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Preface

The 4th International Conference on Future Data and Security Engineering (FDSE)
took place from November 29 to December 1, 2017, in Ho Chi Minh City, Vietnam, at
the HCMC University of Technology, among the most famous and prestigious uni-
versities in Vietnam. The annual FDSE conference is a premier forum designed for
researchers, scientists, and practitioners interested in state-of-the-art and state-of-
the-practice activities in data, information, knowledge, and security engineering to
explore cutting-edge ideas, to present and exchange their research results and advanced
data-intensive applications, as well as to discuss emerging issues on data, information,
knowledge, and security engineering. At the annual FDSE, researchers and practi-
tioners are able to not only share research solutions to problems of today’s data and
security engineering themes, but also to identify new issues and directions for future
related research and development work.

We encouraged the submission of both original research contributions and industry
papers. The call for papers resulted in the submission of 128 papers. A rigorous
peer-review process was applied to all of them. This resulted in 28 full (including
keynote speeches) and seven short accepted papers (acceptance rate: 27.3%), which
were presented at the conference. Every paper was reviewed by at least three members
of the international Program Committee, who were carefully chosen based on their
knowledge and competence. Among the great papers of FDSE 2017, we selected nine
papers to invite the authors to revise, extend, and resubmit for publication in this
special issue. Finally, only seven extended papers were accepted. The main focus of
this special issue is on data and security engineering, as well as emerging applications.

The big success of FDSE 2017 and this special issue of TLDKS was the result of the
efforts of many people, to whom we would like to express our gratitude. First, we
would like to thank all the authors who extended and submitted papers to this special
issue. We would also like to thank the members of the committees and external
reviewers for their timely reviewing and lively participation in the subsequent dis-
cussion in order to select the high-quality papers published in this issue. Finally, yet
importantly, we thank Gabriela Wagner for her enthusiastic help and support during the
preparation process for this publication.

November 2018 Tran Khanh Dang
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Fast Distributed Top-q and Top-k Query
Processing

Claus Dabringer and Johann Eder(B)

Department of Informatics-Systems,
Alpen-Adria Universität, Klagenfurt, Austria

{claus.dabringer,johann.eder}@aau.at

Abstract. Top-k queries retrieve the k results of a query which score
best for an objective function representing the preferences of users. To
require that the returned results also have to satisfy the preferences to a
certain degree we introduce top-q queries which return all results which
approximate the user preferences to at least some minim degree q. We
show how top-q queries and top-k queries can be combined enabling the
user to post a large number of interesting queries. Furthermore, we show
that the calculation of top-q queries can be integrated in algorithms
efficiently processing top-k queries. We implemented our approach and
evaluated it against the fastest threshold based top-k query answering
approaches (BPA-2). Our experiments showed an improvement by one
to two orders of magnitude regarding time and memory requirements.
Furthermore, we show how such queries can be processed in highly dis-
tributed peer-to-peer databases in an efficient way and propose an adap-
tive algorithm which takes several parameters of the network of databases
into account to optimize the processing of distributed top-k queries.

Keywords: Top-q query answering · Top-k query answering ·
Approximate querying · Result ranking · Distributed Top-k queries ·
Adaptive query processing · p2p databases

1 Introduction

Users searching in large and multi-faceted databases like product catalogs, hotel
databases, real-estate databases, or scientific database are often confronted with
the problem, that classical queries do not distinguish between hard and soft
restrictions. Soft restrictions express the preferences of the users while hard
restrictions express necessary constraints. In traditional query evaluation such
queries with all preferences stated as hard constraints return few or no results,
probably missing acceptable answers when users do not expect that all their
- possibly conflicting - preferences are fulfilled. If all the soft restrictions are
relaxed, the answer set is possibly huge. Therefore, to achieve satisfying results,

The work reported here was supported by the Austrian Ministry for Science and
Research within the projects GATIB II and BBMRI.AT.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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2 C. Dabringer and J. Eder

users have to repeat the queries iteratively slightly relaxing some of the restric-
tions each time. The main application area in our focus is searching biobanks
[5,8,15,17,18,27,27,32,41] for samples which are suitable for an intended med-
ical study.Frequently, the ideal sample is overspecified and we observed, how
users manually checked very long result lists or repeated queries many times
slightly varying several restrictions.

Top-k queries provide an approach to efficiently express such queries: they
return the k tuples, which score best for an objective function. But plain top-k
query answering also has its limitations: some, many or even all of the returned
objects may not be similar enough to the ideal object to be useful for the user.
This leads to unnecessary efforts, in particular, when top-k queries are executed
over distributed databases [13]. To overcome this problem we propose top-q
queries which retrieve all objects within a certain similarity range q around the
objects specified through a query. We show how top-q and top-k queries can be
combined, e.g., to retrieve the best 100 objects that are at least 80% similar to
an ideal object.

While it is conceptually trivial to formulate such queries in SQL, classical rela-
tional query processing would be very inefficient, wasting enormous resources. The
efficient retrieval of the top-k tuples approximating an ideal object has, therefore,
attracted a lot of research attention (see [30] for an overview). We present an algo-
rithm using elaborate indexing techniques [12], which can processes both top-k
and top-q queries as well as combinations of top-k and top-q.

Optimizing top-k queries in highly distributed networks of federated or peer-
to-peer (p2p) databases still has significant research needs to consider both query
response time and system effort.

Processing a top-k query in a p2p network with horizontal partitioning
involves sending a top-kp query to each peer p. The optimization problem now
is to determine a proper kp for each peer p, i.e. how many objects should be
fetched from which peer. If kp is too large, it results in unnecessary computation
at the peers’ sites and unnecessary traffic. If it is too low, it is necessary to send
additional queries to the peers. We propose an adaptive approach considering
both objectives.

According to the categories introduced by Ilya et al. [30] our algorithm can be
classified as follows: Query Model : top-q selection and top-q join, Data & query
certainty : certain data, exact methods, Data access: both sorted and random,
Implementation level : application level, Ranking function: monotone.

We reported on these approaches and results already in conferences. This
paper is an extension of [13] and [14] integrating the top-q, top-k, and distributed
top-k approaches.

The rest of the paper is organized as follows: In Sect. 2 we discuss the prin-
ciples of processing top-k queries, related work, and areas for improvements.
We present our TQQA approach for top-q and top-k queries in Sect. 3. In
Sect. 4 we present our ADiT approach for efficiently processing top-k queries
in a distributed network of databases. Implementations of the TQQA and the
ADiT approach together with extensive experimental evaluations are given in
the Sects. 5 and 6. In Sect. 7 we draw some conclusions.
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2 Top-k Query Answering

The well known and widely applied Threshold Algorithm of Fagin et al. (in short
TA) [19] (independently published by Guntzer et. al [24] and Nepal et al. [35])
uses a pre-calculated index structure for evaluation of similarity. It basically
assumes m grades for each object in a database where m is the number of
different attributes. Fagin assumes for every attribute a sorted list which stores
each object and its similarity under a certain attribute value. An example list is
shown in Table 1. TA processes the given lists row by row and maintains a buffer
of objects most similar to the ideal object specified by the input query. Since
the lists are ordered the algorithm stops in case k-objects have been identified
and no unseen object has the chance of achieving a higher score than the object
with the lowest score stored in the buffer. There exist several different versions
and adaptions (no random access - NRA, Stream-Combine approach, LARA)
[19,25,33] of the original TA algorithm which work on different assumptions
but do not improve query answering speed considerably. On the other hand
the best position algorithm BPA-2 [4] relies on the same assumptions as TA
does, but incorporates an earlier stopping condition. For each sorted list BPA-2
maintains the so called best position, i.e. the greatest position such that any lower
position in the list has already been examined. In each step BPA-2 examines the
next position after the best position in each list and does random access to all
other lists to find the similarity values of the processed object there. With that
technique BPA-2 achieves two improvements over TA: (1) it avoids duplicate
access to one and the same object and (2) it can stop much earlier than TA
does. [4] showed that BPA-2 can improve query answering performance of TA
up to eight times.

Table 1. Sorted list for Attr-1

Object ID Attr-1 grade

5 50

1 40

3 30

2 20

4 10

. . . . . .

A good overview on top-k queries is given in [30]. The efficient answering of
queries searching for the top-k most typical tuples in large databases is discussed
in [29]. The authors introduce new query operators to enhance the existing SQL
syntax. The works [4,33] can be classified in the same category as Fagin’s TA.
They all rely on m-sorted lists which contain each object stored in a certain
database with its corresponding rank. Since some query answering systems inte-
grate their objective functions into the core of the database it is often needed to
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rewrite that functions when needs change. In [31] a generic system is presented
which allows to define objective functions outside the database core, thus there
are no needs to rewrite existing code when requirements change. Ranking of
queries in systems supporting only boolean queries is covered in [28].

Our approach is inspired by the idea of Fagin’s TA [19] to maintain a set of
indexes and process them. In [11] the authors already showed that the usage of
appropriate indexing techniques can improve query answering times and mem-
ory requirements by a factor of two to five. Opposed to object-based indexes the
authors recommended to generate an index entry for each distinct attribute value
and proposed a parallel stepwise processing of the generated indexes. In [12] it
is shown how an intelligent processing of the indexes can lead to an additional
significant reduction in query answer time as well as in memory requirements.
The parallel stepwise processing (as done in TA and BPA-2) of the index lists
leads to examining many objects which do not make it in the answer set. There-
fore, it was suggested to apply an intelligent look-ahead technique which always
chooses to process the most promising index structure next.

Distributed top-k query processing did not receive as much consideration
as centralized top-k query processing. There are approaches which optimize a
particular measure, respectively take particular configuration parameters into
account. There are approaches which focus on reducing the amount of transmit-
ted queries [3,26]. Other approaches aim at keeping the amount of transported
objects low [6,9,21,38]. Yet other approaches strive to reduce the communica-
tion costs [20]. However, both the transmitted objects and messages affect the
system effort and query response time in a peer-to-peer system.

3 Top-Q Query Answering

The TQQA approach is able to find all objects that do not fall below a certain
percentage threshold compared to the ideal object expressed through the input
query.

3.1 Query Formulation

TQQA supports a great range of queries which may contain an arbitrary number
of attributes from different tables as well as restrictions affecting attributes from
different tables. Generically, the supported queries can be written as follows:

select a1, a2, ... an
from t1, t2, ... tt
where join1 ... AND joinj

AND restriction1

AND restriction2 ...
AND restrictionr
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The restrictions can be any binary operator in standard SQL. Restrictions
composed of binary operators consist of a left-hand attribute, an operator and
a right-hand attribute or value, e.g. age = 30. Additionally, we introduce the
operator ‘˜’, indicating soft restrictions.

It is also possible to combine top-q queries with existing top-k queries. One
can define a threshold value q and specify to retrieve at least/at most k-objects
leading to four possible scenarios for retrieving the top k = 100 objects for a
percentage threshold of q = 90%, i.e. retrieving of:

– at most 100 objects → returns 100 objects
– at most 1000 objects → returns 500 objects
– at least 100 objects → returns 500 objects
– at least 1000 objects → returns 1000 objects.

Necessary Functions. One of the basic concepts of TQQA is its flexibility
since users may customize and thus affect the ranking by providing a user defined
similarity and an objective function. TQQA basically requires these two func-
tions which can be defined by the user (for convenience we provide useful default
functions):

1. Similarity Function: The similarity function is used to calculate an index
structure in the initialization phase. It must be monotonous and able to cal-
culate the similarity between two values of an attribute in a database or in
a relation. To support a broad field of applications it is desirable to provide
different similarity functions for different attribute types, e.g. numerical val-
ues, categorical values or string values. It is also possible to bind a similarity
function to a column of a relation or view. This allows the user to have dif-
ferent similarity functions for different attributes, e.g. age and weight might
have different functions to calculate the similarity of their values.

2. Objective Function: The objective function is used for calculating the rank or
score of objects. It defines how well an object satisfies the given restrictions,
i.e. how similar an object’s attribute values are to the values in the restric-
tions. With this function TQQA calculates the maximum possible score a
(possible hypothetical) object in the database can achieve. Then we only
return objects that are at least q-% similar to that maximum possible score.
TQQA also supports the definition of objective functions with more than
one input parameter, e.g. it is possible to pass weights etc. into the objec-
tive function. TQQA (as all other threshold algorithms) requires monotonous
objective functions.

These two functions can be passed to TQQA in an initialization step which
precedes the actual searching for interesting objects. Both functions are not
restricted to return values in a specific interval only, e.g. 0 to 100. An implicit
scaling to a percentage value is provided by the TQQA algorithm. Within this
section we provided the description of the two functions from a meta-level. A
concrete example for each function is given in Sect. 5 where we instantiate the
TQQA approach.
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3.2 Processing TQQA Queries

The goal of developing algorithms for processing TQQA queries is to derive the
correct result without retrieving all the objects from the database. In this section
we show how an efficient algorithm developed for the processing of top-k queries
can be adopted to process top-q queries and combined top-k and top-q queries
in an efficient way. The presented technique can also be applied to accelerate
other types of queries with restrictions on monotone functions [16].

In contrast to traditional top-k approaches [4,19,24,34] which maintain
object indexes TQQA uses a sorted similarity list (i.e., an index) for any dis-
tinct attribute value computed with the given similarity function. Since the index
contains distinct attribute values only, the memory requirements of the TQQA
approach are proportional to the selectivity of the restricted attributes. This
leads to a significant speedup compared to approaches which calculate similarity
measures for each object under each attribute [11]. In addition, we make use
of the look-ahead technique presented in [12], which always processes the most
promising index next.

The TQQA approach operates in two phases, (1) an initialization phase and
(2) a processing phase. Within the first phase TQQA is initialized with two
functions, namely the similarity function and the objective function and cre-
ates an index lookup structure based on the given restrictions and calculates the
maximum possible score. The second phase processes the index lists and selects
objects with minimum similarity. It stops when no more objects with that min-
imum similarity can be obtained from the database or when the enough objects
are published. The following piece of pseudo-code shows the process of obtaining
the top-q objects for a given list of restrictions.

program Top-QK (IN string tableName, IN Set restr,
IN Number q, IN Number K,
IN StoppingType type
IN Function Sim, IN Function Obj,
OUT Map<Number, object> objects)

var idx: Set<LookupTable>
var maxScore: Number
var buf: Map<Number, object>

begin
SetSimilarityFunction(Sim);
SetObjFunction(Obj);
CreateIndexTables(restr, OUT idx);
GetObjectScore(to_object(restr), idx,

OUT maxScore);
while contSearch(idx, maxScore * q, K, type)

processNext(tableName, idx, I_O buf);
publishObjects (buf, maxScore * q,

K, type, I_O objects)
end-while

end.
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Seven input parameters are needed: (1) The tableName is the name of the
table containing the data to be searched. If more than one table is involved a
view joining all needed tables is generated. (2) The restrictions which should be
satisfied by the result tuples. (3) The parameter q defining minimum similarity.
(4) The parameter k specifying the number of objects. (5) The StoppingType(at
least or at most) specifying the combination of q and k. (6) The reference to
the similarity function. (7) A reference to the objective function. The output
produced is a sorted list of objects.

In the following we take a deeper look into the major parts of the TQQA
approach. For examples, we assume a relation R which contains attributes a1
(number of seats), a2 (type of car).

Generation of Index Lookup Tables. The final step in the initialization
phase is the generation of a set of index lookup tables. TQQA generates an
index for each restriction in the input set directly through an SQL command as
shown in pseudo-code:

program CreateIndexTables (IN Set restrictions,
OUT Set<LookupTable> idx)

var q: Query
var lookup: LookupTable

begin
foreach restriction r in restrictions

q := select distinct(r.attr),
sim(r.val, r.attr) similarity
from r.relation
order by similarity desc;

execute immediate q bulk collect into lookup;
idx.Add(lookup);

end-for
end.

Below we show how this algorithm works in our example ex-1. We assume
the user specified the following restrictions: “a1 ˜5 AND a2 ˜sedan”.

When filling in the values of the example restrictions into the query this leads
to the following query statement ExQ-1:

select distinct(a1),
sim (5, a1) similarity
from R order by similarity desc;

This query retrieves a similarity list of all distinct values from attribute a1
from relation R. The reference value for calculating the similarity is 5. It results
in an output like Table 2. The result for posting the respective query for the
restriction on the attribute a2 is shown in Table 3. Each of the produced tables is
a separate index structure for one of the restricted attributes. CreateIndexTables
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generates all indexes The created index tables allow a fast locating of interesting
objects in the processing phase which is described next.

Table 2. Similarity to value 5 in R.a1

a1 Similarity

5 1

6 0.95

4 0.8

7 0.7

. . . . . .

Table 3. Similarity to value ‘Sedan’ in R.a2

a2 Similarity

Sedan 1

Coupe 0.75

Van 0.4

SUV 0.3

. . . . . .

Look Ahead. After the generation of an index structure for each restricted
attribute the lists are processed top-down, i.e. row by row from highest similarity
to the lowest. In contrast to Fagin’s TA [19] and BPA-2 [4] the TQQA approach
does not process all lists in parallel. It maintains a separate current row-number
ri for each index i. With the help of the row-numbers TQQA looks ahead to
identify the most promising index: i.e. the index i for which i[ri + 1] is highest.
This look ahead technique is a heuristic and has proven its applicability in [12].

Fetching Objects. The following piece of pseudo-code sketches the fetching of
objects which seem to be most relevant among the remaining objects.

program processNext (IN string tableName,
IN Set<LookupTable> idx,
I_O Map<Number, object> objects)

var maxIdx: LookupTable
var q: Query
var obj: object
var score: Number;

begin
LookAhead(idx, out maxIdx);
q := select * from tableName
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where maxIdx.restriction.attr =
maxIdx.current_row.next.val;

open q
loop until no-more-rows

fetch q into obj
GetObjectScore(obj, idx, OUT score);
objects[score] = obj;

end-loop
end.

Within processNext TQQA does a look-ahead to find the most promising
index avoiding fetching objects of indexes with very low similarity values. The
function processNext is called repeatedly from within function Top-QK and
always chooses the index structure with the highest similarity value to retrieve
the next objects. Assuming the Tables 2 and 3 as the lookup structures TQQA
searches for objects with the following attributes:

– Call-1: value 5 on attribute R.a1
– Call-2: value ‘Sedan’ on attribute R.a2
– Call-3: value 6 on attribute R.a1
– Call-4: value 4 on attribute R.a1
– Call-5: value ‘Coupe’ on attribute R.a2
– ...

