 and F2 to F1: Merging

Let S = {v1, . . . , vk} be the set of all terminal elements of F2, and let γ (vi ) be the
rank r -type corresponding to elements of L having type ϒ(vi ) in L1.

Let N3 = � |E1|
|F2|ε2 �, and let F1 be the disjoint union of E1 and F2 × [N3] × [N1].

If v ∈ M , we define fF1(v) = fE1(v). Otherwise, if (v, i, j) ∈ F2 × [N3] × [N1] we
define

fF1(v, i, j) =
{

( fF2(v), i, j) if v /∈ S

ha,i if v = va ∈ S

(See Fig. 3.)
We consider the finite mapping Ẽ obtained from E1 as follows: For 1 ≤ i ≤ k and

1 ≤ j ≤ N3, and every z ∈ E1 such that fE1(z) = hi, j and TypeE1
r1 (z) = γ (vi ), we

mark z by mark Ai, j and let fẼ(z) = z. For all other elements z ∈ E1 we let fẼ(z) =
fE1(z). Moreover, each hi, j receives mark Bi, j . There is an easy basic quantifier-free
interpretation I such that I(Ẽ) = E1.

Now we consider the disjoint union F̃ of Ẽ and N1N3 copies of F2, such that
terminal vi in copy ( j, k) is marked Ai, j , and we let F1 = I(̃F).

Lemma 3.12 The finite mappings E1 and F1 are r1-equivalent.

Proof It is a direct consequence of Hanf’s locality theorem that F̃ is r1-equivalent
to Ẽ. It follows that F1 = I(̃F) is r1-equivalent to E1 = I(Ẽ).

Fig. 3 Merging M with copies of F
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Lemma 3.13 Each element (v, i, j) in a copy of F2 in F1 is such that

TypeF1
r1 (v, i, j) = γ (v).

Proof This follows easily from an Ehrefeucht-Fraïssé game.

Lemma 3.14
〈[dist(x1, x2) ≤ 2r1, F1〉 < ε2

Proof Every ball of radius 2r1 contains less than |E1| + N3|F2| elements. Thus the
probability 〈[dist(x1, x2) ≤ 2r1, F1〉 that two random elements in F1 are at distance
at most 2r1 is less than

|E1|+N3|F2|
|E1|+N1N3|F2| < ε2.

Lemma 3.15 It holds that
Distlocal1,r1 (F1, L1) < ε3. (24)

Proof Let φ ∈ FOlocal
1 be a formula with local rank at most r1. Let ψ =∨

t�φ Rt ,
where the disjunction is over rank r1-local types. Then 〈φ, L1〉 =〉ψ, L2〉. According
to Lemma 3.13 it holds that

|〈φ, F1〉 − 〈ψ, F2〉| ≤ |E1|
|F1| ≤

1

1+ N1N3
|F2|
|E1|

≤ 1

1+ 2
ε22

<
ε22

2
.

Thus

|〈φ, F1〉 − 〈φ, L1〉| ≤ |〈φ, F1〉 − 〈ψ, F2〉| + |〈ψ, F2〉 − 〈ψ, L2〉|
<

ε22

2
+ ε5 < ε3.

3.9 From F1 to F: Approximation of the Original Mapping

At this stage, we have constructed a finite mapping F1 such that L1 ≡r1 F1 and
|〈ψ, L1〉 − 〈ψ, F1〉| < ε3 for every ψ ∈ FOlocal

1 with rank at most r1.
Let F = I(F1), where I1 is the interpretation defined in Sect. 3.1. The following

lemma ends the proof of Theorem 1.4.

Lemma 3.16 For every formula φ with p free variables and rank at most r it holds
that

|〈ϕ, L〉 − 〈ϕ, F〉| < ε.

Proof Let φ be a local formula with at most p free variables and rank at most r1.
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As L1 is ε2-residual, according to Lemma 2.11, it holds that

Distlocalp,r1 (L1, F1) ≤ 2pDistlocal1,r1 (L1, F1) +
(

p

2

)
(〈δ2r1 , L1〉 + 〈δ2r1 , F1〉)

< 2pε3 +
(

p

2

)
ε2 < ε1.

We deduce from Lemma 2.9 and the definitions of r1 and ε1 that |〈ϕ̃, L1〉 −
〈ϕ̃, F1〉| < ε holds true for every first-order formula ϕ̃ with at most p free variables
and rank at most r .

Let ϕ be a first-order formula with at most p free variables and rank at most r .
Then there exists a formula ϕ̃ with at most p free variables and rank at most r such
that 〈ϕ̃, L1〉 = 〈ϕ, L〉 and 〈ϕ̃, F1〉 = 〈ϕ, F〉. Hence |〈ϕ, L〉 − 〈ϕ, F〉| < ε.

This ends the last reduction step in the proof of Theorem 1.4. As explained above
(see Fig. 1 and comments preceding it) this finishes the proof of Theorem 1.4.

4 Local Approximation

The aim of this section is to prove Theorem 1.3 by following steps similar to those
we followed to prove Theorem 1.4.

The first main difference is that we cannot use general first-order interpretations,
but only local interpretations. Thus we cannot follow the first reduction step to reduce
to the ε-residual case. Instead,we shall prove that every connectedmappingmodeling
is close (for the topology of local convergence) to a connected mapping modeling
with the finite model property, for which Theorem 1.4 applies. The strategy will be
to consider first the connected components of L with non-negligible measures, and
then the remaining components of the mapping modeling.

For ε-residual mapping modelings, we can follow the proof of Theorem 1.4 until
Step 8. In this step, the model M will be replaced by the union of models of the hub
local types.

4.1 Connected Mapping Modelings

Let L be a connected mapping modeling. We define a directed graph modeling L̂
with countably many marks M and N as follows:

• The domain of L̂ is L , with same probability measure;
• if Z(L) �= ∅, we arbitrarily mark a vertex v ∈ Z(L) �= ∅ with mark M and its
image f (v) with mark N ;

• the arcs of L̂ are the pairs (v, f (v)) for which v is not marked by M .
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The following lemma is much stronger than what we need. It would be sufficient
to say that for some d the ball of radius d around the root has measure at least
1− ε. Now the idea is that the ball B of radius d + r around the root of L not only
has measure close to 1, but also has the property that less than ε measure of the
elements have different rank r local type in L and L | B. Now L | B has finite height
hence enjoys the finite model property. An FO-approximation of L | B is then an
FOlocal-approximation of L.

Lemma 4.1 Let L be a connected mapping modeling with atomless measure νL that
satisfies the MTP, and let ε > 0 be a positive real.

Then for every r ∈ L there exists d ∈ N such that the the subset A ⊆ L, defined
as the union of the vertex sets of all the (undirected) paths of length at least d + 1 in
L̂ with endpoint r , has measure at most ε.

Proof There exists an even integer d such that the ball Bd/2(L̂, r) has measure at
least (1− ε/2). For 0 ≤ i ≤ d, let Si be the set of all vertices of A at distance exactly
i from r . According to the MTP (and uniqueness of paths from a vertex v to r ), and
as νL is atomless, it holds that

0 = νL({r}) ≤ νL(S1) ≤ · · · ≤ νL(Sd).

Thus it holds that

νL

(
d/2⋃
i=0

Si

)
≤ νL

⎛
⎝ d⋃
i=d/2+1

Si

⎞
⎠ .

That is:

νL(A ∩ Bd/2(L̂, r)) ≤ νL

⎛
⎝ d⋃

i=d/2

Si

⎞
⎠

≤ νL(L \ Bd/2(L̂, r)).

Thus

νL(A) ≤ νL(A ∩ Bd/2(L̂, r)) + νL(A \ Bd/2(L̂, r))

≤ 2νL(L \ Bd/2(L̂, r))

< ε

Definition 4.2 LetL be a coloredmappingmodelingwith finite height and let r ∈ N.
We define the standard r-approximation L̂ of L as follows:

Let C = Z(L) and Ci = Zi (L). For x ∈ L let h(x) be the minimum non-
negative integer k such that f k

L(x) ∈ C . Note that 0 ≤ h(x) ≤ height(L). Let p =
maxx∈C\C1 h(x). We iteratively define sets Xi for i = p, . . . , 1, together with an
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Fig. 4 Merging small models with many copies of F

equivalence relation ∼i on h−1(i) ∩ fL(Xi+1) (if i < p). We start with i = p
and define ∼p on L by x ∼p+1 y if x and y have the same color. For every
y ∈ h−1(i − 1) we choose an inclusion maximal subset I (y) of f −1

L (y) contain-
ing no r + 1 ∼i -equivalent vertices. Then we define Xi =⋃

y∈h−1(i−1) I (y), and we
define the equivalence relation ∼i−1 on h−1(i − 1) ∩ fL(Xi ) by y1 ∼i−1 y2 if for
every z ∈ f −1

L (y1) ∪ f −1
L (y2) it holds that

|{x1 ∈ f −1
L (y1) : x1 ∼i z}| = |{x2 ∈ f −1

L (y2) : x2 ∼i z}|.

We now consider the restriction g of fL to C ∪⋃p
i=1 Xi . Note that all the connected

components have their size bounded by some fixed function of c and p. We consider
an inclusion maximal union L̂ of connected components of g containing no r + 1
isomorphic connected components. The mapping L̂ is then the restriction of L to L̂.
Note that L̂ has its size bounded by some fixed function of c and p.

An alternate construction can be used, which is parametrized by a pair (r, R)

of integers with r ≤ R. The idea is as follows: we start from the standard R-
approximation and then reduce every set of at least k > r equivalent sons to r if
either k < R or some descendent of one of these sons as R equivalent sons. Then,
according to MTP, the measure of the types of the vertices obtained by removing
any R equivalent siblings and their descendants is at most F(r, t)/R. So one should
require R > F(r, t)/ε.
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Lemma 4.3 Every mapping L with finite height is r-equivalent to its standard r-
approximation, hence has the finite model property.

Proof An easy strategy for the r -round Ehrenfeucht–Fraïssé game shows that L is
r -equivalent to its standard r -approximation. �

4.2 Merging with Hub Local Type Models

To each rank r hub local type τ ′i we associate a finite rooted mapping (Mi , hi ) such
thatTypeMi

r (hi ) = τ ′i . LetM be the disjoint union of theMi . We proceed to themerge
of M with copies of F as in Step 8 of the proof of Theorem 1.4 (Fig. 4).

5 Concluding Remarks

In this paper we considered the approximation problem for mapping modelings. It
would be interesting to consider the approximation problem where we have only
the probability measure μ corresponding to the satisfaction probability of first-order
formulas.

In such a setting, we shall consider probability measures μ on S(LFO) that are
invariant under the natural action of the infinite permutation group Sω (acting by
permuting the free variables in the formulas), whose support projects on a single point
Th(μ)of S(LFO0). The analogs of the propertywe required formodelingmappings are
as follows: The condition for themodeling to be atomless corresponds to the property
that the μ-measure of the clopen subset K (x1 = k2) of S(LFO) dual to the formula
x1 = x2 is zero. Thefinitemodel property of themodeling corresponds to the property
that every sentence in Th(μ) has a finite model. The finitary mass transport principle
for the modeling corresponds to the following property of μ: for every formulas
φ,ψ ∈ FO1 such that ψ(x) entails that there exist exactly (resp. strictly more than)
k elements y1, . . . , yk such that φ(yi ) ∧ f (yi ) = x we have μ(K (φ)) = kμ(K (ψ))

(resp. μ(K (φ)) > kμ(K (ψ))).
Admittedly the proofs presented in this paper are technical and complex. In a way

this was expected as approximating modeling structures with two mappings seem to
be fully out of reach.

An interesting question is to solve the inverse problem for acyclic modelings
(the modeling equivalent of treeings). This problem has been solved in the bounded
diameter case [20] by a complicated analysis, and in the bounded degree case by [5].
However the problem for general acyclic modelings remain open.

Another way to make the problem simpler is to assume that the acyclic modeling
looks like a directed rooted tree. This is the motivation of the following problem
stated in [18]: if a tree modeling is oriented in such a way that the root is a sink and
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non-roots have outdegree one and if any finite subset of the complete theory of the
modeling has a connected finite model, is it true that the modeling is the FO-limit of
a sequence of finite rooted trees?

Finally, we would like to mention that random mappings are not FO-convergent,
as they do not satisfy a 0–1 law (the expected number of cycles of length r tend to
1/r [6]). However it might be possible that randommappings are FOlocal-convergent.
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1 Introduction

In this paper we provide a new deterministic, strongly polynomial time algorithm
which can be viewed in two ways. The first is as solving a derandomization problem,
providing a deterministic algorithm to a new special case of the PIT (Polynomial
Identity Testing) problem. The second is as computing the dimension of the span a
collection of subspaces in high dimensional space.Motivating and connecting the two
is the problem of testing graph rigidity, to which an efficient deterministic algorithm
is known only in the plane, and is open for higher dimensions. Accordingly, we will
divide the introduction to explain these three problems.

1.1 Polynomial Identity Testing (PIT)

Let K be a field. Let x = (x1, . . . xd) be a d-tuple of independent variables. The PIT
problem is to determine, given a multivariate polynomial p ∈ K[x], if p ≡ 0 (as a
polynomial). Of course, the description of p as an input to this problem is central
to its complexity, and many variants of this problem were considered. The most
common formulation is when p is given by an arithmetic formula or circuit.1

The original version of this question was posed by Edmonds [5]. In his formula-
tion, p is the determinant of a matrix whose entries are linear forms in x (we will
refer such a matrix as a symbolic matrix). Lovász [17] proved that this problem is in
B P P namely has a fast probabilistic algorithm (for fields K larger than the degree
of p): indeed, the algorithm simply picks random elements from K and evaluates
p (note that evaluating p is efficient in all three formulations above, and indeed
in all formulations considered). This left open the problem of finding an efficient
deterministic algorithm, namely derandomizing Lovász’s algorithm for PIT.

•? Open Problem

Is PIT ∈ P?

The importance of this seemingly specific open problemwas revealed in an impor-
tant result of Kabanets and Impagliazzo [13]. They showed that if the answer is
positive (as everyone expects), this will imply non-trivial lower bounds on either
arithmetic or Boolean circuits, well beyond current techniques.

The progress towards resolving this open problem has been by providing deter-
ministic polynomial time algorithms for a large variety of special cases of it, with the
idea of building up techniques. By far, in most of these results the special cases are

1When the input is a circuit, the degree of p is always assumed to be polynomial in the circuit’s
size, and in all cases considered in this paper this will be evident.
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defined by restricting the input polynomial to lie in some complexity class. In these
cases, progress in derandomization followed closely progress on lower bounds for
the appropriate class (as is the case in the Boolean setting as well). There are literally
dozens of such papers: many are mentioned and explained in the surveys [24, 26]
and e.g. the recent paper [1].

In parallel, with motivation from algebra, geometry and other areas, a different
collection of special cases of PIT was studied, of a structural nature. Here one works
with Edmond’s formulation, and develops an understanding (and often a polynomial
time algorithm) for cases where the symbolic matrix has restricted structure. This
includes for example the works [3, 4, 6, 9, 11, 21].

This paper contributes to the second line of research, providing new families of
symbolic matrices for which PIT can be solved in deterministic polynomial time. To
explain this structure we introduce some notation. We will work in a slightly more
general setting, in two ways, as the results generalize to both. First, we will allow our
symbolic matrices to have polynomial entries. In such cases, these polynomials will
have simple formulas describing them. Second, we will be interested in computing
the rank of the input symbolic matrix, not just whether its determinant vanishes.
While seemingly a more general problem, this turns out to be equivalent to PIT (see
e.g. [8, Appendix A]2).

Let R be a family of polynomialmaps R = {r : K
d → K

n}. In all caseswe assume
the degree of all polynomials in all maps is at most n, and the number of variables d
is at most polynomial in n, so we will think of n as the input size to the problem.

A family of maps R prescribes a family of symbolic matrices, so that each row is
an image of the d-vector of variables x under some map in R. More formally, define
PIT(R) to be the set of all symbolic matrices M (with n columns, and poly(n) rows)
in which every row of the matrix is of the form r(x), for some map r ∈ R. We will be
interested in families R for which the ranks of matrices in PIT(R) can be computed
in polynomial time.3

We first demonstrate the convenience of this notation. Call R complete, if a deter-
ministic polynomial-time algorithm for PIT(R) implies a deterministic polynomial-
time algorithm for PIT. Very simplemaps are complete! It follows fromValiant’s [30]
hardness of the determinant for the class4 VP that

2The proof in [8] is given for non-commutative rank, but the exact same proof works verbatim for
our usual notion of rank over K(x).
3We identify the set of matrices and the computational problem of determining their ranks.
4The arithmetic analog of the Boolean class P .
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Theorem 1.1 ([30]) The class Raffine of affine linear maps is complete.

Indeed, Valiant’s original proof (see more detail here [15]) implies a stronger
theorem. Even restricting the support of each row to have at most a single variable
in some coordinate, is general enough to be complete.

Theorem 1.2 The class Rsparse of affine linear maps, such that each map is non-
constant in at most a single variable from {x1, . . . xd}, is complete.

We now turn to define the polynomial maps wewill be interested in, and for which
we will be able to provide efficient deterministic algorithms. Some motivation for
interest in these maps will be given in the next two subsections.

Consider the following class R2. Here d = n. Every p ∈ R2 is of the form
x �→ (A − AT )x, where A is a rank-1 matrix. While this family may look very
special, we note that the problem of graph rigidity in R

2 (for which a polynomial
time algorithm is known but far from trivial) is a very special case of PIT(R2).5

Theorem 1.3 PIT(R2) can be solved in deterministic polynomial time, over a field
K with sufficiently large characteristic (more precisely, when char(K) is larger than
the number of rows of the input matrix or char(K) = 0).

This construction can be generalized as follows. Here we will generate PIT
instances whose entries are polynomials, rather than linear functions of the vari-
ables. For a k-dimensional tensor A of size n, denote by Â its “anti-symmetric”
version, namely where for every entry (i1, . . . , ik) we have

Â(i1, . . . , ik) =
∑

σ∈Sk

sgn(σ )A(iσ(1), . . . , iσ(k)).

Note that for k = 2 we have Â = A − AT .
We now extend R2, in which a matrix (namely a 2-dimensional tensor) acts on

one vector of variables, to Rk , in which a k-dimensional tensor acts on k − 1 vec-
tors of variables. Let Rk denote the following class of (degree k − 1) maps. Let
x1, x2, . . . , xk−1 ben-vectors of independent variables, so altogetherx = (x1, x2, . . . ,
xk−1) is a vector of (k − 1)n variables. A k-tensor of size n in each dimension acts
on x simply with the i’th dimension acting on xi for i ∈ [k − 1]. The output of this
action is a vector (along dimension k) of length n of polynomials of degree k − 1,
each linear in xi for all i . Define Rk to be all maps defined by Â for any rank-1
tensor A. Note that with this notation R2 is precisely the class defined above.

Generalizing the above theorem we prove:

Theorem 1.4 For every k < n, PIT(Rk) can be solved in deterministic polynomial
time, over a field K with sufficiently large characteristic (more precisely, when
char(K) is larger than the number of rows of the input matrix or char(K) = 0).

5Moreover, the same family of rank-2, skew symmetric matrices is featured in a very different
PIT problem: determining the maximum rank of a subspace generated by given such matrices. A
deterministic polynomial time solution for this problem is given by Lovasz’ celebrated matroid
parity algorithm [18] (see also [19], Theorem 11.1.2).
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1.2 Graph Rigidity

The problem of graph rigidity arises from several motivations, originally, mechanical
engineering, where it was studied by Hilda Geiringer [22, 23] already in 1927, and
later by Laman [14]. Rigidity theory is a fast-growing area, andwe refer the interested
reader to [27] for more background and recent approaches. Graph rigidiy has several
versions, we describe perhaps the most common one, generic rigidity. It is supposed
to capture the structural rigidity of a “bars and joints” framework described by a
graph. We will not be formal here as precise definitions can be found e.g. in [2].
Here the relevant field for the geometric/physical interpretation is the Real numbers
R, and we use it in this subsection as in other papers on this problem (although the
algebraic formulation is meaningful for every field K).

Let G(V, E) be an undirected graph on n vertices and m edges. An embedding
of G in R

t is a map φ : V → R
t . An embedding of G is called rigid if there is

no perturbation of the vertex positions which preserves all edge lengths, other than
the rigid motions of R

t . The graph G is called rigid if every generic embedding of
G is rigid (equivalently, if there exists an embedding of G which is rigid, see [2]).
The main question is to determine if a given graph G is rigid (and more generally,
compute the dimension of the non-rigid motions of a generic embedding, in case G
is not rigid).

An extremely convenient formulation of the problem (as a PIT) is the following.
Let xv, j be a set of variables indexed by v ∈ V and j ∈ [t]. The intuition is that
(xv,1, . . . , xv,t ) are the coordinates of a generic embedding of the vertex v in R

t .
Given G, construct a symbolic matrix MG,t of dimensions m × nt , which may be
viewed as a concatenation of t matrices, one for each dimension j ∈ [t]. Every row
corresponds to an edge {u, v} ∈ E , and for each j , the column u, j contains the entry
xu, j − xv, j , whereas the column v, j contains the the negation xv, j − xu, j .

It is not hard to prove that the rank (as usual, over R(x)) of MG,t determines if G
is rigid, and indeed the dimension of non-rigid motions (see [2] for the details). It is
easy to see that for every graph G, the matrix MG,2 is in the class P I T (R2) above.
Indeed, let e1, . . . , e2n denote the standardbasis vectors inR

2n . For someu < v ∈ [n],
put a = eu − ev and b = en+u − en+v . Consider the matrix A = Au,v := at b. Then
(A − At )x, where x = (x21, . . . , x2n, x11, . . . , x1n) is the {u, v} row of MG,2. Thus
Theorem 1.3 yields as a corollary a polynomial time algorithm to determine whether
a given graph G is rigid in R

2. Such algorithms for rigidity in R
2 are known (see [10,

Section2.2] and references therein). Note that thematrices MG,t make sense over any
field K, instead of R, and Theorem 1.3 in fact provides a deterministic polynomial
time algorithm to compute the rank of these matrices over any field K with large
enough characteristic.

The symbolic matrix representation above shows that for every t , the problem of
testing graph rigidity in R

t is in B P P , and it is a decades-old problem to whether it
is also in P , even for the case t = 3.

Lovász andYemini [20] have developed an alternative approach for studying graph
rigidity in the plane, which obtains a somewhat finer characterization of rigidity than
Geiringer-Laman’s. What is even more interesting is their method. They show that
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the matrices MG,2 can actually be obtained in the following way. First, with every
edge {u, v} associate a certain 2-dimensional subspace fu,v ⊂ R

2n . The intersection
of this subspace fu,v with a generic hyperplane through the origin (of which the
normal can be viewed essentially as the 2n-vector of variables xv, j ) yields the {u, v}
row of MG,2. In more detail, identify the vertices of G with the set V = [n], and
let e1, . . . , e2n denote the standard basis in R

2n . Define fu,v to be the subspace of
R

2n spanned by the pair of vectors eu − ev and en+u − en+v (note that the definition
of fu,v is symmetric in u, v). Let h(x) denote the subspace of R

2n orthogonal to
the vector x = (y1, . . . , yn,−x1, . . . ,−xn). It is not hard to verify (see [20] for the
details) that h(x) ∩ fu,v is spanned by the {u, v} row of MG,2. Thus, for a generic x,
we have

rankMG,2 = dim span{h(x) ∩ fu,v | {u, v} ∈ E}.

Thus, the question of computing the rank of MG,2 becomes the question of com-
puting the dimension of the span of the resulting intersections (which here are simply
lines) with a generic hyperplane. To analyze this, Lovász and Yemini use a theory
developed by Lovász [16] which studies a similar problem for an arbitrary family of
subspaces. The relevant part of Lovász’s theory is introduced in the next subsection.

The idea of [20] can be applied also to rigidity in higher dimensions. For simplicity
of the presentation, let us consider only the case t = 3. In this case we associate with
each edge {u, v} ∈ E a 3-dimensional subspace gu,v of R

3n . Namely, the subspace
spanned by the vectors eu − ev , en+u − en+v , e2n+u − e2n+v , where here e1, . . . , e3n

stand for the standard basis of R
3n . Let x = (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) and

define h̃(x) to be the (codim 2) subspace of R
3n orthogonal to the pair of vectors

(y1, . . . , yn,−x1, . . . ,−xn, 0, . . . , 0)

(z1, . . . , zn, 0, . . . , 0,−x1, . . . ,−xn).

It is not hard to verify that h̃(x) ∩ fu,v is one dimensional and spanned by the {u, v}
row of MG,3. Thus, for a generic choice of x, we have

rankMG,3 = dim span{h̃(x) ∩ fu,v | {u, v} ∈ E}.

A crucial difference from the case t = 2 is that here a generic choice of x does not
yield a generic codim 2 subspace h̃(x) of R

3n . From the perspective of this method
and of our paper, this is “the reason” why rigidity in higher dimensions is more
challenging.

1.3 Subspaces and Generic Hyperplanes

Let F be a collection of subspaces in K
d . Let h be a generic hyperplane in K

d ,
which without loss of generality can be taken to be all vectors perpendicular to
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x = (x1, . . . xd). For each subspace f ∈ F , let f ′ = f ∩ h. Now consider the space
spanned by the subspaces in F ′ := { f ′ | f ∈ F} (note that the flats in F ′ are functions
of x). The question is, what is the dimension of span(F ′)?

One of the major results of Lovász’ paper [16] is a formula, called ρ(F) (which
we redefine in Sect. 2), that determines this dimension for every family of subspaces,
and for x satisfying a certain “general position” condition (see Definition 5.1). To
show that a generic x satisfies Lovász’s general position condition over any field
(with large enough characteristic) is one main result of our paper (see Sect. 7). Note
that this fact is mentioned (over the field R) in [16] with no proof. This fact is again
mentioned6 and applied, again with no proof, in Tanigawa [28]. We see our paper as
contributing to the completeness of these results.

When the subspaces F are derived from a graph in the manner described above
to generate the rigidity matrix, Lovász and Yemini [20] write the explicit special
case of the formula ρ(F), which yields an elegant characterization. For the general
case of an arbitrary family of subspaces F , the formula is given as the minimum,
over all possible partitions of the family, of a certain easily computable function.
As the number of partitions is exponential, there is no obvious efficient way of
computing ρ. We have recently learned that the problem of computing ρ is a special
case of minimizing, over all partitions of a set S, the Dilworth truncation of a given
submodular function f defined over S; a strongly polynomial algorithm for this
problem is given in Frank and Tardos [7, Chapters II.1 and IV.3]. In our paper we
introduce an alternative7 strongly polynomial algorithm for computingρ, by reducing
the original problem to a minimization problem of a certain submodular function.
In fact, we prove our result to a more general quantity ρc(F), introduced in Sect. 2.
(Note that ρ(F) = ρ1(F) is the quantity from [16].)

Theorem 1.5 There is a deterministic, strongly polynomial time algorithm to com-
pute ρc for every real number c.

Closing this circle, we will also prove that the problem of computing ρ1 is equiv-
alent to PIT(R2). This will yield Theorem 1.3 as a corollary to Theorem 1.5.

1.4 Related Works and Applications

We see our result as a step towards better understanding of the algorithmic aspects
of the notions and formulas introduced in Lovázs [16] and their applications.

Let us mention one related concept studied in Lovász [16] and discuss follow-up
work by Tanigawa [28], which is related to Theorem 5.2 proved in this paper. It would

6In Tanigawa [28] an alternative general position condition is suggested, to supposedly correct a
mistake in Lovász’s paper. However we find the counter example in [28, footnote on p. 1416] false.
We provide a full and detailed proof of Lovász’s formula in Sect. 5.
7Our algorithm seems different than the one in [7], as it does not use duality.
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be interesting to find efficient algorithms for the natural computational problem at
hand. The reader may skip this subsection at first reading.

Let F be a finite family of subspace in K
d (where K is a field of characteristic

0). Let X = {x f | f ∈ F} be a collection of points in K
d such that x f ∈ f for each

f ∈ F . The set X is said to be in general position with respect to F if, for every
f ∈ F fixed, the following holds: Any subspace spanned bymembers of F and points
of X \ {x f } containing x f must contain the whole flat f . Lovász shows that there
exists a choice of a set X in general position with respect to any given family F . He
then proves the following formula:

Theorem 1.6 (Lovász [16]) Let F be a finite family of subspace in K
d , and let

X = {x f | f ∈ F} be in general position with respect to F. Then

rank(spanX) = min
G⊆F

{
rank(span

⋃
G) + |F \ G|

}

An interesting application of Theorem 1.6 to the body-rod-bar rigidity problem
is obtained by Tanigawa [28]. A body-rod-bar framework in R

d is defined as a struc-
ture consisting of d-dimensional subspaces (bodies) and (d − 2)-dimensional flats
(rods) mutually linked by one-dimensional lines (bars). (The term “rod” is appropri-
ate for d = 3.) More formally, a d-dimensional body-rod-bar-framework is a triple
(G, q, r), where G = (V = B ∪ R, E) is a graph, r : R → Gr(d − 1, R

d+1) ⊂
P(

∧d−1
(Rd+1)) is the rod-configuration mapping a vertex v ∈ R to a (d − 1)-

dimensional subspace rv of R
d+1, and q : E → Gr(2, R

d+1) ⊂ P(
∧2

(Rd+1)) is the
bar-configuration mapping an edge e ∈ E to a 2-dimensional subspace qe in R

d+1,
such that

qe and rv have a nonzero intersection, whenever v ∈ R is a vertex of e;

equivalently,
qe · rv = 0, whenever v ∈ R is a vertex of e,

where here the dot product should be interpreted appropriately (see [28] for the
details). Assume also that r(u) �= r(v) for every u �= v ∈ R.

An infinitesimal motion of (G, q, r) is a mapping m : B ∪ R → ∧d−1
(Rd+1)

such that
qe · (m(u) − m(v)) = 0, for every e = {u, v} ∈ E . (1)

An infinitesimal motion m is called trivial if either m(u) = m(v) for all u, v ∈ V , or
if, for some fixed v0 ∈ V we have m(v0) = rv0 and m(v) = 0 for every v ∈ V \ {v0}.
Finally, a framework (G, q, r) is called infinitesimally rigid if every infinitesimal
motion is trivial.

The body-rod-bar problem gives rise to amatroid BR(G, q, r) defined on the edge
set E whose rank is the maximum size of independent linear equations in (1) (for
unknown m). From the definition, (G, q, r) is infinitesimally rigid if and only if the
rank of BR(G, q, r) is

(d+1
2

)|V | − (
(d+1

2

) + |R|).
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Theorem 1.7 (Tanigawa [28, Corollary 4.13]) Let G = (B ∪ R, E) and suppose
d ≥ 3. Then, for almost all bar-configurations q and almost all rod-configurations
r we have

rank(E) = min
�={F0,...,Fk }

{
|F0| +

k∑

i=1

((d+1
2

)
(V (Fi ) − (d+1

2

) − R(Fi )
)}

,

where the minimum is taken over all partitions � of E.

Tanigawa’s proof is a nice combination of Theorem 1.6 with the other result of
Lovász mentioned in the introduction, cited below as Theorem 5.2. Briefly, the first
(simpler) step in the proof is to reduce the problem to the form of Theorem 1.6. That
is, a family of flats F is introduced, and the question becomes to find the rank of a
generic set of points X = {x f | f ∈ F}. The family F resulted from the reduction
can be described as follow: Each edge e = {u, v} of G is associated with some fixed

subspace fe in
(
P(

∧2
(Rd+1))

)|V |
. Then F = { fe ∩ h(u) ∩ h(v) | e = {u, v} ∈ E},

where hr (u), hr (v) are subspaces depending on the choice of rod configuration r .
Since r is taken generically, this imposes some genericity on the subspaces hr (v),
but they are not exactly generic. The proof is then complete by proving a relaxed
version of Theorem 5.2, and adding the subspaces hr (v) one after the other.

For more recent applications of [16, 20] see Tanigawa [28, 29].

1.5 Organization of This Paper

In Sect. 2 we introduce the function ρc(F), which is the main object of this study.
The rest of the paper has two separate parts. The first, in Sects. 3 and 4, describes the
algorithm to compute ρc. In Sect. 3, we present and prove properties of the function
ρc. Using these propertieswe describe, in Sect. 4, a deterministic strongly polynomial
time algorithm that computes ρc over every field via submodular optimization. Note
that, as there is an alternative algorithm [7] in the literature to efficiently compute
functions like ρc, this part can be skipped.

The second part, in Sects. 5–7, describes the genericity proof of ρ. In Sect. 5, we
state (and reprove) the result of Lovász [16] above, relating ρ1 to the intersection of
F with a hyperplane in “general position”. A similar relation is obtained for ρc, for an
integer c > 0 (see Theorem 5.5). In Sect. 6, we develop an explicit representation of a
basis of the family F ′ resulting from this intersection, which give rise to the symbolic
matrices PIT(R2) (andPIT(Rk)). Using this,we prove in Sect. 7 thatmost hyperplanes
(and more generally, subspaces) satisfy the “general position” definition of Lovász,
thus expressing the rank of a these symbolic matrices as appropriate ρ(F). Using the
algorithm above we can now compute these ranks deterministically and efficiently.
This last section is the only one in which the size of the field K is important.
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2 Subspaces, Partitions, and the Function ρc

We introduce the main objects of this study: Families of subspaces, their partitions,
and the optimization problem we solve in this paper. We consider linear subspaces f
of K

d . Let d( f ) denote the dimension of a subspace f . For a family F of subspaces,
we write spanF := span

⋃
f ∈F f and

d(F) := d(spanF).

A partition of F is a set� = {P1, . . . , Pt } of nonempty, pairwise disjoint subfamilies
of F , such that F = ⋃t

i=1 Pi . For a partition � of F and a family of subspaces G,
we define the restriction of � to G by

� ∩ G := {P ∩ G | P ∈ �, P ∩ G �= ∅}. (2)

If G ⊂ F , then � ∩ G forms a partition of G.
Lovász [16] defined the following key function ρ of a family of subspaces, whose

meaning will be revealed in Sect. 5. We actually generalize his definition to a family
of functions ρc, for every c > 0 (his ρ is our ρ1 for c = 1). Computing ρc(F) in deter-
ministic polynomial time given F , in Sect. 4, will be the key to our derandomization
results.

Fix a constant c > 0. Let F be a finite family of subspaces in K
d . For a partition

� of F , we define
ρc(F,�) :=

∑

P∈�

(d(P) − c).

ρc(F) := min
�

ρc(F,�), (3)

where the minimum is taken over all partitions � of F .

Definition 2.1 We say that� is aminimal partition of F , with respect to the constant
c > 0, if � attains ρc(F) and has the smallest possible number of parts.

Remark. In Corollary 3.2 we prove that, fixing c > 0, a minimal partition � of a
family F with respect to c is unique.

Notation.

Wewill use small letters f, g, h to denote subspaces inK
d , capital letters F, G, P, Q

to denote families of subspaces, and � to denote partitions of a certain family F
of subspaces. Note that the elements of a partition � are themselves families of
subspaces.
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3 Properties of Minimal Partitions

In this and the next sectionwe develop our algorithm in a fully self-containedmanner.
As mentioned in the introduction, the reader may skip these sections and apply the
algorithm of [7] as a black box. In this section, we introduce some properties of
minimal partitions, to be used in our algorithm. We find these properties interesting
in their own right, but somemay be known, indeed inmore generality, for submosular
functions.

3.1 Main Technical Lemma

We start with the following main technical lemma of this section.

Lemma 3.1 Let F, G be families of subspaces in K
d with minimal partitions

�F ,�G, respectively. Assume that Q ∈ �G and Q ⊂ F. Then Q is contained in
one of the parts of �F .

For the proof, the idea is to show that if, when considering a minimal partition
for F , it “pays off” to put the elements of Q together, then it still “pays off” (or at
least, harmless) to put these elements together, when this time considering a minimal
partition for G.

Proof Consider the restriction �′ := �F ∩ Q of �F to Q (as defined in (2)). By
assumption, Q ⊂ F , and thus �′ forms a partition of Q.

Our assumption that Q ∈ �G , and recalling that �G forms a minimal partition
of G, implies that

∑

P∈�′
(d(P) − c) ≥ d(Q) − c. (4)

Fixing some arbitrary order on the elements of �′, we write

�′ = (P ′
1, . . . , P ′

t ),

where P ′
i := Pi ∩ Q is non-empty and P1, . . . , Pt ∈ �F are distinct. Set V ′

0 := {0}.
For each 1 ≤ i ≤ t , define

V ′
i := span

⎛

⎝
i⋃

j=1

P ′
j

⎞

⎠

and put r ′
i := d(V ′

i ) − d(V ′
i−1) and s ′

i := d(P ′
i ) − r ′

i . Note that

d(Q) =
t∑

i=1

r ′
i
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and that
s ′

i = d((spanP ′
i ) ∩ V ′

i−1). (5)

With this notation, (4) can be rewritten as

t∑

i=1

(r ′
i + s ′

i ) − tc ≥
t∑

i=1

r ′
i − c

which implies
t∑

i=1

s ′
i ≥ c(t − 1). (6)

Next, we define

Vi := span

⎛

⎝
i⋃

j=1

Pj

⎞

⎠

and put ri := d(Vi ) − d(Vi−1) and si := d(Pi ) − ri . Similar to above, we have

d

(
t⋃

i=1

Pi

)
=

t∑

i=1

ri

and
si = d((spanPi ) ∩ Vi−1). (7)

We claim that
t∑

i=1

(d(Pi ) − c) ≥ d

(
t⋃

i=1

Pi

)
− c. (8)

Indeed, the inequality (8) holds if and only if

t∑

i=1

(ri + si ) − tc ≥
t∑

i=1

ri − c

which holds if and only if
t∑

i=1

si ≥ c(t − 1). (9)

To prove the last inequality, notice that V ′
i ⊂ Vi and spanP ′

i ⊂ spanPi , for every i .
Thus

d((spanP ′
i ) ∩ V ′

i−1) ≤ d((spanPi ) ∩ Vi−1).
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Hence, by (5) and (7), we get s ′
i ≤ si . This fact combined with the inequality (6)

implies (9) and hence also (8). Since�F is assumed to beminimal for F , we conclude
that t = 1 and Q ⊂ P1. This completes the proof. �

3.2 Uniqueness of Minimal Partitions

We prove uniqueness of minimal partitions.

Corollary 3.2 (Uniqueness) Let F be a family of subspaces in K
d and let �1,�2

be minimal partitions of F. Then �1 = �2.

Proof Let ∼1,∼2 denote the equivalence relations on F induced by the partitions
�1,�2, respectively. Let f, g ∈ F and assume that f ∼1 g. That is f, g ∈ Q, for
some Q ∈ �1. Applying Lemma 3.1 (with F , G := F , and Q), we get that Q is
contained in one of the parts in �2. Thus f ∼2 g. By symmetry, we conclude that
f ∼1 g if and only if f ∼2 g. Thus �1 = �2, as claimed. �

Definition 3.3 Fix c > 0. Define �∗(F) to be the minimal partition of a family of
subspaces F (with respect to c).

3.3 Monotonicity Properties

We prove the following “monotonicity” property of minimal partitions.

Corollary 3.4 (Monotonicity) Let F, G be families of subspaces in K
d and assume

that G ⊂ F. Then �∗(G) is a refinement of �∗(F) ∩ G.

Proof Apply Lemma 3.1 to the families F and G. �

The following is another type of monotonicity property.

Lemma 3.5 Let F = { f1, . . . , fn} be a family of n subspaces in K
d . Let fi ⊂ f ′

i ,
for every i = 1, . . . , n, and consider F ′ := { f ′

1, . . . , f ′
n}. For a partition � of F, let

�′ denote the partition of F ′ induced by �, replacing each fi by the corresponding
f ′
i . Then (�∗(F))′ is a refinement of �∗(F ′).

Proof Let P ∈ �∗(F) and assumewithout loss of generality that P = { f1, . . . , fm},
for some m ≤ n. It is easy to see, applying Lemma 3.1, that �∗(P) = {P}.

Put P ′ := { f ′
1, . . . , f ′

m}. We claim that �∗(P ′) = {P ′}. First note that it suffices
to prove the claim for the special case where f1 ⊂ f ′

1 and fi = f ′
i , for i = 2, . . . , m,

and then apply the same argument repeatedly to each i . To prove the calim for the
special case, consider the family Q = { f1, f ′

1}. It is easy to see, by definition, that
�∗(Q) = {Q}. By Lemma 3.1, Q is contained in a part of �∗(G), for every family
of subspaces G that contains Q. Moreover, since f1 ∪ f ′

1 ⊂ f ′
1, we have
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ρc(G) = ρc(G \ { f1}) and �∗(G \ { f1}) = �∗(G) ∩ (G \ { f1})

for every such G (this follows directly from the definition of ρc and of �∗).
Define G := { f1, f ′

1, f2, . . . , fm}. By what has just been argued, we have

�∗(P ′) = �∗(G) ∩ P ′. (10)

Since P, Q ⊂ G, and applying Lemma 3.1, we get that each of P and Q is contained
in a part of �∗(G). But P ∩ Q �= ∅, thus the set P ∪ Q must be contained in a part
of �∗(G). Noting that P ∪ Q = G, this implies that �∗(G) = {G}. Combined with
(10), this proves �∗(P ′) = P ′, as claimed.

Applying Lemma 3.1 to the families F ′, P ′, and with P ′ ∈ �∗(P ′), we conclude
that P ′ is contained in one of the parts of �∗(F ′). Since this is true for every P ∈
�∗(F), the lemma follows. �

3.4 The Family F̂

Let F be a family of subspaces inK
d .We show that, in some sense, F can be replaced

by a simpler family F̂ defined next. With each P ∈ �∗(F) associate the subspace
fP := spanP . Then define the family

F̂ := { fP | P ∈ �∗(F)}.

Note that for P �= P ′ we have fP �= fP ′ ; otherwise, taking P ∪ P ′ yields a partition
of F with strictly less parts and with smaller or equal value of ρc, contradicting the
minimality of �∗(F).

The family F can be replaced by F̂ in the sense of Lemma 3.6, and F̂ is simpler
in the sense of Lemma 3.7.

Lemma 3.6 Let F, G be families of subspaces in K
d . Then

ρc(F ∪ G) = ρc(F̂ ∪ G) and �∗(F ∪ G) � �∗(F̂ ∪ G).

By the sign � we mean that the identity holds after identifying the partiton �∗(F̂ ∪
G) of F̂ ∪ G with the partition of F ∪ G naturally induced by it. Concretely, the
lemma asserts that

�∗(F ∪ G) = {(
⋃

fP ∈Q̂

P) ∪ (G ∩ Q̂) | Q̂ ∈ �∗(F̂ ∪ G)}.

Proof In the proof we often abuse notation and regard a partition of F̂ ∪ G as a one
of F ∪ G, as explained after the statement of the lemma. Let �∗ be the partition of
F ∪ G induced by �∗(F̂ ∪ G), given by
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�∗ =
{
(

⋃

fP ∈Q̂

P) ∪ (G ∩ Q̂) | Q̂ ∈ �∗(F̂ ∪ G)
}
.

We have |�∗| = |�∗(F̂ ∪ G)| and

ρc(F ∪ G,�∗) = ρc(F̂ ∪ G,�∗(F̂ ∪ G)).

Thus
ρc(F ∪ G) ≤ ρc(F̂ ∪ G).

To prove the inverse inequality, apply Lemma 3.1 to the families F and F ∪ G. It
follows that, for every P ∈ �∗(F), there exists Q ∈ �∗(F ∪ G) such that P ⊂ Q.
This means that �∗(F ∪ G) induces a well-defined partition �̂∗ of F̂ ∪ G with
|�∗(F ∪ G)| = |�̂∗| and

ρc(F ∪ G,�∗(F ∪ G)) = ρc(F̂ ∪ G, �̂∗). (11)

Concretely, �̂∗ is given by

�̂∗ := {Q̂ | Q ∈ �∗(F ∪ G)},

where
Q̂ := {

fP | P ⊂ Q, P ∈ �∗(F)
} ∪ (Q ∩ G).

We have

ρc(F ∪ G) = ρc(F ∪ G,�∗(F ∪ G))

= ρc(F̂ ∪ G, �̂∗)

≥ ρc(F̂ ∪ G).

This proves that ρc(F ∪ G) = ρc(F̂ ∪ G).
Next, we claim that |�∗(F ∪ G)| = |�∗(F̂ ∪ G)|. Indeed, by our argument

above, the partition �̂∗ of F̂ ∪ G satisfies

ρc(F̂ ∪ G, �̂∗) = ρc(F̂ ∪ G) and |�̂∗| = |�∗(F ∪ G)|.

Since �∗(F̂ ∪ G) is taken to be the smallest that attains ρc(F̂ ∪ G), we get

|�∗(F̂ ∪ G)| ≤ |�∗(F ∪ G)|.

Similarly, by our argument above, the partition �∗ of F ∪ G satisfies

ρc(F ∪ G,�∗) = ρc(F ∪ G) and |�∗| = |�∗(F̂ ∪ G)|.
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Thus,
|�∗(F ∪ G)| ≤ |�∗(F̂ ∪ G)|.

This proves the claim.
By the uniqueness of minimal partition (see Corollary 3.2), we conclude that

�∗(F̂ ∪ G) = �̂∗ and �∗(F ∪ G) = �∗.

This completes the proof of the lemma. �

Lemma 3.7 Let F be a family of subspaces in K
d . Then

�∗(F̂) = {{ f̂ } | f̂ ∈ F̂}.

Proof Apply Lemma 3.6 with G = ∅. �

We introduce one more simple property that we need.

Lemma 3.8 F̂ ∪ G = ̂̂F ∪ G.

Proof By Lemma 3.6, �∗(F ∪ G) = �∗(F̂ ∪ G). The assertion then easily
follows. �

4 An Algorithm for Computing ρc(F)

In this section we prove Theorem 1.5. That is, we introduce an algorithm to compute
ρc(F), for any number c and a given family F of n subspaces inK

d , with polynomial
running time in n (and in d). While we designed our algorithm for the class of
functions ρc, it clearly works for a wider class of submodular functions. As it is
different than the one in [7], we feel it would be interesting to explore its generality.
Note that the problem is trivial for c ≤ 0, which is why we consider only c > 0.

As mentioned in the introduction, the problem of computing ρc turns out to be an
instance of a more general problem to which a strongly polynomial time algorithm
is already known [7]. In more detail, the Dilworth truncation of a set function b′ :
2S → R ∪ {∞} is defined as the function

b(X) = min
�

∑

P∈�

b′(P),

where the minimum is taken over all partitions � of X .

Theorem 4.1 ( Frank and Tardos [7, IV.3]) Let b′ : 2S → R ∪ {∞} be a submodular
set function. Suppose that a minimizing oracle for b′ is available. Then b(S) can be
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computed in a strongly polynomial time. The algorithm also constructs a partition
� of S for which b(S) = ∑

P∈� b′(P).

Remark. In [7], a more general result is proved.

4.1 High-Level Description of the Algorithm for ρc

The input to the algorithm is a number c and a family of subspaces F = { f1, . . . , fn}
in K

d Write Fi := { f1, . . . , fi }. The high-level scheme of the algorithm is the fol-
lowing:

1. F̂1 ← { f1}.
2. For i ← 2 to n

2.1. � ← Compute �∗(F̂i−1 ∪ { fi })
2.2. F̂i ← {span(P) | P ∈ �}

3. Return
∑

f̂ ∈F̂n
(d( f̂ ) − c)

The heart of the algorithm is of course the missing description of Step 2.1, which
computes, in the i th iteration, the minimal partition of the family F̂i−1 ∪ { fi } with
respect to ρ.

Lemma 4.2 The computation in Step 2.1 can be done in strongly-polynomial time.

Recall that theminimal partitionof F̂i−1 is the partition into singletons, byLemma3.7.
So in this step we compute the effect on this partition of inserting one new subspace.
We explain how to do so efficiently and prove Lemma 4.2 in Sect. 4.3 below. To
describe and analyze step 2.1, we first need to recall submodular functions and opti-
mization, which we do in Sect. 4.2. The proof of the lemma is then given in Sect. 4.3.

We are now ready to prove Theorem 1.5, assuming that Lemma 4.2 is true.

Proof (Proof of Theorem 1.5) Correctness of the algorithm. By Lemma 3.8, we have

F̂i = ̂F̂i−1 ∪ { fi }.

Thus the computation of F̂i in Step 2.2 is correct. In view of Lemmas 3.6 and 3.7,
the algorithm’s output is ρc(F), as needed.

Running time of the algorithm. We represent a k-dimensional subspace f in K
d by

a k × d matrix whose rows form a basis for f . The dimension d( f ) of a subspace
f is just the number of rows in the matrix representing the subspace, and hence can
be computed in a constant time. Let P be a family of subspaces in K

d . To compute
span(P), we take the union of the rows of the matrices in P (representing subspaces)
and apply Gauss elimination (using row operations only). If P has n subspaces, we
will need to apply Gauss elimination to amatrix of dimensions at most (nd) × d. The
nonzero rows in the matrix received by this process will form a basis for span(P).



394 O. E. Raz and A. Wigderson

Now let F be a family of n subspaces in K
d . Cleary, each line in the above

description of the algorithm, when applied to F , is called at most n times. In each
step, excluding Step 2.1, we are required to compute at most n times one of the
operations just described (finding dimension or span) or simple operations such as
addition. In view of Lemma 4.2, the proof is complete. �

4.2 A Submodular Set Function

Recall that a function s defined on the collection of subsets of a finite set A is called
submodular if

s(X) + s(Y ) ≥ s(X ∪ Y ) + s(X ∩ Y )

for all X, Y ⊂ A.
The following is proved by Schrijver in [25].

Theorem 4.3 ( Schrijver [25]) There exists a strongly polynomial-time algorithm
minimizing a submodular function s, where s is given by an oracle. The number
of oracle calls is bounded by a polynomial in the size of the underlying set. The
algorithm also finds a minimizer X∗ of s.

In this section we consider a set function defined as follows. Let F be a family of
subspaces in K

d and let g ⊂ K
d be a subspace not in F . Fix c > 0. Define rF,g,c :

2F → K by
rF,g,c(X) := d (X ∪ {g}) − c +

∑

f ∈X

(d( f ) − c),

where X := F \ X . We then put

r∗
F,g,c := min

X⊂F
rF,g,c(X)

and we let X∗
F,g,c denote a subset X ⊂ F that attains r∗

F,g,c.
We show that rF,g,c is submodular.

Lemma 4.4 Let F and g and c be as above. Then rF,g,c is submodular.

Proof To simplify the notation, and as F, g, c are fixed, wewrite for short r = rF,g,c.
Let X, Y ⊂ F . We need to show

r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

Put fX := span(X ∪ {g}). By definition, we have
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r(X) + r(Y ) = d(X ∪ {g}) + d(Y ∪ {g}) +
∑

f ∈X̄

d( f ) +
∑

f ∈Ȳ

d( f ) − c|X̄ | − c|Ȳ | − 2c

= d( fX ) + d( fY ) +
∑

f ∈X̄

d( f ) +
∑

f ∈Ȳ

d( f ) − c|X̄ | − c|Ȳ | − 2c.

By basic linear algebra, we have the identity

d( fX ) + d( fY ) = d(span( fX ∪ fY )) + d( fX ∩ fY ).

Thus the last equality, after some rearranging, is

r(X) + r(Y ) =
(

d(span( fX ∪ fY )) − c +
∑

f ∈X̄∩Ȳ

d( f ) − c|X̄ ∩ Ȳ |
)

+
(

d( fX ∩ fY ) − c

+
∑

f ∈X̄∪Ȳ

d( f ) − c|X̄ ∪ Ȳ |
)

Noting that span( fX ∪ fY ) = span( fX∪Y ) and that span( fX ∩ fY ) ⊃ span( fX∩Y ),
we get

r(X) + r(Y ) ≥
⎛

⎝d( fX∪Y ) − c +
∑

f ∈X∪Y

d( f ) − c|X ∪ Y |
⎞

⎠

+
⎛

⎝d( fX∩Y ) − c +
∑

f ∈X∩Y

d( f ) − c|X ∩ Y |
⎞

⎠

= r(X ∪ Y ) + r(X ∩ Y ).

This proves the lemma. �

4.3 Inserting One Subspace

We are now ready to describe in detail Step 2.1 which computes F̂i given F̂i−1 and
fi . More precisely, we describe a subroutine that receives as an input a family F with
F = F̂ and a subspace g, and outputs �∗(F ∪ {g}).

We will need the following observation.

Lemma 4.5 Let G = F ∪ {g} be a family of subspaces in K
d . Let Qg ∈ �∗(G) be

the part that contains the subspace g. Then

�∗(G) \ {Qg} ⊂ �∗(F).
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Proof For every Q ∈ �∗(G) \ {Qg}, we have Q ⊂ F . By Lemma 3.1, there exists
P ∈ �∗(F) such that Q ⊂ P . Clearly, we also have P ⊂ G. Applying Lemma 3.1
once again, we get that also P ⊂ Q. Thus, P = Q which means that Q ∈ �∗(F). �
Corollary 4.6 Let F be a family of n subspaces in K

d with F̂ = F and let g be
another subspace in K

d . Then ρc(F ∪ {g}) = r∗
F,g,c and

�∗(F ∪ {g}) = {X∗
F,g,c ∪ {g}} ∪ {{ f } | f ∈ F \ X∗

F,g,c},

where X∗
F,g,c and r∗

F,g,c are as defined in Sect.4.2.

Proof This follows from the definitions of ρc and r∗
F,g,c, combined with

Lemma 4.5. �
Proof (Proof of Lemma 4.2) Combinig Corollary 4.6 with Theorem 4.3, we get that
the computation in Step 2.1 can be done in strongly-polynomial time. �

5 Intersecting Subspaces with a Hyperplane

In this section we state (and reprove) a result of Lovász [16], which explains the
source of the function ρ (more precisely, taking ρc with c = 1) as the dimension of
the intersections of a family of subspaces with a hyperplane in “general position”.
This connection has been used by Lovász to study certain questions about matroids
in [16], and by Lovász and Yemini in [20] to study rigid structures in R

2. We extend
Lovász’ treatment to arbitrary fields K.

In Theorem 5.5 below, we further extend Lovász’s result, in a straightforward
manner, to apply to the intersection of a family of subspaces with an arbitrary sub-
space (of any co-dimension) in “general position”, instead of only a (co-dimension 1)
hyperplane.

Lovász [16] uses a very specific notion of genericity, which he calls general
position defined below, and shows that ρ correctly computes the dimension of the
intersection when the hyperplane is in general position with respect to the given
family of subspaces. In Theorem 7.1 we will prove that indeed “general position” is
a generic property, namely holds for almost all hyperplanes. This will complete the
connection with the PIT problem solved in this paper.

A hyperplane in K
d is a subspace (subspace of K

d ) of codimension 1. Let F
be a family of (nonzero) subspaces in K

d and let h ⊂ K
d be a hyperplane in K

d .
We denote by F ∩ h the family { f ∩ h | f ∈ F}. Following Lovász, we have the
following definition:

Definition 5.1 (General Position) We say that h is in general position with respect
to F if, for every A, B, C ⊂ F , with A nonempty, we have:

(i) If span(A) ⊂ h, then span(A) = {0}.
(ii) If8

8Note that here one can take any of A, B, C to be the empty set, and we interpret span(∅) = {0}.
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span ((A ∩ h) ∪ B) ∩ span ((A ∩ h) ∪ C) ⊂ h,

then
span ((A ∩ h) ∪ B) ∩ span ((A ∩ h) ∪ C) = span(A ∩ h).

Remark. In Sect. 6, we prove (in Theorem 7.1) that being in general position with
respect to a given family F is a generic property; this fact ismentioned in [16]without
a proof.

Theorem 5.2 ( Lovász [16, Theorem 2.3]) Let F be a family of subspaces in K
d .

Let h be a hyperplane in K
d in general position with respect to F. Then

ρ1(F) = d(F ∩ h)

For completeness, we introduce a slightly more detailed proof, based on the line
of argument from [16].

Proof (Proof of Theorem 5.2) Fix F and h as in the statement. Let F ′ := F ∩ h. We
need to show that ρ1(F) = d(F ′).

We first prove that d(F ′) ≤ ρ1(F). That is, equivalently, we show that d(F ′) ≤
ρ1(F,�), for every partition � of the family F . Let � be a partition of F . For
P ∈ �, let P ′ := P ∩ h. Then

span(F ′) = span

(
⋃

P∈�

span(P ′)

)

and hence
d(F ′) ≤

∑

P∈�

d(P ′).

Note also that, for every P ∈ �, we have span(P ′) ⊂ span(P) ∩ h and hence

d(P ′) ≤ d(span(P) ∩ h) = d(P) − 1,

where here we used property (i) of the general position assumption on h, namely, we
used the fact that span(P) is not contained in h. We conclude that

d(F ′) ≤
∑

P∈�

(d(P) − 1), (12)

for every partition � of F . This implies d(F ′) ≤ ρ1(F).
To prove the reverse inequality, we show that, for a certain partition �∗ of F , the

inequality (12) is in fact tight. We will construct �∗ explicitly subsequently refining
a given partition. We describe the first step, which is indeed the general step (the
proof will allow us to proceed recursively).
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Define an equivalence relation on F as follows: For f1, f2 ∈ F , f1 ∼ f2 if and
only if

span(F ′ ∪ { f1}) = span(F ′ ∪ { f2}).

Let {P1, . . . , Pm}be thepartition (equivalence classes) of F inducedby the relation∼.
The main idea is to prove that after intersection with h, the spans of the parts P ′

i
become a direct sum decomposition of span(F ′). As we will see below, �∗ will be
achieved by refining the partition {P1, . . . , Pm} inductively.
Lemma 5.3 We have

span(F ′) = ⊕m
i=1span(P ′

i ). (13)

Before we prove Lemma 5.3, we establish some preliminary claims. Let g1, . . . , gm

be the (distinct) subspaces gi := span(F ′ ∪ { f }) for some f ∈ Pi (note that by con-
struction gi is independent of the specific element f ∈ Pi that we take).

