
Lightweight Blockchain Logging
for Data-Intensive Applications

Yuzhe (Richard) Tang1(B), Zihao Xing1, Cheng Xu2, Ju Chen1,
and Jianliang Xu2

1 Syracuse University, Syracuse, NY, USA
{ytang100,zixing,jchen133}@syr.edu

2 Hong Kong Baptist University, Kowloon Tong, Hong Kong
{chengxu,xujl}@comp.hkbu.edu.hk

Abstract. With the recent success of cryptocurrency, Blockchain’s
design opens the door of building trustworthy distributed systems. A
common paradigm is to repurpose the Blockchain as an append-only log
that logs the application events in time order for subsequent auditing
and query verification. While this paradigm reaps the security benefit, it
faces technical challenges especially when being used for data-intensive
applications.

Instead of treating Blockchain as a time-ordered log, we propose to lay
the log-structured merge tree (LSM tree) over the Blockchain for efficient
and lightweight logging. Comparing other data structures, the LSM tree
is advantageous in supporting efficient writes while enabling random-
access reads. In our system design, only a small digest of an LSM tree is
persisted in the Blockchain and minimal store operations are carried out
by smart contracts. With the implementation in Ethereum/Solidity, we
evaluate the proposed logging scheme and demonstrate its performance
efficiency and effectiveness in cost saving.

1 Introduction

Recent years witnessed the advent and wide adoption of the first cryptocurrency,
BitCoin [3], followed by many others including Ethereum [4], Litecoin [8], Name-
coin [19], etc. The initial success of cryptocurrency demonstrates the trustworthi-
ness of Blockchain, the underlying platform of cryptocurrency. The Blockchain
supports the storage and processing of cryptocurrency transactions. In abstrac-
tion, it is a trust-decentralized network storing transparent state designed with
incentives to enable open membership at scale. A line of the latest research and
engineering aims at applying the trustworthy design of Blockchain for applica-
tions beyond cryptocurrency.

A common paradigm of repurposing Blockchain is to treat the Blockchain
as a public append-only log [23], where application-level events are logged
into the Blockchain in the order of time, and the log is used later for
verification and auditing. While this public-log paradigm reaps the security
benefit of Blockchain, it is limited to the applications handling small data
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 308–324, 2019.
https://doi.org/10.1007/978-3-662-58820-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_21&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_21

Lightweight Blockchain Logging for Data-Intensive Applications 309

(due to high Blockchain storage cost) and tolerating long verification delay (lin-
ear scanning the entire chain for verification).

In this work, we tackle the research of repurposing Blockchains for harden-
ing the security of data-intensive applications hosted in a third-party platform
(e.g., cloud). A motivating scenario is to secure the cloud-based Internet-of-
things (IoT) data storage where the IoT data producers continuously generate
an intensive stream of data writes to the third-party cloud storage which serves
data consumers through queries. Including Blockchain could enhance the trust-
worthiness of the third-party cloud storage.

A baseline approach is to log the sequence of data writes in the time order
into the Blockchain, in a similar way to log-structured file systems [27]. This app-
roach causes a high read latency (linear to the data size). Another baseline is to
digest the latest data snapshot, e.g., using Merkle tree, and place the digest inside
the Blockchain. In the presence of dynamic data, the digest scheme usually fol-
lows classic B-tree alike data structures [17,28] that perform “in-place” updates.
These schemes incur high write amplification as writing a record involves a read-
modify-write sequence on the tree and has O(logN) complexity per write. On
Blockchain, this high write amplification causes high cost, as writing a data unit
in Blockchain is costly (which involves duplicated writes on miners and expen-
sive proof-of-work alike computation). The problem compounds especially in the
write-intensive applications as IoT streams.

To log write-intensive applications using write-expensive Blockchain, we pro-
pose to place the log-structured merge tree (LSM tree) [24] over the Blockchain
for efficient and lightweight logging. An LSM tree is a write-optimized data struc-
ture which supports random-access reads; comparing the above two baselines
(append-only log as in log-structured file system and update-in-place structures
in database indices), an LSM tree strikes a better balance between read and write
performance and is adopted in many modern storage systems, including Google
BigTable [15]/LevelDB [7], Apache HBase [2], Apache Cassandra [1], Facebook
RocksDB [5], etc.

At a high level, an LSM tree lays out its storage into several “levels” and sup-
ports, in addition to reads/writes, a compaction operation that reorganizes the
leveled storage for future read/write efficiency. We propose a scheme to log the
LSM tree in Blockchain: (1) individual levels are digested using Merkle trees with
the 128-bit root hashes stored in Blockchain. (2) The compaction that needs to
be carried out in a trustworthy way is executed in smart-contracts, which allow
for computations on modern Blockchain, such as Ethereum [4]. Concretely, we
propose compaction mechanisms that realize several primitives inside the smart
contract. We propose a duplicated compaction paradigm amenable for imple-
mentation on the asynchronous Smart-Contract execution model in Ethereum.
Based on the primitives and paradigm, we realize both sized and leveled com-
paction mechanisms in the smart contract.