The most promising index is used to build a query. The next objects are
fetched with this query, their total scores are computed and they are added to
a buffer.

Publishing Objects. This method deals with the four different combinations of
top-k and top-q. It tests for each object fetched in processNext whether to publish
it or not - depending on the score of the object, the chosen StoppingType, and
the number of already published objects. One of the two following restrictions
must hold that an object can get published:

– at most k objects: the object’s score is at least q-% of the maximum score
and the amount of already published objects is smaller than k.

– at least k objects: the object’s score is at least q-% of the maximum score or
the amount of already published objects is smaller than k.

program publishObjects (IN Map<Number, object> buf,
IN Number minScore, IN Number K,
IN StoppingType type,
I_O Map<Number, object> objects)

var simList: List<Number>;
var similarity: Number;

begin
foreach Element e in buf.Elements
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if type = AT_MOST AND
(e.score >= minScore AND objects.Count < K)

then
objects[e.Score] = e.Object;

elsif type = AT_LEAST AND
(e.score >= minScore OR objects.Count < K)

then
objects[e.Score] = e.Object;

end-if
end-for

end.

Calculating the Score of Objects. TQQA calls the objective function with
a list of similarity values for a certain object from the lookup tables.

program GetObjectScore (IN Object obj,
IN Set<LookupTable> idx,
OUT Number score)

var simList: List<Number>;
var similarity: Number;

begin
foreach Attribute a in obj.RestrictedAttrs

similarity := idx[a][a.val];
simList.Add(similarity);

end-for
score := Objective(simList);

end.

The method GetObjectScore is applied three times within the TQQA app-
roach: (1) to calculate the maximum possible score in the initialization phase.
(2) to calculate the score of each fetched object within processNext, and (3) to
check whether to continue the search loop or not. TQQA creates the best pos-
sibly remaining object out of the current rows from the lookup tables. If the
similarity of this object falls below the similarity threshold, then contSearch(...)
terminates.

Terminating the Search. The end of the search process of TQQA depends
on the chosen minimum similarity q, the amount k, and the StoppingType:

– at most k objects: TQQA stops, when no object can exceed q-% of the max-
imum score or when already the k objects have been published.

– at least k objects: TQQA stops, when no object can exceed q-% of the max-
imum score and when at least k objects have been published.
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To test these two stopping conditions TQQA must check two conditions. We
only have to consider objects that could be returned from the lookup tables from
the current rows downwards. We create a hypothetical best matching object that
could still appear and calculate its score. This hypothetical object is an object
composed from all values from the current rows in the lookup tables. Table 4 and
Table 5 highlight the current rows in each index after Call-4 of processNext. To
obtain the maximum possible score of all unseen objects a hypothetical object
with values 7 on R.a1 and Coupe on R.a2 is created. After that the score of this
object is calculated with GetObjectScore. With this hypothetical object TQQA
can determine whether there might be an object that can make it in the set of
top-k objects or that can achieve a score which is at least q-% similar to the
searched object.

Table 4. Index for restriction on R.a1

Current row a1 Similarity

5 1

6 0.95

→ 4 0.8

7 0.7

. . . . . .

Table 5. Index for restriction on R.a2

Current row a2 Similarity

→ Sedan 1

Coupe 0.75

Van 0.4

SUV 0.3

. . . . . .

4 Distributed Top-k and Top-q Queries

4.1 Principles of the ADiT Approach

Processing a top-k query involves sending a top-k query to each peer. Opti-
mization means determining a proper kp for each p of the peers, i.e. how many
objects should be fetched from which peer. If this kp is too large, it results in
unnecessary computations at the peers’ site and unnecessary traffic. If it is too
low, it is necessary to send additional queries to (some of the) peers, increasing
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query response time and creating higher overhead. Processing a top-q query in
a peer-to-peer network with horizontal partitioning requires to send the same
query with the same q to all peers and collect the results. This is fairly straight-
forward and hence in the following we focus on optimizing top-k queries keeping
in mind that they always can be extended with a top-q condition.

In our approach several parameters are used to calculate a kp:

– size of the peer to peer network
– amount k of searched objects
– network capabilities of each peer, i.e. the transmission rate
– amount of objects stored on each connected peer
– speed of a peer, i.e. the searching performance of that peer.

Our approach, Adaptive Distributed Top-K query processing (short ADiT),
is able to process distributed top-k queries over horizontally partitioned data
exactly but the processing of the query takes the above mentioned character-
istics into account. ADiT assumes a dynamic p2p network, where each peer
has variable bandwidth capabilities and individual message costs. In contrast
to other approaches such as [38,40] ADiT does not rely on caching techniques.
Thus the performance is not dependent on stable data or on reoccurring queries.

The aim of ADiT is to achieve a low overall system effort as well as a fast
query response time. The first parameter, the overall system effort is defined as
the sum of all amounts of time of the peers needed for (1) sending requests to
other peers in the network to obtain further objects, (2) searching objects and
(3) transmitting objects. The second parameter is the query response time, the
time elapsed between submitting a query and the return of the result. Formula
(1) and formula (2) define the system effort, respectively the query response time
where MsgCounti is the total amount of messages sent to peer Pi and ni is the
amount of objects retrieved from peer Pi. We use the following abbreviations
throughout of this paper: N is the peer to peer network, Q is the top-k query, R
is the queried relation, and Pi is a peer in the peer to peer system.

SE(N,Q,R) =
|P |∑

i=1

CCN.Pi,MsgCi) + (1)

DBCosts(N.Pi, Q,R, ni) +
TransCosts(N.Pi, R, ni)

QueryAnswerT ime(N,Q,R) = max(CommCosts(N.Pi,MsgCounti), (2)
DBCosts(N.Pi, Q,R, ni),
T ransCosts(N.Pi, R, ni))
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The unit of system effort as well as of query response time is seconds. Thus
it is needed to map the different costs to a time factor. Function 3 defines how
sending MsgCount requests to peer P is mapped to a time factor. The amount
of incoming messages is multiplied with the constant costs that arise when estab-
lishing a connection to peer P . This gives the amount of time that is spent by
sending MsgCount messages to peer P .

CommCosts(P,MsgCount) = PMsgCosts ∗ MsgCount (3)

Function 4 defines how retrieving n objects from relation R of peer P is
mapped to a time factor. The transmission costs are influenced by the size of
the object in relation R on peer P and by the transmission rate of peer P .

TransCosts(P,R, n) =
(PRObjectSize

∗ n)
PTransRate

(4)

The database costs (DBCosts(N.Pi, Q,R, n)) for searching the best n objects
in relation R on peer Pi strongly depend on the top-k approach used on peer
Pi, performance of the answering peer Pi, and the issued query Q, e.g. on the
number of restrictions. ADiT assumes that each peer provides an estimate of
the time needed to return the top-k objects for a query with m restrictions on
a relation with size N. There is no assumption which procedure a peer uses to
process top-k queries.

ADiT works iteratively and calculates a separate fetch size k′
p for each peer

in each iteration. Then ADiT broadcasts the query Q in parallel and gathers
the top-k′

p from each peer p. Then ADiT tries to publish objects and repeats if
necessary.

There are two major possibilities for tuning: Choosing an appropriate fetch
size k′

p for each peer in each iteration and avoiding to contact peers which cannot
contribute to the result. For choosing the fetch size there are two extreme cases:

1. k′
p = 1 for each peer leads to a minimal amount of transmitted objects but to

a higher amount of transmitted messages.
2. k′

p = k for each peer leads to a minimal amount of transmitted messages but
to a higher amount of transmitted objects.

In the rest of this paper we will focus on how to tune this basic distributed
top-k query processing approach. Focusing on top-k allows easier comparison
with other approaches. Extending the approach to also include top-q in the form
of TQQA (Sect. 3) is straightforward.

4.2 Heuristic Fetch Size Calculations

We analyzed a large number of queries by varying the influencing factors to
developed two heuristics (basic and enhanced) for choosing a good fetch size k′

p

for each individual peer p.
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Basic Heuristics. The basic heuristics shown in Eq. 5 only uses the amount of
relevant peers NSize and the amount of searched objects k to derive a common
fetch size f for all peers. The basic heuristics does not assume any particular data
distribution. Thus it tries to retrieve an equal amount of objects from each peer.
If k is larger than NSize, the basic heuristics equally distributes k among the
available peers. Otherwise the basic heuristics calculates the smallest multiple
of k which is greater or equal than NSize and equally distributes this amount
among the available peers. The consFactor is used to increase the fetch size since
it is unlikely that each peer will contribute the same number of objects. This
increasing is used to fetch more objects and keep the number of iterations small.
Our initial experiments showed that a consFactor of 2 leads to good results, e.g.
few iterations and thus few messages exchanged in the p2p network. If the data
is not distributed equally, a higher value for consFactor should be chosen.

f = min(k, consFactor ∗
⌈
NSize

k

⌉
∗ k

NSize
) (5)

Enhanced Heuristics. The enhanced heuristics calculates the fetch size k′
p for

each peer p separately. It uses additional parameters to adjust the fetch size for
each peer properly:

– ObjectsStoredp: Amount of objects stored on peer p.
– ObjectsStoredN : Amount of objects stored in the peer to peer system N, i.e.

sum(ObjectsStoredp).
– Speedp: Query processing speed of peer p, e.g. a value between 1 and 10 where

1 is the slowest and 10 the fastest speed.
– maxSpeedN : Maximum peer query processing speed in the p2p system N.
– TransRatep: The transmission rate describing how fast the network connec-

tion of a certain peer is. This value is given in MBit per second.
– maxTransRateN : Maximum transmission rate in the p2p system N.

The following parameters are gathered during query processing iterations:

– ObjectsRetrievedp: Amount of objects of peer p, which have already been
retrieved, initially 0.

– ObjectsPublishedp: Amount of objects of peer p, which made it in the top-k
answers, initially 0.

– ObjPubN : Amount of objects returned to the user, initially 0.

All these parameters are used to calculate different weights which influence
the enhanced heuristics. Applying the basic heuristics to the large test scenarios
showed that the proposed fetch size should be treated as a lower limit. There-
fore, the enhanced heuristics uses the different weights to increase the fetch size
determined with the basic heuristics. The enhanced heuristics maps its weights
to the interval of [1, 2] preventing to fetch fewer objects than the basic heuristics
suggested. The enhanced heuristics assumes that peers that contributed more
objects in previous iterations will also contribute more objects in the following
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iterations. This assumption is reflected in weight wpF which is defined in Eq. 6.
The more objects a peer published, the more objects are gathered from this peer
in the next iteration.

wpF = (1 +
ObjectsPublishedp

ObjPubN
) (6)

The enhanced heuristics tries to reduce the amount of unnecessarily fetched
objects by fetching more objects from peers with a high ratio between fetched
objects and published objects. Equation 7 shows the definition of weight wuF .

wuF = (1 +
ObjectsPublishedp
ObjectsRetrievedp

) (7)

The enhanced heuristics assumes that peers which store more objects will
contribute more to the final answer. Thus it suggests to fetch more objects from
larger peers. It uses Eq. 8 to incorporate that fact, namely weight wDBF .

wDBF = (1 +
ObjectsStoredp
ObjectsStoredN

) (8)

Since it is cheap to ask a faster peer for more objects the enhanced heuristics
defines wSpeed and wTransRate. Equation 9 models that more objects should be
fetched from peers which are faster in searching their databases.

wSpeed = (1 +
Speedp

maxSpeedN
) (9)

Equation 10 deals with the transmission of objects. It reflects that more
objects should be fetched from peers which have a higher transmission rate.

wTransRate = (1 +
TransRatep

maxTransRateN
) (10)

The weights described in Eqs. 6–10 are used by the enhanced heuristics to
influence the basic heuristics. The weighted fetch size is determined with the
heuristic function shown in Eq. 11.

k′
p = min(k − ObjPubN , �f ∗ wpF ∗ wuF ∗ wDBF ∗ wSpeed ∗ wTransRate�)

(11)

The upper bound for fetch size k′
p is obviously the amount of missing objects,

namely k−ObjPubN . The enhanced heuristics does not fetch more objects than
the amount of missing objects from any of the peers in the peer to peer system.

4.3 ADiT Processing Iterations

ADiT processes a given distributed top-k query through a number of iterations
gathering objects from the peers to answer the distributed top-k query. In this
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section we focus on the relevant steps in each iteration. The pseudo-code in
Listing 1.1 shows how ADiT obtains the best k objects for a list of restrictions.

The variables used for storing the maximum remaining score
(maxRemScore) and all fetched objects (fetchedObjs) are assumed to be glob-
ally visible to all threads during the execution. They are in-out parameters in all
pseudo-codes where they are used. The output produced by the ADiT -method
is a sorted list of the k objects which score best among all objects in the p2p
system with respect to the objective function.

Identify Relevant Peers. ADiT only distributes the top-k queries to relevant
peers. A peer p is relevant iff the last delivered object of peer p (i.e. the one with
the maximum remaining score on peer p) is among the best k objects of already
fetched objects, otherwise peer p is irrelevant and can be pruned, since peer p
cannot return a better object than its last published object. The set of relevant
peers is updated in each iteration.

Calculating Individual Fetch Sizes. In each iteration ADiT assigns an indi-
vidual fetch size k′

p to each relevant peer p. The fetch size is determined using
the enhanced heuristics discussed in Sect. 4.2.

1 program ADiT ( IN s t r i n g tableName , IN Number k ,
2 IN Set<Res t r i c t i on> r e s t r ,
3 IN Set<Function> Sim , IN Function Obj ,
4 I O Map<Number , ob ject> ob j e c t s )
5 var maxRemScore : Number ;
6 var fetchedObjs : Map<Number , ob ject >;
7 var ObjPublished : Number ;
8 var r e lP e e r s : Set<Peer>;
9 var t : Thread ;

10 begin
11 loop
12 maxRemScore = 0 ;
13 GetRelevantPeers ( ob j ec t s , I O r e lP e e r s ) ;
14 CalcFetchSize ( k − ob j e c t s . count , I O r e lP e e r s ) ;
15 −− broadcast
16 fo r each Peer p in r e lP e e r s
17 t = new Thread ( ) ;
18 t . s t a r t ( LocalTopKCall ( tableName , r e s t r , Sim , Obj ,
19 p , fetchedObjs , maxRemScore ) ) ;
20 end−f o r ;
21 −− pub l i sh
22 Publ i shObjects ( I O fetchedObjs , I O maxRemScore , k ,
23 r e lPee r s , ObjPublished , ob j e c t s ) ;
24
25 un t i l ObjPublished == k
26 end .

Listing 1.1. Pseudo-code for ADiT
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Broadcasting top-k Query. Within each iteration ADiT distributes the query
throughout the system and obtains k′

p objects from each peer in parallel.
For each relevant peer ADiT starts a separate thread (LocalTopKCall) which

encapsulates two major tasks: (1) execution of a local top-k query and (2) updat-
ing of the maximum remaining score if it changed (Listing 1.2).

1 program LocalTopKCall ( IN s t r i n g tableName ,
2 IN Set<Res t r i c t i on> r e s t r ,
3 IN Set<Function> Sim ,
4 IN Function Obj , IN Peer p ,
5 I O Map<Number , ob ject> fetchedObjs ,
6 I O Number maxRemScore )
7 begin
8 p .TQQA( tableName , q = 0 , p . k ’ , r e s t r ,
9 searchType = AT MOST,

10 Sim , Obj , p . Objects ) ) ;
11 lock ( fetchedObjs , maxRemScore ) ;
12 fetchedObjs . AddAll (p . Objects ) ;
13 i f p . maxScore > maxRemScore then
14 maxRemScore = p . maxScore ;
15 end− i f ;
16 end−l o ck ;
17 end .

Listing 1.2. Pseudo-code for sending a top-k query to a certain peer

The first part shows the call of a local TQQA query processor [10] which is
reentrant, i.e. gathering k′ = 5 objects in the first iteration and k′ = 10 objects
in the second iteration finally gives the best 15 objects from peer p. After the
best (or next in each following iteration) k′ objects have been retrieved, they
are added to a global buffer. Finally the maximum remaining score is updated
if peer p has a higher maximum score than all other peers.

Publishing Objects. The last step in each iteration is the publishing of rele-
vant objects (Listing 1.3). It is necessary to wait for all peers to return at least
one result. This is indicated with the waitForAll method. After all peers pro-
vided their results, ADiT iterates over the sorted map and tests for each object
whether its score is greater or equal than the maximum remaining score. In that
case an object can be published. ADiT stops when enough objects have been
published.

1 program Publ i shObjects ( I O Map<Number , ob ject> fetchedObjs ,
2 I O Number maxRemScore , IN Number k ,
3 IN Set<Peer> r e lPee r s ,
4 I O Map<Number , ob ject> ob j e c t s )
5 begin
6 waitForAl l ( r e lP e e r s ) ;
7
8 fo r each Element e in fetchedObjs . Elements
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9 i f e . Score >= maxRemScore
10 ob j e c t s [ e . Score ] = e . Object ;
11
12 i f ob j e c t s . count == k then
13 break ;
14 end− i f
15 e l s e
16 break ;
17 end− i f
18 end−f o r
19 end .

Listing 1.3. Pseudo-code for the publishing of objects in ADiT

5 TQQA Prototype and Experiments

TQQA is a generic approach giving the possibility to define two functions: for
measuring the similarity between values and a monotonous objective function
for calculating the score of an object. In Sect. 3 we primarily focused on how
these two functions are used within TQQA here we present potential candidates
for these functions.

5.1 Similarity Function(s)

Equation 12 shows how the similarity between two attribute values is calculated.
The first parameter (a) passed to Sim is the attribute value of a certain database
tuple, the second parameter (v) is the attribute value given by the user in the
restriction for an attribute. The last two parameters hold the table name t and
the attribute name attr. This information can be used to take the data distribu-
tion of an attribute into account. Here we use the minimum and maximum values
in the given table/attribute. When calculating the similarity we distinguish two
different cases, e.g. the similarity between two numerical values and the simi-
larity between two categorical values. Equation 13 shows the definition of the
NumSim(...) used to calculate the similarity between the two given numerical
values.

