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Abstract. Recent efficient constructions of zero-knowledge Succinct
Non-interactive Arguments of Knowledge (zk-SNARKs), require a setup
phase in which a common-reference string (CRS) with a certain structure
is generated. This CRS is sometimes referred to as the public parame-
ters of the system, and is used for constructing and verifying proofs. A
drawback of these constructions is that whomever runs the setup phase
subsequently possesses trapdoor information enabling them to produce
fraudulent pseudoproofs.

Building on a work of Ben-Sasson, Chiesa, Green, Tromer and Virza
[BCG+15], we construct a multi-party protocol for generating the CRS
of the Pinocchio zk-SNARK [PHGR16], such that as long as at least one
participating party is not malicious, no party can later construct fraudu-
lent proofs except with negligible probability. The protocol also provides
a strong zero-knowledge guarantee even in the case that all participants
are malicious.

This method has been used in practice to generate the required CRS
for the Zcash cryptocurrency blockchain.

1 Introduction

The recently deployed Zcash cryptocurrency supports shielded (private) trans-
actions where sender, receiver and amount are not revealed; and yet, an out-
side observer can still distinguish between a valid and non-valid transaction.
The “cryptographic engine” that enables these shielded transactions is a zero-
knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK); cur-
rently, Zcash uses the Pinocchio zk-SNARK [PHGR16], or more precisely, the
variant of it described in [BCTV14] as implemented in libsnark [lib].

A potential weakness of Zcash, is that if anybody obtained the trapdoor
information corresponding to the Common Reference String (CRS) used for
constructing and verifying the SNARKs, they could forge unlimited amounts of
the currency, potentially without anyone detecting they are doing so.

Motivated by this, Zcash generated the required CRS in an elaborate “cere-
mony” [Wil] to reduce the chance of this happening. The purpose of this technical
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report is to give a detailed description of the multi-party protocol that was used
in the ceremony.

Our Results: Ben-Sasson, Chiesa, Green, Tromer and Virza [BCG+15] presented
a generic method for computing CRSs of zk-SNARKs in a multi-party protocol,
with the property that only if all players collude together they can reconstruct
the trapdoor, or, more generally, deduce any other useful information beyond
the resultant CRS.

Based on [BCG+15], we devise an arguably simpler method for generating the
CRS of the Pinocchio zk-SNARK [PHGR16] with a similar security guarantee:
Namely, given that the CRS generated by the protocol is later used to verify
proofs; a party controlling all but one of the players will not be able to construct
fraudulent proofs except with negligible probability. See full version for details.

Moreover, we show that even if a malicious party controls all players, statis-
tical zero-knowledge holds when constructing proofs according to the resultant
parameters. Interestingly, this means the protocol is useful also when run by one
player ; as the transcript will provide proof to the prover that sending her proof
will not leak additional information1.

This property has been recently called subversion Zero-Knowledge [BFS16].
As opposed to the soundness guarantee, zero-knowledge only requires the ran-
dom oracle model; and in particular, no knowledge assumptions in contrast to
some recent works on subversion-ZK [Fuc17,ABLZ17]. On the other hand, our
proof only obtains statistical-ZK with polynomially small error (with simula-
tor polynomial running time depending on the desired polynomial error), as
opposed to the mentioned recent works that can obtain negligible error (again,
using knowledge assumptions). See full version for details.

Comparison to [BCG+15]: Our protocol is not significantly different from that
of [BCG+15] for duplex-pairing groups, described in Sect. 5 of that paper. The
main purpose here is to give full details for the case of the Pinocchio CRS.
Nonetheless, some advantages of this writeup compared to [BCG+15] are:

1. Eliminating the need for NIZK proofs for the relation Raux described in Sect. 5
there; this is since in Sect. 3.1 we do not commit directly to secret values s,
but only to “random s-pairs”.

2. Reducing the memory per player and simplifying the protocol description, by
not using [BCG+15]’s generic “sampling to evaluation” procedure, but rather,
explicitly presenting the protocol for our use case. In particular, individual
players only need to store the messages of the player preceding them, and not
the whole transcript as in a straightforward implementation of [BCG+15].
This simplified approach was later generalized [BGM17] for circuits with a
certain layered structure.