We have implemented the design on Ethereum leveraging its Smart-contract
language, Solidity [10], and programming support in the Truffle framework [11].
In particular, invoking a Solidity smart-contract is asynchronous and our system

310 Y. (Richard) Tang et al.

addresses this property by asynchronously compacting the LSM storage. Based
on the implementation, we evaluate the cost of our proposed scheme with the
comparison to alternative designs. The results show the effectiveness of cost-
reducing approaches used in our work.

The contributions of this work are the following:

1. We propose TPAD, a novel architecture to secure outsourced data storage
over the Blockchain. The TPAD architecture considers an LSM-tree-based
storage protocol and maps security-essential state and operations to the
Blockchain. The architecture includes a minimal state in Blockchain storage
and offline compaction operations in the asynchronous smart-contract.

2. We implement a prototype on Ethereum/Solidity that realizes the proposed
design. Through evaluation, we demonstrate the effective cost saving of the
TPAD design with the comparison to state-of-the-art approaches.

The rest of the paper is organized as following: Section 2 formulates the
research problem. The proposed technique, LSM-tree based storage over the
Blockchain, is presented in Sect. 3. The system implementation is described in
Sect. 4. Evaluation is presented next in Sects. 5 and 7 surveys the related work.
Section 8 concludes the paper.

2 Problem Formulation

2.1 Target Applications

This work targets the application of secure data outsourcing in a third-party
host (e.g., Amazon S3). A particular scenario of interest is to outsource the data
generated by the Internet of things (IoT) devices to the cloud storage, which
serves read requests from data consuming applications. The IoT data is usually
personal and could be security sensitive; for instance, in the smart home, the
IoT devices such as smart TV controller capture residents’ daily activities which
could reveal personal secrets such as TV view habits. The IoT data, on the other
hand, can be used to improve the life quality and enable novel applications. For
instance, analyzing patient’s activities at home can improve out-patient care
and predict possible disease. In practice, various IoT data is widely collected
and outsourced [16]. A noteworthy characteristic of our target application is
that data is generated continuously and intensively. The workload is more write
intensive than the static workload (e.g., in classic database systems).

2.2 System Model

The data-outsourcing system consists of data producers, a cloud host, and several
data consumers. A data producer submits data write requests to the cloud and
a data consumer submits data read requests to the cloud. The cloud exposes a

Lightweight Blockchain Logging for Data-Intensive Applications 311

Fig. 1. Logging data outsourcing in Blockchain

standard key-value store interface for reads and writes. Formally, given key k,
value v, timestamp ts, a data write and data read are described below:

ts := Put(k, v)
〈k, v, ts〉 := Get(k, tsq) (1)

In our system, we assume the data producers and consumers are trusted.
The third-party cloud is untrusted and it can launch various attacks to forge an
answer to the consumer which will be elaborated on in Sect. 2.3.

Our data-outsourcing system has a companion of Blockchain, as illustrated
in Fig. 1. The Blockchain logs certain events in the workflow of data outsource
for the purpose of securing it.

2.3 Security Goals

In the presence of the untrusted host, there are threats that could compromise
data security. An adversary, be it the cloud host or man-in-the-middle adver-
sary in networks, could forge a fake answer to a data consumer and violate the
data integrity, membership authenticity, etc. The data integrity can be protected
by simply attaching a message-authentication code (MAC) to each key-value
record. This work considers the more advanced attacks — membership attacks
that manifest in many forms: It could be the untrusted host deliberately skips
query results and presents an incomplete answer (violating query completeness).
It could be the host presents a stale version of the answer (violating query
freshness). It could have the host to return different answers to different con-
sumers regarding the same query (violating the fork consistency). On the write
path, a man-in-the-middle adversary could replay a write request to result in
incorrectly duplicated data versions. The formal definition of membership data
authenticity is described in the existing protocols of authenticated data struc-
tures (ADS) [21,26,29,32].

While this work mainly focuses authenticity, we consider a weak security
goal w.r.t. the data confidentiality that deterministic encryption suffices. The
extension for data confidentiality will be discussed in Sect. 6.

312 Y. (Richard) Tang et al.

2.4 Existing Techniques and Applicability

Existing works on ADS construction, while ensuring the security of mem-
bership authentication, are mostly designed based on read-optimized database
structures such as B trees and R trees [17,28] that perform data updates in place.
These update-in-place structures translate an update operation from applica-
tions to a read-modify-write sequence on the underlying storage medium, and
they are unfriendly to the write performance. The only ADS work we are aware of
on address write efficiency is [25], which is however constructed using expensive
lattice-based cryptography.

Without security, there are various write-optimized log-structured data
structures that do not perform in-place updates but conduct append-only
writes instead. A primary form of these data structures is to organize the primary
data storage into a time-ordered log of records where an update is an append to
the log end and a read may have to scan the entire log. The pure-log design is
widely used in the log-structured journaling file systems [27].