We observe that, for every 1 ≤ i ≤ m,

d(gi ) = d(F ′) + 1. (14)

Indeed, by property (i) of general position, f is not contained in h and dim( f ∩ h) =
dim( f ) − 1, for every f ∈ F . Hence, for every f ∈ F , one can choose a basis for
f with all elements of the basis in h except for exactly one element b f which is not
in h. Thus, fixing any f ∈ Pi , we have

gi = span(F ′ ∪ { f }) = span(F ′ ∪ {b f }) = span(F ′) ⊕ span{b f }.

Thus, d(gi ) = d(F ′) + 1, as needed.
Next, we observe that, for i �= j , we have

gi ∩ g j = span(F ′) ⊂ h. (15)

Indeed, by construction gi �= g j , and in particular gi ∩ g j � gi . Combining this with
(14), we get d(gi ∩ g j ) ≤ d(gi ) − 1 = d(F ′). By the definition of gi , g j , we also
have span(F ′) ⊂ gi ∩ g j . Hence gi ∩ g j = span(F ′) and (15) follows.

Proof (Proof of Lemma 5.3) Here property (ii) of the general position definition will
be crucial for the induction step. If m = 1 then (13) clearly holds. For m ≥ 2, it suf-
fices to show that, for every 2 ≤ k ≤ m and every distinct indices 1 ≤ i1, . . . , ik ≤ m,
one has

span(P ′
i1 ∪ · · · ∪ P ′

ik−1
) ∩ span(P ′

ik
) = {0}. (16)

We prove (16) by induction on k. For k = 2, we need to show that span(P ′
i1
) ∩

span(P ′
i2
) = {0}, for every distinct 1 ≤ i1, i2 ≤ m. By the definition of the subspaces

gi1, gi2 and applying (15), we have

span(Pi1) ∩ span(Pi2) ⊂ gi1 ∩ gi2 ⊂ h.
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Since h is in general position, using property (ii), this implies that span(Pi1) ∩
span(Pi2) = {0}. This proves the induction base case k = 2.

Assume next that (16) holds for some 2 ≤ k ≤ m − 1 fixed and for every distinct
indices 1 ≤ i1, . . . , ik ≤ m. Let 1 ≤ i1, . . . , ik+1 ≤ m be some distinct indices. To
establish the induction step we need to prove

span(P ′
i1 ∪ · · · ∪ P ′

ik
) ∩ span(P ′

ik+1
) = {0}. (17)

Observe that in order to prove (17) it suffices to show that

span(P ′
i1 ∪ · · · ∪ P ′

ik
) ∩ span(P ′

i2 ∪ · · · P ′
ik+1

) ⊂ span(P ′
i2 ∪ · · · ∪ P ′

ik
). (18)

Indeed, assume that (18) holds. Then

span(P ′
i1 ∪ · · · ∪ P ′

ik
) ∩ span(P ′

ik+1
)

= span(P ′
i1 ∪ · · · ∪ P ′

ik
) ∩ span(P ′

i2 ∪ · · · ∪ P ′
ik+1

) ∩ span(P ′
ik+1

)

⊂ span(P ′
i2 ∪ · · · ∪ P ′

ik
) ∩ span(P ′

ik+1
),

where the first line uses the trivial fact that span(P ′
ik+1

) ⊂ span(P ′
i2

∪ · · · ∪ P ′
ik+1

) and
the second line is due to (18). By the induction hypothesis, we have

span(P ′
i2 ∪ · · · ∪ P ′

ik
) ∩ span(P ′

ik+1
) = {0}.

Thus, assuming that (18) is true, (17) follows.
Finally, we now prove (18). Note that, by the definition of the subspaces gi and

using (15), we have

span(Pi1 ∪ (P ′
i2 ∪ · · · ∪ P ′

ik
)) ∩ span((P ′

i2 ∪ · · · ∪ P ′
ik
) ∪ Pik+1) ⊂ gi1 ∩ gik+1 ⊂ h.

Hence, our assumption that h is in general position with respect to F implies that in
fact

span(Pi1 ∪ (P ′
i2 ∪ · · · ∪ P ′

ik
)) ∩ span((P ′

i2 ∪ · · · ∪ P ′
ik
) ∪ Pik+1)

⊂ span(P ′
i2 ∪ · · · ∪ P ′

ik
).

This clearly implies (18). Thus we have established the inductive step and this com-
pletes the proof of Lemma 5.3. �

Recall that our goal is to show that (12) is tight for some partition �∗ of F . In
view of Lemma 5.3, for the partition {P1, . . . , Pm} defined above, one has

d(F ′) =
m∑

i=1

d(P ′
i ). (19)
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That is, we expressed the quantity d(F ′) as the sum of the quantities d(P ′
i ) for

certain subfamilies P1, . . . , Pm of F . This allows to prove the existence of �∗ using
induction on the size of F .

If |F | = 1, the unique partition on F clearly attains (12). For |F | ≥ 1, let
{P1, . . . , Pm} be the partition of F given by Lemma 5.3, satisfying (19). If m = 1,
the identity (19), combined with (14), gives

d(F ′) = d(P1) − 1.

This means that (12) is tight, and thus �∗ = {P1}. If m > 1, then each subfamily Pi

has fewer elements than F . Applying the induction hypothesis, there exist subparti-
tions �∗

i = {Pi1, . . . , Pimi } of Pi , for each 1 ≤ i ≤ m, satisfying

d(Pi ) =
mi∑

j=1

(d(Pi j ) − 1).

Combined with (19), we get

d(F ′) =
m∑

i=1

mi∑

j=1

(d(Pi j ) − 1).

So �∗ := ⋃m
i=1 �∗

i forms a partition of F that attains (12). This completes the proof
of the theorem. �

Remark 5.4 Note that in the inductive proof of Lemma 5.3, it was sufficient to
consider not all k-subsets of the Pi in the given partition, but rather simply on
intervals P2, P3, . . . , Pk . The same induction on k works without change. Thus even
after refinement, in the proof of this theorem we never need to apply the “general
position” condition more than |F | times. This will help us later bound the show
that ρ1(F) correctly computes dim(F ∩ h) for most (or generic) hyperplanes h even
when K is finite and not too large.

We now generalize the theorem above to intersecting a family of subspaces with
an arbitrary subspace. For this we need to extend the definition of “general position”.

Let F be a family of subspaces in K
d . Let {x1, . . . , xk} be a set of vectors, and

define that the subspaces hi = {x1, . . . , xi }⊥. Note that hi is of codimension i in K
d ,

and that h′
i := hi ∩ hi−1 is a hyperplane in hi−1, for i = 1, . . . , k. We say that the

subspace h = hk is in general positionwith respect to F if for all i ∈ [k]we have that
the hyperplane h′

i is in general position with respect to the family Fi = F ∩ hi−1.

Theorem 5.5 Let F be a family of subspaces in K
d . Let h be a subspace in K

d of
codimension k in general position with respect to F. Then

ρk(F) = d(F ∩ h)
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Proof We prove by induction on the codimension k. The case k = 1 is Theorem 5.2.
Let x1, . . . , xk ∈ K

d be vectors such that h = {x1, . . . , xk}⊥ is in general position
with respect to h. We know that h′

k is in general position with respect to the family
Fk := F ∩ hk−1. By Theorem 5.2 again, we have

d(F ∩ h) = d(Fk ∩ h′
k) = ρ1(Fk)

= min
�k

∑

P ′∈�k

(d(P ′) − 1),

where the minimum ranges over all partitions �k of Fk . Note that �k induces a
partition � on F , in the obvious way. Moreover, for every P ′ ∈ �k there exists
P ⊂ F such that P ′ = P ∩ hk−1. By induction, we get

d(P ′) = d(P ∩ hk−1) = ρk−1(P).

Thus,

d(F ∩ h) = min
�

∑

P∈�

(ρk−1(P) − 1)

= min
�

∑

P∈�

⎛

⎝

⎛

⎝min
�P

∑

Q∈�P

(d(Q) − k + 1)

⎞

⎠ − 1

⎞

⎠ ,

where the first minimum (the outer one) in this exprssion is taken over all partitions�

of F , and, fixing � and given P ∈ �, the inner minimum is taken over all partitions
�P of the family P .

Note that, for any partition � of F , the partitions {�P | P ∈ �} induce a new
partition �′ which is a refinement of �. Namely, �′ := ⋃

P∈� �P . Note that taking
�P = {P} for each P ∈ �, we get

d(F ∩ h) ≤ min
�

∑

P∈�

⎛

⎝

⎛

⎝
∑

Q∈{P}
(d(Q) − k + 1)

⎞

⎠ − 1

⎞

⎠

= min
�

∑

P∈�

(d(P) − k)

= ρk(F). (20)

We now prove the inverse inequality. Fix a partition � of F , and, for P ∈ �, let
�∗

P be a partition of P that attains the minimum in

min
�P

∑

Q∈�P

(d(Q) − k + 1).
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That is, the partitions �∗
P satisfy

∑

P∈�

⎛

⎝

⎛

⎝min
�P

∑

Q∈�P

(d(Q) − k + 1)

⎞

⎠ − 1

⎞

⎠ =
∑

P∈�

⎛

⎝

⎛

⎝
∑

Q∈�∗
P

(d(Q) − k + 1)

⎞

⎠ − 1

⎞

⎠

Let (�′)∗ be the partition of F induced by
⋃{�∗

P | P ∈ �}. Observe that

d(F ∩ h) = min
�

∑

P∈�

⎛

⎝

⎛

⎝
∑

Q∈�∗
P

(d(Q) − k + 1)

⎞

⎠ − 1

⎞

⎠

≥ min
�

∑

P∈�

∑

Q∈�∗
P

((d(Q) − k + 1) − 1)

= min
�

∑

Q∈(�′)∗
(d(Q) − k)

= min
(�′)∗

∑

Q∈(�′)∗
(d(Q) − k)

≥ min
�

∑

Q∈�

(d(Q) − k)

= ρk(F). (21)

Combining the inequalities (20) and (21), we get d(F ∩ h) = ρk(F). This completes
the induction step, and therefore proves the theorem. �

6 Rank of Symbolic Matrices

In this section we show that the quantity ρc(F) can be interpreted as the generic rank,
defined as the rank over K(x), of a certain symbolic matrix associated with F . More
concretely, for x ∈ K

d let

h(x) := (span{x})⊥.

We prove that ρc(F) equals to the generic rank of a symbolic matrix whose entries
are linear combinations of the coordinates of x.

Our main result for the section is the following (note that this is Theorem 1.3 in
the introduction).

Theorem 6.1 Let u1, . . . , un, v1, . . . , vn ∈ K
d be row vectors. Consider the sym-

bolic matrix A(x), with unknowns x = (x1, . . . , xd), whose i th row is

(vt
i ui − ut

ivi )x

Then the (generic) rank of A(x) can be computed in polynomial time.
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To prove the theoremwe use the property established in Theorem 5.2, interpreting
the quantity ρ1(F) as the dimension of the space spanned by

F ∩ h = { f ∩ h | f ∈ F},

for any hyperplane h in general positionwith respect to F (seeDefinition 5.1). Taking
h = h(x)weprove, inLemma6.2, that the intersection f ∩ h(x) is the span of vectors
with entries that are linear combinations of the coordinates of x. We then prove, in
Theorem 7.1, that, given a family F , h(x) is in general position with respect to F ,
for every generic x (namely, for almost every x ∈ K

d ). Finally, we use the algorithm
for computing ρ1 from Sect. 4.

Lemma 6.2 Let f be an m-dimensional subspace in K
d and let v1, . . . , vm be a

basis of f . Let x ∈ K
d and assume that f � h(x). Then h(x) ∩ f is spanned by

vectors of the form
wi j := (v j · x)vi − (vi · x)v j ,

with i �= j .
Moreover, if (wlog) x · v1 �= 0, then the set {w12, . . . , w1m} forms a basis of f ∩ hx.

Proof Wefirst observe thatwi j ∈ f ∩ h(x). Indeed, by definition, eachwi j is a linear
combination of basis vectors for f , and thus wi j ∈ f . We also have

wi j · x = ((v j · x)vi − (vi · x)v j ) · x
= (v j · x)(vi · x) − (vi · x)(v j · x) = 0.

Thus wi j ∈ f ∩ h(x).
We now show that wi j also span f ∩ h(x). Indeed, we prove the stronger “more-

over” statement.
Let w ∈ f ∩ h(x). Since w ∈ f we may write w = ∑m

i=1 aivi . Since w ∈ h(x),
we have w · x = 0 or

0 =
m∑

i=1

aivi · x. (22)

If vi · x = 0 for every i , then f ⊆ h(x), contradicting our assumption. We may
therefore assume, without loss of generality, that v1 · x �= 0. In this case (22) can be
rewritten as

a1 = −
m∑

i=2

aivi · x
v1 · x .

We conclude that

w =
m∑

i=1

aivi
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= −
(

m∑

i=2

aivi · x
v1 · x

)
v1 +

m∑

i=2

aivi

=
m∑

i=2

−ai

v1 · x ((vi · x)v1 − (v1 · x)vi )

=
m∑

i=2

−ai

v1 · xw1i .

This completes the proof of the lemma. �

We observe an interesting consequence of Lemma 6.2, asserting that computing
ρ1(F) for a family F can be reduced to computing ρ1(G), for a certain family G
consisting only of planes (two-dimensional subspaces).

Corollary 6.3 Let F = { f1, . . . , fn} be a family of subspaces in K
d and let {vi1, . . . ,

vimi } be a basis of fi , for i = 1, . . . , n. Consider the family of two-dimensional
subspaces

G =
n⋃

i=1

{gi jk | 1 ≤ j �= k ≤ mi },

where gi jk = span{vi j , vik}. Then ρ1(F) = ρ1(G).

Proof It follows easily fromTheorem 7.1 that h(x) is in general positionwith respect
to both families F and G, for every generic x ∈ K

d . Fixing such x ∈ K
d and applying

Lemma 6.2, we see that span(F ∩ h(x)) = span(G ∩ h(x)). By Theorem 5.2 this
means that ρ1(F) = ρ1(G), as needed. �

The following lemma is a natural extension of Lemma 6.2 to a similar description
of the intersection of a given subspace with a generic one, where the latter is not
necessarily of co-dimension 1. If the co-dimension is k, the basis elements of the
intersectionwill be homogeneous polynomials of degree k in the entries of the generic
vectors. This connection, together with our algorithm for computing ρk , will prove
Theorem 1.4 from the introduction.

Lemma 6.4 Let k < m ≤ d be integers. Let f be an m-dimensional subspace in K
d

and let v1, . . . , vm be a basis of f . Let x1, . . . , xk be vectors in K
d and define the

subspace
h := (span{x1, . . . , xk})⊥ .

Assume that dim( f ∩ h) = m − k (this extends the assumption f � h(x) of the
lemma above). Let X be the k × d matrix with xi as its i th row. Let V denote the
d × m matrix with v j as its j th column. Put M := X V . So M is a k × m matrix with
(i, j) entry being xi · v j . For every I ⊂ [m] of cardinality k, let MI denote the k × k
matrix received by restricting to the columns of M with indices in I . Then f ∩ h is
the span of vectors of the form
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wS :=
k+1∑

j=1

(−1) j det(MI j )vs j ,

where S = {s1 < . . . < sk+1} ⊂ [m] is of cardinality k + 1 and I j := S \ {s j }.

Moreover, if (wlog, given our assumption above), assuming that the last k columns
of M are linearly independent, f ∩ h is spanned by the m − k vectors wS with S
containing the last k columns.

Proof We first show that wS ∈ f ∩ h, for every S ⊂ [m] of cardinality k + 1. For
S fixed, we need to verify that wS is orthogonal to each of x1, . . . , xk . For every
1 ≤ i ≤ k we have

wS · xi =
k+1∑

j=1

(−1) j det(MI j )vs j · xi .

Observe that the right-hand side is exactly the determinant of the matrix received
by duplicating the i th row of M . Since the latter matrix is evidently singular, we
conclude that wS · xi = 0, for every i = 1, . . . , k. Thus wS ∈ h. Clearly, we also
have wS ∈ f . Thus wS ∈ f ∩ h, as needed.

We now turn to prove that the vectors wS generate f ∩ h. Indeed we prove the
stronger “moreover” statement that already them − k vectorswS with S of size k + 1
that contain the last k columns span f ∩ h. Recall that the last k columns of M are
independent.

It will be convenient to add one more piece of (slightly informal) notation. Let
M ′ be the matrix extending M with one more (say, 0’th) row, that contains in the j th
coordinate the vector v j . Note that, up to a sign, the determinant of any k + 1 minor
of M ′ on columns S is precisely wS .

Note also that column operations on M ′, and replacing wS by the k + 1 minors
of the resulting matrix, do not change the span of the vectors wS . Moreover, note
that column operations on the last k columns of M ′ do not change the vectors wS ,
restricting to sets S ⊂ I of size k + 1 that contain the indices of the last k columns.
We may therefore assume, by performing such column operations, that the last k
columns of M form the k × k identity matrix.

We will prove the lemma by induction on k. We already know that this statement
holds for k = 1 (and any m) by Lemma 6.2. Assume it holds for k − 1 (and m − 1,
this is all we need), and we will infer the statement for k. Consider the subspace h′
orthogonal to the vectors x1, . . . , xk−1, and the subspace f ′ spanned by the vectors
v1, . . . , vm−1, and form the associated (k − 1) × (m − 1) matrix, say N . Add to
the matrix N the 0′th row to create N ′. By induction, we know that the k-minors
containing the last k − 1 columns of N ′ are vectors which span the f ′ ∩ h′. For
i ∈ [m − k], let w′

i denote the basis vector that corresponds to the columns {i, m −
k + 1, . . . , m − 1}. Note that
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f ∩ h = span(( f ′ ∩ h′) ∪ {vm}) ∩ {xk}⊥.

Now add to N ′ a last column for vm and a last row for xk to form M ′. Fix
i ∈ [m − k], and write wi := wSi , where Si = {i, m − k + 1, . . . , m}. Due to the
last k columns of M being the identity matrix, we have

wi = (xk · vi )vm − w′
i .

Moreover, one can check that in fact

xk · vi = xk · w′
i and

w′
i = (xk · vm)w′

i .

That is, wi = (xk · w′
i )vm − (xk · vm)w′

i . Applying Lemma 6.2, we get that the vec-
tors wi , for i ∈ [m − k], form a basis for f ∩ h, as needed. �

7 Generic Versus General Position

This section completes the cycle of connections, proving that most (namely, generic)
hyperplanes, and indeed most subspaces, are in general position (in the Lovász sense
of Sect. 5) with respect to any given family of subspaces. The proof will make use
the explicit description we established in the previous section for a basis to the
intersection of a family of subspaces and a hyperplane. Thus, computing the ranks
of the symbolic matrices in Theorems 1.3 and 1.4 are equivalent to computing the
functions ρ1 and ρk respectively, which we can do efficiently by the algorithm of
Sect. 4.

Theorem 7.1 Let F be a family of subspaces in K
d , and assume that either

char(K) > |F | or char(K) = 0. Then the hyperplane h(x) is in general position
(see Definition 5.1) with respect to F for almost every x ∈ K

d . More precisely, over
finite fields all but |F |/|K|- fraction of hyperplanes are not in general position, and
for infinite fields they have measure zero.

The proof of this theorem turns out to be more intricate than we imagined.Wewill
give below a linear-algebraic proof that is valid for all fields K. In the appendix we
give an alternative, geometric proof which is valid for the field R of Real numbers.

Proof Fix subsets A, B, C ⊂ F . Our goal is to show that for

S := span
K
((A ∩ h(x)) ∪ B) ∩ span

K
((A ∩ h(x)) ∪ C)

either S � h(x) generically, or S ⊂ A ∩ h(x) generically. Indeed, we will prove that
one of these alternative holds for every x, except for those x that vanish on a certain
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nontrivial linear equation. Thus, if K is finite, the fraction of such exceptional values
of x is 1/|K|. Since the number of choices of A, B, C is finite, we see that if K

is large enough this probability remains negligible. Being a bit more careful, (see
Remark 5.4 at the end of the proof of Theorem 5.2), there are at most |F | applications
of the “general position” definition, and so the fraction of “bad” x is at most |F |/|K|
as stated.

It is easy to see that replacing B by spanB and C by spanC does not affect the
subspace S.Wemay therefore assume that each of the families B, C contains a single
subspace of K

d .
Suppose that B ∩ C �= {0}, that is, that there exists v ∈ B ∩ C , with v �= 0.

Clearly, we have v ∈ S and the linear form v · x not identically zero. Thus, for
almost every x, S is not contained in h(x) and there is nothing to prove in this case.
We may therefore assume that B ∩ C = {0}. In this case, after a change of basis
of K

d , we may assume that B = span{e1, . . . , ek} and C = {ek+1, . . . , ek+m}, where
1 ≤ k < k + m ≤ d and e1, . . . , ed stand for the standard basis vectors in K

d .
From now on we will regard x as a vector of variables, and work in the field of

fractions K(x). In particular this makes all subspaces under consideration, A, B, C ,
A ∩ h(x) and of course S = S(x) now subspaces of K(x)d (by taking the span of
their bases in K(x)d ).

With this, our task becomes proving the following about these subspaces:

Claim Either S � h(x), or S ⊂ A ∩ h(x). �

We will break this task to two. Clearly, it will suffice to prove the claim for any
spanning set S′ replacing S. So first we will prove that we can take S′ to be the affine
functions (of x) in S, and then we will prove the claim for S′.

Lemma 7.2 S is spanned by its elements which are affine functions of x.

Proof (Proof of Lemma 7.2) Recall that we showed, in Lemma 6.2, that span
K
(A ∩

h) has a basis consisting of elements of the form (utv − vt u)x, for some u, v ∈ K
d .

Write {a1(x), . . . , an(x)} for a basis of spanK(A ∩ h) of this form.
Having bases for B, C and A ∩ h(x) we can express all elements of S as linear

combinations of these bases. Thus, elements in S are described by solutions α, α′ ∈
K

n , β ∈ K
k , γ ∈ K

m to the following system of linear equations.

n∑

i=1

αiai (x) +
k∑

i=1

βi ei =
n∑

i=1

α′
iai (x) +

m∑

i=1

γi ek+i (23)

where αi ∈ K (resp., α′
i , βi , γi ∈ K) is the i th entry of α (resp., α′, β, γ ).

By basic theory of linear algebra, there exists a set of solutions, each of the form

w = w(x) =
n∑

i=1

αi (x)ai (x) +
k∑

i=1

βi (x)ei =
n∑

i=1

α′
i (x)ai (x) +

m∑

i=1

γi (x)ek+i ,

(24)
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whereαi (x), α′
i (x), βi (x), γi (x) are rational functions in the entries of x, that together

span the subspace S. Moreover, these rational functions are of degree at most |F |.
We will now strive to find a simpler spanning set S′ for S, and then use it to prove

Claim 19.
The first simplification is realizing (via common denominators) that without loss

of generality we can assume that all αi (x), α′
i (x), βi (x), γi (x) are in fact polynomials

in the entries of x. These elements of S span the rest, after dividing by some fixed
polynomial.

The next simplification (separating out homogeneous terms) shows that without
loss of generality we can take all the polynomials in each of α, α′, β, γ to be homoge-
neous of the same degree, which we may respectively call deg(α), deg(α′), deg(β),
deg(γ ). These homogeneous solutions certainly span S, and now we refine their
structure further.

Indeed, inspecting the system of equations we know more: since each entry of
ai (x), for every i is of degree one, we know that for some fixed integer r ≥ 0, they
must satisfy deg(α) = deg(α′) = r and deg(β) = deg(γ ) = r + 1. We use this to
stratify solutions w by degree, and say that the associated w has degree r . Let Sr

be all solutions of degree r (note that each Sr is a subspace over K, though we will
not use this fact). We call solutions w of degree 0 linear. Our main simplification
will come from showing that linear elements S0 span S, which in this notation is a
restatement of the lemma we are proving.

Claim spanS0 = S �

Wewill prove this claim by induction on r , using our stratifications Sr of members
of S. It is clearly true for r = 0. So assume S0 spans Sr , and we need to prove that
S0 spans Sr+1. By induction, it suffices to prove that Sr spans Sr+1. The plan for this
will be as follows. We will assume we have some w ∈ Sr+1. We will take all partial
derivatives of its constituent polynomials with respect to each variable xt , t ∈ [d].
From each of these we will generate an element wt ∈ Sr , as the degree decreased by
1. Finally, we will show that w is a linear combination, indeed a very simple one, of
the form : (r + 1)w = ∑d

t=1 xtwt . We now elaborate.
Fix t ∈ [d]. Let us take a derivative with respect to the variable xt of x, of both

sides of the identity (24). We get

n∑

i=1

(
∂αi (x)
∂xt

ai (x) + αi (x)
∂ai (x)
∂xt

)
+

k∑

i=1

∂βi (x)
∂xt

ei =

n∑

i=1

(
∂α′

i (x)
∂xt

ai (x) + α′
i (x)

∂ai (x)
∂xt

)
+

m∑

i=1

∂γi (x)
∂xt

ek+i

To define wt we first define α(t), α′(t), β(t), γ (t) by appropriately collecting
homogeneous terms, and making sure that α(t), α′(t) ∈ A ∩ h are of degree r , and
that β(t) ∈ B and γ (t) ∈ C are of degree r + 1:
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• α(t)i = ∂αi (x)
∂xt

• α′(t)i = ∂α′
i (x)

∂xt
,

• For i ∈ [k], β(t)i (x) is

[
n∑

s=1

(αs(x) − α′
s(x))

∂as(x)
∂xt

]

i

+ ∂βi (x)
∂xt

• For i ∈ [m], γ (t)i (x) is

[
n∑

s=1

(α′
s(x) − αs(x))

∂as(x)
∂xt

]

k+i

+ ∂γi (x)
∂xt

;

here we used [v] j to denote the j th entry of a vector v. Now we can formally define
wt ∈ Sr as follows. We first observe that

n∑

i=1

α(t)i (x)ai (x) +
k∑

i=1

β(t)i (x)ei =
n∑

i=1

α′(t)i (x)ai (x) +
m∑

i=1

γ (t)i (x)ek+i . (25)

Indeed, note that (24), restricted to the j th component of the equation, implies that
for every, k + m < j ≤ n, we have

[
n∑

i=1

(α′
i (x) − αi (x))ai (x)

]

j

= 0.

From this it is straightforward to verify that the identity (25) indeed holds. Thus,
letting

wt :=
n∑

i=1

α(t)i (x)ai (x) +
k∑

i=1

β(t)i (x)ei ,

for each t , the identity (25) implies that wt is in S. Moreover, by our definition, wt

is of degree r − 1.
It remains to prove that w is spanned by the vectors wt . For this, one basic fact

we will need is that if p(x) is any homogeneous polynomial of degree m, it satisfies

∑

t

xt · ∂p(x)
∂xt

= mp(x).

The second fact we will need follows from identity (24), when restricted to the j th
component of the equation. For every j ∈ [k],
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[
n∑

i=1

(α′
i (x) − αi (x))ai (x)

]

j

= β j .

Combining these two properties, we get

• ∑
t xtα(t) = rα

• ∑
t xtβ(t) = rβ

and this implies that
rw =

∑

t

xtwt .

Note that r �= 0; indeed, for K with non-zero characteristic, we have r < char(K).
Thus the vectors wt span w. This completes the induction step, and hence the proof
of Lemma 7.2. �

To complete the proof of the theorem we now prove

Lemma 7.3 Either S0 is not contained in h(x), or it is contained in A ∩ h(x).

As the elements in S0 are affine functions of x, a violation of the first possibility
will imply that x satisfy a linear equation, so the fraction of such vectors is at most
1/|K| as requested.
Proof (Proof of Lemma 7.3) We first introduce some notation. Let v(x) be a vector
in K(x)d , such that each entry of v(x) is some linear combination of x1, . . . , xd ,
the coordinates of x. Then v(x) can be represented by a matrix M ∈ Matd×d(K),
with constant entries, such that Mx = v(x). Note that if M is skew-symmetric, this
means that (Mx) · x = (Mtx) · x = −(Mx) · x or 2(Mx) · x = 0, which means that
(Mx) · x = 0, unless the characteristic of the field is 2. Conversely, if Mx · x = 0 for
every x ∈ K

d and so Mx · x is the zero polynomial (in d variables), which implies
that M is skew-symmetric.

Consider k such matrices M1, . . . , Mk , representing vectors v1(x), . . . , vk(x),
respectively. Then a linear combination

∑k
i=1 αi Mi is a matrix that corresponds to a

vectorwhich is a linear combinationofv1(x), . . . , vk(x), namely,v(x) = ∑
i αivi (x).

Thus v(x) lies in the span of the vectors vi (x).
Assume first that k + m = d.We regard a (k + m) × (k + m)matrix M as a block

matrix with TL(M) (resp., TR(M), BL(M), BR(M)) denoting the top-left (resp.,
top-right, bottom-left, bottom-right) blocks. More precisely, TL(M) (resp., TR(M),
BL(M), BR(M)) stands for the submatrix induced by taking the first k (resp., first k,
last m, last m) rows and first k (resp., last m, first k, last m) columns of M .

With some abuse of notation, we write M ∈ Y , for a subspace Y of K(x)d ,
if Mx ∈ Y . Recall that M is in h if and only if M is skew-symmetric. In par-
ticular, T R(M) = −BL(M)t , for every M ∈ span(A ∩ h). Assume that for some
M ∈ span(A ∩ h), we have TR(M) �= 0 (and thus also BL(M) �= 0). We claim
that in this case there exists a matrix M̃ ∈ S \ h. To see this it is sufficient to
show that there exist matrices b ∈ B and c ∈ C such that M + b = c which is
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not skew-symmetric (and therefore not in h). Indeed, let b be defined by T L(b) =
−T L(M), T R(b) = −T R(M), and BL(b) = B R(b) = 0.Wedefine thematrix c by
T L(c) = T R(c) = 0, BL(c) = BL(M), B R(c) = B R(M). Clearly, b ∈ B, c ∈ C
and M + b = c. If c is skew-symmetric, then we must have BL(c) = BL(M) = 0,
contradicting our assumption on M . Thus c = M + b is in A ∩ h but not in S. We
conclude that in this case the general position requirement holds generically.

Assume next that for every M ∈ span(A ∩ h), we have TR(M) = BL(M) = 0.
Recall that span(A ∩ h) is spanned by matrices of the form vt u − utv for some
u, v ∈ K

d . Assume that T R(vt u − utv) = BL(vt u − utv) = 0 for such a matrix.
We claim that in this case at least one of T L(vt u − utv) or B R(vt u − utv) is the
zeromatrix. Indeed, put M = vt u − utv, and assume that T L(M) �= 0. The for some
1 ≤ i0 �= j0 ≤ k we have ui0v j0 �= u j0vi0 . In particular, not both ui0v j0 and u j0vi0
are zero. Assume, without loss of generality, that ui0v j0 �= 0. That is, ui0 , v j0 �= 0.
Suppose that u
 = 0 for every 
 > k. In this case it is clear that B R(M) = 0 and the
claim is proved. Therefore, we may assume that for some 
 > k we have u
 �= 0.
Since we BL(M) = 0, we have in particular u
v j = u jv
, for every j = 1, . . . , k.
In particular, u
v j0 = u j0v
. Note that since v j0 �= 0 and u
 �= 0, we must have that
also v
, u j0 �= 0. Thus, we get

vi0
ui0

= v


u

and

v j0
u j0

= v


u

. Combining these equalities,

we get that ui0v j0 = u j0vi0 , contradicting our assumption. This proves the claim.
This implies that span(A ∩ h) is a direct sum U ⊕ V of matrices with entries

supported only on T L(M) for M ∈ U andmatrices supported by B R(M) for M ∈ V .
Now let w ∈ S. By the definition of S, w can be written as w = a + b = a′ + c

for some a, a′ ∈ span(A ∩ h), b ∈ B, c ∈ C . Write a = aU + aV , where aU ∈ U
and aV ∈ V . Similarly, write a′ = a′

U + a′
V . Then aU + aV + b = a′

U + a′
V + c, or

aU − a′
U + b = a′

V − aV + c. But then, we must have b = a′
U − aU and c = aV −

a′
V , which in particular implies that b, c ∈ span(A ∩ h).
SinceaU − a′

U ∈ U anda′
V − aV ∈ V , this implies that,without loss of generality,

we may assume a ∈ U and a′ ∈ V . Thus also w = a + b = a′ + c ∈ span(A ∩ h).
We conclude that w ∈ span(A ∩ h) for every w ∈ S. Thus the general position
requirement holds in this case.

We now prove the remaining case where k + m < d, by reducing it to the case
k + m = d just discussed. Write k + m = d − z, for some z > 0. Repeat the above
argument ignoring the last z rows and last z columns of every matrix used along
the proof. Note that for a ∈ A ∩ h, a is skew-symmetric, and adding a matrix b ∈ B
or c ∈ C will result with a matrix which is either in h or not in h, independent
of the last z rows and columns of a. Indeed, for b ∈ B and c ∈ C these rows and
columns are zero, and therefore they cannot affect the skew-symmetry of a + b or
a′ + c. �

This completes the proof of Theorem 7.1. �
Having established the connection between genericity and general position, we

can now complete the proof of Theorem 6.1.
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Proof (Proof of Theorem 6.1). Consider the family of subspaces F = { f1, . . . , fn},
where fi := span{ui , vi }, for each i = 1, . . . , n. Let x = (x1, . . . , xd) and consider
h := (span{x})⊥. In view of Lemma 6.2, we have

rankA(x) = d({ f ∩ h | f ∈ F}).

On the other hand, by Theorem 5.2, we have d({ f ∩ h | f ∈ F}) = ρ1(F).
Thus there exists a deterministic strongly-polynomial time algorithm to compute
rankA(x). �

We note that in the exact same way, our ability to efficiently compute ρk for every
integer k by Theorem 1.5, and the characterization above, completes the proof of
Theorem 1.4 from the introduction.
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Appendix: Proof of Theorem 7.1 over R

Here we provide an alternative proof of Theorem 7.1 which works over the field of
Real numbers. One advantage of working over R is that we have the notions of a
manifold and of the dimension of a manifold available. In the proof below, we use
the fact that the set of linear subspaces of R

d can be viewed as a manifold. Then,
to show that a certain set has measure zero, it is sufficient to show that this set has
lower dimension. This allows us to obtain a more straightforward proof for the case
K = R.

Proof (Proof over R) We first prove that property (i) in Definition 5.1 is a generic
propery. Fix A ⊂ F and put g = span(A). For x ∈ S

d−1 with g ⊂ h(x), we have
x ∈ S

d−1 ∩ g⊥. If d(g) ≥ 1, this means that x lies in a lower-dimensional sphere,
which is a measure-zero subset of S

d−1. Since F is finite (and so the number of
different sub-families A is finite), we conclude that for every x ∈ S

d−1, excluding a
finite union of certain lower-dimensional sub-spheres of S

d−1, h(x) satisfies property
(i) in Definition 5.1.

We now prove that property (ii) in Definition 5.1 is a generic property. Fix some
subfamilies A, B, C ⊂ F . We first handle certain degenerate cases. Note that if

span(A ∩ h(x)) = span((A ∩ h(x)) ∪ B) ∩ span((A ∩ h(x)) ∪ C), (26)

for some x ∈ S
d−1, then h(x) clearly satisfies property (ii). Using Lemma 6.2, con-

dition (26) defines an algebraic subvariety of S
d−1. In particular, (26) either holds
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for every x ∈ S
d−1 or holds only for x taken from a subset of S

d−1 of measure zero.
In the former case this means that, with respect to the subfamilies A, B, C , property
(ii) in Definition 5.1 holds for h(x) for every x ∈ S

d−1 and there is nothing to prove.
Therefore we can assume that we are in the complementary case. Namely, we assume
that for almost every x ∈ S

d−1 we have

span(A ∩ h(x)) � span((A ∩ h(x)) ∪ B) ∩ span((A ∩ h(x)) ∪ C). (27)

Our next step is to identify the set of subspaces g of the form g = span(A ∩ h(x)),
for some x ∈ S

d−1, and determine its dimension as a subset of the Grassmannian.
We need the following observation. Let

r := max
x∈Sd−1

d(A ∩ h(x))

We claim that d(A ∩ h(x)) = r , for almost every x ∈ S
d−1. Indeed, by Lemma 6.2,

one can write a basis for span(A ∩ h(x)) with entries that are linear combinations
in the coordinates of x. In particular, d(A ∩ h(x)) can be expressed as the rank of a
certain symbolic matrix, with entries depending linearly in the coordinates of x. This
implies that d(A ∩ h(x)) = r for every x ∈ S

d−1, excluding some subset of S
d−1 of

measure zero, which proves our claim. (Here we used the fact that the maximal rank
of a given symbolic matrix is the same as the generic rank of the matrix.)

Let S0 denote the subset of x ∈ S
d−1 such that either d(A ∩ h(x)) < r or (26)

holds for h(x). As argued above S0 ⊂ S
d−1 has measure zero. Let Gr(r, d) denote

the Grassmannian of r -dimensional subspaces of R
d , regarded as an affine variety.

We define a map φ : S
d−1 \ S0 → Gr(r, d) by

x �→ span(A ∩ h(x)).

We claim that the image of φ is r -dimensional. Indeed, let g ∈ Im(φ) and let
x ∈ φ−1(g). By definition of the domain of φ, we have x /∈ S0 and thus d(g) = r .
This means g has maximal dimension. Observe that this guarantees that, for
every x ∈ g⊥, we have span(A ∩ h(x)) = g. (Indeed, x ∈ g⊥ certainly implies that
g ⊂ span(A ∩ h(x)) and since d(A ∩ h(x)) ≤ r = d(g), we have equality.) That is,
φ−1(g) = (Sd−1 \ S0) ∩ g⊥ and, in paticular,

dim(φ−1(g)) = d − 1 − r

(dimension here is as a manifold). We conclude that

dim Im(φ) = d − 1 − (d − 1 − r) = r, (28)

as claimed.
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Next, define

S′
1 = {x ∈ S

d−1 | span((A ∩ h(x)) ∪ B) ∩ span((A ∩ h(x)) ∪ C) ⊂ h(x)}.

Our goal is to show that S′
1 has measure zero, as a subset of the sphere. For this, it

suffices to show that S1 := S′
1 \ S0 has measure zero (since S0 is of measure zero).

Consider the restriction of φ to S1. Let g ∈ Im(φ|S1) and let x ∈ φ|−1
S1

(g). Set

g′ := span((A ∩ h(x)) ∪ B) ∩ span((A ∩ h(x)) ∪ C).

Since x /∈ S0, we have (27) which means

d(g′) ≥ r + 1.

Since we assume also that x ∈ S′
1, we have x ∈ (g′)⊥. So

dim(φ|−1
S1

(g)) ≤ d(g′)⊥ ≤ d − 1 − (r + 1) = d − r − 2. (29)

Clearly we also have Im(φ|S1) ⊂ Im(φ), and thus, using (28),

dim(Im(φ|S1)) ≤ r. (30)

Combining (29) and (30), we get that

dim S1 = dim(Im(φ|S1)) + dim(φ|−1
S1

(g)) ≤ d − 2.

This completes the proof of the lemma. �
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Finding k Partially Disjoint Paths
in a Directed Planar Graph

Alexander Schrijver

Abstract The partially disjoint paths problem is: given: a directed graph, ver-
tices r1, s1, . . . , rk, sk , and a set F of pairs {i, j} from {1, . . . , k}, find: for each
i = 1, . . . , k a directed ri − si path Pi such that if {i, j} ∈ F then Pi and Pj are
disjoint. We show that for fixed k, this problem is solvable in polynomial time if
the directed graph is planar. More generally, the problem is solvable in polynomial
time for directed graphs embedded on a fixed compact surface. Moreover, one may
specify for each edge a subset of {1, . . . , k} prescribing which of the ri − si paths
are allowed to traverse this edge.

Keywords Disjoint paths · Partially disjoint paths · Directed graph · Planar
graph · Free partially commutative group · Graph group
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1 Introduction

In this paper we show that the following problem, the k partially disjoint paths
problem, is solvable in polynomial time for directed planar graphs, for each fixed k:

(1) given: a directed graph D = (V, E), vertices r1, s1, . . . , rk, sk of D, and a
set F of pairs {i, j} from {1, . . . , k},
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find: for each i = 1, . . . , k, a directed ri − si path Pi in D such that if
{i, j} ∈ F then Pi and Pj are disjoint.

Here ‘disjoint’ means vertex-disjoint. So F prescribes the set of pairs of paths
that are forbidden to intersect.

This paper extends [15], where all pairs of paths are prescribed to be disjoint
(so F is the set of all pairs from {1, . . . , k}). Also the method of [15] based on free
groups and cohomology is extended to free partially commutative groups (but also
some simplifications of the method in [15] have been included in the present paper).

The partially disjoint paths problem comes up in multi-commodity routing where
certain commodities are forbidden to use the same facility, to avoid clashes of conflict-
ing commodities (radio frequencies, soccer fan gangs, chemicals (including gases)
through a pipeline network, or time slots in routing on a VLSI-chip).

The disjoint paths problem is well-studied, and generally NP-complete, implying
a fortiori that the partially disjoint paths problem is generally NP-complete. The
problem is NP-complete if we do not fix k, even in the undirected case (Lynch [10]).
Moreover, it is NP-complete for k = 2 for directed graphs (Fortune, Hopcroft, and
Wyllie [8]). This is in contrast to the undirected case (if NP�=P), where Robertson
and Seymour [14] showed that, for any fixed k, the k disjoint paths problem is
polynomial-time solvable for any graph (not necessarily planar).

The edge-disjoint and vertex-disjoint versions of these problems can be reduced to
each other in case of general (undirected or directed) graphs, so that the complexity
status for the edge-disjoint versions follows. However, when restricted to planar
graphs, the complexity is less clear. Even for the following problem it is not known
whether it is polynomial-time solvable or NP-complete: given a directed planar graph
D = (V, E) and vertices r and s, find a directed r − s path P and a directed s − r
path Q such that P and Q are edge-disjoint. (For a survey of results on disjoint paths
till 2003 we refer to Chap.70 of [16].)

Our method for the partially disjoint paths problem (1) for directed planar graphs
consists of a number of layers and reductions:

(2) (i) The top layer is to select a homology type for the solution. The
number of potentially feasible homology types can be bounded by
(2|E(G)| + 1)4k

2
. This is the only level where the ‘fixed k’ comes

in.
(ii) For each homology type, one can find in polynomial time a solution

of that type, if it exists. The formalism to keep track of homology
is that of flows over a ‘graph group’: the group given by generators
g1, . . . , gk and relations gig j = g jgi for all i, j with {i, j} /∈ F .

(iii) Finding such a solution of the prescribed homology type is done
by reduction to a ‘cohomology feasibility problem’ in a (generally
nonplanar) extension of the planar dual of the input graph. (This is
why we need cohomology—homology in the original, planar graph
seems not enough, mainly because disjoint paths should not only be
edge-disjoint, but also vertex-disjoint.)
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(iv) This cohomology feasibility problem is reduced to a 2-satisfiability
problem, whose input is based on a (polynomial) number of ‘pre-
feasible’ solutions for the cohomology feasibility problem.

(v) Finding these pre-feasible solutions forms the bottom layer of the
algorithm. It consists of a rather brute-force, but yet polynomial-
time, constraint satisfaction method (adapting an instance as long as
it is not pre-feasible).

In our description, we start at the bottom and work our way up to the top layer.
The method rests on quite basic combinatorial group theory. The approach allows

application of the algorithm where the embedding of the graph in the plane is given
in an implicit way, viz. by a list of the cycles that bound the faces of the graph, or
alternatively by the clockwise order of edges incident with v, for each vertex v.

Our method directly extends to directed graphs on any fixed compact surface and
to inputs where for each edge e a subset Ke of {1, . . . , k} is given that prescribes
which of the ri − si paths may traverse e. We did not see if the method would extend
to a polynomial-time algorithm if, instead of fixing k, we fix the number of faces by
which r1, s1, . . . , rk, sk can be covered.

Our algorithm is a ‘brute force’ polynomial-time algorithm. We did not aim at
obtaining the best possible running time bound, as we presume that there are much
faster (but possibly more complicated) methods for problem (1) for directed planar
graphs than the one we describe in this paper.

We could not avoid that k pops up in the degree of the polynomial in (2)(i). In
fact, Cygan, Marx, Pilipczuk, and Pilipczuk [3] recently showed that there exists
a constant t , independent of k, such that the k (fully) disjoint paths problem for
directed planar graphs is solvable in O(nt ) time, for any fixed k. So k only shows up
in the coefficient of the polynomial. In other words, the problem is ‘fixed parameter
tractable’. This raises the question if also the partially disjoint paths problem is fixed
parameter tractable for directed planar graphs.

In the case of undirected planar graphs, it was shown by Reed, Robertson, Schri-
jver, and Seymour [13] that the k disjoint paths problem can be solved in linear time,
for any fixed k. This algorithm utilizesmethods fromRobertson and Seymour’s graph
minors theory. For general undirected graphs, the k disjoint paths problem is solvable
in time O(n2) for any fixed k [9, 14].

2 Graph Groups

Our method uses the framework of combinatorial group theory, viz. groups defined
by generators and relations. For background literature on combinatorial group theory
we refer to Magnus, Karrass, and Solitar [12] and Lyndon and Schupp [11].

In particular we utilize ‘graph groups’. These groups are studied inter alia by
Baudisch [2], Droms [6], Servatius [17], Wrathall [18], and Esyp, Kazachkov, and
Remeslennikov [7]. Specific properties of graph groups that we will use are given
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in [2, 7], but we will also need several other properties that seem not to have been
considered before, in particular concerning phenomena like convexity and periodicity
emanating in graph groups.

We first give some standard terminology. Let g1, . . . , gk form an abstract set
of generators. Call g1, g

−1
1 , . . . , gk, g

−1
k symbols. A word (of size t) is a sequence

α1 · · · αt where each α j is a symbol. The empty word (of size 0) is denoted by ∅.
Define (g−1

i )−1 := gi , and (α1 · · ·αt )
−1 := α−1

t · · · α−1
1 .

Let g1, . . . , gk be generators, and let F be a set of unordered pairs {i, j} from
[k] with i �= j . So ([k], F) is an undirected graph. (Throughout this paper: [k] :=
{1, . . . , k}.)

Then the group G = GF is generated by the generators g1, . . . , gk , with relations

(3) gig j = g jgi for each pair {i, j} /∈ F .

Let 1 denote the unit element of GF . So 1 = ∅.
If F consists of all pairs, the group GF is the free group generated by g1, . . . , gk .

If F = ∅ GF is the free commutative group generated by g1, . . . , gk . In this case, GF

is isomorphic to Z
k .

The group GF is called a graph group, or a free partially commutative group, or
a right-angled Artin group, or a semifree group. (Our definition (3) of graph group
differs in a nonessential way from that generally used, where the graph describes the
pairs of commuting generators, rather than the pairs of noncommuting generators.
Definition (3) is more convenient for our purposes. For instance, it implies that the
group GF is equal to the direct product of the groups obtained from each component
of the graph ([k], F).)

2.1 Independent Symbols, Commuting, Reduced Words

We review the basics of graph groups, referring toBaudisch [2] andEsyp,Kazachkov,
and Remeslennikov [7] for the elaboration of some details.

To describe GF , call symbols α and β independent if α ∈ {gi , g−1
i } and β ∈

{g j , g
−1
j } for some {i, j} /∈ F with i �= j . So ifα andβ are independent thenαβ = βα

and β �= α±1. (It follows from (5) below that also the converse implication holds.)
Call words w and v equivalent if v arises from w by iteratively:

(4) (i) replacing xαα−1y by xy or vice versa, where α is a symbol,
(ii) replacing xαβy by xβαy where α and β are independent symbols.

By commuting we will mean applying (ii) iteratively.
Then the elements of GF are equivalence classes of words, which we can indicate

by words, although one should obviously keep in mind that different words can
indicate one group element. We will write w ≡ v if we want to stress that w and v

are equal as words. We denote GF by G if F is clear from the context.
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A word w is called reduced if it is not equal (as a word) to xαyα−1z where α
is a symbol independent of all symbols occurring in y. Note that reducedness is a
property of words, and that it is invariant under commuting. We say that a symbol α
occurs in an element x of G, or that x contains α, if α occurs in any reduced word
representing x . Two elements x and y of G are called independent if any symbol in
x and any symbol in y are independent. (In particular, β �= α±1 for any symbols α
in x and β in y.)

The following is basic—see Lemma 2.3 in [7]:

(5) Let w and x be reduced words with w = x as group elements.
Then word x can be obtained from w by a series of commutings.

Define, for x ∈ G, |x | as the size of any reduced word representing x . So |xy| ≤
|x | + |y| for all x, y ∈ G.

(5) implies that testing if w = 1 is easy: just replace (iteratively) any contiguous
subword αyα−1 by y where α is a symbol and y is a word independent of α. The
final word is empty if and only if w = 1. This gives a test for equivalence of words
w and x : just test if wx−1 = 1. So the ‘word problem’ for graph groups is solvable
in polynomial time. (In fact it can be solved in linear time—see Wrathall [18].)

It will be convenient to emphasize when the concatenation of two reduced words
x and y gives again a reduced word (without cancellation as in (4)(i)). In other words,
when |xy| = |x | + |y|.

To this end, we add an abstract new element ∗ to G and define a multiplication
· on G ∪ {∗} as follows. Let x, y ∈ G. Then x · y := xy if |xy| = |x | + |y|, and
x · y := ∗ if |xy| < |x | + |y|. So x · y belongs to G if for any reduced words x ′ and
y′ representing x and y one has that the concatenation of x ′ and y′ is reduced. So
no symbol in x ′ cancels out any symbol in y′. If we moreover set ∗ · x := ∗ and
x · ∗ := ∗ for all x ∈ G ∪ {∗}, we obtain an associative multiplication · on G ∪ {∗}.

The only purpose of introducing ∗ is to have a convenient and formally correct tool
to write, for x, y, z ∈ G, x = y · z, which is equivalent to x = yz and |x | = |y| + |z|.
By extension, for x, y1, . . . , yn ∈ G, x = y1 · . . . · yn is equivalent to x = y1y2 . . . yn
and |x | = |y1| + |y2| + · · · + |yn|. That is, in the concatenation of reduced words
y1, . . . , yn there is no cancelation. The element ∗ will not occur anymore below.

While the multiplication · is associative, it is generally not the case that if xy =
x · y and yz = y · z then xyz = x · y · z, because in xyz, symbols in x might cancel
out symbols in z. Nevertheless, the following holds. Call y ∈ G a segment of a ∈ G
if there exist x, z ∈ G with a = x · y · z. Then:
(6) If xy = x · y and yz = y · z, then y is a segment of xyz.

To see this, let x , y, and z be reducedwords, and consider the concatenation of x, y, z.
In the cancellation to obtain a reduced word, only symbols in x and symbols in z
can cancel each other out (since the concatenations x, y and y, z are reduced). So y
survives as a segment of xyz.
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2.2 The Partial Order ≤

Most of what follows in this section is, explicitly or implicitly, in [7]. Let x, y ∈ G.
We write x ≤ y if y = x · a for some a (namely, a = x−1y). (If x ≤ y, x is called
in [7] a left divisor of y.) So if y is given as reduced word, it means that y can be
commuted so that the first |x | symbols in y form x (by (5)). Also, x ≤ y if and only
if |y| = |x | + |x−1y|.

It is easy to derive from the normproperties of |.| that≤ is a partial order. In fact, the
partial order ≤ is a lattice if we add to G an element ∞ at infinity (Propositions 3.10
and 3.12 in [7]). This follows from the existence of the meet x ∧ y for all x, y ∈ G.
Then the join ∨ exists for all x, y for which there exists z ∈ G with x, y ≤ z (then
x ∨ y is the meet of all such z). So adding an element∞with∞ ≥ x for all x , makes
(G ∪ {∞},≤) to be a lattice. Then x ∨ y = ∞ if there is no z ∈ G with z ≥ x, y.

If finite, the join x ∨ y can be described as follows (Proposition 3.18 in [7]):

(7) Let x, y ∈ G and define x ′ := (x ∧ y)−1x and y′ := (x ∧ y)−1y.
Then x ∨ y < ∞ if and only if x ′ and y′ are independent.

Moreover:

(8) If x ∨ y < ∞ then x ∨ y = (x ∧ y) · x ′ · y′ = x(x ∧ y)−1y.

For any a ∈ G define:

(9) a↓ := {x ∈ G | x ≤ a} and a↑ := {x ∈ G | x ≥ a}.
The norm characterization of ≤ implies for all x, y, z with x ≤ y, z:

(10) y ≤ z if and only if x−1y ≤ x−1z.

Hence for any a ∈ G, the function a↑ → a−1a↑ with b �→ a−1b for b ∈ a↑ is an
order isomorphism, and therefore:

(11) If b, c ≥ a then a−1(b ∧ c) = a−1b ∧ a−1c, and if moreover b ∨ c < ∞,
then a−1(b ∨ c) = a−1b ∨ a−1c.

Proposition 2.1 Let x1, . . . , xt be such that xi ∨ x j < ∞ for all i, j . Then x1 ∨
· · · ∨ xt < ∞.

Proof It suffices to show this for t = 3, since for t ≥ 4 we can apply induction. Let
x, y, z ∈ G with x ∨ y, x ∨ z, y ∨ z < ∞. Define a := x ∧ (y ∨ z).

As x ∨ y < ∞ we know by (7) that (x ∧ y)−1x and (x ∧ y)−1y are independent.
As x ∧ y ≤ a ≤ x , this implies that a−1x and (x ∧ y)−1y are independent. Now
(using x ∧ y = x ∧ y ∧ (y ∨ z) = a ∧ y and (8))

(12) (x ∧ y)−1y = (a ∧ y)−1a = a−1a(a ∧ y)−1y = a−1(a ∨ y).

So a−1x and a−1(a ∨ y) are independent. Similarly, a−1x and a−1(a ∨ z) are inde-
pendent. So a−1x and a−1(a ∨ y) ∨ a−1(a ∨ z) are independent. The latter is equal
to, by (11),
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(13) a−1(a ∨ y) ∨ a−1(a ∨ z) = a−1(a ∨ y ∨ z) = a−1(y ∨ z).

So a−1x and a−1(y ∨ z) are independent. Hence by (7), x ∨ (y ∨ z) < ∞.

We say that a symbol α is a minimal symbol of x ∈ G if α ≤ x (so α can be
commuted so as to become the first symbol). Similarly, α is a maximal symbol if
α−1 ≤ x−1, i.e., if xα−1 ≤ x (soα can be commuted so as to become the last symbol).

We will need that for all x, y, z ∈ G:

(14) If y ≤ xyz = x · y · z, then y ≤ xy.

This can be seen by induction on |z|, the case |z| = 0, that is z = 1, being trivial.
Suppose z �= 1, and let α be a maximal element of z, let z′ := zα−1, and suppose
that y � xyz′. Let α occur m times in y. As y ≤ xyz and y � xyz′, α occurs m − 1
times in xyz′. This contradicts the fact that α occurs m times in y, hence in x · y · z′.
This proves (14).

We also will need that for all x, y, z ∈ G:

(15) If x, y ≤ z then (x ∧ y)−1x ≤ y−1z.

To see this, let b := x ∨ y = y(x ∧ y)−1x . As y ≤ b ≤ z, we have (x ∧ y)−1x =
y−1b ≤ y−1z by (10), proving (15).

Moreover, for all x, y, z ∈ G:

(16) If y−1x ∧ y−1z = 1 then (x ∧ z) ∨ (x ∧ y) ∨ (y ∧ z) = y.

To prove this, we can assume (by (11)) that x ∧ y ∧ z = 1. Let a := y ∧ z, b :=
x ∧ z, and c := x ∧ y. Then a ∧ b = a ∧ c = b ∧ c = 1. Hence, by (7), a, b,and
c are pairwise independent, and bc ≤ x , ac ≤ y, ab ≤ z. Let x ′, y′, and z′ satisfy
x = bcx ′, y = acy′, and z = abz′. Since ac = ca and bc = cb, we know y−1x =
y′−1 · a−1 · b · x ′. Hence, as a and b are independent, y′−1 · b ≤ y−1x . Similarly,
y′−1 · b ≤ y−1z. As y−1x ∧ y−1z = 1, we have y′ = 1 and b = 1. Hence (x ∧ z) ∨
(x ∧ y) ∨ (y ∧ z) = a ∨ b ∨ c = ac = y.

(We finally remark, but will not need, that the lattice G ∪ {∞} is not distributive
(if F �= ∅), while for each a ∈ G, the sublattice a↓ is distributive.)

2.3 Convex Sets

The function dist(x, y) := |x−1y| is ametric, since, for all x, y ∈ G, (i) |x | = 0 ⇐⇒
x = 1, (ii) |x−1| = |x |, and (iii) |xy| ≤ |x | + |y|. Note that this distance is left-
invariant: dist(zx, zy) = dist(x, y) for all x, y, z.

We call a subset L of G convex if L is nonempty and if x, z ∈ L and dist(x, y) +
dist(y, z) = dist(x, z) imply y ∈ L . Since the distance function is left-invariant, if L
is convex also yL is convex, for each y ∈ G.
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Proposition 2.2 A nonempty subset L of G is convex if and only if

(17) (i) if x ≤ y ≤ z and x, z ∈ L then y ∈ L ,
(ii) if x, y ∈ L then x ∧ y ∈ L and, if x ∨ y is finite, x ∨ y ∈ L .

Proof Necessity follows from the facts that x ≤ y ≤ z implies dist(x, y) +
dist(y, z) = dist(x, z), that dist(x, y) = dist(x, x ∧ y) + dist(x ∧ y, y) and that, if
x ∨ y is finite then dist(x, y) = dist(x, x ∨ y) + dist(x ∨ y, y).

To see sufficiency, let dist(x, y) + dist(y, z) = dist(x, z) with x, z ∈ L . We must
show y ∈ L . So |x−1y| + |y−1z| = |x−1z|, hence y−1x ∧ y−1z = 1. Hence by (16),
(x ∧ z) ∨ (x ∧ y) ∨ (y ∧ z) = y. So x ∧ z ≤ x ∧ y ≤ x and x ∧ z ≤ y ∧ z ≤ z.
Therefore, x ∧ y and y ∧ z belong to L and hence y belongs to L .