1 Thanks to Eran Tromer for pointing this out, and more generally the connection to
subversion zero-knowledge. We note that if one wishes to run the protocol with one
player, transcript verification can stay the same, but the player should be altered
to take advantage of field rather than group operations when possible for better
efficiency.
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3. Reducing transcript verification complexity, by taking advantage of bi-
linearity of pairings and randomized checking (see Corollary 1). In particular,
the number of pairing operations to verify the transcript is constant, while
in [BCG+15] it grows linearly with the size of the circuit for which we are
constructing SNARK parameters.

4. Giving a full proof of both soundness and subversion zero-knowledge. In
[BCG+15] the soundness proof is only sketched, and the subversion zero-
knowledge property is not described (though it holds for their protocol).

Organization of Paper: Section 2 introduces some terminology and auxiliary
methods that will be used in the protocol. Section 3 describe the protocol in
detail. The full version of the paper describes the security proof of the protocol.

2 Definitions, Notation and Auxiliary Methods

Terminology: We always assume we are working with a field Fr for prime r chosen
according to a desired security parameter (more details on this in full version).
We assume together with Fr we have generated groups G1,G2,Gt, all cyclic of
order r; where we write G1 and G2 in additive notation and Gt in multiplicative
notation. Furthermore, we have access to generators g1 ∈ G1, g2 ∈ G2, and an
efficiently computable pairing e : G1 × G2 → Gt, i.e., a non-trivial map such
that for any a, b ∈ Fr

e(a · g1, b · g2) = ga·b
T ,

for a fixed generator gT ∈ Gt. We use the notations g := (g1, g2) and G∗ :=
G1 \ {0} × G2 \ {0}.

We think of the field size r as a parameter against which we measure effi-
ciency. In particular, we say a circuit A is efficient if its size is polynomial in
log r. More precisely, when we refer in the security analysis to an efficient adver-
sary or efficient algorithm, we mean it is a (non-uniform) sequence of circuits
indexed by r, of size poly log r. When we say “with probability p”, we mean
“with probability at least p”.

We assume we have at our disposal a function COMMIT taking as input
strings of arbitrary length; that, intuitively speaking, behaves like a commitment
scheme. That is, it is infeasible to deduce COMMIT’s input from seeing its output,
and it is infeasible to find two inputs that COMMIT maps to the same output.
In our implementation we use the BLAKE-2 hash function as COMMIT. For the
actual security proof, we need to assume that COMMIT’s outputs are chosen by
a random oracle.

Symmetric Definitions: In the following sections we introduce several methods
that receive as parameters elements of both G1 and G2. We assume implicitly
that whenever such a definition is made, we also have the symmetric definition
where the roles are reversed between what parameters come from G1 and G2. For
example, if we define a method receiving as input a vector of G1 elements and
a pair of G2 elements. We assume thereafter that we also have the symmetric
method receiving as input a vector of G2 elements and a pair of G1 elements.
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2.1 Comparing Ratios of Pairs Using Pairings

Definition 2.1. Given s ∈ F
∗
r, an s-pair is a pair (p, q) such that p, q ∈ G1\{0},

or p, q ∈ G2 \ {0}; and s · p = q. When not clear from the context whether p, q
are in G1 or G2, we use the terms G1-s-pair and G2-s-pair.

A recurring theme in the protocol will be to check that two pairs of elements
in G1 and G2 respectively, “have the same ratio”, i.e., are s-pairs for the same
s ∈ F

∗
r .

SameRatio((p, q), (f,H)) :

1. If one of the elements p, q, f,H is zero; return rej.
2. Return acc if e(p,H) = e(q, f); return rej otherwise.

Claim. Given p, q ∈ G1 and f,H ∈ G2, SameRatio((p, q), (f,H)) = acc if and
only if there exists s ∈ F

∗
r such that (p, q) is a G1-s-pair and (f,H) is a G2-s-pair.

Proof. Suppose that s · p = q and s′ · f = H. Write p = a · g1, f = b · g2 for some
a, b ∈ Fr. Note that if one of {a, b, s, s′} is 0, we return rej in the first step.

Otherwise, we have

e(p,H) = (a · g1, bs
′ · g2) = gabs′

T ,

and
e(q, f) = (as · g1, b · g2) = gabs

T ,

and thus SameRatio((p, q), (f,H)) = 1 if and only if s = s′ (mod r).

Let V = ((pi, qi))i∈[d], be a vector of pairs in G1. We say V is an s-vector in
G1 if for each i ∈ [d], (pi, qi) is a G1-s-pair, or is equal to (0, 0). We make the
analogous definition for G2, and similarly to above, sometimes omit the group
name when it is clear from the context what group the elements are in, simply
using the term s-vector. In our protocol we often want to check if a long vector
((pi, qi))i∈[d] is an s-vector for some s ∈ F

∗
r . The next claim enables us to do so

with just one pairing.