A log-structured merge tree [24] represents a middle ground between
the read-optimized update-in-place structure and the write-optimized log.
An LSM tree serves a write in an append-only fashion and also supports
random-access read without scanning the entire dataset. The LSM design has
been adopted in many real-world cloud storage systems, including Google
BigTable [15]/LevelDB [7], Apache HBase [2], Apache Cassandra [1], Facebook
RocksDB [5], etc. The read-write characteristic of an LSM tree renders it well
suited for the applications of IoT data outsourcing.

2.5 Motivation

Our target applications such as IoT data outsourcing feature a high-throughput
stream of data updates and random-access read queries. As aforementioned, a
Log-Structured Merge Tree is a good fit for this workload, assuming some offline
hours for data compaction.

To map the LSM-tree workflow in an outsourcing scenario, it is essential
to find a trusted third-party to conduct the data-compaction work. Relying on
one of data owners to do the compaction is unfeasible due to availability, data
owner’s limited power (e.g., a low-end IoT device), etc.

We propose to leverage the Blockchain for the secure compaction in LSM stor-
age. The decentralized design and large-scale deployment of existing Blockchain
render it a trustworthy platform. The new smart-contract interface of the latest
Blockchain makes it friendly to run general-purpose trustworthy computation
on the platform.

Despite the advantages, designing a system for Blockchain-based
LSM-storage outsourcing is non-trivial. Notably, Blockchain’s innate limitation
(in low storage capacity, high cost, low write throughput) presents technical chal-
lenges when being adapted to the high-throughput data-outsourcing workflow.
We address these challenges by limiting Blockchain’s involvement in the online
path of data outsourcing, such that the state on Blockchain can be “updated”
infrequently.

Lightweight Blockchain Logging for Data-Intensive Applications 313

2.6 Preliminary: LSM Trees

The mechanism of an LSM tree is the following: It represents a dataset by
multiple sorted runs (or files) and organized in several so-called “levels”. The
first level stores the most recent data writes and is “mutable”. Other levels are
immutable and are updated only in an offline manner. Concretely, a data write
synchronously updates the first level. The first level may periodically persist
data to an external place, called write-ahead log (WAL). When the first level
becomes full, it is flushed to the next level. A read iterates over levels, and
for each level, it is served by an indexed lookup. In the worst case, a read
has to scan all levels and in practice, the total number of levels is bounded.
In addition, if the application exhibits some data locality (i.e., reads tend to
access recently updated data), a read can stop in the first couple of levels. An
LSM tree supports a compaction1 operation that merges multiple sorted runs
into one and helps reorganizes the storage layout from a write-optimized one
to a read-optimized one. The compaction is a batched job that usually runs
asynchronously and during offline hours. There are two flavors in compaction,
namely, flush and merge. A flush operation takes as input multiple sorted runs
at level i and produces a sorted run as output at level i+ 1. A merge operation
takes as input one selected file at level i and multiple files at level i + 1 that
overlap the selected file in key ranges. It produces sorted runs that replace these
input files at level i + 1.

An LSM mechanism supports different policies to trigger the execution of a
compaction. These policies include sized configuration and leveled configuration:
(1) In a sized configuration, each tree level has the capacity of storing a fixed
number of sorted files, say K. The file size at level i is Ki (the first level has i
to be 0). A flush-based compaction is triggered when there are K files filled in a
level, say i. The compaction merges all K files at level i into one file at level i+1.
With the sized-compaction policy, files at the same level may have their content
overlap in key ranges, and a read has to scan all files in a level. (2) In a leveled
configuration, any tree level is a sorted run where different files do not overlay in
their key ranges. Data at level 0 is flushed to level 1 and data at level i, ∀i ≥ 1,
is merged to level i+1 [7]. A compaction can be triggered by application-specific
conditions. A read within a level can be served by an indexed lookup without
scanning.

3 LSM Data Storage over Blockchain

3.1 Baseline and Design Choices

Baseline: Our general design goal is to leverage Blockchain for securing data
outsourcing. A baseline approach is to replace the cloud host by Blockchain.
In the baseline, the Blockchain stores the entire dataset and directly interacts
with the trusted clients of data producers and consumers through three smart

1 In this work, the words of “compaction” and “merge” are interchangeably used.

314 Y. (Richard) Tang et al.

contracts. On the write path, a “writer” contract accepts the data-write requests
from the producers (encoded in the form of transactions) and sends them to the
Blockchain. On the read path, a “reader” contract reads the Blockchain content
to find the LSM tree level that contains the result. The Blockchain runs an offline
“compaction” contract that is triggered by the same conditions of original LSM
stores and that merges multiple sorted runs to reorganize the layout.

Design Space: The above baseline design raises two issues as below:
First, the baseline approach uses the Blockchain as the primary data storage,

which is cost inefficient. Concretely, storing a bit in Blockchain is much more
expensive and costly than storing it off-chain (e.g., in the cloud). A promising
solution is to partition the LSM workflow and to result in a minimal and security-
essential partition in Blockchain. This way, the primary data storage which is
cumbersome is mapped off-chain to the cloud host.

