
Aviv Zohar · Ittay Eyal
Vanessa Teague · Jeremy Clark
Andrea Bracciali · Federico Pintore
Massimiliano Sala (Eds.)

 123

LN
CS

 1
09

58

FC 2018 International Workshops
BITCOIN, VOTING, and WTSC
Nieuwpoort, Curaçao, March 2, 2018
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 10958

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Aviv Zohar • Ittay Eyal
Vanessa Teague • Jeremy Clark
Andrea Bracciali • Federico Pintore
Massimiliano Sala (Eds.)

Financial Cryptography
and Data Security
FC 2018 International Workshops
BITCOIN, VOTING, and WTSC
Nieuwpoort, Curaçao, March 2, 2018
Revised Selected Papers

123

Editors
Aviv Zohar
Hebrew University
Jerusalem, Israel

Ittay Eyal
Technion – Israel Institute of Technology
Haifa, Israel

Vanessa Teague
University of Melbourne
Parkville, VIC, Australia

Jeremy Clark
Concordia University
Beaconsfield, QC, Canada

Andrea Bracciali
Computer Science and Mathematics
Stirling University
Stirling, UK

Federico Pintore
Mathematical Institute
University of Oxford
Oxford, UK

Massimiliano Sala
Department of Mathematics
University of Trento
Trento, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-58819-2 ISBN 978-3-662-58820-8 (eBook)
https://doi.org/10.1007/978-3-662-58820-8

Library of Congress Control Number: 2019932182

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

http://orcid.org/0000-0003-2648-2565
http://orcid.org/0000-0003-1451-9260
http://orcid.org/0000-0002-7985-3131
http://orcid.org/0000-0002-7266-5146
https://doi.org/10.1007/978-3-662-58820-8

BITCOIN 2018: 5th Workshop on Bitcoin
and Blockchain Research

The year leading to the Bitcoin 2018 workshop witnessed a continuing increase in
research on the Bitcoin protocols and on many related blockchain systems. The
workshop, along with its parent conference FC, continued its tradition of providing a
venue for some of the leading results in the field. Even as many alternative workshops
and conferences have begun to accept and attract research on blockchains, the Bitcoin
workshop remains the prominent venue for such work. The workshop received a large
number of submissions: A total of 27 papers were submitted for review. Of these, a
selection of 11 papers (nine full papers and two short papers) were accepted after
review by the Program Committee and ten chose to be included in the proceedings.
A single paper deferred from BITCOIN 2017 is also included in these proceedings.

Topics covered in the workshop provide a wide coverage of both theoretical and
practical aspects of cryptocurrencies and included: economically driven attacks on
cryptocurrencies, as well as non-economic extrinsically motivated attacks, an analysis
of the Ponzi scheme ecosystem, approaches to cryptocurrency fee systems, topology
inference in the Bitcoin network, a protocol for securely setting the public parameters
of zk-SNARKs, discussions of cryptocurrency governance, analysis of the UTxO set,
mechanisms to upgrade the rules of blockchains, and the use of blockchains for
transparent certificate signing and revocation.

The workshop included a keynote talk By Dahlia Malkhi of VMWare Research that
discussed blockchain protocols through the lens of classic research on distributed
computing, and concluded with a joint panel session organized by the Workshop on
Trusted Smart Contracts (WTSC 2018) and the Workshop on Advances in Secure
Electronic Schemes (VOTING 2018).

We would like to thank the members of the Program Committee, whose work and
remarks contributed greatly to the high quality of the workshop, as well as the chairs of
WTSC 2018 and VOTING 2018 for their cooperation in organizing joint sessions
during the workshops. We are also grateful for support by the FC chairs and BITCOIN
2017 co-chairs for their support and assistance during the organization of the
workshop.

The Bitcoin Workshop is a victim of its own success: For next year, IFCA’s gov-
erning board decided to merge the workshop with the main conference, a true sign that
the topic of bitcoin and blockchain research has entered the mainstream, evidenced by
the large number of submissions in the area sent to the conference and to the workshop
together.

September 2018 Ittay Eyal
Aviv Zohar

Program Committee

Elli Androulaki IBM Zürich, Switzerland
Foteini Baldimtsi George Mason University, USA
Iddo Bentov Cornell, USA
Alex Biryukov University of Luxembourg, Luxembourg
Rainer Böhme University of Innsbruck, Austria
Christian Cachin IBM Research – Zurich, Switzerland
Srdjan Capkun ETH Zürich, Switzerland
Melissa Chase Microsoft Research, USA
Nicolas Christin Carnegie Mellon University, USA
Jeremy Clark Concordia University, Canada
Phil Daian Cornell, USA
Christian Decker Blockstream, USA
Tadge Dryja MIT DCI, USA
Stefan Dziembowski University of Warsaw, Poland
Juan Garay Texas A&M University, USA
Christina Garman Johns Hopkins University, USA
Arthur Gervais ETH Zürich, Switzerland
Sharon Goldberg Boston University, USA
Jens Grossklags Technical University of Munich, Germany
Ethan Heilman Boston University, USA
Garrick Hileman University of Cambridge, UK
Aquinas Hobor National University of Singapore, Singapore
Philipp Jovanovic EPFL, Switzerland
Aniket Kate Purdue University, USA
Aggelos Kiayias University of Edinburgh, UK
Yoad Lewenberg The Hebrew University, Israel
Joshua Lind Imperial College London, UK
Patrick McCorry University College London, UK
Ian Miers Johns Hopkins University, USA
Tyler Moore University of Tulsa, USA
Malte Möser Princeton University, USA
Olaoluwa Osuntokun Lightning Labs, USA
Michael Riabzev Technion, Israel
Peter Rizun Bitcoin Unlimited, Canada
Abhi Shelat Northeastern University, USA
Yonatan Sompolinsky The Hebrew University, Israel
Eran Tromer Tel Aviv University, Israel
Luke Valenta University of Pennsylvania, USA
Peter Van Valkenburgh Coin Center, USA
Marco Vucolic IBM Research – Zurich, Switzerland
Roger Wattenhofer ETH Zürich, Switzerland
Nathan Wilcox Zcash, USA
Fan Zhang Cornell, USA

VI BITCOIN 2018: 5th Workshop on Bitcoin and Blockchain Research

VOTING 2018: Third Workshop on Advances in Secure
Electronic Voting Schemes

This year’s Voting workshop covered a variety of different themes, all related to voting
security and privacy.

Mebane and Bernhard presented the first careful analysis of investigations into
recount methods and vote anomalies in Wisconsin and Michigan from the 2016
presidential election. They found a collection of fascinating results, noting severe
problems in Detroit and the basic uselessness of machine recounts for detecting errors
in the initial count.

Several authors presented advances in cryptographic techniques relevant to voting,
including Strand’s verifiable shuffle for a post-quantum cryptosystem (which also
included an engaging explanation of why other attempts were invalid), Maini and
Haenni’s examination of efficient outsourcing of modular exponentiation, and Grontas
and colleagues’ new protocol that works, “Towards everlasting privacy and efficient
coercion resistance in remote electronic voting.”

Two papers presented careful formal models and analysis of existing components
and protocols. Hauser and Haenni modeled a bulletin board based on broadcast
channels with memory, while Smyth contributed a new analysis of the verifiability
of the Helios Mixnet.

Although some have advocated the use of blockchains for remote Internet voting in
government elections, the far more interesting questions concerned the use of
cryptographic election verification to decision-making within online communities such
as Etherium and other blockchains. We joined with the Bitcoin Workshop for a paper
by Asouvi, Maller, and Meiklejohn entitled, “Egalitarian Society or Benevolent
Dictatorship: The State of Cryptocurrency Governance,” in which the authors
explained that many cryptocurrencies are much less decentralized and democratic
than they are assumed to be. Joseph Bonneau then followed up by quantifying the cost
of “Hostile Blockchain Takeovers,” which are surprisingly (and frighteningly) cheap.

We would like to thank all the authors, Program Committee members, external
reviewers, and participants for their valuable contributions. We are also grateful to the
FC chairs for their support and assistance during the organization of the workshop.

January 2019 Jeremy Clark
Vanessa Teague

Program Committee

Roberto Araujo Universidade Federal do Pará, Brazil
Chris Culnane The University of Melbourne, Australia
Jeremy Epstein SRI International, USA
Aleksander Essex Western University, Canada
David Galindo University of Birmingham, UK
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Rajeev Goré The Australian National University, Australia
Reto Koenig Berne University of Applied Sciences, Switzerland
Steve Kremer Inria, France
Robert Krimmer Tallinn University of Technology, Estonia
Olivier Pereira Université catholique de Louvain, Belgium
Peter Roenne University of Luxembourg, Luxembourg
Peter Y. A. Ryan University of Luxembourg, Luxembourg
Steve Schneider University of Surrey, USA
Carsten Schuermann IT University of Copenhagen, Denmark
Philip Stark University of California, Berkeley, USA
Poorvi Vora The George Washington University, USA

External Reviewers

Vincenzo Iovino University of Luxembourg
Marie-Laure Zollinger University of Luxembourg

VIII VOTING 2018: Third Workshop on Advances in Secure Electronic Voting Schemes

WTSC 2018: Second Workshop on Trusted
Smart Contracts

These proceedings collect the papers accepted at the Second Workshop on Trusted
Smart Contracts (WTSC 2018, http://fc18.ifca.ai/wtsc/) associated with the Financial
Cryptography and Data Security 2018 (FC 2018) conference held in Curaçao in 2018
(February 26 to March 2, 2018).

WTSC 2018 focused on smart contracts, i.e., self-enforcing agreements in the form
of executable programs, and other decentralized applications that are deployed to and
run on top of (specialized) blockchains. These technologies introduce a novel
programming framework and execution environment, which, together with the
supporting blockchain technologies, carry unanswered and challenging research
questions. Multidisciplinary and multifactorial aspects affect correctness, safety,
privacy, authentication, efficiency, sustainability, resilience, and trust in smart contracts
and decentralized applications.

WTSC 2018 aimed to address the scientific foundations of trusted smart contract
engineering, i.e., the development of contracts that enjoy some verifiable “correctness”
properties, and to discuss open problems, proposed solutions, and the vision on future
developments among a research community that is growing around these themes and
brings together users, practitioners, industry, institutions, and academia. This was
reflected in the multidisciplinary Program Committee of this second edition of WTSC,
comprising members from companies, universities, and research institutions from
several countries worldwide, who kindly accepted to support the event. The association
with FC 2018 provided an ideal context for our workshop to be run in. WTSC 2018
was partially supported by the University of Stirling, UK, the University of Trento,
Italy, and FC 2018 IFCA-ICRA.

This second edition of WTSC 2018 received 13 submissions by about 30 authors, of
which eight were accepted after peer review as full papers, and are collected in the
present volume. These works analyzed the current state of the art and legal implications
of smart contracts; addressed aspects of security and scalability; proposed protocols for
sealed-bid auctions, for lending cryptocurrencies, for distribution and managements of
digital certificates; and introduced logging schemes, models, and theorem-proving-
based verification for smart contracts.

WTSC 2018 enjoyed Arthur Breitman (Tezos Founder) and Bud Mishra (NYU,
USA) as keynote speakers. Arthur gave a talk on present and future perspectives in
models for smart contracts, while Bud presented a model for decentralized drug
development. WTSC 2018 also enjoyed collaboration with the other FC workshops,
including a keynote talk by Dahlia Malkhi of VMWare Research on blockchain
protocols from BITCOIN 2017, and a joint panel session organized together with
VOTING 2018 on voting, governance, and decentralized democracy on blockchain.

http://fc18.ifca.ai/wtsc/

The WTSC 2018 chairs would like to thank all those who supported the workshop
for their valuable contributions: authors, Program Committee members and reviewers,
and participants. WTSC 2018 also enjoyed the support of IFCA, FC 2018, and Ray
Hirschfeld in the organization of the event.

January 2019 Andrea Bracciali
Federico Pintore

Massimiliano Sala

X WTSC 2018: Second Workshop on Trusted Smart Contracts

Program Committee

Marcella Atzori UCL, UK/IFIN, Italy
Daniel Augot Inria, France
Massimo Bartoletti University of Cagliari, Italy
Devraj Basu Strathclyde University, UK
Alex Biryukov University of Luxembourg, Luxembourg
Stefano Bistarelli University of Perugia, Italy
Andrea Bracciali University of Stirling, UK
Daniel Broby Strathclyde University, UK
Bill Buchanan Napier University, UK
Martin Chapman King’s College London, UK
Tiziana Cimoli University of Cagliari, Italy
Nicola Dimitri University of Siena, Italy
Stuart Fraser Wallet.Services, UK
Neil Ghani Strathclyde University, UK
Davide Grossi Utrecht University, The Netherlands
Oliver Giudice Banca d’Italia, Italy
Yoichi Hirai Ethereum DEV UG, Germany
Ioannis Kounelis Joint Research Centre, European Commission
Victoria Lemieux The University of British Columbia, Canada
Loi Luu National University of Singapore, Singapore
Carsten Maple Warwick University, UK
Michele Marchesi University of Cagliari, Italy
Fabio Martinelli IIT-CNR, Italy
Peter McBurney King’s College London, UK
Neil McLaren Avaloq, UK
Philippe Meyer Avaloq, UK
Bud Mishra NYU, USA
Carlos Molina-Jimenez University of Cambridge, UK
Federico Pintore University of Trento, Italy
Massimiliano Sala University of Trento, Italy
Ilya Sergey UCL, UK
Thomas Sibut-Pinote Inria, France
Jason Teutsch TrueBit Establishment, Liechtenstein
Roberto Tonelli University of Cagliari, Italy
Luca Viganò University of Verona, Italy
Philip Wadler University of Edinburgh, UK
Santiago

Zanella-Beguelin
Microsoft, UK

WTSC 2018: Second Workshop on Trusted Smart Contracts XI

Contents

Bitcoin and Blockchain Research

Smart Contracts for Bribing Miners . 3
Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn

A Systematic Approach to Cryptocurrency Fees . 19
Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov

A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes
in Practice (Short Paper) . 31

A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl,
and W. J. Knottenbelt

Confidential Assets . 43
Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell,
and Pieter Wuille

A Multi-party Protocol for Constructing the Public Parameters
of the Pinocchio zk-SNARK. 64

Sean Bowe, Ariel Gabizon, and Matthew D. Green

Analysis of the Bitcoin UTXO Set . 78
Sergi Delgado-Segura, Cristina Pérez-Solà,
Guillermo Navarro-Arribas, and Jordi Herrera-Joancomartí

Hostile Blockchain Takeovers (Short Paper) . 92
Joseph Bonneau

Analyzing the Bitcoin Ponzi Scheme Ecosystem . 101
Marie Vasek and Tyler Moore

Exploiting Transaction Accumulation and Double Spends
for Topology Inference in Bitcoin . 113

Matthias Grundmann, Till Neudecker, and Hannes Hartenstein

Egalitarian Society or Benevolent Dictatorship: The State
of Cryptocurrency Governance . 127

Sarah Azouvi, Mary Maller, and Sarah Meiklejohn

Blockchain-Based Certificate Transparency and Revocation Transparency . . . 144
Ze Wang, Jingqiang Lin, Quanwei Cai, Qiongxiao Wang, Jiwu Jing,
and Daren Zha

Advances in Secure Electronic Voting Schemes

A Verifiable Shuffle for the GSW Cryptosystem . 165
Martin Strand

Outsourcing Modular Exponentiation in Cryptographic Web Applications . . . 181
Pascal Mainini and Rolf Haenni

Voting Technologies, Recount Methods and Votes in Wisconsin
and Michigan in 2016 . 196

Walter R. Mebane Jr. and Matthew Bernhard

Towards Everlasting Privacy and Efficient Coercion Resistance
in Remote Electronic Voting . 210

Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis,
and Bingsheng Zhang

Modeling a Bulletin Board Service Based on Broadcast Channels
with Memory . 232

Severin Hauser and Rolf Haenni

Verifiability of Helios Mixnet . 247
Ben Smyth

Trusted Smart Contracts

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 265
Hisham S. Galal and Amr M. Youssef

The Scalability of Trustless Trust . 279
Dominik Harz and Magnus Boman

The Game Among Bribers in a Smart Contract System 294
Lin Chen, Lei Xu, Zhimin Gao, Nolan Shah, Ton Chanh Le, Yang Lu,
and Weidong Shi

Lightweight Blockchain Logging for Data-Intensive Applications 308
Yuzhe (Richard) Tang, Zihao Xing, Cheng Xu, Ju Chen,
and Jianliang Xu

Proof-Carrying Smart Contracts . 325
Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, Vikram Saraph,
and Eric Koskinen

Comparative Analysis of the Legal Concept of Title Rights in Real Estate
and the Technology of Tokens: How Can Titles Become Tokens? 339

Oleksii Konashevych

XIV Contents

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 352
Seyedehmahsa Moosavi and Jeremy Clark

Toward Cryptocurrency Lending . 367
Mildred Chidinma Okoye and Jeremy Clark

Author Index . 381

Contents XV

Bitcoin and Blockchain Research

Smart Contracts for Bribing Miners

Patrick McCorry, Alexander Hicks(B), and Sarah Meiklejohn

University College London, London, UK
{p.mccorry,alexander.hicks,s.meiklejohn}@ucl.ac.uk

Abstract. We present three smart contracts that allow a briber to fairly
exchange bribes to miners who pursue a mining strategy benefiting the
briber. The first contract, CensorshipCon, highlights that Ethereum’s
uncle block reward policy can directly subsidise the cost of bribing min-
ers. The second contract, HistoryRevisionCon, rewards miners via an
in-band payment for reversing transactions or enforcing a new state of
another contract. The third contract, GoldfingerCon, rewards miners
in one cryptocurrency for reducing the utility of another cryptocur-
rency. This work is motivated by the need to understand the extent
to which smart contracts can impact the incentive mechanisms involved
in Nakamoto-style consensus protocols.

1 Introduction

Cryptocurrencies such as Bitcoin and Ethereum have collectively achieved a
market capitalisation of over $600 bn in January 2018. The success of cryptocur-
rencies relies on an append-only public ledger called the blockchain, and on
Nakamoto consensus, a mechanism to reward honest participants (miners) for
updating the blockchain. The consensus protocol is designed with the idea of
“one-cpu-one-vote” as miners compete to solve a computationally difficult cryp-
tographic puzzle. The first miner to present a valid solution wins the authority
to append his block containing a list of recent transactions to the blockchain.
Thus, the security and reliability of the blockchain is dependent on the assump-
tion that a majority of the network’s computational power is honest. If not, an
adversary is able to control the content of the blockchain.

Since the introduction of Bitcoin in 2009, the mining process has
changed drastically, with advances in graphic processing units (GPUs), field-
programmable gate arrays (FPGAs) and application-specific integrated circuits
(ASICs) offering much greater performance than a single CPU. Thus, today’s
miners must invest in expensive hardware before competing meaningfully in the
consensus protocol. Similarly, pooled mining allows a single appointed pool mas-
ter to decide which transactions to include in a block and how to distribute any
earned block rewards amongst a co-operative group of miners. Solutions such
as P2Pool [28] and SmartPool [14] allow an algorithm to play the role of the
pool master, but have not yet gained widespread use. The combination of these
two factors has undeniably led to a decrease in the number of participants in
the consensus protocol underlying Bitcoin. In fact, a panel session at Scaling
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-662-58820-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_1&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_1

4 P. McCorry et al.

Bitcoin 2015 was made up of eight participants who together controlled 80% of
the Bitcoin network’s computational power [20].

Whilst it is assumed that miners will honestly follow the consensus proto-
col, the assumption that the honest mining strategy is the most rewarding has
been criticised. Eyal and Sirer [9] proposed selfish-mining strategies that can be
deployed by rational miners with at least 25% of the network’s computational
power to gain more rewards than they deserve. This work was extended by
Sapirshtein et al. [22] and Nayak et al. [18]. Although selfish-mining strategies
theoretically weaken the 51% honest mining assumption, there is no evidence
that any miners are engaging in them in major deployed cryptocurrencies. This
suggests that miners are indeed honest and will not deviate from the honest
mining strategy. Yet mining is not always profitable1 in the short-term [6] and
in August 2017 miners have exhibited rational behaviour in order to boot short-
term profit. For example some mining pools including ViaBTC mined either
Bitcoin or Bitcoin cash depending on which cryptocurrency was more profitable
in the short-term. On the other hand influential members of the Bitcoin com-
munity have also suggested that miners may be accepting out-of-band bribes to
mine Bitcoin Cash [24].

This type of mining behaviour reflects a tragedy of the commons first identi-
fied by Bonneau [3]. Individually rational miners have an incentive to maximise
their profit (i.e., accept bribes to mine an alternative fork), but collectively share
a concern for the network’s long-term health. Liao and Katz [13] extend the work
of Bonneau by proposing “whale” transactions, which use anomalously large fees
to bribe miners. A new whale transaction is authorised for every new block in
the alternative fork in order to reward the bribed miners for their continuous
support. While Bonneau concludes that bribery attacks should be considered
when attempting to prove that a Nakamoto-style consensus protocol is incen-
tive compatibility, so far bribery attacks have not been seen as practical by the
wider community. Although the question of how to attack or disrupt a minority
chain in the event of new Bitcoin forks is increasingly an active area of discus-
sion [1,5,30]. In fact, the founder of the mining pool BTC.TOP (which held 13%
of the network’s computational power as of October 2017) stated in an interview:

“We have prepared $100 million USD to kill the small fork of CoreCoin,
no matter what proof of work algorithm, sha256 or scrypt or X11 or any
other GPU algorithm. Show me your money. We very much welcome a
CoreCoin change to POS.” [19]

Looking beyond Bitcoin, it is important to consider whether the additional
functionality provided by alternative cryptocurrencies can be used to enable
new forms of bribery, and in particular whether a platform like Ethereum that
supports smart contracts enables the automated (and thus fair) payment of
bribes to miners who change their mining strategy. For pooled mining, Velner
et al. [27] demonstrate a smart contract that rewards miners in a pool who
1 A surge in the Bitcoin price this year made mining profitable in the short-term for

“hobbyist miners” [21].

Smart Contracts for Bribing Miners 5

perform so-called block withholding attacks2 and later provide the contract with
a proof-of-stale-work. Teutsch et al. [25] show that a briber can set up a script
puzzle that diverts the network’s mining power, thus removing competition for
the briber’s mining power. They demonstrate that a briber with at least 38.2%
of the network’s hashrate can achieve a positive pay-off that also covers the cost
of each script puzzle.

This paper proposes three new contracts that reward miners who provide
evidence that their mining strategy has changed according to a briber’s intention.
Our bribery attacks differ to previously proposed contracts, in that they do not
focus on disrupting mining pool protocols or attempt to divert miners from
solving the network’s puzzle. Instead, our contracts facilitate renting hardware
by rewarding miners using an in-band bribe (i.e. coins within the cryptocurrency)
or an out-of-band bribes (i.e. coins from another cryptocurrency).

Our three smart contracts are as follows:

– In Sect. 3, we propose CensorshipCon, which relies on Ethereum’s block
reward policy to subsidise a briber wanting full control over the blockchain’s
content. We provide an analysis to show that a briber with at least 25% of the
network’s computational power can maximise the subsidy while also earning
a small profit.

– In Sect. 4, we propose HistoryRevisionCon, which rewards miners that
reverse transactions and computations in the blockchain by mining an alter-
native fork. It is also the first history-revision bribery attack where the briber
and bribee trust only the contract (and not each other).

– In Sect. 5, we propose and implement GoldfingerCon, which rewards min-
ers who can prove their mining strategy has reduced the utility of another
cryptocurrency. We provide a proof-of-concept implementation to evaluate
the feasibility of our attack and demonstrate that accepting a bribe costs
approximately $0.46.

2 Background

In this section we provide an overview of Bitcoin and Ethereum with a focus on
the expressiveness of Bitcoin Script, Ethereum smart contracts, and the reward
policies in each consensus protocol.

2.1 Bitcoin

Bitcoin [17] is a global public ledger, maintained by a distributed set of miners,
that facilitates trading a single asset (bitcoins) in a publicly verifiable manner.
All coins are exchanged using transactions that have a list of inputs (the source

2 In such an attack, a miner sends only partial proofs-of-work to the pool master,
discarding all full proofs-of-work. The miner is rewarded by the master for attempting
to find a new block but does not contribute to the pool’s income as new blocks are
discarded.

6 P. McCorry et al.

of the coins) and outputs (the destination of the coins). A mechanism called
Bitcoin Script is used to specify conditions that must be satisfied before the
coins associated with a transaction output can be spent. The most popular script,
pay-to-pubkey-hash, requires a digital signature from the corresponding Bitcoin
address (i.e., the hash of a public key). Another example of a script is pay-to-
pubkey, which requires a digital signature from the public key’s corresponding
private key.

All transactions are recorded on the ledger, also called a blockchain, which
is replicated by the peer-to-peer network. In order to update the ledger with
a list of recent transactions contained in a block, miners compete to solve a
computationally difficult puzzle. The first miner to present a solution wins the
right to append his block to the blockchain, and receives 12.5 bitcoins in addition
to all transaction fees collected in the block. A block is expected to be found
approximately every 10 min.

A Bitcoin block is made up of two components. The first component is the
block header, which contains the previous block hash, a Merkle tree root com-
mitting to all transactions in this block, a nonce to support the proof-of-work
puzzle, and a timestamp. The second component is a list of transactions, the
first of which is called the coinbase and is used to distribute the block reward.
If the block contains no new transactions, the Merkle tree root is replaced with
the hash of the coinbase transaction.

2.2 Ethereum

Ethereum [29] was proposed to facilitate users writing, storing and executing
expressive, but bounded programs (i.e. smart contracts) within the Ethereum
Virtual Machine (EVM). This EVM alongside all storage and computation is
replicated across the peer-to-peer network and the blockchain is responsible for
storing transactions that authorise state transitions. If all transactions are re-
executed by a new peer joining the network, then the peer will eventually discover
the contract’s most recent state. All computation and storage is measured in
units of gas and this is purchased using Ethereum’s native currency (i.e. ether)
by the user when they are authorising a transaction. As of January 2018, the
vast majority of contracts are written in Solidity and like Bitcoin, all users have
an Ethereum account which is the hash of a public key (and the corresponding
private key is used to sign transactions).

Ethereum has a Nakamoto-style consensus protocol that relies on a dis-
tributed set of miners and its blockchain is a variation of GHOST [23], which
is a tree-based blockchain. GHOST introduced the concept of an uncle block,
which is a competing block that failed to make it into the blockchain but has its
block header included in a future block; we call this future block the publisher
block. For example, consider the case in which there are two competing blocks
at height i, bi

A and bi
B . If bi

A is accepted into the blockchain, the block header
for bi

B can still be included in a future block bi+δ
publ, at which point we can call it

an uncle block bi
B,uncle. This new block type was proposed in GHOST to allow

stale blocks to contribute towards the blockchain’s overall weight, although uncle

Smart Contracts for Bribing Miners 7

blocks in Ethereum did not contribute towards the blockchain’s weight until the
Byzantium upgrade in October 2017 [4]. This consensus rule was changed in
response to an uncle block mining strategy proposed by Lerner [12] that could
reward miners more coins than they deserve by exclusively mining uncle blocks.

The notable difference between GHOST and Ethereum’s implementation is
the uncle block reward policy. In Ethereum, a miner can include a maximum
of two uncle blocks in a newly mined block and the miner receives a publisher
reward of cpub = 1

32cblock for each uncle block included, where cblock is the normal
block reward. Once included in the blockchain, the uncle block’s miner is sent
an uncle block reward of cuncle = (1 − δ

8)cblock, where δ is the distance (number
of blocks) between the competing main block bi

A,main and the publisher block
bi+δ
publ. As of January 2018, the full block reward is 3 ETH and the maximum

distance permitted for an uncle block to be included in the blockchain is 6.
Finally, an Ethereum block header can be split into four sections. This

includes the previous block hash, gas statistics to highlight the computations
involved in this block, a solution to the memory-hard proof-of-work Ethash,
and a list of Patricia trie roots for the uncle block headers, transactions, and
the global state transaction. This is reflected in the size of an Ethereum block
header, which is 480 bytes compared to Bitcoin’s 80 bytes.

3 Subsidised Bribery

To set the scene, we consider the case of a briber, Alice, with less than a majority
of Ethereum’s computational power. Her goal is to control which transactions are
accepted into the blockchain. Rather than purchasing or renting new hardware to
achieve a majority, she decides to rent hashing power from other miners (which
we collectively name Bob) by bribing them. An existing approach for miners to
accept in-band bribes without trusting the briber involves whale transactions
[13], but this requires Alice to pay the full cost.

Instead, we propose a smart contract that rewards Bob for intentionally
mining uncle blocks. As a result, Ethereum’s uncle block reward policy is used to
directly subsidise bribes paid by Alice. In the best case, Bob is rewarded 7

8 of the
block reward cblock for mining an uncle block. If Bob can prove to Alice’s smart
contract that he mined an uncle block, then this contract will automatically send
Bob an additional payout cpayout. This second payment covers the remaining
fraction of the block reward cblock and includes an additional bonus cbribe for
accepting the bribe. As a result Bob will always earn more coins than mining
honestly, and the uncle block reward subsidises bribes paid by Alice.

3.1 Censorship Contract

The contract CensorshipCon3 rewards Bob for performing an uncle block mining
strategy. Bob must withhold a new block until a competing block by Alice is
accepted into the blockchain, only then publishing his block for inclusion as

3 A partial implementation is available at [15].

8 P. McCorry et al.

an uncle block. He must then prove to CensorshipCon that his uncle block was
included in the blockchain for the contract to send him the bribe. In the following
we highlight how to initialise the contract and how to allow bribed miners to
accept their subsidised bribe. Afterwards we provide an overview of Appendix A
to highlight that the briber requires at least 25% of the network’s computational
power in order to maximise the subsidy.

Briber Assumption. For this contract we assume Alice includes all uncle blocks
and transactions that pay Bob his bribe into the blockchain. We consider this
a reasonable assumption as accepting these blocks/transactions maximises her
subsidy and encourages Bob to pursue the uncle block mining strategy. Finally
we assume that Alice has bribed a sufficient portion of miners for the attack to
succeed such that all blocks in the blockchain are mined by her.

Contract Setup. Alice must set the network’s block reward cblock, the bribe
amount cbribe and also deposit d coins into the deployed contract CensorshipCon
before publicly advertising the bribe. This contract has a single function called
AcceptSubsidisedBribe() that we describe below.

Accepting the Subsidised Bribe. Bob must perform the uncle block mining strat-
egy in order to be eligible for the bribe. If he has mined a new block bi

B , then
he must withhold this block until Alice publishes a competing bi

A and her block
is accepted into the blockchain. Afterwards he can publish his block bi

B to the
network, which allows Alice to include it as an uncle block in one of her future
blocks; this future block is the publisher block bi+δ

publ. Once his uncle block is
accepted into the blockchain he must prove that he is entitled to the payout
cpayout.

To prove this, Bob creates a transaction that invokes
AcceptSubsidisedBribe. This function requires as input Bob’s uncle block
header bi

B,uncle, Alice’s competing block header bi
A,main and the publisher block

bi+δ
publ.

Once invoked, the function verifies if Alice’s competing block bi
A,main and

the publisher block bi+δ
publ are in the blockchain. This involves retrieving the

most recent 256 block hashes B256,4 hashing both block headers and check-
ing if H(bi

A,main) ∈ B256 and H(bi+δ
publ) ∈ B256. Next the contract checks if the

publisher block bi+δ
publ has indeed included Bob’s uncle block bi

B,uncle and if the
two competing blocks bi

A,main and bi
B,uncle extend the same block bi−1.5

If the above verification is satisfied and Bob has not already received a bribe
for bi

B,uncle, the contract calculates his payout. To do this it first computes the
number of blocks δ between bi

A,main and bi+δ
publ, as this is used to calculate Bob’s

4 The contract environment provides access via block.blockhash(uint) for the latest
256 blocks (except the current block).

5 This is similar to how a proof-of-stale block is verified by Velner et al. [27].

Smart Contracts for Bribing Miners 9

uncle block reward cuncle = (1 − δ
8)cblock. His uncle block reward is the subsidy

provided by the network for the briber, and his final payout is calculated as
cpayout = cbribe + cblock − cuncle. The contract then sends these coins to the
miner’s Ethereum account, as stored in bi

B,uncle.

3.2 Lower-Bound on Briber’s Hashrate

Appendix A contains an analysis of the computational power required by Alice
to maximise the network’s subsidy and an overview is presented here. Briefly, we
begin by denoting mA, mB , and mH as the network’s hashrate shares controlled
by Alice, Bob and remaining honest miners. Only Alice and the honest miners
compete to create new blocks once Bob has decided to pursue an uncle block
mining strategy. His computational power is considered in the network’s difficulty
calculation [4], but Alice only needs to control more computational power than
the honest miners such that mA > mH to control the blockchain. To maximise
the subsidy she must also ensure that for every new block mined by her, Bob
only has the computational power to mine up to two uncle blocks. This final
requirement means she must have at least half of Bob’s hash rate such that
mA ≥ 1

2mB . If we combine both requirements then Alice’s hashrate must be
mA > 1

4 to ensure she can out-compete the honest miners and also include all
blocks mined by Bob as uncle blocks.

We highlight that there is an issue with the lower bound of mA > 1
4 as the

briber can potentially exclude all blocks mined by honest miners. As a result
it is reasonable to assume that honest miners may defect and also pursue the
uncle block mining strategy in order to accept her bribe. If this happens, then
the requirement mA ≥ 1

2mB may no longer hold as the bribed miners account
for more than half of the network’s hashrate such that mB > 1

2 . As a result it
is possible that three uncle blocks are created for every new block by Alice and
unfortunately one block must be discarded due to the uncle block limit. In order
to satisfy the goal of maximising the briber’s subsidy we consider the scenario
where miners will only accept the bribe if it is guaranteed that no uncle blocks
are discard. This requires Alice’s computational power to be mA ≥ 1

2 (1 − mA)
and leads to a new lower bound of mA > 1

3 , allowing any value mB ∈ [13 , 2
3).

4 History Revision Bribery

The contract HistoryRevisionCon6 extends the work of Bonneau [3] and Liao
et al. [13], and allows Alice to reward miners for mining on a fork other than
the current longest chain. She can also retroactively dictate the starting block
for a new fork and also enforce an expressive forking condition. In the follow-
ing example we use a double-spend transaction to change the balance of two
accounts, A2 and A3, but in a manner similar to the “hard-fork oracle” outlined
by McCorry et al. [16], the forking condition could also depend on other events
such as a reversal of the infamous TheDAO theft [10].
6 A partial implementation is available at [15].

10 P. McCorry et al.

Briber Assumptions. The briber is no longer involved in the attack after setting
up the contract. For the subsidised bribe we also assume that all bribed miners
will include the transactions from other miners. This is reasonable as the bribed
miners are collectively working together to ensure the alternative fork becomes
the longest (and heaviest) chain.

Contract Setup. Alice creates three accounts A1, A2, A3, the first account A1

creates the bribery contract, A2 spends coins in the longest chain and A3 receives
the double-spent coins from A2 in the alternative fork. She then publishes the
transaction TA2,spend that spends her coins from A2; we denote the block that
includes this transaction as bi. Alice waits until the receiver considers TA2,spend

as confirmed in the blockchain.
Afterwards she publishes the double-spend transaction TA2,double that sends

all coins from A2 to A3 and the transaction TA1,fork which will create the
HistoryRevisionContract contract. Both transactions must be included in the
first bribed block at height i by Bob before he can be rewarded a bribe. Of course
the contract will check the balance of A2, A3 and that it was created in block i
before rewarding any bribes.

Accepting the Bribe. An accept bribe transaction must be included in every
new block and it calls the AcceptBribe() function. The AcceptBribe() func-
tion requires no inputs and invokes the contract to check that a bribe has not
already been paid for this block before sending the full bribe cbribe to the miner’s
Ethereum account.7 If his block fails to be included in the blockchain, then he
must wait until this block is included as an uncle block.

Accepting the Subsidised Bribe. Similarly to the mechanism presented in
Sect. 3.1, Bob can call AcceptSubsidisedBribe() and be rewarded for min-
ing an uncle block. If the number of uncle blocks remains low (e.g., two or fewer
uncle blocks for every block in the blockchain), then the briber can maximise
the subsidy and ensure all stale blocks mined are also rewarded.

5 Goldfinger Bribery

As proposed by Kroll et al. [11], a “Goldfinger attack” can be modeled as a
game between an adversary who receives external utility from devaluing (or
destroying) a currency and the network that aims to run/maintain the value of
a currency. One approach for devaluing a cryptocurrency is to effectively reduce
its usefulness such that there is no guarantee a transaction will be accepted (or
remain confirmed) in the blockchain. This can be accomplished by performing
significant blockchain re-organisations (such as reversing 10 or more blocks in
the blockchain) [1] or mining consecutive empty blocks. We propose that a briber
can use a smart contract-enabled blockchain to fairly reward miners for mining
empty blocks in another cryptocurrency.
7 This can be accessed in the contract environment as block.coinbase.

Smart Contracts for Bribing Miners 11

5.1 Goldfinger Contract

We present GoldfingerCon, the first contract to realise a Goldfinger-style attack.
This contract rewards miners in a smart contract-enabled blockchain for reducing
the utility of another cryptocurrency by mining empty blocks.8 In the following
we discuss how to set up the Goldfinger contract, how Bob can prove he mined
an empty block to the contract, the technical hurdles for this attack and our
proof of concept implementation.

Contract Setup. Alice creates GoldfingerCon, deposits d coins and must set the
payout for each empty block as cbribe. In order to activate the contract she must
set the identification hash of the initial block H(bi

B) and all miners should begin
mining empty blocks from H(bi

B) onwards. This contract is publicly announced
to all miners in the victim cryptocurrency.

Accepting the Bribe. Bob must audit the code for GoldfingerCon to verify that
the contract will reward him for mining empty blocks in the victim cryptocur-
rency. Once he has decided to pursue the Goldfinger attack, then every new block
bi
B,btc he mines should only contain the coinbase transaction and he must wait

for the block to achieve a sufficient depth in the blockchain. Next he must pub-
lish an accept bribe transaction TB,accept that includes the block header bi,∗

B,btc

and the corresponding coinbase transaction T i
B,coinbase in its payload.

This transaction calls the AcceptBribe function in GoldfingerCon and as a
result the contract will verify whether H(bi

B) is an empty block before sending
Bob his bribe. In order to verify that it is indeed an empty block, the contract
checks that the identification hash of the coinbase transaction H(T i

B,coinbase) is
stored in the block header’s Merkle root field. Once the verification is complete,
the contract extracts the public key PKB from the coinbase transaction’s output
(assuming it is a pay-to-pubkey script), computes an Ethereum account B from
PKB and sends B the bribe cbribe.

Validating and Propagating Empty Blocks. In order to verify that the chain of
empty blocks represents the most computational weight it is important that
GoldfingerCon has access to all known forks in the victim cryptocurrency. We
recommend that block headers follow a strict pre-defined format to ensure they
are valid for both the contract and the victim cryptocurrency. Finally it is also
important for Alice to remain online and ensure all empty blocks are propagated
throughout the victim cryptocurrency’s network. Otherwise a cartel of miners
could mine headers for the contract, but they are not used (or potentially be
invalid) in the victim cryptocurrency network. Another option is to build an
escape hatch into the contract which allows her to terminate the bribe if cheating
is detected, but this may also undermine the contract’s credibility.

8 It is also possible to bribe miners for building an alternative fork by dictating that
a block hash H(biB) cannot be in the blockchain.

12 P. McCorry et al.

Table 1. A breakdown of the gas and financial cost for submitting several existing
Bitcoin blocks and accepting a bribe from GoldfingerCon.

Step Purpose Gas Cost US$ Cost

1. Create contract 3,505,654 4.21

2. Submit block header 49,996 (checkpoint) 316,799 0.38

3. Submit block header 50,000 (out of order) 276,663 0.33

4. Submit block header 49,999 (out of order) 261,727 0.31

5. Submit block header 49,998 (out of order) 261,727 0.31

6. Submit block header 49,997 (in order) 314,017 0.38

7. Organise orphan blocks 284,206 0.34

8. Accept bribe for block 50,000 152,579 0.18

5.2 Proof-of-Concept Implementation

We have implemented GoldfingerCon [15] in Solidity (0.4.10) and performed
experiments on an Ethereum private network in October 2017 (before the Byzan-
tium update). Our implementation demonstrates the cost of maintaining the
longest chain of block headers and parsing Bitcoin block headers and coinbase
transactions. It does not, however, rigorously validate block headers or coinbase
transactions according to the network’s consensus rules as discussed in Sect. 5.1.
In the following we present the cost of creating the contract, publishing five
blocks in the reverse order, computing the current longest fork (i.e. a blockchain
re-organisation within the contract) and accepting a single bribe.

Table 1 presents the gas and financial breakdown for each transaction, assum-
ing 1 ETH is worth $300 (a reasonable estimate as of October 2017 [8]) and the
gas price is 4 Gwei.9 The first step involved creating the GoldfingerCon con-
tract alongside setting the payout for each bribe and the contract’s owner as the
briber. The second step required the owner to set the starting block (i.e. the
checkpoint) as Bitcoin block 49,996 and thus the contract will only send bribes
for new empty blocks that extend this checkpoint.

The next series of steps (i.e. 2–6) involved an ad-hoc Ethereum account
sending the contract four Bitcoin blocks 50, 000 to 49, 997 in the reverse order.
This resulted in the contract recognising block 49, 997 as the latest block in
the blockchain. Step 7 notified the contract to evaluate the orphan blocks (i.e.
blocks 49, 998 to 50, 000) and this resulted in the contract setting block 50, 000
as the latest block in the blockchain. This demonstrates that handling small
block re-organisations within an Ethereum contract can be gas-efficient.

Finally step 8 involves simulating a miner publishing the coinbase transaction
for block 50, 000 to accept their bribe. The contract verified that the identifica-
tion hash of the coinbase transaction was stored in the Merkle tree root of block

9 1 gwei = 10−18 ether.

Smart Contracts for Bribing Miners 13

50, 000. The public key from the coinbase transaction output is then extracted10

to construct an Ethereum address. The miner’s bribe is sent to the constructed
Ethereum address and the bribe for block 50, 000 is marked as claimed.

6 Discussion

Countering Goldfinger Attacks. Bonneau [3] identified that the intended victims
of a Goldfinger attack could counter-bribe the miners in order to protect the
blockchain’s integrity, but he went further to argue that it is not desirable to
rely on wealthy members of the community to protect Nakamoto-style consen-
sus. Another counter-measure that is often suggested by the Bitcoin community
is to change the proof-of-work algorithm in response to an attack [7] and effec-
tively punish the miners for participating in the attack by making their mining
hardware redundant. We highlight that this is only a viable option if there is
not an another cryptocurrency with significant value that also relies on the same
proof of work algorithm. Also, it is only a one-shot approach as the briber could
then rent the next viable hardware (e.g., GPUs). In terms of a new proof-of-work
algorithm it may be useful to select one that is not easily verified within a smart
contract environment to hinder our smart contracts. As demonstrated by Luu
et al. [14], however, this defence can be overcome.

Removing Asymmetrical Trust Assumption for History-Revision Bribery
Attacks. The closest mechanism to our history-revision contract is whale transac-
tions, where Alice includes large fees to entice miners to include her transactions,
but these have asymmetrical trust assumptions. Briefly, if the bribed miners do
not trust the briber, then the briber must sign a list of transactions in advance
with incrementing time-locks (to ensure that only a single bribe accepted is
included per block). On the other hand, if the briber does not trust the bribed
miners, then to ensure that they do not collude and mine a fork without the
briber’s desired revision, the briber can publish a new whale transaction after
every new block [13]. HistoryRevisionCon removes this asymmetry, as both the
briber and bribed miners can trust only the contract.

Towards a 51% Collusion. All bribery attacks require a strategy that persuades
the network’s computational power to join the attack and accept this bribe. In
CensorshipCon and GoldfingerCon, miners are rewarded for every uncle/empty
block mined, whereas in HistoryRevisionCon miners are paid only if the attack
is successful. One approach for persuading miners to accept this bribe is to
provide a greater reward for miners that join the attack early, and a list of
deadlines can be set to ensure that there is a proportional increase in bribed
blocks over time. For example, GoldfingerCon may require 10% of all blocks
to be empty by time t1 and 20% by time t2. The contract can terminate if a

10 All early coinbase transactions (including block 50,000) used pay-to-pubkey bitcoin
scripts.

14 P. McCorry et al.

deadline is missed. So far our contracts have assumed that a sufficient share
of miners have joined the attack. We leave it as future work to devise reliable
strategies for ramping up support amongst miners.

In-Band vs Out-of-Band Payments. Out-of-band payment for bribery attacks
such as GoldfingerCon, script puzzles [25] and proof-of-stale blocks [27] are
viable as the utility received by miners is external to the cryptocurrency which
is being attacked. Bribery attacks that rely on in-band payments like whale trans-
actions [13], CensorshipCon, HistoryRevisionCon can potentially be viewed as
not practical due to their public nature undermining the bribed miner’s reward.
There have been a few circumstances such as TheDAO fork [10] where in-band
bribery could potentially have been used to reward miners for mining an alterna-
tive fork. We do not claim that in-band bribery attacks are immediately feasible
today, but this may change in the future as the political climate surrounding
cryptocurrencies continues to evolve.

Impact on Nakamoto Consensus. Our contract CensorshipCon demonstrates
how subtle changes to Ethereum’s implementation of GHOST has directly
enabled a subsidy for bribery attacks, whereas GoldfingerCon highlights that
miners do not need to trust the briber when attacking the consensus protocol of
another cryptocurrency. Bonneau [3] argued that bribery attacks are not recog-
nised as a viable attack due to their public (and sometimes trusted) nature and
this is reflected in the community as no new Nakamoto-style consensus protocol
has considered bribery attacks in their threat model. We argue that with rise
of smart contract-enabled blockchains, centralisation of mining hardware [26],
politically motivated actors [19,24] and wealthy pseudonymous thieves [2,10], it
appears that bribery-style attacks are indeed becoming increasingly viable. We
thus also argue that new Nakamoto-style consensus protocols should consider
bribery attacks when evaluating whether the protocol is incentive-compatible.

7 Conclusion

In this paper, we proposed three contracts to evaluate whether a smart contract-
enabled blockchain can have an impact on Nakamoto consensus. Our contracts
highlight that Ethereum’s uncle block reward policy can be used to directly
subsidise a bribery attack, that a briber can dictate the conditions that must be
satisfied (i.e. reverse theft) when bribed miners mine an alternative fork and the
feasibility of Goldfinger-style attacks that reward miners for reducing the utility
of another cryptocurrency. Our contracts (including the work in [3,13,25,27])
are the first steps towards realising practical bribery strategies that overcome
the inherent trust issue between a briber and bribee. This is achieved as all
contracts self-enforce the bribery agreement and the fair exchange of coins.

Smart Contracts for Bribing Miners 15

Acknowledgements. Patrick McCorry and Sarah Meiklejohn are supported in part
by EPSRC grant EP/N028104/1, and Alexander Hicks is supported in part by OneSpan
(https://www.onespan.com/) and UCL through an EPSRC Research Studentship. We
would like to thank Joseph Bonneau for discussions around bribery attacks, Ilya Sergey,
Changyu Dong, and Abhiram Kothapalli for comments on early drafts of this paper,
and Sergio Lerner and Adrian Eidelman for bringing to our attention that Ethereum’s
Byzantium upgrade changed the network’s difficulty calculation.

A Subsidy Analysis

This section is concerned with determining lower bounds on Alice’s hash rate in
order to both maximise the subsidy from Ethereum’s uncle block reward policy
and to provide her with full control over the blockchain. We find the lowest
bound she requires is more than 1

4 of the network’s hashrate, but this does not
allow all other miners to pursue the uncle block mining strategy and accept the
bribe. This can be overcome if she has more than 1

3 of the network’s hashrate
as this will allow all other miners to mine uncle blocks and for her to include
every uncle block in the blockchain. In the following we present our assumptions
for the subsidy analysis before presenting the subsidy value, whether a profit is
possible for the briber and how to derive the two lower bounds.

Assumptions. We assume that miners do not perform selfish mining strategies
and that Alice has control of the minimum hashrate required to execute the
attack.

Lower Bounds on Hashrate. Keeping the same model, we denote mA, mB and
mH the portion of network’s hashrate controlled by Alice, Bob and the remaining
honest miners respectively. Alice’s hashrate must satisfy two requirements before
she out compete the honest miners and maintain the longest chain with only her
blocks:

• Alice’s hashrate must be at least half of the bribed miner’s computational
power such that mA ≥ 1

2mB.
• Alice’s hashrate must be greater than the remaining honest miners on the

network such that mA > mH .

The first requirement ensures Alice can include all new blocks published by
Bob as uncle blocks. Recall she can only include up to two uncle blocks per block
she published. The second requirement allows Alice to win against the remaining
honest miners in creating blocks for the blockchain as she controls a majority
portion of the effective hashrate (i.e. the network’s hashrate attempting to mine
main blocks which excludes the bribed miners). Putting these together gives a
lower bound of mA > 1

4 on Alice’s portion of the hashrate. This is enough for her
to support Bob controlling mB = 1

2 of the hashrate, which ensures mA > mH .

https://www.onespan.com/

16 P. McCorry et al.

The case above assumes that honest miners are not willing to accept the
bribe which may be not be realistic as miners are economically motivation. In
particular, honest miners may find themselves competing against Alice and if
she controls a majority of the effective hashrate then all their blocks will be
excluded. It is then necessary to revise our first requirement such that it now
takes the form mA ≥ 1

2 (1 − mA). This allows Alice to support the inclusion of
withheld blocks from all other miners (i.e. the remaining network’s hashrate)
as uncle blocks. Alice can then bribe the necessary portion of miners mB ≥ 1

3
which satisfies the requirement mA ≥ 1

2mB and allows mA > mH to hold.

Subsidy and Expectation Values. Alice can maximise her subsidy by minimising
the number of blocks δ it takes until a bribed block is included in the blockchain
as an uncle block. Ideally, she should include uncle blocks in her next block.
otherwise δ may range between 1 and 6 if an uncle is delayed entry.

Before highlighting the impact of this subsidy for Alice, recall that she also
receives an additional publisher reward cpub = 1

32cblock for each uncle block she
includes. Hence for one uncle, Alice only has to pay Bob cpayout > 4δ−1

32 cblock to
guarantee him a higher payout than if he had won the full block reward. If she
includes two uncle blocks, she has to pay cpayout > 4δ−1

16 cblock to ensure both
blocks have a higher payout.

As Alice receives a block reward for every block she mines, she can still profit
from the reward while ensuring Bob receives a higher payout. If her payout to
Bob is less than the block reward (i.e. cpayout < cblock), she will have earned
more than she spent. The values of δ required for her to make a profit are then
easily found by solving the inequality with the expressions for cpayout previously
given. For example, if she only includes a single uncle in her block, then she is
guaranteed a profit for any δ as the reward is sufficient to ensure Bob receives
the full block reward cblock alongside an additional cbribe. If she includes two
uncle blocks, then she must be efficient as the δ for both blocks must be less
than 4 on average in order to satisfy the condition. Of course this analysis is
only concerned with the potential mining profit, and does not take into account
the preliminary costs of gaining the required hashrate.

As previously mentioned, the payout cpayout should be sufficient for Bob to be
guaranteed a higher reward than the block reward and giving him a clear incen-
tive to accept bribes. If the attack is successful, Alice will control the effective
majority of the network’s hashrate and honest miners will see their expectation
value decrease as their blocks are excluded from the blockchain. They will then
be further incentivized to accept bribes.

Smart Contracts for Bribing Miners 17

References

1. Andresen, G.: Ways to enhance Post-fork withering of Core chain. RedditBTC,
March 2017

2. Bloomberg: Ethereum Bandits Stole $225 Million This Year. Fortune, August 2017
3. Bonneau, J.: Why buy when you can rent? In: Clark, J., Meiklejohn, S., Ryan,

P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604,
pp. 19–26. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-
4 2

4. Buterin, V.: Change difficulty adjustment to target mean block time including
uncles. Ethereum EIP Github Repository, October 2017

5. Dinkins, D.: If Hard Fork Happens, Chain Backed By Majority of Miners Will
Likely Win. Cointelegraph, October 2017

6. Donnelly, J.: Winter is Coming: Bitcoin Mining for Heat (And Profit). CoinDesk,
September 2016

7. Dorier, N.: Proof-of-Work update is not a threat to miners, it is a necessity for
users. Medium, March 2017

8. ETHGasStation: Bribery Contracts. ETH Gas Station, October 2016
9. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:

Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

10. Hanson, R.: A $50 Million Hack Just Showed That the DAO Was All Too Human.
Wired, June 2016

11. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: WEIS 2013 (2013)

12. Lerner, S.D.: Uncle Mining, an Ethereum Consensus Protocol Flaw. Bitslog blog,
April 2016

13. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Bren-
ner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 264–279. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 17

14. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smart pool: practical decentralized
pooled mining. IACR Cryptology ePrint Archive, 2017:19 (2017)

15. McCorry, P.: Bribery Contracts. GitHub, January 2017
16. McCorry, P., Heilman, E., Miller, A.: Atomically trading with Roger: gambling

on the success of a hardfork. In: Garcia-Alfaro, J., Navarro-Arribas, G., Harten-
stein, H., Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol.
10436, pp. 334–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67816-0 19

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
18. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

19. Quentson, A.: Bitcoin Market Needs Big Blocks. Says Founder of BTC.TOP Mining
Pool, Cryptocoinsnews, February 2017

20. Redman, J.: The Scaling Bitcoin Workshop Hong Kong Wrap-Up. BitcoinCom-
News, December 2015

21. Reutzel, B.: Bitcoin’s Price Surge is Making Hobby Mining Profitable Again. Coin-
Desk, July 2017

22. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
Bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-319-70278-0_17
https://doi.org/10.1007/978-3-319-67816-0_19
https://doi.org/10.1007/978-3-319-67816-0_19
https://doi.org/10.1007/978-3-662-54970-4_30

18 P. McCorry et al.

23. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

24. Song, J.: Why Miners Are Mining Bitcoin Cash - and Losing Money Doing It.
CoinDesk, August 2017

25. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

26. Tuwiner, J.: Bitcoin Mining in China. Buy Bitcoin Worldwide, March 2017
27. Velner, Y., Teutsch, J., Luu, L.: Smart contracts make Bitcoin mining pools vul-

nerable. IACR Cryptology ePrint Archive, 2017:230 (2017)
28. Voight, F.: Wiki on P2Pool. Bitcoin Wiki, June 2011
29. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper, 151 (2014)
30. Zhuo’er, J.: [Ending the Soft/Hard Fork Debate] – A Safe Hard Fork is the same

as a Soft Fork. Medium, October 2016

https://doi.org/10.1007/978-3-662-47854-7_32
https://doi.org/10.1007/978-3-662-54970-4_29

A Systematic Approach
to Cryptocurrency Fees

Alexander Chepurnoy1,2(B), Vasily Kharin3, and Dmitry Meshkov1,2

1 Ergo Platform, Sestroretsk, Russia
2 IOHK Research, Sestroretsk, Russia

{alex.chepurnoy,dmitry.meshkov}@iohk.io
3 Helmholtz Institute Jena, Froebelstieg 3, 07743 Jena, Germany

v.kharin@protonmail.com

Abstract. This paper is devoted to the study of transaction fees in mas-
sively replicated open blockchain systems. In such systems, like Bitcoin,
a snapshot of current state required for the validation of transactions is
being held in the memory, which eventually becomes a scarce resource.
Uncontrolled state growth can lead to security issues. We propose a mod-
ification of a transaction fee scheme based on how much additional space
will be needed for the objects created as a result of transaction process-
ing and for how long will they live in the state. We also work out the
way to combine fees charged for different resources spent (bandwidth,
random-access state memory, processor cycles) in a composite fee and
demonstrate consistency of the approach by analyzing the statistics from
Ethereum network. We show a possible implementation for state-related
fee in a form of regular payments to miners.

1 Introduction

Bitcoin [16] was introduced in 2008 by Satoshi Nakamoto as a purely peer-to-peer
version of electronic cash with a ledger written into blockchain data structure
securely replicated by each network node. Security of the cryptocurrency relies
on its mining process. If majority of miners are honest, then Bitcoin meets its
security goals as formal analysis [10] shows. For the work done a miner is claiming
a reward which consists of two parts. First, some constant number of bitcoins are
created out of thin air according to a predefined and hard-coded token emission
schedule. Second, a miner claims fees for all the transactions included into the
block.

As shown in [7], constant block rewards are an important part of the Bitcoin
protocol. Once a predetermined number of coins will enter the circulation and
miners will be rewarded by transaction fees only, their rational behavior could
be different from the default mining strategy. It is still an open question whether
Bitcoin will meet its security goals in such circumstances, but at least number
of orphaned blocks will increase making Bitcoin less friendly for regular users.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 19–30, 2019.
https://doi.org/10.1007/978-3-662-58820-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_2&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_2

20 A. Chepurnoy et al.

A transaction fee, which is set by a user during transaction creation, is useful
to limit miners resource usage and prevent spam. In most cases a user pays
a fee proportional to transaction size, limiting miners network utilization. A
rational miner does not include all the valid transactions into blocks as, due to
the increased chances of orphaning a block, the cost of adding transactions to a
block could not be ignored [3,18]. As shown in [18], even in the absence of block
size limit Bitcoin fee market is healthy and the miner’s surplus is maximized at a
finite size of a block. Thus miners are incentivized to produce blocks of a limited
size, so only transactions providing enough value to a miner will be included in
a block. The paper [18] provides a procedure to estimate transaction fee based
on block propagation time.

Besides network utilization, transaction processing requires a miner to spend
some computational resources. In Bitcoin the transactional language [4] is very
limited, and a number of CPU cycles needed to process a transaction is strictly
bounded, and corresponding computational costs are not included in the fee.
In contrast, in cryptocurrencies supporting smart contract languages, such as
Solidity [1] and Michelson [13], transaction processing may require a lot of com-
putations, and corresponding costs are included in the transaction fee. Analysis
of this fee component is done for concrete systems in [8,14], and is out of scope
of this paper.

In this work we address the problem of miners storage resources utilization. A
regular transaction in Bitcoin fully spends outputs from previous transactions,
and also creates new outputs of user-defined values and protecting scripts. A
node checks a transaction in Bitcoin by using a set of unspent outputs (UTXO).
In other cryptocurrencies a representation of a state needed to validate and pro-
cess an arbitrary transaction could be different (for example, in Ethereum [22]
such structure is called the world state and fixed by the protocol). To process
a transaction quickly, the state (or most accessed part of it) should reside in
expensive random-access memory (RAM). Once it becomes too big to fit into
RAM an attacker can perform denial-of-service attacks against cryptocurrency
nodes. For example, during attacks on Ethereum in Autumn, 2016, an attacker
added about 18 million accounts to the state (whose size was less than 1 mil-
lion accounts before the attack) and then performed successful denial-of-service
attacks against the nodes [20]. Similarly, in 2013 a denial-of-service attack against
serialized transactions residing in a secondary storage (HDD or SSD) was dis-
covered in Bitcoin [19].

In all the cryptocurrencies we are aware of, an element of the state once
created lives potentially forever without paying anything for that. This leads to
perpetually increasing state (e.g. the Bitcoin UTXO size [6]). Moreover, state
may grow fast during spam attacks, for example, 15 million outputs were quickly
put into the UTXO set during spam attacks against Bitcoin in July, 2015 [5], and
most of these outputs are not spent yet. The paper [17] is proposing a technical
solution for non-mining nodes where only miners hold the full state (assuming
that they can invest money in random-access memory of sufficiently large capac-
ity), while other nodes are checking proofs of state transformations generated

A Systematic Approach to Cryptocurrency Fees 21

by miners, and a size of a proof (in average and also in a worst case) is about
log(|s|), where |s| is a state size. Nevertheless, big state could lead to central-
ization of mining or SPV mining [2], and these concerns should be addressed.
The question of internalizing the costs of state load was raised in [15], but to the
best of our knowledge there has not been any practical solution proposed yet.
Also, there is an increasing demand to use a blockchain as a data provider, and
permanently storing objects in the state without a cleaning procedure in such a
case is not a viable option.

1.1 Our Contribution

In this paper we propose an economic solution to the problem of unreasonable
state growth (such as spam attacks or objects not being used anymore but still
living in the validation state). It consists in introducing a new mandatory fee
component. A user should pay a fee based on both the additional space needed
to store objects created by a transaction, and the lifetime of the new bytes.
Such an approach is typical for the cloud storage services where users pay for
gigabytes of data per month.

We also consider a method of combining fees for various resources consumed
by a transaction: bandwidth, random-access memory to hold state, and processor
cycles to process computations prescribed by the transaction. The option being
analyzed is to charge only for a resource which is consumed most of all, so
we can talk about storage-oriented, network-oriented or computation-oriented
transactions. The evaluation is conducted for Ethereum usage data, and it shows
that it is both possible and meaningful for this cryptocurrency to determine
transaction type.

A way to charge for state memory consumption (with the output lifetime
taken into account) is proposed as well. Our scheme of “scheduled payments”
is convenient for users not knowing the duration of their outputs’ storage in
advance.

1.2 Structure of the Paper

The paper is organized as follows. The model assumptions and their analysis are
in Sect. 2. An algorithm for a composite fee assignment is in Sect. 3. A possible
approach to charging for state memory consumption is in Sect. 4. The results of
Ethereum data evaluation are in Sect. 5. Section 6 contains the conclusions.

2 Preliminaries

We shape our model with the following assumptions:

– a transaction creates new objects called outputs and spends outputs from
previous transactions. Thus the state needed for transaction validation con-
sists of an unspent outputs. The size of the state then is the sum of sizes of
all the unspent outputs.

22 A. Chepurnoy et al.

– single transaction does not change size of the state significantly
– it is always profitable for a miner to collect fees from unspent outputs.
– we are considering minimal mandatory fees in the paper. All the nodes are

checking that a fee paid by a transaction is not less than a minimum and
rejecting the whole block if it contains a transaction violating fee rules. Thus
a fee regime is considered as a part of consensus protocol in our work. A user
can pay more than the minimum to have a higher priority for a transaction
of interest to be included into a block.

3 An Algorithm for the Fee Assignment

As mentioned in the introduction, we develop a fee regime with two goals in
mind, namely incentivization of miners and spam prevention. In this chapter we
reason about the guiding principles for the fee assignment and end up with an
example of a practically useful fee assignment rule.

The evolution of blockchain networks has demonstrated the main resources
being used. First and the most important so far, the memory of network nodes
is limited resource. Blocks in the blockchain after processing are stored in a
secondary storage, where a cost of a storage unit is low. In contrast, to validate
a transaction, some state is needed (for example, unspent outputs set in Bitcoin is
used to validate a transaction), and this state should reside in expensive random-
access memory.

Second, it is obvious, especially with the development of smart contracts, that
a cost to process a transaction can be more than just a storage cost: transactions
can contain relatively complicated scripts which are meant to be executed by all
the nodes in the network. The most famous example is the Ethereum network
implementing the concept of a “world computer” [22].

Third, there is the network load created by every transaction. If an output
is created in one block and spent right in the next one, it provides almost zero
overhead in terms of validation state size, but creates the network load needed
for synchronization.

A transaction fee should incorporate all the three components stated above.
As shown in [8], assigning the fee to the storage as if it was execution of some
code can lead to significant disbalance for rich enough scripting language (for
example, for the data being written with an opcode other than the conven-
tional storage one). Thus, we propose to charge for a component which demands
more resources. That is, storage-oriented transactions should be charged for state
memory consumption, the computation-oriented transactions should be charged
for script execution, and all the others by the network load. This can be formal-
ized as follows:

Fee(tx) = max

(
α · Nb(tx), β · Nc(tx), S(state) ·

∑
i

(Bi · Li)

)
. (1)

Here α and β are the pricing coefficients, Nb(tx) is transaction size which defines
the network load, Nc(tx) is the estimate of the computational cost of transaction,

A Systematic Approach to Cryptocurrency Fees 23

S(state) is the cost of the storing one byte in the state for the unit of time (a
block), Li is the time for which the output i is being stored in the state, and Bi

is its size in bytes.
Since the time for the data to reside in the state is usually unknown, the third

argument of max() in Eq. (1) cannot be deduced directly at transaction submis-
sion time. For this purpose we introduce a notion of scheduled payments later
in Sect. 4. The third argument in Eq. (1) becomes dominant over time. Starting
from the moment sT since the transaction happened, the fee is increasing at
a constant rate (see Fig. 1a). The possible implementation of this algorithm is
described in Sect. 4.

Fig. 1. Fee differentiation by resource consumption

The remaining questions here are the following. First, what are guiding prin-
ciples for choosing α, β and S(·)? Second, how can one estimate Nc(tx)? For
Turing–complete languages second can only be solved by executing script in
general case. The problem is known as the worst case execution time [21], and
is left beyond the scope of the paper. The first question is answered below.

3.1 Choice of the Relative Values of α, β, S(state)

Assume for now that for every transaction we know for how long its outputs
will be stored in the state. We will overcome this difficulty later. Based on
Eq. (1), one can introduce the space of transactions, which is three–dimensional
in our case — every transaction is defined by three numbers: Nb(tx), Nc(tx),
Ns(state, tx) =

∑
i(Bi · Li). Equation (1) divides this space into three regions:

network–oriented transactions, space–oriented transactions, and computation–
oriented transactions (see Fig. 1b). The splitting is governed by the direction of

24 A. Chepurnoy et al.

vector n which defines the line αNb = βNc = S(state)Ns. Varying the coef-
ficients α and β, one can change the direction of n adjusting the formal fee
prescription to the sensible values.

3.2 Choice of S(state)

The simplest way of assigning the S(state) value is by making it constant. How-
ever, this does not fully solve the problem of limiting the state size. What is
being controlled in this case, that is the rate at which the data is being submit-
ted, but not the state size itself. One could also manually define the maximal
size of the state for the network. This solution, in turn, has its own caveats.
For example, once the state is kept (almost) full by the participants, it can be
(almost) impossible to submit the transaction increasing the state size. The time
till it becomes possible is hardly predictable.

The desired properties of the current state size could be formulated as follows:
it should be predictable, stable, and below some externally given value (an upper
bound on state size, being unique for the whole network).

Another natural question arising is whether the rigid state size restriction
is necessary? It is easy to imagine the situation where the formal possibility
of exceeding the state size upper bound is still present, but hardly ever being
used. For example, if one wants to constrain the state size to 10MB, the possible
solution is to set normal price for submitting data to store if the state size after
submission is below 10MB, but some astronomical price for the luxury of storage
above 10MB. So, formally it will be possible, but in fact, hardly ever used,
with every usage bringing significant profit to the miners. The generalization
of this idea is to form the explicit dependence of price on the state load (it
will referred to as “pricing curve”). A good pricing curve should provide at
least one stable equilibrium of the state size; the minimal dependence on initial
conditions (if possible), and high rewards for miners. The latter could serve
as good optimization parameter. Extreme cases are zero price with huge data
submission and miners get nothing; and infinite price with zero data submission
and miners get nothing. As usual, the maximal outcome is in between. The
pricing policies described above are two particular cases of pricing curve (see
Fig. 2). That is, we assume that the price of data storage in the state S(state)
varies with the current state load x = |s|.

Note that the pricing curve is defined by a small number of parameters and to
be the same for all the network. To impose an upper bound on the state size, one
can choose the pricing curve formally going to infinity at some finite state size.
The rigid boundary can be provided by divergence higher than 1/(xmax−x). One
can also try to estimate the optimal state size for a given differentiable pricing
curve. The data submission rate N(S(x)) is fully defined by the current storage
price S(x). Rewards rate obtained by the miners for stable state size at price S
per unit time is given by y = S · N(S). An example is provided in Fig. 3. First,
it provides a possible method of measuring explicit form of the function N(S) in
the model: one has to set up the price, and observe the static rewards. Second,
one may wonder about the price S∗, optimal for the miners in terms of rewards.

A Systematic Approach to Cryptocurrency Fees 25

Fig. 2. Examples of pricing curves: rigid state size restriction (left) and overflow fees
(right, see text). The value of 10MB is taken arbitrarily.

Fig. 3. Example of the rewards curve.

Obviously, it satisfies N(S∗) + S∗ · N ′(S∗) = 0, where prime is derivative with
respect to price. As usual, the optimal price here does not depend on the pricing
policy, but rather the implicit property of the network. Having the price varying
freely can be considered beneficial both for miners and for network as a whole,
since it allows the first ones to optimize signing strategy, and herewith the state
size is automatically adjusted to the relatively predictable level S−1(S∗).

26 A. Chepurnoy et al.

4 Scheduled Payments

In this section we propose a concrete method to charge for state bytes con-
sumed (or released). There is a couple of possible options for that. A user, for
example, may specify lifetime for a coin during its creation and pay for it in
advance, this is not very convenient for him though. Another option is to charge
when coin is spent, or allow to spend a coin (by anyone, presumably, a miner)
when its value is overweighted by the state fee. As a drawback, if coin is associ-
ated with a big value, it could live for very long time, maybe without a reason.

We propose more convenient method of charging; we name it scheduled pay-
ments. In this scheme a user must set special predefined script for a coin (oth-
erwise a transaction and also a block containing it are invalid), which contains
a user-specific logic (we call it a regular script) and a spending condition which
allows anyone (presumably, a miner) to create a transaction claiming this out-
put, necessarily creating a coin with the same guarding condition and a value
not less than original minus a state fee. These two parts (regular script and a fee
charging condition) are connected by using the ∨ conjecture. We assume that α
and β are fixed. We also assume that subsidized period sT is to be stored along
with the coin by each validating node. Then a guarding script for the coin would
be like:

(regular script)∨
(height > (out.height + sT) ∧ (out.value ≤ Sc · B · sT∨

tx.has output(value = out.value − Sc · B · sT, script = out.script))),
(2)

where height is a height of a block which contains a spending transaction;
out.height is a height when the output was created; out.height and out.script
contain value and spending script of the output, respectively; tx.has output()
checks whether a spending transaction has an output with conditions given as
the predicate arguments, and Sc is the value of S(state) when the coin was
created. As in the Sect. 3, the B constant is the output size.

5 Evaluation

In this section we experimentally study what could be the real-world ratio
between the pricing coefficients α, β, S(state). To extract the realistic values,
and to verify the validity of the described transaction classification, the data
from the Ethereum network is taken. We consider Ethereum a good example,
since all the three fee components are present in this cryptocurrency. The net-
work load parameter Nb(tx) is simply a transaction size; the state load Δ(tx)
can be deduced from the blockchain by extracting SSTORE and CREATE oper-
ations from the transaction tx1. To determine the computational load Nc(tx), we
count Ethereum gas consumed by the transaction processing minus its storage
cost and the so-called base cost, which is proportional to the transaction size.
1 Information on these operations can be found in the Ethereum Yellow Paper [22].

A Systematic Approach to Cryptocurrency Fees 27

Fig. 4. Ethereum transactions classification by resource consumption

The results of processing first 2 · 106 blocks in Ethereum network are pre-
sented in Fig. 4. Each point corresponds to a transaction. One can notice that
parts of the distribution in Fig. 4 extend along the coordinate axis; these are
the transactions which can be unambiguously distinguished by their type of the
resource consumption. Their presence confirms our expectations on the nature of
resource consumption, and serves as a justification of the proposed classification
scheme. The space of transactions is split into three parts by the aforementioned
vector n with the endpoint at the first momentum of the transactions with at
least 2 non-zero components.

Another parameter of interest is a storage object lifetime. Associating it
directly with smart contract data lifetime is weakly relevant to our scheme as the
users are not incentivized to remove data from the state earlier rather than later.
Thus we consider the delay between the data submission and a first request to
be the reliable parameter reflecting the needs of the users. Analysis of Ethereum
blockchain shows that in a lot of cases data stored in the world state is touched
by other transactions in the same block or few blocks after creation. We filter
out such cases as they do not show using blockchain as a storage. Excluding such
short-lived data from our analysis we estimate that average lifetime of a data

28 A. Chepurnoy et al.

object in Ethereum is 23,731 blocks (or about 4 days considering 15 s average
delay between blocks).

This gives the following estimation on the ratio between the pricing coeffi-
cients for the expected state size:

β

α
≈ 7.7 · 10−3bytes/gas,

S

α
≈ 6.7 · 10−4blocks−1,

(3)

where S is the cost of the storage of byte of output in the state for one block,
which does not depend on state size in Ethereum. The estimations are quite
approximate, while changing them does not affect fees for most of transactions
unambiguously attributed by a concrete type of the resource consumption.

6 Concluding Remarks

Blockchain technology relies on miners, that safeguard the integrity of the
blockchain in exchange for a revenue, that usually consist of two parts: block
reward and transaction fees. Transaction fees are useful to limit miners resource
usage and prevent spam.

While in most of cryptocurrencies a transaction fee is addressed as an atomic
concept, in this paper we have shown that it is reasonable to introduce the
components of a fee associated with resources utilized: network, computation or
storage. The analysis of Ethereum blockchain shows that transactions in such a
three-dimensional space are distributed close to one of the axes, allowing us to
unambiguously classify transactions by consumed resource.

Storage part of the fee has already been discussed in literature as a necessary
tool to limit miners storage consumption [15,17]. This fee component is required
to make the state size more predictable, but its implementation is challenging
since the output lifetime is not known at the time when the transaction is created.
In current paper we have described the concrete method to charge for state bytes
consumed that can be fully implemented on the script level.

Besides limiting the size of the state, storage fee provides valuable side effects.
In particular, it provides a way to return coins with lost keys into circulation.
Although necessity of coin recirculation is still an open question, it has been
widely discussed in literature (e.g. [11,12]) in connection with the prevention of
the deflation, which may eventually occur in cryptocurrencies with fixed supply.
Enforced coin recirculation has been implemented in some cryptocurrencies [9].

Another important side effect of the storage fee is that it provides additional
rewards for miners. Even when all coins are emitted and fixed block reward
goes to zero, storage fee will provide stable rewards for miners, which do not
depend on user transactions included into block. This will make destructive
mining strategies described in [7] less profitable.

A Systematic Approach to Cryptocurrency Fees 29

With these factors taken into account, the ready-to-implement system is
provided, which is believed to solve the problem of uncontrollable state growth.
It bears some valuable side effects by the same means, while preserving currently
existing methods for transaction fees and code execution costs.

References

1. Solidity language. https://solidity.readthedocs.io
2. SPV mining. https://bitcoin.org/en/alert/2015-07-04-spv-mining
3. Andresen, G.: Back-of-the-envelope calculations for marginal cost of transactions

(2013). https://gist.github.com/gavinandresen/5044482
4. Bitcoin Wiki: Bitcoin script. https://en.bitcoin.it/wiki/Script
5. Bitcoin Wiki: July 2015 flood attack. https://en.bitcoin.it/wiki/July 2015 flood

attack
6. Blockchain.info: Number of unspent transaction outputs. https://blockchain.info/

charts/utxo-count?timespan=all
7. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability

of Bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

8. Earls, J.: The Economics of Gas Models. Conference talk. In: CESC 2017 –
Crypto Economics Security Conference, Berkeley, USA (2017). http://earlz.net/
view/2017/10/02/1550/economics-of-fees-and-gas

9. Friedenbach, M.: Freicoin. http://freico.in
10. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis

and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

11. Gjermundrød, H., Chalkias, K., Dionysiou, I.: Going beyond the coinbase transac-
tion fee: alternative reward schemes for miners in blockchain systems. In: Proceed-
ings of the 20th Pan-Hellenic Conference on Informatics, p. 35. ACM (2016)

12. Gjermundrød, H., Dionysiou, I.: Recirculating Lost coins in cryptocurrency sys-
tems. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 183, pp.
229–240. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11460-6 20

13. Goodmani, L.: Michelson: the language of smart contracts in tezos. https://www.
tezos.com/static/papers/language.pdf

14. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 706–719. ACM (2015)

15. Möser, M., Böhme, R.: Trends, tips, tolls: a longitudinal study of bitcoin transac-
tion fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015.
LNCS, vol. 8976, pp. 19–33. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48051-9 2

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
17. Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving authenticated

dynamic dictionaries, with applications to cryptocurrencies. In: International Con-
ference on Financial Cryptography and Data Security (2017)

18. Rizun, P.R.: A transaction fee market exists without a block size limit (2015)

https://solidity.readthedocs.io
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://gist.github.com/gavinandresen/5044482
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://blockchain.info/charts/utxo-count?timespan=all
https://blockchain.info/charts/utxo-count?timespan=all
http://earlz.net/view/2017/10/02/1550/economics-of-fees-and-gas
http://earlz.net/view/2017/10/02/1550/economics-of-fees-and-gas
http://freico.in
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-11460-6_20
https://www.tezos.com/static/papers/language.pdf
https://www.tezos.com/static/papers/language.pdf
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2

30 A. Chepurnoy et al.

19. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the Bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44774-1 5

20. Wilcke, J.: The Ethereum network is currently undergoing a DoS attack.
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-
dos-attack/

21. Wilhelm, R., et al.: The worst-case execution-time problem—overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008).
https://doi.org/10.1145/1347375.1347389

22. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014). https://ethereum.github.io/yellowpaper/
paper.pdf

https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://doi.org/10.1145/1347375.1347389
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

A Wild Velvet Fork Appears! Inclusive
Blockchain Protocol Changes in Practice

(Short Paper)

A. Zamyatin1,2(B), N. Stifter2, A. Judmayer2, P. Schindler2, E. Weippl2,
and W. J. Knottenbelt1

1 Imperial College London, London, UK
{a.zamyatin,w.knottenbelt}@imperial.ac.uk

2 SBA Research, Vienna, Austria
{nstifter,ajudmayer,pschindler,eweippl}@sba-research.org

Abstract. The loosely defined terms hard fork and soft fork have estab-
lished themselves as descriptors of different classes of upgrade mecha-
nisms for the underlying consensus rules of (proof-of-work) blockchains.
Recently, a novel approach termed velvet fork, which expands upon the
concept of a soft fork, was outlined in [22]. Specifically, velvet forks intend
to avoid the possibility of disagreement by a change of rules through ren-
dering modifications to the protocol backward compatible and inclusive
to legacy blocks. We present an overview and definitions of these different
upgrade mechanisms and outline their relationships. Hereby, we expose
examples where velvet forks or similar constructions are already actively
employed in Bitcoin and other cryptocurrencies. Furthermore, we expand
upon the concept of velvet forks by proposing possible applications and
discuss potentially arising security implications.

1 Introduction

Nakamoto consensus, the underlying agreement protocol of permissionless
blockchains, enables eventual consensus on the state updates to a distributed
ledger if certain majority assumptions on the hashrate of honest mining par-
ticipants are upheld [16,27]. A substantial amount of research has focused on
correctly assessing the provided security guarantees, such as the ability for an
adversary to succeed in double spending transactions [5,21,31]. Despite these
remarkable efforts, there still remain open questions and gaps in our under-
standing of this agreement mechanism. One such topic is approaches for securely
changing consensus rules of permissionless blockchain protocols [35], such as Bit-
coin and Ethereum, which is currently topic of ongoing debate. Reaching agree-
ment on a common set of protocol rules in a decentralized manner could prove
to be a problem as difficult as the double-spending problem Bitcoin originally
set out to solve.

A. Zamyatin and N. Stifter—Contributed equally to this work.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 31–42, 2019.
https://doi.org/10.1007/978-3-662-58820-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_3&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_3

32 A. Zamyatin et al.

In this paper we first provide a brief background on core concepts related to
this topic after which we discuss and define current protocol upgrade mechanisms
considered in permissionless blockchain systems, such as hard forks and soft
forks. In particular, we focus on the recently proposed concept of velvet forks by
Kiayias et al. [22], which seeks to render protocol upgrades via soft forks more
inclusive. We then provide real-world examples where velvet forks or similar
concepts are, or have already been, employed. Furthermore, possible negative
impacts of such an approach are outlined. In particular with regards to the
underlying (game-theoretic) incentive model, such changes may lead to negative
side effects in permissionless blockchains. Finally, we suggest the applicability of
velvet forks to a number of existing protocol improvement proposals and outline
interesting directions for future work.

2 Background

The fundamental mechanism by which Bitcoin and similar permissionless
blockchain-based systems reach agreement depends, among other, upon consen-
sus participants extending a proof-of-work weighted hash chain, i.e., a blockchain.
Specifically, it is assumed that a sufficient honest majority of these participants,
so called miners, will only build upon the branch with the most cumulative
proof-of-work, where each element, e.g., block, adheres to some pre-agreed set
of protocol rules P under which it is considered valid. The non-deterministic
nature of the hash-based proof-of-work employed in such systems, as well as the
relatively weak synchrony assumptions of the underlying peer-to-peer network,
can lead to situations, where multiple branches are created and extended in par-
allel. However, the probability of such a blockchain fork prevailing for prolonged
periods decreases exponentially in its length, if a sufficient majority of miners
adhere to protocol rules P and, in particular, only extend the heaviest chain
(known to them) [16,26]. We use b ∈ V to denote a block b is contained in the
validity set V defined by P, i.e., in the set of all blocks considered valid under
the protocol rules P.

This brings us to the question how a change P → P ′ to the underlying pro-
tocol rules may affect this consensus mechanism. Disagreement on the validity
of a block b under different rules, i.e., b ∈ V but b /∈ V ′, can lead to a permanent
fork in the blockchain, where a subset of participants will always reject branches
building on a, to them invalid, block, regardless of the cumulative proof-of-work
these branches accumulate. The requirement for agreement on the block valid-
ity also extends to participants not actively involved in the consensus process
by mining, such as fully validating and simple payment verification (SPV) [26]
nodes. The former generally adhere to the same full set of rules P as miners,
while the latter only consider a subset Pspv ⊂ P. For simplification we shall refer
to such non-mining participants as clients.

Inclusive Blockchain Protocol Changes in Practice 33

3 Mechanisms for Consensus Rule Changes

The term hard fork has established itself [8,18] as a descriptor for protocol
changes which can incur a permanent split of the blockchain, as they permit or
even enforce the creation of blocks considered invalid under previous protocol
rules. As an alternative, soft forks intend to retain some level of compatibility to
older protocol versions, specifically towards clients adhering to previous protocol
rules. The concepts of both hard- and soft forks are described in the Bitcoin
developer guide [13], as well as the Bitcoin-Wiki [6]. In scientific literature, some
of the principal differences between these two types of consensus rule upgrades
have been covered in [8,12,18]. McCorry et al. furthermore provide a history
of forking events in both Bitcoin and Ethereum as part of their work on how
parties can bindingly perform atomic cross-chain trades in case of a permanent
blockchain fork [25]. A closer description of different protocol forking mechanisms
and their relation to each other was also presented in a blog post by Buterin
in [9].

Differentiating Between Hard and Soft Forks. If we consider the possibil-
ity of a permanent blockchain split as the defining characteristic of hard forks,
most protocol changes would fall into this category. For example reducing the
validity set of rules in a protocol update, which is generally considered to be a
soft fork, can lead to a permanent split in case the majority of consensus partic-
ipants is not upgraded. Conversely, if an expanding protocol change, i.e. a hard
fork, does not reach a majority among consensus participants, no permanent
fork is actually incurred as upgraded clients will continue to follow the chain
with the most cumulative proof-of-work.

This dichotomy helps outline the difficulties in presenting a clear distinction
between hard and soft forks.

To provide a finer distinction between possible impacts of protocol upgrades
and their potential for permanent blockchain forks we present the following
classes of protocol changes:

– Expanding. The new protocol rules P ′ increase the set of blocks V ′ con-
sidered valid with respect to the previous protocol rules P, i.e., V ′ ⊃ V .
Expanding protocol changes can cause a permanent split in the blockchain
if the consensus participants adhering to P ′ form a majority. However, if a
majority retains protocol rules P no permanent fork occurs as clients adher-
ing to P ′ also consider any block under protocol rules P as valid. Exam-
ples include blocksize increase and defining previously unused values as new
opcodes.

– Reducing. The new protocol rules P ′ reduce the set of blocks considered
valid with respect to the previous protocol rules. Specifically, the new set of
valid blocks V ′ is a proper subset of the valid blocks of the previous protocol,
i.e., V ′ ⊂ V . Reducing protocol changes represent a soft fork as long as the
majority of consensus participants adheres to the new rules P ′. If, however,
P retains a majority, a permanent fork is incurred as updated clients and

34 A. Zamyatin et al.

miners will consider some blocks valid under old protocol rules P as invalid.
Examples could be: blocksize decrease, introduction of SegWit (BIP 141 [24])
and removal of an opcode.

– Conflicting (Bilateral). We refer to updates introducing mutual incom-
patibilities as conflicting or bilateral protocol changes. Here, the goal is to
intentionally cause a permanent fork of the blockchain and prevent potential
interactions between the resulting chains, such as the chain ID introduced in
Ethereum for replay protection.

– Conditionally Reducing (Velvet). Velvet protocol changes are a special
form of update where the new set of reducing protocol rules P ′ is conditionally
applied only when the considered elements, such as blocks or transactions, are
valid under the new rules. Otherwise, the new rules are ignored and previous
protocol rules P are relied upon to determine validity. Since the new rules in
P ′ are reducing, velvet protocol changes in fact never incur a (permanent)
protocol fork as any element considered valid under P ′ is also considered
valid under P, therefore V ′ = V . Examples, such as P2Pool [3] and overlay
protocols, are discussed in Sect. 4.

Table 1. Overview of classes of protocol updates P → P ′. V and V ′ denote the validity
sets of old (P) and new (P ′) protocol rules, respectively. N denotes the validity set
changes introduced by the protocol update.

Type Validity set Incurred fork Examples

New Relation to

old

Soft Permanent/Hard

Expanding V′ = V ∪N ,

∃n ∈ N :

n /∈ V

V′ ⊃ V Never V′ is majority Blocksize increase,

new opcode

Reducing V′ = V \ N ,

N ⊂ V
V′ ⊂ V V′ is

majority

V is majority Blocksize decrease,

opcode removal,

SegWit

Conflicting

(Bilateral)

V′ =

(V ∪ N) \
(V ∩ N) =

V
 N

(V′ �⊆ V),

(V �⊆ V′),
V ′ ∩ V �= ∅

Never Always Opcode redefinition,

chain ID for replay

protection

Conditionally

reducing

(Velvet)

V′ = V V′ = V Never Never P2Pool, merged

mining, colored

coins

Adhering to convention and previous definitions, i.e., [8,9,12], both expand-
ing and bilateral protocol changes are generally considered to be hard forks
while reducing protocol changes are referred to as soft forks. In this context
the so called velvet fork considered in this work would also fall into the latter
category of soft forks (Table 1).

Inclusive Blockchain Protocol Changes in Practice 35

Velvet Forks. The velvet fork, as described in [22], does not require support of
a majority of participants and can potentially avoid rule disagreement forks from
happening altogether. In a velvet fork, the new protocol rules P ′ are not enforced
by upgraded consensus participants and any valid block adhering to the new rules
is also a valid block in terms of the old rules. Effectively, velvet forks leverage
on the consensus mechanism of protocol P to bootstrap their own consensus
rules P ′ which, as part of their rules, produce forward-compatible blocks to P.
In principle, protocol updates introduced as velvet forks are always successful,
as legacy nodes remain unaware of the changes. However, some protocol updates
may not be applicable as a velvet fork, in particular if they require non-upgraded
participants to also adhere to the new rules, or the new rules must hold over the
span of multiple, possibly arbitrarily many, mined blocks1.

Other Protocol Update Mechanisms

User Activated Forks. The concept of user activated soft forks (UASF) was
recently proposed as a mechanism, whereby non-mining participants of the sys-
tem attempt to take influence on the consensus and protocol upgrade pro-
cess [4,9]. We note that user activated forks generally apply to all types of
protocol update mechanisms. Specifically, user activated forks aim to incentivize
mining participants to perform a consensus protocol upgrade P → P ′: users and
economic actors of the system present pledges stating they will strictly enforce
the new consensus rules P ′ at a certain activation date by their client software,
regardless of the amount of support of active consensus participants, i.e. miners.

Emergent Consensus. Emergent consensus (EC) is a concept that was proposed
as an improvement proposal in the Bitcoin Unlimited client (BUIP001 [34]).
Its goal is specifically geared towards reaching dynamic agreement upon the
permissible size of Bitcoin blocks, which is currently part of the consensus rules of
the Bitcoin protocol. However, the mechanism in principle could also be applied
to other protocol rules. EC assumes that a consensus participant will nevertheless
accept a, to them invalid, block if sufficient other proof-of-work blocks build upon
it. In theory, forks caused by disagreement on the protocol rules could hereby
be resolved. However, the resulting impact on security properties is still subject
of ongoing discussion and in particular Zhang et al. were able to show models
of EC are not incentive compatible, even if all miners fully comply with the
protocol [36].

4 Observation of Velvet Forks in Practice

In this section we identify blockchain protocol extensions closely related to velvet
forks, which either already have been deployed or whose design follows the same
approach.
1 For example, repurposing anyone-can-spend outputs as is the case with SegWit (BIP

141).

36 A. Zamyatin et al.

P2Pool. P2Pool [3] is a protocol for implementing decentralized mining pools
presented in 2011. In contrast to conventional mining pools, attestation of each
miner’s contribution to solving the next block’s PoW puzzle and the distribu-
tion of rewards are accomplished without a trusted operator. P2Pool uses an
additional, length-bounded blockchain, the sharechain, consisting of otherwise
valid blocks which fail to meet the mining difficulty target d but exceed a min-
imal target dshare, agreed upon and determined by the protocol2, sometimes
referred to as near or weak blocks. These blocks are used to attest each miner’s
contribution, while the reward distribution is in turn achieved by introducing
the following rule: “Each time a miner finds a block exceeding the target d, she
can claim 0.5% of the block reward, while the rest must be distributed among all
participating miners according to their portion of the last N sharechain blocks”.

While this additional axiom is an extension to the mined blockchain’s rule
set, it generates fully backward compatible blocks, and hence remains oblivious
to all but P2Pool miners. As a result, any valid block generated by P2Pool
miners will be accepted by non-P2Pool miners. In turn, P2Pool miners accept
any valid blocks produced by non-P2Pool miners, i.e., even blocks that do not
adhere to the above mentioned rule. Since the set of accepted blocks by both
parties is exactly the same, P2Pool can be considered a velvet fork.

Sub-chains with Weak Blocks. The concept of sub-chains was initially
proposed by TierNolan (pseudonymous) in 2013 [28] and has been extended,
for instance, by Rizun [29]. It builds upon the idea of exchanging weak blocks
between miners to form sub-chains between consecutive full blocks, by referenc-
ing the previous’ weak blocks header in an additional pointer.

The required subchain pointer can be readily included in a miner-definable
data field, such as the coinbase transaction in the case of Bitcoin. Miners that
have adopted sub-chain rules will also accept blocks containing invalid, or no
pointer data to sub-blocks. As a result, the set of accepted blocks remains iden-
tical for both miners using sub-chains and as those following legacy rules, ren-
dering this proposed protocol extension a form of velvet fork.

Merged Mining. Merged mining refers to the process of reusing (partial) PoW
solutions from a parent blockchain as valid proofs-of-work for one or more child
block-chains [20]. It was first introduced in Namecoin [7] both as a bootstrap-
ping technique and to mitigate the fragmentation of computational power among
competing cryptocurrencies sharing the same PoW. While a child cryptocur-
rency may require a hard fork to implement merged mining, parent blockchains
only need to allow for miners to include additional arbitrary data in its blocks.
This arbitrary field is then used to link to blocks to the merge mined child
cryptocurrency.

Merged mining can be considered closely related to velvet forks, as new con-
sensus rules, namely those of the merge mined children, are incorporated in the
parent blockchain in a fully backward compatible way. If either invalid or no
2 The target dshare is adjusted such that the sharechain maintains an average block

interval of 30 s.

Inclusive Blockchain Protocol Changes in Practice 37

links to child blocks are included in a block, the data will be ignored by partici-
pants of merged mining and the block is nevertheless accepted. Merged mining
and P2Pool make use of the same principle mechanisms, with the marked dif-
ference being that in merged mining additional rewards are received in the child
cryptocurrency, whereas P2Pool sharechain blocks represent claims to portions
of the next valid block’s reward on the main chain.

Overlay Protocols and Colored Coins. Another concept closely related to
the idea of velvet forks is that of overlay protocols and colored coins, inter alia
described in [30]. The term colored coin refer to cryptocurrency transactions
where the outputs are additionally “colored” to represent some assets or tokens,
allowing to use such outputs in transactions to transfer their ownership. We
consider colored coins to be part of the class of overlay protocols and herein
focus on the latter, more general concept.

Overlay protocols leverage on an underlying property of Bitcoin and similar
block-chain systems, namely providing eventual consensus on the ordering of
transactions. This primitive, termed total order broadcast or atomic broadcast
has been shown to be equivalent to consensus [11] and can, for instance, be used
to readily implement state machine replication. As such, encoding messages in
regular valid transactions allows overlay protocols to utilize Bitcoin or similar
systems as if they were a (eventual) total order broadcast protocol. While this
approach may provide overlay protocols with a mechanism for reaching agree-
ment on the ordering of messages, it does not extend any guarantees towards
their correctness. In particular, miners may remain completely oblivious to the
consensus rules O of the overlay protocol and only adhere to the underlying
base protocol P. Hence, transactions encoding invalid messages of the overlay
protocol O, which have to be ignored by the participants of the overlay system,
may be included in blocks [8]. However, if participants in the overlay system
agree to both the same set of rules O and the (eventual) ordering of both valid
and invalid messages, then ignoring messages considered invalid under O by all
(honest) participants leads to the same (eventually) consistent system state.

Overlay protocols are comparable to velvet forks in that they impose no
restrictions and apply new protocol rules O only if the input is considered valid3.
The primary difference is that velvet forks additionally assume an active par-
ticipation in the underlying consensus protocol of P, whereas overlay protocols
only take on the role of clients. Practical examples of overlay protocols are Omni-
Layer (previously Mastercoin) [2] and Counterparty [1].

5 Considering Security Implications

As outlined in Sect. 4, velvet forks can be utilized to introduce consensus rule
changes in a backward compatible way. However, non-upgraded miners may
be unaware of these changes and the potential alterations to the incentives of
3 We point out that the agreement problem on the overlay protocol rules themselves

is hereby of course not solved, and an upgrade O → O′ may cause a logical fork with
similar problems to those of the underlying consensus protocol, discussed previously.

38 A. Zamyatin et al.

upgraded velvet miners that they entail. As such, blocks produced in accordance
with the old rules P may no longer have the same (economic) utility for velvet
miners, as blocks generated under P ′, i.e., velvet miners may be biased towards
accepting upgraded over legacy blocks. This in turn can have an unclear impact
on the security assumptions of such systems, as current attack models mostly do
not assume a variable utility of blocks. The following examples outline commonly
described attack strategies and how they may relate to velvet forks.

Double Spending. The double spending problem was one of the first stud-
ied threats in Bitcoin [5,21,31]. As miners are required to invest significant
amounts of computational power into solving the proof-of-work puzzles, attacks
on transactions with sufficient number of confirmations are generally considered
economically infeasible. However, long waiting times are often impracticable,
while a trade-off between security and usability may be inevitable and must
be considered carefully [33]. The necessary thresholds for transaction security
assumptions can be shifted in blockchains experiencing a velvet fork, as some
blocks may be attributed a higher utility than others by a subset of miners in
the system, and must be re-evaluated.

Selfish Mining. Selfish mining [15,32] is known to allow adversaries to increase
their expected revenue by deviating from the correct protocol rules. Thereby,
selfish miners intentionally withhold blocks and attempt to create a longer secret
chain. Determined by the respective strategy, the selfish miner will only publish
a select number of blocks from her secret chain, overriding progress in the public
chain and forcing honest miners into reorganization. The success rate of the
attack is, among other, dependent on the network connectivity of the adversary
and the acceptance probability of the blocks in the attacking parallel chain.

However, a velvet fork may significantly impact the success rate of an attacker
if some blocks attain a higher probability of acceptance than others, based on
the protocol rules they adhere to. In the latter case, an attacker potentially has a
higher chance of overriding the public chain, as upgraded miners may prefer her
blocks over those of honest (legacy) miners. It is conceivable that the disparity
in rewards may even incentivize miners to behave against protocol rules and
discard more than one block, i.e., intentionally disregard the heaviest chain rule.
Carlsten et al. have shown that selfish mining performs better in Bitcoin under
a block reward free model, i.e., when blocks have different economic value and
adversaries can utilize this information to better time their attacks [10], and
these insights may similarly apply to velvet forks.

Insidious Soft Forks. A velvet fork could potentially be abused to enforce a
regular soft fork in a hostile manner. Assume a new protocol update P → P ′,
favored by some portion of the community, does not reach a majority among
miners. Hence, it could be deployed as a velvet fork at first. However, if it at
some point gains sufficient, i.e,>50% adoption, miners adhering to these rules

Inclusive Blockchain Protocol Changes in Practice 39

could start to enforce them on the remaining unupgraded participants, i.e., by
unilaterally declaring old blocks as invalid and triggering a soft fork. As the
velvet miners had sufficient time to accumulate a wider range of support, the
fork now has better chances of success due to economic asymmetry, i.e., the
unupgraded may conform out of economic interest.

6 Applicability to Existing Proposals

We now move on to provide a non-exhaustive list of consensus extension pro-
posals which could potentially be implemented as velvet forks.

Bitcoin-NG. In [14] Eyal et al. present Bitcoin-NG, which aims at improving
latency and bandwidth consumption compared to Bitcoin, while maintaining
similar security properties. Bitcoin-NG distinguishes between normally mined
key blocks and so called microblocks, which are generated at a significantly lower
interval by a leader, i.e., the miner of the previous key block. Fees earned from
transactions included in microblocks are split in a 40:60 ratio between miners of
consecutive key blocks. To disincentivize double spending by malicious leaders,
honest leaders can submit proof of fraud transactions to the blockchain if they
detect attacks, invalidating the funds paid to the adversary.

Velvet Fork Applicability. Bitcoin-NG adds three rules to the Bitcoin consensus
layer, two of which are compatible as a velvet fork. Similar to sub-chains, unup-
graded miners would remain agnostic to microblocks, if microblock transactions
are included in the subsequent key block4. By adding a pointer to the previous
Bitcoin-NG key block5, the new reward scheme can be implemented, despite the
presence of legacy blocks. However, the invalidation of funds paid to a malicious
leader by a proof of fraud transaction must also be accepted by unupgraded
miners, which remains an open problem.

Aspen. Aspen [17] is an extension to the Bitcoin-NG concept that allows con-
sensus participants to fully validate the correct functionality of blockchain ser-
vices in a trustless manner, while only keeping track of a, to them, relevant
subset of blocks. Service specific data is stored in chains of key and microblocks,
thereby, there can exist multiple independent layers of microblock chains used
by different services.

Velvet Fork Applicability. Apart from the rules required to implement Bitcoin-
NG, the Aspen protocol requires the annotation of outputs with so called ser-
vice numbers, which determine on which microblock chains the referenced funds
can be spent. In Bitcoin, this could be achievable for instance through using the
OP RETURN script opcode. We note that Aspen in its current form could possibly
also be implemented using the previously described concept of sub-chains, thereby
evading potentially incompatible requirements introduced by Bitcoin-NG.
4 And do not exceed Bitcoin’s block size limitations.
5 In the data used as input to the proof-of-work of the block.

40 A. Zamyatin et al.

Extension Blocks. The Extension block proposal was introduced by Lau [23]
and further expanded upon by Jeffrey et al. [19]. It aims at increasing the transac-
tion throughput by introducing an additional layer of (potentially larger) blocks
atop the Bitcoin blockchain. While each extension blocks are linked to Bitcoin
blocks via the coinbase transaction in a 1-to-1 mapping, they maintain their own
independent set of transactions, creating a parallel accounting system.

Velvet Fork Applicability. To allow users to transfer funds between normal and
extension blocks, the proposal re-purposes the OP TRUE opcode, which in turn
would render such funds spendable by anyone in the eyes of legacy miners. While
the presented approach necessitates a soft fork, alternative constructions possibly
allowing for a velvet fork deployment (e.g., multisig locks) may be conceivable.

7 Future Work and Conclusion

Herein, we outlined and extended upon the previously described concept of velvet
forks and contextualize it to other blockchain consensus rule change mechanisms
such as hard- and soft forks. Furthermore we show that variants of this new
upgrade mechanism have already been employed in real-world scenarios. Velvet
forks present a possible new upgrade path to blockchain consensus rules that
could help avoid long-lasting scaling debates and discord in the community.
New protocol extensions could be actively deployed without necessitating at
least majority agreement by all consensus participants. On the other hand, velvet
forks could introduce new possible attacks and threats and fundamentally impact
the game-theoretic incentives of the underlying blockchain. In any case, this
interesting new concept deserves further research attention.

Acknowledgments. This research was funded by Blockchain (GB) Ltd., FFG-
Austrian Research Promotion Agency Bridge Early Stage 846573 A2Bit, Bridge 1
858561 SESC, and COMET K1.

References

1. Counterparty. https://counterparty.io/. Accessed 11 Apr 2017
2. Omni layer. http://www.omnilayer.org/. Accessed 11 Apr 2017
3. P2Pool. http://p2pool.org/. Accessed 10 May 2017
4. UASF. https://github.com/OPUASF/UASF. Accessed 11 Apr 2017
5. Androulaki, E., Capkun, S., Karame, G.O.: Two bitcoins at the price of one?

Double-spending attacks on fast payments in bitcoin. In: CCS (2012)
6. Bitcoin Community: Bitcoin wiki. https://bitcoin.it/. Accessed 30 June 2015
7. Bitcoin Wiki: Merged mining specification. https://en.bitcoin.it/wiki/Merged

mining specification. Accessed 10 May 2017
8. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:

research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (2015)

https://counterparty.io/
http://www.omnilayer.org/
http://p2pool.org/
https://github.com/OPUASF/UASF
https://bitcoin.it/
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification

Inclusive Blockchain Protocol Changes in Practice 41

9. Buterin, V.: Hard forks, soft forks, defaults and coercion (2017). http://vitalik.ca/
general/2017/03/14/forks and markets.html. Accessed 11 Apr 2017

10. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

11. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM (JACM) 43, 225–267 (1996)

12. Duong, T., Chepurnoy, A., Fan, L., Zhou, H.-S.: TwinsCoin: a cryptocurrency via
proof-of-work and proof-of-stake. In: Proceedings of the 2Nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts, BCC 2018, Incheon, Republic of
Korea, pp. 1–13. ACM, New York (2018). ISBN 978-1-4503-5758-6. https://doi.
org/10.1145/3205230.3205233

13. Bitcoin Community: Bitcoin developer guide-transaction data. https://bitcoin.org/
en/developer-guide#transaction-data. Accessed 11 Apr 2017

14. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: 13th USENIX Security Symposium on Networked Sys-
tems Design and Implementation (NSDI 2016). USENIX Association, March 2016

15. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

16. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

17. Gencer, A.E., van Renesse, R., Sirer, E.G.: Short paper: service-oriented sharding
for blockchains. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 393–401.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 22

18. Giechaskiel, I., Cremers, C., Rasmussen, K.B.: On bitcoin security in the presence
of broken cryptographic primitives. In: Askoxylakis, I., Ioannidis, S., Katsikas, S.,
Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 201–222. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45741-3 11

19. Jeffrey, C., Poon, J., Indutny, F., Pair, S.: Extension blocks (draft) (2017). https://
github.com/tothemoon-org/extension-blocks/blob/master/spec.md. Accessed 11
Apr 2017

20. Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged min-
ing: curse or cure? In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H.,
Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp.
316–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 18

21. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. (TISSEC) 18, 2 (2015)

22. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. Cryp-
tology ePrint Archive, Report 2017/963 (2017). https://eprint.iacr.org/2017/963.
pdf. Accessed 03 Oct 2017

23. Lau, J.: [bitcoin-dev] Extension block softfork proposal (2017). https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2017-January/013490.html. Accessed
11 Apr 2017

24. Lombrozo, E., Lau, J., Wuille, P.: BIP141: segregated witness (consensus
layer) (2012). https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.
Accessed 10 May 2017

http://vitalik.ca/general/2017/03/14/forks_and_markets.html
http://vitalik.ca/general/2017/03/14/forks_and_markets.html
https://doi.org/10.1145/3205230.3205233
https://doi.org/10.1145/3205230.3205233
https://bitcoin.org/en/developer-guide#transaction-data
https://bitcoin.org/en/developer-guide#transaction-data
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-70972-7_22
https://doi.org/10.1007/978-3-319-45741-3_11
https://github.com/tothemoon-org/extension-blocks/blob/master/spec.md
https://github.com/tothemoon-org/extension-blocks/blob/master/spec.md
https://doi.org/10.1007/978-3-319-67816-0_18
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2017/963.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-January/013490.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-January/013490.html
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

42 A. Zamyatin et al.

25. McCorry, P., Heilman, E., Miller, A.: Atomically trading with Roger: gambling
on the success of a hardfork. In: Garcia-Alfaro, J., Navarro-Arribas, G., Harten-
stein, H., Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol.
10436, pp. 334–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67816-0 19

26. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 01 July 2015

27. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

28. Pseudonymous (“TierNolan”): Decoupling transactions and POW (2013). https://
bitcointalk.org/index.php?topic=179598.0. Accessed 10 May 2017

29. Rizun, P.R.: Subchains: a technique to scale bitcoin and improve the user experi-
ence. Ledger 1, 38–52 (2016)

30. Rosenfeld, M.: Overview of colored coins (2012). https://bitcoil.co.il/BitcoinX.pdf.
Accessed 09 Mar 2016

31. Rosenfeld, M.: Analysis of hashrate-based double spending (2014). http://arxiv.
org/abs/1402.2009. Accessed 09 Mar 2016

32. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

33. Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited (2016). http://arxiv.
org/pdf/1605.09193. Accessed 04 July 2016

34. Stone, A.: Bip152: compact block relay (2015). https://github.com/
BitcoinUnlimited/BUIP/blob/master/001.mediawiki. Accessed 01 Dec 2018

35. Swanson, T.: Consensus-as-a-service: a brief report on the emergence of per-
missioned, distributed ledger systems (2015). http://www.ofnumbers.com/wp-
content/uploads/2015/04/Permissioned-distributed-ledgers.pdf. Accessed 03 Oct
2017

36. Zhang, R., Preneel, B.: On the necessity of a prescribed block validity consen-
sus: analyzing bitcoin unlimited mining protocol. In: International Conference on
Emerging Networking EXperiments and Technologies-CoNEXT 2017. ACM (2017)

https://doi.org/10.1007/978-3-319-67816-0_19
https://doi.org/10.1007/978-3-319-67816-0_19
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://bitcointalk.org/index.php?topic=179598.0
https://bitcointalk.org/index.php?topic=179598.0
https://bitcoil.co.il/BitcoinX.pdf
http://arxiv.org/abs/1402.2009
http://arxiv.org/abs/1402.2009
https://doi.org/10.1007/978-3-662-54970-4_30
http://arxiv.org/pdf/1605.09193
http://arxiv.org/pdf/1605.09193
https://github.com/BitcoinUnlimited/BUIP/blob/master/001.mediawiki
https://github.com/BitcoinUnlimited/BUIP/blob/master/001.mediawiki
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf

Confidential Assets

Andrew Poelstra(B), Adam Back, Mark Friedenbach, Gregory Maxwell,
and Pieter Wuille

Blockstream, Mountain View, CA, USA
{apoelstra,adam,mark,gmaxwell,pwuille}@blockstream.com

Abstract. Bitcoin is an online distributed ledger in which coins are dis-
tributed according to the unspent transaction output (UTXO) set, and
transactions describe changes to this set. Every UTXO has associated
to it an amount and signature verification key, representing the quantity
that can be spent and the entity authorized to do so, respectively.

Because the ledger is distributed and publicly verifiable, every UTXO
(and the history of all changes) is publicly available and may be used for
analysis of all users’ payment history. Although this history is not directly
linked to users in any way, it exposes enough structure that even small
amounts of personally identifiable information may completely break
users’ privacy. Further, the ability to trace coin history creates a market
for “clean” coins, harming the fungibility of the underlying asset.

In this paper we describe a scheme, confidential transactions, which
blinds the amounts of all UTXOs, while preserving public verifiability
that no transaction creates or destroys coins. This removes a significant
amount of information from the transaction graph, improving privacy and
fungibility without a trusted setup or exotic cryptographic assumptions.

We further extend this to confidential assets, a scheme in which a sin-
gle blockchain-based ledger may track multiple asset types. We extend
confidential transactions to blind not only output amounts, but also their
asset type, improving the privacy and fungibility of all assets.

1 Introduction

Deployed in 2009, Bitcoin [16] is an online currency with no trusted issuer or
transaction processor, which works by means of a publicly verifiable distributed
ledger called a blockchain. The blockchain contains every transaction since its
inception, resulting in a final state, the unspent transaction output set (UTXO
set), which describes the amounts and owners of all coins.

Each UTXO contains an amount and a verification key; transactions destroy
UTXOs and create new ones of equal or lesser total amount, and must be signed
with the keys associated to each destroyed UTXO. This model allows all users
to verify transaction correctness without trusting any payment processor to be
honest or reliable. However, this model has a serious cost to user privacy, since
every transaction is preserved forever, exposing significant amounts of informa-
tion directly and indirectly [10].