This implies that a↑ and a↓ are convex. Moreover, each convex set L has a unique
minimal element min L . This in fact characterizes convex sets:

(18) A nonempty subset L of G is convex if and only if for each a ∈ G,
aL has a unique minimal element.

Here necessity follows from (17) (ii). To see sufficiency, let x, z ∈ L and y ∈ G such
that dist(x, y) + dist(y, z) = dist(x, z). We prove y ∈ L . We may assume y = 1 (as
the condition is invariant under resetting L → y−1L). Let a be the unique minimal
element in L . So x ≥ a and z ≥ a. On the other hand, |x | + |z| = |x−1z|, and hence
x ∧ z = 1. So a = 1, proving (18).

Clearly, the intersection of any number of convex sets is convex again. Moreover,
convex sets satisfy the following ‘Helly-property’:

(19) Let L1, L2, L3 be convex sets with Li ∩ L j �= ∅ for all i, j = 1, 2, 3. Then
L1 ∩ L2 ∩ L3 �= ∅.

For choose x ∈ L1 ∩ L2, y ∈ L1 ∩ L3, z ∈ L2 ∩ L3. Without loss of generality, z =
1 (as we can replace L1, L2, L3 by z−1L1, z−1L2, z−1L3). Now x ∧ y ∈ L1 ∩ L2 ∩
L3.

This proves (19), which implies the following. As usual, define XY := {xy | x ∈
X, y ∈ Y } and X−1 := {x−1 | x ∈ X}, for X,Y ⊆ G. Then:

(20) Let L1, L2, and L3 be convex, with L1 ∩ L2 �= ∅. Then L1L
−1
3 ∩ L2L

−1
3 =

(L1 ∩ L2)L
−1
3 .

Indeed, trivially, L1L
−1
3 ∩ L2L

−1
3 ⊇ (L1 ∩ L2)L

−1
3 . To see the reverse inclusion,

let x ∈ L1L
−1
3 ∩ L2L

−1
3 . Since x ∈ L1L

−1
3 , we know x−1L1 ∩ L3 �= ∅. Similarly,

x−1L2 ∩ L3 �= ∅. Since also L1 ∩ L2 �= ∅, (19) gives x−1L1 ∩ x−1L2 ∩ L3 �= ∅.
Hence x ∈ (L1 ∩ L2)L

−1
3 .

2.4 Ideals and Closed Sets

A subset I of G is an ideal if I is nonempty and
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(21) (i) if y ≤ x and x ∈ I then y ∈ I ,
(ii) if x, y ∈ I and x ∨ y is finite then x ∨ y ∈ I .

Since 1 belongs to any ideal, by comparing (17) and (21) one sees that each ideal is
convex. Moreover, for any L ⊆ G and x ∈ L:

(22) L is convex if and only if x−1L is an ideal.

Call H closed if both H and H−1 are ideals. In particular, if H is closed and
x ∈ H , then any segment of x belongs to H .

Proposition 2.3 If H is closed and x, y ∈ G, then x ≤ y implies min(xH) ≤
min(yH).

Proof We can assume that y = xα for some symbol α (as we can assume x �=
y, so that x ≤ xα ≤ y for some symbol α, which implies inductively min(xH) ≤
min(xαH) ≤ min(yH)). Let c ∈ H with yc = min(yH). It suffices to show that
there exists d ∈ H with xd ≤ yc.

If α−1 ≤ c, let d := αc, in which case d ∈ H (as H−1 is an ideal) and xd = yc.
If α−1

� c, then let d := c, in which case xd ≤ yc. Indeed, as yc = min(yH) and
H is an ideal, we know c ≤ y−1. Since c ≤ y−1 and α−1 ≤ y−1, α−1 and c are
independent. Asmoreoverα−1 ≤ y−1, we knowα−1 ≤ c−1y−1. Therefore, ycα−1 ≤
yc, and hence xc = yα−1c = ycα−1 ≤ yc.

This is used in showing:

(23) If L is convex and H is closed, then LH is convex. Moreover, min(LH) =
min(min(L)H).

To show that LH is convex, by (18) it suffices to show that LH has a unique minimal
element (as each xL is again convex). Let a = min(L) and choose c ∈ H with
ac := min(aH). Then for each x ∈ L and y ∈ H , we have by Proposition 2.3, as
a ≤ x , ac = min(aH) ≤ min(xH) ≤ xy. So ac is the unique minimal element in
LH . Hence min(LH) = min(aH) = min(min(L)H), and we have (23).

This implies:

(24) If H and H ′ are closed, then HH ′ is closed.

Indeed, H is an ideal, hence convex, hence by (24), HH ′ is convex. As 1 ∈ HH ′, it
follows that HH ′ is an ideal. Similarly, (HH ′)−1 is an ideal. So HH ′ is closed.

This gives for any closed H and x, z ∈ G:

(25) xHz−1 = x↓H(z↓)−1 ∩ x↑H(z↓)−1 ∩ x↓H(z↑)−1 ∩ x↑H(z↑)−1.

This follows from (20) and (23), as x↑, x↓, z↑, and z↓ all are convex, hence z↓H−1

and z↑H−1 are convex. Then (20) gives that the right-hand side in (25) is equal to
xH(z↓)−1 ∩ xH(z↑)−1. Applying (20) to the inverse of this set, we obtain (25).
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2.5 Peaks

An element of G is called a peak if it has precisely one maximal symbol. The peaks
are precisely the join-irreducible elements of G with respect to ∨. If the maximal
symbol equals α, then p is called an α-peak. For each x ∈ G and symbol α, all
α-peaks p ≤ x are totally ordered by ≤. Moreover:

(26) Each x ∈ G is the join of all peaks p ≤ x .

To see this, let y be the join of all peaks p ≤ x . If y �= x , choose a maximal symbolα
of y−1x . Then α is also a maximal symbol of x . Write x = ξ1 · . . . · ξn with symbols
ξ1, . . . , ξn , in such a way that the maximum j for which ξ j = α is minimized. Then
q := ξ1 · . . . · ξ j is an α-peak with q ≤ x . So q ≤ y. This however contradicts the
fact that y−1x has maximal symbol α, thus showing (26).

For each x ∈ G and symbol α, let |x |α be the number of occurrences of symbol
α in x (not considering α−1).

Proposition 2.4 Let x, y ∈ G and let p ≤ x and q ≤ y be α-peaks satisfying
|p−1x |α = |q−1y|α. Then |pq−1| ≤ |xy−1|.
Proof By induction on |x | + |y|. If x is not an α-peak, let β be a maximal symbol
of x with β �= α. Let x ′ := xβ−1. If β is also a maximal symbol of y, then we can
apply induction to x ′ and y′ := yβ−1, since x ′(y′)−1 = xy−1. If β is not a maximal
symbol of y then |x ′y−1| ≤ |xy−1| (as β is not canceled in the concatenation of x
and y−1), and hence we can apply induction to x ′ and y.

So we can assume that x is an α-peak, and similarly that y is an α-peak. If
|p−1x |α = 0, then x = p and y = q, and we are done. If |p−1x |α > 0, then x > p
and y > q and we can apply induction to x ′ := xα−1 and y′ := yα−1. Note that
|p−1x ′|α = |p−1x |α − 1 = |q−1y|α − 1 = |q−1y′|α.

We use this proposition only in obtaining the following:

(27) Let p ≤ r ≤ ar with p an α-peak. Then there exists a′ with p ≤ a′ p,
|p−1a′ p|α = |r−1ar |α, and |a′| ≤ |a|.

This follows by applying Proposition 2.4 to x := r and y := ar , taking for q the
(unique) α-peak satisfying p ≤ q ≤ ar with |q−1ar |α = |p−1r |α, which shows that
we can take a′ := qp−1. (Note that |q−1ar |α = |p−1r |α is equivalent to |p−1q|α =
|r−1ar |α, since |p−1q|α + |q−1ar |α = |p−1ar |α = |p−1r |α + |r−1ar |α.)

We also need:

(28) If x ≤ y and α is a symbol not occurring in x−1y, then |xp−1| ≤
|yp−1| for each α-peak p.

Indeed, by induction we can assume that x−1y = β for some symbol β �= α. Then
in yp−1, the maximal symbol β of y is not cancelled, since otherwise β would
be maximal symbol also of p, hence β = α, contradicting our assumption. Hence
|xp−1| ≤ |xβ p−1| = |yp−1|.
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2.6 Connectedness and Cyclic Reducedness

We study periodicity of symbols in elements of G in order to obtain control on
‘stalling’ in the algorithm. For this we need Proposition 2.8 below—the other results
in Sects. 2.6–2.9 are only needed to prove Proposition 2.8.

Call an element b of G connected if the generators occurring in b induce a con-
nected subgraph of ([k], F). So b is connected if and only if there are no a, c ∈ G
with b = ac, a �= 1 �= c, and a and c independent. Each peak is connected.

Call an element b of G cyclically reduced if b ∧ b−1 = 1. So b is cyclically
reduced if and only if b2 = b · b. Also, if b is cyclically reduced, then for each
s ≥ 0: bs = b · b · . . . · b (cf. [2]).

The following proposition will be used in proving Propositions 2.6 and 2.7.

Proposition 2.5 Let c, d ∈ G satisfy d ≤ dc, c ≤ dc, and d � c. Suppose that d is
connected and that all minimal symbols of c occur in d. Then |c| ≤ |c ∧ d|2. If d is
moreover cyclically reduced, then c ≤ d |c∧d|.

Proof The proof is by induction on |c|. Let c′ := (c ∧ d)−1c. Then c′ ≤ c, by (15),
since c, d ≤ dc. Also, d ≤ dc′ (as d ≤ dc and c′ ≤ c) and c′ ≤ dc′ (by (16), as
c′ ≤ c ≤ dc and dc′ ≤ dc). As d � c and c′ ≤ c, we know d � c′. Moreover, as
c′ ≤ c, all minimal symbols of c′ occur in c, hence in d.

If c′ ∧ d < c ∧ d, then by induction |c′| ≤ |c′ ∧ d|2 and, if d is cyclically reduced,
c′ ≤ d |c′∧d|. Hence |c| = |c ∧ d| + |c′| ≤ |c ∧ d| + |c′ ∧ d|2 ≤ |c ∧ d|2 and c ≤ c ∨
d = d(c ∧ d)−1c = dc′ ≤ d |c′∧d|+1 ≤ d |c∧d|, as required.

So we can assume c′ ∧ d = c ∧ d. As c, d ≤ dc, c ∨ d < ∞. So (c ∧ d)−1c = c′
and (c ∧ d)−1d are independent. Hence c′ ∧ d = c ∧ d and (c ∧ d)−1d are inde-
pendent. As c ∧ d �= d and as d is connected, we know c ∧ d = 1. So c and d are
independent. Since all minimal symbols of c occur in d, this implies c = 1 and the
bounds are trivial.

2.7 Conjugates

An element c of G is called a conjugate of a ∈ G if c = x−1ax for some x ∈ G.
Then:

(29) For each a ∈ G, each conjugate c of a contains a segment x−1ax
with x using only generators occurring in a.

Indeed, let c = y−1ay. Then (29) can be proved by induction on |y|. If z := y ∧ a �=
1, replace y by z−1y and a by z−1az, and apply induction (this resetting does not
change y−1ay). So we can assume that y−1a = y−1 · a and similarly that ay = a · y.
Hence a is a segment of y−1ay by (6), proving (29).

We use this in proving:
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(30) If a and b are independent, then, each conjugate c of ab contains a
segment which is a conjugate of a.

Indeed, by (29) c has a segment x−1abx with x only using generators occurring in
ab. As a and b are independent we can write x = yz with y only using generators
occurring in a and z only using generators occurring in b. Hence y−1ay and z−1bz
are independent, and so y−1ay is a segment of x−1abx .

Proposition 2.5 implies:

Proposition 2.6 Let d be connected and cyclically reduced. Then for each n ≥ 0,
each conjugate c of dn+2|d| contains dn as segment.

Proof Choose x ∈ G with c = x−1dn+2|d|x and |x | as small as possible. Then d � x ,
otherwise replacing x by d−1x contradicts the minimality of x . Let y := x ∧ dn+|d|.
Then y ≤ dn+|d|+1 and d ≤ dy ≤ dn+|d|+1, hence by (14), y ≤ dy. Since y ≤ dn+|d|,
all minimal symbols of y occur in d. Hence by Proposition 2.5, y ≤ d |d|. So d |d| =
y · a for some a. Hence for z := y−1x one has x−1dn+|d| = z−1 · a · dn , implying
x−1dn+|d| = x−1d |d| · dn .

By symmetry, dn+|d|x = dn · d |d|x . So by (6), dn is a segment of

(31) x−1d |d|dnd |d|x = c.

2.8 Periodicity

We give conditions for the eventual periodicity of a peak:

Proposition 2.7 Let q be connected and contain symbol α, and let p be an α-
peak with p ≤ pq. Then there exists an α-peak r and t ≥ 0 with p = r · qt and
|r | ≤ 2|pqp−1|2.
Proof Let a := pqp−1. Then |q| ≤ |a|, as |p| + |q| = |pq| = |ap| ≤ |p| + |a|. If
|p| ≤ 2|a|2, we can take r := p and t := 0. So we can assume that |p| > 2|a|2.

Let m := |q|α, and let p′ be minimal with the properties that p′ ≤ p and |p′|α ≥
|p|α − m. Then p′ = 1 or p′ is an α-peak. By showing that (p′)−1 p = q we are
done, since then we can apply induction, as p′q(p′)−1 = pqp−1.

Define c := p−1, d := q−1, and u := c ∧ dc. As u ≤ c, u ≤ dc, and d ≤ dc, we
know u ≤ du = d · u (by (14)). Since a = (dc)−1c, we have |a| = |c| + |dc| − 2|u|,
and so, as |c| = |p| > 2|a|2 and |a| ≥ |d|:
(32) 2|u| = |c| + |dc| − |a| = 2|c| + |d| − |a| > 4|a|2 + |d| − |a| ≥ 2|d|2 +

2|d|.
Hence |u| > |d|2 + |d| ≥ |u ∧ d|2. Therefore, d ≤ u by Proposition 2.5.

Let b := p−1 p′. So we must show b = d. Since q−1 = d ≤ u ≤ c = p−1 and
m = |q|α, we know p′ ≤ pq−1, that is, d ≤ b. On the other hand, b ∧ u ≤ d, since
b ∧ u ≤ u ≤ dc = q−1 p−1, |b ∧ u|α ≤ m = |q|α, and p is a peak. So b ∧ u = d,
and hence we must show b ≤ u.
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Let u′ := d−1u. Since d ≤ u ≤ du, we have u′ ≤ u (by (10)).Moreover, as b, u ≤
c, b ∨ u < ∞. Hence u′ ≤ u ≤ b ∨ u = bd−1u = b · u′. Since |u′| = |u| − |d| >

|d|2 = |u ∧ b|2 ≥ |u′ ∧ b|2, Proposition 2.5 gives b ≤ u′, implying b ≤ u.

A g.c.d argument shows:

(33) Let p, r, r ′, q, q ′ be α-peaks, and let t, t ′ ≥ 0 with p = r · qt =
r ′ · (q ′)t ′ and 1

3 |p|α ≥ |r |, |r ′|, |q|, |q ′|. Then there exists d such
that q and q ′ are powers of d.

Indeed, define g := max{|r |, |r ′|, |q|, |q ′|},m := |p|α, u := |q|α, and u′ := |q ′|α. So
m ≥ 3g. As p is an α-peak, we can uniquely write p = p1 · p2 · . . . · pm , with each
pi being an α-peak. Since r is an α-peak with |r |α ≤ g, and since p = r · qt , the
sequence z := (pg+1, . . . , pm) is periodic with period u. Similarly, z is periodic with
period u′. Moreover, z has at least u + u′ terms, since m − g ≥ 2g ≥ u + u′.

This implies1 that z is periodic with period v := gcd{u, u′}. Let d := zm−v+1 ·
. . . · zm . Then q = zm−u+1 · . . . · zm = du/v and similarly q ′ = du′/v .

2.9 A Main Tool

We now come to a main tool for bounding the complexity of our algorithm (which
we will use in Sect. 3.3).

Proposition 2.8 Let p be an α-peak, and let a, a′ ∈ G be such that p ≤ ap and
p ≤ a′ p and such that α occurs in p−1a′ p. If |p| ≥ 8|a|3, then each conjugate of a
has a segment s satisfying |p−1aps−1|α ≤ 2|a′|2.
Proof We can assume |p−1ap|α > 2|a′|2, as otherwise we can take s := 1. This
implies |a| ≥ |ap| − |p| = |p−1ap| ≥ |a′|.

Let q be the component of p−1ap that contains α; that is, q is the element such
that p−1ap = qu for some u independent of q, with q connected and containing α.
Similarly, let q ′ be the component of p−1a′ p that contains α. Note that |q| ≤ |a| and
|q ′| ≤ |a′|.

By (28) applied to x := pq and y := apwehave |pqp−1| ≤ |a|. Hence, by Propo-
sition 2.7, p = r · qt for some α-peak r with |r | ≤ 2|pqp−1|2 ≤ 2|a|2. Similarly,
p = r ′ · (q ′)t ′ for some α-peak r ′ with |r ′| ≤ 2|a′|2 ≤ 2|a|2. Now
(34) |p|α ≥ t = (|p| − |r |)/|q| ≥ (8|a|3 − 2|a|2)/|a| ≥ 6|a|2 ≥

3max{|r |, |r ′|, |q|, |q ′|},

1If a and b are periods of x = (x1, . . . , xn) with a < b and a + b ≤ n, then b − a is a period of
x . For let 1 ≤ i ≤ n − (b − a). We show xi+(b−a) = xi . If i ≤ n − b then xi+(b−a) = x(i+b)−a =
xi+b = xi . If i > n − b then i > a (as i > n − b ≥ a, since a + b ≤ n by assumption), hence
xi+(b−a) = x(i−a)+b = xi−a = xi .
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Hence by (33) , q = dn for some d and n ≥ 0, with |d| ≤ |q ′| ≤ |a′|. As t ≥ 1 by
(34), q is cyclically reduced, hence also d is cyclically reduced. As q is connected,
also d is connected.

Let c be a conjugate of a. Then c is a conjugate of p−1ap = qu, with u indepen-
dent of q. Hence by (30), c contains a segment c′ which is a conjugate of q = dn . Now
n = |q|/|d| ≥ |p−1ap|α/|a′| > 2|a′| ≥ 2|d|. Hence, by Proposition 2.6, c′ contains
s := dn−2|d| as segment. Then qs−1 = d2|d|, hence |p−1aps−1|α = |qs−1|α ≤
|qs−1| = 2|d|2 ≤ 2|a′|2.

2.10 The Function µa,H : x �→ min(a−1x↑H)

The following function μa,H : G → G forms an important ingredient in our algo-
rithm. Fixing a ∈ G and a closed set H ⊆ G, it is defined by

(35) μa,H (x) := min(a−1x↑H)

for x ∈ G, which is well-defined as a−1xH is convex by (23). So for each x ∈ G:

(36) μa,H (x) ≤ a−1x .

Moreover, for all x, y ∈ G:

(37) μa,H (x) ≤ y if and only if a ∈ x↑H(y↓)−1,

since min(a−1x↑H) ≤ y if and only if a−1bh = c for some b ∈ x↑, h ∈ H and
c ∈ y↓.

Proposition 2.9 Let a ∈ G and H ⊆ G be closed, and set μ := μa,H . Then for all
x, y ∈ G:

(38)

(i) if x ≤ y then μ(x) ≤ μ(y),
(ii) μ(x ∧ y) ≤ μ(x) ∧ μ(y),
(iii) if x ∨ y is finite, then μ(x ∨ y) = μ(x) ∨ μ(y).

Proof Since x ≤ y implies x↑ ⊇ y↑, we have (i). Then (ii) follows from (i). To
see (iii), we have μ(x) ∨ μ(y) ≤ μ(x ∨ y) by (i). In particular, μ(x) ∨ μ(y) is
finite. To see the reverse inequality, set d := μ(x) = min(a−1x↑H) and e := μ(y) =
min(a−1y↑H). Then, by (37) and as both d−1 and e−1 belong to ((d ∨ e)↓)−1,

(39) a ∈ x↑Hd−1 ∩ y↑He−1 ⊆ x↑H((d ∨ e)↓)−1 ∩ y↑H((d ∨ e)↓)−1 =
(x ∨ y)↑H((d ∨ e)↓)−1,

where the equality follows from (20) (as x↑ ∩ y↑ = (x ∨ y)↑). So by (37), μ(x ∨
y) = min(a−1(x ∨ y)↑H) ≤ d ∨ e.

The composition of functions μa,H have the following property. Let x, a, a′ ∈ G
and let H and H ′ be closed. Then
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(40) μa′,H ′(μa,H (x)) ≤ μaa′,HH ′(x).

Indeed, by the definitions of HH ′ andμaa′,HH ′(x), there exist x ′ ≥ x and c ∈ H , c′ ∈
H ′ with μaa′,HH ′(x) = (aa′)−1x ′cc′. Now μa,H (x) ≤ a−1x ′c. Hence, using (38)(i),

(41) μa′,H ′ ◦ μa,H (x) ≤ μa′,H ′(a−1x ′c) ≤ (a′)−1(a−1x ′c)c′ =
μaa′,HH ′(x).

2.11 Polynomial-Time Algorithms

Let I be an ideal and x ∈ G. Then there is a unique largest element y ≤ x with y ∈ I .
We can find it in polynomial time if membership of I can be tested in polynomial
time:

(42) Let I be an ideal of which we can test membership in polynomial
time. Then for any x ∈ G, we can find the maximal element y ≤ x with
y ∈ I in polynomial
time.

To see this, grow a word y ≤ x with y ∈ I , starting with y = 1. If there is a minimal
symbol in y−1x with yα ∈ I , replace y by yα. If no such α exists, y is as required.

Note that y is the closest (with respect to dist) element in I to x . Hence, by the
left-invariance of the distance function, x−1y is the closest element in x−1 I to 1.
That is: x−1y = min(x−1 I ). Therefore:

(43) Let I be an ideal of which we can test membership in polynomial
time. Then for any z ∈ G, we can find min(z I ) in polynomial
time.

Note that we can test membership of x↑ and of x↓ in polynomial time. Hence:

(44) For any y, x ∈ G, we can find min(y−1x↑) in polynomial time.

This follows from (43) setting I := x−1x↑ and z := y−1x .
If H is closed, then for any y ∈ G, y−1x↑H is convex (by (23)). Its minimum can

be found in polynomial time:

(45) Let H be a closed set of which we can test membership in poly
nomial time. Then for any x, a ∈ G, μa,H (x) = min(a−1x↑H)

can be found in polynomial time.

Indeed, by (23),min(a−1x↑H) = min(min(a−1x↑)H). Hence (45) follows from (44)
and (43).

Finally,

(46) Let H be a closed set of which we can test membership in poly
nomial time. Then for any x, y, z ∈ G, we can test in polynomial
time if y belongs to x↑H(z↑)−1.
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Indeed, y ∈ x↑H(z↑)−1 if and only if y−1x↑H ∩ z↑ �= ∅. This is the case if and only
if z−1y−1x↑H ∩ z−1z↑ �= ∅. The latter statement is equivalent to: min(z−1y−1x↑H)

belongs to the ideal z−1z↑. As this minimum can be determined in polynomial time
by (45) and as membership of z−1z↑ can be tested in polynomial time, we have
proved (46).

3 The Cohomology Feasibility Problem

Let D = (V, E) be a directed graph and let G be a group. Two functions ϕ,ψ :
E → G are called cohomologous if there exists a function f : V → G such that
ψ(e) = f (u)−1ϕ(e) f (w) for each edge e = (u, w). One directly checks that this
gives an equivalence relation.

We give a polynomial-time algorithm for the following cohomology feasibility
problem for graph groups:

(47) given: a directed graph D = (V, E), an undirected graph ([k], F), a function
ϕ : E → GF , and for each edge e a closed set H(e) ⊆ GF ,

find: a function ψ : E → GF such that ψ is cohomologous to ϕ and such
that ψ(e) ∈ H(e) for each e ∈ E .

The running time of the algorithm for this problem is bounded by a polynomial
in n := |V |, m := |E |, σ := max{|ϕ(e)| | e ∈ E}, and the maximum time needed to
test if any word of polynomial size belongs to H(e) (over all edges e). (The number k
of generators can be bounded by mσ, since we may assume that all generators occur
among the ϕ(e).) More precisely, there exist polynomials p1 and p2 such that the
problem takes time p1(n,m,σ)τH (p2(n,m,σ)), where τH (x) is the time needed to
test membership of the H(e) for words of size at most x .

Note that, by the definition of cohomologous, equivalent to finding a function ψ
as in (47), is finding a function f : V → GF satisfying:

(48) f (u)−1ϕ(e) f (w) ∈ H(e) for each edge e = (u, w).

We call such a function f feasible.
We can assume that

(49) |ϕ(e)| ≤ 1 for each edge e.

Indeed, if ϕ(e) = xy for edge e = (u, w), we can split the edge into two edges
(u, v), (v,w), where v is a new vertex, and define ϕ(u, v) := x , ϕ(v,w) := y,
H(u, v) := H(e), and H(v,w) := {1}. The new problem is equivalent to the original
problem: if f is a solution to the original problem, we can set f (v) := y f (w), and
obtain a solution for the new problem; conversely, if f is a solution to the original
problem, forgetting the value of f on v, we obtain a solution to the original problem.
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3.1 Pre-feasible Functions

Given the input of the cohomology feasibility problem (47), we call a function
f : V → GF pre-feasible if for each edge e = (u, w) of D there exist x ≥ f (u) and
z ≤ f (w) such that x−1ϕ(e)z ∈ H(e). Clearly, each feasible function is pre-feasible.
There is a trivial pre-feasible function f , defined by f (v) := 1 for each v ∈ V . Note
that f is pre-feasible if and only if

(50) μϕ(e),H(e)( f (u)) ≤ f (w) for each edge e = (u, w).

The collection GV
F of all functions f : V → GF can be partially ordered by:

f ≤ g if and only if f (v) ≤ g(v) for each v ∈ V . Then GV
F forms a lattice if we add

an element ∞ at infinity. Let ∧ and ∨ denote meet and join. Then (38) (ii) and (iii)
directly give:

(51) Let f1 and f2 be pre-feasible functions. Then f1 ∧ f2 and, if f1 ∨ f2 < ∞,
f1 ∨ f2 are pre-feasible again.

It follows that for each function f : V → GF there is a unique smallest pre-
feasible function f̄ ≥ f , provided that there exists at least one pre-feasible function
g ≥ f . If no such g exists we set f̄ := ∞. By (51), f ∨ g = f̄ ∨ ḡ for any two
functions f, g with f ∨ g finite.

3.2 A Subroutine Finding f̄

Condition (50) suggests a ‘constraint satisfaction’ algorithm to find f̄ for a given
function f . Let input D = (V, E), F,ϕ, H for the cohomology feasibility problem
be given. For any edge e, we can determine μϕ(e),H(e)( f (u)) in polynomial time, by
(45).

Subroutine to find f̄ : Find an edge e = (u, w) for which

(52) me := μϕ(e),H(e)( f (u)) � f (w).

If me ∨ f (w) is finite, reset f (w) := me ∨ f (w) and iterate. If me ∨ f (w) = ∞,
output f̄ := ∞. If no such edge e exists, output f̄ := f .

Then the output of the subroutine (if any) is correct. For let f ′ be the reset
function. If f̄ is finite, then f ≤ f ′ ≤ f̄ , since f ′(w) = μϕ(e),H(e)( f (u)) ∨ f (w) ≤
μϕ(e),H(e)( f (u)) ∨ f̄ (w) = f̄ (w), since f̄ is pre-feasible. So in this case f̄ ′ = f̄ .
This moreover implies that if me ∨ f (w) = ∞ then f̄ = ∞.
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3.3 Running Time of the Subroutine

For each walk P = e1e2 . . . et , where e1, . . . , et are consecutive edges of D, we set
ϕ(P) := ϕ(e1)ϕ(e2) . . . ϕ(et ) and H(P) := H(e1)H(e2) . . . H(et ).

We will study the running time of the subroutine under the condition that the
cohomology feasibility problem has a solution, or more weakly, that

(53) for each closed walk C , H(C) contains a conjugate of ϕ(C).

For any function f : V → GF , let | f | := max{| f (v)| | v ∈ V }.
Proposition 3.1 If (49) and (53) hold, then for any f : V → GF with f̄ finite:

(54) | f̄ | ≤ k| f | + 220k(2nk)9.

Proof Define c := 2nk and m := 3c2, and suppose | f̄ | > k| f | + 220kc9. Consider
the (infinite) directed graphDwith vertex setV := {(v, p) | v ∈ V , p peak} and edge
set all pairs ((v, p), (w, q)) ∈ V × V with e = (v,w) ∈ E andq ≤ μϕ(e),H(e)(p). Let
S be the set of all vertices (v, p) ofD with p ≤ f (v). Then for each v ∈ V and peak
p:

(55) f̄ (v) = ∨{p | there exists a walk in D from S to (v, p)}.
This follows with (26) and Proposition (9)(iii). Hence:

(56) if p ≤ f̄ (v), then there exists a walk in D from S to (v, p).

Since | f̄ | > k| f | + 220kc9, there exists w ∈ V with | f̄ (w)| > k| f | + 220kc9.
Hence there exists a peak q ≤ f̄ (w) with |q| > | f | + 220c9 (since f̄ (w) is a join
of at most k peaks). By (56), there is a walk P in D from S to (w, q). Choose a
shortest such walk P; let it have length �. Since |ϕ(e)| ≤ 1 by assumption, |p| ≤
|ϕ(e)−1 p′| ≤ |p′| + 1 for each edge ((v, p), (v′, p′)) ofD, where e = (v, v′). Hence
� ≥ |q| − | f | > 220c9.

LetP traverse vertices (v0, q0), (v1, q1) . . . , (v�, q�) ofD, in this order. So v� = w

and q� = q. For each u ∈ V and each symbol α let Iu,α denote the set of indices
j ∈ {� − 3c3, . . . , �} such that v j = u and q j is an α-peak. Then there exist u ∈ V
and a symbol α such that |Iu,α| > 3c3/c = m. Choose j0 < j1 < · · · < jm in Iu,α.
Set pi := q ji for i = 0, 1, . . . ,m. So each pi is an α-peak and p0 < p1 < · · · < pm .
We will apply Proposition 2.8 to p := p0.

Let Ci be the u − u walk v ji−1 , v ji−1+1, . . . , v ji−1, v ji in D, and let C := C1C2 . . .

Cm (the concatenation of C1, . . . ,Cm). Then |C | ≤ 3c3 and so there exists i ∈
{1, . . . ,m} with |Ci | ≤ |C |/m ≤ 3c3/m = c.

Let a := ϕ(C)−1 and a′′ := ϕ(Ci )
−1. Then |a| = |ϕ(C)| ≤ |C | ≤ 3c3 and |a′′| =

|ϕ(Ci )| ≤ |Ci | ≤ c. This gives

(57) |p0| ≥ |q| − 3c3 ≥ 220c9 − 3c3 ≥ 216c9 = 8(3c3)3 ≥ 8|a|3.
Moreover, p0 ≤ pm ≤ μϕ(C),H(C)(p0) ≤ ap0 and similarly pi ≤ pi+1 ≤ a′′ pi . As α
occurs in p−1

i pi+1, α also occurs in p−1
i a′′ pi . By (27), p0 ≤ a′ p0 for some a′ with

|a′| ≤ |a′′| and |p−1
0 a′ p0|α = |p−1

i a′′ pi |α.
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As we assume that (53) holds, some conjugate x of ϕ(C) belongs to H(C).
So x−1 is a conjugate of a. Hence, by Proposition 2.8, x−1 has a segment s such
that |p−1

0 ap0s−1|α ≤ 2|a′|2 ≤ 2c2 < 3c2 = m. Now pm ≤ min(ϕ(C)−1 p↑
0 H(C)) ≤

ap0s−1, since s−1 ∈ H(C), as H(C) is closed and x ∈ H(C). So |p−1
0 pm |α < m,

contradicting the fact that pm contains at least m α’s more than p0.

This implies, where n := |V (D)|, and where, for any σ ∈ Z+, τH (σ) is the max-
imum time needed to test if any word of size ≤ σ belongs to H(e), for any given
edge e.

Theorem 3.2 There exist polynomials p1 and p2 such that, if (49) and (53) hold,
then the running time of the subroutine is bounded by

(58) p1(n, k, | f |)τH (p2(n, k, | f |)).
Proof At each iteration, we increase | f (v)| for some vertex v. Hence Proposition 3.1
implies that, if f̄ is finite, the number of iterations is bounded by some polynomial
p1 in n, k, | f |. If the subroutine exceeds this number of iterations, we conclude
that f̄ = ∞.

Since in each iteration, the reset f ′ satisfies | f ′| ≤ | f̄ |, and since | f̄ | is bounded
by a polynomial p2 in n, k, | f |, in each iteration we only need to test membership
of words of size at most p2(n, k, | f |).

3.4 A Polynomial-Time Algorithm for the Cohomology
Feasibility Problem for Graph Groups

We now describe the algorithm for the cohomology feasibility problem for graph
groups. Let input D = (V, E), F , ϕ, H of (47) be given.

Let F be the collection of all functions f : V → GF such that for each edge
e = (u, w) of D there exist x ≥ f (u) and z ≥ f (w) satisfying x−1ϕ(e)z ∈ H(e);
equivalently:

(59) ϕ(e) ∈ f (u)↑H(e)( f (w)↑)−1.

This can be tested in polynomial time by (46). So for any given function f one can
check in polynomial time whether f belongs to F . Trivially, if f ∈ F and g ≤ f
then g ∈ F . Moreover:

(60) Let f1, . . . , ft be functions such that fi ∨ f j ∈ F for all i, j .Then
f := f1 ∨ · · · ∨ ft ∈ F .

Proof We must show that for each edge e = (u, w), ϕ(e) belongs to

(61) f (u)↑H(e)( f (w)↑)−1.

Since fi ∨ f j ∈ F for all i, j , we know
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(62) ϕ(e) ∈ fi (u)↑H(e) f j (w)↑−1

for all i, j . Hence by (20),

(63) ϕ(e) ∈ ⋂

i

⋂

j
fi (u)↑H(e)( f j (w)↑)−1 =

(
⋂

i
fi (u)↑

)

H(e)

(
⋂

j
( f j (w)↑)−1

)

= f (u)↑H(e)( f (w)↑)−1.

Here i and j range over 1, . . . , t .

In the following theorem, ‘solvable in polynomial time’ means as before that
there exist polynomials p1 and p2 such that the problem is solvable in time p1(n +
m, k, ρ)τH (p2(n + m, k, ρ)), where n := |V (D)|, m := |E(D)|, ρ is the maximum
of |ϕ(e)| over all e ∈ E , and where τH (σ) again is the maximum time needed to test
if any word of size ≤ σ belongs to H(e), for any given edge e.

Theorem 3.3 The cohomology feasibility problem for graph groups is solvable in
polynomial time.

Proof We can assume again that |ϕ(e)| ≤ 1 for each edge e. Moreover, we can
assume that with each edge e = (u, w) also e−1 = (w, u) is an edge, with ϕ(e−1) =
ϕ(e)−1 and H(e−1) = H(e)−1.

For any e = (u, w) ∈ E , let fe be the function defined by

(64) fe(v) :=
{

ϕ(e) if v = u,

1 if v �= u.

Let L be the set of pairs {e, e−1} from E such that ϕ(e) /∈ H(e). Let N be the
collection of all pairs {e, d} from E such that the function f̄e ∨ f̄d = ∞, or is finite
and does not belong to F (possibly e = d).

Choose a subset B of E such that B intersects each pair in L and such that B
contains no pair in N . This is a special case of the 2-satisfiability problem, and hence
can be solved in polynomial time. Assuming that there exists a feasible function
f , then B exists, as B := {e = (u, v) ∈ E | ϕ(e) ≤ f (u)} would have the required
properties.

If we find B, define f by:

(65) f (v) := ∨
e∈B f̄e.

We are done by proving that f is feasible. Since f̄e ∨ f̄b < ∞ for each pair {e, d} ⊆
B, we know f < ∞. Moreover, f is the join of a finite number of pre-feasible
functions, and hence f is pre-feasible. So by (25) it suffices to prove that for each
edge e = (u, w):

(66) (i) there exist x ≥ f (u) and z ≥ f (w) such that x−1ϕ(e)z ∈ H(e),
(ii) there exist x ≤ f (u) and z ≤ f (w) such that x−1ϕ(e)z ∈ H(e).
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To prove (66)(i), note that it is equivalent to: f ∈ F . As f̄e ∨ f̄b ∈ F for all
a, b ∈ B, (60) gives f ∈ F .

To prove (66)(ii), if it does not hold then ϕ(e) /∈ H(e), hence {e, e−1} ∈ L . So
e or e−1 belongs to B. By symmetry, we can assume that e ∈ B. So fe ≤ f , and
therefore ϕ(e) ≤ f (u). So we can take x := ϕ(e) and z := 1 in (66)(ii).

An analysis of this algorithm shows that the cohomology feasibility problem has
a solution if and only if for each vertex u and each pair C,C ′ of (undirected) u − u
walks in D there exists x ∈ G such that x−1ϕ(C)x ∈ H(C) and x−1ϕ(C ′)x ∈ H(C ′).
This condition is trivially necessary.

4 Planar Graphs

We repeat the partially disjoint paths problem for directed planar graphs:

(67) given: a directed planar graph D = (V, E), vertices r1, s1, . . . , rk, sk of D,
and a set F of pairs {i, j} with i, j ∈ [k],

find: a k-tuple P = (P1, . . . , Pk), where Pi is a directed ri − si path Pi , for
i = 1, . . . , k, such that Pi and Pj are disjoint whenever {i, j} ∈ F .

We can assume without loss of generality:

(68) r1, s1, . . . , rk, sk are distinct, each ri has outdegree 1 and indegree
0, and each si has indegree 1 and outdegree 0.

Again, let GF be the graph group generated by g1, . . . , gk and relations gig j =
g jgi whenever {i, j} /∈ F . For each solution P of (67), let χP : E → GF be defined
by:

(69) χP(e) := ∏
i

Pi traverses e
gi .

The order in which we take this product is irrelevant, since if both Pi and Pj traverse
e, then {i, j} /∈ F and hence gig j = g jgi .

Let F be the collection of faces of D. Call ϕ,ψ : E → GF homologous if there
exists f : F → GF such that for each edge e: ψ(e) = f (F)−1ϕ(e) f (F ′), where
F and F ′ are the left-hand and the right-hand face at e, respectively (seen when
traversing e in forward direction).

4.1 Finding Partially Disjoint Paths of Prescribed Homology

We first consider the homology version of the partially disjoint paths problem:



438 A. Schrijver

(70) given: a directed planar graph D = (V, E), vertices r1, s1, . . . , rk, sk of D
satisfying (68), a set F of pairs {i, j} with i, j ∈ [k], and a function
ϕ : E → GF ,

find: a solution P of (67) such that χP is homologous to ϕ.

Proposition 4.1 Problem (70) is solvable in polynomial time.

Proof We can assume that problem (70) has a solution2 — that is, ϕ is homologous
to χP for some solution P of (67).

Let F be the collection of faces of D. Consider the dual directed graph D∗ =
(F , E∗), where for each edge e of D there is a directed edge e∗ ∈ E∗ from the face at
the left-hand side of e to the face at the right-hand side of e. We define ϕ̂(e∗) := ϕ(e)
and

(71) H(e∗) := {∏i∈I gi | I ⊆ [k], I stable set in ([k], F)},
where I is stable if it contains no pair in F as subset. Note that H(e∗) is a closed
subset of GF .

We extend the planar graph D∗ by a number of further ‘nonplanar’ edges, as
follows. Consider any vertex v /∈ {r1, s1, . . . , rk, sk} of D and two faces F and F ′ of
D incident with v. Let e1, . . . , et be the edges incident with v that are crossed when
going clockwise from F to F ′ around v. Then add to D∗ an edge ev,F,F ′ from F to
F ′, and define

(72) ϕ̂(ev,F,F ′) := ϕ(e1)σ1 . . . ϕ(et )σt ,

where, for j = 1, . . . , t , σ j := 1 if e j is oriented away from v and σ j := −1 if e j
is oriented towards v. Note that, as by assumption ϕ is homologous to χP for some
solution P of (67), we necessarily have ϕ̂(ev,F ′,F ) = ϕ̂(ev,F,F ′)−1.

Moreover, define

(73) H(ev,F,F ′) := {∏i∈I gτ (i)
i | I ⊆ [k], I stable set in ([k], F), τ : I →

{+1,−1}}.
Also H(ev,F,F ′) is a closed subset of GF .

Let D̂ be the extended directed graph, and consider the cohomology feasibility
problem � for (D̂, ϕ̂), in which we require that the output is only weakly allowed
on the edges in E ′. As, by assumption, ϕ is homologous to χP for some P , problem
� has a solution, namely χP . Conversely, let ψ : E(D̂) → GF be any solution of
�. Define ψ̌ : E(D) → GF by ψ̌(e) := ψ(e∗) for e ∈ E(D). Then ψ̌ is equal to χP
for some P . This because, by our assumption, ϕ is homologous to χP for some
P . Hence, for the edge e incident with ri , ϕ(e) is conjugate to gi (as by (68) e is
incident at both sides to the same face), therefore ψ̌(e) is conjugate to gi . Since ψ̌(e)
is allowed, it follows that in fact ψ̌(e) = gi . So only Pi traverses e, and in the forward
direction. Similarly for the edge incident with si .

Therefore, the proposition follows from Theorem 3.3.

2Let A a polynomial-time algorithm that finds a solution for feasible instances. When we apply A
to any instance, then if feasible, we find a feasible solution, and if infeasible, A gets stuck or has
not delivered a solution in polynomial time.
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4.2 Enumerating Homologies of Disjoint Paths

We finally describe an algorithm that finds, for any input of (67), a collection � of
functions ϕ : E → GF with the property that

(74) for each solution P of (67), χP is homologous to at least one
ϕ ∈ �.

So, although there exist infinitelymanyhomology classes (if F �= ∅), in our algorithm
we can restrict ourselves to a number of homology classes that, for fixed k, is bounded
by a polynomial in the size of the graph.

Proposition 4.2 Fixing k, a collection� satisfying (74) can be found in polynomial
time.

Proof Again, we can assume (68). Moreover, we can assume that D is weakly
connected and that (for the convenience of the exposition) each i ∈ [k] is contained
in at least one pair {i, j} in F (otherwise we can easily reduce the problem). We also
can assume that each vertex v �= r1, s1, . . . , rk, sk has total degree deg(v) equal to 3:
replace v by a directed circuit of length deg(v) and attach the edges incident with v

to the different vertices of the circuit (in a planar manner of course). Any ϕ found
for the modified graph can be ‘shrunk’ to the smaller graph.

Choose a spanning tree T in D. We will consider graphs T ′ obtained from T by
replacing each edge e by a number (possibly 0) of parallel edges. These edges form
a parallel class, denoted by πe. Each such graph T ′ is trivially planar, by drawing
the edges properly parallel in the plane.

We moreover consider undirected walks in such graphs T ′. (An undirected walk
may traverse edges in any direction.) Call undirected walksW andW ′ in T ′ crossing
if there is a vertex v and distinct edges e1, e2, e3, e4 of T ′ incident with v, in clockwise
or counterclockwise order, such that W traverses e1 and e3 consecutively, and W ′
traverses e2 and e4 consecutively. If W = W ′, we say that W is self-crossing.

In particular, we consider k-tuplesW = (W1, . . . ,Wk) of undirected walks in T ′
such that

(75) (i) Wi runs from ri to si and is not self-crossing, for each i = 1, . . . , k,
(ii) Wi and Wj are not crossing, for each {i, j} ∈ F ,
(iii) each edge of T ′ is traversed by precisely one Wi .

The last condition implies that T ′ is determined by W1, . . . ,Wk .
For each k-tuple W satisfying (75), define ϕW : E → GF as follows. If e is an

edge of D not in T , set ϕW(e) := 1. If e = (u, w) is an edge of T , let e1, . . . , et
be the edges in πe, from left to right with respect to the orientation (u, w) of e. Let
α j := gi if e j is traversed byWi in the direction from u to w, and let α j := g−1

i if e j
is traversed by Wi in the direction from w to u. Define ϕW(e) := α1 . . . αt . Then:
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(76) For each solution P of (67), there exists T ′ and W = (W1, . . . ,Wk)

satisfying (75) such that χP and ϕW are homologous and such
that, for each i = 1, . . . , k, each parallel class in T ′ is traversed at most 2|E |
times by Wi .

To see this, reroute P1, . . . , Pk along T as follows. For each e in E(D) \ E(T ), let
Qe be the path in T connecting the ends of e. Order the edges in E(D) \ E(T ) as
e1, e2, . . . , em such that if Qej is longer than Qei then j > i . Then for j = 1, . . . ,m,
if Pi traverses e j , reroute Pi along Qej ; that is, add edges parallel to the edges in
Qej , in the disk enclosed by e j and Qej , and replace e j in Pi by the new edges (in
order). This gives T ′ and W1, . . . ,Wk as required, proving (76).

So to cover all homology classes of solutions of problem (67), it suffices to enu-
merate all T ′ and W1, . . . ,Wk satisfying (75).

In fact, we can assume that each Wi is non-returning in the following sense. Let
Wi traverse edges e, vertex v, and edges e′ consecutively.

(77) (i) If v /∈ {r1, s1, . . . , rk, sk}, then e and e′ belong to different parallel classes
incident with v.

(ii) If v ∈ {r j , s j } for some j ∈ [k], then e and e′ enclose the starting or ending
edge of Wj .

This can be attained as follows. Suppose Wi , e, v, e′ violate (77). Fixing v, choose
Wi , e, e′ such that the number of edges inbetween of (that is, enclosed by) e and e′
is as small as possible. Then each edge inbetween of e and e′ is traversed by some
Wj with j �= i (as Wi is not self-crossing) and {i, j} /∈ F (as Wi and Wj cross). So
deleting e and e′ fromWi and from T ′, gives a walk systemW ′ again satisfying (77),
with ϕW ′ = ϕW , and with a smaller total length. Iterating this, we end up with each
Wi non-returning.

This implies that if v ∈ V \ {r1, s1, . . . , rk, sk} has degree 1 in T , it is incident
with no edges in T ′. Delete such vertices from T repeatedly. Let T0 be the final
graph. It is a tree with maximum degree 3 and with 2k vertices of degree 1 (namely,
r1, s1, . . . , rk, sk). Hence T0 has 2k − 2 vertices of degree 3. The vertices of degree 1
and 3 are connected by 4k − 3 internally vertex-disjoint paths, together forming T0.

Let W = (W1, . . . ,Wk) be a k-tuple of walks satisfying (75) and (77). Consider
a vertex v of degree 2 in T0, say incident with edges e and e′ of T0. By (77), Wi

traverses edges in πe as often as it traverses edges in πe′ .
For each i = 1, . . . , k, define hi : E(T0) → {0, 1, . . . , 2|E |} by: hi (e) is the num-

ber of times thatWi traverses πe, in any direction (for e ∈ E(T0)). Thenwe can derive
ϕW from h1, . . . , hk , without knowing W:

Claim. Given h1, . . . , hk , one can find ϕW in polynomial time.

Proof Consider any {i, j} ∈ F . Let T ′′ be the subgraph of T ′ consisting of the edges
traversed by Wi and Wj . We know T ′′ since we know hi and h j . We determine an
undirected graph H with vertex set E(T ′′), calling two edges in E(T ′′) associated
if they form an edge of H .
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First, consider any vertex v of T0 of degree 2. Let e and e′ be the edges of T0 incident
with v, and consider the parallel classes πe and πe′ in T ′′. As |πe| = hi (e) + h j (e) =
hi (e′) + h j (e′) = |πe′ |, we can order the edges in πe as e1, . . . , em from left to right
when going towards v, and similarly, the edges in πe′ as e′

1, . . . , e
′
m , from left to right

when going away from v. For each t = 1, . . . ,m, we ‘associate’ et and e′
t .

Next, consider any vertex v of T0 of degree 3. Let e, e′, and e′′ be the edges of
T0 incident with v. Consider the parallel classes πe, πe′ , and πe′′ in T ′′. As Wi and
Wj are non-returning (that is, satisfy (77)(i)), we know that there exist nonnegative
integers a, b, and c such that |πe| = b + c, |πe′ | = a + c, and |πe′′ | = a + b. These
numbers are unique and can be directly calculated from |π(e)|, |π(e′)|, and |π(e′′)|.
This implies that the edges in πe ∪ πe′ ∪ πe′′ can uniquely be pairwise ‘associated’ in
such a fashion that any two associated pairs of edges are noncrossing at v and such
that no two edges in the same parallel class are associated.

Finally, consider any vertex v of T0 of degree 1. So v belongs to

(78) {r1, s1, . . . , rk, sk}.
Let e be the edge of T0 incident with v. Let e1, . . . , et be the edges in the parallel
class πe of T ′′, in order. ‘Associate’ ei with et+1−i for each i = 1, . . . , � 1

2 t�. So if t
is odd (which is the case if and only if v ∈ {ri , si , r j , s j }), one edge in πe remains
unassociated at v (namely the middle edge).

Then the graph H with E(T ′′) as vertex set and all pairs of associated edges of T ′′
as edges of H , consists of two paths, corresponding to Wi and Wj in T ′. These sets
of edges form two walks that we can orient, one from ri to si , the other from r j to s j .
Then for each edge e of T0 we know the order, from left to right, in whichWi andWj

traverse the parallel class πe of T ′′, and we can derive the direction. Concluding, we
can derive the subword of ϕW(e) made up by the symbols gi , g

−1
i , g j , and g−1

j . (It is
important here that we know that H comes from an ri − si walk Wi and an r j − s j
walkWj . So H contains no circuit, for which we would not know whether it belongs
to Wi or to Wj .)

As we can do this for each {i, j} ∈ F , we can derive ϕW(e). This follows from
the fact that for any word w with symbols g1, g

−1
1 , . . . , gk, g

−1
k , if we know for each

{i, j} ∈ F the subword wi, j of w made up by gi , g−1
i , g j , g−1

j , we can determine
w as word up to transposition of commuting symbols (but without cancellation):
Start by finding an i ∈ [k] and α ∈ {gi , g−1

i } that occurs first in wi, j for each j with
{i, j} ∈ F . By transposition we can assume that α is the first symbol of w. Then
delete the first α from each wi, j with {i, j} ∈ F , and iterate.

Thus, temporarily, we do not cancel gi with g−1
i or g j with g−1

j , but work in the

semigroup generated by g1, g
−1
1 , . . . , gk, g

−1
k with relations gig j = g jgi , gig

−1
j =

g−1
j gi , and g−1

i g−1
j = g−1

j g−1
i for all distinct i, j with {i, j} /∈ F . At the end we

factor out to the group GF .
Concluding, we can find the element of GF represented by word w. (Here we use

the assumption that each i is contained in some pair in F .) �
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We finally describe the required algorithm. Enumerate all k-tuples of functions
h1, . . . , hk : E(T0) → {0, 1, . . . , 2|E |}with the property that if e and e′ are the edges
of T0 incident with a vertex of T0 of degree 2, then hi (e) = hi (e′) for each i . Deter-
mine, if possible, ϕW . All such ϕW form �.

Since T0 consists of vertices of degree 1 and 3 together with 4k − 3 internally
vertex-disjoint paths connecting these vertices, there are ((2|E | + 1)4k−3)k such k-
tuples h1, . . . , hk . For fixed k, this is polynomially bounded.

4.3 Finding Partially Disjoint Paths

Concluding, we have:

Theorem 4.3 For eachfixed k, the partially disjoint paths problem in directed planar
graphs is solvable in polynomial time.

Proof Directly from Propositions 4.1 and 4.2.

5 Some Extensions and Open Questions

The theorem can be extended to the case where for each edge e of D a subset Ke of
[k] is given, prescribing that e may be traversed only by paths Pi with i ∈ Ke. This
amounts to restricting I in (71) to subsets of Ke. Instead of requiring disjointness of
certain pairs of paths, one may relax this to requiring that certain pairs of paths are
noncrossing: so they are allowed to ‘touch’ each other in a vertex, but not to cross.
This amounts to deleting the ‘nonplanar’ edges ev,F,F ′ .

One may impose further conditions of the following kind. Choose an (undirected)
path Q in the dual graph D∗, connecting two faces F and F ′ of D. Then one may
restrict the total ‘flow’ of paths Pi in D that intersect Q: as long as the restriction
can be described by a closed subset of GF , this requirement translates into an extra
nonplanar edge added to the dual graph D∗, like before we did for paths in D∗
connecting two faces incident with a vertex v.

Moreover, the theorem extends to directed graphs D on any fixed compact surface
instead of planar graphs. Then, instead of considering the spanning tree T in Sect. 4.2,
one considers aminimal connected spanning subgraph T that is cellularly embedded,
i.e., each face is a disk (assuming without loss of generality that D is cellularly
embedded). Fixing the surface, the number of edges in T is only a fixed amount more
than in a spanning tree, and the enumeration of homology classes can be bounded
accordingly.

We finallymention some open questions. The running time of the algorithm above
is boundedby a polynomialwith exponent depending on k (in fact,O(k2)). This raises
the question if the problem is ‘fixed parameter tractable’; that is, can the degree of
the polynomial be fixed independently of k, while the dependence of k is only in
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the coefficient. As mentioned, this question was answered confirmatively by Cygan,
Marx, Pilipczuk, and Pilipczuk [3] for the k fully disjoint paths problem in directed
planar graphs.

Another open question is if the condition of fixing k can be relaxed to fixing
other parameters of the graph � = ([k], F). One may think of fixing the maximum
degree of �, or (more weakly) fixing the chromatic number of �, or (even more
weakly) fixing the clique number of �. A different open question is if instead of
fixing k, it suffices to fix the number of faces that can cover all terminals (by the
face boundaries). Moreover, as mentioned in the introduction, the complexity of the
corresponding edge-disjoint version is unknown.

Let us finally ask whether the polynomial-time solvability of the cohomology
feasibility problem for graph groups (polynomial-time even for unfixed k) has other
applications, for instance to free partially commutative semigroups as studied for
inhomogeneous sorting and scheduling of concurrent processes (cf. Anisimov and
Knuth [1], Diekert [4, 5]).

Acknowledgements The author thanks the referee for helpful corrective remarks and suggestions.
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of mathematics from each other, and we emphasise that we learned a lot of beautiful
mathematics from Laci.

Extremal Graph Theory is a very deep and wide area of modern combinatorics.
It is very fast developing, and in this long but relatively short survey we select some
of those results which either we feel very important in this field or which are new
breakthrough results, or which—for some other reasons—are very close to us. Some
results discussed here got stronger emphasis, since they are connected to Lovász (and
sometimes to us).1 The same time, we shall have to skip several very important results;
often we just start describing some areas but then we refer the reader to other surveys
or research papers, or to some survey-like parts of research papers. (Fortunately,
nowadays many research papers start with excellent survey-like introduction.)

Extremal graph theory became a very large and important part of Graph Theory,
and there are so many excellent surveys on parts of it that we could say that this one
is a “survey of surveys”. Of course, we shall not try to cover the whole area, that
would require a much longer survey or a book.

Also we could say that there are many subareas, “rooms” in this area, and occa-
sionally we just enter a “door”, or “open a window” on a new area, point out a few
theorems/phenomena/problems, explain their essence, refer to some more detailed
surveys, and move on, to the next “door”.

It is like being in our favourite museum, having a very limited time, where we
must skip many outstanding paintings. The big difference is that here we shall see
many very new works as well.

One interesting feature of Extremal Graph Theory is its very strong connection
and interaction with several other parts of Discrete Mathematics, and more generally,
with other fields of Mathematics. It is connected to Algebra, Commutative Algebra,
Eigenvalues, Geometry, Finite Geometries, Graph Limits (and through this to Math-
ematical Logic, e.g., to Ultra Product, to Undecidability), to Probability Theory,
application of Probabilistic Methods, to the evolution of Random Structures, and to
many other topics. It is also strongly connected to Theoretical Computer Science
through its methods, (e.g., using random and pseudo-random structures), expanders,
property testing, and also it is strongly connected to algorithmic questions. This
connection is fruitful for both sides.