Second, the baseline approach enforces a strong consistency semantic over
the Blockchain which is weakly consistent; this mismatch across layers may
present issues and incur unnecessary cost. More specifically, the current system
of Blockchain promises only eventual consistency (or timed consistency [30]) in
the sense that it allows an arbitrary delay between the transaction-submission
time and the final settlement time (i.e., when the transaction is confirmed in
the blockchain). The eventual consistency limits the use of Blockchain for real-
time data serving and renders the baseline approach that aggressively checks the
Blockchain digests to be ineffective.

3.2 Blockchain-Based TPAD Protocol

TPAD Overview: Our proposed TPAD protocol addresses the partitioning
problem of an LSM tree for the minimal involvement with the Blockchain. The
TPAD design separates the “data plane” (the primary data storage) and the
“control plane” (e.g., digest management), and maps the former to the off-chain
cloud and only loads the latter in Blockchain. Recall that an LSM tree supports
three major operations (i.e., data write, read and compaction). For online data
reads/writes, TPAD places only in Blockchain/smart-contract the access of the
digests, while leaving data access and proof construction off-chain. To address
the consistency limits, TPAD embeds the weak-consistency semantics in the
application layer; for instance, it does not access the Blockchain if the results
are too recent to be reflected in the Blockchain. The data-intensive computation
of compaction is however materialized inside the Blockchain, which simulates a
multi-client verifiable computation protocol [18]. This subsection presents the
details of the TPAD protocol.

Recall that our overall system includes data producers, the cloud, the
blockchain, and data consumers. The data producers generate data records and
upload them to the third-party cloud-blockchain platform. Data consumers query
the cloud by data keys to retrieve relevant records. For the ease of presentation,
we use a concrete setting w.l.o.g. that involves two data producers, say Alice (A)
and Bob (B), and one data consumer, say Charlie (C).

Lightweight Blockchain Logging for Data-Intensive Applications 315

Initially, each data producer has a pubic-private key pair and uses the public
key as her pseudonymous identity. In other words, the system is open member-
ship that anyone can join, which is consistent with the design of open Blockchain.
We assume the identities of data producer and Blockchain are established in a
trusted manner, which in practice could be enforced by external mechanisms for
user authentication and attestation. Conceptually, there are two virtual chains
registered in the Blockchain to materialize the two states of an LSM tree, that is,
the WAL and digests of data levels. These two virtual chains can be materialized
in the same physical Blockchain.

On the write path, Alice, the producer, generates a record (RA) and sub-
mits it to the Blockchain through the logger contract that logs the record as a
transaction in the WAL Blockchain. The logger contract is called asynchronously
in that it returns immediately and does not wait for the final inclusion of the
transaction in WAL Blockchain. Simultaneously, Alice also sends the record to
the untrusted cloud, which stores it in Level 0 of its local LSM system. Bob
sends another record RB to the Blockchain and cloud, which is processed in a
similar fashion. The logger contract is responsible for serializing multiple records
received and sending transactions in order. The total order between RA and RB

is not resolved until the transactions are finally settled in the WAL Blockchain,
which could occur as late as up to 40 min (e.g., in BitCoin) after the submis-
sion time. We maintain the consistency semantics that there is no time ordering
among records in Level 0 on the cloud. Upon flush, it only flushes the records
whose transactions are fully settled in the Blockchain.

On the read path, Charlie submits a query to the cloud, which returns the
result as well as query proof. In addition, Charlie obtains the relevant digests
from the Blockchain. Specifically, the proof consists of the Merkle authentication
paths of all relevant levels, that is, the level that has the answer (i.e., membership
level) and all the levels (i.e., non-membership levels) that do not have the answer
but are more recent than the membership level. The digests, namely Merkle root
hashes, are obtained from Digest Blockchain. As aforementioned, the system does
not provide membership authentication for data in Level 0.

On the compaction path, TPAD supports two relevant contracts for data
flush and merge. For the flush, the flush contract is triggered every time there
is a new block found in the WAL Blockchain. It flushes all the files/records at
level i to a single sorted file at Level i + 1. Inside the flush, the contract sorts
the records at level i (which are originally organized in the time order), builds
a digest of the sorted run, and sends it to the Digest Blockchain. At the same
time, the off-chain cloud runs the flush computation that builds the sorted run
locally.

For the merge, a separate contract merges multiple sorted runs into one run
and places it at a certain level of the LSM tree. When a compaction contract
runs, it validates all the input runs fed from the cloud using the digests stored in
the Blockchain. It then performs the merge computation, builds a Merkle root
hash on the merged run, and sends a transaction encoding the hash to update
the Digest Blockchain. In the last step, the Digest Blockchain stores the digests

316 Y. (Richard) Tang et al.

of different LSM levels and the contract replaces the digests by those of the
merged run. At the same time, the off-chain cloud runs the merge computation
that builds the sorted run locally.

