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Abstract. Recently, a number of projects (both from academia and
industry) have examined decentralized public key infrastructures (PKI)
based on blockchain technology. These projects vary in scope from full-
fledged domain name systems accompanied by a PKI to simpler trans-
parency systems that augment the current HTTPS PKI. In this paper,
we start by articulating, in a way we have not seen before, why this app-
roach is more than a complementary composition of technologies, but
actually a new and useful paradigm for thinking about who is actually
authoritative over PKI information in the web certificate model. We then
consider what smart contracts could add to the web certificate model,
if we move beyond using a blockchain as passive, immutable (subject
to consensus) store of data—as is the approach taken by projects like
Blockstack. To illustrate the potential, we develop and experiment with
an Ethereum-based web certificate model we call Ghazal, discuss different
design decisions, and analyze deployment costs.

1 Introductory Remarks

The blockchain data structure and consensus mechanism has received sig-
nificant interest since being introduced as the underlying technology of the
cryptocurrency Bitcoin in Satoshi Nakamoto’s (pseudonymous) 2008 whitepa-
per [25]. In 2014, Buterin presented a new blockchain based application known
as Ethereum [10]. As a blockchain-based distributed public network, Ethereum
implements a decentralized virtual machine, known as the Ethereum Virtual
Machine (EVM), which allows network nodes to execute deployed programmable
smart contracts on the Ethereum blockchain [31]. This platform enables develop-
ers to create and execute blockchain applications called decentralized applications
(dapps) that are executed correctly according to the consensus of the network.
A Dapp’s code and data is stored in a decentralized manner on the blockchain.
Dapps or smart contracts are now often written in a high level programming
language such as Solidity which is syntactically similar to Java [1]. Digital smart
contracts were first described Nick Szabo in 1993 [28], however they reached a
high level of adoption through blockchain technology.

One application of blockchain technology that has received some research and
commercial interest is the idea of replacing (or augmenting) the web certificate
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model used by clients (OS and browsers) to form secure communication channels
with web-servers (described in more detail below). This model has been plagued
with issues from fraudulent certificates used to impersonate servers to ineffective
revocation mechanisms; see Clark and van Oorschot for a survey [12]. We argue
that the application of blockchains to this model is more than an interesting
experiment; it is actually a new uni-authoritative paradigm that resolves some
of the fundamental issues with the current model-—authority and indirection. We
also argue that adding programmability to a dapp-based PKI provides benefits
beyond using the blockchain as an append-only broadcast channel. Finally, we
instantiate our ideas in a novel system called Ghazal implemented in Solidity and
deployed on Ethereum. At the time of writing, the overall system costs under
$100 to deploy. Basic actions like domain registration costs under $5.

2 Related Work

The HTTPS (HTTP over SSL/TLS) protocol enables secure connections to web-
sites with confidentiality, message integrity, and server authentication. Server
authentication relies on a client being able to determine the correct public key for
a server. The current web certificate model uses a system of certificate authorities
(CAs); businesses that provide this binding in the form of a certificate. Client
devices, through the browser and/or the operating system, are pre-installed with
a set of known CAs who can delegate authority to intermediary CAs through a
protocol involving certificates. When a CA issues a certificate to a web-server,
there are generally three types: domain validated (DV) certificates bind a public
key only to a domain (e.g., example.com), while organization validated (OV)
and extended validated (EV) certificates validate additional information about
the organization that operates the server (Example, Inc.).

Namecoin is an altcoin (software based on Bitcoin with a distinct blockchain)
that implements a decentralized namespace for domain names [17]. The main
feature of Namecoin is that for a fee, users can register a .bit address and
map it to an IP address of their choice. CertCoin [14], and PB-PKI [7] are
extensions to Namecoin that add the ability to specify an HTTPS public key
certificate for the domain (as well as other PKI operations like expiration and
revocation, which we discuss in Sect. 4.1). Blockstack [6] achieves the same goal
by embedding data into a root blockchain, a process called virtualchains that
could be instantiated with OP_RETURN on Bitcoin’s blockchain. These approaches
are closest to our own system Ghazal. These systems disintermediate CAs from
the web certificate model. The main difference is that we use Ethereum to provide
full programmability (motivated below in Sect. 3.2). In addition, we provide some
minor improvements such as allowing multiple keys to be bound to the same
domain, as is common for load balancing and CDNs.