Claim. Suppose that ((pi, qi))i∈[d] is a vector of elements in G1 \ {0} that is not
an s-vector. Choose random c1, . . . , cd ∈ Fr and define

p �
∑

i∈[d]

ci · pi, q �
∑

i∈[d]

ci · qi.

Then, with probability at least 1 − 2/r, both (p, q) �= (0, 0) and (p, q) is not an
s-pair.

Proof. Write pi = ai · g1 for ai ∈ Fr, and qi = si · pi for some si ∈ Fr. Thus, we
have p = a · g1 for a �

∑
i∈[d] ciai and q = b · g1 for b �

∑
i∈[d] αiaisi. Let us

assume a �= 0. This happens with probability 1−1/r. Write [d] as a disjoint union
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S ∪ T where S is the set of indices of the s-pairs. That is S � {i ∈ [d]|si = s}.
We have

b/a =

∑
i∈[d] ciaisi∑
i∈[d] ciai

= s +
∑

i∈T ci · (s − si)∑
i∈[d] ciai

= s +
∑

i∈T ci · (s − si)
a

.

Thus, b/a = s if and only if the fraction in the right hand side is zero. As the
numerator is a random combination of non-zero elements, this happens with
probability 1/r.

We conclude that with probability at least 1 − 2/r, (p, q) is not an s-pair.

Claim 2.1 implies the correctness of sameRatio(V, (f,H)) that given an s-pair
(f,H) in G2, checks whether V is an s-vector in G1.
sameRatio(V = ((pi, qi))i∈[d], (f,H)):

1. If there exists a pair of the form (0, a) or (a, 0) for some a �= 0 in V ; return
rej.

2. “Put aside” all elements of the form (0, 0), and from now on assume all pairs
in V are in G1 \ {0}. (If all pairs are of the form (0, 0) then return acc).

3. Choose random c1, . . . , cd ∈ Fr.
4. Define p �

∑
i∈[d] ci · pi, and q �

∑
i∈[d] ci · qi.

5. If p = q = 0, return acc.
6. Otherwise, return SameRatio((p, q), (f,H)).

Corollary 1. Suppose rps in a G2-s-pair, and V is a vector of pairs of G1

elements. If V is an s-vector, sameRatio(V, rps) accepts with probability one. If
V is not an s-vector, sameRatio(V, rps) accepts with probability at most 2/r.

Let V be a vector of G1-elements and rps be a pair of G2-elements. We also
use a method sameRatioSeq(V, rps) that given an s-pair rps, checks that each two
consecutive elements of V are an s-pair. It does so by calling sameRatio(V ′, rps)
with V ′ = ((V0, V1), (V1, V2), . . . , (Vd−1, Vd)).

2.2 Schnorr NIZKs for Knowledge of Discrete Log

We review and define notation for using the well-known Schnorr protocol [Sch89].
Given an s-pair rps = (f,H = s · f), and a string h, we define the (randomized)
string NIZK(rps, h) that can be interpreted as a proof that the generator of the
string knows s.

NIZK(rps, h):

1. Choose random a ∈ F
∗
r and let R := a · f .

2. Let c := COMMIT(R ◦ h) and interpret c as an element of Fr, e.g. by taking
it’s first log r bits.

3. Let u := a + cs.
4. Define NIZK(rps, h) := (R, u).
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Let us denote by π a string that is supposedly of the form NIZK(rps, h), for some
string h.

VERIFY-NIZK(rps, π, h) is a boolean predicate that verifies that π is indeed
of this form for the same given h.

VERIFY-NIZK((f,H), π, h):

1. Let R, u be as in the description above.
2. Compute c := COMMIT(R ◦ h).
3. Return acc when u · f = R + c · H; and rej otherwise.

2.3 The Random-Coefficient Subprotocol

A large part of the protocol will consist of invocations of the random-coefficient
subprotocol. In this subprotocol, we multiply a vector of G1 elements coordinate-
wise by the same scalar α ∈ F

∗
r . α here is a product of secret elements {αi}i∈[n],

that we refer to later as comitted elements. By this we mean, that before the
subprotocol is invoked, for each i ∈ [n], Pi has broadcasted a G2-αi-pair, denoted
rpαi

, that is accessible to the protocol verifier. (This will become clearer in the
context of Sect. 3).