The two compaction contracts update the Blockchain state and have a com-
panion computation going on the off-chain side. Given the delay to finally settle
a transaction, we defer the time the updated state in Blockchain becomes avail-
able. For instance, even though the merge contract finishes the execution and
sends the transaction, the off-chain data store will wait until the transaction
is settled to activate the use of merged runs. The above two compaction con-
tracts involve data-intensive computation and are executed at off-line hours. The
specific triggering conditions are described next.

The algorithms in TPAD are illustrated in Listing 2.

Compaction-Triggering Policies: In TPAD, the policy that determines when
and how to run a compaction is executed by the cloud host. As aforementioned,
the off-chain cloud can opt for the sized LSM tree policy where the number of files
per level is fixed and an overflowing file triggers the execution of flush operation.
The off-chain cloud can also take the leveled LSM tree policy where application-
specific condition triggers the execution of merge operations. In practice, the
sized policy lends itself to serving time-series workloads where newer data does
not replace older data.

In our implementation, an LSM level in the Smart Contract program is rep-
resented by an array in memory. The output is the digest of merged data which
is stored persistently on Blockchain. Note that we do not store or send the merge
data in Smart Contract to save the Gas cost.

Security Analysis. We consider a data-freshness attack where an adversary,
e.g., the untrusted host, presents a valid but stale key-value pair as the result.
That is, given a query Get(k, tsq), it returns 〈k′, v′, ts′〉 that belongs to the data
store, while there exists another more fresh key-value record 〈k, v, ts〉 such that
ts′ < ts < tsq.

The LPAD scheme can authenticate the following two properties that estab-
lish the data freshness: (1) Result membership: Given a result record from a
specific level (called result level), the LPAD scheme can prove the membership
of the record in the level using the corresponding Merkle tree. That is, given
query result 〈k′, v, ts〉 := Get(k, tsq), LPAD can authenticate the membership of
〈k′, v, ts〉 in the level it resides in (using the per-level Merkle tree) and hence the
membership in the data store. (2) Non-membership of any fresher result. That
is, the LPAD scheme can prove the non-membership of any record of the same
queried key in levels fresher than the result level. Note that for a given key, levels
are ordered by time.

In a query-completeness attack, valid result records are deliberately omit-
ted. The completeness security is similarly provided by the LPAD scheme with
the freshness security: In LPAD, the result completeness (i.e., no valid result is
missed) in each query level can be deduced from that the leaf nodes in each
per-level Merkle tree is sorted by data keys.

Lightweight Blockchain Logging for Data-Intensive Applications 317

In a forking attack, different views are presented to different querying clients
(presenting “X” to Alice and “Y” to Bob). The forking-attack security (or fork
consistency) can be guaranteed by LPAD by that the Blockchain can provide a
single source of truth for the dataset state, and any violation (by forking) can
be detected by checking the result against the Blockchain state.

4 Implementation on Ethereum

We have implemented the TPAD protocol over the Ethereum Blockchain which
keeps two states: WAL and digests. The other players in the protocol, including
the data producers, consumers, and the cloud, are implemented in JavaScript.

A data producer writing a record to the cloud triggers the execution of logger
contract on Ethereum that computes the hash digest and sends a transaction
wrapping the digest.

A data consumer submits a query by key to the cloud which returns the answer
and proof. The data consumer inquires about the digests stored in the Blockchain
by triggering the execution of a reader contract on Blockchain. The answer proof
consists of authentication paths of Merkle trees from the cloud and is used to com-
pare against the digests for answer verification. Note that we implement the read-
ing of digests in a smart contract for the ease of engineering.

A compaction operation is implemented on both the cloud and Blockchain.
Consider the compaction of two files (or sorted runs). First, the compaction smart-
contract on the Blockchain takes as input the data stored in JSON on the cloud side
and the digest hashes stored in the Blockchain. As mentioned, the compaction code
validates the inputs based on the digests, conducts the merge computation by heap
sort, computes the new digest of the merged run, and sends the transaction encod-
ing the digest to the Blockchain. Second, the JavaScript program on the cloud
side also runs the merge computation locally on the input files. It then replaces
the input files in the local JSON store by the merged file. We choose this imple-
mentation (merge computation done on both cloud and smart contract), because
the JavaScript runs the smart contract asynchronously (i.e., the call returns in
JavaScript without waiting for the smart contract finishes the execution) and it
saves bandwidth.

A compaction operation is implemented as a distributed process running on
the both sides of cloud and Blockchain. When the cloud (or a cloud administra-
tor) decides to merge the LSM storage, it first uploads the data to be merged to
the Blockchain using a batch of transactions. Then, the cloud starts to run a local
merge operation. Concurrently, the transactions sent by the cloud triggers the exe-
cution of a smart-contract that does the merge computation on the Blockchain
based on the data sent earlier. The cloud and Blockchain is synchronized when the
merge computations on both sides end. Concretely, the cloud, once it finishes the
local merge computation, will wait until being notified by the completion event
of the remote merge on the Blockchain. On implementation, the cloud merge pro-
gram is written in Javascript and the synchronization is realized using Promise [9],
which is a multithreading support in Javascript. After the synchronization, the
cloud proceed to replace the data by the merged data.