Some research has looked at adding transparency, effectively through an
efficient log of CA-issued certificates, to augment the current web certificate
model. This is a very active area of research that includes certificate trans-
parency (CT) [18], sovereign keys (SKs) [2], and ARPKI [8]. IKP [22] provides an
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Ethereum-based system for servers to advertise policies about their certificates
(akin to a more verbose CAA on a blockchain instead via DNS). Research a bit
further removed from web certificates concerns decentralized PKIs and broader
identities. While not decentralized, CONIKS provides a distributed transparency
log similar to CT but for public keys (while they could be for anything, email and
IM are the primary motivations) [23]. Bonneau provides an Ethereum smart con-
tract for monitoring CONIKS [9]. ClaimChain is similar to CONIKS but finds a
middle-ground between a small set of distributed servers (CONIKS) and a fully
decentralized but global state (blockchain) by having fully decentralized, local
states that can be cross-validated. CONIKS and ClaimChain do not use CAs but
rather rely on users validating the logs, which are carefully designed to be non-
equivocating. ChainAnchor provides identity and access management for private
blockchains [15], while CoSi is a distributed signing authority generic logging [27].
Each of these systems is concerned with logging data (a generic umbrella that
encapsulates many of these is Transparency Overlays [11]). As logging systems,
they do not provide programmability which is the primary motivation for our
system.

Finally, some research has explored having public validated by external par-
ties but replacing the role of CAs with a PGP-style web of trust. SCPKI is an
implementation of this idea on Ethereum [5]. Our observation is that for domain
validation, a blockchain with a built-in naming system is already authoritative
over the namespace and does not require additional validation.

3 Motivation

3.1 Are Blockchains a New Paradigm for PKI?

In the related work, most blockchain-approaches to identity (or specifically PKI)
motivate their approach with Zooko’s triangle; an articulation of three natural
properties one might want from an identity system: memorable names, secure (as
in hard to impersonate), and a distributed authority for issuing names. His asser-
tion is that two of the three properties can be achieved effortlessly but adding the
third is difficult or impossible. Blockchains, starting with Namecoin for domain
names and extensions to PKI, are often claimed to resolve this trilemma enabling
all three properties in one system. A blockchain is distributed, short human-
friendly names can be claimed by anyone, and ownership over a name is secured
with a strong cryptographic key.

We approach thinking about this issue a little differently. In the current web
certificate model, certificate authorities are meant to be authorities: that is,
they are authoritative over the namespace they bind keys to. The reality is that
the web still runs largely on domain validated certificates [13,16] and for domain
validation, certificate authorities are not any more or less authoritative over who
owns what domain than you or I. Certificate authorities instead rely on indirec-
tion. For example, a certificate authority might validate a request by Alice for a
certificate for alice.com by sending an email to admin@alice.com with a secret
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nonce that Alice must type into a webform. This involves 2 levels of indirec-
tion: (1) CAs appeal to DNS to establish the MX record of the domain (i.e.,
the subscriber’s mail server’s IP address); (2) CAs appeal to SMTP to establish
a communication channel to the subscriber. For each level of indirection, there
are a set of vulnerabilities which might allow a malicious party to break the
verification process and obtain a fraudulent certificate for a domain they do not
own. For example, consider the attack surface of email-based validation:

1. Reserved Emails: A CA specifies a list of email addresses to receive the
challenge. The underlying assumption is that only the domain owner controls
this address. However the domain owner might not reserve that email address
or even be aware that a certain email address is being used by one of the
CAs for this purpose. And recall that just a single CA needs to use a single
non-standard email address (e.g., a translation of administrator into their
local language) to open up this vulnerability. For example, Microsoft’s public
webmail service login.live.com saw an attacker successfully validate his
ownership of the domain using an email address sslcertificates@live.com
which was open to public registration [32].