Sim(a, v, t, attr) =
{
NumSim(a, v, t, attr), if a numerical
CatSim(a, v, t, attr), otherwise (12)

NumSim(a, v, t, attr) = 1 − |a − v|
maxtattr

− mintattr

(13)

The numerator of Eq. 13 is the absolute difference between the two values which
should be compared. The denominator models the distance between the mini-
mum and the maximum value of an attribute in a certain relation. The farther
two values are apart from each other, the smaller their similarity value is. Addi-
tionally, we take into consideration how large the distance between the minimum



Fast Distributed Top-q and Top-k Query Processing 19

and the maximum value of the attribute in the given relation is. The function
NumSim always returns a value between 0 (no similarity) and 1 (total similar-
ity, i.e. equality). The similarity function used for categorical data is shown in
Eq. 14. It returns either the inverse document frequency [7,37,39] for categorical
data [2] or 0 depending whether the values are equal or not.

CatSim(a, v) =
{

log n
F (v) , if a equals v
0, otherwise

(14)

The numerator of Eq. 14 is the number of objects in a certain relation. The
denominator is the frequency of value v in that given relation. Implementations
of these similarity functions can be used by our TQQA approach to calculate
the similarity between tuples in the database and the ideal object described by
a query.

5.2 Objective Function

As discussed in Sect. 3 any monotone function can serve as objective functions.
Here we show how user preference queries can be expressed through the defi-
nition of an appropriate objective function. A user preference query allows the
user to specify weights on each of the soft constraints, e.g. weights that reach
from 1 (nice to have) up to 5 (must have). Our example objective function, a
weighted sum of similarities to the desired values is shown in Eq. 15.

Objective =
m∑

j=1

wraj
∗ Sim(aj , valraj

) (15)

Adding the possibility to specify weights on all restrictions in example ex-1
from Sect. 3.2 leads to the following two sets: S1:{(5; 3)} and S2:{(1; 1)}.

These preferences mean that the searched car must have 5 seats and it should
be a sedan. Examining the objective function with these input parameters would
lead to the value 8, the maximum achievable value for this query.

Table 6. Attribute characteristics of our test relation.

Name Type Selectivity

a1 Numerical 0.5

a2 Numerical 0.1

a3 Categorical 0.04

a4 Numerical 0.02

a5 Categorical 0.01

a6 Numerical 0.004

a7 Categorical 0.002

a8 Categorical 0.001

a9 Numerical 0.0001
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5.3 Prototype and Experimental Setup

We implemented all algorithms described throughout this paper in a 3-tier
architecture: (1) the database layer containing our TQQA approach with the
described similarity (see Sect. 5.1) and objective function (see Sect. 5.2). This
layer is completely embedded in the database and implemented as stored PL-
SQL procedures. (It is also possible to implement it outside the database, e.g. in
a special TQQA library.) (2) A database access layer which is used for sending
queries to a database and receiving results. (3) A Query By Example GUI which
allows easy specification of top-q queries.

The Underlying Data Model. The data model used during the experiments
was a single relation containing nine attributes. In the case of having more than
one relation we just create one view out of the relations involved in the query
request and process the data as usual. Table 6 gives an overview on the chosen
datatypes and the selectivity of each attribute. Here the selectivity is calculated
as the inverse of the amount of distinct attribute values in the given relation.

To evaluate the performance of TQQA we carried out detailed measurements
regarding the query response time and the memory requirements.

System Environment. All tests were carried out on a system with the follow-
ing attributes: 2 Intel Xeon E5530 (Quad Core) processors each with 2.4 GHz
clock rate, 16 GB RAM, Win2008 Server R2 Enterprise 64 Bit, Oracle Server
11gR2. All algorithms were implemented as stored procedures.

Test Database. The test database was filled with randomly generated data.
The attributes of our test relation(s) are not correlated and their values are
equally distributed. TQQA could additionally benefit from database indexes.
When indexing the search attributes on database level we found that TQQA
could improve its response time at an average of 1.5. Nevertheless, to test our
approach and not the capabilities of the underlying database, we compared the
response times without support of database indexing techniques.

Test Scenarios. For providing a meaningful analysis we adapted three param-
eters in our scenarios. (1) size of the relation: 10k, 20k, 50k, 100k, 200k and 500k
entries, (2) minimum similarity of each returned object: we covered the interval
from 10% up to 95% with a stepsize of 10%. (3) number of restricted attributes:
1 up to 9. The queries (Q1, Q2, . . . Q9) posted in the test runs were constructed
in the following way: Query Q1 restricts attribute a1, query Q2 additionally
restricts attribute a2. Finally query Q9 restricts all available attributes and thus
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has the lowest selectivity of all posted queries. All these parameters were used
in each possible combination for TQQA. This gives 540 queries to be executed
and a profound basis to discuss the approach and draw conclusions.

Comparison. Since top-q and top-k return different amounts of objects and
there is no other top-q implementation, we have chosen to compare TQQA with
BAP-2 in the following way: We counted the amount of objects gathered with a
specific similarity value q in a top-q query. This value was then used as amount
k for searching the top-k objects with BPA-2. This allows a fair comparison
because both approaches return the same amount of objects. Since typical top-k
queries do not search for tens of thousands of objects we decided to start our
comparison at a minimum similarity value of q = 60%. For comparing TQQA
against BPA-2 we defined ratios for the query answer time (qat) and for the
memory requirements:

1. ratioqat = qatBPA−2/qatTQQA

2. ratiomem = bufferdObjsBPA−2/bufferdObjsTQQA

For the calculation of buffered objects we counted all objects fetched from the
database and stored in internal buffers. For each of the buffered objects both
approaches calculated the objective function. We did not take into consideration
that BPA-2 maintains one list for each restriction where all objects of the relation
are stored. That would make the comparison even worse for BPA-2. Thus we
only counted all objects examined while stepping down the sorted lists of BPA-2.

5.4 Discussion of Results

Within this section we present eight diagrams generated from the data produced
by our test runs. Figure 1 shows the query answer times of TQQA on a relation
with 500.000 objects and different minimum similarity values q. We observe that
the query answering process gets faster the higher q is. This is expected since the
approach has to examine fewer objects for a higher q. The investigation of query
answer times on relations with different sizes is illustrated in Fig. 2. The query
answer time grows seemingly exponential when the size of the underlying relation
increases but the time needed to find interesting objects is still reasonable. In
Fig. 2 we can see that it is always below 1 second when searching objects which
are at least 90% similar.

In Figs. 3 and 4 we can see that the query answer time steadily increases
when the selectivity of the query decreases. This finding can be observed in both
figures, when we investigate different similarity values q or different relation sizes.
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Additionally, we found that (1) when posting two queries with equal selectivity
the query with fewer restricted attributes can be answered faster, and (2) when
posting two queries with an equal amount of restricted attributes the query with
the higher selectivity can be answered faster.

In Fig. 5 we can see that TQQA is between 10 and 160 times faster than
BPA-2. We observe that the ratio is heavily increasing the higher q gets as fewer
objects are returned for higher q. Fewer objects in the result set often means that
we have to post fewer queries. This can also be observed at the rapid increase
of the ratio between q = 80% and q = 90%. The increase stems from a situation
where TQQA only needs a few steps down in the most interesting indexes to
locate the top-q objects. Fewer stepping in the indexes means fewer queries and
thus results in faster query answer times. Finally when searching the top-500.000
objects both algorithms perform equal, but for a reasonable amount of objects
TQQA is much faster as BPA-2.

In Fig. 6 we focus on the impact of the query selectivity. We can see that
ratioqat is higher the higher the query selectivity is. This is because more
restricted attributes often mean more queries against the database in different
indexes. Those queries are time consuming and thus slow down the query answer-
ing process. The further we can observe that TQQA is more robust against the
selectivity of a query the higher q is. For a similarity value q = 90% or q = 95%
the ratioqat is almost constant.

In Figs. 7 and 8 we finally take a look at the memory ratios between TQQA
and BPA-2. The scales of both figures are logarithmic at the base of 2. In Fig. 7
we can see that the memory ratio is almost between two and six. The rapid
increase at the similarity value q = 90% stems from the situation that TQQA
quickly found all interesting objects and did not need to further step down the
index. On the other hand BPA-2 did not skip the searching process that quickly
and thus examined much more objects than needed. In Fig. 8 we observe that
the ratio is almost between two and five and that it is very robust against the
query selectivity. The outlier at the similarity value q = 95% is due to the fact
that TQQA could determine very fast that no more objects are available while
BPA-2 had to examine much more objects.

In summary, TQQA was faster for all test cases by one to two orders of
magnitude and also had much smaller memory requirements than BPA-2.

6 ADiT Prototype and Experiments

ADiT has been completely implemented in PL-SQL [22] as a set of stored proce-
dures [36]. To compare ADiT against a state of the art distributed top-k query
processing technique we also implemented the algorithm with remainder top-k
queries (short ARTO) [38] in this database layer.
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Fig. 1. Query answer times of TQQA
on a relation with 500k objects and
varying minimum similarity q.

Fig. 2. Query answer times of TQQA
for searching the ≥90% similar objects
in relations with different size.

Fig. 3. Query answer times of TQQA
on a relation with 500k objects and
varying query selectivity.

Fig. 4. Query answer times of TQQA
for searching the ≥90% similar objects
with varying query selectivity.

Fig. 5. Ratio of query answer times
for TQQA and BPA-2 on a relation
with 500k objects and varying mini-
mum similarity q.

Fig. 6. Ratio of query answer times for
TQQA and BPA-2 on a relation with
500k objects and varying query selec-
tivity.
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Fig. 7. Ratio for amount of examined
objects between TQQA and BPA-2 on
a relation with 500k objects and vary-
ing minimum similarity q.

Fig. 8. Ratio for amount of examined
objects between TQQA and BPA-2 on
a relation with 500k objects and vary-
ing query selectivity.

6.1 Experimental Setup

We performed experiments on 2 databases: One filled with randomly gener-
ated data, and the other consisting of a single relation containing 68 categorical
attributes taken from the UCI Machine Learning Repository [1,23] which con-
tains over 2.400.000 entries in this single relation which we distributed among
the peers in the network such that the size of the database of each peer varied
between 5.000 objects and 500.000 objects.

Within this section we present various diagrams generated from the data
produced by the conducted test runs. We primarily focused on the system effort
caused by a certain query and on the query response time. To make precise state-
ments about ADiT and the enhanced heuristics we used the basic heuristics with
a consFactor of 2 and four other heuristics to compare them to the enhanced
heuristics:

1. k′
p = k

2. k′
p = 1

3. k′
p =

⌈
k
N

⌉

4. k′
p =

⌊
k
N

⌋

5. k′
p = min(k, 2 ∗ ⌈

NSize

k

⌉ ∗ k
NSize

).

For an easier comparison of the achieved results we defined two ratios: gain
with respect to system effort is defined in Eq. 16; gain achieved for the query
response time is shown in Eq. 17. The respective ratios for the comparison with
ARTO are defined accordingly.

RatioSE =
SystemEffortheuristici

SystemEffortheuristicenhanced

(16)

RatioQAT =
QueryAnswerT imeheuristici

QueryAnswerT imeheuristicenhanced

(17)
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Fig. 9. Ratio for query response time between enhanced heuristics, approximated opti-
mum, ARTO and five different approaches to determine the fetch size k′

p in a peer to
peer system with 19 peers and varying search amount K and 4 restrictions on census
data.

6.2 Discussion of Results

In Fig. 9 we can see the RatioQAT for a query with 4 restrictions. Comparing
with Fig. 11 we can see that all curves get higher in a peer to peer network
with 49 peers. Additionally, these first figures already show that the heuristics
k′
p = 1 is not a good choice since it involves high interaction between the query

initiator and the other peers. We can also observe that for the query response
time the gain over ARTO is rapidly increasing when the amount of searched
objects increases. The ratio is growing fast because ARTO needs more sequential
message processing when the search amount increases (when the first parallel call
was not sufficient).

In Figs. 10 and 11 we can see RatioSE and RatioQAT for a query with 4
restrictions in a peer to peer network with 49 peers storing census data. We can
observe that the ratio RatioSE and RatioQAT are almost identical with respect
to their curves. They only differ in the magnitude which is a little higher for the
RatioQAT . This means that the usage of ADiT brings slightly more benefits to
a single user than to the whole peer to peer system. This result can be observed
over all of the tests. The reason for this behaviour is that ADiT tries to fetch
fewer objects from less important peers. Thus these peers do not influence the
search process that much than in a setting where all peers are contributing the
same amount of objects. Another reason is that the search time is dominated by
the slowest peer. Avoiding high interaction and fetching few objects from such
peers can clearly boost query processing.



26 C. Dabringer and J. Eder

Fig. 10. Ratio for system effort between enhanced heuristics, approximated optimum,
ARTO and five different approaches to determine the fetch size k′

p in a peer to peer
system with 49 peers and varying search amount K and 4 restrictions on census data.

Fig. 11. Ratio for query response time between enhanced heuristics, approximated
optimum, ARTO and five different approaches to determine the fetch size k′

p in a peer
to peer system with 49 peers and varying search amount K and 4 restrictions on census
data.

We observe also that ARTO has a lower system effort for a small search
amount as seen in Fig. 10. The reason for this is that ARTO can answer queries
with fewer messages and fewer transmitted objects. This is because ARTO
sequentially asks the peer with the highest remaining score for further objects
resulting in fewer work for the remaining peers. However, in Fig. 11 we can
observe that the query response time is better for ADiT in the same scenario.
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In Figs. 12 and 13 we can see the RatioSE and the RatioQAT for a query
with 12 restrictions in a peer to peer network with 49 peers storing census data.
In these two figures we can observe the situation where the enhanced heuristics
needs more iterations than the heuristics fetching k′

p = k objects. This situation
only occurred once in all of the test cases. Additionally, we see the same effect
as in Figs. 10 and 11, i.e. the curves are very similar but the RatioQAT is a little
higher than RatioSE .

When comparing Figs. 12 and 13 with Figs. 10 and 11 we can observe that
the magnitude of the ratios is almost independent of the amount of restrictions.
Furthermore, we observe in Figs. 12 and 13 that the ratios for ARTO increases at
the point where the search amount exceeds the amount of peers in the network.
This shows that it is better to ask each peer for more than only one object even
when calling them sequentially.

The most important observations gathered through the performed test runs
on random data and US Census data are:

1. ADiT is up to 200 times faster than ARTO in case the search amount gets
higher than the amount of peers in the network.

2. The system effort caused by ADiT is up to 8 times lower than the system
effort caused by ARTO in case the search amount gets higher than the number
of peers in the network.

3. The query response time of ARTO is in most cases worse than the query
response time achieved with any of the presented ADiT heuristics.

Additionally, we found some characteristics appearing in almost all test runs:

– The enhanced heuristics is close to the approximated optimum gathered
through the extensive tests on the US Census Data (1990) Data Set.

– The enhanced heuristics is better than all other presented heuristics, except
in one single query (see Figs. 12 and 13).

– The enhanced heuristics is between 2 and 32 times faster than the heuristics
always fetching 1 object from each peer in parallel.

– The enhanced heuristics is about 3 to 8 times faster than heuristics fetching⌈
k
N

⌉
or

⌊
k
N

⌋
objects from each peer in parallel.

– The enhanced heuristics is between 1.5 and 2.5 times faster than the heuristics
fetching k objects from each peer in parallel.

– The basic heuristics and the heuristics fetching k objects from each peer in
parallel turned out to be better than the other heuristics.

– Heuristics fetching more objects from each peer perform better than heuris-
tics fetching fewer objects. This can be seen when comparing the heuristics
fetching

⌈
k
N

⌉
vs.

⌊
k
N

⌋
objects in parallel from each peer. The fetch sizes only

differ by one, but the presented ratios show that this small difference might
have a high influence on system effort and query response time.
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Fig. 12. Ratio for system effort between enhanced heuristics, approximated optimum,
ARTO and five different approaches to determine the fetch size k′

p in a peer to peer
system with 49 peers and varying search amount K and 12 restrictions on census data.

Fig. 13. Ratio for query response time between enhanced heuristics, approximated
optimum, ARTO and five different approaches to determine the fetch size k′

p in a peer
to peer system with 49 peers and varying search amount K and 12 restrictions on
census data.

7 Conclusion

The goal of this work is to reduce the effort for users to retrieve relevant informa-
tion from large databases where they typically face the recall/precision problem.
The observed drawbacks of plain top-k queries motivated a new top-q approach
called TQQA. With top-q queries users can identify objects which are at least
q-% similar to the object described through the query. This allows to state a
minimum degree of similarity, which is not possible with top-k approaches.
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We showed that advanced indexing techniques can be used to speed up the
computation of the top-q tuples. The presented technique can also be used to
accelerate other types of queries with restrictions on monotone functions [16].
Finally, we compared TQQA with the best position algorithm BPA-2 [4] in a
series of experiments and showed the feasibility of the approach. To the best
of our knowledge BPA-2 is the fastest threshold based top-k query answering
approach. We could increase query answering speed by a significant factor of
10 to 160. Additionally, our algorithm proved to have much smaller memory
requirements compared to BPA-2.

We motivated the need for an adaptive approach for processing top-k queries
in a distributed peer-to-peer environment. Based on data gathered through
extensive experiments we derived heuristics for computing how many objects
each peer should return. We evaluated these heuristics extensively in compari-
son with other approaches and could show that ADiT can accelerate the query
response time and reduce the consumption of system resources significantly.
Furthermore, we saw that the enhanced heuristics is in most cases close to the
best system effort and query response time determined upfront. Additionally, we
found that a heuristics fetching more objects is usually the better choice since
returning a few more objects has much lower costs than sending an additional
request. Last but not least the gains achieved with ADiT increase with the size
of the peer to peer network and the number of requested results k.
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Abstract. Finite time consensus algorithms compute consensus values
exactly and in a finite number of steps, contrasting with asymptotic con-
sensus algorithms. In the literature, there exists few approaches deriving
finite time convergence for discrete consensus algorithms. In this paper
we focus on an analysis of finite time convergence based on the observ-
ability matrix for consensus networks. We introduce analytical results
extending the applicability of network observability theory to consensus
and other distributed algorithms. New analytical bounds on the number
of steps to compute consensus are provided as well as counterexamples
which are disproving a conjecture on the minimum of steps to com-
pute consensus. A polynomial time algorithm is described to calculate
empirically the exact number of steps to compute consensus values. We
have implemented a consensus-based network intrusion detection system
based on the observability matrix approach of consensus networks. This
implementation validates empirically our analytical results. We also com-
pare the performance of the finite time consensus with an implementa-
tion of the same intrusion detection system using asymptotic consensus.
Although the finite time algorithm provides exact solutions, tests show
that it needs less iterations to obtain a consensus solution.