318 Y. (Richard) Tang et al.

On the blockchain, the verifiable-merge smart contract is implemented as
below: The compaction code validates the input data based on the digest on
Blockchain, carries out the merge computation based on heap sort, computes
the new digest of the merged run, and persists it into the Blockchain by sending
a transaction.

The logger contract is triggered when a data producer uploads a record and
its digest. The flush contract is triggered by a block in the Blockchain is found.
The compaction contract is triggered by LSM compaction policies elaborated in
the next section.

Implementation Notes: The current version of Solidity (i.e., 0.4.17) does not
support multi-dimensional nested array in a public function. We have to imple-
ment the array of digests as a one-dimensional array and interpret it as a two-
dimensional array (by levels and files) manually in the program. To collect the
Gas consumption in a view function (i.e., the function that does not change
state), we call estimateGas() function. In our implementation, the JavaScript
code runs smart contract functions through JSON ABI files generated by the
truffle compiler [11]. The state overwrites in Ethereum/Solidity program has to
be explicit and is realized by delete and “push” operations (Fig. 2).

Fig. 2. Implementing TPAD

Lightweight Blockchain Logging for Data-Intensive Applications 319

5 Evaluation

This section presents the evaluation of TPAD. The goal is to understand the
cost saving of TPAD comparing alternative designs including on-chain storage
(Sect. 5.1) and other data structures (Sect. 5.2). We first present our evaluation
platform.

Setup: Our smart-contracts written in Solidity are compiled in the Truffle
programming suit. They run on a personal Blockchain network set up by
Ganache [6]. This local Blockchain network is sufficient for our evaluation pur-
pose which only evaluates the cost consumption. For comparison, we implement
the baseline approach of storing data in Blockchain. Here, the blockchain keeps
a state of the LSM tree stored in a multi-dimensional storage array. In the
implementation, no in-memory index is maintained and finding a record in a
file is materialized by binary search. We also implement the other two baselines,
namely append-only log and update-in-place structures. For the latter, we imple-
ment a binary-search tree and build a Merkle tree based on it with the root node
stored in Blockchain.

5.1 Cost Saving of Off-Chain Storage

The TPAD is firstly a Blockchain logging scheme with the data stored off-chain.
A relevant baseline is to treat the Blockchain as the primary storage, namely on-
chain store. We implement the baseline by placing an entire LSM tree, including
leaf-level data nodes, inside the Blockchain.

On our platform, we conduct experiments by driving 20, 000 records into the
data store. We varied the “shape” of the LSM tree in terms of the size of a level
(number of files allowed in a level, K) and the number of levels. We measure
the cost in terms of Gas consumption of the two approaches respectively with
on-chain and off-chain storage.

The results are presented in Fig. 3. Figure 3a is the write cost when the LSM
tree has two levels. With different values of K (recall K is the number of files
in a level), the cost is relatively stable. Comparing the on-chain storage, the
off-chain storage saves a significant amount of cost, which is about 5X saving.
When fixing K at 3, varying the number of levels from 1 to 5, the cost of on-chain
store increase which is consistent with the fact that write amplification increases

(a) Write cost at level 2 (b) Write cost with K = 3 (K is
the number of files per level)

(c) Read cost at level 2 (d) Read cost withK = 3

Fig. 3. On-chain storage cost versus off-chain cost

320 Y. (Richard) Tang et al.

along with the number of compaction jobs. Comparing on-chain and off-chain
storage, the cost saving also increases along with the number of levels. In both
Figs. 3c and d, the read cost increases along with the value of K. The off-chain
storage saves the Gas cost up to 60X and 20X respectively for the settings of
two levels and K equal to 3.

5.2 Efficiency of LSM-Based Storage on Blockchain

The TPAD is an authenticated key-value store that supports random-access
reads/writes. In this regard, relevant baselines that implement the key-value
store abstraction include an append-only log where records are ordered by time
and an update-in-place structure, namely a single Merkle tree where leaf nodes
are ordered by keys. We implement the first baseline by simply sending the hash
digest of every data write to the Blockchain. The second baseline is implemented
by maintaining the root hash of the key-ordered Merkle tree in Blockchain and by
translating every data read/write to a leaf-to-root path traversal on the Merkle
tree. In more details, a data read to the cloud store would present as a proof the
authentication path of the leaf node to the root hash of the Merkle tree and a
data write consists of a data read followed by a local modification and a remote
update to the authentication path.

We conduct small-scale experiments by loading a thousand records into the
storage system; the keys and values in the records are randomly distributed. We
measure the average costs of read and write. The cost consists of the Gas cost for
running smart contract that retrieves the digests stored in the Blockchain and
the costs of preparing and verifying query proof (e.g., the authentication paths in
Merkle trees). We use a heuristic to combine the two costs by multiplying the Gas
cost by 100 times before adding it and the proof-related cost. The proof-related
cost is measured by the number of cycles spent locally for proof verification.