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 43–63, 2019.
https://doi.org/10.1007/978-3-662-58820-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_4&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_4

44 A. Poelstra et al.

One suggestion to obscure transaction structure is CoinJoin [13], which allows
users to interactively combine transactions, obscuring which inputs map to which
outputs. However, because transaction amounts are exposed, it is difficult to use
CoinJoin in such a way that these mappings cannot be recovered, at least in a
statistical sense [20]. In particular, unless all output amounts are the same, they
are distinguishable and may be grouped.

We propose a partial solution to the exposure of transaction data, which
blinds the amounts of all outputs, while preserving public verifiability of the fact
that the total output amount is equal to the total input amount. This solution,
termed confidential transactions, has been described informally by Maxwell [14]
and deployed on the Elements Alpha sidechain [2] for over a year. In brief,
each explicit UTXO amount is replaced by a homomorphic commitment to the
amount. Since these amounts are homomorphic over a finite ring rather than the
set of integers, we also attach a rangeproof to each output to prevent attacks
related to overflow.

First, we formalize and improve confidential transactions, describing a space
optimization of the underlying ring signature used in Elements Alpha. Then
we extend confidential transactions to a new scheme, confidential assets, which
further supports multiple asset types within single transactions. We retain public
verifiability that no assets are created or destroyed, while hiding both the output
amount(s) and the output asset type(s).

Related Work. Multi-asset blockchains were described in 2013 in Friedenbach
and Timón’s Freimarkets [8], though the supported assets were not confidential;
that is, the amounts and asset tags of all inputs and outputs of transactions are
publicly visible.

Support for asset issuance on top of Bitcoin has been proposed by means of
colored coins [12], a scheme in which individual coins are marked in such a way
that they are identifiable as representing distinct asset types. In effect, it works
by exploiting Bitcoin’s imperfect fungibility.

Ethereum [22] directly supports asset issuance using its smart contracting
language, and has a standard means to do so which ensures interoperability
with supporting software [18]. Like the above schemes, no attempt is made to
obfuscating either the asset types or their amounts.

ZCash [21] is a recently announced cryptocurrency project which supports
blinding of amounts, as well as any other identifying information about trans-
action inputs and outputs. It does not support multiple assets, though its use
of zk-SNARKs [3], which are general-purpose zero-knowledge arguments, mean
that asset support would not be a difficult extension.

However, ZCash’s privacy comes at a significant cost: the underlying
SNARKs use a trusted setup, meaning it is initialized by multiple parties who
are able to collude to silently inflate the currency; it relies on novel cryptographic
assumptions; its zero-knowledge proofs are very slow to compute. To contrast,
the scheme described in this paper relies only on elliptic curve discrete logarithm
(ECDL) being hard and the random oracle model, and all computations involve
few and standard elliptic curve operations (e.g. no pairings).

Confidential Assets 45

2 Preliminaries

Definition 1. We define a Bitcoin transaction as the following data:

– A list of outputs, containing a verification key and an amount.
– A list of inputs, which are unambiguous references to the outputs of other

transactions. These also have signatures using the verification keys of their
respective outputs.

– A fee, which is computed as the total input amount minus the total output
amount, and is captured by the network.

(To bootstrap the system, we also need coinbase transactions, which have out-
puts but no inputs; for the purpose of this paper they can be considered as
transactions with negative fee.)

In Bitcoin, all amounts are explicit, and for a (non-coinbase) transaction
to be valid, it must have a non-negative fee as well as valid signatures of the
transaction with all inputs’ verification keys.

We will replace these explicit amounts with homomorphic commitments, for
which we need the following definitions.

Definition 2. Given a message space M = Zq, commitment space C � M and
public parameters space PP, we define a homomorphic commitment scheme as
a triple of algorithms:

– Setup: · → PP
– Commit: PP × M × M → C,
– Open: PP × M × M × C → {true, false}
satisfying, for pp ← Setup,

– for all (m, r) ∈ M × M, Open(pp,m, r,Commit(pp,m, r)) accepts; and
– if

Open(pp,m1, r1, C1) and Open(pp,m2, r2, C2)

both accept, then

Open(pp,m1 + m2, r1 + r2, C1 + C2)

also accepts.

We will often leave pp implicit and not mention it as an input to Commit
or Open. Unless otherwise specified, all theorems are understood to hold for all
pp ∈ PP.

We further require our commitments be binding and hiding, by which we mean
the following.

Definition 3. A commitment is perfectly binding if for all m �= m′ ∈ M, all
r, r′ ∈ M, Open(m, r,Commit(m′, r′)) rejects.

It is computationally binding if for all p.p.t. adversaries A, the probability of
A producing (m′, r′) with m′ �= m such that Open(m, r,Commit(m′, r′)) accepts
is negligible.

46 A. Poelstra et al.

Definition 4. A commitment scheme is (perfectly, statistically, computation-
ally) hiding if given pp and m1 �= m2, the distributions

U1 = {C : C ← Commit(pp,m1, r), r
$←− M}

U2 = {C : C ← Commit(pp,m2, r), r
$←− M}

are (equal, statistically indistinguishable, computationally indistinguishable).

For the purposes of this paper, we will use Pedersen commitments, which
are computationally binding, perfectly hiding homomorphic commitments [17].
They are defined as follows.

Definition 5. The Pedersen commitment scheme is the following triple of algo-
rithms. We take M = Zq and C to be an isomorphic elliptic curve group; further
H is a point-valued hash function modeled as a random oracle.

– Setup takes a cyclic group with distinguished generator (G, G) as well as
auxiliary input α. It computes H = H(α) and outputs pp = {G, G,H}.

– Commit(m, r) outputs mH + rG.
– Open(m, r,C) accepts iff C = mH + rG.

(The original Pedersen scheme uses uniformly random generators G, H, rather
than taking H as the output of a hash function. In the random oracle model,
these are equivalent.)

In order to commit to transaction amounts, which are integers, we will need
to represent them as elements of M = Zq, which will complicate matters since
every multiple of q will be indistinguishable from zero. To avoid problems, we
will need one more primitive.

Definition 6. Given a homomorphic commitment scheme as above, and 0 ≤
A ≤ B ≤ q, we define a rangeproof of the range [A,B] as a pair of randomized
algorithms

– Prove[A,B]: PP ×M → C ×M×S takes a value and generates a commitment
to that value with opening information and an associated rangeproof.

– Verify[A,B]: PP × C × S → {true, false} takes a commitment and rangeproof
and either accepts or rejects it.

where S represents the space of possible rangeproofs. We require that for all
v ∈ [A,B], (C, r, π) ← Prove[A,B](v) that both

Verify[A,B](C, π) and Open(v, r, C)

accept.

We require the following security properties of rangeproofs:

Definition 7 (Proving). Let 0 ≤ A ≤ B ≤ q. Then a rangeproof scheme is
proving an amount in the range [A,B] if for any p.p.t. algorithm A that outputs
(C, π) ∈ C × S such that Verify(C, π) accepts, a simulator B exists which given
oracle access to A can produce (v, r) such that v ∈ [A,B] and Open(v, r, C)
accepts.

Confidential Assets 47

We observe that since the commitment scheme is binding, an opening to an
amount in [A,B] precludes an opening to any amount outside of [A,B].

In light of Definition 7, given a commitment C with valid rangeproof π, we can
talk about “the opening information (v, r) of C” unambiguously in simulation-
based proofs, even without knowledge of it (since this knowledge can in principle
be obtained by the simulator). In particular, any security proof which requires
an adversary to produce opening information of commitments will continue to
hold if the opening information is replaced by rangeproofs.

Definition 8 (Statistical zero-knowledge). Given pp ∈ PP and two values
v1, v2 ∈ [A,B], the following distributions are identical:

{(C, π) : (C, ·, π) ← Prove (pp, v1)}

{(C, π) : (C, ·, π) ← Prove (pp, v2)}

3 Confidential Transactions

3.1 Rangeproofs

We begin by describing an efficient rangeproof for Pedersen commitments over
the interval [0,mn − 1], which has total size proportional to 1 + nm, using a
variant of a folklore bit-decomposition based rangeproof, in which numbers are
expressed in base m and each digit is proven to lie in [0,m − 1] using a ring
signature.

We use a variant of Borromean Ring Signatures [15], which itself is a variant
of the Abe-Ohkubo-Suzuki ring signature [1], tweaked to exploit the fact that
many small rings of related keys are used.

Unlike some other rangeproofs in the literature [6], ours does not require a
trusted setup1. In fact, the only cryptographic assumption it relies on is the
hardness of discrete logarithm in the random oracle model. Nor is it interactive,
as is the scheme described in [5]. Despite these improvements, our scheme still
produces smaller proofs than these papers for the ranges (30–80 bits) that we
are interested in.

Schoenmakers [19] described a simple rangeproof of base-b digits using the
conjuction of zero-knowledge OR proofs of each digit. Our work is based on this
rangeproof with the following changes: our OR proofs are based on Borromean
Ring Signatures, which allow sharing a random challenge across every digit’s
proof, and we remove one scalar from each proof by a novel trick in which we
may change the commitment to each digit (without changing the digit itself)
while we produce the proof.

1 While our rangeproof does require setup, the only generated parameters are uni-
formly random curvepoints, which can be generated with no possibility of trapdoor
information, e.g. by the algorithm by Fouque and Tibouchi [7].

48 A. Poelstra et al.

Definition 9 (Back-Maxwell Rangeproof). Consider a Pedersen commitment
scheme with generators G, H, and let H : C → M be a random oracle hash.

– Verify
(
C, π =

{
e0,

(
C0, s01, s

0
2, . . . , s

0
m−1

)
, . . .

(
Cn−1, sn−1

1 , sn−1
2 , . . . , sn−1

m−1

)})

works as follows:
1. For each i ∈ {0, . . . , n − 1},

(a) Define ei
0 = e0 for consistency of the following equations.

(b) For each j ∈ {1, . . . ,m − 1}, compute

ei
j ← H (

si
jG − ei

j−1

[
Ci − jmiH

])
(1)

(c) Compute Ri ← ei
m−1C

i.
2. Compute ê0 ← H(R0‖ · · · ‖Rn−1).
3. Accept iff:

• ê0 = e0; and
• C =

∑
i Ci.

– Prove(v, r). Proving works as follows.
1. Write v in base m as v0 + v1m+ · · ·+ vn−1mn−1. (Note that superscripts

on m are exponents while superscripts on v are just superscripts.)
2. For each i ∈ {0, . . . , n − 1},

(a) If vi = 0, choose ki
0

$←− Zq and set Ri ← ki
0G.

(b) Otherwise,
i. Choose ri uniformly randomly and compute Ci ← Commit

(mivi, ri).

ii. Choose ki $←− Zq and compute ei
vi ← H(kiG).

iii. For each j ∈ {vi + 1, . . . ,m − 1}, choose si
j

$←− Zq, and compute
ei
j directly from Eq. (1). (If vi = m − 1, this step is a no-op.)

iv. Compute Ri ← ei
m−1C

i.
3. Set e0 ← H(R0‖ · · · ‖Rn−1).
4. For each i ∈ {0, . . . , n − 1},

(a) If vi = 0,
i. For each j ∈ {1, . . . , m − 1}, choose

ki
j

$←− Zq

ei
j ← H(ki

j + ei
j−1m

ijH)

taking ei
0 = e0.

ii. Set Ci ← Ri/ei
m−1 = ki

0
ei
m−1

G.

iii. For each j ∈ {1, . . . , m − 1}, set si
j ← ki

j + ki
0ei

j−1

ei
m−1

.

(b) Otherwise,

i. For each j ∈ {1, . . . , vi − 1}, choose si
j

$←− Zq, and compute ei
j

directly from Eq. (1), taking ei
0 = e0. (If vi = 1 this is a no-op.)

ii. Set si
vi = ki + ei

vi−1r
i.

Confidential Assets 49

5. Set C ← ∑n−1
i=0 Ci. Output

π =
{
e0,

(
C0, s01, s

0
2, . . . , s

0
m−1

)
, . . .

(
Cn−1, sn−1

1 , sn−1
2 , . . . , sn−1

m−1

)}
.

We observe that this is nearly the same construction as Borromean Ring Signa-
tures except for the following two differences:

– There are no si
0 values, which were used in the calculation of ê0 in the Bor-

romean Ring Signature construction, saving i scalars in the total proof.
– The commitments Ci are no longer included in any hashes (which is necessary

when computing sub-commitments to the digit (m− 1), as seen in step 4(a)ii
of the Prove algorithm).
Unfortunately, the resulting construction is no longer a secure ring signature
in general; the proof of security depends on all keys being binding commit-
ments rather than arbitrary public keys.

It is immediate that the above construction is a correct rangeproof. We argue
security in the next two theorems.

Theorem 1. If the underlying commitment scheme is binding in the sense of
Definition 3, then the above construction is a proving rangeproof in the sense of
Definition 7.

Proof. Let (C, π) be generated by some p.p.t. algorithm A, such that Verify(C, π)
accepts. Write

π =
{
e0,

(
C0, s01, s

0
2, . . . , s

0
m−1

)
, . . .

(
Cn−1, sn−1

1 , sn−1
2 , . . . , sn−1

m−1

)}
.

By Theorem 8 in AppendixA, with nonnegligible probability A can be used to
obtain openings (vi, ri) of each Ci with vi ∈ {0,mi, 2mi, . . . , (m − 1)mi}. By
summing these we obtain an opening (v, r) of C with v ∈ [0,mn].

Theorem 2. The above construction is zero-knowledge in the sense of Defini-
tion 8.

Proof. This is nearly immediate. Observe that all values output by the Prove
algorithm are selected independently uniformly at random, except where they
are forced by the verification equations (which are independent of the committed
values).

3.2 Confidential Transactions

We now modify the definition of Bitcoin transaction (Definition 1).

Definition 10. We define a confidential transaction as the following data:

– A list of outputs, containing a verification key, Pedersen commitment to an
amount, and Back-Maxwell rangeproof that it lies in a range [0, 2n −1] with n
significantly smaller than the bit-length of size of the committed-value group.

50 A. Poelstra et al.

– A list of inputs, which are unambiguous references to the outputs of other
transactions, with signatures using the verification keys of those outputs.

– A fee f , which is listed explicitly.

Our validity condition is changed as follows: the fee must be non-negative
(except for coinbase transactions), the sum of all input commitments minus all
output conditions must equal fH, and there must be valid signatures with all
inputs’ verification keys. This equation is important enough to give it a name.

Definition 11. The verification equation is: input amounts minus output
amounts equals fee (times H, when these amounts are considered as commit-
ments).

To summarize, the differences between confidential transactions and Bitcoin
transactions are:

– Explicit amounts are replaced by homomorphically committed ones.
– Rather than computing the fee, it is given explicitly and checked that the

inputs minus outputs commit to it.

Payment authorization is achieved by means of the input signatures, which
are unchanged from Bitcoin and not discussed in this paper. However, we need
to argue that this change does not allow coins to be created invalidly.

Theorem 3. Consider a valid confidential transaction with fee f , inputs com-
mitting to amounts {Ii}k

i=0, and outputs committing to amounts {Oi}�
i=0. Sup-

pose also that k + � + 1 < |C|/R, where the output rangeproofs are to the range
[0, R−1] and f ∈ [0, R−1]2. If the rangeproofs are proving and the commitments
are binding, then no subset of {Oi} commits to more than

∑k
i=0 Ii − f .

We observe that simply arguing that
∑k

i=0 Ii − f =
∑�

i=0 Oi is insufficient:
for example, with zero inputs and fee, an attacker could commit to two output
amounts {1,−1}, and have created a coin from nowhere even though the total
equation balances.

Proof. Since all rangeproofs are valid and commitments are binding, for each i
we have 0 ≤ Oi ≤ R. Similarly for the inputs, which are outputs of previous
(valid) transactions.

Next, since the input commitments minus output commitments equal fH,
we have

∑k
i=0 Ii − f − ∑�

i=0 Oi ≡ 0 (mod |C|), or

k∑

i=0

Ii − f −
�∑

i=0

Oi = m|C|

2 Typically the group order C ≈ 2256 and R ≈ 264 so this requirement is physically
impossible to violate in practice.

Confidential Assets 51

for some integer m. Now, since k + � + 1 < |C|/R, and by our bounds on the
individual terms, we can bound the left side of this equation as

−|C| <
k∑

i=0

Ii − f −
�∑

i=0

Oi < |C|.

But this implies that m = 0, i.e. that the input amounts add to the output
amounts (plus fee).

Finally, since all output amounts are positive, every subset of outputs must
sum to less than or equal to

∑k
i=0 Ii − f , as desired.

3.3 Performance

Consider a group G where both scalars and group elements are encoded in 1 unit
of space (in practice, 32 bytes or 256 bits). We contrast three schemes: a naive
folklore rangeproof using separate AOS ring signatures for each digit; one using
Borromean Ring Signatures [15] as implemented in Elements Alpha [2]; and our
scheme described above. We compare asymptotic and also look at the specific
case 238 ≈ 324. While the naive and Alpha schemes are space-optimal in base 4,
our scheme is space-optimal in base 33.

Scheme Base Digits Range Total Size
Naive m n mn (m + 2)n
Alpha m n mn 1 + (m + 1)n
Ours m n mn 1 + mn
Naive 4 19 238 114
Alpha 4 19 238 96
Ours 3 24 324 73

For this range we observe a 24% reduction from the Alpha rangeproof and 36%
reduction from the naive rangeproof at a slightly larger range.

4 Confidential Assets

4.1 Asset Commitments and Surjection Proofs

Before moving on, we need a few more primitives.

Definition 12. Given some asset description A (whose precise form is given in
Sect. 4.4), the associated asset tag is an element HA ∈ G obtained by execution
of the Pedersen commitment Setup using A as auxiliary input.

When using multiple Pedersen commitment schemes, we distinguish them by
adding their second generator as a subscript to their algorithms, like OpenHA

or
CommitHA

.
3 The optimality of one base over another comes from the fact that numbers in higher

bases have fewer digits, reducing the size of each OR proof, while increasing the
size of the individual OR proofs. Since in base b, the Alpha rangeproof requires b
scalars and a commitment, while our optimization requires only b − 1 scalars and a
commitment, the optimum has shifted.

52 A. Poelstra et al.

In particular, in the random oracle model an asset tag is a uniformly random
curve point whose discrete logarithm is not known with respect to G or any
other asset tag.

Definition 13. Given an asset tag HA, an (ephemeral) asset commitment is a
point of the form H = HA + rG, for uniformly random r. We sometimes abuse
terminology to say that H is a commitment to the asset HA.

In the next section, we are going to use these asset commitments in place of
the generator H in our Pedersen commitments. The following theorems justify
this.

Theorem 4. Let H be an asset commitment to asset tag HA, and C a Ped-
ersen commitment such that OpenH(v, r, C) accepts. Then if HA = H + sG,
OpenHA

(v, r − sv, C) accepts.

This theorem is immediate, and implies that Pedersen commitments to an
amount with some asset commitment as generator are also Pedersen commit-
ments to the same amount with the underlying asset tag as generator. Further,
anyone who knows the blinding factor s and the opening information with respect
to one generator can determine the opening information with respect to the other
generator.

Such Pedersen commitments commit not only to the committed amount, but
also to the underlying asset tag, in the following sense.

Theorem 5. If a p.p.t. algorithm A exists which can win with nonnegligible
probability in the following game, then a simulator B exists which can solve the
discrete logarithm problem for G with nonnegligible probability.

1. A calls Setupi to produce asset tags Hi for i = 0, 1, . . . , n.
2. A produces commitments Ci and openings (vi, ri) such that Openi(vi, ri, Ci)

accepts for i = 1, . . . , n.
3. A produces an opening (v, r) such that v �= 0 and Open0 (v, r,

∑n
i=1 Ci)

accepts.

The proof of this theorem is given in the Appendix.
By the comment following Definition 7, the same theorem holds if the adver-

sary is required to produce rangeproofs rather than opening information.
We will attach fresh random asset commitments to all transaction outputs,

and we need a way to link inputs and outputs without revealing the mapping.
The following tool will be essential.

Definition 14. An asset surjection proof (ASP) scheme consists of the follow-
ing algorithms.

– Prove takes a collection {Hi}n
i=1 of “input” asset commitments, an “output”

commitment H = Hi∗ + rG for some 1 ≤ i∗ ≤ n, and r. It outputs a proof π.
– Verify takes a collection {Hi}n

i=1, H, and a proof π and either accepts or
rejects.

Confidential Assets 53

We often say that an ASP is from the set {Hi} of input commitments to the
output commitment H.

Definition 15. An ASP is secure if a proof π produced by the Prove algorithm
is a zero-knowledge proof of knowledge (zkPoK) of the blinding factor r.

This is easy to construct from a ring signature which is a zkPoK of one of
its secret keys, for example the AOS ring signatures described in [1].

Definition 16. The AOS ASP is the following:

– Prove computes the n differences H −Hi for i = 1, . . . , n (one of which will be
r) and computes a ring signature of an empty message with these differences.
The proof π is the signature.

– Verify computes the same differences and verifies the ring signature.

It is immediate that the AOS ASP is secure if the underlying AOS ring
signature scheme is a zkPoK.

4.2 Confidential Assets

Up to now, we have considered a single asset (for example Bitcoin) and transac-
tions which move this asset from one holder to another. Consider an extension of
this scheme which supports multiple non-interchangeable asset types (for exam-
ple, BTC and a USD proxy) within single transactions. This increases the value
of the chain by allowing it to serve more users, and also enables new functionality,
such as atomic trades of different assets.

We could accomplish this by attaching to each output an asset tag identifying
the type of that asset, and having verifiers check that the verification equation
holds for subsets of the transaction which have only a single asset type. (Basically,
treating the transaction as multiple single-asset transactions, except that each
input signs the entire aggregate transaction.)

This requires verification of multiple equations, increases complexity, and
more importantly, gives chain analysts an additional data point to consider,
reducing the privacy of the users of the chain. This also could lead to censorship
of transactions involving specific asset types, since all asset types are visible.

We instead propose a scheme for which all asset tags are blinded, so that no
relationship between output asset types can be inferred. This avoids the privacy
loss and greatly improves privacy by hiding the specific assets used by individual
transactions. This is especially important for assets with low transaction volume
where use of the asset alone is sufficient to identify users.

Definition 17. A confidential asset transaction is the following data:

– A list of inputs, which are one of two forms:
• an unambiguous reference to an output of another transaction, with a

signature using that output’s verification key

54 A. Poelstra et al.

• an asset issuance input, which has an explicit amount and asset tag; the
precise validity rules for these are defined outside of this paper, but they
are discussed further in Sect. 4.4.

– A list of outputs, containing
• a verification key,
• an asset commitment Ho with a ASP from all input asset commitments

to Ho;
• Pedersen commitment to an amount using generator Ho in place of H,

with Back-Maxwell rangeproof (also using Ho in place of H) that it lies
in a range [0, 2n − 1] with n significantly smaller than the bit-length of
size of the committed-value group.

– A fee {(fi,Hi)}n
i=1, which is listed explicitly. Here the fi’s are scalar amounts

denominated in the assets whose tags are the respective Hi. We require all Hi’s
to be distinct for simplicity. (Note that the asset types used to pay fees must
be revealed. In practice we expect a working system to use fees denominated
in only one asset, say, Bitcoin, so privacy is not lost.)
Each fi must always be nonnegative; assets originate in asset-issuance inputs,
which take the place of coinbase transactions in confidential transactions.

The validity equation is identical to that for confidential transactions, except
that the fee commitment is calculated as

∑n
i=1 fiHi instead of simply fH.

Again, payment authorization is achieved by means of the input signatures,
so we do not argue this, only that no assets are created. We first prove a theorem
to argue that the construction is sensible.

Theorem 6. Consider a valid confidential asset transaction and let H be any
fixed asset tag. Then the transaction is valid for H, in the following sense.
Restrict the transaction to those inputs and outputs whose asset commitments
are to H, and take f = fi if Hi = H for any i and zero otherwise.

Then if the discrete logarithm problem is hard in the underlying group,
the sum of input commitments minus the sum of output commitments of this
restricted transaction cannot be opened to any amount except f .

Proof. Consider the algorithm A which produced the transaction, and the trans-
actions whose outputs are used as inputs, and so on. (In practice A will be the
conjunction of many different transacting parties, but this does not affect our
argument.)

Since every output has a rangeproof and ASP associated to it, which are
proofs of knowledge of the opening information and asset commitment blinding
factor, respectively, of every output, there exists a simulator B which extracts this
information from A. Using the blinding factors and Theorem4, we can consider
every rangeproof as being with respect to the underlying asset tag, rather than
the asset commitment.

Now, consider the sum of the outputs minus inputs minus fH of the restricted
transaction is some commitment C. This commits to some amount of H. But
since the non-restricted transaction is valid, we have that the remaining outputs
minus inputs, minus remaining fees, equals −C. Since the remaining inputs,

Confidential Assets 55

outputs, and fees are commitments to non-H asset tags, by Theorem 5, C must
commit to 0, completing the proof.

Theorem 7. Consider a valid confidential asset transaction and let H be any
fixed asset tag. Suppose the transaction has fee f {(fi,Hi)}n

i=1, inputs committing
to amounts {Ii}k

i=0, and outputs committing to amounts {Oi}�
i=0. Suppose also

that k + � < |C|/R, where the rangeproofs prove to the range [0, R − 1]. If the
rangeproofs are proving and the commitments are binding, then no subset of {Oi}
commits to more than

∑k
i=0 Ii − f .

Proof. By the above theorem, the transaction restricted to only inputs and out-
puts with asset tag H is a valid confidential transaction, except that the output
commitments minus input commitments minus fee sum to a commitment to 0,
rather than the 0 point itself. The proof of Theorem 3, which does not make
use of this distinction, therefore goes through without change on the restricted
transaction.

4.3 Performance

In Sect. 3.3 we described the size of our rangeproofs, which are attached to every
transaction output. This is unchanged for confidential assets, but we also require
two additional pieces of data: an asset commitment and an ASP showing that
this commitment is legitimate.

In the units of Sect. 3.3, the asset commitment has size 1 and the ASP has
size n + 1, where n is the number of inputs that a given output may have come
from.

For any entire transaction with m outputs and n inputs, the additional data
therefore has size m(n + 2). We can improve this at the cost of privacy by using
a weaker form of an ASP which proves an asset commitment is the same as one
of 3 inputs, rather than being the same as any of them. The additional data
would then have cost only 5m, which is asymptotically better.

4.4 Issuance

As discussed in Sect. 4.1, the asset tag is an element HA ∈ G obtained by exe-
cution of the Pedersen commitment Setup using an auxiliary input A. In the
context of a blockchain, we want to ensure that any input A is used only once
to ensure assets cannot be inflated by means of multiple independent issuances.
Associating an issuance with the spend of a UTXO, and a maximum of one
issuance per specific UTXO achieves this uniqueness property. The unambigu-
ous reference to the UTXO being spent is hashed together with a issuer-specified
value, the Ricardian contract hash [9], to generate the auxiliary input A to the
Pedersen commitment.

Definition 18. Given an input being spent I, itself an unambiguous reference
to an output of another transaction, and the issuer-specified Ricardian contract
C, the asset entropy E is defined as Hash(Hash(I)||Hash(C)).

56 A. Poelstra et al.

The Ricardian contract is a machine parseable legal document specifying
the conditions for use, and especially redemption of the asset being issued [9].
The details of how such a contract might be designed or enforced is outside the
scope of this paper. All that matters for the purposes here is that such a docu-
ment exists and that its hash is irrevocably committed to in the issuance of the
asset.

Definition 19. Given an asset entropy E, the asset tag is the element HA ∈ G
obtained by execution of the Pedersen commitment Setup using Hash(E||0) as
the auxiliary input.

Every non-coinbase transaction input can have associated with it up to one
new asset issuance:

Definition 20. An asset issuance input consists of an UTXO spend I (inter-
preted as a non-issuance input of the same transaction); a Ricardian contract
C; an initial issuance explicit value v0, or Pedersen commitment H and Back-
Maxwell rangeproof P0; and a Boolean field indicating whether reissuance is
allowed.

Reissuance will be explained in Sect. 4.5.

4.5 Reissuance and Capability Tokens

Assets may be either of fixed issuance or, optionally, enable later reissuance using
a asset reissuance capability. This capability is a token providing its owner with
the ability to change the amount of asset in circulation at any point after the
initial issuance. When a reissuable asset is created, both the initial asset issuance
and the reissuance capability token are generated at the same time.

Definition 21. Given an asset entropy E, the asset reissuance capability is the
element HA ∈ G obtained by execution of the Pedersen commitment Setup using
Hash(E||1) as the auxiliary input.

An asset which supports reissuance indicates this in its asset issuance input,
and the transaction contains an additional output of amount 1 which commits
to asset tag HA.

Note the parallel to the definition of the asset tag given in Sect. 4.4, but with
the concatenation of a different constant before hashing. In this way an asset
tag is linked to its corresponding reissuance capability, and the holder of such a
capability is able to assert their reissuance right simply by revealing the blinding
factor for the capability along with the original asset entropy.

Definition 22. An asset reissuance input consists of a spend of a UTXO con-
taining an asset reissuance capability; the original asset entropy E; the blind-
ing factor for the asset commitment of the UTXO being spent; and either an
explicit reissuance amount vi, or Pedersen commitment H and Back-Maxwell
rangeproof Pi.

Confidential Assets 57

We call attention to the fact that this reissuance mechanism is a specific
instance of a general capability-based authentication scheme. It is possible to
use the same scheme to define capabilities that gate access to other restricted
operations. In the authors’ implementation there exists separate capabilities
for increasing and decreasing issuance, and explicit vs committed reissuance
amounts. In general the right being protected could even be made extensible
by making the commitment generator the hash of a script that validates the
spending transaction.

4.6 Performance

In contrast to Confidential Transactions, in which every output has an attached
rangeproof, each Confidential Assets output must also have an asset tag and
asset surjection proof. As in Sect. 3.3, we consider curvepoints and scalars to
have the same size,

For an output whose amount is in the range [0,mn) and whose asset references
A assets, the total size of the rangeproof and ASP is therefore (1+mn)+(2+A)
where the first term is the contribution of the rangeproof and the second the
contribution of the asset tag and ASP. For a prototypical example of a [0, 324)
rangeproof and three inputs, the total is 78 scalars, or 19968 bits.

4.7 “Small Assets” and “Big Assets”

To prove that the asset commitments associated to outputs commit to legiti-
mately issued asset tags, we have used asset surjection proofs which show that
they commit to the same asset tag as some input (if those inputs are outputs of
previous transactions, they have ASP’s showing the same thing, and so on until
the process terminates at an asset issuance input which has an explicit asset
tag).

This allows confidential assets to work on a blockchain which supports indef-
initely many asset types, which may be added after the chain has been defined.

An alternate scheme, which works for a small fixed set of asset tags, is to
define the asset tags at the start of the chain, and to have each output include
an ASP to the global list of asset tags. We refer to this scheme as “small assets”
and the more general scheme as “big assets”.

It is also possible to do an intermediate scheme, by having a global dynamic
list of assets with each transaction selecting a subset of asset tags which its
outputs have an ASP to. In general, there is room to adapt this scheme for
optimal tradeoff between ASP size and privacy for specific use cases.

We observe that small assets is compatible with Mimblewimble [11], a new
extension to confidential transactions which improves privacy and scaling by
removing information from the transaction graph, while big assets is not.

5 Future Research

The authors describe some research directions they would like to see.

58 A. Poelstra et al.

Rangeproof Efficiency. While this paper describes the most efficient rangeproof
construction without trusted setup that the authors are aware of, in practice
for a blockchain-based currency, rangeproofs are still the bulk of the transaction
data. Further improvements, especially asymptotic ones, would help.

ASP Efficiency. Similarly, the ASP construction scales with both the number
of inputs and the number of outputs; by restricting the set of inputs it uses we
improve this at cost of user privacy, but it is desirable to avoid this tradeoff.

Aggregate Rangeproofs. If it were possible to aggregate rangeproofs (e.g. to com-
bine proofs that C1 and C2 commit to values in [0, 2n − 1] into a single proof
that C1 + C2 commits to a value in [0, 2n+1 − 1]), this would also improve the
efficiency of a blockchain-based system, since proofs could be placed in a Merkle-
sum tree whose nodes contained an aggregate rangeproof of the rangeproofs of
their children. Then validators could check only the root to ensure an entire tree
did not cause any inflation, delaying checking the proofs on individual outputs
until those outputs are spent.

Quantum Resistance. The primitives described in this paper all depend on
the elliptic-curve discrete logarithm assumption, which is known to be insecure
against a quantum adversary. A quantum-hard analogue would require a replace-
ment for Pedersen commitments (perhaps [4]), for the ring signatures used by
ASP’s, and for rangeproofs.

Acknowledgements. We thank Ben Gorlick for his input on the practical require-
ments of a confidential assets-based system, and his technical review, and feedback on
the systems design.

A Appendix: Proofs

Theorem 8. Fix integers i ≥ 0, m > 0. Consider an algorithm A which can
produce the tuple

π = (α, e0, C, s1, . . . , sm−1)

such that one can define, for j ∈ {1, . . . ,m − 1},

ej ← H (
sjG − ej−1

[
C − jmiH

])
,

R ← em−1C,

and it holds that e0 = H(R‖α). (Observe that the formula for ej is the same as
(1) from Definition 9; this represents the verification equation of a single ring.
Here α is auxiliary data that A chooses, but in the full algorithm it consists of
the R values from the other rings.)

Then a simulator B exists, which given oracle access to A, can extract an
opening (v, r) such that Open(v, r, C) accepts and v ∈ {0,mi, . . . , (m − 1)mi}.

Confidential Assets 59

Proof. Suppose that A makes at most q random oracle queries. B acts as follows.
For each random oracle query it chooses a uniformly random scalar and responds
with this.

It chooses i∗ ∈ {1, . . . , q} uniformly at random, and on the i∗th query, B
forks A into A and A′. It gives ei∗ to A, e′

i∗ to A′, and answers further queries
from other algorithms with uniformly random values.

Let the final output of the two algorithms be

π = (α, e0, C, s1, . . . , sm−1)

π′ = (α′, e′
0, C

′, s′
1, . . . , s

′
m−1)

and similarly ej and e′
j are defined as in the hypothesis.

With probability 1/q − negl, we have ej = e′
j for all j except one, j∗. (This

is the probability that the i∗th query was the last ej that A needed, and that it
obtained every ej by querying the random oracle rather than guessing.) Abort
otherwise.

We consider four cases.

1. If j∗ = m − 1, then

e0 = H(em−1C‖α) = H(e′
m−1C

′‖α′) = e′
0

so that except with negligible probability, α = α′ and C = e′
m−1

em−1
C ′. Now,

em−1 = H (
sm−1G − em−2

[
C − (m − 1)miH

])

e′
m−1 = H′ (s′

m−1G − em−2

[
C ′ − (m − 1)miH

])

where H, H′ are used to emphasize which side of the fork received these
random oracle responses. But by hypothesis, the input to these queries is the
same, that is,

sm−1G − em−2

[
C − (m − 1)miH

]
= s′

m−1G − em−2

[
C ′ − (m − 1)miH

]

which is sufficient to solve for the discrete logarithms r, r′ of C − (m−1)miH
and C ′ − (m − 1)miH, giving us openings (m − 1, r) and (m − 1, r′) for the
commitments of the two forks.

2. If j∗ �= m − 1 and C = C ′, then

ej∗+1 = H (
sj∗+1G − ej∗

[
C − j∗miH

])

= H (
s′

j∗+1G − e′
j∗

[
C − j∗miH

])

= e′
j∗+1

and we can solve for the discrete logarithm r of C − j∗miH, and our desired
opening for C (the output of both forks) is (j∗mi, r).

60 A. Poelstra et al.

3. If j∗ = 0 and C �= C ′, we have that the inputs to

e0 = H(em−1C‖α)

e′
0 = H(e′

m−1C
′‖α′)

are the same, and em−1 = e′
m−1 by hypothesis. This implies C = C ′, a

contradiction.
4. If 0 < j∗ < m − 1 and C �= C ′, observe that

ej∗ = H (
sj∗G − ej∗

[
C − j∗miH

])

e′
j∗ = H′ (s′

j∗G − e′
j∗

[
C ′ − j∗miH

])

and as in case 1, by hypothesis

sj∗G − ej∗
[
C − j∗miH

]
= s′

j∗G − e′
j∗

[
C ′ − j∗miH

]
(2)

Similarly,

em−1 = H (
sm−1G − em−2

[
C − (m − 1)miH

])

= H (
s′

m−1G − e′
m−2

[
C ′ − (m − 1)miH

])

= e′
m−1

so

sm−1G−em−1

[
C − (m − 1)miH

]
= s′

m−1G−e′
m−1

[
C ′ − (m − 1)miH

]
(3)

Now, after rearranging, (2) is

1
j∗mi(e′

j∗ − ej∗)
[
(sj∗ − s′

j∗)G + e′
j∗C ′ − ej∗C

]
= H

and (3) is

1
(m − 1)mi(e′

m−1 − em−1)
[
(sm−1 − s′

m−1)G + e′
m−1C

′ − em−1C
]

= H

which combine to determine the discrete logarithms r, r′ of C and C ′, so that
(0, r) and (0, r′) are the desired openings.

A.1 Proof of Theorem 3

Proof. Recall that G is a fixed random generator of G. Let (G,X) be B’s discrete
logarithm challenge, i.e. B succeeds if it outputs x such that X = xG. We
consider two types of adversary: a type I adversary’s output satisfies

∑n
i=1 ri �= r,

while a type II has equality. We assume that A makes at most q random oracle
queries.

Confidential Assets 61

For a Type I adversary, B acts as follows.
First, B responds to random oracle queries by choosing random scalars r

and replying with rX. Then from A’s perspective, Setupi outputs uniformly a
random generators Hi; however B knows scalars si such that Hi = siX.

Now, let (Ci, vi, ri, v, r) for i = 1, . . . , n be the output of A. Write C =∑n
i=1 Ci. We have

0 = C −
n∑

i=1

Ci

= vH0 + rG −
n∑

i=1

[viHi + riG]

= vs0X + rG −
n∑

i=1

[visiX + riG]

=

[

vs0 −
n∑

i=1

visi

]

X +

[

r −
n∑

i=1

ri

]

G

Since the sum in the right term is nonzero for a type I adversary, so must be the
sum in the left term, so we have

x =
r − ∑n

i=1 ri

vs0 − ∑n
i=1 visi

which satisfies X = xG.
For a Type II adversary, B acts as follows. It responds for the Type I simu-

lator, except for one random oracle queries it replies with sG rather than sX.
Then with probability 1/q we have H0 = s0G, and if not we abort. We also abort
if s0 = 0, which occurs with negligible probability.

The above equation then becomes

0 =

[
n∑

i=1

visi

]

X +

[

vs0 + r −
n∑

i=1

ri

]

G

where the right term is equal to vs0 �= 0, so the left term must also be nonzero,
and

x =
vs0∑n

i=1 visi

satisfies X = xG.

62 A. Poelstra et al.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Back, A.: Announcing sidechain elements: open source code and developer
sidechains for advancing bitcoin. Blockstream blog post (2015). https://
blockstream.com/2015/06/08/714/

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. Cryptology ePrint
Archive, Report 2013/507 (2013). http://eprint.iacr.org/2013/507

4. Cabarcas, D., Demirel, D., Göpfert, F., Lancrenon, J., Wunderer, T.: An uncondi-
tionally hiding and long-term binding post-quantum commitment scheme. Cryp-
tology ePrint Archive, Report 2015/628 (2015). http://eprint.iacr.org/2015/628

5. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

6. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 14

7. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–Naehrig curves.
In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 1–17.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8 1

8. Friedenbach, M., Timón, J.: Freimarkets: extending bitcoin protocol with user-
specified bearer instruments, peer-to-peer exchange, off-chain accounting, auctions,
derivatives and transitive transactions (2013). http://freico.in/docs/freimarkets-
v0.0.1.pdf

9. Grigg, I.: The ricardian contract. In: First IEEE International Workshop on Elec-
tronic Contracting. IEEE (2004)

10. Hearn, M.: Merge avoidance: privacy enhancing techniques in the bitcoin protocol
(2013). http://www.coindesk.com/merge-avoidance-privacy-bitcoin/

11. Jedusor, T.: Mimblewimble. Defunct hidden service (2016). http://
5pdcbgndmprm4wud.onion/mimblewimble.txt. Reddit discussion at https://
www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble noninteractive
coinjoin and better/

12. jl2012: OP CHECKCOLORVERIFY: soft-fork for native color coin support. Bit-
coinTalk post (2013). https://bitcointalk.org/index.php?topic=253385.0

13. Maxwell, G.: CoinJoin: bitcoin privacy for the real world. BitcoinTalk post (2013).
https://bitcointalk.org/index.php?topic=279249.0

14. Maxwell, G.: Confidential transactions. Plain text (2015). https://people.xiph.org/
∼greg/confidential values.txt

15. Maxwell, G., Poelstra, A.: Borromean Ring Signatures (2015). http://diyhpl.us/
∼bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://www.
bitcoin.org/bitcoin.pdf

17. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/3-540-36178-2_26
https://blockstream.com/2015/06/08/714/
https://blockstream.com/2015/06/08/714/
http://eprint.iacr.org/2013/507
http://eprint.iacr.org/2015/628
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-642-32946-3_14
https://doi.org/10.1007/978-3-642-33481-8_1
http://freico.in/docs/freimarkets-v0.0.1.pdf
http://freico.in/docs/freimarkets-v0.0.1.pdf
http://www.coindesk.com/merge-avoidance-privacy-bitcoin/
http://5pdcbgndmprm4wud.onion/mimblewimble.txt
http://5pdcbgndmprm4wud.onion/mimblewimble.txt
https://www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble_noninteractive_coinjoin_and_better/
https://www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble_noninteractive_coinjoin_and_better/
https://www.reddit.com/r/Bitcoin/comments/4vub3y/mimblewimble_noninteractive_coinjoin_and_better/
https://bitcointalk.org/index.php?topic=253385.0
https://bitcointalk.org/index.php?topic=279249.0
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
https://www.bitcoin.org/bitcoin.pdf
https://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-46766-1_9

Confidential Assets 63

18. Project Ethereum: Create your own crypto-currency with Ethereum (2016).
https://www.ethereum.org/token. Accessed 31 Oct 2016

19. Schoenmakers, B.: Interval proofs revisited. In: Slides Presented at International
Workshop on Frontiers in Electronic Elections (2005)

20. Southurst, J.: Blockchain’s sharedcoin users can be identified, says secu-
rity expert (2014). http://www.coindesk.com/blockchains-sharedcoin-users-can-
identified-says-security-expert/

21. Wilcox-O’Hearn, Z.: Zcash begins. ZCash Blog Post (2016). https://z.cash/blog/
zcash-begins.html. Accessed 31 Oct 2016

22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

https://www.ethereum.org/token
http://www.coindesk.com/blockchains-sharedcoin-users-can-identified-says-security-expert/
http://www.coindesk.com/blockchains-sharedcoin-users-can-identified-says-security-expert/
https://z.cash/blog/zcash-begins.html
https://z.cash/blog/zcash-begins.html
http://gavwood.com/paper.pdf

A Multi-party Protocol for Constructing
the Public Parameters of the Pinocchio

zk-SNARK

Sean Bowe1, Ariel Gabizon1(B), and Matthew D. Green1,2

1 Zcash, Boulder, USA
{info,ariel}@z.cash, ariel.gabizon@gmail.com

2 Johns Hopkins University, Baltimore, USA

Abstract. Recent efficient constructions of zero-knowledge Succinct
Non-interactive Arguments of Knowledge (zk-SNARKs), require a setup
phase in which a common-reference string (CRS) with a certain structure
is generated. This CRS is sometimes referred to as the public parame-
ters of the system, and is used for constructing and verifying proofs. A
drawback of these constructions is that whomever runs the setup phase
subsequently possesses trapdoor information enabling them to produce
fraudulent pseudoproofs.

Building on a work of Ben-Sasson, Chiesa, Green, Tromer and Virza
[BCG+15], we construct a multi-party protocol for generating the CRS
of the Pinocchio zk-SNARK [PHGR16], such that as long as at least one
participating party is not malicious, no party can later construct fraudu-
lent proofs except with negligible probability. The protocol also provides
a strong zero-knowledge guarantee even in the case that all participants
are malicious.

This method has been used in practice to generate the required CRS
for the Zcash cryptocurrency blockchain.

1 Introduction

The recently deployed Zcash cryptocurrency supports shielded (private) trans-
actions where sender, receiver and amount are not revealed; and yet, an out-
side observer can still distinguish between a valid and non-valid transaction.
The “cryptographic engine” that enables these shielded transactions is a zero-
knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK); cur-
rently, Zcash uses the Pinocchio zk-SNARK [PHGR16], or more precisely, the
variant of it described in [BCTV14] as implemented in libsnark [lib].

A potential weakness of Zcash, is that if anybody obtained the trapdoor
information corresponding to the Common Reference String (CRS) used for
constructing and verifying the SNARKs, they could forge unlimited amounts of
the currency, potentially without anyone detecting they are doing so.

Motivated by this, Zcash generated the required CRS in an elaborate “cere-
mony” [Wil] to reduce the chance of this happening. The purpose of this technical

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 64–77, 2019.
https://doi.org/10.1007/978-3-662-58820-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_5&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_5

A Multi-party Protocol for Constructing the Public Parameters 65

report is to give a detailed description of the multi-party protocol that was used
in the ceremony.

Our Results: Ben-Sasson, Chiesa, Green, Tromer and Virza [BCG+15] presented
a generic method for computing CRSs of zk-SNARKs in a multi-party protocol,
with the property that only if all players collude together they can reconstruct
the trapdoor, or, more generally, deduce any other useful information beyond
the resultant CRS.

Based on [BCG+15], we devise an arguably simpler method for generating the
CRS of the Pinocchio zk-SNARK [PHGR16] with a similar security guarantee:
Namely, given that the CRS generated by the protocol is later used to verify
proofs; a party controlling all but one of the players will not be able to construct
fraudulent proofs except with negligible probability. See full version for details.

Moreover, we show that even if a malicious party controls all players, statis-
tical zero-knowledge holds when constructing proofs according to the resultant
parameters. Interestingly, this means the protocol is useful also when run by one
player ; as the transcript will provide proof to the prover that sending her proof
will not leak additional information1.

This property has been recently called subversion Zero-Knowledge [BFS16].
As opposed to the soundness guarantee, zero-knowledge only requires the ran-
dom oracle model; and in particular, no knowledge assumptions in contrast to
some recent works on subversion-ZK [Fuc17,ABLZ17]. On the other hand, our
proof only obtains statistical-ZK with polynomially small error (with simula-
tor polynomial running time depending on the desired polynomial error), as
opposed to the mentioned recent works that can obtain negligible error (again,
using knowledge assumptions). See full version for details.

Comparison to [BCG+15]: Our protocol is not significantly different from that
of [BCG+15] for duplex-pairing groups, described in Sect. 5 of that paper. The
main purpose here is to give full details for the case of the Pinocchio CRS.
Nonetheless, some advantages of this writeup compared to [BCG+15] are:

1. Eliminating the need for NIZK proofs for the relation Raux described in Sect. 5
there; this is since in Sect. 3.1 we do not commit directly to secret values s,
but only to “random s-pairs”.

2. Reducing the memory per player and simplifying the protocol description, by
not using [BCG+15]’s generic “sampling to evaluation” procedure, but rather,
explicitly presenting the protocol for our use case. In particular, individual
players only need to store the messages of the player preceding them, and not
the whole transcript as in a straightforward implementation of [BCG+15].
This simplified approach was later generalized [BGM17] for circuits with a
certain layered structure.

1 Thanks to Eran Tromer for pointing this out, and more generally the connection to
subversion zero-knowledge. We note that if one wishes to run the protocol with one
player, transcript verification can stay the same, but the player should be altered
to take advantage of field rather than group operations when possible for better
efficiency.

66 S. Bowe et al.

3. Reducing transcript verification complexity, by taking advantage of bi-
linearity of pairings and randomized checking (see Corollary 1). In particular,
the number of pairing operations to verify the transcript is constant, while
in [BCG+15] it grows linearly with the size of the circuit for which we are
constructing SNARK parameters.

4. Giving a full proof of both soundness and subversion zero-knowledge. In
[BCG+15] the soundness proof is only sketched, and the subversion zero-
knowledge property is not described (though it holds for their protocol).

Organization of Paper: Section 2 introduces some terminology and auxiliary
methods that will be used in the protocol. Section 3 describe the protocol in
detail. The full version of the paper describes the security proof of the protocol.

2 Definitions, Notation and Auxiliary Methods

Terminology: We always assume we are working with a field Fr for prime r chosen
according to a desired security parameter (more details on this in full version).
We assume together with Fr we have generated groups G1,G2,Gt, all cyclic of
order r; where we write G1 and G2 in additive notation and Gt in multiplicative
notation. Furthermore, we have access to generators g1 ∈ G1, g2 ∈ G2, and an
efficiently computable pairing e : G1 × G2 → Gt, i.e., a non-trivial map such
that for any a, b ∈ Fr

e(a · g1, b · g2) = ga·b
T ,

for a fixed generator gT ∈ Gt. We use the notations g := (g1, g2) and G∗ :=
G1 \ {0} × G2 \ {0}.

We think of the field size r as a parameter against which we measure effi-
ciency. In particular, we say a circuit A is efficient if its size is polynomial in
log r. More precisely, when we refer in the security analysis to an efficient adver-
sary or efficient algorithm, we mean it is a (non-uniform) sequence of circuits
indexed by r, of size poly log r. When we say “with probability p”, we mean
“with probability at least p”.

We assume we have at our disposal a function COMMIT taking as input
strings of arbitrary length; that, intuitively speaking, behaves like a commitment
scheme. That is, it is infeasible to deduce COMMIT’s input from seeing its output,
and it is infeasible to find two inputs that COMMIT maps to the same output.
In our implementation we use the BLAKE-2 hash function as COMMIT. For the
actual security proof, we need to assume that COMMIT’s outputs are chosen by
a random oracle.

Symmetric Definitions: In the following sections we introduce several methods
that receive as parameters elements of both G1 and G2. We assume implicitly
that whenever such a definition is made, we also have the symmetric definition
where the roles are reversed between what parameters come from G1 and G2. For
example, if we define a method receiving as input a vector of G1 elements and
a pair of G2 elements. We assume thereafter that we also have the symmetric
method receiving as input a vector of G2 elements and a pair of G1 elements.

A Multi-party Protocol for Constructing the Public Parameters 67

2.1 Comparing Ratios of Pairs Using Pairings

Definition 2.1. Given s ∈ F
∗
r, an s-pair is a pair (p, q) such that p, q ∈ G1\{0},

or p, q ∈ G2 \ {0}; and s · p = q. When not clear from the context whether p, q
are in G1 or G2, we use the terms G1-s-pair and G2-s-pair.

A recurring theme in the protocol will be to check that two pairs of elements
in G1 and G2 respectively, “have the same ratio”, i.e., are s-pairs for the same
s ∈ F

∗
r .

SameRatio((p, q), (f,H)) :

1. If one of the elements p, q, f,H is zero; return rej.
2. Return acc if e(p,H) = e(q, f); return rej otherwise.

Claim. Given p, q ∈ G1 and f,H ∈ G2, SameRatio((p, q), (f,H)) = acc if and
only if there exists s ∈ F

∗
r such that (p, q) is a G1-s-pair and (f,H) is a G2-s-pair.

Proof. Suppose that s · p = q and s′ · f = H. Write p = a · g1, f = b · g2 for some
a, b ∈ Fr. Note that if one of {a, b, s, s′} is 0, we return rej in the first step.

Otherwise, we have

e(p,H) = (a · g1, bs
′ · g2) = gabs′

T ,

and
e(q, f) = (as · g1, b · g2) = gabs

T ,

and thus SameRatio((p, q), (f,H)) = 1 if and only if s = s′ (mod r).

Let V = ((pi, qi))i∈[d], be a vector of pairs in G1. We say V is an s-vector in
G1 if for each i ∈ [d], (pi, qi) is a G1-s-pair, or is equal to (0, 0). We make the
analogous definition for G2, and similarly to above, sometimes omit the group
name when it is clear from the context what group the elements are in, simply
using the term s-vector. In our protocol we often want to check if a long vector
((pi, qi))i∈[d] is an s-vector for some s ∈ F

∗
r . The next claim enables us to do so

with just one pairing.

Claim. Suppose that ((pi, qi))i∈[d] is a vector of elements in G1 \ {0} that is not
an s-vector. Choose random c1, . . . , cd ∈ Fr and define

p �
∑

i∈[d]

ci · pi, q �
∑

i∈[d]

ci · qi.

Then, with probability at least 1 − 2/r, both (p, q) �= (0, 0) and (p, q) is not an
s-pair.

Proof. Write pi = ai · g1 for ai ∈ Fr, and qi = si · pi for some si ∈ Fr. Thus, we
have p = a · g1 for a �

∑
i∈[d] ciai and q = b · g1 for b �

∑
i∈[d] αiaisi. Let us

assume a �= 0. This happens with probability 1−1/r. Write [d] as a disjoint union

68 S. Bowe et al.

S ∪ T where S is the set of indices of the s-pairs. That is S � {i ∈ [d]|si = s}.
We have

b/a =

∑
i∈[d] ciaisi∑
i∈[d] ciai

= s +
∑

i∈T ci · (s − si)∑
i∈[d] ciai

= s +
∑

i∈T ci · (s − si)
a

.

Thus, b/a = s if and only if the fraction in the right hand side is zero. As the
numerator is a random combination of non-zero elements, this happens with
probability 1/r.

We conclude that with probability at least 1 − 2/r, (p, q) is not an s-pair.

Claim 2.1 implies the correctness of sameRatio(V, (f,H)) that given an s-pair
(f,H) in G2, checks whether V is an s-vector in G1.
sameRatio(V = ((pi, qi))i∈[d], (f,H)):

1. If there exists a pair of the form (0, a) or (a, 0) for some a �= 0 in V ; return
rej.

2. “Put aside” all elements of the form (0, 0), and from now on assume all pairs
in V are in G1 \ {0}. (If all pairs are of the form (0, 0) then return acc).

3. Choose random c1, . . . , cd ∈ Fr.
4. Define p �

∑
i∈[d] ci · pi, and q �

∑
i∈[d] ci · qi.

5. If p = q = 0, return acc.
6. Otherwise, return SameRatio((p, q), (f,H)).

Corollary 1. Suppose rps in a G2-s-pair, and V is a vector of pairs of G1

elements. If V is an s-vector, sameRatio(V, rps) accepts with probability one. If
V is not an s-vector, sameRatio(V, rps) accepts with probability at most 2/r.

Let V be a vector of G1-elements and rps be a pair of G2-elements. We also
use a method sameRatioSeq(V, rps) that given an s-pair rps, checks that each two
consecutive elements of V are an s-pair. It does so by calling sameRatio(V ′, rps)
with V ′ = ((V0, V1), (V1, V2), . . . , (Vd−1, Vd)).

2.2 Schnorr NIZKs for Knowledge of Discrete Log

We review and define notation for using the well-known Schnorr protocol [Sch89].
Given an s-pair rps = (f,H = s · f), and a string h, we define the (randomized)
string NIZK(rps, h) that can be interpreted as a proof that the generator of the
string knows s.

NIZK(rps, h):

1. Choose random a ∈ F
∗
r and let R := a · f .

2. Let c := COMMIT(R ◦ h) and interpret c as an element of Fr, e.g. by taking
it’s first log r bits.

3. Let u := a + cs.
4. Define NIZK(rps, h) := (R, u).

A Multi-party Protocol for Constructing the Public Parameters 69

Let us denote by π a string that is supposedly of the form NIZK(rps, h), for some
string h.

VERIFY-NIZK(rps, π, h) is a boolean predicate that verifies that π is indeed
of this form for the same given h.

VERIFY-NIZK((f,H), π, h):

1. Let R, u be as in the description above.
2. Compute c := COMMIT(R ◦ h).
3. Return acc when u · f = R + c · H; and rej otherwise.

2.3 The Random-Coefficient Subprotocol

A large part of the protocol will consist of invocations of the random-coefficient
subprotocol. In this subprotocol, we multiply a vector of G1 elements coordinate-
wise by the same scalar α ∈ F

∗
r . α here is a product of secret elements {αi}i∈[n],

that we refer to later as comitted elements. By this we mean, that before the
subprotocol is invoked, for each i ∈ [n], Pi has broadcasted a G2-αi-pair, denoted
rpαi

, that is accessible to the protocol verifier. (This will become clearer in the
context of Sect. 3).

RCPC(V, α):

Common Input: vector V ∈ G
d
1.

Individual Inputs: element αi ∈ F
∗
r for each i ∈ [n].

Output: vector α · V ∈ G
d
1, where α =

∏n
i=1 αi.

1. P1 computes broadcasts V1 := α1 · V .
2. For i = 2, . . . , n, Pi broadcasts Vi := αi · Vi−1.
3. Players output Vn (which should equal α · V).

Before discussing the transcript verification we define one more useful nota-
tion. For vectors S, T ∈ G

d
1 and a G2-α-pair rpα, sameRatio((S, T), rpα) returns

sameRatio(V, rpα), where Vi := (Si, Ti). The transcript verification procedure
receives as input V, V1, . . . , Vn, and for each i ∈ [n], the G2-αi-pair, rpαi

.

verifyRCPC(V, α):

Input: V , protocol transcript V1, . . . , Vn ∈ G
d
1, for each i ∈ [n] a G2-αi-pair rpαi

.

Output: acc or rej.

1. Run sameRatio((V, V1), rpα1
).

2. For i = 2, . . . , n, run sameRatio((Vi−1, Vi), rpαi
).

3. Return acc if all invocations returned acc; and return rej otherwise.

From the correctness of the sameRatio(,) method (Corollary 1) we have that

Claim. If the players follow the protocol correctly, the output is α · V , and
transcript verification outputs acc with probability one. Otherwise, transcript
verification outputs acc with probability at most 2/r.

70 S. Bowe et al.

3 Protocol Description

The Participants: The protocol is conducted by n players, a coordinator, and a
protocol verifier. In the implementation the role of the coordinator and protocol
verifier can be played by the same server. We find it useful to separate these
roles, though, as the actions of the protocol verifier may be executed only after
the protocol has terminated, if one wishes to reduce the time the players have to
be engaged. Moreover, any party wishing to check the validity of the transcript
and generated parameters can do so solely with access to the protocol transcript.
On the other hand, this has the disadvantage that non-valid messages will be
detected only in hindsight, and the whole process will have to be restarted if one
wishes to generate valid SNARK parameters.

Similarly, the role of the coordinator is not strictly necessary if one assumes
a blackboard model where each player sees all messages broadcasted. (In our
actual implementation the coordinator passes messages between the players).
Our security analysis holds when all messages are seen by all players. However,
even in such a blackboard model there is an advantage of having of a coordinator
role: At the beginning of Round 3 a heavy computation needs to performed
(Subsect. 3.3) that in theory could be performed by the first player before he
sends his message for that round. However, as this heavy computation does not
require access to any secrets of the players, having the coordinator perform it
can save much time, if the coordinator is run on a strong server, and the players
have weaker machines.

The protocol consists of four “round-robin” rounds, where for each i ∈ [n],
player Pi can send his message after receiving the message of Pi−1. P1 can send
his message after receiving an“initializer message” from the coordinator, which
is empty in some of the rounds. An exception of this is the first round, where all
players may send their message to the coordinator in parallel. However, security
is not harmed if a player sees other players’ messages before sending his in that
round. Round 2 is divided into several parts for clarity, however the messages of
a player Pi in all parts of that round can be sent in parallel. Similarly, Round
3 and 4 consist of several one round round-robin subprotocols; however, the
messages of a player Pi in all these subprotocols can be sent in parallel.

3.1 Round 1: Commitments

For each i ∈ [n], Pi does the following.

1. Generate a set of uniform elements in F
∗
r

secretsi := {τi, ρA,i, ρB,i, αA,i, αB,i, αC,i, βi, γi} .

Omitting the index i for readability from now on, let

elementsi := {τ, ρA, ρB , αA, αB , αC , β, γ, ρAαA, ρBαB ,

ρAρB , ρAρBαC , βγ}

A Multi-party Protocol for Constructing the Public Parameters 71

2. Now Pi generates the set of group elements2

ei := (τ, ρA, ρAρB , ρAαA, ρAρBαB , ρAρBαC , γ, βγ) · g.

3. Pi computes hi := COMMIT(ei) and broadcasts hi.

3.2 Round 2

Part 1: Revealing commitments: For each i ∈ [n]

1. Pi broadcasts ei.
2. The protocol verifier checks that indeed hi = COMMIT(ei).

Committed Elements: From the end of Round 2, part 1 of the protocol, we refer
to the elements of elementsi for some i ∈ [n] as committed elements. The reason
is that by this stage of the protocol, for each s ∈ elementsi, Pi has sent an s-pair
in both G1 and G2, effectively committing him to the value of s. For each such
element s, we refer to the s-pair in G1 by rps and the s-pair in G2 by rp2s . We list
the corresponding elements and s-pairs, omitting the i subscript for readability:

– τ : (rp1τ , rp2τ) = (g, τ · g).
– ρA: (rp1ρA

, rp2ρA
) = (g, ρA · g).

– ρB : (rp1ρB
, rp2ρB

) = (g, ρB · g).
– αA: (rp1αA

, rp2αA
) = (ρA · g, ρAαA · g).

– αB : (rp1αB
, rp2αB

) = (ρAρB · g, ρAρBαB · g).
– αC : (rp1αC

, rp2αC
) = (ρAρB · g, ρAρBαC · g).

– β: (rp1β , rp2β) = (γ · g, βγ · g).
– γ: (rp1γ , rp2γ) = (g, γ · g).
– ρAαA: (rp1ρAαA

, rp2ρAαA
) = (g, ρAαA · g).

– ρBαB : (rp1ρBαB
, rp2ρBαB

) = (ρA · g, ρAρBαB · g).
– ρAρB : (rp1ρAρB

, rp2ρAρB
) = (g, ρAρB · g).

– ρAρBαC : (rp1ρAρBαC
, rp2ρAρBαC

) = (g, ρAρBαC · g).
– βγ: (rp1βγ , rp2βγ) = (g, βγ · g).

Of course, we need to check that Pi has committed to the same element s ∈ F
∗
r

by rps and rp2s . This is done by the protocol verifier in the next stage.

Part 2: Checking Commitment Consistency Between both Groups: For
each i ∈ [n], and s ∈ elementsi, the protocol verifier runs SameRatio(rps, rp

2
s),

and outputs rej if any invocation returned rej.
2 In the actual code a more complex set of elements is used that can be efficiently

derived from elementsi, as described in the full version. The reason we use the more
complex set is that it potentially provides more security as it contains less informa-
tion about secretsi. However, the proof works as well with this definition of ei and
it provides a significantly simpler presentation. We explain in the full version the
slight modification for protocol and proof for using the more complex element set.

72 S. Bowe et al.

Part 3: Proving and Verifying Knowledge of Discrete Logs: Let h :=
COMMIT(h1 ◦ . . . ◦ hn) be the hash of the transcript of Round 1. P1 computes
and broadcasts h.

For each i ∈ [n]

1. For s ∈ secretsi, let hi,s := h◦rp1s. Note that both Pi and the protocol verifier,
seeing the transcript up to this point, can efficiently compute the elements
{hi,s}.

2. For each s ∈ secretsi, Pi broadcasts πi,s := NIZK(rp1s, hi,s).
3. The protocol verifier checks for each s ∈ secretsi that

VERIFY-NIZK(rp1s, πi,s, hi,s) = acc.

Part 4: The Random Powers Subprotocol: The purpose of the subprotocol
is to output the vector

POWERSτ :=
(
(1, τ, τ2, . . . , τd) · g1, (1, τ, τ2, . . . , τd) · g2

)
,

where τ := τ1 · · · τn. Recall that τ1, . . . , τn are committed values from Round 1.
For a vector V ∈ G

d+1
1 , and a ∈ Fr, we use below the notation

powerMult(V, a) ∈ G
d+1
1 , defined as

powerMult(V, a)i � ai · V,

for i ∈ {0, . . . , d}. We use the analogous notation for a vector V ∈ G
d+1
2 .

Phase 1: Computing Power Vectors

1. P1 does the following.
(a) Computes V1 = (1, τ1, τ2

1 , . . . , τd
1) · g1 and V ′

1 = (1, τ1, τ2
1 , . . . , τd

1) · g2.
(b) Broadcasts (V1, V

′
1).

2. For i = 2, . . . , n, Pi does the following:
(a) Compute Vi � powerMult(Vi−1, τi) and V ′

i � powerMult(V ′
i−1, τi−1).

(b) Broadcasts (Vi, V
′
i).

Phase 2: Checking Power Vectors are Valid: The protocol verifier performs the
following checks3 on the broadcasted data from Phase 1:

1. Check that
sameRatioSeq(V1, rp

2
τ1),

and
sameRatioSeq(V ′

1 , (V1,0, V1,1))

3 The checks below could be simplified if we had also used rp1τi . We do not use it as
in the actual code, as explained in the full version, we do not have a G1-τi-pair.

A Multi-party Protocol for Constructing the Public Parameters 73

2. For each i ∈ [n] \ {1} check that

sameRatioSeq(Vi, (V ′
i,0, V

′
i,1)),

sameRatioSeq(V ′
i , (Vi,0, Vi,1)),

and
SameRatio((Vi−1,1, Vi,1), rp2τi)

The protocol verifier rejects the transcript if one of the checks failed; otherwise,
the coordinator defines (PKH � Vn, PK ′

H � V ′
n) is taken as the subprotocol

output.

Phase 3: Checking we didn’t Land in the Zeros of Z: The zero-knowledge prop-
erty of the SNARK requires we weren’t unlucky and τ landed in the zeroes of
Z(X) := Xd − 1.

– Protocol verifier and all players check that Z(τ) · g1 = (τd − 1) · g1 = Vn,d −
Vn,0 �= 0. If the check fails the protocol is aborted and restarted.

3.3 Coordinator After Round 2: Computing Lagrange Basis Using
FFT, and Preparing the Vectors A, B and C

To avoid a quadratic proving time the polynomials in the QAP must be evaluated
in a Lagrange basis. There seems to be no way of directly computing a Lagrange
basis at τ in a 1-round MPC in a similar way we did for the standard basis
in the Random-Powers subprotocol. Thus we will do ‘FFT in the coefficient’ to
compute the Lagrange basis on the output of the random-powers subprotocol.
Details and definitions follow. Let ω ∈ Fr be a primitive root of unity of order
d = 2�, in code d is typically the first power of two larger or equal to the circuit
size.

For i = 1, . . . , d, we define Li to be the i’th Lagrange polynomial over the
points

{
ωi

}
i∈[d]

. That is, Li is the unique polynomial of degree smaller than d,
such that Li(ωi) = 1 and Li(ωj) = 0, for j ∈ [d] \ {i}.

Claim. For i ∈ [d] we have

Li(X) := cd ·
d−1∑

j=0

(X/ωi)j ,

for cd := 1
d .

Proof. Substituting X = ωi′
for i′ �= i we have a sum over all roots of unity of

order d which is 0. Substituting X = ωi we have a sum of d ones divided by d
which is one.

74 S. Bowe et al.

For τ ∈ F
∗
r , denote by we denote by LAGτ ∈ G

d
1 × G

d
2 the vector

LAGτ :=
(
(Li(τ) · g1)i∈[d], (Li(τ) · g2)i∈[d]

)
.

The purpose of the FFT-protocol is to compute LAGτ from POWERSτ . Let us
focus for simplicity how to compute the first half containing the G1 elements.
Computing the second half is completely analogous. We define the polynomial
P (Y)(= Pτ (Y)) by

P (Y) :=
<d∑

j=0

(τ · Y)j .

It is easy to check that

Claim. For i ∈ [d]
Li(τ) = P (ω−i) = P (ωd−i),

and thus
LAGτ = (P (ω−i))i∈[d] · g

Thus our task reduces to computing the vector (P (ωi))i∈[d] · g1 (and then
reordering accordingly). We describe an algorithm to compute the vector
(P (ωi))i∈[d] using the vector (1, τ, τ2, . . . , τd) as input and only linear combi-
nation gates. This suffices as these linear combinations can be simulated by
scalar multiplication and addition in G1, when operating on POWERSτ . We
proceed to review standard FFT tricks that will be used.

For a polynomial P (Y) =
∑<d

i=0 ai · Y i of degree smaller than d, where d is
even, we define the polynomials

PEVEN(Y) :=
<d/2∑

i=0

a2i · Y i,

and

PODD(Y) :=
<d/2∑

i=0

a2i+1 · Y i.

It is easy to see that

P (Y) = PEVEN(Y 2) + Y · PODD(Y 2).

In particular, for i ∈ [d]

P (ωi) = PEVEN(ω2i) + ωi · PODD(ω2i)

For j = 0, . . . , 	 − 1 denote ωj � ω2j . Note further that
{
ω2i

}
i∈[d]

is a subgroup

if size d/2 generated by ω1. More generally, for j = 1, . . . , 	 − 1
{
ω2i

j−1

}
i∈[d]

is a subgroup of size 2d−j generated by ωj . The above discussion suggests the
following (well-known FFT) recursive algorithm.

A Multi-party Protocol for Constructing the Public Parameters 75

FFT
input: Polynomial P , given as list of coefficients, element ω ∈ Fr generating a
group of size d = 2�.
output: The vector V = (P (ωi))i∈[d].

1. If d = 2 compute V directly.
2. Otherwise,

(a) Call the method recursively twice; first with PEVEN and ω2 to obtain
output E := (PEVEN(ω2i))i∈[d/2], and then with PODD and ω2 to obtain
the vector O := (PODD(ω2i))i∈[d/2].

(b) Compute the vector V using E,O and the equality mentioned above.
More specifically, each element Vi of V is computed as

Vi = P (ωi) = PEVEN(ω2i) + ωi · PODD(ω2i) = Ei + ωi · Oi,

(where we subtract d/2 from indices of E and O when they are larger
than d/2).

In summary, we obtain LAGτ by applying the FFT and the polynomial P
described above, with coefficients 1, τ, . . . , τd−1 and an ω of order d - which
should be the same ω used in the QAP construction. After getting the result
from the FFT, we reverse the order of the vector and multiply each element by
the scalar 1/d.

Preparing the vectors A,B and C: We need to compute the vectors A :=
(Ai(τ))i∈[0..m+1] · g1, B := (Bi(τ))i∈[0..m+1] · g1, B2 := (Bi(τ))i∈[0..m+1] · g2, and
C := (Ci(τ))i∈[0..m+1] · g1. We remark that [BCTV14] use the same notation for
vectors of polynomials, while we are looking at the vector of these polynomials
evaluated at τ .

Note that4 Am+1 = Bm+1 = Cm+1 := Z[τ] · g1 = (τd − 1) · g1. After the
FFT, we have obtained LAGτ , so each such element is a linear combination of
elements of LAGτ ; except Z(τ) · g, that can be computed using the elements
τd · g in POWERSτ .

3.4 Round 3

After the random-powers subprotocol and the FFT, the MPC consists of a few
invocations of the random-coefficient subprotocol. These invocations add a total
of two rounds to the MPC, as sometimes and random-coefficient subprotocol
will need the output of a previous random-coefficient subprotocol as input.

4 A technicality is that in the protocol description in [BCTV14] Z(τ) · g2 is appended
with index m + 2 in B2, and Z(τ) · g1 is appended in index m + 3 in C. However
in the actual libsnark code, they are appended in index m + 1, and the prover
algorithm is slightly modified to take this into account. But for the security proof we
assume later on as in [BCTV14] that Am+1 = Cm+3 = Z(τ) · g1, Bm+2 = Z(τ) · g2,
Am+2, Am+3, Bm+1, Bm+3, Cm+1, Cm+2 = 0.

76 S. Bowe et al.

Part 1: Broadcasting Result of FFT: The coordinator broadcasts the vectors
A,B,C,B2.

Part 2: Random Coefficient Subprotocol Invocations: We apply the random-
coefficient subprotocol numerous times to obtain the different key elements. For
an element αi ∈ elementsi, we abuse notation here and denote α := α1 · · · αn

(as opposed to ommitting the index i and writing α for αi which we did when
describing Round 1).

1. PKA = RCPC(A, ρA).
2. PKB = RCPC(B2, ρB).
3. PKC = RCPC(C, ρAρB).
4. PK ′

A = RCPC(A, ρAαA)
5. PK ′

B = RCPC(B, ρBαB).
6. PK ′

C = RCPC(C, ρAρBαC)
7. tempB = RCPC(B, ρB)
8. V KZ = RCPC(g2 · Z(τ), ρAρB). We use that g2 · Z(τ) = g2 · (τd − 1) can be

computed from PK ′
H that was computed in Round 2, part 2, as described in

Sect. 3.2.
9. V KA = RCPC(g2, αA).

10. V KB = RCPC(g1, αB).
11. V KC = RCPC(g2, αC).

3.5 Round 4: Computing Key Elements Involving β, Especially
PKK

Each player (or just the coordinator) computes V := PKA + tempB + PKC .
The players compute

1. PKK = RCPC(V, β)
2. V Kγ = RCPC(g2, γ)
3. V K1

βγ = RCPC(g1, βγ).
4. V K2

βγ = RCPC(g2, βγ).

Finally, the protocol verifier will run verifyRCPC(,) on the input and transcript
of each subprotocol executed in Round 3 or 4; and output acc if and only if all
invocations of verifyRCPC(,) returned acc.

The proof of security for the protocol is given in the appendix.

Acknowledgements. We thank Eli Ben-Sasson, Alessandro Chiesa, Jens Groth,
Daira Hopwood, Hovav Shacham, Eran Tromer, Madars Virza, Nathan Wilcox and
Zooko Wilcox for helpful discussions. We thank Daira Hopwood for pointing out some
technical inaccuracies. We thank Eran Tromer for bringing to our attention the work
of [CGGN17], and the relevance of our protocol to that work, and the connection to
subversion zero-knowledge in general. We thank the anonymous reviewers of the 5th
Workshop on Bitcoin and Blockchain Research for their comments.

A Multi-party Protocol for Constructing the Public Parameters 77

References

[ABLZ17] Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70700-6 1

[BCG+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sam-
pling of public parameters for succinct zero knowledge proofs. In: 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
17–21 May 2015, pp. 287–304 (2015)

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von neumann architecture. In: Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, 20–22 Aug 2014, pp.
781–796 (2014)

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: Nizks with an untrusted CRS:
security in the face of parameter subversion. IACR Cryptology ePrint
Archive 2016:372 (2016)

[BGM17] Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-
SNARK parameters in the random beacon model (2017)

[CGGN17] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge
contingent payments revisited: attacks and payments for services. In: ACM
Communications (2017)

[Fuc17] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 11

[lib] https://github.com/scipr-lab/libsnark, https://github.com/zcash/libsnark
[PHGR16] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical

verifiable computation. Commun. ACM 59(2), 103–112 (2016)
[Sch89] Schnorr, C.P.: Efficient identification and signatures for smart cards. In:

Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[Wil] Wilcox, Z.: https://z.cash/blog/the-design-of-the-ceremony.html

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-76578-5_11
https://github.com/scipr-lab/libsnark
https://github.com/zcash/libsnark
https://doi.org/10.1007/0-387-34805-0_22
https://z.cash/blog/the-design-of-the-ceremony.html

Analysis of the Bitcoin UTXO Set

Sergi Delgado-Segura(B), Cristina Pérez-Solà, Guillermo Navarro-Arribas,
and Jordi Herrera-Joancomart́ı

Department of Information Engineering and Communications, Universitat Autònoma
de Barcelona, CYBERCAT-Center for Cybersecurity Research of Catalonia,

Barcelona, Spain
{sdelgado,cperez,gnavarro,jherrera}@deic.uab.cat

Abstract. Bitcoin relies on the Unspent Transaction Outputs (UTXO)
set to efficiently verify new generated transactions. Every unspent out-
put, no matter its type, age, value or length is stored in every full node.
In this paper we introduce a tool to study and analyze the UTXO set,
along with a detailed description of the set format and functionality. Our
analysis includes a general view of the set and quantifies the difference
between the two existing formats up to the date. We also provide an accu-
rate analysis of the volume of dust and unprofitable outputs included in
the set, the distribution of the block height in which the outputs where
included, and the use of non-standard outputs.

1 Introduction

Bitcoin makes use of the Unspent Transaction Output (UTXO) set in order to
keep track of output transactions that have not been yet spent and thus can be
used as inputs to new transactions. Bitcoin full nodes keep a copy of the UTXO
set in order to validate transactions and produce new ones without having to
check the whole blockchain. This allows, for instance, the use of so called pruned
nodes (introduced in Bitcoin Core v0.11 [1]), which can operate without having
to persistently store the full blockchain.

The UTXO set is thus a key component of Bitcoin. The format, content, and
operation of this set has an important impact on Bitcoin nodes’ operations. The
size of the UTXO set directly impacts on the storage requirements of a Bitcoin
node, and its efficiency directly determines the node validation speed.

We believe that a deep understanding of the Bitcoin UTXO set is needed to
clearly understand the operation of Bitcoin, helping to find potential scalability
and efficiency problems. To that end, we present STATUS (STatistical Analysis
Tool for UTXO Set), a tool to analyze the UTXO set of Bitcoin. To the best of
our knowledge there is no clear description in the literature of the UTXO set,
its format, and how to actually analyze it. We provide such description along
with a deep analysis of the set, and the tools needed to perform it.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 78–91, 2019.
https://doi.org/10.1007/978-3-662-58820-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_6&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_6

Analysis of the Bitcoin UTXO Set 79

The paper is organized as follows. Section 2 describes the UTXO set, its
format, and introduces the STATUS analytical tool. Section 3 provides the actual
analysis, including a general overview, the analysis of dust and unprofitable
UTXOs, the distribution of the block height in which the outputs were included
and the use of non-standard outputs. Finally, Sect. 4 concludes the paper.

2 The UTXO Set

The Unspent Transaction Output (UTXO) set is the subset of Bitcoin trans-
action outputs that have not been spent at a given moment. Whenever a new
transaction is created, UTXOs are used to claim the funds they are holding,
and new UTXOs are created. Basically, transactions consume UTXOs (in their
inputs) and generate new ones (in their outputs). Therefore, transactions pro-
duce changes in the UTXO set.

Since the UTXO set contains all unspent outputs, it stores all the required
information to validate a new transaction without having to inspect the full
blockchain. As the name already suggests, UTXOs are indeed Bitcoin outputs,
and, as such, they consist of two parts: the amount transferred to the output
and the locking script (scriptPubKey) that specifies the conditions to be met
in order to spend the output.

The UTXO set is stored in the chainstate, a LevelDB database that provides
persistent key-value storage. LevelDB [2] is used to store the chainstate database
since Bitcoin v0.8. Apart from the UTXO set, the chainstate database stores two
additional values: the block height at which the set is updated and an obfuscation
key that is used to mask UTXO data [3,4]. Such an obfuscation key is used to
obtain a different file signature of the UTXO set file for every different wallet in
order to avoid false-positives with antivirus software.

The format of the chainstate database changed in version v0.15 of the Bitcoin
Core. We will refer to the previous format as 0.14, although it has been used in
versions from 0.8 to 0.14.

2.1 The UTXO Bitcoin Core 0.14 Format

The chainstate database of Bitcoin Core v0.14 uses a per-transaction model:
there exists a record in the database (i.e., a key-value pair) for each transaction
that has at least one unspent output. Multiple UTXOs belonging to the same
transaction are thus stored under the same key. The key of the record is the
32-byte transaction hash, preceded by the prefix “c”. This prefix is needed to
distinguish transactions from other data that are also stored in the database,
and is also used to discriminate v0.14 format from the recently released v0.151.

The value of the record stores metadata about the transaction (version, height
and whether it is coinbase or not) and a compressed representation of the UTXOs
of the transaction [5].

1 Bitcoin Core v0.15.0 was released on 14th of September 2017.

80 S. Delgado-Segura et al.

Regarding the UTXOs, the encoding first identifies the indexes of the outputs
of the transaction that are unspent and then includes information about those
outputs. The encoding is optimized to favor the first two outputs. UTXOs are
then encoded taking into account their type. Six different types are specially
established, that allow to efficiently store P2PKH, P2SH and four different cases
of P2PK scripts. For these types, only the required data are stored since there is
no need to store the full script (the type uniquely determines it). For instance, for
P2PKH outputs only the address is stored. For scripts other than these specific
types, the full output script is stored. Additionally, for each output regardless
of its type, a compact representation of the amount of bitcoins is also stored.

2.2 The UTXO Bitcoin Core 0.15 Format

One of the main changes from the last Bitcoin Core’s major release (v0.15) has
been a change of the internal representation of the chainstate in favor of a better
performance both in reading time and memory usage [6,7].

This new format uses a per-output model in contrast to the previously defined
per-transaction model, that is, every entry in the chainstate now represents a
single UTXO, instead of a collection of all the UTXOs available for a given trans-
action. To achieve this, the key-value (known as outpoint-coin in the source code)
structure has been modified. Keys encode both the 32-byte transaction hash and
the index of the unspent output, preceded by the prefix “C”. Regarding coins,
each one encodes a code, that contains metadata about the block height and
whether the transaction is coinbase or not (notice that the transaction version
has been dropped), a compressed amount of bitcoins, and the output type and
script encoded in the same way as the version v0.14.

Storing unspent outputs one by one instead of aggregated in a same transac-
tion greatly simplifies the structure of the coin and reduces the UTXOs accessing
time. By using the previous structure when a transaction with more than one
unspent output was accessed all data needs to be decoded, and all the non used
outputs encoded and written back into the database. However, this new format
has the downside of increasing the total size of the database [7].

2.3 STATUS : The UTXO Analytic Tool

We have created STATUS (STatistical Analysis Tool for Utxo Set), an open
source code tool that provides an easy way to access, decode, and analyze data
from the Bitcoin’s UTXO set2 STATUS is coded in Python 2 and works for both
the existing versions of Bitcoin Core’s UTXO set, that is, the first defined format
(versions 0.8−0.14) and the recently defined one (version 0.15). STATUS reads
from a given chainstate folder and parses all the UTXO entries into a file. From
the parsed file STATUS allows you to perform two types of analysis: a UTXO
based one, and a transaction based one, by decoding all the parsed information
from the chainstate.

2 It can be found under a bigger Bitcoin Tools library at https://github.com/sr-gi/
bitcoin tools/tree/v0.1/bitcoin tools/analysis/status.

https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status
https://github.com/sr-gi/bitcoin_tools/tree/v0.1/bitcoin_tools/analysis/status

Analysis of the Bitcoin UTXO Set 81

In the UTXO based analysis, apart from the data mentioned in Sects. 2.1 and
2.2 that STATUS directly decodes, it also creates additional meta-data about
each parsed entry, such as dust and unprofitable fee rate limit, that will be deeply
analyzed in Sect. 3. Regarding transaction based analysis, STATUS aggregates
all the parsed UTXOs that belong to the same transaction, providing addi-
tional meta-data such as total number of UTXOs from a given transaction, total
unspent value of the transaction, etc. Finally, STATUS uses numpy and mat-
plotlib Python’s libraries to provide several statistical data analyses and charts
for all the analyzed data.

3 UTXO Set Analysis

In this section we analyze the UTXO set of the blockchain state at block 491,868,
corresponding to the 26th of October 2017 at 13:13:38 using the STATUS tool.
First, we provide a general view of the data included, regarding the total number
of outputs and their size depending on the Bitcoin Core UTXO set format.
We also analyze different output subsets within the UTXO set that could be
interesting to measure in order to provide some hints whether a more efficient
UTXO set codification could be used.

3.1 General View

Using STATUS, we can retrieve details related to the general numbers behind
the UTXO set. Table 1 presents a summary of such basic facts of the analyzed
UTXO set. There are 52 and a half million UTXOs in the set, belonging to
more than 23 million different transactions. Although this gives an average of
2.26 UTXOs per transaction, the distribution is very skewed, with most of the
transactions having just one unspent output.

Table 1. Summary

v0.14 v0.15
Num. of tx 23,241,914
Num. of UTXOS 52,543,649
Avg. num. of UTXOS per tx 2.26
Std. dev. num. of UTXOS per tx 18.27
Median num. of UTXOS per tx 1
Size of the (serialized) UTXO set 2.02 GB 3.00 GB
Avg. size per register 93.45 B 61.46 B
Std. dev. size per register 443.20 7.65 B
Median size per register 62 61

82 S. Delgado-Segura et al.

Figure 1a shows a cumulative distribution function (cdf) of the number of
UTXOs per transaction.3 Note that 87.9% of the transactions have only 1
UTXO4 and 94.97% have less than 3. The maximum number of UTXOs per
transaction is 3,452 [8] which originally had 5,419 outputs.

(a) Number of UTXOs per transaction (b) Amount per UTXO (in satoshi)

Fig. 1. (a) Number of UTXOs per transaction, (b) Amount per UTXO (in satoshi)

Differences between both data formats (v0.14 and v0.15) are clear regarding
the serialized UTXO set size (see Table 1). While the v0.14 format uses 2.02 GB
with an average size per record of 93.45 bytes (a total of 23,241,914 records),
the 0.15 format expands the information to 3.00 GB which represents an average
size per record of 61.46 bytes (with 52,543,649 records). Such a difference is due
to the way outputs are stored in both formats, as detailed in Sect. 2. However,
the median size per register of both versions is very similar, with most registers
occupying between 59 and 64 bytes. Such measurement is sound since both
versions store the 32-byte transaction id and some identifier of the output, so
the size difference for every register is only significant when the transaction has
more than a single UTXO. Whereas the number of registers with less than 59
bytes is negligible (just 30 of them for v0.14 and 222 for v0.15), 83.25% of them
in v0.14 and 99.0% in v0.15 are ≤63-byte long.

As a matter of fact, the smallest stored register in v0.14 is just 41-byte long [9]
and contains a single non-standard UTXO with a 1-byte length script containing
an invalid opcode. This UTXO is also one of the smallest registers in v0.15, with
40 bytes (12 additional registers have also the same size in v0.15). Section 3.4
provides an exploration of non-standard transactions in the UTXO set.

3 All the analysis plots included in this section show cumulative distribution functions.
Therefore, a point (x, y) in the plot shows the probability y that a given variable
(depicted in the x axis label) will take a value less than or equal to x.

4 Notice that such measure indicates that, although the average number of outputs in
regular Bitcoin transactions is higher, the number of outputs that remain unspent
is, mostly, only one.

Analysis of the Bitcoin UTXO Set 83

Another interesting information of the UTXO set that can be retrieved with
STATUS is the amount of UTXOs of each type, as detailed in Table 2. Notice
that UTXOs are classified between the different standard types also providing
a distinction between compressed and uncompressed keys for the P2PK type.
As data show, more than 99% of the UTXO set are P2PKH and P2SH outputs,
being P2PKH the vast majority of stored outputs. In Sect. 3.4 we provide detailed
information regarding the 0.8% of UTXOs classified as others.

Table 2. UTXO types

Num. of utxos 52,543,649 100%

Pay-to-PubkeyHash (P2PKH) 43,079,604 81.99%

Pay-to-ScriptHash (P2SH) 8,987,799 17.11%

Pay-to-Pubkey (P2PK) 66,759 0.12%

Compressed 29,977 0.06% (44.90%)

Uncompressed 36,782 0.07% (55.10%)

Others 409,487 0.8%

Figure 1b provides information about the amount of satoshi deposited in each
UTXO, showing that 98.46% of the UTXOs store less than one Bitcoin, with an
average of 0.32B per UTXO.

3.2 Dust and Unprofitable UTXOs

An interesting type of outputs included into the UTXO set are those whose
economical value is small enough to represent a problem when they have to be
spent. One well identified type of these UTXOs is tagged as dust. According to
the Bitcoin Core reference implementation [10], a dust output is the output
of a transaction in which the fee to redeem it is greater than 1/3 of its value.
Besides this well known definition we also define an unprofitable output as
the output of a transaction that holds less value than the fee necessary to be
spent, resulting in financial loses when used in a transaction.

In order to identify both types of outputs, it is important to recall that the
amount of fees a transaction has to pay to be included in a new block depends
on two factors: the fee-per-byte rate that the network is expecting at the time of
creating the transaction and the size of the transaction. The fee-per-byte rate,
measured in satoshi, is a highly variable factor that depends on the transaction
backlog (i.e. how many transactions are pending to be included in new blocks).

Since fees depend on the transaction size, in order to label the outputs in
the UTXO set as a dust or unprofitable, we need an estimation of the size of
data needed to spend such output. In order to identify the minimum information
needed, we can consider an already standard transaction with its inputs and its
outputs and enough fees to be relayed. Then, we define the minimum-input of
a UTXO as the smallest size input that spends such UTXO. The size of such

84 S. Delgado-Segura et al.

minimum-input, together with the value held in the output and the fee rate,
will determine whether a UTXO may be included into the dust or unprofitable
categories.

In order to measure the size of such minimum-input, we need to review the
structure of a Bitcoin transaction. As depicted in Fig. 2, all transactions follow
a standard structure containing some fixed length parameters that determine a
minimum transaction size, and some variable length parameters, depending on
the transaction type. When a transaction is created, inputs are defined referring
to some UTXOs. Such inputs have different size depending on the output type
they are related to. On the other hand, new outputs are generated for every new
transaction, and thereby some additional size, which will depend on the new
output type, will be added to the transaction.

version #inputs #outputs nLockTime

4-byte var size var size 4-byte

value scriptPubKeyscriptPubKey length

8-byte var size var size

prev_out_index scriptSig length scriptSig nSequenceprev_tx_id

32-byte 4-byte 4-bytevar size var size

inputs

outputs

Fig. 2. Generic transaction structure

Depending on the UTXO type, its minimum-input size will be different. Such
measure can be split in two parts: fixed size and variable size. Regarding the
fixed size, as depicted in Fig. 2 (taking into account only the input box), we
can identify three fields: prev tx id, pev out index and nSequence. There-
fore, for every UTXO, its minimum-input will be at least 40-byte long inde-
pendently of its type. On the other hand, the content and length of the fields
scriptSig and scriptSig length depend on the UTXO type, specified in the
field scriptPubKey of the UTXO.

The different types of outputs, with their corresponding size, can be classified
as follows:
Pay-to-PubKey (P2PK) Outputs: The minimum-input of this type of
UTXO specifies just a digital signature to redeem the output and the scriptSig
includes the following data:

PUSH sig (1 byte) + sig (71 bytes)

Analysis of the Bitcoin UTXO Set 85

Bitcoin uses DER encoded ECDSA signatures in the scripts of its transac-
tions, which can be between 71 and 73 bytes long depending on their r and s
components. Such variability comes from the randomness of the r parameter, so
by iterating the signature generation it is possible to craft an specific signature
within 71 bytes.5 Hence, minimum-input size for a P2PK UTXO will be 71-bytes
long and scriptSig len field will be 1-byte long, so a total of 72 bytes.

Pay-to-PubkeyHash (P2PKH) Outputs: For this UTXO to be redeemed,
both a signature (sig) and a public key (pk) are needed in the scriptSig, as
shown below:

PUSH sig (1 byte) + sig (71 bytes) + PUSH pk (1 byte) +
pk (33-65 bytes)

Regarding the signatures, the same assumptions as for P2PK outputs applies,
that is, 71-byte length can be considered. Regarding public keys used by Bitcoin,
they can either be compressed or uncompressed, which will significantly vary
their size:

– Uncompressed keys: Such keys were used, by default, in the first versions of
the Bitcoin core client, and they are 65-byte long.

– Compressed keys: By 30th March 2012 (around block height 173480) Bitcoin
core started using this more efficient type of keys, which are almost half size
of the previous ones (33 bytes), and therefore make smaller scripts.

So, the size for the scriptSig varies from 106 to 138 and then the scriptSig
length field will be 1-byte long, resulting in a total minimum-input size between
107 and 139 bytes.

Pay-to-Multisig (P2MS) Outputs: The size of the minimum-input to redeem
such a script highly varies depending on the number of signatures required, which
ranges up to 20 (20-of-20 multisig)6, so the scriptSig for redeeming such output
is as follows:

OP_0 (1 byte) + (PUSH sig (1 byte) + sig (71 bytes)) *
required_signatures (1-20)

Thus, the size of the scriptSig field will range between 73 and 1441 bytes,
making the scriptSig len field range between 1 and 2 bytes, so the total
minimum-input size will be between 74 and 1443.

5 Notice that this procedure assumes, in contrast to the normal behaviour of standard
wallets, that the ECDSA implementation does not use a deterministic function to
compute r.

6 Although the standard considers a maximum number of 3 signatures in a P2MS
output, up to 20 are valid regarding the consensus rule [11] so they could potentially
be found in the UTXO set.

86 S. Delgado-Segura et al.

Pay-to-ScriptHash (P2SH) Outputs: Unlike any previous output type,
input size created from P2SH outputs can not be straightforwardly defined in
advance. P2SH outputs hide the actual input script behind a hash, in order to
make smarter outputs, by making them smaller and thus, allowing the payer to
pay lower fees. However, the scripts held by those UTXOs give us no clue about
how the minimum-input should be build.

Table 3 summarizes the sizes of the minimum-input for each UTXO type.

Table 3. Minimum-input size summary

scriptSig

UTXO type Fixed size scriptSig length sig pk Push data Total size

P2PK 40 1 71 - 1 113

P2PKH 40 1 71 33−65 2 147−179

P2MS 40 1−2 71−1420 - 2-21 114−1483

P2SH 40 var var var var 40-var

Notice that the previous analysis does not take into account the new
SegWit transaction format [12]. The minimum-input size for such type of out-
puts needs an extended analysis. However, at present time, the total outputs
in the UTXO set that correspond to a SegWit output is upper bounded by a
2.26% (see Sects. 3.1 and 3.4) so, giving such small amount of data, the results
presented here will not significantly change, we leave such analysis for further
research.

Fig. 3. Evolution of fees (Source: Blockchain (https://www.blockchain.info).

Once we determined the amount of data of the minimum-input for each type
of UTXO, based on a defined fee-per-byte rate, we can identify those outputs
form the UTXO set that fall into both the dust and the unprofitable categories.

https://www.blockchain.info

Analysis of the Bitcoin UTXO Set 87

Fee rate (sat/byte)

(a) % of dust/unprofitable UTXOs
w.r.t. fee-per-byte.

Fee rate (sat/byte)

(b) % of occupied space w.r.t. fee-per-
byte rate.

(c) % of economic value w.r.t. fee-per-
byte rate.

Fig. 4. Dust and unprofitable analysis (blue and green lines respectively). (Color figure
online)

To obtain the data, the following considerations have been taken. The minimum-
input size for P2PK and P2MS outputs have been precisely computed since the
information to determine the exact size of the minimum-input can be derived
from the output data itself. However, it is not possible to exactly determine
such value for the P2PKH neither for the P2SH. In the first case, we have
taken the following approach. For those outputs up to block 173480 we have
considered uncompressed addressed and for the newer ones we have take the
of most conservative approach, assuming that all public keys from that point
onward are in compressed form (33 bytes) so reducing the number of UTXO
that fall into both categories. For the P2SH, being not able to set a proper lower
bound for the variable part, we have performed the analysis assuming only the
fixed 40 bytes.

Finally, the last parameter to set is the fee-per-byte rate. As depicted in Fig. 3,
such rate is far from fixed and has high variability. Thus, in order to measure
different possible scenarios, we have considered a wide fee-per-byte spectrum,
ranging from 30 to for 340 satoshi/byte.

88 S. Delgado-Segura et al.

The volume of both dust outputs and unprofitable outputs (blue and dotted
green lines respectively) in the UTXO set are depicted in Fig. 4.

Figure 4a shows the relative size of dust and unprofitable output sets within
the total UTXO set. Notice that for a fee-per-byte as small as 80 satoshi/byte
onwards, more than the 50% of UTXOs (26.29 million outputs) from the set
can be considered dust, whereas the same 50% size for the unprofitable set is
reached for 240 satoshi/byte onward. Regarding the size that such data, Fig. 4b
shows how those UTXOs represent a relevant part of the total size from the set
(more than the 50% for around 70 satoshi/byte onward), while the same can
be seen for unprofitable UTXO for a rate of 200 satoshi/byte onward. Finally,
from an economic point of view, Fig. 4c shows, as expected, how those dust and
unprofitable UTXOs represent a negligible amount from the total value of the
UTXO set, that is the total number of bitcoins in circulation.

3.3 Height

Another interesting type of UTXO outputs are those that were created a long
time ago. Although it is difficult to determine the average time in which a UTXO
will be spent, some old UTXOs may belong to keys that are lost, so such old
UTXOs may will never be spent.

(a) Height per transaction/UTXO. (b) UTXO type evolution by height.

Fig. 5. Output age-based analysis (Color figure online)

Figure 5a depicts the height of the block where the transaction is included in
a per transaction (v0.14 register, blue line) and per UTXO (v0.15 register green
line) fashion. Half of the stored UTXOs are older than January 2017 (block
449,896 corresponds to the median), whereas the other half are younger. This
means that almost half of the current UTXO set is used by UTXOs created in
the current year (2017). On the other hand, there are still very old UTXOs: 2%
of them are older than August 2012 (block height 194,635).

In Fig. 5b we can see the evolution in time of the different types of outputs in
the UTXO set. Notice that P2PKH and P2SH show a stable distribution in time.
On the other hand, outputs labelled as “others” are mainly from old transactions

Analysis of the Bitcoin UTXO Set 89

since 95% of them are older than March 2016 (block height 403,052). Finally, the
graphic also shows that P2PK outputs have an irregular behaviour. 50% of them
were created before block 91,542 which is an expected result since P2PKH were
developed afterwards as an improvement of P2PK. However, it is interesting to
see that, after a long time with very few outputs of this type, around March
2017 and during 324 blocks, 15% of the actual P2PK outputs included in the
UTXO set were created.

Fig. 6. Coinbase evolution by height.

Figure 6 shows an already known fact that indicates that most of the bit-
coins created at the beginning of the cryptocurrency are still pending to redeem.
More precisely, 75% of the coinbase outputs in the UTXO set were created
before block 274,946 (December 2013). In contrast, just 6% of the current UTXOs
were created before that block (see Fig. 5a).

3.4 Non-standard

As shown in Table 2, we have labelled as “others” 409,487 UTXOs from the
UTXO set since they do not fall into the main categories P2PK, P2PKH and
P2SH. A detailed analysis of such UTXOs, provided in Table 4, shows that almost
all UTXOs correspond to a Pay-to-Multisig (P2MS) outputs being the configu-
ration of 1–2 and 1–3 the most popular cases. Notice that, the UTXOs included
are those with configuration up to three public keys, which is sound according
to the fact that this is the upper bound for a multisignature output to be con-
sidered standard by the Bitcoin network transaction relaying policies. Finally, it
is worth to mention that there exist 828 UTXOs with 1−1 configuration, a fact
that does not make much sense since it is an output with functionality equivalent
to a P2PK but with a larger script size and so highers fees may be needed to
spent it.

Regarding the 1,169 outputs labeled as others in Table 4, 34.05% of them
(398) are new native SegWit type outputs. More precisely, Pay-to-Witness-
Public-Key-Hash (P2WPKH) account for 40 outputs and Pay-to-Witness-
Script-Hash (P2WSH) accounts a total of 358.

90 S. Delgado-Segura et al.

Table 4. Multisig analysis.

1–1 828 0.20%

1–2 199,904 48.81%

2–2 1,353 0.33%

1–3 206,096 50.33%

2–3 117 0.02%

3–3 20 0.005%

Others 1,169 0.28%

4 Conclusions and Further Research

In this paper we have introduced STATUS, a tool to analyze the UTXO set
of Bitcoin (based on the Bitcoin Core implementation), and we have provided
an analysis of such set, paying special attention to dust and unprofitable trans-
actions. We have also provided a detailed description of the UTXO set format,
including the new format introduced in Bitcoin Core v0.15. The use of this format
as compared to the previous one does not have an impact on the analysis we have
presented in this paper. The new version provides more efficient access to the
UTXO information at the expense of slightly higher storage requirements. Addi-
tionally, we provide interesting data that shows the high percentage of ”static
information” (in the sense that is not going to be spent -dust and unprofitable-)
included in the UTXO set that reduces the efficiency of the database in terms
of space. Finally, it is interesting to notice that currently there is a very low
percentage of SegWit UTXO, upper bounded by a 2.26% of the total outputs
stored in the UTXO set. As this will possibly increase in the future, the analysis
of dust and unprofitable transactions will need to be revisited in further research
in order to update the results with these new types of outputs.

Acknowledgements. This work is partially supported by the Spanish ministry under
grant number TIN2014–55243-P and the Catalan Agència de Gestió d’Ajuts Universi-
taris i de Recerca (AGAUR) grant 2014SGR-691.

References

1. Bitcoin Core. Bitcoin core 0.11.0 release notes, July 2015. https://github.com/
bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md

2. Ghemawat, S., Dean, J.: Leveldb (2014). https://github.com/google/leveldb.
Accessed Oct 2017

3. Bitcoin Core. Bitcoin core 0.12.0 release notes, February 2016. https://bitcoin.org/
en/release/v0.12.0

4. Bitcoin Core. Obfuscate database files. Bitcoin Core Github Issue 6613, July 2015.
https://github.com/bitcoin/bitcoin/issues/6613

5. The Bitcoin Core developers. Bitcoin core 0.14 source code: coins.h (2017).
Github: https://github.com/bitcoin/bitcoin/blob/0.14/src/coins.h

https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md
https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md
https://github.com/google/leveldb
https://bitcoin.org/en/release/v0.12.0
https://bitcoin.org/en/release/v0.12.0
https://github.com/bitcoin/bitcoin/issues/6613
https://github.com/bitcoin/bitcoin/blob/0.14/src/coins.h

Analysis of the Bitcoin UTXO Set 91

6. Bitcoin Core. Bitcoin core 0.15.0 release notes, September 2017. https://bitcoin.
org/en/release/v0.15.0

7. Greg Maxwell. A deep dive into bitcoin core 0.15. SF Bitcoin Developers
Meetup, September 2017. http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-
28-deep-dive-bitcoin-core-v0.15/

8. Blockcypher. Bitcoin transaction. https://live.blockcypher.com/btc/tx/d8505b78
a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7/. Accessed Oct
2017

9. Blockcypher. Bitcoin transaction. https://live.blockcypher.com/btc/tx/8a68c461a
2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a/.AccessedOct 2017

10. Bitcoin Core developers. Bitcoin core 0.10.0rc3 source code: transaction.h, line 137,
December 2014. Github: https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/
primitives/transaction.h#L137

11. Wuille, P.: Answer to: What are the limits of m and n in m-of-n multisig addresses?
Bitcoin StackExchange (2014). https://bitcoin.stackexchange.com/a/28092/30668

12. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer). Techni-
cal Report BIP-141, Bitcoin Improvement Proposal (2015). https://github.com/
bitcoin/bips/blob/master/bip-0141.mediawiki

https://bitcoin.org/en/release/v0.15.0
https://bitcoin.org/en/release/v0.15.0
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
https://live.blockcypher.com/btc/tx/d8505b78a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7/
https://live.blockcypher.com/btc/tx/d8505b78a4cddbd058372443bbce9ea74a313c27c586b7bbe8bc3825b7c7cbd7/
https://live.blockcypher.com/btc/tx/8a68c461a2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a/
https://live.blockcypher.com/btc/tx/8a68c461a2473653fe0add786f0ca6ebb99b257286166dfb00707be24716af3a/
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#L137
https://bitcoin.stackexchange.com/a/28092/30668
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

Hostile Blockchain Takeovers
(Short Paper)

Joseph Bonneau(B)

New York University, New York, USA
jbonneau@gmail.com

Abstract. Most research modelling Bitcoin-style decentralised consen-
sus protocols has assumed profit-motivated participants. Complementary
to this analysis, we revisit the notion of attackers with an extrinsic moti-
vation to disrupt the consensus process (Goldfinger attacks). We outline
several routes for obtaining a majority of decision-making power in the
consensus protocol (a hostile takeover). Our analysis suggests several fun-
damental differences between proof-of-work and proof-of-stake systems
in the face of such an adversary.

1 Introduction

Bitcoin [15] has achieved significant popularity since its 2009 launch, with a mon-
etary base nominally worth over US$100 billion at the time of this writing. Per-
haps Bitcoin’s most important innovation is its decentralised consensus protocol.
Bitcoin-style consensus (or “Nakamoto consensus”) uses computational (proof-
of-work) puzzles to maintain consensus on the blockchain, a public append-only
ledger storing all transactions to prevent double-spending. The computational
puzzles are intended to make disrupting the consensus protocol expensive, as
an attacker must obtain a large fraction of all computational power in the sys-
tem to deviate from the default protocol. This basic design has been adapted in
dozens of follow-up cryptocurrencies with similar consensus protocols, notably
Ethereum [21] which is itself worth close to US$30 billion.

It was known from the start that an attacker with a majority of computa-
tional power can easily cause arbitrarily deep forks in the blockchain [15]. It has
subsequently been shown that an attacker with substantially less power can, at
the very least, undermine the fair distribution of rewards in the system [4,16,18].
These attack strategies are profitable in a fixed exchange-rate model (in which an
attacker’s utility is solely measured in currency units within the system itself).
A similar modelling approach has been used in many papers [6–8,10,11,17] ana-
lyzing Bitcoin-style protocols with the goal of proving positive results about
incentive-compatibility ; that is, that given a specific utility model for miners
intended properties of the system will emerge such as an ever-growing longest
chain (stability) and proportional distribution of mining rewards (fairness).

An inherent limitation to this approach is that real-world attacks may neg-
atively affect systems’ value (and exchange rate with external currencies), mak-
ing some mining strategies which deviate from the standard protocol to increase
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 92–100, 2019.
https://doi.org/10.1007/978-3-662-58820-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_7&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_7

Hostile Blockchain Takeovers 93

nominal miner revenue actually yield less utility. A more realistic utility func-
tion is revenue denominated in a stable external currency (such as US dollars).
Because accurately modeling the impact of miner behavior on exchange rates
is difficult, analysis along these lines is usually qualitative. Thus, our ability
to compare the stability of competing protocol flavours like proof-of-work and
proof-of-stake remains limited.

In this work, we analyse the stability of consensus protocols from a different
viewpoint. Rather than considering the risk of an attacker undermining desired
properties to maximise utility, we consider an attacker whose explicit goal is to
undermine and destabilise the consensus protocol. Kroll et al. [11] first considered
such an attacker, which they called a Goldfinger attacker after the James Bond
villain who attempted to irradiate US Treasury reserves. This attack model has
received relatively little research attention since its proposal. Yet if the cost of
undermining a currency system is low relative to the total value of currency in
the system, the system may not be stable even if there were no motivation to
mount such an attack.

Revisiting the dynamics of Goldfinger-style attacks is useful for two rea-
sons. First, the potential motivations for a Goldfinger attack have become more
plausible. Kroll et al. [11] hypothesised a government-sponsored attack, a social
protest movement, or an attacker with a significant short position on the target
currency’s exchange rate. In the 4 years since, Bitcoin has received increased
attention (often negative) from governments as well as social movements (par-
ticularly due to environmental concerns). Shorting a cryptocurrency is also more
realistic as cryptocurrency option markets mature. Additionally, the plethora of
cryptocurrencies in existence today provide a new motivation: under the simpli-
fying assumption that various cryptocurrencies are competing for adoption from
a fixed pool of cryptocurrency users and investors, eliminating a competing sys-
tem might increase the value of a surviving system. For example, an investor
with significant Bitcoin holdings might profit from undermining Ethereum, or
undermining a fork of Bitcoin such as Bitcoin Cash.

Second, many variants of Nakamoto consensus are now deployed. In par-
ticular, there are now ASIC-mined blockchains (e.g. Bitcoin), GPU-mined
blockchains (e.g. Ethereum) as well as many proposals for proof-of-stake and
other variants. Goldfinger attacks provide an interesting comparison of these
competing designs.

In the remainder of this work we analyze the difficulty of mounting a
Goldfinger-style attack. We focus specifically on attacks in which an attacker
obtains significant decision-making power (which we call capacity) and uses it to
introduce forks in the system to cause significant damage, calling such an attack
a hostile takeover. For simplicity, we focus on an attacker obtaining a major-
ity, though of course significant damage may be done with less capacity. Other
avenues for a Goldfinger attack exist which we do not consider, for example,
denial-of-service attacks on the transaction relay network [9,20]. Our primary
contribution is categorising the avenues for a hostile takeover and providing some
basic analysis. We also posit several hypotheses about the difference in difficulty
of mounting a hostile takeover against different variants of Nakamoto consensus.

94 J. Bonneau

Table 1. Four basic strategies for gaining capacity in a Nakamoto consensus protocol.