2. Whois Emails: A CA also optionally draws the email address from the
Whois record for the domain. A domain’s whois record is generally protected
by the username/password set by the domain owner with their registrar.
Any attack on this password (e.g., guessing or resetting) or directly on the
account (e.g., social engineering [3]) would allow the adversary to specify an
email address that they control.

3. MX Record: A CA establishes the IP address of the mailserver from the
MX record for the domain. As above, all domain records including the MX
record is managed through the owner’s account with her domain registrar.
Any method for obtaining unauthorized access to this account would enable
an adversary to list their own server in the MX record and receive the email
from the CA.

4. DNS Records: If an adversary cannot directly change a DNS record, they
might conduct other attacks on the CA’s view of DNS. For example, they
might employ DNS cache poisoning which can result in invalid DNS res-
olution [26]. They might also exploit an available dangling DNS record
(Dare) [19]. Dares occur when data in a DNS record (such as CNAME, A, or
MX) becomes invalid but is not removed by the domain owner. For example,
if the domain owner forgets to remove the MX record (the IP address of the
server) from DNS; the associated DNS MX record is said to be dangling. If
an adversary can acquire this IP address at some future point, he is able to
redirect all traffic intended for the original domain to his server, including
information sufficient for a CA’s domain validation process. Thus a malicious
party can use a Dare to obtain a fraudulent certificate. In a uni-authoritative
system, Dares are still possible (old data that has not been purged from the
system) but the public keys dangle with the IP address, which resolves the
security issue for mis-issued certificates.
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5. SMTP: Once the CA establishes the mailserver’s record, it will send the
email to the mailserver with SMTP (the standard protocol for transfer of
email). Since the email contains a secret nonce, confidentiality of this email
is crucial. SMTP uses opportunistic encryption that is not secure against an
active adversary. Thus a man-in-the-middle between the CA’s mailserver and
the ultimate destination (including an forwarding mailservers) could request
a fraudulent certificate, intercept the ensuing email, reply with the correct
nonce, and be issued the fraudulent certificate.

6. Email Accounts: Email accounts are generally protected with a username
and password (over IMAP or POP3) to prevent unauthorized access. In some
cases, they might be protected with a client certificate. An adversary who
can gain access to any one of the accounts that should be reserved by the
domain owner (e.g., textttadmin, hostmaster, webmaster, etc.) could obtain
a fraudulent certificate for that site. This could include guessing or reset-
ting the password, using social engineering, or obtaining access to the server
hosting the email for the account.

Blockchains are actually a new paradigm; they collapse the indirection for
domain validation. If a PKI were added to a blockchain, who would be authorita-
tive over the namespace of domain names? When domain names themselves are
issued through the blockchain (e.g., Namecoin), then the blockchain is actually
the authoritative entity. Arguably, this indirection can be collapsed in the tradi-
tional web certificate model as well. There DNS (in conjunction with ICANN) is
authoritative over the namespace and if ICANN/DNS held key bindings, there
would be no indirection or CAs needed—indeed, this is exactly the proposal
of DANE. Thus blockchains and DANE are both examples of what we might
call a uni-authoritative paradigm. A deployment issue with DANE is that DNS
records do not generally have message integrity (except via the under-deployed
DNSSEC) whereas blockchain transactions do.

3.2 Does Programmability Add Anything?

In the related work, some systems take a uni-authoritative approach while others
rely on third party authorities (generally, CAs or web of trust). Most systems
that use a blockchain (or similar transparency log) do it in a passive way—as an
append-only broadcast channel; a few systems actually use smart contracts or
the programmability that a blockchain provides. Of all these systems, to the best
of our knowledge, none are both uni-authoritative and use programmability. We
have argued the merits of uni-authoritative above, what about programmability?
What does it provide?