Keywords: Consensus algorithms · Finite time convergence ·
Observability theory · Distributed computing

1 Introduction

Consensus problems arise in computer network systems where unique output
values are computed distributively from several inputs. For example, nodes in a
sensor network, given they are physically distributed, may take different mea-
surements of a same variable such as temperature, but then make consensus
on a same output value to satisfy the requirements of some wider monitoring
system. Distributed solutions to such problems can be obtained from consensus
algorithms. Let G = (V,E) be a graph representing a computer network system
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(the consensus network), where the set of n vertices V of G stands for the net-
work nodes and the set E of edges in G stands for the network interconnection
structure. Let xi(0) be the value of the measurement taken by node i and x(0)
the initial state of the consensus network. Assume the consensus problem con-
sists to compute

∑n
i=1 xi(0)

n , this problem is called average consensus problem.
Several distributed iterative asymptotic consensus algorithms have been pro-
posed for this problem [1–3]. These algorithms require each node i to compute
a local average as follows:

xi(k + 1) = Wiixi(k) +
∑

j∈Ni

Wijxj(k), k = 0, 1, 2, .. (1)

where Ni = {j ∈ V |(i, j) ∈ E} denotes the neighbor set of node i which consists
of nodes directly connected to i in the network, W is a weight matrix, also named
consensus matrix. For each node in the consensus network, limk→∞ xi(k) =∑n

i=1 xi(0)

n provided G is connected and W is row stochastic, i.e. 1TW = 1T ,
where T denotes matrix transpose and 1 is the vector that contains 1 in each
entry. Average consensus algorithms of the form in Eq. (1) have a few drawbacks.
One is that consensus is computed asymptotically, hence it is approximated. The
number of iterations could be quite large before a workable approximation can
be reached, i.e. the approximation is close enough to the real consensus value
for the purpose of the application. Second, the only consensus value computed
with this approach is the average sum of the initial values, so if the consensus
problem cannot be reduced to an average sum then this approach will not help.

There are some proposals addressing the first issue, where average consensus
is computed in finite time. Many focus on continuous linear and nonlinear average
consensus methods, see for example [4,5] and references therein as well as [6,7].
We do not make any further references to this literature as the present paper
addresses the convergence behavior of discrete consensus algorithms. We classify
finite time consensus proposals into three categories: matrix factorization [8–11],
minimal polynomial of the consensus matrix [12–14] and observability matrix of
the consensus network [15,16].

The matrix factorization approaches consists of a sequence of minimal length
of consensus matrices which are factors of the matrix 1

n11
T . Let D be the length

of this sequence. Then we have a sequence W (0),W (1), · · · ,W (D − 1) of con-
sensus matrices which are consistent with the consensus network topology such
that

W (D − 1)W (D − 2) · · · W (0) =
1
n
11T . (2)

Given x(0), the initial state of the consensus network, the sequence
W (0),W (1), · · · ,W (D − 1) solves the average consensus problem exactly and
in finite time [8,9] if

W (D − 1)W (D − 2) · · · W (0)x(0) =
1
n
11Tx(0).
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In [8,9], the computation of the matrix factorization is centralized. In [10,11]
the matrix factorization problem is solved distributively.

The minimal polynomial approach is based on the monic polynomial p of
least degree d of the consensus matrix W such that p(W ) = 0. The degree d
is the number of steps to compute exactly the consensus value. Assuming the
consensus matrix W is symmetric and left stochastic (assumptions relaxing these
conditions are provided in [12]) where λ1, λ2, . . . , λm are the eigenvalues of W ,
then the minimal polynomial is computed as p =

∏m
i=1(t − λi)ri where ri is the

size of the largest Jordan block of W for the corresponding eigenvalue λi. The
coefficient α1, α2, . . . , αd−1 of the minimal polynomial p are combined to obtain
a vector S of coefficients [12]

S =

⎡

⎢⎢⎢⎢⎢⎣

1
1 + αd

1 + αd−1 + αd

...
1 +

∑d
j=1 αj

⎤

⎥⎥⎥⎥⎥⎦
.

Let xi(0), xi(1), . . . xi(d − 1) be the local averages computed and stored by node
i during the iterations 0 to d − 1 of the average consensus algorithm described
in Eq. (1). The vector S provides the coefficients of a linear combination of the
local average values computed during the execution of the consensus algorithm
to obtain exactly the average consensus value in d steps, i.e.

[xi(d − 1), xi(d − 2), . . . xi(0)]S
[11 . . . 1]S

=
∑n

i=n xi(0)
n

.

Our work focuses on the finite time convergence behavior of consensus algo-
rithms based on the observability matrix of consensus networks. In control the-
ory, the observability matrix can be used to infer the internal states of a system
from the observation of its outputs. In the context of iterative average consensus
algorithms, the system is modeled as followed:

x(k + 1) = Wx(k), k = 0, 1, . . . (3)

where Eq. (1) is the local instantiation of this system for a given node i. In the
context of observability theory, the observable outputs of system described in
(3) for node i are xi(k) and xj(k), j ∈ Ni. The initial vector x(0) is the internal
state to infer. At each iteration of Eq. (1), node i stores xi(k) and xj(k), j ∈ Ni

as these values are directly accessible to node i. An observation matrix Oi is
built for each node, the dimension of Oi determines the number of observations
of xi(k) and xj(k), j ∈ Ni required to infer x(0) from the values stored by node
i. This provides a finite time consensus algorithm.

The finite time consensus algorithm based on the observability matrix has
first been proposed in [15,16]. So far, only lower and upper bounds on the number
of observations existed in the literature. Our work provides new mathematical
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developments for this algorithm in terms of new invariant properties and bounds
on the execution time of the algorithm, an empirical approach to compute exact
bounds for any consensus network, finally counterexamples to a conjecture (con-
jecture 1) in [17], thus disproving the conjecture. As a second contribution, we
have embedded the finite time average consensus algorithm based on the observ-
ability matrix approach in an network intrusion detection system (NIDS). This
implementation is based on a previous work [18] where an asymptotic average
consensus algorithm supports a distributed NIDS. We compare the performance
of the two implementations and use the implementation of the finite time dis-
tributed NIDS to validate our analytical results.

Finally, for completeness, we mention game theory, which has entries in the
literature on continuous and asymptotic average consensus algorithms but we
are aware of only one reference related to finite time consensus [19]. Very briefly,
the average consensus algorithm in [19] uses the characteristic polynomial of the
matrix (In + γL) to determine an upper bound on the finite number of steps
needed to compute a consensus value, where In is the n×n identity matrix, L is
the Laplacian of the consensus matrix W and γ is a negative coefficient ensuring
the eigenvalues of (I + γL) are smaller or equal to 1.

The present paper is organized as follow. Next section describes the consen-
sus problem, solutions to this problem based on average consensus algorithms,
and a brief introduction to observability theory and its application to distributed
average consensus. Section 3 describes the analytical results in [15,16], providing
definitions and an algorithmic framework for the subsequent sections. Section 4
describes our analytical results. Section 5 contains the implementation of a net-
work intrusion detection system where aggregated information is computed using
the finite time consensus algorithm described in Sect. 3. Finally Sect. 6 concludes
the paper.

2 Background on Average Consensus and Observability
Theory

Consensus problems appear in hundreds of applications in computer science and
control theory. In this section we describe applications where these problems
arise, formalize solutions to consensus problems, recall some observability theory
contributions to average consensus in cyber security and motivate its application
to finite time consensus.

2.1 The Consensus Problem

Consensus problems arise in distributed systems such as computer networks,
sensor systems, multi-agent systems and others. Consensus problems appear
more acutely when distributed systems apply redundancies in order to improve
trust, reliability, robustness and security. This is the case for example in mul-
tiple sensors systems where observations are duplicated to obtain more accu-
rate information compared to a single source observation or to use smaller and
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cheaper sensors for the same performance. In distributed databases, particu-
larly blockchains, consensus is needed to ensure consistency among duplicate
data stored on different servers. In air traffic control, duplicate processes help to
improve security.

As a more detailed illustration, consider cooperative spectrum sensing in cog-
nitive radio where robustness is obtained through redundancy. Spectrum sensing
is used to identify temporarily unoccupied bandwidth frequencies that can be
made available to secondary users (SUs) without interfering with their utilization
by primary users (PUs) [20]. Spectrum sensing consists to observe the RF envi-
ronment in order to detect whether an PU is currently using the spectrum. This
detection is based on measurements of the energy level. High energy levels are
indications of a busy spectrum. Spectrum sensing faces the usual performance
issues associated with wireless communication caused by weather, multipath
propagation or physical terrain impacting wave propagation. Cooperative spec-
trum sensing addresses those issues by having the identification of unoccupied
frequencies performed in a spatially distributed manner by the secondary users
interested in getting access to unused frequencies. It is unlikely that the measure-
ments taken by each sensing SU will yield the same value. Therefore, a consensus
value has to be computed to which the sensing devices agree on the energy level
of the sensed spectrum. Several data fusion algorithms for cooperative spectrum
sensing are based on consensus algorithms [21].

2.2 Formalization of Consensus Algorithms

Equation (1) is the core local linear model for discrete average consensus algo-
rithms while Eq. (3) is an iterative model of the distributed algorithm, the net-
work wide update rule. The non-zero entries of the corresponding weight matrix
W are modeled on the adjacency structure of the graph G, i.e. Wij = 0 if
(i, j) �∈ E, otherwise Wij represents a weight on edge (i, j) ∈ E. Furthermore,
W has non-zero entries for self-edges, i.e. Wii �= 0, these values are used to
ensure consensus convergence, see [3] for the convergence conditions that W
must satisfy. It is relatively easy to find a weight matrix that satisfies conver-
gence conditions. For example, W = In − σL, with 0 < σ < 1

max |Ni| is such
weight matrix where max |Ni| is the neighborhood with the largest cardinality.
The following weight matrix, the Metropolis-Hasting matrix, also satisfies the
convergence conditions for solving the average sum consensus problem:

Wij =

⎧
⎨

⎩

1
1+max(degi,degj)

if i �= j and j ∈ Ni

1 − ∑
k∈Ni

Wik if i = j
0 if i �= j and j �∈ Ni

(4)

where degi denotes the degree of node i ∈ G.
Assuming that the system in Eq. (3) converges, and converges to a correct

consensus value, a second issue is the convergence speed of the consensus algo-
rithm. The coefficients of the weight matrix impact convergence speed [3]. Con-
vergence speed also depends on the network topology. In this context, the graph
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Laplacian, specifically its second eigenvalue, is used to analyse the convergence
speed [22] of asymptotic consensus algorithms. In this work we compare asymp-
totic convergence behavior of consensus algorithms and their approximated solu-
tions with finite time consensus algorithms and their exact solutions.

2.3 Observability Theory

Observability theory is a broad mathematical development of control theory. It
is used for example to determine whether the internal states of a system can
be inferred from its observable outputs. If so, the system is deemed “observ-
able”, algorithms can be found to infer the internal states of a system in finite
time. Observability is a pre-condition to system controllability. It has several
control engineering applications concerned with identifying and locating faults
in a system. Observer-based techniques [23] based on model-based fault detection
are such applications where the anticipated behavior of a system is described
using mathematical models [24]. Control theory solutions to the identification of
faults in a system, based on observer-based fault detection approaches, have been
applied to design cyber-attack detection systems [25–27]. They have also been
extended to detect data falsification attacks on asymptotic average consensus
algorithms [28–30].

In data falsification attacks, observer-based systems detect anomalies in the
execution of asymptotic consensus algorithms. In the present work, observability
theory is used to analyze the core linear iterate (Eq. 1) of asymptotic consensus
algorithms as an information diffusion and an encoding scheme. Like in any dis-
tributed algorithm, the execution of an asymptotic consensus algorithm causes
information to flow among the nodes involved in the distributed computation.
Information flows according to a pattern that depends on the distributed algo-
rithm and the network topology. Each node i in a consensus algorithm, prior to
compute xi(k +1), receives the states xj(k) for j ∈ Ni using the communication
links adjacent to node i. Once state xi(k + 1) is computed, this state is sent to
all the neighbors of node i using the communication links adjacent to node i. Of
particular interest, if the number of iterations is large enough, this information
flow pattern causes the initial state of each node to reach each other node in the
network.

However, consensus is not a value communication protocol. Each iteration
in Eq. (1) compresses the states xi(k) and xj(k) for j ∈ Ni into a new state
xi(k + 1). This is analogue to network coding [31] where, at the network layer,
packets from different sources are recombined into a single packet to improve
network’s throughput. An initial state xi(0) that reaches another node j after k
consensus iterations would have been compressed k times, therefore the initial
value xi(0) is not readily available to node j. As in network coding, for node
j to recover the initial states of all the other nodes, it needs an inverse of the
encoding scheme executed each time Eq. (1) is iterated. The original contribution
in Sundaram and Hadjicostis [15,16] is to apply observability theory to the
analysis of the information flow in a consensus network and to design an inverse
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function recovering x(0) from the flow of values that pass through a given node
i during the execution of a consensus algorithm.

3 A Finite Time Consensus Algorithm

The finite time consensus algorithm described in this section is based on the
analytical results in [15,16]. The algorithm we describe is a distributed algorithm
in which a same procedure is executed by each node of a consensus network.
That procedure is the linear iterate of Eq. (1) plus instructions implementing
the observation and storage of network traffic flowing through each node, as well
as code for a matrix multiplication which infers x(0). We divide this section along
these two main phases of the finite time consensus: the observation phase and
the inference phase. We review some implementation issues and limitations of
this finite time consensus algorithm. Last, it should be noted that the algorithm
describes in this section (as well as the results in [15,16]) defines a procedure to
compute in finite time any consensus function, where average consensus is just
a special case.

3.1 Observation Phase

The setting of a consensus network, in which no explicit routing protocol is
used, constraints any given node i at each iteration k to only access its own
state xi(k) and the states xj(k) of its neighbors in the consensus network. These
states constitute information flowing through node i, they are the observations
that node i can readily make about the system in Eq. (3). In the context of the
modelization proposed in [17], these observable states are the outputs for node
i of the system in Eq. (3). Keeping with the model in [17], the system states
x(0), x(1), . . . , x(k) are unknown in their entirety to each particular node, these
states can be considered as the internal states of the system that a particular
node could be interested to infer. From the perspective of consensus theory,
among the internal states x(0), x(1), . . . , x(k), the internal state that each node
i needs to infer is x(0), the initial state of each node in the consensus network.
Once x(0) is known, i.e. the input parameters of a consensus function, then node
i can compute directly the consensus function.

Borrowing from observer models in control theory, the observable states xj(k)
of the consensus system from the perspective of node i are expressed by the
following linear iterative system:

x(k + 1) = Wx(k)
yi(k) = Cix(k)

(5)

where yi(k) is the output of the system1 Wx(k) observed by node i at iteration
k. Ci is a (degi+1)×n matrix with a single 1 in each row, indicating the values of
1 In a more general set up, the system in Eq. (5) includes a control term which is used

to maintain the system in a desired region of its state space. The synthesis of such
controller is the subject of research related to continuous consensus which yields
finite time algorithms, see for example [32,33] and references therein.
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vector x(k) stored in yi(k) (entry Ci[k, j] = 1 if j ∈ Ni, otherwise Ci[k, j] = 0).
At any given iteration k, the extraction of the vector Cix(k) causes node i to
store (degi + 1) states in yi, i.e. the states xi(k) and xj(k) ∈ Ni (degi = |Ni|).
Notations yi(k − 1) and yi(k) refer to two different sets of entries in yi. The
number of states stored in yi(0 : v − 1) is (degi + 1)v, where v is the length of
the sequence of observations performed by node i.

As an illustration of the system in Eq. (5), we consider the consensus network
represented by the graph in Fig. 1, where nodes 1, 2, 3 and 4 are initialized
respectively with values 1, 2, 3 and 4, i.e. x(0) = [1, 2, 3, 4]. Assume the consensus
function to be computed is f = 1

n

∑n
i=1 xi(0), the average sum function, where

the consensus value is f = 1
n

∑4
i=1 xi(0) = 2.5. Assume the coefficients of

1 2

34

Fig. 1. Ring network

the weight matrix W are derived from the Metropolis-Hasting weight matrix
as defined in Eq. (4) which, for a 4-nodes ring network, yields the following
coefficients:

W =

⎡

⎢⎢⎣

0.33 0.33 0.00 0.33
0.33 0.33 0.33 0.00
0.00 0.33 0.33 0.33
0.33 0.00 0.33 0.33

⎤

⎥⎥⎦ .

We would like to record the observations made by node 1 in the above network.
The corresponding C1 matrix is as follows:

C1 =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ .

Next the entries of y1 are computed as follows. After the first iteration of the
observation phase, the content of the column vector y1(0) records the value of
x1(0) = 1 and the initial values of its neighbors, i.e. x4(0) = 4 and x2(0) = 2.

y1(0) =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦

⎡

⎢⎢⎣

1
2
3
4

⎤

⎥⎥⎦ =

⎡

⎣
1
2
4

⎤

⎦ .
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This corresponds to the observation made by node 1 at iteration 0. At the second
iteration of the observation phase, the values stored in y1(1) = C1Wx(0)

y1(1) =

⎡

⎣
0.33 0.33 0.00 0.33
0.33 0.33 0.33 0.00
0.33 0.00 0.33 0.33

⎤

⎦

⎡

⎢⎢⎣

1
2
3
4

⎤

⎥⎥⎦ =

⎡

⎣
2.31
2.00
2.66

⎤

⎦ .

After the execution of two consensus iterations, i.e. two observations, y1 is the
column vector representation of [1, 2, 4, 2.31, 2, 2.66].

3.2 Inference Phase

At the end of the observation phase, node i has stored in yi(0 : v − 1) the
values of the states xi(k) and xj(k) that passed through node i at each iteration
k = 0..v − 1. The (degi + 1)v values stored in yi(0 : v − 1) can be used to infer
the initial state x(0).

In the present section we first describe the observability matrix, which in
itself is an analytical description of the observation phase. Next we show how to
infer x(0) from the information stored during the observation phase.