2 Methods of Obtaining Capacity

An attacker aiming to take over a Nakamoto consensus protocol needs to obtain
capacity, the details of which vary for different protocol designs. For a proof-of-
work blockchain, they must obtain control of a large amount of computational
capacity (similarly, a large amount of storage capacity for proof-of-space systems,
and so forth). For a proof-of-stake blockchain, they must obtain control of a large
amount of stake (currency) in the system.1

We consider two primary axes to compare methods of obtaining capacity:

• New vs. existing capacity: Is the attacker introducing new capacity into
the system which was not previously used for the consensus protocol, or
obtaining control of capacity already in use? Note that for proof-of-stake
systems, the amount of capacity is fixed so it is not possible to introduce new
capacity into the system.

• Permanent vs. temporary control: Is the attacker obtaining permanent
control of the capacity, or only temporary control?

We can consider whether the attacker is obtaining mining capacity perma-
nently or temporarily, and whether they are introducing new capacity into the
system or capturing existing mining capacity. This yields four basic attack strate-
gies, as shown in Table 1. We now consider each of these in turn.

2.1 Rental Attacks

In a rental attack, the attacker temporarily obtains control of capacity external
to the system. For example, an attacker might rent computational power or
storage space from a cloud computing service or rent control of a large botnet.
A key advantage of this approach is that the attacker has low up-front costs and
no long-term liability. We note that this attack is impossible for proof-of-stake
systems (as there is no external capacity to obtain).

1 There are other potential attacks on proof-of-stake systems, such as purchasing keys
from former stakeholders to induce a long fork (the “nothing-at-stake problem”).
In this paper, we assume some solution exists for this problem and that a takeover
requires obtaining a majority of the current stake in the system.

Hostile Blockchain Takeovers 95

Furthermore, rental is generally feasible only for blockchains in which the
capacity is a commodity with external applications. Ethereum fits this descrip-
tion today as mining is dominated by graphics cards (GPUs).2 Proof-of-
storage [14,19], proof-of-space [5] or proof-of-elapsed-time [3] are also candidates
for rental. However, for ASIC-dominated proof-of-work blockchains, such as Bit-
coin, the rent strategy is likely not possible because there is a negligible amount
of Bitcoin mining hardware that is not already dedicated to Bitcoin mining.

Case Study: Rental Attacks on Ethereum. As a representative example we con-
sider3 the cost of renting GPU capacity from Amazon’s Elastic Compute Cloud
(EC2). Currently, Amazon rents machines with Nvidia K80 GPUs for about $1
per hour at spot prices, with bulk discounts available. These units are estimated
to perform 50–100 MH/s. Therefore it might require renting about 1 million
GPUs for a price of about $1 million/hr to perform a temporary takeover of the
Ethereum blockchain. Even a few hours of disruptive attacks could be sufficient
to cause a major loss in value to the system, which has a market cap of almost $30
billion. As a sanity check, Ethereum miners currently earn roughly $250,000/hr
in mining revenue (from block rewards and gas fees), so renting capacity would
not be profitable on its own, even with a considerable bulk discount.

2.2 Building Attacks

In a building attack, the attacker permanently obtains new capacity. For exam-
ple, the attacker might building a new mining farm. Again, this approach is not
applicable to proof-of-stake, but is possible for all types of proof-of-work system.

Case Study: Building Attacks on Bitcoin. We consider the AntMiner S9, a state-
of-the-art ASIC miner built with 16 nm features. It retails for about $2,000 and
can perform about 14 TH/s (consuming over 1 kW of electricity). Given the
Bitcoin network’s current hash rate of roughly 1018 H/s, an upfront capital cost
of roughly $1.5 billion would build enough capacity to take over the Bitcoin
blockchain. Of course, this figure is approximate. It would be far cheaper to buy
this hardware in bulk, however there would also be additional infrastructure and
cooling costs when building a large mining farm.

Case Study: Building Attacks on Ethereum. For Ethereum, we consider the
Radeon Rx Vega 56 GPU as an example mining card offering among the best
performance for cost. Each card can perform about 36 MH/s and costs around
$550. Although less powerful than the Nvidia units available for rent, lower unit
costs mean the Radeon cards are more cost-effective. Given Ethereum’s current
hash rate of approximately 1011 H/s, this means an attacker must spend roughly
$1.5 billion to build enough capacity to take over the Ethereum blockchain.
2 In addition to rendering graphics, GPUs are now commonly used for a variety of

tasks including scientific computing and machine learning.
3 Our case studies are based on market data as of November 2017. We leave all values

approximate to two significant figures. All values are in US dollars.

96 J. Bonneau

Comparison. Interestingly, we obtain similar figures for a building attack against
both Bitcoin and Ethereum—about $1.5 billion. This indicates there has been
higher investment in Ethereum hardware relative to the system’s total market
value. There are two simple explanations: first, while Ethereum overall has a
lower total value by a factor of more than three, the rate of revenue earned
by Ethereum miners is relatively higher, about half that of Bitcoin. Second,
nearly all current Bitcoin mining hardware was built specifically for mining Bit-
coin, whereas Ethereum hardware may be acquired used or rented. Similarly,
Ethereum miners may be more willing to invest in hardware knowing that they
can sell if the system declines in value.

From either figure, we see a roughly thousand-fold increase between the cost
of a building attack and the cost (per hour) of a rental attack against Ethereum.
A building attack is also much slower and more logistically complex to execute.
This is an argument in favor of ASIC-friendly mining puzzles as a defense against
rental attacks.

2.3 Bribery Attacks

In a bribery attack, the attacker offers payments to existing miners to deviate
from the default protocol and mine on the attacker’s branch. Note that we do not
use the term “bribery” to indicate illegal or unethical behavior, simply that a
side payment is being made. Several mechanisms for bribery have been proposed
with various trust and risk properties [1,12]. For an example, an attacker might
pay miners outside the protocol directly or through a negative-fee mining pool,
or within the system by broadcasting anybody-can-spend transactions or trans-
actions with abnormally high fees which are redeemable only on the attacker’s
branch. We suggest that it is also feasible for an attacker to create a smart con-
tract to autonomously bribe miners working on another blockchain by checking
that they have found blocks building on a designated starting point (similar tech-
niques have been developed for implementing a mining pool in Ethereum [13]).

Previous analysis considered bribes motivated by executing a fork-and-
double-spend attack (a “Finney attack”). In the simplest model, the attacker
only needs to ensure that mining on the attack chain is more profitable than
mining on the longest chain. Unlike renting or building attacks, the miner only
needs to bribe half of the current capacity (rather than duplicating all of it),
meaning about $125,000/hr for Ethereum or $250,000/hr for Bitcoin.4 Of course,
successfully executing a bribery attack may require paying a premium to over-
ride miner loyalty and convince miners to work on a fork that would be highly
detrimental to the system. Though as argued previously [1] refusing to accept
bribes representing a significant increase in revenue would be a tragedy of the
commons. Presumably, similar dynamics would apply to proof-of-stake systems.

4 Note that we only consider bitcoin-denominated revenue. Many Bitcoin miners earn
a small amount of additional revenue through merge-mining other currencies.

Hostile Blockchain Takeovers 97

We note that bribery appears cheaper than even rental attacks and thus could
be a significant threat to distributed consensus protocols. The cost is directly
proportional to the rate of miner revenue, implying that even in a proof-of-stake
system stability may require paying a non-trivial portion of the system’s total
value in fees. It has previously been argued [2] that Bitcoin may be unstable
without the fixed block reward as rewards become time-varying. It also may be
unstable simply because fees are too small relative to the value of the system.

2.4 Buy-Out Attacks

A buy-out attack would involve purchasing the majority of existing capacity
from current owners. For proof-of-stake systems, the cost is half of the current
monetary base, for example about $15 billion for Ethereum or $50 billion for
Bitcoin. For proof-of-work systems, the cost should be about half of the net
present value of all future mining rewards. It appears that proof-of-stake systems
are much more secure here, as the attacker must buy half of all value of the
system, whereas with proof-of-work the attacker must only buy half of the future
mining rewards (which should be less than the entire market cap).

Traditionally, external buyers hoping to obtain a majority stake in a firm
(in a hostile corporate takeover) must pay a premium over the current market
price. This may not be true in a cryptocurrency buyout; in fact the opposite
may hold due to the interesting possibility of a race to the door among current
capacity owners. If an attacker can credibly commit to buying out half of all
capacity and using it to destroy the system, current owners will have a strong
incentive to sell to avoid being left in the 49% which does not sell and ends
up holding worthless capacity. As the attacker gains more capacity (which is
easy to authentically signal by including messages in block headers), the per-
ceived likelihood of a successful attack increases. In response more owners may
sell, potentially leading to a vicious cycle as owners race to avoid missing their
chance to sell. This scenario does not occur in hostile corporate takeover because
current shareholders retain (sometimes increased) value if they refuse to sell. The
purchased firm will usually rise in market cap; if the firm’s management do not
believe the takeover will increase market value they can employ a wide variety
of anti-takeover manoeuvres, none of which apply in a cryptocurrency takeover.

We observe that an attacker might credibly commit to a buy-out attack using
a smart contract programmed to buy a large amount of stake through a reverse-
price auction. This is similar to the suggested use of a smart contract above to
implement bribery. Note, of course, that this is only feasible against a substan-
tially smaller system, as the smart contract must be able to hold significantly
more funds than the value of the target system.

Proof-of-stake systems are the most vulnerable to a race-to-the-door, since
the stake has no value if the system crashes. ASIC-resistant proof-of-work sys-
tems appear less likely to suffer from a race-to-the-door, since capacity owners
who do not sell to the attacker can still sell their hardware even if the attack suc-
ceeds. With ASIC-friendly proof-of-work, miners may retain some salvage value
in unsold hardware, but this amount is likely small enough to ignore.

98 J. Bonneau

2.5 Countermeasures

For all of the above attack models, there is the possibility of countermeasures by
current capacity owners in the face of an attack. In theory, current owners can
deploy any of the applicable attack strategies themselves as a counter-measure,
though it likely makes the most sense to respond in kind. In all cases, there is
a collective action problem as all current owners would like to see the system
continue, though there is no mechanism to compel them to contribute equally
to defensive action.

The collective action problem is particularly acute for temporary (bribing or
renting) attacks, as the temporary counter-measure yields no long-term benefit
to those participating. In contrast, those responding to an attack by buying out
or building will can benefit from the increased capacity for the future. Against
a buy out, this may be a particularly lucrative (if the attack fails) a defensive
buyer may profit as the currency gains value in light of a thwarted attack.

Proof-of-stake systems have one distinct disadvantage, which is that a suc-
cessful buy-out attack will be permanent. In contrast, it is possible for proof-of-
work protocols to recover from a successful attack by increasing total capacity,
though significant damage may have already been done.

3 Discussion and Open Questions

The difficulty of hostile takeovers provides an interesting new lens for comparing
decentralised consensus protocols. Our hope is that this manuscript is a starting
point for further modeling and discussion.

Among proof-of-work systems, our analysis indicates a clear security advan-
tage for ASIC-dominated mining, as rental attacks are not possible and existing
miners should have more incentive to resist bribery attacks. However, the ability
to rent capacity may be an advantage for ASIC-friendly mining in some cases.

Our model of ASIC-friendly proof-of-work is also simplistic, in that for Bit-
coin there are now multiple competing systems (e.g. Bitcoin Cash) which use
the same proof-of-work. These systems may effectively provide a pool of rentable
mining capacity. It is also possible that rentable capacity exists from older min-
ing hardware which is no longer profitable to operate, but may be operated at
a loss by an attacker. This may be particularly dangerous as this capacity is
essentially free to rent (or buy) as it has little other value.

At first glance, proof-of-stake systems appear less vulnerable to hostile
takeovers than proof-of-work. They are not vulnerable to rental or building
attacks. Bribery attacks appear similar, while buy-out attacks appear strictly
more costly. However, proof-of-stake may be more fragile due to its vulnerability
to an attacker inspiring a race-to-the-door. Additionally, renting or building new
capacity is not available as a countermeasure.

Consistent with previous work, our analysis suggests bribery is a particularly
troubling avenue of attack. Previous work suggested the problem that miner
revenue is low relative to the potential profits to be had from double spending.

Hostile Blockchain Takeovers 99

We further suggest here that miner revenue is inherently low compared to the
total value of the system and hence feasible for a Goldfinger attacker to match
with relatively small bribes. It remains unclear what rate of miner revenue is
required to ensure stability in practice.

References

1. Bonneau, J.: Why buy when you can rent? In: Clark, J., Meiklejohn, S., Ryan,
P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604,
pp. 19–26. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-
4 2

2. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

3. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-
of-elapsed-time (PoET). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol.
10616, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69084-1 19

4. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

5. Fuchsbauer, G., Park, S., Kwon, A., Pietrzak, K., Alwen, J., Gazi, P.: Spacemint
6. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of

variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 10

7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

8. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

9. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic
analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 72–86. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1 6

10. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of the 2016 ACM Conference on Economics and Compu-
tation

11. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: WEIS, June 2013

12. Liao, K., Katz, J.: Incentivizing double-spend collusion in bitcoin. In: Financial
Cryptography Bitcoin Workshop (2017)

13. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smart pool: practical decentralized
pooled mining. IACR Cryptology ePrint Archive 2017, 19 (2017)

14. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin
work for data preservation. In: IEEE Security & Privacy (2014)

https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-319-69084-1_19
https://doi.org/10.1007/978-3-319-69084-1_19
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-44774-1_6

100 J. Bonneau

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
16. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: IEEE EuroS&P (2016)
17. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Sym-

posium on Principles of Distributed Computing, pp. 315–324. ACM (2017)
18. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

19. Sengupta, B., Bag, S., Ruj, S., Sakurai, K.: Retricoin: bitcoin based on compact
proofs of retrievability. In: Proceedings of the 17th International Conference on
Distributed Computing and Networking, p. 14. ACM (2016)

20. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44774-1 5

21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014)

https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5

Analyzing the Bitcoin Ponzi Scheme
Ecosystem

Marie Vasek1(B) and Tyler Moore2

1 Computer Science, University of New Mexico, Albuquerque, USA
vasek@cs.unm.edu

2 Tandy School of Computer Science, The University of Tulsa, Tulsa, USA
tyler-moore@utulsa.edu

Abstract. This paper analyzes the supply and demand for Bitcoin-
based Ponzi schemes. There are a variety of these types of scams: from
long cons such as Bitcoin Savings & Trust to overnight doubling schemes
that do not take off. We investigate what makes some Ponzi schemes suc-
cessful and others less so. By scouring 11 424 threads on bitcointalk.org,
we identify 1 780 distinct scams. Of these, half lasted a week or less.
Using survival analysis, we identify factors that affect scam persistence.
One approach that appears to elongate the life of the scam is when the
scammer interacts a lot with their victims, such as by posting more than
a quarter of the comments in the related thread. By contrast, we also find
that scams are shorter-lived when the scammers register their account on
the same day that they post about their scam. Surprisingly, more daily
posts by victims is associated with the scam ending sooner.

Keywords: Bitcoin · Cybercrime measurement

1 Introduction

Bitcoin draws out risk-seeking individuals. The exchange rate is volatile; many
businesses built on top of it are speculative in nature; the currency is pseudo-
anonymous and distributed. Consequently, it is perhaps unsurprising that many
Bitcoin users have taken to Ponzi schemes (and Ponzi scheme runners to Bitcoin).

In this paper, we look at the ecosystem around Ponzi schemes advertised
to Bitcoin users. Previous work of ours has established a lower bound for the
amount of money earned by criminals through Bitcoin scams [12]. Here we more
comprehensively study the scams by gathering data where they are promoted.
As well as shedding light on the “supply” side of Ponzi schemes, we also look
at the “demand” side by gathering data on victim interactions with the scams.
People keep falling for Bitcoin scams, but why? Bitcoin users like to purport
themselves as particularly technologically savvy, but does that help or hinder
their susceptibility to scams? How do the steps taken by scammers, such as
engaging shills to promote their products, affect their success? Ultimately, our
goal is to shed light on why criminals are able to prosper in this ecosystem.
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 101–112, 2019.
https://doi.org/10.1007/978-3-662-58820-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_8&domain=pdf
http://bitcointalk.org
https://doi.org/10.1007/978-3-662-58820-8_8

102 M. Vasek and T. Moore

Even with the improved coverage relative to previous work, our results are
necessarily incomplete. There are inevitably scams which use Bitcoin and we
do not measure. There are also scammers which create multiple accounts to
talk about their scam and we only are able to extricate the obvious cases of
this behavior. Despite these limitations, we provide a large-scale analysis of this
online Ponzi scheme ecosystem.

The research contributions for this paper are both in the data collection
methodology and in the analysis of the gathered data.

– Section 2 outlines our data collection contributions: gathering candidate scam
data directly from scammer advertising venues, automatically confirming
scams by inspecting payout mechanisms, and, for confirmed scams, collect-
ing usage, performance and demographic indicators from forum posts. This
yields a richer dataset on Ponzi schemes than has been collected before in
prior work.

– Our data analysis contributions (found in Sect. 3) leverage this novel dataset
to describe supply-side characteristics of scams and scammers as well as
describe demand-side characteristics of victims.

2 Methodology

We aim to measure scams by collecting data from the places they are advertised.
This helps us generate a comprehensive list of advertised scams. For the purposes
of this study, we elect to focus on Ponzi schemes exclusively. Of course, there
are many different types of scams affecting Bitcoin, as shown by Vasek and
Moore [12]. We focus on Ponzi schemes due to their reliance on public advertising
and the consistency of locations for such advertising. Since Ponzi schemes must
advertise to stay in business, we are relatively confident in the comprehensiveness
of our approach.

We collect our data from the forum bitcointalk.org. This forum was created
in the same year as Bitcoin and by the same pseudonymous entity1. This forum
is the top place where Bitcoin community members go to discuss Bitcoin and is
currently one of the 1 000 most popular websites in the world, according to Alexa.
We chose this as our sole source for this work based both on its popularity in
the Bitcoin ecosystem and its popularity within the subsection of Ponzi scheme
investors within the Bitcoin ecosystem, as we found in our previous work in this
space [12].

In order to collect information about the scams, we crawl the entire his-
tory of three subforums of bitcointalk.org: Scam accusations, Gambling: Games
and Rounds, and Gambling: Investment Games. Investment games is a subfo-
rum where users submit Ponzi schemes or moderators move threads on Ponzi
schemes. We can find a number of Ponzi schemes advertised in other subforums
of bitcointalk. However, we choose the two most popular subforums for Ponzi
schemes that had the highest signal to noise ratio: scam accusations and games
1 https://bitcointalk.org/index.php?topic=5.

http://bitcointalk.org
http://bitcointalk.org
https://bitcointalk.org/index.php?topic=5

Analyzing the Bitcoin Ponzi Scheme Ecosystem 103

Fig. 1. Screenshots of the initial posting for the Ponzi scheme and an example victim
response.

and rounds. In total, we crawl 11 424 threads on these three subforums from
June 2011 through November 2016. We consider all the subforums of bitcointalk
where we found any posts advertising a Ponzi scheme. We then look at the
forums, particularly for Ponzi schemes. We omit subforums like the gambling
subforum which predominantly contained posts about online card games and
other non-Ponzi scheme activity.

Since threads on these forums cover other topics than just promoting Ponzi
schemes, we refine this further to threads that referenced “ponzi” or “hyip” in
the first 10 comments. We then process these further to only consider threads
which contained a URL or bitcoin address for the scam. This left us with 1 810
scams advertised through 1 804 Ponzi-registered domains, as well as 1 448 Bitcoin
addresses collated from 2 617 threads. We merge threads containing the same
domain or Bitcoin address, since many scams were advertised multiple times
or in different places. Note that we throw out threads containing a whitelist
of legitimate gambling domains2. We also do not consider popular domains,
removing from consideration any URLs in the Alexa top 10 000 domains such as
google.com and wikipedia.org.

Our objective is to extract as much information about reflecting supply and
demand for scams by examining threads discussing the schemes. In particular, we
are interested in measuring the lifetime of the scam, the profiles of the scammers
and their victims, and how interactive the threads on scams are. We considered
the opening time a scheme was operational to be the first time it was advertised
on bitcointalk and the closing time to be the last comment time on threads
relating to the scheme. The difference between these times is the lifetime of the
scam. We closely analyzed 10 different scams for which we had ground truth on

2 This list was curated by bitcointalk user mem here: https://bitcointalk.org/index.
php?topic=75883.0.

http://google.com
http://wikipedia.org
https://bitcointalk.org/index.php?topic=75883.0
https://bitcointalk.org/index.php?topic=75883.0

104 M. Vasek and T. Moore

the lifetime of the scam, and found that this method was reasonably accurate
within a couple days of the length of the scam.

We identify three distinct categories of posters: scammers, victims, and shills.
We consider the scammer to be the original poster about the scheme and the
victims to be the commenters who were not the scammer or a shill. For each
scammer and victim, we analyze their most recent posting history (maximum 20
posts). We parse out the other subforums they posted in as well as the number of
times they posted on any given Ponzi-related thread. For scammers, we identify
their public interaction with victims; similarly, for victims, we identify their
public interactions with scammers. We also find evidence of every user’s public
history on the forums.

We classify shills as victims who post only about a single scam and nowhere
else on the forum. We devise this rule upon looking through scam threads and
finding users who were extremely positive. Some of these users posted about
multiple threads, seemingly different content, and largely had corroborating evi-
dence, such as transaction information. Others only posted about one or a few
scams with similar content. We attempt to identify these posters automatically,
and the most straightforward way is by number of threads posted on. While not
all shills only post about one particular scam and not all posters with history on
only one scammer thread are shills, we have concluded from manual inspection
that this simple approach provides an effective approach to identify many shills
without miscategorizing legitimate users.

Finally, we sought a way to measure the effort the scammer made to imbue
trust in his scheme from the Bitcoin forum. The markers of trust and reputation
that we use include the time between registration and posting about a scam
(with shorter gaps seemingly less trustworthy) and the overall posting history of
the scammer including frequency and topics.

3 Results

We find 1 780 scams from 1 956 scammers on 2 625 forum posts. Scams with mul-
tiple scammers have multiple threads about the scam originating from different
usernames. By randomly inspecting 20 such instances of this, we find that in
most cases, both usernames appear to be the same scammer or at least oper-
ating the same scam. We identify 11 990 users who posted in response to these
posts.

Figure 2 shows the lifetimes of the scams, where lifetime is measured as the
length of time between the first post about a given scam and the last. About a
quarter of the attempted scams did not last a day and half only lasted a week.
However, some scams lasted a long time, with the longest lasting scam lasting
over three years. From manual inspection, many of the scams lasting a day were
shut down by the moderators or other entities. The rest of this section will
break down this vast difference in lifetimes between these scams and quantify
the differences both in attacker strategies and in victimology.

Analyzing the Bitcoin Ponzi Scheme Ecosystem 105

1 5 10 50 100 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lifetime of Scams

Days on Forum

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Fig. 2. Survival analysis of the lifetime of scams.

3.1 Scammer Interaction and Scam Lifetime

Figure 3 shows the difference in lifetime based on the amount of scammer inter-
action. Out of the 344 threads that only had one post by the scammer on them,
less than 50% lasted longer than a day – 19 of them only consisted of one post
total. We find that more scammer posting helped enliven the scam – whereas
an average scam lasted about a week, the average scam where the scammer
posted at least half of the posts lasted about three weeks. Scammers interact-
ing with their victims seem to prop up their scam, at least in the short term.

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lifetime of Scams

Days on Forum

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Only initial posting
>0.25 of the comments
>0.5 of the comments

Fig. 3. Lifetime of the scam based on the fraction of the comments about the scam
from the scammer.

106 M. Vasek and T. Moore

The difference in these curves, measured by running the survival curve difference
test, is statistically significant at the p = 0.01 level.

We can see if we can see the same effect for shills as well as scammers, since
most of the postings by scammers seems rather overt. Figure 4 shows the average
lifetime of a scam based on the percentage of posts by shills. Scams where more
than 10% of the posts are from shills last longer than those where more than
10% of the posts are from scammers. Furthermore, more shill posts seems to be
more effective than the combined strategy, considering both shill posts and scam
posts to contribute to the lifetime. Running a survival curve differences test, the
effect of the differing shill interaction percentages on the lifetime of a scam are
statistically significantly different at the p = 0.1 level.

We indirectly measure scammer reputation in two ways: by examining where
scammers post and by measuring the time between registration and scam post-
ing. Figure 5 shows the breakdown in the efficacy of the scam by the reputation
of the scammer. On the left we look at the other posts/comments made by the
user who first posted the scam. We distinguish between only posting on one
scam, only posting on (multiple) scam posts, and those scammers who post in
other parts of bitcointalk. We notice that scammers that only post on one scam
have a lower lifetime compared to scammers that post outside of just one scam.
The difference in these survival lifetimes are significant at the p = 0.01 level.
Figure 5b shows the lifetime based on if the scammer account was created on the
same day as the scam or not. 39% of scammer accounts were created within a
day as the corresponding bitcointalk post. We discover that scams advertised by
scammer with newly created accounts die quicker than those with older accounts.
Half of scams that have been created at least a day prior to posting end within
26 days compared to only 4 days for those created the same day. The difference
in these survival plots is statistically significant at the p = 0.01 level.

3.2 Victim Behavior

We measure the responses from 11 902 victims from 89 439 comments on 2 629
threads on 1 779 scams. In this section, we examine characteristics of the user
accounts that post in threads about Ponzi schemes.

In Fig. 4 we separate out shills from the victims and the scammers. We can
see that shill and scammer activity are associated with longer lifetimes. Active
shills do appear to survive slightly longer than active scammers for the first
couple of months, but the overall effect is indistinguishable between shills and
scammers.

Table 1 shows how Ponzi scheme victims’ post history compares to that of
other users active on bitcointalk. For this, we scrape bitcointalk’s aggregated
posts statistics for ground truth and categorize each post using bitcointalk’s
categories. The Ponzi victims’ post history is statistically significantly different
(at the p = 0.01 level) than the general post history, both aggregating by thread
and by overall topic. Ponzi victims are overrepresented in the “economy” section,
which is unsurprising since this is the section where Ponzi scheme advertise-
ments are located. Ponzi victims are also overrepresented in the “other” section.

Analyzing the Bitcoin Ponzi Scheme Ecosystem 107

Table 1. Bitcointalk forum categories and where scam victims post. Categories are
marked as under or overrepresented according to a chi-squared test with 97.5% confi-
dence. Categories with at least 50 000 posts are included.

Category # Victim posts # Other posts

Altcoins (all) 32 536 5 429 022 (–)

Alternative Clients 106 54 159 (–)

Bitcoin Discussion 8 872 998 246 (+)

Development & Technical Discussion 683 162 405 (–)

Group Buys 498 84 734

Hardware 2 730 518 728 (–)

Mining 427 1 044 148 (–)

Mining software (miners) 274 67 561 (–)

Mining speculation 616 63 071 (+)

Pools 885 177 985 (–)

Press 696 74 437 (+)

Project Development 1 526 137 245 (+)

Technical Support 586 58 952 (+)

Auctions 1 865 108 048 (+)

Collectibles 1 063 60 745 (+)

Computer hardware 1 462 118 584 (+)

Currency exchange 3 124 138 264 (+)

Digital goods 7 303 277 903 (+)

Economics 3 692 1 204 450 (–)

Gambling 12 070 1 297 038 (+)

Gambling discussion 5 677 340 593 (+)

Games and rounds 23 331 388 689 (+)

Goods 1 251 587 681 (–)

Investor-based games 15 402 115 454 (+)

Lending 3 230 138 108 (+)

Marketplace 517 5 372 844 (–)

Micro Earnings 3 694 144 797 (+)

Scam Accusations 4 643 116 151 (+)

Securities 1 338 202 813

Service Announcements 2 338 288 993 (+)

Service Discussion 3 692 330 535 (+)

Services 8 528 407 342 (+)

Speculation 5 058 883 584 (–)

Trading Discussion 1 678 257 930

Local (all) 14 932 4 454 405 (–)

Archival 1 026 147 836

Beginners & Help 3 923 564 720

Meta 1 960 134 319 (+)

Off-topic 8 309 563 710 (+)

Politics & Society 2 181 290 782

108 M. Vasek and T. Moore

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lifetime of Scams

Days on Forum

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Only initial posting
shill >0.1 of the comments
scammer >0.10 of the comments
scam or shill >0.25 of the comments

Fig. 4. Lifetime of the scam by interaction by “shill” commenters.

When we look further into this forum category, we find that Ponzi victims are
overrepresented in the “Off Topic” and “meta” board commenters and under
represented in “Politics & Society” and “Beginners”. We also see Ponzi victims
underrepresented in many technical boards, like “Development & Technical Dis-
cussion” and “Mining” but are overrepresented in “Mining Speculation”.

We can also observe what time these victims posted on threads about the
scheme. The median time for victims to comment on a thread is about 5 days
after the initial post. Figure 6 analyzes this effect further. While most victims
post within a week, there is quite a long tail of victim posts. We discover new
victims posting over half a year after the start of the initial scam posting.

3.3 Proportional Hazards Model

To distill the varying effects on the lifetime of a Ponzi scheme, we run a Cox
proportional hazards model. Our dependent variable is the lifetime of the scam,
measured in days. For independent variables, we use the following:

daily # victim comments. This measures the number of victim comments
over the lifetime of the scam. We use a daily count, since the overall count is,
unsurprisingly, highly correlated with the lifetime of the scam.

daily # scammer comments. This measures the number of scammer com-
ments over the lifetime of the scam. Again, we use a daily count to control
for the correlation between this variable and the lifetime of the scam.

shill has posted? This is true if a “shill” (described more thoroughly in
Sect. 3.1) has posted anywhere in the thread. This accounts for their pres-
ence, since the number of comments by these users is so low.

same day account. This is true if the scammers’ bitcointalk account was reg-
istered the same day as the original post for the scam.

Analyzing the Bitcoin Ponzi Scheme Ecosystem 109

1 5 10 50 100 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lifetime of Scams

Days on Forum

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Only One Scam
Only on Scam Posts
General Posting

(a) Lifetime of scams, distinguishing be-
tween post history.

1 5 10 50 100 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lifetime of Scams

Days on Forum

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Old account
Same day account

(b) Lifetime of scams, distinguishing be-
tween newly created accounts and older
accounts.

Fig. 5. Measuring lifetimes of scams based on attacker accounts.

Within a day 1 day 2−7 days 8−14 days 15−21 days 22−28 days 29−56 days 57−112 days >113 days

0
50

00
15

00
0

25
00

0

Fig. 6. Number of victim posts after a thread starts.

Table 2 shows the results of running this regression. We note that all the
variables are statistically significant to at least the p = 0.05 level, with three of
the variables highly significant. The best way to interpret the table is to focus
on the exp(coef) column. Values greater than one correspond to an increase in
the hazard rate, while those less than one correspond to a decrease. The hazard

Table 2. Cox proportional hazards model: measuring scammer and victim effects on
the lifetime of the scam.

coef exp(coef) 95% CI p value

Daily # victim comments 0.028 1.029 (1.022 , 1.036) �0.0001

Daily # scammer comments 0.022 1.022 (1.002 , 1.043) 0.034

Shill has posted? −0.846 0.429 (0.385 , 0.479) �0.0001

Same day account 0.374 1.453 (1.320 , 1.599) �0.0001

Log-rank test: Q = 489.2, p � 0.0001, R2 = 0.218.

110 M. Vasek and T. Moore

rate captures the instantaneous probability that a scam will shut down, so an
increased hazard rate means a greater risk of shutdown.

Each additional daily comment by a victim correlates to a 2.9% increase in the
hazard rate. The effect is similar, though slightly weaker, for additional posts by
the scammer. The result is somewhat counterintuitive; one might have expected
scams with more active participation to be longer-lived, yet the opposite is true.
One possible explanation is that victims are more likely to post when there are
problems, and so are scammers.

By contrast, a shill posting on a thread is correlated with a massive 57%
decrease in the hazard rate. This indicates that shills may play a significant role
in prolonging the lives of scams, helping to draw in more victims and settle the
nerves of existing investors.

Unsurprisingly, a scammer creating an account on the same day as the initial
post correlates with a shorter scam lifetime. This confirms the intuition from
Fig. 5, which suggests that no post history shortens the lifetime of the scam.
The Cox model shows that scams created by newly registered posters face a
45% increase in the hazard rate.

Reflecting on the overall model, we conclude that posts by shills may prolong
a scam’s lifetime dramatically, whereas posts made by victims and scammers
have the opposite effect. Finally, the reputation of posters as indicated by posting
history also appears to significantly affect the scam’s expected lifetime.

4 Related Work

This paper fits into the greater literature of reputation mechanisms. Resnick
et al. provide a general overview for reputation systems as well as drawbacks
in them [9]. Shen et al. provide analysis of reviewers posting about products
on online retailers [10]. They found that popular reviewers post about popular
products that have few reviews and also tend to provide similar reviews to the
existing ones about the product.

This paper also fits into greater literature about Bitcoin. Bitcoin has a small
community of actors [2]. Maurer et al. associated the distributed network of
Bitcoin nodes with the distributed network of conversations, like those found
on the Bitcoin forums [6]. We agree that the “sociality of trust” that Bitcoin
offers seems to be both ingrained in the code and the community. We use this
small network of trust ingrained in code and in people to more easily measure
communications.

To this end, other researchers have mined Bitcoin forum posts to infer activ-
ity in the Bitcoin ecosystem. Vasek et al. searched for reports of DDoS attacks
to infer after the fact when they occurred [13]. Fleder et al. searched for Bitcoin
addresses to categorize them [4]. Using this information, they were able to tie
bitcointalk users to Silk Road transactions. Similarly, Vasek and Moore use bit-
cointalk to identify addresses for potential Bitcoin scams [12] and Liao et al. use
the Bitcoin subreddit to seed their ransomware address finder [5]. Most similarly
to this paper’s methodology, Xie et al. analyze how, among other things, the

Analyzing the Bitcoin Ponzi Scheme Ecosystem 111

social network in the Bitcoin forums leads to price swings in Bitcoin [14]. They
found that bitcointalk users that invite long discussions are more likely to share
relevant information. When looking at the connectedness of bitcointalk users,
they found that the more connected the users are at a given time, the more
intense the trading frequency is.

Our work also falls in the literature on online Ponzi schemes, also known as
high yield investment programs (HYIPs). Moore et al. overviewed the ecosystem
using HYIP aggregator websites [7]. They found that the lifetime of any given
HYIP could be predicted by interest payments and the mandatory investment
term. Neisius and Clayton followed up on this work, concentrating on the incen-
tives promoting this criminal behaviors [8]. They found that HYIP operators
paid to be listed on aggregator websites and also received a referral bonus for
users directed to HYIPs. They also crawled the criminal forums behind people
that run HYIPs and HYIP aggregator websites, and found that the majority of
these criminals are based in the US. Drew and Moore found clusters of replicated
HYIP websites, pointing to the high use of HYIP kits in creating Ponzi scheme
websites [3]. Vasek and Moore carried out the first analysis of Bitcoin-based
Ponzi schemes [12]. They directly measured the profits of 32 Ponzi schemes and
found that these scammers were bringing in over $7 million. Bartoletti et al.
analyzed Ponzi schemes using the cryptocurrency Ethereum and found similar
results as Vasek and Moore found with Bitcoin-based Ponzi scams [1,12]. Soska
and Christin looked at online black marketplaces and found that some would
“exit scam” or run the marketplace legitimately for a time and then take all
the money deposited in it and leave [11]. They found that this behavior lowered
users’ confidences in these marketplaces for a couple months, but long term, the
online drug market was resilient to these scams.

5 Conclusion

Bitcoin Ponzi schemes are alluring. The victims of these scams enjoy the thrill
of the risk and the opportunity to earn a windfall. The scammers are seduced
by the opportunity to earn hard-to-trace money with seemingly little effort.

To measure this, we crawl 11 424 threads on three subforums of the Bitcoin
forums from June 2011 through November 2016 to find 1 780 scams from 1 956
scammers on 2 625 forum posts targeting 11 990 users. We find that more daily
scammer and victim interaction shortens the life of the scam. Furthermore, we
analyze that shill interaction, or users that only post in one thread, and discover
that it lengthens the life of the scam. We demonstrate that having a reputation
on the Bitcoin forum matters: posting a scam the same day as an account was
created is associated with a quicker demise.

In addition to investigating perpetrators of these frauds, we also analyze the
users who fall victim to them. We compare the post history of scam victims to
overall Bitcoin forum statistics and find that scam victims disproportionately
post in other forums like “Off-Topic” and “Mining Speculation”. We find that
most victims post within the first five days of a scam post, with a long tail that
post even over a year after the initial posting.

112 M. Vasek and T. Moore

References

1. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on
Ethereum: identification, analysis, and impact. arXiv preprint arXiv:1703.03779
(2017)

2. Bohr, J., Bashir, M.: Who uses Bitcoin? an exploration of the Bitcoin community.
In: Twelfth Annual International Conference on Privacy, Security and Trust, pp.
94–101. IEEE (2014)

3. Drew, J., Moore, T.: Automatic identification of replicated criminal websites using
combined clustering. In: International Workshop on Cyber Crime, pp. 116–123.
IEEE (2014)

4. Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. arXiv
preprint arXiv:1502.01657 (2015)

5. Liao, K., Zhao, Z., Doupé, A., Ahn, G.-J.: Behind closed doors: measurement
and analysis of a CryptoLocker ransoms in Bitcoin. In: Eleventh APWG eCrime
Researcher’s Summit, June 2016

6. Maurer, B., Nelms, T.C., Swartz, L.: “When perhaps the real problem is money
itself!”: the practical materiality of Bitcoin. Soc. Semiot. 23(2), 261–277 (2013)

7. Moore, T., Han, J., Clayton, R.: The postmodern ponzi scheme: empirical analysis
of high-yield investment programs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 41–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32946-3 4

8. Neisius, J., Clayton, R.: Orchestrated crime: the high yield investment fraud ecosys-
tem. In: Proceedings of the Eighth APWG eCrime Researcher’s Summit, Birming-
ham, AL, September 2014

9. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems.
Commun. ACM 43(12), 45–48 (2000)

10. Shen, W., Hu, Y.J., Ulmer, J.R.: Competing for attention: an empirical study of
online reviewers’ strategic behavior. MIS Quart. 39(3), 683–696 (2015)

11. Soska, K., Christin, N.: Measuring the longitudinal evolution of the online anony-
mous marketplace ecosystem. In: USENIX Security Symposium, pp. 33–48 (2015)

12. Vasek, M., Moore, T.: There’s no free lunch, even using bitcoin: tracking the popu-
larity and profits of virtual currency scams. In: Böhme, R., Okamoto, T. (eds.) FC
2015. LNCS, vol. 8975, pp. 44–61. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47854-7 4

13. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44774-1 5

14. Xie, P., Chen, H., Hu, Y.J.: Network structure and predictive power of social media
for the Bitcoin market (2017). https://papers.ssrn.com/sol3/papers.cfm?abstract
id=2894089

http://arxiv.org/abs/1703.03779
http://arxiv.org/abs/1502.01657
https://doi.org/10.1007/978-3-642-32946-3_4
https://doi.org/10.1007/978-3-642-32946-3_4
https://doi.org/10.1007/978-3-662-47854-7_4
https://doi.org/10.1007/978-3-662-47854-7_4
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2894089
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2894089

Exploiting Transaction Accumulation
and Double Spends for Topology

Inference in Bitcoin

Matthias Grundmann(B), Till Neudecker, and Hannes Hartenstein

Institute of Telematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
{matthias.grundmann,till.neudecker,hannes.hartenstein}@kit.edu

Abstract. Bitcoin relies on a peer-to-peer network for communication
between participants. Knowledge of the network topology is of scien-
tific interest but can also facilitate attacks on the users’ anonymity and
the system’s availability. We present two approaches for inferring the
network topology and evaluate them in simulations and in real-world
experiments in the Bitcoin testnet. The first approach exploits the accu-
mulation of multiple transactions before their announcement to other
peers. Despite the general feasibility of the approach, simulation and
experimental results indicate a low inference quality. The second app-
roach exploits the fact that double spending transactions are dropped
by clients. Experimental results show that inferring the neighbors of a
specific peer is possible with a precision of 71% and a recall of 87% at
low cost.

1 Introduction

Bitcoin [9] is a digital currency system that stores transactions in a blockchain.
Participants are connected via a peer-to-peer (P2P) network in order to exchange
transactions and blocks. The topology of the P2P network is an important
aspect in ensuring anonymity of users and robustness against denial of ser-
vice attacks [5], double spending attacks [6], and attacks on mining [3,10]. For
instance, knowledge of the network topology can enable network based attacks
on anonymity [1,4,7].

In this work we present and analyze two approaches that aim at inferring the
topology of the publicly reachable Bitcoin network. Peers that are not reachable
(e.g., peers that do not accept incoming connections) as well as private networks
such as FIBRE1 or mining pool networks are not covered by our work. Neither
of the presented approaches rely on the existence of side channels (e.g., peer
discovery), because they exploit properties of the implementation of the flooding
protocol used for transaction propagation.

1 http://bitcoinfibre.org/.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 113–126, 2019.
https://doi.org/10.1007/978-3-662-58820-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_9&domain=pdf
http://bitcoinfibre.org/
https://doi.org/10.1007/978-3-662-58820-8_9

114 M. Grundmann et al.

2 Related Work

Topology inference in Bitcoin has been the subject of several previous works.
Peer discovery in Bitcoin allows clients to query their neighbors for IP addresses
of other peers in order to establish connections to them. The queried neighbor
then sends a list with IP addresses along with a lastseen timestamp. Until
March 2015 the timestamp was not randomized sufficiently and allowed Miller
et al. [8] to exploit this mechanism and infer the network topology. Peer discovery
can also be exploited for topology inference by sending marker IP addresses to
remote peers [1].

Neudecker et al. [11] performed a timing analysis of the propagation of trans-
actions in order to infer the network topology. By connecting to all reachable
peers of the network and observing the timestamps of receptions of certain trans-
actions, the path of the transaction and thereby the connections between peers
can be inferred. This approach requires connections to all reachable peers and
requires the adversary to actively create transactions if he is unable to deter-
mine the creator of a transaction. Furthermore, changes made to the propagation
mechanism of the reference client Bitcoin Core2 in 2015 render this method much
more difficult nowadays.

3 Fundamentals

For this work the networking code and especially the forwarding of transactions
is relevant. After a peer creates or receives a transaction, it sends an INV message
containing the hash of the transaction to each of its neighbors. A peer receiving
an INV message checks whether it has already received the transaction, and, if
the transaction is new, sends a GETDATA message to the peer it received the INV
message from. This peer then replies with a TX message containing the actual
transaction.

When a peer receives a transaction, it validates the correctness of the trans-
action. This includes checking the correct format, checking whether the sum of
input values is at least as large as the sum of output values, and checking whether
the inputs of the transaction are actually spendable. Because every transaction
output can only be spent once, a transaction with an input that was already
spent by a transaction received earlier is regarded invalid and dropped silently.
We will demonstrate how to exploit this behavior regarding double spends for
topology inference in Sect. 6.

In order to enhance privacy by impeding timing analysis, INV messages are
not sent out immediately after receiving and validating a transaction, but are
delayed according to a non-deterministic function. Bitcoin Core maintains one
outgoing queue for each connected peer. When a new transaction is received or
created, this transaction is added to all queues. Therefore, each queue contains
all transactions that are to be announced to that peer. At certain times all

2 https://github.com/bitcoin/bitcoin.

https://github.com/bitcoin/bitcoin

Exploiting Transaction Accumulation and Double Spends 115

messages in a queue are announced to the neighbor via a single INV message.3

These times are chosen according to an exponential distribution4 to model a
Poisson process. Every time the elements of the queue are sent to the neighbor,
a new sending time is determined. This mechanism has the property that all
transactions received between two sending timestamps are sent in one single INV
message. We will demonstrate how to exploit this transaction accumulation for
topology inference in Sect. 5.

4 Problem Statement and Assumptions

Let G = (V,E) be the undirected graph modeling the peers (V) and connections
(E) of the Bitcoin network. Given a subset R ⊆ V of the reachable peers of
the network, the adversary tries to infer all connections between all peers in R.
The inference can lead to false positives (i.e., inferring a connection although no
connection exists) and false negatives (i.e., not inferring a connection although
a connection exists). We will use precision (i.e., the share of inferred connections
that are true positives) and recall (the share of existing connections that were
inferred) as metrics to describe the success of the inference.

We assume that the adversary can run a small number of peers, which can
connect to as many other peers as possible. This number is limited by the number
of reachable peers and the network capabilities of the adversary.5 We also assume
that the adversary is able to precisely estimate the latency between its own
peers and remote peers, e.g., based on the observation of Bitcoin ping messages
or ICMP ping messages. Furthermore, we assume that the adversary is able
to create a large number of transactions. These transactions can transfer funds
between addresses controlled by the adversary, however, transaction fees still
have to be paid. The adversary is not assumed to have information that an ISP or
state actor organization might have about connections and traffic of other peers.
We do not consider stronger adversary models (e.g., ISPs), as these adversaries
could simply monitor the network traffic in order to infer the network topology.

5 Exploiting Transaction Accumulation

We will now describe how the transaction accumulation mechanism implemented
in Bitcoin Core (cf. Sect. 3) can be used for topology inference.

3 If there are more than 35 transactions in the queue (which occurs only infrequently),
only 35 transactions are announced at once.

4 The next time is calculated as: current time + ln
(
1 + X · −1

248

) ·
average interval seconds · −1000000 + 0.5 (all timestamps are in microsec-
onds, X ∈ U [0 : 248 − 1], average interval seconds is 5 s for incoming connections
and 2 s for outgoing connections).

5 Our measurements show that maintaining connections to ≈10,000 peers consumes
about 20 Mbit/s.

116 M. Grundmann et al.

5.1 Description

Assume for now that the adversarial monitor peer vM is connected to all peers
vI ∈ V of the network. The adversary creates one transaction tI ∈ T for each
connected peer vI . All transactions are independent and not conflicting in any
way (i.e., they are spending different outputs). All transactions are sent to the
peer they were created for (i.e., tI to vI) so that they arrive at all peers at the
same time. Afterwards the adversary monitors the first INV messages that will
be received by vM from all connected peers, and infers information about the
topology by using the following inference rules:

1. If the first INV message that peer vA sends to vM contains only tB (i.e.,
the transaction sent to vB) and no other transaction from the set of created
transactions T , then vA and vB are connected.

2. If the first INV message that peer vA sends to vM contains more than one
transaction from the set of created transactions T , at least one of the peers
associated with the announced transactions is connected to vA.

vM

vBvA vC

tA tB tC

tCtB, tC

tB, tC

Fig. 1. Exploiting transaction accumulation for topology inference. Dashed lines indi-
cate existing connections. Solid lines indicate the transmission of transactions.

Let us consider the scenario depicted in Fig. 1 to demonstrate the correctness
of the rules. vM is connected to vA, vB, and vC. vA is connected to vB, vB is
connected to vC. After the transactions were sent by the adversary, each peer
has only the transaction designated for itself (and transactions created by other
participants, which can be ignored). Statement 1 is equal to If vA and vC are
not directly connected, then vA will not send an INV message that contains only
tC and no other transaction from the set of created transactions T .

Because vA and vC are not connected, tC has to be relayed by another peer
(vB) to vA. As we assumed that the adversary is connected to all peers, the
adversary is also connected to vB and has sent a transaction tB to vB. Because
of the queuing mechanism described in Sect. 3, vB’s queue for vA already contains
tB. Therefore, tB and tC will be announced together to vA, which announces them
together to vM. It is also possible that tB will be sent earlier than tC, because
the queue at vB is sent between the reception of tB and tC by vB. However, it is
not possible that tC arrives earlier than tB at vA.

Exploiting Transaction Accumulation and Double Spends 117

This scenario also explains the second statement: If vA sends an INV message
that contains tB and tC, the adversary does not know whether vB, vC, or both
are directly connected to vA. The transactions initially sent to all peers serve
as identifiable flags that the remote peers attach to the first group of transac-
tions they forward after receiving their transaction. This allows the adversary
to reconstruct the path of transactions and thereby infer connections between
peers.

5.2 Discussion and Variants

While this topology inference approach is possible under perfect conditions, there
are several issues that can arise when not all assumptions are met.

If there are peers on the network that the adversary is not connected to,
false positives can occur. Consider again the scenario depicted in Fig. 1, but let
us assume that vM is not connected to vB. Then, vB would not have received a
transaction tB, and the INV message sent by vA would only include tC, which
would lead to the wrong conclusion that vA and vC were directly connected.

False positives can also occur when the adversary cannot guarantee that all
transactions arrive at all peers at the same time. While the latency measurement
might be precise in general, temporal changes, e.g., due to bandwidth peaks,
are possible and hard to foresee by the adversary. Furthermore, sending several
thousand transactions within a few hundred milliseconds in a coordinated way
can require much bandwidth and computational effort.

Even when all assumptions are met, the success of the approach depends on
the order in which the remote peers forward transactions to their neighbors. This
order is determined by the sending times of the respective queues and is unknown
to the adversary. Therefore, repeating the approach many times is required in
order to infer a large number of connections.

Another issue with the approach is that it is not possible to explicitly target
a specific remote peer in order to infer the connections of that peer only. Instead,
the inferred connections are a mostly random subset of all existing connections,
which cannot be influenced by the adversary.

Variant DS : We will now present a variant of the discussed approach that
reduces the cost by reducing the incurring transaction fees. Assuming 10,000
peers on the network and transaction fees of $1 per transaction, the cost for
one run of the approach is $10,000.6 A possibility to reduce this cost is to still
create one transaction per peer, but to create these transactions so that they
are all double spends of only a few different outputs. The number of different
inputs among all transactions is a parameter freely chosen by the adversary (e.g.,
DS 3 denotes variant DS with three different inputs). Each transaction is still
unique (e.g., by having different outputs), which enables the mapping of one
transaction to one remote peer. That way, the adversary has to pay only for
those transactions that get included in the blockchain. However, this approach
6 Due to extreme fluctuations in transaction fees and exchange rates, this calculation

is just an example.

118 M. Grundmann et al.

can cause transactions to be dropped, which can cause false positives. We will
evaluate the effect of double spendings on this approach in the next subsection.

5.3 Simulation Results

We will now briefly describe the used simulation setup before the results of
the simulation are presented and discussed. Simulations were performed using
a discrete event simulation. The network topology was generated by creating
eight outbound connections to uniformly chosen peers for each simulated peer.
This results on average in eight incoming and 16 total connections per peer.
The adversary was modeled as a specific peer that establishes a large number
of connections (depending on scenario) and sends and receives the transactions
according to the presented inference strategy.

While the simulation matches the general behavior of the Bitcoin client,
several simplifications were made. First, we model the three-step transaction
propagation process (INV - GETDATA - TX) as one single event. Secondly, the
latencies between peers are chosen according to a normal distribution (μ =
100ms, σ = 50ms, truncated to [1ms, 6000ms]). Thirdly, when peers forward
transactions and have more than 35 transactions in their queue, they choose the
transactions to forward uniformly at random, but prefer transactions created by
the adversary7. Therefore, our simulation is not a precise model of the Bitcoin
network or testnet and the results should be seen as a proof of concept.

Fig. 2. Number of true positives and false positives per run for the base approach and
the variant DS with three different inputs.

Figure 2 shows the true positive (TP) and false positive (FP) count depending
on the number of connected peers for the base variant and variant DS with three
different inputs for one run of the approach. The total number of peers on the
network is 500. If the adversary is connected to all remote peers, one run of the
approach results in about 21 correctly detected connections for variant DS, and

7 This models the scenario that the adversary pays higher transaction fees than the
fees for the other transactions.

Exploiting Transaction Accumulation and Double Spends 119

in about 13 correctly detected connections for the base variant. Reduction of
the share of connected peers leads to a decline in the true positive count. While
we expected the false positive count of variant DS to be higher than that of the
base variant, variant DS also results in a higher true positive count compared to
the base variant. Double spends limit the propagation of individual transactions,
because they are dropped at all peers that already received another transaction
with the same input. This limitation of propagation is actually beneficial for the
approach, because only single-hop propagation of each transaction (i.e., from
one remote peer to another and back to vM) is required and leads to the correct
detection of a connection.

Simulations of larger network sizes showed a linear relationship between the
number of peers and the TP and FP counts, i.e., a network with twice the number
of peers results in about twice the number of true positives and false positives
(cf. Appendix Fig. 7).

5.4 Experimental Results

In order to perform a ground truth validation of our simulation results, we set
up several peers on the Bitcoin testnet: Two peers perform the role of the adver-
sarial peers and connect to all reachable public peers (around 520 connections
during the experiments in November 20178). Another five peers running Bitcoin
Core (0.15.0.1) serve as validation targets. These peers establish eight outgoing
connections and are reachable to the adversarial peers via IPv4 and IPv6. In
this setup the adversarial peers are connected to all neighbors of the validation
targets, which is a best-case scenario for inference.

During the experiments one of the adversarial peers sends transactions to
other peers so that they arrive at the same time. The latency to remote peers
was measured using ICMP ping, TCP SYN packets, and Bitcoin ping messages.

We performed 50 runs of variant DS of the described inference approach
using transactions with three different inputs. A total of 632 unique connections
were detected, which roughly conforms to our simulation results. Out of these
632 connections, only 9 connections were connections from or to one of our vali-
dation peers. From these 9 detected connections, only 6 actually existed, which
corresponds to an observed precision of 67%.9 Roughly estimating the total num-
ber of connections on the testnet to be 4,16010, and assuming a precision of 67%
results in a recall (with respect to all connections of the network) of about 10%
after 50 runs for a total cost of 50 ∗ 3 = 150 transaction fees.

Although the small sample size only allows very rough estimates of the real
quality to be expected, and a more extensive ground truth validation could result
in more precise estimations of the expected precision and recall, the results still
help in assessing the topology inference approach. While the discussed approach

8 Peers were found using https://github.com/ayeowch/bitnodes/.
9 Because of the small sample size, the real precision can strongly deviate from the

observed precision.
10 520 peers with 8 connections each.

https://github.com/ayeowch/bitnodes/

120 M. Grundmann et al.

is in fact possible to perform, we believe its execution to be hardly practical. For
scientific purposes the approach is too invasive and lacks validation possibilities.
For adversarial purposes the lack of influence on which connections are inferred
prevents targeted attacks, especially taking into account that topology inference
is only an intermediate goal for further attacks.

6 Exploiting Double Spends

One major drawback of the approach presented in Sect. 5 is that it is not possible
to infer the connections of a specific peer only, rather than inferring random
connections of the network. This is not only problematic for adversaries, but
also makes validation a challenge. We will now describe and analyze an approach
that allows inferring the connections of a specific peer vT by exploiting the fact
that clients drop transactions that double spend bitcoins.

6.1 Description

Again, assume for now that the adversarial monitor peer vM is connected to all
peers vI ∈ V of the network. One of the connected peers is the target peer vT,
the connections of which the adversary wants to infer. The adversary creates
one transaction tI ∈ T for each connected peer vI , except for the target peer
vT. All transactions have the same input, i.e., they are double spends, but all
transactions are unique, e.g., by specifying different output addresses. Again, all
transactions are sent to the peer they were created for (i.e., tI to vI) so that
they arrive at all peers at the same time. Then the adversary monitors which
transaction the target peer vT forwards to the monitor peer vM and can conclude
that the peer associated with the forwarded transaction is directly connected to
the target peer vT.

vM

vTvA vB vC

tA tB
tC

tA tB tC

tB

Fig. 3. Exploiting double spends for topology inference. Dashed lines indicate existing
connections. Solid lines indicate the transmission of transactions. Dotted lines indicate
dropping of transactions by the receiver because of an earlier reception of a conflicting
transaction.

Let us consider the scenario depicted in Fig. 3 to demonstrate the correct-
ness of the strategy. The monitor peer vM is connected to vA, vT, vB, and vC.

Exploiting Transaction Accumulation and Double Spends 121

The target peer vT is connected to vA and vB, while vB is also connected to vC.
After the transactions were sent by the adversary, every peer only has the trans-
action designated for itself, and vT has no transaction received yet. Every peer
will only accept and forward exactly one of the created transactions, because
they are all double spends of the same output. Therefore, if vC forwards tC to
vB (dotted line), vB will drop tC because of the earlier reception of the conflict-
ing transaction tB. Because the target peer vT has not yet received any of the
conflicting transactions, it will accept exactly one transaction forwarded by one
of its neighbors (transaction tB in Fig. 3). This transaction gets forwarded to the
monitor peer vM and indicates a neighbor of the target peer vT.

6.2 Discussion and Variants

If the adversary is not connected to all peers of the network, or if the transac-
tions are not received by all peers at the same time, false positives can occur.
The reason is basically the same as for the approach exploiting transaction accu-
mulation discussed in Sect. 5.2: A neighbor of vT that did not receive its double
spending transaction from vM will accept another double spending transaction
tI from its neighbor vI and forward that transaction to vT, which may forward
tI to the adversary causing the false inference of a connection between vT and
vI . Obviously, if the adversary cannot establish a connection to vT, the connec-
tions of vT cannot be inferred using the discussed approach. We will now discuss
three variants of the presented approach that aim at optimizing the inference
even when not all assumptions are met.

Variant Count : When repeating the approach several times, one would expect
the transactions associated with real neighbors (true positives) to be sent to
the adversary by vT more often than those of peers that are not connected to
vT (false positives), because those transactions have to be relayed by another
peer and should be slower. In order to reduce false positives, the approach can
be repeated and connections are only identified, if the number of transactions
indicating a specific peer as a neighbor of vT is larger than a certain threshold.

Variant Ignore: Assume that tA is forwarded by vT to vM. If the adversary was
unable to synchronize the reception of all transactions at all remote peers (e.g.,
due to bad latency estimation or bandwidth limitation), it is possible that tA is
also forwarded to vM by another peer, say, vB. As such a reception indicates the
violation of a key assumption and vT might have received tA from vB rather than
directly from vA, the adversary can opt to ignore the result without concluding
a connection between vT and vA.

Variant Suppress: The cost for a single run of the approach is one transaction
fee. However, one single run reveals at most one connection of the target peer. In
order to infer more connections, additional runs are necessary, which each come
at the cost of one transaction fee. Which connection can be inferred depends on
which transaction arrives first at vT, which is determined by the sending times
of the remote peers and the latencies between peers. With bad luck (or single

122 M. Grundmann et al.

clients being very fast), multiple runs of the approach can all result in inference
of the same, already known, connection. Variant Suppress slightly modifies the
approach to eliminate the repeated inference of the same connection. Consider
again the example depicted in Fig. 3 and assume that the adversary inferred
the connection between vT and vB in the first run of the approach. For the
next run, we (1) want the transaction tB to be dropped at vT and (2) we do
not want vB to forward any other transaction tI . While simply not sending any
transaction to vB would satisfy the first requirement, it would make vB a hidden
node and violate the second requirement. Therefore, we modify the way the
double spending transactions are created. Assume there are two unspent outputs
o1 and o2 that will be used as inputs to the transactions in the following way:

– All peers vI , except for vT and vB, receive transactions tI spending o1 only.
– vT receives a transaction tT spending o2 only.
– vB receives a transaction tB spending o1 and o2.

This approach satisfies both requirements: vT will drop tB because it is a double
spend of o2. Any transaction tI will be dropped by vB because they are double
spending o1. Yet, any transaction tI will be accepted by vT because they are
spending a different output than tT (o1 and o2).

6.3 Simulation Results

We simulated the approach exploiting double spends with the same simulation
setup as described in Sect. 5.3. Figure 4 shows how recall and precision develop
depending on the number of runs for the base version of the approach. If the
monitor peer vM is connected to all peers of the network, the recall reaches
95% after 100 runs while the precision decreases slowly. The precision decreases
because once all neighbors of the target are detected, the precision can only fall
by detecting more false positives. Detecting the same neighbor multiple times is
used in the variant Count. While variant Count can maintain a high precision,
the recall is worse than for other variants (cf. Appendix Fig. 8).

Fig. 4. Precision and recall depending on the number of runs with vM being connected
to 250 (half connected) and 500 (fully connected) of 500 peers.

Exploiting Transaction Accumulation and Double Spends 123

If the adversary is connected to only half of the peers of the network, the
maximum possible recall is 50%, because the adversary is on average only con-
nected to half of the neighbors of vT. As described above, the target’s neighbors
being not connected to the adversary cause false positives and thus the precision
is lower than for the fully connected scenario.

Fig. 5. Precision and recall depending on the number of runs for variants Suppress and
Suppress + Ignore with vM being connected to 500 of 500 peers (fully connected).

Figure 5 shows precision and recall of the approach when using the variant
Suppress with vM being connected to all peers. Using only this variant results
in the recall growing faster, because this variant prevents neighbors from being
detected multiple times. However, not only true neighbors are detected faster,
but also false positives, which results in a faster declining precision. If vM is not
connected to all peers, the precision falls even faster, because the likelihood that
a detection is a false positive is higher.

The precision can be improved by combining the variants Suppress and
Ignore, for which precision and recall are also shown in Fig. 5. Combining both
variants results in a recall of 96% after 25 runs with a precision of about 94% if
the monitor is connected to all peers.

6.4 Experimental Results

We validated the approach in the testnet with the setup described in Sect. 5.4
with the exception that the adversarial peers did not send any transactions to
the IPv6 addresses of the validation targets. The reason for this exception is
that otherwise the presented approach infers connections between the IPv4 and
IPv6 addresses of the validation target. While this might also be an interesting
application for the approach, it would impair our validation.

We ran the approach six times against each of the five validation targets
with 50 runs each using the combination of the variants Suppress and Ignore.
Analyzing the data generated during the experiments in different ways results
in various combinations of precision and recall. Two of them using Suppress and
Ignore are shown in Fig. 6. The combination of the variants Suppress and Ignore
results in a recall of 60% and a precision of 97%. The recall can be improved

124 M. Grundmann et al.

though by relaxing the restrictions imposed by Ignore by using only the variant
Suppress. This combination results in a recall of 87% and a precision of 71%
(also shown in Fig. 6) for a total cost of 99 transaction fees.

Fig. 6. Experimental Result: Precision and recall depending on the number of runs
using variant Suppress and Suppress+Ignore.

While these results indicate a high inference quality, we emphasize again that
the adversarial peer was connected to all neighbors of the validation peers in our
experiments and hidden neighbors could impair the inference quality.

Because not only our validation peers were dual-stacked (i.e., connected via
IPv4 and IPv6 to the network) but also other peers on the network are, it is
possible that a peer vN is connected via IPv4 to one of our validation targets
and via IPv6 to the adversary peer. In this situation the approach might infer a
connection between vN ’s IPv6 address and the validation target’s IPv4 address.
While this is technically a false positive, it is still correct that both peers are
connected. As this situation might have occurred several times, some connections
that were categorized as false positives might actually be correctly inferred.

7 Conclusion

While the presented approach exploiting transaction accumulation is likely not
suitable for topology inference, the approach exploiting double spends showed
sufficient detection quality at reasonable cost. We emphasize that transaction
accumulation still leaks information that might be exploited in more advanced
approaches. A simple countermeasure that prevents these kinds of attacks would
be to mix the order of transactions, e.g., by regularly sending only a subset of
the transactions in the outgoing queues.

An obvious countermeasure against the approach exploiting double spends
would be to forward double spends, which, however, would create the potential
for DoS attacks. Another countermeasure could be to not always forward the
transaction that was received first, but to decide randomly which double spend-
ing transaction will be forwarded, which could affect security against double

Exploiting Transaction Accumulation and Double Spends 125

spending attacks in fast payments [2,6]. Furthermore, individual peer opera-
tors may choose to deny incoming connections, which prevents the discussed
approaches from working, but is not desirable from an overall network’s per-
spective. On the other hand, operating a reachable peer with a large number of
incoming connections from unreachable peers also impedes the presented infer-
ence approaches. Finally, because of the large number of transactions created,
such attacks can be observed by monitoring large parts of the network.

While we presented some optimizations and variants of the approaches, many
more variants and combinations (e.g., including timing information, making use
of more than one adversarial peer, continuous sending of transactions, further
combination of double spending inputs) are possible and might result in bet-
ter inference quality. Although the validation in the Bitcoin testnet gives an
idea of the general feasibility, a validation in the real Bitcoin network promises
more insights, but is currently not feasible for the presented approaches due to
high transaction fees. Finally, while our approaches aimed at topology inference,
similar approaches exploiting the same mechanisms might be used against the
anonymity of users.

Acknowledgements. This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the project KASTEL IoE in the Competence
Center for Applied Security Technology (KASTEL). The authors would like to thank
the anonymous reviewers for their valuable comments and suggestions.

Appendix

Figure 7 shows that the approach exploiting the accumulation of transactions
scales linearly with the network size.

Fig. 7. Exploiting transaction accumulation: Number of true positives and false posi-
tives depending on the network size for vM being connected to half of the peers.

Figure 8 shows precision and recall for the variant Count of the approach
exploiting double spends. As can be seen, the recall increases in steps. These
steps are caused by adjusting the threshold for the required number of receptions.

126 M. Grundmann et al.

Fig. 8. Precision and recall depending on the number of runs for variant Count and
vM being connected to 375 of 500 peers.

While this variant can be used to reach high precision, the recall is limited even
after more than 200 runs.

References

1. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2014)

2. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P),
pp. 1–10. IEEE (2013)

3. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

4. Fanti, G., Viswanath, P.: Anonymity properties of the Bitcoin P2P network. arXiv
preprint arXiv:1703.08761 (2017)

5. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15), pp. 129–144 (2015)

6. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: Proceedings of the 2012 ACM conference on Computer and communica-
tions security, pp. 906–917. ACM (2012)

7. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using
P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 30

8. Miller, A., et al.: Discovering Bitcoin’s public topology and influential nodes (2015)
9. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

10. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

11. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the
topology of the Bitcoin peer-to-peer network. In: 2016 International IEEE Confer-
ence on Advanced and Trusted Computing (ATC), pp. 358–367, July 2016

https://doi.org/10.1007/978-3-662-45472-5_28
http://arxiv.org/abs/1703.08761
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-662-45472-5_30

Egalitarian Society or Benevolent
Dictatorship: The State

of Cryptocurrency Governance

Sarah Azouvi(B), Mary Maller, and Sarah Meiklejohn

University College London, London, UK
{sarah.azouvi.13,mary.maller.15,s.meiklejohn}@ucl.ac.uk

Abstract. In this paper we initiate a quantitative study of the decen-
tralization of the governance structures of Bitcoin and Ethereum. In
particular, we scraped the open-source repositories associated with their
respective codebases and improvement proposals to find the number of
people contributing to the code itself and to the overall discussion. We
then present different metrics to quantify decentralization, both in each
of the cryptocurrencies and, for comparison, in two popular open-source
programming languages: Clojure and Rust. We find that for both cryp-
tocurrencies and programming languages, there is usually a handful of
people that accounts for most of the discussion. We also look into the
effect of forks in Bitcoin and Ethereum, and find that there is little inter-
section between the communities of the original currencies and those of
the forks.

1 Introduction

Cryptocurrencies are an alternative to fiat currencies that aim to replace tra-
ditional institutions with a digital platform (or blockchain) whose rules are
enforced largely by consensus, with anyone able to participate (a property typ-
ically called decentralization) and check that they are being followed (trans-
parency). Whereas fiat currencies inherently rely on some degree of trust in
central entities such as banks, blockchains thus promise a radical shift away
from trusted parties.

In a decentralized system, no one entity can act to censor transactions or
prevent individuals from joining the network (as is possible with traditional
institutions [17]). Instead, there is a network of peers that is collectively respon-
sible for entering information into the ledger. In theory, each peer in the net-
work has a “vote” proportional to their computational power, which is used to
seal transactions into the ledger. Provided the peers controlling the majority of
the network’s computational power are honest, only valid information enters the
ledger, which — if the ledger is made globally visible — can be checked by anyone.
It is unclear, however, to what extent this theoretical promise of decentralization
and transparency has been achieved in practice. Indeed, previous research has

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 127–143, 2019.
https://doi.org/10.1007/978-3-662-58820-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_10&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_10

128 S. Azouvi et al.

demonstrated that even the enforcement of the rules is not as decentralized and
transparent as originally intended [12,16].

Beyond enforcement, we must also consider how the rules governing a cryp-
tocurrency are set in the first place, and who gets to set them. The founders of
a cryptocurrency necessarily make numerous decisions regarding both its design
and its implementation. For example, they decide on the interval between the
generation of blocks, the reward for generating a block, and the size of the
blocks. Thus there is a governance structure underlying all blockchains, and
these governance structures have a seemingly inherent degree of centralization.
Many cryptocurrencies address this by open-sourcing their code and opening
their protocols to so-called “improvement proposals,” in which anyone can pro-
pose changes to the high-level protocol. These improvement proposals serve not
only to reduce the degree of centralization in the maintenance of the platform,
but also can provide a significant degree of transparency into the decision-making
process. As these rules impact the functioning of a cryptocurrency just as much
as the actual enforcement of the consensus protocol, it is important to consider
not only the decentralization and transparency of the blockchain itself, but also
of its underlying governance structure.

Our Contributions. In this paper, we study the centralization in the existing
governance structures of Bitcoin and Ethereum, which as of this writing are
the top two cryptocurrencies by market capitalization [4]. In order to determine
whether or not our results should be expected for any open-source software,
we also conduct our study on two popular open-source programming languages:
Clojure and Rust.

For each platform, we measured two different properties: the number of
developers contributing to each file in the codebase, and the number of peo-
ple contributing to the discussion around the platform by making comments
in the relevant part of its GitHub repository. In terms of contributions to the
codebase, we found that the distributions amongst the contributors were all dif-
ferent. In terms of the discussion, we found that for all the systems we studied,
at any given time at most eighteen contributors accounted for a majority of all
comments.

To evaluate the decision-making infrastructure in Bitcoin and Ethereum, we
looked into who creates and comments on improvement proposals. Ethereum
appears more centralized than Bitcoin in terms of improvement proposals, but
is more decentralized in terms of the discussion around its codebase, according
to our metrics. Finally, we compared the communities behind Bitcoin and its
fork Bitcoin Cash, and Ethereum and its fork Ethereum Classic, to see whether
these forks bring in new people or split the initial community. In both cases, the
fork seems to bring in a new community.

2 Related Work

Much of the previous research examining decentralization on blockchains focuses
specifically on Bitcoin, or on the general governance issues associated with

Egalitarian Society or Benevolent Dictatorship 129

blockchains. In terms of centralization within Bitcoin, Gervais et al. observe that
some of the key operations in Bitcoin, in particular the mining process and the
maintenance of the protocol, are not decentralized [16]. Moore and Christin find
a high degree of centralization in popular Bitcoin exchanges [22], and observe
that popular exchanges are more likely to suffer security breaches. Böhme et al.
look at the various centralized intermediaries within the broader Bitcoin ecosys-
tem, such as currency exchanges, wallet providers, mixers, and mining pools [12].
They also evaluate the decisions that the designers make regarding how much
money there should be in the system, and de Filippi and Loveluck examine the
overall decision-making process of the Bitcoin developers [13]. In particular, they
discuss the “block size” debate and the difficulty in deciding whether or not to
fork Bitcoin in order to increase the block size.

In terms of other cryptocurrencies, Reyes et al. examine the theft of 3.6 mil-
lion ether from The DAO in June 2016, and discuss the lessons learned and
the potential strengths and weaknesses of decentralized organizations [26]. Gan-
dal and Halaburda analyze how network effects affect competition in the cryp-
tocurrency market [15]. In particular they look at competition between different
currencies and competition between cryptocurrency exchanges and observe that
there was a “winner takes all” effect in early markets, but not today.

More generally, Atzori gives a critical evaluation of whether blockchains are
suitable as political tools [11], and examines to which extent they can mitigate
coercion, centralization, and hierarchical structures. Reijers et al. study the ques-
tion of governance from the perspective of social contract theory and finds that
it fails to incorporate aspects of distributive justice [25]. Similarly, Lehdonvirta
poses the “blockchain paradox,” in which he argues that once you solve the
problem of decentralized governance, you no longer need blockchains [20].

Finally, Srinivasan and Lee [30] introduce a metric for measuring the decen-
tralization in cryptocurrencies that they call the Nakamoto coefficient. We use
this metric, in addition to several others, in order to compare and contrast the
level of decentralization in Bitcoin and Ethereum.

3 Background

3.1 Bitcoin

Bitcoin [23] was created by the pseudonymous Satoshi Nakamoto, who deployed
the currency on January 3 2009. In September 2012, some prominent members of
the community created the Bitcoin Foundation, a non-profit organization based
on the model of the Linux Foundation, but today there is also a significant
development effort by Blockstream [3], which is a for-profit company run by the
core developers. We refer the reader to the Bitcoin textbook [24] for a more
technical presentation of the Bitcoin protocol.

3.2 Ethereum

Ethereum [6] was created by Vitalik Buterin, and launched on July 30 2015. Its
initial development was done by the Ethereum Foundation, a Swiss non-profit,

130 S. Azouvi et al.

but today there is also a significant development effort by Parity [8], which is
a for-profit company developing one of the main Ethereum clients. Ethereum is
designed to support a broader functionality beyond atomic transfers of money
from one set of parties to another.

3.3 Improvement Proposals

No system is perfect, and cryptocurrency protocols sometimes need updating due
to flaws or vulnerabilities. These changes can be fundamental and affect all users.
To keep the improvement decision process open and fair, most cryptocurrencies
have an Improvement Proposal system, where anyone can propose changes to
the protocol and discuss existing proposals. If support exists for a proposal, it
may be incorporated into the codebase. There is no formal definition of how to
agree upon an improvement proposal [1]. The Improvement Proposals process
happens mainly on GitHub, but there are many other places for discussion, such
as mailing lists, forums and IRC channels.

3.4 Forks

When disagreements occur in cryptocurrency communities, the only way to
resolve them might be for the communities to split. Anyone disagreeing with
the current core developers can fork the code and create their own currency.
This has happened in both Ethereum and Bitcoin. For example, in June 2016
more than 50M USD of ether was stolen due to a code vulnerability in a smart
contract [19]. The Ethereum Foundation decided to “roll back time” in order to
take the stolen ether back from the hacker. Arguing that this contradicts the
fundamental immutability property of blockchains, some members of the com-
munity forked Ethereum and Ethereum Classic was born [7]. In Bitcoin, the
“block size” debate has been ongoing for years. Arguing that one of the main
limitations of the Bitcoin protocol is scalability and that this problem could be
solved with larger block sizes, some members of the community forked Bitcoin,
resulting in Bitcoin Cash in August 2017 [2].

4 Methodology

4.1 Comparison with Programming Languages

To determine whether the governance structures of Bitcoin and Ethereum are
as decentralized as should be expected, we compare them against those of open-
source, general-purpose programming languages. We chose programming lan-
guages as, similarly to cryptocurrencies, they tend to have a large amount of
participation from their user communities. For an even closer comparison, we
sought out programming languages that: (1) have existed for a similar length
of time to the cryptocurrency; (2) have a similar number of users (which we
measured according to the number of watchers and stars on the GitHub code-
base [18]); and (3) are decentralized in the sense that they are maintained by an

Egalitarian Society or Benevolent Dictatorship 131

online community rather than a private company or government. We could not
find programming languages that fully satisfied each of these properties, but we
decided that a relatively fair comparison was between Bitcoin and Clojure, and
Ethereum and Rust.

Bitcoin and Clojure were both proposed by individuals (or a set of individ-
uals) and were both released in 2009 (Bitcoin in January, and Clojure in May).
While Bitcoin has a much larger userbase than Clojure (close to 2000 watchers
and 18k stars, as opposed to roughly 700 watchers and 7k stars), we ultimately
decided to stick with this comparison rather than use a programming language
like Go, which does have a larger userbase, as Go is closely tied to Google.

Ethereum and Rust were both released in 2015 (Ethereum in July, and Rust
in May), and are both tied to not-for-profit foundations (Ethereum with the
Ethereum Foundation, and Rust with Mozilla). Rust has a larger, but not incom-
parable, userbase than Ethereum: roughly 1500 vs. 900 watchers, and 24k vs. 8k
stars.

4.2 Data Collection

To quantitatively measure the level of centralization in the maintenance of Bit-
coin and Ethereum, we analyzed their codebases, and the extent to which these
codebases are produced and maintained in a decentralized fashion. We obtained
copies of the open-source repositories for Bitcoin, Bitcoin Cash, Ethereum,
Ethereum Classic, Rust and Clojure. A summary of the locations of these repos-
itories is in Table 1.

Table 1. The open-source repositories for the various cryptocurrencies we consider.
For Ethereum and Ethereum Classic, the listed repositories contain the code for the
Go, C++, and Python versions of the client. Parity is compatible with both Ethereum
and Ethereum Classic.

Name Repository URL

Bitcoin https://github.com/bitcoin/bitcoin

Bitcoin Cash (ABC) https://github.com/Bitcoin-ABC/bitcoin-abc

Clojure https://github.com/clojure/clojure

Ethereum https://github.com/ethereum/

Parity https://github.com/paritytech/parity

Ethereum JS https://github.com/ethereumjs/ethereumjs-lib

Ethereum Ruby https://github.com/cryptape/ruby-ethereum

Ethereum Classic https://github.com/ethereumproject

Rust https://github.com/rust-lang/rust

One notable property of these platforms is that Bitcoin has only one reference
client, whereas the others tend to have many. For Ethereum, we collected the

https://github.com/bitcoin/bitcoin
https://github.com/Bitcoin-ABC/bitcoin-abc
https://github.com/clojure/clojure
https://github.com/ethereum/
https://github.com/paritytech/parity
https://github.com/ethereumjs/ethereumjs-lib
https://github.com/cryptape/ruby-ethereum
https://github.com/ethereumproject
https://github.com/rust-lang/rust

132 S. Azouvi et al.

repositories for all the clients as listed in the Ethereum documentation.1 For
Ethereum Classic, we considered the Go, C++ and Python clients, as the ones
for JavaScript, Java, and Ruby were not listed. The Parity client supports both
Ethereum and Ethereum Classic. For Bitcoin Cash, we picked the most popular
one in terms of watchers and stars, which was Bitcoin ABC.

Since contribution to the protocol is also captured through discussions in
addition to lines of codes written, we also scraped all the discussion threads for
pull requests and issues (both open and closed). The discussions of Improve-
ment Proposals were not included in the Bitcoin and Ethereum repositories
themselves, so we also scraped the main pages, pull requests, and issues on the
respective GitHub repositories for Bitcoin (BIPS) [1] and Ethereum (EIPS) [5].

4.3 Centrality Metrics

Table 2 lists some of the centrality metrics used in this paper. In addition to these,
we also use the mean and the median. The interquartile range (IQR) represents
where the bulk of values lie and is computed as the difference between the 75%
and the 25%, and the interquartile mean (IQMean) is the mean of the data in
the IQR. The benefit of using the IQMean (as compared to the regular mean)
is that, as with the median, it is not affected by outliers.

To confirm the statistical significance of our findings, we use a two-sample
Kolmogorov-Smirnov test [21,28], which determines whether or not two vectors of
values have the same probability distribution. More specifically, it quantifies the
distance between the empirical distribution functions of the two samples. The p-
value, used to determine the statistical significance of the test, must be under 0.05
in order to reject the null hypothesis (i.e., in order to show that the two vectors
have a different distribution). We used the Bootstrap version of the Kolmogorov-
Smirnov test [27], which is designed to work on discrete distributions.

The Nakamoto index, introduced by Srinivasan and Lee [30], represents the
minimum number of contributors to a dataset needed to get 51% of the data.
We refer to the normalized version of this index as the Satoshi index, which

Table 2. Centrality metrics used in this paper.

Centrality metric Usage

Interquartile range (IQR) Measure of spread

Interquartile mean (IQMean) Mean of the data in the IQR

Kolmogorov-Smirnov test See if two vectors have same probability distribution

Nakamoto index Minimum # of contributors making 51% of the data

Satoshi index Minimum % of contributors making 51% of the data

Sørensen-Dice index Measure of similarity of two sets

1 http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html#why-are-
there-multiple-ethereum-clients.

http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html#why-are-there-multiple-ethereum-clients
http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html#why-are-there-multiple-ethereum-clients

Egalitarian Society or Benevolent Dictatorship 133

1 2 3 4 5+
Number of authors

Fr
ac

tio
n

of
 fi

le
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bitcoin
Bitcoin ABC
Clojure
Ethereum
Ethereum Classic
Rust

Fig. 1. The coverage of each file in a given repository, as determined by the number of
authors that have contributed to that file. Different clients are grouped according to
the cryptocurrency they support.

represents the minimum percentage of all contributors needed to get 51% of the
data. Finally, the Sørensen-Dice index [14,29] captures the similarity of two sets.
It is defined as SD(X,Y) = 2|X∩Y |

|X|+|Y | , so in particular has a value of 1 for sets
that are equal and 0 for sets that are disjoint.

5 Data Analysis

5.1 Contributors to the Main Codebase

For each repository, we collected all non-hidden files and measured how many
distinct authors had contributed to that file throughout its lifetime (in terms of
Git commits). The results of this measurement can be seen in Fig. 1. While the
number of contributors to the Bitcoin and Bitcoin Cash codebases follow a fairly
similar pattern, the number of contributors to the Ethereum Classic codebase
follows a different distribution to that of the Ethereum codebase, even though
Ethereum Classic is a fork of Ethereum. Both Clojure and Rust seem to follow
a fairly similar pattern to that of Bitcoin.

For Bitcoin, 30% of all files were written by a single author, and 24% of these
files were written by the same author, Wladimir van der Laan. This means that
one author wrote 7% of the files. In Ethereum, 55% of all files were written by a
single author, and 36% of these files were written by the same author, Tomasz
Drwiega. This means that one author wrote 20% of the files.

Table 3 contains the mean, median, IQR, and IQMean for each of the reposi-
tories. We see relatively similar metrics for Bitcoin (and Bitcoin Cash) and both
of the programming languages, and see that Ethereum and Ethereum Classic
are both lower for all metrics.

134 S. Azouvi et al.

Table 3. Centrality metrics for the number of contributors per file and the number of
comments per author in the pull requests and issues.

Repository # Authors per file # Comments per author

Mean Median IQR IQMean Mean Median IQR IQMean

Bitcoin 5.56 2 5 2.78 27.2 2 4 2.4

Bitcoin Cash 5.48 2 6 2.94 3.8 2 2 1.8

Ethereum 2.58 1 2 1.49 17.0 2 3 1.9

Ethereum Classic 1.69 1 0 1.00 11.1 2 3 1.8

Clojure 4.03 2 4 2.41 1.9 1 1 1.3

Rust 5.17 2 5 2.79 69.8 3 8 3.5

Fig. 2. The evolution of the Satoshi and Nakamoto indexes over time. The values for
Ethereum are in blue, for Bitcoin in red, and for Rust in green. (Color figure online)

We performed a Kolmogorov-Smirnov test to confirm the statistical signif-
icance of our findings; the resulting p-values are in Table 7. We see that the
results are statistically significant for all the comparisons except for Bitcoin and
Bitcoin Cash, indicating that the respective numbers of codebase authors are
drawn from different distributions, except for Bitcoin and Bitcoin Cash. This is
expected as Bitcoin Cash is a very recent fork of Bitcoin.

We acknowledge, however, that measuring levels of centralization by looking
at the codebase is limited in some respects, as it is not practical — or even
necessarily important for accountability — to have many people contributing to
the same files, and there are likely people looking over and discussing files in
ways that are not reflected in Git commits. This is why we look next at the
discussion around the code.

5.2 Commenters on the Main Code Base

To get a feeling for the evolution of the distribution of comments over the life of
a cryptocurrency, we compute the Nakamoto and Satoshi indexes over time in
Fig. 2, using the discussion threads in the pull requests and issues of the GitHub

Egalitarian Society or Benevolent Dictatorship 135

Table 4. Minimal number of commenters that contribute to x% of all the comments.

10 20 30 40 50 60 70 80 90 100

Bitcoin 1 1 3 5 8 13 21 41 239 2443

Clojure 2 5 9 15 23 33 45 65 85 104

Ethereum 2 5 8 12 18 29 49 127 467 3139

Rust 1 1 1 2 4 10 21 43 181 3882

repository. These graphs exclude Clojure, as ultimately we believed the dataset
was too small to get any real insights. For example, there were only 72 pull
requests, as compared to 11,604 for Bitcoin. Similarly, since Bitcoin Cash and
Ethereum Classic are relatively recent forks, and thus have a far smaller level of
discussion so far, we also exclude them from this analysis.

In Fig. 2, we see that in all the repositories there is a strong tendency towards
centralization in the number of commenters, with a handful of people contribut-
ing to most of the comments. The Nakamoto indexes for the codebases of Bitcoin,
Rust, and Ethereum are consistently relatively low, as every month there are no
more than 10 authors contributing to half of the comments for Bitcoin and Rust
and 15 for Ethereum. When normalized by the total number of commenters per
month, for Bitcoin and Ethereum this is less than a quarter of the commenters
each month (as seen in Fig. 2a).

To see whether it was the same people making most of the comments each
month or different people every time, we plotted in Fig. 3 the number of com-
ments per author every month. For Bitcoin and Rust, we see that there is one
commenter that accounts for most of the comments each month (for Bitcoin,
Wladimir van der Laan is the top commenter with 13,923 comments in total,
followed by Jonas Schnelli with 4,409 comments), and for Ethereum there is a
small handful of commenters who stand out from the rest (the top three are
Gavin Wood with 3,352 total, Péter Szilágyi with 2,242, and Jeffrey Wilcke with
2,230). Overall for Bitcoin there are only eight people contributing to half of all
the comments, which represents 0.3% of all commenters. For Ethereum there are
18 people (or 0.6% of all commenters), and for Rust there are four (or 0.1%).
These results are summarized in Table 4.

This centralized trend is confirmed by the values in Table 3, as we see that the
mean is much greater than the IQMean or median, which are values that typically
ignore outliers. The mean is one order of magnitude higher than the IQMean
for Bitcoin, Ethereum, and Rust. This means that the tails of the distribution
(i.e., the top 25% of the distribution) differ a lot from the value in the main
range. This can also be confirmed by looking at the number of comments for
the top commenters, compared to the average number of comments per author.
Generally this confirms that a handful of people (less than 10) contribute to most
of the comments. As this is true for all the repositories, we conclude that this is
potentially a common (and somewhat natural) feature in open-source systems.

136 S. Azouvi et al.

Fig. 3. Number of comments per commenters per month.

We also computed, in Table 8, a Kolmogorov-Smirnov test on the total num-
ber of comments per author. We see that the number of comments per author
from Bitcoin, Ethereum, and Rust are drawn from different distributions. In the
next two sections, we will focus on Bitcoin and Ethereum, looking more closely at
the improvement proposals process in Sect. 5.3 and comparing the communities
behind the main codebases, the improvement proposals, and forks in Sect. 5.4.

5.3 Improvement Proposals for Bitcoin and Ethereum

In this section, we looked at the improvement proposal (IP) process. Together
with pull requests, this is the main road to contributing to the design and devel-
opment of the currency. For each author we counted how many improvement
proposals they made to Ethereum and Bitcoin, and what states these propos-
als were in (i.e., if they were accepted, rejected, or under review). In Fig. 4, we
notice that only a handful of people are contributing to Bitcoin improvement
proposals (BIPS). In Fig. 5, there is mostly just one person, Vitalik Buterin, that
is contributing to Ethereum improvement proposals (EIPS).

Egalitarian Society or Benevolent Dictatorship 137

1 4 7 11 16 21 26 31 36 41 46 51 56 61
Participant ID

N
um

be
r o

f I
Ps

0
2

4
6

8
10

12

Final
Replaced
Active
Withdrawn
Deferred
Proposed
BIP num allocated
Rejected
Draft

Fig. 4. The authors of BIPs, identified by a unique numeric value, along with the
number of proposals they have created and the respective status of those proposals.
The top five contributors are Gavin Andresen (with 12 proposals and 9 accepted) and
Pieter Wuille (12 proposals, 4 accepted), Luke Dashjr (11 proposals), Eric Lombrozo
(6 proposals), and Johnson Lau (6 proposals).

Table 5. Centrality metrics for the number of comments per author.

Mean Median IQR IQMean

BIPS 11.41 2.0 6.5 2.95

EIPS 9.16 2.0 5.0 2.56

There are usually many people contributing to the discussion for every pro-
posal, so we measured the level of centrality in terms of the number of comments
in pull requests for each user in the BIPS and EIPS repositories. The results are
in Table 5. The trend here is similar to the one observed in the previous section:
the datasets contain many outliers, corresponding to the top 25% of commenters
who comment significantly more than the rest.

5.4 Diversity of Communities

In this section, we look at whether or not the same people contribute to the
discussion in the main codebase and in the improvement proposals, and whether
or not there is any similarity between the community behind a cryptocurrency
and its fork; i.e., any resemblance between Bitcoin and Bitcoin Cash and between
Ethereum and Ethereum Classic. Because Ethereum Classic does not have a
separate implementation for every client, we focus in this section only on the Go
client for each platform, as it is the most popular.

To do this, we first computed the Sørensen-Dice index on the set of the 30
top commenters, which account for roughly 75% of all the comments in the
relevant repositories (see Table 4 in the Appendix). As we see in Table 6, the set
of main commenters in the main Bitcoin repository and in the BIPS repository

138 S. Azouvi et al.

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21
Participant ID

N
um

be
r o

f I
Ps

0
2

4
6

8
10

12 Accepted
Draft
Final
Deferred

Fig. 5. The authors of EIPs, identified by a unique numeric value, along with the
number of proposals they have created and, if in the main set of EIPs, the status of
those proposals. The top three contributors are (1) Vitalik Buterin, with 13 proposals,
11 of which were accepted or finalized; (2) Alex Beregszaszi, with 6 proposals; and
(3) Nick Johnson, with 4 proposals.

overlap, with a Sørensen-Dice index of 0.5. This means that out of the 30 main
commenters of Bitcoin and BIPS, 15 are in both communities. This is much more
than for Ethereum compared to EIPs, with 7 commenters in both sets.

To include all commenters, we use a weighted version of the whole set of
commenters. To do so, we weighted commenters by their number of comments
and then computed the Sørensen-Dice index on these augmented sets. The results
are in Table 6. Taking the weight (and all the commenters) into account, the
similarity between Ethereum and EIPS is still meaningful, with an index of 0.108.
The value for Bitcoin vs BIPS, however, drops to 0.069. Therefore, although half
of the main commenters for Bitcoin also comment on BIPS, they do not write
as many comments in the BIPS repository.

Table 6. Sørensen-Dice index for the top 30 commenters, and weighted Sørensen-Dice
index for all the commenters.

Repositories Sørensen-Dice index

Top 30 All (weighted)

Bitcoin/BIPS 0.50 0.0686

Ethereum/EIPS 0.23 0.1077

Bitcoin/Bitcoin Cash 0.03 0.0050

Ethereum/Ethereum Classic 0.03 0.0030

Egalitarian Society or Benevolent Dictatorship 139

The overlap in the communities of Bitcoin and Bitcoin Cash, and Ethereum
and Ethereum Classic, is small. The Sørensen-Dice index was 0.033 for both.
Hence only one of the top commenters of the main repository is also a commenter
in the forked one. This low value shows that the forked currency is really the
formation of a new community rather than a separation of the initial one.

6 Discussion

According to our metrics on the number of contributors per file in the code-
bases, we found that Bitcoin, Rust, and Clojure were all more decentralized than
Ethereum, even given the fact that Ethereum has many more reference clients.
The distributions of the number of authors for all the codebases was different
except for Bitcoin and Bitcoin Cash, which is not surprising given that Bitcoin
Cash is a recent fork of Bitcoin and thus their codebases are very similar. Inter-
estingly, while Ethereum Classic is a fork of Ethereum, the number of authors on
these two codebases is still quite different. However, this fork happened a longer
ago and there have been numerous changes to the Ethereum Classic codebase
since the fork occurred. Our data implies that one cannot necessarily assume a
natural pattern for the number of authors on an open source code base.

There was a greater number of participants in the Bitcoin improvement pro-
posals than in those of Ethereum. Although the distribution of the number of
comments on the Bitcoin codebase was different from the one on the BIPS,
the distribution from Ethereum was similar to EIPS (Table 8). The intersec-
tion between the main commenters on Bitcoin’s main codebase and the com-
menters on the BIPS was greater than the intersection between the commenters
on Ethereum’s main code base and the commenters on the EIPS. However, when
considering the weighted intersection, we found the opposite applied. Generally
there are very few people that account for most of the comments for Bitcoin,
where for Ethereum this number is higher.

Finally, both the Bitcoin and Ethereum communities seem relatively unaf-
fected by the hard forks. The number of people commenting was not significantly
different before and after the forks, and there was little intersection between the
people participating in the original codebases and the forked codebases. This
implies that the forks did not split the communities, and that a large proportion
of the community decided to stay with the original codebases. However in our
discussion we only considered Bitcoin ABC, the most popular client for Bitcoin
Cash, which could limit our results. We leave for future work the study of all
the Bitcoin Cash clients. Our data implies that there could feasibly be a natural
pattern in the number of comments per author in cryptocurrencies.

140 S. Azouvi et al.

7 Conclusions

Measuring levels of centralization by looking at the codebase or by looking at
specific sources is inherently limited. While our measurements captured the num-
ber of people writing code changes and commenting on the GitHub files, they do
not capture the number of people voting on whether or not changes should be
accepted. We also did not capture conversations appearing in other places such
as on Reddit, the main forums, or the mailing lists. We considered only two main
cryptocurrencies, but there are a multitude of other ones, and it would be inter-
esting to see whether similar patterns appear in these other cryptocurrencies, or
indeed in other open-source projects in general.

We are aware of two projects that aim to tackle the centralization in gov-
ernance structures of cryptocurrencies: Tezos [10], a decentralized system that
incorporates governance into the consensus protocol, and Steemit [9], a decen-
tralized social media platform in which users are incentivized to post and curate
content by receiving a reward in the native cryptocurrency. However, we are not
aware of any studies that analyze these solutions. Mostly we hope this work will
encourage other work that proposes metrics for centrality, or other empirical
studies on the governance structures of decentralized platforms.

Acknowledgments. All authors are supported in part by EPSRC Grant
EP/N028104/1. Mary Maller is supported by a scholarship from Microsoft Research.
The authors would like to thank Sebastian Meiser and Tristan Caulfield for helpful
discussions.

A Statistical Tables and Figures

See (Fig. 6).

Table 7. p-values for the Kolmogorov-Smirnov test on the number of authors per file.

Bitcoin Cash Clojure Ethereum Ethereum Classic Rust

Bitcoin 0.4749 0.001 <10−16 <10−16 0.001

Bitcoin Cash 0.003 <10−16 <10−16 0.002

Clojure <10−16 <10−16 0.028

Ethereum <10−16 <10−16

Ethereum Classic <10−16

Egalitarian Society or Benevolent Dictatorship 141

Table 8. p-values for the number of comments per author

Bitcoin ABC BIPS Clojure Ethereum Ethereum Classic EIPS Rust

Bitcoin 0.045 0.04 0.113 0.029 0.583 0.414 <10−16

Bitcoin ABC 0.008 0.142 0.027 0.12 0.041 <10−16

BIPS 0.015 0.434 0.958 0.285 0.712

Clojure 0.033 0.043 0.07 0.021

Ethereum 0.857 0.536 <10−16

Ethereum classic 0.854 0.873

EIPS 0.044

1 41 88 141 201 261 321 381 441 501 561 621 681
Participant ID

N
um

be
r o

f c
om

m
en

ts
0

20
00

60
00

10
00

0

1 43 91 146 208 270 332 394 456 518 580 642 704
Participant ID

N
um

be
r o

f c
om

m
en

ts
0

50
0

15
00

25
00

1 85 197 323 449 575 701 827 953 1093 1247 1401
Participant ID

N
um

be
r o

f c
om

m
en

ts
0

20
00

0
40

00
0

60
00

0
80

00
0

1 2 3 4 5 6 7 8
Participant ID

N
um

be
r o

f c
om

m
en

ts
0

5
10

15

1 7 14 22 30 38 46 54 62 70 78 86 94 103
Participant ID

N
um

be
r o

f c
om

m
en

ts
0

50
10

0
15

0
20

0

1 6 12 19 26 33 40 47 54 61 68 75 82 89 96
Participant ID

N
um

be
r o

f c
om

m
en

ts
0

10
0

20
0

30
0

40
0

Fig. 6. The number of commenters for each repository, ranked from most to fewest
comments, ignoring commenters with less than 5 comments.

142 S. Azouvi et al.

References

1. BIPS GitHub. github.com/bitcoin/bips
2. Bitcoin Cash. https://www.bitcoincash.org/
3. Blockstream. https://blockstream.com/
4. Cryptocurrency market capitalizations. https://coinmarketcap.com/. Accessed 3

Nov 2017
5. EIPs GitHub. github.com/ethereum/EIPs
6. Ethereum. https://ethereum.org/
7. Ethereum Classic. https://ethereumclassic.github.io/
8. Parity. https://parity.io/
9. Steemit. steemit.com

10. Tezos. tezos.com
11. Atzori, M.: Blockchain technology and decentralized governance: is the state still

necessary? (2015)
12. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology,

and governance. J. Econ. Perspect. 29(2), 213–238 (2015)
13. De Filippi, P., Loveluck, B.: The invisible politics of bitcoin: governance crisis of a

decentralised infrastructure. Internet Policy Rev. 5, 1–28 (2016)
14. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology

26(3), 297–302 (1945)
15. Gandal, N., Halaburda, H.: Can we predict the winner in a market with network

effects? Competition in cryptocurrency market. Games 7(3), 1–21 (2016)
16. Gervais, A., Karame, G., Capkun, S., Capkun, V.: Is bitcoin a decentralized cur-

rency? In: IEEE Security and Privacy (2014)
17. Greenberg, A.: Visa, Mastercard move to choke WikiLeaks, December

2010. http://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-
move-to-choke-wikileaks/

18. Hu, Y., Zhang, J., Bai, X., Yu, S., Yang, Z.: Influence analysis of GitHub reposi-
tories. SpringerPlus 5(1), 1268 (2016)

19. Jesus, C.D.: The DAO heist undone: 97% of eth holders vote for the hard fork, July
2016. https://futurism.com/the-dao-heist-undone-97-of-eth-holders-vote-for-the-
hard-fork/

20. Lehdonvirta, V.: The blockchain paradox: why distributed ledger technologies
may do little to transform the economy (2016). www.oii.ox.ac.uk/the-blockchain-
paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-
economy/

21. Mehta, S.: Statistics Topics. Createspace Independent Pub. (2014)
22. Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-

exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 3

23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
24. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and

Cryptocurrency Technologies. Princeton University Press, Princeton (2016)
25. Reijers, W., O’Brolcháin, F., Haynes, P.: Governance in blockchain technologies

and social contract theories. Ledger 1, 134–151 (2016)
26. Reyes, C.L., Packin, N.G., Edwards, B.P.: Distributed governance (2016)
27. Sekhon, J.S.: Multivariate and propensity score matching software with automated

balance optimization: the matching package for R. J. Stat. Softw. 42(7), 1–52
(2011)

https://github.com/bitcoin/bips
https://www.bitcoincash.org/
https://blockstream.com/
https://coinmarketcap.com/
https://github.com/ethereum/EIPs
https://ethereum.org/
https://ethereumclassic.github.io/
https://parity.io/
https://steemit.com
https://tezos.com
http://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
http://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
https://futurism.com/the-dao-heist-undone-97-of-eth-holders-vote-for-the-hard-fork/
https://futurism.com/the-dao-heist-undone-97-of-eth-holders-vote-for-the-hard-fork/
www.oii.ox.ac.uk/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
www.oii.ox.ac.uk/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
www.oii.ox.ac.uk/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
https://doi.org/10.1007/978-3-642-39884-1_3

Egalitarian Society or Benevolent Dictatorship 143

28. Simard, R., LÉcuyer, P., et al.: Computing the two-sided Kolmogorov-Smirnov
distribution. J. Stat. Softw. 39(11), 1–18 (2011)

29. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
Danish commons. Biol. Skr. K. Dan. Vidensk. Selsk. 5, 1–34 (1948)

30. Srinivasan, B., Lee, L.: Quantifying decentralization (2017). https://news.earn.
com/quantifying-decentralization-e39db233c28e

https://news.earn.com/quantifying-decentralization-e39db233c28e
https://news.earn.com/quantifying-decentralization-e39db233c28e

Blockchain-Based Certificate
Transparency and Revocation

Transparency

Ze Wang1,2,3, Jingqiang Lin1,2,3(B), Quanwei Cai1,2, Qiongxiao Wang1,2,3,
Jiwu Jing1,2,3, and Daren Zha1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China
{wangze,linjingqiang,caiquanwei,wangqiongxiao}@iie.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Traditional X.509 public key infrastructures (PKIs) depend
on certification authorities (CAs) to sign certificates, used in SSL/TLS to
authenticate web servers and establish secure channels. However, recent
security incidents indicate that CAs may (be compromised to) sign fraud-
ulent certificates. In this paper, we propose blockchain-based certificate
transparency and revocation transparency. Our scheme is compatible
with X.509 PKIs but significantly reinforces the security guarantees of a
certificate. The CA-signed certificates and their revocation status infor-
mation of an SSL/TLS web server are published by the subject (i.e., the
web server) as a transaction, and miners of the community append it
to the global certificate blockchain after verifying the transaction and
mining a block. The certificate blockchain acts as append-only public
logs to monitor CAs’ certificate signing and revocation operations, and
an SSL/TLS web server is granted with the cooperative control on its
certificates to balance the absolute authority of CAs in traditional PKIs.
We implement the prototype system with Firefox and Nginx, and the
experimental results show that it introduces reasonable overheads.

Keywords: PKI · SSL · TLS · Blockchain · Transparency · Trust

1 Introduction

In X.509 public key infrastructures (PKIs), a certification authority (CA) signs
certificates to bind the public key of a server to its identity (typically a DNS

This work was partially supported by National Basic Research 973 Program of China
(Award No. 2014CB340603), National Natural Science Foundation of China (Award
No. 61772518), and Cyber Security Program (Award No. 2017YFB0802100) of National
Key RD Plan of China.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 144–162, 2019.
https://doi.org/10.1007/978-3-662-58820-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_11&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_11

Blockchain-Based Certificate Transparency and Revocation Transparency 145

name). Then, these certificates are used in SSL/TLS [14,21] to authenticate the
web servers. Trusting the CAs, browsers obtain the servers’ public keys from
CA-signed certificates in SSL/TLS negotiations, to establish secure channels.

However, recent security incidents indicate that CAs are not so trustwor-
thy as they are assumed to be. CAs may sign fraudulent certificates due to
intrusions [11,24,46,58], reckless identity validations [44,54,55,61], misopera-
tions [33,45,62], flawed cryptographic algorithms [53,60], or government compul-
sions [15,52]. Typical fraudulent certificates bind a DNS name to key pairs held
by counterfeit web servers [5,11,15]. Then, the counterfeit servers will launch
man-in-the-middle (MITM) attacks, even when a browser follows the strict steps
of certificate validation [12] to establish SSL/TLS sessions.

Certificate transparency [35] was proposed to enhance the accountability of
CA operations, using append-only public logs. A CA-signed certificate is publicly
recorded in log servers; otherwise, a browser rejects it in SSL/TLS negotiations.
Therefore, a fraudulent certificate will be observed by monitors or interested
parties, especially the owner of the DNS name (or the SSL/TLS web server).
The certificates in log servers are organized as a Merkle hash tree, and auditors
periodically verify the integrity of logs to ensure that they are append-only, i.e.,
a (fraudulent) certificate will never be deleted or modified after being appended.

Certificate transparency follows a reactive philosophy. It depends on the mon-
itors to observe fraudulent certificates after they have been signed and recorded
in the log servers. So a fraudulent certificate may be accepted by browsers before
it is observed by any interested party. Moreover, to ensure append-only records,
and the detection of deleted or modified (fraudulent) certificate relies on the
periodical detection of auditors. Considering the huge number and increment of
current certificates, it is a high burden to monitor or audit the public logs.

In this paper, we proposes a blockchain-based scheme to construct append-
only logs for certificate transparency. In our scheme, CA-signed X.509 certificates
are published by their subjects (i.e., the corresponding web servers) in certificate
transactions in a global certificate blockchain. The global certificate blockchain
acts as an inherently append-only public log to monitor CAs’ operations. To
publish its certificates, each web server has a publishing key pair to sign its cer-
tificate transactions, which is different from the key pair bound in the certificate.
This design of subject-controlled certificate publication allows an web server to
manage its certificates cooperatively with CAs. It shares the same spirit with
trust assertions for certificate keys (TACK) [39] and PoliCert [56] that a web
server is involved in the validation of its certificates.

SSL/TLS web servers compose an interdependent community, to balance the
absolute authority of CAs in traditional PKIs. Particularly, the publishing key
of a web server is initially certified by a certain number of these interdependent
web servers explicitly and also a CA implicitly. So CAs are unable to publish a
certificate in the certificate blockchain, without the consent of the community
of web servers. The certified publishing key of each web server is also publicly
recorded in the blockchain. It means that the publication of a certificate is also
publicly accountable.

146 Z. Wang et al.

Each certificate transaction has a period of validity, shorter than those of
the published certificates. It enforces a web server to publish its certificates and
update revocation status periodically. When an unexpired certificate is revoked,
it will be absent from the next transaction, and the corresponding certificate
revocation list (CRL) file or online certificate status protocol (OCSP) response
will be included in the transaction instead. Therefore CAs’ revocation opera-
tions are also recorded and revocation transparency [34,51] is achieved in the
certificate blockchain.

The proposed scheme protects browsers against the impersonation attacks
using fraudulent certificates. Browsers utilize the certificate blockchain to vali-
date the certificates received in SSL/TLS negotiations. A certificate is accepted
only if it is published in an unexpired transaction, therefore a fraudulent cer-
tificate signed by compromised CAs but not published in the blockchain will be
rejected by browsers.

We implemented the prototype system with Nginx and Firefox. The Nginx
server sends its certificate transactions to browsers as SSL/TLS extensions, and
the browser validates the received certificates with the help of the certificate
blockchain. The analysis based on the real-world statistics and the experimen-
tal results show that our scheme introduces reasonable overheads, in terms of
storage, certificate validation delay, communication, and incentive cost.

The remainder is organized as follows. In Sect. 2, we introduce the security
model, and the system details are described in Sect. 3. Then, the proposed scheme
is analyzed in Sect. 4, and the prototype system is evaluated in Sect. 5. Section 6
is related work, and Sect. 7 concludes this paper.

2 Threat Model and Design Goal

Attackers attempt to impersonate an SSL/TLS web server using fraudulent cer-
tificates, and a successful attack means that browsers accept the fraudulent
certificates in SSL/TLS negotiations. We assume that the attackers could com-
promise some trusted CAs, to sign fraudulent certificates binding the target web
server’s DNS name to any key pair. The attackers may also compromise the tar-
get server’s publishing key to generate fraudulent messages. However, we assume
that they could not compromise more than a threshold of certifiers of the target
server and certify a fraudulent publishing key. That is, the worst scenario our
scheme considers is that the publishing key pair is held or known by attackers
and fraudulent certificates are signed by compromised CAs at the same time.

The attackers do not hold computation resource which exceeds 30% of all
computation power in the community, and all cryptographic primitives are
secure. The attackers cannot block the network for a long enough time to take
attack actions; that is, honest entities communicate with each other in a loosely
synchronized manner.

We aims to protect browsers against the impersonation attacks using fraud-
ulent certificates. If a browser follows our scheme to validate certificates in
SSL/TLS negotiations, the authenticated peer is ensured to be the legitimate

Blockchain-Based Certificate Transparency and Revocation Transparency 147

server of the visited DNS name. Even in the extreme case that a fraudulent cer-
tificate has been published in the blockchain by a compromised publishing key
pair, the browsers are most likely to reject this fraudulent certificate and it will
be recovered soon by countermeasure transactions in the certificate blockchain.

3 System Architecture

3.1 Overview

Web servers publish their certificate transactions in an unique, global certificate
blockchain. Like Bitcoin, each block in the certificate blockchain consists of a
block header and multiple transactions, which are organized as a Merkle hash
tree. A block header is composed of: (a) the time when the miner starts to mine
this block, (b) the digest of the last block header in the blockchain, (c) the Merkle
hash tree root of the included transactions, (d) a list of (Type, DNS Name) tuples
of the included transactions, sorted in lexicographic order, and (e) a PoW nonce
computed by brute force, so that the hash value of this block is less than the
PoW target. The list of (Type, DNS Name) tuples is included, so browsers or web
servers find a transaction conveniently without iterating through all included
transactions.

In the certificate blockchain, there are overall two types of certificate transac-
tions. A Type-I transaction is signed by a web server using its publishing key pair,
to periodically publish certificates. When a certificate expires and is updated,
the new one will be included in the next transaction. If a certificate is revoked,
it will be excluded from the next transaction; at the same time, the correspond-
ing CRL file or OCSP response will be included instead. Type-II transactions
are used to initialize or reset publishing key pairs. When a DNS name (or web
server) is initially introduced into this community, its publishing key is signed
by a number of other web servers (called certifiers) using their publishing key
pairs. This publishing key may be reset by another Type-II transaction, if it is
compromised or lost.

All certificate transactions labeled with the same DNS name, either Type-I or
Type-II, are chained together chronologically, as shown in Fig. 1. For every web
server, its continuous history of certificates and publishing keys is then archived
publicly in the blockchain. If a fraudulent certificate or publishing key appears,
it will be observed soon. We design a series of regulations that enable the honest
web servers to take countermeasures and recover their certificates or publishing
keys.