One reason of this fascinating, strong interaction is that in Extremal Graph Theory
often seemingly simple problems required the invention of very deep new methods (or
their improvements). Another one can be that combinatorial methods start becoming
more and more important in other areas of Mathematics. A third reason is, perhaps,—
as Turán thought and used to emphasise,—that Ramsey’s theorem and his theorem
are applicable because they are generalizations of the Pigeon Hole Principle. Erdős
wrote several papers on how to apply these theorems in Combinatorial Number
Theory, (we shall discuss [258], but see also, e.g., [272, 273, 275, 276, 282, 284],

1We shall indicate the given names mostly in case of ambiguity, in cases where there are two
mathematicians with the same family name, (often, but not always, father and son). We shall ignore
this “convention” for Erdős, Lovász and Turán.
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Erdős, Sárközy, and Sós [311], Alon and Erdős [31]).2 Beside putting emphasis on the
results we shall emphasise the development of methods also very strongly. We shall
skip discussing our results on the Erdős–Sós and Loebl–Komlós–Sós conjectures on
tree embedding, since they are well described in [386],3 however, we shall discuss
some other tree-embedding results. We are writing up the proof of the Erdős–Sós
Conjecture [8].4

Since there are several excellent books and surveys, like Bollobás [119, 120],
Füredi [370, 372], Füredi–Simonovits [386], Lovász [589, 591], Simonovits [757,
761–763], Simonovits and Sós [767], about Extremal Graph Theory, or some parts
of it, here we shall often shift the discussion into those directions which are less
covered by the “standard” sources.5 Also, we shall emphasise/discuss the surprising
connections of Extremal Graph Theory and other areas of Mathematics. We had to
leave out several important new methods, e.g.,

• We shall mostly leave out results on Random Graphs;
• Razborov’s Flag Algebras [669], (see also Razborov [670], Pikhurko and Razborov

[650], Grzesik [423], Hatami, Hladký, Král’, Norine, and Razborov, [453], and
many others);

• the Hypergraph Container Method, “recently” developed, independently, by
Balogh, Morris, and Samotij [77], and by Saxton and Thomason [731]. Very
recently Balogh, Morris, and Samotij published a survey on the Container method
in the ICM volumes [78];

• the method of Dependent Random Choice, see e.g., Alon, Krivelevich, and
Sudakov [38] or, for a survey on this topic see Fox and Sudakov [353], or many
other sources…

• and we have to emphasise, we had to leave out among others almost everything
connected to the Universe of Integers, e.g., Sum-free sets, the Cameron-Erdős
conjecture, the Sum-Product problems, …

Further, we skipped several areas, referring the readers to more authentic sources.
Thus, e.g., one of the latest developments in Extremal Graph Theory is the surprising,
strong development in the area of Graph Limits, coming from several sources. A
group of researchers meeting originally at Microsoft Research, started investigating
problems connected to graph limits, for various reasons. We mention here only Laci
Lovász and Balázs Szegedy [595], Borgs, Chayes, Lovász, Sós, and Vesztergombi

2Sometimes we list papers in their time-order, in some other cases in alphabetical order.
3The proof of the approximate Loebl–Komlós–Sós conjecture was first attacked in [12] and then
proved in a sequence of papers, from Yi Zhao [824], Cooley [202], … Hladký, Komlós, Piguet,
Simonovits, Stein, and Szemerédi [466–469].
4The first result on the Loebl Conjecture was an “approximate” solution of Ajtai, Komlós, and
Szemerédi [12].
5Essential parts of this survey are connected to Regularity Lemmas, Blow-up lemmas, applications
of Absorbing techniques, where again, there are several very important and nice surveys, covering
those parts, e.g., Alon [22], Gerke and Steger [392], Komlós and Simonovits [546], Kühn and
Osthus [563, 565], Rödl and Ruciński [689], Steger [782], and many others.
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[137–141], and Freedman, Lovász, and Schrijver [360]. Lovász has published a
500pp book [591] about this area.

How do we refer to papers? We felt that in a survey like this it is impossible to
refer to all the good papers. Also, we tried to “introduce” many authors. So if a
paper is missing from this survey that does not mean that we felt it was not worth
including it. Further, wherever we referred to a paper, we mentioned (all) its authors,
unless the paper and its authors had been mentioned a few lines earlier. (We never
use at al!) In the “References” we mentioned the given names as well, mostly twice:
(i) first occurrence and (ii) first occurrence as the first author.

— · —

Extremal Graph Theory could have started from a number theoretical question of
Erdős [258], however, he missed to observe that this is a starting point of a whole
new theory. Next came Turán’s theorem [808], with his questions, which somewhat
later triggered a fast development of this area. In between, starting from a topological
question, Erdős and Stone [321] proved their theorem (here Theorem 2.8), which
later turned out to be very important in this area. Among others, this easily implies
the Erdős–Simonovits Limit Theorem [312], strengthened to the Erdős–Simonovits
Stability theory [271, 751], and much later led to Szemerédi’s Regularity Lemma
[792]. All these things will be explained in more details.

We shall also discuss several important methods: Stability, Regularity Lemma,
Blow-up Lemma, Semi-random Methods, Absorbing Lemma, and also some further,
sporadic methods.

In this survey we mention hypergraph extremal problems only when this does
not become too technical for most of the readers: thus we shall not discuss, among
others, the very important Hypergraph Regularity Lemmas.6

Repetitions. This paper “covers” a huge area, with a very involved structure. So we
shall occasionally repeat certain assertions, to make the paper more readable.

Notation. Below, for a while we shall consider simple graphs, (hypergraphs, loops
and multiple edges are excluded) and for graphs (or hypergraphs) the first subscript
almost always denotes the number of vertices: Gn , Sn , Tn,p …are graphs on n vertices.
There will be just two exceptions: Kd(n1, . . . , nd) means a d-partite complete graph
with ni vertices in its i th class; if we list a family of graphs L = {L1, . . . , Lt }, then
again, the subscript is not necessarily the number of vertices. The maximum and
minimum degrees will be denoted by dmax(G) and dmin(G), respectively. (In the
hypergraph section δ1(H

(k)) is also the minimum degree.) C�, P�, K� denote the
cycle, path, and the complete graph of � vertices, respectively. Further, e(G), v(G),
χ(G) and α(G) denote the number of edges, vertices, the chromatic number, and the
independence number,7 respectively. For a graph G, V (G) and E(G) denote the sets
of vertices and edges. If U ⊆ V (G) then G[U ] is the subgraph induced by U .

6For a concise “description” of this topic, see Rödl, Nagle, Skokan, Schacht, and Kohayakawa
[687], and also Solymosi [770].
7Often called stability number.
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Fig. 1 Turán graph

Given a family L of excluded graphs, ex(n,L) denotes the maximum of e(Gn) for
a graph Gn not containing excluded subgraphs, and EX(n,L) denotes the family of
extremal graphs for L: the graphs not containing excluded subgraphs but attaining
the maximum number of edges. Let Tn,p be the Turán graph: the graph obtained by
partitioning n vertices into p classes as equally as possible and joining two vertices
if and only if they are in distinct classes (Fig. 1).

Given some graphs L1, . . . , Lr , R(L1, . . . , Lr ) is the Ramsey number: the small-
est integer R for which all r -edge-coloured KR have a (monochromatic) subgraph Li

in some colour i . If all these graphs are complete graphs, Li = Kpi, then we use the
abbreviation R(p1, . . . , pr ) for this Ramsey number.

Remark 1.1 (Graph Sequences) Speaking of o(n2) edges, or o(n) vertices, …, we
cannot speak of an individual graph, only about a sequence of graphs. In this paper,
using o(.), we always assume that n → ∞. Also, since A(n) + o(n) and A(n) − o(n)

mathematically are exactly the same, we shall be cautious with formulating some of
our theorems.

2 The Beginnings

2.1 Very Early Results

The first, simplest extremal graph result goes back to Mantel.

Theorem 2.1 (Mantel (1907), [606]) If a graph Gn does not contain a K3 then it has
at most � n2

4 � edges.

Turán, not knowing of this theorem,8 proved the following generalization:

Theorem 2.2 (Turán (1941, 1954, 1989), [808, 809, 811])9 If a graph Gn does not
contain a Kp+1 then e(Gn) ≤ e(Tn,p), and the equality is achieved only for Gn = Tn,p.

8The last paragraph of Turán’s original paper is as follows: “…Further on, I learned from the kind
communication of Mr. József Krausz that the value of dk(n) given on p 438 for k = 3 was found
already in 1907 by W. Mantel (Wiskundige Opgaven, vol 10, pp. 60–61). I know this paper only
from the reference Fortschritte d. Math. vol 38, p. 270.”
9Turán’s papers originally written in Hungarian were translated into English after his death, thus
[811] contains the English translation of [808].
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The above theorems are sharp, since Tn,p is p-chromatic and therefore it does
not contain Kp+1. These theorems have very simple proofs and there was also an
earlier extremal graph theorem discovered and proved by Erdős. He set out from the
following “combinatorial number theory” problem.

Problem 2.3 (Erdős (1938), [258]) Assume that A := {a1, . . . , am} ⊆ [1, n] satis-
fies the “multiplicative Sidon property” that all the pairwise products are different.
More precisely, assume that

if ai a j = aka� then {i, j} = {k, �}. (1)

How large can |A| be?

The primes in [2, n] satisfy (1). Can one find many more integers with this “mul-
tiplicative Sidon property”? To solve Problem 2.3, Erdős proved

Theorem 2.4 (Erdős [258]) If G ⊆ K (n, n) and C4 � G then e(G) ≤ 3n
√

n.

This may have been the first non-trivial extremal graph result. It is interesting
to remark that this paper contained the first finite geometric construction, due to
Eszter Klein, to prove the lower bound ex(n, C4) ≥ cn

√
n. Let π(n) be the number

of primes in [2, n]. Using Theorem 2.4, Erdős proved

Theorem 2.5 Under condition (1),

|A| ≤ π(n) + O(n3/4).

As to the sharpness of this theorem, Erdős wrote:
“Now we prove that the error term cannot be better than O(n3/4/(log n)3/2). First

we prove the following lemma communicated to me by Miss E. Klein:
Lemma. Given p(p + 1) + 1 elements, (p a prime), we can construct p(p + 1)

+1 combinations taken p + 1 at a time, having no two elements in common.”
Though the language is somewhat archaic, it states the existence of a finite geom-

etry on p2 + p + 1 points: this seems to be the first application of finite geometric
constructions in this area. Later Erdős applied graph theory in number theory several
times. Among others, he returned to the above question in [272] and proved that the
lower bound is sharp.

Much later a whole theory developed around these types of questions. Here we
mention only some results of Sárközy, Erdős, and Sós [311], the conjecture of
Cameron and Erdős [174], and the papers of Ben Green [413], and of Alon, Balogh,
Morris, and Samotij [25].

Remark 2.6 (a) One could ask, what is the connection between ex(n, C4) and The-
orem 2.5. Erdős wrote each non-prime integer ai ∈ A as ai = b j (i)d j (i), where b j

are the primes in [n2/3, n] and all the integers in [1, n2/3], and d j are the integers in
[1, n2/3] . So the non-prime numbers defined a bipartite graph G[B,D], and each ai

defined an edge in it. If this graph contained a C4, the corresponding four integers
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would have violated (1). Consider those integers ai for which b j (i) < 10
√

n and
d j (i) < 10

√
n. Not having C4 in the corresponding subgraph, we can have at most

c
√

n3/2 = cn3/4 such integers. This does not cover all the cases, however, we can
partition all the integers into a “few” similar subclasses.10 This proves that

|A| ≤ π(n) + O(n3/4).

(b) There is another problem solved in [258], also by reducing it to an extremal
graph problem. It is much simpler, and we skip it.

(c) The “additive Sidon” condition assumes that ai + a j = ak + a� implies
{i, j} = {k, �}. In case ofSum-free sets we exclude ai + a j = ak . See e.g., Cameron
[173], Bilu [109] and many other papers on integers, or groups.

(d) Some related results can be found, e.g., in Chan, Győri, and Sárközy [176].

Remarks 2.7 (a) Many extremal problems formulated for integers automatically
extend to finite Abelian groups, or sometimes to any finite group.

Thus, e.g., a Sidon sequence can be (and is) defined in any Abelian group as a
subset for which ai + a j �= ak + a�, unless {i, j} = {k, �}. A paper of Erdős and
Turán [324] estimates the maximum size Sidon subset of [1, n]. Several papers of
Erdős investigate Sidon problems, e.g., [259, 262]. This problem was extended to
groups, first by Babai [55], Babai and Sós [57]. (Surprisingly, for integers there are
sharp differences in analysing the density of finite and of infinite Sidon sequences,
see Sect. 4.6.) Problems on “sum-free sets” were generalized to groups by Babai,
Sós, and then by Gowers [405], by Balogh, Morris, and Samotij [76], and by Alon,
Balogh, Morris, and Samotij [25].11

(b) A few more citations from this area are: Alon [21], Green and Ruzsa [415],
Lev, Łuczak, and Schoen [574], Sapozhenko [719–721], …

— · —

The next extremal graph result was motivated by topology. It is

Theorem 2.8 (Erdős–Stone (1946), Theorem [321]) For any fixed t ≥ 1,

ex(n, Kp+1(t, . . . , t)) =
(

1 − 1

p

) (
n

2

)
+ o(n2).

We mention here one more “early extremal graph theorem”, strongly connected
to the Erdős–Stone Theorem:

10E.g., we can put ai into Ai if the smallest prime divisor of ai is in (2t , 2t+1] and use a slight
generalization of Theorem 2.4 to K (m, n).
11A longer annotated bibliography of O’Bryant can be downloaded from the Electronic Journal of
Combinatorics [160] on Sidon sets.
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Theorem 2.9 (Erdős, Kővári, Sós-Turán (1954), [554])12,13

ex(n, K(a, b)) ≤ 1

2
a
√

b − 1 · n2− 1
a + O(n). (2)

Below let a ≤ b. A very important conjecture is the sharpness of (2):

Conjecture 2.10 (KST is sharp) For every pair of positive integers a ≤ b, there
exists a constant ca,b > 0 for which

ex(n, K(a, b)) > ca,b n2− 1
a . (3)

We can replace ca,b by ca,a . The conjecture follows from Erdős [258] if a = 2. A
sharp construction can be found in [554] for the bipartite case,14 (and later an even
sharper one from Reiman [675]), and a sharp construction is given by Erdős, Rényi,
and Sós [308] and by Brown for C4 = K (2, 2) and not necessarily bipartite Gn . Brown
also found a sharp construction [150], for K (3, 3).15 Much later, Conjecture 2.10 was
proved for a ≥ 4 and b > a! by a Kollár–Rónyai–Szabó construction [532]. This was
slightly improved by Alon–Rónyai–Szabó [42]: the weaker condition b > (a − 1)!
is also enough for (3).

— · —

Theorems of Erdős and Stone and of Kővári, T. Sós, and Turán have a very
important consequence.

Corollary 2.11 ex(n,L) = o(n2) if and only if L contains a bipartite graph.

Actually, the theorem of Kővári, T. Sós, and Turán and the fact that Tn,2 is bipartite
imply the stronger dichotomy:

Corollary 2.12 If L ∈ L is bipartite, then ex(n,L) = O(n2−(2/v(L))) = o(n2) and
if L contains no bipartite graphs, then ex(n,L) ≥ � n2

4 �.

The case when L contains at least one bipartite graph will be called Degenerate.

It is one of the most important and fascinating areas of Extremal Graph Theory, and
Füredi and Simonovits have a long survey [386] on this. Here we shall deal only very
shortly with Degenerate extremal graph problems.

— · —

12Mostly we call this result the Kővári-T. Sós-Turán theorem. Here we added the name of Erdős,
since [554] starts with a footnote according to which “As we learned after giving the manuscript
to the Redaction, from a letter of P. Erdős, he has found most of the results of this paper.” Erdős
himself quoted this result as Kővári-T. Sós-Turán theorem.
13For Hungarian authors we shall mostly use the Hungarian spelling of their names, though occa-
sionally this may differ from the way their name was printed in the actual publications.
14Here “sharp” means that not only the exponent 2 − 1

p but the value of ca,b is also sharp.
15The sharpness of the multiplicative constant followed from a later result of Füredi.
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Cube Octahedron Icosahedron, Dodecahedron

Fig. 2 Excluded platonic graphs

The main contribution of Turán was that he had not stopped at proving Theorem 2.2
but continued, asking the “right” questions:

What is the maximum of e(Gn) if instead of excluding Kp+1 we exclude some
arbitrary other subgraph L?16

To provide a starting point, Turán asked for determining the extremal numbers and
graphs for the Platonic bodies: Cube, Octahedron, Dodecahedron, and Icosahedron,17

for paths, and for lassos [267],18 see Fig. 2. Here the extremal graph problem of the
Cube was (partly) solved by Erdős and Simonovits [313]. We return to this problem
in Subsection 2.16. The problems of the Dodecahedron and Icosahedron were solved
by Simonovits, [755, 756], using the Stability method, see Sect. 2.12.
The general question can be formulated as follows:

Given a family L of forbidden graphs, what is the maximum of e(Gn) if Gn does
not contain subgraphs L ∈ L?

2.2 Constructions

Mostly in an extremal graph problem first we try to find out how do the extremal
structures look like. In the nice cases this is equivalent to finding a construction
providing the lower bound in our extremal problems, and then we try to find the
matching upper bound. Here we shall not go into more details, however, we shall
return to this question in Sect. 9, on Matchings, 1-factors, and the Hamiltonicity of
Hypergraphs.

2.3 Some Historical Remarks

Here we make two remarks.

16Later this question was generalized to excluding an arbitrary family of subgraphs, however, that
was only a small extension.
17The tetrahedron is K4, covered by Turán theorem.
18Lasso is a graph where we attach a path to a cycle. Perhaps nobody considered the lasso-problem
carefully, however, very recently Sidorenko solved a very similar problem of the keyrings [750].
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(A) When Turán died in 1976, several papers appeared in his memory, analysing,
among others, his influence on Mathematics. Erdős himself wrote several such
papers, e.g., [281, 283]. In [280] he wrote, on Turán’s influence on Graph Theory:

“In this short note, I will restrict myself to Turán’s work in Graph Theory, even
though his main work was in analytic number theory and various other branches of
real and complex analysis. Turán had the remarkable ability to write perhaps only
one paper or to state one problem in various fields distant from his own; later others
would pursue his idea and a new subject would be born. In this way Turán initiated
the field of Extremal Graph Theory. …
…Turán also formulated several other extremal problems on graphs, some of which
were solved by Gallai and myself [289]. I began a systematic study of extremal
problems in Graph Theory in 1958 on the boat from Athens to Haifa and have
worked on it since then. The subject has grown enormously and has a very large
literature;…”

Observe that Erdős implicitly stated here that until the early 60’s most of the
results in this area were sporadic.

(B) Here we write about Extremal Graph Theory at length, still, if one wants to
tell what Extremal Graph Theory is, and what it is not, that is rather difficult. We shall
avoid answering this question, however, we remark that since the Goodman paper
[400] and the Moon–Moser paper [617] an alternative answer was the following.
Consider some “excluded subgraphs” L1, . . . , Lt , count the multiplicities of their
copies, m(Li , Gn), in Gn , and Extremal Graph Theory consists of results asserting
some inequalities among them. Since the emergence of Graph Limits this approach
became stronger and stronger. One early “counting” example is

Theorem 2.13 (Moon and Moser (1962), [617]) If tk is the number of Kk in Gn, then

k(k − 2)tk ≥ tk−1

(
(k − 1)2tk−1

tk−2
− n

)
.

2.4 Early Results

If we restrict ourselves to simple graphs, some central theorems assert that for ordi-
nary graphs the general situation is almost the same as for Kp+1: the extremal graphs
Sn and the almost extremal graphs Gn are very similar to Tn,p. The similarity of two
graph sequences (Gn) and (Hn) means that one can delete o(n2) edges of Gn and add
o(n2) edges to obtain Hn .

The general asymptotics of ex(n,L) and the asymptotic structure of the extremal
graphs are described by

Theorem 2.14 (Erdős–Simonovits (1967, 1968), [269, 271, 751]) Let

p := min
L∈L

χ(L) − 1. (4)
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If Sn ∈ EX(n,L), then one can delete from and add to Sn o(n2) edges to obtain Tn,p.

A much weaker form of this result immediately follows from Erdős–Stone
Theorem.

Theorem 2.15 (Erdős–Simonovits (1966), [312]) Defining p by (4),

ex(n,L) =
(

1 − 1

p

)(
n

2

)
+ o(n2).

One important message of these theorems is that for simple graphs the extremal
number and the extremal structure are determined up to o(n2) by the minimum
chromatic number of the excluded subgraphs. In some sense this is a great luck:
there are many generalizations of the Turán-type extremal graph problems, but we
almost never get so nice answers for the natural questions in other areas.

Speaking about the origins of Extremal Graph Theory, we have to mention the
dichotomy that occasionally we have very nice extremal structures but in theDegen-
erate case the extremal graphs seem to have much more complicated structures
(unless L contains a tree or a forest). Actually this may explain why Erdős missed
to observe the importance of his Theorem 2.4, on ex(n, C4).

To solve some extremal graph problems, Simonovits defined the Decomposition
Family (see, e.g., [758]).

Definition 2.16 (Decomposition, M = M(L)) Given a family L with p :=
min{χ(L) : L ∈ L} − 1, then M ∈ M if L ⊆ M ⊗ K p−1(t, . . . , t) for t = v(M),
where L ⊗ H denotes the graph obtained by joining each vertex of L to each vertex
of H .

The meaning of this is that M ∈ M if we cannot embed M into one class of a
Tn,p without obtaining an excluded L ∈ L. Thus, e.g., if we put a C4 into the first
class of Tn,p, then the resulting graph contains a Kp+1(2, 2, . . . , 2). Therefore C4 is
in the decomposition class of Kp+1(2, . . . , 2).

…Given a family L of excluded subgraphs, the decomposition family M =
M(L) determines (in some sense) the error terms and the finer structure of the
L-extremal graphs. Namely, the error terms depend on ex(n,M), see [751].

The next theorem “explains”, why is Tn,p extremal for Kp+1.

Definition 2.17 (Colour-critical edge) The edge e ∈ E(L) is called critical, if
χ(L − e) < χ(L).

Of course, in such cases, χ(L − e) = χ(L) − 1. Each edge of an odd cycle is
critical. In Fig. 2.4, e.g., one can see the Grötzsch graph (often incorrectly called
Mycielski graph). It is 4-chromatic but all its edges are critical. On the other hand, in
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the Petersen, or the Dodecahedron graphs, there are no critical edges.19,20 The next
theorem solves all cases when L has a critical edge.

hpargrepyhonaF,hparghcsztörG,hpargnesreteP

Theorem 2.18 (Simonovits)21 Define p = p(L) by (4). The following statements
are equivalent:

(a) Some (p + 1)-chromatic L ∈ L has a critical edge.
(b) There exists an n0 such that for n > n0, Tn,p is extremal for L.
(c) There exists an n1 such that for n > n1, Tn,p is the only extremal graph forL.22

Here (a) is equivalent to that adding an edge to Kp(t, . . . , t), for t = v(L), we get
a graph containing L , and equivalent to that K2 ∈ M. The extremal results on the
Dodecahedron D20 and Icosahedron I12 follow from [756], and [755]. We skip the
details referring the reader to the survey of Simonovits [762].

Meta-Theorem 2.19 (Simonovits) “Whatever” we can prove for L = Kp+1, with
high probability, we can also prove it for any L having a critical edge.

2.5 Which Universe?

Extremal problems exist in a much more general setting: Theorem 2.5 is, e.g., an
extremal theorem on sets of integers. In general, we fix the family of some objects,
e.g., integers, graphs, hypergraphs, r -multigraphs, where some r is fixed and the edge-
multiplicity is bounded by r . We exclude some substructures, and try to optimize
some (natural) parameters. More generally, putting some bounds on the number of
one type of substructures, we try to maximize (or minimize) the number of some
other substructures. This approach can be found in the paper of Moon and Moser
[617], or in Lovász and Simonovits, [593].23 The paper of Alon and Shikhelman
[47] is also about this question, in a more general setting. (We should also mention
here the famous conjecture of Erdős, on the number of pentagons in a triangle-free

19If the automorphism group of G is edge-transitive, then either all the edges are critical, or none
of them. By the way, in [762], Simonovits discusses these questions in more details, among others,
the extremal problems of generalized Petersen graphs.
20The definition applies to hypergraphs as well, the triples of the Fano hypergraph are also critical.
21For p = 2 this was also known (at least, implicitly) by Erdős.
22Here (c)→(b) is trivial, and one can prove that (b) implies (c) with n1 = n0 + 3p.
23Bollobás [117] also contains similar, strongly related results.
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graph, well approximated by Győri [440], (and by Füredi, unpublished) and then
solved by Grzesik [423] and by Hamed Hatami, Hladký, Král, Norine, and Razborov
[453].) With the development of the theory of graph limits this viewpoint became
more and more important. Below we list some of the most common Universes, and
some related papers/surveys.

(a) Integers, as we have seen above, in Problem 2.3 or Theorem 2.5. Among many
other references, here we should mention the book of Tao and Vu on Additive
Combinatorics [801], the Geroldinger–Ruzsa book [393], and also a new book
of Bajnok [59].

(b) Abelian Groups, see e.g., Babai–Sós, [57] Gowers [403, 405] and also [393],
a survey of Tao and Vu [802] and [59].24

(c) Graphs: this is the main topic of this survey;
(d) Digraphs andmultigraphs,with bounded arc/edge multiplicity,25 see Brown–

Harary [156], Brown–Erdős–Simonovits [152, 153]; Sidorenko [748], for longer
surveys see Brown and Simonovits [158] and [159], Bermond and Thomassen
[105], Thomassen [805], Bang-Jensen and Gutin [88], Jackson and Ordaz [474];

(e) Hypergraphs, see e.g., de Caen [171], Füredi [370], Sidorenko [749], Keevash
[498]26;

(f) Extremal subgraphs of random graphs: Babai, Simonovits, and Spencer
[56], Brightwell, Panagiotou, and Steger [148], Rödl-Schacht [703], Rödl [686],
Schacht [732], …DeMarco and Kahn [234–236], or

(g) Extremal subgraphs of Pseudo-random graphs, see e.g., Krivelevich
and Sudakov [559] Aigner-Horev, Hàn, and Schacht [5], Conlon and Gow-
ers [193, 199], or Conlon, Fox, and Zhao [198], or e.g., Allen, Böttcher,
Kohayakawa, and Person [16, 17].

Perhaps one of those who first tried to compare various universes and analyze
their connections was Vera Sós [774, 775]. In [774] she considered the connections
between Graph Theory, Finite Geometries, and Block Designs. The emphasis in
these papers was on the fact that basically the same problems occur in these areas in
various settings, and these areas are in very strong connection, interaction, with each
other.27 Most of the above universes we shall skip here, to keep this survey relatively
short, however, below we consider some extremal problems on integers.

24There are several earlier results on similar questions, e.g., Yap [819, 820], Diananda and Yap
[240], yet they are slightly different, or several papers of A. Street, see [785].
25One has to assume that the edge-multiplicity is bounded, otherwise even for the excluded K3 in the
Universe of multigraphs we would get arbitrary many edges. As an exception, in the Füredi-Kündgen
theorem [378] no such bound is assumed.
26And many others, see e.g., Rödl and Rucinski [689], or the much earlier Bermond, Germa,
Heydemann, and Sotteau [104], and the corresponding Sects. 8 and 9.
27Vera Sós did not call these areas Universes.
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Integers

We do not intend to describe this very wide area in detail, yet we start with some
typical, important questions in this area, i.e., in the theory of extremal problems
on subsets of integers. As we have stated in Problem 2.3, Erdős considered the
multiplicative Sidon problem in [258]. Even earlier Erdős and Turán formulated the
following conjecture for subsets of integers:

Conjecture 2.20 (Erdős–Turán (1936), [323])28 If A ⊆ [1, n] does not contain a
k-term arithmetic progression, then |A| = o(n) (as n → ∞).29

The proof seemed those days very difficult. Even the simplest case k = 3 is highly
non-trivial: it was first proved by K.F. Roth, in 1953 [679], and for k = 4 those
days the conjecture seemed even more difficult.30 The conjecture was proved by
Szemerédi, first for k = 4 [789], and then for any k:

Theorem 2.21 (Szemerédi (1975), [791]) Let k be a fixed integer. If rk(n) is the
maximum number of integers, a1, . . . , am ∈ [1, n] not containing a k-term arithmetic
progression, then rk(n) = o(n).

Ergodic theory and Szemerédi Theorem. Not much later that Szemerédi proved this
theorem, Fürstenberg gave an alternative proof, in 1977, using ergodic theory [387].
This again is an example where seemingly simple combinatorial problems led to very
deep theories. One advantage of Fürstenberg’s approach was that it made possible
for him and Katznelson and their school to prove several important generalizations,
e.g., the high dimensional version [388], Bergelson and Leibman [102] proved some
polynomial versions of the original theorem, and later the density version of Hales–
Jewett theorem [389].

Polymath on Hales–Jewett theorem. As we just stated, one of the important gener-
alizations of Theorem 2.21 is the density version of Hales–Jewett theorem, obtained
by Fürstenberg and Katznelson [389] which earlier seemed hopeless.

There is a big difference between the Hales–Jewett Theorem and Szemerédi’s
theorem: just to explain the meaning of the Hales–Jewett Theorem or its density
version, is more difficult than to explain the earlier ones. It is one of the most important
Ramsey-type theorems, asserting, that—fixing the parameters appropriately—a high
dimensional r -coloured structure will contain a (small) monochromatic substructure,
a so called “combinatorial line”. We remark that there was a similar result of Graham
and Rothschild (on n-parameter sets) earlier, [409].

28Actually, here they formulated this for r3(n).
29Speaking of arithmetic progressions we always assume that its terms are distinct.
30The conjectures on rk(n) were not always correct. Vera Sós wrote a paper [776] on the letters
between Erdős and Turán during the war, where one can read that Szekeres e.g., conjectured that
for n = 1

2 (3� + 1) rk(n) ≤ 2�. This was later disproved by Behrend [96]. (This conjecture is also
mentioned in [323].)
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A simplified version of this was given by Austin [52].31 The Polymath project
[656] provided a completely elementary proof of this theorem. A nice description of
this is the MathSciNet description of the “PolyMath” proof of this (see MathSciNet
MR2912706, or the original paper, [656]).32

Erdős conjecture on the sum of reciprocals. One of the central questions in this
area was if there are arbitrary long arithmetic progressions consisting of primes. In
1993, Erdős wrote a paper on his favourite theorems [287], where he wrote that in
those days the longest arithmetic progression of primes had 17 integers (and was
obtained with the help of computers). Now we all know the celebrated result:

Theorem 2.22 (Green and Tao (2008), [416]) The set of primes contains arbitrary
long arithmetic progressions.

We close this part with the related famous open problem of Erdős which would
imply Theorem 2.22. Then we list some estimates on rk(n).

Problem 2.23 (Erdős [287]) Let A = {a1, . . . , an, . . . } ⊆ Z be a set of positive
integers. Is it true that if

∑ 1
ai

= ∞, then for each integer k > 2, A contains a k-term
arithmetic progression?

Estimates on rk(n). First Roth proved that r3(n) = O( n
log log n ).33 Many researchers

worked on improving the estimates on r3(n), or more generally, on rk(n). Roth’s
estimate was followed by the works of Heath-Brown [462] and Szemerédi [793],
and then Bourgain [145]. One of the last breakthroughs was

Theorem 2.24 (Sanders [717]) Suppose that A ⊆ {1, . . . , N } contains no 3-term
arithmetic progressions. Then

|A| = O

(
(log log N )5

log N
N

)
.

The exponent of log log n was brought down to 4 by T. Bloom [112].

Remark 2.25 (Lower bounds) Clearly, for k ≥ 3, rk(n) ≥ r3(n). Behrend [96] proved
that there exists a c > 0 for which

r3(n) ≥ n

ec
√

log n
. (5)

This was improved by Elkin [254], and then, in a much more compact way, by Green
and Wolf [420].

31See also Austin [51], Beigleböck [97], Bergelson and Leibman [103] Gowers, [406], Polymath
[655],…
32Similarly to the proof of r3(n) = o(n) from the Ruzsa–Szemerédi Triangle Removal Lemma,
(see Theorem 5.26) Rödl, Schacht, Tengen and Tokushige proved rk(n) = o(n) and several of its
generalizations in [700] “elementarily”, i.e. not using ergodic theoretical tools. On the other hand,
they remarked that those days no elementary proof was known on the Density Hales–Jewett theorem.
33Using log log n we always assume that n ≥ 100, and therefore log log n > 3/2.



460 M. Simonovits and E. Szemerédi

— · —

One could ask, what do we know about r4(n). A major breakthrough was due to
Gowers [402], according to which for every k ≥ 3 there exists a ck > 0 for which

rk(n) = O

(
n

log logck n

)
. (Actually, ck = 2−(2k+9) works.)

Green and Tao improved this for k = 4 to

r4(n) = O

(
n

logc n

)
for some constant c > 0.

See also Green and Tao [417, 419] and the survey of Sanders [718].

Other important problems on Integers: We start with the following remark. A
property P is always a family of subsets of some fixed set. It is monotone decreasing
if X ∈ P and Y ⊆ X implies that Y ∈ P . (Two examples of this are (i) the sets of
integers not containing solutions of some given equations, and (ii) the family of
graphs not containing an L .) When we fix a Universe and a “monotone” property
P , then, beside asking for the size of the extremal sets X for P , we may also ask,
e.g., how many X ∈ Pn are there, where Pn ⊆ P is defined by some parameter n of
these objects. We may also ask, what is their typical structure. For graphs these are
the Erdős-Kleitman-Rothschild-type problems [297], discussed in Sect. 2.13. The
same questions can also be asked for extremal problems on integers, and we shall
not return to them later, therefore we list some of them here, together with “their
extremal problems”.

• We have started with the multiplicative Sidon problem (Thm 2.5), and there is
also the problem of additive Sidon sets.

• We wrote about excluding the k-term arithmetic progressions, in this subsec-
tion.34

• Another important area is the problem of sum-free sets, see, e.g., Cameron and
Erdős [174], Alon, Balogh, Morris, and Samotij [26], Łuczak and Schoen [603, 604],
Sapozhenko [719],…Balogh, Liu, Sharifzadeh, and Treglown [72], Balogh, Morris,
and Samotij [76].

• Very active research characterises the Sum-Product problems, introduced by
Erdős and Szemerédi [322], see also Gy. Elekes [253], Bourgain, Gambourd, and
Sarnak [146], Solymosi [771] among the very many related papers.

• Important and deep questions can be listed in connection with Freiman–Ruzsa-
type results (see e.g., [361]).

Recommended surveys, papers: Ruzsa [708, 709], Solymosi [771], Granville and
Solymosi [412], Pomerance and Sárközy [657], …and the survey of Shkredov [742].

34Subsubsections will also be called Subsections.
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Groups

We have considered some problems about the Universe of Integers. It is, of course,
natural to ask the analogous questions for groups. There are many results of this type.
Here we mention only a few papers on groups. Most of the definitions immediately
generalize from integers to any Abelian group. We have already mentioned that Sidon
sets in groups were investigated by Babai and Sós [57]. From among the many-many
further similar extensions we mention only Alon, Balogh, Morris, and Samotij [26,
76], Gowers [405], on quasi-random groups, Green [414], Green and Ruzsa [415],
Lev, Łuczak, and Schoen [574], Sapozhenko [719, 721], and B. Szegedy on Gowers
norms and groups [788].

There are also results on non-Abelian groups, e.g., Sanders [716], and the paper
of Babai and Sós [57] considers both Abelian and non-Abelian groups (and try to
determine the maximum size of a Sidon set in them), and we refer the reader to these
papers.

Remark 2.26 For each property P , one can also investigate the P-maximal, or the
P-minimal structures. Here, e.g., one can try to count the maximal subsets of property
P , in [1, n], or in a groupG, …Thus e.g., Balogh, Liu, Sharifzadeh and Treglown [72]
count the maximal sum-free subsets, while Balogh, Bushaw, Collares, Liu, Morris,
and Sharifzadeh [65] describe the typical structure of graphs with no large cliques.35

Remark 2.27 There are several results on subsets of G without non-trivial arithmetic
progressions where G is a group, or a linear vector space. Here we mention only the
paper of Croot, Lev, and Péter Pach [210] on the linear vector space Z

n
4. J. Wolf

provides a very clear and detailed description of this paper and related results, in the
MathSciNet-MR3583357. See also the related post of T. C. Tao, and the paper of
Ellenberg and Gijswijt [255], building on [210].

2.6 Ramsey or Density?

One difference between Ramsey and Turán theories is that in the Turán case we
have density statements, while in the Ramsey case the densities are not enough to
ensure the occurrence of a monochromatic substructure. A trivial example of this
is the problem of R(4, 4), yet, instead of this we consider another trivial example:
connectedness. If we RED-BLUE-edge-colour a Kn , then either we have a RED
connected spanning subgraph, or a BLUE one. However, we may have ≈ 1

2

(n
2

)
edges

in both colours, not enough for a connected spanning subgraph.
More generally, if we r -colour the edges of a graph G, and consider its subgraphs

Gi defined by the i th colour, and we assert that—under some conditions,—G has a
monochromatic L , because it has at least 1

r e(G) edges, that is a Turán-type, density
theorem.

35The description of the typical structure is a stronger result than just counting them.
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The Erdős–Turán conjecture, and its proof, the Szemerédi theorem, came from the
van der Waerden theorem, [813] according to which, if r and k are fixed, and we r -
colour the integers in an arbitrary way, then there will be a monochromatic arithmetic
progression of length k. The Erdős–Turán conjecture was the corresponding density
conjecture: any infinite sequence of integers of positive lower density contains an
arithmetic progression of k terms.

Many Ramsey problems are very different from density problems, however, in
some other cases a Ramsey problem may be basically a density problem. Sometimes
a density theorem generalizes a Ramsey-type result in a very non-trivial way. In this
survey mostly we are interested in density problems.

Example 2.28 For any tree Tk , trivially, ex(n, Tk) < (k − 2)n. This implies that
R(Tk, Tk) < 4k, and for r colours Rr (Tk, . . . , Tk) ≤ 2kr .

So, for trees the Ramsey problem is a density problem, up to a constant. For more
details, see e.g., the paper of Faudree and Simonovits [336].

2.7 Why Are the Extremal Problems Interesting?

Extremal graph problems are interesting on their own, they emerge in several
branches of Discrete Mathematics, e.g., in some parts of Graph Theory not directly
connected to Extremal Graph Theory, in Combinatorial Number Theory, and also
they are strongly connected to Ramsey Theory.

Erdős wrote several papers on how can Graph Theory be applied in Combina-
torial Number Theory, or in Geometry, see e.g., [272]. András Sárközy returned to
the investigation and generalization of Erdős’ results discussed in Problem 2.3: the
next step was to analyze the case when no product of six distinct numbers from
A was a square.36 The corresponding graph theoretical lemmas were connected to
ex(n, m, C6)

37 and were established by Erdős, A. Sárközy, and Sós [311] by G. N.
Sárközy [722], and by E. Győri [441]. (Similar cycle-extremal results and similar
methods were used also in a paper of Dietmann, Elsholz, Gyarmati and Simonovits
[241], but for somewhat different problems.)

Extremal graph theory is strongly connected to many other parts of Mathemat-
ics, among others, to Number Theory, Geometry, the theory of Finite Geometries,
Random Graphs, Quasi-Randomness, Linear Algebra, Coding Theory.

The application of constructions based on finite geometry became important and
interesting research problems, we mention here just a few, such as Reiman [675],
Hoffman–Singleton [472], Benson [101], Brown [150]. Erdős, Rényi, and Sós [308]
…and refer the reader again to the surveys of Vera Sós [774], Füredi and Simonovits
[386] or the papers of Lazebnik, Ustimenko, and Woldar, e.g., [567] and others.

36If (1) is violated then ai a j aka� is a square.
37ex(n, m,L) is the maximum number of edges an L-free graph G ⊂ K (n, m) can have. This
problem may produce surprising phenomena when n = o(m).
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These constructions are connected to the construction of expander graphs
(Ramanujan graphs) by Margulis [609–611], and Lubotzky, Phillips, and Sarnak
[599], which use highly non-trivial mathematics, and in some sense are strongly
connected to Extremal Graph Theory.38 Here we recommend the survey of Alon in
the Handbook of Combinatorics [22] and several of his results on the eigenvalues
of graphs, e.g., [20] or the Alon–Milman paper [39]. Another surprise was that in
[532] deeper results from algebra also turned out to be very useful. In some other
cases (e.g., Bukh and Conlon [161, 162]) randomly chosen polynomial equations
were used for constructions in extremal graph theory. We return to these questions
in Sect. 2.16.

Remark 2.29 There are cases, when important methods came from that part of
Discrete Mathematics which is not directly Extremal Graph Theory, however, is
very strongly connected to it. One example is (perhaps) the Lovász Local Lemma
[299], originally invented for problems very strongly connected to Extremal Graph
Theory.39

2.8 Ramsey Theory and the Birth of the Random Graph
Method

There are many cases when some Ramsey-type theorem is very near to a density
theorem. In graph theory perhaps one of the first such results was that of Chvátal
[186]. Faudree, Schelp and others also proved many results on the Ramsey topic,
where in one colour we exclude a large tree. Faudree and Simonovits discussed in
[336] this connection.

Erdős Magic. Turán thought that two-colouring Kn , say, in RED and BLUE, we
shall always have a monochromatic Km with m ≥ √

n. The reason he thought this
was (most probably) that for n = m2, Tn,m yields a 2-colouring of Kn (where the
edges of Tn,m are RED, the others are BLUE), and thus Kn does not contain any RED
Km+1, neither a BLUE Km+1 and this construction seemed to be very nice. So Turán
thought this maybe the best. When Turán asked Erdős about this, right after the war,
Erdős answered that in a random colouring of Kn the largest monochromatic Kp

has order at most (2 + o(1)) log2 n (for sharper results see e.g., Bollobás and Erdős
[125]). In some sense, this was the beginning of the Theory of Random graphs. Joel
Spencer calls this “the Erdős Magic” and discusses this story in detail, e.g., in [779],
or in [780], where he describes this and also the whole story of R(3, k), its estimate

38The Margulis–Lubotzky–Phillips–Sarnak papers are eigenvalue-extremal, however, as Alon
pointed out, (see the last pages of [599]), these constructions are “extremal” for many other graph
problems as well.
39The Lovász Local Lemma is one of the most important tools in Probabilistic Combinatorics
(including the application of probabilistic methods). Its proof is very short, and it is described,
among others, in the Alon–Spencer book [48], in Spencer [778], or in the original paper, available
at the “Erdős homepage” [827].



464 M. Simonovits and E. Szemerédi

by Erdős [261], by Ajtai, Komlós, and Szemerédi [9], the application of the Lovász
Local Lemma [299] by Spencer[777], and finally the matching deep result of Jeong
Han Kim [515], using the Rödl nibble and many other deep tools.

So we see that most of the graphs Gn are counterexamples to this conjecture of
Turán, however, we cannot construct graph sequences (Gn) without complete graphs
on �c log n� vertices and independent set of vertices of size �c log n�. Actually, to
construct such graphs is a famous open problem of Paul Erdős, weakly approximated,
but still unsolved.40

One of the beautiful conjectures is

Conjecture 2.30 (Vera Sós) A Ramsey graph is quasi-random.

Of course, here we should know what is a Ramsey graph and when is a graph
quasi-random. We formulate this only in the simplest case. Given an integer m,
let N = R(m, m) be the smallest integer for which 2-colouring KN we must have
a monochromatic Km . A Ramsey graph is a graph on R(m, m) − 1 vertices not
containing Km , nor m independent vertices. The notion of quasi-randomness came
originally, in a slightly hidden form from the works of Andrew Thomason [803]
(connected to some Ramsey problems). Next it was formulated in a more streamlined
form by Chung, Graham, and Wilson [185] and here, without going into details, we
“define” it as follows.

Definition 2.31 For p > 0 fixed, a sequence (Gn) of graphs is p-quasi-random if
e(Gn) = p

(n
2

) + o(n2), and the number of C4’s in Gn is 6
(n

4

)
p4 + o(n4), as in the

random Binomial graph Rn,p, with edge-probability p.

The following beautiful theorem also supports the Sós Conjecture.

Theorem 2.32 (Prömel and Rödl [661]) For any c > 0 there exists a c∗ > 0 such
that if neither Gn nor its complementary graph contains a K[c log n], then Gn contains
all the graphs H� of � = [c∗ log n] vertices.

— · —

Lovász Meta-Theorem. Many years ago Lovász formulated the principle that the
easier is to obtain a “construction” for a problem by Random Methods, the more
complicated it is to obtain it by “real construction”.

Supporting examples were those days, among others,
• the above “missing” Ramsey Construction,
• the Expander Graph problem, and
• also some good codes from Information Theory.
The random graphs have good expander properties. Expander graphs are impor-

tant in several areas, among others, in Theoretical Computer Science. The fact that

40One problem with this sentence is that the notion of “construction” is not well defined, one of
us witnessed a discussion between Erdős and another excellent mathematician about this, but they
strongly disagreed. As to the constructions, we mention the Frankl–Wilson construction of Ramsey
graphs [359], or some papers of Barak, Rao, Shaltiel, and Wigderson [89] and others.
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the random graphs are expanders were there in several early papers implicitly or
explicitly, see e.g., Erdős and Rényi, [307], Pósa [660].

Remark 2.33 Pinsker [651] proved the existence of bounded degree expanders, using
Random Methods, and the construction of Margulis [607] was a breakthrough in this
area. They were used e.g., in the AKS Sorting networks [11].

2.9 Dichotomy, Randomness and Matrix Graphs

In the areas considered here, there are two extreme cases: (a) sometimes for some
small constant ν we partition the n vertices into ν classes U1, . . . , Uν and join the
vertices according to the partition classes they belong to: if some vertices x ∈ Ui and
y ∈ U j , x �= y are joined then all the pairs x ′, y′ are joined for which x ′ ∈ Ui and
y′ ∈ U j , x ′ �= y′. These graphs can be described by a ν × ν matrix, and therefore
can be called matrix- graphs.41 (Similar approach can be used in connection with
edge-coloured graphs, multigraphs and digraphs.)

Often such structures are the extremal ones, in some other cases the random graphs.
We could say that a dichotomy can be observed: sometimes the extremal structures
are very simple, in some other cases they are very complicated, randomlike, fuzzy.
(One very important feature of the random graphs is that they are expanders. This is
why in a random graph much fewer edges ensure Hamiltonicity than in an arbitrary
graph.)

2.10 Ramsey Problems Similar to Extremal Problems

In some cases the Ramsey graphs are chaotic, see above, in some other (mainly off-
diagonal) cases they are very similar to Tn,k . Below we shall discuss only those cases
of off-diagonal Ramsey Numbers that are strongly connected to Extremal Graph
Theory.42 The area where the required monochromatic subgraphs are not complete
graphs started with a paper of Gerencsér and Gyárfás [390]. Given two graphs, L
and M , the Ramsey number N = R(L , M) is the minimum integer N for which
any RED-BLUE-colouring of KN contains a RED L or a BLUE M . Gyárfás and
Gerencsér started investigating these problems, Bondy and Erdős [135] discussed
the case when both L and M are cycles. Chvátal [186] proved that

Theorem 2.34 If Tm is any fixed m-vertex tree, then

41A generalization of these graphs is the generalized random graph, where we join the two vertices
with probability pi j , independently.
42The Ramsey numbers R(L , M) form a twice infinite matrix whose rows and columns are indexed
by the graphs L and M . If L �= M , then R(L , M) is called “off-diagonal”.
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R(Tm, K�) = (� − 1)(m − 1) + 1.

A construction yielding a lower bound is obvious: consider the Turán graph
T(�−1)(m−1),m−1. Colour its edges in RED and the complementary graph in BLUE.
Observe that the construction yielding a lower bound in this theorem is the Turán
graph K�−1(m − 1, . . . , m − 1). Faudree, Schelp and others proved many results on
these types of off-diagonal Ramsey problems.

Remark 2.35 (Simple Ramsey extremal structures) In several cases the Ramsey-
extremal, or at least the Ramsey-almost extremal structures can be obtained from
partitioning n vertices into a bounded number C1, . . . , Cm of classes of vertices and
colouring an edge xy according to the classes of their endpoints: all the edges where
x ∈ Ci and y ∈ C j have the same colour, for all 1 ≤ i, j ≤ m. This applies, e.g., to
the path Ramsey numbers described by Gerencsér and Gyárfás [390].

Occasionally some slight perturbation of such structures also provides Ramsey-
extremal colourings. Such examples occur in connection with the cycle Ramsey
numbers, e.g., the ones in the Bondy–Erdős conjecture on the Ramsey numbers on
odd cycles [135], and in many other cases.

2.11 Applications in Continuous Mathematics

Toward the end of his life Turán wrote a series of papers, starting perhaps with [810],
the last ones with Erdős, Meir, and Sós, [300–303] on the application of his theorem
in estimating the number of short distances in various metric spaces, or in estimating
some integrals, potentials.43 He also liked mentioning a similar result of Katona
[488] where Katona applied Turán’s theorem to distributions of random variables.
Perhaps the first result of Katona in this area was

Theorem 2.36 Let a1, . . . , an be d-dimensional vectors, (d ≥ 1), with |ai | ≥ 1 for
i = 1, . . . , n. Then the number of pairs (ai , a j ) (i �= j ) satisfying |ai + a j | ≥ 1 is at
least {

t (t − 1) if n = 2t (even)

t2 if n = 2t + 1 (odd).

Somewhat later A. Sidorenko (under the influence of Katona) also joined this
research [743, 745]. They proved continuous versions of discrete (extremal graph)
theorems, mostly to apply it in analysis and probability theory.

Remark 2.37 Sidorenko also reformulated the Erdős–Simonovits conjecture [760]
in the language of integrals, [746, 747]. The original conjecture had various forms,

43We mention just a few related papers, for a more detailed description of this area see the remarks
of Simonovits in [811], and the surveys of Katona [490, 491].



Embedding Graphs into Larger Graphs: Results, Methods, and Problems 467

but all these forms asserted that if L is bipartite, and E is noticeably larger than
ex(n, L), then among all the graphs Gn with E edges, the Random Graph has the
fewest copies of L . The weakest form of this conjecture is that

Conjecture 2.38 (Erdős–Simonovits [760]) For any bipartite L, there exist two
constants, C = CL > 0 and γ = γL > 0, such that if e(Gn) > Cex(n, L), then Gn

contains at least

γ · nv

(
E

n2

)e

copies of L, for e = e(L) and v = v(L).

These forms were primarily referring to the sparse case, when E is slightly above
ex(n, L). On the other hand, Sidorenko’s form becomes meaningful only for dense
graph sequences. For some more details on this, see Füredi and Simonovits, [386]
or Simonovits [760], or Sidorenko [746].

2.12 The Stability Method

In this section we shall describe the Stability method in a somewhat abstract form,
but not in its most general form. Stability in these cases mostly means that for a
propertyP we conjecture that the optimal objects have some simple structure, and the
almost optimal structures are very similar to the (conjectured) optimal ones, in some
mathematically well defined sense. There are various forms of the stability methods,
here we restrict ourselves to one of them. A “property” below is always a subset of the
Universe. Generally we have two properties, P and a much simpler property/subset
Q ⊆ P . If a family L of excluded graphs is given, then Pn := P(n,L) is the family
of n-vertex L-free graphs.

The Stability methodmeans that the optimization is easy onQn and we reduce
the “optimization on Pn” to “optimization on Qn”, e.g.,—when we try to maximize
the number of edges,—by considering a conjectured extremal graph Sn and showing
that if Gn ∈ Pn − Qn , then e(Gn) < e(Sn). So, since the maximum is at least e(Sn)

it must be attained in Qn .
We start with three examples. We wish to maximize some function e(G) on the

n-element objects of P , denoted by Pn .

Examples: (where e(Gn) is the number of edges).

(a) P means that Kp+1 � G and Q is the family of p-chromatic graphs. It is easy to
maximize e(Gn) for ≤ p-chromatic graphs.

(b) P is the family of Dodecahedron-free graphs:

P := {G : D12 � G},
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Pn := P(n, D12), and Qn = Q(n, p, s) is the family of n-vertex graphs from
which one can delete ≤ s − 1 vertices to get a ≤ p-chromatic graph. It is easy
to prove that Q(n, 6, 2) ⊆ P .44

Simonovits conjectured that the extremum is attained by a graph H(n, 2, 6),
where H(n, p, s) is the generalization of Tn,p: the n-vertex graph having the max-
imum number of edges inQ(n, p, s). Next he proved that if Gn ∈ P − Q(n, 2, 6)

then e(Gn) < e(H(n, 2, 6)) − 1
2 n + O(1). So, to maximize e(Gn) was reduced

to maximizing it in Q(n, 2, 6), which is easy.
(c) P is the family of Octahedron-free graphs andQn is the family of those graphs Gn

where V (Gn) can be partitioned into V1 and V2 so that G[V1] does not contain
C4 and G[V2] does not contain P3. Again, it is not too difficult to prove that
Qn ⊆ P . Using this, Erdős and Simonovits, applying a stability argument [314],
determined the exact extremal graphs for large n. (Actually, they proved a much
more general theorem on EX(n, Kp+1(a1, . . . , ap)).)

It is worth mentioning the simplest case of (c):

Theorem 2.39 (Erdős–Simonovits [314]) There exists an n0 such that if n > n0 and
Sn is extremal for the Octahedron graph K (2, 2, 2), then V (Sn) can be partitioned
into into two parts, A and B so that A spans a C4-extremal graph in Sn, B spans a
P3-extremal graph and each x ∈ A is joined to each y ∈ B.

The product conjecture asserts that

Conjecture 2.40 (Simonovits, see [759]) If the decomposition class M of a finite
L does not contain trees or forests, then each Sn ∈ EX(n,L) is a product of p
subgraphs of (n/p) + o(n) vertices, where p is defined by (4).

— · —

Let us fix a Universe, for the sake of simplicity, the universe of graphs or hyper-
graphs. Now we repeat what we said above, in a slightly more detailed form. The
method of stability means that

(a) We consider an extremal graph problem, where some propertyP , and two param-
eters n and e are given (mostly n is the number of vertices and e is the number
of the edges) and we try to optimize, say maximize e for fixed n, on Pn ⊆ P ,
where Pn is the family of objects in P having the parameter n.

(b) We have a property Q ⊆ P “strongly” connected to the considered extremal
problem. Qn is the corresponding subfamily of Q with parameter n. We assume
that the maximization is difficult on Pn but easy on Qn .

(c) We prove that the maximum is smaller on Pn − Qn than on Pn , therefore the
extremal objects in Pn , (i.e. the ones achieving the maximum) must be also in
Qn , where it is easy to find them.

44This is equivalent to that deleting any 5 vertices of D12 one gets ≥ 3-chromatic graphs.



Embedding Graphs into Larger Graphs: Results, Methods, and Problems 469

This approach, introduced by Simonovits [751], turned out to be very fruitful for
many problems, e.g., for the extremal problems of the icosahedron, dodecahedron,
and octahedron, and for several other graph problems, and in several hard hypergraph
problems, e.g., in case of the Fano hypergraph extremal problem [385, 504], or the
results of Füredi, Pikhurko, and Simonovits [380, 381], (and many similar hypergraph
results) see Sect. 8. We can say that in the last twenty-thirty years it became widely
used. Below we list some papers connected to the stability method, from a much
longer list. See e.g., Balogh, Mousset, Skokan, [80], Ellis, [256], Friedgut [362],
Füredi, Kostochka, and Luo [375], Füredi, Kostochka, Luo, and Verstraëte [376,
377] Gowers and Hatami [408], Gyárfás, Sárközy, and Szemerédi, [438], Keevash
[495], Keevash and Mubayi [503] Nikiforov and Schelp [633], Mubayi [623], Patkós
[642], Samotij [715], Tyomkyn and Uzzell [812].

The stability method is used, e.g., in Sect. 6.3, more precisely, in the corresponding
paper [446] of P. Hajnal, S. Herdade, and Szemerédi,—however, in a much more
complicated form,—to provide a new proof of the Pósa–Seymour conjecture, without
using the Regularity Lemma, or the Blow-up Lemma.

These papers were selected from many-many more and below we add to them
some on the stability of the Erdős–Ko–Rado [298] which started with the paper
of Hilton and Milner [463], Balogh, Bollobás, and Narayanan [61] and contin-
ued with several further works, like Das and Tran [226], Bollobás, Narayanan, and
A. Raigorodskii [129], Devlin and Jeff Kahn [239], Ellis, Keller,
and Lifshitz, [257], …

Remark 2.41 In [751], where Simonovits introduced this Stability Method, another
stability proof method was also introduced, the method of Progressive Induction.

That meant that the extremal graphs became more and more similar to the conjectured
extremal graphs as n increased, and finally they coincided. This approach was useful
when the conjectured theorem could have been proved easily by induction, but it was
difficult to prove the Induction Basis.

2.13 The “Typical Structure”

The results considered here are related to the situation described in the previous
section, on theP − Q-stability, and have the following form: we have two properties,
a complicated one, P , and a simpler one, Q ⊂ P and we assert:

Almost all n-vertex P-graphs have property Q.
Among the simplest ones we have already mentioned or will discuss the following

ones.

(a) Almost all Kp+1-free graphs are p-chromatic [297, 531].
(b) Almost all Berge graphs are perfect [664] (cf Remark 8.11).
(c) Almost all K (2, 2, 2)-free graphs have a vertex-partition, where the first class is

C4-free and the second one is P3-free, [64].
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— · —

Erdős conjectured that, given a family L of forbidden graphs, it may happen that a
large part of theL-free graphs are subgraphs of some extremal graphs Sn ∈ EX(n,L),
in the following sense. Denote by P(n,L) the family of n-vertex L-free graphs. The
subgraphs of an L-extremal graph Sn provide 2ex(n,L) L-free graphs.

Conjecture 2.42 (Erdős) If L contains no bipartite L, then

|P(n,L)| = O(2(1+o(1))ex(n,L)).

The first such result, by Erdős, Kleitman, and Rothschild [297] asserted that for
L = {Kp+1},

log2 |P(n,L)| = (1 + o(1))ex(n,L).

Later Erdős, Frankl, and Rödl [288] proved Erdős’ conjecture, for any non-degenerate
case. Kolaitis, Prömel, and Rothschild [531] extended some related results to the case
of L with critical edges, see Meta-Theorem 2.19. An important related result is that
of Prömel and Steger [665]. Slowly a whole theory was built up around this question.
Here we mention in details just a few results, and then list a few related papers.

Theorem 2.43 (Erdős, Frankl, and Rödl [288]) If L does not contain bipartite
graphs, and P(n,L) denotes the family of n-vertex L-free graphs, then

|P(n,L)| < 2ex(n,L)+o(n2).

For sharper results, see Balogh, Bollobás, and Simonovits [62–64]. The cases (a)
and (c) mentioned above are also connected to this Erdős-Frankl-Rödl theory.

If one counts the number of L-free graphs Gn for a bipartite L , then one faces
several difficulties. Formally Theorem 2.43 remains valid, but becomes trivial. We
recommend the papers of Kleitman and Winston [523], Kleitman and Wilson [522]
and of Morris and Saxton [618].