Programmability, or PKI bindings within a smart contract, can enable fea-
tures that seem desirable. A few examples include: external contracts that can
easily obtain information about a domain in making decisions; atomonicity
within domain name transfers where payments and transfers are inputs to the
same transaction (e.g., even Namecoin relies on a third party tool called ANTPY
to perform atomic name ownership transfer transactions); and fancier options for
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transferring domain names: we implement an auction where any domain owner
can auction off their domain within the smart contract itself. The reader might
think of other features that programmability could add.

In defence of non-programmable blockchain-based PKIs, such as Blockstack,
it is not clear how well a system like ours scales and what demands it puts on
user clients to quickly fetch information on domains. We return to this in the
next section, however we note here that we are not claiming programmability
necessarily wins out in the end, only that it is worth exploring from a research
perspective to better understand the trade-offs.

4 The Ghazal System

Our proposed scheme is entitled Ghazal, a smart contract-based naming and PKI
uni-authoritative system.! It enables entities, whether they are people or organi-
zations, to fully manage and maintain control of their domain name without rely-
ing on trusted third parties. In Ghazal, a user can register an unclaimed domain
name as a globally readable identifier on the Ethereum blockchain. Subsequently,
she is able to assign arbitrary data, such as TLS certificates to her domain. These
values are globally readable, non-equivocating, and not vulnerable to the indirec-
tion attacks outlined above. The penalty paid for a uni-authoritative approach
is that Ghazal has to carve out its own namespace that is not already in use
(e.g., names ending in .ghazal like Namecoin’s .bit or Blockstack’s .id). OS
and browsers would have to be modified before any system like this can be
used. Anyone can claim a domain on a first-come, first-serve basis. Because it
is decentralized, names cannot be re-assigned without the cooperation of the
owner (whereas an ICANN address like davidduchovny.com can be re-assigned
through administrative mediation).

The design of Ghazal consists of two essential elements. First, the smart
contract that resides on the Ethereum blockchain and serves as an interface
between entities and the underlying blockchain. The second primary component
of the system are the clients, including people or organizations that interact
with Ghazal smart contract in order to manage their domain names. Figure 1
represents the primary states a domain name can be in and how state transitions
work. These states are enforced within the code itself to help mitigate software
security issues related to unintended execution paths.

4.1 Exploring Ghazal Design Choices

Beyond simply presenting our design, we think it is useful to explore the land-
scape of possible designs. To this end, we discuss some deployment issues that
we faced where there was no obvious “one right answer.” These are likely to
be faced by others working in this space (whether working narrowly on PKI or
broad identity on blockchain solutions).

! https://github.com/mahsamoosavi/Ghazal.
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Fig. 1. Primary states and transitions for a domain name in Ghazal.

Design Decision #1: Domain Name Expiration

Typically domain name ownership eventually ezpires. Once a domain expires,
it is returned to the primary market, except if the users renews it. However,
expiration does not necessarily have to mean a disclaimer of ownership; there
are other options.

1. Domain names never expire and last forever. Designing a system with
no domain name expiration would be highly vulnerable to domain squatting.
Domain squatting is registering domain names in speculation that the will
increase in value. These domain names generally do not point to any relevant
IP address (except to earn revenue on accidental visits). If domain names
never expire, squatting may be significantly problematic as squatted names
would be locked forever while legitimate users will end up choosing unusual
names from the remaining namespace. To be clear, even without expiration,
if domains are cheap, squatting is problematic (e.g., Namecoin [17]).

2. Domain names get deleted once they expire, except being renewed
by the user. The most restrictive system design is where a domain name
effectively gets deleted and is returned to the registry of unclaimed names once
it expires, unless the user renews it. This model has the following two issues.
First, if a browser tries to resolve an expired domain, because the blockchain
has a complete, immutable history of that domain, we would expect users to
want it resolved according to the previous owner. Rolling back expirations is
possible in a way not supported by DNS and it resolves simple human errors
of forgetting to renew domains, so we do not expect browsers to necessarily
fail when it could make a sensible guess as to which server their users are
looking for. The second reason to drop the deletion model of expiration is
that Ethereum contracts can only run when a function is called. If no one



Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 359

calls a function at expiration time, the contract cannot self-execute to modify
itself. The fact that it is expired can be inferred from contract if it includes
a time but the contract itself will not transition states until someone calls a
function that touches that particular contract. An alternative is to rely on
a third party like Ethereum Alarm Clock [4] for scheduling future function
calls. This is suitable only if the threat model permits relying on a trusted
third party and a single point of failure (for this one feature).