RCPC(V, α):

Common Input: vector V ∈ G
d
1.

Individual Inputs: element αi ∈ F
∗
r for each i ∈ [n].

Output: vector α · V ∈ G
d
1, where α =

∏n
i=1 αi.

1. P1 computes broadcasts V1 := α1 · V .
2. For i = 2, . . . , n, Pi broadcasts Vi := αi · Vi−1.
3. Players output Vn (which should equal α · V ).

Before discussing the transcript verification we define one more useful nota-
tion. For vectors S, T ∈ G

d
1 and a G2-α-pair rpα, sameRatio((S, T ), rpα) returns

sameRatio(V, rpα), where Vi := (Si, Ti). The transcript verification procedure
receives as input V, V1, . . . , Vn, and for each i ∈ [n], the G2-αi-pair, rpαi

.

verifyRCPC(V, α):

Input: V , protocol transcript V1, . . . , Vn ∈ G
d
1, for each i ∈ [n] a G2-αi-pair rpαi

.

Output: acc or rej.

1. Run sameRatio((V, V1), rpα1
).

2. For i = 2, . . . , n, run sameRatio((Vi−1, Vi), rpαi
).

3. Return acc if all invocations returned acc; and return rej otherwise.

From the correctness of the sameRatio(, ) method (Corollary 1) we have that

Claim. If the players follow the protocol correctly, the output is α · V , and
transcript verification outputs acc with probability one. Otherwise, transcript
verification outputs acc with probability at most 2/r.
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3 Protocol Description

The Participants: The protocol is conducted by n players, a coordinator, and a
protocol verifier. In the implementation the role of the coordinator and protocol
verifier can be played by the same server. We find it useful to separate these
roles, though, as the actions of the protocol verifier may be executed only after
the protocol has terminated, if one wishes to reduce the time the players have to
be engaged. Moreover, any party wishing to check the validity of the transcript
and generated parameters can do so solely with access to the protocol transcript.
On the other hand, this has the disadvantage that non-valid messages will be
detected only in hindsight, and the whole process will have to be restarted if one
wishes to generate valid SNARK parameters.

Similarly, the role of the coordinator is not strictly necessary if one assumes
a blackboard model where each player sees all messages broadcasted. (In our
actual implementation the coordinator passes messages between the players).
Our security analysis holds when all messages are seen by all players. However,
even in such a blackboard model there is an advantage of having of a coordinator
role: At the beginning of Round 3 a heavy computation needs to performed
(Subsect. 3.3) that in theory could be performed by the first player before he
sends his message for that round. However, as this heavy computation does not
require access to any secrets of the players, having the coordinator perform it
can save much time, if the coordinator is run on a strong server, and the players
have weaker machines.

The protocol consists of four “round-robin” rounds, where for each i ∈ [n],
player Pi can send his message after receiving the message of Pi−1. P1 can send
his message after receiving an“initializer message” from the coordinator, which
is empty in some of the rounds. An exception of this is the first round, where all
players may send their message to the coordinator in parallel. However, security
is not harmed if a player sees other players’ messages before sending his in that
round. Round 2 is divided into several parts for clarity, however the messages of
a player Pi in all parts of that round can be sent in parallel. Similarly, Round
3 and 4 consist of several one round round-robin subprotocols; however, the
messages of a player Pi in all these subprotocols can be sent in parallel.

3.1 Round 1: Commitments

For each i ∈ [n], Pi does the following.

1. Generate a set of uniform elements in F
∗
r

secretsi := {τi, ρA,i, ρB,i, αA,i, αB,i, αC,i, βi, γi} .

Omitting the index i for readability from now on, let

elementsi := {τ, ρA, ρB , αA, αB , αC , β, γ, ρAαA, ρBαB ,

ρAρB , ρAρBαC , βγ}
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2. Now Pi generates the set of group elements2

ei := (τ, ρA, ρAρB , ρAαA, ρAρBαB , ρAρBαC , γ, βγ) · g.