The results are presented in Fig. 4. The results show that the TPAD can result
in cost efficiency on both reads and writes. Concretely, for the write results in
Fig. 4a, the online part of TPAD has a similar cost with the other two base-
lines, as each write results in a single transaction in all three approaches. The

(a) Write cost (b) Read cost

Fig. 4. LSM tree-based TPAD compared against other structures in cost

Lightweight Blockchain Logging for Data-Intensive Applications 321

overall TPAD approach that includes both online and offline operations (i.e.
compaction) would incur write amplification as shown in Fig. 4a. For the data
read results in Fig. 4b, the cost saving of TPAD is significant, provided that the
y-axis is plotted in log scale. The TPAD incurs even lower cost than update-in-
place trees partly because of the locality in our query workloads where recently
updated data is more likely being queried.

6 Discussion: Data Confidentiality and Key Management

Data producers concerned about data confidentiality can upload the records
in an encrypted form. Specifically, a data producer sends the ciphertext of the
record, instead of plaintext, to the third-party host. The decryption key is shared
through an offline key-distribution channel between the data producer and the
data consumers who are permissioned to access the record. Those consumers can
obtain the ciphertext of the record from the host and use the key to decrypt. To
enable the query over ciphertext, we consider the use of deterministic encryption
which supports exact-match query in the encrypted form, that is, the consumer
could submit the encrypted query key to the host who will conduct exact-match
query between the query ciphertext and data ciphertext. The integration with
more secure encryption primitives is complementary to this scope of this work.

The data-encryption layer is laid over the membership-/data- authentication
layer of TPAD (as described above). This is similar to the classic encryption-
then-authentication scheme [20]. With deterministic encryption, the merge oper-
ation of TPAD occurs in the domain of ciphertext.

7 Related Work

7.1 Blockchain Applications

A common paradigm of supporting applications over Blockchain is that the
application-level workflow is partitioned and mapped to the on-/off-chain parts.
Decentralizing privacy [34] supports access-control oriented data-sharing appli-
cations over Blockchain. It publishes the access control list onto the Blockchain
and enforces the access control by smart contract. A similar approach is used
in MedRec [13] to enforce access control for medical data sharing. MedRec runs
a proprietary Blockchain network where miners are computers in an academic
environment and are rewarded by an anonymized medical dataset.

Namecoin [19] and Blockstack [12] support general-purpose key-value storage
in the decentralized fashion. They allow open-membership and accept any users
to upload their data signed with their secret keys. They support the storage of
name-value binding, with a canonical application to be DNS servers. Namecoin is
a special-purpose Blockchain system and Blockstack is realized as a middleware
on top of any Blockchain substrates. The VirtualChain in Blockstack supports a
(single) state-machine abstraction. Re-purposing original Blockchain for storage,

322 Y. (Richard) Tang et al.

its system design tackles the challenges of limited storage capacity, long write
latency, and low transactional throughput.

Catena [31] is probably the closest related work to TPAD. Catena is a non-
equivocation scheme over the Blockchain that repurposes its no-double-spending
security for non-equivocation in logging and auditing. In essence, it aligns the
application-specific log (for auditing) with the underlying linear Blockchain and
reuses the non-fork property of Blockchain for the non-fork application log.
Briefly, Catena’s mechanism is to build a virtual chain on BitCoin blockchain by
(ab)using OP RETURN transaction interface. Logging sends a BitCoin transaction
and auditing performs an ordered sequence of statement-verification calls in the
log history. The statement verification does not scan full history but simply runs
the Bitcoin-validation logic (e.g., Simplified Payment Validation), which ensures
no BitCoin double-spending. Importantly, it enforces the rule that a Catena
transaction spends the output of its immediate predecessor for efficient valida-
tion. The genesis transaction is served as the ground truth of validation and
it assumes a broadcast channel to establish the consistent view of the Genesis
transaction.

Our TPAD is different from Catena in the following senses: (1) Catena is built
on Bitcoin or the first-generation blockchain, and TPAD leverages the smart-
contract capabilities widely existing in the latest Blockchain systems, such as
Ethereum [4]. (2) More importantly, Catena only supports auditing which is
essentially sequential reads. TPAD supports verifiable random-reads. (3) While
Catena claims to be low cost, the increasing rate of BitCoin ($700 per BitCoin
at the time of Catena paper writing versus $17000 per BitCoin at early 2018)
makes the Catena more expensive. TPAD address the cost minimization of these
repurposed Blockchains.

7.2 Outsourced Storage and ADS

Outsourcing data storage to a third-party host such as public cloud is a popular
application paradigm. In the presence of an untrusted host, it is important to
ensure the data security, especially membership authenticity. An authenticated
data structure (ADS) is a protocol that formally the security property. Depend-
ing on the operations supported (queries and updates), an ADS protocol can
be constructed by different cryptographic primitives such as secure hash and
Merkle trees [22], SNARK [14], bilinear pairings [32,33], etc.