A miner collects, verifies certificate transactions from others and mines the
block for them, according to the regulations of certificate transaction stated as
below. It also collects mined blocks from other miners, verifies the blocks, and
appends valid ones to its local copy to make it be longer. Incentive mechanism
like Bitcoin can be introduced to our scheme to encourage mining. Namely, the
miner who mines a particular block will be awarded by some coins, and the coins
are purchased and consumed by the web servers when they publish certificate
transactions.

148 Z. Wang et al.

Sign

Web Server k2

Transaction TX1
(Type-I)

www.foo.com

Certificate 2

Certificate 1

Transaction TX2
(Type-I)

www.foo.com

Certificate 2'
& CRL

Certificate 1
Hash

Transaction TX0
(Type-II)

www.foo.com

Multiple
Signatures

Publishing
Public Key

SignatureVerify Signature

Revoke
& Update

Web Server k1
Web Server k0

Transaction TX3
(Type-I)

www.foo.com

Certificate 2'
Hash

Certificate 1'

Signature

Expire
& Update

Digest Digest DigestHash HashHash

Next Publishing
Public Key

Verify

Next Publishing
Public Key

Next Publishing
Public Key

Verify

Fig. 1. The history of certificates and publishing keys.

In every block, a web server is allowed to publish at most one transaction.
If the miners of the blockchain receive both a Type-I and a Type-II transaction
with a same DNS name, the Type-II transaction has priority. If there are multiple
transactions of the same DNS name and type, a miner selects one of them based
on its own implementation.

A browser communicates with the P2P network of web servers/miners to
download the updated blockchain, to keep a local copy. When the browser is
establishing SSL/TLS sessions with a web server, it validates the web server’s
certificate with the help of its local copy of the certificate blockchain. We will
explain this procedure in further details in the following subsections.

3.2 Subject-Controlled Certificate Publication

A certificate is signed and published by its subject, in Type-I certificate trans-
actions. Only the web sever who holds the publishing key pair, is able to sign
Type-I transactions labelled with its DNS name. Therefore, a (compromised)
CA cannot publish certificates without the consent of the subject. Each Type-I
transaction includes:

1. DNS Name, the DNS name of the web server.
2. Prev TX Hash, the hash value of the previous transaction with the same DNS

name, either Type-I or Type-II.
3. Type, marked as Type I.
4. Validity, the validity period of this certificate publication.
5. List of Cert Chain, a list of published certificate chains. The web server

may hold multiple, currently valid certificates.
6. Next Publishing Key, the publishing public key. The corresponding private

key is used to sign the next Type-I transaction with this DNS name.
7. Sig, the signature of this transaction using the current publishing key pair

(i.e., the one bound in the most recent transaction with this DNS name, either
Type-I or Type-II).

For each certificate chain in List of Cert Chain, if the web server’s certifi-
cate is published for the first time, the whole chain from the self-signed root

Blockchain-Based Certificate Transparency and Revocation Transparency 149

CA certificate to the end-entity certificate is provided. It facilitates the min-
ers to validate the certificate. Otherwise, when the chain is published in the
subsequent periodical Type-I transactions, only a simplified entry is provided,
including the hash value of the web server’s certificate and the information to
check its “dynamic” validity status. Such information includes the validity of
certificate, the CRL distribution point or OCSP location, and the identifier to
check its revocation status via CRL or OCSP (e.g., the serial number). Such
design of simplified entries enables the miners to verify the consistency of these
transactions and check the certificate’s dynamic revocation status, but greatly
reduces the overheads of storage and communication.

Certificate transparency is achieved since certificates are publicly visible as
transactions in the append-only blockchain. For Type-I transactions, their period
of validity is required to be comparable with that of certificate status refresh in
current PKI. Therefore, a certificate is usually published for several times dur-
ing its lifecycle, and its updated revocation status is also reflected in certificate
transactions. When a certificate is revoked, the web server replaces this certifi-
cate with related revocation information in the next transaction, and publish
it immediately or until the next period. So CA’s revocation operations are also
recorded in the blockchain, which enables revocation transparency.

3.3 Initialization and Reset of Publishing Keys

Type-II transactions are used to (a) initialize the publishing key of a web server
and (b) reset it if compromised. A Type-II transaction includes the following
fields:

1. DNS Name, the DNS name of the web server.
2. Prev TX Hash, the hash value of the previous transaction with the same DNS

name, either Type-I or Type-II.
3. Type, marked as Type II.
4. Publishing Key, the public key of the certified publishing key pair.
5. Certifier Group, a list of certifiers’ DNS names. The corresponding web

servers are authorized to control the publishing key of this DNS name.
6. List of Cert Chain, a list of web server’s certificate information, optional. It

is used to remove fraudulent certificates falsely appeared in previous Type-I
transactions in emergency.

7. Sig by Owner, some signatures by the certified web server. They are veri-
fied using corresponding some CA-signed certificates binding the DNS name,
which are also included in this field.

8. List of Sig, a list of signatures signed by certifier web servers using their
current publishing key pairs. The signers’ DNS names are also in this field.

Each Type-II transaction is signed by at least G certifier web servers. To sign
its initial Type-II transaction (i.e., the first transaction labeled with the DNS
name), a web server contacts at least G servers it trusted whose publishing keys

150 Z. Wang et al.

have been certified in the blockchain, as its certifiers. The initial Type-II trans-
action is signed by all certifiers. Then, any following non-initial Type-II transac-
tion must be signed by at least G certifiers specified in Certifier Group of the
previous Type-II transaction. The certifier group can be modified in non-initial
Type-II transactions, while the number of the certifiers in Certifier Group
must be not less than G. Besides, Type-II transactions are also signed by the
web server itself in Sig by Owner, which indirectly certified by one or more CAs.

An initial Type-II transaction is set with a “frozen” period before the certified
publishing key becomes valid. It allows interested parties (not only the web
server) to observe impersonation attack attempts. During the frozen period,
another initial Type-II transaction with the same DNS name whose certificates
in Sig by Owner are signed by more publicly-trusted CAs invalidates this Type-
II transaction. If such dispute case happens, the frozen period is automatically
extended to provide the target web server more time to contact CAs and out-of-
band actions may be taken. The publishing key becomes valid, after the frozen
period without disputes.

The field of List of Cert Chain is used in the extreme attack case that
fraudulent certificates are published by a compromised publishing key pair, so
the target web server recovers its control on publishing keys and delete fraudulent
certificates by only one transaction. No revocation information is needed in this
field of Type-II transactions. Note that, List of Cert Chain is not allowed to
include any newly appeared certificate; otherwise, it provides a fast track for
attackers to publish fraudulent certificates.

To reduce the storage requirement of miners, each web server publishes its
Type-II transactions periodically, even when it is unnecessary to reset the pub-
lishing key pair or modify its certifier group. In these “shadow” Type-II trans-
actions, Publishing Key and Certifier Group must be identical with those
in the previous transaction, while List of Cert Chain and the certificates in
Sig of Owner must be absent. A shadow Type-II transaction is signed only by
the web server itself, and no signatures by certifiers are required. So, a miner
only stores (a) the recent block headers and (b) the latest transactions of both
types of each DNS name, within a certain period.

In the genesis block of the certificate blockchain, G+1 or more special Type-
II transactions are included to certify at least G+1 web servers’ publishing keys.
Each of these transactions, is signed by other G web servers. The publishing keys
in the genesis block are self-certified by these web servers cooperatively (and
some CAs indirectly). Then, these web servers will publish their certificates.

An initial period shall be needed for the founder servers to invite highly-
ranked web servers (assumed to be honest) to join, i.e., initially certify other
web servers’ publishing keys. During the initial period, the certificate blockchain
is publicly visible but the community is not open to join. After a certain number
of honest web servers are introduced into the community, so that any new par-
ticipants will not introduces overwhelmed computation power, it is open to the
public and the non-founder web servers as well operate as certifiers after their
publishing keys have been certified and published in the certificate blockchain.

Blockchain-Based Certificate Transparency and Revocation Transparency 151

3.4 Certificate Validation by Browsers

A browser validates the certificates received in SSL/TLS negotiations, with the
help of the certificate blockchain. First, a browser communicates with (the P2P
network of) web servers/miners to incrementally download the up-to-date block
headers. The browser verifies whether the downloaded headers are chained cor-
rectly and each header contains a valid PoW nonce, and updates its local copy
if a longer chain is received. Browsers download and store only block headers
but no transactions, to reduce the overhead of communication and storage. This
synchronization may be performed when there is no SSL/TLS negotiation.

The certificate transactions to validate a certificate are sent by the visited
web server during the SSL/TLS negotiation via SSL/TLS message extensions.
The identifier of block and the Merkle audit path for the transaction (i.e., the
shortest list of additional nodes to compute the Merkle hash tree root [35]) are
also sent to enable browsers to verify the certificate transaction.

A certificate chain received in SSL/TLS negotiations is valid, if (a) the cer-
tificate (or its hash value) is published in List of Cert Chain of an unexpired
transaction, which is sent by the visited web server, (b) it is signed by a trusted
root CA of the browser, (c) the transaction is included in a fully-confirmed block,
not in the latest N ones of the blockchain, to ensure that the certificate transac-
tion has been accepted by enough miners [8] and the published certificates have
been monitored by interested parties, and (d) in the blocks subsequent to this
fully-confirmed block, including the N non-fully-confirmed ones, if there are any
transactions with the visited DNS name, then the received certificate shall also
appear in these transactions. Note that browsers are immune to downgrading
attacks, since they will determine whether a web server has published trans-
action in the blockchain according to their local copies of block headers, and
perform standard certificate validation for those servers who has not.

Because the certificate chain has been validated by the majority of honest
miners, the browser only needs to check whether the root CA certificate is trusted
by itself or not. Other processing [12] such as CA signatures, periods of validity,
and certificate extensions, is unnecessary. That is, the certificate validation of
browsers is delegated to the community of miners, and the delegated certificate
validation is also transparent (i.e, publicly visible).

Since the validity period of Type-I transactions may be greater than the
general CRL/OCSP update period, a browser with high security concerns may
take extra actions to check the revocation status of the received certificates.

4 Security Analysis

In this section, we analyze the proposed scheme under various attack scenarios.
We present the countermeasures and evaluate the impacts, when some entities
except the target web server were compromised. The network attacks on the
certificate blockchain are also analyzed.

152 Z. Wang et al.

4.1 Security with Compromised Key Pairs

In order to impersonate a web server, the attackers could compromise a CA,
and/or compromise some web servers’ publishing key pairs. Note that, an attack
is considered as successful only if a fraudulent certificate is accepted by browsers.

We do not assume that the attackers could compromise at least G certifiers
of the target web server, considering the certifiers are carefully selected by the
target server, and G can be set large enough. We neither consider the situation
that the key pair bound in the target web server’s certificate is compromised by
attackers, in which the attackers could launch MITM attacks without a fraudu-
lent certificate. Such attacks should be prevented or mitigated by the approaches
other than certificate management, which are out of the scope of this paper.

Compromised CAs. When only CAs are compromised, our scheme ensures
that no fraudulent certificate is accepted by browsers, because the target web
server will not publish such certificates in the blockchain. Note that in traditional
PKIs compromising a CA is sufficient to launch MITM attacks, while in our
scheme attackers need to concurrently compromise the target server’s publishing
key, which is more difficult.

Compromised Publishing Key Pairs. An attacker fails to impersonate the
target web server, if it only compromises its publishing key pair. The attacker
may modify List of Cert Chain in a Type-I transaction, by including an
expired or revoked one, or excluding a currently-valid certificate. But the veri-
fication of such a transaction will fail, because miners will validate all included
certificates and only expired or revoked certificates shall be excluded compared
with the previous transaction.

The attacker may modify Next Publishing Key with another key pair
through Type-I transactions, to prevent the web server from updating its Type-I
transactions. This case will be further discussed in the following paragraphs.

Compromised CAs and Publishing Key Pairs. The attackers might
compromise a CA to sign fraudulent certificates and also compromise the
target web server’s publishing key pair. Then, the attacker could publish
fraudulent certificates in a Type-I transaction, while simultaneously modify
Next Publishing Key with another key pair held by itself. This transaction
will be considered as correct by miners, and finally included into a mined block.

Once the fraudulent Type-I transaction is observed by the target web server
(or any other interested parties), the web server will immediately contact its
certifiers to sign a countermeasure Type-II transaction, to exclude the fraudulent
certificates by properly setting List of Cert Chain and to simultaneously reset
its publishing key in Publishing Key. As shown in Fig. 2, if the countermeasure
Type-II transaction appears in time (i.e, in any of the N subsequent blocks
after the fraudulent transaction), browsers will detect the conflict and reject
the fraudulent certificates (see Sect. 3.4). Such a Type-II transaction thoroughly
counters the impact of the fraudulent Type-I transaction. If the countermeasure
transaction is not signed in time, the fraudulent certificates might be accepted
temporarily but rejected after the countermeasure transaction.

Blockchain-Based Certificate Transparency and Revocation Transparency 153

Fraudulent
Transaction

(Type-I)

www.foo.com

Certificate Chains

Countermeasure
Transaction

(Type-II)

www.foo.com

Certificate Chains

Block i Block k

Publishing Public KeyPublishing Public Key

The Certificate Blockchain

Fig. 2. A fraudulent Type-I transaction in Block i, and the countermeasure Type-II
transaction in Block k. If i < k ≤ i+N , the fraudulent certificate is never accepted; if
k > i + N , it may be accepted before the countermeasure transaction.

In all above scenarios, there is no attack impact if target web servers observe
attacks and take countermeasures in time (i.e. k ≤ i + N). Since attackers can
not compromise G certifiers, a web server can always counters the impact by a
Type-II transaction.

4.2 Attacks on the Certificate Blockchain

The attackers may attempt to prevent browsers from accessing the recent blocks
of the certificate blockchain. First, it is extremely difficult and expensive to
isolate a browser from a great number of P2P nodes, while allow it to access
(counterfeit) web servers. Even if such an attack could be performed, the victim
browser is aware of it when subsequent blocks take far more time than average
block interval, since the mining time is contained in block headers.

Powerful attackers might publish a fraudulent certificate and include it in a
branch of the blockchain. Then, subsequent blocks are mined on the branch
by attackers, while countermeasure transactions are elaborately excluded. It
requires the attackers to control 33% of computation resources [20], which breaks
our security assumption on attackers’ computation power [48].

5 Implementation and Evaluation

This section presents the prototype of the proposed scheme, and evaluates its
performance.

5.1 Implementation and Setting

The prototype system is comprised of, (a) a browser that validates certificates in
SSL/TLS negotiations, based on its local copy of the certificate blockchain, (b)
a web server that delivers its certificates transactions in SSL/TLS negotiations
as extensions, and (c) an instance of the certificate blockchain.

The browser is implemented on Firefox Nightly (version 54.0a1). The function
VerifySSLServerCert() is modified as described in Sect. 3.4 to validate the

154 Z. Wang et al.

received certificate. The web server is implemented on Nginx (version 1.10.3).
Extensions of ClientHello and ServerHello are defined and implemented in the
handshake of SSL/TLS, to request and respond the certificate transactions and
the corresponding Merkle audit paths. The browser and the visited web server
are connected directly. The browser runs on a desktop (Intel i7-4770s/3.10GHz
CPU, 8 GB RAM, and ST-1000DM003 hard disk) with Windows 7 Professional,
and the web server is on another desktop of the same hardware configuration
with Ubuntu 16.04 LTS (32-bit).

Table 1 summarizes the values of all related parameters in the prototype. The
reasons why we choose these values are explained in the appendix in detail.

Table 1. The values of parameters in the prototype blockchain.

Mark Value Note

TB 2 h Average block interval

TI 10 days Type-I transaction validity

TII 100 days The period of shadow Type-II transactions

G 5/10 The threshold of signed certifier in a Type-II transaction

N 6 Number of blocks after a block to fully confirm the block

There are currently about 54.35M valid SSL/TLS certificates according to
Censys.io [43], and on average each website has 1.34 certificates [57]. Nearly
70% of these certificates are issued for free (e.g. by Let’s Encrypt). We think
these certificates’ owners are sensitive to price, and would not participate in
the incentive mechanism in our scheme. Thus, we mainly focus on the non-free
certificates (approximately 13.88M, corresponding to about 10.36M websites).
Note that we do not require all certificates to participate since our scheme is
immune to downgrading attack. We include all these certificates basically for
performance estimation.

We generate a prototype blockchain using 10.36M random DNS names, and
average-size certificates by testing CAs. The prototype blockchain contains 1200
blocks (within about TII) and transactions for all 10.36M web servers. In the pro-
totype, each server periodically publishes a Type-I transaction every 114 blocks,
to ensure that a transaction does not expire until the next one is fully-confirmed.
So on average each block contains 10.36M /114 ≈ 93.06K Type-I transactions
and 10.36M/1200 ≈ 8.84K Type-II transactions. On average each web site has
1.34 certificate chains and each chain is composed of three certificates. We use
OpenSSL-1.0.1g to generate the prototype certificate blockchain. Besides, DNS
names are randomly generated in the prototype blockchain with the average
length of 14 bytes, according to the average domain name length of Alexa top
1M websites [2].

OCSP responses (1.60 KB on average) are included as the revocation status
information, because of OCSP is widely deployed [37] and smaller than CRL

Blockchain-Based Certificate Transparency and Revocation Transparency 155

(51 KB on average [37]). According to the real-world statistics, the revocation
rate is normally 1% and may increase to 11% when an emergency happens [37].

5.2 Evaluation

Storage. Table 2 lists the average size of each element. A browser keeps the
block headers within TI for certificate validation, so the storage overhead is
about 120 × 1.40 MB ≈ 168.00 MB.

Table 2. The size of data elements in the blockchain.

Item Average size

Type-I transaction

With 1/2/3 certificate chain(s) 4.65/8.71/12.77KB

With 1/2/3 partial certificate(s) 0.83/1.07/1.30KB

Type-II certificate transaction

Without certifier signature (shadow) 1.02KB

With 5/10 certifier’s signatures 5.10/5.36KB

Block header 559.18KB

Block, including the header and transactions

No certificate revoked 95.05MB

1% certificates revoked (by OCSP/CRL) and 1% new certificates 101.05/162.62MB

11% certificates revoked (by OCSP/CRL) and 11% new certificates 161.13/838.42MB

A miner keeps the latest Type-I and Type-II transactions of each DNS name,
and all block headers within TII , which is about 10.36M×(0.91 KB+1.02 KB) +
1200 × 4 × 1.40 MB ≈ 26.64 GB. Here, 0.91 KB is the estimated size of Type-
I transaction with 1.34 certificate chains. Besides, all transactions in the N
non-fully-confirmed blocks shall be kept always, to ensure the verification of
blocks in multiple concurrent non-fully-confirmed branches; and the size is about
6 × (93.06K×0.91 KB +8.84K×1.02 KB) ≈ 0.55 GB. That is, a miner stores at
least 27.19 GB data. If 1% certificates are revoked by OCSP, the storage overhead
increases to 27.36 GB (we consider it as a “typical” size); if 11% are revoked by
CRL, the overhead is 109.62 GB. Even when all valid certificates are included in
the blockchain, the typical storage overhead of a miner will not exceed 150 GB.
As a comparison, each miner in Bitcoin stores over 150 GB data.

Delay. A browser validates the received certificate as follows: (a) checks whether
the root CA is trusted, (b) reads a block header from the hard drive, (c) checks
if a block header contains a transaction of the visited DNS name, and (d)
checks whether the received transaction is in the found block and the certifi-
cate is in the transaction. Operations (b), (c) and (d) are performed repeatedly,
until it confirms that the certificate is in an unexpired transaction in the recent
fully-confirmed blocks (and also all of its subsequent transactions in non-fully-
confirmed blocks, if appear).

156 Z. Wang et al.

The browser validates certificates when the target transaction is in the mid-
dle/end of the blockchain (each for 1000 times). The average time of these oper-
ations is listed in Table 3.

Table 3. The time of certificate validation in browsers.

Operation Average time

Standard certificate validation 9.86 ms

Basic operation

(a) Check trust anchors <0.01 ms

(b) Read a block header from hard drive 1.11 ms

(c) Search the DNS name in a block header 0.01 ms

(d) Verify a transaction and the certificate 0.25 ms

Validate a certificate with the blockchain

Operation (a)+(b)+(c)+(d), target locates in the middle/end 71.87/135.38 ms

Operation (a)+(c)+(d), target locates in the middle/end 0.98/1.65 ms

The time cost is greatly reduced if a browser loads all block headers (about
168.00 MB) into memory when it starts up. In such case, Operation (b) is unnec-
essary and the average delay is 0.98 ms. This number will increase to 3.20 ms
when all valid certificates are included in the blockchain.

The browser takes about 9.86 ms to validate a certificate using the stan-
dard method except checking revocation. Adopting our method may significantly
accelerate the validation process.

Communication. In an SSL/TLS negotiation, the introduced communication
overhead is typically one certificate transaction, and will not exceeds N + 1
transactions. It is about 1.53 KB, and not larger than 10.71 KB (N = 6).

Besides, a browser periodically updates its local copy of block headers, about
16.80 MB every day. The number can be decreased to about 5∼8 MB daily via
common commercial compress software. Compared to traditional methods who
need extra links to download CRLs/OCSPs during SSL/TLS negotiations, which
degrades performance even they are small, our scheme enable browsers to down-
load block headers when they are idle.

6 Related Work

Several public-accountable-log-based services, such as CIRT [51], RT [34],
ARPKI [7], and CONIKS [41], have been introduced to achieved certificate trans-
parency and/or revocation transparency, by recording certificates in Merkle hash
trees. These schemes do not involve subject control on certificate publication
so that a fraudulent certificate (or public key) might be accepted before it
is observed by interested parties, while our blockchain-based scheme supports

Blockchain-Based Certificate Transparency and Revocation Transparency 157

subject-controlled certificate publication. AKI [31] and Policert [56] enable the
certificate subject to define its own certificate parameters (e.g., trusted CAs and
log servers). The subject certificate policy, can as well listed in Type-II trans-
actions, to enhance the subject’s control. All above append-only logs depend on
extra auditors which are not needed in our scheme. On the contrary, our scheme
is based on the append-only blockchain maintained by web servers and miners.

Other subject-controlled certificate services, like DANE [27], CAA [26],
Sovereign Key [16] were also proposed to balance the absolute authority of
CAs. In these enhancements, a browser communicates with extra components
(a DNSSEC server [4,6] or a timestamp server) when validating a certificate
or public key, so privacy information about the secure session is leaked; how-
ever, in our scheme, all browsers download uniform block headers and no such
information is exchanged.

Public key pinning requires browsers to locally store a public key (or cer-
tificate) for a certain domain [19,32,39,50]. These schemes follow the assump-
tion of trust on first use, so the first visit shall be established without attacks.
Moreover, existing pinning mechanisms do not consider certificate revocation or
update, while these events are handled as transactions in our scheme.

Notary-based approaches allow clients to compare certificates from the
SSL/TLS sessions and other sources, such as Perspectives [59], Convergence [38],
ICSI Notary [29], and EFF SSL Observatory [17]. Crossbear [28] localises the
SSL/TLS MITM attacks based on such records. Doublecheck [3,18] and Laribus
[42] allow clients compares certificates received from different network paths.
Some notary-based approaches [17,29,38,42,59] leak the privacy information
about secure sessions, while the others [3,18,42] only work for localized attacks.

Browsers may enforce enhanced security policies when validating a certifi-
cate [1]. CA-TMS [9], Certlock [52] and Cage [30] separately evaluate the trust-
worthiness of CAs based on the client’s local experiences or the CA’s domain
name scope. DVCert [13] delivers a certificate list to browsers, protected by
previously-established user credentials, to validate certificates in the SSL/TLS
negotiations. Such enhancements may be integrated into our scheme as addi-
tional rules to validate certificates. The surveys [10,25] comprehensively dis-
cussed the vulnerabilities of the SSL/TLS ecosystem and the countermeasures.

Some blockchain-based alternatives allow subjects to publish keys or
credentials in blockchain [22,23,36,49]. In these DNS systems [22,23,49], the
key pairs are controlled entirely by the owner of the DNS name. So the private
key can not be recovered ever since it is compromised. Our solution distributes
the control among CAs and the community of web servers, so an attacker cannot
bind an arbitrary key pair to the DNS name after breaking a single entity. An
IKP reaction policy signed by issuers and a domain certificate policy signed by
domains construct a smart contract in the Ethereum blockchain [40], intending
to be triggered by fraudulent certificates. Blockstack [47] improves Namecoin by
separating controls and data. This separation design can be integrated with our
solution, making the storage of certificate transactions outsourced.

158 Z. Wang et al.

7 Conclusion

We propose to record certificates and revocation status information in the global
certificate blockchain, which is inherently append-only, to achieve certificate
transparency and limited-grained revocation transparency. Our scheme balances
the absolute authority of CAs, and provides a continuous history of certificates
for each SSL/TLS web server. The publishing key pairs used to sign transac-
tions, are controlled cooperatively by CAs and the community of web servers,
and recorded in the blockchain. The proposed scheme is compatible with X.509
PKIs but significantly reinforces the security guarantees of certificates. Our
scheme also provides transparent and delegated certificate validation services
for browsers. Since each certificate chain is validated by a majority of miners
before included in the certificate blockchain. The analysis and the experimen-
tal results show that, our scheme introduces reasonable overheads in terms of
storage, certificate validation delay, communication, and incentive cost.

A Parameters Selection

The time interval between two adjacent blocks (denoted as TB) determines how
soon a certificate will be accepted by browsers after it has been included in the
blockchain. It is reasonable for a web server to require its published certificates to
be accepted within 24 h, i.e., N ×TB < 1, 440 min. On the other hand, a smaller
TB enforces the web server to watch for fraudulent certificates in the blockchain
more frequently, and take countermeasures more quickly. Accordingly, we set
TB = 120 min as a typical value and let N = 6 (the same as the requirement in
Bitcoin). In order to keep the block mining stable, the community adjusts the
PoW target of the blockchain periodically.

The validity period of Type-I transactions (denote as TI) is chosen to pro-
vide moderate revocation transparency. First, only when a transaction has
been included in a fully-confirmed block (not in the latest N ones of the
blockchain), the contained certificates are considered as valid by browsers. So,
TI � (N +1)×TB; otherwise, it is never accepted by browsers before it expires.
Meanwhile, TI shall be not significantly greater than the general revocation sta-
tus update period, to enforce the web servers to update their transactions in
a timely manner. So we require that TI ≤ 10 × TRevoke, where TRevoke is the
revocation status update period. For more than 95% of CRL files, TRevoke is
not larger than 1 day. OCSP provides timely revocation status services, but
the validity period of OCSP responses is typically 4 or 7 days.1 Thus, we set
TI = 14, 400 min (or 10 days) in the prototype.

TII determines the frequency of shadow Type-II transactions. We set TII =
10 × TI (i.e., 100 days).
1 We visited the Alexa top-50 websites, and observed 29 unique certificate chains for

these websites (averagely 4.05 KB), each of which is composed of three certificates.
We collected OCSP responses (averagely 1.60 KB) for these certificates, and the
distribution of the validity periods is: 17 are 7-day, 9 are 4-day, 2 are 1.5-day, and 1
is 5-day.

Blockchain-Based Certificate Transparency and Revocation Transparency 159

References

1. Abadi, M., Birrell, A., Mironov, I., Wobber, T., Xie, Y.: Global authentication in
an untrustworthy world. In: 14th USENIX Conference on Hot Topics in Operating
Systems (HotOS) (2013)

2. Alexa: Alexa Top 1M Websites (2017). http://s3.amazonaws.com/alexa-static/
top-1m.csv.zip

3. Alicherry, M., Keromytis, A.: Doublecheck: multi-path verification against man-in-
the-middle attacks. In: 14th IEEE Symposium on Computers and Communications
(ISCC), pp. 557–563 (2009)

4. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduc-
tion and Requirements. Technical report, IETF RFC 4033 (2005)

5. Arthur, C.: Rogue Web Certificate Could Have Been Used to Attack Iran
Dissidents, August 2011. https://iranian.com/main/news/2011/08/30/rogue-web-
certificate-could-have-been-used-attack-iran-dissidents.html

6. Ateniese, G., Mangard, S.: A new approach to DNS security (DNSSEC). In: 8th
ACM Conference on Computer and Communications Security (CCS), pp. 86–95
(2001)

7. Basin, D., Cremers, C., Kim, H., Perrig, A., Sasse, R., Szalachowski, P.: ARPKI:
attack resilient public-key infrastructure. In: 21st ACM Conference on Computer
and Communications Security (CCS), pp. 382–393 (2014)

8. bitcoin.org: Bitcoin Developer Guide (2016). https://bitcoin.org/en/developer-
guide

9. Braun, J., Volk, F., Classen, J., Buchmann, J., Mühlhäuser, M.: CA trust man-
agement for the web PKI. J. Comput. Secur. 22(6), 913–959 (2014)

10. Clark, J., van Oorschot, P.: SoK: SSL and HTTPS: revisiting past challenges and
evaluating certificate trust model enhancements. In: 34th IEEE Symposium on
Security and Privacy (S&P), pp. 511–525 (2013)

11. Comodo Group Inc.: Comodo Report of Incident, March 2011. https://www.
comodo.com/Comodo-Fraud-Incident-2011-03-23.html

12. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. Technical report, IETF RFC 5280 (2008)

13. Dacosta, I., Ahamad, M., Traynor, P.: Trust no one else: detecting MITM attacks
against SSL/TLS without third-parties. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 199–216. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 12

14. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol. Technical
report, IETF RFC 5246 (2008)

15. Eckersley, P.: A Syrian Man-in-the-Middle Attack against Facebook, May 2011.
https://www.eff.org/deeplinks/2011/05/syrian-man-middle-against-facebook

16. Eckersley, P.: Sovereign Key Cryptography for Internet Domains. Technical report,
IETF Internet-draft (2012)

17. Eckersley, P., Burns, J.: Is the SSLiverse a Safe Place, December 2010. https://
events.ccc.de/congress/2010/Fahrplan/events/4121.en.html

18. Engert, K.: DetecTor, September 2013. http://www.detector.io/DetecTor.pdf
19. Evans, C., Palmer, C., Sleevi, R.: Public Key Pinning Extension for HTTP. Tech-

nical report, IETF RFC 7469 (2015)
20. Eyal, I., Sirer, E.G.: Majority Is Not Enough: Bitcoin Mining Is Vulnerable, pp.

436–454 (2013)

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://iranian.com/main/news/2011/08/30/rogue-web-certificate-could-have-been-used-attack-iran-dissidents.html
https://iranian.com/main/news/2011/08/30/rogue-web-certificate-could-have-been-used-attack-iran-dissidents.html
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://doi.org/10.1007/978-3-642-33167-1_12
https://www.eff.org/deeplinks/2011/05/syrian-man-middle-against-facebook
https://events.ccc.de/congress/2010/Fahrplan/events/4121.en.html
https://events.ccc.de/congress/2010/Fahrplan/events/4121.en.html
http://www.detector.io/DetecTor.pdf

160 Z. Wang et al.

21. Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Ver-
sion 3.0 (2011)

22. Fromknecht, C., Velicanu, D., Yakoubov, S.: A Decentralized Public Key Infras-
tructure with Identity Retention (2014). https://eprint.iacr.org/2014/803.pdf

23. Fromknecht, C., Velicanu, D., Yakoubov, S.: CertCoin: A NameCoin Based
Decentralized Authentication System, Massachusetts Institute of Technology,
MA, USA (2014). http://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-
velicann-yakoubov-certcoin.pdf

24. GlobalSign: Security Incident Report (2011). https://www.globalsign.com/
resources/globalsign-security-incident-report.pdf

25. Grant, A.: Search for Trust: An Analysis and Comparison of CA System Alterna-
tives and Enhancements. Technical report, Dartmouth Computer Science, Techni-
cal Report TR2012-716 (2012)

26. Hallam-Baker, P., Stradling, R.: DNS Certification Authority Authorization (CAA)
Resource Record. Technical report, IETF RFC 6844 (2013)

27. Hoffman, P., Schlyter, J.: The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. Technical report, IETF
RFC 6698 (2012)

28. Holz, R., Riedmaier, T., Kammenhuber, N., Carle, G.: X.509 forensics: detecting and
localising the SSL/TLS men-in-the-middle. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 217–234. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 13

29. ICSI: The ICSI Certificate Notary (2011). https://notary.icsi.berkeley.edu/
30. Kasten, J., Wustrow, E., Halderman, J.A.: CAge: taming certificate authorities by

inferring restricted scopes. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
329–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-
1 28

31. Kim, T., Huang, L., Perrig, A., Jackson, C., Gligor, V.: Accountable key infras-
tructure (AKI): a proposal for a public-key validation infrastructure. In: 22nd
International Conference on World Wide Web (WWW), pp. 679–690 (2013)

32. Langley, A.: Public Key Pinning, May 2011. https://www.imperialviolet.org/2011/
05/04/pinning.html

33. Langley, A.: Further Improving Digital Certificate Security, December 2013.
https://security.googleblog.com/2013/12/further-improving-digital-certificate.
html

34. Laurie, B., Kasper, E.: Revocation Transparency (2012). http://sump2.links.org/
files/RevocationTransparency.pdf

35. Laurie, B., Langley, A., Kasper, E., Google: Certificate Transparency. Technical
report, IETF RFC 6962 (2014)

36. Lewison, K., Coralla, F.: Backing Rich Credentials with a Blockchain PKI (2016).
http://pomcor.com/techreports/BlockchainPKI.pdf

37. Liu, Y., Tome, W., Zhang, L., Choffnes, D., et al.: An end-to-end measurement of
certificate revocation in the web’s PKI. In: 15th Internet Measurement Conference
(IMC), pp. 183–196 (2015)

38. Marlinspike, M.: Convergence, September 2011. https://github.com/moxie0/
Convergence

39. Marlinspike, M.: Trust Assertions for Certificate Keys. Technical report, IETF
Internet-draft (2013)

40. Matsumoto, S., Reischuk, R.: IKP: turning a PKI around with decentralized auto-
mated incentives. In: 38th IEEE Symposium on Security and Privacy (S&P) (2017)

https://eprint.iacr.org/2014/803.pdf
http://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
http://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
https://www.globalsign.com/resources/globalsign-security-incident-report.pdf
https://www.globalsign.com/resources/globalsign-security-incident-report.pdf
https://doi.org/10.1007/978-3-642-33167-1_13
https://notary.icsi.berkeley.edu/
https://doi.org/10.1007/978-3-642-39884-1_28
https://doi.org/10.1007/978-3-642-39884-1_28
https://www.imperialviolet.org/2011/05/04/pinning.html
https://www.imperialviolet.org/2011/05/04/pinning.html
https://security.googleblog.com/2013/12/further-improving-digital-certificate.html
https://security.googleblog.com/2013/12/further-improving-digital-certificate.html
http://sump2.links.org/files/RevocationTransparency.pdf
http://sump2.links.org/files/RevocationTransparency.pdf
http://pomcor.com/techreports/BlockchainPKI.pdf
https://github.com/moxie0/Convergence
https://github.com/moxie0/Convergence

Blockchain-Based Certificate Transparency and Revocation Transparency 161

41. Melara, M., Blankstein, A., Bonneau, J., Felten, E., Freedman, M.: CONIKS: bring-
ing key transparency to end users. In: 24th USENIX Conference on Security Sym-
posium, pp. 383–398 (2015)

42. Micheloni, A., Fuchs, K., Herrmann, D., Federrath, H.: Laribus: privacy-preserving
detection of fake SSL certificates with a social P2P notary network. In: 8th Inter-
national Conference on Availability, Reliability and Security (ARES), pp. 1–10
(2013)

43. University of Michigan. Censys, April 2016. https://censys.io/
44. Microsoft: MS01-017: Erroneous VeriSign-Issued Digital Certificates Pose Spoofing

Hazard, March 2001. https://technet.microsoft.com/library/security/ms01-017
45. Morton, B.: Public Announcements Concerning the Security Advisory, January

2013. https://www.entrust.com/turktrust-unauthorized-ca-certificates
46. Morton, B.: More Google Fraudulent Certificates, July 2014. https://www.entrust.

com/google-fraudulent-certificates/
47. Muneeb, A., Jude, N., Ryan, S., Michael, J.: Blockstack: a global naming and stor-

age system secured by blockchains. In: 2016 USENIX Annual Technical Conference,
pp. 181–194 (2016)

48. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

49. Namecoin Team: Namecoin (2011). https://www.namecoin.org/
50. PSYC: Certificate Patrol (2014). http://patrol.psyced.org/
51. Ryan, M.: Enhanced certificate transparency and end-to-end encrypted mail. In:

21st ISOC Network and Distributed System Security Symposium (NDSS) (2014)
52. Soghoian, C., Stamm, S.: Certified lies: detecting and defeating government inter-

ception attacks against SSL (Short Paper). In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 250–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-27576-0 20

53. Sotirov, A., Stevens, M.: MD5 Considered Harmful Today, December 2008. http://
www.win.tue.nl/hashclash/rogue-ca/

54. SSL Shopper: SSL Certificate for Mozilla.com Issued Without Validation,
December 2008. https://www.sslshopper.com/article-ssl-certificate-for-mozilla.
com-issued-without-validation.html

55. Start Commercial (StartCom) Limited: Critical Event Report, Decem-
ber 2008. https://blog.startcom.org/wp-content/uploads/2009/01/ciritical-event-
report-12-20-2008.pdf

56. Szalachowski, P., Matsumoto, S., Perrig, A.: PoliCert: secure and flexible TLS cer-
tificate management. In: 21st ACM Conference on Computer and Communications
Security (CCS), pp. 406–417 (2014)

57. Vandersloot, B., Amann, J., Bernhard, M., Durumeric, Z., et al.: Towards a com-
plete view of the certificate ecosystem. In: 16th Internet Measurement Conference
(IMC), pp. 543–549 (2016)

58. VASCO Data Security International Inc.: DigiNotar Reports Security Incident,
August 2011. https://www.vasco.com/about-vasco/press/2011/news diginotar
reports security incident.html

59. Wendlandt, D., Andersen, D., Perrig, A.: Perspectives: improving SSH-style host
authentication with multi-path probing. In: 2008 USENIX Annual Technical Con-
ference, pp. 321–334 (2008)

60. Wikipedia: Flame(malware), March 2017. https://en.wikipedia.org/wiki/Flame
(malware)

https://censys.io/
https://technet.microsoft.com/library/security/ms01-017
https://www.entrust.com/turktrust-unauthorized-ca-certificates
https://www.entrust.com/google-fraudulent-certificates/
https://www.entrust.com/google-fraudulent-certificates/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.namecoin.org/
http://patrol.psyced.org/
https://doi.org/10.1007/978-3-642-27576-0_20
https://doi.org/10.1007/978-3-642-27576-0_20
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/
https://www.sslshopper.com/article-ssl-certificate-for-mozilla.com-issued-without-validation.html
https://www.sslshopper.com/article-ssl-certificate-for-mozilla.com-issued-without-validation.html
https://blog.startcom.org/wp-content/uploads/2009/01/ciritical-event-report-12-20-2008.pdf
https://blog.startcom.org/wp-content/uploads/2009/01/ciritical-event-report-12-20-2008.pdf
https://www.vasco.com/about-vasco/press/2011/news _diginotar _reports _security _incident.html
https://www.vasco.com/about-vasco/press/2011/news _diginotar _reports _security _incident.html
https://en.wikipedia.org/wiki/Flame_(malware)
https://en.wikipedia.org/wiki/Flame_(malware)

162 Z. Wang et al.

61. Wilson, K.: Distrusting New CNNIC Certificates, April 2015. https://blog.mozilla.
org/security/2015/04/02/distrusting-new-cnnic-certificates/

62. Zusman, M.: Criminal Charges Are Not Pursued: Hacking PKI (2009). https://
defcon.org/images/defcon-17/dc-17-presentations/defcon-17-zusman-hacking
pki.pdf

https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
https://defcon.org/images/defcon-17/dc-17-presentations/defcon-17-zusman-hacking_pki.pdf
https://defcon.org/images/defcon-17/dc-17-presentations/defcon-17-zusman-hacking_pki.pdf
https://defcon.org/images/defcon-17/dc-17-presentations/defcon-17-zusman-hacking_pki.pdf

Advances in Secure Electronic Voting
Schemes

A Verifiable Shuffle for the GSW
Cryptosystem

Martin Strand(B)

Norwegian University of Science and Technology, Trondheim, Norway
martin.strand@gmail.com

Abstract. We provide the first verifiable shuffle specifically for fully
homomorphic schemes. A verifiable shuffle is a way to ensure that if a
node receives and sends encrypted lists, the content will be the same, even
though no adversary can trace individual list items through the node.
Shuffles are useful in e-voting, traffic routing and other applications.

We build our shuffle on the ideas and techniques of Groth’s 2010
shuffle, but make necessary modifications for a less ideal setting where
the randomness and ciphertexts admit no group structure.

The protocol relies heavily on the properties of the so-called gadget
matrices, so we have included a detailed introduction to these.

Keywords: Verifiable shuffle · Fully homomorphic encryption ·
Post-quantum

1 Introduction

A verifiable shuffle is used to prove that two sets of ciphertexts will decrypt to
the same values, but without revealing how the sets relate. Such shuffles are
well-known for group homomorphic schemes, and are still being developed and
improved. Today, shuffles are particularly useful in e-voting and mixnets, in order
to make it hard to correlate the input and the output of a node.

Fully homomorphic encryption has also been suggested as a useful primi-
tive for both e-voting [10] and private network routing. Complex voting systems
in particular can take advantage of the features of fully homomorphic encryp-
tion, but the FHE toolbox is still missing a number of useful protocols. Recent
development have brought shuffling for FHE within reach.

Our result starts from Groth’s 2010 shuffle [11], which uses an idea from
Neff [15]. A polynomial (X−x1)(X−x2) · · · (X−xn) is obviously unchanged when
the roots are permuted. One can then ask the prover to evaluate the polynomial
at random points. The probability of two nonidentical polynomials evaluating
to the same value at a random point is negligible. While later development
have resulted in even more efficient protocols, Groth’s 2010 approach has the
advantage of simplicity and that there are few compromises: the protocol satisfies
a standard soundness condition and it is honest-verifier zero knowledge. We
return to the details in Sect. 2.
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 165–180, 2019.
https://doi.org/10.1007/978-3-662-58820-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_12&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_12

166 M. Strand

The polynomial mentioned above is hidden in a subprotocol which is used to
prove correctness of a shuffle of known content. The subprotocol is completely
independent of the encryption scheme, and uses only a homomorphic commit-
ment scheme. It is important to note that the commitment scheme need only
be homomorphic with respect to a single operation. We return to the selection
of such schemes. The protocol is then completed by binding the secret data –
which we want to prove the claim for – to the known content for which one can
prove the relation.

Groth’s protocol depends crucially on the fact that some group homomorphic
schemes are homomorphic both with respect to the message and the randomness.
For instance, the product of two ElGamal ciphertexts with messages m1 and
m2 and randomness r1 and r2, will be a new ciphertext encrypting m1m2 using
r1+r2 as randomness. Generally, a necessary requirement for the original shuffle
is that the equation Enc(m0 ⊕M m1; r0 ⊕R r1) = Enc(m0; r0) ⊕C Enc(m1; r1).
holds, where ⊕M, ⊕R and ⊕C are the algebraic operations used in the message,
randomness and ciphertext groups respectively. Note that r1 ⊕ r2 is an equally
likely randomness as either r1 or r2.

The noise-based homomorphic schemes do not satisfy the above requirements,
since the ciphertext spaces usually are far from being groups at all. The reason
is the noise management; even sufficiently many additions will eventually make
the ciphertext decrypt to the wrong value, there need not be an identity element,
and associativity may not hold, especially for multiplication in combination with
noise management techniques. In fact, the Gentry-Sahai-Waters scheme even
exploits this property to minimise the noise growth [9].

Furthermore, the homomorphic property does in general not hold concur-
rently for the messages and the randomisers. It can, however, be possible to
compute the noise after an operation for certain simple cases. We show that
the abelian group requirement is not necessary, so that a variant of the original
protocol is secure also for a noise-based homomorphic scheme.

The final issue is to take advantage of the quantum security of the lattice
based encryption schemes, and then make the protocol future-proof. The secrecy
requirements for verifiable shuffles is long-term, while soundness is only short-
term. This allows us to achieve security against a potential future quantum
adversary using a perfectly hiding commitment scheme, since the computational
binding property is only necessary until the proof has been verified.

However, using a lattice based commitment scheme by Baum et al. [3], we
can also clear the protocol completely of classic cryptography.

A Naive Approach. Recall the polynomial (X − x1)(X − x2) · · · (X − xn),
where the roots x1, x2, . . . , xn are the secret data to be shuffled. Assume we
have two sets of ciphertexts, say {Ei} and {ei}, and some secret permutation π

A Verifiable Shuffle for the GSW Cryptosystem 167

such that Dec(Ei) = Dec(eπ(i)). The straightforward approach to shuffling using
fully homomorphic encryption is to compare the two polynomials

P1(X) = (X − e1)(X − e2) · · · (X − en)
P2(X) = (X − E1)(X − E2) · · · (X − En)

by requiring the prover to demonstrate that the ciphertext P2(ei) for one or
more i given by the verifier decrypts to 0. Such proofs exist [3,5], given that the
prover has decryption capabilities. Also, it would be straightforward to verify this
protocol using multilinear maps [7] with their zero-test abilities. However, at the
time of writing, all multilinear map candidates are broken for this application [1].
Additionally, this computation would require a very deep circuit, i.e. high degree
polynomials, which with today’s FHE techniques is forbiddingly expensive.

Related Work. Independently, Costa, Mart́ınez and Morillo [6] have published
a shuffle for lattice based schemes. Their shuffle is based on an idea of Wikström
using permutation matrices. Unfortunately, one cannot guarantee the secrecy of
the shuffle due to lack of circuit privacy for their re-encryption procedure. They
observe that the RLWE scheme is additively homomorphic, and suggest to re-
encrypt by adding an encryption of 0. This idea is sound for group homomorphic
schemes since the randomness is near-uniformly distributed over the group. With
noise-based schemes, the randomness is typically a Gaussian, so decryption and
a following analysis of the noise term can reveal extra information about the
ciphertext. As a consequence, the permutation can leak from the ciphertexts
regardless of the properties of the zero-knowledge protocol for which the authors
provide a proof.

Our Contribution. Our main contribution is the first adaptation of a verifiable
shuffle specifically for a FHE cryptosystem under the assumption of equal noise
levels in the input ciphertexts. The efficiency is mostly affected by the inherent
limitations of the cryptosystem. The assumption can if necessary be met using
bootstrapping.

A second contribution is a detailed exposition of the properties of the gadget
matrix, and it is our hope that it can be useful for others who need to work with
the details of the GSW ciphertexts.

Outline. We have introduced the main ideas here in Sect. 1. The upcoming
section will in turn describe the concepts we need to build our protocol, such as
gadget matrices, the GSW cryptosystem, commitment schemes, zero-knowledge
protocols, and Groth’s original shuffle. Then, in Sect. 3, we describe our modifica-
tions and present the shuffle in full, including a proof of it being a zero-knowledge
argument.

168 M. Strand

2 Preliminaries

This section introduces the concepts and technical terms needed in this paper
to successfully use the Groth shuffle on GSW ciphertexts. Before we discuss the
cryptosystem, we look at gadget matrices in detail.

Following the description of GSW, we will discuss commitment schemes,
zero-knowledge proofs and Groth’s verifiable shuffle protocol.

2.1 Gadget Matrices

Much of the notation will follow Alperin-Sheriff and Peikert [2]. Assume we work
in a field Zq = Z/qZ, and let � = �log2 q�. One can then define the gadget vector
g ∈ Z

�
q as ⎛

⎜⎜⎜⎜⎜⎝

1
2
4
...

2�−1

⎞
⎟⎟⎟⎟⎟⎠

For any a ∈ Zq, it is clear that there exist many vectors x ∈ Z
�
q such that

〈g ,x 〉 = a. In particular, the vector x can be the binary decomposition of a,
with all entries 0 or 1. The binary decomposition is the output of the function
or algorithm denoted g−1

det.
Sometimes, we want a random preimage of g rather than the binary decom-

position. Let X = {x | 〈x , g〉 = 0}, the set of all preimages of 0. Let g−1
rand denote

an algorithm that computes g−1
det and samples a value x from X, typically from

a Gaussian distribution with a prescribed radius, and outputs the sum g−1
det +x .

From now on, we will use subscripts when it is necessary to distinguish
between the two variants of the algorithm. If no subscript is given, then the
discussion applies equally to both.

Next, we can expand the whole process to handle an n-dimensional vector a
rather than a single value. Define the sparse matrix

G =

⎛
⎜⎜⎜⎝

1 . . . 2�−1

1 . . . 2�−1

. . .
1 . . . 2�−1

⎞
⎟⎟⎟⎠ ∈ Z

n×n�
q .

The matrix G is known as the gadget matrix, and the literature often express it
in shorthand as gT ⊗ In.

The map from Z
n�
q to Z

n
q induced by the matrix G is not invertible, but it is

easy to find preimages. As with g, the binary decomposition of each coordinate
is a preimage. In line with the literature, let G−1

det denote this function. It is not
linear, since the sum of two binary decompositions need not be all binary again.
The output of G−1 is a right-inverse for the map G, and we can extend it to

A Verifiable Shuffle for the GSW Cryptosystem 169

Z
n×m
q by applying G−1 column-wise to some n × m matrix A. As with g−1, we

sometimes want random samples, and denote the resulting sampling algorithm
by G−1

rand. We use the notation X ← G−1
rand(A) when we want to indicate that we

sample from some distribution imposed on the algorithm.
The following properties are straightforward to derive from the above con-

struction.

Lemma 1. Assume all operations are modulo some q, and let A ∈ Z
n×m
q and

λ ∈ Zq be some scalar. Then,

1. G · G−1(I) = I = In ∈ Z
n×n
q

2. G · G−1(A) = A ∈ Z
n×m
q

3. In particular, G · G−1(λG) = λG

We get a particularly nice structure when applying the G−1 algorithm on
multiples of G.

Lemma 2. Assume all operations are modulo some q, and let λ ∈ Zq be some
scalar with binary decomposition

∑�−1
i=0 λi2i. Then

G−1
det(λG) =

⎛
⎜⎜⎜⎝

Λ
Λ

. . .
Λ

⎞
⎟⎟⎟⎠ ∈ Z

n�×n�
q

where

Λ =

⎛
⎜⎜⎜⎝

λ0 λ�−1 · · · λ1

λ1 λ0 · · · λ2

...
...

. . .
...

λ�−1 λ�−2 · · · λ0

⎞
⎟⎟⎟⎠ ∈ Z

�×�
q

In particular, G−1
det(G) is the n� × n� identity matrix.

The pattern comes from the fact that multiplying by 2 corresponds with one-step
shifts in the binary expression of a number.

One can view G−1
det(λG) as a representation of λ, and consider all repre-

sentations as equivalent (modulo the kernel of G). Then the G−1 algorithm is
homomorphic on equivalence classes, which is crucial for the GSW cryptosystem.
Recall that linear mappings can be represented by matrices. Consider the map-
ping G : Zn�

q → Z
n
q given by x �→ Gx . This mapping have several right-inverses

H : Zn
q → Z

n�
q such that

(G ◦ H)(x) = GHx = x ,

so G ◦ H = idZn
q
. Fix G−1 as one specific such right-inverse. Then, for all H,

G−1(x) − H(x) ∈ ker G.

170 M. Strand

As explained above, we can expand the map G to Z
n�×m
q → Z

n×m
q , and we can

expand the right-inverses as well. By the above relation, for each H we then get

G−1(A) = HA + BA, G(BA) = 0,

and so for scalars a, b ∈ Zq, we have

G−1(aG)G−1(bG) = (aHG + Ba)(bHG + Bb)

= ab(HGHG + b−1HGBb + a−1BaHG + (ab)−1BaBb)

= ab(HIG + b−1H · 0 + a−1BaHG + (ab)−1BaBb)
= abHG + B′ (with GB′ = 0)

= G−1(abG) + B′ − Bab.

As a consequence, G−1(aG)G−1(bG) and G−1(abG) can be said to encode
the same scalar ab, but with a difference which lies in the kernel of G. A similar
computation holds for the sum G−1(aG) + G−1(bG).

We can illustrate this with a toy example. Let q = 7, � = 3 and n = 3. Then

G =

⎛
⎝

1 2 4 0 0 0 0 0 0
0 0 0 1 2 4 0 0 0
0 0 0 0 0 0 1 2 4

⎞
⎠ .

Consider G−1
det(5G) and G−1

det(3G), which will have blocks
[
1 1 0
0 1 1
1 0 1

]
and

[
1 0 1
1 1 0
0 1 1

]
.

Both their sum and product will be
[
2 1 1
1 2 1
1 1 2

]
which contains a 2, something we

cannot avoid since we are computing modulo 7. However, a new encoding of
5 · 3 ≡ 5 + 3 ≡ 1 (mod 7) is just the identity matrix.

This is an effect one has to take into account when computing. Still, it is
certainly so that the different matrices represent the same value. In particular,

⎛
⎝

2 1 1
1 2 1
1 1 2

⎞
⎠ =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ +

⎛
⎝

1 1 1
1 1 1
1 1 1

⎞
⎠ ,

and note that
(
1 2 4

) ·
⎛
⎝

1 1 1
1 1 1
1 1 1

⎞
⎠ ≡ (

0 0 0
)

(mod 7).

In other words, (1, 1, 1) is in the kernel of G.

2.2 The GSW Cryptosystem and Circuit Privacy

The 2013 cryptosystem by Gentry, Sahai and Waters (GSW) [9] is based on hiding
the message as an eigenvalue of the ciphertext. The private key is an approximate
eigenvector. For simplicity, we will use the symmetric formulation by Alperin-
Sheriff and Peikert [2], and at the end explain how to make the scheme public
key. Let n be an integer, let q be a modulus and � = �log2 q�. Finally, let χ be a
subgaussian distribution (Gaussian with very small tails) over Z.

A Verifiable Shuffle for the GSW Cryptosystem 171

Key generation Let s̄ ← χn−1 coordinate-wise, and output s = (s̄, 1) as the
private key.

Encryption To encrypt a message μ ∈ {0, 1}, choose a random matrix C̄ from
Z
(n−1)×m
q , where m = n�, an error vector e ← χm and set bT = eT − s̄T C̄

(mod q). Let

C =
(

C̄

bT

)
+ μG.

Decryption Given s and C, let c be the penultimate column of C, and output
0 if 〈s, c〉 (mod q) is closer to 0 than 2l−2. Otherwise, output 11.

Addition Add the matrices C1 and C2.
Multiplication Define C1 � C2 as C1 · G−1(C2).

The cryptosystem is usually only defined for a binary plaintext space, but the
definition can be modified even up to the large space Zq by modifying the decryp-
tion algorithm to extract bits from more columns than the penultimate, and then
building the message from the bits. However, this has a strong negative impact
on the noise behaviour. When two ciphertexts encrypting binary messages are
multiplied, the noise grows far less than with previous FHE cryptosystems. The
growth is a function of the encrypted value of the first ciphertext, so larger plain-
text spaces can potentially also give worse noise problems. Nonetheless, we will
have to assume a large message space for our application, in the order of 160–180
bits, in order to facilitate the scalar multiplications we will perform. This fact is
the main drawback of our work.

The original GSW scheme does not achieve circuit privacy. Informally, this
property guarantees that nobody are able to deduce which circuit output a given
ciphertext. Gentry [8] defined the notion by requiring that an encryption of an
evaluation of a circuit should be indistinguishable from an encryption of eval-
uation of the circuit on encrypted data. In other words, evaluate-then-encrypt
should be the same as encrypt-then-evaluate. Bourse et al. [4] provide a simula-
tion based definition – capturing mostly the same intuition – and prove that the
GSW cryptosystem is circuit private if the multiplication algorithm is slightly
modified and all input ciphertexts have low noise from the same distribution.
The definitions only differ in that Bourse et al. allow the length of the circuit to
leak.

Alperin-Sheriff and Peikert [2] proposed to use the G−1
rand algorithm instead

of G−1
det for performance reasons. Bourse et al. go one step further, and also add

a matrix which is 0 everywhere except for the bottom row, which constitutes
gaussian shift on the ciphertext,

C1 � C2 = C1G
−1
rand(C2) +

(
0
yT

)
,

1 See Alperin-Sheriff and Peikert [2] for a justification of this algorithm.

172 M. Strand

where C1 and C2 are ciphertexts and y is a vector drawn from χm. In particular,
one can scale C1 by α by letting C2 = αG. Also note that

(
0
yT

)
is a valid

encryption of 0. We will use this fact in the upcoming protocol.
Finally, we note that the GSW scheme can be made public-key by publishing

the above
(

C̄
bT

)
as, say, Â and define encryption as

C ← ÂR + μG,

where R is a random matrix with entries in {−1, 0, 1}.

2.3 Commitment Schemes

A commitment scheme is an important tool in protocols. The concept allows a
player to make a binding promise to use certain values, but without revealing
them at the time of the promise. The commitment can later be verified when
the committer reveals the opening information. Formally, a commitment scheme
consists of three algorithms:

KeyGen On input 1�, output a public key pk
Commit On input (pk,m, r), return c.
Verify On input (pk,m, r, c), return accept if c is a valid commitment to m,

otherwise reject.

We say that (m, r) is an opening of c. The key material will normally be omitted
to simplify notation.

Any public key cryptosystem can be turned into a commitment scheme which
is unconditionally binding. Pedersen commitments [16] is an example of a scheme
that is unconditionally hiding and where binding depends on the discrete log-
arithm problem being hard. A particularly nice property about the Pedersen
scheme is that it is homomorphic; we have Commit(m1, r1) · Commit(m2, r2) =
Commit(m1 + m2, r1 + r2).

A commitment scheme must satisfy two security properties. The scheme must
be hiding, which means that a commitment to some message m1 is indistinguish-
able from a commitment to some other message m2. Next, it must be binding,
which means that it is hard to find two openings for distinct messages for a
single commitment. At most one of these properties may hold unconditionally,
but both may hold only computationally.

Lately, Baum et al. [3] proposed a new additively homomorphic commit-
ment scheme based on the Ring-SIS problem. This is conjectured to be safe
also against quantum computers. Recall from the introduction that also classi-
cal commitment schemes that are unconditionally hiding and computationally
binding will remain secure and usable until the adversary has quantum com-
puters readily available, since the binding property is only needed during the
protocol execution to provide soundness.

A Verifiable Shuffle for the GSW Cryptosystem 173

2.4 Zero-Knowledge Protocols

Zero-knowledge protocols capture the intuition of being able to convince someone
else about the validity of some claim, but without revealing any other informa-
tion.

Definition 1. Let R be a relation, and let (x,w) ∈ R. An honest-verifier zero-
knowledge protocol (P,V) for R is a two-party game between a prover P on
input (x,w) and a verifier V on input x, satisfying

Completeness Whenever (x,w) ∈ R, V accepts.
Soundness If (x,w) /∈ R, then for any P∗, V will only accept with negligible

probability.
Honest-verifier zero knowledge (HVZK) There exists a simulator M run-

ning in expected polynomial time on input x such that the output is indistin-
guishable from the transcripts of (P,V) run with (x,w) as input to P.

The w is called a witness for the relation.

If the prover is only given bounded computationally resources, the protocol
is usually called an argument, otherwise we call it a proof. The zero-knowledge
property can be varied by requiring the indistinguishability to hold computa-
tionally, statistically or unconditionally.

The simulator can choose all messages arbitrarily. A proof or argument is
special honest-verifier zero knowledge (SHVZK) if the output of the simulator is
indistinguishable from a real transcript if it has to use truly random messages as
simulated challenges from the verifier (as opposed to being able to choose such
challenges arbitrarily).

To guarantee that a zero-knowledge protocol can be used as a subprotocol in a
larger context, Lindell [12] introduced the notion of witness-extended emulation,
which loosely speaking requires that there exists a machine that on basis of
sufficiently many rounds of the protocol (reusing the prover’s commitments) is
able to both output a valid witness for the relation as well as a valid simulated
transcript. Our use of this property is limited to noting that the shuffle of known
content satisfies it in order for us to be able to use it for our protocol, so we refer
to the original source for details.

2.5 Groth’s Shuffle

In 2010, following up on Neff’s idea [15] of proving the validity of a shuffle by
using the fact that a polynomial

∏
(X − xi) is stable under permutation of the

roots xi, Groth presented an efficient, yet conceptually simple shuffle [11]. The
idea is two-fold. First, one uses the polynomial idea to prove that some c is a
commitment to a permutation of messages m1, . . . ,mn. The values are known
by the verifier, but the permutation remains hidden. Next, one binds the secret
data to the known data, and proves that the same permutation is still used.

It is important to note that the shuffle of known content is independent of
the encryption scheme employed in the main protocol, and only requires a group

174 M. Strand

homomorphic commitment scheme. Later, we can therefore reuse the shuffle of
known content completely, and rely on the following properties [11, Theorem 1].

– The shuffle satisfies special honest-verifier zero knowledge with witness-
extended emulation.

– If the commitment scheme is statistically hiding we get statistical HVZK.
– If the commitment scheme is unconditionally binding we get unconditional

soundness.

Recall that the property of witness-extended emulation guarantees that we can
use the SKC protocol as a building block of the full shuffle.

While the SKC protocol only uses the commitment scheme, the outer pro-
tocol depends heavily on the encryption scheme, in particular rerandomisation
and cancellation of original randomness. Both of these features are less straight-
forward in FHE schemes than in classical group homomorphic schemes, and call
for some modifications to the original protocol.

Remark 1. Groth introduces two security parameters, �e and �s, subject to the
conditions that

– �e must be sufficiently large to make it hard to break soundness, i.e. it must
be hard to predict a challenge of length �e,

– For any a sampled from the uniform distribution on [0, 2�e] ∩ Z, d and a +
d, must be statistically indistinguishable whenever d is sampled from the
uniform distribution on [0, 2�e+�s] ∩ Z, and

– If the commitment space has message space Z
n
q , then 2�e+�s ≤ q.

The second bullet point is to avoid leakage of information whenever a + d < 2�e

or 2�e+�s ≤ a + d. Notice that we can achieve the same result with smaller
parameters if we employ rejection sampling [13,14]. The probability of 2�e ≤
a + d ≤ 2�e+�s is approximately 1 − 1

2�s
− 1

2�s+�e
.

The third bullet point is to avoid overflow that would require modular reduc-
tions. However, Groth notes that “[w]hen the cryptosystem has a message space
where mq = 1 for all messages, this requirement can be waived”.

Concretely, Groth suggests �e = �s = 80 for the interactive variant, and
�e = 160 and �s = 20 if the protocol is made non-interactive using the Fiat-
Shamir heuristic and rejection sampling. We will keep the same parameters for
our protocol.

3 Verifiable Shuffle for GSW

Now we can combine the tools and ideas above to get a verifiable shuffle for
GSW ciphertexts. Let n denote the number of ciphertexts, and recall that �e

and �s denote security parameters for the zero-knowledge protocol. We now
briefly describe the changes that must be made to Groth’s shuffle.

The first part of a shuffle is to permute and rerandomise the ciphertexts.
Given an ElGamal ciphertext (a = gr, b = μhr), a new ciphertext will typically

A Verifiable Shuffle for the GSW Cryptosystem 175

look like (agr′
, bhr′

), and one can easily prove that it is hard to find the correct
correspondence between the old and new set as long as r′ is random. The funda-
mental reason is that the randomness of ElGamal forms a group, and that any
rerandomisation is indistinguishable from a fresh encryption.

This is not the case for FHE in general and GSW in particular. The randomness
is not bounded, and the Eval algorithm will result in a new ciphertext with ran-
domness being a function of both the messages and the randomness of the inputs.
We need to employ Bourse et al.’s technique for circuit privacy. Let the old and
new ciphertexts be denoted by {ei} and {Ei}, and the permutation by π.

Ideally, the shuffling circuit should have all old ciphertexts and the permu-
tation as input, such that all old ciphertexts contribute to each new ciphertext,

Ei =
n∑

j=1

eπ(i)G
−1
rand(δπ(i),jG) +

(
0
yT

i

)

where δa,b is 1 if a = b and 0 otherwise, and y is some vector chosen by the
circuit privacy algorithm [4].

However, this is causing problems for achieving the completeness property
of the protocol, so we have opted for a simpler version. For each i, sample
Xi ← G−1

rand(G), and let

Ei = eπ(i)Xi +
(

0
yT

i

)

which is sufficient under the condition that all {ei} have the same noise level and
equal-length decryptions. Note that one can only measure the noise by using the
decryption key.2 The order is not coincidental. The shuffling circuit is essentially
included in Xi, and this order of multiplication hides it [4]. If necessary, enforce
the noise-level condition by bootstrapping the ciphertexts before shuffling them.
Bootstrapping is an deterministic operation which only requires the public key.

The original protocol was expressed using multiplications. Since we are using
the additive structure of the GSW scheme, we switch from multiplications
and exponentiations to additions and scalar multiplications. This is in itself
a favourable move, as the efficiency of the original protocol was measured in
exponentiations, while additions and scalar multiplications are almost for free in
FHE schemes.

Finally, one of the verifications step in the original protocol involved creating
a ciphertext using randomness provided by the prover. Since we lack the nice
structure on the randomness in the GSW cryptosystem, we need to provide com-
plete ciphertexts instead of just randomness. This requires us to convince the
verifier that the ciphertext is “innocent”, in the sense that it doesn’t encrypt
a value that allows the prover to cheat. Fortunately, we can observe that the
2 An anonymous reviewer pointed out that it is important to ensure that a malicious

mix server cannot mark the ciphertexts, typically by using randomness of different
size, resulting in more noise. This may lead to a DoS attack unless one employ
bootstrapping, but should not compromise secrecy since only the decryption service
can measure noise.

176 M. Strand

ciphertext in question will be all zeros except for the bottom row, which guar-
antees that it can only encrypt 0.

The complete protocol follows.

Precomputation. Start with fresh ciphertexts {ei} with equal noise levels. Boot-
strap each ciphertext to achieve near-freshness if necessary. Shuffle using a ran-
dom permutation π and re-encrypt to get new ciphertexts {Ei}.

Common Input. Fresh ciphertexts {ei} and shuffled ciphertexts {Ei}.

Private input to P. Permutation π, matrices Xi ← G−1
rand(G) and vectors y such

that for each i,

Ei = eπ(i)Xi +
(

0
yT

i

)

Protocol

P1 Select randomness r and rd for the commitment scheme, and select n random
values di of length �e + �s.
Let

c ← Commit(π(1), . . . , π(n); r)
cd ← Commit(−d1, . . . ,−dn; rd).

Set Di ← G−1
rand(diG), yd ← χZm and Ed ← ∑n

i=1 EiDi +
(

0
yT

d

)

Send c, cd and Ed to the verifier.
V1 Return a set of random numbers {ti} of length �e.
P2 Set fi ← tπ(i) + di, compute X ′

i such that

X ′
π(i) = G−1

det(tπ(i)G) − XiG
−1
det(fiG) + XiDi,

and set Z =
∑n

i=1

((
0
yT

i

)
G−1

det(fiG) −
(

0
yT

i

)
Di

)
−

(
0
yT

d

)
. Cancel if not 2�e ≤

fi ≤ 2�e+�s for all i.
Send {fi}, {X ′

i}, Z to the verifier.
P–V Run the shuffle of known content to prove that

cλcdCommit(f1, . . . , fn) = Commit(λπ(1) + tπ(1), . . . , λπ(n) + tπ(n)),

where λ is a challenge from the verifier.
V2 Verify the following

– The elements c and cd are in the commitment space
– For all i, 2�e ≤ fi ≤ 2�e+�s

– GX ′
i = 0 for all i

– The shuffle of known content
– The matrix Z is of the form

(
0
yT

)

–
∑n

i=1 EiG
−1
det(fiG) − ∑n

i=1 ei(G−1
det(ti) − X ′

i) − Ed = Z

A Verifiable Shuffle for the GSW Cryptosystem 177

Theorem 1. Assume that {ei} is a set of fresh ciphertexts. Then the above
protocol is a special honest-verifier zero-knowledge argument for correctness of a
shuffle of fully homomorphic ciphertexts. If the commitment scheme is statisti-
cally binding, then the scheme is an SHVZK proof of a shuffle.

Proof. Completeness
Recall from Remark 1 that the probability of P aborting is 1

2�s
+ 1

2�e+�s
, which

can be made arbitrarily small with a suitable choice of �s.
We need to check two of the verification equations, the rest is straightforward.

Note that Xi comes from the G−1 algorithm and encodes a 1. By the discussion
in Sect. 2.1, one can see that X ′

π(i) must encode −fi + tπ(i) + di = 0 for all i,
hence GX ′

i = 0, all i.
Next, we verify that

∑n
i=1 EiG

−1
det(fiG) − ∑n

i=1 ei(G−1
det(ti) − X ′

i) − Ed = Z.
This is a tedious, but uncomplicated computation.

Soundness
We need to prove that there exists a permutation π, such that Dec(eπ(i)) =

Dec(Ei) for all 1 ≤ i ≤ n. We can extract the permutation using rewinding,
but we will not extract the matrices Xi used to rerandomise the ciphertexts
(although we can prove that they must exist, and have been generated in an
honest way).

Run the protocol (P∗,V) until the prover outputs a transcript. Due to the
rejection sampling, the prover may try several times. If the verifier would reject
the transcript, we output ⊥. Following the exact same argument as in Groth’s
original proof, we can extract π and {−di} using two valid transcripts [11, p.
562].

Because of the commitment we now know that fi = tπ(i) + di, and since
GX ′

i = 0, we know that Dec(X ′
i) = 0. Also, we know that Dec(Z) = 0. Recall

that we scale a ciphertext C by computing CG−1(λG), hence if we apply the
decryption function to

n∑
i=1

EiG
−1
det(fiG) −

n∑
i=1

ei(G−1
det(ti) − X ′

i) − Ed = Z,

we get

n∑
i=1

fiDec(Ei) −
n∑

i=1

(ti + 0)Dec(ei) − Dec(Ed)

=
n∑

i=1

tiDec(Eπ−1(i)) +
n∑

i=1

diDec(Ei) −
n∑

i=1

tiDec(ei) − Dec(Ed)

=
n∑

i=1

ti(Dec(Eπ−1(i)) − Dec(ei)) +
n∑

i=1

diDec(Ei) − Dec(Ed)

= Dec(Z) = 0.

178 M. Strand

Since only one sum depends on {ti}, both sums must be 0 individually. Fur-
thermore, since each ti is unpredictable, each summand must be 0. Hence,
Dec(Eπ−1(i)) = Dec(ei), which we wanted to prove.

Note that we can apply the decryption function without actually being able
to compute it for unknown ciphertexts.

Special Honest-Verifier Zero Knowledge
Let π0 and π1 be two permutations, and let C0 and C1 be the corresponding

shuffle circuits. By circuit privacy, the adversary cannot decide whether C0 or C1

was used to generate {Ei} from {ei}. Hence, the precomputation step does not
leak any information.

To prove that the shuffle itself is HVZK given the challenges, we construct a
simulator whose output will be indistinguishable from a real protocol transcript.
We provide the simulator through a hybrid argument.

Sim I Simulate the shuffle of known content, and select c and cd as random
commitments.

It follows from the properties of the shuffle of known content that Sim I is
indistinguishable from a real transcript.

Sim II Construct a random Z from the same distribution as the original. The
distribution is hard to give explicitly, but does not depend on secret data, so
it can be simulated by choosing the fundamental terms of the sum indepen-
dently, and adding. Likewise, choose {X ′

i} by choosing {(X̄i, d̄i)} under the
same distributions as the prover would, and some permutation π̄. Compute
{X ′

i} by the equation in P2, such that GX ′
i = 0 for all i. Choose {fi} from

the sum of the uniform distributions over [0, 2�e]∩Z and [0, 2�e+�s]∩Z under
the constraint that 2�e ≤ fi ≤ 2�e+�s . Then choose Ed to fit.

The simulated values for Z, {X ′
i} and {fi} have the same distribution since

they are computed from the same formulas as the original, but using new (but
identically distributed) random values instead of Xi and π. Then Ed becomes a
valid ciphertext by the homomorphic property of GSW. Circuit privacy makes
a simulated Ed indistinguishable from a real Ed, and the IND-CPA property of
the cryptosystem will finally provide computational SHVZK.

4 Further Work

We have presented a verifiable shuffle for fully homomorphic schemes. Shuffling
techniques have evolved further since the protocol we have chosen to forge from,
and we believe it would be interesting to see adaptions of newer shuffles.

Furthermore, Groth’s original shuffle can be used with a large family of group
homomorphic encryption schemes. The result in this paper can only use the
GSW scheme, due to the existence of the efficient and computationally simple
circuit privacy technique. However, one should pick one’s scheme based on what
the application needs, so the shuffling primitive should be available for more
schemes. This requires more research on techniques for circuit privacy.

A Verifiable Shuffle for the GSW Cryptosystem 179

Finally, it would be interesting to see an implementation of verifiable shuffling
for FHE schemes, coupled with a real-life application. Only then will one be
able to see if the parameters and the runtime of the proof will be acceptable.
For instance, we predict that the scheme will be unsuitable for applications with
many shuffles, such as onion routing. However, for elections, where one can spend
minutes or even hours on the process, this protocol may already be mature.

Acknowledgements. The author wishes to thank Jens Groth for his useful comments
to an early version of this manuscript, as well as to the anonymous reviewers.

References

1. Albrecht, M., Davidson, A.: Are graded encoding scheme broken yet? (2017).
http://malb.io/are-graded-encoding-schemes-broken-yet.html. Accessed 30 Aug
2017

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

3. Baum, C., Damg̊ard, I., Oechsner, S., Peikert, C.: Efficient commitments and zero-
knowledge protocols from ring-SIS with applications to lattice-based threshold
cryptosystems. Cryptology ePrint Archive, Report 2016/997 (2016). http://eprint.
iacr.org/2016/997

4. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

5. Carr, C., Costache, A., Davies, G.T., Gjøsteen, K., Strand, M.: Zero-knowledge
proof of decryption for FHE ciphertexts (2017). Manuscript

6. Costa, N., Mart́ınez, R., Morillo, P.: Proof of a shuffle for lattice-based cryptog-
raphy (full version). Cryptology ePrint Archive, Report 2017/900, 2017. http://
eprint.iacr.org/2017/900

7. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

8. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

9. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

10. Gjøsteen, K., Strand, M.: A roadmap to fully homomorphic elections: stronger
security, better verifiability. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol.
10323, pp. 404–418. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 25

11. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptology
23(4), 546–579 (2010)

12. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology 16(3), 143–184 (2003)

http://malb.io/are-graded-encoding-schemes-broken-yet.html
https://doi.org/10.1007/978-3-662-44371-2_17
http://eprint.iacr.org/2016/997
http://eprint.iacr.org/2016/997
https://doi.org/10.1007/978-3-662-53008-5_3
http://eprint.iacr.org/2017/900
http://eprint.iacr.org/2017/900
https://doi.org/10.1007/978-3-642-38348-9_1
https://crypto.stanford.edu/craig/
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/978-3-319-70278-0_25

180 M. Strand

13. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

14. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

15. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter,
M.K., Samarati, P., (eds.) CCS 2001, Proceedings of the 8th ACM Conference on
Computer and Communications Security, pp. 116–125. ACM (2001)

16. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/3-540-46766-1_9

Outsourcing Modular Exponentiation
in Cryptographic Web Applications

Pascal Mainini and Rolf Haenni(B)

Bern University of Applied Sciences, 2501 Biel/Bienne, Switzerland
{pascal.mainini,rolf.haenni}@bfh.ch

Abstract. Modern web applications using advanced cryptographic
methods may need to calculate a large number of modular exponen-
tiations. Performing such calculations in the web browser efficiently
is a known problem. We propose a solution to this problem based
on outsourcing the computational effort to untrusted exponentiation
servers. We present several efficient outsourcing protocols for different
settings and a practical implementation consisting of a JavaScript client
library and a server application. Compared to browser-only computa-
tion, our solution improves the overall computation time by an order of
magnitude.

1 Introduction

Due to the limited performance of interpreted JavaScript code, web browsers
are relatively slow computational environments compared to high-performance
servers running compiled native or pre-compiled VM code. With recent perfor-
mance improvements of the most common JavaScript engines, this is no longer a
real limitation for most modern web applications. However, exceptionally expen-
sive client-side computations are required in applications of public-key cryptogra-
phy. Usually, the most critical operation in such applications is modular exponen-
tiation (modexp), i.e., the computation of z = xy mod n for given integer inputs
x, y, and n of length 2048 bits or higher. While web browsers compute modexps
efficiently to establish TLS connections to servers, JavaScript developers have
no built-in access to such a primitive, not even using the recently standardized
Web Cryptography API.1 To allow the development of cryptographic code in
JavaScript, several libraries provide an API for dealing with large integers and
an implementation of the most important arithmetic operations. With the best
libraries available today, computing a small number of modexps is possible in a
modern web browser, but the performance is more than one order of magnitude
inferior compared to native code.2

1 The Web Cryptography API offers operations for Diffie-Hellman key exchanges and
DSA signatures, but currently only elliptic curves are supported. Therefore, we do
not see a way of exploiting this interface for computing modular exponentiations.

2 We expect significant performance improvements in libraries making use of the
recently introduced WebAssembly technology for web browsers.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 181–195, 2019.
https://doi.org/10.1007/978-3-662-58820-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_13&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_13

182 P. Mainini and R. Haenni

If a large number of modexps needs to be computed in a cryptographic appli-
cation, the limited performance of JavaScript leads to major usability problems.
In such cases, calculating the modexps may take several minutes, which is not
tolerated by most users. Examples of such applications exist in the context of
cryptographic voting protocols. In [5,6], for example, the web client used for
vote casting requires up to 2k modexps in a k-out-of-n election. In parliamen-
tary elections, where k represents the number of seats and n the number of
candidates, it can happen that several hundred modexps need to be computed
in the web browser for these protocols. The problem gets even worse in advanced
voting protocols with extended security properties. For instance, in the protocol
presented in [9], depending on the size of the electorate and the chosen security
parameters, several thousand modexps may be required for ensuring everlasting
privacy while casting a vote. Cases like this cannot be handled in reasonable
time by JavaScript engines in current web browsers.

To solve this problem, we propose to outsource modexp computations to
external exponentiation servers. Note that modexp computations in crypto-
graphic applications often involve secret values such as private keys or encryption
randomizations. Therefore, the main challenge of this approach is to ensure that
the input parameters—the base x, the exponent y, or both x and y—and the
output parameter z remain secret, even if exponentiation servers are not fully
trustworthy (the modulus n is usually a public parameter). Secret parameters
must therefore be cryptographically blinded before sending them out. Another
challenge is to ensure the correctness of the results in the presence of servers that
may act maliciously, or at least to detect such attacks with adequate probabil-
ity. Client-side algorithms for dealing with these challenges must do so without
falling back on expensive operations.

A very different, but more common approach to speed up expensive cryp-
tographic computations on limited devices is working with elliptic curves. For
providing equivalent security, point multiplications on such curves are signifi-
cantly faster than exponentiations in modular groups. The main problem with
elliptic curves in voting protocols such as the ones mentioned above is the diffi-
culty of encoding complex voting options as curve points (while preserving the
encryption homomorphism). In [5,6], for example, voting options are encoded
as a product of prime numbers. Using modular groups, such products can be
efficiently aggregated under encryption and decoded after decryption. We are
not aware of an equivalent encoding for elliptic curves.

1.1 Related Work

There is a large amount of literature about outsourcing modular exponentia-
tions. The approaches can be classified along two lines. The first is the number
of required exponentiation servers. There are approaches for one, two, or four
servers. In the two-server and four-server cases, it is assumed that the servers
do not collude and that they can be reached over confidential channels. No
such assumptions exist in the one-server case. Server-side authentication is a
requirement in all cases to ensure the origin of the server responses. The second

Outsourcing Modular Exponentiation in Cryptographic Web Applications 183

classification criterion is the adversary model attributed to the exponentiation
servers. The main differentiation is between semi-honest and malicious servers.
In the semi-honest model, no particular measures need to be taken to ensure the
correctness of the responses.

A comprehensive analysis and compilation of one-server protocols for semi-
honest adversaries can be found in [3]. This document also contains proven opti-
mality results for certain protocols in form of lower bounds for the total number
of necessary modular multiplications. The main drawback of most one-server
protocols is the assumption that random pairs (r, gr mod n) can be generated
efficiently by the client, where g is a fixed value. This may be difficult to achieve
in a web application. Some protocols also require a large number of modular mul-
tiplications on the client, which reduces the potential performance gain of the
outsourcing process. Similar remarks hold for the protocols presented in [1,8],
which consider the one-server case in the presence of malicious adversaries.

The main reference in the literature on two-server outsourcing protocols is the
paper by Hohenberger and Lysyanskaya [7]. They introduced a property called
β-checkability, which means that deviations from the protocol by malicious
servers are detected by the client with probability β or greater. Some other
authors proposed similar protocols with improved efficiency [2,12]. A very dif-
ferent two-server approach based on the subset-sum-problem has been proposed
in [10]. For a more detailed overview of the available references and methods, we
refer to the summary given in [11].

1.2 Contribution and Paper Overview

The contribution of this paper consist of three parts. In Sect. 2, we present out-
sourcing protocols for some of the most important settings. Except for the num-
ber of involved servers, our protocols are the most efficient ones in the literature,
with only up to two client-side modular multiplications during the execution of
the protocols. A detailed performance comparison is shown in Table 1.

The second contribution is the implementation of the outsourcing protocols
from Sect. 2. To the best of our knowledge, such an implementation has not
yet existed before. To enable the embedding of our implementation in a practi-
cal system, we provide a client library in JavaScript, which handles the secure
communication with the servers and executes the outsourcing algorithms. The
flexible architecture of this library enables the inclusion of further outsourcing
algorithms from the literature. We also provide a server application in Java,
which can be deployed on ordinary server infrastructure. Details of our imple-
mentation are given in Sect. 3.

The third contribution of this paper is the experimental performance analysis
of our implementation in Sect. 4. Compared to browser-only computation, the
analysis shows that our implementation improves the overall computation time
by an order of magnitude. In the two use cases mentioned in the introduction,
in which a large number of modexps need to be computed for casting a vote in
the web browser, this solves the aforementioned usability problem. In Sect. 5, we
summarize our findings and mention some remaining open problems.

184 P. Mainini and R. Haenni

Table 1. Performance comparison of different outsourcing protocols. Each row of the
table shows the number of servers involved in the corresponding protocol, the number
of modexps computed by each server, the number of modular multiplications computed
by the client, the number of multiplicative inverses computed by the client, the number
of random pairs (r, gr mod n) generated by the client, and the checkability factor β.
Some one-server protocols from [3] are omitted, for example the ones that are limited
to a fixed base or the ones that are special cases of others.

Paper Protocol name Secret Number of β

Base Exp. Servers ModExps Mult. Inv. Rand.

[3] Protocol 7 yes no 1 2 3 1 3 0

Protocol 5 no yes 1 s ≥ 1 log p
s+1 – – 0

Protocol 6 yes yes 1 s ≥ 2 log p
s – 2 0

[7] Exp yes yes 2 4 9 5 6 1/2

[2] Exp yes yes 2 3 7 3 5 2/3

This Algorithm1 yes no 2 1 2 – – 0

Algorithm2 no yes 2 1 1 – – 0

Algorithm3 yes no 2 2 2 – – 1/2

Algorithm4 no yes 2 2 1 – – 1/2

Algorithms 1 and 2 combined [11] yes yes 4 1 4 – – 0

Algorithms 3 and 4 combined [11] yes yes 4 2 4 – – 1/2

2 Outsourcing Protocols

Most outsourcing algorithms in the literature are based on the same basic prin-
ciples. Privacy is achieved by blinding x and y based on the homomorphic prop-
erty of the exponentiation function, which comes in two flavors, depending on
whether x or y is fixed:

exp(x, y1 + y2) = xy1+y2 = xy1xy2 = exp(x, y1) exp(x, y2),
exp(x1x2, y) = (x1x2)y = xy

1x
y
2 = exp(x1, y) exp(x2, y).

These properties also hold if all multiplications are performed modulo n and all
additions modulo φ(n), where φ denotes the Euler function. Since φ(n) cannot
be computed efficiently without knowledge of the prime factors of n, we restrict
ourselves to the particular case where n is prime and φ(n) = n−1. We emphasize
this point by writing xy mod p instead of xy mod n.

From a group theory perspective, we perform exponentiations in the multi-
plicative group Z

∗
p = {1, . . . , p − 1} of integers modulo p, or in corresponding

subgroups 〈x〉 ⊆ Z
∗
p generated by x. We denote such a subgroup by Gq = 〈x〉

and assume that its order q (which divides p − 1) is known in the given con-
text. Operations in the exponent can then be computed in the additive group
Zq = {0, . . . , q − 1} of integers modulo q. Note that Z

∗
p (and large subgroups

Gq ⊆ Z
∗
p) are by far the most widely used groups in cryptographic applications

based on the discrete logarithm (DL), computational Diffie-Hellman (CDH),
or decisional Diffie-Hellman (DDH) assumption. Other popular groups such as
elliptic curves are not treated explicitly in this paper. However, all algorithms
presented in this section generalize naturally to arbitrary groups.

Outsourcing Modular Exponentiation in Cryptographic Web Applications 185

In the next subsection, we introduce two of the most basic outsourcing proto-
cols for semi-honest servers. The first protocol protects the secrecy of x and the
second the secrecy of y (both protocols protect the secrecy of z = xy mod p). In
Sect. 2.2, we show that each protocol of Sect. 2.1 can be extended easily to reach
1/2-checkability in the presence of malicious servers. We present each two-server
protocol by an algorithm ModExp(x, y, p, q, S1, S2) executed by the client. These
algorithms contain calls to Si.ModExp(xi, yi, p), which invoke the transmission
of xi, yi, and p to server i ∈ {1, 2}, and the receipt of the server’s response over a
secure channel. In every protocol, we assume that the servers are non-colluding.3

2.1 Semi-Honest Servers

In the semi-honest adversary model, it is assumed that every server involved in
the outsourcing protocol executes Si.ModExp(xi, yi, p) faithfully, i.e., the server
always returns the correct result of computing xyi

i mod p to the client.

Secret Base. If the base x ∈ Gq is secret and the exponent y ∈ Zq is public, only y
can be sent in cleartext to the involved servers. However, by decomposing x into
values x1 ∈R Gq (picked uniformly at random from Gq) and x2 = xx−1

1 mod p,
which implies x = x1x2 mod p, we can apply the homomorphic property of the
exponentiation function,

xy ≡ (x1x2)y ≡ xy
1x

y
2 (mod p),

to split the computation of xy mod p into xy
1 mod p for the first server and

xy
2 mod p for the second server. Since x1 is a random value and x2 is derived from

a random value, x remains entirely hidden from both servers. A disadvantage
of this simple approach is that the client needs to compute the multiplicative
inverse x−1 mod p, which is a relatively expensive operation.

A slightly different approach consists in selecting values x1 ∈R Gq and x2 =
xx1 mod p, which implies x = x−1

1 x2 mod p. By applying again the homomor-
phic property of the exponentiation function, we obtain

xy ≡ (x−1
1 x2)y ≡ (x−1

1)yxy
2 ≡ x−y

1 xy
2 (mod p),

which implies that x−y
1 mod p can be given to the first server and xy

2 mod p to
the second server. For the same reasons as above, x remains entirely hidden
from both servers. The details of this procedure are depicted in Algorithm 1.
Note that the main computational work for the client consists of two modular
multiplications in Gq (we assume that operations in Zq are negligible).

3 Requiring two non-colluding servers is admittedly a strong assumption. We believe
that this assumption can be justified, if adequate organizational measures are put
in place. Otherwise, we suggest extending our protocols to three or more servers or
considering the one-server protocols from [3].

186 P. Mainini and R. Haenni

Secret Exponent. In the opposite case of a public base x ∈ Gq and a secret
exponent y ∈ Zq, only x can be sent in cleartext to the involved servers. Here,
a viable solution results directly from applying the homomorphic property of
the exponentiation function to y = y1 + y2 mod q for values y1 ∈R Zq and y2 =
y − y1 mod q:

xy ≡ xy1+y2 ≡ xy1xy2 (mod p).

Algorithm 2 shows the procedure of outsourcing xy1 mod p to the first server and
xy2 mod p to the second server. Since y1 is a random value and y2 is derived from
a random value, y remains entirely hidden from both servers. Here the workload
for the client is a single modular multiplication in Gq.

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Secret base x ∈ Gq

Public exponent y ∈ Zq

Prime modulus p
Group order q
Semi-honest servers S1, S2

x1 ∈R Gq, x2 ← x x1 mod p
z1 ← S1.ModExp(x1, −y mod q, p)
z2 ← S2.ModExp(x2, y, p)
return z1z2 mod p

Algorithm 1: Two-server outsourcing

protocol for secret base and public expo-

nent.

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Public base x ∈ Gq

Secret exponent y ∈ Zq

Prime modulus p
Group order q
Semi-honest servers S1, S2

y1 ∈R Zq, y2 ← y − y1 mod q
z1 ← S1.ModExp(x, y1, p)
z2 ← S2.ModExp(x, y2, p)
return z1z2 mod p

Algorithm 2: Two-server outsourcing

protocol for public base and secret expo-

nent.

Secret Base and Exponent. If both the base x ∈ Gq and the exponent y ∈ Zq

are secret, we can combine the two protocols from above to hide both secret
values from the servers. The resulting protocol is almost equally efficient for the
client (four multiplications in Gq, see Table 1), but it requires four non-colluding
servers, i.e., any pair of colluding servers can reconstruct at least one of the
two secret values. This is a very strong trust assumption for the protocol to
be implemented in a real-world application. Therefore, we do not discuss this
setting and the resulting protocol in more detail.

2.2 Malicious Servers

In the literature on outsourcing modular exponentiation in the presence of mali-
cious servers, various authors have applied a similar technique to detect a cheat-
ing server [1,2,7]. The idea consists in challenging each involved server with at
least one additional modexp computation, but without letting the server know
which one is the real task and which one the challenge. If xi and yi are the real
parameters and x′

i and y′
i the challenges for server Si, then this is achieved by

randomizing the order of the calls Si.ModExp(xi, yi, p) and Si.ModExp(x′
i, y

′
i, p).

In the simplest possible case, the same random challenge is sent to multiple
servers. The client then checks the consistency of the servers’ responses and
aborts the protocol in case of a mismatch. This general approach can be applied
to both protocols from the previous subsection in slightly different forms.

Outsourcing Modular Exponentiation in Cryptographic Web Applications 187

To pass the above consistency check, a cheating server must respond correctly
to the challenge, but if the challenge and the real task are indistinguishable for
the server, the chance of identifying the challenge is 1/2. If two servers are cheating
simultaneously, the chance of guessing both challenges is 1/4, and if four servers
are cheating, the chance is 1/16. Therefore, the chance that an attack by malicious
servers remains undetected is always at most 1/2, which implies that a protocol
equipped with this technique offers 1/2-checkability. Note that a higher value for
β can be achieved by sending multiple challenges in random order to each server.
Generally, we obtain β = c

c+1 for sending c ≥ 0 challenges in random order to
each server.

Secret Base. If x ∈ Gq is secret and y ∈ Zq is public, the parameters of the
challenges sent to the servers must be indistinguishable from those of Algo-
rithm 1. Therefore, while choosing the base x′ ∈R Gq at random for making it
indistinguishable from the random values x1 and x2, the same public exponents
must be used, i.e., −y mod q for S1 and y for S2. If we extend Algorithm 1
with corresponding calls S1.ModExp(x′,−y mod q, p) and S2.ModExp(x′, y, p),
and randomize the order of the calls using a random bit r ∈R {0, 1}, the client
obtains values z′

1 = (x′)−y mod p and z′
2 = (x′)y mod p. Their consistency can

be checked by z′
1z

′
2 mod p = 1 using a single additional multiplication. This

whole procedure is shown in Algorithm 3.

Secret Exponent. If x ∈ Gq is public and y ∈ Zq is secret, the situation is
reversed. For making the challenge parameters indistinguishable, we must pick a
random exponent y′ ∈R Zq while using the same public base x. This means that
exactly the same challenge Si.ModExp(x, y′, p) is sent to both servers and that
the consistency of their responses, z′

i = xy′
mod p, can be tested by verifying if

they are identical. In Algorithm 4, we show the resulting protocol obtained as
an extension of Algorithm 2.

3 Practical Implementation

Despite the large amount of literature on the subject of outsourcing modular
exponentiation, we were not able to find practical and implemented solutions.
However, for validating the use cases in cryptographic voting protocols from
Sect. 1, we require such a practical implementation and we thus provide it as part
of our contribution. We have defined two main objectives for the implementation:

– Providing a robust API for integration into cryptographic web applications.
– Supporting performance measurements and comparisons of different

protocols.

188 P. Mainini and R. Haenni

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Secret base x ∈ Gq

Public exponent y ∈ Zq

Prime modulus p
Group order q
Malicious servers S1, S2

x1 ∈R Gq, x2 ← x x1 mod p, x′ ∈R Gq

r ∈R {0, 1}
if r = 0 then

z1 ← S1.ModExp(x1, −y mod q, p)
z′
1 ← S1.ModExp(x′, −y mod q, p)

z2 ← S2.ModExp(x2, y, p)
z′
2 ← S2.ModExp(x′, y, p)

else
z′
1 ← S1.ModExp(x′, −y mod q, p)

z1 ← S1.ModExp(x1, −y mod q, p)
z′
2 ← S2.ModExp(x′, y, p)

z2 ← S2.ModExp(x2, y, p)

if z′
1z

′
2 mod p = 1 then

return z1z2 mod p

else
return ⊥

Algorithm 3: Two-server outsourcing

protocol for secret base and public expo-

nent with β = 1/2.

Algorithm: ModExp(x, y, p, q, S1, S2)

Input: Public base x ∈ Gq

Secret exponent y ∈ Zq

Prime modulus p
Group order q
Malicious servers S1, S2

y1 ∈R Zq, y2 ← y − y1 mod q, y′ ∈R Zq

r ∈R {0, 1}
if r = 0 then

z1 ← S1.ModExp(x, y1, p)
z′
1 ← S1.ModExp(x, y′, p)

z2 ← S2.ModExp(x, y2, p)
z′
2 ← S2.ModExp(x, y′, p)

else
z′
1 ← S1.ModExp(x, y′, p)

z1 ← S1.ModExp(x, y1, p)
z′
2 ← S2.ModExp(x, y′, p)

z2 ← S2.ModExp(x, y2, p)

if z′
1 = z′

2 then
return z1z2 mod p

else
return ⊥

Algorithm 4: Two-server outsourcing

protocol for public base and secret expo-

nent with β = 1/2.

Our solution, which we call famodulus4, fulfills both objectives. It consists of
the following three logically distinct components:5

– famodulus-client , a JavaScript library for outsourcing modexp calculations
to famodulus-server (in the current version, only Algorithms 2 and 4 are
implemented),

– famodulus-server , an implementation of the exponentiation server,
– famodulus-demo, a comprehensive demonstrator application using famodulus-
client and famodulus-server .

In Sects. 3.1 and 3.2, we further describe the famodulus-server and famodulus-
client components. famodulus-demo, which is a simple HTML5 web applica-
tion used for testing and demos, consists of a user interface for outsourcing sin-
gle or multiple modular exponentiations using famodulus-client to the servers,

4 famodulus is a combination of the Latin words famulus (servant) and modulus (mea-
sure), i.e., famodulus is a servant for modular exponentiation calculations.

5 All three components have been released as open-source software under the MIT
license, see https://github.com/mainini/famodulus.

https://github.com/mainini/famodulus

Outsourcing Modular Exponentiation in Cryptographic Web Applications 189

and provides support for parameter generation and execution time measure-
ments. Communication between the client and the servers takes place over a
minimal RESTful interface, which is also described in Sect. 3.2.

3.1 Client Library

In order to provide an API for cryptographic web applications to outsource
modexp calculations, client code for the web browser currently has to be written
in JavaScript. Our library focuses on clean and robust implementation as well as
on performance and extensibility. Even if a considerable amount of deployed web
browsers are still not supporting the full JavaScript ES6 specification, our library
makes use of some of its advanced functionalities.6 We expect an even broader
adoption for ES6 soon. Where browser upgrades are not easily possible, so-
called polyfills may be loaded by the application to support the missing language
features.

Client-Side Technologies. Recently, JavaScript has also gained importance on the
server side with the rise of Node.js in the last few years.7 Node.js brings a widely
adopted module system, which simplifies development and supports modularity
of JavaScript code. For this reason, famodulus-client has been developed as a
Node.js module, which gets transformed into a single file for the browser using
browserify.8 A side effect of this development model is the simplification of unit
tests, which do not necessarily require a browser for execution. In principle, fa-
modulus-client could thus also be used for outsourcing modexp calculations from
a server running in JavaScript, even though calculating modexps through native
bindings instead of sending them over the network would probably be a more
sensible choice.

Outsourcing protocols require client-side calculations with big integers in
JavaScript, which, as opposed to Java, has no built-in support for such types.
We have thus conducted a small benchmark of libraries for big integer opera-
tions in JavaScript before starting development, focusing on performance for the
required arithmetic operations. Based on the results, two libraries where consid-
ered for famodulus-client , the BigInt library by B. Leemon9 and the Verificatum
JavaScript Cryptographic Library (VJSC)10 by D. Wikström, with the latter
being slightly faster. We finally decided to use Leemon’s library, mostly due to
licensing concerns. While working with this library, we encountered critical effi-
ciency problems with the bigInt2str and str2bigInt functions for converting big
integers into strings and vice versa. By rewriting these functions, we improved
their performance by an order of magnitude.

6 See http://www.ecma-international.org/ecma-262/6.0/.
7 See https://nodejs.org.
8 See http://browserify.org.
9 See https://www.npmjs.com/package/BigInt.

10 See http://www.verificatum.com/html/product vjsc.html.

http://www.ecma-international.org/ecma-262/6.0/
https://nodejs.org
http://browserify.org
https://www.npmjs.com/package/BigInt
http://www.verificatum.com/html/product_vjsc.html

190 P. Mainini and R. Haenni

const s e r v e r s = [’ s e rve r 1 ’ , ’ s e rve r 2 ’] ;
const checked = true ;

let fam = new FamodulusClient (s e rve r s , checked) ;
fam . decExponent ([{ b : ’ 2 ’ , e : ’ 4 ’ , m: ’5 ’} ,{b : ’ 4 ’ , e : ’ 2 ’ , m

: ’ 5 ’ }]) . then (r e s u l t => {
// do something wi th r e s u l t

}) ;

Listing 1. Outsourcing two simultaneous modexps to two servers using famodulus-
client and Algorithm 4.

Modexp Computations. In an application of famodulus-client in the web browser,
a global FamodulusClient object is exported, which is initialized with a list of
exponentiation servers and additional configuration values. After initialization,
functions for outsourcing modexps according to the different protocols can be
invoked. A code example of using famodulus-client for outsourcing a batch of
two modexps, 24 mod 5 and 42 mod 5, is shown in Listing 1. The flag checked in
the constructor of the FamodulusClient object indicates that servers are possibly
malicious and that their responses need to be checked using the techniques from
Sect. 2.2. The function decExponent performs a decomposition of the exponent in
order to protect its secrecy. This setting corresponds to the outsourcing protocol
of Algorithm 4. Switching the checked flag to false leads to invocation of the
unchecked version of the protocol in Algorithm 2.

3.2 Exponentiation Server

The main objective of an exponentiation server according to our definition is
to provide efficient modular exponentiation calculations. It should also provide
a convenient interface for submitting calculation tasks and a secure channel for
the transmission of the parameters and the responses. famodulus-server fulfills
these requirements.

Server-Side Technologies. For ease of integration with current electronic voting
projects at our institute, we decided to implement the exponentiation server in
Java. This choice of platform has no influence on the functionality, and we con-
sider porting the exponentiation server to another platform or programming lan-
guage to be straightforward. While Java provides a reasonably efficient modexp
implementation, we have decided to rely upon the native GNU Multiple Precision
Arithmetic Library (GMPLib) for all server-side calculations.11 A short series
of benchmarks conducted during an initial evaluation phase indicates a perfor-
mance gain of roughly a factor of four compared to Java’s built-in BigInteger.
modPow() method. We conducted our measurements using OpenJDK 1.8 on the
Linux platform.
11 See https://gmplib.org.

https://gmplib.org

Outsourcing Modular Exponentiation in Cryptographic Web Applications 191

As of today, RESTful interfaces as defined by R. T. Fielding can be con-
sidered state-of-the-art for interaction between web applications and back-end
services on the server side [4]. famodulus-server offers a very simple, yet flexi-
ble RESTful interface to submit modexp calculations and obtain corresponding
results. Its implementation is based on JAX-RS, which specifies an API for
RESTful services in Java. While multiple implementations for JAX-RS exist,
we have chosen Jersey, the reference implementation.12 Jersey applications offer
greatest flexibility with support for deployment to various containers. By expect-
ing that famodulus-server will almost always be deployed standalone on a server
for optimal performance, we provide a configuration using the modern Grizzly
standalone HTTP server.13

Modexp Computations. Modular exponentiations are submitted to famodulus-
server over a secure HTTPS connection. Note that using TLS on top of HTTP is
a critical precondition for protecting the secrecy of the parameters in outsourcing
algorithms with multiple servers. The parameters (base, exponent, modulus) are
encoded as JSON data enclosed in the body of the HTTP POST request. The
JSON data format is widely used in RESTful interfaces. A single modexp is
encoded as follows:

{”b ” : Str ing , ”e ” : Str ing , ”m” : S t r ing }
The three attributes "b" (base), "e" (exponent), and "m" (base) are encoded as
hexadecimal strings. The reason for this encoding is the missing data type for
big integers in JavaScript, which makes parsing the JSON data impossible on
the client side when the numbers exceed 253 − 1.

Each request submitted to the server must contain at least one single modexp
in the JSON data format given above, it can however also contain many mod-
exps at the same time. In practical applications, multiple modexps often share
common parameters, for instance the prime modulus. For efficiency reasons, our
JSON data format allows the definition of a common base, a common exponent,
a common modulus, or a combination of common base, exponent, or modulus.
These are the default values for modexps which do not provide the correspond-
ing parameter. The complete message sent in a single HTTP Post request to the
server then looks as follows:

{”b ” : Str ing , ”e ” : Str ing , ”m” : Str ing ,
”modexps ” : [modexp 1 , . . . , modexp n] ,
” b r i e f ” : Boolean}

The first three lines are the default parameters, as described above, and may be
omitted individually. The "modexps" attribute is a list of one or multiple mod-
exps declarations, possibly with missing parameters. If parameters are miss-
ing, they are substituted in the calculations by the default values. The final

12 See https://jersey.java.net.
13 See https://grizzly.java.net.

https://jersey.java.net
https://grizzly.java.net

192 P. Mainini and R. Haenni

attribute instructs the server to either return the results together with the full
query ("brief": false) or the results only ("brief": true), depending on the
client’s needs.

4 Performance Analysis

This section describes the experimental performance analysis of famodulus that
we have conducted. All test runs were conducted on a single machine with a
Core i7 CPU (eight cores), running at 1.73 GHz with 8 GB of RAM, and with
an installation of Debian GNU/Linux from the current testing branch. Dur-
ing the experiments, two famodulus-server instances were started by assigning
corresponding processes to different CPU cores. Adherence to this setting was
monitored. Processes which were not required for the experiments, for monitor-
ing, or for the operating system itself have been stopped. Memory consumption
during the experiments was monitored throughout. The experiments themselves
were conducted with an off-the-shelf Firefox 50.1.0 web browser, with no specific
configuration and with network communication taking place over the loop-back
device. Conducting performance tests locally is a reasonable choice for our set-
ting, given the fact that typical Internet network delays are several orders of
magnitude smaller than the effective computing times spent on the servers. The
Firefox process has been pinned to a separate CPU core.

4.1 Server-Only and Browser-Only Computations

The first series of experiments have been conducted on server-only and browser-
only configurations in batches of 50, 100, 500, and 1000 modexps for mod-
ulus bit lengths of 1024, 2048, and 3072 bits.14 The goal was to obtain an
estimation of the performance difference of computing modular exponentia-
tions using the native GMPLib and the JavaScript engine of the Firefox web
browser. We selected the VJSC library for this purpose to obtain the best possi-
ble browser-only results. On the server side, we conducted the measurements
using famodulus-server . Currently, no performance optimizations other than
using GMPLib have been implemented, i.e., modexp computations are computed
sequentially on a single CPU core upon receiving a batch of such tasks.

The results of our experiments are depicted in Table 2. They show that—
depending on the bit lengths of the parameters—executing native code on the
server is up to 18 times faster than corresponding JavaScript calculations in
the web browser. The results also show that the browser-only running times
become problematical from a user perspective for batch sizes of 100 modexps or
more and bit lengths of 2048 bits or more. We get approximately 20 s for the
100/2048-setting and more than 10 min for the 1000/3072-setting. Batches of
that size are necessary in the use cases mentioned in Sect. 1. In the server-only

14 In all our experiments, we selected the smallest prime modulus p of the corresponding
bit length. Base and exponent were picked at random from Z

∗
p and Zp−1, respectively.

Outsourcing Modular Exponentiation in Cryptographic Web Applications 193

Table 2. Performance measurements of server-only (GMPLib) and browser-only
(VJSC Library) modexp computations for different bit lengths. The last three columns
show the relative advantage of server-only over browser-only computations.

ModExps Server-Only Browser-Only Server Adv.

1024 2048 3072 1024 2048 3072 1024 2048 3072

50 0.09 s 0.73 s 2.26 s 1.63 s 11.02 s 31.38 s 18.45 15.19 13.87

100 0.18 s 1.47 s 4.48 s 3.32 s 22.14 s 62.69 s 18.89 15.02 13.98

500 0.88 s 7.09 s 22.57 s 16.48 s 103.19 s 310.78 s 18.71 14.55 13.77

1000 1.77 s 14.26 s 44.90 s 33.04 s 205.38 s 626.62 s 18.65 14.40 13.96

columns of Table 2, the 1000/3072-setting seems to be the only critical case with
a running time of approximately 45 s. However, with better server hardware and
by parallelizing the tasks onto different cores or multiple CPUs, the speed of the
server computations can be increased arbitrarily.

4.2 Outsourcing Protocols

To evaluate the performance of the outsourcing protocols implemented in fa-
modulus, we repeated the experiments from the previous subsection using the
same batch sizes and bit lengths. We did the analysis for Algorithms 2 and 4, the
two most efficient protocols from Table 1 with a single client-side modular multi-
plication each. All other algorithms of this paper require only an additional mod-
ular multiplication and are therefore not expected to perform much worse. Since
Algorithm 4 requires each server to compute two modular exponentiations—the
real one and the challenge—for each task in the batch, we expect a performance
loss of up to 50% for each server running on a single core. This expectation gets
confirmed by the measurement results shown in Table 3, especially for the batch
size of 1000 modexps, where the relative overhead of both the client-side compu-
tations and the communication costs gets minimal in comparison with the costs
of the necessary server-side computations. In all such cases, Algorithm 2 runs
roughly 1.7 times faster than Algorithm 4.

The most interesting result of our experimental analysis is the performance
of the outsourcing algorithms implemented in famodulus compared to browser-
only computations. Relative values for 3072-bit parameters are shown in Table 3
(column 5 and 9). In case of Algorithm 2, the outsourcing protocol is approx-
imately 13 times faster than browser-only computations. In comparison with
the factor 14 obtained in the server-only setting for 3072 bits, we conclude that
the overhead for the client and the communication is less than 8% of the total
running time. In case of Algorithm 4, the outsourcing protocol is still between 7
and 8 times faster than client-only computations.

The absolute running times shown in Table 3 only get problematical for batch
sizes of 500 modexps or more with 3072-bit parameters, for example approxi-
mately 80 s in the 1000/3072-setting of Algorithm 4. To obtain more acceptable
running times in such extreme use cases, optimizations on the server side are

194 P. Mainini and R. Haenni

Table 3. Performance measurements of outsourcing modexp computations using Algo-
rithms 2 and 4 for different bit lengths. Columns 5 and 9 show the relative advantage
of the outsourcing protocols over browser-only computations for 3072-bit parameters.

ModExps Algorithm 2 Adv. Algorithm 4 Adv.

1024 2048 3072 3072 1024 2048 3072 3072

50 0.16 s 0.88 s 2.49 s 12.58 0.23 s 1.40 s 4.09 s 7.68

100 0.29 s 2.01 s 4.86 s 12.89 0.46 s 2.78 s 8.11 s 7.73

500 1.36 s 8.11 s 24.30 s 12.79 2.17 s 13.32 s 40.70 s 7.64

1000 2.70 s 16.21 s 48.21 s 13.00 4.27 s 26.59 s 80.54 s 7.78

mandatory. Such optimizations are also required to serve multiple users simul-
taneously. Nevertheless, we conclude from our experiments that even without
such optimizations on the server side, the outsourcing protocols implemented in
famodulus increase the overall computation time by approximately one order of
magnitude.