3. Pi computes hi := COMMIT(ei) and broadcasts hi.

3.2 Round 2

Part 1: Revealing commitments: For each i ∈ [n]

1. Pi broadcasts ei.
2. The protocol verifier checks that indeed hi = COMMIT(ei).

Committed Elements: From the end of Round 2, part 1 of the protocol, we refer
to the elements of elementsi for some i ∈ [n] as committed elements. The reason
is that by this stage of the protocol, for each s ∈ elementsi, Pi has sent an s-pair
in both G1 and G2, effectively committing him to the value of s. For each such
element s, we refer to the s-pair in G1 by rps and the s-pair in G2 by rp2s . We list
the corresponding elements and s-pairs, omitting the i subscript for readability:

– τ : (rp1τ , rp2τ ) = (g, τ · g).
– ρA: (rp1ρA

, rp2ρA
) = (g, ρA · g).

– ρB : (rp1ρB
, rp2ρB

) = (g, ρB · g).
– αA: (rp1αA

, rp2αA
) = (ρA · g, ρAαA · g).

– αB : (rp1αB
, rp2αB

) = (ρAρB · g, ρAρBαB · g).
– αC : (rp1αC

, rp2αC
) = (ρAρB · g, ρAρBαC · g).

– β: (rp1β , rp2β) = (γ · g, βγ · g).
– γ: (rp1γ , rp2γ) = (g, γ · g).
– ρAαA: (rp1ρAαA

, rp2ρAαA
) = (g, ρAαA · g).

– ρBαB : (rp1ρBαB
, rp2ρBαB

) = (ρA · g, ρAρBαB · g).
– ρAρB : (rp1ρAρB

, rp2ρAρB
) = (g, ρAρB · g).

– ρAρBαC : (rp1ρAρBαC
, rp2ρAρBαC

) = (g, ρAρBαC · g).
– βγ: (rp1βγ , rp2βγ) = (g, βγ · g).

Of course, we need to check that Pi has committed to the same element s ∈ F
∗
r

by rps and rp2s . This is done by the protocol verifier in the next stage.

Part 2: Checking Commitment Consistency Between both Groups: For
each i ∈ [n], and s ∈ elementsi, the protocol verifier runs SameRatio(rps, rp

2
s ),

and outputs rej if any invocation returned rej.
2 In the actual code a more complex set of elements is used that can be efficiently

derived from elementsi, as described in the full version. The reason we use the more
complex set is that it potentially provides more security as it contains less informa-
tion about secretsi. However, the proof works as well with this definition of ei and
it provides a significantly simpler presentation. We explain in the full version the
slight modification for protocol and proof for using the more complex element set.
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Part 3: Proving and Verifying Knowledge of Discrete Logs: Let h :=
COMMIT(h1 ◦ . . . ◦ hn) be the hash of the transcript of Round 1. P1 computes
and broadcasts h.

For each i ∈ [n]

1. For s ∈ secretsi, let hi,s := h◦rp1s. Note that both Pi and the protocol verifier,
seeing the transcript up to this point, can efficiently compute the elements
{hi,s}.

2. For each s ∈ secretsi, Pi broadcasts πi,s := NIZK(rp1s, hi,s).
3. The protocol verifier checks for each s ∈ secretsi that

VERIFY-NIZK(rp1s, πi,s, hi,s) = acc.

Part 4: The Random Powers Subprotocol: The purpose of the subprotocol
is to output the vector

POWERSτ :=
(
(1, τ, τ2, . . . , τd) · g1, (1, τ, τ2, . . . , τd) · g2

)
,

where τ := τ1 · · · τn. Recall that τ1, . . . , τn are committed values from Round 1.
For a vector V ∈ G

d+1
1 , and a ∈ Fr, we use below the notation

powerMult(V, a) ∈ G
d+1
1 , defined as

powerMult(V, a)i � ai · V,

for i ∈ {0, . . . , d}. We use the analogous notation for a vector V ∈ G
d+1
2 .

Phase 1: Computing Power Vectors

1. P1 does the following.
(a) Computes V1 = (1, τ1, τ2

1 , . . . , τd
1 ) · g1 and V ′

1 = (1, τ1, τ2
1 , . . . , τd

1 ) · g2.
(b) Broadcasts (V1, V

′
1).

2. For i = 2, . . . , n, Pi does the following:
(a) Compute Vi � powerMult(Vi−1, τi) and V ′

i � powerMult(V ′
i−1, τi−1).

(b) Broadcasts (Vi, V
′
i ).