We get another “theory” if we exclude induced subgraphs, see e.g., Prömel and
Steger [662, 665], Alekseev [13], Bollobás and Thomason [130, 131]. The theory
is similar, however, the minimum chromatic number of L ∈ L must be replaced by
another, similar colouring number. For some further, related results see Alon, Balogh,
Bollobás, and Morris [24]. …

A more general and sharper question is when the considered family of graphs is
P , and the property Q is strongly connected to P , then one can ask: is it true that
almost all graphs Gn ∈ P are also in Q. This often holds, e.g., almost all K3-free
graphs are bipartite. Again, a finer result, explained below, is

Theorem 2.44 (Osthus, Prömel, and Taraz [636]) Let Tp(n, �) denote the family of
Kp-free graphs with � edges. If

t3 = t3(n) :=
√

3

4
n3/2

√
log n,
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then for any fixed ε > 0, the probability that a random K3-free graph on n vertices
and � edges is bipartite,

P(Gn ∈ T3(n, �) =⇒ χ(Gn) = 2) →

⎧⎪⎨
⎪⎩

1 if � = o(n),

0 if 1
2 n ≤ � ≤ (1 − ε)t3(n);

1 if � ≥ (1 + ε)t3(n).

(6)

The most important line of (6) is the third line. Actually, this “story” started with
a result of Prömel and Steger [666], where the threshold-estimate was around n7/4

for the third line of (6). Prömel and Steger conjectured that the right exponent is 3/2.
Łuczak [601] proved a slightly weaker related result, where the exponent was 3/2,
however, instead of asking for bipartite graphs, he asked only for “almost bipartite”
graphs.

The meaning of this theorem is that for very small � = e(Gn) most of the graphs
will have no cycles, therefore they will be bipartite. For slightly larger e(Gn) odd
cycles will (also) appear, so there will be a “slightly irregular” interval, and then,
somewhat above t3(n) everything becomes nice: almost all triangle-free graphs are
bipartite.

Remark 2.45 (a) One could ask why cn
√

n log n is the threshold for our problem.
As [636] explains, this is connected to the fact that this is the threshold where the
diameter of a random graph becomes 2.

(b) A nice result of this paper extends the theorems from K3-free graphs to C2h+1-
free random graphs.

(c) Another important generalization of this result is due to Balogh, Morris,
Samotij, and Warnke [79] to any complete graph Kp.

Further information can be found on these questions in the paper of Balogh,
Morris, Samotij, and Warnke [79], which, besides formulating the main results of
[79], i.e., extending Theorem 2.44 to any Kp,45 provides an excellent survey of
this area and its connection to several other areas, among them to the problems on
extremal subgraphs of Random Graphs, investigated also by Conlon and Gowers
[199], …, see Sect. 2.5/§(f).

As we have mentioned, here the situation for the degenerate (bipartite) case is
completely different. Related results are, e.g., Balogh and Samotij [85–87], or Morris
and Saxton [618].

Historical Remarks 2.46 This whole story started (perhaps) outside of Graph The-
ory, with some works of Kleitman and Rothschild, see [519–521].

A hypergraph analog of these results was proved by Nagle and Rödl [628].
Among the newer results we have mentioned or should mention several results of

Prömel and Steger, e.g., [663, 664], Alon, Balogh, Bollobás, and Morris [24] and,
on hypergraphs, Person and Schacht [645], Balogh and Mubayi [81, 82], …

45The Master Thesis of Warnke contained results on K4.
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2.14 Supersaturated Graphs

When Turán proved his theorem, Rademacher immediately improved it:

Theorem 2.47 (Rademacher, unpublished) If e(Gn) > � n2

4 � then Gn contains at least⌊
n
2

⌋
copies of K3.

This is sharp: putting an edge into a larger class of Tn,2 we get
⌊

n
2

⌋
triangles.

More generally, putting k edges into the larger class of Tn,p we get ≈ k( n
p )p−1 copies

of Kp+1, and in particular, for p = 2 we get k
⌊

n
2

⌋
triangles. So Erdős generalized

Rademacher Theorem:

Theorem 2.48 (Erdős (1962), [265]) There exists a c > 0 such that for any 0 < k <

cn, if e(Gn) ≥ � n2

4 � + k then Gn contains at least k
⌊

n
2

⌋
copies of K3.

Erdős conjectured that his result holds for any c ≤ 1
2 .46 He also generalized his

result to Kp+1 in [274].47 Lovász and Simonovits proved the Erdős conjecture, in
[592], and a much more general theorem in [593].

Let F(n, L , E) be the minimum number of copies of L ⊆ Gn with e(Gn) = E >

ex(n, L) edges. Lovász and Simonovits determined F(n, Kp+1, E), for e(Tn,p) <

E < e(Tn,p) + cpn2, for an appropriately small cp > 0, using the stability method,
and, more generally, for any q ≥ p, and e(Tn,q) ≤ E < e(Tn,q) + cqn2. In
Sect. 2.15 we formulate the related, widely applicable Lovász–Simonovits Stabil-
ity Theorem.

Remark 2.49 The Lovász–Simonovits method did not work in the general case,
farther away from the Turán numbers. Their Supersaturated Graph result, on the
number of complete subgraphs, was extended by Fisher and Ryan [343], by Razborov
[670], then by Nikiforov [632], and finally, by Reiher [673]. For a related structural
stability theorem see also the paper of Pikhurko and Razborov [650].

We complete this section with a C5-Supersaturated theorem:

Theorem 2.50 (Erdős (1969), [274]) If e(G2n) = n2 + 1 then G2n contains at least
n(n − 1)(n − 2) pentagons.

As Erdős remarks, a K (n, n) with an extra edge added shows that his theorem is
sharp. For some generalizations see Mubayi [624]. For early results on supersaturated
graph results see e.g., the survey of Simonovits [760], explaining how the proofs
of some extremal theorems depend on supersaturated graph results, the papers of
Blakley and Roy [111], of Erdős [265, 274], Erdős and Simonovits [316, 317],
Brown and Simonovits [158], the next subsection, and many further results.

46Again, there is some difference between the cases of even and odd n.
47Erdős’ paper contains many further interesting and important results.
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2.15 Lovász–Simonovits Stability Theorem

To prove and generalize Erdős’ conjecture on K3-supersaturated graphs, Lovász and
Simonovits proved a “sieve”, the simplest form of which is the following:

Theorem 2.51 For any constant C > 0, there exists an ε > 0 such that if |k| < εn2

and Gn has � n2

4 � + k edges and fewer than C |k|n triangles K3, then one can change
O(|k|) edges in Gn to get a bipartite graph.

Here mostly we use k > 0, but if we have the theorem for k > 0, that immediately
implies its extension for k ≤ 0 as well. Let m(L , G) denote the number of labeled
copies of L in G. The more general form is related to any Kp and not only around
ex(n, Kp), but more generally, when we wish to estimate m(Kp, G) and e(Gn) is
around any ex(n, Kq), for q ≥ p.

In the next, more general theorem t and d are defined by

e(Gn) =
(

1 − 1

t

)
n2

2
and d = �t�.

Theorem 2.52 (Lovász–Simonovits [593]) Let C ≥ 0 be an arbitrary constant.
There exist positive constants δ > 0 and a C ′ > 0 such that if −δn2 < k < δn2

and Gn is a graph with
e(Gn) = e(Tn,p) + k

edges and

m(Kp, Gn) <

(
t

p

) (
n

p

)p

+ Ckn p−2,

then there exists a Kd(n1, . . . , nd) such that
∑

ni = n, |ni − n
d | < C ′√k and Gn can

be obtained from Kd(n1, . . . , nd) by changing at most C ′k edges.

Here t can be regarded as a “fractional Turán-class-number”. To explain the mean-
ing of this theorem, remember that if one puts k edges into the first class of a Tn,p,
that creates ≈ c1kn p−2 copies of Kp. This theorem asserts that in a graph Gn with
e(Tn,p) + k edges, either we get much more copies of Kp, or Gn must be very similar
in structure to Tn,p.48

Theorem 2.52 can be used in many cases, e.g., it provides a clean and simple
proof of the Erdős–Simonovits Stability Theorem.

48This theorem may remind us of the Removal Lemma, (see Sect. 5.4) yet, it is different in several
aspects. Both they assert that either we have many copies of L in Gn , or we can get an L-free graph
from Gn by deleting a few edges. However, the Removal Lemma has no condition on e(Gn) and the
Lovász–Simonovits theorem provides a much stricter structure.

This result can also be used for negative values of k, (and sometimes we need this), however,
then we should replace k by |k| in some of the formulas.



474 M. Simonovits and E. Szemerédi

Remark 2.53 Assume that p ≥ 3 and k = γn2, for some constant γ > 0. If one
knows Theorem 2.52 for Kp, then one has it for any p-chromatic L , by applying
the Erdős Hypergraph Theorem 8.1 to the v-uniform hypergraph on V (Gn), for
v := v(L), whose hyperedges are the vertices of the copies of L in Gn . (For the
details see, e.g., Brown and Simonovits [158].) Hence Theorem 2.52 is more general
than the Erdős–Simonovits Stability theorem, since it does not completely exclude
L ⊂ Gn , only assumes that Gn does not contain too many copies of L .

Remark 2.54 One could ask why do we call Theorem 2.52 a “sieve”. Without answer-
ing this question, we make two remarks.

(a) The methods used here could be considered in some sense “primitive” prede-
cessors of what today is called Razborov’s Flag algebras.

(b) This whole story started with a “survey” paper of Lovász [585], written in
Hungarian, the title of which was “Sieve methods”.

Remark 2.55 Often the Lovász–Simonovits sieve can be replaced by the Removal
Lemma.

Remark 2.56 The original proofs of the Erdős–Simonovits Limit theorem could
have used the Regularity Lemma, (described in Sect. 5), or this theorem, but they
had not: actually they were proved earlier. An alternative approach to prove the
Erdős–Simonovits Stability theorem is to use the Regularity Lemma, however, then
one needs the stability theorem itself for complete graphs. A simple, beautiful proof
of that the stability holds for Kp was found by Füredi [374], who used for this purpose
the Zykov symmetrization [826].

2.16 Degenerate Versus Non-degenerate Problems

We remind the reader that an extremal graph problem is Degenerate if ex(n,L) =
o(n2), or in case of r -uniform hypergraphs, ex(n,L) = o(nr ). Another way to
describe a Degenerate extremal problem is that L contains a bipartite L (and
for hypergraphs, L contains an L with strong chromatic number r , see Claim Corol-
lary 8.2). The survey of Füredi and Simonovits [386] describes the details. Here
we shall be very brief, describe just a few results and formulate three conjectures
and describe some connections to Geometry, Finite Geometry, and Commutative
Algebra.

So let us restrict ourselves to simple graphs. The simplest questions are when
L = K (a, b) and when L = C2k . (The extremal problem of the paths Pk is a theorem
of Erdős and Gallai [289].)

Assume that a ≤ b. In Conjecture 2.10, ex(n, K (a, a)) > can2−( 1
a ) is conjectured.

For a = 2 and a = 3 the sharp lower bounds came from finite geometric constructions
of Erdős, Rényi, Sós, [308] and Brown [150]. The random methods gave only much
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weaker lower bounds. By [306],49

ex(n, K (a, b)) > can2− 1
a − 1

b .

The Kollár–Rónyai–Szabó construction [532] and its improvement, the
Alon–Rónyai–Szabó [42] construction, (proving the sharpness of Theorem 2.9 when
a is much smaller than b) used Commutative Algebra, and Lazebnik, Ustimenko,
and Woldar have several more involved algebraic constructions.

Remark 2.57 One of Erdős’ favourite geometry problem was the following: Given
n points in E

d , how many equal (e.g., unit) distances can occur among them. Among
others, he observed that if in E

3 we join two points iff their distance is 1, then the
resulting graph does not contain K (3, 3). In Brown’s construction this is turned
around: the vertices of a graph Gn are the n = p3 points of a finite 3-dimensional
affine space AG(p, 3). W.G. Brown joined two points (x, y, z) and (x ′, y′, z′) if their
“distance” was “appropriate”:

(x − x ′)2 + (y − y′)2 + (z − z′)2 = α, (mod p).

The appropriate choice meant e.g., that if p = 4k − 1 then α was any non-zero
quadratic residue.50 Then Brown proved that (for some primes p and some α) the
resulting graph contains no K (3, 3) and has ≈ 1

2 n2−(1/3) edges. (Surprisingly, as
Füredi proved in [373],—as to the multiplicative constant 1

2 ,—for K (3, 3) the Brown
construction is the sharp one, not the upper bound of Theorem 2.9.) The Commu-
tative Algebra constructions [42, 532] can be regarded as extensions of Brown’s
construction, however, with deeper mathematics in the background.

Question 2.58 Sometimes in our constructions we use commutative structures,
sometimes non-commutative ones. One could ask, what is the advantage of using
non-commutative structures.

The same question can also be asked in connection with the so called Ramanujan
graphs, see e.g., [598, 599], or [609]. The answer is simple: the Cayley graphs of
commutative groups are full of short even cycles. We illustrate this through the girth
problem.

Theorem 2.59 (Bondy–Simonovits, Even Cycle: C2k [136])

ex(n, C2k) ≤ c1kn1+(1/k). (7)

Conjecture 2.60 (Sharpness) The exponent 1 + (1/k) is sharp, i.e.

49Actually, the First Moment Method yields a little better estimate, but far from being satisfactory.
One can also see that as a is fixed and b gets larger, the “random construction” exponents converge
to the optimal one. This motivates, among others, [42, 532].
50This choice ensured that the neighbourhoods did not contain three collinear points.
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ex(n, C2k) ≥ ckn1+(1/k) for some ck > 0.

The first unknown case is k = 4, ex(n, C8). Theorem 2.59 is sharp for C4, C6,
C10, see [150, 258, 308] and [101]. For some related constructions see also Wenger
[814].

Now, to answer Question 2.58, observe, that we often use in our algebraic construc-
tions Cayley graphs, where in the commutative cases we have many “coincidences”,
leading to many C2k ⊂ Gn , which can be avoided in the non-commutative cases. A
very elegant (and important) example of this is:

Construction 2.61 (Margulis, [608]) There exist infinite Cayley graph sequences
(Gn,d) of degree d = 2� with girth greater than c log n

log(d−1)
.

Remark 2.62 We have emphasized that Extremal Graph Theory is connected to
many other areas in Mathematics. The Margulis constructions [608] are connected
to Coding Theory. In somewhat different ways, several papers of Füredi and Ruszinkó
are also extremal hypergraph results strongly connected to (or motivated by) Coding
Theory, e.g., [383].

A more detailed analysis of these questions can be found, e.g., in Alon’s survey
[22], or in the Füredi–Simonovits survey [386].

Remark 2.63 (a) It was a longstanding open question if one can improve the coef-
ficient of n1+(1/k) in the Bondy–Simonovits theorem, from ck to o(k). After several
“constant”-improvements, Boris Bukh and Zilin Jiang [163]51 proved that

ex(n, C2k) ≤ 80
√

k log k · n1+(1/k) + O(n). (8)

According to [163], Bukh thinks that Conjecture 2.60 does not hold: he conjectures
that for sufficiently large, but fixed k,

ex(n, C2k) = o(n1+(1/k)).

It is very “annoying” that we cannot decide this, not even for C8.
(b) Related constructions were provided by Lazebnik, Ustimenko, and Woldar

[567–569] and by Imrich [473].
(c) For some ordered versions of the C2k problem see, e.g., the (very new) results

of Győri, Korándi, Methuku, Tomon, Tompkins, and Vizer [443].

Historical Remarks 2.64 (a) Actually, before the Erdős–Simonovits paper [313]
Erdős conjectured that the exponents can be only either (2 − 1

k ) or (1 + 1
k ). This

conjecture was “killed” in [313], by some “blow-up” of the cube.
(b) Later Erdős and Simonovits conjectured that (i) for any rational exponent

α ∈ [1, 2) there exist degenerate extremal problems ex(n,L) for which

51The original version claimed a slightly better estimate.
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ex(n,L)/nα → cL > 0, (9)

and (ii) for any degenerate problem ex(n,L) there exists a rational α ∈ [1, 2) for
which (9) holds. Recently, Bukh and Conlon [162] proved (i). (For hypergraphs
Frankl [354] has some earlier, corresponding results, see also Fitch [344].)

2.17 Dirac Theorem: Introduction

Difficult problems always played a central role in the development of Graph Theory.
We shall mention here two important problems, the Dirac theorem on Hamiltonian
cycles (which is not so difficult) and the Hajnal–Szemerédi theorem on equitable
partitions.

Theorem 2.65 (Dirac (1952), [242]) If n ≥ 3 and dmin(Gn) ≥ n/2, then Gn contains
a Hamiltonian cycle.

If n = 2h, then K (h − 1, h + 1) has no Hamiltonian cycle, showing that Theo-
rem 2.65 is sharp.52 One beautiful feature of this theorem is that as soon as we can
guarantee a 1-factor, we get a Hamiltonian cycle.

This theorem triggered a wide research, see, e.g., Ore’s theorem [635], Pósa’s
theorem on Hamiltonian graphs [658], and related results. We shall return to discuss
generalizations of Dirac’s Theorem, above all, the Pósa–Seymour conjecture and the
hypergraph generalizations in Sects. 6.3 and 9.

2.18 Equitable Partition

We close this introductory part with a famous conjecture of Erdős, proved by András
Hajnal and Szemerédi.

Definition 2.66 (Equitable colouring) A proper vertex-colouring of a graph G is
Equitable if the sizes of any two colour classes differ by at most one.

Theorem 2.67 (A. Hajnal and E. Szemerédi (1970), [444]) For every positive integer
r , every graph with maximum degree at most r has an equitable colouring with r + 1
colours.

The theorem is often quoted in its complementary form. The sharpness is shown
by the complementary graph of an almost-Turán graph, i.e. the union of complete
graphs Kr and Kr+1.

52The union of two complete graphs of n/2 vertices having at most one common vertex in common
also show the sharpness. For = 2� − 1 one can use K (�, � − 1) for sharpness.
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The theorem was proved first only for K3, by Corrádi and A. Hajnal [209]. Then
came the proof of Hajnal and Szemerédi. Much shorter and simpler proofs of
Theorem 2.67 were found independently by Kierstead and Kostochka, [510] and
Mydlarz and Szemerédi [627]. The paper of Kierstead, Kostochka, Mydlarz, and
Szemerédi [513] provides a faster (polynomial) algorithm to obtain the equitable
colouring.53

Multipartite case. This theorem was generalized in several different ways, also,
considered for multipartite graphs Gn by Martin and Szemerédi [613], Csaba and
Mydlarz [216], Extensions towards multipartite hypergraphs can be found, e.g., in
Lo-Markström [576]. It is applied to prove some other graph theorems, e.g., in
Komlós–Sárközy–Szemerédi [540, 542, 543], and many other cases. We shall return
to these questions in Sect. 7.

The theorem was extended also to directed graphs, by Czygrinow, DeBiasio,
Kierstead, and Molla [219].

Random Graphs. The problem of equitable partitions in Random Graphs was also
discussed (and in some sense solved) in works of Bohman, Frieze, Ruszinkó, and
Thoma [114]. Their result was improved by Johansson, Jeff Kahn, and Van Vu [480].

2.19 Packing, Covering, Tiling, L-Factors

When speaking of “packing”, sometimes we mean edge-disjoint embedding of just
two graphs (this is connected to some complexity questions from Theoretical Com-
puter Science) and sometimes we try to cover the whole graph with some vertex-
disjoint copies of a graph.54

There was a period, when—because of Theoretical Computer Science,—packing
a graph into the complementary graph of another (i.e. the above problem for two
edge-disjoint graphs) was a very actively investigated topic. This was connected to
Evasiveness, i.e. to the problem, how many “questions” are needed to decide if a
graph Gn has property P .

The whole area is described in a separate chapter of Bollobás’ “Extremal Graph
Theory” [119]. For some further related details see also the papers of Bollobás and
Eldridge, e.g., [123] with the title “Packing of Graphs and Applications to Computa-
tional Complexity”. Here we mention also the result of P. Hajnal [445], (improving
some important earlier results). He proves that the randomized decision tree complex-
ity of any nontrivial monotone graph property of a graph with n vertices is �(n4/3).
See also Bollobás [118], and [517, 518]. This is again a nice example where Com-
binatorics and Theoretical Computer Science are in a very strong interaction.

53See the introduction of [513]. They also point out the applications of this theorem, e.g., in [36, 478]
for “deviation bounds” for sums of weekly dependent random variables, and in the Rödl-Ruciński
proof of the Blow-up Lemma [688].
54In the Gyárfás Conjecture we try to pack many different trees into a complete graph.
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— · —

Given a graph Gn , and a sample graph L , a perfect tiling is a covering of
V (Gn) with vertex-independent copies of L , and an almost- tiling is covering at
least n − o(n) vertices of it. Tiling is sometimes a tool, a method, in other cases it
is the aim. The Corrádi–Hajnal and the Hajnal–Szemerédi theorems, in Sect. 2.18,
were also about packing=tiling of graphs.

Perhaps the first case when tiling was used in a proof was the Rademacher–Turán
theorem of Erdős [265], Here Erdős covered as many vertices of Gn by vertex-
independent triangles as he could, to prove the theorem.

We can consider the problem of Tilings in a more general way. Here we have
a (small) sample graph L and wish to embed into Gn as many vertex-independent
copies55 of L as possible. The question is, given an integer t , which conditions on
Gn ensure, e.g., t vertex-independent copies of L . We shall return to this question
later, here we mention just a few related results, as illustrations. As we mentioned,
Theorem 2.67 is an example of such results. Below we formulate some more general
results.

Definition 2.68 Given two graphs L and G, where v(L) divides v(G), an L-factor
of G is a family of v(G)/v(L) vertex-disjoint copies of L ,

Theorem 2.69 (Alon and Yuster (1996), [49]) For everyε > 0, and for every positive
integer h, there exists an n0 = n0(ε, h), such that for every “sample” graph Lh, every
“host” graph Gn with n = h� > n0 vertices and minimum degree

dmin(Gn) ≥
(

1 − 1

χ(L)
+ ε

)
n (10)

contains an L-factor.

As to the usage of names, tiling, packing, and perfect L-factor are almost the
same: given a graph G and a sample graph L , we wish to embed into G as many
vertex-independent copies of L as possible, and if they (almost) cover V (G), then
we speak about an (almost) perfect tiling/packing.

Komlós extended the notion of L-factor by saying that G has an L-factor, if it
contains �v(G)/v(L)� vertex-independent copies of L . Alon and Yuster conjectured
and Komlós, Sárközy and Szemerédi [543] proved the following56

Theorem 2.70 (Komlós, Sárközy, and Szemerédi) For every L there is a constant
K = KL such that if

dmin(Gn) ≥
(

1 − 1

χ(L)

)
n + KL ,

then Gn has an L-factor.

55Or, in other cases edge-disjoint copies. Here “vertex-independent” and “vertex-disjoint” are the
same.
56Actually, they formulated two “similar” conjectures, we consider only one of them.
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Komlós considered the tiling situation in [534] in a more general way. He con-
sidered degree conditions for finding many disjoint copies of a fixed graph L in a
large graph G. Let τ (n, L , M) be the minimum m for which if dmin(Gn) ≥ m, then
there is an L-matching covering at least M vertices in G. For any fixed x ∈ (0, 1),
Komlós determined

fL(x) = lim
n→∞

1

n
τ (n, L , xn).

Thus, e.g., Theorem 8 of [534] determines (for a fixed but arbitrary L) a sharp
min-degree condition on Gn to enable us to cover ≈ xn vertices of Gn by copies of
L . Among others, Komlós analyzed the strange and surprising differences between
the cases when we try to cover Gn with vertex-independent copies of L completely,
and when we try only to cover it almost completely, or when we try to cover only
a large part, �xn� vertices of it. Several further details and a careful analysis of this
situation can be found in the paper of Komlós [534].

— · —

Kawarabayashi conjectured that Theorem 2.70 can be improved by taking into
account the particular “colouring structure” of L . This was proved by Cooley, Kühn,
and Osthus [203], and then by Kühn and Osthus [562]. Komlós, in [534] defined
a chromatic number χcr (L), improving the earlier results, by using this χcr . Kühn
and Osthus defined another “colouring parameter” hcχ depending on the sizes of the
colour-classes in the optimal colourings of L . Using hcχ, they defined a χ∗(L) ∈
[χ(L) − 1,χ(L)] and proved

Theorem 2.71 (Kühn and Osthus (2009), [562]) If δ(L , n) is the smallest integer m
for which every Gn with dmin(Gn) ≥ m has a perfect L-packing then

δ(L , n) =
(

1 − 1

χ∗(L)

)
n + O(1).

Bipartite Packing. The packing problems, as many similar problems, have also
bipartite versions. Hladký and Schacht—extending some results of Yi Zhao [823]—
proved

Theorem 2.72 (Hladký and Schacht (2010), [471]) Let 1 ≤ s < t , n = k(s + t). If

�2(n, L) :=
{

1
2 n + s − 1 if k is even
1
2(n + t + s) − 1 if k is odd,

then each subgraph G ⊆ K (n, n) with minimum degree at least �2(n, L) contains
a K (s, t)-factor, and this is sharp, except if t ≥ 2s + 1 and k is odd.

For the “missing case” (when t ≥ 2s + 1 and k is odd) see Czygrinow and
DeBiasio [218].
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Fig. 3 Cyclic triangles

Fig. 4 Transitive triangles

Remark 2.73 Here we have to be careful with using the word “factor”: Lovász, in
his early papers [583, 584] called a subgraph Hn ⊆ Gn an f -factor if

f : V (Gn) → N, and degH (x) = f (x) for each x ∈ V (Gn).

Directed graphs. There are many further results connected to this area. We shall
return to some of them later, e.g., in Sects. 6.7 and 9.6.

Here we close this area with two analogous results onoriented graphs: directed
graphs without loops, where between any two vertices there is at most one arc. δ0(G)

is the minimum of all the in- and out-degrees.

Theorem 2.74 (Keevash and Sudakov [505]) There exist a fixed c > 0, and an n0

such that if Gn is an oriented graph on n > n0 vertices and δ0(Gn) > ( 1
2 − c)n, then

Gn contains a “cyclic triangle” tiling which leaves out at most 3 vertices. This is
sharp (Fig.3).

Actually, Keevash and Sudakov [505] describe the history of this theorem in detail,
explain several related results, and prove that the theorem is sharp in the sense that
if n ≡ 3 (mod 18) then one cannot guarantee the covering of the whole graph with
cyclic triangles, even under a stronger degree-condition. Further, they prove some
other packing theorems where the lengths of some cycles are prescribed but they
need not be triangles. We close with

Theorem 2.75 (Balogh, Lo, and Molla [73]) There exists an n0 such that for every
n ≡ 0 (mod 3), if n > n0, then any oriented graph Gn on n vertices with δ0(Gn) ≥ 7n

18
contains a T T3-tiling, where T T3 is the transitively oriented triangle (Fig.4).

This area is fairly active nowadays, we refer to several papers on equitable colour-
ing of Kostochka and others, e.g., [509, 550, 551], and we mention just some exten-
sions to bipartite tiling, e.g., Czygrinow and DeBiasio [218], and to oriented graphs,
by Czygrinow, DeBiasio, Kierstead, and Molla [219, 223], Yuster on tournaments
[821] or [218, 221], or to hypergraphs, e.g., Pikhurko [647] or Czygrinow, DeBi-
asio, and Nagle [221], and several papers of Yi Zhao and Jie Han, e.g., [451], and
many-many others. Some of these results are good examples of the application of the
Absorbing Method, discussed in Sect. 6.5. This is, e.g., the case with the Balogh-
Lo-Molla theorem or the Czygrinow-DeBiasio-Nagle result just mentioned.
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3 “Classical Methods”

Here, (giving some preference to results connected to Laci Lovász) we still skip the
area of graph limits, we skipped the applications of Lovász Local Lemma (though
Lovász Local Lemma is among the most important tools in this area and it came from
research strongly connected to extremal graph problems [299]), but we mention two
other, less known results of Lovász, strongly connected to extremal graph theory.

3.1 Detour I: Induction?

Speaking of methods in Extremal Graph theory, we mostly avoided speaking of
hypergraph results, partly because they are often much more involved than the corre-
sponding results on ordinary graphs. One is the construction of graphs with high girth
and high chromatic number. Erdős used Random Graphs to prove the existence of
such graphs [263, 264] and there was a long-standing challenge to construct them.57

Lovász often solved “such problems” by trying to use induction, and when this did
not work directly, to look for and find a stronger/more general assertion where the
induction was already applicable. In this case Lovász generalized the problem to
hypergraphs and used induction [582]. His proof was a tour de force, rather involved
but worked. It was the first “construction” to get graphs of high girth and high chro-
matic number.

How is this problem connected to Extremal Graph Theory?

Theorem 3.1 If L is a finite class of excluded graphs, then ex(n,L) = O(n) iff L
contains some tree (or forest).

To prove this, one needs the Erdős result [264] about high girth graphs Gn with
e(Gn) > n1+α edges, or the Erdős-Sachs theorems [310], …, or some correspond-
ing Lubotzky-Phillips-Sarnak-Margulis graphs, see e.g., [598, 599]. (Lovász’ tour
de force construction was a big breakthrough into this direction though it was not
quantitative, which is needed above.)

Remark 3.2 Since then several alternative constructions were found. We mention
here the construction of Nešetřil and Rödl [630]. Perhaps one of the best is the con-
struction of Ramanujan graphs by Lubotzky, Phillips, and Sarnak [599] and Margulis
[611]: it is very direct and elegant. It has only one “disadvantage”: to verify that it is a
good construction, one has to use deep Number Theory. (For more detailed descrip-
tion of the topic, see [599], or the books of Lubotzky [597] and of Davidov, Sarnak,
and Valette [227].)

57We must repeat that the meaning of “to construct them” is not quite well defined. Let us agree for
now that the primary aim was to eliminate the randomness.
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Fig. 5 Double cone

3.2 Detour II: Applications of Linear Algebra

We start with repeating a definition.

Definition 3.3 H is a colour-critical graph58 if for any edge e of H , χ(H − e) <

χ(H). It is k-colour-critical if, in addition, it is k-chromatic.

The theory of colour-critical graphs is a fascinating area. Erdős writes about its
beginnings, e.g., in his article in the memory of Gabriel Dirac [286]. Gallai also
had several interesting conjectures on colour critical graphs. One of them, on the
independence number of a 4-chromatic colour-critical graph, was disproved by a
construction of Brown and Moon [157], and then by Simonovits [753] and Toft [807].
The disproof was strongly connected to a hypergraph extremal problem discussed
also by Brown, Erdős, and Sós [154]. Lovász improved the corresponding results,
proving the following sharp and much more general result (Fig. 5).

Theorem 3.4 (Lovász (1973, 1978), [586, 587]) Let αk(n) denote the maximum
number of independent vertices in a k-critical graph on n vertices. Then

n − 2kn1/(k−2) ≤ αk(n) ≤ n − (k/6)n1/(k−2).

The lower bound is based on generalizing the Brown–Moon construction and the
upper bound improves the result of Simonovits, α4(n) ≤ n − c2n2/5. Simonovits in
[753, 754] used a hypergraph extremal problem, where the excluded hypergraphs
were 3-uniform double-cones.59 One of his results was basically equivalent to a
results of Brown, Erdős, Sós [154], where the excluded graphs were all the triangu-
lations of a 3-dimensional sphere (the double cones are among these hypergraphs).
Actually, Simonovits proved

Theorem 3.5 (Simonovits [753]) If C3
r denotes the (infinite) family of 3-uniform

r-cones, then
ex3(n, C3

r ) = O(n3− 1
r ).

58More precisely, edge-colour-critical graph.
59An r -cone is a 3-uniform hypergraph obtained from a cycle x1, . . . , xk by adding r new vertices
y1, . . . , yr and all the triples y j xi xi+1 (where xk+1 = x1).
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(Watch out, here the subscript r is not the number of vertices!) Simonovits, and
then Toft, and Lovász, reduced the general case of the Gallai problem to the case
when each x ∈ X had degree d(x) = k − 1, and these vertices x defined a (k − 1)-
uniform hypergraph Hm on the remaining vertex-set M := V (Gn) − X . Simonovits
proved (for k = 4) that this hypergraphHm does not contain any double-cone. There-
fore e(Hm) = O(m5/2). This led to his estimate. Lovász—starting with the same
approach—excluded many more (k − 1)-uniform hypergraphs. To make his argu-
ment easier to follow, we restrict ourselves to the case k = 4. LetM := {u1, . . . , um}.
The neighbourhoods of ui ’s defined a 3-uniform hypergraph on [1, m], and Lovász
attached to each ui a 0-1 vector of length

(m
2

)
, where, for a neighbourhood N (ui ) =

{a, b, c}, Lovász put 1’s into the places (a, b), (b, c), and (c, a), thus obtaining a 0-1
vector xi of length

(m
2

)
, with three coordinates equal to 1’s (and all the others were

equal to 0). The 4-criticality implied that these vectors were linearly independent.60

Therefore, their number was at most
(m

2

)
, i.e., we obtained that e(Hm) = |X | ≤ (m

2

)
.

This gave the upper bound in Theorem 3.4.
So he used the Linear Algebra method, basically unknown those days, to get the

sharp result in his extremal graph problem. That gave a sharp result also in the Gallai
problem.

Remark 3.6 For any monotone graph property P we may define the critical struc-
tures: Gn belonging to P but after the deletion of any edge (or, in other cases, any
vertex) we get a graph outside of P . If we have a graph-parameter on graphs, then
criticality mostly means increasing/decreasing this parameter by deleting any edge.
Criticality was discussed for the stability number, chromatic numbers, diameter, and
can be investigated for many other monotone properties. Among criticality problems
colour-criticality seems to be one of the most interesting ones.

The fascinating area of colour-critical graphs was started by G. Dirac, see e.g.,
Dirac [243, 245] and Erdős [286]. There are several results on it in the Lovász
book [589]. We skip here the topic of colour-critical hypergraphs, listing just a few
fascinating results on them: e.g., Abbott and Liu [2] and results of Krivelevich [556].
Deuber, Kostochka, and Sachs [238], Rödl and Siggers [704] and Anstee, Fleming,
Füredi, and Sali [50, 384]. Toft [807], and Simonovits [753], Rödl and Tuza [707],
Sachs and Stiebitz [712–714] Stiebitz, [783] Kostochka and Stiebitz [552], Stiebitz,
Tuza, and Voigt [784].

See also the survey of Sachs and Stiebitz [714].

We conclude this part with two open problems.

Problem 3.7 (Erdős) Is it true that if (Gn) is a sequence of 4-critical graphs, then
dmin(Gn) = o(n)?

Simonovits [753] and Toft [807] constructed 4-colour-critical graph sequences
(Gn) with dmin(Gn) > c 3

√
n.

60In graph-theoretical language, Lovász excluded all the 3-graphs for which the Sperner Lemma
holds: for which each pair was contained by an even number of triples.
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Problem 3.8 (Linial) How many triples can a 3-uniformHn have without containing
a triangulation of the torus.61

Remark 3.9 In some sense this geometric/linear algebraic approach helped Lovász
to solve the famous Shannon conjecture on the capacity of C5, in [588].

4 Methods: Randomness and the Semi-random Method

Of course, the title of this chapter may seem too pretentious. We shall skip several
important methods and related results here, or just touch on them, primarily since
they are well described in several other places, and partly since the bounded length
of this survey does not allow us to go into details.

Thus we shall skip most of the results directly connected to random graphs or
random graph constructions, while we shall touch on the pseudo-random graphs.
For random methods, the readers are referred to the books of Alon and Spencer [48],
Bollobás [121], or that of Janson, Łuczak, and Ruciński [476], the survey of Molloy
[614], or the book of Molloy and Reed [615].

Here of course most of these sources are well known, like e.g., the books [48]
or [476]; we mention only Molloy’s excellent chapter [614], which is a survey on
this topic, and perhaps got less attention than it deserves. It contains many important
details and explanations, and perhaps would fit the best to our topic, with the exception
that it concentrates more on colouring and we concentrate more on independent sets
in particular graphs.62

Listing the methods left out here, we should mention the extremely important
works on the Hypergraph Regularity Lemma, primarily that of Frankl and Rödl
[358] on 3-uniform hypergraphs, (This was among the first ones). Of course, we
should mention the whole school of Rödl, among others, e.g., the papers of Rödl,
Nagle, Skokan, Schacht, and Kohayakawa, [527, 687]63 Rödl and Schacht [701],
Rödl and Skokan [705, 706], and Kohayakawa, and many further results, and, on the
other hand, related to this, several works of Tim Gowers [403, 404], Green and Tao
[418] Terry Tao [798] …

4.1 Various Ways to Use Randomness in Extremal Graph
Theory

Random graphs are used in the area discussed here in several different ways.

61Observe that this is motivated by [154], and that we formulated it in its simplest case, however,
we (more precisely, Nati Linial) meant a whole family of problems. He spoke about them in his
talk in the Lovász Conference, 2018.
62The same applies to the book of Molloy and Reed [615].
63This is a PNAS “survey”, with an accompanying paper of Solymosi [770].
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(a) There are many cases where constructions seem unavailable but random graphs
may be used to replace them. We have mentioned the Erdős Magic [261]. Another
similar direct approach of Erdős and Rényi [306] was that

ex(n, L) ≥ cLn2−v(L)/e(L). (11)

(b) In other cases we use modified random graphs: (11) is useless for cycles, but the
modified random graph (in the simplest case the First Moment Method) worked
in the papers of Erdős [263, 264], and in many similar cases. We mention here
the Erdős-Spencer book [320], and its follower, the very popular book of Alon
and Spencer [48].

(c) Since the very important paper of Erdős and Rényi [306]—on the evolution
of Random Graphs,—the investigation of the changes/phase-transitions in the
structure of Random Graphs, as the number of edges is slowly increasing—
became a central topic of Combinatorics. Probably the first profound book on
this was that of Bollobás [121]. Also we should definitely mention here the newer
book of Janson, Łuczak, and Ruciński [476], and the Molloy–Reed book [615].

(d) Extremal graph theory optimizes on a Universe, and this Universe may be the
family of Random Graphs.64 Since a question of Erdős was answered by Babai,
Simonovits, and Spencer [56], (here Theorem 5.43) this also became a very
interesting and popular topic. We shall return to this question in Sect. 5.7.

(e) The Semi-random method was introduced by Ajtai, Komlós, and Szemerédi,
for graphs in [10] (to be applied in Combinatorial Number Theory, to Sidon
Sequences), and later Rödl, in his famous solution of the Erdős-Hanani prob-
lem [296] about block designs developed the absolutely important method, now
called the Rödl Nibble [684].

In this short part we describe the Semi-Random method and the Rödl Nibble
very superficially. According to their importance we should provide here a longer
description, but the Rödl Nibble has an excellent description, a whole chapter, in the
Alon–Spencer book [48], and it is more complicated and technical than that we could
easily provide a sufficiently detailed description of it. (Beside referring to the Rödl
Nibble, described in [48], we also mention the original Komlós–Pintz–Szemerédi
paper [536], to see the origins, and also the Pippenger–Spencer paper [652], and
the Jeff Kahn paper [482] proving the asymptotic weakening of the very famous
Erdős–Faber–Lovász conjecture. (The Jeff Kahn paper also contains a fairly detailed
description of the method.) The more recent paper of Alon, Kim, and Spencer [37]
is also related to the previous topic.

64Again, this case differs from the others: if we try to optimize some parameter on all n-vertex graphs,
or on the subgraphs if the d-dimensional cube,…, that problem is well defined for individual graphs,
while the assertions on the subgraphs of a random graphs make sense only in some asymptotic sense,
the assertions always contain the expression “almost surely as n → ∞”.
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4.2 The Semi-random Method

The semi-random method was introduced for graphs by Ajtai, Komlós, and Sze-
merédi [10], in connection with infinite Sidon sequences. Later it was extended by
Komlós, Pintz, and Szemerédi to 3-uniform hypergraphs in [536], to disprove a
famous conjecture of Heilbronn, discussed in Sects. 4.7–4.9. The method was fur-
ther extended by Ajtai, Komlós, Pintz, Spencer, and Szemerédi in [7] and by Duke,
Lefmann, and Rödl [248].

Here we are concerned with three topics, strongly connected to each other and to
the estimates of the independence number of K3-free graphs, or analogous hypergraph
results. The semi-random method had the form where the independence number of
a graph or a hypergraph had to be estimated from below, under the condition that the
graph had no short cycles. The topics are

(a) Sidon’s problem on infinite sequences. A Sidon sequence is a sequence of
integers in which no two (distinct pairs) have the same sum. What is the maximum
density of such a sequence?

(b) Heilbronn problem for the “minimum areas” in geometric situations.
(c) Ramsey problem R(3, k). This will be obtained as a byproduct, for free.

4.3 Independent Sets in Uncrowded Graphs

A graph, hypergraph H is called Uncrowded if it does not contain short cycles.
For graphs we excluded triangles, for hypergraphs cycles of length 2, 3, or 4. In a
hypergraph a cycle can be defined in several ways. Here a k-cycle (k ≥ 2)65 is a
sequence of k different vertices: x1, . . . , xk−1, xk = x0, and a sequence of k different
edges: E1, . . . , Ek such that xi−1, xi ∈ Ei for i = 1, 2 . . . , k. The cycle above is
called simple if Ei ∩ (∪ j �=i E j

) = {xi−1, xi } for i = 1, 2 . . . , k. In a hypergraph H,
a 2-cycle is a pair of two hyperedges intersecting in at least two vertices; a vertex set
A ⊂ H is independent if it does not contain hyperedges. The maximum size of an
independent set inH is denoted by α(H). There are several lower bounds concerning
independent sets in k-uniform uncrowded hypergraphs, mostly having the following
form:

Hypergraphs having no short cycles have large independent sets.
For ordinary graphs the following theorem, connected to infinite Sidon sequences,

was the starting point.

Theorem 4.1 (Ajtai, Komlós, Szemerédi (1980, 1981), [9, 10]) If in a triangle-free
graph Gn the average degree is t := 2e(Gn)

n , then the independence number

α(Gn) ≥ 1

100
· n

t
log t. (12)

65Often called a Berge k-cycle: in Fig. 14(b) the edges of a C6 are covered by 3-tuples.
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Turán’s theorem, or the greedy algorithm would give only n/t and in the random
graphs we have the extra log t factor. The meaning of this theorem is, perhaps, that
excluding K3 forces a much larger independent set and a randomlike behaviour.

Ajtai, Erdős, Komlós, and Szemerédi also proved

Theorem 4.2 ([6]) If Gn is Kp-free then α(Gn) ≥ c′(n/t) ln A where A = (ln t)/p
and c′ is an absolute constant.

See also Shearer [738–741] and Denley [237].

Proof-Sketch

Originally Theorem 4.1 had two different proofs. One of them was an induction on
the number of vertices, [9], (and a similar, perhaps more elegant proof—also using
induction on n—was given by Shearer for its sharpening, see [738]). The other proof,
from [10] used an iterated random construction which later developed into the Rödl
Nibble. This approach turned out to be fairly important, so we “sketch” its main
idea, suppressing most of the technical details, and following the description from
p10 of [10].

(a) Since Gn is triangle-free, α(Gn) > dmax(Gn) ≥ t . So we may assume that the
degrees are smaller than 1

100 · n
t log t . Similarly, we may assume that t ≥√

n log n, since otherwise t > 1
100

log t
t n, implying (12): F(t) = t−2 log t is mono-

tone decreasing; for t = √
n log n we have F(t) ≈ 1

2n . This proves the assertion.
(b) We select a subset K ⊂ V (Gn) of 1

110 (n/t) independent vertices.
(c) Next we consider a vertex-set M ⊆ V (Gn) − K of ≈ n/2 vertices not joined to

K: we need a lemma about the existence of such an M.
(d) Another lemma assures us that the crucial quantity n/t does not drop too much

when we move from Gn to Gm = G[M]. (It drops only by a factor ϑ := 1 −
1
t − c10

√
t/n > 1 − t1/3.)

(e) If we are lucky, then we can iterate this step ≈ 1
2 log t times: we gain a 1

2 log t
factor and get Theorem 4.1.

(f) On the other hand, if we are “unlucky” and get stuck in the r th step, then for the
corresponding tr we have that it is too large: t−1/3

r > 1/ log t . But then we get in
this last step alone enough independent vertices:

nr

tr + 1
> (log t)−3 n

2r
>

n(log t)−3

√
t

> n
log t

t
.

Summarizing: In the typical case we can choose small independent subsets in V (Gn)

basically log t times to gain a log t factor. It is important that discarding these small
vertex sets, we do not ruin the structure of the remaining part.
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4.4 Uncrowded Hypergraphs

Most probably, the earliest result on hypergraphs using the semi-random method was
the following one.

Theorem 4.3 (Komlós, Pintz, and Szemerédi [536], Lemma 1) There exists a thresh-
old t0 and a constant c > 0 such that if H

(3)
n is a 3-uniform hypergraph on n vertices,

with average degree t (3)(H(3)
n ), and not containing simple cycles of length at most 4,

then for t :=
√

t (3)(H
(3)
n ) > t0, t = O(n1/10), we have

α(H(3)
n ) > c

n

t

√
log t .

The problems we discuss here were reduced to finding lower bounds on the inde-
pendence number α(H) of a graph or hypergraph H under the assumption that H

has no short cycles.66 The above theorem and its versions were enough for the early
applications, in 1980’s, however, as it turned out in [248], only hypergraph cycles of
length 2 had to be excluded: the following much newer generalization can be very
useful in some new applications.

Theorem 4.4 (Duke, Lefmann, and Rödl [248], Theorem 2) Let H be a k-uniform
hypergraph on n vertices. Let � be the maximum degree of H. Assume that � ≤ t k−1

and t > t0. If H doesn’t contain 2-cycles (two hyperedges with at least two common
vertices), then

α(H) = �
(n

t
(log t)

1
k−1

)
.

Theorem 4.4 for k = 3 implies Theorem 4.3. One advantage of it is that in our
applications we may have many simple cycles of length 3 and 4, but Theorem 4.4
still can be applied.

— · —

There are many results in this field. We mention here only (i) Duke, Lefmann, and
Rödl [248] on Uncrowded Hypergraphs, (ii) Bertram-Kretzberg, Hofmeister, and
Lefmann [106, 107], some generalizations and results on the algorithmic aspects of
the Heilbronn Problem: finding efficiently the large independent set in an uncrowded
hypergraph, and (iii) Lefmann and Schmitt [573] and Lefmann [571], on the higher
dimensional Heilbronn problem.

In [10] it is remarked that it is enough to assume that the number of triangles is
small, instead of assuming that there are no K3’s at all. Shearer [738, 739] improved
the constant in Theorem 4.1 in an ingenious way:

66Actually, in [536] one needs to exclude only cycles of length 2, 3, and 4, where a cycle of length
2 is a pair of hyperedges intersecting in at least two vertices. Even this is improved in the next
theorem.
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Theorem 4.5 (Shearer [738]) Let f(t) = t log t−t+1
(t−1)2 . Then for any triangle-free Gn,

with average degree t,
α(Gn) ≥ f(t) · n. (13)

This improves (12), and (in some sense) this is sharp. Related extensions were
found by Denley [237], and by Shearer in cases when we assume that the odd girth
of the graph is large [740], and also when we wish to use finer information on the
degree distribution. Kostochka, Mubayi, and Verstraëte [549] proved some hyper-
graph versions of this theorem, giving lower bounds on the stability number under
the condition that certain cycles are excluded.

4.5 Ramsey Estimates

Observe that—as a byproduct,—Theorem 4.1 immediately yields that

Theorem 4.6 (Ajtai, Komlós, Szemerédi, on Ramsey theorem [9]) There exists a
constant c > 0 such that

R(3, m) ≤ m2

c log m
. (14)

Proof Indeed, if n > m2

c log m , and K3 � Gn , then either Gn has a vertex x of degree
δG(x) ≥ m, yielding an independent m-set NG(x), or by Theorem 4.1,

α(Gn) > c
m2

c log m

m
log m = m

proving Theorem 4.6. �

Theorem 4.6 improves Erdős’ old result [263], by a log m factor.67 For many years
it was open if (14) is just an improvement of the Erdős result or it is a breakthrough.
Jeong Han Kim [515] proved much later, (using among others the Rödl Nibble) that
this bound is sharp.

Theorem 4.7 (Kim, Ramsey (1995), [515])68

R(3, m) ≥ c̃
m2

log m
. (15)

So the r(3, m)-problem is one of the very few nontrivial infinite cases on Ramsey
numbers where the order of magnitude is determined. Bohman and Keevash [115]

67Of course, Shearer’s improvement yields an improvement of c in (14).
68Actually, the proof works with c̃ = 1

162 − o(1).
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and Fiz Pontiveros, Griffiths, and Morris [345] independently proved that R(3, k) ≥
( 1

4 + o(1)) k2

log k . Recently Shearer’s estimate was “strengthened” as follows.

Theorem 4.8 (Davies, Jenssen, Perkins, and Roberts [228]) If Gn is a triangle-free
graph with maximum degree t, and I(Gn) is the family of independent sets in Gn,
then

1

|I(Gn)|
∑

I∈I(Gn)

|I | ≥ (1 + o(1))
log t

t
n.

This is a strengthening in the sense that here the average size is large, but it is a
weakening: it uses the maximum degree, instead of the average degree. For further
details see, e.g., the introduction of [228].

Remark 4.9 The above questions are connected to another important question: under
some condition, what can be said about the number of independent sets in a graph
or a hypergraph? Without going into details, we remark that these questions are
connected to the container method, (for references see the Introduction).

Remark 4.10 Further related results can be found, e.g., in papers of Cooper and
Mubayi, and Dutta [206–208] which count the number of independent sets in triangle-
free graphs and hypergraphs.

4.6 Infinite Sidon Sequences

Finite Sidon sequences are well understood, the maximum size of a Sidon subset
of [1, n] is around

√
n, [178, 324]. However, infinite Sidon sequences seem much

more involved. The greedy algorithm provides an infinite Sidon sequence (an) with
an > cn1/3. This was slightly improved by using Theorem 4.1, but only by 3

√
log n:

Theorem 4.11 (Ajtai, Komlós, and Szemerédi (1981), [10]) There exists an infinite
Sidon sequence B for which, if B(n) denotes the number of elements of it in [1, n],
then

B(n) ≥ c(n log n)1/3.

As it is remarked in [10], Erdős conjectured that B(n) > n(1/2)−ε is possible. As
to Sidon sets, later Theorem 4.11 was improved “dramatically”:

Theorem 4.12 (Ruzsa (1998), [710]) There exists an infinite Sidon sequence B for
which, if B(n) denotes the number of elements in [1, n], then

B(n) ≥ n
√

2−1+o(1).

So the importance of this Ajtai–Komlós–Szemerédi result [10] was that this was
the beginning of the Semi-Random method. The following generalization was proved
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by Cilleruelo [189]. Call a sequence A = {ai }∞i=1 h-Sidon if all the sums ai1 + · · · +
aih are distinct for ai1 ≤ · · · ≤ aih .

Theorem 4.13 (Cilleruelo (2014), [189]) For any h ≥ 2 there exists an infinite h-
Sidon sequence A with

A(n) = n
√

(h−1)2+1−(h−1)+o(1),

where A(n) counts the number of elements of A not exceeding n.

For h = 2 Cilleruelo provides an explicit construction. We remark also that, by
a “random construction” of Erdős and Rényi [305], for any δ > 0, there exists an
infinite sequence Q := (a1, . . . , an, . . . ) for which the number of solutions of ai +
a j = h is bounded, for all h, and ak = O(k2+δ).

4.7 The Heilbronn Problem, Old Results

Problem 4.14 (Heilbronn’s problem on the area of small triangles) Consider n
points in the unit square (or in the unit disk) no three of which are collinear. What is
the maximum of the minimum area of triangles, defined by these points where the
maximum is taken for all n-element point-sets?69

This maximum of the minimum will be denoted by �n . Erdős gave a simple
construction where this minimum area was at least 1

2n2 : for a prime p ≈ n, consider
all the points ( 1

p (i, f(i)), where f(i) = i2 (mod p). So

1

2n2
< �n ≤ 1

n − 1
.

Heilbronn conjectured that � = O( 1
n2 ). This was disproved by

Theorem 4.15 (Komlós, Pintz, and Szemerédi (1981), [535]) �n = �(
log n

n2 ): For
some constant c > 0, for infinitely many n, there exist n points in the unit square for
which the minimum area is at least c log n

n2 .

The proof of Theorem 4.15 is based on Theorem 4.3.

4.8 Generalizations of Heilbronn’s Problem, New Results

Péter Hajnal and Szemerédi [448] used the Duke-Lefmann-Rödl lower bound
(Theorem 4.4) to prove two new geometrical results. The first one [448] is closely
related to Heilbronn’s triangle problem, discussed in [535, 678, 680, 682, 683, 734].

69If three of them are collinear that provides 0.
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Consider an n-element point set P ⊂ E
2. Instead of triangles we can take k-tuples

from P and consider the area of the convex hull of the k chosen points. Denote the
minimum area by Hk(P), its maximum for the n-element sets P by Hk(n). So �n =
H3(n). The best lower bound on H3(n) from [536], and some trivial observations are
summarized in the next line: there exists a constant c > 0 such that

c

√
log n

n2
≤ �n = H3(n) ≤ H4(n) ≤ H5(n) ≤ . . . = O

(
1

n

)
.

We mention two major open problems:

Problem 4.16 Is it true that for any ε > 0, H3(n) = O(1/n2−ε)?
Is it true that H4(n) = o(1/n)?

One is also interested in finding good lower bounds on H4(n). Schmidt [734]
proved that H4(n) = �(n−3/2). The proof is a construction of a point set P by a simple
greedy algorithm. In [106], Bertram-Kretzberg, Hofmeister, and Lefmann provided
a new proof, and extensions of this result. They also asked whether Schmidt’s bound
can be improved by a logarithmic factor. Using the semi-random method, Péter
Hajnal and Szemerédi improved Schmidt’s bound and settled the problem of [106].

Theorem 4.17 (P. Hajnal and E. Szemerédi [448]) For some appropriate constant
c > 0, for any n > 3, there exist n points in the unit square for which the convex hull
of any 4 points has area at least cn−3/2(log n)1/2.

4.9 The Heilbronn Problem, an Upper Bound

The first upper bound was Roth’s fundamental result that �n � 1
n
√

log log n
.70 Schmidt

[734] improved this to �n � 1
n
√

log n
. Roth returned to the problem and improved the

earlier results to �n � 1/n1.117. Not only his bound was much better, his method was
also groundbreaking. He combined methods from analysis, geometry, and functional
analysis. On these results see the survey of Roth [683]. Roth’s result was improved
by Pintz, Komlós, and Szemerédi:

Theorem 4.18 (Pintz, Komlós, Szemerédi [535]) �n � ec
√

log nn−8/7.

70Here f � g is the same as f ≤ cg, for some absolute constant c > 0.
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4.10 The Gowers Problem

P. Hajnal and E. Szemerédi considered the following related but “projective” ques-
tion71:

Problem 4.19 (Gowers [407]) Given a planar point set P, what is the minimum
size of P that guarantees that one can find n collinear points (points on a line) or n
independent points (no three on a line) in P?

Gowers noted that in the grid at least �(n2) points are needed, and if we have 2n3

points without n points on a line, then a simple greedy algorithm finds n independent
points. Payne and Wood [643] improved the upper bound O(n3) to O(n2 log n).
They considered an arbitrary point set with much fewer than n3 points, and without
n points on a line, but they replaced the greedy algorithm by a Spencer lemma, based
on a simple probabilistic sparsification.72

Péter Hajnal and Szemerédi improved the Payne-Wood upper bounds by improv-
ing the methods. They also started with a random sparsification, but after some addi-
tional preparation (getting rid of 2-cycles) they could use the semi-random method
(see [248]) to find a large independent set.

Theorem 4.20 (Hajnal and Szemerédi [448]) There exists a constant C > 0 such
that in any planar point set P of size C · n2 log n

log log n , there are n points that are collinear
or independent.

4.11 Pippenger–Spencer Theorem

In the theory developing around the semi-random methods, one should mention the
papers of Rödl [684], and of Frankl and Rödl [357], …

One important step was the Pippenger–Spencer result [652], asserting that if the
degrees in a k-uniform hypergraph are large and the codegrees are relatively small,
then the hypergraph has an almost-1-factor.

Definition 4.21 A matching of a hypergraph H is a collection of pairwise disjoint
hyperedges. The chromatic index χ′(H) of H is the least number of matchings
whose union covers the edge set of H. The codegree δ�(X) is the number of hyper-
edges containing the �-tuple X ⊆ V (H), and δ�(H) is the minimum of this, taken
over all the �-tuples of vertices in H.

We formulate the theorem, in a slightly simplified form.

71Actually, Hajnal and Szemerédi found this problem on Gowers’ homepage, but, as it turned out,
from [643], originally the problem was asked by Paul Erdős, [285].
72Actually, above we spoke about the “diagonal case” but [643] covers some off-diagonal cases
too.
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Theorem 4.22 (Pippenger and Spencer [652]) For every k ≥ 2 and δ > 0 there
exists a δ′ > 0 and an n0 such that if Hn is a k-uniform hypergraph with n > n0

vertices, and
dmin(Hn) > (1 − δ)dmax(Hn),

and the codegrees are small:

δ2(Hn) < δ′dmin(Hn)

then the chromatic index

χ′(Hn) ≤ (1 + δ)dmax(Hn).

The meaning of the conclusion is that the set of hyperedges can be partitioned into
packings (or matchings), almost all of which are almost perfect. Also the edges can
be partitioned into coverings, almost all of which are almost perfect. This theorem
strengthens and generalizes a result of Frankl and Rödl [357].

4.12 Erdős–Faber–Lovász Conjecture

We close this part with the beautiful result of Jeff Kahn on the famous Erdős–Faber–
Lovász conjecture. Faber writes in [326]73:

“In 1972, Paul Erdős, László Lovász and I got together at a tea party in my
apartment in Boulder, Colorado. This was a continuation of the discussions we had
had a few weeks before in Columbus, Ohio, at a conference on hypergraphs. We talked
about various conjectures for linear hypergraphs analogous to Vizing’s theorem for
graphs (see [327]). Finding tight bounds in general seemed difficult so we created
an elementary conjecture that we thought would be easy to prove. We called this the
n sets problem: given n sets, no two of which meet more than once and each with n
elements, color the elements with n colors so that each set contains all the colors. In
fact, we agreed to meet the next day to write down the solution. Thirty-eight years
later, this problem is still unsolved in general.” (See [676] for a survey of what is
known.)