Analysis of the Observation Phase. We know from linear algebra
that x(k) = W kx(0) for W k the product of matrix W with itself k times.
After the first iteration of the observation phase, node i stores yi(0) =
CiW

0x(0). At the next iteration, yi(1) = CiWx(0), then yi(2) = CiW
2x(0)

and so forth until yi(v − 1) = CiW
v−1x(0). The sequence of v observa-

tions performed by a given node i corresponds mathematically to the sequence
(CiW

0x(0), CiWx(0), CiW
2x(0), . . . , CiW

v−1x(0)). This sequence of operations
in matrix form is called the observability matrix denoted as Oi,v−1:

Oi,v−1 =

⎡

⎢⎢⎢⎢⎢⎣

Ci

CiW
CiW

2

...
CiW

v−1

⎤

⎥⎥⎥⎥⎥⎦
. (6)

The observability matrix is the analytical form of the information diffusion and
encoding processes taken place during the sequence of observations performed
by node i. The observability matrix is the transformation matrix that converts
the states in x(0) into the data stored in yi(0 : v − 1):

⎡

⎢⎢⎢⎢⎢⎣

yi(0)
yi(1)
yi(2)

...
yi(vi − 1)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

Ci

CiW
CiW

2

...
CiW

vi−1

⎤

⎥⎥⎥⎥⎥⎦
x(0). (7)
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Because Ci is unique to each node in the consensus network, there exists one
different observability matrix for each node. The following is the observability
matrix O1,1 for node 1 of the ring network in Fig. 1 for v = 2:

O1,1 =
[

C1

C1W

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00
0.33 0.33 0.00 0.33
0.33 0.33 0.33 0.00
0.33 0.00 0.33 0.33

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Recovering x(0). Before describing a procedure to infer x(0), we first describe
a procedure that computes the consensus function directly from the data stored
by node i in vector yi. The procedure to infer x(0) derives directly from this first
procedure.

Let f(x(0)) be the consensus function to be computed. A function f ′
i is

defined for each node i such that f ′
i(yi(0 : v − 1)) = f(x(0)). First a matrix

representation Q of f is found such that f(x(0)) = Q(x(0)). Assume f = 1
n

∑n
i=0.

The corresponding matrix representation of f is the row vector 1 × n, where
Q = [ 1n , 1

n , . . .]. The function f ′
i is only known in its matrix form, denoted as Γi,

which is computed out of the observability matrix Oi,v−1. The matrix Γi can
be recovered from Oi:v−1 provided Q, the matrix representation of f , is in the
row space of Oi,v−1 (see the proof in [16]). The function Γi is therefore a linear
combination of the rows of Oi,v−1. To obtain Γi, the following system of linear
equations is solved:

OT
i,v−1Γ

T
i = QT . (8)

The function Γi computes the consensus function f(x(0) using the values stored
in yi(0 : v − 1):

Γi

⎡

⎢⎢⎢⎢⎢⎣

yi(0)
yi(1)
yi(2)

...
yi(v − 1)

⎤

⎥⎥⎥⎥⎥⎦
= ΓiOi,v−1x(0) = Qx(0). (9)

Continuing our previous illustration for node 1, v = 2 and the observability
matrix O1,2, we solved the system OT

1,2Γ
T
1 = QT :

⎡

⎢⎢⎣

1.00 0.00 0.00 0.33 0.33 0.33
0.00 1.00 0.00 0.33 0.33 0.00
0.00 0.00 0.00 0.00 0.33 0.33
0.00 0.00 1.00 0.33 0.00 0.33

⎤

⎥⎥⎦ΓT
1 =

⎡

⎢⎢⎣

0.25
0.25
0.25
0.25

⎤

⎥⎥⎦

which has infinitely many solutions, one is Γ1 = [−0.66,−0.33,−0.75, ]
[2,−0.25, 1], expressing Q in terms of a set of linearly independent rows of O1,2
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as a new base for Q. Using the column form of y1 = [1, 2, 4, 2.31, 2, 2.66] that
we have previously computed, it can be verified that Γ1y1 = 2.46 ≈ 2.5, the
difference is accounted for by rounding errors.

The procedure to infer x(0) consists to solve Eq. (8) for the identity matrix
In in place of the matrix representation Q of the consensus function f . Assuming
In is in the row space of Oi,v−1, the solution of OT

i,v−1Γ
T
i = In expresses In as

a linear combination of the rows in Oi,v−1, from which Γiyi returns x(0).
Using the previous illustration for computing the average sum function, first

the identity matrix I4 is expressed in a base provided by the O1,2 matrix, by
solving the system of linear equations OT

1,2Γ
T
1 = I4:

⎡

⎢⎢⎣

1.00 0.00 0.00 0.33 0.33 0.33
0.00 1.00 0.00 0.33 0.33 0.00
0.00 0.00 0.00 0.00 0.33 0.33
0.00 0.00 1.00 0.33 0.00 0.33

⎤

⎥⎥⎦ΓT
1 = I4.

The solution of this system of equations is as follows:

ΓT
1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.917 −0.028 −0.836 −0.082
−0.083 0.953 −0.336 −0.033
−0.083 −0.008 −0.336 0.869
0.250 0.083 −0.497 0.249
0.000 0.058 1.515 −0.149
0.000 −0.058 1.515 0.149

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Let xi(0) = [1, 2, 3, 4], and y1 = [1, 2, 4, 2.31, 2, 2.66]. One can verify that Γ1y1 =
[0.9965, 1.9994, 3.0598, 4.0015], rounding errors accounting for the differences.
Node 1 has then learned the initial state of the system, therefore node 1 can
compute directly the average sum using the f =

∑n
i=1 xi(0). Node 1 can also

compute as well almost any other consensus function of x(0).

3.3 Implementation Issues

The observability matrices Oi,v−1, the matrices Γi, as well as the matrices Q,
Ci and In are pre-computed prior to the execution of the observation and infer-
ence phases. These matrices can be computed by a more powerful central node
as, for example, the computation of Γi requires the execution of a linear least
squares solver for computing the underdetermined systems of linear equations
OT

i,v−1Γ
T
i = In. Only matrix Γi has to be sent to node i of the consensus net-

work. Algorithm 1 below summarizes the finite time consensus algorithm that
has been described in this section. This algorithm is executed by each node of a
consensus network.

The properties of the observability matrices are conditioned by the weight
matrix W . A key condition is whether there exists a weight matrix W such
that the consensus function f or the identity matrix In is in the row space
of Oi,v−1. It turns out that all weight matrices that satisfy the convergence
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Algorithm 1. Finite time consensus procedure for node i

Input: Γi, v, W , f
Observation phase:
for (k = 0; k < v; k + +) do

xi(k + 1) = Wiixi(k) +
∑

j∈Ni
Wijxj(k)

yi(k) = xi(k) ∪ xj(k) j ∈ Ni

end for
Inference phase:
x(0) = Γiyi

Computing the consensus value:
return f(x(0))

conditions of asymptotic consensus can be used to compute consensus in finite
time directly from the vector yi (see “Designing the weight matrix” in [16]).
Furthermore, many weight matrices which do not depend on the magnitude of
their eigenvalues, which will typically not be allowed for asymptotic consensus,
do exist for finite time consensus [16]. For the general case where x(0) is inferred
from yi(0 : v −1), the rank of the matrix In is n, therefore In is in the row space
of Oi,v−1 only when Oi,v−1 is full column-rank. It has been proven that random
weight matrices can generate a full column-rank Oi,v−1 with probability equal
to 1 [17].

In order to compute the observability matrices Oi,v−1, the value of v, the
length of the observation phase sequence has to be known in advance. This is
a complicated issue, prior to the present work only analytical lower and upper
bounds on the length of this sequence were known. The purpose of the observa-
tion phase is for each node i to record enough information such that the initial
state x(0) can be inferred. Network topology impacts this number of observa-
tions. A node i cannot infer the initial state xj(0) of node j unless xj(0) has
propagated to node i during the observation phase, the length of the shortest
path from j to i is therefore a lower bound on the length of the observation
sequence for node i. For regular network topologies, a lower bound is the diame-
ter of the consensus network. The number n of nodes in a consensus graph is an
upper bound, after n iterations of the observation phase, the initial state of each
node has propagated to each other node in the network. Better upper bound is
n − degi [15]. If the consensus network is not a regular graph, then v is likely
to be different among the nodes in the graph, there is a number of observations
vi specific for each node i. We address those issues in the next section where
we introduce an algorithm to compute empirically the exact value of v for any
network topology, as well as introducing a few new analytical bounds.

4 Properties of the Finite Time Consensus Algorithm

This section introduces some new properties of the finite time consensus algo-
rithm described in Sect. 3. We first show that the observability matrix can also
be used to infer any internal state x(k) from the system described in Eq. (3).
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The initial state x(0) can be obtained from x(k) using the inverse of the weight
matrix W . Next we show the non-increasing rank step property of the observabil-
ity matrix Oi(0 : v−1) also applies to any observability matrix Oi(k : v −1+k),
i.e. the start iteration of the observations has no impact on the number of iter-
ations of the observation phase of the above finite time consensus algorithm.
Later, we derive analytical bounds on the length of the observation phase and
finally we introduce a polynomial time algorithm that computes the exact num-
ber of iterations of the observation phase for any network topology, and we list
exact values for a set of well-known consensus network topologies.

4.1 Irrelevance of the Start Iteration

As discussed above, the finite time consensus algorithm can recover the initial
state x(0) from the observations of any node by setting the target function f =
In. Once x(0) is recovered, any state at any given iteration k can be calculated
by x(k) = W kx(0). Thinking in reverse, if x(k) is known, the initial state can be
deduced using x(0) = W−kx(k), given that W is invertible. Consequently x(k)
could be retrieved by assuming it is the initial state and conducting the finite
time consensus algorithm as normal. Given the weight matrix W is invertible
(which is mostly the case), observations do not necessarily have to start from
the first iteration (iteration 0), but can start from an arbitrary iteration k. If v
is the number of iterations of the observation phase, the initial state x(0) could
be recovered by using the observations either from iteration 0 to v − 1 or from
iteration k to k + v − 1. Not only x(0) can be recovered, but the process of
building the observability matrix Oi must be the same for any start iteration k,
including the rank of each building step. For any node i, we denote:

Oi(p : q) =

⎡

⎢⎢⎢⎣

CiW
p

CiW
p+1

...
CiW

q

⎤

⎥⎥⎥⎦ (10)

the observability matrix of node i representing the observations from iteration
p to iteration q of its observation phase. The irrelevance of the start iteration
property could be expressed formally as:

ρ(Oi(0 : q)) = ρ(Oi(k : k + q)) (11)

where ρ(A) is the rank of matrix A, k is an arbitrary start iteration, and q ≥ 0
is an arbitrary end iteration.

Proof. The two matrices are related by the formula: Oi(k : k+q) = Oi(0 : q)W k.
The rank of a matrix product is always less than or equal to those of its factors,
hence ρ(Oi(k : k + q)) ≤ ρ(Oi(0 : q)). However, because W is invertible, the
above mapping equation could be written in reverse order: Oi(0 : q) = Oi(k :
k + q)W−k; and the inequality also happens in the other ways. Therefore, the
rank of the two matrices must be equal: ρ(Oi(k : k + q)) = ρ(Oi(0 : q)).
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4.2 Non-increasing Rank Step of the Observability Matrix

Given a start iteration k, the rank step of Oi t iterations after the start iteration,
is defined as:

Δi(t) = ρ(Oi(k : k + t)) − ρ(Oi(k : k + t − 1)) (12)

and the rank step at the start iteration k is Δi(0) = ρ([CiW
k]) = degi +1. In

other words, the rank step Δi(t) is the number of independent rows of CiW
k+t

against Oi(k : k+ t−1). The start iteration k is irrelevant, because for any other
start iteration l, ρ(Oi(k : k + t)) = ρ(Oi(l : l + t)) and ρ(Oi(k : k + t − 1)) =
ρ(Oi(l : l+t−1)), and their difference will still be the same. The rank step Δi(t)
is a non-increasing function given t ≥ k. Formally, for all t > k:

Δi(t) ≤ Δi(t − 1). (13)

Proof. Δi(t) is the number of independent rows of CiW
k+t against Oi(k : k+t−

1). Removing CiW
k from Oi(k : k+t−1) creates Oi(k+1 : k+t−1) and frees up

some dimensions in the row space of Oi, thus the number of independent rows of
CiW

k+t will increase or at least remain the same. Because of the irrelevance of
the start iteration, the number of independent rows of CiW

k+t against Oi(k+1 :
k + t − 1) is the same as that of CiW

k+t−1 against Oi(k : k + t − 2), which is in
fact Δi(t − 1). Therefore, Δi(t − 1) ≥ Δi(t).

Note that for all t > 0,

Δi(t) ≤ degi < Δi(0). (14)

The reason is while CiW
k+t has degi +1 rows, the rows corresponding to the

observation of node i always depend on previous observations because of the
definition of the consensus algorithm: xi(t) = Wiixi(t−1)+

∑
j∈Ni

Wijxj(t−1).
Thus, there is only at most degi independent rows in CiW

k+t. The only exception
is at the first iteration, iteration 0, where the observation of node i is its initial
state which does not depend on any previous observation (because there is none).

4.3 Bounds on the Iterations of the Observation Phase

Upper Bound. In the first iteration, any node i will receive the initial states
of its own and its neighbor nodes, which results in a rank step Δi(0) = degi +1.
Let vi be the iteration corresponding to the observation phase of node i, the
observability index of node i. For each of the consecutive iterations t < vi, the
rank step Δi(t) must be at least 1 (because of the non-increasing rank step
property, if Δi(t) falls to 0, it will never come back up, and the initial state
would never be recovered). Thus, vi ≤ n − degi and the upper bound on the
number of iterations is:

v ≤ n − min
i

(degi). (15)
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This upper bound about this finite time consensus was first published in [16]. In
[17], Sundaram also derived an upper bound on vi by partitioning the consensus
graph (excluding the node i) into connected subgraphs. Each subgraph contains
one and only one neighbor of node i. Then the upper bound is the minimum size
of the largest subgraph. Formally, let P be the partitioning of G, SP(j) where
j ∈ Ni be the connected subgraph corresponding to the neighbor node j of i
while in P, then:

vi ≤ min
P

(max
j

|SP(j)|). (16)

Another equivalent structure to this set of subgraphs is a spanning tree rooted
at i. Then each subgraph will correspond to a branch of the tree and the bound
would be the minimum size of the largest branch among all the possible spanning
tree rooted at node i.

Lower Bound. For any node i, there are two basic lower bounds for the observ-
ability index vi:

– Node eccentricity. This is equivalent to the number of consensus iterations
needed such that the data of the furthest node in G (with respect to the node
i) could be transmitted to i. Generalized to the whole graph, the lower bound
on the observation phase is the diameter of the graph.

– The quotient (n − 1)/degi. This lower bound could be obtained by assuming
the rank step Δi(t) is always the largest possible value, i.e. Δi(k) = degi if
t > 0 and Δi(k) = degi +1 if t = 0. This value is equivalent to the time
needed to get all the data with the maximum input capacity.

The first lower bound is more accurate for graphs with a large diameter and
low maximum degree such as path or ring graphs. The second one is good for
graphs where the increase in the number of nodes for which node i has received
data is super-linear over the iterations, like mesh or torus graphs (for torus this
number increases quadratically at each observation iteration). For graphs which
are hybrid between the two categories, other factors should be considered such
as bottlenecks.

Bottlenecks. Bottlenecks (with respect to a node i) are nodes in a consensus
graph G which limit the input capacity of a node i. In other words, they are the
factors which decrease the rank step Δi(t). Consider a graph with a vertex cut
set K. For any node i �∈ K, let HK

i be the union of all the connected subgraphs
split by K which do not contain node i. Let d(a, b) denote the distance between
nodes a and b. Then, the observability index vi will be bounded below by:

vi ≥ |HK
i | +

∑
j∈K d(i, j)

|K| . (17)

For a graph with multiple vertex-cut sets, the above statement must be satisfied
for each of those sets. Before proving this statement, we first prove the following
lemma:
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Lemma 1. The matrix created by concatenating any subset of columns in Oi

must have full column-rank.

Proof. To calculate f = In, Oi must have full column-rank, thus its columns
are mutually independent. Therefore, any matrix created by concatenating any
subset of columns of Oi must also have mutually independent columns, hence it
has full column-rank.

For any subset of nodes S, denote PS the matrix created by concatenating
the columns of Oi corresponding to the nodes in S. PS must have full column-
rank which is |S|, thus it must have |S| independent rows as well. Apply to
the case of HK

i , the only source of independent rows in PHK
i

that node i can
get is from nodes in K, formally xj(t) where j ∈ K and t > 0 (xj(0) is the
initial value of node j, thus contains no information about HK

i ). Any observation
at node i could be expressed by a linear combination of xj(t) for all t > 0
and xa(0) where a �∈ HK

i . Node i needs to observe |HK
i | independent rows

in total, therefore it must run observations for at least |HK
i |/|K| iterations (this

is the lower bound because not every single xj(t) value is independent, there
may be a tighter bottleneck inside HK

i ). However, the value xj(t) must take at
least d(i, j) iterations to reach the node i, so in total, the lower bound for vi is(
|HK

i | +
∑

j∈K d(i, j)
)

/|K|.
Example: Let |HK

i | = 5, K = {a, b}, d(i, a) = 3, d(i, b) = 4. Then:

vi ≥ |HK
i | +

∑
j∈K d(i, j)

|K| =
5 + 3 + 4

2
= 6.

This example is illustrated in Table 1. The only source of independent rows in
HK

i is from a and b, thus the node i must observe at least |HK
i | = 5 values of

xa(t) or xb(t) (with t > 0). The number of entries in columns a + b (including
blank entries) is equal to the numerator |HK

i |+∑
j∈K d(i, j). To get the number

of iterations, it is divided by the number of columns |K|.

Table 1. Illustration of bottleneck example

Iteration a b

0 d(i, a) d(i, b)

1

2

3 xa(1)

4 xa(2) xb(1)

5 xa(3) xb(2)
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Remark 1. Consider a graph with an articulation vertex (vertex-cut set with size
1), let q be that vertex, then the lower bound takes a very simple form:

vi ≥ |H{q}
i | + d(i, q). (18)

Remark 2. The quotient (n − 1)/degi is the special case of Eq. (17), where the
vertex-cut set K is the set of neighbor nodes Ni. In that case, |HK

i | = n−|Ni|−1
and d(i, j) = 1,∀j ∈ K. Thus, the bound is:

vi ≥ |HK
i | +

∑
j∈K d(i, j)

|K| =
n − |Ni| − 1 +

∑
j∈Ni

1
|Ni| =

n − 1
degi

.