Phase 2: Checking Power Vectors are Valid: The protocol verifier performs the
following checks3 on the broadcasted data from Phase 1:

1. Check that
sameRatioSeq(V1, rp

2
τ1),

and
sameRatioSeq(V ′

1 , (V1,0, V1,1))

3 The checks below could be simplified if we had also used rp1τi . We do not use it as
in the actual code, as explained in the full version, we do not have a G1-τi-pair.
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2. For each i ∈ [n] \ {1} check that

sameRatioSeq(Vi, (V ′
i,0, V

′
i,1)),

sameRatioSeq(V ′
i , (Vi,0, Vi,1)),

and
SameRatio((Vi−1,1, Vi,1), rp2τi)

The protocol verifier rejects the transcript if one of the checks failed; otherwise,
the coordinator defines (PKH � Vn, PK ′

H � V ′
n) is taken as the subprotocol

output.

Phase 3: Checking we didn’t Land in the Zeros of Z: The zero-knowledge prop-
erty of the SNARK requires we weren’t unlucky and τ landed in the zeroes of
Z(X) := Xd − 1.

– Protocol verifier and all players check that Z(τ) · g1 = (τd − 1) · g1 = Vn,d −
Vn,0 �= 0. If the check fails the protocol is aborted and restarted.

3.3 Coordinator After Round 2: Computing Lagrange Basis Using
FFT, and Preparing the Vectors A, B and C

To avoid a quadratic proving time the polynomials in the QAP must be evaluated
in a Lagrange basis. There seems to be no way of directly computing a Lagrange
basis at τ in a 1-round MPC in a similar way we did for the standard basis
in the Random-Powers subprotocol. Thus we will do ‘FFT in the coefficient’ to
compute the Lagrange basis on the output of the random-powers subprotocol.
Details and definitions follow. Let ω ∈ Fr be a primitive root of unity of order
d = 2�, in code d is typically the first power of two larger or equal to the circuit
size.

For i = 1, . . . , d, we define Li to be the i’th Lagrange polynomial over the
points

{
ωi

}
i∈[d]

. That is, Li is the unique polynomial of degree smaller than d,
such that Li(ωi) = 1 and Li(ωj) = 0, for j ∈ [d] \ {i}.

Claim. For i ∈ [d] we have

Li(X) := cd ·
d−1∑

j=0

(X/ωi)j ,

for cd := 1
d .

Proof. Substituting X = ωi′
for i′ �= i we have a sum over all roots of unity of

order d which is 0. Substituting X = ωi we have a sum of d ones divided by d
which is one.
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For τ ∈ F
∗
r , denote by we denote by LAGτ ∈ G

d
1 × G

d
2 the vector

LAGτ :=
(
(Li(τ) · g1)i∈[d], (Li(τ) · g2)i∈[d]

)
.

The purpose of the FFT-protocol is to compute LAGτ from POWERSτ . Let us
focus for simplicity how to compute the first half containing the G1 elements.
Computing the second half is completely analogous. We define the polynomial
P (Y )(= Pτ (Y )) by

P (Y ) :=
<d∑

j=0

(τ · Y )j .

It is easy to check that

Claim. For i ∈ [d]
Li(τ) = P (ω−i) = P (ωd−i),

and thus
LAGτ = (P (ω−i))i∈[d] · g

Thus our task reduces to computing the vector (P (ωi))i∈[d] · g1 (and then
reordering accordingly). We describe an algorithm to compute the vector
(P (ωi))i∈[d] using the vector (1, τ, τ2, . . . , τd) as input and only linear combi-
nation gates. This suffices as these linear combinations can be simulated by
scalar multiplication and addition in G1, when operating on POWERSτ . We
proceed to review standard FFT tricks that will be used.

For a polynomial P (Y ) =
∑<d

i=0 ai · Y i of degree smaller than d, where d is
even, we define the polynomials

PEVEN(Y ) :=
<d/2∑

i=0

a2i · Y i,

and

PODD(Y ) :=
<d/2∑

i=0

a2i+1 · Y i.

It is easy to see that

P (Y ) = PEVEN(Y 2) + Y · PODD(Y 2).

In particular, for i ∈ [d]

P (ωi) = PEVEN(ω2i) + ωi · PODD(ω2i)

For j = 0, . . . , 	 − 1 denote ωj � ω2j . Note further that
{
ω2i

}
i∈[d]

is a subgroup

if size d/2 generated by ω1. More generally, for j = 1, . . . , 	 − 1
{
ω2i

j−1

}
i∈[d]

is a subgroup of size 2d−j generated by ωj . The above discussion suggests the
following (well-known FFT) recursive algorithm.
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FFT
input: Polynomial P , given as list of coefficients, element ω ∈ Fr generating a
group of size d = 2�.
output: The vector V = (P (ωi))i∈[d].