The original conjecture says:

Conjecture 4.23 If Gn is the union of k complete graphs Kk, any two of which has
at most one common vertex, then χ(Gn) ≤ k.

As we stated, originally the conjecture was formulated using Linear Hyper-
graphs.74 A weakened asymptotic form of this was proved by Jeff Kahn:

73In citations we use our numbers, not the original ones.
74Perhaps the expression “linear hypergraph” was unknown those days.
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Theorem 4.24 (Jeff Kahn (1991), [482]) If A1, . . . , Ak ⊆ [n] are nearly disjoint, in
the sense that |Ai ∩ A j | ≤ 1 for all pairs i �= j , then χ′(H) ≤ (1 + o(1))n.

Jeff Kahn gave an elegant proof of this assertion, and also a clear description of
the sketch of his proof, which is also a nice description of the Semi-Random method.
The proof is based on a technical generalization of the Pippenger–Spencer Theorem
[652].

Remark 4.25 (a) Originally the Erdős–Faber–Lovász conjecture had a slightly dif-
ferent form, see above, or, e.g., Erdős [279]. Jeff Kahn refers to Hindman [464]
who rephrased it in this form. Kahn also remarks that Komlós suggested to prove an
asymptotic weakening.

(b) We also remark that the fractional form of this problem was solved by Kahn
and Seymour [483].

(c) Vance Faber proved [326] that if there are some counter-examples to the
Erdős–Faber–Lovász conjecture, they should be in some sense in the “middle range”,
according to their densities.

Remark 4.26 (On Keevash’ existence-proof of Block designs) One of the recent
results that is considered a very important breakthrough is that of Peter Keevash [500,
501], according to which, if we fix some parameters for some block-designs, and the
corresponding trivial divisibility conditions are also satisfied, then the corresponding
block designs do exist, assumed that the set of elements is sufficiently large. Important
but simpler results in the field were obtained by Richard Wilson [815–818], Vojta
Rödl [684], using—among others—the methods described above, above all, the Rödl
Nibble. The excellent paper of Gil Kalai [484] explains this area: what one tries to
prove and how the semi-random methods are used. As a very important contribution,
approach, see also the papers of Glock, Kühn, Lo, and Osthus [396, 397]. We do not
go into details but again, refer the interested readers to the paper of Kalai written for
the general audience, or, at least, for most of the combinatorics.

5 Methods: Regularity Lemma for Graphs

As we have already stated, Regularity Lemma is applicable in many areas of Dis-
crete Mathematics. A weaker, “bipartite” version was used in the proof of Szemerédi
Theorem [791] according to which rk(n) = o(n). Also weaker versions were used
in the first applications in Graph Theory [711, 790]. The first case when its stan-
dard form (Theorem 5.3) was needed was the Chvátal–Szemerédi theorem [188] on
the parametrized form of the Erdős–Stone theorem.75 The Regularity Lemma is so
successful, perhaps because of the following.

75The question was that if e(Gn) = e(Tn,p) + εn2, how large Kp+1(m, . . . , m) can be guaranteed
in Gn? This maximum m = m(p, ε) had a very weak estimate in [321]. This was improved to
c(p, ε) log n by Bollobás and Erdős [124], which was improved by Bollobás, Erdős, and Simonovits
[127]. Chvátal and Szemerédi needed the Regularity Lemma to get the “final” result, sharp up to a
multiplicative absolute constant.



Embedding Graphs into Larger Graphs: Results, Methods, and Problems 497

To embed a graph H into G is much easier if G is a random graph than if it
is an arbitrary graph. The Regularity Lemma asserts that every graph G can be
approximated by a “generalized random graph”, more precisely, by a “generalized
quasi-random graph”. But then we may embed H into an almost random graph which
is much easier. (Also, many other things are easier for Random Graphs.)

Lovász and Szegedy [595] wrote a beautiful paper on the Regularity Lemma,
where they wrote76:

“Roughly speaking, the Szemerédi Regularity Lemma says that the node set of
every (large) graph can be partitioned into a small number of parts so that the sub-
graphs between the parts are random-like. There are several ways to make this precise,
some equivalent to the original version, some not.…”

To formulate the Regularity Lemma, we define (i) the ε-regular pairs of vertex-sets
in a graph, (ii) the generalized random graphs, and (iii) the generalized quasi-random
graphs.

Given a graph G, with the disjoint vertex sets X, Y ⊆ V (G), the edge-density
between X and Y is

d(X, Y ) := e(X, Y )

|X ||Y | .

Regular pairs are highly uniform bipartite graphs, namely ones in which the density
of any “large” induced subgraph is about the same as the overall density of the whole
graph.

Definition 5.1 (Regular pairs) Let ε > 0. Given a graph G and two disjoint vertex
sets A ⊆ V (G), B ⊆ V (G), we say that the pair (A, B) is ε-regular if for every
X ⊆ A and Y ⊆ B satisfying

|X | > ε|A| and |Y | > ε|B|

we have
|d(X, Y ) − d(A, B)| < ε.77 (16)

We can also describe the Regularity Lemma as a statement asserting that any
graph Gn can be approximated well by generalized random graphs. However, first
we have to define the generalized Erdős–Rényi random graph, then the generalized
quasi-random graph sequences.

Definition 5.2 (Generalized Random Graphs) Given a matrix of probabilities, A :=
(pi j )r×r and integers n1, . . . , nr . We choose the subsets U1, . . . , Ur with |Ui | = ni

and join x ∈ Ui to y ∈ U j with probability pi j , independently.

The generalized quasi-random graphs are obtained when we also fix an ε > 0
and instead of joining Ui to U j using random independent edges, we join them with
ε-regular bipartite graphs of the given density pi j .

76This was formulated by many researchers.
77In random graphs this holds for sufficiently large disjoint vertex sets.
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Regularity Lemma asserts that the large graphs can be approximated by
generalized quasi-random graphs well.

Theorem 5.3 (Szemerédi (1978), [792]) For every ε > 0 and M0 there are two
constants M(ε, M0) and N (ε, M0) with the following property: for every graph Gn

with n ≥ N (ε, M0) vertices there is a partition of the vertex set into ν classes

V = V1 ∪ V2 ∪ . . . ∪ Vν

such that

• M0 ≤ ν ≤ M(ε, M0),
• ||Vi | − |Vj || ≤ 1, (1 ≤ i < j ≤ ν)
• all but at most εν2 of the pairs (Vi , Vj ) are ε-regular.

The lower bound on the number of classes is needed mostly to make the number of
edges within the clusters small. If e.g., M0 > 1/ε, then

∑
e(Vi ) < 1

2εn2. So mostly
we can choose M0 = 1/ε. We do not really need that ||Vi | − |Vj || ≤ 1, however,
we do need that the Vi ’s are not too large. In the applications we very often use the
Reduced graph or Cluster graph Hν defined as follows78:

Definition 5.4 (Cluster Graph Hν = Hν(Gn)) Given a graph Gn , and two constants
ε, τ > 0, the corresponding Cluster Graphs are obtained as follows. We apply the
Regularity Lemma with ε, obtaining the partition V1, . . . , Vν . The vertices of Hν are
the vertex-sets Vi (called Clusters) and we connect the Cluster Vi to Vj if (Vi , Vj ) is
ε-regular in Gn and d(Vi , Vj ) > τ .

Remark 5.5 Mostly we use the cluster graph as follows: (i) We set out with a
graph sequence (Gn), satisfying some conditions P , (ii) take the cluster graphs Hν ,
(iii) derive that (Hν) must have some properties P∗ (because of the combinatorial
conditions on Gn), (iv) therefore we can apply some “classical” graph theorem to
Hν , (v) this helps to describe Hν

79 and (vi) having this information on Hν helps us
to prove what we wanted.

…Or, in case (v-vi), instead of, say, estimating e(Gn), we embed some given graph
Uμ into Hν , and using this, we embed a (much larger) Wm into Gn .

Remark 5.6 Given a graph sequence (Gn), it may happen that we have very different
regular partitions, e.g., in one of them the densities are around 0 and 1, in the other
they are around 1

2 .
The natural question if (ε, τ ) and Gn determine Hν is considered in the paper

of Alon, Shapira, and Stav [46]. The answer is “No, but under some conditions
YES”. However, here the reader should be cautions, we have not defined when do
we consider two regular partitions near to each other.

78Perhaps the name “Reduced Graph” comes from Simonovits, the “Cluster Graph” from Komlós,
and the theorem itself was originally called “Uniformity Lemma”: the name “Regularity Lemma”
became popular only later.
79Estimate e(Hν) or prove some structural property of Hν .
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So the cluster graph is not determined by these parameters, (neither the ε-regular
partition), and τ is much larger than ε, however, in the applications τ → 0 as ε → 0.
(If e.g., we try to embed a relatively small graph (?) with bounded degree �, then
τ ≈ ε1/(2�) is mostly enough for our proofs, see also, e.g., Sárközy, [725].).

There are many surveys on Regularity Lemmas and its applications, e.g., Komlós
and Simonovits [546], Komlós, Shokoufandeh, Simonovits, and Szemerédi [545]; the
survey of Komlós [533] (formally on the Blow-up Lemma) is also very informative,
and we also recommend a more recent survey of Szemerédi [795].

There are several results on sparse graphs, see e.g., surveys of Kohayakawa and
Rödl [528] or of Gerke and Steger on the Sparse Regularity Lemma [392].

There are several works on some other aspects of the Regularity Lemma (or
Regularity Lemmas), e.g., whether one needs exceptional classes, or how many
clusters are needed (see e.g., Gowers [401]), or how can it be viewed from other
points of views, e.g., Tao [798], however, we skip most of them.

Regularity Lemma and Parameters. The Regularity Lemma is very inefficient in
the sense that it works only for very-very large graphs.

There are three natural questions concerning this: (a) do we need the exceptional
cluster-pairs, and (b) how large the threshold n0(M0, ε) must be, (c) how many
clusters are needed. The answer to the first question was given by the “half-graph”
where one must use exceptional pairs. It is not quite clear how many exceptional
pairs are needed in general.

Several results are known according to which if we fix ε > 0 and M0, then we
have to use many-many clusters. The first such result was due to Gowers [401]. (See
also Moshkovitz and Shapira, [621].) For sharper results we refer the reader to Fox,
László Miklós Lovász, and Yufei Zhao [350], …

5.1 Ramsey Problems, Cycles

As to the Ramsey Theory, we shall not introduce the standard notation here. For an
excellent source, see the book of Graham, Rothschild, and Spencer [410].

The Ramsey problems were extended to arbitrary graphs first by Gerencsér and
Gyárfás [390]. Several results were proved in this area by Faudree and Schelp [333–
335], (and some parallel to Faudree and Schelp, by Vera Rosta [677]) and more
generally, by Erdős, Faudree, Rousseau, and Schelp, and others. Bondy and Erdős
[135] formulated several important conjectures for the case when the excluded graphs
are paths, or cycles. In case of cycles, it turned out that the parity of the length of
cycles is also very important. Again, we shall mention only a few related results, and
then mention a few papers: this area is too large to describe it here in more detail.

We have to start with the remark that in most cases considered below the (conjec-
tured) extremal structures come from some “matrix-graph-sequence”: n vertices of
a KN are partitioned into a few classes and then we colour E(KN ) so that the colours
depend only on the classes of the endvertices. These structures are very simple and
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nice, not chaotic/random like at all, so the proofs are also similar to the proofs of some
extremal problems. Often we have some stability of the Ramsey-extremal structures
(Fig. 6).

One of the many questions Bondy and Erdős [135] asked was whether for an odd
n ≥ 3, is it true that Rr (Cn, Cn, . . . , Cn) = 2r−1(n − 1) + 1? The construction sug-
gesting/motivating this conjecture is recursive: for two colours we take two BLUE
complete Kn−1 and join them completely by GREEN edges. If we have already con-
structions on r − 1 colours, take two such constructions, and a new colour, say, RED,
and join the two constructions completely with this new colour. (Watch out, if we use
different sets of colours, there are other, similar but more complicated constructions,
colour-connections between them. As r increases, the number of non-equivalent
constructions increases. For r = 3 we have two similar, yet different constructions.)

Conjecture 5.7 (Bondy and Erdős) Let n be odd. If we r-colour KN for N =
2r−1(n − 1) + 1, then we shall have a monochromatic Cn.

The following approximation of the Bondy–Erdős conjecture, for three colours,
was a breakthrough in this area.

Theorem 5.8 (Łuczak (1999), [600]) If n is odd, then

R(Cn, Cn, Cn) = 4n + o(n).

The proof was highly non-trivial. Applying stability methods, the o(n) was elim-
inated:

Theorem 5.9 (Kohayakawa, Simonovits, and Skokan [530]) If n is a sufficiently
large odd integer, then80

R(Cn, Cn, Cn) = 4n − 3.

Recently Jenssen and Skokan proved the corresponding general conjecture, [479],
for odd cycles, at least if n is large. They use both the Regularity Lemma and the
Stability method, adding some non-linear optimization tools to the usual methods,
too.

1 2UU
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1 2

U

U
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U

Fig. 6 Cycle-Ramsey with three colours

80Watch out, mostly it does not matter, but here, in case of sharp Ramsey results one has to distinguish
the lower and upper Ramsey numbers. The upper one is the smallest one for which there is no good
colouring, here 4k − 3. The lower Ramsey number is R(L1, . . . , Lr ) − 1.
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The situation with the paths and the even cycles is different. We could say that the
reason is that the above colouring contains many monochromatic even cycles. This
is why for three colours the Ramsey number is half of the previous one. Figaj and
Łuczak proved

Theorem 5.10 (Figaj, Łuczak [341]) If α1 ≥ α2,α3 > 0, then for mi := 2�αi n�
(i = 1, 2, 3)

R(Cm1 , Cm2 , Cm3) = (2α1 + α2 + α3)n + o(n).

Corollary 5.11 If m1 ≥ m2 ≥ m3 are even, then

R(Pm1 , Pm2 , Pm3) = m1 + 1

2
(m2 + m3) + o(m1).

In a recent paper Figaj and Łuczak [342] determined the asymptotic value of
R(C�, Cm, Cn), when the parities are arbitrary and the asymptotic values of �/n = α
and m/n = β are given, as n → ∞. We mention here just the following theorem,
that proves a conjecture of Faudree and Schelp.

Theorem 5.12 (Gyárfás, Ruszinkó, Sárközy, and Szemerédi [432]) There exists
an n0 such that if n > n0 is even then R(Pn, Pn, Pn) = 2n − 2, if n is odd then
R(Pn, Pn, Pn) = 2n − 1.

The results listed above use the Regularity Lemma, and one thinks they could be
proved without it, too. The difference between paths and even cycles is not that large:

Theorem 5.13 (Benevides and Skokan (2009), [99]) If n is even, and sufficiently
large, then R(Cn, Cn, Cn) = 2n.

These proofs use (among others) the Coloured Regularity Lemma. Hence all the
assertions not using o(..) are proved only for very large values of n. This area is
again large and ramified. We shall return to some corresponding Ramsey hypergraph
results in Sect. 9.1.

5.2 Ramsey Theory, General Case

Burr and Erdős conjectured [164] that the 2-colour Ramsey number R(Hn, Hn) is
linear in n for bounded degree graphs.81 First some weaker bound was found by
József Beck, but then the conjecture was proved by

Theorem 5.14 (Chvátal–Rödl–Szemerédi–Trotter (1983), [187]) For any � > 0
there exists a constant � = �(�) such that for any Hn with dmax(Hn) < �, we
have R(Hn, Hn) < �n.

81Here by linear we mean O(n).
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The proof was based on the Regularity Lemma, applied to a graph Gn defined by
the RED edges of a RED-BLUE-coloured KN . Then Turán’s theorem and Ramsey’s
theorem were applied to the Coloured Cluster Graph Hν . The RED-BLUE colouring
of KN defines a RED-BLUE colouring of Hν : the cluster-edge Vi Vj gets the colour
which has the majority. Then the proof is completed by building up a RED copy
of Hn in the RED-BLUE KN , if Hν contained a sufficiently large RED complete
subgraph. The next, stronger conjecture is still open.

Conjecture 5.15 (Burr–Erdős) If condition dmax(Hn) < � is replaced by the weaker
condition that for any H ∗ ⊂ Hn we have dmin(H∗) < �, then R(Hn, Hn) = O(n).

Remark 5.16 The actual bound of [187] on the multiplicative constant in
Theorem 5.14 was fairly weak. This was improved in several steps, first by Eaton
[250], then by Graham, Rödl, and Ruciński [411], and finally by Conlon [192], and
Fox and Sudakov [352].

5.3 Ramsey–Turán Theory

When Turán, around 1969 [810], started a series of applications of his graph theorem
in other fields of Mathematics, in some sense it turned out that Tn,p is too regular,
has too simple structure: from the point of view of applications perhaps it would be
better to have a version of his theorem for graphs with less regular, more complicated
structure, but providing better estimates.82 This led Vera Sós, in [773] to ask more
general questions than the original Turán question, and that led her to the Turán-
Ramsey theory. One of her questions was

Problem 5.17 (Sós (1969), [773]) Fix r sample graphs L1, . . . , Lr . What is the
maximum of e(Gn) if the edges of Gn can be r -coloured so that the i th colour does
not contain Li .

The answer was given by

Theorem 5.18 (Burr, Erdős, and Lovász (1976), [167]) For a family {L1, . . . , Lr }
of fixed graphs, let R be the smallest integer for which there exists an m such that if
Tm,R is arbitrarily r-coloured, then for some i the i th colour contains an Li . Then

RT(n; L1, . . . , Lr ) = ex(n, K R−1) + o(n2).

Actually, this easily follows from the Erdős–Stone theorem. (Further, obviously,
we can choose m = ∑

v(Li ).) Later it turned out that the really interesting problem
is to determine RT(n; L1, . . . , Lr−1, o(n)), which in the simplest case r = 2 means
the following.83

82Actually, Turán’s corresponding results, or the Erdős–Sós-type Ramsey–Turán theorems were not
used in “applications”, however the Ajtai–Komlós–Szemerédi-type results are also in this category
and, as we have seen in Sects. 4.2–4.10, they were used in several beautiful and important results.
83One has to be cautious with this notation, when we write o(n) instead of a function f(n).



Embedding Graphs into Larger Graphs: Results, Methods, and Problems 503

Problem 5.19 (Erdős–Sós (1970), [319]) Consider a graph sequence (Gn). Estimate
e(Gn) if L �⊂ Gn , and the independence number, α(Gn) = o(n).

The case of odd complete graphs was solved by

Theorem 5.20 (Erdős and Sós (1970), [319]) Let (Gn) be a graph sequence. If
K2�+1 �⊂ Gn and α(Gn) = o(n), then

e(Gn) ≤
(

1 − 1

�

) (
n

2

)
+ o(n2),

and this is sharp.

Here the sharpness, i.e. the lower bound is easy: let m = �n/�� and embed into
each class of a Tn,� a graph Gm not containing K3, with α(Gm) = o(m). By the
“probabilistic constructions” of Erdős [264] we know the existence of such graphs.84

The obtained graph Sn provides the lower bound in Theorem 5.20: it does not contain
K2�+1 and α(Sn) = o(n).

The problem of estimating RT(n, K4, o(n)) turned out to be much more difficult
and this was among the first ones solved (basically!) by the Regularity Lemma, where
the upper bound was given by Szemerédi [790] and the sharpness of this upper bound
was proved by Bollobás and Erdős [126]. It turned out that

Theorem 5.21 (Szemerédi (1972), [790], Bollobás and Erdős (1976), [126])

RT(n, K4, o(n)) =
(

1

8
+ o(1)

)
n2.

The proof of the upper bound used (a simpler (?) form of) the Regularity Lemma.
The first graph theoretical successes of the Regularity Lemma were on the f(n, 6, 3)-
problem, see Theorem 5.26, and the Ramsey–Turán theory: Theorem 5.21, and its
generalization by Erdős, Hajnal, Sós, and Szemerédi [295], see also [292], and [294]
by Erdős, Hajnal, Simonovits, Sós, and Szemerédi. Since those days this area has
gone through a very fast development, Simonovits and Sós have a longer survey on
Ramsey–Turán problems [767]. However, even since the publication of [767], many
beautiful new results have been proved, e.g., by Mubayi and Sós [626], Schelp [733],
Fox, Loh, Zhao [349], Sudakov [786], Balogh and Lenz [70, 71], and many further
ones.

In the proof of the upper bound of Theorem 5.21 one needed something more than
what was used in the earlier arguments: Until this point in most applications of the
Regularity Lemmas the densities were near to 0 or near to 1. Here the densities in the
Regular Partitions turned out to be near 0 or 1

2 . Fixing the appropriate ε and τ = 4
√

ε,
one important step was that the Cluster Graph Hν was triangle-free: K3 �⊂ Hν , and

84These are the graphs we considered in connection with R(n, 3) in Sect. 2.16. There are many such
graphs obtained by various, more involved constructions.



504 M. Simonovits and E. Szemerédi

another was that in the Regular Partition, d(Ui , U j ) ≤ 1
2 + o(1). This implies the

upper bound in Theorem 5.21, namely

e(Gn) ≤ ex(ν, K3) ·
(

1

2
+ o(1)

) (n

ν

)2 + negligible terms =
(

1

8
+ o(1)

)
n2.

As to the lower bound in Theorem 5.21, the Erdős-Bollobás construction used a
high dimensional isoperimetric inequality, similar to a related construction of Erdős
and Rogers [309]. One remaining important open question is

Problem 5.22 (Erdős) Is RT(n, K (2, 2, 2), o(n)) = o(n2) or not?

Rödl proved that

Theorem 5.23 (Rödl [685]) There exist a graph sequence (Gn) with α(Gn) = o(n)

and K4 �⊂ Gn, K (3, 3, 3) �⊂ Gn for which e(Gn) ≥ 1
8 n2 + o(n2).85

Phase transition. It can happen that f(n) is a “small” function, much smaller than
“just” o(n), say f(n) = o(

√
n), and then we see kind of a phase transition: one can

prove better estimates on RT(n, L , f(n)). In other words, sometimes when f(n) is
replaced by a slightly smaller g(n), the Ramsey–Turán function noticeably drops.
Such result can be found, e.g., in Sudakov [786], in Balogh, Hu, and Simonovits
[69], or in Bennett and Dudek [100],…Bennett and Dudek also list several related
results and papers. Some roots of this phenomenon go back to [293, 295].

We close this part with a two remarks on phase transition results. Perhaps the
simplest approach is to investigate RT (L1, . . . , Lr , f(n)), when we know of f(n)

only that f(n) = o(n), however, f(n)/n → 0 can be arbitrary slow. There are two
directions from here:

(a) when we know of f(n) that f(n)/n → 0 relatively fast, so fast that lim 1
n2

RT (L1, . . . , Lr , f(n)) becomes smaller than for a slightly larger g(n).
(b) The other direction is when we investigate the δ-dependence of

lim inf
1

n2
RT (L1, . . . , Lr , δn).

There are some very new interesting results in both areas, we refer the reader
to the above mentioned [786] and [69], and also to papers of Lüders and Reiher
[605] and of Kim, Kim, and Liu [516] settling several phase-transition problems
earlier unsolved. They determined RT(n, K3, Ks, δn) for s = 3, 4, 5 and sufficiently
small δ, confirming—among others—a conjecture of Erdős and Sós from 1979,
and settling some conjectures of Balogh, Hu, and Simonovits, according to which
RT(n, K8, o(

√
n log n)) = n2

4 + o(n2).

85Actually, Rödl proved a slightly stronger theorem, answering a question of Erdős, but the original
one, Problem 5.22, is still open.
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5.4 Ruzsa–Szemerédi Theorem, Removal Lemma

We start with a slightly simplified version of a result of G. Dirac [244], a generaliza-
tion of Turán’s theorem:

Theorem 5.24 (Dirac (1963), [244]) Let p ≥ 2, q ∈ [1, p] and n ≥ p + q be inte-
gers. If Gn is a graph with e(Gn) > e(Tn,p) edges, then Gn contains a subgraph of
p + q vertices and

(p+q
2

) − (q − 1) edges.

Some related results were also independently obtained by Erdős, see [286], and
also [267]. Erdős asked the following problem.

Problem 5.25 ([267]) LetLk,� be the family of graphs L with k vertices and � edges.
Determine (or estimate) f(n, k, �) := ex(n,Lk,�).

Several results were proved on this problem by Erdős [267], Simonovits [752],
Griggs, Simonovits, and Thomas [421], Simonovits [762] and others. Extending these
types of results to 3-uniform hypergraphs in [154] and then to r -uniform hypergraphs
in [155], Brown, Erdős and Sós started a systematic investigation of fr (n, k, �)

defined as the maximum number of hyperedges an r -uniform n-vertex hypergraph
H(r)

n can have without containing some k-vertex subgraphs with at least � hyperedges.
Below mostly we shall restrict ourselves to the case of 3-uniform hypergraphs,

i.e. r = 3. Several subcases were solved in [154], but the problem of f(n, 6, 3), i.e.
the case when no 6 vertices contain 3 triplets, turned out to be very difficult. One can
easily show that f(n, 6, 3) ≤ 1

6 n2. Ruzsa and Szemerédi proved that

Theorem 5.26 (Ruzsa–Szemerédi (1978), [711])

cn · r3(n) < f(n, 6, 3) = o(n2). (17)

The crucial tool was a consequence of the Regularity Lemma:

Theorem 5.27 (Ruzsa–Szemerédi Triangle Removal Lemma) If (Gn) is a graph
sequence with o(n3) triangles, then we can delete o(n2) edges from Gn to get a
triangle-free graph.

Clearly, (17) implies Roth theorem that r3(n) = o(n). There is a more general
form of Theorem 5.27, the so called Removal Lemma:

Theorem 5.28 (Removal Lemma) If v(L) = h, then for every ε > 0 there is a δ > 0
for which, if a Gn contains at most δnh copies of L, then one can delete εn2 edges to
destroy all the copies of L in Gn.

Remark 5.29 (Induced matchings) Let us call some edges of a graph Gn Strongly

Independent, if there are no edges joining two of them. The Ruzsa–Szemerédi theo-
rem can be formulated also without using hypergraphs. Indeed, for each x ∈ V (H),
the link of x , i.e. the pairs uv forming a hyperedge in H with x , form a so-called



506 M. Simonovits and E. Szemerédi

induced matching: not only its edges are independent but they are pairwise
strongly independent.86 So the Ruzsa–Szemerédi theorem has the following
alternative form:

Theorem 5.30 (Ruzsa–Szemerédi [711]) If E(Gn) can be covered by n induced
matchings, then e(Gn) = o(n2).

For some further applications
87 and results connected to Induced Match-

ings see also the papers of Alon, Moitra, and Sudakov [40], and also of Birk, Linial,
and Meshulam [110]. Alon, Moitra, and Sudakov describe several constructions
and their applications (in theoretical computer science) connected to the Ruzsa–
Szemerédi theorem, more precisely, to dense graphs that can be covered by a given
number of induced matchings.

Remark 5.31 Among the original questions of Brown, Erdős, and Sós, the estimate
of f(n, 7, 4) is still unsolved. For some special graphs connected to groups, Solymosi
[772] has a solution. Actually, very recently Nenadov, Schreiber, and Sudakov [631]
extended this result.

Remark 5.32 (a) Though Theorem 5.28 was not explicitly formulated in [711],
implicitly it was there. Later it was explicitly formulated, e.g., in the paper of Erdős,
Frankl, and Rödl [288] and Füredi [371, 372], and soon it became a central research
topic, partly because it is often applicable and partly because—though for ordinary
graphs the Removal Lemma easily follows from the Regularity Lemma, for hyper-
graphs everything is much more involved.

(b) The Ruzsa–Szemerédi theorem was extended by Erdős, Frankl, and Rödl [288]
to r -uniform hypergraphs. They proved that

fr (n, 3r − 3, 3) = o(n2).

(c) Actually, f(n, 6, 3) is a fixed function of n, and—though [711] asserts only
that f(n, 6, 3) = o(n2),—it has some better asymptotics and they are very interesting
and important, since these results have many applications. J. Fox gave a new, more
effective proof of the Removal Lemma [347], not using the Regularity Lemma,
leading also to better estimates on f(n, 6, 3), according to which

f(n, 6, 3) <
n2

2log∗ n
. (18)

(d) A more detailed description of this topic can be found in two surveys of Conlon
and Fox [194, 195]. We skip all the details connected to “Tower” functions and
“Wowzer” functions,88 (which show that the Regularity-Lemma methods are very

86Here we assume that the mindegree is at least 3.
87Some applications of the Ruzsa–Szemerédi theorem are given in Sect. 5.5.
88With the exception of the next theorem.
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inefficient). Conlon and Fox discuss the estimates connecting the various parameters,
in details.

(e) Some related results and generalizations were proved by Sárközy and Selkow
[727, 728], and by Alon and Shapira [45]. The emphasis in [45] is on obtaining a
new lower bound to generalize Theorem 5.26.89

(f) The Ruzsa–Szemerédi removal lemma was applied also by Balogh and Petříč-
ková [84], to give a sharp estimate on the number of maximal triangle-free graphs Gn .

We close this part with quoting a result of Jacob Fox. Let TF(t) be the “tower”
of 2’s of height t : TF(1) = 2 and TF(t + 1) = TF(2TF(t)).

Theorem 5.33 (Fox [347]) Fix a sample graph Lh (on h vertices) and an ε > 0.
Let δ := 1/T F(�5h4 log 1/ε�). Every Gn with at most δnh copies of Lh can be made
Lh-free by removing at most εn2 edges.

Remark 5.34 The surveys of Conlon and Fox, e.g., [195] also discuss the connection
of property testing if Gn contains an induced copy of H , and its connection to the
“Induced Removal Lemma”.

The interested reader is recommended to read [347] or the survey of Conlon and
Fox [195].

— · —

Remark 5.35 (a) Mostly we skip the references to graph limits, however, here we
should mention the Elek-Szegedy Ultra-product approach to graph limits, and within
that to the Removal Lemma, see [251, 252].

(b) T. Tao also has a variant of the Hypergraph removal lemma [799] which he
uses to prove a Szemerédi-type theorem on the Gaussian primes [800].

Remark 5.36 (Szemerédi theorem and the Clique-union Lemma) V. Rödl, as an
invited speaker of the ICM 2014, in Seoul, spoke about the relations described above.
Generalizing the above approach, Peter Frankl and he tried to prove rk(n) = o(n),
using this combinatorial approach. The reader is suggested to look up the movie
about his lecture (ICM 2014 Video Series, Aug 21).

Some generalizations. The Ruzsa–Szemerédi theorem has two parts, and both have
several important and interesting generalizations, yet, in this paper we mostly skip
the results connected to the lower bounds. Several related results can be found in the
papers of Erdős, Frankl, and Rödl [288], or e.g., in the paper of Füredi and Ruszinkó
on excluding the grids [383], and also in Sárközy and Selkow [728], and Alon and
Shapira [45].

Remark 5.37 Solymosi tried to formulate a non-trivial Removal Lemma for bipartite
excluded graphs, however Timmons and Verstraëte [806] provided infinitely many
“counterexamples”.

89Actually, this assertion is somewhat more involved, see the introduction of [45].
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5.5 Applications of Ruzsa–Szemerédi Theorem

As we have mentioned, one of the early successes of a simpler form of the Regularity
Lemma was the answer to the question of Brown, Erdős, and Sós, according to which
f(n, 6, 3) = o(n2), (and the proof of the triangle removal lemma, implying this). Fox
writes in [347]: “The graph removal lemma has many applications in graph theory,
additive combinatorics, discrete geometry, and theoretical computer science.” Here
we mention two graph theoretical applications, one of which is strongly connected
to Turing Machines.

Füredi Theorem on Diameter Critical Graphs

Call a graph G diameter-d-Critical, if it has diameter d and deleting any edge the
diameter becomes at least d + 1 (or G gets disconnected). Such graphs are, e.g., Ck

or Tn,p. Restrict ourselves to d = 2: consider diameter-critical graphs of diameter 2.
As Füredi describes in [371], Plesník observed [653] that for all known diameter-2-
critical graphs Gn , e(Gn) ≤ � n2

4 �. Independently, Simon and Murty conjectured [170]
that

Conjecture 5.38 If Gn is a diameter-2-critical graph, then e(Gn) ≤ � n2

4 �.

This seemed to be a beautiful but very difficult conjecture. Füredi (1992), [371]
proved it for large n, using the Ruzsa–Szemerédi theorem:

Theorem 5.39 (Füredi (1992), [371]) There exists an n0 such that if n > n0, then
the Murty-Simon conjecture holds.

Remark 5.40 In the proof of Theorem 5.39 we get a very large n0. In some sense The-
orem 5.39 settles the conjecture, at least for most of us. Yet a lot of work has been done
to prove it for reasonable values of n, too. Plesník proved, instead of e(Gn) ≤ 1

4 n2,
that e(Gn) ≤ 3

8 n2, Caccetta and Häggkvist [170] improved this to e(Gn) ≤ 0.27n2,
and G. Fan [328] proved for n > 25 that e(Gn) ≤ 0.2532n2.90

There are many related results proved and some conjectures on the diameter-d-
critical graphs, see e.g., a survey of Haynes, Henning, van der Merwe, and Yeo, [460],
or Po-Shen Loh and Jie Ma [580]. This later one disproves a Caccetta-Häggkvist
conjecture on the average edge-degree of diameter-critical graphs (and contains some
further nice results as well).

Triangle Removal Lemma in Dual Anti-Ramsey Problems

Burr, Erdős, Graham and Sós started investigating the following “dual Anti-Ramsey”
problem [166], (see also [165]):

90Watch out, some of these papers, e.g., [328] are from before Füredi’s result, some others are from
after it.
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Given a sample graph L , n, and E , what is the minimum number of colours
t = χS(n, E, L) such that any graph Gn with E edges can be edge-coloured with
t colours so that all the copies L ⊂ Gn are Rainbow coloured (i.e. the edges are
coloured without colour repetition)?91

They observed that for L = P4 this question can be solved using f(n, 6, 3) =
o(n2). Actually, their solution for L = P4 is reducing the problem to the problem of
estimating f(n, 6, 3). For L = C5 (which seemed one of the most interesting cases),
they proved:
Theorem 4.1 of [166]. There exists an n0 such that if n > n0 and e = � n2

4 � + 1, then

c1n ≤ χS(n, e, C5) ≤
⌊n

2

⌋
+ 3. (19)

Erdős and Simonovits [318], using the Lovász–Simonovits Stability theorem, (see
Subsection 2.15) proved that the upper bound (obtained from a simple construction)
is sharp.

Theorem 5.41 (Erdős and Simonovits) There exists a threshold n0 such that if n >

n0, and a graph Gn has E = � n2

4 � + 1 edges and we colour its edges so that every
C5 is 5-coloured, then we have to use at least

⌊
n
2

⌋ + 3 colours.

To apply the Lovász–Simonovits Stability, they needed the result of [166] on P4.
So, again, the removal lemma was one of the crucial tools. (The application of the
Lovász–Simonovits Stability can be replaced here by a second application of the
Removal Lemma and the Erdős–Simonovits Stability, however that approach would
be less elementary and effective.) They also proved several further results, however,
we skip them. Simonovits has also some further results in this area, e.g., on the
problem of C5 when e(Gn) = � n2

4 � + k, and k is any fixed number, or tending to
∞ very slowly, and also on the problem of C7. Another conjecture of Burr, Erdős,
Graham, and Sós was (almost completely) proved by Sárközy and Selkow [729].

5.6 Hypergraph Removal Lemma?

There are several ways to approach the Removal Lemma and the Hypergraph
Removal Lemma. Rödl and Schacht [702] describe a hypergraph generalization of
the Removal Lemma. In the nice introduction of [702] they also write

“…the result of Alon and Shapira [44] is a generalization which extends all the
previous results of this type where the triangle is replaced by a possibly infinite
family F of graphs and the containment is induced…”.

We have promised to avoid some areas that are much more difficult/technical than
the others. Unfortunately, it is not easy to decide what is “technical”. Komlós and

91The corresponding extremal value will be denoted by χS(n, E, L). Here S stands for “strong” in
χS . It is the strong chromatic number of the v(L)-uniform hypergraph whose hyperedges are
the v(L)-sets of vertices of the copies of L ⊂ Gn .
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Simonovits [546] tried to provide an easy introduction to the Regularity Lemma. If
one knows enough non-discrete mathematics, e.g., compactness, metric spaces, then
the Lovász-Szegedy paper [595] is an easy introduction to the area of connections
of Regularity Lemma and other, related areas.

The situation with hypergraphs is different. That area seems inherently difficult
to “learn”. The paper of Rödl, Nagle, Skokan, Schacht, and Kohayakawa [687] and
the companion paper of Solymosi [770] helps a lot to bridge this difficulty. The
difficulties come from two sources. The first one is that there are useful and not so
useful versions of the Hypergraph Regularity Lemma, and the useful ones are difficult
to formulate. Layers come in, e.g., for 3-uniform hypergraphs: beside considering
the vertices and hyperedges, we have to consider some auxiliary graphs.

In [687] twelve theorems are formulated, the last two are the hypergraph regularity
and the hypergraph counting lemmas. It is nice that the hypergraph removal lemma
keeps its simple form.

Theorem 5.42 (See Theorem 5 of [687]) For any fixed integers � ≥ k ≥ 2 and ε >

0, there exists a ξ = ξ(�, k, ε) and an n0(�, k, ε), such that if F
(k)
� is a k-uniform

hypergraph on � vertices and H
(k)
n in a k-uniform hypergraph of n vertices, with fewer

than ξn� copies of F
(k)
� , then it may be transformed into an F

(k)
� -free hypergraph by

deleting εnk hyperedges.

Solymosi remarked that the appropriate hypergraph removal lemma implies the
higher dimensional version of the Szemerédi theorem. We close this part by quoting
Solymosi [770]:

“There is a test to decide whether a hypergraph regularity is useful or not. Does
it imply the Removal Lemma? If the answer is yes, then it is a correct concept of
regularity indeed. On the contrary, applications of the hypergraph regularity could go
beyond the Removal Lemma. There are already examples for which the hypergraph
regularity method, combined with ergodic theory, analysis, and number theory, are
used efficiently to solve difficult problems in mathematics.”

The hypergraph removal lemma was approached from several directions. Among
others, Tao considered it in [799], Elek and B. Szegedy [251] approached it from the
direction of Non-Standard Analysis, Rödl and Schacht from their general hypergraph
regularity theory.

5.7 The Universe of Random Graphs

The following result answers a question of Erdős:

Theorem 5.43 (Babai, Simonovits, and Spencer (1990), [56]) There exists a p0 < 1
2

such that a random graph Rn,p with edge-probability p > p0 almost surely has the
following property BL , for L = K3: all its triangle-free subgraphs with maximum
number of edges are bipartite.92

92Here “almost surely” means that its probability tends to 1 as n → ∞.
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Actually, they proved much more general results. Consider the following assertion,
depending on L and p.

(BL ,p) All the L-free subgraphs Fn ⊂ Rn,p having maximum number of edges are
χ(L)-chromatic, almost surely, if n > n0(L , p).

They proved (BL ,p) for all cases when L has a critical edge93 and p is nearly
1
2 . They also proved several related weaker results in the general case, when L was
arbitrary, and p > 0. They could not extend their results to sparse graphs, primarily
because that time the sparse Regularity Lemma did not exist. Soon it was “invented”
by Kohayakawa.94 The results of Babai, Simonovits, and Spencer were generalized,
first by Brightwell, Panagiotou, and Steger [148], and then, in various ways, by
others. So the first breakthrough towards sparse graphs was

Theorem 5.44 (Brightwell, Panagiotou, and Steger (2012), [148]) There exists a
constant c > 0 for which choosing a random graph Rn,p where each edge is taken
independently, with probability p = n−(1/2)+ε, the largest triangle-free subgraph Fn

of Rn,p is bipartite, with probability tending to 1.

They remarked that the conclusion cannot hold when p = 1
10

log n√
n

, since these Rn,p

contain, almost surely, an induced C5 whose edges are not contained in triangles of
this Rn,p. All the edges of Rn,p not covered by some K3 ⊂ Rn,p must belong to Fn .
Therefore now C5 ⊂ Fn: Fn is not bipartite. The proof of [148], similarly to that
of the original proof of Babai, Simonovits, and Spencer, uses a stability argument,
however, instead of the original Regularity Lemma it uses the Sparse Regularity
Lemma. In some sense the “final” result was found by DeMarco and Jeff Kahn [235,
236]. They proved (among others) that

Theorem 5.45 (DeMarco and Kahn (2015), [236]) For each r there exists a constant
C = Cr > 0 for which choosing a random graph Rn,p where each edge is taken
independently, with probability

p > Cn− 2
(r+1) log

2
(r+1)(r−2) n,

the largest Kr -free subgraph Tn of Rn,p is almost surely r − 1-partite.

A hypergraph analog was proved by Balogh, Butterfield, Hu, and Lenz [66]. (They
again used the stability approach.)

5.8 Embedding Large Trees

There are many results where one fixes a sample graph L and tries to embed it into
a Random Graph Rn,p. (See e.g., Erdős–Rényi [306].) Here we try to embed a fixed

93See Meta-Theorem 2.19.
94Rödl also knew it, but it seems that he had not published it.
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tree Tm of m ≈ (1 − α)n vertices into a (random) graph Rn . However, we use a
slightly different language.

A relatively new notion of resilience was introduced by Sudakov and Vu [787].
Fix a graph property P . The resilience of Gn is its “edit” distance95 to graphs not
having property P .96 Balogh, Csaba, and Samotij [68] proved

Theorem 5.46 Let α and γ be (small) positive constants and assume that � ≥ 2.
There exists a constant C > 0 (depending on α, γ, and �) such that for all p =
p(n) ≥ C/n, the local resilience of Rn,p with respect to the property of containing
all trees Tm of m := �(1 − α)n� vertices and maximum degree dmax(Tm) ≤ � is
almost surely greater than 1

2 − γ.

As a subcase, this contains

Theorem 5.47 (Balogh, Csaba, and Samotij [68]) Let α be a positive constant, and
assume that � ≥ 2. There exists a constant C > 0 (depending on α, and �) such
that for all p = p(n) ≥ C/n, Rn,p contains all trees Tm of m ≤ (1 − α)n vertices
and maximum degree dmax(Tm) ≤ �, almost surely, as n → ∞.

The proof uses a sparse Regularity Lemma and a theorem of Penny Haxell [457]
on embedding bounded degree trees into “expanding” graphs.

5.9 Extremal Subgraphs of Pseudo-random Graphs

Another direction of research is when the Universe (instead of Random Graphs)
consists of more general objects, say of pseudo-random graphs. These are natural
directions:

(a) whenever we can prove a result for complete graphs Kp, we have a hope to
extend it to any L with critical edges, and

(b) whenever we know something for Random Graphs, there is a chance that it
can be extended to random-looking objects (say to quasi-random graphs, or Pseudo-
Random graphs, or to expanders graphs.97)

We mention here a few such papers: Thomason [803, 804], Krivelevich and
Sudakov [559] are nice and detailed surveys on Pseudorandom graphs. Aigner-Horev,
Hàn, and Schacht [5], and D. Conlon, Fox, and Yufei Zhao [198] also are two more
recent nice papers (surveys?) on this topic. We recommend these papers, and also
Kühn and Osthus [564]. For hypergraphs see, e.g., Haviland and Thomason, [454,
455], or Kohayakawa, Mota, and Schacht [526].

95The “edit” distance is the same used in [751]: the minimum number of edges to be changed to
get from Gn a graph isomorphic to Hn .
96Though we formulate a theorem on the local resilience of graphs for some graph property, we
shall not define here the notion of local and global resilience: we refer the reader to the papers of
Sudakov and Vu [787], or Balogh, Csaba, and Samotij [68], or suggest to read only Theorem 5.47.
97We have defined only the quasi-random graphs here, for pseudo-random graphs see e.g., [559,
803], for expanders see e.g., [20].
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5.10 Extremal Results on “Slightly Randomized” Graphs

Bohman, Frieze, and Martin [113] proved Hamiltonicity for graphs Rn obtained
from a non-random graph G0

n whose minimum degree was d < n/2 where Rn is
obtained by adding to G0

n a random binomial graph Rn,p whose edge-probability
is a small p = pn > 0. Dudek, Reiher, Ruciński, and Schacht continued this line,
using this model, and proving in [247] that the stronger conclusion of Pósa–Seymour
conjecture holds almost surely for the obtained graph, under their conditions: instead
of a Hamiltonian cycle they obtained a power of it.

5.11 Algorithmic Aspects

Whenever we use an existence-proof in combinatorics, it is natural to ask if we can
turn it into an algorithm. This was the case with the Lovász Local Lemma, and this
is the case with the Regularity Lemma, and also with the Blow-up Lemma.

The algorithmic aspects of the Lovász Local Lemma were investigated first by
József Beck [95], and later by Moser and Tardos [619, 620], and many others.

— · —

Alon, Duke, Lefmann, Rödl, and Yuster in [30] showed that one can find the
Regular Partition, and the Cluster Graph of a Gn fairly efficiently. Actually, they
proved two theorems: (a) to decide if a partition is ε-regular is difficult, but (b) to
find an ε-regular partition of a given graph is easy. More precisely,

Theorem 5.48 ((1992), [30]) Given a graph Gn and an ε > 0, and a partition
(V0, . . . , Vk),98 it is Co-NP-complete to decide if this partition is ε-regular.

Theorem 5.49 ([30]) For every ε > 0 and every t > 0, there exists a Q(ε, t) such
that for every Gn with n > Q(ε, n) one can find an ε-Regular Partition (described in
Thm 5.3) in O(M(n)) steps, where M(n) is the “number of steps” needed to multiply
two 0 − 1 matrices over the integers.99,100

The algorithmic problem with the Regularity Lemma is that we may have too
many clusters. Therefore a direct way to transform it into an efficient algorithm may
be hopeless. The Frieze–Kannan version often solves this problem, see Sect. 5.13, or
[364, 365, 485], or Lovász-Szegedy [595].

The above methods were needed and extended to hypergraphs, see e.g., Nagle,
Rödl, and Schacht [629].

98Here we have k + 1 classes, since originally there was also an exceptional class V0, different from
the others. This V0 can be forgotten: its vertices can be distributed in the other classes.
99The theorem also has a version on parallel computation.
100Here we do not define the “steps” and ignore again the difference caused by neglecting V0 in
Theorem 5.3.
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Remark 5.50 We needed this short section here, since it helps to understand the next
part better: otherwise it would come later.

5.12 Regularity Lemma for the Analyst

As soon as the theory of Graph Limits turned into a fast-developing research area,
it became interesting, what happens with the regularity lemmas in this area. As we
have mentioned, Lovász wrote first a long survey [590], then a thick book on graph
limits [591], so we shall not discuss it here, but mention just one aspect. The paper
of Lovász and Szegedy [595] with the title “Szemerédi Lemma for the analyst” not
only described the Regularity Lemma in terms of Mathematical Analysis, but also
described the Weak Regularity Lemma (i.e. the Frieze–Kannan version [365]), and
the Strong Regularity Lemma [33] of Alon, Fischer, Krivelevich, and M. Szegedy,
and connected the Regularity Lemma to ε-nets in metric spaces, and to Compactness.
We quote part of the Introduction of their paper.

“Szemerédi’s regularity lemma was first used in his celebrated proof of the Erdős–
Turán Conjecture on arithmetic progressions in dense sets of integers.101 Since then,
the lemma has emerged as a fundamental tool in Graph Theory: it has many appli-
cations in Extremal Graph Theory, in the area of ‘Property Testing’ in computer
science, combinatorial Number Theory, etc. …Tao described the lemma as a result
in probability. Our goal is to point out that Szemerédi’s lemma can be thought of as
a result in analysis. We show three different analytic interpretations. The first one is
a general statement about approximating elements in Hilbert spaces which implies
many different versions of the Regularity Lemma, and also potentially other approxi-
mation results. The second one presents the Regularity Lemma as the compactness of
an important metric space of 2-variable functions. …The third analytic interpretation
shows the connection between a weak version of the regularity lemma and covering
by small diameter sets, i.e., dimensionality. …We describe two applications of this
third version: …and an algorithm that constructs the weak Szemerédi partition as
Voronoi cells in a metric space.”

Actually, it is surprising that such a short paper can describe such an involved
situation in such a compact way, also including the proofs.

101As we have mentioned, this is not quite true. It was invented to prove a conjecture of Bollobás,
Erdős, and Simonovits on the parametrized Erdős–Stone theorem, and was first used in the paper
of Chvátal and Szemerédi [188]. A weaker, bipartite, asymmetric version of it was used to prove
that rk(n) = o(n).
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5.13 Versions of the Regularity Lemma

There are many versions of the Regularity Lemma. Below we list some of them, with
very short descriptions. Many of them are difficult to invent but have you invented
them, their proofs are often very similar to the original proof. (In case of Hypergraph
Regularity Lemmas the situation is completely different.)

We have already described the Regularity Lemma.

Coloured version. There is an easy generalization of the Regularity Lemma in which
the edges of a graph Gn are r -coloured, for some fixed r , so we have r edge-disjoint
graphs, and we wish to find a vertex-partition which satisfies the Regularity Lemma in
all the colours, simultaneously. This is possible and often needed, e.g., in the Erdős–
Hajnal–Sós–Szemerédi extension of Theorem 5.21 (in [295]), and more generally,
this was used in Ramsey-type theorems and Ramsey–Turán-type theorems, and later
in many similar cases.

Weak Regularity Lemma. There is an important weakening of the Regularity
Lemma, namely the Frieze–Kannan Weak Regularity Lemma [365], see also [364,
366] and the Frieze–Kannan–Vempala approach [367]. The difference between the
Regularity Lemma and the Weak Regularity Lemma is that the later one ensures
ε-regularity only for “much larger subsets”, and (therefore) needs much fewer clus-
ters. Here the Weak ε-regularity means that given a partition U1, . . . , Uk , for a subset
X ⊂ V (Gn) we hope to have

E(X) :=
∑

d(Ui , U j ) · |Ui ∩ X ||U j ∩ X |

edges in G[X ], so we conclude that E(X) is close to e(X).

— · —

While the original algorithm of Frieze and Kannan is randomized, Dellamonica,
Kalyanasundaram, Martin, Rödl, and Shapira [233] provided a deterministic O(n2)

algorithm, analogous to Theorem 5.49, to find the Frieze–Kannan Partition.
This regularity lemma is more connected to Statistics,102 and in many cases, where

one can apply a regularity lemma for an existence proof, the algorithmic versions of
the regularity lemmas provide algorithms in these applications too.

As we wrote, these algorithms are slow because of the very large number of
clusters.103 but in many such cases the Algorithmic Weak Regularity Lemma can
also be used, and then it provides a much faster algorithm, basically because it
requires essentially fewer classes in the weak ε-regular partition.

One should remark that the Frieze–Kannan Regularity Lemma can be iterated and
then it provides a proof of the original Szemerédi Regularity Lemma.

102Principal component analysis, see e.g., Frieze, Kannan, Vempala, and Drineas [246, 367].
103There are many results showing that the number of clusters must be very large. The first such
result is due to Gowers [401].
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On the other end, there is the Strong Regularity Lemma of Alon, Fischer, Kriv-
elevich, and M. Szegedy [33]. The advantage of the Strong Regularity Lemma is
that it can be applied in several cases where the original Regularity Lemma is not
enough, primarily when we are interested in induced subgraphs.

We shall not formulate this strong lemma but include an explanation of it, from
Alon–Shapira [43] (with a slight simplification). Alon and Shapira write:

“…This lemma can be considered a variant of the standard Regularity Lemma,
where one can use a function that defines ε > 0 as a function of the size of the
partition, rather then having to use a fixed ε as in Lemma 2.2.”
Large part of this is described in the paper of Lovász and Szegedy [595].

5.14 Regularity Lemma for Sparse Graphs

The Regularity Lemma can be used in many cases but has several important limita-
tions.

(a) Because of the large threshold n0, one cannot combine it with computer pro-
grams, checking the small cases. In other words, it is a theoretical result but it cannot
be used in practice.

(b) The most serious limitation is that we can apply it for embedding H into G
only if the degrees in H are (basically) bounded.

(c) Another one is that it can be applied only to dense graphs Gn . This problem is
partly solved by the Sparse Regularity Lemma, established by Kohayakawa [524],
and Rödl, see also [528].

For sparse graph sequences, i.e. when e(Gn) = o(n2), the original Regularity
Lemma is trivial but does not give any information. Having a bipartite subgraph
H [U, V ] ⊆ Gn , consider the following “rescaled” density:

dH,p(U, V ) := e(U, V )

p · |U ||V | . (20)

If p > 0 is very small, e.g., p := n−2/3, then the condition

|dH,p(X, Y ) − dH,p(U, V )| < ε

does not say anything without 1/p in (20), but with 1/p it is a reasonable and strong
restriction for sparse graphs. The Sparse Regularity Lemma says that for “nice”
graphs Hn there is a partition V1, . . . , Vν , described in the Regularity Lemma, even
if we use this stronger regularity requirement (20). Which are the “nice” graphs?

(d) Sparse regularity lemmas are well applicable when the graph Gn to be approxi-
mated by generalized quasi-random graphs does not contain subgraphs whose density
is much above the edge-density of Gn , e.g., for some bound b and the edge density
p = e(Gn)/

(n
2

)
,
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E(V1, V2) < bp|V1||V2| if |V1|, |V2| > ηn. (21)

This is the situation, e.g., when we consider (non-random) subgraphs of random
graphs, see Sect. 5.7.

The Sparse Regularity Lemma sounds the same as the original Regularity Lemma,
with two differences: we use the modified uniformity: (20), instead of (16), and the
extra condition (21), for some fixed b.

One of the latest developments in this area is a sparse version of the Regularity
Lemma due to Alex Scott [735]. Scott succeeded in eliminating the extra condition
on the sparse graph that it had no (relatively) high density subgraphs. However, this
had some price, discussed by Scott in Sect. 4 of [735]. This new sparse Regularity
Lemma was used in several cases, e.g., by P. Allen, P. Keevash, B. Sudakov, and
J. Verstraëte, in [19].

Remark 5.51 As we wrote, the Sparse Regularity Lemma can be used basically if
Gn does not contain subgraphs much denser than the whole graph. Gerke and Steger
wrote an important survey about it and about its applicability [392], see also [391]. Its
applicability is discussed (among others) in the paper of Conlon, Gowers, Samotij,
and Schacht [200], with its connection to the Kohayakawa-Łuczak-Rödl conjecture
[525]. We also warmly recommend the paper of Conlon, Fox, and Yufei Zhao [198].

5.15 Quasi-random Graph Sequences

Quasi-random sequences are very important, e.g., in Theoretical Computer Science,
and also very interesting, for their own sake. In Graph Theory they emerged in
connection with some Ramsey problems. The first detailed, pioneering results in this
direction are due to A. Thomason, see e.g., [803, 804]. He was motivated by some
Ramsey Problems.

Chung, Graham, and Wilson [185] developed a theory in which six properties of
random graphs were formulated which are equivalent for any infinite sequence (Gn)

of graphs. The graphs having these properties are called quasi-random.
Quasi-randomness exists in other universes as well, e.g., there exist quasi-random

subsets of integers, groups, see Gowers [405], tournaments, see Chung and Graham
[183, 184], of real numbers, digraphs [338], of hypergraphs, e.g., Chung [180–182],
Rödl and Kohayakawa [528], permutations, see Cooper [205], Král’ and Pikhurko
[555], and in many other settings…

Quasi-randomness and the Regularity Lemmas are very strongly connected. This
was first established in a paper of Simonovits and Sós [765]:

Theorem 5.52 (Simonovits, Sós (1991), [765]) A sequence of graphs (Gn) is p-
quasi-random iff for every κ > 0 and ε > 0, there exist two thresholds k0(ε,κ) and
n0(ε,κ) such that for n > n0(ε,κ) Gn has an ε-Regular Partition where all the
pairs (Vi , Vj ) are ε-regular with densities between p − ε < d(Vi , Vj ) < p + ε and
κ < k < k0(ε,κ).
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Remark 5.53 Actually, a slightly stronger theorem holds. On the one hand, we may
allow ε

(k
2

)
exceptional pairs (Vi , Vj ) to ensure p-quasi-randomness. On the other

hand, if (Gn) is p-quasi-random, we can find a partition where there are no exceptional
pairs.

The corresponding generalization for sparse graphs was proved by Kohayakawa
and Rödl. For a longer and detailed survey see their paper [528].

For further related results see, e.g., Simonovits and Sós [766, 768],
Skokan and Thoma [769], Yuster [822], Shapira and Yuster [737], Gowers on Count-
ing Lemma [403], on quasi-random groups [405], and also Janson [475], Janson and
Sós [477] on the connections to Graph Limits.

A generalization of the notion of Quasi-random graphs was investigated by Lovász
and Sós [594] which corresponds to generalized random matrix-graphs.

5.16 Blow-Up Lemma

Several results exist about embedding spanning subgraphs into dense graphs. Many
of the proofs use a relatively new and very powerful tool, called Blow-up Lemma.
Here we describe it in a fairly concise way. The Blow-up Lemma is mostly used
to embed a bounded degree graph H into a graph G as a spanning subgraph. The
reader is also referred to the excellent “early” survey of Komlós [533] (explaining
a lot of important background details about the Regularity Lemma and the Blow-
Up lemma, and how to use them) or to the surveys of Komlós and Simonovits,
[546], Komlós, Simonovits, Shokoufandeh, and Szemerédi, [545]. The “Doctor of
Sciences” Thesis of Sárközy [723] is also an excellent source in this area. For some
newer results on the topic see e.g., Rödl and Ruciński [688], Keevash [497] who
extended the method to hypergraphs, Sárközy [725], Böttcher, Kohayakawa, and
Taraz, and Würfl [143] who extended it to d-degenerate graphs.104 A long survey
of Allen, Böttcher, Hàn, Kohayakawa, and Person [18] discusses several features of
the Blow-up Lemma applied to random and pseudo-random graphs. Recently Allen,
Böttcher, Hàn, Kohayakawa, and Person extended the Blow-up lemma to sparse
graphs [18].

— · —

We start with a definition.