Remark 3. This bound also covers the eccentricity bound (diameter bound) if K
is allowed to be any subset of nodes excluding i (not necessarily a vertex cut set).
Let K be any set which contains a single node j which is not i, K = {j} may
not split the graph, so |H{j}

i | might be 0. But the bound also has the distance
term, so the observability index vi must be at least d(i, j). For all j in the graph
excluding i, the bound becomes the eccentricity of the node i.

4.4 Exact Values for the Observation Phase and Observability
Index

Currently, in the general case, the number of iterations v of the consensus phase
or the observability index vi can only be described formally in terms of upper
and lower bounds. However the observability index vi can be found empirically
for all graphs in an O(n3) time-complexity algorithm, where n is the number
of nodes in the graph. The Algorithm 2 below computes the observability index
vi of a given node i. To get the number of iterations of the observation phase,
repeat the algorithm for each node i in the graph and set v = max{vi}.

Algorithm 2. Find the observability index vi
W ← weight matrix with random values in [−1, 1]
Oi ← Ci

t ← 1
while ρ(Oi) < n do

Oi ←
[

Oi

CiW
t

]

t ← t + 1
end while
vi ← t
return vi

Table 2 lists the exact number of iterations v of the observation phase for
some well-known graphs and families of graphs. As indicated in the last column
of Table 2, most of the exact number of iterations of those families of graphs are
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derived analytically from bounds described in the previous section, and could be
validated by matching the lower bound (diameter bound, quotient (n−1)/degi,
or bottleneck bound) with the upper bound described in Eq. (16). For non-
regular graphs, the exact number of iterations can be computed empirically
using Algorithm 2.

Table 2. Consensus time of well-known graphs

Graph Consensus time Remark

Complete graph of n
nodes (n ≥ 2)

1 All nodes are pairwise
neighbors

Path of n nodes (n ≥ 2) n − 1 Diameter bound

Ring (cycle) of n nodes
(n ≥ 3)

�n/2� Diameter bound

Star of k leaves (k ≥ 3) k Bottleneck at the
center node

Wheel of k outer nodes
(k ≥ 3)

�k/3	 (n − 1)/ degi for the
outer nodes

Torus of d × d nodes
(d ≥ 3)

�(d2 − 1)/4	 (n − 1)/ degi

Petersen graph 3 (n − 1)/ degi

Möbius Kantor graph 5 (n − 1)/ degi

The upper bound of Sundaram in Eq. (16) yields the exact value of the
observability index in many cases. However in his PhD thesis [17] the author
has conjectured (conjecture 1) that the bound is also a minimum and therefore
exact bound. We provide a few counter examples which invalidate conjecture
1 in [17]. We found these counter examples by enumerating all the spanning
trees decompositions in order to find that decomposition for which the largest
branch is the smallest among all decompositions and comparing with the exact
value from Algorithm 2. We found mismatches for the graphs in Fig. 2 where the
upper bound based on the conjecture in [17] is not the exact value. The largest
node in each of these graphs corresponds to node i whose observability index
vi is considered. The highlighted (thick) edges are the edges that belong to the
spanning tree with the largest branch of minimum size. The upper bound would
be the size of that largest branch. The caption x/exact for each graph shows x
the value of the upper bound according to Eq. (16) and the exact value found
by using Algorithm 2.

5 Implementations and Tests

In this section we briefly review the implementation of the network intrusion
detection system based on an asymptotic consensus algorithm as proposed in
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(a) Upper bound: 4/Exact: 3 (b) Upper bound: 5/Exact: 4

(c) Upper bound: 6/Exact: 5

Fig. 2. Plots of graphs where the upper bound is not the exact value

[18]. Next we describe the implementation of the finite time consensus algo-
rithm in Sect. 3 for the same network intrusion detection system. Test data
are described briefly and finally results and their analysis are provided. The
APPENDIX provides a motivation for applying average consensus in the con-
text of a distributed network intrusion detection system.

5.1 Asymptotic Consensus

In the consensus-based network intrusion detection system in [18], each node of
the consensus network observes and analyzes the local traffic of a sub-network.
The analysis is “anomaly based” using a naive Bayes classifier. The analysis
yields likelihoods P (Oi|h) that the locally observed traffic by node i falls under
each of two hypotheses: traffic is anomalous ha and traffic is normal hn. The con-
sensus problem consists to make the same determination for the whole computer
network by averaging the sum of the local measurements. This determination
is made by computing the joint likelihood

∏n
i=1 P (Oi|h). The joint likelihood

can be computed as a sum of log likelihoods
∑n

i=1 log P (Oi|h), allowing the
average sum of the log likelihoods to be computed distributively by an average
sum consensus algorithm. The phase where the joint likelihood

∏n
i=1 P (Oi|h)

is computed is called consensus phase. The consensus phase is in fact n par-
allel consensus loops, one for each node of the consensus network, where each
consensus loop executes Eq. (1).

The initial values of the nodes in the consensus network are computed as
xi(0) = log P (Oi|h). The asymptotic consensus algorithm converges theoretically
over an infinite number of iterations, at implementation level a stopping condition
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is added to the iterative scheme of Eq. (1). There are different stopping conditions
possible, all approximate the closeness of the asymptotic consensus value to the
real consensus value. We define the stopping condition as |xi(k +1)−xi(k)| < ε,
i.e. a consensus loop stops once the change in xi from iteration k to iteration k+1
is smaller than a pre-defined threshold value ε. For weight matrices W satisfying
convergence assumptions, the value |xi(k+1)−xi(k)| decreases asymptotically as
k → ∞, so this difference always get eventually smaller than ε. In principle, the
smaller ε is, the closer xi(k) is to the true average sum, the stronger the consensus
is, but also the larger the number of iterations of the consensus loop is likely to
be. Let ci denotes the number of iterations executed by the consensus loop of
node i prior to satisfy its stopping condition. Then the number of iterations φ
of a consensus phase is given by

φ = max{c1, c2, . . . , cn}. (19)

The consensus phase is synchronous, all nodes must have completed the consen-
sus loop at iteration k before proceeding to execute the consensus loop iteration
k + 1. A node i is assumed to have completed its consensus loop at iteration k
if k > ci.

Once a consensus phase is completed, each consensus node i has an approxi-
mation ≈ P (O|hn)i of the true likelihood P (O|hn) =

∏n
i=1 P (Oi|hn), the likeli-

hood the network wide observed network traffic is benign, and an approximation
≈ P (O|ha)i of the true likelihood P (O|ha) =

∏n
i=1 P (Oi|ha), the likelihood the

network wide observed network traffic is malicious. The asymptotic consensus
program running at the level of node i outputs the ratio ≈P (O|ha)i

≈P (O|hn)i
, node i make

a final decision to raise an alert based on ≈P (O|ha)i
≈P (O|hn)i

> τ where τ is some alert
criterion.

5.2 Finite Time Consensus Implementation

The implementation of traffic reading and Bayesian analysis for the finite time
consensus is the same as for the asymptotic consensus implementation. The
Bayesian analysis of the local network traffic executed by node i returns two
values: P (Oi|ha), the likelihood that the observed traffic at node i is anomalous;
P (Oi|hn), the likelihood the observed traffic at node i is normal. As local anal-
ysis returns two measurements, each node i of the consensus network has two
initial states: xA

i (0) = log(P (Oi|ha)) and xN
i (0) = log(P (Oi|hn)). The values

xN
i and xA

i are respectively measurements of the local traffic observed by node
i as normal and anomalous. The finite time consensus algorithm computes the
consensus function for these two set of input measurements.

During the observation phase, observations for these two set of inputs are
stored separately. Mathematically, at iteration k of the observation phase, each
node i stores CiW

kxA(0) in yA
i (k) and CiW

kxN (0) in yN
i (k). The vector yA

i

records observations made by node i of the information flowing through it. At
iteration k = 0, yA

i (0) is the likelihood that local traffic of nodes i and j ∈ Ni

is anomalous. Similarly, yN
i records observations made by node i of information
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flowing through it, yN
i (0) is the likelihood that local traffic of nodes i and j ∈ Ni

is normal.
After the observation phase, the consensus values P (O|h)i for a given node

i are computed either as P (O|ha)i = Γiy
A
i and P (O|hn)i = Γiy

N
i or from the

inferred vectors xA(0) and xN (0). Similarly to asymptotic consensus, the finite
time consensus procedure of node i returns the consensus ratio P (O|ha)i

P (O|hn)i
. Each

node i decides whether to raise an alert or not based on the consensus ratio
P (O|ha)i
P (O|hn)i

> τ for some predefined alert value ratio τ .

5.3 Simulation Environment

We have run tests for 11 different consensus network topologies: rings with 9,
25, 49, 81 and 121 sensors, 2-D torus with 9, 25, 49, 81 and 121 sensors and
the Petersen graph (10 nodes 15 edges). Each run takes in input a test set and
a graph representing a consensus network topology. Network traffic for the test
set come from the NLS-KDD data set [34], an improved version of KDD’99 data
set. The KDD’99 data set has been generated by the MIT Lincoln Laboratory
for the evaluation of computer network intrusion detection systems under the
sponsorships of the Defense Advanced Research projects Agency (DARPA) and
the Air force Research Laboratory (AFRL) [35,36]. As for the KDD’99 data set,
traffic representation and analysis from the NLS-KDD data set is based on 41
features. Note, we have filtered attacks in the NSL-KDD data set to retain only
denial of service attacks.

A test consists for each node of a network topology to make 1000 network
traffic readings, each reading come from data recorded in the NLS-KDD data
set. After each local network traffic reading, an Bayesian analysis is performed,
then, for asymptotic consensus, the consensus loop is run by each node until it
satisfies its stopping condition, and for finite time consensus, the observation and
inference phases are run independently for each node. For finite time consensus,
prior to running a test, the matrices Oi, Ci, Γi are pre-computed and each matrix
Γi is sent to the corresponding node i.

5.4 Test Results and Interpretations

Table 3 compares the convergence speed of the asymptotic and finite time con-
sensus procedures. This table has 11 rows corresponding to the 11 consensus
network topologies that have been tested. For asymptotic consensus, for each net-
work topology, 1000 consensus phases have been run, each with a different initial
vector x(0). For each consensus phase, we have recorded the convergence speed,
i.e. the number φ of iterations during the consensus phase. Table 3 reported the
average number of iterations (rounded) for each consensus network topology.

For the finite time consensus, the tests conducted in this section are based
on the two versions of the finite time consensus: 1- the consensus function is
computed directly from the vector yi; 2- x(0) is inferred from yi, then the con-
sensus function is computed. For the version 1, we have run tests with two set of
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values defining the length of observation phases: one based on the upper bound
defined in Eq. (15) and a second one based on lower bounds defined by the diam-
eter of the network topology. For version 2, we use the exact bounds provided
in Table 2. The results in Table 3 for the finite time consensus come from those
bounds. Nonetheless, we have run tests to confirm that the consensus problem
is solved inside the number of iterations listed in Table 3. Each test consists to
execute the finite time algorithm 1000 times, this for each consensus network
topology.

In Table 3, the test results are in the columns “Asymptotic”, “Exact-v1” and
“Exact-v2” corresponding respectively to tests with the asymptotic consensus
algorithm, the finite time consensus algorithm computing the consensus function
directly from yi and finally the finite time consensus algorithm computing the
consensus function from the inferred x(0) vector. In column “Exact-v1”, a/b
represents respectively the lower bound and the upper bound on the length of
the sequence of observations allowed to compute the consensus values.

Table 3. The number of iterations to compute consensus

Topology Size Asymptotic Exact-v1 Exact-v2

Ring 9 25 5/7 5

25 146 13/23 13

49 452 25/47 25

81 990 41/79 41

121 1772 61/119 61

Torus 9 7 3/7 2

25 16 5/23 6

49 28 7/47 12

81 43 9/79 20

121 59 11/119 30

Petersen 10 9 2/8 3

One obvious observation from the column Exact-v1 in Table 3 is that upper
bounds based on Eq. (15) are very poor approximations of the number of steps
executed during the observation phases as each network topology computes con-
sensus inside the corresponding lower bound. Considering that lower bounds in
the column Exact-v1 are tighter approximations, we conclude from Table 3 and
ring networks that the length of the observation sequence of both versions of
the finite time consensus is considerably smaller than the number of iterations
of the consensus phases of asymptotic consensus. For 2-D torus, the gains of
the finite time consensus are more moderated. The larger connectivity of 2-D
torus compared to ring networks benefits more greatly to asymptotic consen-
sus than it does to the finite time consensus. We note in Table 3 that version
v2, which first infers x(0) from yi, needs more observations. This is generally
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the case, solving for the identity matrix requires a larger observability matrix
(row wise) compared to solving for the matrix form of the consensus function.
Nonetheless, these results show that implementing the consensus-based intrusion
detection system using any of the two version of the finite time consensus reduces
substantially the time needs to compute consensus for these network topologies.

Computing the consensus function from a vector x(0) inferred from observed
data is computationally more expensive. The benefit is that any or many con-
sensus functions can be computed from the same observation phase. Further,
the results in the column “Exact-v2” of Table 3 are the same no matter which
consensus function is computed. The length of the observation phase depends
only on the consensus network topology and the number of nodes in the network.

It should be noted that the above good performances of the finite time con-
sensus are limited to static networks. The topology of the consensus networks
may change following the physical failure of a link or a node or following cyber
attacks on the network intrusion detection infrastructure. For example, if the
link between nodes 1 and 2 in Fig. 1 fails, the degree of these two nodes is
reduced, consequently matrices C1 and C2 have to be re-computed as well as the
observability and the Γ matrices for these two nodes. These re-computations will
require time, but they can be done locally. However, for bounds that are based
on the graph diameter or the max degree of the nodes in the consensus network,
these cannot be updated locally, so the number of iterations in the following
consensus observation phases will be set by upper bounds only. A second point
to raise, improvements in communication to compute cnsensus come at the cost
of an increase in terms of the consensus node storage capabilities and one matrix
multiplication during the inference phase.

6 Conclusion

In this paper we have introduced new results improving the convergence speed
of finite time consensus algorithms derived from the observability matrix of the
consensus network. We have also introduced invariant properties of the observ-
ability matrix which directly extend into new algorithmic variants of this finite
time consensus algorithm. These properties may as well support design strategies
to render these consensus algorithms more robust against data falsification and
Byzantine attacks. We have implemented a network intrusion detection system
using the finite time consensus and compared its performance with the same
network intrusion detection system based on an asymptotic average consensus
algorithm. Tests show that the number of steps needed to obtain a finite time
consensus is smaller compared to an acceptable approximation of consensus with
an asymptotic consensus algorithm. Tests also validate analytical results about
the behavior of exact consensus algorithms.

The intrusion detection system describes in [18] and the one in this paper are
computer network security systems based on the cooperation of several devices
or sub-systems. Considering the diversify of computer network attacks [37],
such cooperative systems have to aggregate relevant information for a subset
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as large as possible of those threats. Finite time consensus algorithms based on
the observability matrix can compute consensus for any and many consensus
functions from the same observation phase. It is certainly worth to investigate
whether this property can be applied to design far more versatile cooperative
intrusion detection systems.

Several proposals have been put forward in the control theory community to
improve the robustness of consensus algorithms based the observability matrix
against network instabilities caused by hardware failures, cyber attacks or sim-
ply by spontaneous reconfigurations in some wireless networks. All these pro-
posals are combinatorial in nature, only one or two network changes can be
handled effectively, otherwise the proposed solutions are too computationally
expensive. Improving security and adapting these finite time consensus algo-
rithms to dynamic networks is a second focus of our future work.

Acknowledgments. Funding for this project comes from the Professorship Start-
Up Support Grant VGU-PSSG-02 of the Vietnamese-German University. The authors
thank this institution for supporting this research.

Appendix

Network intrusion detection systems monitor computer network infrastructures,
seeking to identify malicious intends through the analysis of network traffic.
Typically detection is broken down into two phases: an observation phase where
network traffic information is collected and an analysis phase where the observed
traffic is analyzed and categorized into benign or malignant network traffic. Traf-
fic observation is performed through sensors that collect information about spe-
cific features of network traffic. As today’s computer networks are quite large,
composed of several heterogeneous sub-networks, traffic observation often needs
to be done distributively with sensors placed at different strategic locations.
Figure 3 exemplifies this situation, showing sensors distributed across a super-
vised network, where each sensor is in charge of observing the local traffic of a
sub-network.

BA

A

B

C

B

D
C

C

D

D

Sensor D

Sensor B

Sensor C

Sensor A

Fig. 3. Topology of a network intrusion detection system.
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Typically, in a large computer network, sensors are doing more than simply
observing local traffic in sub-networks, they also perform analysis of the local
sub-network traffic. In that case, sensors are full scale sensing and analytical
devices. As traffic analysis is performed at the level of each sensor, local traffic
can be classified and remedial actions can be taken if an intrusive behavior is
detected. However, in some cases, a certain degree of aggregation of local analy-
sis results can be helpful to address for example attacks from concurrent sources
such as distributed denial of service (DDoS), to develop network wide coordi-
nated responses to attacks or simply to increase the detection accuracy of each
local analysis based on information from other sub-networks. If data aggregation
is a key component of an intrusion detection system then this component must
be designed to maintain the survivability and robustness of the system. Consen-
sus algorithms are a relevant choice in this context as they provide protocols to
compute aggregation functions in a completely distributed manner, eliminating
issues such as single point of failure and others related to centralized computing
of network data.