5 Conclusion

In this paper, we presented our results from studying and implementing secure
outsourcing protocols for modular exponentiations in the context of crypto-
graphic web applications. The first conclusion is derived from the theoretical
performance analysis of our protocols compared to existing protocols in the lit-
erature. In Table 1, by giving a summary of the relevant client-side operations,
we have demonstrated that our protocols are much more efficient than compara-
ble two-server protocols from the literature. Similar conclusions can be drawn by
comparing the client-side workload of our protocols with the one-server protocols
from [3]. Their advantage, however, are the weaker underlying trust assumptions,
which result from the public nature of the parameters sent to the server. Imple-
menting these protocols, measuring corresponding running times, and comparing
them to the results from this paper is left for future work.

The second conclusion of this paper results from the experimental perfor-
mance analysis of our protocols in Sect. 4. In Sect. 1 we mentioned two use cases
in the context of cryptographic voting protocols, in which a large amount of
modexps need to be computed in the web browser. With our outsourcing proto-
cols, we managed to reduce unacceptable in-browser running times by an order of
magnitude. By optimizing or upgrading the server performance, further improve-
ments of the overall running times are possible. We see at least three different
approaches for server-side optimizations. The first is to execute the computations
on high-performance server hardware, the second is to distribute the workload
to all CPU cores or to a CPU cluster, and the third is to perform server-side
precomputations for fixed-base or fixed-exponent modexps. The possibility of
conducting modexp computations in parallel makes our whole approach highly
scalable. Especially in scenarios with limited battery power (e.g., mobile devices),

Outsourcing Modular Exponentiation in Cryptographic Web Applications 195

we consider this an important property. High scalability remains an important
advantage even if client-side performance is further improved with new tech-
nologies such as WebAssembly. Setting up corresponding server infrastructure
and conducting an experimental performance analysis for such a configuration
is another topic left for future work.

Acknowledgment. We thank the anonymous reviewers for their thorough reviews.
We appreciated their valuable comments and suggestions.

References

1. Cavallo, B., Di Crescenzo, G., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of group exponentiation to a single server. In: Mangard, S., Schaumont,
P. (eds.) RFIDSec 2015. LNCS, vol. 9440, pp. 156–173. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24837-0 10

2. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing
of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396
(2014)

3. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentia-
tion to a single server: cryptanalysis and optimal constructions. In: Askoxylakis,
I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part I. LNCS,
vol. 9878, pp. 261–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45744-4 13

4. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software
Architectures. Ph.D. thesis, University of California, Irvine, USA (2000)

5. Galindo, D., Guasch, S., Puiggaĺı, J.: 2015 Neuchâtel’s cast-as-intended verification
mechanism. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) VOTELID 2015.
LNCS, vol. 9269, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22270-7 1

6. Haenni, R., Koenig, R.E., Dubuis, E.: Cast-as-intended verification in electronic
elections based on oblivious transfer. In: Krimmer, R., et al. (eds.) E-Vote-ID 2016.
LNCS, vol. 10141, pp. 73–91. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52240-1 5

7. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

8. Kiraz, M.S., Uzunkol, O.: Efficient and verifiable algorithms for secure outsourcing
of cryptographic computations. Int. J. Inf. Secur. 15(5), 519–537 (2016)

9. Locher, P., Haenni, R.: Verifiable internet elections with everlasting privacy and
minimal trust. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) VOTELID 2015.
LNCS, vol. 9269, pp. 74–91. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22270-7 5

10. Ma, X., Li, J., Zhang, F.: Outsourcing computation of modular exponentiations in
cloud computing. Cluster Comput. 16(4), 787–796 (2013)

11. Mainini, P.: Efficient and Secure Outsourcing of Modular Exponentiation. Bachelor
thesis, Bern University of Applied Sciences, Biel, Switzerland (2017)

12. Ye, J., Chen, X., Ma, J.: An improved algorithm for secure outsourcing of mod-
ular exponentiations. In: 29th International Conference on Advanced Information
Networking and Applications Workshops, AINA 2015, Gwangju, Korea, pp. 73–76
(2015)

https://doi.org/10.1007/978-3-319-24837-0_10
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1007/978-3-319-22270-7_1
https://doi.org/10.1007/978-3-319-22270-7_1
https://doi.org/10.1007/978-3-319-52240-1_5
https://doi.org/10.1007/978-3-319-52240-1_5
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/978-3-319-22270-7_5
https://doi.org/10.1007/978-3-319-22270-7_5

Voting Technologies, Recount Methods
and Votes in Wisconsin and Michigan

in 2016

Walter R. Mebane Jr.1 and Matthew Bernhard2(B)

1 Department of Political Science and Department of Statistics,
University of Michigan, Haven Hall, Ann Arbor, MI 48109-1045, USA

wmebane@umich.edu
2 Department of Computer Science and Engineering, University of Michigan,

Bob and Betty Beyster Building, 2260 Hayward Street,
Ann Arbor, MI 48109-2121, USA

matber@umich.edu

Abstract. We present data from the 2016 presidential election recounts
done in Wisconsin and Michigan and information about the voting tech-
nologies that were used there to explain why it is challenging to show
that the voting technologies treated candidates Trump and Clinton sym-
metrically. Lack of clarity about which type of technology was used to
record vote counts, a mix of mostly small but sparse large counted dif-
ferences between original and recounted vote totals, features that relate
to voters, technologies and recount methods, and selectivity concerns are
among the obstacles.

1 Introduction

Were the outcomes in Wisconsin and Michigan in the 2016 presidential elec-
tion correct? Candidate Trump won both states—by margins over Clinton of
22,7481 and 10,7022, respectively—but the results are controversial. One con-
cern is whether the vote tabulation technologies were hacked, as much of the
equipment used to tabulate votes in 2016 has been shown to be particularly
vulnerable.3 Russian hacking had already taken place during the campaign, as
acknowledged by [24], and it seems reasonable that in their efforts to influence the
election vote manipulation may have been attempted. Recounts were prompted
in both states by the Stein campaign [10,13,14].

Prepared for presentation at the 3rd Workshop on Advances in Secure Electronic Voting
at Financial Cryptography and Data Security 2018. Thanks to Preston Due, Joseph
Hansel and Barry Snyder for assistance. Thanks to Philip Stark for suggestions and to
Alex Halderman and Dan Wallach for discussions.

1 Wisconsin margin computed using recounted vote values in [29].
2 Michigan margin computed using official values in [16].
3 See California’s Top-to-Bottom review [5] and Ohio’s Project EVEREST [20].

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 196–209, 2019.
https://doi.org/10.1007/978-3-662-58820-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_14&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_14

Voting Technologies, Recount Methods and Votes 197

We describe data from the recounts about the distribution of voting tech-
nologies and the ways votes changed during the recount. These data might be
used as evidence about whether the voting technology treated candidates Trump
and Clinton symmetrically in places in these states that had votes recounted.
Presumably, a hack intended to benefit or harm one candidate more than the
other would cause asymmetric treatment.

2 Recount Data

It is useful to look at raw numbers from the recounts both to show one of the
difficulties in the way of estimating the number of affected votes. The following
issues with the numerical distributions are by no means the most serious chal-
lenge to performing an analysis in terms of exact vote counts, but it’s not clear
how to resolve them.

The problem with the exact vote counts is that they are mostly small but
there are a few relatively large values. We focus on the differences between the
recounted vote counts for each candidate and the original vote counts: the orig-
inal vote count in each ward (Wisconsin) or precinct (Michigan) is subtracted
from the recounted vote count. Tables 1 and 2 enumerate the distribution of
differences by major party candidate in Wisconsin, separately for each recount
method, and Tables 3 and 4 enumerate the distribution of differences by candi-
date in Michigan, separately for each vote-casting method.4 In all four cases the
most frequent difference is zero, meaning the count of votes for the candidate
did not change in the recount from the original count. The next most frequent
differences are small decreases or increases.

Table 1. Trump: recounted votes minus original votes, Wisconsin

−25 −18 −16 −11 −10 −9 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

Hand 1 1 0 0 1 1 2 2 5 9 15 43 167 1457 199 57 39 11 7 4 3 2 1 1

Machine 0 0 1 1 0 0 2 1 2 4 9 18 58 810 100 27 7 7 3 2 2 0 1 2

Mixed 0 0 0 0 0 0 0 0 0 2 3 3 21 199 31 8 3 1 2 0 0 1 0 0

11 14 23 29 31 32 39 50 65 246

Hand 1 2 1 2 0 1 1 1 1 0

Machine 0 1 0 0 1 0 0 0 0 1

Mixed 0 0 0 0 0 0 0 0 0 0

The problem is the sporadic double-digit and even a few triple-digit differ-
ences: in Wisconsin Trump gains 246 votes in one machine-recounted ward; in
Michigan Trump loses 209 votes and Clinton loses 287 votes in absentee (AV)
precincts. The large differences are probably produced by different processes than
the smaller differences, but it is not obvious how to distinguish the processes.
Simply declaring the larger values “outliers” [21,25] seems incurious about what

4 All recounting in Michigan was manual.

198 W. R. Mebane Jr. and M. Bernhard

Table 2. Clinton: recounted votes minus original votes, Wisconsin

−30 −18 −17 −14 −12 −10 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

Hand 1 0 1 0 1 0 0 1 0 5 6 17 52 161 1457 187 79 22 10 9 5 8 4 0

Machine 0 1 0 1 0 1 2 2 1 4 6 8 15 82 734 126 31 18 6 4 6 5 2 1

Mixed 0 0 0 0 0 0 0 0 1 0 1 4 6 25 199 23 6 1 3 3 1 0 0 1

10 11 13 14 15 17 19 22 24 33 68 79

Hand 2 1 1 1 1 1 1 1 1 0 1 1

Machine 0 0 0 1 0 1 1 0 0 1 0 0

Mixed 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Trump: recounted votes minus original votes, Michigan

−209 −25 −19 −10 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 10 11 15 16 24 26

PCT 0 1 2 1 1 1 2 1 4 12 25 119 1306 370 111 34 11 4 2 2 0 1 1 1 1 1 1

AV 1 0 0 1 0 0 0 0 0 2 10 45 810 123 29 8 2 0 2 0 1 2 0 0 0 0 0

Table 4. Clinton: recounted votes minus original votes, Michigan

−287 −41 −29 −24 −20 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 10 16 20 23 25 26

PCT 0 1 1 1 1 0 1 1 4 2 8 35 139 1182 418 121 58 23 6 5 1 2 1 1 1 1 1

AV 1 0 0 0 0 1 0 1 1 4 6 13 78 757 119 41 9 0 3 0 2 0 0 0 0 0 0

produced them; specifying a mixture model is challenging given the complexities
of technologies and procedures in the states, which we do not elaborate here.5

At least in Wisconsin we observe that larger differences tend to be associated
with particular reasons cited to explain recount changes in official “minutes” doc-
uments [31,36]. As Table 5 shows, in Wisconsin the largest average differences
(in magnitude) occur when the reasons cited are “nonstandard pens or bal-
lots” (mentioned four times) or “voting machine/tabulator error” (mentioned
13 times).6 Both of these reasons concern features of the voting technologies

5 But see the discussion of DRE usage on page 5.
6 In Table 1 the biggest increase (from CITY OF MILWAUKEE Ward 34) is not

explained but the recounted vote count in [29] matches the count reported in
minutes [22, 17–18], the second biggest (from CITY OF MARINETTE Wards
1,3,5) is explained by “nonstandard pens or ballots” and “voting machine/tabulator
error,” and the third biggest (from CITY OF MARINETTE Wards 2,4,6) is
explained by “nonstandard pens or ballots,” “ballots found during recount” and
“ballots rejected during recount.” In Table 2 the biggest increase (from CITY
OF MARINETTE Wards 1,3,5) is explained by “nonstandard pens or ballots”
and“voting machine/tabulator error,” and the second biggest (from CITY OF
MARINETTE Wards 2,4,6) is explained by “nonstandard pens or ballots,” “bal-
lots found during recount” and “ballots rejected during recount.” The Marinette
wards used Eagle opscan machines (vendor Command Central), and minutes men-
tion problems with “improper pens,” “Problems with the voting machine rejecting
ballots on election night” and “Machine parts were obtained [...] and installed per
instructions from Command Central, voting equipment vendor” [19, 43–44].

Voting Technologies, Recount Methods and Votes 199

Table 5. Recounted votes minus original votes, mean by reason, Wisconsin

Reason Na Trump Clinton

Ballots rejected during recount 316 −.199 .0158

Ballots found during recount 72 1.38 3.38

Nonstandard pens or ballots 4 13.8 16.9

Ballots marked incorrectly 296 .993 1.17

Lost ballots 23 −1.43 −1.17

Human counting error 37 .0213 −1.23

Paper jam 21 −.870 −.696

Ballots wrongfully rejected 73 1.09 1.82

Voting machine error 13 7.56 7.83

No explanation 759 .680 .389

Note: mean of nonzero differences between the recounted
and original vote count in Wisconsin wards. a Number of
occurrences of each reason. Multiple reasons are cited for
some wards

and so may be worrisome. Many nonzero changes occur (N = 759) that lack
explanation.

3 Technologies and Covariates

Another challenge in the way of determining whether technologies treated the
candidates symmetrically is that neither voters nor technologies are randomly
assigned to votes, so that many unknown attributes may relate to both and
different kinds of voters used each type of technology. Some voters and some
technologies make or induce more mistakes than others, even if there is no malfea-
sance [15]. Whether voters or technologies act independently of one another is
also unknown, although given conditioning on appropriate manifest covariates
independence may be plausible as a null hypothesis. Observationally we also
face a problem in that it is not clear what technology was used to produce each
vote: in some cases the original voting technology is unknown and sometimes
the recounting method is unclear. We detail some of these complications for
each state.

3.1 Wisconsin

Figure 1 shows the different voting technologies in Wisconsin municipalities.
The number of recounted votes across all presidential candidates is positive for
n = 3, 500 Wisconsin wards.7 Table 6 shows the frequency distribution of vot-
ing technology and recount method types across all Wisconsin wards for which
7 Recount methods distribution: hand, 2,126; machine, 1.066; mixed, 286; other, 22.

200 W. R. Mebane Jr. and M. Bernhard

Voting Technology

Accuvote−OS
DS200
Eagle
Eagle; Insight
ImageCast Evolution
Insight
M100
None

Fig. 1. Wisconsin technologies by municipality

Accessibility Technology

Accuvote TSX
Automark
Edge
ExpressVote
ImageCast Evolution
Other
iVotronic

Fig. 2. Wisconsin accessibility technologies by municipality

the total number of recounted votes across all presidential candidates is positive
(n = 3, 500). Each municipality has its own technology.8

8 Category “Other” in Fig. 2 contains the technologies Populex 2.3, Vote-Pad and
“Edge; Automark.” “None” indicates that votes are tabulated by hand or technology
is not reported.

Voting Technologies, Recount Methods and Votes 201

Table 6. Wisconsin ward voting technologies and recount methods

Voting Technology Recount Method

None 850 Hand 2126

Accuvote-OS 154 Machine 1066

DS200 1475 Mixed 286

Eagle 294 other 22

Eagle; Insight 4

ImageCast Evolution 287

Insight 229

M100 205

Note: number of wards using each type of Voting
Technology or recount method. Voting technology
taken from [35]. Recount methods gleaned from [30]
and from county minutes at [32]

In addition to the types of systems listed as Voting Technology all wards also
have “accessibility technology” [33], shown in Fig. 2 . Table 7 shows the pattern in
which Voting Technology overlaps in wards with Accessibility Technology. Voters
can choose which mode to use to vote. While all the voting technologies except
“None” are opscan systems, several of the accessibility systems are Direct Record
Electronic (DRE) systems (Accuvote TSX, Edge and iVotronic; Automark and
ExpressVote are ballot marking devices, ImageCast Evolution and Populex 2.3
are accessible ballot marking and scanning devices).9 As Table 8 shows many
wards have some votes cast using DRE systems.

9 Problems that required “programmer” or vendor Command Central help to resolve
or that may suggest there was some kind of software error are reported for the Edge
machine in several county minute files. In at least seven wards a programmer or
Command Central had to help to retrieve ballots (TOWN OF ARLAND Ward 1
and TOWN OF CUMBERLAND Ward 1 [1, 11–12]; TOWN OF GILMANTON
Ward 1 [8, 14]; TOWN OF RUSK Ward 1 and VILLAGE OF WEBSTER Wards
1–2 [4, 15, 27]; TOWN OF HARRISON Ward 1 [11, 22]; TOWN OF OCONTO
FALLS Ward 1–2 [23, 46]). in at least nine wards the machine count was wrong
(TOWN OF RED CEDAR Ward 1–3, TOWN OF WILSON Ward 1 and CITY OF
MENOMONIE Wards 5,7 [9, 13, 23, 34]; TOWN OF BEETOWN Ward 1, TOWN
OF BLOOMINGTON Ward 1, TOWN OF BOSCOBEL Wards 1–2 [11, 10, 12–13];
TOWN OF CHASE Wards 1–5 [23, 22]; TOWN OF HELVETIA Wards 1–2 [26, 8];
TOWN OF WAUTOMA Ward 1–3 [27, 20]). In at least four wards ballots did not
print out or needed to be reprinted (TOWN OF STANFOLD Ward 1 [1, 22]; TOWN
OF COLBURN Ward 1 and TOWN OF GOETZ Wards 1–2 [7, 13, 20]; CITY OF
BERLIN Ward 1–6 [12, 2]). Overall the minutes report 41 wards with explicitly
described problems with their Edge machines, and 1270 wards with Edge machines
but nothing reported regarding them. Problem reports are not always associated
with nonzero changes in votes counts.

202 W. R. Mebane Jr. and M. Bernhard

Table 7. Wisconsin ward voting and accessibility technologies

Accessibility Technology

Voting
Technol-
ogy

Accuvote
TSX

Auto-
mark

EdgeEdge;
Automark

Express-

Vote

ImageCast
Evolution

Populex
2.3

Vote
Pad

iVotronic

None 1 64 727 0 0 0 2 9 47

Accuvote-
OS

120 0 34 0 0 0 0 0 0

DS200 0 1141 0 0 333 0 0 0 1

Eagle 0 8 286 0 0 0 0 0 0

Eagle;
Insight

0 0 4 0 0 0 0 0 0

ImageCast

Evolution 0 0 0 0 0 287 0 0 0

Insight 0 0 229 0 0 0 0 0 0

M100 0 183 1 1 0 0 0 0 20

Note: number of wards using each type of Voting Technology and Accessibility Tech-
nology by Vendor. Technologies taken from [35]

Vendor

CommandCentral
Dominion
ES&S
None
Optech

Fig. 3. Wisconsin vendors by municipality

Voting Technologies, Recount Methods and Votes 203

Accessibility Vendor

CommandCentral
Dominion
ES&S
Populex
Vote−Pad

Fig. 4. Wisconsin accessibility vendors by municipality

A challenge to estimating the association between Voting Technology and
votes is that we rarely know precisely which mode was used to record each vote.
Votes cast using DRE systems were not changed in the recount, but only rarely
are all ballots reported as having been cast using DREs.10 This is especially
important to note because if DRE machines were corrupted, the paper audit
trail generated by the machines would likely reflect the manipulated votes. If
voters fail to verify that their vote has been correctly recorded by the machine
(which may occur, see [6]), then neither the paper trail nor analysis of recount
data would detect manipulation. If a sufficient fraction of voters successfully
verify their vote as recorded on the paper, this is in principle enough to detect
manipulation—but we have no data regarding such verifications, and prior work
suggests that voters don’t verify their votes [6]. However, no incidences of incor-
rect votes recorded on the paper audit trail were reported in Wisconsin; while this
does not rule out DRE tampering, it does narrow the likelihood that it occurred.
Some ballots in each case may be produced using accessibility technology.

Several variables relate to Voting Technology and Recount Method: Clin-
ton (HRC) vote proportion, a ratio of two different estimates of the number
of registered voters,11 the proportion of DRE votes, the absentee proportion,12

10 In [28] only 21 wards report a positive number of DRE votes and zero votes cast using
other modes, which are Paper Ballots, Optical Scan Ballots, and Auto-Mark.

11 The ratio is the number of registered voters from [34], over the number of registered
voters from [28].

12 The “proportion” is the ratio of Absentee Issued to Total Voters, both from [28].
In one ward the ratio is greater than 1: in “VILLAGE OF FOOTVILLE Ward 1”
the ratio is 556/410.

204 W. R. Mebane Jr. and M. Bernhard

Table 8. Wisconsin ward voting technologies by vendor

Vendor
Some DRE Votes? Command

Voting Technology No Yes None Central Dominion ES&S Optech
None 83 765 850 0 0 0 0
Accuvote-OS 119 35 0 33 121 0 0
DS200 1458 16 0 0 0 1475 0
Eagle 87 205 0 281 0 0 13
Eagle; Insight 4 0 0 4 0 0 0
ImageCast Evolution 282 5 0 0 287 0 0
Insight 21 208 0 218 11 0 0
M100 186 19 0 0 0 205 0

Vendor
Command

Accessibility Technology None Central Dominion ES&S Optech
Accuvote TSX 1 0 120 0 0
Automark 64 2 0 1324 6
Edge 727 534 12 1 7
Edge; Automark 0 0 0 1 0
ExpressVote 0 0 0 333 0
ImageCast Evolution 0 0 287 0 0
Populex 2.3 2 0 0 0 0
Vote Pad 9 0 0 0 0
iVotronic 47 0 0 21 0

Note: number of wards using each type of Voting Technology or Accessibility
Technology by Vendor. Technologies and Vendors taken from [35].

turnout13 and county total votes. Different types of voters use different types of
technologies and cast ballots that were subject to varying kinds of vetting.

A specific suspicion in the election is that some vendors may have corrupted
votes using the software they installed in voting technology. Figures 3 and 4 shows
how the vendors are distributed across municipalities. As the top part of Table 8
shows, several opscan system vendors provided several different types of voting
technology. As the bottom part of the table shows, various kinds of accessibility
technology are collocated in wards with the vendors’ opscan systems.

3.2 Michigan

The number of recounted votes across all presidential candidates is positive in
n = 3, 051 Michigan precincts. Each city or township has its own technology.
Figure 5 shows how the technologies are distributed across townships. Table 9

13 Turnout is computed using the ratio of the recounted Total Votes from [29] over
the number of registered voters from [34].

Voting Technologies, Recount Methods and Votes 205

Voting Technology

ES&S M100
Premier Accuvote
Sequoia Optech Insight

Fig. 5. Michigan technologies by City and Township

Table 9. Michigan precinct voting technologies

Precincts

All Recounted

Technology PCT AV PCT AV

ES&S M100 2490 2021 1362 768

Premier Accuvote 579 492 348 132

Sequoia Optech Insight 323 151 298 126

shows the frequency distribution of types of voting technology both across all
Michigan precincts and across the precincts that were recounted.

206 W. R. Mebane Jr. and M. Bernhard

Several variables relate to Voting Technology: Clinton (HRC) vote propor-
tion,14 turnout,15 active voter proportion16 and county vote population. Differ-
ent types of voters use different types of technologies.

4 Conclusion

Analysis of these data can address only Wisconsin wards and Michigan precincts
for which recounts occurred and for which we have data from official sources.
While the recount in Wisconsin covered the whole state, the recount in Michigan
did not. We would have nothing to say about Michigan precincts that were not
recounted, apart from noting that severe problems have been documented in
Detroit [17].

Likewise analysis might depend on assuming that hand recounted ballots
that were originally cast manually on paper provide “true” tabulations, but
in Wisconsin about half of the votes were recounted by machine. If the same
machines—or different machines—were used to recount as to originally tabulate
votes, and these machines were corrupted, then the recount data provides no
veneration of those results.

For both states we think the prospects are not good for using the kinds of
data we have assembled to produce exact statistical estimates—using the exact
vote counts—of the effects voting technologies (and recount methodologies) may
have had. In Wisconsin the profound problem is that we cannot be sure which
technology was used to produce the record of each vote, and cases of machine
recounting do not meet sufficiently rigorous standards to establish the correct
outcome. In Michigan the decision to recount in each county were based on vastly
more information than we have as analysts, and there is no reason to believe these
decisions are unrelated to features associated with both voting technologies and
potential distortions in votes. In fact, such a self-selection concern affects all the
data we have, given that someone chose which voting technologies to implement
in each jurisdiction and then someone chose which modality to use to cast, count
and record each vote: self-selections qualify as well any analysis we might do.

The best way to get evidence about whether the vote counts are correct is
to perform either a risk-limiting audit [18] or a full manual retabulation. Such
evidence about the accuracy of the vote counts would still leave the problem of
determining whether voting technologies—or something else—distorted votes.
Forensic analysis might also provide significant insight into the correctness of
the election, but given advanced intrusion such analysis may not provide useful
evidence.

14 HRC vote proportion is computed using recounted vote counts in [2].
15 Turnout is the ratio of the precinct total of votes cast for president in the recount

data [2] over the total number of registered voters in the town the precinct is in [3].
16 The active voter proportion is the ratio of ActiveVoters over RegisteredVoters,

both town-level variables from [3].

Voting Technologies, Recount Methods and Votes 207

References

1. Barron County Board of Canvass. Minutes (2016). http://elections.wi.gov/
sites/default/files/recount 2016/barron county unapproved recount minutes pdf
15035.pdf

2. Bureau of Elections. file by precinct.xlsx, obtained via Freedom of Information
Act request from Melissa Malerman (MDOS), MI Bureau of Elections, 31 March
31 2017

3. Bureau of Elections. 2016 bienniel precinct report. file Biennial-
Precinct2016 531265 7.pdf, http://www.michigan.gov/documents/sos/Biennial
Precinct2016 531265 7.pdf, Michigan Department of State, 31 March 2017

4. Burnett County Board of Canvassers. Recount minutes (2016). http://elections.wi.
gov/sites/default/files/recount 2016/burnett county recount minutes pdf 11690.
pdf

5. California Secretary of State’s Office. Top-to-bottom review of electronic vot-
ing systems (2007). http://wwws.os.ca.gov/elections/voting-systems/oversight/
top-bottom-review/

6. Campbell, B.A., Byrne, M.D.: Now do voters notice review screen anomalies? a
look at voting system usability. In: EVT/WOTE (2009)

7. Chippewa County Board of Canvass. Board of canvass minutes (2016). http://
elections.wi.gov/sites/default/files/recount 2016/chippewa county recount
minutes pdf 11482.pdf

8. County of Buffalo. Date of recount: 12/1/2016 (2016). http://elections.wi.gov/
sites/default/files/recount 2016/buffalo county recount minutes pdf 15905.pdf

9. Dunn County. Recount minutes (2016). http://elections.wi.gov/sites/default/files/
recount 2016/dunn county recount minutes pdf 10781.pdf

10. Friess, S.: Inside the Recount. The New Republic, February 2017. https://
newrepublic.com/article/140254/inside-story-trump-clinton-stein-presidential-
election-recount

11. Grant County. Recount minutes (2016). http://elections.wi.gov/sites/default/files/
recount 2016/grant county recount minutes pdf 17421.pdf

12. Green Lake County Board of Canvassers. Recount minutes (2016). http://elections.
wi.gov/sites/default/files/recount 2016/green lake county recount minutes pdf
60039.pdf

13. Gupta, P.: Jill Stein on What’s Next With the Recount Effort in Wisconsin,
Michigan, and Pennsylvania. Cosmopolitan Magazine, December 2016. http://
www.cosmopolitan.com/politics/a8467128/jill-stein-voter-recount-wisconsin-
michigan-pennsylvania/

14. Halderman, J.A., Bernhard, M.: Recount 2016: An Uninvited Security Audit of
the U.S. Presidential Election. Chaos Communications Congress, December 2016.
https://www.youtube.com/watch?v=E7Wo55F08-Y

15. Herrnson, P.S., Niemi, R.G., Hanmer, M.J., Bederson, B.B., Conrad, F.G., Trau-
gott, M.W.: Voting Technology: The Not-So-Simple Act of Casting a Ballot, Brook-
ings, Washington, D.C. (2008)

16. Johnson, R.: Election precinct results search. file 2016GEN.zip, http://miboecfr.
nictusa.com/cgi-bin/cfr/precinct srch.cgi?elect year type=2016GEN&county
code=00&Submit=Search, Secretary of State, downloaded 28 March 2017

17. Johnson, R.: Executive Summary of Audits Conducted in Detroit and Statewide
in Relation to the 8 November 2016 General Election. http://www.michigan.gov/
documents/sos/Combined Detroit Audit Exec summary 551188 7.pdf, 9 Febru-
ary 2017, Secretary of State

http://elections.wi.gov/sites/default/files/recount_2016/barron_county_unapproved_recount_minutes_pdf_15035.pdf
http://elections.wi.gov/sites/default/files/recount_2016/barron_county_unapproved_recount_minutes_pdf_15035.pdf
http://elections.wi.gov/sites/default/files/recount_2016/barron_county_unapproved_recount_minutes_pdf_15035.pdf
http://www.michigan.gov/documents/sos/BiennialPrecinct2016_531265_7.pdf
http://www.michigan.gov/documents/sos/BiennialPrecinct2016_531265_7.pdf
http://elections.wi.gov/sites/default/files/recount_2016/burnett_county_recount_minutes_pdf_11690.pdf
http://elections.wi.gov/sites/default/files/recount_2016/burnett_county_recount_minutes_pdf_11690.pdf
http://elections.wi.gov/sites/default/files/recount_2016/burnett_county_recount_minutes_pdf_11690.pdf
http://wwws.os.ca.gov/elections/voting-systems/oversight/top-bottom-review/
http://wwws.os.ca.gov/elections/voting-systems/oversight/top-bottom-review/
http://elections.wi.gov/sites/default/files/recount_2016/chippewa_county_recount_minutes_pdf_11482.pdf
http://elections.wi.gov/sites/default/files/recount_2016/chippewa_county_recount_minutes_pdf_11482.pdf
http://elections.wi.gov/sites/default/files/recount_2016/chippewa_county_recount_minutes_pdf_11482.pdf
http://elections.wi.gov/sites/default/files/recount_2016/buffalo_county_recount_minutes_pdf_15905.pdf
http://elections.wi.gov/sites/default/files/recount_2016/buffalo_county_recount_minutes_pdf_15905.pdf
http://elections.wi.gov/sites/default/files/recount_2016/dunn_county_recount_minutes_pdf_10781.pdf
http://elections.wi.gov/sites/default/files/recount_2016/dunn_county_recount_minutes_pdf_10781.pdf
https://newrepublic.com/article/140254/inside-story-trump-clinton-stein-presidential-election-recount
https://newrepublic.com/article/140254/inside-story-trump-clinton-stein-presidential-election-recount
https://newrepublic.com/article/140254/inside-story-trump-clinton-stein-presidential-election-recount
http://elections.wi.gov/sites/default/files/recount_2016/grant_county_recount_minutes_pdf_17421.pdf
http://elections.wi.gov/sites/default/files/recount_2016/grant_county_recount_minutes_pdf_17421.pdf
http://elections.wi.gov/sites/default/files/recount_2016/green_lake_county_recount_minutes_pdf_60039.pdf
http://elections.wi.gov/sites/default/files/recount_2016/green_lake_county_recount_minutes_pdf_60039.pdf
http://elections.wi.gov/sites/default/files/recount_2016/green_lake_county_recount_minutes_pdf_60039.pdf
http://www.cosmopolitan.com/politics/a8467128/jill-stein-voter-recount-wisconsin-michigan-pennsylvania/
http://www.cosmopolitan.com/politics/a8467128/jill-stein-voter-recount-wisconsin-michigan-pennsylvania/
http://www.cosmopolitan.com/politics/a8467128/jill-stein-voter-recount-wisconsin-michigan-pennsylvania/
https://www.youtube.com/watch?v=E7Wo55F08-Y
http://miboecfr.nictusa.com/cgi-bin/cfr/precinct_srch.cgi?elect_year_type=2016GEN&county_code=00&Submit=Search
http://miboecfr.nictusa.com/cgi-bin/cfr/precinct_srch.cgi?elect_year_type=2016GEN&county_code=00&Submit=Search
http://miboecfr.nictusa.com/cgi-bin/cfr/precinct_srch.cgi?elect_year_type=2016GEN&county_code=00&Submit=Search
http://www.michigan.gov/documents/sos/Combined_Detroit_Audit_Exec_summary_551188_7.pdf
http://www.michigan.gov/documents/sos/Combined_Detroit_Audit_Exec_summary_551188_7.pdf

208 W. R. Mebane Jr. and M. Bernhard

18. Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE
Secur. Priv. 10, 42–49 (2012)

19. Marinette County. Date of recount: 1 December 2016 - agenda exhibit a (2016).
http://elections.wi.gov/sites/default/files/recount 2016/marinette county
unapproved recount minutes pdf 85823.pdf

20. McDaniel, P., et al.: EVEREST: evaluation and validation of election-related equip-
ment, standards and testing, December 2007. http://www.patrickmcdaniel.org/
pubs/everest.pdf

21. Mebane Jr., W.R., Sekhon, J.S.: Robust estimation and outlier detection for
overdispersed multinomial models of count data. Am. J. Polit. Sci. 48, 392–411
(2004)

22. Milwaukee County. Milwaukee county city of milwaukee canvass statement,
recount election (2016). http://elections.wi.gov/sites/default/files/recount 2016/
city of milwaukee wards 26 50 minutes pdf 18183.pdf

23. Oconto County Board of Canvass. Recount minutes (2016). http://elections.wi.
gov/sites/default/files/recount 2016/oconto county recount minutes pdf 86884.
pdf

24. ODNI. Assessing Russian Activities and Intentions in Recent US Elections. Office
of the Director of National Intelligence, January 2017. https://www.dni.gov/files/
documents/ICA 2017 01.pdf

25. Wand, J., Shotts, K., Sekhon, J.S., Mebane Jr., W.R., Herron, M., Brady, H.E.:
The butterfly did it: the aberrant vote for buchanan in palm beach county, Florida.
Am. Polit. Sci. Rev. 95, 793–810 (2001)

26. Waupaca County. Waupaca county recount minutes part 2 (2016) http://elections.
wi.gov/sites/default/files/recount 2016/waupaca county recount minutes part 2
pdf 16707.pdf

27. Waushara County Board of Canvassers. Recount of presidential race (2016). http://
elections.wi.gov/sites/default/files/recount 2016/waushara county recount
minutes pdf 60143.pdf

28. Wisconsin Elections Commission. 2016 general election el-190f: Election
voting and registration statistics report. file 2016 presidential and general
election el 190 2017 18402.xlsx, http://elections.wi.gov/node/4952, downloaded

10 May 2017
29. Wisconsin Elections Commission. 2016 presidential recount. file Ward by

Ward Original and Recount President of the United States.xlsx, http://
elections.wi.gov/elections-voting/recount/2016-presidential, downloaded 4 Febru-
ary 2017

30. Wisconsin Elections Commission. 2016 presidential recount county cost esti-
mates and counting methods. http://elections.wi.gov/sites/default/files/story/
presidential recount county cost estimate and reco 16238.pdf, as of 19 May 2017

31. Wisconsin Elections Commission. 2016 presidential recount results, county
by county. http://elections.wi.gov/elections-voting/recount/2016-presidential/
county-by-county, as of 19 May 2017

32. Wisconsin Elections Commission. 2016 presidential recount results, county
by county. files downloaded from URL http://elections.wi.gov/elections-voting/
recount/2016-presidential/county-by-county, on 3 February 2017

33. Wisconsin Elections Commission. Accessible voting equipment. http://elections.
wi.gov/voters/accessibility/accessible-voting-equipment, as of 24 May 2017

34. Wisconsin Elections Commission. 1 February 2017 voter registration statistics.
file registeredvotersbywards xlsx 48154.csv, http://elections.wi.gov/publications/
statistics/registered-voters-2017-february-1, downloaded 4 February 2017

http://elections.wi.gov/sites/default/files/recount_2016/marinette_county_unapproved_recount_minutes_pdf_85823.pdf
http://elections.wi.gov/sites/default/files/recount_2016/marinette_county_unapproved_recount_minutes_pdf_85823.pdf
http://www.patrickmcdaniel.org/pubs/everest.pdf
http://www.patrickmcdaniel.org/pubs/everest.pdf
http://elections.wi.gov/sites/default/files/recount_2016/city_of_milwaukee_wards_26_50_minutes_pdf_18183.pdf
http://elections.wi.gov/sites/default/files/recount_2016/city_of_milwaukee_wards_26_50_minutes_pdf_18183.pdf
http://elections.wi.gov/sites/default/files/recount_2016/oconto_county_recount_minutes_pdf_86884.pdf
http://elections.wi.gov/sites/default/files/recount_2016/oconto_county_recount_minutes_pdf_86884.pdf
http://elections.wi.gov/sites/default/files/recount_2016/oconto_county_recount_minutes_pdf_86884.pdf
https://www.dni.gov/files/documents/ICA_2017_01.pdf
https://www.dni.gov/files/documents/ICA_2017_01.pdf
http://elections.wi.gov/sites/default/files/recount_2016/waupaca_county_recount_minutes_part_2_pdf_16707.pdf
http://elections.wi.gov/sites/default/files/recount_2016/waupaca_county_recount_minutes_part_2_pdf_16707.pdf
http://elections.wi.gov/sites/default/files/recount_2016/waupaca_county_recount_minutes_part_2_pdf_16707.pdf
http://elections.wi.gov/sites/default/files/recount_2016/waushara_county_recount_minutes_pdf_60143.pdf
http://elections.wi.gov/sites/default/files/recount_2016/waushara_county_recount_minutes_pdf_60143.pdf
http://elections.wi.gov/sites/default/files/recount_2016/waushara_county_recount_minutes_pdf_60143.pdf
http://elections.wi.gov/node/4952
http://elections.wi.gov/elections-voting/recount/2016-presidential
http://elections.wi.gov/elections-voting/recount/2016-presidential
http://elections.wi.gov/sites/default/files/story/presidential_recount_county_cost_estimate_and_reco_16238.pdf
http://elections.wi.gov/sites/default/files/story/presidential_recount_county_cost_estimate_and_reco_16238.pdf
http://elections.wi.gov/elections-voting/recount/2016-presidential/county-by-county
http://elections.wi.gov/elections-voting/recount/2016-presidential/county-by-county
http://elections.wi.gov/elections-voting/recount/2016-presidential/county-by-county
http://elections.wi.gov/elections-voting/recount/2016-presidential/county-by-county
http://elections.wi.gov/voters/accessibility/accessible-voting-equipment
http://elections.wi.gov/voters/accessibility/accessible-voting-equipment
http://elections.wi.gov/publications/statistics/registered-voters-2017-february-1
http://elections.wi.gov/publications/statistics/registered-voters-2017-february-1

Voting Technologies, Recount Methods and Votes 209

35. Wisconsin Elections Commission. Voting equipment use by Wisconsin munic-
ipalities. file voting equipment by municipality 09 2016 xlsx 78114.xlsx, http://
elections.wi.gov/elections-voting/voting-equipment/voting-equipment-use, down-
loaded 25 November 2016

36. Wisconsin Elections Commission. Wisconsin recount results update - day 11. file
explanation of changes per reporting unit 12 11 16 10043.pdf, http://elections.
wi.gov/publications/statistics/recount/2016/12-11-spreadsheet, downloaded on
10 May 2017

http://elections.wi.gov/elections-voting/voting-equipment/voting-equipment-use
http://elections.wi.gov/elections-voting/voting-equipment/voting-equipment-use
http://elections.wi.gov/publications/statistics/recount/2016/12-11-spreadsheet
http://elections.wi.gov/publications/statistics/recount/2016/12-11-spreadsheet

Towards Everlasting Privacy and Efficient
Coercion Resistance in Remote

Electronic Voting

Panagiotis Grontas1(B), Aris Pagourtzis1, Alexandros Zacharakis1,
and Bingsheng Zhang2

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece

{pgrontas,azach}@corelab.ntua.gr, pagour@cs.ntua.gr
2 School of Computing and Communications, Lancaster University, Bailrigg, UK

b.zhang2@lancaster.ac.uk

Abstract. In this work, we propose a first version of an e-voting scheme
that achieves end-to-end verifiability, everlasting privacy and efficient
coercion resistance in the JCJ setting. Everlasting privacy is achieved
assuming an anonymous channel, without resorting to dedicated chan-
nels between the election authorities to exchange private data. In addi-
tion, the proposed scheme achieves coercion resistance under standard
JCJ assumptions. As a core building block of our scheme, we also pro-
pose a new primitive called publicly auditable conditional blind signature
(PACBS), where a client receives a token from the signing server after
interaction; the token is a valid signature only if a certain condition holds
and the validity of the signature can only be checked by a designated ver-
ifier. We utilize this primitive to blindly mark votes under coercion in an
auditable manner.

Keywords: Electronic voting · End-to-end verifiability ·
Coercion resistance · Everlasting privacy ·
Publicly auditable conditional blind signatures

1 Introduction

The cryptographic research on electronic voting spans almost four decades.
Despite the proliferation of proposed schemes, few have been implemented and
used in actual elections. This can be attributed to the fact, that e-voting sys-
tems must reconcile conflicting properties with integrity and privacy being the
most important ones. Integrity is usually achieved through verifiability, which
can be individual, universal or administrative, allowing the voter, the public

This is work in progress; some properties rely on assumptions which should be lifted
in order to lead to a fully functional practical solution.
B. Zhang was partially supported by EPSRC grant EP/P034578/1 and Petras PRF.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 210–231, 2019.
https://doi.org/10.1007/978-3-662-58820-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_15&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_15

Towards Everlasting Privacy-Efficient Coercion Resistance 211

or some trusted authorities, respectively, to check that all participants followed
the protocol. Privacy protection comes in many layers: At the most basic level
the secrecy of the vote is protected from the talliers. Everlasting privacy aims
to protect against future and more powerful adversaries modelling the fact that
theoretical and practical advances (e.g. quantum computing) might render obso-
lete the cryptographic assumptions upon which privacy rests. Receipt Freeness
protects from a dishonest voter wanting to sell her vote to a passive adversary.
Coercion Resistance is the essential property that will enable remote electronic
voting, where the lack of a controlled environment for vote casting, leaves the
voters vulnerable to active adversaries that can ‘look over their shoulder’ and
dictate their behavior.

Juels, Catalano and Jakobsson proposed in [12] a framework to defend against
coercion attacks, which was implemented in Civitas [19]. Their main idea was,
that in order to achieve coercion resistance, the aspiring coercer must not be able
to tell whether his attempt succeeded or not. This can be done by allowing the
voter, to cast many ballots accompanied by anonymous credentials. Specifically,
she obtains a valid credential through a one-time use of an untappable channel.
Moreover she is assumed to have the capability to generate many different but
indistinguishable ones. Under coercion, she uses fake (unregistered) credentials,
indistinguishable from the valid one, which is employed when the voter has a
moment of privacy, a necessary condition for coercion resistance. To correctly
count the votes, however, the system must filter out the ballots that correspond
to false credentials. This is done by comparing (in encrypted form) the supplied
credentials with the valid ones that are published in a master list - the voter roll -
after registration ends. Moreover, since the JCJ scheme allows for multiple votes
per voter, duplicate ballots must be removed before counting. In principle, these
operations are of quadratic complexity with respect to the number of ballots cast,
which is typically quite larger than the number of voters, making the scheme
impractical for large scale elections.

The motivation for this work stems from the reasonable assumption, first
stated in [15], that the importance of integrity peaks during and immediately
after the voting process, but diminishes as more parties are convinced about
the result and concede. On the other hand, privacy is important during both
voting and counting but retains its importance long after the announcement of
the results, since the votes serve as evidence of one’s political beliefs. Verifiability
implies that such evidence is available to many third parties, making it in effect
undeletable. This can have dire consequences in the case of a future oppressive
regime. Therefore, our focus is a voting protocol that enhances privacy, both
during and after voting without sacrificing verifiability.

Our Contribution. We propose a first version of a voting protocol based on
the architecture of FOO [4], one of the most privacy aware voting schemes in the
literature, augmented with an efficient implementetation of the coercion resis-
tance properties of JCJ [12]. In particular, we take advantage of the fact that
in FOO, voting occurs in two phases, namely authorization and counting, and

212 P. Grontas et al.

use it to overcome the performance bottleneck of JCJ. We achieve this by using
the idea of [38], i.e. marking the fake credentials during the authorization phase
where voter identification is available. By using the voter ID the correct cre-
dential can be efficiently retrieved and compared to the supplied one with no
need to check all credentials. Of course, during this phase the ballot contents
must be blinded, as they can be correlated with the voter ID. The fact that
the credential is invalid is conveyed to the counting phase by applying a pub-
licly auditable variation of a novel cryptographic primitive, Conditional Blind
Signatures (CBS) [41]. The counter receives the ballot and an authorization in
the form of a blind signature, that contains a bit that specifies if the vote is
valid or under coercion. The perfect blindness property of the CBS scheme com-
bined with an anonymous channel enable us to achieve the everlasting privacy
property, without residing to dedicated channels between the authorities. Our
protocol achieves verifiability, coercion resistance and everlasting privacy with
minimal assumptions.

Related Work. Various efforts in the literature have tried to overcome the per-
formance bottleneck of the JCJ scheme. In [13,17] linear complexity is achieved,
by blinding the credentials and then stripping off the encryption randomiza-
tion. As a result, they could be efficiently compared through a hashtable. Both
schemes, however, were later found by [16] not to be coercion resistant by using a
classic tagging attack. In the same paper, a new approach improves the quadratic
complexity of identifying invalid credentials, by representing them as tuples with
an underlying mathematical structure and not as mere random group elements.
Hashing could then be used on part of the credential, without affecting the coer-
cion resistance property. This approach was improved in [20,29,34] by utilizing
different forms of credential structure and renewal methods, in order to enable
use in multiple elections and minimize reliance on the untappable channel. In a
different line of work, in [26] it is pointed out that the tagging attack is irrele-
vant in the duplicate removal subphase. As a result, the blind hashtables can be
used there, thus achieving the goal of linearity in the number of votes. For linear
fake removal the voter retrieves through the untappable channel, during regis-
tration, the index where her real credential is stored in the voter roll. Through
this index, coerced credentials are identified. In an alternate approach, [23] and
[27] employ the idea of anonymity sets. During vote casting the voter presents
the real credential mixed with reencryptions of some other credentials from the
voter roll. Finally, [37] with the Selene system and [32] with coercion evidence
less strict definitions of coercion resistance are offered which might prove easier
to reconcile with the other conflicting properties of voting systems. Our work
utilizes ideas from all these works and integrates them in an efficient manner via
a new cryptographic primitive, conditional blind signatures.

The term everlasting privacy was introduced by [15]. In [21], a protocol that
uses perfectly hiding commitments and homomorphic encryption was proposed.
Their main idea was that the public votes are protected perfectly using the
commitment scheme, while the openings are computationally protected but are

Towards Everlasting Privacy-Efficient Coercion Resistance 213

exchanged through private channels. As a result they are not publicly available.
This idea is presented as a primitive that can be integrated in any homomorphic
tallying scheme in [31], while in [30] it is applied to mixnets providing everlasting
privacy towards the public. This is further expanded and formalized as practi-
cal everlasting privacy in [28] by noting that such a future adversary might be
more powerful in terms of computing power, but will have less information to
operate on, since ephemeral data generated by the protocol will be unavailable
in the long run. More recently, in [40], the authors implement the commitments
with verifiable secret sharing and present a scheme that provides privacy and
integrity against unbounded adversaries. However they assume untappable chan-
nels between the authorities and deny voters the ability to individually verify
their votes. Our scheme differs from this line of work, since we do not assume
or use specific channels between the authorities. All information is exchanged
through the public Bulletin Board. This mode of communication is more realistic
since a future regime with advanced cryptographic capabilities will have access
to information exchanged by former governmental agencies in a private manner.
Moreover our scheme also provides coercion resistance.

Coercion resistance combined with everlasting privacy seems to be an impor-
tant desideratum in recent works. However this has not yet been possible in
the JCJ framework, which is what our scheme accomplishes. In [39], a version of
Selene enhanced for JCJ coercion resistance is equipped with everlasting privacy
towards the public with the use of pseudonyms. However the creation process
of pseudonyms and their relationship to real voter IDs and credentials requires
trust assumptions and private channels between the members of the registration
authority. Our work requires only the use of an anonymous channel and provides
the same guarantees to both insiders and outsiders. In [36], everlasting privacy
is achieved by using perfectly hiding commitments to registered identity creden-
tials along with an anonymous channel. To achieve coercion resistance, votes can
be overwritten and only the last one counts. As a result a voter under coercion
can save her real vote for the end. This is a much stronger assumption than a
simple moment of privacy required by our scheme and the JCJ framework; for
example, an adversary who is able to cast a last minute vote achieves coercion.

2 Preliminaries

We begin by describing the agents, the functional components and the crypto-
graphic primitives that make up our scheme.

– The main participants are naturally the n voters. In our protocol, like in [23],
we assume that there exist pro democratic organizations that cast extra votes
for registered voters in an effort to increase the size of the anonymity set.

– The registration authority RA registers the identities of the voters and pro-
vides credentials. We assume this occurs offline using an untappable channel.

– The tallying authority TA authorizes which ballots are accepted for counting
by using a blind signature with an implicit validity bit. Later in the tallying
phase it counts the valid ballots and announces the result.

214 P. Grontas et al.

In our scheme the registration authority and the tallying authority can be the
same physical election authority EA. In reality they both consist of many mem-
bers with conflicting interests for the election outcome. For clarity, however, we
shall refer to them henceforth as if they consist only of a single member.

Bulletin Board (BB). A standard component of most electronic voting
schemes. It is an authenticated broadcast channel with memory. It is meant
to be implemented with Byzantine agreement algorithms. We do not provide
implementation details here, following the vast majority of the electronic voting
literature. We assume that whenever the voters use the BB, they are doing so
through an anonymous channel that reveals no information about the identity
of the sender of a message and that all the messages (requests, votes, proofs etc.)
produced by our protocol can be found on the BB.

Homomorphic Encryption Scheme. We assume all cryptographic opera-
tions are performed by a JCJ compatible cryptosystem, i.e. one that supports
reencryption and verifiable threshold decryption. In order to prove coercion resis-
tance for our scheme we will use the Modified El Gamal (M-El Gamal) cryp-
tosystem as presented in JCJ. It operates in a group G of prime order q where the
DDH Problem is hard. Two generators g1, g2 are chosen randomly. The secret
key is an element x ∈ Zq and the public key is h = gx

1 . Encryption1 is performed
as: Eh(m, r) = (gr

1, g
r
2,mhr) while decryption as: Dx(a, b, c) = c · a−x.

Proofs of Knowledge. We make extensive use of non-interactive zero knowl-
edge (NIZK) proofs of knowledge. For instance a (M-El Gamal) ciphertext
(a, b, c) is accompanied by proof that a, b have the same secret discrete logarithm
relative to g1, g2. This can be implemented with the Chaum - Pedersen protocol
[6] and made non interactive with the Fiat - Shamir heuristic [2]. We denote
this by the functionality NIZK in the following way: NIZK

{
(g1, g2, a, b), (x) : a =

gx
1 ∧ b = gx

2

}
. We also use proofs that a value is a member of a set. We achieve

this by using OR compositions of Chaum - Pedersen proofs as described in [7].
We also use proofs of knowledge of a discrete logarithm [3]. Finally designated
verifier proofs [8], denoted as DVP, convince the voter but not the coercer that
his credential was correctly encrypted, as in JCJ.

Verifiable Shuffles. We assume a functionality Shuffle, like the one proposed
in [25], that takes as input a list of encrypted values and outputs a random
permutation and reencryption of these values along with NIZK proofs that these
operations were correctly performed. We use shuffles in tallying as in JCJ.

1 For compactness we omit the encryption randomness, except when it is absolutely
necessary for the operation of our scheme. We also use the plain ElGamal to describe
the protocol and refer to M-El Gamal only in the coercion resistance analysis.

Towards Everlasting Privacy-Efficient Coercion Resistance 215

Blind Signatures. They allow a signer to sign messages without having access
to their contents [1]. To this end the user blinds the message and the signer
signs it in this blinded form. The user subsequently unblinds the signature, and
retrieves a valid signature for the plain message. Their security properties [9,24]
are blindness or unlinkability which states that the signer cannot retrieve the
signed message or associate signatures with protocol executions. Unforgeability
states that the user cannot generate more message-signature pairs than those
obtained by the signer. In the proposed protocol we use a variation of blind
signatures, Conditional Blind Signatures, to enable everlasting privacy and move
the marking of coerced votes from the tallying to the authorization phase.

Plaintext Equivalence Test. The functionality PET is a primitive introduced
in [11] to convince a distributed set of entities, who share a decryption key
that two ciphertexts indeed encrypt the same plaintext. It works by first having
the participants blind the ciphertexts and then employing the homomorphic
properties of the underlying cryptosystem to compute a function on them, such
that a joint decryption of the result indicates if the two initial ciphertexts encrypt
the same message or not. We use PET to mark duplicate votes and also embed
them in the signatures that mark coerced votes in the authorisation phase.

3 Publicly Auditable Conditional Blind Signatures

Our voting scheme is built on a variation of Conditional Blind Signatures (CBS)
[41]. This primitive allows a signer S to blindly generate signatures on messages
submitted by the user U . These signatures however are verifiable only by a
designated verifier V, like in [8]. Furthermore, their validity depends on a secret
information bit ‘injected’ into the signature along with the possession of a secret
key by the designated verifier. In this way the signer can ‘instruct’ the verifier
to accept the signature or not. The secret bit cannot be learned by the user
however, since both cases are indistinguishable to her. Note that the roles of
S and V can be played by the same entity, thus allowing the signer to send
information regarding attributes of blinded messages to herself in the future.

The security of CBS extends the standard security properties of blind sig-
natures such as blindness and protection against One More Forgery to account
for the secret bit b. Additionally, to formally express the idea that b controls the
validity of the signature an extra property, Conditional Verifiability, is defined
in [41]. We must observe here that the user cannot validate the signature she
receives, since she does not have knowledge of b. Although this seems counter-
intuitive with respect to traditional signatures, in our setting it is essentially the
exact property we need to achieve coercion resistance.

In [41] an instantiation of CBS is given by extending the well known three-
round Okamoto-Schnorr blind signatures [5] (AppendixB). This instantiation is
proved to have perfect blindness, computational resistance to Strong One More
Forgery under the Computational Diffie Hellman assumption and Conditional
Verifiability under the Decisional Diffie Hellman assumption.

216 P. Grontas et al.

In practice, the scheme’s round complexity can be reduced by randomly gen-
erating the initial commitment in a preagreed manner. Moreover it can also be
combined with a multiplicatively homomorphic encryption scheme as the one we
assume in our voting protocol. We present this modified version in Appendix C,
where the signer and verifier are the same entity.

Public Auditability. The purpose of the CBS in the proposed voting scheme
is to “mark” a ballot as valid if it is accompanied by an encryption of the same
credential σ that was generated during registration. If any other credential σ′ is
used, the ballot is marked as invalid, indicating that the voter is under coercion.
The CBS scheme can be used to convey this bit of information to the verifier,
but by design it hides it from the user. As a result we cannot apply it as-is, since
this will lead to loss of verifiability. We overcome this by introducing Publicly
Auditable CBS, which adds auditability using NIZK proofs of correctness dur-
ing signing and verifiaction. In particular the CBS conditional bit is implicitly

Common input: paramsCBS, pkCBS, C1, C2 ∈ G
2, H1 : G4 → G, H2 : M×G → Zq

U ’s private input: m ∈ M
S’s private input: s ∈ Zq s.t. k = gs

1

U executes the Blind Algorithm:
– Compute x := H1(C1, C2);
– Pick random u1, u2, d ←R Zq and compute x∗ := xgu1

1 gu2
2 vd, e∗ := H2(m, x∗)

and e := e∗ − d;
– Send e to S.

S executes the Sign Algorithm:
– Compute x := H1(C1, C2);
– Pick random y2 ←R Zq as the second part of the CBS;
– Compute ν := xg−y2

2 v−e;
– Pick random t ∈ Zq and compute N := Eh(ν; t);
– Pick random blinding factor α ∈ Zq and compute W := (C2/C1)α and apply

signing key to compute B := (N · W)s with:

π1 ← NIZK
{
(h1, h, ν, N), (t) : N = Eh(ν; t)

}

π2 ← NIZK
{
(C1, C2, W), (α) : W = (C2/C1)α}

π3 ← NIZK
{
(h, k, N, W, B), (s) : B = (N · W)s ∧ k = gs}

– Set bsig := (B, N, W, y2, π1, π2, π3) and send bsig to the U .

U executes the Unblind Algorithm:
– Verify π1, π2, π3;
– Unblind by computing sig1 := B · Eh(ku1) and sig2 := y2 + u2.
– Set sig := (x∗, e∗, sig1, sig2) and output (m, sig).

Fig. 1. The publicly auditable CBS sign protocol PACBS Sign

Towards Everlasting Privacy-Efficient Coercion Resistance 217

computed and embedded in the signature by applying the PET functionality on
the registered and voting credentials.

The PACBS scheme operates in a group G of prime order q, where the
DDH is hard. During the parameter generation phase random group elements
(g1, g2, v, h1) are selected. These elements are the public parameters of the pro-
tocol and are denoted as paramsCBS. A signing key s ∈ Zq and an encryption
key z ∈ Zq are also selected. These secret keys are collectively denoted as skCBS.
The corresponding public keys are k := gs

1 and h := hz
1, denoted as pkCBS.

The PACBS signing protocol in Fig. 1 assumes two random oracles H1,H2.
The signer obtains after registration an encryption of the valid credential

C1 := E(σ). During voting the voter provides an encryption of the voting cre-
dential C2 := E(σ′) along with a blinded version e of the message being signed
(the vote). The value (C2/C1) is blinded with a random α ∈ Zq and multiplied
with the signature. The essence of this procedure is that (C2/C1) is an encryp-
tion of a random element unless σ = σ′ in which case it is an encryption of
1. In the former case the random element will ‘corrupt’ the signature. In the
latter case the signature will be valid, since it is homomorphically multiplied by
1. Every interested entity can verify that the signer did not deviate from the
protocol by checking the transcript and the proofs. Thus, an honest voter who
knows the input and in particular whether C1, C2 are encryptions of the same
plaintext knows that his output corresponds to a valid signature.

The PACBS verification algorithm is given in Fig. 2. The verifier V, given a
message a signature and key pair, outputs whether the signature is valid or not

Public input: paramsCBS, pkCBS, m ∈ M, sigCBS and H2 : M × G → Zq

Signer’s Private input: skCBS

– If H2(m, x∗) �= e∗ then S sends ⊥.
– Otherwise S picks a random β ∈ Zq and computes

validity := x∗ · g−sig2
2 · v−e∗

; M := Eh(validity; r1); V := Ms;

R :=
(V

sig1

)β

and result := Dz(R)

π1 ← NIZK
{
(h1, h, validity), (r1) : M = Eh(validity; r1)

}

π2 ← NIZK
{
(k, g1, V, M), (s) : V = Ms}

π3 ← NIZK
{
(V, sig1, R), (β) : R =

(V

sig1

)β}

π4 ← NIZK
{
(h1, h, result, R), (z) : result = Dz(R)

}

– S sends M, V, R, result, π1, π2, π3, π4 to V
– If a proof is not correct V outputs ⊥.
– Otherwise V outputs 1 (valid) iff result = 1.

Fig. 2. The publicly auditable CBS verify protocol PACBS Verify

218 P. Grontas et al.

in a way that every other entity can be convinced about it. In reality, V embeds
the PET functionality inside the signature verification equation, which will again
hold only if the credentials supplied are the same.

4 The Voting Protocol

Our scheme builds on the variation of FOO presented in [10] that is based on
public key encryption instead of commitments, thus reducing the number of
communication rounds. We use an extra authorization phase, where the issued
credentials are secretly marked as valid or invalid using PACBS. Our main idea
is that the validity checks for the credentials are (implicitly) done during vote
authorization and not during tallying. The protocol has a one-time Registration
phase and in each election there are three phases, namely Authorization, Vot-
ing and Tallying. To achieve the security properties we take advantage of the
separation between Authorization and Voting phases. We stress that each phase
starts only after the previous one has ended. A simplified view of the workflow
of our protocol is depicted in Fig. 3. In the Authorization phase the EA checks
for the validity of the supplied voter credentials. This can be done in constant
time as the voter identity is known (but not the vote) and the EA has access to
the voter roll. As a result, it compares the voter supplied credential Eh(σ′) with
the voter roll version Eh(σ) and finds out if the voter is under coercion. Since the
identity of the voter is known at this point, the EA can use it to check eligibility
by inspecting if there is a corresponding credential in the voter roll. Moreover
it can be used to group all the ID and credential pairs so that only one is kept,

1. Registration through untappable channel

3.Receive Anonymous Credential σ 4. Create and publish to BB
encrypted list of valid credentials
5. Create candidate slate

6. Evade coercion by generating fake
credential or reuse the original and issue blind
authorisation request

7. Check eligibility
8. Remove ballots with invalid proofs
9. Allow unique (ID,E(σ')) pairs
10. Apply PACBS Sign protocol

11. Unblind signature
12. Submit encrypted vote, signature and
proofs to the BB through an anonymous
channel 13. Filter out invalid votes

14. Compute validity token.
15. Shuffle encrypted vote and validity token
using a verifiable shuffle
16. Decrypt and count only uncoerced votes

Voter

Registration Phase (1-4) (one-time)

Anonymous Channel

BB

EA

2. Distributed Generation of Anonymous Credential

VOTER
ROLL

Verifiable Shuffle

Authorisation Phase (7-10)

EA

Voting Phase (11-12)

Tallying Phase (13-16)

Fig. 3. Framework architecture and workflow

Towards Everlasting Privacy-Efficient Coercion Resistance 219

according to some predefined rule (e.g. last credential counts). Finally the voter
and the EA interact according to the PACBS Sign protocol and obtain a valid-
ity token on the blinded ballot. While the honest voter knows that σ = σ′ and
can be sure that the signature will be valid, a coercer without this information
cannot know if the ballot will be counted.

In the Voting phase, the voter casts the (unblinded) signature and the ballot
to the BB. In the Tallying phase the EA must act as the verifier in PACBS
and counts the votes only if the signature is valid. However, the ballot and
result pairs must also be shuffled, so that the coercer loses track. Only then can
they be decrypted to yield the final tally. This cannot be achieved directly by the
PACBS Verify algorithm in Fig. 2 because shuffling must occur before decryption.
Consequently the EA, actually uses a slight variation of PACBS Verify, which
does not decrypt the final result nor create the proof of correct decryption, since
these take place “outside” of the algorithm. We denote this alternate verification
procedure EncVerify. In this stage neither the ID nor any credential information
is present so the ballot cannot be linked to a voter.

A detailed description is given in Fig. 4. Correctness follows by inspecting
Figs. 1, 2 and 4. We assume that honest voters intentionally issue invalid votes
during authorization to thwart forced abstention attacks.

Distributed EA. The EA can be modeled as a set of mutually distrustful par-
ties executing secure protocols. In particular, the parameters for the protocol
can be securely generated using standard techniques. The keys can be computed
using a verifiable secret sharing scheme. The credentials can be generated as
in [19]. Apart from the PACBS Sign and PACBS Verify all other actions per-
formed by the EA (Decryption, Shuffle) are also standard and the checking for
doubly issued credentials can be performed using PETs. The PACBS Sign and
PACBS Verify can easily be extended by essentially performing the same proto-
cols with each key share and combining the results.

Performance. Our analysis closely resembles [22]. Excluding the elimination of
double votes all computations are linear in the number of votes. If |IDi| denotes
the number of votes cast with IDi and m = maxi|IDi| then the number of
computations is O(m2n). This can be further reduced to O(mn) using a method
like the blind hashtables of [17], since the tagging attack is not applicable in this
phase. In any case, assuming that the number of duplicates per voter will be
constant in practice - i.e. m = O(1) - then the number of computations becomes
linear in the number of voters n.

5 Security Analysis

Threat Model. Since our work is an extension of [12], our assumptions follow
theirs closely. Firstly we require trusted implementation in software and hard-
ware. While the amount of trust required can be decreased by using techniques

220 P. Grontas et al.

Common input: paramsCBS

EA’s private input: skCBS

EA’s public keys: pkCBS

Voter’s private input: v ∈ C

One Time Registration Phase:
– The EA generates the voter credential σ ←R G and computes: C1 := Eh(σ)

along with δ ← DVP
{
C1 = Eh(σ)

}
.

– The EA publishes the encrypted credential BB ⇐ (ID, C1) and sends σ, δ to
the voter using an untappable channel.

Election Setup Phase:
– The EA publishes the candidate slate C ⊂ G by assigning a random group

element to each candidate and a list of IDs denoted I corresponding to the
voters with a right to vote in the election.

Authorization Phase:
– The voter computes a new credential σ′ ←R G and C2 := Eh(σ′; r1) along with:

π1 ← NIZK
{
(g1, h, C2), (σ′, r1) : C2 = Eh(σ′; r1)

}

– The voter encrypts his vote as C := Eh(v; rv) along with:

π2 ← NIZK
{
(g1, h,C, C), (v, rv) : v ∈ C ∧ C = Eh(v; rv)

}

– The voter invokes Blind (Figure 1) for m := C to get:

e := Blind(paramsCBS, pkCBS, C, C1, C2)

– The voter posts (ID, C2, e, π1) to the BB.
– The EA checks the validity of the proof and that ID ∈ I.
– The EA checks that no other request C′

2 with the same supplied credential σ′

is submitted for ID. If some condition fails the request is ignored as double and
the EA publishes

πC2 ← NIZK
{
(h1, h, C2, C

′
2)(z) : Dz(C2/C′

2) = 1
}

– Otherwise the EA publishes BB ⇐ bsig where:

bsig := SignCBS(paramsCBS, skCBS, e, C1, C2)

– The voter computes:

sig := Unblind(paramsCBS, pkCBS, bsig)

Voting Phase:
– The voter appends to the BB the vote tuple

BB ⇐ (C, sig, π2)

Tallying Phase:

– To prevent double casting if more than one lines with correct proofs contains
C the EA keeps only the last submitted.

– For each submitted ballot with valid proofs the EA calls

EncVerifyCBS(paramsCBS, skCBS, C, sig)

and publishes the result tuples R = (M, V, R, π1, π2, π3) from Figure 2.
– The EA appends L ⇐ (C, R) where L is a designated section of the BB
– Then it executes L′ := {(C

′
, R

′
)} := Shuffle(L).

– The EA verifiably decrypts all pairs. A vote is counted iff Dz(R
′
) = 1

Fig. 4. The voting protocol

Towards Everlasting Privacy-Efficient Coercion Resistance 221

such as Benaloh challenges and code-voting as in [18,33,37], it cannot be com-
pletely disregarded. This is easier said than done, but it is a common practice
in the vast majority of proposed voting protocols at our level of abstraction.

We assume two types of adversaries, one computationally bounded that acts
during or shortly after the election and one that is computationally unbounded
and acts in the future. The former models the security requirements which are
vital during the election such as integrity, verifiability and coercion resistance
while the latter models our requirement for everlasting privacy.

As far as present adversaries are concerned, we assume that they can per-
form only probabilistic polynomial time computations and for which our compu-
tational assumptions hold. To prove verifiability we assume that the adversary
fully controls the election authorities and corrupts voters of his choice [33].

As far as coercion resistance is concerned, the adversary can fully control a
subset of the voters by impersonating them, but there exists another subset with
uncertain behavior. As in [12] each uncontrolled voter has a moment of privacy.
The adversary can corrupt a subset of the voting authorities, which consist of
mutually distrusting agents. Moreover he is capable of controlling the Bulletin
Board and all other public channels, but there exist anonymous channels, where
the identity of the sender of a message cannot be discovered. Finally there are
honest participants, maybe nonprofit organizations, that cast invalid votes with
valid voter IDs in order to thwart a forced abstention attack.

The future adversary is computationally unbounded and so can break any
cryptographic assumption. Her goal is to gain information about the votes of a
subset of the voters. We make the assumption that she can gain no information
about the identity of the voter by the anonymous channel.

Verifiability. We follow the end-to-end verifiability definition proposed by
Kiayias et al. [33], which can be viewed as a computational variant of the KTV
framework as summarized in [35]. The adversarial goal against system’s integrity
is to cause deviation from the intended tally of all the honest voters while elec-
tion auditing remains successful without complains. We consider an adversary
that controls the EA and a subset of the voters. All the voters who did not
participate in the election are considered to be compromised. This is because a
malicious (registration) authority can always impersonate absent voters without
the PKI assumption.

Our scheme achieves end-to-end verifiability against a fully corrupted EA
under the random oracle model. As a standard requirement, we assume the exis-
tence of a trusted BB. Although the voters’ clients are assumed to be honest for
current protocol description, it is easy to add the Benaloh challenge mechanism
[14] to prevent the malicious clients from tampering the ballot as the patch for
Helios [18]. The voter needs to verify that her submitted ballot was recorded
correctly on the BB and was taken as an input of the shuffle/mix-net.

During registration (Fig. 3 - step 2), the consistency between the voter’s cre-
dential σ and the published Eh(σ) is guaranteed by the DVP, which is intention-
ally not universally verifiable to enable coercion resistance. In the authorization

222 P. Grontas et al.

phase, the signatures for the validity of the credential (Fig. 3 - step 10) are
verifiable due to the design of PACBS Sign and the proof published for each
unprocessed request. More specifically, the EA shows that the produced signa-
ture is valid if and only if the submitted credential matches the recorded one. In
the tallying phase, the public auditability property of the PACBS Verify protocol,
the verifiable shuffle and the proof of correct decryption prevent the authority
from deviating in any way from the protocol specification. Finally, everyone can
check if the total number of valid signatures are less than or equal to the number
of voters, n. This would prevent the malicious EA from inserting additional valid
signatures. Since the honest voters’ signatures are all cast, recorded, and tallied
correctly, the rest valid signatures can be viewed as the adversarial ones. Hence,
the malicious EA cannot add more votes even if she has the signing key.

Eligibility. The eligibility property is based on the resistance to Strong One
More Forgery property of the signature scheme, since a valid signature is required
for the vote to be counted. This implies the strong assumption that the adversary
is restricted to a polylogarithmic number of honest authorizations.

Privacy. Our protocol satisfies vote privacy. In the authorization phase the
encrypted vote is blinded when posted to the BB. As a result there is no way to
recover the selection of the voter even if the EA is fully corrupted. In the voting
phase the privacy of the vote depends on the privacy of the actions performed by
the EA (Decryption, Shuffle). Without the assumption of an anonymous chan-
nel our system offers Helios [18] level privacy under similar trust assumptions.
However, assuming an anonymous channel privacy protection becomes complete.

Everlasting Privacy. Our scheme easily meets the requirements for practical
everlasting privacy set in [28], despite the fact that there are no private channels
between the participants. A future adversary with access to the data in the BB,
but without access to the untappable channels and to network related informa-
tion will not be able to associate authorization requests and votes because of the
blindness of the signatures. Moreover, the tallying phase where there are neither
voter identities nor credentials present, matches the Helios without identities
case of [28] which is proved to satisfy practical everlasting privacy. However if
we assume an anonymous channel as in [4,36] our scheme has complete everlast-
ing privacy. In the authorization phase, the perfect blindness of the signature
scheme ensures that no information regarding the vote is leaked. Furthermore,
when the ballots are posted in the BB, despite being only computationally pro-
tected, they are cast through an anonymous channel and contain no information
about the identity of the voter. Finally, the encrypted vote and signatures can-
not be associated with any particular execution of the signing protocol that
validated it. As a result a semi-honest unbounded adversary, watching all the
public interactions cannot associate any voter with his vote.

Towards Everlasting Privacy-Efficient Coercion Resistance 223

Coercion Resistance. Our scheme is Coercion Resistant. In particular if a
coercer requests a credential σ from a voter, its validity cannot be proved. As a
result the validity of the signature issued for this credential is unknown to the
coercer, due to the properties of PACBS. Moreover multiple votes cast with the
same ID in the authorization phase, protect from a forced abstention attack. The
reasoning is similar to [23,27]. In the tallying phase, shuffling and PACBS Verify
ensure the coercer loses track of his submitted vote and the only information he
gets is the final tally. A detailed analysis is given in AppendixA.

6 Conclusion

In this paper we presented a new approach to provide coercion resistance in an
efficient manner and combine it with everlasting privacy. Our protocol is based
on minimal assumptions: a single use of an untappable channel and the exis-
tence of an anonymous channel. We utilized Conditional Blind Signatures [41],
a recent primitive that allows a signer to inject a bit of secret information to a
blind signature that controls if it should validate or not, which we improved for
our purposes. Our scheme is proved secure under the JCJ [12] coercion resistance
framework. The perfect blindness provided by CBS allows for stronger privacy
guarantees; combined with a perfectly anonymous channel it provides the ever-
lasting privacy property. In a future version of this work we plan to augment the
intuitive security analysis presented here, using rigorous definitions and proofs.

Acknowledgements. The authors would like to thank Peter Browne Roenne and the
anonymous reviewers for their helpful comments and suggestions.

A Analysis of Coercion Resistance

We prove the coercion resistance property of the proposed voting scheme by
closely following the JCJ techniques. We slightly modify the games c-resist and
c-resist-ideal of JCJ to account for the extra authorization phase. We treat the
auth functionality as a function that provides a valid or invalid ballot in relation
to its private input.

Firstly, we examine the options of a coerced voter. Such a voter, can simply
supply the adversary with a fake random element of G. Having a fake credential,
the signature she receives will be invalid, a fact undetectable by A due to the
design of the PACBS protocol. The voter can authenticate and cast her real vote
during her moment of privacy. The coercer cannot decrypt the corresponding
entry in the voter roll and find out if he was presented with the real one or not.
If he tries to vote, when he receives the signature he will not be able to validate
it himself. In the tallying phase the shuffle will make him lose track of the vote.

224 P. Grontas et al.

The Games c-resist and c-resist-ideal. The only change in the c-resist game
of JCJ is the extra authorization phase. During this phase voters supply the
essential information, based on their secret credential, and they get a ballot
which can be either valid or invalid. We assume that all messages are exchanged
via the bulletin board and thus are available to the adversary.

In the c-resist-ideal game an extra ideal functionality is needed, which we call
idauth and its purpose is to authenticate and cast the ballots to the BB. This
functionality gets the inputs of the players and computes the ballots as follows:

– It gives only one valid ballot for each valid credential.
– For honest voters it extracts the underlying credential and responds with a

valid/invalid ballot based on it.
– Adversarial requests with credentials of corrupted players are answered nor-

mally. For the credential of the coerced voter the validity of the ballot com-
puted is determined by the coin toss.

– The outputs are written directly to the BB.

In both games, λ is the security parameter, n is the number of voters and
nV is the number of voters the adversary can corrupt. Further inputs include
the candidate slate C and the distribution D that governs the behaviour of the
uncontrolled voters. In c-resist-game, the adversary corrupts a subset V of the
voters and obtains their credentials after registration. We denote by U the rest
of the voters. They perform the registration process and receive their credential.
Subsequently the coercer chooses the voter j to coerce and her uncoerced vote
β. Of course the voter should not be already corrupted and the vote should be a
valid choice. A coin is flipped and if it is 0, the coerced voter fools A by invoking
the functionality fakekey and generating a fake credential while voting with her
real one. If it is 1 she obeys and gives her real credential skj to A. Honest voters
perform the authorization phase and cast their votes, while A invokes the auth
functionality with any input of his choice using the information gathered so far.

The tallying phase is then performed and A tries to guess the result of the
coin, using the data on the BB, the final tally X and the proofs provided. In
c-resist-ideal-game the same things happen with minor differences. The keys
obtained by A do not assist him with the choice of the voter to coerce. He is
always given the real credential and auth is replaced with idauth. Finally, the
only data A can use to guess the coin flip is the final tally X and the number of
invalid votes Γ .

We now present the simulation for the proof that our scheme is coercion
resistant.

1. Input: The simulator S takes as input the elements g1, g2, h1, h2 of a group
G of order q and a vector w from a distribution D, which mirrors A’s uncer-
tainty. Each element of w is a set of valid and invalid votes, taking into
account that each voter casts more than one ballot. S tries to answer whether
(g1, g2, h1, h2) is a DH quadruple or not.

Towards Everlasting Privacy-Efficient Coercion Resistance 225

2. Parameter generation: Initially the S creates the M-El Gamal encryption
key by randomly choosing x1, x2 ∈ Zq and computing h = gx1

1 gx2
2 . The public

key is (g1, g2, h). He then creates a signing key pair for the CBS scheme by
choosing g3, g4, y ←R G, s ∈ Zq and k = gs

3. The secret key is s and the
public key is (g3, g4, y, k).

3. Registration: Each voter is assigned a random σi ←R G. Using the public
key, S publishes the voter roll. Finally, the candidate slate C is published.

4. Corruption: A corrupts voters.
5. Coercion: A chooses the player to coerce and her honest vote (j, β). The

appropriate tests are performed in (j, β) according to the games’ definitions.
6. Coin Flip: S chooses b ←R {0, 1}. If b = 0, A is given a random group

element σ∗ ←R G, else she is given the real credential σ∗ ← σj .
7. Authorization Requests: S issues the signature requests for the honest

voters according to w. For each element of w she issues (Eh(σi), IDi,PoK1)
where Eh(σi) = (hui

1 , hui
2 , huix1

1 huix2
2 σi) for random ui and the proof PoK1 is

simulated by the programmability of the random oracle by using standard
techniques. A issues his authorization requests.

8. Double requests elimination: Using the secret key x1, x2, S decrypts and
eliminates double requests with the same credential.

9. Authorization: S simulates this phase using her PACBS signing key. The
messages are encrypted votes according to w. Encryptions are done in the
same way as before. A is given signatures in a straightforward manner.

10. Vote Casting: S submits ballots for the honest voters. A submits ballots
for the corrupt and the coerced voters.

11. Tallying: Using his secret keys and standard techniques for proofs, S sim-
ulates tallying in a straightforward manner.

12. Guess: A decides b′.
13. Output: S outputs 1 iff b = b′.

Let’s examine the view of A. Apart from the data he produces, in the autho-
rization phase he sees the encrypted credentials with the proofs that accompany
them, and the signatures given. These include a message x uniformly distributed
in G, an encrypted first part of a signature and the second part of the signature
which is a uniformly distributed element in Zq. In the tallying phase he sees the
encrypted ballots, their proofs and the signatures. The signatures include two
random elements x∗, sig2 and an encrypted first part. Finally he gets the inter-
mediate results and the tally with the proof. Apart from the encrypted messages
and the proofs, all other data are random and do not assist him in deciding b.

Suppose that the input of S is a Diffie-Hellman (DH) tuple. Then all the
encryptions done by S are valid and the view of A is the same as the c-resist
experiment. If the input is not a DH tuple then every encryption S did results in
uniformly distributed elements in G

3. A’s view is the same as in the c-resist-ideal
experiment.

226 P. Grontas et al.

These imply that

Advc-resist
ES,A = |Pr[S = 1|DH(g1, g2, h1, h2)] − Pr[S = 1|¬DH(g1, g2, h1, h2)]|

which is equal to AdvDDH
S and so it is negligible if the DDH assumption holds.

Algorithm 1. c-resist
Input : n, nV ,C, D, λ

Output: result ∈ {0, 1}
(V, U) ← A(corrupt)

{(ski, pki) ← reg(skR, IDi, λ)}i∈[n]

(j, β) ← A({ski}i∈V ,Coerce)

if β /∈ C or j /∈ U then
output 0

end

b ←R {0, 1}
if b = 0 then

sk∗ ← fakekey(pkT , skj , pkj)

BB ⇐
auth(skj , pkj , skT , pkT ,C, β, λ)

else

sk∗ ← skj

end

BB ⇐
auth(ski, pki, skT , pkT ,C, D, λ)}i∈U\{j}
BB ⇐
Aauth(·)({ski}i∈V , sk∗, pkT ,C,BB)

(X, P) ←
tally(skT ,BB,C, {pki}i∈V ∪U , λ)

b′ ← A(X, P,BB,Guess)

output b == b′

Algorithm 2. c-resist-ideal
Input : n, nV ,C, D, λ

Output: result ∈ {0, 1}
(V, U) ← A(corrupt)

{(ski, pki) ← reg(skR, IDi, λ)}i∈[n]

(j, β) ← A(Coerce)

if β /∈ C or j /∈ U then
output 0

end

b ←R {0, 1}
sk∗ ← skj

if b = 0 then
BB ⇐
idauth(skj , pkj , skT , pkT ,C, β, λ)

end

{BB ⇐
idauth(ski, pki, skT , pkT ,C, D, λ)}i∈U\{j}
BB ⇐
Aidauth(·)({ski}i∈V , sk∗, pkT ,C)

(X, P) ←

tally(skT ,BB,C, {pki}i∈V ∪U , λ)

b′ ← A(X, P, Γ,Guess)

output b == b′

Finally, we must note that the exact level of protection each voter receives
depends on the size of the anonymity set, i.e. the number of decoy votes cast
with their ID by other honest voters or organizations. We plan to incorporate
this analysis in future versions of our work.

B Plain Okamoto-Schnorr CBS Scheme

We briefly present the simple Okamoto Shnorr CBS Scheme from [41]. The secret
signing key consists of the values s1, s2 ∈ Zq as in [5] with corresponding public
verification key v = g−s1

1 g−s2
2 . During the signing and unblinding phases the

public key k of the verifier is used. For the verification algorithm, the verifier
checks the verification equation using the hash of the message and the commit-
ment using the secret key s ∈ Zq. If the secret signer bit is 1, then the signature
will be valid, otherwise the verification equation will not hold. Thus the verifier
will learn the secret bit of the signer. We also assume the existence of a random
oracle H.

Towards Everlasting Privacy-Efficient Coercion Resistance 227

Common input: G, g1, g2, v, k ∈ G, H : M × G → Zq

Signers’s private input: s1, s2 ∈ Zq : v = g−s1
1 g−s2

2 and b ∈ {0, 1}
Verifier’s private input: s ∈ Zq : k = gs

1

Recipient’s private input: m

Commitment Phase. The Signer:
– Picks random r1, r2 ←R Zq;
– Computes x := gr1

1 gr2
2 ;

– Sends x to the recipient.
Blinding Phase. The Recipient:
– Selects blinding factors u1, u2, d ←R Zq;
– Computes x∗ := xgu1

1 gu2
2 vd, e∗ := H(m, x∗), e := e∗ − d;

– Sends e to the signer.
Signing Phase. The Signer:
– Computes y1 := r1 + es1, y2 := r2 + es2;
– If b = 1 then computes (bsig1, bsig2) := (ky1 , y2);
– If b = 0 then selects randomly (bsig1, bsig2) ←R G × Zq;
– Outputs (x, e, bsig1, bsig2).

Unblinding Phase. The Recipient:
– Unblinds by computing sig1 := bsig1 · ku1 and sig2 := bsig2 + u2;
– Outputs (m, x∗, e∗, sig1, sig2).

Verification Phase. The Verifier:
– Computes e∗′

:= H(m, x∗)
– Computes y1

′ := sig1 and y2
′ := sig2;

– Checks if x∗s = y1
′g2y2

′·sve∗·s and e∗′
= e∗.

Fig. 5. The original CBS Scheme based on Okamoto Schnorr signatures

C Modified Okamoto-Schnorr CBS Scheme

The protocol in Fig. 5 can be combined with a multiplicatively homomorphic
encryption scheme. It can also be made more practical if the parties agree in a
common method to randomly generate the commitment message x. Moreover,
we can let the signer play the role of the verifier, as a way to send the secret bit
to oneself in the future.

We present this modified version in Fig. 6. Note that the unblinding of the
first part of the signature, still occurs on the exponent, but this time in encrypted
form.

228 P. Grontas et al.

Common input: G, g1, g2, h1, v, x ∈ G, public keys k, h, H : M × G → Zq

Signers’s private input: s ∈ Zq : k = gs
1, z ∈ Zq : h = hz

1 and b ∈ {0, 1}
Recipient’s private input: m

Blinding:
– U chooses random u1, u2, d ←R Zq

– U computes x∗ := xgu1
1 gu2

2 vd, e∗ := H(m, x∗) and e := e∗ − d;
– U sends e to S

Signing:
– S randomly selects bsig2 ←R Zq;
– If b = 1 then compute bsig1 := Eh((x · g−bsig2

2 · v−e)s);
– If b = 0 then select randomly bsig1 ← G

2;
– Output (x, e, bsig1, bsig2).

Unblinding:
– U computes sig1 := bsig1 · Eh(ku1) and sig2 := bsig2 + u2;
– Output (m, x∗, e∗, sig1, sig2).

Verification:
– V recomputes e∗ as H(m, x∗). If e∗ �= H(m, x∗) V outputs 0.
– V decrypts the first part of the signature to receive y1

′ := Dz(sig1)
– V sets y2

′ := sig2
– V checks if x∗s = y1

′g2y2
′·sve∗·s and outputs 1 iff it holds

Fig. 6. Modified conditional blind signatures

References

1. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

2. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

3. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

4. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

5. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

6. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_7

Towards Everlasting Privacy-Efficient Coercion Resistance 229

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

8. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

9. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

10. Ohkubo, M., Miura, F., Abe, M., Fujioka, A., Okamoto, T.: An improvement on a
practical secret voting scheme. ISW 1999. LNCS, vol. 1729, pp. 225–234. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-47790-X 19

11. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 13

12. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp.
61–70. ACM (2005)

13. Smith, W.D.: New cryptographic voting scheme with best-known theoretical prop-
erties. In: Frontiers in Electronic Elections (FEE 2005), June 2005

14. Benaloh, J.: Simple verifiable elections. In: EVT 2006 (2006)
15. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-

vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

16. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion resistant scheme
for remote elections. In: Frontiers of Electronic Voting (2007)

17. Weber, S.G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: ARES, pp. 908–916. IEEE (2007)

18. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th Con-
ference on Security Symposium, pp. 335–348. USENIX Association (2008)

19. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.
In: IEEE Security and Privacy Symposium (2008)

20. Araújo, R., Ben Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards practical
and secure coercion-resistant electronic elections. In: Heng, S.-H., Wright, R.N.,
Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17619-7 20

21. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
ACM Trans. Inf. Syst. Secur. 13(2), 16 (2010)

22. Koenig, R., Haenni, R., Fischli, S.: Preventing board flooding attacks in
coercion-resistant electronic voting schemes. In: Camenisch, J., Fischer-Hübner,
S., Murayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IAICT, vol. 354, pp.
116–127. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21424-
0 10

23. Schläpfer, M., Haenni, R., Koenig, R., Spycher, O.: Efficient vote authorization in
coercion-resistant internet voting. In: Kiayias, A., Lipmaa, H. (eds.) Vote-ID 2011.
LNCS, vol. 7187, pp. 71–88. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32747-6 5

24. Schröder, D., Unruh, D.: Security of blind signatures revisited. IACR Cryptology
ePrint Archive, p. 316 (2011)

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/3-540-47790-X_19
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/978-3-642-17619-7_20
https://doi.org/10.1007/978-3-642-21424-0_10
https://doi.org/10.1007/978-3-642-21424-0_10
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/978-3-642-32747-6_5

230 P. Grontas et al.

25. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

26. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote E-voting in linear time. In: Danezis, G. (ed.) FC 2011.
LNCS, vol. 7035, pp. 182–189. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27576-0 15

27. Clark, J., Hengartner, U.: Selections: internet voting with over-the-shoulder
coercion-resistance. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 47–61.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0 4

28. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In:
Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 21–40. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36830-1 2

29. Araújo, R., Traoré, J.: A practical coercion resistant voting scheme revisited. In:
Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp.
193–209. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39185-
9 12

30. Buchmann, J., Demirel, D., van de Graaf, J.: Towards a publicly-verifiable mix-
net providing everlasting privacy. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol.
7859, pp. 197–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39884-1 16

31. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we
need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013.
LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40203-6 27

32. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.A.: Caveat coercitor: coercion-
evidence in electronic voting. In: IEEE Security and Privacy Symposium. IEEE
(2013)

33. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

34. Araújo, R., Barki, A., Brunet, S., Traoré, J.: Remote electronic voting can be effi-
cient, verifiable and coercion-resistant. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A.,
Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 224–
232. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 15

35. Cortier, V., Galindo, D., Kuesters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: IEEE Security and Privacy Symposium, pp. 779–
798 (2016)

36. Locher, P., Haenni, R., Koenig, R.E.: Coercion-resistant internet voting with ever-
lasting privacy. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 161–175. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 11

37. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

38. Grontas, P., Pagourtzis, A., Zacharakis, A.: Coercion resistance in a practical secret
voting scheme for large scale elections. In: ISPAN-FCST-ISCC 2017, pp. 514–519
(2017)

https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-27576-0_15
https://doi.org/10.1007/978-3-642-27576-0_15
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-642-39185-9_12
https://doi.org/10.1007/978-3-642-39185-9_12
https://doi.org/10.1007/978-3-642-39884-1_16
https://doi.org/10.1007/978-3-642-39884-1_16
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-53357-4_15
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-662-53357-4_12

Towards Everlasting Privacy-Efficient Coercion Resistance 231

39. Iovino, V., Rial, A., Rønne, P.B., Ryan, P.Y.A.: Using selene to verify your vote
in JCJ. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 385–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 24

40. Yang, N., Clark, J.: Practical governmental voting with unconditional integrity
and privacy. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 434–449.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 27

41. Zacharakis, A., Grontas, P., Pagourtzis, A.: Conditional blind signatures. In: 7th
International Conference on Algebraic Informatics (Short Version) (2017). http://
eprint.iacr.org/2017/682

https://doi.org/10.1007/978-3-319-70278-0_24
https://doi.org/10.1007/978-3-319-70278-0_27
http://eprint.iacr.org/2017/682
http://eprint.iacr.org/2017/682

Modeling a Bulletin Board Service Based
on Broadcast Channels with Memory

Severin Hauser1,2 and Rolf Haenni1(B)

1 Bern University of Applied Sciences, 2501 Biel, Switzerland
{severin.hauser,rolf.haenni}@bfh.ch

2 University of Fribourg, 1700 Fribourg, Switzerland
severin.hauser@unifr.ch

Abstract. The publication of the election data is fundamental for mak-
ing electronic voting systems universally verifiable. For this, voting pro-
tocols usually rely on a secure bulletin board, which keeps track of the
data produced during the protocol execution. This paper presents a gen-
eral model for implementing such a bulletin board service. The design of
the model is based on the concept of an ideal broadcast channel with mem-
ory, which transmits messages without loss of information to a present or
future receiver. The challenge of implementing a bulletin board service is
to approximate the properties of such an ideal channel to the best possible
degree. Our model contributes to a better understanding of these proper-
ties and may help in designing future bulletin board implementations.

1 Introduction

To achieve universal verifiability, all parties involved in a cryptographic voting
protocol must achieve an agreement on the public data created during the pro-
tocol execution. This problem can be seen as a Byzantine agreement problem
[17]. For some voting contexts like boardroom voting, state-of-the-art Byzan-
tine agreement (or reliable broadcast) protocols are reasonable solutions. Unfor-
tunately, for many voting contexts these protocols are not well fitted for two
reasons. First, these protocols are not sufficiently efficient on a large scale with
many computationally limited parties. Secondly, the model for these protocols
assumes that all honest parties are available at the moment of the protocol exe-
cution. For parties such as voters in real-world political elections, this is not
a realistic assumption. Their limited connectivity could even lead to the point
where no agreement can be achieved at all. Cryptographic voting is not the only
application with this kind of problems. Other applications that have to deal
with similar problems are online auctions or cryptographic currencies. From a
more general viewpoint, these applications can be regarded as secure multi-party
computation problems with a public audit, in which external auditors can check
whether the protocol output was computed correctly or not [2].

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 232–246, 2019.
https://doi.org/10.1007/978-3-662-58820-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_16&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_16

Modeling a Bulletin Board Service Based on Broadcast Channels 233

So instead of applying Byzantine agreement protocols, papers from the cryp-
tographic voting literature often refer to a broadcast channel with memory
(BCM) for making the public election data available to everyone. The existence
of a BCM is often assumed without providing a detailed definition of what a
BCM is and without specifying its properties [6,20]. The lack of proper defini-
tions is a problem for the general understanding of the cryptographic protocols
and for analyzing their security properties. To the best of our knowledge, the first
proposal for a formal BCM model has been published recently in [14]. Accord-
ing to this model, which defines a BCM as an idealized theoretical construct,
messages can be transmitted instantaneously and without loss to a present or
future receiver.

In a real-world implementation of a given cryptographic protocol, the theo-
retical model of a BCM can at best be approximated. A common approach is
to substitute the BCM with a service provided by one or more additional pro-
tocol parties. The job of these parties is to receive and memorize the messages
transmitted over the broadcast channel during the protocol execution. A group
of parties providing this service is what we call bulletin board service (BBS). Its
goal is to guarantee that all submitted messages are recorded, that messages are
never deleted or modified, and that the order in which the messages appeared is
tracked. Bulletin board implementations with this property are called append-
only. In addition, some voting protocols require designated board sections for
all involved parties [6], while other protocols require that the board rejects mes-
sages that are not well-formed [13]. When implementing a BBS, appropriate
solutions for such protocol-specific requirements need to be provided in addi-
tion to the append-only property. Since a large amount of the available BBS
literature focuses on providing solutions for a specific cryptographic protocol,
distinguishing the properties derived from the BCM and the ones introduced by
the cryptographic protocol is sometimes difficult.

1.1 Contribution and Paper Overview

In Sect. 2, we introduce formal definitions for various types of channels, including
a definition for a broadcast channel with memory. We summarize the model
presented in [14] and expand it with the concept of return-link channels. Our
definitions describe how such channels behave under ideal circumstances. As
such, they serve as a guideline for the design of a bulletin board service, which
mimics the ideal behaviour of a broadcast channel with memory under real-world
circumstances.

The main contribution of this paper is a proposal for a general BBS model,
which we introduce in Sect. 3. This model is derived from the BCM definition
with the goal of providing an analogous functionality and similar guarantees.
Based on the necessary communication channels to the rest of the system, we
identify several communication roles and describe the tasks and responsibilities
of parties fulfilling these roles. We illustrate the generality of the model with
some real-world examples.

234 S. Hauser and R. Haenni

1.2 Related Work

The idea of publishing the election data on a public bulletin board has a long tra-
dition in the literature of verifiable electronic voting. While almost every existing
cryptographic voting protocol uses a BBS as a central communication platform
between the parties involved, almost no paper describing such a protocol gives
a precise specification of the properties expected from the board. Usually, the
existence of an appropriate BBS is just taken for granted, but the BBS itself
remains a black box.

Given the importance of the bulletin board concept in electronic voting, only
a remarkably small number of specific papers is devoted to the problem of spec-
ifying and implementing a BBS. Peters was one of the first to suggest such a
specification and solution [20]. His main focus was on making the bulletin board
robust against failures or attacks, using multiple peers and protocols from the
multi-party computation literature. In [15,18], Heather and Lundin made some
proposals to ensure the append-only property and to solve the resulting conflicts
with the robustness property. Some reports on corresponding implementations
have been published later [3,16]. Another description of a practical BBS imple-
mentation is included in the report about the voting system used in the state
of Victoria, Australia [4]. In a follow-up paper [9], Culnane and Schneider pro-
posed a robust algorithm for a peered bulletin board and verified its correctness
formally. Recently Dold and Grothoff presented a Byzantine consensus protocol
that allows to synchronize a set of elements [10]. They use it to implement the
bulletin board for an e-voting system that is based on the protocol proposed by
Cramer et al. [7].

2 Broadcast Channel with Memory

Many cryptographic voting protocols in the literature assume the existence of a
broadcast channel with memory to achieve universal verifiability. The BCM is
used by the involved parties to exchange public data during the execution of the
protocol. Unfortunately, a proper formal definitions of the core functionalities
and properties of a BCM is often entirely missing. This lack of proper definitions
leads to problems in the understanding of the cryptographic protocols and their
security properties. In this section, based on the notion of a distributed system,
we give formal definitions of broadcast channels and broadcast channels with
memory. Our model is both a summary and an extension of the BCM model
proposed in [14].

2.1 Distributed Systems and Channels

A distributed system (Ω,Γ) consists of a finite set of parties Ω = {p1, . . . , pn}
and a finite set of channels Γ = {c1, . . . , cm}. The parties in this system exchange
messages over the available channels to achieve some security (and other) objec-
tives in the context of a given problem domain. It is usually assumed that the

Modeling a Bulletin Board Service Based on Broadcast Channels 235

channels provide some properties such as authenticity or confidentiality. In our
model of a distributed system, we assume—as a general rule—that all chan-
nels are ideal. This means that they are noiseless, possess unlimited capacity,
and provide a total message order. This implies that no message can be lost or
modified during transmission, that messages of arbitrary size are transmitted
instantaneously, and that no two messages can be sent at the exact same point
in time.

Definition 1. A (ideal) channel c ∈ Γ of a distributed system (Ω,Γ) is defined
by a sender domain Sc ⊆ Ω (the parties that can send messages over c), a
receiver domain Rc ⊆ Ω (the parties that can receive messages over c), and a
message space Mc ⊆ M (the messages that can be transmitted over c). If s ∈ Sc

transmits m ∈ Mc over c to Rc, then every r ∈ Rc receives m instantaneously
when m is sent. Parties p ∈ Ω \ Rc not from the receiver domain can observe
the transmission of m over c, but can not learn any information about m itself
(except its length). On the other hand, parties p �∈ Ω not belonging to the
distributed system do not have access to the channels and can therefore not
even observe the transmission of m.

The general definition of an ideal channel includes a number of useful limiting
cases, which are important in cryptographic protocols. We call c ∈ Γ a public
channel, if Sc = Ω. This means that every party in the system is able to send
messages over c. Similarly, c is called broadcast channel, if Rc = Ω.1 In this case,
every message transmitted is received by all parties in the system. If Sc = {s}
consists of a single sender s ∈ Ω, then c is an authentic channel. Receiving m
over such an authentic channel guarantees that s is the author of m. Similarly,
if Rc = {r} consists of a single receiver r ∈ Ω, then c is a confidential channel.
In this case, the channel guarantees that no party other that r learns anything
about m (beyond its length). If the sender and receiver domains are identical,
i.e., if Sc = Rc, we speak of a closed group channel. In this case, every member
of the closed group can send and receive messages over c.

Some of the above properties are mutually exclusive. For instance, a broad-
cast channel can not be confidential and a public channel can not be authentic
(except for |Ω| = 1). On the other hand, there are a number of useful combina-
tions that are very common in cryptographic protocols. Most importantly, if c is
authentic and confidential at the same time, i.e., if both Sc = {s} and Rc = {r}
consist of a single party only, it is called a secure channel. A secure channel is
called untappable in the special case of Ω = {s, r}. This implies that no other
party can observe the transmission of messages between s and r.

1 In the literature, broadcast channels are defined in many different ways, for example
as a (m, λ, . . . , λ) �→ (m, m, . . . , m), where λ denotes an empty message. Such a
broadcast functionality is an important building block for designing secure multi-
party computation protocols in the presence of active adversaries. Assuming a public-
key infrastructure, such broadcast channels can be implemented for any number of
malicious parties using a signature scheme [12].

236 S. Hauser and R. Haenni

Definition 2. A return-link channel is a channel c ∈ Γ of a distributed system
(Ω,Γ) that creates temporary return-links from every receiver r ∈ Rc of a
transmitted message m ∈ Mc to the sender s ∈ Sc of the message. Return-links
can be used by a receiver for sending a response � ∈ Lc to the (possibly unknown)
sender s, where Lc denotes the message domain of the return-links created by c.
By submitting � over the return-link, r does not learn more about s other than
s ∈ Sc. The transmission of � from r to s is instantaneous and noiseless. Parties
other than s and r can observe the transmission, but they do not learn anything
about �.

Return links are expected to be available only for a short time after the
transmission of a message. The exact purpose of sending back a response is not
further specified, but in most cases it will be something like an acknowledgement,
receipt, status report, error message, etc. In protocols relying on such responses,
return-link channels are useful to reduce the total amount of necessary channels
between the parties. They are also useful to return the response directly to
the actual sender s ∈ Sc, even if Sc contains multiple parties and therefore
s is unknown to r. Return-links with such properties are widely available in
the real world, for example in the case of TCP connections. An example of a
distributed system with 10 parties and 3 channels is shown in Fig. 1. Regular
channels are depicted as single-headed arrows and return-link channels as double-
headed arrows.

Fig. 1. Example of a distributed system with a confidential channel c1, a return-link
channel c2, and an authentic channel c3.

2.2 Broadcast Channel with Memory

In our ideal model of noiseless channels with unlimited capacities, we assume
that every submitted message reaches every receiver from the receiver domain
instantaneously, independently of the receiver’s actual availability and capacity
to process the incoming message. In a non-ideal setting, receivers might not
always be capable of processing the messages the moment they arrive. They
might even miss some incoming messages entirely. In cryptographic protocols,
in which broadcast channels are used to spread information to everyone, this
imperfection can cause complicated coordination problems.

To allow a receiver to recover from messages lost during the protocol exe-
cution, we introduce the concept of a channel with memory. The idea is that
the transmission of a message m ∈ Mc over a channel c ∈ Γ is performed by

Modeling a Bulletin Board Service Based on Broadcast Channels 237

two operations s : Sendc(m) and r : Mc ← Receivec(). The former is invoked
by the sender s ∈ Sc and the latter by the receiver r ∈ Rc. A channel with
memory guarantees that the messages and the order in which they have been
sent are stored and never lost. For this, the channel maintains an internal state,
called channel history Mc, which is initialized by Mc ← 〈〉 and updated by
Mc ← Mc‖〈m〉 each time a new message m ∈ Mc is sent. This idea is further
formalized in the following definition.

Definition 3. A channel c ∈ Γ of a distributed system (Ω,Γ) with sender
domain Sc ⊆ Ω and receiver domain Rc ⊆ Ω is called channel with memory, if
every s ∈ Sc can perform the operation s : Sendc(m) to send a message m ∈ Mc

over the channel and every r ∈ Rc can perform r : Mc ← Receivec() to receive
the current channel history Mc ∈ M∗

c of all messages sent so far. An ideal
channel with memory has unlimited capacity, i.e., Mc can get arbitrarily large.

The concept of a channel with memory applies to all particular channel types
described before. For example, a broadcast channel with memory (BCM) gives
every party permanent access to all the messages sent over this channel. In an
authentic BCM, it is guaranteed that every message included in the channel
history has been sent by the same single sender. In a public BCM, the senders of
the messages are unknown within Ω (except for |Ω| = 1). Authentic and public
broadcast channels with memory are the most useful instances in cryptographic
voting protocols, for example to provide authentic broadcasting to the election
authorities and public broadcasting to the voters. If a protocol provides multiple
authentic broadcast channels with different senders, it may be necessary to aug-
ment Definition 3 to support a common history over multiple channels. For this,
we refer to the definition of a bundled broadcast channel with memory (BBCM),
which additionally keeps track of the sender of every transmitted message [14].

3 Bulletin Board Service

The concept of a BCM as described in the previous section is an idealized theo-
retical construct, for which no one-to-one practical implementation exists in the
real world. For this reason, cryptographic protocols that require such a channel
need a substitution that provides an equivalent functionality and similar guaran-
tees. Knowing that the exact same properties of an ideal broadcast channel with
memory can at best be approximated by a practical implementation, designing
such a substitution is a very delicate problem on its own. A common approach
in the literature is to add one or multiple additional parties offering the service
of a bulletin board to the other parties of the distributed system. In this section,
we introduce a general model for such a bulletin board service (BBS). We first
describe the desired properties of a BBS and the basic functionality. Then we
introduce various roles for the parties involved and show how several examples
from the real world fit into the general model.

238 S. Hauser and R. Haenni

3.1 Guarantees

In Sect. 2, we introduced the concept of a BCM as a channel with ideal proper-
ties. For a BBS to offer similar properties, we identified a number of guarantees
that seem to be crucial for a BBS to provide. Knowing that the ideal BCM prop-
erties can at best be approximated, it is important to have at least a clear under-
standing of some realistic goals and an overview of the possibilities for reaching
them. For each guarantee introduced below, we refer to the corresponding BCM
property, from which it is derived.

Authentication. This addresses the fact, that an ideal BCM c only allows parties
from its sender domain Sc to submit messages. For the BBS, this means that the
sender of a message must be authenticated to ensure that only messages from
parties belonging to the sender domain are accepted. If the authentication evi-
dence provided by the sender is transferable to third parties, it can be recorded
together with the message and forwarded to third parties on request. Digital sig-
natures are examples of such transferable authentication evidence, which ensures
sender authenticity without relying on trust in the BBS.

Non-discrimination. When a message is transmitted over an ideal BCM, parties
are discriminated only with respect to the channel’s sender domain. Therefore,
the BBS needs to ensure that no party from the sender domain is excluded from
accessing the interface provided by the service for submitting a message. Simi-
larly, it must be ensured that no party is discriminated against retrieving the set
of all submitted messages. Known solutions for this are based on the assumption
that at least some of the parties responsible for accepting the incoming messages
and disseminating the recorded messages behave correctly.

Message Ordering. An ideal channel with memory records and returns the trans-
mitted messages in perfect chronological order. Therefore, the BBS has to pro-
vide an equivalent mechanism which ensures a unique message ordering even if
a large amount of messages is submitted almost simultaneously. This message
ordering has to be immutable and everyone must be able to verify its correct-
ness. Since submitting messages over real-world channels always implies some
delay and the BBS might need time for processing them, implementing a perfect
chronological order is very difficult. Therefore, the goal of a BBS implementation
is to provide an order that approximates the perfect chronological ordering as
close as possible.

Message Well-Formedness. The message space Mc of a BCM c restricts the
type and format of the transmitted messages. This restriction can be transferred
easily to a BBS by performing corresponding checks for each incoming message.
Valid messages m ∈ Mc are accepted and recorded, whereas invalid messages
m �∈ Mc are rejected.

Modeling a Bulletin Board Service Based on Broadcast Channels 239

Uniqueness. An ideal BCM c has a unique and unchangeable channel history Mc

consisting of all previously submitted messages in chronological order. Therefore,
the BBS also has to ensure that set of recorded messages is unique and can not
be altered, i.e., all parties retrieving the board content will receive compatible
views. More precisely, if two parties request the board content at two different
points in time t1 < t2, then the list of messages retrieved at t1 must be a prefix
of the list retrieved at t2.

Completeness. With an ideal BCM c, submitted messages are recorded instan-
taneously and added to the channel history without any delay. This implies that
the BCM always returns the complete channel history Mc of all messages sub-
mitted so far. Therefore, a BBS also needs to ensure that submitted messages
are processed as quickly as possible and that requests are always responded with
the complete board content of all recorded messages. The maximal necessary
time for a message to be processed by the BBS is denoted by Δ. This value is
an important characteristics of a given BBS implementation.

3.2 Basic Model and Functionality

Let (Ω,Γ) be a distributed system with a single broadcast channel with memory
cBCM ∈ Γ . Replacing cBCM by a BBS means to introduce an extended distributed
system (Ω′, Γ ′), where Ω′ = Ω ∪ Φ denotes the extended set of parties and
Γ ′ = (Γ \ {cBCM}) ∪ Ψ the updated set of channels. The elements of Φ and Ψ
are called bulletin board parties and bulletin board channels, respectively. The
BBS must be designed in a way that all parties from ScBCM have access to a
channel in Ψ that connects them with the bulletin board parties for submitting a
message to the BBS. Similarly, all parties from Ω must have access to a channel
for receiving the channel history MBCM from the bulletin board parties. The
bulletin board parties themselves may be mutually connected over additional
(possibly authentic or confidential) channels to coordinate their current state of
memory. To accomplish the substitution of cBCM, it is crucial that Ψ introduces
no new channel with memory, i.e., that all channels in Γ ′ can be realized using
standard communication and network technology.

For a BBS to provide the same functionality as cBCM, it needs to provide
operations similar to SendcBCM(m) and ReceivecBCM(). To avoid confusion between
channel and service, we call them PostBBS(p) and GetBBS(), where p = (m,α)
contains the broadcast message m ∈ MBCM and some meta-data α ∈ A. The
purpose and format of α depends on the concrete realization of the BBS, but
it often contains some authentication evidence such as a digital signature, that
can be verified by third parties. The pair p itself is called post and the process of
submitting p to the BBS is called posting. If a party posts p to the BBS, it sends
it over one of the available bulletin board channels to one or multiple bulletin
board parties, which are responsible for the further processing of p.

To be as general as possible, we assume that posts are processed in blocks
b = ({p1, . . . , ps}, β), where β ∈ B denotes some meta-data added to the block by
the bulletin board parties. The main purpose of β is to provide some publishing

240 S. Hauser and R. Haenni

evidence such as a signed hash chain, which again can be verified by third parties.
Note that the posts included in a block are unordered. The internal processing
of a block b by the bulletin board parties is called publication of b.

Depending on the block size, there are different publication modes. If the
block size s is a fixed value for all blocks, it means that the incoming posts are
buffered until the block size is reached. If the blocks are created periodically, for
example one block every minute, we obtain blocks of different sizes. Correspond-
ing publication modes are called buffered publication and periodical publication,
respectively. A fixed block size s = 1 is an important special case of buffered
publication, in which individual posts are published immediately. This particu-
lar mode is called immediate publication. The selected publication mode is an
important characteristics of a concrete BBS implementation.