Definition 5.54 ((ε, δ)-super-regular pair) Let G be a graph, U, W ⊆ V (G) be two
disjoint vertex sets, |U | = |W |. The vertex-set pair (U, W ) is (ε, δ)-super-regular if
it is ε-regular and dmin(G[U, W ]) ≥ δ|U |.

The Blow-up Lemma asserts that (ε, δ)-regular pairs behave as complete bipartite
graphs from the point of view of embedding bounded degree subgraphs. In other

104They call it d-arrangeable.
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words, for every large � > 0 and small δ > 0 there exist an ε > 0 such that if in
the Cluster graph Hν the min-degree condition also holds and we replace the (ε, δ)-
regular pairs (Ui , U j ) by complete bipartite graphs, and then we can embed (the
bounded degree) Hn into this new graph G̃n , then we can embed it into the original
Gn as well. The low degree vertices of Gn could cause problems. Therefore, for
embedding spanning subgraphs, one needs all degrees of the host graph large. That’s
why using regular pairs is not sufficient any more, we need super-regular pairs.
Again, the Blow-up Lemma plays a crucial role in embedding spanning graphs Hn

into Gn .
The difficulty is in embedding the “last few” vertices. The original proof of the

Blow-up Lemma starts with a probabilistic greedy algorithm, and then uses a König-
Hall argument to complete the embedding. The proof is quite involved.

Theorem 5.55 (Blow-up Lemma, Komlós–Sárközy–Szemerédi (1997), [539]) Given
a graph Hν of order ν and two positive parameters δ,�, there exists an ε > 0 such
that if n1, n2, . . . , nr are arbitrary positive integers and we replace the vertices of
Hν with pairwise disjoint sets V1, V2, . . . , Vν of sizes n1, n2, . . . , nν , and construct
two graphs on the same vertex-set V = ⋃

Vi so that
(i) the first graph Hν(n1, . . . , nν) is obtained by replacing each edge {vi , v j } of Hν

with the complete bipartite graph K (ni , n j ) between the corresponding vertex-sets
Vi and Vj ,

(ii) and second, much sparser graph H∗
ν (n1, . . . , nν) is obtained by replacing

each {vi , v j } with an (ε, δ)-super-regular pair between Vi and Vj ,
then if a graph L with dmax(L) ≤ � is embeddable into Hν(n1, . . . , nν) then it is
embeddable into the much sparser H∗

ν (n1, . . . , nν) as well.

The Blow-up Lemma has several different proofs, e.g., Komlós, Sárközy, and Sze-
merédi first gave a randomized embedding [539], and then they gave a derandomized
version [541] as well. Other proofs were given, e.g., by Rödl, Ruciński [688], Rödl,
Ruciński, and Taraz [699], and Rödl, Ruciński, and Wagner [699].

Remark 5.56 G.N. Sárközy gave a very detailed version of the proof of the Blow-up
lemma, [725], where he calculated all the related details very carefully in order that
he and Grinshpun could use it in their later work [422], Theorems 7.22, 7.23: without
this they could prove only a weaker result.

5.17 Regularity Lemma in Geometry

Until now we restricted our consideration to applications of the Regularity Lemma
to embed sparse graphs into dense graphs. The Regularity Lemma has several appli-
cations in other fields as well, and beside this, versions tailored to these other fields.
Here we mention only a few such versions, very briefly.

A theorem of Green and Tao [418] is a good example of this. They prove a so-
called arithmetic regularity lemma that can be applied in Additive Combi-
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natorics, in several problems similar to Szemerédi theorem on arithmetic progres-
sions. However, here we wish to discuss Geometry.

There are several cases where we restrict our consideration to some particular
graphs, e.g., to graphs coming from geometry. In this case one may hope for much
better estimates in some cases than for arbitrary graphs. A whole theory was built
up around such problems, see, e.g., Erdős [260, 270], a survey of Szemerédi [796],
Szemerédi and Trotter [797], Pach and Sharir [640] …or the book of Pach and
Agarwal [639]. We remark here only that the Regularity Lemma also has some
strengthened forms, see, e.g., the improvement of some results of Fox, Gromov,
Lafforgue, Naor, and Pach [348] by Fox, Pach, and Suk [351]…

So the Regularity Lemma can be applied in Geometry in many cases and the fact
that we apply it to a geometric situation implies that in many cases the connection
between the clusters will be a (basically) complete connection, or very few edges,
instead of having randomlike connections. This is not so surprising, since many of
the geometric relations are described by polynomials, or analytic functions, (?) and
in these cases, if we have “many” 0’s of a polynomial (of several variables) then the
corresponding polynomial must vanish everywhere.105 It seems that in most cases
where the Regularity Lemma is used in Geometry, its use can be eliminated.

The interested reader is suggested to read, e.g., the survey of J. Pach [638], or his
book with Agarwal [639], the papers of Alon, Pach, Pinchasi, Radoičić, and Sharir
[41], on semi-algebraic sets, or the paper of Fox, Gromov, Lafforgue, Naor, and
Pach [348], or the paper of Pach and Solymosi, [641], or of J. Pach [637]. The result
of Karasev, Kynčl, Paták, Patáková, and Martin Tancer [487] is also related to this
topic.

6 With or Without Regularity Lemma?

The Regularity Lemma is one of the most effective, most efficient lemmas in Extremal
Graph Theory. In several cases we can prove a result with the Regularity Lemma, but
later we find out that it can easily (or not so easily?) be proven without the Regularity
Lemma as well. So it is natural to ask if it is worth getting rid of the application of
Regularity Lemma, if we can. The answer is not so simple. We should mention a
disadvantage and two advantages of using the Regularity Lemma.

The disadvantage is that it can be applied only to very large graphs. This means
that “in practice it is of no use”. This bothers some people, e.g., those who wish to
find out,—sometimes with the help of computers—the truth for the smaller values
as well. Many of us feel this unimportant, some others definitely prefer eliminating
the use of Regularity Lemma if it is possible. First we quote an opinion against the
usage of the Regularity Lemma. In Sect. 5.5 we discussed the beautiful conjecture
of Murty and Simon on the maximum number of edges a diameter-2-critical graph
can have. We have mentioned that Füredi [371] solved this problem in 1992, using

105One form of this is expressed in the Combinatorial Nullstellensatz of Alon [23].
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the Ruzsa–Szemerédi theorem that f(n, 6, 3) = o(n2). Much later, in 2015, a survey
[460] on the topic described this area very active and wrote:

“The most significant contribution to date is an astonishing asymptotic result due
to Füredi (1992) who proved that the conjecture is true for large n, that is, for n > n0

where n0 is a tower of 2’s of height about 1014. As remarked by Madden (1999),
‘n0 is an inconceivably (and inconveniently) large number: it is a tower of 2’s of
height approximately 1014.’ Since, for practical purposes, we are usually interested
in graphs which are smaller than this, further investigation is warranted.…”

First of all, it is not clear if it is correct to call Füredi theorem an “asymptotic
result”. The advantage of applying the Regularity Lemma is that it often provides a
proof where we have no other proofs, and, in other cases, a much more transparent
proof than the proof without it. (Thus for example, the beautiful theorem of Erdős,
Kleitman, and Rothschild [297] was proved originally without the Regularity Lemma,
but for many of us the Regularity Lemma provides a more transparent proof.)

Perhaps one of the first cases where we met a situation where the Regularity
Lemma could be eliminated was a paper of Bollobás, Erdős, Simonovits, and Sze-
merédi, [128] discussing several distinct extremal problems, and one of them was
which could be considered as one germ of Property Testing:

Problem 6.1 (Erdős) Is it true that there exists a constant Mε such that if one cannot
delete εn2 edges from Gn to make it bipartite then it has an odd cycle C� with � < Mε?

The answer was

Theorem 6.2 (Bollobás, Erdős, Simonovits, and Szemerédi (1977), [128]) YES, if
one cannot delete εn2 edges from Gn to make it bipartite then one can find an odd
cycle C� with � < 1

ε
.

In [128] we gave two distinct proofs of this theorem, one using the Regularity
Lemma and another one, without the Regularity Lemma. Interestingly enough, these
questions later became very central and important in the theory of Property Testing,
but there, in the works of Alon, Krivelevich, Shapira, and others, (see e.g., [33]) it
turned out that such property testing results depend primarily on whether one can
apply the Regularity Lemma or not. Just to illustrate this, we mention from the many
similar results the paper of Alon, Fischer, Newman, and Shapira [34], the title of
which is “A combinatorial characterization of the testable graph properties: It’s all
about regularity”.106

Remark 6.3 Duke and Rödl [249] extended Theorem 6.2 to higher chromatic num-
ber, answering another question of Erdős, see also the ICM lecture of Rödl [686],
and also the result of Alon and Shapira on property testing [43]. (Rödl: “Further
refinement was given by Austin and Tao” [53].)

106Two remarks should be made here: (a) Originally Property Testing was somewhat different,
see e.g., Goldreich, Goldwasser, and Ron [399]. (b) The theory of graph limits also has a part
investigating property testing, see e.g., [138, 140],…, [596].
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So we emphasise again that there are several cases where certain results can be
proved with and without the Regularity Lemma, and the proof with the Regularity
Lemma may be much more transparent, however, the obtained constants are much
worse. Before proceeding we formulate a meta-conjecture about the “elimination”.

Meta-Conjecture 6.4 (Simonovits) The use of the Regularity Lemma can be elimi-
nated from those proofs where

(i) the conjectured extremal structures are “generalized random graphs” with a
fixed number of classes and densities 0 and 1, and

(ii) at least one of the densities is 0 and one of them is 1.

One has to be very careful with this—otherwise informative—Meta-Conjecture:
(a) First of all, mathematically it is not quite well defined, what do we mean by

“eliminating the Regularity Lemma”.
(b) Further, without (ii) the Ruzsa–Szemerédi Theorem could be regarded as a

“counter-example”.107

(c) It is not well defined if using graph limits we regard as elimination of the
Regularity Lemma or not?

(d) The first two-three results which we like proving nowadays to illustrate the
usage of the Regularity Lemma, e.g., the Ramsey–Turán estimate for K4 (Thm 5.21)
and Ruzsa–Szemerédi Theorem, originally were proved using some weaker forms
of the Regularity Lemma.

In several cases originally the Regularity Lemma was used to obtain some results,
but then it was easily eliminated. Such examples are Erdős and Simonovits [315],
or Pach and Solymosi [641], on Geometric Graphs, or results in the paper of Erdős,
S.B. Rao, Simonovits, and Sós, [304]. Often in the published versions we do not
even find the traces of the original proof with Regularity Lemma, anymore …

One interesting case of this discussion is the proof of

Conjecture 6.5 (Lehel’s conjecture [54]) If we 2-colour the edges of KN , then
V (KN ) can be covered by two vertex-disjoint monochromatic cycles of distinct
colours.

Remark 6.6 The first reference to Conjecture 6.5 can be found in the Ph.D. thesis of
Ayel [54]. The conjecture was first proved by Łuczak, Rödl, and Szemerédi [602],
using the Regularity Lemma. Of course, this worked only for very large values
of n. The Regularity Lemma type arguments were eliminated by Peter Allen [14].
The difference between the two proofs is that Allen covers KN by monochromatic
cliques, using Ramsey’s theorem, instead of using Regularity type arguments. Hence
the threshold in the first proof is very large, and in Allen’s proof it is “only” 218000.
Finally, surprisingly, Bessy and Thomassé [108] found a simple and short proof of
the conjecture, without using the Regularity Lemma, or any deep tool, and which
worked for all n.

107Actually, J. Fox eliminated the application of the Regularity Lemma from the proof of the
Triangle Removal Lemma, see Sect. 5.4 or [347].
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— · —

Conjecture 6.5 was extended by Gyárfás to any number of colours:

Conjecture 6.7 (Gyárfás, [291, 424]) If the edges of KN are r-coloured, then V (KN )

can be covered by p(r) = r vertex-disjoint monochromatic cycles (where K1, K2 are
also considered as cycles).

Remark 6.8 This was “slightly” disproved for k ≥ 3 by Pokrovskiy [654]. Here
“slightly” means that in his counterexample there is one vertex which could not
be covered, however, p(r) = r + 1 is still possible. We shall return to the Gyárfás
conjecture (often called Gyárfás-Lehel conjecture) in Sect. 7.4.

Remark 6.9 The results of Bessy and Thomassé and of Erdős, Gyárfás, and Pyber,
(from Sect. 6.5) were extended to local r - colouring by Conlon and Maya Stein
[201], where local r -colouring means that each vertex is adjacent only to at most r
distinct colours, but the total number of colours may be much larger.

6.1 Without Regularity Lemma

There are several cases where eliminating the use of the Regularity Lemma from the
proof is or would be important. Above we discussed this and listed such cases. Here
we mention two further cases. Fox gave a proof of the Removal Lemma without
using the Regularity Lemma, in [347] (slightly simplified in the beautiful survey
of Conlon and Fox [194]). This improves several estimates in some related cases.
Conlon, Fox and Sudakov [197] recently removed using the Regularity Lemma from
the proof of a theorem of Simonovits and Sós [766], which helped to understand the
situation better.

6.2 Embedding Spanning or Almost-Spanning Trees

Originally we planned to write—among others,—about our results on tree embed-
dings: about the solutions of the Erdős–Sós conjecture and the Komlós–Sós conjec-
ture. However, they are described in [386] and in [465–470], respectively, and we
shall return to these topics elsewhere.

There are many results where we try to embed large or actually spanning trees into
a graph Gn . We mention a few of them. Some of them describe a case when Gn is a ran-
dom or random like graph, e.g., pseudo-random, expanding,…If we know something
for random graphs, that often can (easily?) be extended to these cases: quasi-random,
pseudo-random, or expander graphs. The “Resilience results” of Sects. 5.8 and 5.9
were of this type. One of the early results on expander graphs was
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Theorem 6.10 (Friedman and Pippenger [363]) If for every X ⊆ V (Gn), with |X | ≤
2k − 2,

|�(X)| ≥ (d + 1)|X |,

then Gn contains all trees Tk with dmax(Tk) ≤ d.

Remark 6.11 The Friedman-Pippenger theorem “embeds” only relatively small
trees. It was extended by Balogh, Csaba, Pei, and Samotij [67], where a result of
Haxell [456] was simplified, and then used. This guaranteed embedding almost span-
ning trees into “expanding graphs”. We skip the precise formulation and the details,
because they may look technical at first sight.

For some earlier related works see Alon–Chung [29], and Beck [94].

— · —

Now we consider a conjecture of Bollobás [119], on embedding bounded degree
trees, proved by

Theorem 6.12 (Komlós, Sárközy, and Szemerédi [537, 544]) For every ε > 0 and
� > 0, there exists an n0 for which, if Tn is a tree on n vertices with dmax(Tn) ≤ �,
and Gn is a graph on n vertices with

dmin(Gn) ≥ n

2
+ εn, (22)

then Tn ⊆ Gn, assuming that n > n0(�).

Komlós, G. Sárközy, and Szemerédi [544] gave an improvement of Theorem 6.12,
where they proved that a tree Tn can be embedded into Gn even if its maximum degree
is allowed to be as large as large as c n

log n .
Another improvement was

Theorem 6.13 (Csaba, Levitt, Nagy-György, and Szemerédi [215]) (a) For any con-
stant � > 0 there exists a constant c� > 0 such that if Tn is a tree on n vertices with
dmax(Tn) ≤ �, and Gn is a graph on n vertices with

dmin(Gn) ≥ n

2
+ c� log n, (23)

then Tn ⊆ Gn, assuming that n > n0(�).
(b) There exist infinitely many graphs Gn with dmin(Gn) ≥ 1

2 n + 1
17 log n not con-

taining the complete ternary tree T [3]
n .

So the bound in (23) is tight. The proofs in [537, 544] used the Regularity Lemma
and the Blow-up lemma, while [215] did not use them, and provided smaller n0 and
a sharper theorem. B. Csaba also extended the above results to well- separable

graphs:
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Definition 6.14 An infinite graph sequence (Hn) is well- separable, if one can
delete o(n) vertices of Hn so that each connected component of the remaining graph
has o(n) vertices, as n → ∞.

Theorem 6.15 (Csaba [214]) For every ε,� > 0, there exists an n0 = n0(ε,�) such
that if (Hn) is well-separable, n > n0, and dmax(Hn) ≤ �, and

dmin(Gn) >

(
1 − 1

2(χ(H) − 1)
+ ε

)
n, (24)

then Hn can be embedded into Gn.

For trees (or, more generally, for bipartite graphs Hn) (24) reduces to dmin

(Gn) ≥ 1
2 n + εn: Theorem 6.15 is a generalization of Theorem 6.12. Another version

is where we assume that Gn is bipartite, see Csaba [213].

6.3 Pósa–Seymour Conjecture

Speaking of extremal problems, we could consider problems where we ask one of
the following questions:

(a) how large e(Gn) ensures a property P?
(b) how large dmin(Gn) ensures P?
(c) which (Ore-type) degree sum conditions d(x) + d(y) ≥ fO(n,P) ensure P ,

where we assume this only for independent vertices x, y;
(d) Given a graph Gn with the degree sequence d1, d2, . . . , dn , does it ensure P?

In the next part we consider two of these questions: (b), called Dirac-type prob-
lems, and (c) called Ore-type problems.

— · —

Hamiltonicity of graphs is a central problem in graph theory. There are many
results of type (d), where some conditions on the degrees ensure the Hamiltonicity.
In the Introduction we formulated one of the first such results, Theorem 2.65:
Dirac Theorem.

If dmin(Gn) ≥ n/2, and n ≥ 3, then Gn contains a Hamiltonian cycle.

Fig. 7 Square of a cycle
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As we have mentioned, this is sharp. We shall go into two distinct directions from
Dirac’s Theorem: here we shall consider some generalizations for simple graphs,
while in Sect. 9 we shall discuss some hypergraph extensions. A natural question
analogous to Dirac’s theorem was asked by Pósa (see Erdős [267] in 1965). The
reader is reminded that the kth power L := Mk of a graph M is obtained from M by
joining all the pairs of vertices x �= y having distance ρM(x, y) ≤ k (Fig. 7).

Conjecture 6.16 (Pósa) If for a graph Gn dmin(Gn) ≥ 2
3 n, then Gn contains the

square of a Hamiltonian cycle.

This was generalized by Seymour in 1973:

Conjecture 6.17 (Seymour [736]) Let Gn be a graph on n vertices. If dmin(Gn) ≥
k

k+1 n, then Gn contains the kth power of a Hamiltonian cycle.

For k = 1, this is just Dirac’s theorem, for k = 2 the Pósa conjecture. The validity
of the general conjecture implies the notoriously hard Hajnal–Szemerédi theorem
(i.e. Theorem 2.67).108

Remark 6.18 Observe that for � ≥ k + 1, we have Kk+1 = Pk
k+1 ⊆ Pk

� . Hence Tn,k

does not contain Pk
� . On the other hand, Pk

n ⊂ Tn,k+1. This provides some further
motivation for the above conjectures.

In the earlier parts we mostly considered embedding problems where the graph Hm

to be embedded into the “host graph” Gn had noticeably fewer vertices than Gn , and
thus one could use the Regularity Lemma. As we mentioned, when we embed span-
ning subgraphs, the embedding of the last few vertices may create serious difficulties
and this difficulty was overcome by using the Regularity Lemma—Blow-up Lemma
method. First in [540] Komlós, Sárközy and Szemerédi proved Conjecture 6.17 in
its weaker, asymptotic form:

Theorem 6.19 (Pósa–Seymour conjecture - approximate form (1998), [540]) For
any ε > 0 and positive integer k there is an nk(ε) such that if n > nk(ε) and

dmin(Gn) >

(
1 − 1

k + 1
+ ε

)
n,

then Gn contains the kth power of a Hamilton cycle.

Next they got rid of ε in [538, 542]: they proved both conjectures for n ≥ nk ,
without the extra ε > 0.

Theorem 6.20 (Komlós, Sárközy, and Szemerédi [542] For every integer k > 0
there exists an nk such that if n ≥ nk, and

108Actually, this was the motivation for Pósa. (Later the Hajnal-Szemerédi theorem was proved in
simpler ways.)
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dmin(Gn) ≥
(

1 − 1

k + 1

)
n, (25)

then the graph Gn contains the kth power of a Hamilton cycle.

The proofs used the Regularity Lemma [792], the Blow-up Lemma [539, 541]
and the Hajnal–Szemerédi Theorem [444]. Since the proofs used the Regularity
Lemma, the resulting nk was very large (it involved a tower function). The use of the
Regularity Lemma was removed by Levitt, Sárközy and Szemerédi in a new proof
of Pósa’s conjecture in [575]. Much later, finally, Péter Hajnal, Simao Herdade, and
Szemerédi found a new proof of the Seymour conjecture [446] that avoids the use
of the Regularity Lemma, thus resulting in a “completely elementary” proof and a
much smaller nk .

Historical Remarks. Partial results were obtained earlier on the Pósa–Seymour
conjecture, e.g., by Jacobson (unpublished), Faudree, Gould, Jacobson, and Schelp
[331], Häggkvist (unpublished), Genghua Fan and Häggkvist [329], and Fan and
Kierstead [330]. Fan and Kierstead also announced a proof of the Pósa conjecture
if the Hamilton cycle is replaced by Hamilton path. (Noga Alon observed that this
already implies the Alon–Fischer theorem mentioned in Sect. 2.19, since the square
of a Hamilton path contains all unions of cycles.) We skip the exact statements of
these papers, but mention that Châu, DeBiasio, and Kierstead [177] proved Pósa
Conjecture for all n > 8 × 109.

Stability Remark. A crucial lemma of the proof in [446] is a “structural stability”
assertion that for some constant γ > 0, either Gn contains an “almost independent”
set of size n

k+1 or dmin(Gn) < ( k
k+1 − γ)n.

6.4 Ore-Type Results/Pancyclic Graphs

As we have mentioned, Hamiltonian problems, above all, Dirac Theorem on Hamil-
tonicity of graphs, led to several important research directions. Here there is a signif-
icant difference between the graph and hypergraph versions. We shall return to the
Hamiltonicity of hypergraphs in Sect. 9. As to ordinary graphs, some generalizations
are the Ore-type problems, some other ones are the Pósa–Seymour-type generaliza-
tions, discussed in the previous subsection. In an Ore-type theorem we assume that
any two independent vertices have large degree sums. The first such result was

Theorem 6.21 (Ore (1960), [635]) If for any two independent vertices x, y of Gn,
deg(x) + deg(y) ≥ n, then Gn is Hamiltonian.
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Bondy had an important “meta-theorem” according to which conditions implying
Hamiltonicity imply also “pancyclicity”, which means that Gn contains cycles of all
length between 3 and n.109 A beautiful illustration is

Theorem 6.22 (Bondy (1971), [134]) (a) If Gn is Hamiltonian and e(Gn) ≥ � n2

4 �,
then either Gn is pancyclic or Gn = K (n/2, n/2).

(b) Under the Ore condition, for any k ∈ [3, n], Gn contains a Ck, or Gn =
K (n/2, n/2).

Of course, (b) follows from (a) and Ore theorem. Generalizations of these theo-
rems can be found in Broersma, Jan van Heuvel, and Veldman, [149], and in general,
there are very many “pancyclicity” theorems, see e.g., Erdős [278], Keevash, Lee, and
Sudakov [506, 570], Stacho [781], Brandt, Faudree, and Goddard [147], and many
others. (In some sense the Bondy–Simonovits theorem in [136] is also a “weak pan-
cyclic theorem”.) There are also very many results on pancyclic digraphs, see
e.g., Häggkvist and Thomassen [461], Krivelevich, Lee, and Sudakov [557].

For some related results see e.g., Bollobás and Thomason [132, 133]
Brandt, Faudree, and Goddard [147], Favaron, Flandrin, Hao Li, and F. Tian [337],
L. Stacho [781], Barát, Gyárfás, Lehel, and Sárközy [90], Barát and Sárközy [91],
Kierstead and Kostochka [509], Kostochka110 and Yu [553] DeBiasio, Faizullah, and
Khan [230], and many others.

Weakly pancyclic graphs. There are cases when we cannot hope for all cycles
between 3 and n. If a graph Gn contains all cycles between girth(Gn) and its cir-
cumference ◦(Gn),111 then we call it weakly pancyclic, see e.g., Bollobás and
Thomason [132, 133]. We mention a theorem of [132], on the girth, answering some
questions of Erdős.

Theorem 6.23 (Bollobás and Thomason) Let Gn be a graph with (at least) two
distinct Hamiltonian cycles. Then n ≥ �(g(G) + 1)2/4�, and therefore girth(G) ≤√

4n + 1 − 1.

There is a pancyclicity defined for bipartite graphs which considers only even
cycles. The original Bondy–Simonovits theorem was also about such pancyclicity.

Theorem 6.24 (Bondy and Simonovits (1974), [136]) If e(Gn) > 100kn1+(1/k), then
Gn contains cycles of all lengths 2�, for � = k, . . . , �e(Gn)/(100n)�.

109In some cases we have only weaker conclusions, e.g., in the Bondy–Simonovits theorem [136],
and also it may happen in some cases that we get only even cycles! See also the paper of Brandt,
Faudree, and Goddard [147] on weakly pancyclic graphs.
110Kierstead, Kostochka and others have several results where Ore-type conditions imply Hajnal–
Szemerédi-type theorem [509, 512], or a Brooks-type theorem [511].
111The circumference is the length of the longest cycle. Here we exclude the trees.
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Fig. 8 Triangle-cycle TC2�

6.5 Absorbing Method

As we mentioned, when we try to embed a spanning subgraph Hm into a graph Gn ,
i.e. m = n, some difficulties may occur at embedding the “last few vertices”. This
problem is often solved by using the Blow-up Lemma, or the Absorbing Method,
some “Connecting Lemma”, or by some Stability Argument. Mostly we combine
more than one of them. The stability argument in most of these papers has the form
that we distinguish the “nearly extremal” and the “far-from-extremal” cases. Then
we handle these two cases separately: mostly we can handle the far-from extremal
structure “easily”.

We mention among papers combining the Stability and the Absorbing methods the
newest results of Hajnal, Herdade, and Szemerédi [446] on the Pósa–Seymour Con-
jecture, or Balogh, Lo, and Molla, Mycroft, and Sharifzadeh [73–75], on (Ramsey–
Turán-) tiling, (see Sect. 6.7). Below we describe the Absorbing Method.

In the Absorbing Method, depending on the problem, we “invent” an Absorb-

ing Structure, e.g., in the Erdős-Gyárfás-Pyber theorem [291], the Triangle-Cycle
TC2�, (defined below) see Fig. 8. Then we start with choosing a special subset
of vertices, A ⊆ V (Gn), defining this special, absorbing substructure G[A] in our
graph/hypergraph, e.g., in [291] an A spanning a Triangle-Cycle. Next we put aside
A and start building up the whole spanning structure in Gm = Gn − A as we would
do this if m were “noticeably smaller” than n. If the “Absorbing Structure” G[A] is
chosen appropriately, then we will be able to add the last few unembedded vertices
of A at the end: A will absorb/pick up these remaining, uncovered vertices.

We illustrate this, using a proof-sketch of the Erdős-Gyárfás-Pyber theorem. We
shall return to some related newer, sharper results in Sects. 6.7 and 7.4.112

Theorem 6.25 (Erdős, Gyárfás, and Pyber [291]) In any r-colouring of the edges
of KN , we can cover V (Gn) by p(r) = O(cr2 log r) vertex-disjoint monochromatic
cycles.

Remark 6.26 The analogous result for bipartite graphs was proved by Haxell [456].

112A stronger statement is Theorem 7.19.
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The basic structure of the proof is as follows. First we define a “Triangle-Cycle”
TC2� (Fig. 8). Its vertices are x1, . . . , x� and y1, . . . , y�; and its 3� edges are xi xi+1

(where x�+1 := x1), yi xi , and yi xi+1, for i = 1, . . . , �.

(a) First, for some c1 > 0, we find a monochromatic Triangle-Cycle TC2� in Gn ,
with � > c1n.

(b) Next we cover Gm = Gn − TC2� with cr2 log r vertex-disjoint monochromatic
cycles, also allowing to use some vertices from Y = {y1, . . . , y�}.

(c) Finally, we can cover the remaining uncovered vertices with one more monochro-
matic cycle, since our triangle-cycle TC2� has the nice property that deleting any
subset Y ′ ⊆ Y , the remaining TC2� − Y ′ is still Hamiltonian.

The Absorbing Method was used in the paper of Rödl, Ruciński, and
Szemerédi [693], to find a matching in a hypergraph. This seems to be the break-
through point: soon this method became very popular, both for graphs and hyper-
graphs. (In Tables 1–3 we list several graph- and hypergraph applications.) Replacing
the regularity method by the Absorption Method is discussed, e.g., in Szemerédi
[794], Levitt, Sárközy, and Szemerédi [575].

In several cases one uses the Absorbing Method to get sharp results for n > n0

after having already a weaker, asymptotic result. Thus, DeBiasio and Nelsen [232],
improving a result of Balogh, Barát, Gerbner, Gyárfás and Sárközy [60] proved a
conjecture from [60]:

Theorem 6.27 (DeBiasio and Nelsen [232]) For any γ > 0 there exists an n0(γ)

such that if n > n0(γ) and dmin(Gn) > (3/4 + γ)n and E(Gn) is 2-coloured, then
Gn contains two vertex-disjoint monochromatic cycles covering V (Gn).

Similarly, the 3-uniform hypergraph tiling results of Czygrinow, DeBiasio, and
Nagle [221] are the sharp versions of some earlier results of Kühn and Osthus [560]
on hypergraph tiling. Let us repeat that the essence of the Absorption Method is to
construct certain “advantageous configurations”, substructures G[A], in Gn , called
Absorbing Structure, covering a large part (say cn vertices) of the host-graph.
Next—using the standard methods,—we cover all the vertices of Gn − G[A] with
the given configurations and finally we can expand the embedded configuration into
a spanning configuration, using the particular properties of this Absorbing Struc-

ture.Often the largeAbsorbing Structure consists of many small substructures,
and we gain on each of them an uncovered vertex, obtaining at the end a spanning
subgraph, as wanted.

We refer the interested reader to the Rödl-Ruciński-Szemerédi paper [696], using
the “Absorbing Method”, and to the Rödl-Ruciński survey [689], however here we
mostly avoid hypergraphs: we return to them in Sect. 9.113

— · —

113In several cases we must distinguish subcases also by some divisibility conditions: not only the
proofs but the results also strongly depend on some divisibility conditions.
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Table 1 Absorbing method for graphs

Authors Year About what? (or
title)

Methods Where

Erdős, Gyárfás, and
Pyber

1991 Cycle partition
perhaps the first
absorbing?

Absorbing [291] JCTB

Levitt, Sárközy, and
Szemerédi

2010 Pósa, How to avoid
Regularity Lemma
+ Stability

Absorbing
Connecting
Reservoir

DM [575]

Keevash 2014
2018

Existence of designs
one of the most
celebrated results of
these years

Absorption
Nibble
…

Arxiv [500, 501]

Ferber, Nenadov,
Noever, and Peter
škorić

2014
2014

Robust hamiltonicity
of random directed
graphs (resilience)

Connecting
absorbing

Arxiv [339]

Balogh, Molla, and
Sharifzadeh

2016 Triangle factor +
small stable sets,
weighted graphs

Absorption RSA [75]

Barber, Kühn, Lo,
and Osthus

2016 Edge decomposition
of graphs with high
mindeg

Iterative absorption Advances [93]

Balogh-Lo-Molla 2017 Digraph packing
in-out-degree
≥ 7n/18

Stability
Absorption

JCTB [73]

DeBiasio, Nelsen 2017 Strengthening Lehel
conj.

Absorbing JCTB [232]

Glock, Kühn, Lo,
and Osthus

2018 Existence of designs Iterative absorption
connection

Arxiv [397]

Montgomery 2018 Embedding bounded
degree trees into
random graphs until
p = � log5 n/n

Iterative absorption? Arxiv [616]

Hajnal, Herdade, and
Szemerédi

2018 Pósa–Seymour
without regularity
lemma

Absorption
connection

Arxiv [446]

In Table 1 we list just a few successful graph-applications of the Absorb-

ing Method. In some other cases, later, we shall just “point out” that the Absorb-
ing Method was successful, when we discuss the corresponding results, e.g., in
Sects. 6.3, 6.7, 9,…We collected some papers using the Absorbing Method for
hypergraphs in Table 3 (primarily on hypergraph matching) and in Table 2, in Sect. 9
(primarily on Hamiltonian hypergraphs).

These three tables are self-explanatory, however, they contain just a short list
of the applications. We could include several further results, like the results of Lo
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and Markström on multipartite Hajnal–Szemerédi results [576, 579], on graphs and
hypergraphs, or [578]…

6.6 Connecting Lemma, Stability, Reservoir

In Table 1 we see several papers using the Absorbing and the Stability Methods.
We illustrate this on the example of the new proof of the Pósa–Seymour conjecture
[446], by Péter Hajnal, Herdade, and Szemerédi, for sufficiently large n. It has two
subcases. A small α > 0 is fixed and Case 1 (the “non-extremal” one) is when each
X ⊂ Gn of � n

k+1� vertices has e(X) ≥ αn2 edges. The remaining situation is Case 2,
where we use stability:

Theorem 6.28 (Hajnal–Herdade–Szemerédi: Pósa–Seymour, stability [446]) Given
an integer k ≥ 2 and an α > 0, there exists an η = η(α, k) > 0 such that in Case
1 (called α-non-extremal), if dmin(Gn) ≥ (1 − 1

k+1 − η)k, then Gn contains the kth
power of a Hamiltonian cycle.

Whenever we use the Absorbing method, mostly we use some other tools as well,
tailored specifically to the problem in consideration. The Connecting Lemma and
the Reservoir method are combined with the Absorbing Method, e.g., in the earlier
paper of Levitt, Sárközy, and Szemerédi [575] on how to eliminate the use of the
Regularity Lemma and the Blow-up Lemma in the proof of the Pósa conjecture. The
Regularity Lemma, and the Blow-Up Lemma are eliminated in the tree-embedding
paper of Csaba, Levitt, Nagy-György, and Szemerédi [215], using stability and some
“elementary embedding methods”.

The very recent new proof of the Seymour conjecture, by Hajnal, Herdade, and
Szemerédi [446] is much more involved and much longer than the original proof.
Here the authors use a “Connecting Lemma”, asserting that certain parts of Gn can
be connected in many advantageous ways. This means that we have a Gn (with large
minimum degree) and wish to find a Ck+1

n ⊆ Gn . We cover most of the vertices by
Turán graphs Tm,k+1 and Tm,k+2, where m → ∞. Inside these “blocks” we can easily
connect some vertices by (k + 1)th power of a path covering this block, and we must
connect these vertices from the various blocks so that altogether we get a (k + 1)th
power of a Hamiltonian cycle. The Connecting Lemma does this.

6.7 Ramsey–Turán Matching

This subsection is about the fifth line of Table 1, about [75]. The question is:
Does there a new, interesting phenomenon appear when we wish to ensure an

almost perfect tiling, or a Hamiltonian cycle, or some other (almost) spanning con-
figuration in a graph Gn and assume that
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α(Gn) = o(n). (26)

We have to decide if we wish to use that e(Gn) is large or that dmin(Gn) is large. We
know that for ordinary non-degenerate extremal graph problems the edge-extremal
and the degree-extremal problems do not differ too much: if dex(n,L) is the maxi-
mum integer � for which, if Gn is L-free, then dmin(Gn) ≤ �, then

dex(n,L) ≈ 2

n
ex(n,L), (27)

and asymptotically Tn,p is the degree-extremal graph (where p is defined by (4)).
We also saw that if we assume (26) then in some cases (27) can be noticeably
improved, see e.g., Theorem 5.20. In other cases (26) changes the maximum only
in a negligible way. However, one can also ask what happens if we assume (26) in
cases when we wish to ensure a spanning (or an almost-spanning) subgraph, e.g., a
1-factor, or a Hamilton cycle. Anyway, to ensure an (almost) 1-factor, or a Hamilton
cycle it is better to have lower bounds on dmin(Gn) than on e(Gn). Without too much
explanation, we formulate two related results.

Balogh, McDowell, Molla, and Mycroft studied the minimum degree necessary
to guarantee the existence of perfect and almost-perfect triangle-tilings in Gn with
α(Gn) = o(n). Among others, they proved

Theorem 6.29 (Balogh, McDowell, Molla, and Mycroft (2018), [74]) Fix an ε > 0.
If (Gn) is a graph sequence with α(Gn) = o(n) and dmin(Gn) ≥ n/3 + εn, then Gn

has a triangle-tiling covering all but at most four vertices, if n > n0(ε).

Of course, without the extra condition α(Gn) = o(n) we get back to the Corradi–
Hajnal theorem, where dmin(Gn) ≥ 2

3 n is needed. The case when we do not “tolerate”
the four exceptional vertices is described by [75]:

Theorem 6.30 (Balogh, Molla, and Sharifzadeh [75]) For every ε > 0, there exists
a γ > 0 such that if 3|n and

dmin(Gn) ≥
(

1

2
+ ε

)
n, and α(Gn) < γn,

then Gn has a K3-factor.114

The proofs in [75] also use the Stability method and the Absorbing technique of
Rödl, Ruciński, and Szemerédi [694], discussed in Sect. 6.5.

114The paper has an Appendix written by Reiher and Schacht, about a version of this problem,
also using the Absorption technique. In this version they replace the condition that any linear sized
vertex-set contains an edge by a condition that any linear sized set contains “many edges”.
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7 Colouring, Covering and Packing, Classification

The setup. In this section we consider an r -edge-colouring of a KN , or of a ran-
dom graph Rn,p, or of any Gn satisfying some conditions. We have r families of
potential subgraphs, Li , (i = 1, . . . , r ), and try to cover KN with as few monochro-
matic subgraphs Li ∈ Li in the i th colour as possible. However, there are several
types of problems to be considered:

(A) sometimes we wish to cover all or almost all the edges of the coloured graph,
(B) in other cases we wish to cover all the vertices or almost all the vertices with

the vertices of our monochromatic subgraphs.
These are quite different problems and in the next subsection we shall list several

versions of these problems, and in some sense, classify them.
There are several problems/results in Extremal Graph Theory simple to formulate,

and when we combine some of them, we get very interesting new problems. However,
sometimes it is difficult to “classify” these problems. The reader could ask: “Why to
classify them?” The answer is that without some classification one may end up with
a chaotic picture about the whole field. Mostly,

we have a “host graph” Gn satisfying some conditions, e.g., it may be a
complete graph KN , or a random graph Rn,p, or a pseudo-random graph
with many edges, or with large minimum degree. There is also a family L of
“sample” graphs.115 Now, E(Gn) is r -coloured, and

(a) either we wish to partition the vertices of Gn into a few classes, U1, . . . , Ut

so that each G[Ui ] spans a monochromatic Li ∈ L, or
(b) we wish to cover the edges, E(Gn), by a few copies of monochromatic

sample graphs, Li ∈ L, or
(c) we wish to approximate the situation (a) or (b), allowing a few uncovered vertices.

Historical remarks. The case of one colour and vertex-disjoint packing goes back
to several early papers in Extremal Graph Theory: several proofs, e.g., Erdős [265],
or later Simonovits [751], used that large part of the considered Gn can be covered
by vertex-disjoint copies of some L .116 Also this was used in the new proof of the
Pósa–Seymour conjecture, in [446].

Mostly we define K1 and K2 also as monochromatic graphs fromL: this is needed
to ensure the existence of suitable colourings. The graphs in L may have more
restricted or less restricted structure, e.g., they may be (A) all the connected graphs,
or (B) all the trees, or (C) the sets of independent edges, or (D) all the cycles, or (E)
the kth powers of the cycles, or (F) the Hamiltonian graphs, (G) on the other hand,
they may be copies of the same fixed graph L .

We start with Covering Problems where we have only one colour. We could con-
tinue with Ramsey problems, when we wish to find just one monochromatic subgraph

115Here we took Li = L.
116In some sense, this is used also in the original proof of Erdős–Stone theorem [321].
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of a particular type, however, we have already written about Ramsey problems, and
we shall not consider them here.

7.1 The One-Colour Covering Problem

In this section we consider edge-coverings. Here is an early problem of Gallai,
corresponding to the simplest case, to the monochromatic Gn i.e. r = 1.

Question 7.1 Given a sample graph L and a graph Gn , how many copies of L and
edges are enough to cover E(Gn) (in the worst case)? In principle, we may require
that the selected copies of L be (i) edge-disjoint, or (ii) vertex-disjoint, or (iii) we
may allow them to overlap.

Of course, the L-free graphs need e(L) edges, so the L-extremal graphs need
ex(n, L) copies of L or edges. One feels that if e(Gn) is much larger than ex(n, L),
then one may use many copies of L and only a few edges. This motivates many
results in this area. Here one of the first important results is

Theorem 7.2 (Erdős, Goodman, and Pósa (1966), [290]) Any graph Gn can be edge-
covered by � n2

4 � complete subgraphs of Gn.

Remark 7.3 (a) As it is stated in [290], to cover the edges, we may restrict ourselves
to edges and triangles in Theorem 7.2.

(b) Theorem 7.2 is sharp, as shown by Tn,2.
(c) Theorem 7.2 was also proved by Lovász, as remarked in [290].

The extremal number for cycles is n − 1. Erdős and Gallai conjectured (see [290])
and Pyber proved

Theorem 7.4 (Pyber (1985), [667]) Every graph on n vertices can be edge-covered
by n − 1 cycles and edges.

Note that for trees this is sharp. Pyber in [667] proved also some stronger results,
and mentioned that the crucial tool in his proof was the following

Theorem 7.5 (Lovász (1967), [581]) A graph on n vertices can be edge-covered by⌊
n
2

⌋
edge-disjoint path and cycles.

Lovász proved also several related theorems, e.g.,

Theorem 7.6 (Lovász [581]) Any graph Gn can be edge-covered by 2
3 n double-stars

(trees of diameter ≤ 3).

Another result of this (early) Lovász paper is a generalization of the Erdős–
Goodman–Pósa theorem.117

117For some related result for random or quasi-random graphs see [395, 398, 547, 558], and many
others.
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7.2 Embedding Monochromatic Trees and Cycles

In the following parts we consider edge-coloured graphs Gn and try to partition
V (Gn) into a few subsets Vi spanning some monochromatic Hamiltonian cycles,118

or monochromatic powers of Hamiltonian cycles, or spanning trees.
These problems and results are related to Lehel’s Conjecture 6.5 about partitioning

the vertices of edge-coloured graphs into two monochromatic cycles, and the Gyárfás
Conjecture 7.7, (see [429]), about partitioning the vertices of edge-coloured graphs
into given monochromatic trees. Here the colourings are always edge-colourings.119

Gyárfás Tree-Conjecture

The topic of graph packing has at least two larger parts: the vertex-packing and the
edge-packing. Here we are interested in packing some given graphs Hi into a Gn in an
edge-disjoint way. This problem is interesting on its own and also was originally moti-
vated by Theoretical Computer Science, more precisely, by computational com-

plexity, see e.g., the paper of Bollobás and Eldridge [123]. Given some graphs
H1, . . . , H�, their packing means finding the automorphisms π1, . . . ,π� which map
them into KN in an edge-disjoint way.

For a family H1, . . . , Hl of graphs, we say that they pack into G, if they have
edge-disjoint embeddings into G.

Conjecture 7.7 (Gyárfás (1978), [429]) Let for i = 1, 2, . . . , n, Ti be an i-vertex
tree. Then KN can be decomposed into these trees: {Ti } pack into KN .

An asymptotic weakening of the conjecture was proved by Böttcher, Hladký,
Piguet, and Taraz [142], for bounded degree trees.120 This was improved to a sharp
version:

Theorem 7.8 (Joos, J. Kim, Kühn, and Osthus (2016), [481]) For any � > 0 there
exists an n� such that for n > n�, if T1, . . . , Tn are trees with dmax(Ti ) < � and
v(Ti ) = i (i = 1, . . . , n), then E(KN ) has a decomposition121 into T1, . . . , Tn.

Hence the tree packing conjecture of Gyárfás holds for all bounded degree trees,
and sufficiently large n. Beside several further results, [481] also contains the fol-
lowing fairly general result.

Theorem 7.9 Let δ > 0 and � be fixed. LetF be a family of trees T m of the following
properties122:

118Here “G[Vi ] is Hamiltonian” means that it has a spanning cycle.
119We used vertex-colouring in connection with colouring properties of excluded subgraphs, or
equipartitions in Hajnal–Szemerédi theorem, …
120In fact, one can allow the first o(n) trees to have arbitrary degrees.
121I.e. T1, . . . , Tn pack into KN .
122We used superscript since here v(T m) is not necessarily m.
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(i) For each T m ∈ F , v(T m) ≤ n, and dmax(T m) ≤ �.
(ii) For at least ( 1

2 + δ)n values of m v(T m) ∈ [δn, (1 − δ)n].
(iii)

∑
m e(T m) = (n

2

)
.

Then KN can be decomposed into the trees T m.

Remark 7.10 There is a vast literature on this topic and we recommend the reader
to read the introduction of [481], and Gyárfás [426]. For results where we consider
fewer trees, see e.g., Balogh and Palmer [83]. (The main tool of the proof in [83]
is the Komlós–Sárközy–Szemerédi theorem [544] on embedding spanning trees.)
Several related but slightly different problems are discussed, e.g., in the survey of
Kano and Li [486], e.g., it describes several Anti-Ramsey decomposition problems
as well.

— · —

One could ask what happens if we wish to embed some trees into a non-complete
graph Gn . A nice result on this is

Theorem 7.11 (Gyárfás (1989), [425]) If a sequence T1, T2, . . . , Tn−1 of trees can
be packed into KN then they can be packed also into any n-chromatic graph.

7.3 Bollobás–Eldridge Conjecture

Packing problems (strongly connected to Theoretical Computer Science) were dis-
cussed roughly the same time by Bollobás and Eldridge [123], Catlin [175], and
Sauer and Spencer [730]. One of the most important conjectures in the field of
graph-packing is

Conjecture 7.12 (Bollobás–Eldridge (1978), [123]) Let H1 and H2 be two n-vertex
graphs. If

(dmax(H1) + 1)(dmax(H2) + 1) ≤ n + 1,

then there is a packing of H1 and H2, i.e., there are two edge-disjoint subgraphs of
a complete graph KN isomorphic to H1 and H2, respectively.

The complementary form of this problem is

Conjecture 7.13 (Bollobás–Eldridge) Let dmax(Hn) ≤ k. If Gn is a simple graph,
with

dmin(Gn) ≥ kn − 1

k + 1
,

then it contains Hn.

Aigner and Brandt [3], and Alon and Fischer [32] proved the conjecture for
dmax(Hn) = 2, i.e. when Hn is the union of cycles. Csaba, Shokoufandeh, and Sze-
merédi proved this for dmax(Hn) = 3.
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Theorem 7.14 (Csaba, Shokoufandeh, and Szemerédi [217]) If Gn is a simple graph,
with dmin(Gn) ≥ 1

4 (3n − 1), then it contains any Hn for which dmax(Hn) ≤ 3, if n is
sufficiently large.

Csaba [211] also proved this conjecture for dmax(Hn) = 4, and in [212] for bipar-
tite Hn , (where Gn is not necessarily bipartite) and dmax(Hn) ≤ �.

Improving some results of Sauer and Spencer [730] and of Catlin, P. Hajnal, and
Szegedy [447] considered some bipartite packing problems where they proved an
asymmetric version: for the first graph they considered the maximum degree but
for the second one only the average degree, thus improving the previous results for
bipartite graphs.

The reader interested in more details will find a lot of information, e.g., in the
survey of Kierstead, Kostochka, and Yu [514].

7.4 Vertex-Partitioning into Monochromatic Subgraphs
of Given Type

This area has two parts: one about ordinary graphs and the second one about
hypergraphs. The hypergraph results can be found in Sect. 9.8. Here we consider
edge-colourings. Gerencsér and Gyárfás [390] proved that the vertices of any
2-coloured KN can be partitioned into the vertex sets of two monochromatic paths
of distinct colours. Here we consider problems where the vertex set of an r -coloured
graph has to be partitioned into the vertex sets Ui of some given types of monochro-
matic subgraphs. We mention just a few such theorems, to give the flavour of these
results.

Problem 7.15 Given a graph Gn and a family L of graphs. What is the minimum

integer t for which every r -colouring of E(Gn) has a vertex partition V (Gn) =
•⋃

Ui

into t vertex sets so that each G[Ui ] contains a monochromatic spanning Hi ∈ L.123

Gyárfás, Sárközy, and Selkow [436] discussed a natural but much more general
family of problems:

Problem 7.16 Given a family L of graphs, (trees, connected subgraphs, matchings,
cycles,…) and two integers, r ≥ s ≥ 1. At least how many vertices of an r -edge-
coloured KN can be covered by s monochromatic subgraphs Hi ∈ L in this KN ?124

123More generally, we may fix for each colour i a family Li and may try to cover V (Gn) by vertex
disjoint subgraphs Hi ∈ Li .
124Formally we have here two problems, one when we r -colour E(KN ), the other when we r -colour
E(Gn), however, the difference “disappears” if r is large. Further, we may also ask for the largest
subgraph H ⊆ KN that is coloured by at most t colours, which is different from asking for the
largest number of edges covered by t monochromatic Hi ∈ L.
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The simplest case is r = 1, where we use only one colour. Another simple subcase
is when we RED-BLUE-colour the edges of a KN and study how many monochro-
matic cycles are needed (in the worst case) to cover the vertices. We cannot always
partition the edges into monochromatic cycles, unless we agree that the vertices and
the edges are also regarded as cycles.125 In this case we can always partition E(Gn)

into e(Gn) monochromatic “cycles”: real cycles, edges and vertices. The next part
contains some repetition from Sect. 6, primarily from Sect. 6.5. We start with

Conjecture 7.17 (Gyárfás (1989), [424], proved) There exists an integer f (r) inde-
pendent of n such that if E(KN ) is r-coloured, then V (KN ) can always be covered
by f (r) vertex-disjoint monochromatic paths.

Actually, Gyárfás formulated three conjectures in [424]. In the first one he wanted
to cover V (KN ) by f (r) = r vertex-disjoint monochromatic paths, in the second,
weaker one, the vertex-disjointness was not assumed, and the third, weakest one,
was Conjecture 7.17. ( f (r) = r would yield the first conjecture.) Gyárfás proved the
following weakening of his conjectures:

Theorem 7.18 (Gyárfás [424]) There exists an integer f (r) > 0 such that in any
r-colouring of E(KN ) one can cover the vertices by f (r) monochromatic paths.

This result does not assert that the covering paths are vertex-disjoint. The proof
of Gyárfás gave an explicit f (r) ≈ r4. This was improved by Erdős, Gyárfás, and
Pyber in Theorem 6.25: In any r -edge-colouring of KN , one can cover V (Gn) by
p(r) = O(r2 log r) vertex-disjoint monochromatic cycles. This was further improved
by

Theorem 7.19 (Gyárfás–Ruszinkó–Sárközy–Szemerédi [431]) If E(KN ) is r-
coloured, then V (KN ) can be partitioned into O(r log r) vertex-sets of monochro-
matic cycles.

We have to point out two things.
(a) While the problems with cycles and paths are basically of the same difficulty

in the Erdős–Gallai theorems, here the problems on covering with cycles are much
more difficult.

(b) Covering with vertex-disjoint paths/cycles is significantly more difficult than
the case when vertex-disjointness is not assumed.

Here the most important conjecture was

Conjecture 7.20 (Erdős, Gyárfás, and Pyber [291]) In Theorem 7.19 p(r) = r
vertex-disjoint monochromatic cycles are enough.

This was proved for r = 2 by Bessy and Thomassé (see Subsection 7.4) but
“slightly disproved” for r ≥ 3 by Pokrovskiy [654], see Remark 6.8. A whole theory
emerged around this conjecture, and below we provide a very short description of
it, basically following Sárközy’s paper [726], which starts with a good “minisurvey”
about this area. He extends the problem to covering by powers of cycles, (as Pósa
and Seymour extended Dirac’s Hamiltonicity theorem). Sárközy proved

125If for a fixed x , all edges xy are Red, and the other edges are Blue, then we need this.
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Theorem 7.21 (Sárközy (2017), [726]) For every integer k ≥ 1 there exists a con-
stant c(k) such that in any 2-colouring of E(KN ) at least n − c(k) vertices can be
covered by 200k2 log k vertex-disjoint monochromatic kth powers of cycles.

The interested reader is referred to [726]. We shall return to the corresponding
hypergraph problems in Sect. 9.8. We close this part with a result of Grinshpun and
Sárközy [422] on a conjecture of Gyárfás where the cycles are replaced by an arbitrary
fixed family of bounded degree graphs. (This covers the case of the kth powers of
cycles.)

Fix a degree bound � and let F = {F1, F2, . . .} be any given family of graphs,
where Fr is an r -vertex graph of maximum degree at most �.

Theorem 7.22 (Grinshpun and Sárközy [422]) There exists an absolute constant C
such that for any 2-colouring of E(KN ), there is a vertex partition of KN into (vertex
sets of) monochromatic copies of members of F with at most 2C� log � parts.

If F consists of bipartite graphs then 2C� log � can be replaced by 2c�, which is
best possible, apart from the value of the constant c:

Theorem 7.23 (Grinshpun and Sárközy [422]) LetF be a family of bipartite graphs
with maximum degree �. There is an absolute constant c such that for any 2-edge
colouring of KN , there is a vertex partition of KN into (vertex sets of) monochromatic
copies of Fr ∈ F with at most 2c� parts.

These results are strongly connected to some results of Conlon, Fox and Sudakov
[196]. We close this section with an open problem. Related results can be found in
the very recent paper of Bustamante, Corsten, D. Frankl, Pokrovskiy, and Skokan
[169].

Problem 7.24 Do the Grinshpun–Sárközy theorems extend to three colours?

8 Hypergraph Extremal Problems, Small Excluded Graphs

Until now we primarily concentrated on two Universes: graphs and integers. Here we
include a short section on the Universe of hypergraphs. We used hypergraphs, e.g.,
in estimating independence numbers in Sect. 4.3 in “uncrowded graphs and hyper-
graphs”, to improve a Ramsey number estimate, R(3, k), to disprove the Heilbronn
conjecture, see Sect. 4.7, and in case of the infinite Sidon sequences, and several
further results, in Sects. 4.3–4.11. The parts in Sect. 5.5 connected to the Removal
Lemma were also in some sense hypergraph results. Here we “start again”, but go
into other directions. We refer the readers interested in more details to the surveys of
Sidorenko, [749], Füredi [369, 370], G.O.H. Katona [489], Keevash [498], of Kühn
and Osthus [563], and of Rödl and Ruciński [689].

Below, to emphasize that we consider hypergraphs, occasionally we shall use a
different typesetting, e.g., for r -uniform hypergraphs, for the excluded hypergraphs



Embedding Graphs into Larger Graphs: Results, Methods, and Problems 541

we may use L
(r), instead of L , and L(r) for the family of excluded hypergraphs

(Fig. 9).
We start with the case of “Small excluded subhypergraphs”. Here “small” means

that the excluded hypergraphs have bounded number of vertices. In Sect. 9 we shall
consider the case of 1-factors and the problem of ensuring Hamiltonian cycles and
other “spanning” or “almost spanning” configurations. For the sake of simplicity, we
mostly (but not always) restrict ourselves to 3-uniform hypergraphs. The extremal
number for r -uniform hypergraphs will be denoted also by ex(n,L), or, to emphasise
that we consider r -uniform hypergraphs, we may write exr (n,L), or exr (n,L(r)).126

There are many interesting results on hypergraph extremal problems. We mention
the easy theorem of Katona, Nemetz and Simonovits [493], according to which
exr (n,L)/

(n
r

)
is monotone decreasing, non-negative, and therefore convergent.

As for simple graphs, for hypergraphs we can also distinguish degenerate and
non-degenerate extremal graph problems: an r -uniform problem is degenerate if
exr (n,L) = o(nr ). For graphs the Kővári–Sós–Turán theorem was the key in this.
A fairly simple result of Erdős [266] generalizes the Kővári–Sós–Turán theorem.
Let K

(r)
r (t1, t2, . . . , tr ) denote the r -uniform hypergraph in which the vertex set V

is partitioned into V1, . . . , Vr , |Vi | = ti , and the hyperedges are the “transversals”:
r -tuples intersecting each Vi in one vertex (Fig. 10).

Theorem 8.1 (Erdős (1964), [266]) If t = t1 ≤ t2 ≤ . . . ≤ tr , then

exr (n, K
(r)
r (t, t2, . . . , tr )) = O(nr−1/tr−1

).

1

d

a

bc x

xx2 3

Fig. 9 Small excluded hypergraphs: complete hypergraph, Fano hypergraph and the Octahedron
hypergraph

Fig. 10 Three-partite 3-uniform hypergraph

126Here we use L for an excluded graph, L for a hypergraph, and L for a family of graphs or
hypergraphs.
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This implies, exactly as for r = 2, that

Corollary 8.2 exr (n,L(r)) = o(nr ) if and only if there is an L ∈ L(r) of strong
chromatic number r .127

Remark 8.3 As in Corollary 2.12, if the problem is non-degenerate, then the “density
constant jumps up”:

exr (n,L(r)) >

(
1

rr
+ o(1)

)
nr . (28)

A famous problem of Erdős was whether for 3-uniform hypergraphs 1/27 is a
“jumping constant”: does there exist a constant c > 0 such that if for some η > 0
exr (n,L(r)) >

(
1
27 + η + o(1)

)
nr then exr (n,L(r)) >

(
1

27 + c + o(1)
)

nr also
holds. There are many related results, here we mention only the breakthrough paper
of Frankl and Rödl [356], which however, does not decide if 1/27 is a “jumping
constant” or not. We mention that according to Pikhurko [648] there are continuum
many limit densities and there are among them irrational ones even for finite families
of excluded r -graphs. We also recommend to read Baber and Talbot [58] and several
papers of Y. Peng, e.g., [644], in this area.

Turán’s Conjecture

Consider now 3-uniform hypergraphs: H
(3) = (V, E). To formulate the famous

hypergraph conjectures of Paul Turán in the two simplest cases, we need two con-
structions. We shall call an r -uniform hypergraph h-partite if its vertices can be
partitioned into h classes, none of which contains hyperedges.