Toulouse et al. [18] have introduced a network intrusion detection system in
which aggregation and fusion of local traffic analysis is computed distributively
using an average consensus algorithm. In order to accomplish this task, sensors
communicate with each other through what we call a consensus network. In
Fig. 3, the consensus network is a ring network linking the four sensor nodes.
While exchanging information with their neighbors in the consensus network,
nodes repeatedly average a sum of values representing their diagnostic about the
state of the local traffic as well as the diagnostic of their neighbors. Through local
averaging, sensors approximate a consensus value which is used as measurement
of some relevant network wide state of the monitored network system.
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Abstract. New parallel algorithms of local support vector regression (local
SVR), called kSVR, krSVR are proposed in this paper to efficiently handle the
prediction task for large datasets. The learning strategy of kSVR performs the
regression task with two main steps. The first one is to partition the training data
into k clusters, followed which the second one is to learn the SVR model from
each cluster to predict the data locally in the parallel way on multi-core comput-
ers. The krSVR learning algorithm trains an ensemble of T random kSVRmodels
for improving the generalization capacity of the kSVR alone. The performance
analysis in terms of the algorithmic complexity and the generalization capacity
illustrates that our kSVR and krSVR algorithms are faster than the standard SVR
for the non-linear regression on large datasets while maintaining the high cor-
rectness in the prediction. The numerical test results on five large datasets from
UCI repository showed that proposed kSVR and krSVR algorithms are efficient
compared to the standard SVR. Typically, the average training time of kSVR and
krSVR are 183.5 and 43.3 times faster than the standard SVR; kSVR and krSVR
also improve 62.10%, 63.70% of the relative prediction correctness compared to
the standard SVR, respectively.

Keywords: Support vector regression (SVR) ·
Local support vector regression (local SVR) · Ensemble learning ·
Large datasets

1 Introduction

In last decades, the progress in computer hardware, the increasing number of internet
users and mobile device access to internet have enabled explosion in data. Researchers
from the University of Berkeley estimate that about 1 Exabyte (109 Gigabyte) of data
are generated every year [1]. Recent book [2] shows that Google, Yahoo!, Microsoft,
Facebook, Twitter, YouTube and other internet-based companies have Exabytes of data
due to hundreds of millions of users and billion daily active users. Such a huge amount
of data yields challenges in data analysis because current analytical techniques are not
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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well suited for that data scale. Therefore, it is a high priority to create new learning
algorithms for addressing massive datasets. Our research aims to propose parallel learn-
ing algorithms of local support vector regression (local SVR) for dealing with large
datasets.

Support vector machines (SVM) proposed by [3] and kernel-based methods have
shown practical relevance for classification, regression and novelty detection. Success-
ful applications are reported for face identification, text categorization and bioinformat-
ics [4]. Nevertheless, the SVM learning is accomplished through a quadratic program-
ming (QP), so that the computational cost of a SVM approach is at least square of the
number of training datapoints making SVM impractical to handle large datasets. There
is a need to scale-up SVM learning algorithms to deal with massive datasets.

In this paper, our investigation aims at developing new parallel algorithms of local
SVR to efficiently handle the non-linear regression of large datasets.

Instead of building a global SVR model, as done by the classical algorithm is very
difficult to deal with large datasets, our kSVR algorithm [5] is to learn in the parallel
way an ensemble of local ones that are easily trained by the standard SVR algorithm
like LibSVM [6]. The kSVR algorithm performs the training task with two main steps.
The first one is to use kmeans algorithm [7] to partition the large training dataset into k
clusters (subsets). The idea is to reduce the data size for training local non-linear SVR
models at the second step. The algorithm learns k non-linear SVR models in the parallel
way on multi-core computers in which a SVR model is trained in each cluster to predict
the data locally. We propose to develop the new ensemble-based learning algorithm,
called krSVR. The training task of krSVR learns the multiple random kSVR models to
improve the generalization capacity of the kSVR alone.

The performance analysis in terms of the algorithmic complexity and the general-
ization capacity and the numerical test results on five large datasets from UCI repository
[8] showed that our proposed kSVR and krSVR algorithms are faster than the standard
SVR for the non-linear regression of large datasets while achieving the high correctness
in the prediction.

The paper is organized as follows. Section 2 briefly introduces the SVR algorithm.
Section 3 presents our proposed parallel algorithm kSVR of local SVR models for the
non-linear regression on large datasets. The learning algorithm krSVR for the ensemble
of T random kSVRmodels is illustrated in Sect. 4. The experimental results is presented
in Sect. 5 before the discussion on related works in Sect. 6. We then conclude in Sect. 7.

2 Support Vector Regression

Let’s start with the regression task for a training dataset with m datapoints xi (i =
1, . . . ,m) in the n-dimensional input space Rn, having corresponding targets yi ∈ R, sup-
port vector regression (SVR) proposed by [3] tries to find the best hyperplane (denoted
by the normal vector w ∈ Rn and the scalar b ∈ R) that has at most ε deviation from the
target value yi. The SVR pursues this goal with the quadratic programming (1) (Fig. 1).
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min(1/2)
m

∑
i=1

m

∑
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∑
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(αi −αi
∗) = 0

0 ≤ αi,αi
∗ ≤C ∀i= 1,2, ...,m

(1)

where C is a positive constant used to tune the margin and the error and a linear kernel
function K〈xi,x j〉 = 〈xi · x j〉

Fig. 1. Linear support vector regression

The support vectors (for which αi,αi
∗ > 0) are given by the solution of the quadratic

programming (1), and then, the predictive hyperplane and the scalar b are determined
by these support vectors. The prediction of a new datapoint x based on the SVR model
is as follows:

predict(x,SVR model) =
�SV

∑
i=1

(αi −αi
∗)K〈x,xi〉−b. (2)

SVR algorithms can use different kernel functions [9] to handle variations on pre-
diction problems. It only needs replacing the usual linear kernel function K〈xi,x j〉 =
〈xi · x j〉 with other popular non-linear kernel functions, including:
– a polynomial function of degree d: K〈xi,x j〉 = (〈xi · x j〉+1)d .
– a RBF (Radial Basis Function): K〈xi,x j〉 = e−γ‖xi−x j‖2 .

The SVR models are most accurate and practical relevance for many successful
applications reported in [4].

3 Parallel Algorithm of Local Support Vector Regression

The study in [10] illustrated that the computational cost requirements of the SVR solu-
tions in (1) are at least O(m2) (where m is the number of training datapoints), making
standard SVM intractable for large datasets. Learning a global SVR model on the full
massive dataset is challenge due to the very high computational cost.
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3.1 Learning k Local SVR Models

Our proposed kSVR algorithm learns an ensemble of local SVR models that are easily
trained by the standard SVR algorithm. As illustrated in Fig. 3, the kSVR handles the
regression task with two main steps. The first one uses kmeans algorithm [7] to partition
the full training set into k clusters, and then the second one trains an ensemble of local
SVR models in which a non-linear SVR is learnt from each cluster to predict the data
locally. We consider a simplest regression task given a target variable y and a predictor
(variable) x. Figure 2 shows the comparison between a global SVR model (left part) and
3 local SVR models (right part) for this regression task, using a non-linear RBF kernel
function with γ = 10, a positive constantC= 105 (i.e. the hyper-parameters θ = {γ,C})
and a tolerance ε = 0.05.
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Fig. 2. Global SVR model (left part) versus 3 local SVR models (right part)

Fig. 3. Training k local SVR models (kSVR)
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Algorithm 1. Parallel training algorithm kSVR(D,k,γ,C,ε) for k local SVR
input :

training dataset D
number of local models k
tolerance ε
hyper-parameter γ of RBF kernel function
positive constant C for tuning margin and errors

output:
k local SVR models

1 begin
2 /*kmeans performs in the parallel way (only E-step can be directly parallelized)

the data clustering on dataset D;*/
3 creating k clusters denoted by D1,D2, . . . ,Dk and
4 their corresponding centers c1,c2, . . . ,ck
5 #pragma omp parallel for schedule(dynamic)
6 for i ← 1 to k do
7 /*learning local support vector regression model from Di;*/
8 lsvri = svr(Di,γ,C,ε)
9 end

10 return kSVR-model = {(c1, lsvr1),(c2, lsvr2), . . . ,(ck, lsvrk)}
11 end

Since the cluster size is smaller than the full training data size, the standard SVR
can easily perform the training task on the data cluster. Furthermore, the kSVR learns
independently k local models from k clusters. This training task of kSVR is easily paral-
lelized to take into account the benefits of high performance computing, e.g. multi-core
computers or grids. The simplest development of the parallel kSVR algorithm is based
on the shared memory multiprocessing programming model OpenMP [11] on multi-
core computers. The parallel training of kSVR is described in Algorithm 1.

3.2 Prediction of a New Datapoint x Using k Local SVR Models

The kSVR-model = {(c1, lsvr1),(c2, lsvr2), . . . ,(ck, lsvrk)} is used to predict the target
value of a new datapoint x as follows. The first step is to find the closest cluster based
on the distance between x and the cluster centers:

cNN = argmin
c

distance(x,c). (3)

And then, the target value of x is predicted by the local SVR model lsvrNN (corre-
sponding to cNN):

predict(x,kSVR model) = predict(x, lsvrNN). (4)

We can see that the prediction of a new datapoint x in k local SVR models depends
not only on the clustering assignment but also on the prediction of the local SVR model
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at the final stage. It is the local SVR model that directly predicts the outcome of the new
datapoint x.

We study the performance analysis in terms of the algorithmic complexity and the
generalization capacity to justify the competence of the learning algorithm kSVR.

3.3 Performance Analysis

Let’s start analysing the algorithmic complexity of building k local SVR models with
the parallel kSVR algorithm. The full dataset with m datapoints is partitioned into k
balanced clusters. It means that the cluster size is about m

k . According to [10], the com-
putational cost requirements of the SVR solutions is quadratic in the number of training
datapoints. Therefore, the training complexity of a local SVR is O(m

2

k2
). Thus, the algo-

rithmic complexity of parallel training k local SVR models on a P-core processor is:

O(
k
P
m2

k2
) = O(

m2

k ·P ). (5)

This complexity analysis illustrates that parallel learning k local SVR models in the
kSVR algorithm1 is k.P times faster than building a global SVR model (the complexity
is at least O(m2)).

Fig. 4. The regression task of SVR (left part) can be regarded as a binary classification problem
of SVC (right part)

The generalization capacity of kSVR models trained by the kSVR algorithm can be
explained in terms of the margin size of the binary support vector classification (SVC).

1 It must be noted that the complexity of the kSVR approach does not include the kmeans clus-
tering used to partition the full dataset. But this step requires insignificant time compared with
the quadratic programming solution.
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An intuitive geometric approach in [12] illustrates that the regression task of the
SVR is considered as a classification problem of the SVC. Let x be the predictor vari-
able and y the target variable. In the left part of Fig. 4, the SVR approach tries to find
the optimal plane (w.x−b = 0) that has at most ε deviation from target values yi. This
problem is transformed into the binary classification one as illustrated in the right part
of Fig. 4. The positive class D+ is formed by increasing the target values yi by ε . The
negative class D− is formed by decreasing the target values yi by ε . The optimal plane
found by the SVC approach for separating D+ from D− is identical to the solution
of the SVR approach. The biggest margin solution (largest separation boundary of two
classes) gives the safest prediction model. It means that we can explain the generaliza-
tion capacity of kSVR models trained by the kSVR algorithm in terms of the largest
margin size of the binary SVC.

The performance analysis in terms of the generalization capacity of such local mod-
els is illustrated in [13–15]. Recently Do and his colleague [16,17] show that the learn-
ing algorithms of local SVC models give a guarantee of the generalization capacity
compared to global SVC one.

To assess the generalization capacity of local SVR models, we start with Theorem
5.2 ([18] p. 139). It mentions that the generalization ability of the large margin hyper-
plane is high. Given a training set with m datapoints being separated by the maximal
margin hyperplanes, the expectation of the probability of test error is bounded as fol-
lows:

EPerror ≤ E

{

min

(
sv
m

,
1
m

[
R2

Δ

]

,
n
m

)}

. (6)

where sv is the number of support vectors, R is the radius of the sphere containing the
data and Δ is the size of the margin, n is the number of dimensions.

It means that the good generalization ability of the maximal margin hyperplane is
illustrated in:

min

(
1
m

[
R2

Δ

])

. (7)

In the training task, the kSVR algorithm splits the full dataset having m datapoints
into k clusters (the cluster size mk is about

m
k ). And then the generalization capacity of

local SVR models is assessed in:

min

(
1
mk

[
R2
k

Δk

])

. (8)

The generalization analysis bases on the comparison between Eq. (7) of the global
SVR model trained from the full dataset and Eq. (8) of the local SVR model learnt
from a cluster (subset). According to Theorem 1 in [16] and Theorems 2, 3 in [17],
the inequality ΔXk ≥ ΔX holds. Nevertheless, the use of the subset in the training task
of kSVR leads to Rk ≤ R and mk ≤ m. It illustrates that there exists a compromise
between the locality (the subset size, the radius of the sphere containing the data) and
the generalized capacity (the margin size). Therefore, local SVR models trained by the
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kSVR algorithm can guarantee the prediction performance compared to the global SVR
one.

The performance analysis in terms of the algorithmic complexity (5) and the gener-
alization capacity (8) shows that the parameter k is used in the kSVR to give a trade-off
between the generalization capacity and the computational cost. This can be understood
as follows:

– If k is large then the kSVR algorithm reduces significant training time. And then, the
size of a cluster is small; The locality is extremely with a very low capacity.

– If k is small then the kSVR algorithm reduces insignificant training time. However,
the size of a cluster is large; It improves the capacity.

It leads to set k so that the cluster size is a large enough (e.g. 200 proposed by [14]).

4 Parallel Algorithm of T Random Local Support Vector
Regression Models

The performance analysis of the kSVR algorithm shows that there is a trade-off between
the algorithmic complexity and the generalization capacity. If the kSVR tries to speed
up the training time against the learning algorithm of global SVR models by increasing
the number of clusters (the parameter k) then it reduces the generalization ability. Due to

Fig. 5. Training algorithm of T random kSVR models
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Algorithm 2. Parallel training algorithm of T random kSVR models
input :

training dataset D having m individuals in n dimensions
number of kSVR models T
k local models in kSVR
n′ random dimensions used for clustering in kSVR
tolerance ε for a SVR model
hyper-parameter γ of RBF kernel function
positive constant C for tuning margin and errors

output:
T random kSVR models

1 begin
2 #pragma omp parallel for schedule(dynamic)
3 for t ← 1 to T do
4 Sampling a bootstrap Dt from D using n′ dimensions randomly chosen
5 from n original dimensions
6 /*learning k local SVR models from Dt ;*/
7 kSVRt = kSVR(Dt ,k,γ,C,ε)
8 end
9 return T random kSVR models = {kSVR-1, kSVR-2, . . . , kSVR-T}

10 end

this problem, we propose the ensemble-based learning algorithm of random local SVR
models to improve the generalization capacity of the local one. The main idea is based
on the Bias-Variance framework proposed by Breiman [19,20]. The performance of a
learning model depends on Bias term and Variance term. Bias is the systematic error
and not depending on the learning sample. Variance is the error with respect to the vari-
ability of the learning model due to the learning sample randomness. The main idea of
ensemble-based learning algorithms [19–21] and [22] is to use the randomization of the
learning sample for reducing Variance and/or Bias. This key idea leads to the improve-
ment of the generalization capacity of the use of the single one model. Therefore, we
propose the ensemble learning algorithm krSVR to train T random kSVR models for
reducing Variance. It means that the krSVR improves the generalization ability of the
kSVR model alone.

4.1 Learning T Random Local SVR Models

The krSVR algorithm trains the ensemble of T random kSVR models using the kSVR
algorithm (described in Algorithm 1 and Fig. 3). The kSVR algorithm trains the tth

kSVR model from the tth bootstrap sample (sampling with replacement from the origi-
nal dataset) using n′ dimensions randomly sampling without replacement from n origi-
nal dimensions.

As described in Algorithm 2 and Fig. 5, the krSVR constructs independently T ran-
dom local SVR models. It allows parallelizing the learning task with OpenMP on multi-
core computers.
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Thus, the complexity of parallel learning krSVR on a P-core processor is as follows:

O(
T.m2

k.P
). (9)

4.2 Prediction of a New Datapoint x Using T Random Local SVR Models

The prediction for a new individual x is the average of the prediction results obtained
by T random kSVR models.

5 Evaluation

We are interested in the performance of new parallel algorithms of local SVR (kSVR,
krSVR) for dealing with large datasets. There is a need of numerical test results in
terms of training time and prediction correctness to be consistent with the performance
analysis of the algorithmic complexity and the generalization capacity in Sect. 3.

5.1 Software Programs

We have implemented algorithms kSVR, krSVR in C/C++, OpenMP [11], using the
Automatically Tuned Linear Algebra Software (ATLAS [23]) and the highly efficient
standard library SVM, LibSVM [6].

Due to the consistency with the performance analysis of the algorithmic complexity
and the generalization capacity, our evaluation is reported in terms of training time
and prediction correctness. We are interested in the comparison the regression results
obtained by our proposed kSVR, krSVR for local SVR models with LibSVM for global
SVR models.

All experiments are run on machine Linux Fedora 20, Intel(R) Core i7-4790 CPU,
3.6 GHz, 4 cores and 32 GB main memory.

5.2 Datasets

All experiments are conducted with the five datasets from UCI repository [8]. Table 1
presents the description of datasets. The evaluation protocols are illustrated in the last
column of Table 1. Datasets are already divided in training set (Trn) and test set (Tst).
We used the training data to build the SVRmodels. Then, we predicted the test set using
the resulting models.

5.3 Tuning Parameters

We propose to use RBF kernel function type in training tasks of kSVR, krSVR and
LibSVM for building SVR models because it is general and efficient [24]. The cross-
validation protocol (2-fold) is used to tune the regression tolerance ε , the hyper-
parameter γ of RBF kernel (RBF kernel of two individuals xi, x j, K[i, j] = exp(−γ‖xi−
x j‖2)) and the cost C (a trade-off between the margin size and the errors) to obtain a
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Table 1. Description of datasets

ID Datasets #Datapoints #Dimensions Target domain Evaluation protocol

1 Appliances energy prediction 19 735 27 [10.0, 1080.0] 13 500 Trn - 6 235 Tst

2 Facebook comment volume 40 949 53 [0.0, 1 305.0] 27 500 Trn - 13 449 Tst

3 BlogFeedback 60 021 280 [0.0, 1424.0] 52 397 Trn - 7 624 Tst

4 Buzz in social media (Twitter) 583 250 77 [0.0, 75 724.5] 400 000 Trn - 183 250 Tst

5 YearPredictionMSD 515 345 90 [1 922, 2 011] 400 000 Trn - 115 345 Tst

good correctness. For two largest datasets (Buzz in social media Twitter, YearPredic-
tionMSD), we used a subset randomly sampling about 5% training dataset for tuning
hyper-parameters due to the expensive computational cost.