3. Control over domain names is lost once they expire, except being
renewed by user. In Ghazal, expired domains continue to function although
the owner (i) looses the sole claim to that domain and cannot preserve it if
someone else purchases it, and (ii) she cannot modify the domain in anyway
(e.g., add certificates or change zone information) unless if she first renews
it. Essentially, purchasing a domain name does not entitle an entity to own it
forever; expired domain names are returned back to the primary market and
are available for all the users within the system. However since a full history
of a domain is present, the system’s best effort at resolving the domain will be
to preserve the last known state. Expiration in conjunction to the amount of
the fee will influence the degree of domain squatting, and having expiration
at all will allow abandoned domains to churn if they are under demand.

Design Decision #2: Registration Fees

In Ghazal, new registrations and renewals require a fee. This fee is a deterrent
against domain squatting. The fee amount is difficult to set and no fee will be
perfectly priced to be exactly too high for squatters but low enough for all ‘legit-
imate’ users. Rather it will trade-off the number of squatters with the number
of would-be legitimate users who cannot pay the fee. Namecoin is evidently too
cheap and ICAAN rates seem reasonable. We leave this as a free parameter of
the system. The important decisions are: (1) in what currency are they paid and
(2) to whom. Every Ethereum-based system, even without a fee, will at least
require gas costs. Additional fees could be paid in Ether or in some system-
specific token. Since it is a decentralized system and the fee is not subsidizing
the efforts of any entity involved, there is no one in particular to pay. The fee
could be paid to an arbitrary entity (the system designer or a charity), burned
(made unrecoverable), or to the miners. In Ghazal, fees are paid in Ether and
are released to the miner that includes the transaction in the blockchain.

Design Decision #3: Domain Name Renewal

We design Ghazal in such a way that the domain owners can renew their domains
before their validity period comes to an end, however they cannot renew an
arbitrary number of times. Specifically, a renewal period becomes active after
the domain is past 3/4 of its validity period. Renewal pushes the expiration time
forward by one addition of the validity period (thus renewing at the start or
end of the renewal period is inconsequential and results in the domain having
the same expiration time). Requiring renewal keeps users returning regularly
to maintain domains, and unused domains naturally churn within the system.
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//Possible states of every auction.
enum Stages {Opened, Locked, Ended}

struct AuctionStruct
{ wuint CreationTime;
address Owner;
uint highestBid;
address highestBidder;
address Winner;
Stages stage;
//To return the bids that were overbid.
mapping (address => uint) pendingReturns;
//To return the deposits the bidders made.
mapping (address => uint) deposits;
//0Once an address bids in the auction, its associated boolean
value will be set to true within the "already_bid" mapping.
mapping (address => bool) already_bid;
bool AuctionisValue;
}
//AuctionlLists mappings store AuctionStructs.
mapping (bytes32 => AuctionStruct) internal AuctionLists;

Code 1.1. Implementation of AuctionStruct and AuctionLists mapping in Ghazal*
smart contract.

Domain name redemption period can take different values. We experiment with
a validity period of 1year; thus, the renewal period would start after 9 months
and last 3 months.

Design Decision #4: Domain Name Ownership Transfer
In Ghazal, domain owners can transfer the ownership of their unexpired domains

to

new entities within the system. Basically, transferring a domain name at

the Ethereum level means changing the address of the Ethereum account that
controls the domain. Our system offers two ways of transferring the ownership
of a domain:

1.