The bulletin board parties are responsible for keeping track of all the pro-
cessed blocks of posts. This internal state of the BBS consisting of all blocks is
called board history. One can think of it as an initially empty list B ← 〈〉, which
is updated to B ← B‖〈b〉 each time a new block b has been formed. This means
that B contains the list of all blocks published by the BBS so far. Therefore, B is
also the expected return value of GetBBS(), which then enables the derivation of
the channel history MBCM by extracting the messages from the individual posts
in the blocks. Note that immediate publication is the only mode that implies a
unique message ordering. This is because the order over the blocks is fixed and
in this case each block contains only one message.

3.3 Basic Roles

Every party involved in a BBS has a certain role with corresponding tasks.
As the specific roles and tasks depend greatly of the protocol used to run the
BBS, we can not introduce the roles and tasks in a general way. However, given
the general goal of providing two basic operations PostBBS(p) and GetBBS(), we
identified four basic communication roles, which depend on how a given bulletin
board party is involved in communicating with the main protocol parties. To
provide the basic functionality, the BBS must provide at least two channels, one
for collecting the posts submitted by parties from the sender domain ScBCM and
one for disseminating the board history to Ω. Without loss of generality, we
assume that both channels have a return-link (see explanations given below).
An auxiliary channel for broadcasting additional information about the current
board state may be necessary to achieve some of the guarantees. The receiver
and sender domains of these three channels define three different communication
roles, which we call collector, disseminator, and broadcaster. The channels are
denoted by cC , cD, cB ∈ Ψ , respectively.

Figure 2 shows the communication roles of the bulletin board parties and
illustrates how the parties interact with the rest of the system over the associated
channels. The figure also shows how these roles could overlap depending on the
protocol. Bulletin board parties not involved in the communication to the rest
of the system define an additional role. We call them associates and the set of

Modeling a Bulletin Board Service Based on Broadcast Channels 241

associates is denoted by ΦA. Below, we give a more detailed description of each
communication role, the interface they provide to the rest of the system, and
the attributed tasks.

Fig. 2. Illustration of the communication roles and channels of a BBS. Corresponding
sets of parties are denoted by ΦA, ΦB , ΦC , and ΦD. The channels cC and cD each have
a return-link. The channel cD is a public channel and the channel cB is a broadcast
channel.

Collector. The collectors are responsible for providing the PostBBS(p) operation
to the sender domain ScBCM of the BCM cBCM. Upon receiving a new post
p = (m,α) from a party of the sender domain ScBCM over the channel cC ,
the collectors have to check the authenticity and conformity of the message
m ∈ MBCM and the meta-data α ∈ A. In case some check fails, an error
message is returned over the return-link of cC to the sender and the procedure
aborts. Otherwise, p is added to the current block for further processing and
some response γ ∈ C (acknowledgment, receipt, status report, etc.) is sent
back to the sender. Returning such a response over the return-link extends
the signature of the Post-operation as follows:

γ ← PostBBS(p).

Disseminator. The disseminators are responsible for providing the GetBBS()
operation to the main protocol parties. To avoid unnecessary restrictions, we
extend the sender domain of cD from Ω to Ω′ = Ω ∪Φ, which implies that cD
becomes a public channel in (Ω′, Γ ′). It can be used by every involved party
to submit a request for the current board history to the disseminators. The
return-link of cD is required for returning the current board history B to the
party requesting it. In addition to returning B, the BBS may also produce and
return some meta-data δ ∈ D concerning the request. The following extended
signature summarizes the Get-operation:

B, δ ← GetBBS().

242 S. Hauser and R. Haenni

Invoking this operation will always return the complete set of blocks of the
current board history, even if only some particular blocks or posts are of inter-
est. In a productive environment, where B could grow into a very large set,
this solution might not be very practical. Therefore, we propose an extended
Get-operation,

Bq, δ ← GetBBS(q),

which accepts a query q ∈ Q as input parameter. The query is applied to the
board history and only the subset Bq ⊆ B of blocks satisfying the query is
returned.

Broadcaster. As the disseminators act only on request, the spreading of the
board history B is somewhat limited. Since responding with B to a request
is like a commitment to the current board state, not getting requests over
a long period means that no commitments are made for a long time. Under
such circumstances, guaranteeing completeness is more difficult. Therefore, we
propose an additional broadcast channel cB for spreading information about
the board history to a larger group. The broadcasters are responsible for using
this channel, for example each time a new block is added to the board history,
or periodically, to broadcast some information φ = f(B) derived from B to
everyone (for example the current header of a hash chain).

Associate. The group of associates in a BBS only communicates internally
with the other bulletin board parties. They support the BBS in achieving
its guarantees, for example by issuing signatures for each newly added block.
They can also be in charge of maintaining the database, in which the current
board state is stored, or of replicating this database for backup purposes.

Some particular bulletin board parties may fulfill the additional role of a
bulletin board trustee. The set of all trustees is denoted by ΦT ⊆ Φ. They are
responsible for establishing the trust assumptions of the service, which are nec-
essary for providing the desired guarantees. We assume that each trustee is in
possession of a private signature key and that corresponding public keys are
publicly known. An important tasks of a trustee is to sign every change made
to the board history, i.e., each time a new block is added. In this case, signa-
tures issued by the trustees may be added to the block’s meta-data β, possibly
together with a digital time-stamp, or they may be returned to the sender as
part of the acknowledgment γ. In a similar way, signatures may be created and
added to the response δ whenever a party requests the current board history
B. Figure 3 shows an example of a BBS with three collectors ΦC = {p1, t1, t3},
three disseminators ΦD = {p2, t2, t3}, three associates ΦA = {p3, t4, t5}, and one
broadcaster ΦB = {p4}. There are five trustees ΦT = {t1, t2, t3, t4, t5}.

3.4 BBS Examples

To show that the roles and guarantees introduced in this section can be applied to
existing BBS implementations and that they are useful for a better understand-
ing, we sketch here three examples and highlight their properties. An illustrative
overview of these examples and the parties involved is given in Fig. 4.

Modeling a Bulletin Board Service Based on Broadcast Channels 243

Fig. 3. Example of a BBS with parties Φ = {p1, p2, p3, p4, t1, t2, t3, t4, t5} and trustees
ΦT = {t1, t2, t3, t4, t5}. We use red circles to represent trustees and black dots for
ordinary bulletin board parties. (Color figure online)

Single-Party BBS. The setup as shown in Fig. 4a is the simplest possible
one. It consists of a single trusted bulletin board party, which is responsible
for everything. This setting is comparable to a classical central database, which
stores the application data and responds to queries. Variations of this simple
setup can be found in many implementations of verifiable voting systems [1,5,11].
To guarantee important properties such as completeness, non-discrimination,
message-ordering, and uniqueness, this type of BBS relies completely on its single
party to be honest. In most practical systems, the decision to adopt such a simple
BBS design was due to lack of time or resources.

In most single-party implementations of this kind, posts are published imme-
diately, i.e., the block size is equal to 1. The maximal publication time Δ is
therefore relatively low. In a proposal by Heather and Lundin [15], in order to
guarantee a unique message-ordering, the party submitting a post p = (m,α)
first retrieves the current hash chain header from the board and incorporates
it into α. The problem is that this may create race condition between multiple
parties trying to submit a post simultaneously.

Multi-Party BBS. A setup with multiple trusted bulletin board parties of the
same type often emerges from protocols that provide solutions to the Byzantine
Agreement Problem [17]. All parties are assumed to act identically, and as a
group, they are responsible for the proper functioning of the BBS. In the setup
shown in Fig. 4b, all bulletin board parties act as collectors and disseminators.
To guarantee important properties such as completeness, message-ordering, non-
discrimination, and uniqueness, agreement protocols between the parties usually
require more than 2/3 of the involved parties to be honest. Such agreement proto-
cols are relatively complex and thus limit the throughput of the system. Peters
proposed a design of such a setup based on a protocol by Reiter [20,21], and
Beuchat presented an implementation of Peter’s approach [3]. An other imple-
mentation is shown by Dold and Grothoff in [10]. They take a different approach

244 S. Hauser and R. Haenni

as they use a protocol that allows for agreement on sets of messages. This way
they only need to reach agreement between all bulletin board parties at the end
of the voting period.

Into this category also belong most of the blockchain implementations pre-
sented until today, for example the blockchain used in the digital currency Bit-
Coin [19]. There, so-called miners create a blockchain based on the proof of
work concept and with an average block size of approximately 1800 transactions
every ten minutes. This ensures uniqueness as long as the honest miners control
more than half of the computation power. Because BitCoin integrates the miners
into the protocol they also cover authentication and message well-formedness as
honest miners will only accept blocks containing valid transactions. The other
guarantees are addressed by different mechanics of the BitCoin protocol.

vVote System Bulletin Board. Culnane and Schneider presented in [9] a BBS
proposal for the vVote Verifiable Voting System [8]. As shown in Fig. 4c, they intro-
duce parties of different types and for different roles. There is a group of parties,
called the peers, which act as collectors and trustees. Another party, called the web
bulletin board (WBB), acts as disseminator and is therefore responsible for spread-
ing the board history. Finally, a party called publisher uses a traditional printed
newspaper for broadcasting daily the current hash chain header. By creating a new
block only once a day, the protocol works with periodic publication. Complete-
ness is ensured by the fixed schedule of the block creation and by the information
printed in the newspaper. Uniqueness, non-discrimination and message ordering
are guaranteed as long as more than 2/3 of the peers are honest.

(a) Single-Party BBS (b) Multi-Party BBS (c) vVote

Fig. 4. Examples of existing BBS implementations.

4 Conclusion

In this paper, we presented and extended formal definitions for various types of
channels. This also includes a broadcast channel with memory, which is often
required in cryptographic voting protocols. Since a broadcast channel with mem-
ory has no direct implementation in the real world, it needs to be substituted

Modeling a Bulletin Board Service Based on Broadcast Channels 245

by something that is often called bulletin board. Based on our definitions, we
introduced a model for a bulletin board service. This model describes the guar-
antees this service must provide and what kind of roles exists inside the service.
We showed that the model helps to understand existing bulletin board imple-
mentations by discussing some examples.

Acknowledgments. This research has been supported by the Hasler Foundation
(project no. 14028). We thank the anonymous reviewers for their reviews and appreci-
ate their valuable comments and suggestions.

References

1. Adida, B.: Helios: web-based open-audit voting. In: Van Oorschot, P. (ed.) SS 2008,
17th USENIX Security Symposium, pp. 335–348. San Jose, USA (2008)

2. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11

3. Beuchat, J.: Append-Only Web Bulletin Board. Master’s thesis, Bern University
of Applied Sciences, Biel, Switzerland (2012)

4. Burton, C., et al.: A supervised verifiable voting protocol for the Victorian elec-
toral commission. In: Kripp, M., Volkamer, M., Grimm, R. (eds.) EVOTE 2012,
5th International Workshop on Electronic Voting, no. P-205 in Lecture Notes in
Informatics, Bregenz, Austria, pp. 81–94 (2012)

5. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system. In:
SP 2008, 29th IEEE Symposium on Security and Privacy, pp. 354–368. Oakland,
USA (2008)

6. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

7. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)

8. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: a verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

9. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. In: CSF 2014, 27th Computer Security Foundations Symposium,
pp. 169–183. Vienna, Austria (2014)

10. Dold, F., Grothoff, C.: Byzantine set-union consensus using efficient set reconcilia-
tion. In: Wicker, S.B., Engel, D. (eds.) ARES 2016, 11th International Conference
on Availability, Reliability and Security, pp. 29–38. Salzburg, Austria (2016)

11. Dubuis, E., et al.: Verifizierbare Internet-Wahlen an Schweizer Hochschulen mit
UniVote. In: Horbach, M. (ed.) INFORMATIK 2013, 43. Jahrestagung der
Gesellschaft für Informatik. LNI P-220, Koblenz, Germany, pp. 767–788 (2013)

12. Goldreich, O.: The Foundations of Cryptography - Volume II: Basic Applications.
Cambridge University Press, New York (2004)

13. Haenni, R., Koenig, R.E.: A generic approach to prevent board flooding attacks in
coercion-resistant electronic voting schemes. Comput. Secur. 33, 59–69 (2013)

14. Hauser, S., Haenni, R.: Implementing broadcast channels with memory for elec-
tronic voting systems. JeDEM eJournal eDemocracy Open Gov. 8(3), 61–79 (2016)

https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9

246 S. Hauser and R. Haenni

15. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01465-9 16

16. Krummenacher, R.: Implementation of a Web Bulletin Board for E-Voting Appli-
cations. Project report, Hochschule für Technik Rapperswil (HSR), Switzerland
(2010)

17. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Programm. Lang. Syst. 4, 382–401 (1982)

18. Lundin, D., Heather, J.: The robust append-only web bulletin board. Technical
report, University of Surrey, Guildford, U.K. (2008)

19. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. Anonymous Pub-
lication (2009)

20. Peters, R.A.: A Secure Bulletin Board. Master’s thesis, Department of Mathemat-
ics and Computing Science, Technische Universiteit Eindhoven, The Netherlands
(2005)

21. Reiter, M.K.: Secure agreement protocols: reliable and atomic group multicast in
Rampart. In: CCS 1994, 2nd ACM Conference on Computer and Communications
Security, pp. 68–80. Fairfax, USA (1994)

https://doi.org/10.1007/978-3-642-01465-9_16

Verifiability of Helios Mixnet

Ben Smyth(B)

Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Esch-sur-Alzette, Luxembourg

research@bensmyth.com

Abstract. We study game-based definitions of individual and universal
verifiability by Smyth, Frink and Clarkson. We prove that building voting
systems from El Gamal coupled with proofs of correct key generation suf-
fices for individual verifiability. We also prove that it suffices for an aspect
of universal verifiability. Thereby eliminating the expense of individual-
verifiability proofs and simplifying universal-verifiability proofs for a class
of encryption-based voting systems. We use the definitions of individual
and universal verifiability to analyse the mixnet variant of Helios. Our
analysis reveals that universal verifiability is not satisfied by implemen-
tations using the weak Fiat-Shamir transformation. Moreover, we prove
that individual and universal verifiability are satisfied when statements
are included in hashes (i.e., when using the Fiat-Shamir transformation,
rather than the weak Fiat-Shamir transformation).

1 Introduction

An election is a decision-making procedure to choose representatives [3,13,24,31].
Choices should be made by voters with equal influence, and this must be ensured
by voting systems [26,27,41]. Many electronic voting systems build upon cre-
ativity and skill, rather than scientific foundations, and are routinely broken in
ways that permit adversaries to unduly influence the selection of representatives,
e.g., [5,7,14,18,40]. Breaks can be avoided by carefully formulating rigorous and
precise security definitions that capture notions of voters voting with equal influ-
ence, and proving that systems satisfy these definitions. Applicable definitions
include [9,10,15,17,19,20,37,38] and we build upon work by Smyth, Frink and
Clarkson [37]. (The relative merits of definitions are considered in Sect. 2.) They
present game-based security definitions in the computational model of cryptogra-
phy [16], whereby a benign challenger, a malicious adversary and a voting system
engage in a series of interactions which task the adversary to complete a challenge.
Successful completion of the task corresponds to an execution of the voting system
in which security is broken. Thus, the task captures what the adversary should not
be able to achieve.

Universal verifiability formalises a notion of checking whether voters voted
with equal influence.

– Universal verifiability. Anyone can check whether an outcome corresponds to
votes expressed in recorded ballots.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 247–261, 2019.
https://doi.org/10.1007/978-3-662-58820-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_17&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_17

248 B. Smyth

Smyth, Frink and Clarkson formalise a game-based definition of universal veri-
fiability [37]. That game tasks the adversary to compute inputs to the tallying
procedure, including an election outcome and some ballots, that cause checks to
succeed when the outcome does not correspond to the votes expressed by those
ballots, or that cause checks to fail when the outcome does correspond to the
votes expressed.

Merely casting a ballot is insufficient to ensure it is recorded, because an
adversary may discard ballots. Individual verifiability formalises the notion of
voters convincing themselves that their ballot is amongst those recorded.

– Individual verifiability. A voter can check whether their ballot is recorded.

Smyth, Frink and Clarkson formalise individual verifiability as a game that tasks
the adversary to cause a collision between ballots [37]. That game proceeds
as follows: First, the adversary provides any inputs necessary to construct a
ballot, including a vote v0. Secondly, the challenger constructs a ballot using
those inputs. Finally, the adversary and the challenger repeat the process to
construct a second ballot for vote v1. The adversary wins if the two independently
constructed ballots are equal. Hence, winning signifies the existence of a scenario
in which two voters cannot uniquely identify their ballot, thus a voter cannot be
convinced that their ballot is recorded.

Equipped with definitions of individual and universal verifiability, we can
analyse existing voting systems to determine whether they are secure. As is
exemplified by the following two voting systems. The first (Enc2Vote) instructs
each voter to encrypt their vote using an asymmetric encryption scheme and
instructs the tallier to decrypt the encrypted votes and publish the number of
votes for each candidate. The second (Enc2Vote∗) extends the former to include
proofs of correct computation, in particular, the tallier computes proofs of correct
key generation and decryption. The former system achieves neither individual
nor universal verifiability. Indeed, a public key can be maliciously constructed
such that ciphertexts collide and spurious outcomes need not correspond to
the encrypted votes. By comparison, the latter system achieves both individual
and universal verifiability, because well-formed ciphertexts are unique (individ-
ual verifiability) and anyone can check proofs to determine whether the election
outcome corresponds to votes expressed in recorded ballots (universal verifiabil-
ity). Voting systems Enc2Vote and Enc2Vote∗ leak the ballot-vote relation during
tallying; more advanced voting systems, such as Helios, do not.

Helios is intended to satisfy verifiability and ballot secrecy. For ballot secrecy,
each voter encrypts their vote using a homomorphic encryption scheme. Those
encrypted votes are homomorphically combined and the homomorphic combi-
nation is decrypted to reveal the outcome [2]. Alternatively, a mixnet is applied
to the encrypted votes and the mixed encrypted votes are decrypted to reveal
the outcome [1,6]. We refer to the former voting system as Helios and the latter
as Helios Mixnet. For universal verifiability, the encryption and decryption steps
are accompanied by non-interactive proofs demonstrating correct computation.

Verifiability of Helios Mixnet 249

Contribution and Structure. Section 3 proves that individual verifiability and
an aspect of universal verifiability are satisfied by voting systems built from
El Gamal coupled with proofs of correct key generation, thereby eliminating the
expense of individual-verifiability proofs and simplifying universal-verifiability
proofs for a class of encryption-based voting systems. Section 4 presents an anal-
ysis of Helios Mixnet that uncovers a vulnerability in implementations, discusses
a fix, and proves that individual and universal verifiability are satisfied when the
fix is applied. The remaining sections present syntax and definitions of individual
and universal verifiability (Sect. 2) and a brief conclusion (Sect. 5). Definitions
of cryptographic primitives, security definitions and proofs are deferred to an
accompanying technical report [36].

2 Election Scheme Syntax and Verifiability Definitions

We recall syntax for election schemes (Definition 1) from Smyth, Frink and
Clarkson [37]. Election schemes capture a class of voting systems that consist
of the following four steps. First, a tallier generates a key pair. Secondly, each
voter constructs and casts a ballot for their vote. These ballots are recorded on
a bulletin board. Thirdly, the tallier tallies the recorded ballots and announces
an outcome, i.e., a frequency distribution of votes. Finally, voters and other
interested parties check that the outcome corresponds to votes expressed in
recorded ballots.1

Definition 1 (Election scheme [37]). An election scheme is a tuple of prob-
abilistic polynomial-time algorithms (Setup,Vote,TallyVerify) such that:

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ),2 is run by the tallier. It takes a
security parameter κ as input and outputs a key pair pk , sk , a maximum
number of ballots mb, and a maximum number of candidates mc.

Vote, denoted b ← Vote(pk , v,nc, κ), is run by voters. It takes as input a public
key pk , a voter’s vote v, some number of candidates nc, and a security param-
eter κ. The vote should be selected from a sequence 1, . . . ,nc of candidates.
The algorithm outputs a ballot b or error symbol ⊥.

1 Smyth, Frink and Clarkson use the syntax to model first-past-the-post voting sys-
tems and Smyth shows the syntax is sufficiently versatile to capture ranked-choice
voting systems [33]. Moreover, Smyth, Frink and Clarkson extend the syntax to
voting systems with eligibility verifiability, which enables anyone to check whether
counted votes were cast by voters. (Quaglia and Smyth [29] define a transformation
from election schemes to the extended syntax which ensures secrecy and verifia-
bility.) Eligibility verifiability seems to require expensive infrastructures for voter
credentials and some systems – including Helios and Helios Mixnet – forgo eligibility
verifiability in favour of cheaper, non-verifiable ballot authentication mechanisms.
Hence, we do not pursue eligibility verifiability further.

2 Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and random coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where
r is chosen uniformly at random. And let ← denote assignment.

250 B. Smyth

Tally, denoted (v, pf) ← Tally(sk , bb,nc, κ), is run by the tallier. It takes as
input a private key sk , a bulletin board bb, some number of candidates nc, and
a security parameter κ, where bb is a set. And outputs an election outcome
v and a non-interactive tallying proof pf demonstrating that the outcome
corresponds to votes expressed in ballots on the bulletin board. The election
outcome v should be a vector of length nc such that v[v] indicates the number
of votes for candidate v.

Verify, denoted s ← Verify(pk , bb,nc, v, pf , κ), is run to audit an election. It
takes as input a public key pk , a bulletin board bb, some number of candidates
nc, an election outcome v, a tallying proof pf , and a security parameter κ.
And outputs a bit s, where 1 signifies success and 0 signifies failure.

Election schemes must satisfy correctness: there exists a negligible function
negl, such that for all security parameters κ, integers nb and nc, and votes
v1, . . . , vnb ∈ {1, . . . ,nc}, it holds that, given a zero-filled vector v of length nc,
we have:

Pr[(pk , sk ,mb,mc) ← Setup(κ);
for 1 ≤ i ≤ nb do

bi ← Vote(pk , vi,nc, κ);
v[vi] ← v[vi] + 1;

(v′, pf) ← Tally(sk , {b1, . . . , bnb},nc, κ) :
nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1 − negl(κ).

For individual verifiability, voters must be able to check whether their ballot
is recorded. Smyth, Frink and Clarkson capture this notion using a game that
challenges the adversary to provide inputs to algorithm Vote that cause ballots
to collide.

Definition 2 (Individual verifiability [37]). An election scheme (Setup,
Vote,Tally,Verify) satisfies individual verifiability, if for all probabilistic polynomi-
al-time adversaries A, there exists a negligible function negl, such that for all secu-
rity parameters κ, we have Pr[(pk ,nc, v, v′) ← A(κ); b ← Vote(pk ,nc, v, κ); b′ ←
Vote(pk ,nc, v′, κ) : b = b′ ∧ b �= ⊥ ∧ b′ �= ⊥] ≤ negl(κ).

For universal verifiability, anyone must be able to check whether the election
outcome represents the votes used to construct ballots on the bulletin board.
The formal definition of universal verifiability by Smyth, Frink and Clarkson
requires algorithm Verify to accept if and only if the election outcome is correct.3

The if requirement is captured by completeness (Definition 3), which stipulates
that election outcomes produced by algorithm Tally will actually be accepted by
algorithm Verify. And the only if requirement is captured by soundness (Defini-
tion 5), which challenges an adversary to concoct a scenario in which algorithm
Verify accepts, but the election outcome is not correct.
3 Quaglia and Smyth [28] provide a tutorial-style introduction to the individual and

universal verifiability definitions by Smyth, Frink and Clarkson and Smyth [35] pro-
vides a detailed technical introduction.

Verifiability of Helios Mixnet 251

Definition 3 (Completeness [37]). An election scheme (Setup,Vote,Tally,
Verify) satisfies completeness, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parame-
ters κ, we have Pr[(pk , sk ,mb,mc) ← Setup(κ); (bb,nc) ← A(pk , κ); (v, pf) ←
Tally(sk , bb,nc, κ) : |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk , bb,nc, v, pf , κ) = 1] >
1 − negl(κ).

Smyth, Frink and Clarkson capture correct election outcomes using func-
tion correct-outcome, which is defined such that correct-outcome(pk ,nc,
bb, κ)[v] = � iff ∃=�b ∈ bb \ {⊥} : ∃r : b = Vote(pk , v,nc, κ; r),4 where
correct-outcome(pk ,nc, bb, κ) is a vector of length nc and 1 ≤ v ≤ nc. Hence,
component v of vector correct-outcome(pk ,nc, bb, κ) equals � iff there exist
� ballots on the bulletin board that are votes for candidate v. The function
requires ballots to be interpreted for only one candidate, which can be ensured by
injectivity.

Definition 4 (Injectivity). An election scheme (Setup,Vote,Tally,Verify) sat-
isfies injectivity,5 if for all probabilistic polynomial-time adversaries A,
security parameters κ and computations (pk ,nc, v, v′) ← A(κ); b ←
Vote(pk , v,nc, κ); b′ ← Vote(pk , v′,nc, κ) such that v �= v′ ∧ b �= ⊥ ∧ b′ �= ⊥,
we have b �= b′.

Definition 5 (Soundness [37]). An election scheme Γ = (Setup,Vote,Tally,
Verify) satisfies soundness, if Γ satisfies injectivity and for all probabilistic poly-
nomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Pr[(pk ,nc, bb, v, pf) ← A(κ) : v �=
correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk , bb,nc, v, pf , κ) = 1] ≤ negl(κ).

Definition 6 (Universal verifiability). An election scheme Γ satisfies uni-
versal verifiability, if completeness, injectivity and soundness are satisfied.

Comparison with Other Verifiability Definitions. Other definitions of verifiabil-
ity exist. In particular, definitions have been proposed by Juels, Catalano and
Jakobsson [15], Cortier et al. [9] and Kiayias, Zacharias and Zhang [17]. Smyth,
Frink and Clarkson [37, §7] show that definitions by Juels, Catalano and Jakob-
sson and Cortier et al. do not detect attacks that arise when tallying and verifi-
cation procedures are corrupt nor when verification procedures reject legitimate
outcomes. Moreover, they show that the definition by Kiayias, Zacharias and
Zhang does not detect the latter class of attacks. By comparison, Definition 6
detects these attacks, thereby motivating its adoption.

4 Function correct-outcome uses a counting quantifier [32] denoted ∃=. Predicate
(∃=�x : P (x)) holds exactly when there are � distinct values for x such that P (x) is
satisfied. Variable x is bound by the quantifier, whereas � is free.

5 Smyth, Frink and Clarkson [37] consider a definition of injectivity which quantifies
over all public keys, rather than public keys constructed by an adversary. That
definition is stronger than necessary.

252 B. Smyth

Küsters et al. [20–22] propose an alternative, holistic notion of verifiability
called global verifiability, which must be instantiated with a goal. Smyth, Frink
and Clarkson [37, §8] show that goals proposed by Küsters et al. [23, §5.2] and by
Cortier et al. [10, §10.2] are too strong (in the sense that they cannot be satisfied
by some verifiable voting systems, including Helios). Moreover, Smyth, Frink and
Clarkson propose a slight weakening of the goal by Küsters et al. and proved
that their notion of verifiability is strictly stronger than global verifiability with
that goal (the “gap” is due to an uninteresting technical detail), which further
motivates the adoption of Definition 6.6

3 Encryption Ensures Individual Verifiability
and Injectivity

Definitions of individual verifiability and injectivity only focus on proper-
ties of algorithm Vote, hence, to prove these properties for election scheme
(Setup,Vote,Tally,Verify), it suffices to prove the existence of an election scheme
(Setup′,Vote,Tally′,Verify′) satisfying both properties. We demonstrate the exis-
tence of such schemes by coupling election scheme Enc2Vote with proofs of cor-
rect key generation.7,8

Definition 7 (Enc2Vote+). Suppose Π = (Gen,Enc,Dec) is an asymmetric
encryption scheme, Σ is a sigma protocol that proves correct key generation,
and H is a hash function. Let FS(Σ,H) = (ProveKey,VerKey).9 We define
Enc2Vote+(Π,Σ,H) = (Setup,Vote,Tally,Verify) such that:

– Setup(κ) selects coins s uniformly at random, computes (pk , sk ,m) ←
Gen(κ; s); ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ); sk ′ ←
(pk , sk), derives mc as the largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m
and for all m0,m1 ∈ {1, . . . ,mc} we have |m0| = |m1|, and outputs
(pk ′, sk ′, p(κ),mc), where p is a polynomial function.

– Vote(pk ′, v,nc, κ) parses pk ′ as vector (pk ,m, ρ), outputting ⊥ if parsing fails
or VerKey((κ, pk ,m), ρ, κ) �= 1 ∨ v �∈ {1, . . . ,nc} ∨ {1, . . . ,nc} �⊆ m, computes
b ← Enc(pk , v), and outputs b.

6 Cortier et al. [10, §8.5 & §10.1] claim that definitions by Smyth, Frink and Clark-
son are flawed. Those claims were discussed with Cortier et al. (email communi-
cation, April’16) and are believed to be false [37, §9]. Moreover, Smyth, Frink and
Clarkson prove that any flaw in their definitions implies flaws in the context of global
verifiability, which should increase confidence in their definitions.

7 Election scheme Enc2Vote∗ (Sect. 1) couples Enc2Vote with proofs of correct key
generation and proofs of correct decryption, hence, it is distinguished from schemes
produced by Enc2Vote+. This distinction enables Enc2Vote∗ to satisfy individual
and universal verifiability, whereas Enc2Vote+ cannot produce schemes satisfying
universal verifiability.

8 Election scheme Enc2Vote+(Π, Σ, H) adopts the setup algorithm formalised by
Smyth, Frink and Clarkson for Helios [37, Appendix C].

9 Let FS(Σ, H) denote the non-interactive proof system derived by application of the
Fiat-Shamir transformation to sigma protocol Σ and hash function H.

Verifiability of Helios Mixnet 253

– Tally(sk ′, bb,nc, κ) initialises vector v of length nc, parses sk ′ as vector
(pk , sk), outputting (v,⊥) if parsing fails, computes for b ∈ bb do v ←
Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1, and outputs (v, ε), where ε is
a constant symbol.

– Verify(pk , bb,nc, v, pf , κ) outputs 1.

To ensure Enc2Vote+(Π,Σ,H) is an election scheme, we require asymmetric
encryption scheme Π to produce distinct ciphertexts with overwhelming prob-
ability. Hence, we restrict the class of asymmetric encryption schemes used to
instantiate Enc2Vote+.

Lemma 1. Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme, Σ be
a sigma protocol that proves correct key generation, and H be a hash function. We
have Enc2Vote+(Π,Σ,H) is an election scheme if for all security parameters κ
and messages m and m′, we have Pr[(pk , sk ,m) ← Gen(κ); c ← Enc(pk ,m); c′ ←
Enc(pk ,m′) : m,m′ ∈ m ⇒ c �= c′] > 1 − negl(κ).

Our correctness proof (Lemma 1) and all further proofs appear in
[36, Appendix B].

Security properties of asymmetric encryption schemes ensure ciphertexts do
not collide. Indeed, IND-CPA demands that no adversary can construct a cipher-
text that collides with the challenge ciphertext.10 But, such security properties
assume public keys are generated (by key generation algorithms) using coins cho-
sen uniformly at random. By comparison, individual verifiability and injectivity
assume public keys are constructed by the adversary. Thus, security properties
are insufficient to ensure election scheme Enc2Vote+(Π,Σ,H) satisfies individual
verifiability and injectivity. Nonetheless, given that the scheme’s Vote algorithm
checks correct key generation, it suffices that ciphertexts do not collide for cor-
rectly generated keys.

Proposition 2. Let Π = (Gen,Enc,Dec) be an asymmetric encryption scheme,
Σ be a sigma protocol that proves correct key generated, and H be a hash function.
We have Enc2Vote+(Π,Σ,H) satisfies individual verifiability if for all probabilis-
tic polynomial-time adversaries A and security parameters κ we have

Pr[(pk ,m, ρ,m,m′) ← A(κ); c ← Enc(pk ,m); c′ ← Enc(pk ,m′)
: VerKey((κ, pk ,m), ρ, κ) = 1 ∧ m,m′ ∈ m ⇒ c �= c′] > 1 − negl(κ),

where FS(Σ,H) = (ProveKey,VerKey). Moreover, the election scheme satisfies
injectivity if the probability is 1 when plaintexts m and m′ are distinct.

Our proof of Proposition 2 [36, Appendix B.2] follows immediately from our
preconditions. It is nevertheless useful, because the preconditions are defined
over encryption scheme Π and proof system FS(Σ,H), rather than election
scheme Enc2Vote+(Π,Σ,H), which makes the preconditions easier to reason
with. For El Gamal [12], the preconditions are ensured if the proof system checks
parameters:
10 Correctness of asymmetric encryption schemes only ensures ciphertexts do not collide

for distinct plaintexts.

254 B. Smyth

Definition 8. Let (ProveKey,VerKey) be a non-interactive proof system that
proves correct key generation. The proof system checks El Gamal parameters,
if for all security parameters κ, public keys pk , messages spaces m, and proofs
ρ, we have VerKey((κ, pk ,m), ρ, κ) = 1 implies pk is a vector (p, q, g, h) such
that p = 2 · q + 1, |q| = κ, g is a generator of Z

∗
p of order q, h ∈ Z

∗
p, and

m = {1, . . . , p − 1}.

Theorem 3. Let Π be El Gamal, Σ be a sigma protocol that proves correct key
generation, and H be a hash function. Suppose proof system FS(Σ,H) checks
El Gamal parameters. We have Enc2Vote+(Π,Σ,H) satisfies individual verifia-
bility and injectivity.

We exploit Theorem 3 in the following section to derive a proof of individual
verifiability for free and to simplify a proof of universal verifiability.

4 Case Study: Helios Mixnet

Helios Mixnet can be informally modelled as an election scheme such that:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public key
coupled with the proof.

Vote enciphers the vote to a ciphertext, proves correct ciphertext construction
in zero-knowledge, and outputs the ciphertext coupled with the proof.

Tally selects the ballots on the bulletin board for which proofs hold, mixes
the ciphertexts in those ballots, decrypts the ciphertexts output by the mix
to reveal the frequency distribution of candidate preferences, and announces
that distribution, along with zero-knowledge proofs demonstrating correct
decryption and mixing.

Verify checks the proofs and accepts the frequency distribution if these checks
succeed.

Neither Adida [1] nor Bulens, Giry and Pereira [6] have released an imple-
mentation of Helios Mixnet.11 Tsoukalas et al. [39] released Zeus as a fork of
Helios 3.1.4 spliced with mixnet code to derive an implementation, and Yingtong
Li released helios-server-mixnet as an extension of Zeus with threshold asymmet-
ric encryption. Both implementations use multiplicatively-homomorphic asym-
metric encryption, rather than additively-homomorphic encryption.

Chang-Fong and Essex [8] show that Helios 2.0 does not satisfy complete-
ness (because cryptographic parameters were not checked for suitability), hence,
implementations of Helios Mixnet did not satisfy completeness until Helios was
11 The planned implementation of Helios Mixnet (http://documentation.heliosvoting.

org/verification-specs/mixnet-support, published c. 2010, accessed 19 Dec 2017, and
https://web.archive.org/web/20110119223848/http://documentation.heliosvoting.
org/verification-specs/helios-v3-1, published Dec 2010, accessed 15 Sep 2017) has
not been released.

http://documentation.heliosvoting.org/verification-specs/mixnet-support
http://documentation.heliosvoting.org/verification-specs/mixnet-support
https://web.archive.org/web/20110119223848/http://documentation.heliosvoting.org/verification-specs/helios-v3-1
https://web.archive.org/web/20110119223848/http://documentation.heliosvoting.org/verification-specs/helios-v3-1

Verifiability of Helios Mixnet 255

patched (because the implementations fork Helios and do not add code to
check parameters).12 Moreover, Bernhard, Pereira and Warinschi [4] show that
Helios 3.1.4 does not satisfy soundness.13,14 They also demonstrate a denial of
service attack. We exploit their denial of service attack to show that imple-
mentations of Helios Mixnet do not satisfy soundness: A malicious tallier can
decrypt the ciphertexts output by the mix to reveal the distribution of candi-
date preferences, select the ciphertexts that decrypt to the tallier’s preferred
subdistribution, prove correct decryption of those ciphertexts, and exploit the
attack by Bernhard, Pereira and Warinschi to falsify proofs that the remaining
ciphertexts decrypt to arbitrary elements of the message space, thereby enabling
the malicious tallier to exclude votes from the election outcome.

Remark 4. Zeus does not satisfy soundness.

Similarly, helios-server-mixnet does not satisfy soundness when a (n, n)-threshold
is used. An informal proof of these claims follows from our discussion and a formal
proof is omitted.

Helios 3.1.4 uses additively-homomorphic El Gamal, hence, an adversary can
falsify that ciphertexts decrypt to arbitrary elements of the group, but cannot
recover the corresponding messages, because solving discrete logarithms for arbi-
trary group elements is hard. Thus, the attack by Bernhard, Pereira and Warin-
schi leads to a denial of service attack against Helios 3.1.4, whereby the election
outcome is not recovered, rather than an attack that violates soundness. By com-
parison, our attack against implementations of Helios Mixnet violates soundness,
because a malicious tallier can exclude votes from the election outcome.

Bernhard, Pereira and Warinschi attribute vulnerabilities of Helios 3.1.4 to
use of the Fiat-Shamir transformation without including statements in hashes
(i.e., the weak Fiat-Shamir transformation), and recommend including state-
ments in hashes (i.e., using the Fiat-Shamir transformation) as a defence. Imple-
mentations of Helios Mixnet can be extended to use the Fiat-Shamir transforma-
tion and we derive a formalisation of that extension from Enc2Vote+(Π,Σ,H) by
replacing its tallying and verification algorithms,15 and by using a suitable asym-
metric encryption algorithm. Using the Fiat-Shamir transformation (rather than
the weak Fiat-Shamir transformation) ensures that proofs of correct decryption
cannot be falsified, hence, the formalisation is not vulnerable to the aforemen-
tioned attack.
12 https://github.com/benadida/helios-server/pull/133, published 31 May 2016,

accessed 21 Sep 2017.
13 Bernhard, Pereira and Warinschi show that a malicious tallier can add votes for

their preferred candidate and remove votes for other candidates. Smyth, Frink and
Clarkson formalise that attack and prove that soundness is not satisfied [37].

14 A further soundness vulnerability is known [37], as are secrecy [11] and eligibility [25]
vulnerabilities.

15 The tallying and verification algorithms in Definition 9 adapt (unpublished)
algorithms prepared by Quaglia and Smyth in the context of [30]. Quaglia and
Smyth have since incorporated these adaptations into their work to take advantage
of the results presented in this manuscript.

https://github.com/benadida/helios-server/pull/133

256 B. Smyth

Definition 9. Suppose Π = (Gen,Enc,Dec) is a homomorphic asymmetric
encryption algorithm, Σ1 is a sigma protocol that proves correct key con-
struction, Σ2 is a sigma protocol that proves plaintext knowledge, and H
is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey) and FS(Σ2,H) =
(ProveCiph,VerCiph). Moreover, let π(Π,Σ2,H) = (Gen,Enc′,Dec′) be an asym-
metric encryption scheme such that:

– Enc′(pk , v) selects coins r uniformly at random, computes c ←
Enc(pk , v; r);σ ← ProveCiph((pk , c), (v, r), κ), and outputs (c, σ).

Suppose Σ3 is a sigma protocol that proves correct decryption and Σ4 is a
sigma protocol that proves mixing. Let FS(Σ3,H) = (ProveDec,VerDec) and
FS(Σ4,H) = (ProveMix,VerMix). We define HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) =
(Setup,Vote,Tally,Verify), where Enc2Vote+(π(Π,Σ2,H), Σ1,H) = (Setup,
Vote,Tally′,Verify′) and algorithms Tally and Verify are defined below.

Tally(sk ′,nc, bb, κ) initialises v as a zero-filled vector of length nc, parses sk ′ as
a vector (pk , sk), outputting (v,⊥) if parsing fails, and proceeds as follows:

1. Remove invalid ballots. Let {b1, . . . , b�} be the largest subset of bb such that
for all 1 ≤ i ≤ � we have bi is a pair and VerCiph((pk , bi[1]), bi[2], κ) = 1. If
{b1, . . . , b�} = ∅, then output (v,⊥).

2. Mix. Select a permutation χ on {1, . . . , �} uniformly at random, initialise bb
and r as vectors of length �, fill r with coins chosen uniformly at random, and
compute

for 1 ≤ i ≤ � do
bb[i] ← bχ(i)[1] ⊗ Enc(pk , e; r[i]);

pf 1 ← ProveMix((pk , (b1[1], . . . , b�[1]),bb), (r, χ), κ);
where e is an identity element of Π’s message space with respect to �.

3. Decrypt. Initialise W and pf 2 as vectors of length � and compute:
for 1 ≤ i ≤ � do

W[i] ← Dec(sk ,bb[i]);
pf 2[i] ← ProveDec((pk ,bb[i],W[i]), sk , κ);
if 1 ≤ W[i] ≤ nc then

v[W[i]] ← v[W[i]] + 1;

Output (v, (bb, pf 1,W, pf 2)).

Verify(pk ′,nc, bb, v, pf , κ) derives the largest integer mc such that {0, . . . ,mc} ⊆
{0} ∪ m; parses pk ′ as a vector (pk ,m, ρ) and v parses as a vector of length
nc, outputting 0 if parsing fails, VerKey((κ, pk ,m), ρ, κ) �= 1, |bb| �≤ p(κ), or
nc �≤ mc, where p is the polynomial function used by algorithm Setup to bound
the maximum number of ballots; and proceeds as follows:

1. Remove invalid ballots. Compute {b1, . . . , b�} as per Step 1 of algorithm Tally.
If {b1, . . . , b�} = ∅ and v is a zero-filled vector, then output 1. Otherwise,
perform the following checks.

Verifiability of Helios Mixnet 257

2. Check mixing. Parse pf as a vector (bb, pf 1,W, pf 2), outputting 0 if parsing
fails, and check VerMix((pk , (b1[1], . . . , b�[1]),bb), pf 1, κ) = 1.

3. Check decryption. Check W and pf 2 are vectors of length �,
∧�

i=1 VerDec((pk ,bb[i],W[i]), pf 2[i], κ) = 1, and
∧nc

v=1 ∃=v[v]i ∈ {1, . . . , �} :
v = W[i].

If the above checks hold, then output 1, otherwise, output 0.

Lemma 5. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions
of Definition 9 and Π satisfies the condition in Lemma 1. We have
HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) is an election scheme.

Our formalisation of Helios Mixnet is similar to the formalisation of Helios
by Smyth, Frink and Clarkson [37]. The main distinctions are as follows: First,
given a vote v from a sequence of candidates 1, . . . ,nc, a Helios-Mixnet bal-
lot contains an encryption of v, whereas a Helios ballot contains ciphertexts
c1, . . . , cnc−1 such that if v < nc, then cv encrypts plaintext one and the remain-
ing ciphertexts all encrypt zero, otherwise, all ciphertexts encrypt zero. (Both
Helios Mixnet and Helios ballots prove correct ciphertext construction, only
Helios ballots prove the vote is selected from the sequence of candidates.) Sec-
ondly, Helios Mixnet decrypts individual ciphertexts after mixing, whereas Helios
homomorphically combines ciphertexts and decrypts the resulting homomor-
phic combination. (Both Helios Mixnet and Helios prove correct decryption. For
Helios Mixnet, decryption of individual votes is proved correct. Whereas Helios
proves correct decryption of the election outcome.) Finally, the aforementioned
distinctions lead to slight differences in the verification algorithms.

Since election schemes HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) and Enc2Vote+(π(Π,
Σ2,H), Σ1,H) share the same voting algorithm, both schemes satisfy individual
verifiability and injectivity by Proposition 2, assuming the proposition’s precon-
ditions are satisfied. Moreover, since the preconditions hold for El Gamal when
parameters are checked (Corollary 2), we have:

Corollary 6. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 9. Further suppose Π is El Gamal and Σ1 checks El Gamal parame-
ters. Election scheme HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) satisfies individual verifia-
bility and injectivity.

To evaluate whether universal verifiability is satisfied, it remains to consider
completeness and soundness.16

16 Our proof of Theorem 7 uses a result by Bernhard et al. [4] that shows non-interactive
proof systems derived by application of the Fiat-Shamir transformation satisfy zero-
knowledge, assuming the underlying sigma protocols satisfy special soundness and
special honest-verifier zero-knowledge. We will not need the details of those proper-
ties, so we omit formal definitions; see Bernhard et al. for formalisations.

258 B. Smyth

Theorem 7. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the precondi-
tions of Definition 9. Moreover, suppose Σ2 satisfies special soundness and
special honest verifier zero-knowledge and H is a random oracle. Elec-
tion scheme HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) satisfies completeness. Further sup-
pose, Π is perfectly correct and perfectly homomorphic, Σ1, Σ3 and Σ4

satisfy special soundness and special honest verifier zero-knowledge, and
HeliosM(Π,Σ1, Σ2, Σ3, Σ4,H) satisfies injectivity. The election scheme satisfies
soundness.

Theorem 7 requires perfect correctness, rather than computational correctness,17

because soundness quantifies over public keys constructed by an adversary and
such an adversary might not construct the public key using coins chosen uni-
formly at random. (We can, nonetheless, verify whether public keys are con-
structed using the correct algorithm.) Thus, perfect correctness is required,
because it quantifies over all coins. Moreover, perfect homomorphisms are simi-
larly required.

These findings were reported to the Zeus developers, who conducted an inves-
tigation of their code and confirmed Zeus does not satisfy soundness. They
promptly adopted and deployed the proposed fix,18 this was straightforward,
because they had already written code for the Fiat-Shamir transformation. These
findings were also reported to the developer of helios-server-mixnet, who con-
firmed soundness is not satisfied with a (n, n)-threshold, but is for other thresh-
olds because code from the PloneVote cryptographic library is used rather than
code from Helios, and has since adopted and deployed the proposed fix.19

Beyond verifiability, Smyth has shown that HeliosM produces election
schemes that satisfy ballot secrecy [34].

5 Conclusion

We have introduced a construction that serves as a foundation for verifiable
voting systems, and we have shown that it produces systems satisfying individual
verifiability and the injectivity aspect of universal verifiability, when instantiated
with El Gamal. Moreover, we have analysed verifiability of two implementations
of Helios Mixnet and shown that the soundness aspect of universal verifiability
is not satisfied, due to vulnerabilities in Helios. Finally, we propose a fix and
exploit our construction to prove that the fix suffices for individual and universal
verifiability.

17 Properties such as correctness are typically required to hold with overwhelming
probability. A property is perfect if the probability is 1.

18 See commitments d2653d4 (9 Oct 2017), 4fddcd3 (11 Oct 2017), and aab1b6f

(9 Oct 2017), accessed 20 Dec 2017.
19 See commitment 9af7674 (25 Dec 2017).

Verifiability of Helios Mixnet 259

Acknowledgements. I am grateful to Steve Kremer and the anonymous reviewers
for useful feedback that helped improve this paper. I am also grateful to Yingtong
Li (developer of helios-server-mixnet) and to Georgios Tsoukalas and Panos Louridas
(developers of Zeus) for discussions about their voting systems.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security 2008: 17th
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

2. Adida, B., Marneffe, O., Pereira, O., Quisquater, J.: Electing a university presi-
dent using open-audit voting: analysis of real-world use of Helios. In: EVT/WOTE
2009: Electronic Voting Technology Workshop/Workshop on Trustworthy Elec-
tions. USENIX Association (2009)

3. Alvarez, R.M., Hall, T.E.: Electronic Elections: The Perils and Promises of Digital
Democracy. Princeton University Press, Princeton (2010)

4. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the fiat-shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

5. Bowen, D.: Secretary of State Debra Bowen Moves to Strengthen Voter Confidence
in Election Security Following Top-to-Bottom Review of Voting Systems. California
Secretary of State, press release DB07:042, August 2007

6. Bulens, P., Giry, D., Pereira, O.: Running Mixnet-based elections with Helios. In:
EVT/WOTE 2011: Electronic Voting Technology Workshop/Workshop on Trust-
worthy Elections. USENIX Association (2011)

7. Bundesverfassungsgericht: Use of voting computers in 2005 Bundestag election
unconstitutional, press release 19 March 2009

8. Chang-Fong, N., Essex, A.: The cloudier side of cryptographic end-to-end verifiable
voting: a security analysis of Helios. In: ACSAC 2016: 32nd Annual Conference on
Computer Security Applications, pp. 324–335. ACM Press (2016)

9. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios
under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014, Part II. LNCS, vol. 8713, pp. 327–344. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11212-1 19

10. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for E-voting protocols. In: S&P 2016: 37th IEEE Symposium on Security
and Privacy, pp. 779–798. IEEE Computer Society (2016)

11. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

13. Gumbel, A.: Steal This Vote: Dirty Elections and the Rotten History of Democracy
in America. Nation Books, New York (2005)

14. Jones, D.W., Simons, B.: Broken Ballots: Will Your Vote Count?, CSLI Lecture
Notes, vol. 204. Center for the Study of Language and Information, Stanford Uni-
versity (2012)

15. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp.
37–63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-642-12980-3_2

260 B. Smyth

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC, Boca Raton (2007)

17. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 16

18. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: S&P 2004: 25th Security and Privacy Symposium, pp. 27–40.
IEEE Computer Society (2004)

19. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15497-3 24

20. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS 2010: 17th ACM Conference on Computer and Communi-
cations Security, pp. 526–535. ACM Press (2010)

21. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:
new insights from a case study. In: S&P 2011: 32nd IEEE Symposium on Security
and Privacy, pp. 538–553. IEEE Computer Society (2011)

22. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting
systems. In: S&P 2012: 33rd IEEE Symposium on Security and Privacy, pp. 395–
409. IEEE Computer Society (2012)

23. Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and rela-
tionship to verifiability. Cryptology ePrint Archive, Report 2010/236 (version
20150202:163211) (2015)

24. Lijphart, A., Grofman, B.: Choosing an Electoral System: Issues and Alternatives.
Praeger, New York (1984)

25. Meyer, M., Smyth, B.: An attack against the Helios election system that exploits
re-voting. arXiv, Report 1612.04099 (2017)

26. Organization for Security and Co-operation in Europe: Document of the Copen-
hagen Meeting of the Conference on the Human Dimension of the CSCE (1990)

27. Organization of American States: American Convention on Human Rights, “Pact
of San Jose, Costa Rica” (1969)

28. Quaglia, E.A., Smyth, B.: A short introduction to secrecy and verifiability for
elections. arXiv, Report 1702.03168 (2017)

29. Quaglia, E.A., Smyth, B.: Authentication with weaker trust assumptions for voting
systems. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS,
vol. 10831, pp. 322–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89339-6 18

30. Quaglia, E.A., Smyth, B.: Secret, verifiable auctions from elections. Theor. Com-
put. Sci. 730, 44–92 (2018)

31. Saalfeld, T.: On Dogs and Whips: Recorded Votes. In: Döring, H. (ed.) Parliaments
and Majority Rule in Western Europe, chap. 16. St. Martin’s Press (1995)

32. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM
Trans. Comput. Logic 6(3), 634–671 (2005)

33. Smyth, B.: First-past-the-post suffices for ranked voting (2017). https://bensmyth.
com/publications/2017-FPTP-suffices-for-ranked-voting/

34. Smyth, B.: Ballot secrecy: Security definition, sufficient conditions, and analysis of
Helios. Cryptology ePrint Archive, Report 2015/942 (2018)

35. Smyth, B.: A foundation for secret, verifiable elections. Cryptology ePrint Archive,
Report 2018/225 (2018)

https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-319-89339-6_18
https://doi.org/10.1007/978-3-319-89339-6_18
https://bensmyth.com/publications/2017-FPTP-suffices-for-ranked-voting/
https://bensmyth.com/publications/2017-FPTP-suffices-for-ranked-voting/

Verifiability of Helios Mixnet 261

36. Smyth, B.: Verifiability of Helios Mixnet. Cryptology ePrint Archive, Report
2018/017 (2018)

37. Smyth, B., Frink, S., Clarkson, M.R.: Election Verifiability: Cryptographic Def-
initions and an Analysis of Helios and JCJ. Cryptology ePrint Archive, Report
2015/233 (version 20170111:122701) (2017)

38. Smyth, B., Ryan, M., Kremer, S., Kourjieh, M.: Towards automatic analysis of
election verifiability properties. In: Armando, A., Lowe, G. (eds.) ARSPA-WITS
2010. LNCS, vol. 6186, pp. 146–163. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16074-5 11

39. Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.:
From Helios to Zeus. J. Election Technol. Syst. 1(1) (2013).
https://urldefense.proofpoint.com/v2/url?u=https-3A www.usenix.org jets issue
s 0101 tsoukalas& 0101 tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl yRaSf
Zy8CWbWnIf4XJhSqx8&r=UyK1 569d50MjVlUSODJYRW2epEY0RveVNq0YC
mePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y-
7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjui-
yI&e=--

40. UK Electoral Commission: Key issues and conclusions: May 2007 electoral pilot
schemes, May 2007

41. United Nations: Universal Declaration of Human Rights (1948)

https://doi.org/10.1007/978-3-642-16074-5_11
https://doi.org/10.1007/978-3-642-16074-5_11
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.usenix.org_jets_issues_0101_tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjuiyI&e= --
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.usenix.org_jets_issues_0101_tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjuiyI&e= --
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.usenix.org_jets_issues_0101_tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjuiyI&e= --
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.usenix.org_jets_issues_0101_tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjuiyI&e= --
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.usenix.org_jets_issues_0101_tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjuiyI&e= --
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.usenix.org_jets_issues_0101_tsoukalas&d=DwIFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=6EAFPmFSNE5qoSAwI-hDvmdi5W1Y7BmKHjhYQo8nTNU&s=IXGRxucaGDKopsMW-my9O271R16qfbDPYE2rcbjuiyI&e= --

Trusted Smart Contracts

Verifiable Sealed-Bid Auction
on the Ethereum Blockchain

Hisham S. Galal(B) and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada
{h galal,youssef}@ciise.concordia.ca

Abstract. The success of the Ethereum blockchain as a decentralized
application platform with a distributed consensus protocol has made
many organizations start to invest into running their business on top of it.
Technically, the most impressive feature behind the success of Ethereum
is its support for a Turing complete language. On the other hand, the
inherent transparency and, consequently, the lack of privacy poses a great
challenge for many financial applications. In this paper, we tackle this
challenge and present a smart contract for a verifiable sealed-bid auction
on the Ethereum blockchain. In a nutshell, initially, the bidders submit
homomorphic commitments to their sealed-bids on the contract. Sub-
sequently, they reveal their commitments secretly to the auctioneer via
a public key encryption scheme. Then, according to the auction rules,
the auctioneer determines and claims the winner of the auction. Finally,
we utilize interactive zero-knowledge proof protocols between the smart
contract and the auctioneer to verify the correctness of such a claim. The
underlying protocol of the proposed smart contract is partially privacy-
preserving. To be precise, no information about the losing bids is leaked
to the bidders. We provide an analysis of the proposed protocol and the
smart contract design, in addition to the estimated gas costs associated
with the different transactions.

Keywords: Ethereum · Smart contract · Sealed-bid auction

1 Introduction

Online auctions have played an important role in the world economy by transfer-
ring trillions of dollars in exchange for goods and services in the recent decades.
An auction is a platform for sellers to advertise the sale of arbitrary assets where
buyers place competitive bids as the highest prices they are willing to pay. Prac-
tically, auctions promote many economic advantages for the efficient trade of
goods and services. Traditionally, there are four main types of auctions [7]:

1. First-price sealed-bid auctions (FPSBA). Bidders submit their bids in sealed
envelopes and hand them to the auctioneer. Subsequently, the auctioneer
opens the envelopes to determine the bidder with the highest bid.

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 265–278, 2019.
https://doi.org/10.1007/978-3-662-58820-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_18&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_18

266 H. S. Galal and A. M. Youssef

2. Second-price sealed-bid auctions (Vickrey auctions). It is similar to FPSBA
with the exception that the winner pays the second highest bid instead.

3. Open ascending-bid auctions (English auctions). Bidders increasingly submit
higher bids and stop bidding when they are not willing to pay more than the
current highest bid.

4. Open descending-bid auctions (Dutch auctions). Auctioneer initially sets a
high price, which is gradually decreased until a bidder decides to pay at the
current price.

Arguably, the main advantage behind the sealed-bid auctions lies in the fact that
no bidder learns any information about the other bids. Hence, the bidders are
encouraged to bid according to their monetary valuation of the asset. However,
a collusion between the auctioneer and a malicious bidder can break this advan-
tage. In other words, there is a conflict between preserving the privacy of the
bids and trusting the auctioneer to individually determine the winner. Hence, in
online sealed-bid auctions, cryptographic protocols can be utilized to accomplish
the publicly verifiable correctness without sacrificing the privacy of the bids.

According to a recent Reuters report [10], as part of the efforts to improve the
transparency in government transactions, the Ukraine’s justice ministry carried
out trial auctions on top of the blockchain. The main goal is to make the auction
system more transparent and secure such that the information is accessible to
everyone to check if there is any manipulation or corruption.

Recently, cryptocurrencies have gained high popularity as evidenced by the
surge in Bitcoin exchange rate. The foundation of cryptocurrencies is based on
a decentralized public ledger on a peer-to-peer network that maintains the his-
tory of all transactions in an append-only fashion. Peers agree on the state of the
ledger through an incentive-based consensus protocol. Additionally, cryptocur-
rencies also use cryptography to secure transactions as well as to control the cre-
ation of new currency units. Furthermore, many cryptocurrencies blockchains go
beyond the simple means of payments. In fact, they provide a support for building
and executing contracts on top of them. Simply, a smart contract is a piece of code
that is stored and run on the blockchain. The smart contract resides passive until
its execution is triggered by transactions. With the help of the consensus protocol,
the contract is also guaranteed to be executed as its code dictates.

The Ethereum blockchain [17] presumably provides the highest support
for smart contracts creation. Smart contracts are executed by a simple stack-
based Turing complete 256-bit virtual machine known as the Ethereum Virtual
Machine (EVM). Solidity is the common scripting language for writing smart
contracts with a growing community. Ether represents the unit of currency in
Ethereum and there are two types of accounts: externally owned accounts and
contract accounts. An externally owned account is typically associated with a
user, it consists of a unique public-private key pair. On the other hand, a contract
account is controlled by the contract instead of a single private key. Transactions
are created and signed by externally owned accounts. The receiver of the trans-
action can be an externally owned account or a contract account. In the former
case, the transaction’s purpose is to transfer ethers between users. Whereas in

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 267

the latter case, the transaction triggers the execution of a function on the smart
contract. Transactions also include a gas limit and a gas price; the amount of
gas consumed to execute the transaction is converted into ethers using the gas
price. These ethers are charged to the sender’s account as transaction fees.

The Ethereum project has been planned in four locksteps [16]: Frontier,
Homestead, Metropolis, and Serenity. Each update brings a set of approved
Ethereum Improvement Proposals (EIP). Recently, the Ethereum blockchain
has been upgraded to the first phase of Metropolis which is named Byzan-
tium. The fork has been announced by the Ethereum team at the block number
4,370,000 [14]. Byzantium includes EIP-196 to efficiently perform elliptic curve
point addition and scalar multiplication operations on alt bn128 curve [15]. Sim-
ply, it is a pre-compiled contract with a special address that is intercepted by
the client software which provides an efficient native implementation for ellip-
tic curve operations, rather than the inefficient EVM implementation. EIP-196
along with EIP-197 proposals prepare Ethereum for untraceable transactions by
incorporating zk-SNARK as it is the case Zcash [12] blockchain.

Despite the flexibility and power of the smart contracts, the present form of
the blockchain technologies lacks transactional privacy. Typically, every sequence
of actions executed in the smart contract is propagated across the network and
ends up being recorded on the blockchain. As a result, the lack of privacy is con-
sidered a major challenge towards the adoption of smart contracts as alternatives
to many financial applications. Many individuals are not willing to reveal their
financial transactions to the public. In this paper, we tackle this challenge and
present an auction smart contract that utilizes a set of cryptographic primitives
to guarantee the following attributes:

1. Bid privacy. All bidders cannot know the bids submitted by the others before
committing to their own. This property is also guaranteed even in a collusion
with a malicious auctioneer.

2. Posterior privacy. Given a semi-honest auctioneer, all committed bids are
maintained private from the bidders and public users.

3. Bid Binding. Once the bid interval is closed, bidders cannot change their
commitments.

4. Public verifiable correctness. The auction contract verifies the correctness of
the auctioneer’s work to determine the auctioneer winner.

5. Financial fairness. Bidders or auctioneer may attempt to deviate from the
protocol and prematurely abort to affect the behavior of the auction proto-
col. The aborting parties are financially penalized while honest parties are
refunded after a specific timeout.

6. Non-Interactivity. Bidders do not participate in complex interactions with the
underlying protocol of the auction contract. In fact, no extra communications
between the bidders and the auction contract are required aside from the
submission of the bid commitments and the associated opening values.

We have also made our implementation prototype available on Git-hub1 for
researchers and community to review it.
1 https://github.com/HSG88/AuctionContract.

https://github.com/HSG88/AuctionContract

268 H. S. Galal and A. M. Youssef

The rest of this paper is organized as follows. Section 2 provides a review
of state-of-the-art research on auction solutions on the blockchain. The cryp-
tographic primitives and the protocol for comparing the bids and verifying the
correctness of the auction winner are presented in Sect. 3. In Sect. 4, we pro-
vide an analysis of the auction contract design and the estimated gas cost of
the relevant transactions. Finally, we present our conclusions and future work in
Sect. 5.

2 Related Work

Many of the previous research have focused on combining cryptocurrencies with
secure multiparty computation protocols (MPC) and/or zero-knowledge proofs
(ZKP). Typically, the cryptocurrency is used to incentive fairness and correct-
ness, and avoid deviations from the MPC or ZKP protocol [1,2,8,9]. Initially,
each participant deposits an amount of cryptocurrency in a smart contract.
These funds are reserved while the protocol is still running. Subsequently, once
the protocol reaches a final state after an arbitrary timeout, the deposits get
refunded only to the honest players. This in effect encourages parties to strictly
follow the protocols to avoid the financial penalty.

Kosba et al. [6] presented Hawk, a framework for creating Ethereum smart
contract that does not store financial transactions in the clear on the blockchain.
One can easily write a Hawk program without having to implement any cryptog-
raphy. The associated compiler utilizes different cryptographic primitives such
as ZKP to automatically generate privacy-preserving smart contracts. A Hawk
program contains public and private parts. The public part consists of the logic
that does not deal with the data or the currency. Conversely, the private part
is responsible for hiding the information about data and input currency units.
The compiler translates the Hawk program into three pieces that define the
cryptographic protocol between users, manager, and the blockchain nodes. The
security of a Hawk program is guaranteed to satisfy on-chain privacy that pro-
tects the flow of money and data from the public view, and contractual security
that protects the parties in the agreement of the contract from each other. Up
to our knowledge, the Hawk framework has not been released yet on the project
homepage http://oblivm.com/hawk/download.html.

Blass and Kerschbaum [3] presented Strain, a protocol to implement sealed-
bid auctions on top of blockchains that protects the bid privacy against fully-
malicious parties. To achieve efficiency and low latency cost, the authors avoided
the use of highly interactive MPC primitives such as garbled circuits. Instead,
they designed a two-party comparison mechanism executed between any pair of
bidders in parallel. The outcome of the comparison is broadcasted to all bidders
such that each one can verify it using ZKP. An additional ZKP protocol is used
to verify that the comparisons only involved the committed bids. Moreover, to
achieve fairness against prematurely aborting malicious parties, the protocol uses
a reversible commitment scheme such that a group of bidders can jointly open
the bid commitment. The authors mentioned that the proposed protocol leaks
the order of bids similar to Order Preserving Encryption (OPE) schemes.

http://oblivm.com/hawk/download.html

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 269

Sánchez [13] proposed Raziel, a system that combines MPC and ZKP to guar-
antee the privacy, correctness and verifiability of smart contracts. The associated
proofs of the smart contracts can effectively prove the functional correctness of
a computation, besides to additional properties such as termination, security,
pre-conditions and post-conditions. Furthermore, the author presented how a
smart contract owner can prove its validity to third parties without revealing
any information about the source code by using Zero-Knowledge Proofs to cre-
ate Proof-Carrying Code certificates. Moreover, the author also proposed an
incentive-based scheme for miners to generate preprocessed data of MPC.

3 Preliminaries

In this section, we briefly explain the cryptographic primitives that are utilized
in the design of our proposed protocol:

1. Homomorphic commitment scheme that supports the addition operation on
the underlying values

2. Zero-knowledge proof of interval membership x ∈ [0, B].

3.1 Homomorphic Commitment Scheme

Our protocol makes an extensive use of Pedersen commitment scheme [11]. Let
G and H be fixed public generators of the elliptic curve alt bn128 which is
supported in EIP-196 and EIP-197 with the group order q [15]. The value of H
is chosen such that neither the bidders nor the auctioneer know its discrete log.
To commit a bid x ∈ Zq, the bidder chooses a random r ∈ Zq, then computes
the commitment as C = xG + rH. Later, to open the commitment C, the
bidder simply reveals the values of x and r. The Pedersen commitment scheme
also possesses the homomorphic addition property on the underlying committed
values by simply computing the point addition operation on the commitments. In
other words, given two commitments C1 = x1G+r1H and C2 = x2G+r2H, then
C1 +C2 = (x1 +x2)G+(r1 +r2)H which is essentially the outcome commitment
to x1 + x2.

3.2 Zero-Knowledge Proof of Interval Membership

We adapt the interval membership ZKP protocol proposed in [4]. Given an
arbitrary number x which belongs to an interval [0, B), the prover is able to
convince the verifier that x ∈ [−B, 2B). Since the financial values of bids cannot
be negative numbers, the proved interval membership becomes x ∈ [0, 2B). The
protocol runs as follows:

1. Commit. The prover picks a number w1 ∈ [0, B] and sets w2 = w1 − B.
Then, the prover sends the commitments X = xG + uH,W1 = w1G + r1H,
and W2 = w2G + r2H to the verifier.

270 H. S. Galal and A. M. Youssef

2. Challenge. The verifier picks a random variable b ∈ {0, 1}.
3. Response. The prover sends one of the following responses to the verifier

based on the value of b:
– Case b = 0, the prover sends w1, r1, w2, and r2. The verifier checks |w1 −

w2| = B, and the successful opening of the commitments W1 and W2.
– Case b = 1, the prover sends m = x+wz and n = u+rz, where m ∈ [0, B)

and z ∈ {0, 1}. The verifier checks XWz = (x + wz)G + (u + rz)H.

In this protocol, the probability of cheating is 1
2 which is non-negligible. However,

with multiple k rounds of the protocol, the cheat probability becomes 1
2k

.

3.3 Proving Claimed Inequality x1 > x2

Based on the primitives outlined above, we can prove that one bid is greater
than another as follows. Suppose that x1, x2 ∈ Zq, where q is a 256-bit prime
number representing the order of alt bn128 elliptic curve as specified in EIP-197
and EIP-198 [15]. Then it is relatively easy to prove that x1 > x2 if and only if
the following three interval membership hold (i) x1 ∈ [0, q

2), (ii) x2 ∈ [0, q
2), and

(iii) Δx1,2 ∈ [0, q
2) where Δx1,2 = (x1 − x2)mod q.

In our work, the auctioneer acts as a prover and the auction contract acts
as a verifier. Recall that in the interval membership ZKP, the prover is able
to convince the verifier that x ∈ [0, 2B) given that x ∈ [0, B). As a result,
we set an upper bound V = q

4 on the range of possible bids. Additionally,
the auctioneer is not allowed to create any commitments for the bids, instead,
the auctioneer only uses the commitments submitted by the bidders on the
smart contract. The auction contract utilizes the additive homomorphic feature
of Pedersen commitment scheme to compute the commitment to the differences
between each pair of bids ΔXi,j = Xi + (−1)Xj .

4 Auction Smart Contract

In this section, we illustrate all the interactions between the bidders, the auc-
tioneer, and the auction contract. Although our work applies to both types of
sealed-bid auctions, we demonstrate the interactions in the case of FPSBA.

There are five sequential phases from the initial deployment of the auction
contract to the collection of the highest bid from the winner given a successful
verification of correctness. There are two methods to define phases of a smart
contract: time interval and block interval. In time interval, the smart contract
checks the time of the mined block (block.timestamp or now) which is specified
by the block’s miner. Ethereum developers discourage this method since it can
be easily manipulated by the miners. On the other hand, in block interval, the
smart contract loses the notion of time.

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 271

4.1 Phase 1: Contract Deployment and Parameters Setup

As shown in Fig. 1, the auctioneer initially deploys the auction contract on the
Ethereum blockchain with the following set of parameters:

1. T1, T2, T3, T4 define the time intervals for the following four phases: com-
mitments of bids, opening the commitments, verification of the winner, and
finalizing the auction, respectively.

2. F defines the amount of initial deposit of ethers received from the bidders
and the auctioneer to achieve financial fairness against malicious parties.

3. N is the maximum number of bidders.
4. Apk is the auctioneer’s public key of an asymmetric encryption scheme.

Create: upon receiving from auctioneer A (T1, T2, T3, T4, N, F,Apk) :
Set state := INIT, bidders := {}, zkpCommits := {}
Set highestBid := 0, winner := 0
Set challengeBlockNumber := 0, challengedBidder := 0
Assert T < T1 < T2 < T3 < T4
Assert ledger[A] >= F
Set ledger[A] := ledger[A] - F
Set deposit := deposit + F

Fig. 1. Pseudocode for the deployment of the auction contract

4.2 Phase 2: Commitment of Bids

This phase starts immediately after the deployment of the auction contract.
Each bidder submits a bid commitment using Pedersen commitment scheme
along with the initial deposit F in ethers to the function Bid as shown in Fig. 2.

Bid: upon receiving from a bidder B (comB):
Assert T < T1
Assert ledger[B] > F
Set ledger[B] := ledger[B] - F
Set deposit := deposit + F
Set bidders[B].Commit := comB

Fig. 2. Pseudocode for the Bid function

272 H. S. Galal and A. M. Youssef

Suppose that an arbitrary bidder Bob is known to be very rich and is really
interested in winning the auctioned item, i.e., Bob is very likely to be the one who
submits the highest bid. Then, a collusion between a malicious bidder Alice and
the auctioneer can eliminate Bob’s winning chance by abusing the homomorphic
property of the Pedersen commitment. The attack can be carried out as follows:

1. Bob submits the commitment CB = (xG + rH).
2. Subsequently, Alice submits the commitment CA = CB + (G + H).
3. Bob reveals (x, r) to the auctioneer.
4. The auctioneer forwards (x, r) to Alice.
5. Alice reveals (x + 1, r + 1).

To avoid this attack, we utilize Chaum-Pedersen non-interactive ZKP [5], which
is not shown in Fig. 2. for the sake of simplicity. In this case, the above attack
is not applicable because Bob sends commitments to random numbers rather
than the actual bid which are subsequently challenged to verify the knowledge
of values (x, r). As a result, Alice cannot succeed to imitate Bob’s commitment
since she will receive different challenges to verify the knowledge of (x+1, r+1).

4.3 Phase 3: Opening the Commitments

Each bidder Bi sends the outcome ciphertext of encrypting (xi, ri) by the public
key of the auctioneer Apk to the function Reveal on the auction contract as
shown in Fig. 3.

Reveal: upon receiving from a bidder B (ciphertext):
Assert T1 < T < T2
Assert B ∈ bidders
Set bidders[B].Ciphertext := ciphertext

Fig. 3. Pseudocode for the Reveal function

The ciphertext are stored on the auction contract instead of being sent
directly to the auctioneer in order to avoid the following attack scenario. Suppose
a malicious auctioneer pretends that an arbitrary bidder Bob has not revealed
the opening values of the associated commitment. In this case, Bob has no chance
of denying this false claim. However, if the ciphertext are to be stored on the
auction contract, then their mere existence successfully prevents this attack.

We have also taken into our account the possibility of the following attack
as well. Suppose a malicious auctioneer intends to penalize an arbitrary bidder
Bob by claiming that the decryption outcome of Bob’s ciphertext CTB does not
successfully open Bob’s commitment CB . We prevent this attack by requiring
the auctioneer to verify the opening correctness of the commitments once they
are submitted by the bidders. In the case of unsuccessful opening, the auctioneer
declares on the auction contract that the ciphertext associated with the bidder

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 273

B is invalid. The honest bidder can deny this claim by revealing (xB , rB) to
the auction contract. Subsequently, the auction contract encrypts the revealed
values by the public key Apk. If the outcome ciphertext is found to be equivalent
to the previously submitted ciphertext, then the auction contract penalizes the
auctioneer and terminates the auction after refunding the bidders. Otherwise,
the bidder is penalized and the associated commitment is removed, such that
only the valid commitments exist on the auction contract.

To guard against forward search attack on the submitted ciphertext, the
parameter r in the opening values is a 256-bit random number that has no restric-
tion on its value compared to the parameter x. Additionally, the opening values
are combined to form one message which is passed to the encryption scheme.

4.4 Phase 4: Verification of Comparison Proofs

The auctioneer orders the bids to determine the wining bid xw, the associated
account address Bw and commitment Cw. Then, the auctioneer has to prove
that xw > xi for all i �= w and 0 < i < N . The auction contract has a set
of states to impose an order on the functions being invoked by the auctioneer
for verification. Initially, the auctioneer calls the function ClaimWinner to claim
that a winner is found by specifying the account address and opening values of
the bid commitment as shown in Fig. 4.

ClaimWinner:upon receiving from auctioneer A (Bw, xw, rw):
Assert state = INIT
Assert T2 < T < T3
Assert xw < V
Assert Bw ∈ bidders
Assert bidders[Bw].commit = Pedersen.Commit(xw, rw)
Set winner := Bw
Set highestBid := xw

Set state := Challenge

Fig. 4. Pseudocode for the ClaimWinner function

Recall that the interval membership ZKP has a probability of cheating 1
2

which is non-negligible; however, this probability can be further reduced to (12)k

by running the protocol k times. Moreover, in the challenge step, the verifier
sends to the prover a random value b ∈ {0, 1} which has to be non-predictable.
However, smart contracts cannot send data to externally owned accounts, (i.e.,
the auction contract cannot send a challenge value to the auctioneer). Hence, we
utilize a non-interactive interval membership ZKP to prove xi ∈ [0, q

2) as follows:

1. Commit: The auctioneer chooses k-pairs of (w1,j , w2,j) where w1,j ∈ [−V, V)
and w2,j = w1,j − V such that |w1,j − w2,j | = V for 1 ≤ j ≤ k. Then, the
auctioneer invokes the function ZKPCommit with the account address of the
challenged bidder and the commitments to w1 and w2 as shown in Fig. 5.

274 H. S. Galal and A. M. Youssef

ZKPCommit:upon receiving from auctioneer A (Bi, commits):
Assert state = Challenge
Assert T2 < T < T3
Assert Bi ∈ bidders
Set zkpCommits :=commits
Set challengeBidder := Bi

Set challengeBlockNumber := QueryBlockNumber()
Set State := Verify

Fig. 5. Pseudocode for the ZKPCommit function

2. Challenge and Response:
– The auctioneer receives a transaction receipt which includes the hash of

the block containing the transaction after it has been confirmed. The
ZKPCommit function has no access to this hash while it is being executed;
therefore it stores the current block number in challengeBlockNumber.

– The least significant k-bits of the hash are chosen as the challenge bj .
– The auctioneer creates k responses Rj based on the values of bj .
– Case bj = 0, then Rj = {w1,j , r1,j , w2,j , r2,j}.
– Case bj = 1, then Rj = {mj , nj , z} where mj = xj + wz,j , nj = uj + rz,j

such that mj ∈ [0, V) and z ∈ {1, 2}.
– The auctioneer invokes the function ZKPVerify with input parameter

responses which is an array of Rj as shown in Fig. 6.

ZKPVerify: upon receiving from auctioneer A (responses)
Assert State = Verify
Assert T2 < T < T3
Set hash := QueryBlockHash(challengeBlockNumber)
for j ∈ [1, k], Rj ∈ responses, Cj ∈ zkpCommits

Set bj := Bit(hash,j)
if bj = 0

Assert VerifyFirstCase(Cj , Rj)
else

Assert VerfiySecondCase(Cj , Rj)
Set bidders[challengeBidder].ValidBid := true
Set state := Challenge

Fig. 6. Pseudocode for the ZKPVerify function

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 275

As explained in Sect. 3, three interval membership ZKP are required to prove
that xw > xi. However, since the bid of the winner Bw is revealed, then the num-
ber of proofs is reduced to two. In other words, the auctioneer has to prove the
interval membership for all bids xi other than the winning bid and their asso-
ciated differences Δwi. The function ZKPCommit and ZKPVerify contain extra
logic to also verify the correctness of Δwi ∈ [0, q

4).

4.5 Phase 5: Finalizing the Auction

After the successful verification of correctness, the auctioneer invokes the func-
tion VerifyAll as shown in Fig. 7 to change the state of the auction contract so
that the winner can pay the winning bid.

VerifyAll upon receiving from auctioneer A ()
Assert state = Challenge
Assert T2 < T < T3
For all b ∈ bidders - {winner}

Assert b.ValidBid = true and b.ValidDelta = true
Set State := ValidWinner

Fig. 7. Pseudocode for the VerifyAll function

Subsequently, The winner invokes the function WinnerPay to deposit the
difference between the winning bid and the initial deposit F as shown in Fig. 8.

WinnerPay upon receiving from a bidder B (”winnerPay”)
Assert State = ValidWinner
Assert T3 < T < T4
Assert B = winner
Assert ledger[B] > highestBid - F
Set ledger[B] := ledger[B] - highestBid +F
Set deposit := deposit + highestBid - F
Set state := WinnerPaid

Fig. 8. Pseudocode for the WinnerPay function

The auction contract guarantees to refund the initial deposit to all honest
players after the time T3 as shown in Fig. 9. In the case of invalid proofs, it
penalizes the auctioneer and refunds all bidders. Otherwise, it refunds the losing
bidders and the auctioneer as well. It is also clear that the only way for the
winner to refund the initial deposit is by invoking WinnerPay function.

276 H. S. Galal and A. M. Youssef

Timer
if T > T3 then

if state �= V alidProof then
refund(F) for all b ∈ bidders

else
refund(F) to auctioneer A
refund(F) for all b ∈ bidders - {winner}

Fig. 9. Pseudocode for the Timer function

4.6 Gas Cost

We have created a local private Ethereum blockchain to test our prototype using
the Geth client version 1.7.2. To support the Byzantium EIP-196 and EIP-197,
the genesis.json file has to contain the attribute {“byzantiumBlock”: 0}. Addi-
tionally, since Ethereum does not support timer triggered functions, we have
implemented a Withdraw function that is invoked by an explicit request from
the honest players to refund their initial fairness deposit. We have tested the
auction contract with ten bidders, and we have set k = 10 as the number of
multiple rounds to verify interval membership NiZKP which results in a proba-
bility of cheat less than 0.001. The upper bound on bid values is up to 250-bit
length which is very adequate for financial values. The Pedersen commitment
size is 512-bits that represent two points on the elliptic curve. The ciphertext
submitted to the Reveal function is 1024-bits. Table 1 shows the consumed gas
and the equivalent monetary cost in US dollars for invoking different functions
on the auction contract. As of November 30, 2017, the ether exchange rate is 1
ether = 450$ and the gas price is approximately 20 Gwei = 20 × 10−9 ether.
Furthermore, the execution of “heavy” functions in Ethereum is not only costly
in dollar terms, but may be even impossible, if the function’s gas requirements
exceed the block gas limit. The block gas limit at time of writing is 8 m gas,
whereas the most expensive protocol function consumes 2 m gas, which seems
feasible.

Table 1. Consumed gas cost for different functions of the Auction contract

Function Gas units Gas cost (USD)

Deployment 3131261 28.18

Bid 130084 1.17

Reveal 132849 1.19

ClaimWinner 166288 1.49

ZKPCommit 656689 5.91

ZKPVerify 2002490 18.02

VerifyAll 46580 0.42

Withdraw 47112 0.42

Verifiable Sealed-Bid Auction on the Ethereum Blockchain 277

5 Conclusion and Future Work

In this paper, we presented a smart contract for a verifiable sealed-bid auction
on the Ethereum blockchain. We utilized Pedersen commitment scheme along
with ZKP of interval membership to create the underlying protocol. The auc-
tion contract maintains the privacy of bids such that bidders do not learn any
information about the other bids when they commit. Additionally, the auction
contract also exhibits the public verifiable correctness as it is designed to ver-
ify the proofs claimed by the auctioneer to determine the winner. Moreover,
no complex interaction is required from the bidders other than submitting and
revealing the commitments to their bids. The proposed protocol can be easily
modified to support the full privacy of all bids including the winner’s bid if there
is a desire to receive the payment of winning bid aside from the blockchain. For
future work, we will investigate other approaches applicable to the Ethereum
blockchain where we can also protect the privacy of bids from all parties includ-
ing the auctioneer.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy
(SP), pp. 443–458. IEEE (2014)

2. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

3. Blass, E.-O., Kerschbaum, F.: Strain: A secure auction for blockchains. Cryptology
ePrint Archive, Report 2017/1044 (2017). https://eprint.iacr.org/2017/1044

4. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and verifiable
release of a secret (Extended Abstract). In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2 11

5. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

6. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

7. Krishna, V.: Auction Theory. Academic Press, San Diego (2009)
8. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 418–429. ACM (2016)

9. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 406–417. ACM (2016)

10. Prentice, A., Vasina, O.: Ukrainian ministry carries out first blockchain transac-
tions. Reuters Technology News. https://goo.gl/J8X1up

11. Pedersen, T., Petersen, B.: Explaining gradually increasing resource commitment
to a Foreign market. Int. Bus. Rev. 7(5), 483–501 (1998)

https://doi.org/10.1007/978-3-662-44381-1_24
https://eprint.iacr.org/2017/1044
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/3-540-48071-4_7
https://goo.gl/J8X1up

278 H. S. Galal and A. M. Youssef

12. Ben Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)

13. Cerezo Sánchez, D.: Raziel: Private and verifiable smart contracts on blockchains.
Cryptology ePrint Archive, Report 2017/878 (2017). https://eprint.iacr.org/2017/
878

14. Ethereum Project Team. Byzantium HF announcement (2017). https://blog.
ethereum.org/2017/10/12/byzantium-hf-announcement/

15. Ethereum Project Team. Ethereum improvement proposals (2017). https://github.
com/ethereum/EIPs

16. Ethereum Project Team. The ethereum launch process (2017). https://blog.
ethereum.org/2015/03/03/ethereum-launch-process/

17. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151 (2014)

https://eprint.iacr.org/2017/878
https://eprint.iacr.org/2017/878
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/

The Scalability of Trustless Trust

Dominik Harz1(B) and Magnus Boman2,3

1 IC3RE, Imperial College London, London SW7 2RH, UK
d.harz@imperial.ac.uk

2 RISE, Box 1263, 16429 Kista, Sweden
3 KTH/ICT/SCS, Electrum 229, 16440 Kista, Sweden

Abstract. Permission-less blockchains can realise trustless trust, albeit
at the cost of limiting the complexity of computation tasks. To explain the
implications for scalability, we have implemented a trust model for smart
contracts, described as agents in an open multi-agent system. Agent inten-
tions are not necessarily known and autonomous agents have to be able to
make decisions under risk. The ramifications of these general conditions
for scalability are analysed for Ethereum and then generalised to other
current and future platforms. Finally, mechanisms from the trust model
are applied to a verifiable computation algorithm and implemented in the
Ethereum blockchain. We show in experiments that the algorithm needs
at most six semi-honest verifiers to detect false submission.

Keywords: Trustless trust · Smart contract · Agent · Ethereum ·
Blockchain · Scalability · Multi-agent system · Distributed ledger

1 Introduction

Turing-complete programming languages allow creating a generic programmable
blockchain by means of smart contracts [30]. A smart contract can be defined
as a decentralised application executed on the distributed P2P network that
constitutes the blockchain. The smart contract captures the formalisation of
electronic commerce in code, to execute the terms of a contract. However, a
smart contract is, in fact, neither smart nor a contract. In practice, it codes an
agreement about what will come to pass, in the form of a production rule. Since
there cannot be a breach of contract—which would happen only if one or more
parties would not honour the agreement—thanks to how this production rule
is coded, a smart contract is not a contract. Since there is no opportunity for
learning on the contract’s behalf, it is also not smart.

Smart contracts do code the preferences of their owners, and their negotiating
partners as appropriate, with respect to the decision under risk or uncertainty.
They react on events, have a specific state, are executed on a distributed ledger,
and are able to interact with assets stored on the ledger [28]. Ethereum offers smart
contracts through its blockchain. The Ethereum Virtual Machine (EVM) handles
the states and computations of the protocol and can theoretically execute code of
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 279–293, 2019.
https://doi.org/10.1007/978-3-662-58820-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_19&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_19

280 D. Harz and M. Boman

arbitrary algorithmic complexity [3]. Using Ethereum, developers can implement
smart contracts as lines of code in an account that execute automatically when
transactions or function calls are sent to that account. The outcome is final and
agreed on by all participants and blockchains can thus enable a system of trust.

In Ethereum, smart contracts can interact through function calls via their
Application Binary Interface (ABI). Single smart contracts or multiple smart
contracts together can act as decentralised autonomous organisations by encod-
ing the rules of interaction for the organisation’s inner and outer relationships
(e.g., The DAO, MakerDAO). Full nodes store the distributed ledger and validate
new blocks in the chain pro bono. Permission-less blockchains limit the complex-
ity of computation tasks and thus, the scalability of these blockchains. When
utilising smart contracts, external services can be required to circumvent these
computational limitations to code the preferences of their owners. The result
of computations performed by external parties are not subject to the consen-
sus protocol of the underlying blockchain, and their provided solution or correct
execution cannot be formally verified. Hence, the oft-cited benefit of blockchains
allowing for transparency over every transaction and enforced trust through a
consensus mechanism cannot be guaranteed with external entities [17]. A trust
model for smart contracts in permission-less blockchains is thus missing, a fact
that limits their adaptability. Earlier trust models used in related applications,
such as those devised for quantitative trading or speculative agent trading (see
the patent text [14] for a good indication of this range), need to be adjusted
for the inherent transparency and particular trust implications of blockchain
systems. We propose a model that incorporate all these aspects.

2 Method

We answer the following research questions:

1. Which models of trust can be applied to smart contracts to reflect public
permission-less blockchains?

2. What can be done to clarify the link between, on the one hand, the preferences
and intentions of authors of smart contracts and, on the other hand, the run-
time properties of those smart contracts?

3. How can properties of trust models be applied to verify computations in
permission-less blockchains?

Question 1 is analysed in two steps. First, the applicability of agent-based
trust models for smart contracts is evaluated by deducing their strong and weak
notions based on agent theory. Second, a trust model suitable for smart contracts
in permission-less blockchains is developed, based on a review of existing multi-
agent system trust models [23]. Question 2 is analysed deductively, based on
literature on decision theory and decision analysis, and on limitations of formal
representations of preference, and their logical closure, e.g., what can be derived
from them. Question 3 is investigated instrumentally, by developing an algo-
rithm for verifiable computations. The development of the algorithm followed a
deductive method of merging verifiable computation concepts using blockchains

The Scalability of Trustless Trust 281

[29,34] with cloud and distributed systems research [6,7]. This revolves around
preserving privacy of user data, whereby aspects of the blockchain are used to
enforce the algorithm [34], and on verifiable computation for Ethereum using
computation services inside the blockchain [29]. In the latter, a verification algo-
rithm with dispute resolution and an incentive layer were suggested, and the
relevant assumptions critically assessed to develop a new algorithm, since their
proposal had two practical issues: First, the verification game includes a ‘jack-
pot’ to reward solvers and verifiers for their work. This introduces an incentive to
steal the jackpot by solvers and verifiers colluding to receive the jackpot without
providing a correct solution. Second, they propose to implement the computa-
tion tasks in C, C++, or Rust code using the Lanai interpreter implemented as
a smart contract on Ethereum. This limits the flexibility of computation services
by forcing them to use one of the three programming languages. The objective
of the here presented algorithm is to achieve:

1. execution of arbitrary computations requested from a smart contract in
Ethereum, and executed outside the blockchain;

2. verification of the computation result achievable within reasonable time, i.e.,
O(n);

3. guarantees that the result of the computation is correct without having to
trust the providing service.

Our development was experimental and explorative. Different parameters and the
agents they pertain to were first considered in a pen and paper exercise, then vali-
dated via qualitative assessment as well as quantitative analysis. The quantitative
experiments constitute an evaluation basis for the last two algorithm objectives.

3 Explicating Smart Contracts

Consensus protocols are used to decide upon the state of the distributed ledger
[21]. This ledger is in permission-less blockchains accessible to anyone participat-
ing in the network and through blockchain explorers even to entities outside of the
network. This means everyone is able to see for example which public key owns
the most Ether. Also, each transaction can be inspected, making it possible for
participating parties to monitor the progress of their transaction. To provide an
incentive to the miner and prevent unnecessary changes to the ledger, blockchains
introduce fees on executing transactions [21]. In Ethereum, the blockchain stores
transactions and the code of smart contracts as wellas their state. Hence, the state
of a smart contract needs to be updated in the same fashion as executing a trans-
action including fees, consensus, and mining time.

Smart contracts on Ethereum are executed by each node participating in the
P2P network and hence operations are restricted to protect the network [31].
To circumvent operational issues (e.g., someone executing a denial of service
attack on the network), Ethereum introduces a concept to make users pay for
execution of a smart contract functions, and the EVM supports only certain
defined operations [31], with each operation coming with a certain cost referred
to as gas. Before executing a state-changing function or a transaction, the user

282 D. Harz and M. Boman

has to send a certain amount of gas to the function or the transaction. Only
if the provided amount of gas is sufficient for the function or transaction to
execute, it will successfully terminate. Otherwise, the transaction or function
will terminate prematurely, with results contingent on the handling of the smart
contract function.

We now look at two ways of explicating the roles that smart contracts may
take on. First, the agent metaphor is employed to provide an informal under-
standing in terms of a widely accepted and understood terminology. Second, the
concept of utility is employed to provide a formal understanding of how the pref-
erences and intentions of smart contract owners may be encoded in the contract
itself.

3.1 Smart Contracts as Agent Systems

Agents have certain properties separable in weak and strong notions [32]. Weak
notions include autonomy, pro-activeness, reactivity, and social ability. Auton-
omy refers to the smart contract ability to operate without a direct intervention
of others and include control over their actions and state. In Ethereum, the state
of smart contracts is maintained on the blockchain, while the actions are coded
into the smart contract itself. These actions can depend on the state, thus provid-
ing a weak form of autonomy. Pro-activeness describes goal-directed behaviour
by agents taking initiative. This is somewhat limited in Ethereum, as smart con-
tracts currently act on incoming transactions or calls to their functions. However,
if one perceives an agent as a collection of multiple different parts, smart con-
tracts might well be extended by external programs triggering such initiatives.
Thereby, the limitations set by Ethereum can be circumvented and an agent with
pro-active notions can be created. The result is in effect a multi-agent system
and can be analyzed as such. Reactivity is based on perception of an agent’s
environment and a timely response to those changes. By design, smart contracts
only have access to the state of the blockchain they are operating in. Reactiv-
ity for state changes in Ethereum is reached via event, transaction, or function
implementation. To react to environment changes outside of the blockchain (e.g.
executing a function based on changes in stock market prices) requires import-
ing this information to the blockchain via e.g. Oracles [4]. Social ability enables
the potential interaction with other agents or humans through a communication
language. In Ethereum, users and contracts are identifiable by their public key
[31] and interaction is possible through transactions or function calls on smart
contracts.

Strong notions include properties such as beliefs and intentions, veracity,
benevolence, rationality, and mobility. As mentioned in the introduction above,
pro-activeness is somewhat limited in Ethereum smart contracts, and so these
properties are present only to a limited extent. The two properties veracity,
which refers to not knowingly communicating false information, and rationality,
describing the alignment of the agent’s actions to its preferences, both pertain to
the incentives an author of a smart contract might have to develop an agent
which is rational but not truthful, in order to maximise profits. This can be

The Scalability of Trustless Trust 283

deliberate so that the agent correctly encodes the true preferences of the smart
contract owner, or non-deliberate, in which case the owner preferences might
be inadequately coded. To deal with the uncertainty of agent intentions, three
approaches have emerged. First, security approaches utilise cryptographic mea-
sures to guarantee basic properties such as authenticity, integrity, identities, and
privacy [23]. Within blockchains, this is mainly achieved through cryptographic
measures, which do not provide trust in the content of the messages. Second,
institutional approaches enforce behaviour through a centralised authority. This
entity controls agents’ actions and can penalise undesired behaviour. Gover-
nance functions enforcing behaviour not defined in the core protocol do not
exist. Third, social approaches utilise reputation and trust mechanisms to e.g.
select partners, punish undesired behaviour, or evaluate different strategies. In
blockchains, there is no system of trust implemented in the core protocol, which
would rate behaviour according to certain standards. These three approaches are
complementary and can be used to create a system of trust [23]. Trust research
and current implementations are primarily focused on the first two approaches.
This allows creating agents on a platform that enforces these defined trust mea-
surements [1,20,24,26].

3.2 Utility and Risk

Some researchers believe that all game-theoretical aspects of making decisions
can be pinned down by logical axiomatizations: it is only a matter of finding the
right axioms. Game-theoretical studies often concentrate on two-person games,
one reason being that many conflicts involve only two protagonists. In any game,
the players may or may not be allowed to cooperate to mutual advantage. If coop-
eration is allowed, the generalized theory of n-person games can sometimes be
reduced to the one for two-person games, since any group of cooperating players
may be seen as opposing the coalition of the other players. In the case of smart
contracts, this would allow for an owner of multiple contracts (in effect, a multi-
agent system) to maximize the utility of interplaying contracts by employing
game theory, at least on paper. For a given set of smart contracts, the problem
is how to determine a rule that specifies what actions would have been opti-
mal for the smart contract owner. Actions could here pertain to details of a
particular contract, or to the order of their execution, for instance. Comparing
different rules measures the risk involved in consistently applying a particular
rule, e.g., a chain of smart contract employment. Formally, we wish to determine
a decision function that minimizes this risk. The simpler case of handling risk
is in decisions under certainty. This means that the owner of one or more smart
contracts can predict the consequences of employing them. This represents the
ideal case in which all smart contracts execute as intended. Thus, the owner
simply chooses the alternative whose one and only possible consequence has a
value not less than the value of any other alternative. This seems simple enough,
but it is necessary to investigate a bit further what the value of a consequence
denotes. The preferences of the owner should be compatible with the following
axioms (A is not preferred to B is henceforth denoted by A ≤ B).

284 D. Harz and M. Boman

≤ is a weak ordering on the set of preferences P:

A1. (i) Transitivity: If A ≤ B and B ≤ C, then A ≤ C, for all A, B, and C
in P.
A1. (ii) Comparability: A ≤ B or B ≤ A, for all A and B in P.
From this, we may derive the relation of indifference and strict preference,
and we state the consistency criteria for these:
A2. (i) A = B is equivalent to A ≤ B and B ≤ A, for all A and B in P.
A2. (ii) A < B is equivalent to A ≤ B and not B ≤ A, for all A and B in P.
However, A1 implies that the owner has to admit to all consequences being
comparable. This is typically not the case in smart contracts, and it becomes
necessary to replace Comparability with Reflexivity, yielding a partial order-
ing instead:
A1. (iii) Reflexivity: A ≤ A, for all A in P.

There is much to be gained by representing the preference ordering as a real-
valued order-preserving function. If we cannot find such a function there is not
much sense in speaking of the numerical value of a sequence of employed smart
contracts, and we might as well throw a coin for deciding. Assuming axioms A1
and A2 hold, we must find a function f(X) with the property f(A) ≤ f(B) iff
A ≤ B, which we can always do fairly easily for decisions under certainty [13],
but we now turn to decisions under risk, which is the class of decisions that nor-
mally pertain to owners of smart contracts. In the Bayesian case, with subjective
probabilities, we can think of a smart contract employment S as consisting of a
matrix of probabilities p1, ..., pn and their corresponding consequences c1, ..., cn.
Then the real-valued function f(X) we seek lets us compute the value of S as
Σpif(ci). This fixes one possible definition of an agent as rational, by making it
maximize its own utility (in accordance with its preferences, i.e. with the prefer-
ences it codes). Formally, an agent accepts the utility principle iff it assigns the
value Σpivi to S, given that it has assigned the value vi to ci. Any ordering Ω of
the alternatives is compatible to the principle of maximizing the expected utility
iff aΩb implies that the expected value of a is higher than the expected value
of b. In other words, we are now free to start experimenting with various axiom
systems for governing the owners, or at least recommending them actions based
on the smart contracts they have at hand. While game-theoretic axiom systems
have been favoured among agent researchers, a wide variety of axiomatizations
are surveyed in the more formal literature [12,19].

4 A Trust Model for Smart Contracts

From the 25 models covered in [23], five consider global visibility and nine con-
sider cheaters. The overlap of those models leaves one model focusing on repu-
tation of actors in electronic markets [25]. The core idea is to use incentives to
encourage truthful behaviour of agents in the system by social control. Social
control implies that actors in the network are responsible for enforcing secure
interactions instead of using an external or global authority.

The Scalability of Trustless Trust 285

Assuming a rational agent, there is a possible motivation to break protocol
if this maximizes utility. Speculation-free protocols have been recommended for
some agent applications, but the Ethereum smart contract environment is much
too complex to allow for such control features, which require equilibrium markets
[27]. To provide a certain level of trust, new agents have to deposit a certain
cryptocurrency value for participation, and this deposit is returned when an
agent decides to stop participating. However, dishonest or corrupt agents can be
penalised by either destroying their deposit or distributing it to honest agents.
This is in line with norm-regulation of agent systems [2] and does not make any
other strong requirements on models. Norm-regulation has been formalized for
multi-agent systems, e.g., in the form of algebra [22].

Gossiping can be used to communicate experiences with other agents in a
P2P fashion and thereby establish trust or reputation. In the protocol of Bit-
coin or Ethereum gossiping is the basis for propagating new transactions and
subsequently validating blocks [10]. A similar approach can be taken for smart
contracts, whereby agents could exchange knowledge or experiences of other
agents [8]. Reputation of an agent is based on its interaction with other agents,
whereby agents mutually need to sign a transaction if they are satisfied with
the interaction. Over time, an agent collects these signed transactions to build
up its reputation. However, this model is prone to colluding agents boosting
their reputation [5]. Trust can also be implemented by relying on independent
review agents [9,15,16]. However, both gossiping and review agents are subject
to detection rate issues.

5 Applying Trust Measures to Verifiable Computation

Due to the restrictions set by the EVM (i.e. gas cost of operations), implementing
functions in Ethereum with a complexity greater than O(n) is not feasible. To
circumvent these limitations, computations can be executed outside of Ethereum
and results stored on the blockchain. We present an algorithm to achieve ver-
ifiable computations outside of Ethereum through measures presented in the
trust model. Agents’ rational behaviour can be aligned to the overall objective
of the algorithm. The actors involved in the verifying computation algorithm
are presented in Fig. 1. Users request solving a specific computation problem.
They provide an incentive for solving and verifying the problem. Computation
services provide computation power in exchange for receiving a compensation.
For participation, they are providing a deposit. One of the computation services
acts as a solver and at least one other computation service acts as a verifier.
Judges decide whether basic mathematical operations are correct or not. They
are neutral parties and are not receiving any incentives. An arbiter enforces the
verifiable computation algorithm when users request a new computation.

Users are assumed as agents with the objective to receive a correct com-
putation. They are required to send a fee to reward solvers and verifiers for
executing the computation. This fee depends on the complexity of the com-
putation to be performed, the complexity of the input data, and the number

286 D. Harz and M. Boman

Fig. 1. Overview of actors in the verification algorithm.

of verifiers. Computation services are assumed to optimise their incentive. They
might purposely communicate false information to maximise their incentive. Fur-
ther, enough computation services are available (i.e. a minimum of 2) to execute
the computation with at least one verifier. The probability of detecting a false
computation depends on the number of verifiers in the algorithm. The arbiter
and judge are trusted by participating parties, respectively enforcing the algo-
rithm and reaching a verdict. This is a strong assumption in a trustless system
and needs to be justified. To limit their incentive for undesired behaviour (i.e.
cheating) in the algorithm, these two agents are not rewarded for taking part in
the computations. Thus, their work is pro bono and only the operational cost in
gas are covered.

Alternatively and not further covered in this paper, other approaches limit
or eliminate trust in arbiter and judge. First, following the trust is risk approach
[18], a network of trusted entities with a fixed amount of deposited value could
be created to find arbiters and judges trusted commonly between computation
services and users. Second, a user might create their own arbiter and judge, while
storing the fee in an escrow contract between user and computation services.
The computation services store an encrypted hash of the result in the escrow
contract. Upon completion of the protocol, the user issues the payment and
receives the result in full. Third, the protocol could be executed with different
test cases while results would be publicly stored on the blockchain. Thus, a user
and computation service could verify correct execution of the protocol, if arbiter
and judge remain unchanged.

5.1 Algorithm

The algorithm is initiated when a user requests a computation by sending the
input data, the operation to be performed, and the desired number of verifiers
to the arbiter. One computation service is randomly determined as a solver,
and the other(s) are randomly assigned as verifiers by the arbiter. The user
instructs the arbiter to forward the input data and operation to the computation

The Scalability of Trustless Trust 287

services smart contracts, triggering the off-chain computation by sending a
request through an oracle. This requires sending a fee for the computation as
well as providing the fee for using the oracle. Verifiers and the solver report
their result back to the arbiter. If all results are reported back, then the user
can trigger the arbiter to compare the available results. If the solver and all
participating verifiers agree on one solution, the algorithm is finished and the
user can collect the result. However, if at least one verifier disagrees with the
solver the user can initiate a dispute resolution algorithm. The dispute resolution
is inspired by a technique introduced in [6,7,29] to split up the operation into
simple parts with intermediary results until the computation is simple enough
for the judge to solve it. Overall and intermediary results are stored in a Merkle
tree for the solver, and each verifier challenging the solver. The comparison is
achieved through a binary search on the trees. The root of the tree encodes the
overall result, while the leaves in the lowest layer encode the input data. Leaves
in between represent intermediary results.

5.2 Interactions

Under the assumption that arbiter, judge, and user behave rational and fol-
low the algorithm, computation services have a combination of four different
behaviours with respect to their role as solver S or verifier V . The behaviours
are summarised in Table 1 with either verifiers accepting the solution (i.e. VA)
or challenging the solution (i.e. VC). S profits the most if it provides a correct
solution, which is challenged by V , while V profits the most when S provides
a false solution and V is able to challenge it. The problematic case is that the
incentives for accepting a false or correct solution are the same. To prevent this
from happening we will consider the behaviour of V and S in detail.

Case 1: S provides a correct solution and no V challenges the solution. Agents
behave as intended by the algorithm. As no V challenges the solution, the judge
is not triggered and the fee is equally split between S and the involved V .

Case 2: S provides a correct solution and at least one V challenges the solution.
This is an undesired behaviour since the solution provided is actually correct.

Table 1. Possible behaviours of computation services as solver S and verifier V ,
whereby all verifiers behave the same.

S

Correct solution False solution

Challenge S receives S fee share S receives nothing

S receives VC fee share VC receives VC fee share

V
VC receives nothing VC receives S fee share

Accept S receives S fee share S receives S fee share

VA receives VA fee share VA receives VA fee share

288 D. Harz and M. Boman

This triggers the dispute resolution with a verdict by the judge determining S as
correct. In this case S profits from the extra work due to the additional dispute
steps by receiving the fee share of VC . VA receive their part of the fee since their
amount of work remained the same.

Case 3: S provides a false solution and no V challenges the solution. S and
all V would receive their share of the fee. This is an undesired behaviour in
the algorithm as it would flag a false result as correct. To prevent this from
happening two measures are used. First, computation services do not know their
role in advance as they are randomly assigned by the arbiter. If several services
collude to provide false solutions, all of them would need to work together to
provide the “same wrong” result. However, if just one VC exists, it profits by
gaining the fee shares of itself, S, and all VA. Thus, second, the user is able to
determine the number of V for each computation. The probability of having at
least one VC depends on the prior probability p of V providing correct or false
solutions and the number n of V in the computation.

Case 4: S provides a false solution and at least one VC challenges the solution.
Hereby, S and VA are not receiving their share of the fee, which goes to all VC .
This is based on the verdict by the judge. However, this is also an undesired case
since the user does not receive a solution to his computation.

Considering the four scenarios, rational S is trying to receive its share of the
incentive and get a chance to receive fees of any V challenging a correct solution.
The strategy for S considering V is to provide a correct solution to the problem.
V profits the most form challenging a false solution. A rational V provides the
correct solution to a computation to receive its fee share or to have the chance
of becoming a challenger to a false solution. Arguably, S and V could try to
deliver a false solution to save up on computation cost or trick the user. In this
case, the probability of discovering the false solution relies on the number of V s
and the prior probability of cheating V s. If a V delivers a false solution, it must
be the same solution as S’ to not trigger the dispute resolution. Moreover, by
destroying the services’ deposits and excluding them from the algorithm after
detected cheating, the prior probability of having such a service can be reduced.

5.3 Implementation and Experiments

The algorithm was implemented using Solidity smart contracts and AWS
Lambda external computation services. The quantitative analysis is conducted
by executing experiments with one exemplary type of computation. The com-
putation is a multiplication of two integers to simplify the verification steps in
the algorithm. The results depend on external and internal parameters of the
algorithm. Externally, the prior probability of computation services providing
false solutions is considered. Internally, the number of verifiers the user requests
for each computation are examined. Experiments are executed for each differ-
ent configuration of parameters to determine gas consumption and outcome of
the computation. Assuming a potentially large number of computation services

The Scalability of Trustless Trust 289

(>10,000), this gives a confidence level of 95% and a maximum confidence inter-
val of 3.1 for the three different prior probabilities. Before each iteration of the
experiment, the environment is initialised with a new set of smart contracts.
Experiments are executed within TestRPC [11].

Reporting the amount of gas used equals the time and space complexity of
the algorithm, as gas consumption is determined by the type and number of
operations in the EVM. It further excludes the time used for sending transac-
tions or calls. Independent of the prior probability of false solutions, the μ gas
consumption increases linearly as presented in Fig. 2. Further, σ decreases with
an increasing number of verifiers. At a low number of verifiers, the dispute reso-
lution is less likely triggered, leading to a higher σ in gas consumption. With an
increasing number of verifiers, the probability of triggering the dispute resolution
increases. As the dispute resolution is almost always triggered, σ is reduced.

The algorithm is tested for three different cases of verification: First, the
algorithm can accept a correct solution. Second, each verifier agrees with the
solver although the solution is not correct. The dispute resolution is not triggered
and the user receives a false solution marked as correct. Third, at least one

(a) 30% of computation services provid-
ing incorrect solutions.

(b) 50% of computation services provid-
ing incorrect solutions.

(c) 70% of computation services provid-
ing incorrect solutions.

Fig. 2. Total amount of gas used by algorithm with different number of verifiers and
percentage of computation services providing incorrect solutions. Each combination of
specific number of verifier(s) and percentage of computation services with incorrect
solutions with N = 1000.

290 D. Harz and M. Boman

Table 2. Comparison of expected and actual probabilities of accepting a false solution
in the algorithm.

Prior p Verifiers n Expected false [%] Actual false [%]

0.3 1 9.0 2.7

0.3 2 2.7 0.0

0.3 3 0.81 0.0

0.3 4 0.243 0.0

0.3 5 0.0729 0.0

0.3 6 0.02187 0.0

0.5 1 25.0 28.6

0.5 2 12.5 12.2

0.5 3 6.25 4.6

0.5 4 3.125 1.2

0.5 5 1.5625 0.0

0.5 6 0.78125 0.0

0.7 1 49.0 41.2

0.7 2 34.3 24.4

0.7 3 24.01 12.1

0.7 4 16.807 4.9

0.7 5 11.7649 2.9

0.7 6 8.23543 0.0

verifier disagrees with the solver providing a false solution and the judge rules
that the solver’s solution is false. For the second case, invoking the dispute
resolution depends on the prior probability of computation services providing
false solutions described by P (VC) = 1 − pn. The experiments as shown in
Table 2 indicate that the expected and actual value are similar for p = 0.5.
However, for p = 0.3 and p = 0.7 the actual values are below the expected ones.
Since the experiment is executed with a confidence level of 95% and interval
of 3.1, those changes are accounted towards sampling size not being a perfect
representative of the actual distribution. Also, the random assignment of false
and correct computation services could be a cause for having a higher detection
rate.

6 Discussion

Within the presented trust model, deposits are simple to implement in
permission-less blockchains that already have a cryptocurrency. However, the
deposit value can be volatile. This poses two risks: Either the escrow or inde-
pendent entity maintaining the deposit may be motivated to steal the deposits,
or the deposit value might be so little that its trust-building attribute vanishes.