1. If d = 2 compute V directly.
2. Otherwise,

(a) Call the method recursively twice; first with PEVEN and ω2 to obtain
output E := (PEVEN(ω2i))i∈[d/2], and then with PODD and ω2 to obtain
the vector O := (PODD(ω2i))i∈[d/2].

(b) Compute the vector V using E,O and the equality mentioned above.
More specifically, each element Vi of V is computed as

Vi = P (ωi) = PEVEN(ω2i) + ωi · PODD(ω2i) = Ei + ωi · Oi,

(where we subtract d/2 from indices of E and O when they are larger
than d/2).

In summary, we obtain LAGτ by applying the FFT and the polynomial P
described above, with coefficients 1, τ, . . . , τd−1 and an ω of order d - which
should be the same ω used in the QAP construction. After getting the result
from the FFT, we reverse the order of the vector and multiply each element by
the scalar 1/d.

Preparing the vectors A,B and C: We need to compute the vectors A :=
(Ai(τ))i∈[0..m+1] · g1, B := (Bi(τ))i∈[0..m+1] · g1, B2 := (Bi(τ))i∈[0..m+1] · g2, and
C := (Ci(τ))i∈[0..m+1] · g1. We remark that [BCTV14] use the same notation for
vectors of polynomials, while we are looking at the vector of these polynomials
evaluated at τ .

Note that4 Am+1 = Bm+1 = Cm+1 := Z[τ ] · g1 = (τd − 1) · g1. After the
FFT, we have obtained LAGτ , so each such element is a linear combination of
elements of LAGτ ; except Z(τ) · g, that can be computed using the elements
τd · g in POWERSτ .

3.4 Round 3

After the random-powers subprotocol and the FFT, the MPC consists of a few
invocations of the random-coefficient subprotocol. These invocations add a total
of two rounds to the MPC, as sometimes and random-coefficient subprotocol
will need the output of a previous random-coefficient subprotocol as input.

4 A technicality is that in the protocol description in [BCTV14] Z(τ) · g2 is appended
with index m + 2 in B2, and Z(τ) · g1 is appended in index m + 3 in C. However
in the actual libsnark code, they are appended in index m + 1, and the prover
algorithm is slightly modified to take this into account. But for the security proof we
assume later on as in [BCTV14] that Am+1 = Cm+3 = Z(τ) · g1, Bm+2 = Z(τ) · g2,
Am+2, Am+3, Bm+1, Bm+3, Cm+1, Cm+2 = 0.
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Part 1: Broadcasting Result of FFT: The coordinator broadcasts the vectors
A,B,C,B2.

Part 2: Random Coefficient Subprotocol Invocations: We apply the random-
coefficient subprotocol numerous times to obtain the different key elements. For
an element αi ∈ elementsi, we abuse notation here and denote α := α1 · · · αn

(as opposed to ommitting the index i and writing α for αi which we did when
describing Round 1).

1. PKA = RCPC(A, ρA).
2. PKB = RCPC(B2, ρB).
3. PKC = RCPC(C, ρAρB).
4. PK ′

A = RCPC(A, ρAαA)
5. PK ′

B = RCPC(B, ρBαB).
6. PK ′

C = RCPC(C, ρAρBαC)
7. tempB = RCPC(B, ρB)
8. V KZ = RCPC(g2 · Z(τ), ρAρB). We use that g2 · Z(τ) = g2 · (τd − 1) can be

computed from PK ′
H that was computed in Round 2, part 2, as described in

Sect. 3.2.
9. V KA = RCPC(g2, αA).

10. V KB = RCPC(g1, αB).
11. V KC = RCPC(g2, αC).

3.5 Round 4: Computing Key Elements Involving β, Especially
PKK

Each player (or just the coordinator) computes V := PKA + tempB + PKC .
The players compute

1. PKK = RCPC(V, β)
2. V Kγ = RCPC(g2, γ)
3. V K1

βγ = RCPC(g1, βγ).
4. V K2

βγ = RCPC(g2, βγ).

Finally, the protocol verifier will run verifyRCPC(, ) on the input and transcript
of each subprotocol executed in Round 3 or 4; and output acc if and only if all
invocations of verifyRCPC(, ) returned acc.

The proof of security for the protocol is given in the appendix.
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