Auctioning off the domain name. A domain owner can voluntarily auc-
tion off an unexpired domain. Once an auction is over, the domain is trans-
ferred to the highest bidder, the payment goes to the previous owner of the
domain, and the validity period is unaffected by the transfer (to prevent peo-
ple from shortcutting renewal fees by selling to themselves for less than the
fee). If there are no bidders or if the bids do not reach a reserve value, the
domain is returned to the original owner. While under auction, a domain can
be modified as normal but transfers and auctions are not permitted. To imple-
ment the auction feature, we use the fact that Solidity is object-oriented. We
first deploy a basic Ghazal function without advanced features like auctions,
and then use inheritance to create a child contract Ghazal* that adds the auc-
tion process. Using Ghazal®, a user can run any number of auctions on any
number of domains he owns. This is implemented through a mapping data
structure called AuctionLists to store every auctions along with its attributes.
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AuctionLists accepts Domain names as its keys, and the AuctionStructs as
the values (see Code 1.1). Using the mapping and Ethereum state machine,
we enforce rules to prevent malicious behaviours e.g., domain owners can
auction off a domain only if there is no other auction running on the same
domain. To encourage winners to pay, all bidders must deposit a bounty in
Ether the first time they bid in an auction (amount set by the seller). This
is refunded to the losers after bidding closes, and to the winner after paying
for the domain. Without this, users might disrupt an auction by submitting
high bids with no intention of paying.
modifier CheckDomainExpiry(bytes32 _DomainName) {
if (Domains[_DomainName].isValue == false)

{Domains [_DomainName].state=States.Unregistered;}

if (now>=Domains[_DomainName].RegistrationTime+10 minutes)

{Domains [_DomainName].state = States.Expired;}
}
modifier Not_AtStage(bytes32 _DomainName, States stage_1, States stage_2)
{
require (Domains[_DomainNamel].state != stage_1 && Domains[
_DomainName].state != stage_2);
}

modifier OnlyOwner(bytes32 _DomainName) {
require (Domains [_DomainName].DomainOwner == msg.sender);
}
function Transfer_Domain(string _DomainName,address _Reciever ,bytes32
_TLSKey ,bytes32 _Zone) public
CheckDomainExpiry(stringToBytes32(_DomainName))
Not_AtStage (stringToBytes32(_DomainName),States.Unregistered,States.

Expired)
OnlyOwner (stringToBytes32(_DomainName))

{
DomainName = stringToBytes32(_DomainName);
Domains [DomainName].DomainOwner = _Reciever;
if (_TLSKey == 0 && _Zone != 0) { Wipe_TLSKeys(DomainName); }
if (_Zone == 0 && _TLSKey != 0 ) { Wipe_Zone(DomainName); }
if (_Zone == 0 && _TLSKey == 0 ) { Wipe_TLSKeys_and_Zone (

DomainName); }

Code 1.2. Transfer_Domain function of Ghazal smart contract.

Transfer the ownership of a domain name. A domain owner can also
transfer an unexpired domain to the new Ethereum account by calling the
Transfer_Domain function which simply changes the Ethereum address that
controls the domain name. The owners can also decide to either transfer
domain’s associated attributes (e.g., TLS certificates) or not, when they trans-
fer the domain. This is possibe with either supplying these attributes with
zero or other desired values when calling the Transfer Domain function (see

Code 1.2).

To prevent from MITM attacks, TLS certificates should be revoked once a

domain name is transferred. However, security incidents reveal that this is not
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commonly enforced in the current PKI. For instance, Facebook acquired the
domain £b.com for $8.5M in 2010, yet no one can be assured if that the previous
owner does not have a valid unexpired certificate bound to this domain [12]. This
has been successfully enforced in our system as the new owner of the domain
is capable of modifying the domain’s associated TLS keys, which results in pro-
tecting communications between the clients and his server from eavesdropping.