The Scalability of Trustless Trust 291

To prevent this, the deposit value could be bound to a fiat currency or a stable
asset. The deposit can also be dynamically adjusted and deposits only kept a
short time or one iteration of interactions. Gossiping could be used as a basis to
communicate experiences with other agents. In permission-less blockchains, the
agents can use a common protocol to exchange this information and use a rating
approach [33]. Yet, gossiping can be misused by agents to boost their own reputa-
tions by executing Sybil attacks. Review agents can be used that reach a verdict
on a specific issue or problem. Their implementation is simple and potential
scenarios to manipulate agents’ reputations are prevented. However, the judge
or review agent needs to be trusted by other agents. The algorithm is based on
its actors and their interaction. The idea of arbiter, judge, user, and computa-
tion services is strongly influenced by [29,34]. The main differences are in the
idea of using a jackpot to reward verifiers as well as the implementation either
entirely on Ethereum or using external computation services. Moreover, the algo-
rithm defers from [34] as its goal is to deliver verifiable computations for entities
(i.e. users or smart contracts) on the blockchain, while [34] primarily delivers
privacy-preserving computations, where blockchain enables the algorithm.

The algorithm cannot guarantee to detect false solutions. It is based on the
assumption that solvers and verifiers behave as desired (i.e. delivering correct
solutions), as their strategy is aligned with the incentives provided by the algo-
rithm. This assumption is based on game-theoretic properties. The algorithm
leaves no dominant strategy considering the interactions in Table 1. S can choose
either to provide a correct or false solution and V can challenge or accept. Only
when considering both agents, a Nash equilibrium exists. If there is a (high)
probability that a VC exists, the only valid strategy for S is to provide a cor-
rect solution. Consequently, V in turn has to provide a correct solution, which
accepts correct S and challenges false S. In the algorithm, both S and V provid-
ing correct solutions gives a Pareto efficient result. If they change their strategy
under the assumption that no VC exists, their utility remains the same. How-
ever, a V has an incentive to challenge a false solution, which would increase
his utility and reduce the utility of the others. Social welfare considers the sum
of all agent’s utilities depending on their strategy which can be disregarded in
permission-less blockchains since overall the agent wants to optimise his utility
independent of the overall utility. Specifically, the overall utility is potentially
unknown to an individual agent, since he is unable to determine with certainty
the utility of other agents.

7 Conclusion

On permission-less blockchains like Ethereum, rational agents through smart
contracts code the preferences of their owners. This could motivate maximizing
their utility by dishonest behaviour, and hence, further social control mechanisms
are required. We have presented a trust model for smart contracts in permission-
less blockchains that incorporate state-of-the-art research into deposits, reputa-
tion, and review agents for social control. Trust can be extended to entities

292 D. Harz and M. Boman

outside of permission-less blockchains through applying the trust measures pre-
sented in our model. An example application is an algorithm implementing ver-
ifiable computation. The model includes users requesting computational tasks,
computational services providing solutions and acting either as solver or veri-
fier, arbiters enforcing the algorithm, and judges resolving disputes. Due to the
incentive structure and the potential penalty cause by cheating, providing correct
solutions to the computation task is a Nash equilibrium. Under the assumption
that arbiter and judge are trusted, the algorithm detects false solutions provided
based on a probability distribution. The algorithm is realised as Solidity smart
contracts and AWS Lambda functions, implementing verification of multiply-
ing two integers. Experiments show that with six verifiers the algorithm detects
cheaters with prior probabilities of 30%, 50%, and 70% dishonest computation
services. Experiments show that the algorithm performs overall with a linear
time and space complexity depending on the number of verifiers.

As future work, we leave eliminating trust requirements regarding arbiter
and judge by a fully decentralised algorithm.

Acknowledgement. The authors thank Babak Sadighi and Erik Rissanen for com-
ments and discussions, and Daniel Gillblad for important support for Magnus Boman’s
part of the project. Also, the authors thank Outlier Ventures Ltd. for partly funding
Dominik Harz’ share of the project.

References

1. Balakrishnan, V., Majd, E.: A comparative analysis of trust models for multi-agent
systems. Lect. Notes Softw. Eng. 1(2), 183–185 (2013)

2. Boman, M.: Norms in artificial decision making. Artif. Intell. Law 7(1), 17–35
(1999)

3. Buterin, V.: A Next-Generation Smart Contract and Decentralized Application
Platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

4. Buterin, V.: Chain Interoperability. Technical report 1, R3CEV (2016)
5. Can, A.B., Bhargava, B.: SORT: a self-organizing trust model for peer-to-peer

systems. IEEE Trans. Dependable Secure Comput. 10(1), 14–27 (2013)
6. Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation using

multiple servers. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security - CCS 2011, p. 445. ACM Press, New York (2011)

7. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Inf.
Comput. 226, 16–36 (2013)

8. Carboni, D.: Feedback based Reputation on top of the Bitcoin Blockchain (2015)
9. Cerutti, F., Toniolo, A., Oren, N., Norman, T.J.: Context-dependent Trust Deci-

sions with Subjective Logic (2013)
10. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

11. Ethereum: Ethereum TestRPC (2017). https://github.com/ethereumjs/testrpc
12. Fishburn, P.: Foundations of decision analysis: along the way. Manag. Sci. 35,

387–405 (1989)

https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://github.com/ethereumjs/testrpc

The Scalability of Trustless Trust 293

13. French, S. (ed.): Decision Theory: An Introduction to the Mathematics of Ratio-
nality. Halsted Press, New York (1986)

14. Hoffberg, S.: Multifactorial optimization system and method, 19 April 2007.
https://www.google.com/patents/US20070087756. uS Patent App. 11/467,931

15. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. Auton. Agents Multi-Agent Syst. 13(2), 119–
154 (2006)

16. Jakubowski, M., Venkatesan, R., Yacobi, Y.: Quantifying Trust (2010)
17. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the Blockchain

model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), vol. 2015, pp. 839–858. IEEE (2016)

18. Litos, O.S.T., Zindros, D.: Trust is risk: a decentralized financial trust platform.
IACR Cryptol. ePrint Archive 2017, 156 (2017)

19. Malmnäs, P.E.: Axiomatic justifications of the utility principle. Synthese 99(2),
233–249 (1994)

20. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and
reputation. In: HICSS Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences, vol. 5, pp. 2431–2439. IEEE (2002)

21. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies - Draft. Princeton University Press, Princeton (2016)

22. Odelstad, J., Boman, M.: Algebras for agent norm-regulation. Annals Math. Artif.
Intell. 42(1), 141–166 (2004)

23. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open
multi-agent systems: a review. Artif. Intell. Rev. 40(1), 1–25 (2013)

24. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowl.
Eng. Rev. 19(01), 1–25 (2004)

25. Rasmusson, L., Jansson, S.: Simulated social control for secure Internet commerce.
In: Proceedings of the 1996 Workshop on New Security Paradigms - NSPW 1996,
pp. 18–25 (1996)

26. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

27. Sandholm, T., Ygge, F.: On the gains and losses of speculation in equilibrium
markets. In: Proceedings IJCAI 1997, pp. 632–638. AAAI Press (1997)

28. Szabo, N.: Formalizing and Securing Relationships on Public Networks (1997).
http://ojphi.org/ojs/index.php/fm/article/view/548/469

29. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017)
30. Vukolić, M.: Hyperledger fabric: towards scalable blockchain for business. Technical

report. Trust in Digital Life 2016, IBM Research (2016). https://www.zurich.ibm.
com/dccl/papers/cachin dccl.pdf

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, pp. 1–32 (2014)

32. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley Publish-
ing, Chichester (2009)

33. Zhou, R., Hwang, K., Cai, M.: GossipTrust for fast reputation aggregation in peer-
to-peer networks. IEEE Trans. Knowl. Data Eng. 20(9), 1282–1295 (2008)

34. Zyskind, G.: Efficient Secure Computation Enabled by Blockchain Technology.
Master thesis, Massachusetts Institute of Technology (2016)

https://www.google.com/patents/US20070087756
http://ojphi.org/ojs/index.php/fm/article/view/548/469
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf

The Game Among Bribers in a Smart
Contract System

Lin Chen(B), Lei Xu(B), Zhimin Gao(B), Nolan Shah(B), Ton Chanh Le(B),
Yang Lu(B), and Weidong Shi(B)

Department of Computer Science, University of Houston, Houston, TX 77054, USA
chenlin198662@gmail.com, xuleimath@gmail.com, mtion@hotmail.com,

nolanshah212@gmail.com, letonchanh@gmail.com, ylu17@central.uh.edu,
wshi3@uh.edu

Abstract. Blockchain has been used to build various applications, and
the introduction of smart contracts further extends its impacts. Most of
existing works consider the positive usage of smart contracts but ignore
the other side of it: smart contracts can be used in a destructive way,
particularly, they can be utilized to carry out bribery. The hardness of
tracing a briber in a blockchain system may even motivate bribers. Fur-
thermore, an adversary can utilize bribery smart contracts to influence
the execution results of other smart contracts in the same system. To
better understand this threat, we propose a formal framework to ana-
lyze bribery in the smart contract system using game theory. We give
a full characterization on how the bribery budget of a briber may influ-
ence the execution of a smart contract if the briber tries to manipulate
its execution result by bribing users in the system.

1 Introduction

Various applications are developed on top of blockchain technology [31–33]. How-
ever, most of these works assume that the blockchain is a perfect system, e.g., all
records stored in the system are correct, and ignore the complexity of the way
that the decentralized system achieves consensus. For purely cryptocurrency sys-
tems, both static model [24] and game theory model [21,27] have been used to
analyze their security features. The introduction of the smart contract makes
the situation trickier while extending the applicability of blockchain technol-
ogy. A smart contract can involve multiple users/participants and have a high
value stake. Thus, it has the potential to be more critical than mining in pure
cryptocurrency systems (e.g., Bitcoin), in which only a fixed reward is paid to
successful miners. The amount of cryptocurrency involved in a contract may be
many times and significantly higher than the cost of running the contract itself.
Therefore, users involved in a smart contract have the incentive to push through
a certain outcome. In particular, they may achieve such a goal through bribery,
i.e., offering cryptocurrencies to other users in the system. Interestingly, bribery
itself can also be carried out using smart contracts. A recent work discussed this

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 294–307, 2019.
https://doi.org/10.1007/978-3-662-58820-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_20&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_20

The Game Among Bribers in a Smart Contract System 295

concept and proposed a straightforward framework to implement bribery on
blockchain [20] where the briber offers incentive to the bribee through a smart
contract.

Bribery is a serious problem as it may help to compromise the fundamental
assumption of smart contract execution model based on consensus or majority
accepted outcome. Note that a user is honest in mining does not necessarily
means that he/she will remain honest when offered with monetary reward in
making decisions. Their honesty is even more questionable when taking into
consideration the unlinkability of users’ identities to real persons, and the fact
that there is no punishment for reporting a wrong execution result in many
smart contract systems like Ethereum. Therefore, it is important to investigate
the problem whether a briber can succeed in manipulating a smart contract
execution result.

It is remarkable that the execution of a smart contract can be cast as an elec-
tion and we may leverage the research on elections to understand the bribery
problem in a smart contract system. Specifically, we can view users in the sys-
tem as voters, and all the possible outcome of a smart contract as candidates.
Each voter (user) will vote for a specific candidate (outcome), and a briber will
bribe voters to alter the election result (smart contract execution outcome). We
remark that by using an election model we are actually simplifying the consensus
protocol implemented in a smart contract system without considering, e.g., the
Byzantine behavior of a user who tries to send different messages to different
other users. However, note that such kind of behaviors typically influence users
who are following the protocol. In this paper, we take a game theoretical point
of view by treating all users as rational people who are trying to maximize their
own profit, and will therefore stick to the choice which is the best for their own
interest regardless of the choices of others. Hence, it is reasonable to adopt an
election model.

There exist a series of papers focusing on the bribery problem in an election
model, see, .e.g., [1–3,9,10,12,15,18,19,23,26,34,35]. Specifically, researchers
have studied extensively the computational complexity of the bribery problem
and show that in many settings it is NP-hard for a briber to decide which subset
of voters should he/she bribe (see, e.g., [17] for a nice survey). Such hardness
results can also be viewed as a way to discourage people from carrying out
bribery, if computational complexity is of concern.

Classical hardness results for the election model apply readily to the bribery
problem in a blockchain system by viewing a smart contract execution as an
election. However, we observe that a briber needs to overcome more difficulties
if he/she really wants to carry out bribery in a blockchain system. Indeed, a
briber not only needs to handle the computational complexity in determining a
suitable subset of voters to be bribed, but he/she may also have to compete with
other bribers in the system. Note that in most real-world elections, bribery is
carried out in secrecy. A person, once offered a bribe, may either take it and cast
his/her vote shortly afterwards, or reject it. The “incorrectness” in the nature
of bribery prevents it from becoming a free market where bribers “sell” their
bribes to people. However, things change completely in a blockchain system.

296 L. Chen et al.

As we will provide details in the following section, a briber is able to establish a
smart contract with a bribee. The smart contract will be executed by users in the
system and a transfer of cryptocurrencies will be carried out once the contract
is fulfilled, i.e., once the bribee casts his/her vote accordingly. In this case, a
bribee may establish smart contracts with multiple bribers and strategically
chooses the best. The unlinkability from a user identity in a blockchain system
to a real person behind and the fact that a smart contract may not necessarily be
executed immediately allow a user to easily involve in multiple smart contracts.
Such a situation poses a severe task to bribers and they end up in competing
with each other unavoidably without even knowing their opponents. Under such
a competition in a blockchain system, how difficult it is for a specific briber to
win? This paper is targeting at such a problem.

Our Contributions. There are two major contributions of this paper. First,
we study the bribery problem in a blockchain system from a game theoretical
point of view and model it as a smart contract bribery game. This is a first step
towards a better understanding of the bribery problem in a blockchain system;
and may also be of separate interest to the studies of elections. In this model,
every briber is a player and has a bribing budget which can be allocated to voters.
Every voter has a bribing price pj . The voter will only take smart contracts that
offer a price no less than pj . Once he/she is offered multiple smart contracts,
he/she will fulfill the one with the highest price (ties are broken arbitrarily). The
strategy set of a briber is all possible allocations of the budget to voters.

Second, given a smart contract bribery game, we consider its Nash equi-
librium. We are particularly interested in the following problem: if a briber is
very lucky, can he/she compromise the smart contract execution by getting the
majority of votes through a small amount of budget? The answer is no. We show
that, a briber cannot win more than 50% of the votes unless he/she controls more
than 20% of the total bribing budgets in any Nash equilibrium. That is, even
if the briber is lucky enough to end up in a Nash equilibrium that is the best
for him/her, he/she still needs to have a significantly large bribery budget, more
than 20% of the sum of all the budgets, in order to manipulate the execution
result arbitrarily.

Organization of the Paper. The remainder of the paper is organized as fol-
lows: In Sect. 2 we give a short review of smart contract and describe the problem
we address in this paper. In Sect. 3 we present our main result by studying the
Nash equilibria of the smart contract bribery game. In Sect. 4 we give further
discussion on our results. Section 5 discusses related work, and we conclude the
paper in Sect. 6.

2 Preliminaries and Problem Statement

Smart Contract. We begin by defining smart contracts. The definition provided
by Szabo in 1997 is [28]:

Definition 1. A smart contract is a set of promises, specified in a digital form,
including protocols within which the parties perform on these promises.

The Game Among Bribers in a Smart Contract System 297

A blockchain system, equipped with smart contracts, is a powerful tool that
allows users to build various applications on top. In particular, a voting system
can be implemented on blockchain. We first briefly describe the election model
for a voting system studied in the literature.

Election Model. In an election, given are a set of n candidates C =
{C1, C2, . . . , Cn} and a set of m voters V = {V1, V2, . . . , Vm}. Each voter Vj has
a preference list of candidates, which is essentially a permutation of candidates,
denoted as τj . The preference of vj is denoted by (Cτj(1), Cτj(2), . . . , Cτj(m)),
meaning that vj prefers candidate Cτj(z) to Cτj(z+1), where z = 1, 2, . . . ,m − 1.

An election rule is implemented, which takes as input the set of candidates
and voters together with their preference lists, and outputs a set of winner(s).
There are various election rules studied in the literature. In this paper, we focus
on one of the most fundamental rules called plurality. In plurality, every voter
votes for exactly one candidate which is on top of his/her preference list. The
candidate(s) with the highest number of votes then become the winner(s).

The abstract election model is general enough to incorporate a lot of real-
world elections as well as other applications that involve voting in their execution.
In particular, it is very much relevant to a blockchain system since almost all
decisions made in such a system, e.g., block construction and verification [30],
are based on the consensus among users. A consensus protocol can be modeled
as an election where every user votes for his/her decisions, and eventually one
decision is elected by the system.

Bribery in an Election. In recent years, the problem of bribery in an election
has received much attention in the literature [1–3,9,10,12,15,18,19,23,26,34,35].
On a high level, bribery in an election is defined as a way to manipulate the
election by giving monetary reward to voters so as to change their preference
lists. Researchers have proposed different bribery models. In this paper, we focus
on the constructive bribery model, that is, the briber tries to make one specific
candidate become the winner by bribing a subset of voters. This is particularly
the case when bribery happens in a blockchain based system – a briber tries to
make the system to reach a specific consensus.

Bribery through Smart Contract. In most real-world elections, briberies are car-
ried out in secrecy. It is, however, interesting that briberies can be carried out
“publicly” using smart contracts. Roughly speaking, the briber and the user to
be bribed (or bribee) can create a special smart contract that claims a transfer
of cryptocurrency upon the condition that the user votes for a specific candi-
date (decision). Users of the system will execute this smart contract. Once the
condition is satisfied, the transfer of the cryptocurrency will be enforced by the
system. The anonymous feature of a blockchain system, especially the unlinkabil-
ity of a user account from the real person behind, allows part of the information
of the bribery to be transparent, e.g., the transfer of cryptocurrency from one
account to another, while preserves the privacy of the persons involved.

298 L. Chen et al.

The concept of carrying out bribery through smart contract naturally follows
from many real-world contracts that are created to facilitate bribery. However,
there is a lack of a systematic study on the creation and execution of such smart
contracts for bribery, and its influence on the whole blockchain system. A very
recent paper by Kothapalli and Cordi [20] gave the first detailed study on the
creation and execution of the smart contracts for bribery and presented pseudo
codes. Briefly speaking, the whole bribery procedure, via smart contracts, is
divided into three phases: (i) Propose stage. The briber creates a briber contract
indicates the incentive that the bribee will receive upon fulfilling the bribe and/or
the punishment if the bribee fails to fulfill that. The contract is submitted to
the blockchain. (ii) Commit stage. A bribee who decides to participate creates
a claim on the blockchain. (iii) Verify stage. After a time period, if the bribe
condition is reached, the bribee can get the incentive. Otherwise, the bribee pays
the penalty.

Given their research [20], it becomes crucial to understand the impact of
such smart contracts for bribery to the whole blockchain system. Although we
may leverage the research on bribery in elections, the problem of bribery via
smart contracts has its own unique characteristics. Particularly, when there are
multiple bribers in the system, the bribee is free to participate in any smart
contract for bribery and he/she can thus strategically maximize his/her own
profit. In this paper, we try to understand the behavior of bribers and bribees
through game theory. Towards this, we first introduce some basic concepts.

Definition 2 ([25]). A normal form game Γ consists of:

– A finite set N of players (agents).
– A nonempty set Qi of strategies available for each player i ∈ N .
– A preference relation �i on Q = ×j∈NQj for each player i.

We restrict our attention to normal form games in this paper. For simplicity,
when we say a game, we mean a normal form game. We consider Nash equilib-
rium in this paper. A Nash equilibrium is a solution concept of a game involving
two or more players in which each player is assumed to know the equilibrium
strategies of the other players, and no player has anything to gain by unilaterally
changing his/her own strategy [25].

Taking a game theoretical point of view, we are able to model the bribery
problem in a blockchain system with multiple bribers as follows.

Smart Contract Bribery Game. We first describe the basic setting for the smart
contract bribery game. Given are a set of n candidates C = {C1, C2, . . . , Cn}, a
set of m voters V = {V1, V2, . . . , Vm} and a set of k bribers B = {B1, B2, . . . , Bk}.
Each briber Bh has a budget bh for bribing and prefers one specific candidate.
Each voter vj has a preference list τj and a bribing price pj . Each briber can
sign a smart contract with a voter, which offers a certain amount of reward

The Game Among Bribers in a Smart Contract System 299

in cryptocurrency if the voter changes his/her preference list and votes for the
candidate preferred by the briber. A voter vj can sign a smart contract with
every briber and then do the following:

– he/she will discard all smart contracts that offer a price lower than pj ;
– if there are multiple smart contracts offering a price larger than pj , he/she

will pick the one with the highest price and vote for the candidate preferred
by this briber;

– ties are broken arbitrarily, i.e., the voter will randomly choose one smart
contract if there are several smart contracts offering the same highest price
(larger than or equal to pj).

Note that if all the smart contracts are offering a price lower than pj , the
voter will vote honestly.

Bribers and the candidates need not be the same, however, as each briber
prefers a distinct candidate, we assume for simplicity that the briber is the
same as the candidate he/she prefers, i.e., B is a subset of the candidates. By re-
indexing the candidates, we may assume without loss of generality that Bh = Ch

for 1 ≤ h ≤ k, i.e., the first k candidates are trying to bribe voters.
Let the bribers be players in the game. The strategy set of a briber is the set

of possible smart contracts he/she can make with voters, i.e., every strategy of
a briber bh is an allocation of the budget bh among all the voters, which can be
represented as an m-vector (b1h, b2h, . . . , bm

h) where bj
h is the price the briber offers

to voter Vj and
∑

j bj
h ≤ bh. The goal of each briber, as a player, is to maximize

the (expected) number of votes he/she received.

Nash Equilibrium in Smart Contract Bribery Game. A pure Nash equilibrium for
the smart contract bribery game, if it exists, is a solution where every briber Bh

specifies some strategy (b1h, b2h, . . . , bm
h) such that if Bh changes his/her strategy

unilaterally to some (b̄1h, b̄2h, . . . , b̄m
h), the expected number of votes he/she can

get will not increase.

3 The Smart Contract Bribery Game

If there is only one briber, then obviously the briber is able to increase the
number of his/her votes if his/her bribing budget is at least as large as the
cheapest bribing price of some voter who votes for another candidate. When there
are multiple bribers, things become much more complicated. Considering an
arbitrary briber, say, B1, can he/she really benefit from bribery in the presence
of other bribers? Of course the answer is no if there exists another briber with an
infinite or sufficiently larger budget, who is able to bribe every voter with a price
larger than b1 and B1 will get no votes at all. If, however, B1 is more powerful,
say b1 ≥ bi for every 2 ≤ i ≤ k, is it possible for B1 to get additional votes?
Unfortunately, this may not necessarily be the case and is highly dependent on
the strategies of other bribers. In this section, we focus on Nash equilibrium in
the smart contract bribery game. We consider the following problem: In a Nash

300 L. Chen et al.

equilibrium, how many votes can B1 get when competing against bribers who
are weaker than him/her? Furthermore, can B1 get more votes than he/she gets
in the absence of bribery in the system?

Theorem 1. There may exist a pure Nash equilibrium for the smart contract
bribery game where the briber B1 can get at most �1/ε� votes even if b1 ≥ 1/ε · bi

for every 2 ≤ i ≤ k, where ε ∈ (0, 1) is an arbitrary number.

We remark that a pure Nash equilibrium may not always exist.

Proof. Consider the following smart contract bribery game in which there are
m = k − 1 + �1/ε� voters and exactly k candidates (i.e., C = B). Let pj = 1 for
1 ≤ j ≤ k − 1, pj = 1/ε for k ≤ j ≤ m. Let b1 be an arbitrary integer larger
than 1/ε, and bi = εb1 for every 2 ≤ i ≤ k.

Consider the following feasible solution: each briber Bi, 2 ≤ i ≤ k, bribes
Vi−1 at the price of εb1. The briber B1 then bribes Vk to Vm, each at the price
of εb1.

It is easy to verify that B1 gets �1/ε� votes. It suffices to argue that the
feasible solution above is a Nash equilibrium. First, we claim that every briber
Bi, 2 ≤ i ≤ k, will not deviate from the current solution. Note that if Bi aims to
bribe some other voter instead of Vi−1, then he/she needs to pay at least εb1, for
otherwise that voter will simply ignore his/her offer. Therefore, Bi has to take
away all the money εb1 from Vi−1 and bribes some Vh for h �= i − 1. However,
since Vh already receives εb1 amount of money from another briber, thus in
expectation Bi only gets 1/2 votes, which is worse than the current solution.
Hence, Bi will not unilaterally change his/her strategy. Next, we claim that B1

will not deviate from the current solution. Note that currently B1 gets one vote
at the cost of εb1. If he/she aims at getting votes from any Vh, 1 ≤ h ≤ k − 1,
he/she has two choices. Either he/she pays the price of εb1 and gets 1/2 votes
in expectation, or he/she pays a price strictly larger than εb1 and gets one vote.
In both cases, B1 will lose one vote from the set of voters in {Vh : k ≤ h ≤ m}
and get at most one vote from the set of voters {Vh : 1 ≤ h ≤ k − 1}. 	

Note that k is a parameter that can be significantly larger than 1/ε, Theo-
rem 1 thus implies that a briber may only get a small number of votes even if
the bribing budget of any other briber is at most ε fraction of his/her budget.

It is worth mentioning that in the proof of Theorem1 we do not specify
which candidate does a voter votes in the absence of bribery. We may assume
that without bribery Vh, 1 ≤ h ≤ k − 1, all vote for B1, while Vh, k ≤ h ≤ m,
all vote for B2. Therefore, B1 actually loses an arbitrary amount of votes when
bribery happens. More precisely, we have the following corollary.

Corollary 1. In a smart contract bribery game, a briber may lose an arbitrary
number of votes even if he/she is only competing against other bribers whose
budget is significantly smaller.

The Game Among Bribers in a Smart Contract System 301

Theorem 1 implies that the worst Nash equilibrium for a briber can be very
bad. However, what if a briber is lucky and ends up in a Nash equilibrium which
is the best for him/her? In this case, can the briber win significantly more votes
with a very small budget? Unfortunately, even in the best Nash equilibrium, the
fraction of the votes a briber can win may not exceed the portion of the bribing
budget he/she owns by O(1) times, as is implied by the following theorem.

Theorem 2. Let ε < 1/3 be an arbitrary small constant and suppose bi ≥
εb1 for 2 ≤ i ≤ k. In any Nash equilibrium, B1 gets at most 1/ε votes or a

4(1+2ε)b1
4(1+2ε)b1+

∑k
i=2 bi

fraction of the votes, whichever is larger.

Proof. Consider an arbitrary Nash equilibrium. If B1 only gets 1/ε votes in
expectation, then the theorem is proved. From now on we assume that B1

receives more than 1/ε votes in expectation. In this case, B1 must have paid
less than b1ε to some voter, say, Vj , who votes for him/her with a positive prob-
ability. Since bi ≥ εb1, the briber Bi must have received a positive number of
votes, for otherwise this briber can devote all the budget to Vj and gets one vote,
contradicting the fact that the solution is a Nash equilibrium.

Let φi > 0 be the expected number of votes received by each briber Bi. We
make the following two assumptions.

– Each Bi pays out a total price of exactly bi to voters;
– If Bi gets 0 vote from a voter in expectation, Bi pays 0 to this voter.

The two assumptions are without loss of generality since each Bi gets a positive
number of votes from at least one voter, and we can simply let Bi pays all
the remaining money in his/her budget to this voter if he/she does not use up
the budget. By doing so, Bi cannot get fewer votes. The fact that the original
solution is a Nash equilibrium ensures that Bi will not get more votes. Thus,
the modified solution is still a Nash equilibrium.

We define the average cost per vote for Bi as ai = bi/φi. Let Sj be the set
of bribers who offers the same highest price for Vj , then every briber Bi ∈ Sj

gets in expectation 1/|Sj | votes from Vj . For simplicity we remove all the voters
where Sj = ∅ from now on. We define xij ∈ {0, 1} as an indicating variable such
that xij = 1 if Bi ∈ Sj and xij = 0 otherwise. Recall that a briber Bi pays bj

i to
Vj , thus we have

m∑

j=1

xij/|Sj | = φi, ∀i (1a)

m∑

j=1

bj
ixij = bi, ∀i (1b)

There are two possibilities with respect to a1. If a1 ≥ εb1, then φ1 ≤ 1/ε,
which means B1 gets at most 1/ε votes and Theorem 2 is proved. Otherwise
a1 < εb1 and there are two possibilities.

302 L. Chen et al.

Case 1. |{j : 0 < bj
1 < (1 + 2ε)a1}| ≤ 1. Note that a1 is the average cost. We

claim that φ1 < 1/ε. Otherwise
∑m

j=1 x1j ≥ 1/ε and it follows that
∑m

j=1 bj
ix1j ≥

(1+2ε)a1(
∑m

j=1 x1j −1) = (1+2ε)b1 − (1+2ε)a1 > b1, where the last inequality
follows from the fact that b1 ≥ (1 + 2ε)(1/ε − 1)a1 = (1 + 1/ε − 2ε)a1, whereas
2εb1 > (1 + 2ε)a1. This, however, is a contradiction to Eq (1b). Therefore, B1

gets in expectation at most 1/ε votes and Theorem 2 is proved.

Case 2. |{j : 0 < bj
1 < (1 + 2ε)a1}| ≥ 2. In this case, we have the following

lemma.

Lemma 1. If |{j : bj
1 < (1 + 2ε)a1}| ≥ 2, then for any 2 ≤ i ≤ k, a1 ≥ ai

4(1+2ε) .

Proof (Proof of Lemma 1). Towards the proof, we need the following claims.

Claim. For every i, there exists some set of voters Γi such that
∑

j∈Γi
xij/|Sj | ≤

1 and
∑

j∈Γi
bj
ixij ≥ ai/2.

To see the claim, we suppose on the contrary that for every set of voters Γi

satisfying that
∑

j∈Γi
xij/|Sj | ≤ 1, it holds that

∑
j∈Γi

bj
ixij < ai/2. We list

all the variables xi1, xi2, . . . , xim and divide them into q subsets where the h-th
subset consists of xi,�h−1 , xi,�h−1+1, . . . , xi,�h−1 for 1 = �0 < �1 < . . . < �q =
m + 1, such that the followings hold for every h:

xi,�h−1

|S�h−1 |
+

xi,�h−1+1

|S�h−1+1| + . . . +
xi,�h−1

|S�h−1| ≤ 1 (2a)

xi,�h−1

|S�h−1 |
+

xi,�h−1+1

|S�h−1+1| + . . . +
xi,�h−1

|S�h−1| +
xi,�h

|S�h | > 1 (2b)

By Eq (2a) we have
�h−1∑

s=�h−1

bs
i xis < ai/2.

Taking the summation over 1 ≤ h ≤ q, we have

�h−1∑

s=�h−1

bs
i xis < aiq/2.

We show in the following that q ≤ 2φi, whereas

q∑

h=1

�h−1∑

s=�h−1

bs
i xis < aiq/2 ≤ aiφi = bi,

contradicting Eq (1b) and the claim is proved. To see q ≤ 2φ1, we can view
each xij/|Sj | as an item of size xij/|Sj |. We pack these items into bins of size 1
one by one using the Next-fit algorithm in Bin packing [29], i.e., as long as the
item fits in the same bin as the previous item, put it there; otherwise, open a

The Game Among Bribers in a Smart Contract System 303

new bin and put it in there. It is easy to see that the Next-fit algorithm returns
a solution using q bins with the h-th bin containing exactly xi,�h−1/|S�h−1 | to
xi,�h−1/|S�h−1|. Note that φi =

∑m
j=1 xij/|Sj | is exactly the total size of all

items. It is a classical result [29] that the Next-fit algorithm for bin packing
returns a solution that uses the number of bins at most twice the total item size
(to see this, simply observe that any two consecutive bins have a total size larger
than 1), hence q ≤ 2φi.

We are able to prove Lemma 1 now using the above claim. Suppose on the
contrary that for some i it holds that a1 < ai/(4 + 8ε). According to the claim,
there exists some Γi such that

∑
j ∈ Γixij/|Sj | ≤ 1 and

∑
j∈Γi

bj
ixij ≥ ai/2 >

2(1 + 2ε)a1. Hence, the briber Bi pays in total more than 2(1 + 2ε)a1 and only
receive in expectation 1 vote. As |{j : 0 < bj

1 < (1 + 2ε)a1}| ≥ 2, there exist at
least two voters Vj1 and Vj2 to whom B1 pays less than (1+2ε)a1. Since B1 have
received a positive number of votes from each of them (otherwise B1 would have
paid 0), Vj1 and Vj2 receive offers from bribers with a price less than (1 + 2ε)a1.
Hence, if Bi changes his/her solution unilaterally by paying (1+2ε)a1 to Vj1 and
Vj2 , and meanwhile 0 to voters in Γi, he/she gets 2 votes instead, contracting
the fact that the solution is a Nash equilibrium. Thus, Lemma 1 is true. 	

By Lemma 1, we know that in Case 2 every briber Bi gets at least bi
4(1+2ε)a1

votes. Therefore, B1 can get at most 4(1+2ε)b1
4(1+2ε)b1+

∑k
i=2 bi

fraction of the total
votes. 	

Theorem 2 implies that, even if a briber is very lucky and ends up in a
Nash equilibrium which is the best for him/her, he/she cannot get more than

4(1+2ε)b1
4(1+2ε)b1+

∑k
i=2 bi

fraction of the total votes if there are significantly many voters

(larger than 1/ε which is a constant). By taking b1∑k
i=1 bi

= 1/5, this fractional
value becomes 1/2 + O(ε), therefore we have the following corollary.

Corollary 2. Even in a best Nash equilibrium, a briber needs to control more
than 20% of the total bribing budgets in order to get more than 50% of the votes.

4 Further Discussion

We have shown that, although smart contracts can be used to carry out bribery
in a blockchain system, it is, however, much more difficult for a briber to do so
than in an ordinary real-world election. The major challenge comes from the fact
that a voter is free to establish multiple smart contracts with different bribers
and can strategically pick the best one.

A natural question is whether a briber can prevent a bribee from establishing
smart contracts with other bribers. One potential approach is to introduce a
penalty for a bribee if he/she fails to fulfill the smart contract. Indeed, a recent
paper by Abhiram and Christopher [20] presents a pseudocode for such kind of
smart contracts. It is questionable whether such smart contracts can change our
results substantially. Obviously, if the briber can charge an infinite amount of
penalty, then surely the bribee has no choice but to follow the smart contract.

304 L. Chen et al.

However, this is usually unreasonable. A penalty is usually achieved via a deposit
from the bribee to the briber, a sufficiently high penalty may exceed the wallet
balance of a voter, which means the briber is losing these potential bribees.
More critically, the decision whether a smart contract is fulfilled or not is also
achieved through consensus. Once the bribee pays a high deposit, even if he/she
fulfills the smart contract, the briber may also bribe others to alter the decision
and take away the deposit. Hence, even if penalty may be introduced, it should
be reasonably low. A low penalty, however, only prevents a voter from making
smart contracts with a lot of bribers. It does not prevent a voter from making
smart contracts with only a few bribers, which is already enough to yield a
non-cooperative game among bribers and our results readily apply.

5 Related Work

In this section, we briefly review related works.

Smart Contract Systems. Ethereum is by far the most popular smart contract
system [4] and many works have been done to detect potential vulnerabilities
in smart contracts, see, e.g., [22]. Although game theory has been extensively
used to analyze mining activities [5,6,13,27], users’ behavior in a smart contract
system is not well understood.

Bribery in Elections. There are various researches studying the bribery issue
in elections. Faliszewski et al. [15] gave the first systematic characterization on
the complexity of the bribery problem where the briber can pay a fixed, but
voter-dependent, price to arbitrarily manipulate the preference list of a bribed
voter. Different bribery models were addressed subsequently in, e.g., [1,7,8,11,
14,16,18]. We refer the readers to [17] for a nice survey on this topic and the
references therein.

6 Conclusion and Future Work

Bribery is an important issue in real-world elections. Recent studies have shown
that smart contracts can be utilized to conduct bribery in a blockchain system;
and it is crucial to understand how smart contract based bribery can influence
the whole blockchain system. In this paper, we make the first improvement
towards this direction. We cast the bribery problem in a blockchain system as
an election and leverage the research in voting systems. We observe that, bribery
via smart contracts in a blockchain system is likely to end up in a game situation
where different bribers compete with each other in bribing users. We model this
problem as a smart contract bribery game and study the behavior of bribers
under Nash equilibrium. Interestingly, we show that in any Nash equilibrium, a
briber cannot win the majority of the votes unless he/she controls more than
20% of the total bribing budgets. Therefore, the phenomenon of “anarchy” in
game theory actually helps in discouraging people from carrying out bribery in
a blockchain system.

The Game Among Bribers in a Smart Contract System 305

There are several interesting open problems along this line of research. In
this paper, we assume every voter has the same weight, i.e., each voter can only
cast one vote. However, it is common that voters do have weights. It is not
clear whether a constant threshold like 20% also exists when voters/users have
weights. Another important problem is to study how to protect the blockchain
system through other methods, particularly by deploying resources. It is true
that the 20% threshold can discourage people from bribing, but it does not
fully defend the system from bribery, especially when some briber owns a large
amount of cryptocurrencies. There are several works in the research of voting
systems which study the problem of protecting an election by awarding honesty
or punishing bribery [36]. It is not clear how to implement a similar scheme in
a blockchain system.

References

1. Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices
matter for the parameterized complexity of shift bribery. Inf. Comput. 251, 140–
164 (2016)

2. Bredereck, R., Faliszewski, P., Niedermeier, R., Talmon, N.: Complexity of shift
bribery in committee elections. In: AAAI, pp. 2452–2458 (2016)

3. Bredereck, R., Faliszewski, P., Niedermeier, R., Talmon, N.: Large-scale election
campaigns: combinatorial shift bribery. J. Artif. Intell. Res. 55, 603–652 (2016)

4. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. white paper (2014)

5. Chen, L., Xu, L., Gao, Z., Shah, N., Lu, Y., Shi, W.: Smart contract execution-
the (+-)-biased ballot problem. In: LIPIcs-Leibniz International Proceedings in
Informatics. vol. 92. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

6. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: Decentralized execution of
smart contracts: agent model perspective and its implications. In: Brenner, M.,
et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 468–477. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 29

7. Chen, L., et al.: Protecting election from bribery: new approach and computa-
tional complexity characterization (extended abstract). In: Proceedings of the 2018
International Conference on Autonomous Agents and Multiagent Systems, vol. 1.
International Foundation for Autonomous Agents and Multiagent Systems (2018)

8. Dey, P., Misra, N., Narahari, Y.: Frugal bribery in voting. In: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pp. 2466–2472. AAAI Press
(2016)

9. Dorn, B., Krüger, D.: On the hardness of bribery variants in voting with CP-nets.
Ann. Math. Artif. Intell. 77(3–4), 251–279 (2016)

10. Dorn, B., Krüger, D., Scharpfenecker, P.: Often harder than in the constructive
case: destructive bribery in CP-nets. In: Markakis, E., Schäfer, G. (eds.) WINE
2015. LNCS, vol. 9470, pp. 314–327. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48995-6 23

11. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2 27

https://doi.org/10.1007/978-3-319-70278-0_29
https://doi.org/10.1007/978-3-662-48995-6_23
https://doi.org/10.1007/978-3-662-48995-6_23
https://doi.org/10.1007/978-3-642-04645-2_27

306 L. Chen et al.

12. Erdélyi, G., Reger, C., Yang, Y.: The complexity of bribery and control in group
identification. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, pp. 1142–1150. International Foundation for Autonomous
Agents and Multiagent Systems (2017)

13. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

14. Faliszewski, P.: Nonuniform bribery. In: Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1569–1572.
International Foundation for Autonomous Agents and Multiagent Systems (2008)

15. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in
elections? J. Artif. Intell. Res. 35, 485–532 (2009)

16. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and
copeland voting computationally resist bribery and constructive control. J. Artif.
Intell. Res. 35, 275–341 (2009)

17. Faliszewski, P., Rothe, J.: Control and Bribery in Voting. Cambridge University
Press, Cambridge (2016)

18. Kaczmarczyk, A., Faliszewski, P.: Algorithms for destructive shift bribery. In: Pro-
ceedings of the 2016 International Conference on Autonomous Agents & Multia-
gent Systems, pp. 305–313. International Foundation for Autonomous Agents and
Multiagent Systems (2016)

19. Knop, D., Kouteckỳ, M., Mnich, M.: Voting and bribing in single-exponential
time. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 66. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

20. Kothapalli, A., Cordi, C.: A bribery framework using smartcontracts (2017)
21. Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bit-

coin mining pools: a cooperative game theoretic analysis. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 919–927. International Foundation for Autonomous Agents and Multiagent
Systems (2015)

22. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

23. Mattei, N., Pini, M.S., Venable, K.B., Rossi, F.: Bribery in voting over combina-
torial domains is easy. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, vol. 3, pp. 1407–1408. International
Foundation for Autonomous Agents and Multiagent Systems (2012)

24. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
25. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
26. Pini, M.S., Rossi, F., Venable, K.B.: Bribery in voting with soft constraints. In:

AAAI (2013)
27. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. arXiv preprint arXiv:1507.06183 (2015)
28. Szabo, N.: Formalizing and securing relationships on public networks. First Monday

2(9) (1997)
29. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://

doi.org/10.1007/978-3-662-04565-7
30. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-

cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

https://doi.org/10.1007/978-3-662-45472-5_28
http://arxiv.org/abs/1507.06183
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-319-39028-4_9

The Game Among Bribers in a Smart Contract System 307

31. Xu, L., Chen, L., Gao, Z., Lu, Y., Shi, W.: CoC: secure supply chain management
system based on public ledger. In: 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–6. IEEE (2017)

32. Xu, L., Chen, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: DL-BAC: distributed ledger
based access control for web applications. In: Proceedings of the 26th International
Conference on World Wide Web Companion, pp. 1445–1450. International World
Wide Web Conferences Steering Committee (2017)

33. Xu, L., et al.: Enabling the sharing economy: privacy respecting contract based
on public blockchain. In: Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts, pp. 15–21. ACM (2017)

34. Yang, Y., Shrestha, Y.R., Guo, J.: How hard is bribery in party based elections? In:
Proceedings of the 2015 International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 1725–1726. International Foundation for Autonomous Agents
and Multiagent Systems (2015)

35. Yang, Y., Shrestha, Y.R., Guo, J.: How hard is bribery with distance restrictions?
In: ECAI, pp. 363–371 (2016)

36. Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In:
IJCAI, pp. 538–545 (2016)

Lightweight Blockchain Logging
for Data-Intensive Applications

Yuzhe (Richard) Tang1(B), Zihao Xing1, Cheng Xu2, Ju Chen1,
and Jianliang Xu2

1 Syracuse University, Syracuse, NY, USA
{ytang100,zixing,jchen133}@syr.edu

2 Hong Kong Baptist University, Kowloon Tong, Hong Kong
{chengxu,xujl}@comp.hkbu.edu.hk

Abstract. With the recent success of cryptocurrency, Blockchain’s
design opens the door of building trustworthy distributed systems. A
common paradigm is to repurpose the Blockchain as an append-only log
that logs the application events in time order for subsequent auditing
and query verification. While this paradigm reaps the security benefit, it
faces technical challenges especially when being used for data-intensive
applications.

Instead of treating Blockchain as a time-ordered log, we propose to lay
the log-structured merge tree (LSM tree) over the Blockchain for efficient
and lightweight logging. Comparing other data structures, the LSM tree
is advantageous in supporting efficient writes while enabling random-
access reads. In our system design, only a small digest of an LSM tree is
persisted in the Blockchain and minimal store operations are carried out
by smart contracts. With the implementation in Ethereum/Solidity, we
evaluate the proposed logging scheme and demonstrate its performance
efficiency and effectiveness in cost saving.

1 Introduction

Recent years witnessed the advent and wide adoption of the first cryptocurrency,
BitCoin [3], followed by many others including Ethereum [4], Litecoin [8], Name-
coin [19], etc. The initial success of cryptocurrency demonstrates the trustworthi-
ness of Blockchain, the underlying platform of cryptocurrency. The Blockchain
supports the storage and processing of cryptocurrency transactions. In abstrac-
tion, it is a trust-decentralized network storing transparent state designed with
incentives to enable open membership at scale. A line of the latest research and
engineering aims at applying the trustworthy design of Blockchain for applica-
tions beyond cryptocurrency.

A common paradigm of repurposing Blockchain is to treat the Blockchain
as a public append-only log [23], where application-level events are logged
into the Blockchain in the order of time, and the log is used later for
verification and auditing. While this public-log paradigm reaps the security
benefit of Blockchain, it is limited to the applications handling small data
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 308–324, 2019.
https://doi.org/10.1007/978-3-662-58820-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_21&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_21

Lightweight Blockchain Logging for Data-Intensive Applications 309

(due to high Blockchain storage cost) and tolerating long verification delay (lin-
ear scanning the entire chain for verification).

In this work, we tackle the research of repurposing Blockchains for harden-
ing the security of data-intensive applications hosted in a third-party platform
(e.g., cloud). A motivating scenario is to secure the cloud-based Internet-of-
things (IoT) data storage where the IoT data producers continuously generate
an intensive stream of data writes to the third-party cloud storage which serves
data consumers through queries. Including Blockchain could enhance the trust-
worthiness of the third-party cloud storage.

A baseline approach is to log the sequence of data writes in the time order
into the Blockchain, in a similar way to log-structured file systems [27]. This app-
roach causes a high read latency (linear to the data size). Another baseline is to
digest the latest data snapshot, e.g., using Merkle tree, and place the digest inside
the Blockchain. In the presence of dynamic data, the digest scheme usually fol-
lows classic B-tree alike data structures [17,28] that perform “in-place” updates.
These schemes incur high write amplification as writing a record involves a read-
modify-write sequence on the tree and has O(logN) complexity per write. On
Blockchain, this high write amplification causes high cost, as writing a data unit
in Blockchain is costly (which involves duplicated writes on miners and expen-
sive proof-of-work alike computation). The problem compounds especially in the
write-intensive applications as IoT streams.

To log write-intensive applications using write-expensive Blockchain, we pro-
pose to place the log-structured merge tree (LSM tree) [24] over the Blockchain
for efficient and lightweight logging. An LSM tree is a write-optimized data struc-
ture which supports random-access reads; comparing the above two baselines
(append-only log as in log-structured file system and update-in-place structures
in database indices), an LSM tree strikes a better balance between read and write
performance and is adopted in many modern storage systems, including Google
BigTable [15]/LevelDB [7], Apache HBase [2], Apache Cassandra [1], Facebook
RocksDB [5], etc.

At a high level, an LSM tree lays out its storage into several “levels” and sup-
ports, in addition to reads/writes, a compaction operation that reorganizes the
leveled storage for future read/write efficiency. We propose a scheme to log the
LSM tree in Blockchain: (1) individual levels are digested using Merkle trees with
the 128-bit root hashes stored in Blockchain. (2) The compaction that needs to
be carried out in a trustworthy way is executed in smart-contracts, which allow
for computations on modern Blockchain, such as Ethereum [4]. Concretely, we
propose compaction mechanisms that realize several primitives inside the smart
contract. We propose a duplicated compaction paradigm amenable for imple-
mentation on the asynchronous Smart-Contract execution model in Ethereum.
Based on the primitives and paradigm, we realize both sized and leveled com-
paction mechanisms in the smart contract.

We have implemented the design on Ethereum leveraging its Smart-contract
language, Solidity [10], and programming support in the Truffle framework [11].
In particular, invoking a Solidity smart-contract is asynchronous and our system

310 Y. (Richard) Tang et al.

addresses this property by asynchronously compacting the LSM storage. Based
on the implementation, we evaluate the cost of our proposed scheme with the
comparison to alternative designs. The results show the effectiveness of cost-
reducing approaches used in our work.

The contributions of this work are the following:

1. We propose TPAD, a novel architecture to secure outsourced data storage
over the Blockchain. The TPAD architecture considers an LSM-tree-based
storage protocol and maps security-essential state and operations to the
Blockchain. The architecture includes a minimal state in Blockchain storage
and offline compaction operations in the asynchronous smart-contract.

2. We implement a prototype on Ethereum/Solidity that realizes the proposed
design. Through evaluation, we demonstrate the effective cost saving of the
TPAD design with the comparison to state-of-the-art approaches.

The rest of the paper is organized as following: Section 2 formulates the
research problem. The proposed technique, LSM-tree based storage over the
Blockchain, is presented in Sect. 3. The system implementation is described in
Sect. 4. Evaluation is presented next in Sects. 5 and 7 surveys the related work.
Section 8 concludes the paper.

2 Problem Formulation

2.1 Target Applications

This work targets the application of secure data outsourcing in a third-party
host (e.g., Amazon S3). A particular scenario of interest is to outsource the data
generated by the Internet of things (IoT) devices to the cloud storage, which
serves read requests from data consuming applications. The IoT data is usually
personal and could be security sensitive; for instance, in the smart home, the
IoT devices such as smart TV controller capture residents’ daily activities which
could reveal personal secrets such as TV view habits. The IoT data, on the other
hand, can be used to improve the life quality and enable novel applications. For
instance, analyzing patient’s activities at home can improve out-patient care
and predict possible disease. In practice, various IoT data is widely collected
and outsourced [16]. A noteworthy characteristic of our target application is
that data is generated continuously and intensively. The workload is more write
intensive than the static workload (e.g., in classic database systems).

2.2 System Model

The data-outsourcing system consists of data producers, a cloud host, and several
data consumers. A data producer submits data write requests to the cloud and
a data consumer submits data read requests to the cloud. The cloud exposes a

Lightweight Blockchain Logging for Data-Intensive Applications 311

Fig. 1. Logging data outsourcing in Blockchain

standard key-value store interface for reads and writes. Formally, given key k,
value v, timestamp ts, a data write and data read are described below:

ts := Put(k, v)
〈k, v, ts〉 := Get(k, tsq) (1)

In our system, we assume the data producers and consumers are trusted.
The third-party cloud is untrusted and it can launch various attacks to forge an
answer to the consumer which will be elaborated on in Sect. 2.3.

Our data-outsourcing system has a companion of Blockchain, as illustrated
in Fig. 1. The Blockchain logs certain events in the workflow of data outsource
for the purpose of securing it.

2.3 Security Goals

In the presence of the untrusted host, there are threats that could compromise
data security. An adversary, be it the cloud host or man-in-the-middle adver-
sary in networks, could forge a fake answer to a data consumer and violate the
data integrity, membership authenticity, etc. The data integrity can be protected
by simply attaching a message-authentication code (MAC) to each key-value
record. This work considers the more advanced attacks — membership attacks
that manifest in many forms: It could be the untrusted host deliberately skips
query results and presents an incomplete answer (violating query completeness).
It could be the host presents a stale version of the answer (violating query
freshness). It could have the host to return different answers to different con-
sumers regarding the same query (violating the fork consistency). On the write
path, a man-in-the-middle adversary could replay a write request to result in
incorrectly duplicated data versions. The formal definition of membership data
authenticity is described in the existing protocols of authenticated data struc-
tures (ADS) [21,26,29,32].

While this work mainly focuses authenticity, we consider a weak security
goal w.r.t. the data confidentiality that deterministic encryption suffices. The
extension for data confidentiality will be discussed in Sect. 6.

312 Y. (Richard) Tang et al.

2.4 Existing Techniques and Applicability

Existing works on ADS construction, while ensuring the security of mem-
bership authentication, are mostly designed based on read-optimized database
structures such as B trees and R trees [17,28] that perform data updates in place.
These update-in-place structures translate an update operation from applica-
tions to a read-modify-write sequence on the underlying storage medium, and
they are unfriendly to the write performance. The only ADS work we are aware of
on address write efficiency is [25], which is however constructed using expensive
lattice-based cryptography.

Without security, there are various write-optimized log-structured data
structures that do not perform in-place updates but conduct append-only
writes instead. A primary form of these data structures is to organize the primary
data storage into a time-ordered log of records where an update is an append to
the log end and a read may have to scan the entire log. The pure-log design is
widely used in the log-structured journaling file systems [27].

A log-structured merge tree [24] represents a middle ground between
the read-optimized update-in-place structure and the write-optimized log.
An LSM tree serves a write in an append-only fashion and also supports
random-access read without scanning the entire dataset. The LSM design has
been adopted in many real-world cloud storage systems, including Google
BigTable [15]/LevelDB [7], Apache HBase [2], Apache Cassandra [1], Facebook
RocksDB [5], etc. The read-write characteristic of an LSM tree renders it well
suited for the applications of IoT data outsourcing.

2.5 Motivation

Our target applications such as IoT data outsourcing feature a high-throughput
stream of data updates and random-access read queries. As aforementioned, a
Log-Structured Merge Tree is a good fit for this workload, assuming some offline
hours for data compaction.

To map the LSM-tree workflow in an outsourcing scenario, it is essential
to find a trusted third-party to conduct the data-compaction work. Relying on
one of data owners to do the compaction is unfeasible due to availability, data
owner’s limited power (e.g., a low-end IoT device), etc.

We propose to leverage the Blockchain for the secure compaction in LSM stor-
age. The decentralized design and large-scale deployment of existing Blockchain
render it a trustworthy platform. The new smart-contract interface of the latest
Blockchain makes it friendly to run general-purpose trustworthy computation
on the platform.

Despite the advantages, designing a system for Blockchain-based
LSM-storage outsourcing is non-trivial. Notably, Blockchain’s innate limitation
(in low storage capacity, high cost, low write throughput) presents technical chal-
lenges when being adapted to the high-throughput data-outsourcing workflow.
We address these challenges by limiting Blockchain’s involvement in the online
path of data outsourcing, such that the state on Blockchain can be “updated”
infrequently.

Lightweight Blockchain Logging for Data-Intensive Applications 313

2.6 Preliminary: LSM Trees

The mechanism of an LSM tree is the following: It represents a dataset by
multiple sorted runs (or files) and organized in several so-called “levels”. The
first level stores the most recent data writes and is “mutable”. Other levels are
immutable and are updated only in an offline manner. Concretely, a data write
synchronously updates the first level. The first level may periodically persist
data to an external place, called write-ahead log (WAL). When the first level
becomes full, it is flushed to the next level. A read iterates over levels, and
for each level, it is served by an indexed lookup. In the worst case, a read
has to scan all levels and in practice, the total number of levels is bounded.
In addition, if the application exhibits some data locality (i.e., reads tend to
access recently updated data), a read can stop in the first couple of levels. An
LSM tree supports a compaction1 operation that merges multiple sorted runs
into one and helps reorganizes the storage layout from a write-optimized one
to a read-optimized one. The compaction is a batched job that usually runs
asynchronously and during offline hours. There are two flavors in compaction,
namely, flush and merge. A flush operation takes as input multiple sorted runs
at level i and produces a sorted run as output at level i+ 1. A merge operation
takes as input one selected file at level i and multiple files at level i + 1 that
overlap the selected file in key ranges. It produces sorted runs that replace these
input files at level i + 1.

An LSM mechanism supports different policies to trigger the execution of a
compaction. These policies include sized configuration and leveled configuration:
(1) In a sized configuration, each tree level has the capacity of storing a fixed
number of sorted files, say K. The file size at level i is Ki (the first level has i
to be 0). A flush-based compaction is triggered when there are K files filled in a
level, say i. The compaction merges all K files at level i into one file at level i+1.
With the sized-compaction policy, files at the same level may have their content
overlap in key ranges, and a read has to scan all files in a level. (2) In a leveled
configuration, any tree level is a sorted run where different files do not overlay in
their key ranges. Data at level 0 is flushed to level 1 and data at level i, ∀i ≥ 1,
is merged to level i+1 [7]. A compaction can be triggered by application-specific
conditions. A read within a level can be served by an indexed lookup without
scanning.

3 LSM Data Storage over Blockchain

3.1 Baseline and Design Choices

Baseline: Our general design goal is to leverage Blockchain for securing data
outsourcing. A baseline approach is to replace the cloud host by Blockchain.
In the baseline, the Blockchain stores the entire dataset and directly interacts
with the trusted clients of data producers and consumers through three smart

1 In this work, the words of “compaction” and “merge” are interchangeably used.

314 Y. (Richard) Tang et al.

contracts. On the write path, a “writer” contract accepts the data-write requests
from the producers (encoded in the form of transactions) and sends them to the
Blockchain. On the read path, a “reader” contract reads the Blockchain content
to find the LSM tree level that contains the result. The Blockchain runs an offline
“compaction” contract that is triggered by the same conditions of original LSM
stores and that merges multiple sorted runs to reorganize the layout.

Design Space: The above baseline design raises two issues as below:
First, the baseline approach uses the Blockchain as the primary data storage,

which is cost inefficient. Concretely, storing a bit in Blockchain is much more
expensive and costly than storing it off-chain (e.g., in the cloud). A promising
solution is to partition the LSM workflow and to result in a minimal and security-
essential partition in Blockchain. This way, the primary data storage which is
cumbersome is mapped off-chain to the cloud host.

Second, the baseline approach enforces a strong consistency semantic over
the Blockchain which is weakly consistent; this mismatch across layers may
present issues and incur unnecessary cost. More specifically, the current system
of Blockchain promises only eventual consistency (or timed consistency [30]) in
the sense that it allows an arbitrary delay between the transaction-submission
time and the final settlement time (i.e., when the transaction is confirmed in
the blockchain). The eventual consistency limits the use of Blockchain for real-
time data serving and renders the baseline approach that aggressively checks the
Blockchain digests to be ineffective.

3.2 Blockchain-Based TPAD Protocol

TPAD Overview: Our proposed TPAD protocol addresses the partitioning
problem of an LSM tree for the minimal involvement with the Blockchain. The
TPAD design separates the “data plane” (the primary data storage) and the
“control plane” (e.g., digest management), and maps the former to the off-chain
cloud and only loads the latter in Blockchain. Recall that an LSM tree supports
three major operations (i.e., data write, read and compaction). For online data
reads/writes, TPAD places only in Blockchain/smart-contract the access of the
digests, while leaving data access and proof construction off-chain. To address
the consistency limits, TPAD embeds the weak-consistency semantics in the
application layer; for instance, it does not access the Blockchain if the results
are too recent to be reflected in the Blockchain. The data-intensive computation
of compaction is however materialized inside the Blockchain, which simulates a
multi-client verifiable computation protocol [18]. This subsection presents the
details of the TPAD protocol.

Recall that our overall system includes data producers, the cloud, the
blockchain, and data consumers. The data producers generate data records and
upload them to the third-party cloud-blockchain platform. Data consumers query
the cloud by data keys to retrieve relevant records. For the ease of presentation,
we use a concrete setting w.l.o.g. that involves two data producers, say Alice (A)
and Bob (B), and one data consumer, say Charlie (C).

Lightweight Blockchain Logging for Data-Intensive Applications 315

Initially, each data producer has a pubic-private key pair and uses the public
key as her pseudonymous identity. In other words, the system is open member-
ship that anyone can join, which is consistent with the design of open Blockchain.
We assume the identities of data producer and Blockchain are established in a
trusted manner, which in practice could be enforced by external mechanisms for
user authentication and attestation. Conceptually, there are two virtual chains
registered in the Blockchain to materialize the two states of an LSM tree, that is,
the WAL and digests of data levels. These two virtual chains can be materialized
in the same physical Blockchain.

On the write path, Alice, the producer, generates a record (RA) and sub-
mits it to the Blockchain through the logger contract that logs the record as a
transaction in the WAL Blockchain. The logger contract is called asynchronously
in that it returns immediately and does not wait for the final inclusion of the
transaction in WAL Blockchain. Simultaneously, Alice also sends the record to
the untrusted cloud, which stores it in Level 0 of its local LSM system. Bob
sends another record RB to the Blockchain and cloud, which is processed in a
similar fashion. The logger contract is responsible for serializing multiple records
received and sending transactions in order. The total order between RA and RB

is not resolved until the transactions are finally settled in the WAL Blockchain,
which could occur as late as up to 40 min (e.g., in BitCoin) after the submis-
sion time. We maintain the consistency semantics that there is no time ordering
among records in Level 0 on the cloud. Upon flush, it only flushes the records
whose transactions are fully settled in the Blockchain.

On the read path, Charlie submits a query to the cloud, which returns the
result as well as query proof. In addition, Charlie obtains the relevant digests
from the Blockchain. Specifically, the proof consists of the Merkle authentication
paths of all relevant levels, that is, the level that has the answer (i.e., membership
level) and all the levels (i.e., non-membership levels) that do not have the answer
but are more recent than the membership level. The digests, namely Merkle root
hashes, are obtained from Digest Blockchain. As aforementioned, the system does
not provide membership authentication for data in Level 0.

On the compaction path, TPAD supports two relevant contracts for data
flush and merge. For the flush, the flush contract is triggered every time there
is a new block found in the WAL Blockchain. It flushes all the files/records at
level i to a single sorted file at Level i + 1. Inside the flush, the contract sorts
the records at level i (which are originally organized in the time order), builds
a digest of the sorted run, and sends it to the Digest Blockchain. At the same
time, the off-chain cloud runs the flush computation that builds the sorted run
locally.

For the merge, a separate contract merges multiple sorted runs into one run
and places it at a certain level of the LSM tree. When a compaction contract
runs, it validates all the input runs fed from the cloud using the digests stored in
the Blockchain. It then performs the merge computation, builds a Merkle root
hash on the merged run, and sends a transaction encoding the hash to update
the Digest Blockchain. In the last step, the Digest Blockchain stores the digests

316 Y. (Richard) Tang et al.

of different LSM levels and the contract replaces the digests by those of the
merged run. At the same time, the off-chain cloud runs the merge computation
that builds the sorted run locally.

The two compaction contracts update the Blockchain state and have a com-
panion computation going on the off-chain side. Given the delay to finally settle
a transaction, we defer the time the updated state in Blockchain becomes avail-
able. For instance, even though the merge contract finishes the execution and
sends the transaction, the off-chain data store will wait until the transaction
is settled to activate the use of merged runs. The above two compaction con-
tracts involve data-intensive computation and are executed at off-line hours. The
specific triggering conditions are described next.

The algorithms in TPAD are illustrated in Listing 2.

Compaction-Triggering Policies: In TPAD, the policy that determines when
and how to run a compaction is executed by the cloud host. As aforementioned,
the off-chain cloud can opt for the sized LSM tree policy where the number of files
per level is fixed and an overflowing file triggers the execution of flush operation.
The off-chain cloud can also take the leveled LSM tree policy where application-
specific condition triggers the execution of merge operations. In practice, the
sized policy lends itself to serving time-series workloads where newer data does
not replace older data.

In our implementation, an LSM level in the Smart Contract program is rep-
resented by an array in memory. The output is the digest of merged data which
is stored persistently on Blockchain. Note that we do not store or send the merge
data in Smart Contract to save the Gas cost.

Security Analysis. We consider a data-freshness attack where an adversary,
e.g., the untrusted host, presents a valid but stale key-value pair as the result.
That is, given a query Get(k, tsq), it returns 〈k′, v′, ts′〉 that belongs to the data
store, while there exists another more fresh key-value record 〈k, v, ts〉 such that
ts′ < ts < tsq.

The LPAD scheme can authenticate the following two properties that estab-
lish the data freshness: (1) Result membership: Given a result record from a
specific level (called result level), the LPAD scheme can prove the membership
of the record in the level using the corresponding Merkle tree. That is, given
query result 〈k′, v, ts〉 := Get(k, tsq), LPAD can authenticate the membership of
〈k′, v, ts〉 in the level it resides in (using the per-level Merkle tree) and hence the
membership in the data store. (2) Non-membership of any fresher result. That
is, the LPAD scheme can prove the non-membership of any record of the same
queried key in levels fresher than the result level. Note that for a given key, levels
are ordered by time.

In a query-completeness attack, valid result records are deliberately omit-
ted. The completeness security is similarly provided by the LPAD scheme with
the freshness security: In LPAD, the result completeness (i.e., no valid result is
missed) in each query level can be deduced from that the leaf nodes in each
per-level Merkle tree is sorted by data keys.

Lightweight Blockchain Logging for Data-Intensive Applications 317

In a forking attack, different views are presented to different querying clients
(presenting “X” to Alice and “Y” to Bob). The forking-attack security (or fork
consistency) can be guaranteed by LPAD by that the Blockchain can provide a
single source of truth for the dataset state, and any violation (by forking) can
be detected by checking the result against the Blockchain state.

4 Implementation on Ethereum

We have implemented the TPAD protocol over the Ethereum Blockchain which
keeps two states: WAL and digests. The other players in the protocol, including
the data producers, consumers, and the cloud, are implemented in JavaScript.

A data producer writing a record to the cloud triggers the execution of logger
contract on Ethereum that computes the hash digest and sends a transaction
wrapping the digest.

A data consumer submits a query by key to the cloud which returns the answer
and proof. The data consumer inquires about the digests stored in the Blockchain
by triggering the execution of a reader contract on Blockchain. The answer proof
consists of authentication paths of Merkle trees from the cloud and is used to com-
pare against the digests for answer verification. Note that we implement the read-
ing of digests in a smart contract for the ease of engineering.

A compaction operation is implemented on both the cloud and Blockchain.
Consider the compaction of two files (or sorted runs). First, the compaction smart-
contract on the Blockchain takes as input the data stored in JSON on the cloud side
and the digest hashes stored in the Blockchain. As mentioned, the compaction code
validates the inputs based on the digests, conducts the merge computation by heap
sort, computes the new digest of the merged run, and sends the transaction encod-
ing the digest to the Blockchain. Second, the JavaScript program on the cloud
side also runs the merge computation locally on the input files. It then replaces
the input files in the local JSON store by the merged file. We choose this imple-
mentation (merge computation done on both cloud and smart contract), because
the JavaScript runs the smart contract asynchronously (i.e., the call returns in
JavaScript without waiting for the smart contract finishes the execution) and it
saves bandwidth.

A compaction operation is implemented as a distributed process running on
the both sides of cloud and Blockchain. When the cloud (or a cloud administra-
tor) decides to merge the LSM storage, it first uploads the data to be merged to
the Blockchain using a batch of transactions. Then, the cloud starts to run a local
merge operation. Concurrently, the transactions sent by the cloud triggers the exe-
cution of a smart-contract that does the merge computation on the Blockchain
based on the data sent earlier. The cloud and Blockchain is synchronized when the
merge computations on both sides end. Concretely, the cloud, once it finishes the
local merge computation, will wait until being notified by the completion event
of the remote merge on the Blockchain. On implementation, the cloud merge pro-
gram is written in Javascript and the synchronization is realized using Promise [9],
which is a multithreading support in Javascript. After the synchronization, the
cloud proceed to replace the data by the merged data.

318 Y. (Richard) Tang et al.

On the blockchain, the verifiable-merge smart contract is implemented as
below: The compaction code validates the input data based on the digest on
Blockchain, carries out the merge computation based on heap sort, computes
the new digest of the merged run, and persists it into the Blockchain by sending
a transaction.

The logger contract is triggered when a data producer uploads a record and
its digest. The flush contract is triggered by a block in the Blockchain is found.
The compaction contract is triggered by LSM compaction policies elaborated in
the next section.

Implementation Notes: The current version of Solidity (i.e., 0.4.17) does not
support multi-dimensional nested array in a public function. We have to imple-
ment the array of digests as a one-dimensional array and interpret it as a two-
dimensional array (by levels and files) manually in the program. To collect the
Gas consumption in a view function (i.e., the function that does not change
state), we call estimateGas() function. In our implementation, the JavaScript
code runs smart contract functions through JSON ABI files generated by the
truffle compiler [11]. The state overwrites in Ethereum/Solidity program has to
be explicit and is realized by delete and “push” operations (Fig. 2).

Fig. 2. Implementing TPAD

Lightweight Blockchain Logging for Data-Intensive Applications 319

5 Evaluation

This section presents the evaluation of TPAD. The goal is to understand the
cost saving of TPAD comparing alternative designs including on-chain storage
(Sect. 5.1) and other data structures (Sect. 5.2). We first present our evaluation
platform.

Setup: Our smart-contracts written in Solidity are compiled in the Truffle
programming suit. They run on a personal Blockchain network set up by
Ganache [6]. This local Blockchain network is sufficient for our evaluation pur-
pose which only evaluates the cost consumption. For comparison, we implement
the baseline approach of storing data in Blockchain. Here, the blockchain keeps
a state of the LSM tree stored in a multi-dimensional storage array. In the
implementation, no in-memory index is maintained and finding a record in a
file is materialized by binary search. We also implement the other two baselines,
namely append-only log and update-in-place structures. For the latter, we imple-
ment a binary-search tree and build a Merkle tree based on it with the root node
stored in Blockchain.

5.1 Cost Saving of Off-Chain Storage

The TPAD is firstly a Blockchain logging scheme with the data stored off-chain.
A relevant baseline is to treat the Blockchain as the primary storage, namely on-
chain store. We implement the baseline by placing an entire LSM tree, including
leaf-level data nodes, inside the Blockchain.

On our platform, we conduct experiments by driving 20, 000 records into the
data store. We varied the “shape” of the LSM tree in terms of the size of a level
(number of files allowed in a level, K) and the number of levels. We measure
the cost in terms of Gas consumption of the two approaches respectively with
on-chain and off-chain storage.

The results are presented in Fig. 3. Figure 3a is the write cost when the LSM
tree has two levels. With different values of K (recall K is the number of files
in a level), the cost is relatively stable. Comparing the on-chain storage, the
off-chain storage saves a significant amount of cost, which is about 5X saving.
When fixing K at 3, varying the number of levels from 1 to 5, the cost of on-chain
store increase which is consistent with the fact that write amplification increases

(a) Write cost at level 2 (b) Write cost with K = 3 (K is
the number of files per level)

(c) Read cost at level 2 (d) Read cost withK = 3

Fig. 3. On-chain storage cost versus off-chain cost

320 Y. (Richard) Tang et al.

along with the number of compaction jobs. Comparing on-chain and off-chain
storage, the cost saving also increases along with the number of levels. In both
Figs. 3c and d, the read cost increases along with the value of K. The off-chain
storage saves the Gas cost up to 60X and 20X respectively for the settings of
two levels and K equal to 3.

5.2 Efficiency of LSM-Based Storage on Blockchain

The TPAD is an authenticated key-value store that supports random-access
reads/writes. In this regard, relevant baselines that implement the key-value
store abstraction include an append-only log where records are ordered by time
and an update-in-place structure, namely a single Merkle tree where leaf nodes
are ordered by keys. We implement the first baseline by simply sending the hash
digest of every data write to the Blockchain. The second baseline is implemented
by maintaining the root hash of the key-ordered Merkle tree in Blockchain and by
translating every data read/write to a leaf-to-root path traversal on the Merkle
tree. In more details, a data read to the cloud store would present as a proof the
authentication path of the leaf node to the root hash of the Merkle tree and a
data write consists of a data read followed by a local modification and a remote
update to the authentication path.

We conduct small-scale experiments by loading a thousand records into the
storage system; the keys and values in the records are randomly distributed. We
measure the average costs of read and write. The cost consists of the Gas cost for
running smart contract that retrieves the digests stored in the Blockchain and
the costs of preparing and verifying query proof (e.g., the authentication paths in
Merkle trees). We use a heuristic to combine the two costs by multiplying the Gas
cost by 100 times before adding it and the proof-related cost. The proof-related
cost is measured by the number of cycles spent locally for proof verification.

The results are presented in Fig. 4. The results show that the TPAD can result
in cost efficiency on both reads and writes. Concretely, for the write results in
Fig. 4a, the online part of TPAD has a similar cost with the other two base-
lines, as each write results in a single transaction in all three approaches. The

(a) Write cost (b) Read cost

Fig. 4. LSM tree-based TPAD compared against other structures in cost

Lightweight Blockchain Logging for Data-Intensive Applications 321

overall TPAD approach that includes both online and offline operations (i.e.
compaction) would incur write amplification as shown in Fig. 4a. For the data
read results in Fig. 4b, the cost saving of TPAD is significant, provided that the
y-axis is plotted in log scale. The TPAD incurs even lower cost than update-in-
place trees partly because of the locality in our query workloads where recently
updated data is more likely being queried.

6 Discussion: Data Confidentiality and Key Management

Data producers concerned about data confidentiality can upload the records
in an encrypted form. Specifically, a data producer sends the ciphertext of the
record, instead of plaintext, to the third-party host. The decryption key is shared
through an offline key-distribution channel between the data producer and the
data consumers who are permissioned to access the record. Those consumers can
obtain the ciphertext of the record from the host and use the key to decrypt. To
enable the query over ciphertext, we consider the use of deterministic encryption
which supports exact-match query in the encrypted form, that is, the consumer
could submit the encrypted query key to the host who will conduct exact-match
query between the query ciphertext and data ciphertext. The integration with
more secure encryption primitives is complementary to this scope of this work.

The data-encryption layer is laid over the membership-/data- authentication
layer of TPAD (as described above). This is similar to the classic encryption-
then-authentication scheme [20]. With deterministic encryption, the merge oper-
ation of TPAD occurs in the domain of ciphertext.

7 Related Work

7.1 Blockchain Applications

A common paradigm of supporting applications over Blockchain is that the
application-level workflow is partitioned and mapped to the on-/off-chain parts.
Decentralizing privacy [34] supports access-control oriented data-sharing appli-
cations over Blockchain. It publishes the access control list onto the Blockchain
and enforces the access control by smart contract. A similar approach is used
in MedRec [13] to enforce access control for medical data sharing. MedRec runs
a proprietary Blockchain network where miners are computers in an academic
environment and are rewarded by an anonymized medical dataset.

Namecoin [19] and Blockstack [12] support general-purpose key-value storage
in the decentralized fashion. They allow open-membership and accept any users
to upload their data signed with their secret keys. They support the storage of
name-value binding, with a canonical application to be DNS servers. Namecoin is
a special-purpose Blockchain system and Blockstack is realized as a middleware
on top of any Blockchain substrates. The VirtualChain in Blockstack supports a
(single) state-machine abstraction. Re-purposing original Blockchain for storage,

322 Y. (Richard) Tang et al.

its system design tackles the challenges of limited storage capacity, long write
latency, and low transactional throughput.

Catena [31] is probably the closest related work to TPAD. Catena is a non-
equivocation scheme over the Blockchain that repurposes its no-double-spending
security for non-equivocation in logging and auditing. In essence, it aligns the
application-specific log (for auditing) with the underlying linear Blockchain and
reuses the non-fork property of Blockchain for the non-fork application log.
Briefly, Catena’s mechanism is to build a virtual chain on BitCoin blockchain by
(ab)using OP RETURN transaction interface. Logging sends a BitCoin transaction
and auditing performs an ordered sequence of statement-verification calls in the
log history. The statement verification does not scan full history but simply runs
the Bitcoin-validation logic (e.g., Simplified Payment Validation), which ensures
no BitCoin double-spending. Importantly, it enforces the rule that a Catena
transaction spends the output of its immediate predecessor for efficient valida-
tion. The genesis transaction is served as the ground truth of validation and
it assumes a broadcast channel to establish the consistent view of the Genesis
transaction.

Our TPAD is different from Catena in the following senses: (1) Catena is built
on Bitcoin or the first-generation blockchain, and TPAD leverages the smart-
contract capabilities widely existing in the latest Blockchain systems, such as
Ethereum [4]. (2) More importantly, Catena only supports auditing which is
essentially sequential reads. TPAD supports verifiable random-reads. (3) While
Catena claims to be low cost, the increasing rate of BitCoin ($700 per BitCoin
at the time of Catena paper writing versus $17000 per BitCoin at early 2018)
makes the Catena more expensive. TPAD address the cost minimization of these
repurposed Blockchains.

7.2 Outsourced Storage and ADS

Outsourcing data storage to a third-party host such as public cloud is a popular
application paradigm. In the presence of an untrusted host, it is important to
ensure the data security, especially membership authenticity. An authenticated
data structure (ADS) is a protocol that formally the security property. Depend-
ing on the operations supported (queries and updates), an ADS protocol can
be constructed by different cryptographic primitives such as secure hash and
Merkle trees [22], SNARK [14], bilinear pairings [32,33], etc.

8 Conclusion

This work proposes the TPAD system for securely outsourcing data storage on
third-party hosts by leveraging the Blockchain. Instead of using Blockchain as
a time-ordered log, TPAD lays the log-structured merge tree (LSM tree) over
the Blockchain for efficient and lightweight logging. Realizing the design, a small

Lightweight Blockchain Logging for Data-Intensive Applications 323

state is persisted in the Blockchain and computation-oriented compaction opera-
tions are carried out by smart contracts. With the implementation in Ethereum/-
Solidity, we evaluate the proposed logging scheme and demonstrate its perfor-
mance efficiency and effectiveness in cost saving.

References

1. Apache Cassandra. http://cassandra.apache.org/
2. Apache HBase. http://hbase.apache.org/
3. Bitcoin. https://bitcoin.org/en/
4. Ethereum project. https://www.ethereum.org/
5. Facebook RocksDB. http://rocksdb.org/
6. Ganache. http://truffleframework.com/ganache/
7. Google LevelDB. http://code.google.com/p/leveldb/
8. Litecoin. https://litecoin.org/
9. Promise. https://developer.mozilla.org/en-us/docs/web/javascript/reference/

global objects/promise
10. Solidity. https://solidity.readthedocs.io/en/develop/
11. Truffle. http://truffleframework.com/
12. Ali, M., Nelson, J.C., Shea, R., Freedman, M.J.: Blockstack: a global naming and

storage system secured by blockchains. In: Gulati, A., Weatherspoon, H. (eds.)
2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO,
USA, 22–24 June 2016, pp. 181–194. USENIX Association (2016)

13. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: Awan, I., Younas, M. (eds.)
2nd International Conference on Open and Big Data, OBD 2016, Vienna, Austria,
22–24 August 2016, pp. 25–30. IEEE Computer Society (2016)

14. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

15. Chang, F., et al.: Bigtable: a distributed storage system for structured data
(awarded best paper!). In: OSDI, pp. 205–218 (2006)

16. Chung, H., Iorga, M., Voas, J.M., Lee, S.: Alexa, can I trust you? IEEE Comput.
50(9), 100–104 (2017)

17. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd edn. Benjam-
in/Cummings, Redwood City (1994)

18. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

19. Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An
empirical study of namecoin and lessons for decentralized namespace design. In:
14th Annual Workshop on the Economics of Information Security, WEIS 2015,
Delft, The Netherlands, 22–23 June 2015 (2015)

20. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hal-
l/CRC Press (2007)

21. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD Conference, pp. 121–132 (2006)

http://cassandra.apache.org/
http://hbase.apache.org/
https://bitcoin.org/en/
https://www.ethereum.org/
http://rocksdb.org/
http://truffleframework.com/ganache/
http://code.google.com/p/leveldb/
https://litecoin.org/
https://developer.mozilla.org/en-us/docs/web/javascript/reference/global_objects/promise
https://developer.mozilla.org/en-us/docs/web/javascript/reference/global_objects/promise
https://solidity.readthedocs.io/en/develop/
http://truffleframework.com/
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6

324 Y. (Richard) Tang et al.

22. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy, pp. 122–134 (1980)

23. Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies - A Comprehensive Introduction. Princeton Univer-
sity Press, Princeton (2016)

24. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree
(LSM-tree). Acta Inf. 33(4), 351–385 (1996)

25. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 22

26. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables
based on cryptographic accumulators. Algorithmica 74(2), 664–712 (2016)

27. Rosenblum, M.: The Design and Implementation of a Log-Structured File-System.
Kluwer, Norwell (1995)

28. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn.
McGraw-Hill Book Company, Boston (2005)

29. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

30. Terry, D.: Replicated data consistency explained through baseball. Commun. ACM
56(12), 82–89 (2013)

31. Tomescu, A., Devadas, S.: Catena: efficient non-equivocation via bitcoin. In: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26
May 2017, pp. 393–409. IEEE Computer Society (2017)

32. Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced
databases. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 1480–1491
(2015)

33. Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accu-
mulator. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 158–173. IEEE (2017)

34. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to
protect personal data. In: 2015 IEEE Symposium on Security and Privacy Work-
shops, SPW 2015, San Jose, CA, USA, 21–22 May 2015, pp. 180–184. IEEE Com-
puter Society (2015)

https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-540-39658-1_2
https://doi.org/10.1007/978-3-540-39658-1_2

Proof-Carrying Smart Contracts

Thomas Dickerson1, Paul Gazzillo2(B), Maurice Herlihy1, Vikram Saraph1,
and Eric Koskinen2

1 Brown University, Providence, USA
2 Stevens Institute of Technology, Hoboken, USA

paul@pgazz.com

Abstract. We propose a way to reconcile the apparent contradiction
between the immutability of idealized smart contracts and the real-world
need to update contracts to fix bugs and oversights. Our proposal is to
raise the contract’s level of abstraction to guarantee a specification ϕ
instead of a particular implementation of that specification. A combina-
tion of proof-carrying code and proof-aware consensus allows contract
implementations to be updated as needed, but so as to guarantee that ϕ
cannot be violated by any future upgrade.

We propose proof-carrying smart contracts (PCSCs), aiming to put
formal correctness proofs of smart contracts on the chain. Proofs of cor-
rectness for a contract can be checked by validators, who can enforce the
restriction that no update can violate ϕ. We discuss some architectural
and formal challenges, and include an example of how our approach could
address the well-known vulnerabilities in the ERC20 token standard.

1 Introduction

Motivation. The promise of smart contracts seems impossible to fulfill. In theory,
a smart contract is a transparent agreement, freely agreed upon by informed
parties. Irrevocable and immutable, it enforces itself without need for help from
humans and their civic institutions. In reality, an unhappy history of exploits,
theft, and fraud has established that people are bad at writing correct contracts,
and no better at detecting flaws in the contracts they agree to [5,6,17,18].

The Solidity language and EVM bytecode permit contracts to call code at a
dynamic address. While intended to support legitimate functions such as sending
a payment to a user or contract, it allows the contract to implement the pointer
to implementation (or PIMPL) idiom. This idiom has one benefit: it provides a
path through which a buggy contract implementation might be patched. Even
though the code is immutable, the state managed by the code, including the
implementation pointer, is not. The danger, of course, is that a dishonest party
could use such dynamic control flow to make substantial changes to the contract’s
terms after it has been agreed upon.

We believe this dilemma can be avoided, or at least mitigated, by including
formal correctness proofs in the blockchain itself. Suppose we identify a property
ϕ critical to the contract’s integrity. If a flawed implementation C that formally
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 325–338, 2019.
https://doi.org/10.1007/978-3-662-58820-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_22&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_22

326 T. Dickerson et al.

satisfies ϕ can only be replaced by an improved implementation C ′ such that
C ′ � ϕ, then all parties to the contract can be confident that ϕ will continue to
hold even as bugs (not covered by ϕ) are detected and patched.

The idea of mixing code and proofs goes back to Necula’s proof-carrying
code (PCC) [16]. The blockchain context, however, brings new challenges: What
format is needed for contracts’ specifications, and where are these specifications
stored? Which code needs to be verified? Who generates the proofs? How do
miners repeatedly validate the proofs? Here we sketch preliminary work on the
architectural and formal aspects of these challenges, illustrated by a running
example based on the ERC20 token standard [21].

Overview. We believe that one may be able to adapt Necula’s PCC into a vari-
ation that we call proof-carrying smart contracts (PCSC). The idea is that a
contract’s API and specification ϕ are published to the blockchain. Any subse-
quent updates to the implementation C must be accompanied by a valid proof
that the specification is maintained: C � ϕ. Smart contracts are well-suited to
PCC, because a proof only needs to generated once by the contract owner, before
the implementation pointer is updated. Publishing the proof to the blockchain
makes it immutable, and the participants in the network only need check the
proof’s validity, a task that is far less computationally expensive than generating
the proof.

Blockchains and blockchain consensus require some changes to standard
PCC. In the original formulation, a code consumer specifies the specification, and
the code producer generates a proof that the policy is preserved by the remote
code. In the blockchain context, the smart contract owner is the code producer.
All validators and clients in the blockchain network are code consumers, since
smart contracts are replicated and rerun by all.

We exploit the immutability of blockchain to enable the producer to provide
the specification. Because this specification is published before any updates to
the contract implementation, code consumers can inspect it before transacting
with the contract. Immutability of blockchain data guarantees the policy can
never be weakened by the producer. The producer updates the implementa-
tion pointer with a special setter that must be accompanied by a valid proof.
Blockchain consensus ensures that updates by the contract writer preserve the
specification, as long as a majority of participants validate the proof.

Running Example. The ERC20 specification [21] defines a number of operations
intended to provide a standardized API for managing tradeable tokens on the
Ethereum platform [7]. Using ERC20, Alice may approve up to some number
n tokens, the allowance, to be transferred to Bob, and Bob may then execute
multiple transfer calls until all n have been transferred (or Alice reduces Bob’s
allowance). Here is an example, based on a simplified version of the ERC20
operations, how one might use PCSC. In our simplified ERC20 specification,
there are only two accounts, from and to. Token transfers happen only unilat-
erally, flowing from from to to.

Proof-Carrying Smart Contracts 327

There are several invariants linking operations i and i + 1. First, we enforce
conservation of tokens, by defining

total supplyi = from balancei + to balancei (1)

and requiring
total supplyi+1 = total supplyi (2)

Second, we enforce the allowance limit:

Δi ≤ allowancei (3)

from balancei+1 = from balancei + Δi (4)

allowancei+1 = allowancei − Δi (5)

The näıve implementation in Fig. 1a appears to respect both invariants.
Unfortunately, these conditions, while necessary, are not sufficient to guaran-
tee the expected behavior. Alice, having initially approved an allowance of 100
tokens, may later wish to decrease Bob’s allowance by calling approve(50). But
if Bob has already executed transfer(n) (for n > 50), Alice’s call has the
unexpected effect of increasing Bob’s total withdrawal.

This is essentially a data race: even though the EVM execution is single-
threaded, transactions are submitted in parallel, and miners may reorder and
interleave those transactions arbitrarily.

Figure 1b is a version of approve that is safe from the data race. It forces
the sender to first set the allowance to 0 before updating1, effectively clearing
the allowance before setting a new one.

Contributions. This paper makes make the following contributions:

– We propose proof-carrying smart contracts (PCSC), a way to allow contracts
to be upgraded while ensuring that critical properties such as ϕ are preserved.

– We describe an architecture for PCSC, along with a discussion of needed
changes to the blockchain protocol and virtual machine (Sect. 2).

– A treatment of PCSC with specifications and proofs (Sect. 3).

This paper describes the ideas and insights motivating this work, which is still
in progress.

2 Realizing Proof-Carrying Smart Contracts

Adopting the language of PCC, the code producer is the contract writer, while
the consumers are all other participants in the blockchain network, miners, val-
idators, and the clients who issue transactions. The producer’s role is to create
1 This unfortunately restricts the possible valid semantics of the ERC20 implementa-

tion, later in the paper we will propose yet a 3rd implementation that is thread safe
without being subject to this restriction.

328 T. Dickerson et al.

1 bool transfer(uint256 value) {

2 if (value <= allowed) {

3 from_balance -= value;

4 to_balance += value;

5 allowed -= value;

6 return true;

7 } else { return false; }

8 }

9 uint256 allowance() {

10 return allowed;

11 }

12 // vulnerable to a data race

13 bool approve(uint256 value) {

14 allowed = value;

15 return true;

16 }

(a)

1 bool approve(uint256 value) {

2 // sender sets allowed to 0

3 // first to avoid data race

4 if (allowed == 0 && value > 0

5 ||allowed > 0 && value==0) {

6 allowed = value;

7 return true;

8 } else { return false; }

9 }

(b)

1 bool transfer(uint256 value) {

2 if (value <= allowed) {

3 from_balance -= value;

4 to_balance += value;

5 allowed -= value;

6 allowed_known = false;

7 return true;

8 } else { return false; }

9 }

10 uint256 allowance() {

11 if(caller == sender) {

12 allowed_known = true;

13 }

14 return allowed;

15 }

16 bool approve(uint256 value) {

17 // sender must have observed

allowance

18 if(allowed_known){

19 allowed = value;

20 return true;

21 } else { return false; }

22 }

(c)

Fig. 1. (a) First version. (b) Altered version of approve. (c) A safe version of approve,
emulating LL/SC for allowed. A simplified example of an implementation of the ERC20
token standard where tokens are sent with a two-step approve/transfer process.

the contract specification, consisting of an API and persistent contract state.
Unlike the original formulation of PCC, the specification is provided by the
producer, rather than the code consumer, along with the contract code. The
specification is provided as invariants on contract state as well as pre- and post-
conditions on the API interface methods. The parent part of a PCSC includes
the smart contract’s internal state, API methods, and formal specification. A
(successfully deployed) child part of the PCSC includes the source code for all
API methods, and a proof that the implementation satisfies the specification
(found in the corresponding parent).

We exploit the immutability of the blockchain to put executive control
of specification in the hands of consumers. In order to run smart contract

Proof-Carrying Smart Contracts 329

transactions, the contract is first appended to the chain. By requiring producers
to include the specification with the contract, it becomes part of the immutable
history of the chain, and can’t be modified, even if, for example, the contract
uses PIMPL and the implementation pointer changes to a new child contract.
Even though the consumers do not directly create the specification, a consumer
can inspect the specification and choose not to issue transactions on the contract
(though they must still process any transactions issued by other consumers, as
long as those transactions obey the specification).

We use the consensus mechanism of the blockchain to ensure that all updates
to the implementation of the smart contract preserve the original specification.
The producer specifies the fields of any child contract addresses. Any updates
to these fields must be accompanied by a proof that the new child contract
satisfies the original specification2. Participants trust that miners and validators
check the validity of proofs, just as they trust them not to zero out someone’s
token balance or put the contract in some other incorrect state. As with Bitcoin,
Ethereum, and other cryptocurrencies, as long as the majority of miners are
well-behaved, the contract updates will obey the specification.

Being a manifestation of PCC, the producer generates this proof off-the-chain
before making the update. The special setter function, allowing the child address
to be updated, uses a new bytecode operation, SAFEUPDATE, to check the pro-
vided proof preserves the specification. This ensures that miners and validators
can guarantee the new child contract is safe. The code for the child contract
must be available before the call to update the child address, so the parent must
publish the initial contract before issuing the update or prove an existing con-
tract satisfied the specification3. This is safe because contract addresses are not
reassigned or unassigned due to the immutability of the blockchain.

As with other violations (out-of-gas, exceeded stack depth), an update to the
child address without a proof or with an invalid one is rejected with an exception.
The validation of the proof is far less computationally expensive than generating
the proof, enabling higher throughput for miners. But due to the added compu-
tational expense of validation, this new update operation will require more gas
than a typical store operation, perhaps proportional to the size of the proof.

Figure 2 illustrates the operation of proof-carrying smart contracts (PCSC).
This diagram assumes the producer has already published the parent contract
(containing the API and specification) as well as the candidate child contract’s
code, because these operations require no verification4. The producer first gener-
ates a proof that the proposed child contract satisfied the invariants of the speci-
fication (Step 1). This proof is packaged in an update transaction. The producer
2 For the purposes of this paper, we assume that the compiler is able to translate

proofs & invariants for the source language (e.g. Solidity) into proofs & invariants
for the host language (e.g. EVM bytecode).

3 A dummy contract which always terminates with an exception should vacuously
satisfy the specification, since, for example, under the Ethereum model of execution,
a contract could run out of gas and terminate at any point anyway.

4 Generally-speaking, a parent contract can include arbitrary computation as long as
it is accompanied by its own proof.

330 T. Dickerson et al.

1 Address

Proof

Update

MinerOwner 2 3 4
New
Block

Validators

Fig. 2. The proof-carrying smart contract update operation.

issues the transaction to the blockchain network as usual for mining (Step 2). The
miner validates the proof against the code of the proposed child contract and pro-
duces a new block containing the safe update (Step 3). If the proof is invalid, the
block will still record the attempted update as a transaction, but the safe update
will fail with an exception (and consume gas to disincentivize spurious update
requests). Finally, the rest of the blockchain network participants rerun and vali-
date the SAFEUPDATE (Step 4), as they would any other transaction.

2.1 Proof-Carrying Smart Contracts in Detail

Here we describe the details that a realization of the PCSC architecture entails
as well as discussion of generalizations to the architecture.

For many use cases, the parent contract will be nothing more than a thin
wrapper for calls to the child contract, and perform no computation other than
delegating its method calls. This means that proofs about the behavior of the
parent should typically be compact, and in this way the parent contract resem-
bles a formal specification for an API more than it does a fully-fledged smart
contract in its own right. Similarly, in the PIMPL pattern, the child contract will
typically have no persistent state of its own, operating instead on the state of the
parent. If some persistent state is present, e.g., caching of expensive math opera-
tions, in the child, it must be guaranteed to not affect the global state invariants
of the parent. This organization provides a clean separation of specification and
implementation. In the Ethereum virtual machine, the parent contract would
use a DELEGATECALL to the child contract, to ensure the contract operates on
the parent contract state.

In addition to declaring the API specification and persistent state, the parent
contract must declare the fields holding the addresses to the child contracts.
At the source-code level, this is achieved with a specially declared setter that
modifies the addresses. There are several options for ensuring the smart contract
cannot subvert proof validation by modifying a child contract address without
using the setter. For instance, runtime instrumentation of store operations can
ensure nothing touches a child address field. Additionally, the specification itself
can describe invariants about updates to the child address field. This latter
option is more amenable to source code analysis, rather than byte code analysis,
since we can prohibit arbitrary address computation.

We assume that the contract is not valid until provided an initial child contract.
Exception handling can be encoded in the specification to ensure correct behavior
if a client calls the parent contract before the initial update. As previously noted,

Proof-Carrying Smart Contracts 331

the specification must always be robust to exceptions on platforms where com-
putations (of potentially unpredictable length) must be paid for in advance (e.g.
Ethereum). For our PIMPL-based examples, the parent has only one child con-
tract, but it is straightforward to extend this to multiple contracts. The producer
identifies the fields of each child contract and must provide proofs when updat-
ing each. Again, in our examples, the parent makes no other calls to contracts in
our current formulation of simplified ERC20, but there is nothing fundamental
preventing multiple child contracts, so long as each child address must be modi-
fied only with the safe update command that ensures a proof is provided with the
update. Similarly, the child contract may also call yet more contracts, so long as
proofs can be generated for their behavior.

As for altering the specification, a more flexible architecture can permit
updates to the specification by the contract writer. This would be possible as
long as the new specification implies the previous one, i.e., the specification can
only become more strict.

Lastly, it is not necessary that the smart contract specification be decided
by an individual. A common type of proposal and voting contract can be used
to distribute decision-making. Participants can propose and vote on the specifi-
cation, which is automatically installed by the voting contract. Furthermore, in
cases where a specification is for standard behavior that might be incorporated
into many contracts, we might imagine this proposal voting system be used to
produce standardized APIs. In this way, all blockchain participants are both pro-
ducers and consumers. Modifications to the specification, under the previously
stated implication rule, could be decided in a similar way.

There are two sorts of upgrades that our proof-carrying code scheme permits.
Minor upgrades can install a new child contract as long as the parent contract’s
safety policy is preserved. This is enforced by the proof verification performed by
SAFEUPDATE. This permits safe upgrades without involving the slower consensus
process required to decide on the safety policy. The proof verification makes this
possible without having to trust the developer to maintain the safety policy.
This enables upgrades due to minor bugs not covered by the safety policy or
performance upgrades for instance. Major upgrades can alter the safety policy
itself and require consensus among contract participants, e.g., via a proposal
and voting system. Like the minor upgrade, the child contract implementation
is replaced, but the new safety policy itself is also provided. The SAFEUPDATE
verifies the new child contract against the new policy. This requires the new child
contract author to generate a proof against the new safety policy.

The tradeoffs here are that maintainers can easily perform minor upgrades
whose safety is ensured by the original safety policy of the contract, lowering
obstacles to development. But the discovery of limitations of the safety policy
itself or a desire for organizational changes may warrant an upgrade to the policy
itself.

332 T. Dickerson et al.

Let us assume the token contract Fig. 1a has been initially installed with
only the invariants specified in Eqs. 1–5, i.e., the safety policy only guarantees
the results of balance transfers, but does not account for the approve/transfer
data race A minor upgrade, such as eliminating a superfluous call to a safe math
library, can be performed, since it provably does not violate the safety policy.
At a later point, the organization discovers the data race and agrees to update
the safety policy to ensure future versions of the contract avoid it. This major
update is accompanied with a revised implementation of the contract that sat-
isfies the new invariants. Future contracts can then perform minor maintenance
or performance upgrades, like removing safe math calls, that continue to satisfy
the safety policy.

3 A Proposal for Specifications and Proofs

In recent years there has been substantial progress on formal verification of
smart contracts at both the high-level Solidity language [15,19] as well as low-
level EVM bytecode [11,12]. We aim to exploit this progress to enrich the
blockchain so that (i) smart contract APIs come with formal specifications of
how they should operate and (ii) proposed smart contract implementations can
include proofs that they satisfy those specifications. In this section, we discuss
sketch formal aspects, building on specification formats for objects [2,3,8,13] and
Necula’s proof-carrying code [16].

As discussed in the prior section, our PCSCs involve two components. The
parent part of a PCSC includes the smart contract’s internal state, API meth-
ods, and formal specification. A (successfully deployed) child part of the PCSC
includes the source code for all API methods, and a proof that the implemen-
tation satisfies the specification (found in the corresponding parent). We now
provide more detail on each of these, using the running example.

3.1 Parent: APIs and Specifications

State and Methods. The parent in a PCSC includes the state in the form of object
fields. It could include any of the smart contract language’s data-types (integers,
strings, Booleans, mappings, arrays, etc.). In the ERC20 running example, the
state of the PCSC includes:

balance : Addr �→ N Relate addresses to balances
allowed : Addr �→ (Addr �→ N) How much others can transfer
child_ptr : Addr Pointer to implementation

We have already discussed the purpose of balance (a mapping from addresses to
tokens, represented as natural numbers) and allowed (a mapping from addresses
to address-token mappings). The final element of the state above is a critical
component of the PCSC parent. It is a pointer to the child part of the PCSC
which will contain the implementation (discussed below).

Proof-Carrying Smart Contracts 333

The parent in a PCSC also includes the interface, in the form of methods
that can be called by participants in the network. The bodies of these methods
simply relay the call, following the child_ptr to the corresponding method in
the child in the PCSC. Here is an example:

1 api_transfer(uint256 value, addr from) : bool {

2 return child_ptr.transfer(value, from);

3 }

This PIMPL paradigm means that the correctness of the parent contract follows
immediately from that of the child (discussed below), modulo initialization con-
cerns. In general, PCSCs needn’t necessarily follow the PIMPL paradigm and
it is easy to imagine other arrangements. For example, a contract may wish to
specialize dispatch, in which case all child contracts would need to be proved
correct. For simplicity, we focus on the common PIMPL case in the remainder
of this paper.

{I}
api_transfer(uint256 value, addr from) : bool⎧⎪⎪⎨
⎪⎪⎩

I ∧ Σa ‘balance(a) = Σa balance(a)
∧ ‘allowed(from)(me) ≥ value

⇒ allowed = ‘allowed[from, me �→ ‘allowed(from)(me) − value] ∧ rv = true
∧ ‘allowed(from)(me) ≤ value ⇒ allowed = ‘allowed ∧ rv = false

⎫⎪⎪⎬
⎪⎪⎭

{I}
api_allowance(addr whom) : uint256

{I ∧ Σa ‘balance(a) = Σa balance(a) ∧ ρme(whom) = allowed(me)(whom)}

{I}
api_approve(uint256 value, addr whom) : bool⎧⎪⎪⎨
⎪⎪⎩

I ∧ Σa ‘balance(a) = Σa balance(a)
∧ (‘allowed(me)(whom) = ρme(whom)

⇒ allowed = ‘allowed[me, whom �→ value] ∧ rv = true)
∧ (‘allowed(me)(whom) �= ρme(whom) ⇒ allowed = ‘allowed ∧ rv = false)

⎫⎪⎪⎬
⎪⎪⎭

where I is the global invariant, defined to be:

∀a.balance(a) ≥ 0 ∧ ∀a b.allowed(a)(b) ≥ 0 ∧ ∀a.balance(a) ≥ Σb allowed(a)(b)

Fig. 3. Formal specification ϕ (in blue) for some of the ERC20 token standard (Color
figure online).

Formal Specifications. The parent in the PCSC also contains the specification
ϕ of how the overall PCSC is intended to behave. As we will discuss later, a
candidate child implementation C is required to include a proof that C � ϕ.

334 T. Dickerson et al.

Figure 3 provides an example specification ϕ for a portion of the (simpli-
fied) ERC20 token standard that we are using as a running example. Each
method API includes standard Floyd-Hoare style pre-conditions as well as post-
conditions, depicted in blue. For a given method, say, api_transfer, the mean-
ing is that, if we assume that the associated pre-condition holds before api_-
transfer executes, then a correct implementation will ensure that the corre-
sponding post-condition must hold upon completion. (We assume that every
method will terminate, because the smart contract architecture enforces ter-
mination through “gas.”) Each pre/post-condition includes I which is a global
invariant on the state of the PCSC. I is defined at the bottom of Fig. 3. There are
three conditions given by I: that all balances are non-negative, all allowances
are non-negative, and that, for a given address a the sum of all outstanding
allowances is bounded by a’s balance (respectively). The latter condition corre-
sponds to Eqs. 3–5 in Sect. 1.

In the specification for api_transfer, me is used to denote the caller’s
address and notation ‘allowed indicates the value of allowed before the method
executed. The post-condition for api_transfer includes a stipulation that the
sum of all participants’ balances is unchanged (corresponding to Eqs. 1 and 2
in Sect. 1). We use a as a quantifier variable over each participant’s address. The
post-condition includes two further cases, depending on whether the transfer
request is permitted by allowed. If it is permitted, then the value of allowed
is the same as ‘allowed, except that the appropriate slot is decremented. Oth-
erwise, allowed is unchanged. rv indicates the return value of the method.

Specification for approve. The published ERC20 standard has a well-publicized
flaw, demonstrated by the näıve implementation in Fig. 1a, which is that calls to
approve a new allowance do not impose any particular semantic requirements
on the previous value. Thus an account holder may inspect the blockchain, and
see a current allowance value and attempt to reduce it at the same time that
another transaction is issued to transfer some of it. Since pending transactions
are subject to arbitrary reordering by the miner, the transfer may execute first,
and altered allowance may have the net effect of raising the total that can be
transferred.

Conceptually, we wish to add another invariant: the allowance may not be
altered unless the allowance is known when the transaction executes (this may
be different than the value it had when the transaction was issued). The imple-
mentation shown in Fig. 1b patches this vulnerability by requiring that a new
positive allowance can only be set if the allowance is currently being set to 0
(either by transfers or by approves). This blocks the data race, but also forces
the account holder to pay for unnecessary transactions when a competing trans-
action is not pending.

Multiprocessor architectures address similar data race problems with atomic
instructions such as compare-and-swap. To fix the ERC20 API, however, it
is more convenient to mimic the functionality of load-linked (LL) and store-
conditional (SC) instructions. LL loads a value from memory, and SC writes a
new value to the same location, if and only if it has not been written since the
matching LL.

Proof-Carrying Smart Contracts 335

Our specification in Fig. 3 includes the requirement that allowance is known
at the time of approval, using a ghost variable. The specification for api_-
allowance uses ghost variable ρ in the post-condition. This variable tracks the
fact that the caller (me) has checked how much recipient whom is currently per-
mitted to transfer. ρme can become out-of-date if the recipient makes a call to
transfer, and this will be the saving grace in the specification of api_approve.
In the specification for api_approve, allowed is updated, approving a pending
recipient whom to receive value. The two cases depend on whether ghost vari-
able ρme(whom) is up-to-date, indicating that me is aware of how much has been
approved.

In the next subsection, we will discuss how the implementation using strategy
employed in Fig. 1c can be proved to satisfy this specification.

3.2 Child: Proposed Implementations and Proofs

Miners propose the child portion of a PCSC: an implementation C, coupled
with a proof that the implementation satisfies the specification ϕ housed in the
parent. We now discuss what the child portion of the PCSC entails.

Implementation C. The implementation C of each API method (transfer,
allowance, etc.) is housed in the child PCSC such that, if C can be shown
to satisfy ϕ, then the child will be installed and these implementations will be
accessed via child_ptr.transfer(), etc.

Proof that C � ϕ. How can we be 100% sure that this proposed implementation
in Fig. 1c operates correctly? The child portion of a PCSC includes a proof that
code C satisfies the corresponding parent’s specification ϕ.

The Floyd-Hoare style pre/post specifications shown above can be verified
to hold of an implementation using verification conditions as seen in tools such
as Spec# [3], Boogie [2], Dafny [13], Why3 [8], etc. Intuitively, the format of the
proofs are, for each line of each method, invariants that must hold at that line
(more precisely: the invariant comes just before or just after the line). Finding
these invariants is difficult (searching for a proof). Checking these invariants,
however, is much faster: a symbolic analysis can traverse the method, starting
by ensuring that the first invariant holds from the pre-condition and effect of
the first line of code. When the analysis reaches the end of the method, it checks
that the post-condition is entailed by the penultimate invariant and last line of
code.

PCSCs allow us to prevent buggy implementations like approve in Fig. 1a
from being accepted onto the blockchain, but permit correct implementations
like Fig. 1c. There is no proof that Fig. 1a satisfies the specification in Fig. 3. On
the other hand, a proof can easily be given for Fig. 1c, which is a simplified case
where there are only two participants and variable allowed_known is used to
ensure the correct behavior of approve.

336 T. Dickerson et al.

3.3 Verification Tool Development

In our ongoing work, we are developing verification tools for PCSC, building on
recent works for verification of solidity [15,19] and EVM [11,12].

Ultimately, the proofs published to the blockchain need to be expressed in
terms of the bytecode, to avoid dependencies on a specific verified compiler.
Fortunately, others have developed formal semantics for EVM bytecode [11,12].
Down the road, we plan to extend work on certified compilation [14] to translate
source-level correctness guarantees to bytecode guarantees. However, there are
already verification challenges at the source code level, being tackled by us and
others [15,19].

4 Related Work

Ethereum’s [7] ERC20 token standard [21] is widely used as the basis for many
recent initial coin offerings. Vladimirov and Khovratovich [20] give a clear
description of the ERC20 design flaw discussed here.

The notion that proofs should be included with code first appears in Nec-
ula’s seminal proof-carrying code paper [16]. As mentioned, we make use of the
functionality of the Why3 platform [4]. Hicks and Nettles [10] pioneered the idea
of using PCC for dynamic software updates.

There is other work that investigates vulnerabilities in smart contracts. For
example, Luu et al. [15] develop a software tool called Oyente, which detects
security bugs in Ethereum contracts. Atzei et al. [1] describe common pitfalls
that lead to security vulnerabilities, and demonstrate how they can be exploited.
Sergey and Hobor [17] analyze smart contract vulnerabilities by drawing com-
parisons between contract execution and concurrent shared-memory computing.
Grossman et al. [9] discuss a dynamic approach.

5 Conclusion and Future Work

This paper describes preliminary work attempting to reconcile the apparent
contradiction between the immutability of idealized smart contracts and the
real-world need to update contracts to fix bugs and oversights. Our proposed
solution is to raise the contract’s level of abstraction to guarantee an invariant
ϕ instead of a particular implementation of that invariant. A combination of
proof-carrying code and proof-aware consensus allows contract implementations
to be updated as needed, but so as to guarantee that ϕ cannot be violated by
any future upgrade.

Much remains to be done on proof-carrying smart contracts. The work
reported here is still in an early stage, and we are not yet far enough along
to report on progress or difficulties.

Future goals include formally modeling proof-carrying smart contracts and
creating an implementation as an extension of the Ethereum blockchain and vir-
tual machine. A formal specification will permit proofs of guarantees that proof-
carrying smart contracts provide. Additionally, we intend to investigate how

Proof-Carrying Smart Contracts 337

consensus integrates with these proofs and perhaps extend the model consensus
to include them. Extending smart contracts with specifications requires defining
extensions to the smart contract implementation language and the bytecode to
represent the specifications as well as mappings from source code to bytecode
specifications. For generating and validating proofs, we plan to use off-the-shelf
tools, such as Why3. Our language extensions and the proof tools need to be
integrated with the smart contract toolchain and virtual machine itself.

For implementation, we intend to extend the contract virtual machine with
new opcodes to add new contracts with specifications as well as update them
given a new proof. To enable this, we will extend the binary format of smart
contract to encode specifications and proofs. Using these changes in an existing
chain would require a hard fork to extend the binary format and virtual machine.
With proof-carrying smart contracts in hand, we will use them to improve the
ERC20 token standard, demonstrated with example implementations, and show
how contract writers can take advantage of these.

Proof-carrying smart contracts open up new research questions. For instance,
how do we integrate proofs into blockchain consensus and how do mining and
consensus mechanisms, such as proof-of-work and proof-of-stake, interact with
formal proofs? Formal verification enables trust for updates, but consensus mech-
anisms are still needed to agree on what the right specifications are. For instance,
contract participants can vote on changes to the specifications, but allow formal
verification to eliminate the need for voting on implementation changes.