8 Conclusion

This work proposes the TPAD system for securely outsourcing data storage on
third-party hosts by leveraging the Blockchain. Instead of using Blockchain as
a time-ordered log, TPAD lays the log-structured merge tree (LSM tree) over
the Blockchain for efficient and lightweight logging. Realizing the design, a small

Lightweight Blockchain Logging for Data-Intensive Applications 323

state is persisted in the Blockchain and computation-oriented compaction opera-
tions are carried out by smart contracts. With the implementation in Ethereum/-
Solidity, we evaluate the proposed logging scheme and demonstrate its perfor-
mance efficiency and effectiveness in cost saving.

References

1. Apache Cassandra. http://cassandra.apache.org/
2. Apache HBase. http://hbase.apache.org/
3. Bitcoin. https://bitcoin.org/en/
4. Ethereum project. https://www.ethereum.org/
5. Facebook RocksDB. http://rocksdb.org/
6. Ganache. http://truffleframework.com/ganache/
7. Google LevelDB. http://code.google.com/p/leveldb/
8. Litecoin. https://litecoin.org/
9. Promise. https://developer.mozilla.org/en-us/docs/web/javascript/reference/

global objects/promise
10. Solidity. https://solidity.readthedocs.io/en/develop/
11. Truffle. http://truffleframework.com/
12. Ali, M., Nelson, J.C., Shea, R., Freedman, M.J.: Blockstack: a global naming and

storage system secured by blockchains. In: Gulati, A., Weatherspoon, H. (eds.)
2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO,
USA, 22–24 June 2016, pp. 181–194. USENIX Association (2016)

13. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: Awan, I., Younas, M. (eds.)
2nd International Conference on Open and Big Data, OBD 2016, Vienna, Austria,
22–24 August 2016, pp. 25–30. IEEE Computer Society (2016)

14. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

15. Chang, F., et al.: Bigtable: a distributed storage system for structured data
(awarded best paper!). In: OSDI, pp. 205–218 (2006)

16. Chung, H., Iorga, M., Voas, J.M., Lee, S.: Alexa, can I trust you? IEEE Comput.
50(9), 100–104 (2017)

17. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd edn. Benjam-
in/Cummings, Redwood City (1994)

18. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

19. Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An
empirical study of namecoin and lessons for decentralized namespace design. In:
14th Annual Workshop on the Economics of Information Security, WEIS 2015,
Delft, The Netherlands, 22–23 June 2015 (2015)

20. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hal-
l/CRC Press (2007)

21. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD Conference, pp. 121–132 (2006)

http://cassandra.apache.org/
http://hbase.apache.org/
https://bitcoin.org/en/
https://www.ethereum.org/
http://rocksdb.org/
http://truffleframework.com/ganache/
http://code.google.com/p/leveldb/
https://litecoin.org/
https://developer.mozilla.org/en-us/docs/web/javascript/reference/global_objects/promise
https://developer.mozilla.org/en-us/docs/web/javascript/reference/global_objects/promise
https://solidity.readthedocs.io/en/develop/
http://truffleframework.com/
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6

324 Y. (Richard) Tang et al.

22. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy, pp. 122–134 (1980)

23. Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies - A Comprehensive Introduction. Princeton Univer-
sity Press, Princeton (2016)

24. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree
(LSM-tree). Acta Inf. 33(4), 351–385 (1996)

25. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 22

26. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables
based on cryptographic accumulators. Algorithmica 74(2), 664–712 (2016)

27. Rosenblum, M.: The Design and Implementation of a Log-Structured File-System.
Kluwer, Norwell (1995)

28. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn.
McGraw-Hill Book Company, Boston (2005)

29. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

30. Terry, D.: Replicated data consistency explained through baseball. Commun. ACM
56(12), 82–89 (2013)

31. Tomescu, A., Devadas, S.: Catena: efficient non-equivocation via bitcoin. In: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26
May 2017, pp. 393–409. IEEE Computer Society (2017)

32. Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced
databases. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 1480–1491
(2015)

33. Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accu-
mulator. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 158–173. IEEE (2017)

34. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to
protect personal data. In: 2015 IEEE Symposium on Security and Privacy Work-
shops, SPW 2015, San Jose, CA, USA, 21–22 May 2015, pp. 180–184. IEEE Com-
puter Society (2015)

https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-540-39658-1_2
https://doi.org/10.1007/978-3-540-39658-1_2

	Lightweight Blockchain Logging for Data-Intensive Applications
	1 Introduction
	2 Problem Formulation
	2.1 Target Applications
	2.2 System Model
	2.3 Security Goals
	2.4 Existing Techniques and Applicability
	2.5 Motivation
	2.6 Preliminary: LSM Trees

	3 LSM Data Storage over Blockchain
	3.1 Baseline and Design Choices
	3.2 Blockchain-Based TPAD Protocol

	4 Implementation on Ethereum
	5 Evaluation
	5.1 Cost Saving of Off-Chain Storage
	5.2 Efficiency of LSM-Based Storage on Blockchain

	6 Discussion: Data Confidentiality and Key Management
	7 Related Work
	7.1 Blockchain Applications
	7.2 Outsourced Storage and ADS

	8 Conclusion
	References