Design Decision #5: Toward Lightweight Certificate Revocation

In the broader PKI literature, there are four traditional approaches to revoca-
tion [24]: certificate revocation lists, online certificate status checking, trusted
directories, and short-lived certificates. Revocation in the web certificate model
is not effective. It was built initially with revocation lists and status checking,
but the difficulty of routinely obtaining lists and the frequent unavailability of
responders led to browsers failing open when revocation could not be checked.
Some browsers build in revocation lists, but are limited in scope; EV certifi-
cates have stricter requirements; and some research has suggested deploying
short-lived certificates (e.g., four days) that requires the certificate holders to
frequently renew them [29] (in this case, certificates are not explicitly revoked,
they are just not renewed). Which model does a blockchain implement? At first
glance, most blockchain implementations would implement a trusted directory:
that is, a public key binding is valid as long as it is present and revocation simply
removes it. The issue with this approach on a blockchain is how users establish
they have the most recent state. With the most recent state in hand, revocation
status can be checked. This check is potentially more efficient than download-
ing the entire blockchain (this functionality exists for Bitcoin where it is called
SPV and is a work in progress for Ethereum where it is called LES). However
a malicious LES server can always forward the state immediately preceding a
revocation action and the client cannot easily validate it is being deceived.

At a foundational level, most revocation uses a permit-override approach
where the default state is permissive and an explicit action (revocation) is
required. Short-lived certificates (and a closely related approach of stapling a
CA-signed certificate status to a certificate) are deny-override meaning the
default position is to assume a certificate is revoked unless if there is positive
proof it is not. This latter approach is better for lightweight blockchain clients
as LES servers can always lie through omitting data, but cannot lie by includ-
ing fraudulent data (without expending considerable computational work). As
an alternative or compliment, clients could also take the consensus of several
LES servers, although this ‘multi-path probing’ approach has some performance
penalties (it has been suggested within the web certificate model as Perspec-
tives [30] and Convergence [21]).

In Ghazal, public keys that are added to a domain name expire after a maxi-
mum lifetime, e.g., four days. Expiration is not an explicit change of state but is
inferred from the most recent renewal time. Owners need to rerun the key bind-
ing function every several days to renew this. If an owner wants to revoke a key,
she simply fails to renew. To verify the validity of a certificate, one is now able
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Table 1. Gas used for operations in the Ghazal® smart contract.

Operation Gas Gas cost in Ether | Gas cost in USD
Register 169 990 | 3.56 x 1072 $3.15
Renew 54 545 1.14 x 1073 $1.01
Transfer_Domain 53 160 1.11 x 1073 $0.98
Add_TLSKey 77 625 1.63 x 1073 $1.43
Add_ZoneFile 57 141 1.19 x 1073 $1.05
Add_TLSKey_AND_ZoneFile |68 196 | 1.43 x 1073 $1.26
Revoke_TLSkey 37672 |7.91x107* $0.69
StartAuction 119 310 | 2.50 x 1073 $2.21
Bid 112 491 |2.36 x 1073 $2.08
Withdraw_bids 46 307  |9.72 x 107* $0.85
Withdraw_deposits 47037  |9.87 x 107* $0.87
Settle 77 709 1.63 x 1072 $1.44
Ghazal* Contract Creation 2 402 563 | 0.05 $44.54

to use a LES-esque protocol. Once a user queries a semi-trusted LES node for a
corresponding record of a domain, the node can either return a public key that
is four days old, which user will assume is revoked, or a record that newer that
the user will assume is not revoked. Although this approach requires the frequent
renewal of public keys, it is a cost that scales in the number of domains as opposed
to revocation checks which scale in the number of users accesses a domain.

5 Evaluation

The aim of this section is to provide the technical implementation details of our
system on the Ethereum blockchain. We specifically discuss the costs related to
the deployment of Ghazal® smart contract on the Ethereum blockchain in addition
to executing its functions on the Ethereum virtual machine. Moreover, a smart
contract analysis tool is used to analyze the security of our system against a several
number of security threats to which smart contracts are often vulnerable.

5.1 Costs

Ghazal smart contract is implemented in 370 lines of Solidity language, a high
level programming language resembles to JavaScript, and tested on the Ethereum
test network. We use the Solidity compiler to evaluate the rough cost for pub-
lishing the Ghazal® smart contract on the Ethereum blockchain as well as the

cost for the various operations to be executed on the Ethereum virtual machine.
As of January 2018, 1 gas = 21 x 1079 ether?, and 1 ether = $882.923.