(a) For the excluded 3-uniform complete 4-graph K
(3)
4 , consider the 3-uniform

hypergraph H
(3)
n obtained by partitioning n vertices into 3 classes U1, U2 and U3 as

equally as possible and taking the triples of form (x, y, z) where x, y, and z belong
to different classes, and the triplets (x, y, z) where x and y belong to Ui and z to
Ui+1, for i = 1, 2, 3, where U4 := U1, see Fig. 11. Turán conjectured that this is

Fig. 11 K
(3)
4 -extremal?

127The strong chromatic number χS(F(r)) of F
(r) is the minimum � for which the vertices of F

(r)

can be �-coloured so that each hyperedge gets r distinct colours. Our condition is equivalent with
that some F

(r) ∈ L(r) is a subgraph of K
(r)
r (a, . . . , a) for some large a.
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the extremal hypergraph for K
(3)
4 . This is unknown, we do not know even if this is

asymptotically sharp.
Actually, first Katona, Nemetz, and Simonovits [493] gave examples (for n =

3m + 1) showing that if Turán’s conjecture holds, then the uniqueness of extremal
graphs does not always hold.

A more general construction of Brown [151], generalized by Kostochka [548],
shows that if the conjecture holds, then there are many-many extremal graph struc-
tures for the extremal hypergraph problem of K

(3)
4 and n = 3t . For a slightly

more detailed description of this see e.g., Fon-der-Flaass [346], Razborov, [672],
Simonovits [764].

(b) For the excluded complete 5-graph K
(3)

5 Turán had a construction—for the
potential extremal hypergraph—with four classes and another one with two classes.
The one with two classes is simple, see Fig. 12. It is a complete bipartite hyper-
graph: we partition the vertices into A and B and consider all the triples intersecting
both classes. V.T. Sós observed that the construction with two classes can be obtained
from the construction with four classes by moving around some triples in some sim-
ple way. Probably J. Surányi found a construction showing that Turán’s conjecture
for K

(3)

5 is false for n = 9. Kostochka (perhaps) generalized this, founding coun-
terexamples for every n = 4k + 1.128 Still Turán’s conjecture may be sharp, or, at
least, asymptotically sharp.129

Among the new achievements we mention Razborov’s Flag Algebra method and
his results on hypergraphs [669, 671, 672].

A Simple Hypergraph Extremal Problem

As we have often emphasized, to solve a hypergraph extremal problem is mostly
hopeless, despite that recently many nice results were proved on hypergraphs.
Keevash described this situation by writing (in MathSciNet, on [379], in 2008):

“An important task in extremal combinatorics is to develop a theory of Turán
problems for hypergraphs. At present there are very few known results, so it is
interesting to see a new example that can be solved.”

Fig. 12 K
(3)
5 -extremal?

128These constructions seem to be forgotten, “lost” and are not that important.
129Since for hypergraphs we have at least two popular chromatic numbers, therefore the expression
r -uniform �-partite may have at least two meanings in the related literature.
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Fig. 13 Fano

Consider 3-uniform hypergraphs. The difficulties are reflected, among others, by
that we do not know the extremal graph for L(3)

4,3, i.e. when we exclude the 4-vertex
hypergraph with 3 triples.130 The next question is among the easier ones. G.O.H.
Katona asked and Bollobás solved the following extremal problem.

Theorem 8.4 (Bollobás (1974), [116]) If a 3-graph has 3n vertices and n3 + 1
triples, then there are two triples whose symmetric difference is contained in a third
one.

K
(3)
3 (n, n, n)—which generalizes T2n,2, to 3-uniform hypergraphs,—shows the

sharpness of Theorem 8.4. So Theorem 8.4 is a natural generalization of Turán’s
theorem: an ordinary triangle-free graph Gn is just a graph where no edge of Gn

contains the symmetric difference of two other edges. So the excluded hypergraph
can be viewed as a hypergraph-triangle. Bollobás generalized Katona’s conjecture
to r -uniform hypergraphs. The generalized conjecture was proved for r = 4 by
Sidorenko [744], for r = 5, 6 by Norin and Yepremyan [634]. For related results
see e.g., Sidorenko [744], Mubayi and Pikhurko [625], Pikhurko [646].

The Fano Hypergraph Extremal Problem

Here the excluded graph is the 3-uniform Fano hypergraph F
(3)
7 on 7 vertices, with

seven hyperedges any two of which intersect in exactly one vertex, see Fig. 13: F
(3)
7

is the simplest finite geometry. The nice thing about the extremal problem of F
(3)
7 is

that it is natural, non-trivial, but has a nice solution.

Conjecture 8.5 (V. T. Sós) Partition n vertices into two classesA andB with ||A| −
|B|| ≤ 1 and take all the triples intersecting both A and B. The obtained 3-uniform
complete bipartite hypergraph H[A,B] is extremal for F

(3)
7 (if n is sufficiently large).

Using some multigraph extremal results of Kündgen and Füredi [378], first de
Caen and Füredi proved

130Generally, L(r)
k,� is the family of r -uniform hypergraphs of k vertices and � hyperedges. As we

have mentioned, the problem of ex(n,L(r)
k,�) was considered in two papers of Brown, Erdős, and

Sós [154, 155] and turned out to be very important in this field. Originally Erdős conjectured
a relatively simple asymptotic extremal structure, for L(3)

4,3 but his conjecture was devastated by a
better construction of Frankl and Füredi [355]. This construction made this problem rather hopeless.
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Theorem 8.6 (de Caen and Füredi (2000), [172])

ex(n, F
(3)
7 ) = 3

4

(
n

3

)
+ O(n2).

Next, applying the stability method, the sharp result was obtained, independently,
by Füredi and Simonovits and by Keevash and Sudakov. Since χ(F

(3)
7 ) = 3, a 3-

uniform bipartite hypergraph cannot contain F
(3)
7 .

Theorem 8.7 (Füredi–Simonovits (2005), [385]/Keevash-Sudakov (2005), [504])
If H

(3)
n is a triple system on n > n1 vertices not containing F

(3)
7 and of maximum

number of hyperedges under this condition, then H
(3)
n is bipartite: χ(H(3)

n ) = 2.

Theorem 8.7 implies that

ex3(n, F
(3)
7 ) =

(
n

3

)
−

(�n/2�
3

)
−

(�n/2�
3

)
.

There are two important ingredients of the proof. The first one is a multigraph
extremal theorem:

Theorem 8.8 (Füredi-Kündgen [378]) If Mn is an arbitrary multigraph (without
restriction on the edge multiplicities, except that they are non-negative) and each
4-vertex subgraph of Mn has at most 20 edges (with multiplicity), then

e(Mn) ≤ 3

(
n

2

)
+ O(n).

The other ingredient of the proof of Theorem 8.7 was that it is enough to prove
the theorem for those hypergraphs where the low-degree vertices are deleted, and it
is enough to prove a corresponding stability theorem.

Theorem 8.9 There exist a γ2 > 0 and an n2 such that if F
(3)
7 � H

(3)
n and

deg(x) >

(
3

4
− γ2

) (
n

2

)
for each x ∈ V (H(3)

n ),

then H
(3)
n is bipartite.

Recently Bellmann and Reiher [98] proved that Theorem 8.7 holds for any n ≥ 7.
One could ask, what is the essence of their proof. Often when we use stability
arguments for extremal problems, one thinks that perhaps induction would also work.
Unfortunately, for hypergraphs this mostly breaks down. As an exception, Bellmann
and Reiher have found the good way to use here induction. (A similar situation
was when the Lehel Conjecture was proved by Bessy and Thomassé [108], yet for
hypergraphs we do not know of such cases.)
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— · —

Füredi, Pikhurko, and Simonovits used the stability method also in [381], to prove
a conjecture of Mubayi and Rödl. For further related results see, e.g., Keevash [494],
Füredi, Pikhurko, and Simonovits [381, 382], …and many similar cases.

— · —

We should mention here a beautiful result of Person and Schacht:

Theorem 8.10 (Person and Schacht (2009), [645]) Almost all Fano-free 3-uniform
hypergraphs are bipartite.

Remark 8.11 (a) One could ask what is the connection between Theorems 8.7 and
8.10. Here one should be careful, e.g., Prömel and Steger [664] proved that almost all
Berge graphs are perfect, which means that for most graphs the Berge Strong Perfect
Graph Conjecture is true. This was a beautiful result, however, the actual proof of the
Perfect Graph Conjecture [179] (which came much later) was much more difficult.

(b) Several similar results are known, where the typical structure of F-free graphs
are nicely described. For graphs this was discussed in Sect. 2.13. Several related
results were also proved for hypergraphs, e.g., Lefmann, [572].

(c) Some further related results can be found in the papers of Cioabă [191],
Keevash [494], Balogh–Morris–Samotij–Warnke [79], or Balogh and Mubayi [81],
and in many further cases.

8.1 Codegree Conditions in the Fano Case

As we have already discussed, as soon as we move to hypergraphs, many notions,
e.g., the notion of path, cycles and of degrees also can be defined in several dif-
ferent ways. Restricting ourselves to the simplest case of 3-uniform hypergraphs,
let δ2(x, y) be the number of vertices z for which (x, y, z) is a hyperedge, and
δ2(H

(3)
n ) = min δ2(x, y). Usually δ2(x, y) is called the codegree of x and y. Often

it is more natural to have conditions on the minimum codegree than on the min-
degree.

Theorem 8.12 (Mubayi [622]) For any α > 0, there exists an n0(α) for which, if
n > n0 and δ2(H

(3)
n ) ≥ ( 1

2 + α)n, then H
(3)
n contains the Fano plane F

(3)
7 .

The sharpness comes from the complete bipartite 3-uniform hypergraph. Mubayi
conjectured that, for large n, ( 1

2 + α) can be replaced by 1
2 . This was proved first by

Keevash, and then, in a simpler way, by DeBiasio and Jiang:

Theorem 8.13 (Keevash [496]/DeBiasio and Jiang [231]) There is an n0 such that
if n > n0 and δ2(H

(3)
n ) > � 1

2 n� then H
(3)
n contains F

(3)
7 .

Actually, there are more and more extremal results where we derive the existence
of some substructure by knowing that the minimum codegree is high. Later we shall
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see several further such examples, e.g., in Sect. 9: to ensure a tight Hamiltonian
cycle,131 Theorem 9.12 will use the minimum vertex-degree, while Theorem 9.13
uses that the minimum codegree is large.

Remark 8.14 (a) DeBiasio and Jiang gave a fairly elementary proof, not using the
Regularity Method. They had to assume that n is sufficiently large only to use some
supersaturation argument.

(b) In their paper DeBiasio and Jiang [231] start with a nice introduction and
historical description of the situation.

(c) Both the Keevash paper and the DeBiasio-Jiang paper go beyond just proving
the above formulated extremal result.

9 Large Excluded Hypergraphs

While for ordinary graphs the definition of cycles is very natural, for hypergraphs
there are several distinct ways to define them, leading to completely different prob-
lems and results. Below mostly we shall restrict ourselves to 3-uniform hypergraphs,
within that to Loose (also called Linear) and Tight cycles, and we mostly skip
Berge cycles.132 The reader interested in more details about Berge cycles is referred
to Gyárfás, Sárközy, and Szemerédi [433, 439] and also to the excellent surveys of
Rödl and Ruciński [689], Kühn and Osthus [565].

We start this section with a short subsection on Hypergraph cycle Ramsey prob-
lems which could be regarded as medium range extremal problems, since we get in
a hypergraph on N vertices a (monochromatic) subgraph of (1 − c)N vertices. Then
we shall consider hypergraph extremal problems where the excluded configuration
is a spanning subhypergraph, or at least an almost spanning one. To make the life of
the reader (interested in more details) easier, we follow the definitions and notation
of [689], as much as we could.

9.1 Hypergraph Cycles and Ramsey Theorems

We shall need the definition of the so called (k, �)-cycles, covering the matchings,
the loose cycles and the tight cycles.

Definition 9.1 (Tight/loose cycles) Consider 3-uniform hypergraphs. Let E1, . . . , E�

be a cyclically arranged family of triples. If the consecutive ones intersect in 2 ver-
tices, and there are no other intersections among them, then this configuration C̃3

�

131Defined after Definition 9.2.
132Hamiltonicity for Berge cycles were discussed by Bermond, Germa, Heydemann, and Sotteau
[104]. Perhaps the first Tight Hamiltonicity was discussed in [492], however, the tight Hamilton
cycles were called there Hamilton chains.
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2

35

6

4

1

(a) Tight cycle (b) Loose cycle (c) Berge cycle

Fig. 14 Various hypergraph cycles

will be called a Tight �-cycle. If the consecutive ones intersect in 1 vertex, and there
are no other intersections among them, then this configuration C3

� will be called a
Loose �-cycle.

We could have started with the more general

Definition 9.2 ((k, �)-cycle) Fix some 0 ≤ � ≤ k − 1. In a k-uniform hypergraph
H

(k)
n the cyclically ordered vertices a1, . . . , at and the hyperedges E1, . . . , Et form

a (k, �)-cycle, if the vertices of Ei are cyclically consecutive (form a segment), and
|Ei ∩ Ei+1| = �, for i = 1, . . . , t . (Here Et+1 := E1).

If � = 1, we call it a loose cycle, (or linear cycle) and if � = k − 1 it is a tight
cycle.

For � = 0, this reduces to a matching: a family of t/k independent edges.
Divisibility. Mostly we have some hidden divisibility conditions, e.g., speaking of
a (k, �)-cycle Ck,�

m on m vertices, we assume that m is divisible by k − �.

— · —

It was known from the beginning that the (ordinary) Ramsey number for cycles
strongly depends of the parity: R(Cn, Cn) = 3

2 n − 1 if n is even and R(Cn, Cn) =
2n − 1 if n is odd (Bondy [135], Faudree and Schelp [332], Vera Rosta [677]). So
it is not too surprising that for hypergraphs the parity also strongly influences the
results. (Analogous results are known for ordinary graphs and 3 or more colours,
e.g., as we have mentioned, R(n, n, n) = 4n − 3 for odd n > n0, see Łuczak, [600],
Kohayakawa, Simonovits, and Skokan [530], but it is 2n + o(n) if n is even, see Figaj
and Łuczak [341, 342].)133 For hypergraphs the situation is even more involved, since
the Ramsey numbers depend on the types of cycles we consider (loose, tight, Berge).
Haxell, Łuczak, Peng, Rödl, Ruciński, Simonovits, and Skokan proved the following

Theorem 9.3 (Haxell et al. (2006), [458]) Consider 3-uniform hypergraphs. If C3
n

denotes the loose n-vertex hypergraph cycle, then R(C3
n , C3

n , C3
n) = 5n/4 + o(n).

Here the upper bound is the difficult part: an easy construction shows that
R(C3

n , C3
n , C3

n) > 5n/4 − c, for an appropriate constant c > 0. This was generalized

133The breakthrough result of Łuczak [600] was improved by Kohayakawa, Simonovits, and Skokan
[530] and generalized by Jenssen and Skokan [479], see also Gyárfás, Ruszinkó, Sárközy, and
Szemerédi [432] and Benevides and Skokan [99] and others.
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from 3-uniform to k-uniform graphs and loose cycles by Gyárfás, Sárközy, and
Szemerédi [437]. As to the tight cycles, Haxell, Łuczak, Peng, Rödl, Ruciński, and
Skokan proved the following

Theorem 9.4 (Haxell et al. (2006), [459]) Consider 3-uniform hypergraphs. If C̃3
n

denotes the tight n-vertex hypergraph cycle, then R(C̃3
n , C̃3

n , C̃3
n) = 4n/3 + o(n)

when n is divisible by 3, and ≈ 2n otherwise.

On Ramsey numbers for Berge cycles see the papers of Gyárfás, Sárközy, and
Szemerédi [428], and Gyárfás and Sárközy [433], or Gyárfás, Lehel, G. Sárközy, and
Schelp [430].

9.2 Hamilton Cycles

This research area has two roots:
(A) For simple graphs the extremal graph problem of k independent edges goes

back to Erdős and Gallai [289]. It may be surprising, but to ensure k independent
edges, or a path P2k requires basically the same degree condition. On the other hand,
maybe it is not so surprising. Rödl and Ruciński [689] write: “…for � = 0 a Hamil-
tonian �-cycle in a k-graph H becomes a perfect matching in H . Moreover, any
Hamiltonian (k − �)-cycle contains a matching of size �n/k�. Hence, not surpris-
ingly, the results for Hamiltonian cycles and perfect (or almost perfect) matchings
are related.” The Erdős–Gallai results were extended to hypergraphs, by Erdős [268].
Bollobás, Daykin, and Erdős [122] ensured t independent hyperedges, Daykin and
Häggkvist [229] guaranteed a perfect matching.

(B) G.Y. Katona and Kierstead [492] defined the tight Hamilton cycle and tried
to generalize Dirac’s theorem to hypergraphs.

The area described in the next few subsections in a fairly concise way is described
in much more details, e.g., in the excellent surveys of Kühn and Osthus [563] and of
Rödl and Ruciński [689], in the Introduction of the paper of Alon, Frankl, Huang,
Rödl, Ruciński, and Sudakov [35], and in the survey of Yi Zhao [825].

The Beginnings: Hamiltonicity

Since hypergraph problems seemed mostly too technical even for combinatorists
working outside of hypergraph extremal problems, the research on hypergraph
Hamiltonicity started relatively late, with a paper of Katona and Kierstead [492].134

For k-uniform hypergraphs, for a subset S ⊆ V (H(k)
n ) with � := |S| we define the

�-degree δ�(S) as the number of k-edges of H
(k)
n containingS and δ�(H

(k)
n ) is the min-

134For Berge cycle Hamiltonicity there were earlier results, e.g., by Bermond, Germa, Heydemann,
and Sotteau [104].
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imum of δ�(S) for the �-tuples S ⊆ V (H(k)
n ). G.Y. Katona and Kierstead considered

the tight cycles135 and paths and proved

Theorem 9.5 (Katona, Kierstead (1999), [492]) If H
(k)
n = (V, E) is a k-uniform

hypergraph and

δk−1(H
(k)
n ) ≥

(
1 − 1

2k

)
n + 4 − k − 5

2k
,

then it contains a tight Hamiltonian cycle C̃k
n .

This is far from being sharp:

Conjecture 9.6 (Katona, Kierstead [492]) If δk−1(H
(k)
n ) >

⌊
n−k+3

2

⌋
, then H

(k)
n has

a tight Hamilton cycle.

Katona and Kierstead also provided the construction supporting this:

Theorem 9.7 (Katona and Kierstead [492]) For any integers k ≥ 2 and n > k2

there exists a k-uniform hypergraph H
(k)
n without tight Hamilton cycles for which

δk−1(H
(k)
n ) = ⌊

n−k+3
2

⌋
.

Rödl and Ruciński write in [689]:
“In 1952 Dirac [242] proved a celebrated theorem… In 1999, Katona and Kier-

stead initiated a new stream of research to studying similar questions for hypergraphs,
and subsequently, for perfect matchings…”.

9.3 Problems: Hypergraph Hamiltonicity

We restrict our attention primarily to 3-uniform hypergraphs. As Rödl, Ruciński,
Schacht, and Szemerédi [692] describe, here there are (at least) six different ques-
tions:

(i) how large vertex- degree ensures a tight Hamiltonian cycle,
(ii) how large vertex- degree ensures a loose Hamiltonian cycle,
(iii) how large co- degree ensures a tight Hamiltonian cycle,
(iv) how large co- degree ensures a loose Hamiltonian cycle,
(v-vi) and how large degrees/co-degrees ensure a perfect matchingor an almost

perfect matching?
In all these problems some divisibility questions should also be handled.

The goal. As a first step, we would say that most of the research in this area is related
to describing two functions defined for k-uniform n-vertex graphs, the thresholds for
the Hamiltonicity, h�

d(k, n), and for the Matching, mr
d(k, n):

What is the minimum integer t for which, if the d-degree δd(H
(k)
n ) ≥ t in a k-

uniform hypergraph H
(k)
n , then H

(k)
n contains

135They called it chain.
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(i) a Hamilton �-cycle Ck,�
n

(ii) an almost-matching Mk,r
n , leaving out at most r vertices, respectively.

Before going into details, we formulate two typical theorems, for 3-uniform hyper-
graphs, for Tight cycles.

Theorem 9.8 (Reiher, Rödl, Ruciński, Schacht, and Szemerédi (2016), [674]) For
any η > 0, there exists an n0(η) such that if n > n0 and in an n-vertex 3-uniform
hypergraph H

(3)
n the minimum degree

dmin(H
(3)
n ) ≥

(
5

9
+ η

)(
n

2

)
,

then it contains a tight Hamiltonian cycle. The estimate ( 5
9 + o(1))

(n
2

)
is sharp.

The codegree problem is answered by

Theorem B (Rödl, Ruciński, and Szemerédi (2011), [697]). There exists an
n0 such that if n > n0 and in a 3-uniform hypergraph H

(3)
n , for any x �= y,

δ2(x, y) ≥
⌊n

2

⌋
,

then H
(3)
n contains a tight Hamiltonian cycle. This is sharp: for any n > 4, there

exists a 3-uniform hypergraph with δ2(H
(3)
n ) = ⌊

n
2

⌋ − 1, without containing a tight
Hamiltonian cycle.

Table 2 contains some of the results, discussed below, and some others.

9.4 Lower Bounds, Constructions

In all cases considered here we have some relatively simple constructions providing
a hypergraph not containing the required configuration and having large minimum
degree (of a given type). The proofs of that “the constructed hypergraphs do not
contain the excluded configurations” mostly follow from a Pigeon Hole principle
argument or from some parity arguments. A new feature is (compared to ordinary
non-degenerate extremal graph problems) that here the results and constructions
often depend on parities, divisibilities, and they may be more complicated.

We start with some constructions, conjectured extremal structures (see e.g.,
Fig. 15). In the corresponding papers/proofs it turns out that these are indeed, (almost)
extremal constructions. They can be found, e.g., in Hàn, Person, Schacht, [449], or
earlier, in Daykin and Häggkvist [229], Kühn and Osthus [561], Rödl, Ruciński, and
Szemerédi [693], and Pikhurko [647].

Construction 9.9 Assume that n is divisible by k and 0 ≤ t < k. Let H
(k)
n have two

vertex classes A and B, |A| = n
k − 1, |B| = k−1

k n + 1, and the hyperedges be all the
k-tuples intersecting A. This hypergraph has no perfect matchings. Further,
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Table 2 Using the absorption method (explained in Sect. 6.5), now for hypergraph
Hamiltonicity

Authors Year About what? Methods Journal

Hàn, Schacht 2010 Dirac, loose
Hamilton cycles

Absorb. [450]

Rödl, Ruciński 2010 Dirac-type questions,
Survey

[689]

Rödl, Ruciński,
Szemerédi

2011 Dirac 3-hyper, approx Advances [697]

Glebov-Person-Weps 2012 Hypergraph
Hamiltonicity

???? [394]

Czygrinow-Molla 2014 Loose Hamilton
3-unif codegree,
perfect matching

Absorb. Stabil. SIDMA [224]

Czygrinow,
DeBiasio, Nagle

2014 Tiling with K (3)
4 − 2e Absorb. JGT, [221]

Jie Han, Yi Zhao 2015 Minimum codeg
threshold

Absorb. [451]

Lo, Allan, Markström 2015 F-factors in
hypergraphs via
Absorb.

Absorb. GC [579]

Reiher-Rödl-Ruciń-
ski-Schacht-Szem

2016 Tight hamiltonian
3-hyper

Absorb.
Absorb.

SIDMA
[674]

Ferber, Nenadov,
Peter

Universality of
random graphs

Absorb.
Absorb.

RSA
[340]

Rödl, Ruciński,
Schacht, Szemerédi

2017 Hamiltonicity of
triple systems

Annales comb [692]

Fig. 15 Extremal structures for 4-uniform graphs and perfect matching in [222]: (a) 4-tuples
intersecting both classes in 2 vertices, (b) 4-tuples intersecting one of the classes in 1 vertex

δt (H
(k)
n ) =

(
1 −

(
k − 1

k

)k−t
) (

n

k − t

)
+ o(nk−t ). (29)

Construction 9.10 Assume that n is divisible by k and 0 ≤ t < k. Let H̃
(k)
n have two

vertex classes A and B, |A| be the maximum odd integer ≤ n/2, |B| = n − |A|,
and the hyperedges be all the k-tuples intersecting A in a positive even number of
vertices. This hypergraph has no perfect matchings. Further,
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δt (H̃
(k)
n ) = 1

2

(
n

k − t

)
+ O(nk−t−1). (30)

These constructions provide the lower bounds in many results in this area. Thus,
e.g., for k = 3 the obtained coefficients of

( n
k−t

)
are 5

9 for mindegree and 1
2 for

codegree, respectively, which will turn out to be sharp in Theorems 9.11, 9.12 and
9.13 below.136

9.5 Upper Bounds, Asymptotic and Sharp

Most of the above questions first were solved only in asymptotic forms, then in sharp
forms. But, as it is remarked in [692], one of these problems, namely Theorem 9.12
below, the first one, (i), in the 6-item list of Sect. 9.3, is more difficult than the others.
There, even the asymptotic result (i.e. to prove ≈ 5

9

(n
2

) + o(n2) “needed” four steps:
first Glebov, Person and Weps improved the trivial

(n−1
2

)
to (1 − ε)

(n−1
2

)
, then Rödl

and Ruciński [690] improved (1 − ε) to 1
3 (5 − √

5) ≈ 0.91, next Rödl, Ruciński,
and Szemerédi [695] to 0.8, and only then, they with Reiher and Schacht, obtained
the sharp 5/9 = 0.555, in [674].

— · —

Below we write about this theory, staying mostly with the simplest cases. For k = 3
the above codegree threshold is

⌊
n
2

⌋
in (30). One could ask, what is the appropriate

degree condition. Cooley and Mycroft [204], using an appropriate Regularity Lemma
of Allen, Böttcher, Cooley, and Mycroft [15], proved

Theorem 9.11 (Cooley and Mycroft (2017), [204]) For any η > 0 there exists an
n0(η) such that if n > n0(η), then any 3-uniform hypergraph H

(3)
n with dmin(H

(n)
3 ) ≥

( 5
9 + η)

(n
2

)
contains a tight cycle C̃3

m with n − m = o(n).

In other words, H
(3)
n contains an almost-Hamiltonian cycle: only o(n) vertices

are left out. The constant 5
9 is asymptotically best possible. Reiher, Rödl, Ruciński,

Schacht, and Szemerédi improved Theorem 9.11:

Theorem 9.12 (Reiher, Rödl, Ruciński, Schacht, and Szemerédi (2016), [674]) For
any η > 0, there exists an n0(η) such that if n > n0 and in an n-vertex 3-uniform
hypergraph H

(3)
n the minimum degree

dmin(H
(3)
n ) ≥

(
5

9
+ η

)(
n

2

)
,

then it contains a tight Hamiltonian cycle.

136Identical with Theorems A,B, above.
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The sharpness follows from the sharpness of Theorem 9.11. Actually, [674]
describes three constructions proving the sharpness of Theorem 9.12. The differ-
ence between Theorems 9.11 and 9.12 is that Theorem 9.12 has no left-out vertices.
The proof of Theorem 9.12 uses the hypergraph regularity and then the “absorption”
method, to pick up the last few vertices.137

As to the codegree, we have

Theorem 9.13 (Rödl, Ruciński, and Szemerédi [697]) There exists an n0 such that
if n > n0 and in a 3-uniform hypergraph H

(3)
n , for any x �= y,

δ2(x, y) ≥
⌊n

2

⌋
,

then H
(3)
n contains a tight Hamiltonian cycle. This is sharp: for any n > 4, there

exists a 3-uniform hypergraph with δ2(H
(3)
n ) = ⌊

n
2

⌋ − 1, without containing a tight

Hamiltonian cycle.

The sharpness follows from the constructions of Sect. 9.4. A similar result holds
for Hamiltonian paths.

Matchings

We define a perfect matching in a k-uniform hypergraph H on n vertices as a set
of �n/k� disjoint hyperedges. To ensure a 1-factor in hypergraphs is a fascinating
and important topic and would deserve a much longer survey. Here we again restrict
ourselves to just a few related results and references. First we formulate two results on
the degree-extremal problem of a 1-factor, for 3-uniform and 4-uniform hypergraphs.
Both results are sharp. The following theorem was obtained independently, by Lo
and Markström [579], Kühn, Osthus, and Treglown and by Imdadullah Khan:

Theorem 9.14 (Kühn, Osthus, and Treglown [566]/I. Khan [507]) There is an n0

such that if n > n0 is divisible by 3 and in a 3-uniform hypergraph H
(3)
n

dmin(H
(3)
n ) >

(
n − 1

2

)
−

(
2n/3

2

)
+ 1 ≈ 5

9

(
n − 1

2

)
, (31)

then H
(3)
n contains a 1-factor.

Observe that the LHS of (31) is ≈ 5
9

(n
2

)
, i.e. the same what we need for a tight

Hamilton cycle. Khan also proved the analog theorem for 4-uniform hypergraphs:

137This, with a sketch of the proof, is nicely explained by Rödl and Ruciński, in [689]. The intro-
duction of [674] and a survey of Yi Zhao [825] are also good descriptions of the otherwise fairly
complicated situation.
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Theorem 9.15 (Imdadullah Khan [508]) There exists a threshold n0 such that if
n > n0 is divisible by 4 and in a 4-uniform hypergraph H

(4)
n

dmin(H
(4)
n ) >

(
n − 1

3

)
−

(
3n/4

3

)
+ 1,

then H
(4)
n contains a 1-factor.

For related results see also Pikhurko [647], Hàn, Person, and Schacht [449], Czy-
grinow and Kamat [222] providing sharp results and describing the earlier asymptotic
results, and Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [35].

Upper Bounds and the Absorbing Method

In the proofs of the results discussed in this section one often uses the Absorb-

ing Method,— described in Sect. 6.5,—to ensure spanning or almost-

spanning substructures, where Almost-Spanning means a subhypergraph cov-
ering the whole hypergraph with the exception of at most O(1) (or, occasionally,
o(n)) vertices. As we wrote, in most cases considered in these subsections we have a
simple, nice conjectured extremal structure, enabling us to use stability arguments.
Yet, the actual “upper bounds” (non-construction parts) are fairly complicated.

In Sect. 9.3 we wrote about the thresholds for the Hamiltonicity, h�
d(k, n), and for

the Matching, mr
d(k, n). We have mentioned that sometimes we get the same results

for Hamiltonicity and Perfect Matching.

Conjecture 9.16 (Informal/Formal [689]) The d-degree threshold δd(H
(k)
n ) for the

Hamiltonian problem and the Matching problem are roughy the same. More formally,
hd(k, n) ≈ md(k, n), if d, k are fixed, n → ∞.

There are many related results but we skip them, mentioning only that, as it is
emphasized in [689], not only these two quantities are often near to each other, but
in several cases they are proved to be equal, see e.g., Theorem 3.1 of [689], quoted
from [696].

Theorem 9.17 (Hàn, Person, and Schacht (2009), [449]) For anyγ > 0, if δ1(H
(3)
n ) ≥

( 5
9 + γ)

(n
2

)
and n > n0(γ), then H

(3)
n contains a 1-factor.

There is a surprising, sharp difference between the cases when n is divisible by k
and when it is not. Consider the simplest hypergraph case, k = 3.

Theorem 9.18 For any γ > 0, if δ2(H
(k)
n ) ≥ ( 1

2 + γ)
(n

2

)
and n > n0(γ), then H

(k)
n

contains a Tight Hamiltonian cycle.138 If n is not divisible by 3 and H
(3)
n does not

contain a 1-factor, then δ2(H
(3)
n ) ≤ n

k + o(n).

138This implies Theorem 9.17.
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So in case of non-divisibility, much smaller degrees ensure a perfect matching.

— · —

One of the first results where the Absorbing Lemma was used is the theorem of
Rödl, Ruciński, and Szemerédi [696], on ensuring a perfect matching in a k-uniform
hypergraph. As we have mentioned, an appropriate construction of Bollobás, Daykin,
and Erdős [122] and further similar constructions show the sharpness of these results.

There is a sequence of papers of Rödl, Ruciński, and Szemerédi on this topic:
[693] assumes large minimum degree, [696] assumes large codegree. To ensure
Hamiltonian cycles in hypergraphs, see [694, 695, 697], and see also the above
authors with Schacht [691], and Reiher [674].

The problem of 1-factors, or almost 1-factors is, of course, connected to (almost
perfect) tilings, and there are several results in that direction, as well, see, e.g.,
Markström and Ruciński [612], Pikhurko [647], Lo and Markström [577–579].139

Several results mentioned above or discussed below use the Absorption Method,
as is shown in Tables 2, 3. (See also the earlier Rödl-Ruciński survey [689] on these
hypergraph problems and results.)

The first line of Table 3 differs from the other ones by that it is connected to Graph
Packing, and within that to the Sauer-Spencer theorem. The subsequent lines try to
show in time order some important papers using the absorption method, on loose
and tight hypergraph Hamilton cycles (Table 2) and matching (Table 3).

These tables also contain some results on random graphs, and also some lines on
Universal graphs, but we skip explaining them. For details see the papers of Alon and
Capalbo, e.g., [27], or Alon, Capalbo, Kohayakawa, Rödl, Rucinski, and Szemerédi
[28]. Further, Table 1 has an item on monochromatic cycle partitions as well.

9.6 Tiling Hypergraphs

Of course, a matching that (almost) covers a hypergraph V (H
(n)
k ) is an (almost) tiling.

One can also ask if for k-uniform hypergraphs do we get interesting results when
we wish to tile them for a fixed F by vertex-disjoint copies of F. The outstanding
results of Keevash [500]140 on designs and the related results are also tiling theo-
rems, however, here we mention only that Pikhurko, beside investigating codegree
matching problems, in [647] also investigated the problem of ensuring K (3)

4 -tilings
in a hypergraph with large codegree. These problems were connected to each other.

139The earlier excellent surveys of Füredi [369, 372] are primarily on small excluded subgraphs.
140See also Keevash, [502], Barber, Kühn, Lo, and Osthus [93], Barber, Kühn, Lo, Montgomery,
and Osthus [92],…
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Table 3 Absorbing for hypergraphs, Matching, …

Authors Year About what? Methods Where

Rödl, Ruciński,
Taraz

1999
1999

Hypergraph packing,
embedding

Misleading! CPC [698]

Kühn and Osthus 2006 Matching, implied
by min deg in
r -partite hypergraph

Stability
???

[561]
JGT

Pikhurko 2008 Matching, Tiling,
min codeg

??? GC [647]

Hàn, Person, Schacht 2009 Perfect matching,
mindegree

Absorb. SIDMA
[449]

Czygrinow-Kamat 2012 Perfect matching
sharp codegree
condition, 4-unif

Absorb. Stability ELECT JC [222]

Alon, Frankl, Huang,
Rödl, Ruciński,
Sudakov:

2012 Large matchings in
uniform hypergraphs
and the conjecture of
Erdős and Samuels

Fractional matching JCTA [35]

I. Khan 2013 Perfect matching,
min degree
3-uniform

Absorb. Stability SIDMA [507]

I. Khan 2016 Perfect matching,
min degree
4-uniform

Absorb. Stability JCTB [508]

9.7 Vertex-Partition for Hypergraphs

The vertex-partition results of Sect. 7.4 can also be extended to hypergraphs, see
Gyárfás and G.N. Sárközy [434, 435] and of G.N. Sárközy [724]. Thus, e.g., Sárközy
proved the following.

Theorem 9.19 (G.N. Sárközy (2014), [724]) For all integers k, r ≥ 2, there exists
an n0 = n0(k, r) such that if n > n0(k, r) and K

(k)
n is r-edge-coloured, then its vertex

set can be partitioned into at most 50rk log(rk) vertex disjoint loosemonochromatic
cycles.

For the case of two colours and loose/tight cycles Bustamante, Hàn, and M. Stein
[168] proved some hypergraph versions of Lehel’s conjecture, where, however, a
few vertices remain uncovered. Bustamante, Corsten, Nóra Frankl, Pokrovskiy and
Skokan [169] proved a tight-cycle version.

Theorem 9.20 There exists a constant c(k, r) such that if H
(k) is a k-uniform hyper-

graph whose edges are coloured by r colours, then V (H(k)) can be partitioned into
c(k, r) subsets, each defining monochromatic Tight hypergraph-cycles.

For some related results see also the surveys of Gyárfás [426], and Fujita, Liu,
and Magnant [368].
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9.8 Generalizing Gyárfás–Ruszinkó–Sárközy–Szemerédi
Theorem to Hypergraphs

We have mentioned that several graph results were generalized to hypergraphs.
Theorem 7.19 was generalized to hypergraphs first by Gyárfás and G.N. Sárközy
[435]: they covered the coloured K

(k)
n by Berge paths, by Berge cycles, and by

loose cycles. Perhaps their loose cycle result was the deepest. Its proof followed
the method of Erdős, Gyárfás, and Pyber [291] and used the linearity of Ramsey num-
ber for a “crown” that was a generalization of the Triangle-Cycle used in Sect. 6.5.
The loose cycle result was improved by G.N. Sárközy, see Theorem 9.19.

— · —

9.9 A New Type of Hypergraph Results, Strong Degree

This subsection is motivated by a paper of Gyárfás, Győri, and Simonovits [427].
Their original motivation was to prove the following conjecture that is still open.

Conjecture 9.21 (Gyárfás–Sárközy, [435]) One can partition the vertex set of every
3-uniform hypergraph H

(3)
n into α(H(3)

n ) linear (i.e. loose) cycles, hyperedges and
subsets of hyperedges.

A theorem of Pósa is

Theorem 9.22 (Pósa (1964), [659]) For every graph G one can partition V (G) into
at most α(G) cycles, where a vertex or an edge is accepted as a cycle.

Conjecture 9.21 would extend Pósa theorem, see [589] from graphs to 3-uniform
hypergraphs. Conjecture 9.21 was proved in [435] for “weak cycles” instead of linear
cycles, where “weak cycle” differs from a “loose cycle” by that the consecutive edges
must intersect, but not necessarily in 1 vertex. Here one has to consider subsets
of hyperedges also as cycles, in Conjecture 9.21, as shown, e.g., by the complete
hypergraph K (3)

5 .
The following weaker version of Conjecture 9.21 was proved recently:

Theorem 9.23 (Ergemlidze, Győri, and Methuku (1964), [325]) One can cover
the vertices of any 3-uniform hypergraph H

(3)
n by α(H(3)

n ) edge-disjoint linear (i.e.
loose) cycles, hyperedges and subsets of hyperedges.

— · —

Let ρ(H(3)
n ) denote the minimum number of linear cycles, hyperedges or subsets

of hyperedges needed to partition V (H(3)
n ) as described in Conjecture 9.21 and let

χ(H(3)
n ) denote the chromatic number of H

(3)
n , the minimum number of colors in a

vertex coloring of H
(3)
n without monochromatic edges. The following result proves

that Conjecture 9.21 is true if there are no linear cycles in H
(3)
n .
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Theorem 9.24 (Gyárfás–Győri–Simonovits [427]) If H
(3)
n is a 3-uniform hyper-

graph without linear cycles, then ρ(H(3)
n ) ≤ α(H(3)

n ). Moreover, χ(H(3)
n ) ≤ 3.

The family of hypergraphs without linear cycles seems to be intriguing. Gyárfás,
Győri, and Simonovits [427] uses a new degree concept: the strong degree.

Let H
(3)
n = (V, E) be a 3-uniform hypergraph, for v ∈ V the link graph of v in

H
(3)
n is the graph with vertex set V − v and edge set {(x, y) : (v, x, y) ∈ E}. The

strong degree d+(v) for v ∈ V is the maximum number of independent edges
(i.e. the size of a maximum matching) in the link graph of v. The main results of
[427] are motivated by the following trivial assertions: a graph of minimum degree
2 contains a cycle; if Gn has no cycles then α(Gn) ≥ n/2.

Theorem 9.25 (Gyárfás-Győri–Simonovits [427]) If H(3)
n is a 3-uniform hypergraph

with d+(v) ≥ 3 for all v ∈ V , then H
(3)
n contains a linear cycle.

Theorem 9.25 is “self-improving”:

Theorem 9.26 ([427]) Suppose that H
(3)
n is a 3-uniform hypergraph with d+(v) ≥ 3

for all but at most one v ∈ V . Then H contains a linear cycle.

The proofs are not easy. One thinks that several interesting embedding results can
be proved where one uses minv∈V (G) d+(v) instead of dmin(G).
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152. W.G. Brown, P. Erdős, and M. Simonovits: Extremal problems for directed graphs, J. Combin.
Theory Ser B 15 (1973), 77–93.
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259. P. Erdős: On a problem of Sidon in additive number theory and on some related problems.

Addendum, J. London Math. Soc. 19 (1944), 208.
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304. P. Erdős, S.B. Rao, M. Simonovits, and V.T. Sós: On totally supercompact graphs. Combi-
natorial mathematics and applications (Calcutta, 1988). Sankhya Ser. A 54 (1992), Special
Issue, 155–167.
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314. P. Erdős and M. Simonovits: An extremal graph problem, Acta Math. Acad. Sci. Hungar. 22
(1971/72), 275–282.
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on cycles and paths, II. Discrete Math. 341 (5) (2018), 1253–1263.

377. Z. Füredi, A. Kostochka, and J. Verstraëte: Stability in the Erdős-Gallai theorems on cycles
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J. Combin. Theory Ser. B 15 (1973) 105–120.

678. Klaus F. Roth: On a problem of Heilbronn, J. London Math. Soc. 26 (1951), 198–204.
679. K.F. Roth: On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
680. K.F. Roth: On a problem of Heilbronn II, Proc. London Math. Soc. 25 (3) (1972), 193–212.
681. K.F. Roth: On a problem of Heilbronn III, Proc. London Math. Soc. 25 (3) (1972), 543–549.
682. K.F. Roth: Estimation of the Area of the Smallest Triangle Obtained by Selecting Three out

of n Points in a Disc of Unit Area, AMS, Providence, Proc. of Symposia in Pure Mathematics
24 (1973) 251–262.

683. K.F. Roth: Developments in Heilbronn’s triangle problem, Advances in Math. 22 (3) (1976),
364–385.
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T. Sós. Discrete Math. 297 (1-3) (2005), 190–195.
729. G.N. Sárközy and S.M. Selkow: On an anti-Ramsey problem of Burr, Erdős, Graham, and T.
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Holland Math. Stud., 144 (1987) North-Holland, Amsterdam, 307–331.
804. A. Thomason: Random graphs, strongly regular graphs and Pseudorandom graphs, in: Surveys

in combinatorics 1987 (New Cross, 1987), 173–195.
805. C. Thomassen: Long cycles in digraphs with constraints on the degrees, in: B. Bollobás (Ed.),

Surveys in Combinatorics, in: London Math. Soc. Lecture Notes, vol. 38 (1979) pp. 211–228.
Cambridge University Press.

806. Craig Timmons and Jacques Verstraëte: A counterexample to sparse removal. European J.
Combin. 44 (2015), part A, 77–86. arXiv:1312.2994.

807. Bjarne Toft: Two theorems on critical 4-chromatic graphs. Studia Sci. Math. Hungar. 7 (1972),
83–89.

808. Paul Turán: On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok 48
(1941) 436–452. (For its English version see [810].)

809. P. Turán: On the theory of graphs, Colloq. Math. 3 (1954) 19–30.
810. P. Turán: Applications of graph theory to geometry and potential theory. Combinatorial Struc-

tures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) pp. 423–434
Gordon and Breach, New York (1970)

811. P. Turán: Collected papers. Akadémiai Kiadó, Budapest, 1989. Vol. 1-3, (with comments of
Simonovits on Turán’s papers in Combinatorics and by others on other topics).

812. Michail Tyomkyn and Andrew J. Uzzell: Strong Turán stability. Electron. J. Combin. 22 (3)
(2015), Paper 3.9, 24 pp.

813. Bartel L. van der Waerden: Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15
(1927), 212–216.

814. Richard Wenger: Extremal graphs with no C4,s, C6,s or C10,s J. Combin. Theory Ser. B, 52
(1991), 113–116.

815. Richard M. Wilson: An existence theory for pairwise balanced designs. I. Composition the-
orems and morphisms. J. Combinatorial Theory Ser. A 13 (1972), 220–245.

http://arxiv.org/abs/1312.2994


592 M. Simonovits and E. Szemerédi

816. R.M. Wilson: An existence theory for pairwise balanced designs. II. The structure of PBD-
closed sets and the existence conjectures. J. Combinatorial Theory Ser. A 13 (1972), 246–273.

817. R.M. Wilson: An existence theory for pairwise balanced designs. III. Proof of the existence
conjectures. J. Combinatorial Theory Ser. A 18 (1975) 71–79.

818. R.M. Wilson: Decompositions of complete graphs into subgraphs isomorphic to a given graph,
in: Proceedings of the Fifth British Combinatorial Conference, Univ. Aberdeen, Aberdeen,
1975, Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 647–659.

819. Hian Poh Yap: Maximal sum-free sets of group elements, Journal of the London Mathematical
Society 44 (1969), 131–136.

820. H.P. Yap: Maximal sum-free sets in finite abelian groups. V., Bull. Austral. Math. Soc. 13 (3)
(1975) 337–342.

821. Raphael Yuster: Tiling transitive tournaments and their blow-ups. Order 20 (2) (2003), 121–
133.

822. R. Yuster: Quasi-randomness is determined by the distribution of copies of a fixed graph in
equicardinal large sets, In Proceedings of the 12th International Workshop on Randomization
and Computation (RANDOM), Springer Verlag, Boston, MA, 2008, pp. 596–601.

823. Yi Zhao: Bipartite graph tiling. SIAM J. Discrete Math. 23 (2) (2009), 888–900.
824. Yi Zhao: Proof of the (n/2 − n/2 − n/2) Conjecture for large n, Electron. J. Combin., 18

(2011), 27. 61 pp.
825. Yi Zhao: Recent advances on Dirac-type problems for hypergraphs, in: Recent Trends in

Combinatorics, the IMA Volumes in Mathematics and its Applications, vol. 159, Springer,
New York, 2016.

826. Alexander A. Zykov: On some properties of linear complexes. Mat. Sb. 24 (66) (1949), 163–
188. (in Russian); English translation in Amer. Math. Soc. Transl., 1952 (1952), 79.
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53. S.A. Burr, P. Erdős, L. Lovász: On graphs of Ramsey type, Ars Combinatoria
1 (1976), 167–190.

54. L. Lovász: On some connectivity properties of Eulerian graphs, Acta Math.
Hung. 28 (1976), 129–138.

55. L. Lovász: Covers, packings and some heuristic algorithms, in:Combinatorics,
Proc. 5th British Comb. Conf. (ed. C.St.J.A.Nash-Williams, J.Sheehan), Util-
itas Math. (1976), 417–429.

56. L. Lovász, M. Simonovits: On the number of complete subgraphs of a graph,
in:Combinatorics, Proc. 5th British Comb. Conf. (ed. C.St.J.A.Nash-Williams,
J.Sheehan), Utilitas Math. (1976), 439–441.

57. L. Lovász,M.Marx: A forbidden substructure characterization of Gauss codes,
Bull. Amer. Math. Soc. 82 (1976), 121–122; full versionActa. Sci. Math. Szeged
38 (1976), 115–119.

58. L. Lovász: Chromatic number of hypergraphs and linear algebra, Studia Sci.
Math. 11 (1976), 113–114.

59. P. Gács, L. Lovász: Some remarks on generalized spectra, Zeitschr. f. math.
Logik u. Grundlagen d. Math. 23 (1977), 547–554.

60. L. Lovász: Certain duality principles in integer programming, Annals of Dis-
crete Math. 1 (1977), 363–374.

61. L. Lovász: A homology theory for spanning trees of a graph, Acta Math. Hung.
30 (1977), 241–251.

62. L. Lovász, M.D. Plummer: On minimal elementary bipartite graphs,J. Comb.
Theory B 23 (1977), 127–138.



Publications of László Lovász 599

63. L. Lovász: Flats in matroids and geometric graphs, in: Combinatorial Surveys,
Proc. 6th British Comb. Conf., Academic Press (1977), 45–86.

64. R.L. Graham, L. Lovász: Polynomes de la matrice des distences d’un arbre, in:
Problemes Combinatoires et Theorie de Graphes, CNRS (1977), 189–190.

65. R.L. Graham, L. Lovász: Distance matrices of trees, in: Theory and Appl. of
Graphs, LectureNotes inMath. 642 (1978), Springer, 186-190; journal version:
Distance matrix polynomials of trees, Adv. in Math. 29 (1978), 60–88.

66. L. Lovász, V. Neumann-Lara, M.D. Plummer: Mengerian theorems for paths
with bounded length, Periodica Math. Hung. 9 (1978), 269–276.

67. L. Lovász: Some finite basis theorems in graph theory, in:Combinatorics, Coll.
Math. Soc. J. Bolyai 18 (1978), 717–729.

68. L. Lovász, K. Vesztergombi: Restricted permutations and the distribution of
Stirling numbers, in: Combinatorics, Coll. Math. Soc. J. Bolyai 18 (1978),
731–738.

69. L. Lovász: Kneser’s conjecture, chromatic number, and homotopy, J. Comb.
Theory A 25 (1978), 319–324.

70. L. Lovász: Topological and algebraic methods in graph theory, in: Graph The-
ory and Related Topics, Academic Press (1979), 1–14.
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245. A. Gács, L. Lovász and T. Szőnyi: Directions in AG(2, p2), Innovations in
Incidence Geometry 6-7 (2007-2008), 189–201.

246. L. Lovász, B. Szegedy: Contractors and connectors in graph algebras, J. Graph
Theory 60 (2009), 11–31.

247. L. Lovász,A. Schrijver: Semidefinite functions on categories,Electron. J. Com-
bin. 16 (2009), no. 2, Special volume in honor of Anders Björner, Research
Paper 14, 16 pp.



Publications of László Lovász 609

248. L. Lovász: Very large graphs, in: Current Developments in Mathematics 2008
(eds. D. Jerison, B. Mazur, T. Mrowka, W. Schmid, R. Stanley, and S. T. Yau),
International Press, Somerville, MA 2009, 67–128.

249. C. Borgs, J. Chayes, L. Lovász: Moments of Two-Variable Functions and the
Uniqueness of Graph Limits, Geom. Func. Anal. 19 (2009), 1597–1619.

250. A. Beveridge, L. Lovász: Exit Frequency Matrices for Finite Markov Chains,
Combinatorics, Probability and Computing 19 (2010), 541–560.

251. G. Palla, L. Lovász and T. Vicsek: Multifractal network generator, Proc. NAS
107 (2010), 7640–7645.

252. L. Lovász, A. Schrijver: Dual graph homomorphism functions, J. Combin.
Theory Series A, 117 (2010), 216–222.

253. L. Lovász, B. Szegedy: Testing properties of graphs and functions, Israel J.
Math. 178 (2010), 113–156.

254. L. Lovász, B. Szegedy: Regularity partitions and the topology of graphons, in:
An Irregular Mind, Szemerédi is 70, J. Bolyai Math. Soc and Springer-Verlag
(2010) 415–446.

255. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi: Limits of
randomly grown graph sequences, Eur. J. Combin. 32 (2011), 985–999.

256. L. Lovász, B. Szegedy: Finitely forcible graphons J. Comb. Theory B 101
(2011), 269–301.

257. R.Kang, L. Lovász, T.Müller andE. Scheinerman:Dot product representations
of planar graphs, Electr. J. Combin. 18 (2011), P216.

258. L. Lovász: Subgraph densities in signed graphons and the local Sidorenko
conjecture, Electronic J. of Combinatorics, 18 (2011), P127.

259. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi: Convergent
Graph Sequences II: Multiway Cuts and Statistical Physics, Annals of Math.
176 (1912), 151–219.

260. J. Draisma, D.C. Gijswijt, L. Lovász, G. Regts, A. Schrijver: Characterizing
partition functions of the vertex model, Journal of Algebra 350 (2012), 197–
206.

261. L. Lovász, B. Szegedy: Random Graphons and a Weak Positivstellensatz for
Graphs, J. Graph Theory 70 (2012), 214–225.

262. I. Deák, L. Lovász: Computational results of an O∗(n4) volume algorithm,Eur.
J. Oper. Res. 216 (2012), 152–161.

263. C. Borgs, J.T. Chayes, J. Kahn, L. Lovász: Left and right convergence of graphs
with bounded degree, Random Struc. Alg. 42 (2013), 1–28.

264. L. Lovász and K. Vesztergombi: Nondeterministic property testing, Combina-
torics Probability and Computing 22 (2013), 749–762.

265. H. Hatami, L. Lovász and B. Szegedy: Limits of locally-globally convergent
graph sequences, Geom. Func. Anal. 24 (2014), 269–296.

266. L. Lovász, B. Szegedy: The automorphism group of a graphon, Journal of
Algebra 421 (2015), 136–166.

267. O.A. Camarena, E. Csóka, T. Hubai, G. Lippner and L. Lovász: Positive graphs,
European Journal of Combinatorics 52, Part B (2016), 290–301.



610 Publications of László Lovász

268. L. Lovász, A. Schrijver: Nullspace embeddings for outerplanar graphs, in:
Journey Through Discrete Mathematics. A Tribute to Jiri Matousek, Springer
(2017), 571–591.

269. D. Kunszenti-Kovács, L. Lovász, B. Szegedy:Measures on the square as sparse
graph limits, J. Comb. Theory B (2019), online: https://www.sciencedirect.
com/science/article/pii/S009589561930005X

Expository Papers:

1. L. Lovász:Amatroidelmélet rövid áttekintése (A short survey ofmatroid theory),
Mat. Lapok 22 (1971), 249–267.

2. L. Lovász: A szitaformuláról (On the sieve formula), Mat. Lapok 23 (1972),
53–69.

3. L. Lovász: Kombinatorikus optimalizáció (Combinatorial optimization), Mag-
yar Tudomány 25 (1980), 736–742.

4. L. Lovász: A new linear programming algorithm: better or worse than Simplex
Method? Math. Intelligencer 2 (1980), 141–146.

5. L. Lovász: Mit ad a matematikának és mit kap a matematikától a számítógéptu-
domány? (What does computer science get from mathematics and what does it
give to it?) Magyar Tudomány 35 (1990), 1041–1047.

6. L. Lovász: The mathematical notion of complexity, Proc. IFAC Symposium,
Budapest (1984).

7. L. Lovász: Algorithmic mathematics: an old aspect with a new emphasis, in:
Proc. 6th ICME, Budapest, J. Bolyai Math. Soc. (1988), 67–78.

8. L. Lovász: The work of A. A. Razborov, Proc. of Int. Congress of Math, Kyoto,
Springer-Verlag (1989), 37–40.

9. L. Lovász: Features of computer language: communication of computers and its
complexity, Acta Neurochirurgica 56 [Suppl.] (1994) 91–95.

10. L. Lovász: Random walks, eigenvalues, and resistance, Appendix to Chapter
31: Tools from linear algebra, in: Handbook of Combinatorics (ed. R. Graham,
M. Grötschel, L. Lovász), Elsevier Science B.V. (1995), 1740–1748.

11. M. Grötschel, L. Lovász: Combinatorial optimization, Chapter 28 in: Handbook
of Combinatorics (ed. R. Graham, M. Grötschel, L. Lovász), Elsevier Science
B.V. (1995), 1541–1597.

12. L. Lovász, D.B. Shmoys, É. Tardos: Combinatorics in computer science, Chapter
40 in: Handbook of Combinatorics (ed. R. Graham, M. Grötschel, L. Lovász),
Elsevier Science B.V. (1995), 2003–2038.

13. L. Lovász, L. Pyber, D.J.A. Welsh, G.M. Ziegler: Combinatorics in pure
mathematics, Chapter 41 in: Handbook of Combinatorics (ed. R. Graham,
M. Grötschel, L. Lovász), Elsevier Science B.V. (1995), 2039–2082.

14. L. Lovász: Information and complexity (how to measure them?) in: The Emer-
gence of Complexity in Mathematics, Physics, Chemistry and Biology (ed. B.
Pullman), Pontifical Academy of Sciences, Vatican City, Princeton University
Press (1996), 65–80.

15. L. Lovász: One mathematics, The Berlin Intelligencer, Mitteilungen der
Deutschen Math.-Verein, Berlin (1998), 10–15.

https://www.sciencedirect.com/science/article/pii/S009589561930005X
https://www.sciencedirect.com/science/article/pii/S009589561930005X


Publications of László Lovász 611

16. L. Lovász: Egységes tudomány-e a matematika? (Is mathematics a single sci-
ence?) Természet Világa, Special issue on Mathematics, (1998).

17. L. Lovász: Discrete and Continuous: Two sides of the same? GAFA, Geom.
Funct. Anal., Special volume – GAFA2000, Birkheuser, Basel (2000), 359–382.

18. L. Lovász: Véletlen és álvéletlen (Randomness and pseudo-randomness) Ter-
mészet Világa, Special issue in Informatics, (2000), 5–7.

19. L. Lovász: Nagyon nagy gráfok (Very large graphs), Természet Világa 138
(2007), 98–103.

20. L. Lovász: The “Little Geometer” and the difficulty of computing the volume,
Annales Univ. R. Eötvös 52 (2009), 31–36.

21. Lovász L.: Prímek, számítógépek és Abel-díj (Primes, computers and Abel
Prize), Természet Világa 143 (2012), 242–244.

22. L. Lovász: 45 Jahre Graphentheorie, in: Eine Einladung in die Mathematik
(D. Schleicher,M. Lackmann, eds.), 87–98, Springer, Berlin–Heidelberg (2013).

23. L. Lovász: Trends in mathematics: how they could change education, ICCM
Notices 1(2) (2013), 79–84.



The List of the Former Volumes

(1) Higher Dimensional Varieties and Rational Points (2003)
Károly Böröczky Jr, Alfréd Rényi, Tamás Szamuely

(2) Surgery on Contact 3-Manifolds and Stein Surfaces (2004)
Burak Ozbagci, András I. Stipsicz

(3) A Panorama of Hungarian Mathematics in the Twentieth Century I (2006)
János Horváth

(4) More Sets, Graphs and Numbers (2006)
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