The ability of formal verification to support trusted computing has the poten-
tial to improve how consensus is achieved, and proof-carrying smart contracts
are an important step in integrating proofs with blockchain.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts
(SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 8

2. Barnett,M., Chang,B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: amodu-
lar reusable verifier for object-orientedprograms. In: deBoer,F.S.,Bonsangue,M.M.,
Graf, S., deRoever,W.-P. (eds.)FMCO2005.LNCS,vol. 4111,pp. 364–387.Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 17

3. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

4. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3
platform. http://why3.lri.fr/manual.pdf. Accessed 14 Jan 2018

5. Daian, P., Breidenbach, L.: Parity proposals’ potential problems. http://
hackingdistributed.com/2017/12/13/ether-resurrection/. Accessed 14 Jan 2018

6. DAO: the DAO smart contract. Accessed 8 Feb 2017
7. Ethereum. https://github.com/ethereum/. Accessed 14 Jan 2018
8. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,

M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
http://why3.lri.fr/manual.pdf
http://hackingdistributed.com/2017/12/13/ether-resurrection/
http://hackingdistributed.com/2017/12/13/ether-resurrection/
https://github.com/ethereum/
https://doi.org/10.1007/978-3-642-37036-6_8

338 T. Dickerson et al.

9. Grossman, S., et al.: Online detection of effectively callback free objects with appli-
cations to smart contracts. In: ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL) (2018)

10. Hicks, M., Nettles, S.: Dynamic software updating. ACM Trans. Program. Lang.
Syst. 27(6), 1049–1096 (2005). https://doi.org/10.1145/1108970.1108971

11. Hildenbrandt, E., et al.: KEVM: a complete semantics of the ethereum virtual
machine. Technical report (2017)

12. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

13. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4
20

14. Leroy, X., et al.: The CompCert verified compiler. Documentation and user’s man-
ual, INRIA Paris-Rocquencourt (2012)

15. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS 2016, pp. 254–269. ACM, New York (2016).
https://doi.org/10.1145/2976749.2978309

16. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 1997, pp.
106–119. ACM, New York (1997). https://doi.org/10.1145/263699.263712

17. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. CoRR
abs/1702.05511 (2017). http://arxiv.org/abs/1702.05511

18. Sirer, E.G.: Parity’s Wallet Bug is not Alone (2017). https://blogs.apache.org/
foundation/entry/apache-struts-statement-on-equifax. Accessed 05 Nov 2017

19. Various: formal verification for solidity contracts. https://forum.ethereum.org/
discussion/3779/formal-verification-for-solidity-contracts. Accessed 14 Jul 2018

20. Vladimirov, M., Khovratovich, D.: ERC20 API: an attack vector on
approve/transferfrom methods. https://docs.google.com/document/d/
1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA jp-RLM/edit#heading=h.
m9fhqynw2xvt. Accessed: 14 Jan 2018

21. The Ethereum Wiki: ERC20 token standard. https://theethereum.wiki/w/index.
php/ERC20 Token Standard. Accessed 14 Jan 2018

https://doi.org/10.1145/1108970.1108971
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/263699.263712
http://arxiv.org/abs/1702.05511
https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax
https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard

Comparative Analysis of the Legal Concept
of Title Rights in Real Estate

and the Technology of Tokens: How Can Titles
Become Tokens?

Oleksii Konashevych(&)

Obolonskij Avenue, 2a, apt. 69, Kiev 04210, Ukraine

Abstract. This paper discusses how to use blockchain tokens to represent real
estate titles. Tokens on the blockchain as a technological concept is the closest
solution to the legal concept of titles, because it provides for evidence of
ownership and can be transferred from one address to another, while giving
exclusive access to such an address to the owner. This paper contains the
analysis of the concept of tokens in the context of its applicability to title rights
on real estate. There is also a discussion of the outcomes of conducted inter-
views with professionals in the field of Computer Science, technologies,
blockchain and smart contracts. Some critical mismatches were found: tokens
are not able to satisfy current demand to manage title rights online. To develop a
mature and sustainable electronic system, there are certain issues that need to be
addressed: inheritance procedures, litigation, guardianship, delegation of rights
and rights of third parties (liens and encumbrances) as well as the legal concept
of bundle of rights (possession, disposition, enjoyment, etc.), which requires a
strong mathematical model. During the abovementioned interviews, some
weaknesses were found in the existing ideas of the use of the blockchain for real
estate, mostly related to the undesirable centralization and issues with security.
As the result of this research, it is obvious what needs to be developed is the
concept of a high-level design of the technology, capable of managing title
rights on the blockchain, which includes a three-level mechanism of
(1) e-voting, which provides for a democratic implementation of governing
algorithms; (2) Smart Laws, as the concept of high level “smart” algorithms that
implement (by e-voting) existing laws related to property rights in a form of the
program/protocol; and (3) smart contract templates which are based on the smart
laws, that allow people to manage their title rights online.

Keywords: Blockchain � Smart contracts � Titles � Real estate � Tokens �
E-Governance � E-Voting � E-Democracy

O. Konashevych—Erasmus Mundus Joint International Doctoral Fellow in Law, Science and
Technology.
Supervisors: Prof. Marta Poblet Balcell and Prof. Pompeu Casanovas.

© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 339–351, 2019.
https://doi.org/10.1007/978-3-662-58820-8_23

http://orcid.org/0000-0003-0068-5962
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_23&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_23

1 Introduction

A [crypto] token is a record of a number which is kept by a specific address on the
blockchain and can be divided (usually up to 8 decimals) and transferred to another
address within the ledger of the blockchain system [1, 2]. For the purposes of this
paper, we do not distinguish between tokens and cryptocurrency. However, tokens
have more features and may be considered as a technological evolution of the cryp-
tocurrency, presented by someone who called himself Satoshi Nakamoto [1].

A few principal features make tokens ideal for the management of property rights:

1. The blockchain protocol is designed to make transactions – the transfer of tokens
from one address to another, while not allowing double spending [1, 3].

2. Such address provides for exclusive access, because only a person who has a
cryptographic private key may manage the token.

3. The blockchain ledger is a complete, transparent history of records, which allows a
person to track each token from the moment of creation, including fractional
transactions (decimals and less than 1) and transactions between any number of
addresses.

The three next features make tokens principally different and more developed
compared to a traditional, centralized way of making ledgers that is typical for banks
and public registries:

1. The technology offers a decentralized way of keeping records; no one keeps all of
the power in his hand, and that prevents usurpation of power and corruption.

2. The immutability and the non-returnability of transactions, which means that it is
practically unfeasible to delete or alter a record or in any other way to corrupt it.

3. The next generation of blockchains (after Bitcoin) offers algorithms to introduce a
high level of automation and security for the management of tokens and at the same
time, excludes the necessity of a human to operate it manually (See all critical
features in a diagram on Fig. 1).

Ethereum [4] and NXT [5] are examples of blockchain-based platforms that
develop such automated systems. However, they stand on different ideological
grounds. Ethereum is a Turing-complete programming language platform [6] for the

Why blockchain tokens are
good for tles

•Peer-to-peer transac ons
•Exclusive access to the

address by the private key
•Protec on from double

spending

Why blockchain is be er
then conven onal registries

•Decentralized ledger
•Immutability and

transparency
•Automa on by “smart”

algorithms

Fig. 1. Critical features of the blockchain for the managing of titles

340 O. Konashevych

developing of so-called “smart contracts” [7], and NXT suggests ready-to-use user
services implemented into the core of the blockchain protocol with no need to develop
applications.

The mentioned features of the blockchain technology with smart contracts can be
considered as an alternative technology to existing centralized land (real
estate/cadastral) registries and a way to protect and manage title rights.

However, technological concepts appeared to be non-synchronized with legal
concepts. In the following sections, it is shown why titles are not tokens, and what
should be developed to introduce the world to a sustainable electronic system, able to
improve the way how relations on real estate ownership is organized now.

2 Comparative Analysis of the Legal Concept of Title Rights
and the Technology Tokens

The legal concept of titles and the technology of tokens have much in common, along
with differences.

A “title” is an evidence of ownership. The title represents the property rights of an
estate; this is an equivalent of estate (land, for example), but on paper, which is legally
recognized. The crypto-token is a technology that has the same purposes – the token
can represent values and prove ownership. The only difference is that titles of real
estate have a long tradition and legacy of regulation, and there is no place for tokens in
the existing laws. That is why transactions that are made with real estate tokens will not
have any legal consequences.

Title deeds must be acknowledged in some countries before a notary, in some -
before other authorized persons, and recorded in the public registry. Thus, the use of
tokens for real estate requires legislative changes that legitimize new procedures of
acknowledgement and recording on the blockchain.

The title can be divisible, that is, what in the language of law means co-ownership,
joint ownership, community property (also known as marital property) and some other
concepts that exist in different jurisdictions. There are two main aspects of property
rights: the type of ownership, and a set of specific rules which co-owners must follow
to respect the rights of other co-owners.

In the theory of law, there are two basic types of co-property: it may belong to persons
on the right of common share, or on the right of common joint ownership. In common
share, there are no fractions; the property belongs to all co-owners equally (spouses,
condominium owners, etc.). In joint ownership, owners have shares (1/2, 1/3 etc.).

As to a set of rules, the law and the agreement may establish some specific rules
which co-owners must follow. For, example, there is a typical rule that one co-owner
cannot convey his share in the title without the consent of the other owners. The other
owners have the right to buy the share for the same price as the owner wants to sell it.

The common property may become joint ownership. In the case, for example, that
spouses divorce in some jurisdictions, they become 50/50 co-owners.

Different jurisdictions may have some specifics in co-ownership law, as well as
individual may have agreements between co-owners to establish specific rules. All
these rules in general can be represented in the theory of “property rights,” which is
further discussed.

Comparative Analysis of the Legal Concept of Title Rights 341

That is why when we are talking about tokens, it is clear that at least two layers of
technology solutions must be applied to tokens: the first is a set of algorithms that
establish general rules (laws) specific for certain jurisdictions, and the second, indi-
vidual rules based on contracts, that do not contradict general rules.

However, co-owners are not the only category of third parties that can influence the
property rights of an owner. There are two other categories of third parties:

• third parties which are not owners but have interests in the property (the property
rights of third parties) as per the law or agreement; and

• third parties that have no interests but have legal access to the property and may
influence it (judge, notary, parents, custodian, town’s clerk (registrar) etc.).

The concept of property rights includes a bundle of rights: the right to dispose, the
right to possess and the right to use (enjoy)1. The owner is free to manage these rights
and deeds that he concludes influence this bundle (See Fig. 2 “Components of own-
ership: bundle of rights”).

For example, when an owner rents out his property, he transfers his right to possess
and own the property to the third party – the tenant. At the same time, he as a landlord
is restricted in these rights (to possess and to use) while the contract is valid. He is also
restricted in his right to dispose of the property in the sense of allowing the use of the
property by others. However, he keeps the right to convey the title (for example, to sell
it). So, if he sells the property, the tenant keeps the rights to possess and to use the
estate (unless otherwise provided by the contract), and a new title owner is granted with
the same restrictions. There also can be other limits to dispose: in a mortgage, the
owner is not able to convey the title without the agreement of the creditor.

Dispose

Use

Possess

Fig. 2. Components of ownership: bundle of rights

1 There are a couple of main theories about property rights, and they vary from 3 to 5 main rights:
possession, disposition, enjoyment (use), control, exclusion etc. However, they do not have principal
differences for this stage of research, and so it is not critical to make a choice now which theory fits
best to design the technology. Our aim here is just to argue that these kinds of legal concepts create
the necessity to find a solution to develop the technology.

342 O. Konashevych

As we see, the concept of property rights is complex, and the situation is more
complicated by the existence of different jurisdictions and traditions of law. We see an
essential need to present a mathematical model of property rights that matches the
concept of tokens driven by smart contracts, taking into account all specifics the comes
from the blockchain technology, i.e. immutability of records and smart contracts, so all
necessary high-level features must be developed by design not on the run. So, the
mathematical model will become a metamodel for designing systems oriented on
certain legal systems and jurisdictions.

There is also another category that has no interests in property, but acts in the
interest of owners and other persons and may change property rights.

The judicial system allows interested parties to contest rights in court, so judges and
then bailiffs are those who can change the title and property rights and enforce these
things.

Another important group of third parties is a notary public. Notaries execute wills
and apply inheritance laws.

Another case of the disposition of estate without the will of an owner are parents’
rights, guardianship, and custodianship in respect of the rights of minors and disabled
persons.

Parents, guardians, and custodians have the rights to act in the name of minors and
disabled persons, including the right to dispose of estates and acquire property rights.
Their rights may be unlimited or regulated by law and revised by a public body
(custodian committees/boards, etc.).

The delegation of rights by contract is another case when the title is operated by the
third party. In contrast to parents/custodians this delegation is not by law but by an
agreement. The exact volume of rights is defined by law and by a contract and usually
is confirmed by the power of attorney.

The last case when a title is under the influence of third parties, is when it is under
the obligation to obtain permission from the public body to convey the property. There
can be variety of reasons to do so. In this way, a government can:

• prevent illegal construction on the land;
• enforce owners to pay taxes before selling the property;
• oblige an appraisal of real estate (for some categories of owners, like state enter-

prises); or a
• local community may protect its right to not let unwanted people live in their

territory.

Therefore, the approval and certain legal actions must be performed before a deed.
Another case which requires further development is the separation and merging of

titles. That happens when adjoined plots of land are united into one title or a plot is
divided. So, the mechanism to separate and merge the tokens by linking them to a new
survey2 is also required for a prospective electronic system.

2 Surveying or land surveying is the technique of determining the terrestrial or three-dimensional
positions of points and the distances and angles between embodied on the plan of the plot.

Comparative Analysis of the Legal Concept of Title Rights 343

None of this is implemented in the existing electronic solutions, and yet needs to be
designed in the system that aims to provide a full range of legal instruments to manage
property rights by smart contracts.

3 The High-Level Design of the System

In preparation for this paper, 4 interviews were conducted and an analysis was made of
existing projects related to the blockchain and real estate, and some typical cases of
ICOs.

Those interviewed were: (1) Vassilis Vutsadakis, Ph.D. in Science and Technology,
Researcher at Propy3 (Blockchain Supermarket for Real Estate); (2) Matt McKibbin,
Masters of Science in Industrial Hygiene, Co-founder and Business Development
Director of “Ubitquity, LLC.”4 (the blockchain-secured platform for real estate
recordkeeping), Founder and Chief Decentralization Officer of “DecentraNet”
(blockchain consulting); (3) Mykhailo Tiutin, Masters in Information Security,
Co-Founder/CTO of “Vareger” (Blockchain Developer, Ukraine)5, smart contracts and
blockchain developer, cryptographer and IT security expert; (4) Vadim Sukhomlinov,
Masters in Computer Science, Software Engineer/Architect at Intel Corporation.

The research includes the analysis of projects that develop different solutions in
blockchain and real estate domain.

• Velox.re6 (USA, since 2016) is ongoing startup that aims to digitize the process of
purchase in Cook County on Illinois state by creating a Bitcoin based platform that
unites professionals (intermediaries) of real estate industry around the world [8–10].

• Ubitquity.io7 (USA, since 2015) develops services on e-recording companies, title
companies, municipalities, and custom clients to record of ownership [11].

• Bitland8 (Ghana, since 2016) is a partner of Ubitquity.io and currently is developing
solutions for Real Estate Land Registration services to citizens of Ghana as well as
companies and farm unions [12, 13].

• Chromaway9 (Sweden, since 2016) is piloting the first project to model a property
purchase using the blockchain and smart contract technology [14].

• Flip10 (USA, since 2016) is a peer-to-peer leasing marketplace in NewYork city [15];

3 http://propy.com/.
4 https://www.ubitquity.io/web/index.html.
5 https://vareger.com/.
6 https://www.velox.re/.
7 https://www.ubitquity.io/web/index.html.
8 http://bitlandglobal.com/.
9 https://chromaway.com.
10 https://flip.lease/.

344 O. Konashevych

http://propy.com/
https://www.ubitquity.io/web/index.html
https://vareger.com/
https://www.velox.re/
https://www.ubitquity.io/web/index.html
http://bitlandglobal.com/
https://chromaway.com
https://flip.lease/

• REX11 (USA, since 2016) is a peer to peer MLS12 built on Ethereum. REX aims to
connect vendors, buyers and agents over an open network by using the blockchain
cryptocurrencies [16].

• Bitfury13 (Republic of Georgia, since 2016; Ukraine, since 2017) proposed a
solution to protect records of the central cadastral registry by casting hashes of such
records to the blockchain, mixing by fact two blockchain technologies: private
DLT14 EXONUM and Bitcoin [17, 18].

• Xinyuan Real Estate Co.15 (China, since 2016), a company that declared its interest
in the blockchain in the cooperation with IBM to develop a smart city in China [19].

• Propy, Inc.16 (USA, since 2016), a company that develops the supermarket for real
estate and platform for deeds based on Ethereum smart contracts.

Now let us summarize the aforesaid and the first section and discuss how to design
the system in the best way. While doing interviews and researching, we distinguished
some solutions which are not acceptable from our point of view. So, let us discuss first
what we should not do and why.

The first is to use the blockchain as a database of records that reflects acts made
offline. The blockchain in this case in not a primary source of evidence, but collects
everything that is happening offline (on papers) or in the central database. Each new
record is not necessary valid, but it helps to find the truth in a court while considering
all possible paper evidences. We don’t see much benefit in using the blockchain in this
way because the central public registry does the same. The only thing the blockchain
does is it protects against altering records, while a well-designed and protected central
database can do the same. What is more important here, is that it does not require
changes in the existing bureaucratic systems. But our aim is to find a better system that
can reduce regulations and manual work.

Another sub-option of this approach is just to store hashes on the blockchain of
records made in the central database, which is almost the same, but does give more
protection to the database against corruption, and adds a new bureaucratic procedure [20].

In this concept, a private company or a public body keeps copies of private keys,
and/or use multi signatures (escrow mechanism) [21]. In case the token is stolen, the
company will announce it invalid and reissue a new token (we remember that we
cannot alter the transaction, so if it is stolen we cannot do anything), so the company

11 http://rexmls.com/.
12 MLS is a standard of listing real estate and services of brokers, http://www.mls.com/.
13 http://bitfury.com/.
14 DLT is a Distributed Ledger Technology which means shared ledger technologies similar but not

equal to the blockchain.
15 http://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powe-

red-real-estate-finance-technology-platform-300299818.html.
16 www.propy.com.

Comparative Analysis of the Legal Concept of Title Rights 345

http://rexmls.com/
http://www.mls.com/
http://bitfury.com/
http://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
http://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
http://www.propy.com

needs to manually track the list of tokens17 and its validity. We see that this concept
does not bring much value compared to the existing approaches because it is still
centralized. There are too many examples of even large and well secured companies
being hacked and losing personal data. A private company can lose not only the private
keys of users, but also their own keys; they can also be corrupted or even become
bankrupt, which is especially an undesirable risk for people whose real estate is the
only wealth they have.

In the case that we use the public body instead of a private entity, we will have
more trust and more authority, but at the same time, we will create the same high-level
regulations and bureaucracy.

Another arguable solution found was a creation of an electronic compliance system.
For each transaction of a token, the owner uses a specific smart contract. As we
remember, the smart contract is not a contract in the common sense, but just an
electronic algorithm. For example, for a purchase: the program holds the transaction of
the token until the buyer pays.

In real life, the contract is not a self-sufficient and closed legal act. The contract
reflects the agreement of parties as to essential conditions, but laws at the same time
provide for norms that are not necessarily included in the agreement, and are followed
as if they were in the contract.

Sometimes it is almost impossible to include all of the provisions in the contract.
So, the contract may only refer to the law, or even just presume that a law or a general
practice will be applied to a missing part of the contract. A smart contract, which is a
sort of a closed system, in this sense is flawed because cannot be influenced by external
factors (like the law).

One solution is to use electronic compliance systems. Before a transaction, the
compliance system will verify the token and the parties. In this case, we must ensure
that such a system is good enough to protect the rights of parties according to the local
jurisdiction and is not corrupted, which bring us similar issues to that of the previous
example with the private company that manages keys and records.

Considering these items, we see that the best way to proceed is to develop the
system so that the government will adopt it, is to implement by design existing spe-
cifics of jurisdictions according to the concept “code is law.”18 The code implements
required provisions from the legislation, and in case something goes wrong, parties will
use mechanisms of litigation and arbitration.

Algorithms adopted by the government will be a higher layer for smart contracts
and will work as obligatory standards. Let us call these “smart laws.” Smart laws will
establish rules and mechanism of access of third parties to tokens and some basics
principles of work (that reflect existing “paper” regulations).

17 During the research we also found some ideas not to use tokens, but only to make deed records on
the blockchain. However, the same as with tokens it requires a third party manually to track all legal
facts which are occurred with the title and reflect its validity in case it has been recognized as
invalid.

18 The expression “code is law” was proposed by Lawrence Lessig in his Book “Code and Other Laws
of Cyberspace” (1999).

346 O. Konashevych

Combining this system with the concept of oracles19, which is proposed by Buterin
[22], we will be able to keep track of authorized persons: the list of addresses of public
notaries, judges, bailiffs, custodians, etc., that may perform transactions.

Any smart contract designed based on these smart laws will be able to provide the
whole range of legal instruments, and if the situation with ownership and property
rights is stuck, parties will be able to settle it in a court.

For example, the smart contract does not “know” when the owner dies; that is why
we need an oracle that tracks records on a public demographic registry, and will trigger
inheritance mechanisms of the smart contract. In this case a “smart will” would be
executed.

If the person did not leave a will, general rules “smart laws” will be applied. The
smart contract also does not “know” which notary will manage the distribution of the
inheritance. That is why the oracle will provide the valid list of addresses of notaries,
and only a transaction that comes from the address on the trusted list will be executed
by the system.

Smart laws will provide necessary rules to run public oracles. Oracles require
manual management: someone must add records in the demographic registry, update
the notaries list, the custodians list, etc. But now this is performed by the government
anyway; the only question is how well enough it is digitized and protected from
corruption and fraud.

Oracles assume a certain degree of centralization or at least we cannot think of it as
a pure distributed system (as the blockchain is) because it requires actions of third
parties. The fact is that it is merely possible with reasonable efforts on this stage of
development of science and technology to automate and digitalize everything. For,
example, how to digitize the fact of human’s death and make it a system event that
triggers smart contract execution? Someone must certify plenty of facts that occur in
real world that have legal meaning for property rights.

The centralization is not a threat it is only an environment where risks of corruption
and excessive regulations arise from. Therefore, the question is how such oracles are
well designed to protect from these risks.

To protect smart laws that run oracles from the corruption, they must not allow any
backdoor access of someone specific to change them. The code, once deployed, must
remain unchanged. And here the blockchain plays a significant role, because as we see
with the example of a “smart contract,” we can deploy completely transparent and
verifiable applications protected from someone’s manual control.

These closed, decentralized applications can work permanently secured from an
alteration, and this is a benefit and a limit at the same time. The only way to change
something here is to change the code of the blockchain protocol, which as we know
requires a large consensus (usually 50+1% of nodes must support a “hard fork”).

19 i.e. special servers, from which a smart contract receives reliable information from outside the smart
contract.

Comparative Analysis of the Legal Concept of Title Rights 347

However, we still must have access to update the system. That is why at the upper
level will be algorithms of electronic voting on the blockchain. Voting will be a public
democratic mechanism of the control over smart laws systems and protect them from
the corruption.

If someone’s token is stolen, an authorized third party from the public oracles list
will bring back access. But in case any of the public oracles are compromised, i.e.
hacked, or keys are lost, or similar threats when oracles become technically uncon-
trolled or controlled and corrupted by unauthorized persons, the general public and/or
specially governed body (committee) by the voting mechanism will recall and reissue
private keys to the operator of the oracle.

Finally, we have the mechanism of 4 layers of a democratic electronic governance
(see Fig. 3):

– Blockchain. On the top we have a public blockchain which protocol remains
unchanged by the consensus of node owners. It is important to have as many as
possible of the active citizens that share their resources to the network. Good
Samaritans will give a critical mass of consensus that will not allow changing of the
protocol. The software and the consensus mechanism must be affordable to allow as
many as possible “good Samaritans” to have their nodes. In this sense Proof-of-
Work is not good, since the mining rush leads to high costs of entrance into the
business. And of course, the blockchain must be public, so anyone can become a
part of the network and receive crypto currency for its work.

– E-Voting is an irrevocable mechanism for voting on implementing smart laws, as
nobody can change this mechanism, except to change the blockchain protocol
(which requires consensus). Ballots are recorded on the blockchain, and the result of
the voting automatically triggers mechanism of implementation of a smart law.

blockchain

eVo ng

Smart
Laws

Smart
Contracts

Fig. 3. The layers of the blockchain governing

348 O. Konashevych

– Smart laws – the mechanism that controls public oracles and other basic mecha-
nisms of the operating of tokens. Oracles keep lists of addresses that are authorized
to change the status of smart contracts (judicial system, public notary, social system
of custodian and guardianship).

– Smart contracts (templates of smart contracts) – owners will be able to use specific
templates for their tokens (smart will, purchase, rent, mortgage). Each jurisdiction
can use specific rules to introduce smart contracts. One of the possible scenarios is
that in each state, local professionals (lawyer, notaries etc.) and IT developers will
develop necessary templates of smart contracts in accordance with local jurisdic-
tion. However, another way is when the government takes this process in its hands
and introduces smart contract templates as model solutions (similar to “Model
Company Charter”20.

4 Conclusion

Tokens on the blockchain as a technological concept is the closest solution to the issues
of the legal concept of real estate titles. This paper distinguished the principal features
that make the blockchain suitable for title rights and transactions: tokens can represent
property rights, the technology protects from double spending while allowing for
conveyance, addresses that store records of tokens are designed in a way to provide for
exclusive access to such addresses to the owner and immutably of records which
protect from corruption and fraud. The blockchain technology addresses the inherent
issues of conventional governing since it works in a decentralized manner. With the
second generation of blockchains that integrate smart contracts and similar algorithms,
one can automate tokens/titles management, which reduces the participation of third
parties (brokers, notaries, agents) or even governments to manually control the relations
in the real estate domain. All these features make the technology applicable to sig-
nificantly improve relations in real estate and governance.

This paper presented analysis of the concept of tokens in the context of its appli-
cability to the legal concept of title rights on real estate, there is also a discussion of the
outcomes of the conducted interviews with professionals in the field of Computer
Science, technologies, blockchain and smart contracts. It was found some critical
mismatches: tokens are not able to satisfy current demand to manage title rights online.
To develop mature and sustainable electronic system there are certain issues to be
addressed: inheritance procedures, litigation, guardianship, delegation of rights and
rights of third parties (liens and encumbrances) as well as the legal concept of bundle of
rights (possession, disposition, enjoyment, etc.), which requires strong mathematical

20 In many countries, governments adopt a “Model Company Charter” which people may use when
they list a new company, so they do not need to write articles of incorporation (statute, charter) from
scratch, but just to refer to this model paper which they submit as the official application to a
registrar.

Comparative Analysis of the Legal Concept of Title Rights 349

model. During interviews it was found some weaknesses in existing ideas of the use of
the blockchain for real estate: mostly related to the undesirable centralization and issues
with security. It is clear that some standalone private companies cannot manually
manage tokens, that does not bring any value, or even threaten title rights. In this sense
the public authorities have more trust, however at the same time generate regulatory
constraints and bureaucracy. We also found that such solution like hashing of title
(deed) records in the cadastral/land registries will not significantly improve relations in
the domain.

As the result of this research it is developed the concept of a high-level design of
the technology, capable to manage title rights on the blockchain which includes three-
level mechanism of (1) e-voting, which provides for a democratic implementation of
governing algorithms; (2) Smart Laws, as the concept of high level “smart” algorithms
that implement (by e-voting) existing laws related to property rights in a form of the
program/protocol; and (3) smart contract templates which are based on the smart laws,
that allows people to manage their title rights online.

Acknowledgments. This paper is an outcome of the PhD research performed inside of the Joint
International Doctoral (Ph.D.) Degree in Law, Science and Technology, coordinated by the
University of Bologna, CIRSFID in cooperation with University of Turin, Universitat Autònoma
de Barcelona, Tilburg University, Mykolas Romeris University, The University of Luxembourg.
Thanks to my supervisor Prof. Marta Poblet Balcell, RMIT University (Melbourne, Australia),
and Pompeu Casanovas, Universitat Autònoma de Barcelona (Barcelona, Spain).

References

1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.
pdf

2. Nachiappan Pattanayak, P., Crosby, M., Verma, S., Kalyanaraman, V.: BlockChain
technology: beyond bitcoin. Appl. Innov. Rev. 2, 6–19 (2016)

3. Distributed Ledger Technology & Cybersecurity: Improving information security in the
financial sector (2016)

4. Ethereum Project. https://www.ethereum.org
5. Nxt - The Blockchain Application Platform. https://nxt.org
6. Ethereum Wiki. https://github.com/ethereum/wiki/wiki/Glossary
7. Szabo, B.N., et al.: Formalizing and Securing Relationships on Public Networks
8. Velox.re. https://www.velox.re/
9. Surda, P.: Economics of Bitcoin: is Bitcoin an alternative to at currencies and gold? (2012).

http://nakamotoinstitute.org/static/docs/economics-of-bitcoin.pdf
10. Mirkovic, J.: Blockchain Pilot Program. Final Report (2017)
11. UBITQUITY - The First Blockchain-Secured Platform for Real Estate Recordkeeping
12. Bitland. Land Title Protection Ghana. http://www.bitland.world/about/
13. Real Estate Land Title Registration in Ghana Bitland. http://bitlandglobal.com/
14. Blockchain and Future House Purchases. https://chromaway.com/landregistry/
15. Flip Blog. https://blog.flip.lease/
16. REX. The Global Real Estate Data Marketplace. http://rexmls.com/
17. Chavez-Dreyfuss, G.: Ukraine launches big blockchain deal with tech firm Bitfury. http://

www.reuters.com/article/us-ukraine-bitfury-blockchain-idUSKBN17F0N2

350 O. Konashevych

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.ethereum.org
https://nxt.org
https://github.com/ethereum/wiki/wiki/Glossary
https://www.velox.re/
http://nakamotoinstitute.org/static/docs/economics-of-bitcoin.pdf
http://www.bitland.world/about/
http://bitlandglobal.com/
https://chromaway.com/landregistry/
https://blog.flip.lease/
http://rexmls.com/
http://www.reuters.com/article/us-ukraine-bitfury-blockchain-idUSKBN17F0N2
http://www.reuters.com/article/us-ukraine-bitfury-blockchain-idUSKBN17F0N2

18. Vavilov, V.: The Bitfury Group. http://bitfury.com/
19. Xinyuan Real Estate Co., Ltd. Announces Blockchain-Powered Real Estate Finance

Technology Platform. https://www.prnewswire.com/news-releases/xinyuan-real-estate-
co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.
html

20. Antadze, L.: Bits of “Blockchain” is pointless in Govtech. https://medium.com/
@lashaantadze/bits-of-blockchain-is-pointless-in-govtech-5b8044fd2d9c

21. Sharma, T.: How Blockchain Can Be Used In Escrow & How It Works? https://www.
blockchain-council.org/bitcoin/blockchain-can-used-escrow-works/

22. Buterin, V.: Ethereum and Oracles. https://blog.ethereum.org/2014/07/22/ethereum-and-
oracles/

Comparative Analysis of the Legal Concept of Title Rights 351

http://bitfury.com/
https://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
https://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
https://www.prnewswire.com/news-releases/xinyuan-real-estate-co-ltd-announces-blockchain-powered-real-estate-finance-technology-platform-300299818.html
https://medium.com/%40lashaantadze/bits-of-blockchain-is-pointless-in-govtech-5b8044fd2d9c
https://medium.com/%40lashaantadze/bits-of-blockchain-is-pointless-in-govtech-5b8044fd2d9c
https://www.blockchain-council.org/bitcoin/blockchain-can-used-escrow-works/
https://www.blockchain-council.org/bitcoin/blockchain-can-used-escrow-works/
https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/

Ghazal: Toward Truly Authoritative Web
Certificates Using Ethereum

Seyedehmahsa Moosavi and Jeremy Clark(B)

Concordia University, Montreal, Canada
j.clark@concordia.ca

Abstract. Recently, a number of projects (both from academia and
industry) have examined decentralized public key infrastructures (PKI)
based on blockchain technology. These projects vary in scope from full-
fledged domain name systems accompanied by a PKI to simpler trans-
parency systems that augment the current HTTPS PKI. In this paper,
we start by articulating, in a way we have not seen before, why this app-
roach is more than a complementary composition of technologies, but
actually a new and useful paradigm for thinking about who is actually
authoritative over PKI information in the web certificate model. We then
consider what smart contracts could add to the web certificate model,
if we move beyond using a blockchain as passive, immutable (subject
to consensus) store of data—as is the approach taken by projects like
Blockstack. To illustrate the potential, we develop and experiment with
an Ethereum-based web certificate model we call Ghazal, discuss different
design decisions, and analyze deployment costs.

1 Introductory Remarks

The blockchain data structure and consensus mechanism has received sig-
nificant interest since being introduced as the underlying technology of the
cryptocurrency Bitcoin in Satoshi Nakamoto’s (pseudonymous) 2008 whitepa-
per [25]. In 2014, Buterin presented a new blockchain based application known
as Ethereum [10]. As a blockchain-based distributed public network, Ethereum
implements a decentralized virtual machine, known as the Ethereum Virtual
Machine (EVM), which allows network nodes to execute deployed programmable
smart contracts on the Ethereum blockchain [31]. This platform enables develop-
ers to create and execute blockchain applications called decentralized applications
(dapps) that are executed correctly according to the consensus of the network.
A Dapp’s code and data is stored in a decentralized manner on the blockchain.
Dapps or smart contracts are now often written in a high level programming
language such as Solidity which is syntactically similar to Java [1]. Digital smart
contracts were first described Nick Szabo in 1993 [28], however they reached a
high level of adoption through blockchain technology.

One application of blockchain technology that has received some research and
commercial interest is the idea of replacing (or augmenting) the web certificate

c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 352–366, 2019.
https://doi.org/10.1007/978-3-662-58820-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_24&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_24

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 353

model used by clients (OS and browsers) to form secure communication channels
with web-servers (described in more detail below). This model has been plagued
with issues from fraudulent certificates used to impersonate servers to ineffective
revocation mechanisms; see Clark and van Oorschot for a survey [12]. We argue
that the application of blockchains to this model is more than an interesting
experiment; it is actually a new uni-authoritative paradigm that resolves some
of the fundamental issues with the current model—authority and indirection. We
also argue that adding programmability to a dapp-based PKI provides benefits
beyond using the blockchain as an append-only broadcast channel. Finally, we
instantiate our ideas in a novel system called Ghazal implemented in Solidity and
deployed on Ethereum. At the time of writing, the overall system costs under
$100 to deploy. Basic actions like domain registration costs under $5.

2 Related Work

The HTTPS (HTTP over SSL/TLS) protocol enables secure connections to web-
sites with confidentiality, message integrity, and server authentication. Server
authentication relies on a client being able to determine the correct public key for
a server. The current web certificate model uses a system of certificate authorities
(CAs); businesses that provide this binding in the form of a certificate. Client
devices, through the browser and/or the operating system, are pre-installed with
a set of known CAs who can delegate authority to intermediary CAs through a
protocol involving certificates. When a CA issues a certificate to a web-server,
there are generally three types: domain validated (DV) certificates bind a public
key only to a domain (e.g., example.com), while organization validated (OV)
and extended validated (EV) certificates validate additional information about
the organization that operates the server (Example, Inc.).

Namecoin is an altcoin (software based on Bitcoin with a distinct blockchain)
that implements a decentralized namespace for domain names [17]. The main
feature of Namecoin is that for a fee, users can register a .bit address and
map it to an IP address of their choice. CertCoin [14], and PB-PKI [7] are
extensions to Namecoin that add the ability to specify an HTTPS public key
certificate for the domain (as well as other PKI operations like expiration and
revocation, which we discuss in Sect. 4.1). Blockstack [6] achieves the same goal
by embedding data into a root blockchain, a process called virtualchains that
could be instantiated with OP RETURN on Bitcoin’s blockchain. These approaches
are closest to our own system Ghazal. These systems disintermediate CAs from
the web certificate model. The main difference is that we use Ethereum to provide
full programmability (motivated below in Sect. 3.2). In addition, we provide some
minor improvements such as allowing multiple keys to be bound to the same
domain, as is common for load balancing and CDNs.

Some research has looked at adding transparency, effectively through an
efficient log of CA-issued certificates, to augment the current web certificate
model. This is a very active area of research that includes certificate trans-
parency (CT) [18], sovereign keys (SKs) [2], and ARPKI [8]. IKP [22] provides an

354 S. Moosavi and J. Clark

Ethereum-based system for servers to advertise policies about their certificates
(akin to a more verbose CAA on a blockchain instead via DNS). Research a bit
further removed from web certificates concerns decentralized PKIs and broader
identities. While not decentralized, CONIKS provides a distributed transparency
log similar to CT but for public keys (while they could be for anything, email and
IM are the primary motivations) [23]. Bonneau provides an Ethereum smart con-
tract for monitoring CONIKS [9]. ClaimChain is similar to CONIKS but finds a
middle-ground between a small set of distributed servers (CONIKS) and a fully
decentralized but global state (blockchain) by having fully decentralized, local
states that can be cross-validated. CONIKS and ClaimChain do not use CAs but
rather rely on users validating the logs, which are carefully designed to be non-
equivocating. ChainAnchor provides identity and access management for private
blockchains [15], while CoSi is a distributed signing authority generic logging [27].
Each of these systems is concerned with logging data (a generic umbrella that
encapsulates many of these is Transparency Overlays [11]). As logging systems,
they do not provide programmability which is the primary motivation for our
system.

Finally, some research has explored having public validated by external par-
ties but replacing the role of CAs with a PGP-style web of trust. SCPKI is an
implementation of this idea on Ethereum [5]. Our observation is that for domain
validation, a blockchain with a built-in naming system is already authoritative
over the namespace and does not require additional validation.

3 Motivation

3.1 Are Blockchains a New Paradigm for PKI?

In the related work, most blockchain-approaches to identity (or specifically PKI)
motivate their approach with Zooko’s triangle; an articulation of three natural
properties one might want from an identity system: memorable names, secure (as
in hard to impersonate), and a distributed authority for issuing names. His asser-
tion is that two of the three properties can be achieved effortlessly but adding the
third is difficult or impossible. Blockchains, starting with Namecoin for domain
names and extensions to PKI, are often claimed to resolve this trilemma enabling
all three properties in one system. A blockchain is distributed, short human-
friendly names can be claimed by anyone, and ownership over a name is secured
with a strong cryptographic key.

We approach thinking about this issue a little differently. In the current web
certificate model, certificate authorities are meant to be authorities: that is,
they are authoritative over the namespace they bind keys to. The reality is that
the web still runs largely on domain validated certificates [13,16] and for domain
validation, certificate authorities are not any more or less authoritative over who
owns what domain than you or I. Certificate authorities instead rely on indirec-
tion. For example, a certificate authority might validate a request by Alice for a
certificate for alice.com by sending an email to admin@alice.com with a secret

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 355

nonce that Alice must type into a webform. This involves 2 levels of indirec-
tion: (1) CAs appeal to DNS to establish the MX record of the domain (i.e.,
the subscriber’s mail server’s IP address); (2) CAs appeal to SMTP to establish
a communication channel to the subscriber. For each level of indirection, there
are a set of vulnerabilities which might allow a malicious party to break the
verification process and obtain a fraudulent certificate for a domain they do not
own. For example, consider the attack surface of email-based validation:

1. Reserved Emails: A CA specifies a list of email addresses to receive the
challenge. The underlying assumption is that only the domain owner controls
this address. However the domain owner might not reserve that email address
or even be aware that a certain email address is being used by one of the
CAs for this purpose. And recall that just a single CA needs to use a single
non-standard email address (e.g., a translation of administrator into their
local language) to open up this vulnerability. For example, Microsoft’s public
webmail service login.live.com saw an attacker successfully validate his
ownership of the domain using an email address sslcertificates@live.com
which was open to public registration [32].

2. Whois Emails: A CA also optionally draws the email address from the
Whois record for the domain. A domain’s whois record is generally protected
by the username/password set by the domain owner with their registrar.
Any attack on this password (e.g., guessing or resetting) or directly on the
account (e.g., social engineering [3]) would allow the adversary to specify an
email address that they control.

3. MX Record: A CA establishes the IP address of the mailserver from the
MX record for the domain. As above, all domain records including the MX
record is managed through the owner’s account with her domain registrar.
Any method for obtaining unauthorized access to this account would enable
an adversary to list their own server in the MX record and receive the email
from the CA.

4. DNS Records: If an adversary cannot directly change a DNS record, they
might conduct other attacks on the CA’s view of DNS. For example, they
might employ DNS cache poisoning which can result in invalid DNS res-
olution [26]. They might also exploit an available dangling DNS record
(Dare) [19]. Dares occur when data in a DNS record (such as CNAME, A, or
MX) becomes invalid but is not removed by the domain owner. For example,
if the domain owner forgets to remove the MX record (the IP address of the
server) from DNS, the associated DNS MX record is said to be dangling. If
an adversary can acquire this IP address at some future point, he is able to
redirect all traffic intended for the original domain to his server, including
information sufficient for a CA’s domain validation process. Thus a malicious
party can use a Dare to obtain a fraudulent certificate. In a uni-authoritative
system, Dares are still possible (old data that has not been purged from the
system) but the public keys dangle with the IP address, which resolves the
security issue for mis-issued certificates.

356 S. Moosavi and J. Clark

5. SMTP: Once the CA establishes the mailserver’s record, it will send the
email to the mailserver with SMTP (the standard protocol for transfer of
email). Since the email contains a secret nonce, confidentiality of this email
is crucial. SMTP uses opportunistic encryption that is not secure against an
active adversary. Thus a man-in-the-middle between the CA’s mailserver and
the ultimate destination (including an forwarding mailservers) could request
a fraudulent certificate, intercept the ensuing email, reply with the correct
nonce, and be issued the fraudulent certificate.

6. Email Accounts: Email accounts are generally protected with a username
and password (over IMAP or POP3) to prevent unauthorized access. In some
cases, they might be protected with a client certificate. An adversary who
can gain access to any one of the accounts that should be reserved by the
domain owner (e.g., textttadmin, hostmaster, webmaster, etc.) could obtain
a fraudulent certificate for that site. This could include guessing or reset-
ting the password, using social engineering, or obtaining access to the server
hosting the email for the account.

Blockchains are actually a new paradigm; they collapse the indirection for
domain validation. If a PKI were added to a blockchain, who would be authorita-
tive over the namespace of domain names? When domain names themselves are
issued through the blockchain (e.g., Namecoin), then the blockchain is actually
the authoritative entity. Arguably, this indirection can be collapsed in the tradi-
tional web certificate model as well. There DNS (in conjunction with ICANN) is
authoritative over the namespace and if ICANN/DNS held key bindings, there
would be no indirection or CAs needed—indeed, this is exactly the proposal
of DANE. Thus blockchains and DANE are both examples of what we might
call a uni-authoritative paradigm. A deployment issue with DANE is that DNS
records do not generally have message integrity (except via the under-deployed
DNSSEC) whereas blockchain transactions do.

3.2 Does Programmability Add Anything?

In the related work, some systems take a uni-authoritative approach while others
rely on third party authorities (generally, CAs or web of trust). Most systems
that use a blockchain (or similar transparency log) do it in a passive way—as an
append-only broadcast channel; a few systems actually use smart contracts or
the programmability that a blockchain provides. Of all these systems, to the best
of our knowledge, none are both uni-authoritative and use programmability. We
have argued the merits of uni-authoritative above, what about programmability?
What does it provide?

Programmability, or PKI bindings within a smart contract, can enable fea-
tures that seem desirable. A few examples include: external contracts that can
easily obtain information about a domain in making decisions; atomonicity
within domain name transfers where payments and transfers are inputs to the
same transaction (e.g., even Namecoin relies on a third party tool called ANTPY
to perform atomic name ownership transfer transactions); and fancier options for

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 357

transferring domain names: we implement an auction where any domain owner
can auction off their domain within the smart contract itself. The reader might
think of other features that programmability could add.

In defence of non-programmable blockchain-based PKIs, such as Blockstack,
it is not clear how well a system like ours scales and what demands it puts on
user clients to quickly fetch information on domains. We return to this in the
next section, however we note here that we are not claiming programmability
necessarily wins out in the end, only that it is worth exploring from a research
perspective to better understand the trade-offs.

4 The Ghazal System

Our proposed scheme is entitled Ghazal, a smart contract-based naming and PKI
uni-authoritative system.1 It enables entities, whether they are people or organi-
zations, to fully manage and maintain control of their domain name without rely-
ing on trusted third parties. In Ghazal, a user can register an unclaimed domain
name as a globally readable identifier on the Ethereum blockchain. Subsequently,
she is able to assign arbitrary data, such as TLS certificates to her domain. These
values are globally readable, non-equivocating, and not vulnerable to the indirec-
tion attacks outlined above. The penalty paid for a uni-authoritative approach
is that Ghazal has to carve out its own namespace that is not already in use
(e.g., names ending in .ghazal like Namecoin’s .bit or Blockstack’s .id). OS
and browsers would have to be modified before any system like this can be
used. Anyone can claim a domain on a first-come, first-serve basis. Because it
is decentralized, names cannot be re-assigned without the cooperation of the
owner (whereas an ICANN address like davidduchovny.com can be re-assigned
through administrative mediation).

The design of Ghazal consists of two essential elements. First, the smart
contract that resides on the Ethereum blockchain and serves as an interface
between entities and the underlying blockchain. The second primary component
of the system are the clients, including people or organizations that interact
with Ghazal smart contract in order to manage their domain names. Figure 1
represents the primary states a domain name can be in and how state transitions
work. These states are enforced within the code itself to help mitigate software
security issues related to unintended execution paths.

4.1 Exploring Ghazal Design Choices

Beyond simply presenting our design, we think it is useful to explore the land-
scape of possible designs. To this end, we discuss some deployment issues that
we faced where there was no obvious “one right answer.” These are likely to
be faced by others working in this space (whether working narrowly on PKI or
broad identity on blockchain solutions).

1 https://github.com/mahsamoosavi/Ghazal.

https://github.com/mahsamoosavi/Ghazal

358 S. Moosavi and J. Clark

Fig. 1. Primary states and transitions for a domain name in Ghazal.

Design Decision #1: Domain Name Expiration
Typically domain name ownership eventually expires. Once a domain expires,
it is returned to the primary market, except if the users renews it. However,
expiration does not necessarily have to mean a disclaimer of ownership; there
are other options.

1. Domain names never expire and last forever. Designing a system with
no domain name expiration would be highly vulnerable to domain squatting.
Domain squatting is registering domain names in speculation that the will
increase in value. These domain names generally do not point to any relevant
IP address (except to earn revenue on accidental visits). If domain names
never expire, squatting may be significantly problematic as squatted names
would be locked forever while legitimate users will end up choosing unusual
names from the remaining namespace. To be clear, even without expiration,
if domains are cheap, squatting is problematic (e.g., Namecoin [17]).

2. Domain names get deleted once they expire, except being renewed
by the user. The most restrictive system design is where a domain name
effectively gets deleted and is returned to the registry of unclaimed names once
it expires, unless the user renews it. This model has the following two issues.
First, if a browser tries to resolve an expired domain, because the blockchain
has a complete, immutable history of that domain, we would expect users to
want it resolved according to the previous owner. Rolling back expirations is
possible in a way not supported by DNS and it resolves simple human errors
of forgetting to renew domains, so we do not expect browsers to necessarily
fail when it could make a sensible guess as to which server their users are
looking for. The second reason to drop the deletion model of expiration is
that Ethereum contracts can only run when a function is called. If no one

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 359

calls a function at expiration time, the contract cannot self-execute to modify
itself. The fact that it is expired can be inferred from contract if it includes
a time but the contract itself will not transition states until someone calls a
function that touches that particular contract. An alternative is to rely on
a third party like Ethereum Alarm Clock [4] for scheduling future function
calls. This is suitable only if the threat model permits relying on a trusted
third party and a single point of failure (for this one feature).

3. Control over domain names is lost once they expire, except being
renewed by user. In Ghazal, expired domains continue to function although
the owner (i) looses the sole claim to that domain and cannot preserve it if
someone else purchases it, and (ii) she cannot modify the domain in anyway
(e.g., add certificates or change zone information) unless if she first renews
it. Essentially, purchasing a domain name does not entitle an entity to own it
forever; expired domain names are returned back to the primary market and
are available for all the users within the system. However since a full history
of a domain is present, the system’s best effort at resolving the domain will be
to preserve the last known state. Expiration in conjunction to the amount of
the fee will influence the degree of domain squatting, and having expiration
at all will allow abandoned domains to churn if they are under demand.

Design Decision #2: Registration Fees
In Ghazal, new registrations and renewals require a fee. This fee is a deterrent
against domain squatting. The fee amount is difficult to set and no fee will be
perfectly priced to be exactly too high for squatters but low enough for all ‘legit-
imate’ users. Rather it will trade-off the number of squatters with the number
of would-be legitimate users who cannot pay the fee. Namecoin is evidently too
cheap and ICAAN rates seem reasonable. We leave this as a free parameter of
the system. The important decisions are: (1) in what currency are they paid and
(2) to whom. Every Ethereum-based system, even without a fee, will at least
require gas costs. Additional fees could be paid in Ether or in some system-
specific token. Since it is a decentralized system and the fee is not subsidizing
the efforts of any entity involved, there is no one in particular to pay. The fee
could be paid to an arbitrary entity (the system designer or a charity), burned
(made unrecoverable), or to the miners. In Ghazal, fees are paid in Ether and
are released to the miner that includes the transaction in the blockchain.

Design Decision #3: Domain Name Renewal
We design Ghazal in such a way that the domain owners can renew their domains
before their validity period comes to an end, however they cannot renew an
arbitrary number of times. Specifically, a renewal period becomes active after
the domain is past 3/4 of its validity period. Renewal pushes the expiration time
forward by one addition of the validity period (thus renewing at the start or
end of the renewal period is inconsequential and results in the domain having
the same expiration time). Requiring renewal keeps users returning regularly
to maintain domains, and unused domains naturally churn within the system.

360 S. Moosavi and J. Clark

1 // Possible states of every auction.

2 enum Stages {Opened , Locked , Ended}

3
4 struct AuctionStruct

5 { uint CreationTime;

6 address Owner;

7 uint highestBid;

8 address highestBidder;

9 address Winner;

10 Stages stage;

11 //To return the bids that were overbid.

12 mapping(address => uint) pendingReturns;

13 //To return the deposits the bidders made.

14 mapping(address => uint) deposits;

15 //Once an address bids in the auction , its associated boolean
value will be set to true within the "already_bid" mapping.

16 mapping(address => bool) already_bid;

17 bool AuctionisValue;

18 }

19 // AuctionLists mappings store AuctionStructs.

20 mapping (bytes32 => AuctionStruct) internal AuctionLists;

Code 1.1. Implementation of AuctionStruct and AuctionLists mapping in Ghazal∗

smart contract.

Domain name redemption period can take different values. We experiment with
a validity period of 1 year; thus, the renewal period would start after 9 months
and last 3 months.

Design Decision #4: Domain Name Ownership Transfer
In Ghazal, domain owners can transfer the ownership of their unexpired domains
to new entities within the system. Basically, transferring a domain name at
the Ethereum level means changing the address of the Ethereum account that
controls the domain. Our system offers two ways of transferring the ownership
of a domain:

1. Auctioning off the domain name. A domain owner can voluntarily auc-
tion off an unexpired domain. Once an auction is over, the domain is trans-
ferred to the highest bidder, the payment goes to the previous owner of the
domain, and the validity period is unaffected by the transfer (to prevent peo-
ple from shortcutting renewal fees by selling to themselves for less than the
fee). If there are no bidders or if the bids do not reach a reserve value, the
domain is returned to the original owner. While under auction, a domain can
be modified as normal but transfers and auctions are not permitted. To imple-
ment the auction feature, we use the fact that Solidity is object-oriented. We
first deploy a basic Ghazal function without advanced features like auctions,
and then use inheritance to create a child contract Ghazal∗ that adds the auc-
tion process. Using Ghazal∗, a user can run any number of auctions on any
number of domains he owns. This is implemented through a mapping data
structure called AuctionLists to store every auctions along with its attributes.

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 361

AuctionLists accepts Domain names as its keys, and the AuctionStructs as
the values (see Code 1.1). Using the mapping and Ethereum state machine,
we enforce rules to prevent malicious behaviours e.g., domain owners can
auction off a domain only if there is no other auction running on the same
domain. To encourage winners to pay, all bidders must deposit a bounty in
Ether the first time they bid in an auction (amount set by the seller). This
is refunded to the losers after bidding closes, and to the winner after paying
for the domain. Without this, users might disrupt an auction by submitting
high bids with no intention of paying.

1 modifier CheckDomainExpiry(bytes32 _DomainName) {

2 if (Domains[_DomainName]. isValue == false)

3 {Domains[_DomainName].state=States.Unregistered ;}

4 if (now >= Domains[_DomainName]. RegistrationTime +10 minutes)

5 {Domains[_DomainName].state = States.Expired ;}

6 _;

7 }

8 modifier Not_AtStage(bytes32 _DomainName , States stage_1 , States stage_2)
{

9 require (Domains[_DomainName].state != stage_1 && Domains[
_DomainName]. state != stage_2);

10 _;

11 }

12 modifier OnlyOwner(bytes32 _DomainName) {

13 require(Domains[_DomainName]. DomainOwner == msg.sender);

14 _;

15 }

16 function Transfer_Domain(string _DomainName ,address _Reciever ,bytes32
_TLSKey ,bytes32 _Zone) public

17 CheckDomainExpiry(stringToBytes32(_DomainName))

18 Not_AtStage(stringToBytes32(_DomainName),States.Unregistered ,States.
Expired)

19 OnlyOwner(stringToBytes32(_DomainName))

20 {

21 DomainName = stringToBytes32(_DomainName);

22 Domains[DomainName]. DomainOwner = _Reciever;

23 if (_TLSKey == 0 && _Zone != 0) { Wipe_TLSKeys(DomainName); }

24 if (_Zone == 0 && _TLSKey != 0) { Wipe_Zone(DomainName); }

25 if (_Zone == 0 && _TLSKey == 0) { Wipe_TLSKeys_and_Zone(
DomainName); }

26 }

Code 1.2. Transfer Domain function of Ghazal smart contract.

2. Transfer the ownership of a domain name. A domain owner can also
transfer an unexpired domain to the new Ethereum account by calling the
Transfer Domain function which simply changes the Ethereum address that
controls the domain name. The owners can also decide to either transfer
domain’s associated attributes (e.g., TLS certificates) or not, when they trans-
fer the domain. This is possibe with either supplying these attributes with
zero or other desired values when calling the Transfer Domain function (see
Code 1.2).

To prevent from MITM attacks, TLS certificates should be revoked once a
domain name is transferred. However, security incidents reveal that this is not

362 S. Moosavi and J. Clark

commonly enforced in the current PKI. For instance, Facebook acquired the
domain fb.com for $8.5M in 2010, yet no one can be assured if that the previous
owner does not have a valid unexpired certificate bound to this domain [12]. This
has been successfully enforced in our system as the new owner of the domain
is capable of modifying the domain’s associated TLS keys, which results in pro-
tecting communications between the clients and his server from eavesdropping.

Design Decision #5: Toward Lightweight Certificate Revocation
In the broader PKI literature, there are four traditional approaches to revoca-
tion [24]: certificate revocation lists, online certificate status checking, trusted
directories, and short-lived certificates. Revocation in the web certificate model
is not effective. It was built initially with revocation lists and status checking,
but the difficulty of routinely obtaining lists and the frequent unavailability of
responders led to browsers failing open when revocation could not be checked.
Some browsers build in revocation lists, but are limited in scope; EV certifi-
cates have stricter requirements; and some research has suggested deploying
short-lived certificates (e.g., four days) that requires the certificate holders to
frequently renew them [29] (in this case, certificates are not explicitly revoked,
they are just not renewed). Which model does a blockchain implement? At first
glance, most blockchain implementations would implement a trusted directory:
that is, a public key binding is valid as long as it is present and revocation simply
removes it. The issue with this approach on a blockchain is how users establish
they have the most recent state. With the most recent state in hand, revocation
status can be checked. This check is potentially more efficient than download-
ing the entire blockchain (this functionality exists for Bitcoin where it is called
SPV and is a work in progress for Ethereum where it is called LES). However
a malicious LES server can always forward the state immediately preceding a
revocation action and the client cannot easily validate it is being deceived.

At a foundational level, most revocation uses a permit-override approach
where the default state is permissive and an explicit action (revocation) is
required. Short-lived certificates (and a closely related approach of stapling a
CA-signed certificate status to a certificate) are deny-override meaning the
default position is to assume a certificate is revoked unless if there is positive
proof it is not. This latter approach is better for lightweight blockchain clients
as LES servers can always lie through omitting data, but cannot lie by includ-
ing fraudulent data (without expending considerable computational work). As
an alternative or compliment, clients could also take the consensus of several
LES servers, although this ‘multi-path probing’ approach has some performance
penalties (it has been suggested within the web certificate model as Perspec-
tives [30] and Convergence [21]).

In Ghazal, public keys that are added to a domain name expire after a maxi-
mum lifetime, e.g., four days. Expiration is not an explicit change of state but is
inferred from the most recent renewal time. Owners need to rerun the key bind-
ing function every several days to renew this. If an owner wants to revoke a key,
she simply fails to renew. To verify the validity of a certificate, one is now able

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 363

Table 1. Gas used for operations in the Ghazal∗ smart contract.

Operation Gas Gas cost in Ether Gas cost in USD

Register 169 990 3.56 × 10−3 $3.15

Renew 54 545 1.14 × 10−3 $1.01

Transfer Domain 53 160 1.11 × 10−3 $0.98

Add TLSKey 77 625 1.63 × 10−3 $1.43

Add ZoneFile 57 141 1.19 × 10−3 $1.05

Add TLSKey AND ZoneFile 68 196 1.43 × 10−3 $1.26

Revoke TLSkey 37 672 7.91 × 10−4 $0.69

StartAuction 119 310 2.50 × 10−3 $2.21

Bid 112 491 2.36 × 10−3 $2.08

Withdraw bids 46 307 9.72 × 10−4 $0.85

Withdraw deposits 47 037 9.87 × 10−4 $0.87

Settle 77 709 1.63 × 10−3 $1.44

Ghazal∗ Contract Creation 2 402 563 0.05 $44.54

to use a LES-esque protocol. Once a user queries a semi-trusted LES node for a
corresponding record of a domain, the node can either return a public key that
is four days old, which user will assume is revoked, or a record that newer that
the user will assume is not revoked. Although this approach requires the frequent
renewal of public keys, it is a cost that scales in the number of domains as opposed
to revocation checks which scale in the number of users accesses a domain.

5 Evaluation

The aim of this section is to provide the technical implementation details of our
system on the Ethereum blockchain. We specifically discuss the costs related to
the deployment of Ghazal∗ smart contract on the Ethereum blockchain in addition
to executing its functions on the Ethereum virtual machine. Moreover, a smart
contract analysis tool is used to analyze the security of our system against a several
number of security threats to which smart contracts are often vulnerable.

5.1 Costs

Ghazal smart contract is implemented in 370 lines of Solidity language, a high
level programming language resembles to JavaScript, and tested on the Ethereum
test network. We use the Solidity compiler to evaluate the rough cost for pub-
lishing the Ghazal∗ smart contract on the Ethereum blockchain as well as the
cost for the various operations to be executed on the Ethereum virtual machine.
As of January 2018, 1 gas = 21 × 10−9 ether2, and 1 ether = $882.923.
2 https://ethstats.net/.
3 https://coinmarketcap.com/.

https://ethstats.net/
https://coinmarketcap.com/

364 S. Moosavi and J. Clark

Table 1 represents the estimated costs for Ghazal∗ (and its inherited Ghazal
functionality) smart contract deployment and function invocation in both gas
and USD. As it can be seen from both Table 1, the most considerable cost is the
one-time cost paid to deploy the system on Ethereum. There are then relatively
small costs associated with executing the functions, i.e., users could easily regis-
ter a domain by paying $3.15 or they could bind a key to the domain they own
for a cost of $1.43, which is relatively cheap when compared with the real world
costs associated with these operations.

Fig. 2. Results of Ghazal∗ security analysis using Oyente [20].

5.2 Security Analysis

Ethereum smart contracts, in particular the ones implemented in Solidity, are
notorious for programming pitfalls. As they generally transfer and handle assets
of considerable value, bugs in Solidity code could result in serious vulnerabilities
which can be exploited by adversaries. We use standard defensive programming
approaches, in particular around functions that transfer money (such as the
auction function that refunds the security deposits), by using explicitly coded
state machines and locks, and by not making state-changes after transfers. We
also analyze Ghazal and Ghazal∗ against Oyente, a symbolic execution tool pro-
posed by Luu et al. [20] which looks for potential security bugs like the re-entry
attack (infamously). The results of the security analysis represent that both of
the smart contracts are not vulnerable to any known critical security issue (see
Fig. 2).

Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum 365

6 Concluding Remarks

We hope that uni-authoritative systems with programmability continue to be
explored in the literature. There are many open problems to work on. First and
foremost is understanding the scalability issues and how to minimize the amount
of data a client browser needs to fetch for each domain lookup. Blockstack has
done an excellent job on this issue for non-programmable contracts. Future work
could also look at the layer above the smart contract: building web tools with
user interfaces to enable interaction with the underlying functions. Finally, while
auctions are one illustrative example of why programmability might be added
to a PKI, we are sure there are many others. The modular design of Ghazal
using object-oriented programming should allow easy additions to our base con-
tract, which we will provide as open source. Indeed, the auction itself in Ghazal∗

was added via inheritance and one function override (to enforce that ownership
transfers, part of the parent class, could not be called during a live auction).

Acknowledgements. J. Clark thanks NSERC, FRQNT, and the Office of the Privacy
Commissioner of Canada for funding that supported this research.

References

1. Ethereum development tutorial ethereum/wiki wiki. https://github.com/
ethereum/wiki/wiki/Ethereum-Development-Tutorial. Accessed 12 July 2017

2. git.eff.org git - sovereign-keys.git/blob - sovereign-key-design.txt. https://git.
eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD.
Accessed 10 Jan 2018

3. Godaddy owns up to role in epic twitter account hijacking—pcworld. https://
www.pcworld.com/article/2093100/godaddy-owns-up-to-role-in-twitter-account-
hijacking-incident.html. Accessed 13 Feb 2018

4. Home. http://www.ethereum-alarm-clock.com/. Accessed 29 Dec 2017
5. Al-Bassam, M.: SCPKI: a smart contract-based PKI and identity system. In: Pro-

ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,
pp. 35–40. ACM (2017)

6. Ali, M., Nelson, J.C., Shea, R., Freedman, M.J.: Blockstack: a global naming and
storage system secured by blockchains. In: USENIX Annual Technical Conference,
pp. 181–194 (2016)

7. Axon, L., Goldsmith, M.: PB-PKI: a privacy-aware blockchain-based PKI (2016)
8. Basin, D., Cremers, C., Kim, T.H.-J., Perrig, A., Sasse, R., Szalachowski, P.:

ARPKI: attack resilient public-key infrastructure. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp. 382–
393. ACM (2014)

9. Bonneau, J.: EthIKS: using ethereum to audit a CONIKS key transparency log.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 95–105. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 7

10. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial
https://github.com/ethereum/wiki/wiki/Ethereum-Development-Tutorial
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://www.pcworld.com/article/2093100/godaddy-owns-up-to-role-in-twitter-account-hijacking-incident.html
https://www.pcworld.com/article/2093100/godaddy-owns-up-to-role-in-twitter-account-hijacking-incident.html
https://www.pcworld.com/article/2093100/godaddy-owns-up-to-role-in-twitter-account-hijacking-incident.html
http://www.ethereum-alarm-clock.com/
https://doi.org/10.1007/978-3-662-53357-4_7
https://doi.org/10.1007/978-3-662-53357-4_7

366 S. Moosavi and J. Clark

11. Chase, M., Meiklejohn, S.: Transparency overlays and applications. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 168–179. ACM (2016)

12. Clark, J., van Oorschot, P.: SSL and HTTPS: revisiting past challenges and eval-
uating certificate trust model enhancements. In: IEEE S&P (2013)

13. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the https
certificate ecosystem. In: IMC (2013)

14. Fromknecht, C., Velicanu, D., Yakoubov, S.: Certcoin: a namecoin based decen-
tralized authentication system 6.857 class project (2014)

15. Hardjono, T., Pentland, A.S.: Verifiable anonymous identities and access control
in permissioned blockchains (2016)

16. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL landscape: a thorough
analysis of the X.509 PKI using active and passive measurements. In: IMC (2011)

17. Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An
empirical study of namecoin and lessons for decentralized namespace design. In:
WEIS (2015)

18. Laurie, B.: Certificate transparency. Queue 12(8), 10 (2014)
19. Liu, D., Hao, S., Wang, H.: All your DNS records point to us: understanding

the security threats of dangling DNS records. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1414–1425.
ACM (2016)

20. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

21. Marlinspike, M.: SSL and the future of authenticity. In: Black Hat, USA (2011)
22. Matsumoto, S., Reischuk, R.M.: IKP: Turning a PKI around with blockchains.

IACR Cryptology ePrint Archive, 2016:1018 (2016)
23. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.: Coniks:

bringing key transparency to end users. In: USENIX Security Symposium, pp.
383–398 (2015)

24. Myers, M.: Revocatoin: options and challenges. In: Hirchfeld, R. (ed.) FC 1998.
LNCS, vol. 1465, pp. 165–171. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055480

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
26. Son, S., Shmatikov, V.: The Hitchhiker’s guide to DNS cache poisoning. In: Jajodia,

S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp. 466–483. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2 27

27. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 526–545.
IEEE (2016)

28. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

29. Topalovic, E., Saeta, B., Huang, L.-S., Jackson, C., Boneh, D.: Towards short-lived
certificates. In: Web 2.0 Security and Privacy (2012)

30. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving SSH-style host
authentication with multi-path probing. In: USENIX Annual Tech (2008)

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151 (2014)

32. Zusman, M.: Criminal charges are not pursued: hacking PKI. DEFCON 17 (2009)

https://doi.org/10.1007/BFb0055480
https://doi.org/10.1007/BFb0055480
https://doi.org/10.1007/978-3-642-16161-2_27

Toward Cryptocurrency Lending

Mildred Chidinma Okoye1,2 and Jeremy Clark1(B)

1 Concordia University, Montreal, Canada
j.clark@concordia.ca
2 Deloitte, London, UK

Abstract. Lending has been posited as an application of blockchain tech-
nology but it has seen little real deployment. In this paper, we discuss the
roadblocks preventing the effortless lending of cryptocurrencies, and we
survey a number of possible paths forward. We then provide a novel sys-
tem, U. gw. o, consisting of experimental smart contracts written in Solidity
and deployed on Ethereum to demonstrate how a decentralized lending
infrastructure might be constructed.

1 Introductory Remarks

Lending has been posited as an application of blockchain technology but we
have seen little real deployment of lending. In Sect. 2, we discuss roadblocks and
possible paths forward. We do this in service of other researchers who might
want to look at this issue—we view our own contributions as an initial look and
not the final word in this complex area. We outline our agenda in a few steps:
(1) we review the role of lending in a modern economy, (2) we identify the key
tensions between cryptocurrencies like Bitcoin and Ethereum and lending, (3)
we review proposals for lending, and (4) we suggest how to move forward. In
Sect. 3, we present our lending infrastructure U. gw. o which incorporates the points
we discuss. U. gw. o is designed to be flexible and extensible; traditional fiat-based
lending is not one-size-fits-all and consists of a patchwork of loan structures,
instruments, and intermediaries. We show some basic types of loans and basic
types of risk mitigation as examples of what could be added to U. gw. o to support
an infrastructure for lending.

2 A Research Agenda for Cryptocurrency Lending

2.1 The Role of Lending in a Modern Economy

It is difficult to overstate the role of lending in a modern economy. Take, as
an illustrative example, the role of a central bank; one of the main national
institutes (along with the treasury) that cryptocurrencies aim to displace. First
and foremost, a central bank is an actual bank, providing accounts for its mem-
ber banks to deposit money and earn interest. Member banks provide interest-
earning accounts to the public. Interest is paid to the public because banks use
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 367–380, 2019.
https://doi.org/10.1007/978-3-662-58820-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_25&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_25

368 M. C. Okoye and J. Clark

the deposited money to form loans. Because central bank interest rates are low,
banks prefer to lend to other banks any excess cash they hold at day’s end instead
of depositing them (other banks borrow to meet liquidity requirements). These
loans earn interest, and central banks target this specific lending rate when they
intervene in the economy. The most common intervention is the buying (circu-
lating new money) or selling (removing circulating money) of government bonds,
which are interest-earning loans from investors to the government. Central banks
will also provide loans (of ‘last resort’) to banks unable to secure loans from other
banks, typically during some sort of liquidity crisis. An economy without loans
would have no interest rates, no bonds, and essentially nothing for a modern
central bank to do.

2.2 Two Critical Issues for Lending with Cryptocurrencies

The crypto-economy is effectively an economy without loans. We identify two
primary roadblocks:

• Monetary instability. While a loan might be in anything of value, it is
typically done with money. Cash loans work best when the value of the money
is relatively stable. By contrast, cryptocurrencies have historically appreciated
in value over time (as of the time of writing). In a lending situation, this means
the cash taker will end up owing far more than he borrowed. If the scenario
were reversed and the currency depreciated rapidly, the cash provider would
prefer to spend the money rather than locking it up in a loan where it will
shed value over time. Even without long-term upward or downward drifts in
value, short-term volatility adds risk to a loan for both the cash taker and
the cash provider.

• Counter-party risk. While the hype surrounding blockchain technology
centers on how it can enable trustless financial systems, there is no way to
blockchain your way out of counter-party risk. If Alice truly lends money
to Bob—truly in the sense that Bob fully owns it and can do with it as he
pleases—then Bob can abscond with the money.

2.3 Existing Proposals

A number of companies have launched loan products or systems based on cryp-
tocurrencies. In the most common architecture, a central company arranges loans
and the loans are simply denominated in cryptocurrencies like Bitcoin. These
services vary from at interest bearing accounts to peer-to-peer lending for invest-
ment purposes to social justice orientations like mirco-lending for the unbanked
or the subprime market. As opposed to our system U. gw. o, these do use smart
contracts to structure the actual loans.

Toward Cryptocurrency Lending 369

2.4 Dealing with Monetary Instability

We summarize a few suggestions for adding stability to cryptocurrencies.

• The rate of release of new currency into the system could be modified to enable
new currency to be introduced at (i) a more insightful rate or (ii) based on
some internal metrics of the system like number of transactions. [Remark:
an insightful rate has been elusive despite many alt-coins customizing the
schedule and it is difficult to see how metrics could not be gamed].

• A cryptocurrency can also use explicit pegging but it is no better suited to
this system than standard currencies.

• A central bank could manage currency circulation while allowing other
aspects to be decentralized [4]. [Remark: Central banks have been histori-
cally unsuccessful at using money circulation as a target [7]].

• The loan could be use the cryptocurrency as the medium of exchange but use
a stable (e.g., government) currency as the unit of account.

Fig. 1. Standard approaches to dealing with counter-party risk.

In U. gw. o, we use the last approach. In other words, a loan could be $100 USD
paid in Ether at the exchange rate at loan time and repaid 3 months later at
$110 USD paid in Ether at the new exchange rate. This approach requires the
smart contract to be aware of the exchange rate which introduces a trusted third
party, called an oracle [11] and is discussed further in the next section.

2.5 Dealing with Counter-Party Risk

In Fig. 1, we outline the basic approaches from finance for dealing with counter-
party risk.

• Full Collateral: It is common for Bitcoin-based solutions, e.g., for fair
exchange [1,3,10] or payment channels [5,9], to deal with counter-party risk
by requiring full collateral. This is a simple approach but one unlikely to scale
to an entire economy: economic actors are chagrinned to leave money where
it earns no interest and economic benefit.

370 M. C. Okoye and J. Clark

• Repurchase Agreement: A loan collateralized fully with same currency as the
loan is not a loan therefore collateral only works if it is something different of
the same value. If this something is on-blockchain (say a token representing
something of value), the cash provider can have the collateral sit locked up
in escrow (where it benefits neither the cash provider or taker) or could take
full ownership of the collateral with the promise of returning it when the
loan is repaid. This is a repurchase agreement and is common when the cash
provider is perceived to be at less risk of absconding than the cash taker.

• Partial Collateral: The cash taker might stake something of lesser value than
the loan in collateral, a third party to a loan might use partial collateral to
insure a loan (see below), or sometimes loans are internal to a system such as
leveraged positions in financial markets where the manager can liquidate the
loan if the partial collateral (margin) dissipates due to market conditions.

• Reputation: A more abstract form of collateral is one’s reputation and lend-
ing history. The difficulty with reputation is that it requires strong identities,
something missing from decentralized currencies, as rogue entities can regen-
erate a new identity if the reputation of their old identity suffers and they can
generate fake histories by lending to themselves with fake identities. These
are not impossible to address but are difficulties.

• Insurance: Consider the case where Alice lends to Bob and does not trust
him. If Alice trusts Carol and Carol trusts Bob, then Carol could insure the
loan. Of course, Carol in this case could also just lend the money to Bob but
there are a few scenarios where she might let Alice lend the money. One is
if Carol’s assets are not liquid. A second is that Carol might employ partial
collateral: she could insure 100 loans of similar value but only stake 10% of the
lent money as a margin against defaults. This costs her less than making the
loans herself, and provides the cash providers insurance assuming the default
rate is less than 10%. One standard financial instrument to implement this
type of insurance, with some additional complexities discussed later, is a
credit default swap (CDS).

3 The U. gw. o Lending Infrastructure

U. gw. o is an extensible system of smart contracts to enable different types of
lending on Ethereum.1 It is centred around recording credit events—when a
party fails to fulfill the terms written in a loan contract—in a common ledger
called a Credit Event object. We considered two implementation approaches:

• Internal Variable. In one approach, a loan has a credit event object within
itself where the credit event is a variable contained within the loan contract.
The issue with this approach is one of encapsulation: any external contract
protecting the loan (via insurance or collateral) would have to reach inside
the loan object when all it needs to know to function is whether a credit event
occurred or not.

1 https://github.com/MildredOkoye/Ugwo.

https://github.com/MildredOkoye/Ugwo

Toward Cryptocurrency Lending 371

• Object Oriented Approach. It would be interesting if the Credit Event object
sat at its own address such that protection contracts could be externally
deployed and would not have to be worried about each loan that they insure
individually. Protection would be external contracts and would just have a
global view of all credit events from a single address given specific loan identi-
fier (such as the loan address). To ensure compatibility, we can use interfaces
which in object oriented programming specify the functions that must exist.
Interfaces are similar to abstract classes in that they do not have any defini-
tion of functions contained within. An interface provides developers a guide
as to how to implement the contract. Thus the Credit Event object is the core
of extendable system where new loan types can be added and new protection
types.

Fig. 2. The U. gw. o lending infrastructure showing how the various loan and protection
objects interface with the Credit Event object.

In U. gw. o, we implement two interfaces: a Loan interface and Protection Inter-
face. The Loan interface forces any loan object that would like to interact with
the Credit Event object to implement certain functions that would enable the
interaction. This same concept applies for the Protection Interface. These inter-
faces and their links to the loan objects are shown in Fig. 2.

3.1 Overview of Loan Objects

Peer to Peer Lending. We start with a basic loan contract constructed by the
cash provider. The loan has parameters such as the address of the cash provider
and cash taker, the principal amount to be lent, the start and end dates of the
loan, the repay value and repay schedule. The cash provider runs the constructor
and funds the contract. The cash taker runs a function in the loan contract to
retrieve the principal in the contract. At maturity, the borrower calls a function

372 M. C. Okoye and J. Clark

to pay back the principal with the corresponding interest. As with all of our
objects, modifiers ensure that only the stated party can run each a function in a
contract, and an internal state machine governs at which phase of the contract
each function can be called. If the borrower does not show up to retrieve the
principal from the contract, the lender’s money would remain the loan contract
forever. To combat this, a kill function was implemented such that the lender
can retrieve the money from the contract if the borrower does not retrieved the
money after a timeout.

If the cash taker fails to pay back the loan within the timeframe, the loan
object itself cannot transition states without someone calling a function. In
U. gw. o, a default function can be triggered by any person watching or monitoring
the loan if the borrower fails to pay after the due term. This default function
when run, updates the Credit Event object discussed below. This is how a loan
moves into a default state and it relies one someone having an incentive to tran-
sition the loan (otherwise it is likely inconsequential if it sits dormant).

Bonds and Commercial Paper. We implement a simple ‘zero coupon’ bond.
The contract uses an external library implementing EIP20 tokens.2 The cash
taker, generally an organization or corporation in this case, creates a set of tokens
that represent units of cash it will accept (and later repay) from individual cash
providers. The cash taker runs the constructor (with variables for start date,
end date, bond value, repay value, etc.) and funds the contract with tokens. A
function is used to accept payment from investors where tokens representing the
amount borrowed is sent to the investors. The token is calculated as the value
deposited over the price of the bond. An event is created that informs watchers
of the contract of all bonds sold. The bond is a bearer bond in the sense that
the bond contract does not track the addresses of who owns each bond. The
token can be transferred from one person to another without interacting with
the bond contract (however, the interaction is performed with the standard
token contract). To get paid at maturity, only the token needs to be submitted
irrespective of the bearer of the token. Defaults are implemented the same as in
the P2P lending contract. The default function can be triggered by any person
watching or monitoring the bond if the organization defaults on its payment
after the due term.

3.2 Overview of Protection Objects

Collateral. Two types of collateral are defined in U. gw. o—a token collateral and
an ether collateral. A token collateral contract accepts a EIP20 token which
might represent a token from a ICO, DAO-style contract, loan contract or any-
thing else with value that the cash provider is willing to accept. The constructor
function of the contract states the amount of tokens the cash taker is willing to
put up as collateral. A separate function allows the cash taker to instantiate all
agreements with the cash provider; they were not included in the constructor
2 https://github.com/ConsenSys/Tokens.

https://github.com/ConsenSys/Tokens

Toward Cryptocurrency Lending 373

function to allow the collateral function to be run by any investor. If at the end
of the term the cash taker defaults, a function to get the token out of escrow
can be run by the cash provider. The function first checks for a credit event, or
triggers a credit event if the conditions for a default are met. An ether collateral
accepts ether as collateral—since the loan itself is in Ether, this is useful for par-
tial collateral functions or when the collateral is backing insurance rather than
a loan.

Credit Default Swaps. A credit default swap (CDS) is an agreement between
two parties (a seller and a buyer) where the CDS seller fulfils the debt of a loan
to the CDS buyer if a credit event occurs on the loan. The CDS seller then takes
ownership of the loan. If more there is more than one seller of a CDS per loan
(as is permitted and common in financial markets for speculation), the loan is
auctioned and the market clearing price is used to settle the swaps.3 A CDS
seller subsumes the same risk position as the actual cash provider in the loan
but the benefit to the CDS seller is not having to liquidate any assets (she can
have effectively no cash on hand if an event never happens). The benefit to the
cash provider is that a loan with a CDS only defaults if both the cash taker and
the CDS seller default.

CDSs have a bad reputation after the 2008 financial crisis in the United
States, where the CDS market was unlit and considered by many to be under-
regulated. In U. gw. o, the CDS market is transparent and CDS buyers can have
enforced reserves that automatically settle with CDS buyers when a credit event
occurs on an insured loan. CDS sellers themselves an be given a Credit Event
object. Our implementation is rudimentary (without naked CDSes, auctions,
or other features) and we expect that a full-fledged, decentralized CDS market
would constitute an entire research paper by itself.

3.3 Overview of the CreditEvent Object

It would be simpler to implement a CreditEvent object within each loan (P2P or
Bond) contract. One reason to pull it out and make it an object of its own is to
prevent redundancy in the use of code. This is a basic principle of object oriented
programming. Another reason is to create a somewhat central place where all
the loans can be monitored.

The simplest model of a CreditEvent object begins with a contract that holds
all default variables such as defaulter’s address, the lender’s address and the
defaulted amount. It implements a struct variable that is used to hold all the
values pertaining to each loan. The contract implements the zero coupon pay-
ment model and hence has only one value for defaults. The value of the defaults
could either be a string (yes or no) or a number (the amount defaulted). This
contract has a constructor that is triggered by a loan contract. The major task
of the constructor is to allocate memory for the loan that triggered it and set
the necessary parameters (defaulter’s address, the lender’s address). An update
3 http://www2.isda.org/.

http://www2.isda.org/

374 M. C. Okoye and J. Clark

function within the CreditEvent contract is triggered by loans to insert default
value into the struct variable. A defaultlist function acts as a getter function
and returns all the values within the contract. This contract by itself performs
no specific action beside receiving information from loans linked to it and acting
as a global table visible to different protection objects and users.

In U. gw. o, each loan’s constructor triggers the CreditEvent function to insert
arguments such as the lender’s and debtor’s address. A payback function con-
tained within the loan is triggered by the debtor in other to pay back the principal
and interest. It takes into factor the state of the contract as well as the matu-
rity date of the loan. If the amount being paid by the debtor is less than the
total amount (principal and interest), the amount is paid to the cash provider
and a default written to the CreditEvent contract. A value of zero is written if
the amount being paid covers the total amount or is in excess (in this case, the
surplus is returned to the cash taker). A report function can be triggered by
anyone watching the contract if the borrower defaults on its loan. This would
set the loan to a default state such that anyone watching the loan can tell that
the borrower defaulted on the loan.

4 Discussion

4.1 Exploring the Use of Oracles for Exchange Rates

It is not uncommon to encounter use cases that require a smart contract to
trigger or change state in response to an event external to the blockchain. For
example, an insurance contract might pay farmers based on the temperature and
sunlight for a given period. A hypothetical smart contract might listen for any
change in the weather, parse this information from an external source such as
a URL, and then trigger payments or other events based on this information.
As simple as this contract might sound, it is not possible to run contracts on
Ethereum this way. This is because the blockchain follows a consensus-based
model that ensures all inputs can be validated. Externally fetched data might
differ between nodes, some nodes may not be able to access the data due to
networking issues, and the amount of gas that should be consumed by the miner
for spending time fetching the data is difficult to determine objectively.

In the case of our lending infrastructure, we want to implement a loan where
the unit of account for the loan is based on the value of a fiat currency. The actual
loan will be in Ether but the amount owed will be based on its current exchange
rate with the underlying currency. This is side-step the monetary instability
of Ether which makes it unattractive for lending. Thus in nominal terms, the
amount of ether being paid back might be more or less than the amount borrowed
depending on whether it’s value increased or decreased relative to the fiat dollar.
Bonds do not only offer an investment opportunity, but they allow investors to
speculate or hedge on rates of inflation.

Toward Cryptocurrency Lending 375

Since contracts cannot fetch external data, a service has emerged, called an
oracle, which is trusted external entity that puts data onto the blockchain where
it can be accessed by other contracts. In U. gw. o, we use Oraclize4 to feed the
exchange rate of Ether with USD into our contracts. Using an oracle is not
foolproof and we note a few challenges in using an oracle. The first challenge
is that the price is needed at each execution of the contract. Another challenge
is that in order to feed the current exchange value into the blockchain, a link
to any exchange has to be manually inserted into the oracle’s code; if the link
goes down, the oracle will not be able to provide the appropriate data into the
blockchain to be used by the miners. Finally oracles are trusted parties that
can lie about the exchange rate and collude with cash takers to steal from cash
providers. We remark that oracles do have a reputation and in most countries,
stealing is still subject to legal recourse even if it is on a blockchain.

4.2 Automatic Actions

Many Ethereum beginners have to adjust their mental model of smart contracts
to the fact that a contract will not run unless if one of its functions is called. It
cannot automatically perform actions, say, after some period of time has passed.
In U. gw. o, loans like bonds have a default function that checks if there has been a
default by the cash taker. This default function has to be triggered by someone
in order to default the loan and update the CreditEvent object. An option is to
use the Ethereum Alarm Clock5 to trigger the function monthly. It is a trusted
third party service that supports scheduling of transactions such that they can be
executed at a later time on the Ethereum blockchain. This is done by providing
all of the details for the transaction to be sent, an up-front payment for gas
costs, which would allow your transaction to be executed on ones’ behalf at a
later time. The drawback is its heavy integration with the loan contract, as well
as arranging payments to the service. Would it be possible for an actor in the
loan contract to run the function monthly in other to avoid the heavy integration
and cost of using the Ethereum alarm clock? Which actor in the loan contract
would have a higher incentive to run the default function? All answers point
towards the cash provider. Due to the fact that the insurance or collateral can
only be claimed after a default occurs, the cash provider in the contract would
have more incentive to run the function every month. Hence, we did not deploy
the alarm clock.

4.3 Implementing the Monthly Array Object

To implement a monthly payment, we could reference either time (e.g., now or
block.timestamp) or block interval (e.g., block.number). Timestamps are not
reliable and be manipulated by miners. This is due to the decentralization of the
system; there is no wall clock for reference and node’s local clocks can never be

4 https://github.com/oraclize.
5 http://www.ethereum-alarm-clock.com/.

https://github.com/oraclize
http://www.ethereum-alarm-clock.com/

376 M. C. Okoye and J. Clark

perfectly synchronized (i.e., to the millisecond). Ethereum permits a 900 ms lead
or lag in time. When using block numbers, there is also a lack of precision. One
could estimate that a 31 day month would be something like 179 759 blocks.6

While this is a challenge for applications that need near real-time fidelity but
for loan payments, we would argue that time slippage is not critical for loans.
We utilize time not blocks. If a loan lies dormant for longer than a month, with
Ethereum’s model of function-initiated state changes, the loan’s state will not
change. However the next function to be called, whether a payment or default
check, will update the previously skipped months in CreditEvent while writing
the current result of the called function.

4.4 Implementing the CreditEvent Contract

Choosing an appropriate data structure for CreditEvent presented some chal-
lenges. We want loans to be individually encapsulated with the addresses of the
cash provider and cash taker, and some data structure to hold a credit score
for the loan (such as an array of values that indicate for each month whether
the payment was repaid, late, defaulted, etc.). Note that it is not up to the
CreditEvent object to penalize credit events. It passively records them and then
protection objects can chose how to act. CreditEvent should be agnostic of what
type of loan it is representing (e.g., peer-to-peer, bond, etc.). In U. gw. o, each bond
is an individual loan. Protection objects, like credit default swaps, are generally
written to monitor credit events across the entire issue of bonds, not just one
individual bond. We leave for future work improvements to how sets of loans
can be insured.

This credit history could be a struct, mapping or array. According to solidity
documentation, in order to restrict the size of a struct, a struct is prevented from
containing a member of its own type. However, the struct can itself be the value
type of a mapping member. Following that, another way is to have a mapping to
another struct outside of itself that contains the monthly defaults. In Solidity,
mappings are like hash tables that are initialized dynamically with key/value
pairs. Unmapped keys return an all zero byte-representation. However, it is not
possible to iterate through the contents of a mapping and therefore, the best
implementation was to have an array contained within a struct. In all cases, the
inner container cannot be visible within the interface of the Ethereum wallet even
if the outside container is made public. For example, if you implement a struct
inside another struct and on, eventually the interface would give up trying to
display all the subviews within it. To make the contract more developer friendly,
we use getter functions to reach inside structs and expose the contents to the
wallet interface.

In other to uniquely identify loans in the CreditEvent contract, when a loan
calls the CreditEvent contract to pass in the initial parameters, a loan id number
is created by the CreditEvent contract. This loan id number can be used by a
protection object to monitor a loan. Using a loan id number creates an extra

6 Blocks 4652926 to 4832685 were mined in December 2017.

Toward Cryptocurrency Lending 377

variable that floats around the contract that might not necessarily be needed.
A better approach is to use the loan address as a unique identifier. This way
the protection object do not need to keep the loan id number of every loan
they monitor as the address of the loan by itself serves as a unique identifier.
This however, is not a hard rule as either a loan ID number or address can be
used to uniquely identify a loan without causing any mishap in general. Even in
situations where two loans are created at the same time, the id of the loans is set
by the miner in the order in which they are place within the block. The interface
of the Ethereum wallet for the CreditEvent object contains the parameters for
identifying each loan on the CreditEvent object. The loan address is used to
retrieve this information. The months which have no default are represented
with zero and 300000000000000000 wei (0.3 ether) is the default amount for the
second month. To pay out this default, any protection object would just need to
fetch the value from the CreditEvent object.

4.5 Implementing a Credit Default Swap

A way to address counter party risk, without solving it, is to have a third party
provide insurance on a loan. Such a contract is both a protection object and also
introduces a new counter-party risk: that the insurer will default on paying the
insurance if a credit event occurs. We implement a very simple CDS contract. The
basic CDS contract is drawn up by the insurance seller who initializes agreed
upon facts such as the CDS buyer, amount to be insured, premium, among
others. During the payment by the CDS buyer, the function allocates space in
the CreditEvent object to hold information regarding the standings of payments
made to the CDS buyer.

If a default occurs on a loan that has been insured with a CDS, the default
function would be run by the CDS buyer (the buyer has a higher stake and
more incentive to run the function). This function would update the CreditEvent
object with the balance of the loan to be paid. This is because when a default
occurs, the rest of the debt is paid to the CDS buyer and the CDS seller takes
over the loan (this is where the swap occurs). The idea behind this is that we
wanted the CDS contract to fetch the balance of the debt directly from the
CreditEvent object just as the Collateral object gets the default for the month
from the CreditEvent object and pays out to the cash provider. This way the
amount to be paid cannot be manipulated by either the CDS seller or anyone
and the payment can be made automatically when triggered.

When the payment is made to the CDS buyer, a change of ownership occurs.
This could be implemented in two ways. One way is to have a new contract
created for the change of ownership where the CDS seller becomes the Lender in
the loan contract. This would create a new contract which might be hard to track
as it would have a new address with no relation to the old address. The other
way, which we implemented, is to have the same loan contract implemented for
the CDS change the owner name. This way the new owner (CDS seller) is tied
to the loan contract and anyone who had the address for watching the CDS loan
would be aware that a credit swap occurred. The change of ownership is also
reflected in the CreditEvent object.

378 M. C. Okoye and J. Clark

5 Evaluation

Our contracts were developed in Remix and tested on Ethereum’s test network.

Table 1. Cost of running the basic and loan contracts

Contract Gas Ether USD

Base System

Tokens 857,106 0.018 $5.00

Token Transfer 51,501 0.001 $0.30

Oraclized 154,711 0.003 $0.90

Credit Score 462,453 0.010 $2.70

Peer to Peer Lending

P2P Lending 2,198,423 0.046 $12.82

Receive Money 474,112 0.009 $2.77

Payback 105,827 0.002 $0.62

Report Default 60,605 0.001 $0.35

Kill 25,098 0.001 $0.12

Bond

Bond 2,229,084 0.047 $13.00

Purchase Bond 231,397 0.005 $1.35

Withdraw 292,787 0.006 $1.71

Repay 415,213 0.009 $2.42

Report Default 55,798 0.001 $0.33

5.1 Security

Solidity (and Serpent) is notorious for security issues [2,6,8]. We made our con-
tract resilient to the re-entrancy bug by ensuring that all checks are performed
before transfers (such as, does the sender have enough ether?) and also ensuring
that state variables are changed before transfers. Mishandled exceptions have the
potential to allow unauthorized access to functions or result in denial of service
attacks on individual smart contracts. We handle this in our contracts with the
use of modifier functions that act as an access control mechanism. This allows
only authorized users to access functions and also sanitizes inputs to reduce
the likelihood of exceptions. Transaction-ordering dependence and timestamp
dependence attacks do not break our contract due to the nature of our project.
Although timestamps (as opposed to block numbers) are used in our project,
our contract is not time dependent and any modification of the time by factor
of 900 s by the miner will not break the contract. Last, the price for a bond in
our system is fixed by the bond issuer and cannot be changed after deployment.
Therefore, the contracts are not susceptible to a transaction ordering attacks.

Toward Cryptocurrency Lending 379

Table 2. Cost of running the protection contracts

Contract Gas Ether USD

Collateral

Collateral 442,035 0.009 $2.58

Serve 204,509 0.004 $1.20

Get Ownership 312,667 0.007 $1.82

Cancel 27,664 0.001 $0.16

Credit Default Swap

CDS Contract 452,035 0.009 $2.58

Monthly Premium 204,509 0.004 $1.20

Report Default 61,709 0.001 $0.16

Kill 27,664 0.001 $0.16

In order to test our system for known security bugs, we use a symbolic exe-
cution tool called Oyente [8].7 The tool has been proved in successfully identi-
fying critical security vulnerability, such as a famous incident called the DAO
vulnerability. The various APIs used by both contracts were analyzed together
simulating the exact same way it would be deployed. None are vulnerable to any
of the tests.

5.2 Cost

In this section we would analyze the gas cost of using our contracts. As of
this writing, the current price per gas is 21 gwei (0.000000021 Ether) while the
current price of 1 ether = $277.78. For any contract, the gas cost = gas * gas
price. As of this writing, it is useful to note that any transfer of ether from one
account to another has a gas of 21,000, a gas cost of 0.00044 Ether resulting
to $0.12 USD. Tables 1 and 2 represent the cost of running each smart contract
and its functions contained therein on the Ethereum Virtual Machine. The cost
of deploying the P2P lending contract and the Bond contract is roughly about
$13.00 respectively. This is due to the API’s called by those contracts, the more
API’s a contract import the more the code needed to be executed by the miners
and the higher the gas consumption. In particular, the high gas consumption is
attributed to the Oraclized API. However, once deployed, the cost of running
the rest of the function inside the contract is less than $3.00.

5.3 Concluding Remarks

We have present U. gw. o, an Ethereum implementation of a lending infrastructure.
We use the term infrastructure because U. gw. o is not a single system, but rather
a central component (CreditEvent) with two interfaces for an extensible system,

7 https://github.com/ethereum/oyente.

https://github.com/ethereum/oyente

380 M. C. Okoye and J. Clark

where new loan and loan protection techniques can be added. Future work might
deploy more exotic bonds or commercial paper arrangements, or other types of
protection techniques like reputation systems and repurchase agreements.

Acknowledgements. J. Clark acknowledges funding for this work from NSERC and
FQRNT.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-
tiparty computations on Bitcoin. In: IEEE Symposium on Security and Privacy
(2014)

2. Atzei,N., Bartoletti,M.,Cimoli, T.:A survey of attacks onEthereumsmart contracts
(SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 8

3. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

4. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: NDSS (2015)
5. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

6. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

7. Latter, T.: The choice of exchange rate regime. In: Centre for Central Banking
Studies, vol. 2. Bank of England (1996)

8. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS (2016)

9. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments. Technical report (draft) (2015). https://lightning.network

10. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation
by loss of Bitcoins. In: CCS (2015)

11. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: CCS (2016)

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://lightning.network

Author Index

Azouvi, Sarah 127

Back, Adam 43
Bernhard, Matthew 196
Boman, Magnus 279
Bonneau, Joseph 92
Bowe, Sean 64

Cai, Quanwei 144
Chen, Ju 308
Chen, Lin 294
Chepurnoy, Alexander 19
Clark, Jeremy 352, 367

Delgado-Segura, Sergi 78
Dickerson, Thomas 325

Friedenbach, Mark 43

Gabizon, Ariel 64
Galal, Hisham S. 265
Gao, Zhimin 294
Gazzillo, Paul 325
Green, Matthew D. 64
Grontas, Panagiotis 210
Grundmann, Matthias 113

Haenni, Rolf 181, 232
Hartenstein, Hannes 113
Harz, Dominik 279
Hauser, Severin 232
Herlihy, Maurice 325
Herrera-Joancomartí, Jordi 78
Hicks, Alexander 3

Jing, Jiwu 144
Judmayer, A. 31

Kharin, Vasily 19
Knottenbelt, W. J. 31
Konashevych, Oleksii 339
Koskinen, Eric 325

Le, Ton Chanh 294
Lin, Jingqiang 144
Lu, Yang 294

Mainini, Pascal 181
Maller, Mary 127
Maxwell, Gregory 43
McCorry, Patrick 3
Mebane Jr., Walter R. 196
Meiklejohn, Sarah 3, 127
Meshkov, Dmitry 19
Moore, Tyler 101
Moosavi, Seyedehmahsa 352

Navarro-Arribas, Guillermo 78
Neudecker, Till 113

Okoye, Mildred Chidinma 367

Pagourtzis, Aris 210
Pérez-Solà, Cristina 78
Poelstra, Andrew 43

Saraph, Vikram 325
Schindler, P. 31
Shah, Nolan 294
Shi, Weidong 294
Smyth, Ben 247
Stifter, N. 31
Strand, Martin 165

Tang, Yuzhe (Richard) 308

Vasek, Marie 101

Wang, Qiongxiao 144
Wang, Ze 144
Weippl, E. 31
Wuille, Pieter 43

Xing, Zihao 308
Xu, Cheng 308
Xu, Jianliang 308
Xu, Lei 294

Youssef, Amr M. 265

Zacharakis, Alexandros 210
Zamyatin, A. 31

Zha, Daren 144
Zhang, Bingsheng 210

382 Author Index

	BITCOIN 2018: 5th Workshop on Bitcoin and Blockchain Research
	VOTING 2018: Third Workshop on Advances in Secure Electronic Voting Schemes
	WTSC 2018: Second Workshop on Trusted Smart Contracts
	Contents
	Bitcoin and Blockchain Research
	Smart Contracts for Bribing Miners
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 Ethereum

	3 Subsidised Bribery
	3.1 Censorship Contract
	3.2 Lower-Bound on Briber's Hashrate

	4 History Revision Bribery
	5 Goldfinger Bribery
	5.1 Goldfinger Contract
	5.2 Proof-of-Concept Implementation

	6 Discussion
	7 Conclusion
	A Subsidy Analysis
	References

	A Systematic Approach to Cryptocurrency Fees
	1 Introduction
	1.1 Our Contribution
	1.2 Structure of the Paper

	2 Preliminaries
	3 An Algorithm for the Fee Assignment
	3.1 Choice of the Relative Values of , , S(state)
	3.2 Choice of S(state)

	4 Scheduled Payments
	5 Evaluation
	6 Concluding Remarks
	References

	A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice
	1 Introduction
	2 Background
	3 Mechanisms for Consensus Rule Changes
	4 Observation of Velvet Forks in Practice
	5 Considering Security Implications
	6 Applicability to Existing Proposals
	7 Future Work and Conclusion
	References

	Confidential Assets
	1 Introduction
	2 Preliminaries
	3 Confidential Transactions
	3.1 Rangeproofs
	3.2 Confidential Transactions
	3.3 Performance

	4 Confidential Assets
	4.1 Asset Commitments and Surjection Proofs
	4.2 Confidential Assets
	4.3 Performance
	4.4 Issuance
	4.5 Reissuance and Capability Tokens
	4.6 Performance
	4.7 ``Small Assets'' and ``Big Assets''

	5 Future Research
	A Appendix: Proofs
	A.1 Proof of Theorem 3

	References

	A Multi-party Protocol for Constructing the Public Parameters of the Pinocchio zk-SNARK
	1 Introduction
	2 Definitions, Notation and Auxiliary Methods
	2.1 Comparing Ratios of Pairs Using Pairings
	2.2 Schnorr NIZKs for Knowledge of Discrete Log
	2.3 The Random-Coefficient Subprotocol

	3 Protocol Description
	3.1 Round 1: Commitments
	3.2 Round 2
	3.3 Coordinator After Round 2: Computing Lagrange Basis Using FFT, and Preparing the Vectors A A A A,B B B B and C C C C
	3.4 Round 3
	3.5 Round 4: Computing Key Elements Involving , Especially PKK

	References

	Analysis of the Bitcoin UTXO Set
	1 Introduction
	2 The UTXO Set
	2.1 The UTXO Bitcoin Core 0.14 Format
	2.2 The UTXO Bitcoin Core 0.15 Format
	2.3 STATUS: The UTXO Analytic Tool

	3 UTXO Set Analysis
	3.1 General View
	3.2 Dust and Unprofitable UTXOs
	3.3 Height
	3.4 Non-standard

	4 Conclusions and Further Research
	References

	Hostile Blockchain Takeovers (Short Paper)
	1 Introduction
	2 Methods of Obtaining Capacity
	2.1 Rental Attacks
	2.2 Building Attacks
	2.3 Bribery Attacks
	2.4 Buy-Out Attacks
	2.5 Countermeasures

	3 Discussion and Open Questions
	References

	Analyzing the Bitcoin Ponzi Scheme Ecosystem
	1 Introduction
	2 Methodology
	3 Results
	3.1 Scammer Interaction and Scam Lifetime
	3.2 Victim Behavior
	3.3 Proportional Hazards Model

	4 Related Work
	5 Conclusion
	References

	Exploiting Transaction Accumulation and Double Spends for Topology Inference in Bitcoin
	1 Introduction
	2 Related Work
	3 Fundamentals
	4 Problem Statement and Assumptions
	5 Exploiting Transaction Accumulation
	5.1 Description
	5.2 Discussion and Variants
	5.3 Simulation Results
	5.4 Experimental Results

	6 Exploiting Double Spends
	6.1 Description
	6.2 Discussion and Variants
	6.3 Simulation Results
	6.4 Experimental Results

	7 Conclusion
	References

	Egalitarian Society or Benevolent Dictatorship: The State of Cryptocurrency Governance
	1 Introduction
	2 Related Work
	3 Background
	3.1 Bitcoin
	3.2 Ethereum
	3.3 Improvement Proposals
	3.4 Forks

	4 Methodology
	4.1 Comparison with Programming Languages
	4.2 Data Collection
	4.3 Centrality Metrics

	5 Data Analysis
	5.1 Contributors to the Main Codebase
	5.2 Commenters on the Main Code Base
	5.3 Improvement Proposals for Bitcoin and Ethereum
	5.4 Diversity of Communities

	6 Discussion
	7 Conclusions
	A Statistical Tables and Figures
	References

	Blockchain-Based Certificate Transparency and Revocation Transparency
	1 Introduction
	2 Threat Model and Design Goal
	3 System Architecture
	3.1 Overview
	3.2 Subject-Controlled Certificate Publication
	3.3 Initialization and Reset of Publishing Keys
	3.4 Certificate Validation by Browsers

	4 Security Analysis
	4.1 Security with Compromised Key Pairs
	4.2 Attacks on the Certificate Blockchain

	5 Implementation and Evaluation
	5.1 Implementation and Setting
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References

	Advances in Secure Electronic Voting Schemes
	A Verifiable Shuffle for the GSW Cryptosystem
	1 Introduction
	2 Preliminaries
	2.1 Gadget Matrices
	2.2 The GSW Cryptosystem and Circuit Privacy
	2.3 Commitment Schemes
	2.4 Zero-Knowledge Protocols
	2.5 Groth's Shuffle

	3 Verifiable Shuffle for GSW
	4 Further Work
	References

	Outsourcing Modular Exponentiation in Cryptographic Web Applications
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Paper Overview

	2 Outsourcing Protocols
	2.1 Semi-Honest Servers
	2.2 Malicious Servers

	3 Practical Implementation
	3.1 Client Library
	3.2 Exponentiation Server

	4 Performance Analysis
	4.1 Server-Only and Browser-Only Computations
	4.2 Outsourcing Protocols

	5 Conclusion
	References

	Voting Technologies, Recount Methods and Votes in Wisconsin and Michigan in 2016
	1 Introduction
	2 Recount Data
	3 Technologies and Covariates
	3.1 Wisconsin
	3.2 Michigan

	4 Conclusion
	References

	Towards Everlasting Privacy and Efficient Coercion Resistance in Remote Electronic Voting
	1 Introduction
	2 Preliminaries
	3 Publicly Auditable Conditional Blind Signatures
	4 The Voting Protocol
	5 Security Analysis
	6 Conclusion
	A Analysis of Coercion Resistance
	B Plain Okamoto-Schnorr CBS Scheme
	C Modified Okamoto-Schnorr CBS Scheme
	References

	Modeling a Bulletin Board Service Based on Broadcast Channels with Memory
	1 Introduction
	1.1 Contribution and Paper Overview
	1.2 Related Work

	2 Broadcast Channel with Memory
	2.1 Distributed Systems and Channels
	2.2 Broadcast Channel with Memory

	3 Bulletin Board Service
	3.1 Guarantees
	3.2 Basic Model and Functionality
	3.3 Basic Roles
	3.4 BBS Examples

	4 Conclusion
	References

	Verifiability of Helios Mixnet
	1 Introduction
	2 Election Scheme Syntax and Verifiability Definitions
	3 Encryption Ensures Individual Verifiability and Injectivity
	4 Case Study: Helios Mixnet
	5 Conclusion
	References

	Trusted Smart Contracts
	Verifiable Sealed-Bid Auction on the Ethereum Blockchain
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Homomorphic Commitment Scheme
	3.2 Zero-Knowledge Proof of Interval Membership
	3.3 Proving Claimed Inequality x1 > x2

	4 Auction Smart Contract
	4.1 Phase 1: Contract Deployment and Parameters Setup
	4.2 Phase 2: Commitment of Bids
	4.3 Phase 3: Opening the Commitments
	4.4 Phase 4: Verification of Comparison Proofs
	4.5 Phase 5: Finalizing the Auction
	4.6 Gas Cost

	5 Conclusion and Future Work
	References

	The Scalability of Trustless Trust
	1 Introduction
	2 Method
	3 Explicating Smart Contracts
	3.1 Smart Contracts as Agent Systems
	3.2 Utility and Risk

	4 A Trust Model for Smart Contracts
	5 Applying Trust Measures to Verifiable Computation
	5.1 Algorithm
	5.2 Interactions
	5.3 Implementation and Experiments

	6 Discussion
	7 Conclusion
	References

	The Game Among Bribers in a Smart Contract System
	1 Introduction
	2 Preliminaries and Problem Statement
	3 The Smart Contract Bribery Game
	4 Further Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	Lightweight Blockchain Logging for Data-Intensive Applications
	1 Introduction
	2 Problem Formulation
	2.1 Target Applications
	2.2 System Model
	2.3 Security Goals
	2.4 Existing Techniques and Applicability
	2.5 Motivation
	2.6 Preliminary: LSM Trees

	3 LSM Data Storage over Blockchain
	3.1 Baseline and Design Choices
	3.2 Blockchain-Based TPAD Protocol

	4 Implementation on Ethereum
	5 Evaluation
	5.1 Cost Saving of Off-Chain Storage
	5.2 Efficiency of LSM-Based Storage on Blockchain

	6 Discussion: Data Confidentiality and Key Management
	7 Related Work
	7.1 Blockchain Applications
	7.2 Outsourced Storage and ADS

	8 Conclusion
	References

	Proof-Carrying Smart Contracts
	1 Introduction
	2 Realizing Proof-Carrying Smart Contracts
	2.1 Proof-Carrying Smart Contracts in Detail

	3 A Proposal for Specifications and Proofs
	3.1 Parent: APIs and Specifications
	3.2 Child: Proposed Implementations and Proofs
	3.3 Verification Tool Development

	4 Related Work
	5 Conclusion and Future Work
	References

	Comparative Analysis of the Legal Concept of Title Rights in Real Estate and the Technology of Tokens: How Can Titles Become Tokens?
	Abstract
	1 Introduction
	2 Comparative Analysis of the Legal Concept of Title Rights and the Technology Tokens
	3 The High-Level Design of the System
	4 Conclusion
	Acknowledgments
	References

	Ghazal: Toward Truly Authoritative Web Certificates Using Ethereum
	1 Introductory Remarks
	2 Related Work
	3 Motivation
	3.1 Are Blockchains a New Paradigm for PKI?
	3.2 Does Programmability Add Anything?

	4 The Ghazal System
	4.1 Exploring Ghazal Design Choices

	5 Evaluation
	5.1 Costs
	5.2 Security Analysis

	6 Concluding Remarks
	References

	Toward Cryptocurrency Lending
	1 Introductory Remarks
	2 A Research Agenda for Cryptocurrency Lending
	2.1 The Role of Lending in a Modern Economy
	2.2 Two Critical Issues for Lending with Cryptocurrencies
	2.3 Existing Proposals
	2.4 Dealing with Monetary Instability
	2.5 Dealing with Counter-Party Risk

	3 The Ụgẉo Lending Infrastructure
	3.1 Overview of Loan Objects
	3.2 Overview of Protection Objects
	3.3 Overview of the CreditEvent Object

	4 Discussion
	4.1 Exploring the Use of Oracles for Exchange Rates
	4.2 Automatic Actions
	4.3 Implementing the Monthly Array Object
	4.4 Implementing the CreditEvent Contract
	4.5 Implementing a Credit Default Swap

	5 Evaluation
	5.1 Security
	5.2 Cost
	5.3 Concluding Remarks

	References

	Author Index