2 https://ethstats.net/.
3 https://coinmarketcap.com/.
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Table 1 represents the estimated costs for Ghazal® (and its inherited Ghazal
functionality) smart contract deployment and function invocation in both gas
and USD. As it can be seen from both Table 1, the most considerable cost is the
one-time cost paid to deploy the system on Ethereum. There are then relatively
small costs associated with executing the functions, i.e., users could easily regis-
ter a domain by paying $3.15 or they could bind a key to the domain they own
for a cost of $1.43, which is relatively cheap when compared with the real world
costs associated with these operations.

mahsas-air:oyente Mahsa$ python oyente.py -s /Users/Mahsa/Desktop/Ghazal\*.sol
WARNING: root:You are using evm version 1.7.3. The supported version is 1.6.6
WARNING: root:You are using solc version 0.4.18, The latest supported version is 0.4.17
INFO: root:Contract /Users/Mahsa/Desktop/Ghazalx.sol:Ghazal:
INFO:symExec:Running, please wait...

INFO:symExec:  ============ Results

INFO:symExec: EWM Code Coverage: 15.4%

INFO: symExec: Parity Multisig Bug 2: False

INFO: symExec: Callstack Depth Attack Vulnerability: False

INFO: symExec: Transaction-Ordering Dependence (TOD): False

INFO: symExec: Timestamp Dependency: False

INFQ: symExec: Re-Entrancy Vulnerability: False

INFO: root:Contract /Users/Mahsa/Desktop/Ghazalx.sol:Ghazal_With_Auction:
INFO:symExec:Running, please wait...

INFO:symExec:  ============ Results

INFO:symExec: EVWM Code Coverage: 13.9%

INFO: symExec: Parity Multisig Bug 2: False

INFO: symExec: Callstack Depth Attack Vulnerability: False

INFO: symExec: Transaction-Ordering Dependence (TOD): False

INFO: symExec: Timestamp Dependency: False

INFO:symExec: Re-Entrancy Vulnerability: False

INFO:symExec: Analysis Completed

INFO: symExec: Analysis Completed

mahsas-air:oyente Mahsa$

Fig. 2. Results of Ghazal® security analysis using Oyente [20].

5.2 Security Analysis

Ethereum smart contracts, in particular the ones implemented in Solidity, are
notorious for programming pitfalls. As they generally transfer and handle assets
of considerable value, bugs in Solidity code could result in serious vulnerabilities
which can be exploited by adversaries. We use standard defensive programming
approaches, in particular around functions that transfer money (such as the
auction function that refunds the security deposits), by using explicitly coded
state machines and locks, and by not making state-changes after transfers. We
also analyze Ghazal and Ghazal® against Oyente, a symbolic execution tool pro-
posed by Luu et al. [20] which looks for potential security bugs like the re-entry
attack (infamously). The results of the security analysis represent that both of
the smart contracts are not vulnerable to any known critical security issue (see
Fig. 2).
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6 Concluding Remarks

We hope that uni-authoritative systems with programmability continue to be
explored in the literature. There are many open problems to work on. First and
foremost is understanding the scalability issues and how to minimize the amount
of data a client browser needs to fetch for each domain lookup. Blockstack has
done an excellent job on this issue for non-programmable contracts. Future work
could also look at the layer above the smart contract: building web tools with
user interfaces to enable interaction with the underlying functions. Finally, while
auctions are one illustrative example of why programmability might be added
to a PKI, we are sure there are many others. The modular design of Ghazal
using object-oriented programming should allow easy additions to our base con-
tract, which we will provide as open source. Indeed, the auction itself in Ghazal*
was added via inheritance and one function override (to enforce that ownership
transfers, part of the parent class, could not be called during a live auction).

Acknowledgements. J. Clark thanks NSERC, FRQNT, and the Office of the Privacy
Commissioner of Canada for funding that supported this research.
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