Our kSVR uses the parameter k local models (number of clusters). We propose to
set k so that each cluster consists of about 200 individuals. The idea gives a trade-off
between the generalization capacity [15] and the computational cost. Furthermore, the
krSVR algorithm learns 20 random k local SVR models (T = 20) with the number of
random dimensions being the square root of the full set (n′ =

√
(n) as recommended

by [20]).
Table 2 presents the hyper-parameters of kSVR, krSVR and LibSVM in the

regression.

Table 2. Hyper-parameters of kSVR, krSVR and LibSVM

ID Datasets γ C ε k

1 Appliances energy prediction 0.02 100 000 0.1 30

2 Facebook comment volume 0.001 100 000 0.1 300

3 BlogFeedback 0.4 100 000 0.05 500

4 Buzz in social media (Twitter) 0.1 100 000 0.1 4000

5 YearPredictionMSD 0.01 100 000 0.1 1500

5.4 Regression Results

The regression results of LibSVM, kSVR and krSVR on the five datasets are given in
Table 3, Figs. 6, 7 and 8.

Table 3. Regression results in terms of mean absolute error (MAE) and training time (minutes)

Mean absolute error (MAE) Training time (min)

ID Datasets LibSVM kSVR krSVRLibSVM kSVR krSVR

1 Appliances energy prediction 47.81 47.94 45.92 2.55 0.05 0.22

2 Facebook comment volume 8.97 8.59 7.38 27.91 0.1 0.27

3 BlogFeedback 9.85 6.40 6.20 53.78 3.86 20.75

4 Buzz in social media (Twitter) 235.25 46.73 45.27 5193.59 31.94 133.07

5 YearPredictionMSD 8.18 7.86 7.82 2477.91 6.33 24.67

6 Average 62.01 23.50 22.52 1551.15 8.45 35.79
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Fig. 6. Comparison of training time (minutes) for small datasets

Comparison in Training Time
As it was expected, our proposed algorithms of local SVR models (kSVR, krSVR) out-
perform LibSVM in terms of training time. The average of kSVR, krSVR and LibSVM
training time are 8.45min, 35.79min and 1551.15min, respectively. It means that kSVR
is the fastest among the three learning algorithms. kSVR is 183.5 times faster than Lib-
SVM. krSVR is also 43.34 times faster than LibSVM. Training time of krSVR is about
4.23 times longer than kSVR.
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Fig. 8. Comparison of prediction results

For 3 first small datasets (Appliances energy prediction, Facebook comment vol-
ume, BlogFeedback), the training speed improvements of kSVR and krSVR versus
LibSVM are 21.10 and 3.97 times, respectively.

With two large datasets (Buzz in social media - Twitter and YearPredictionMSD),
the learning time improvements of kSVR and krSVR against LibSVM is more signif-
icant. These training speed improvements of kSVR and krSVR compared to LibSVM
are 200.44 times and 48.63 times, respectively.



Parallel Learning Algorithms of Local Support Vector Regression 73

Comparison in Prediction Correctness
In terms of prediction correctness (measured by the mean absolute error - MAE), the
error average made by kSVR, krSVR and LibSVM are 23.50, 22.52 and 62.01, respec-
tively. The comparison of prediction correctness, dataset by dataset, shows that:

– kSVR has 4 wins, 1 defeat against LibSVM; kSVR is beaten only once (with Appli-
ances energy prediction dataset) by LibSVM;

– krSVR is most accurate with 5/5 wins versus LibSVM and kSVR.

The regression results show that our kSVR, krSVR are more accurate than LibSVM
for the prediction. It seems to be that local SVRmodels are suited for large datasets. The
data partition stage allows local SVR algorithms being easily to fit regression models
for data subsets. It leads to improve the prediction correctness of local SVR algorithms.
In particular with a large dataset as Buzz in social media - Twitter, the target domain
is very large [0,75724.5], therefore the prediction error made by any algorithm is also
high. Our kSVR, krSVR can reduce the prediction error about 5 times compared to
LibSVM.

The numerical results demonstrate that kSVR, krSVR improve not only the training
time, but also the prediction correctness when dealing with large datasets. The regres-
sion results allow to believe that our proposed kSVR, krSVR are efficient for handling
such large datasets.

6 Discussion on Related Works

Our proposal is related to large-scale SVM learning algorithms. The improvements of
SVM training on very large datasets include effective heuristic methods in the decompo-
sition of the original quadratic programming into series of small problems [10,25,26]
and [6]. Recent works [27,28] proposed the stochastic gradient descent methods for
dealing with large scale linear SVM solvers. The parallel and distributed algorithms
[29–31] for the linear classification improve learning performance for large datasets by
dividing the problem into sub-problems that execute on large numbers of networked
PCs, grid computing, multi-core computers.

The review paper [32] provides a comprehensive survey on large-scale linear sup-
port vector classification. LIBLINEAR [33] and its extension [34] uses the Newton
method for the primal-form of SVM and and the coordinate descent approach for the
dual-form SVM to deal with very large linear classification and regression. The par-
allel algorithms of logistic regression and linear SVM using Spark [35] are proposed
in [36]. The distributed Newton algorithm of logistic regression [37] is implemented
in the Message Passing Interface (MPI). The parallel dual coordinate descent method
for linear classification [38] is implemented in multi-core environments using OpenMP.
The incremental and decremental algorithms [39] aim at training linear classification
of large data that cannot fit in memory. These algorithms are proposed to efficiently
deal large-scale linear classification tasks in a very-high-dimensional input space. But
the computational cost of a non-linear SVM approach is still impractical. The work in
[40] tries to automatically determine which kernel classifiers perform strictly better than
linear for a given data set.
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Our proposal is in some aspects related to local SVM learning algorithms. The first
approach is to classify data in hierarchical strategy. This kind of training algorithm per-
forms the classification task with two main steps. The first one is to cluster the full
dataset into homogeneous groups (clusters) and then the second one is to learn the
local supervised classification models from clusters. The paper [41] proposed to use the
expectation-maximization (EM) clustering algorithm [42] for partitioning the training
set into k joint clusters (the EM clustering algorithm makes a soft assignment based on
the posterior probabilities [43]); for each cluster, a neural network (NN) is learnt to clas-
sify the individuals in the cluster. The parallel mixture of SVMs algorithm proposed by
[44] constructs local SVMmodels instead of NN ones in [41]. CSVM [45] uses kmeans
algorithm [7] to partition the full dataset into k disjoint clusters; then the algorithm
learns weighted local linear SVMs from clusters. More recent kSVM [46], krSVM [47]
(random ensemble of kSVM), tSVM [16] propose to parallely train the local non-linear
SVMs instead of weighting linear ones of CSVM. DTSVM [48,49] uses the decision
tree algorithm [50,51] to split the full dataset into disjoint regions (tree leaves) and then
the algorithm builds the local SVMs for classifying the individuals in tree leaves. These
algorithms aim at speeding up the learning time.

The second approach is to learn local supervised models from k nearest neighbors
(kNN) of a new testing individual. First local learning algorithm of Bottou & Vapnik
[14] find kNN of a test individual; train a neural network with only these k neighbor-
hoods and apply the resulting network to the test individual. k-local hyperplane and
convex distance nearest neighbor algorithms are also proposed in [52]. More recent
local SVM algorithms aim to use the different methods for kNN retrieval; including
SVM-kNN [53] trying different metrics, ALH [54] using the weighted distance and
features, FaLK-SVM [55] speeding up the kNN retrieval with the cover tree [56].

A theorical analysis for such local algorithms discussed in [13] introduces the trade-
off between the capacity of learning system and the number of available individuals.
The size of the neighborhoods is used as an additional free parameters to control gen-
eralisation capacity against locality of local learning algorithms.

7 Conclusion and Future Works

We presented new parallel algorithms of local SVR that achieve high performances for
the non-linear regression on large datasets. The training task of kSVR is to split the full
training dataset into k clusters. This step is to reduce data size in training local SVR.
And then it easily learns k non-linear SVR models in the parallel way on multi-core
computers in which a SVR model is trained in each cluster to predict the data locally.
The krSVR learning algorithm is to improve the generalization capacity of the kSVR
alone by training an ensemble random kSVR models. The performance analysis and
the numerical test results on five datasets from UCI repository showed that our pro-
posed kSVR, krSVR are efficient in terms of training time and prediction correctness
compared to the standard SVR. The learning time improvements of kSVR and krSVR
versus LibSVM are 183.5 and 43.3 times. kSVR and krSVR improve 62.10%, 63.70%
of the relative prediction correctness compared to the standard SVR, respectively. An
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example of kSVR’s effectiveness is given with the non-linear regression of YearPre-
dictionMSD dataset (having 400000 datapoints, 90 dimensions) in 6.33 min and 7.86
mean absolute error obtained on the prediction of the testset.

In the near future, we intend to provide more empirical test on large benchmarks
and comparisons with other algorithms. A promising avenue for future research is able
to automatically tune hyperparameters for kSVR and krSVR.
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Abstract. In this paper, we propose a shared-memory parallelization solution
for the Frequent Itemsets Mining algorithm IFIN, called IFIN+. The motivation
for our work is that commodity processors, nowadays, are enhanced with many
physical computational units, and exploiting full advantage of this is a potential
solution to improve computational performance in single-machine environ-
ments. The portions in the serial version are improved in means which increases
efficiency and computational independence for convenience in designing par-
allel computation with Work-Pool model, be known as a good model for load
balance. We conducted extensive experiments on both synthetic and real data-
sets to evaluate IFIN+ against its serial version IFIN, the well-known algorithm
FP-Growth and other two state-of-the-art ones, FIN and PrePost+. The experi-
mental results show that the running time of IFIN+ is the most efficient, espe-
cially in the case of mining at different support thresholds within the same
running session. Compare to its serial version, IFIN+ performance is improved
significantly.

Keywords: Incremental � Parallel � Frequent Itemsets Mining � Data mining �
Big Data � IPPC-Tree � IFIN � IFIN+

1 Introduction

Frequent Itemsets Mining (FIM) can be briefly described as follows. Given a dataset of
n transactions D ¼ T1; T2; . . .; Tnf g, the dataset contains a set of m distinct items
I ¼ i1; i2; . . .; imf g, Ti � I. A k-itemset, IS, is a set of k items 1� k�mð Þ. Each itemset
IS possesses an attribute, support, which is the number of transactions containing IS.
FIM is featured by a support threshold e which is the percent of transactions in the
whole dataset D. An itemset IS is called frequent itemset iff IS.support � e � n. The
problem is to discover all frequent itemsets existing in D.

Discovering frequent itemsets in a large dataset is an important problem in data
mining. In Big Data era, this problem, as well as other mining models, has been being
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challenged by very large volume and high velocity of datasets which are fast accu-
mulated over time. Fortunately, nowadays, RAM memory has a larger capacity and
becomes much cheaper, and commodity processors’ computational power is enhanced
considerably with many physical computational units. To take this advantage and
confront with the challenge, we propose an algorithm, named IFIN+, as a solution for
parallelizing our previous work IFIN [18] (Incremental Frequent Itemsets Nodesets)
algorithm with shared-memory multithreads. The purpose is to improve the perfor-
mance of IFIN by enhancing the computational efficiency and independence and
increasing the throughput in single-machine environments. In general, IFIN algorithm
encompasses four phases: (1) IPPC-Tree (Incremental Pre-Post-Order Coding Tree)
construction, (2) Frequent 2-itemsets generation, (3) Nodesets for frequent 2-itemsets
generation, (4) Frequent k-itemsets generation (k > 2). These four phases can be
divided into small independent chunks of work and processed separately by more than
one thread. The synchronization at the end of a phase will delay the start of the next one
and result in longer mining time if load balance is not guaranteed. To avoid this
problem, therefore, all these four processing phases are designed in Work-Pool model,
a well-known model for load balance, in which all workers continuously fetch and
process small chunks of work until there are no more tasks in the work pool. In the first
phase, a new efficient stored format and parallel loading for the IPPC-Tree are pro-
posed. The second and third phases are changed to increase the computational inde-
pendence for parallelization; and the last one, frequent k-itemsets generation (k > 2), is
parallelized as well. By that solution, the running time of IFIN+ is improved signifi-
cantly compared to its serial version IFIN. This paper is the next work upon our
previous improvement [19] for IFIN. In that, the new efficient stored format for IPPC-
Tree and parallelization for the four processing phase are introduced; and extensive
experiments are conducted on both synthetic and real datasets to evaluate the perfor-
mance of IFIN+ against its serial version IFIN, the well-known algorithm FP-Growth
and other two state-of-the-art ones FIN and PrePost+.

The rest of the paper is organized as follows. In Sect. 2, some related works are
presented. Section 3 introduces the IPPC-Tree structure and stored formats, some
relevant algorithms and solutions for loading the IPPC-Tree. The algorithm IFIN+ is
mentioned in Sect. 5 based on preliminaries in Sect. 4 and followed with experiments
in Sect. 6. Finally, conclusions are given in Sect. 7.

2 Related Works

The problem of mining frequent itemsets was started up by Agrawal & Srikant with
algorithm Apriori [1]. This algorithm generates candidate (k + 1)-itemsets from fre-
quent k-itemsets at the (k + 1)th pass and then scans dataset to check whether a can-
didate (k + 1)-itemsets is a frequent one. Many previous works were inspired by this
algorithm. Algorithm Partition [8] aims at reducing I/O cost by dividing a dataset into
non-overlapping and memory-fitting partitions which are sequentially scanned in two
phases. In the first phase, local candidate itemsets are generated for each partition, and
then they are checked in the second one. DCP [9] enhances Apriori by incorporating
two dataset pruning techniques introduced in DHP [10] and using direct counting
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method for storing candidate itemsets and counting their support. In general, Apriori-
like methods suffer from two drawbacks: a deluge of generated candidate itemsets
and/or I/O overhead caused by repeatedly scanning dataset. Two other approaches,
which are more efficient than Apriori-like methods, are also proposed to solve the
problem: (1) frequent pattern growth adopting divide-and-conquer with FP-Tree
structure and FP-Growth [2], and (2) vertical data format strategy in Eclat [11]. FP-
Growth and algorithms based on it such as [12, 13] are efficient solutions since unlike
Apriori, they avoid many times of scanning dataset and generation-and-test. However,
they become less efficient when datasets are sparse. While algorithms based on FP-
Growth and Apriori use a horizontal data format; Eclat and some other algorithms [8,
14, 15] apply vertical data format, in which each item is associated with a set of
transaction identifiers, Tids, containing the item. This approach avoids scanning dataset
repeatedly, but a huge memory overhead is expensed for sets of Tids when dataset
becomes large and/or dense. Recently, two remarkably efficient algorithms are intro-
duced: FIN [4] with POC-Tree and PrePost+ [5] with PPC-Tree. These two structures
are prefix trees and similar to FP-Tree, but the two mining algorithms use additional
data structures, called Nodeset and N-list respectively, to significantly improve mining
speed.

To better deal with the challenge of high volume in Big Data, in addition to the
ideas of parallel mining for existing algorithms such as [16] for Eclat, incremental
mining approaches are also considered as a potential solution. Some typical algorithms
in this approach are algorithm FELINE [3] with CATS-Tree structure and IM_WMFI
[17] for mining weighted maximal frequent itemsets from incremental datasets. These
methods are both based on the well-known FP-Tree for its efficiency.

3 IPPC Tree

IPPC-Tree is a prefix tree and possesses two properties, Properties 1 and 2. IPPC-Tree
includes one root node labeled “root” and a set of prefix subtrees as its children. Each
node in the subtrees contains the following attributes:

• item-name: the name of an item in a transaction that the node registered.
• support (or local support of an item): the number of transactions containing the

node’s item-name. Conversely, global support of an item, without concerning
nodes, is the number of transactions containing the item.

• pre-order and post-order: two global identities in the IPPC-Tree which are sequent
numbers generated by traversing the tree with pre and post order respectively.

Property 1: For a given IPPC-Tree, there exist no duplication nodes with the same
item in a path of nodes from the root to a leaf node.

Property 2: In a given IPPC-Tree, the support of a parent node must be greater than or
equal to the sum of all its children’s support.

IPPC-Tree is a combination of (1) the idea of the flexible and local order of items in
a path from the root to a leaf node in CATS-Tree [3] and (2) the PPC-Tree [5] which
each node in PPC-Tree is identified by a pair of codes: pre-order and post-order. The
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construction of the IPPC-Tree does not require a given support threshold. The tree is a
compact and information-lossless structure of the whole items of all transactions in a
given dataset. Local order of items in a path of nodes from the root to a leaf is flexible
and can be changed to improve compression while remaining Property 2. To guarantee
this, two conditions for swapping are as follows.

Child Swapping: A node can be swapped with its child node if it has only one
child node, its support is equal to its child’s support, and the number of child nodes
of its child is not greater than one.
Descendant Swapping: Given a path of k nodes N1 ! N2 ! � � � ! Nkðk[ 2Þ, Ni

is the parent node of Nj i\ jð Þ; if every node Ni i\ kð Þ satisfies the Child Swapping
condition, node N1 can be swapped with descendant node Nk .

For an overview, Table 1 provides a comparison among the four similarity tree
structures FP-Tree, CATS-Tree, PPC-Tree, and IPPC-Tree.

To demonstrate the building process of an IPPC-Tree, the Fig. 1 records transaction
by transaction in Table 1 inserted into an empty IPPC-Tree. Initially, the tree has only
the root node, and transaction 1(b, e, d, f, c) is inserted as it is in Fig. 1(a). The Fig. 1(b)
is of the tree after transaction 2(d, c, b, g, f, h) is added. The item b in transaction 2 is
merged with node b in the tree. Although transaction 2 does not contain item e, but its
common items d, f, and c can be merged with the corresponding nodes. Item d is found
common, so it is merged with node d after node d is swapped1 with node e to guarantee
the Property 2. Similarly, items f and c are merged with node f and c respectively; and
the remaining items g and h are inserted as a child branch of node c. In Fig. 1(c),

Table 1. Comparison among FP-Tree, CATS-Tree, PPC-Tree, and IPPC-Tree

FP-Tree CATS-Tree PPC-Tree IPPC-Tree

Items building the tree Frequent items All items Frequent items All items
Node attributes - Item-name

- Support
- Item-name
- Support

- Item-name
- Support
- Pre-order
- Post-order

- Item-name
- Support
- Pre-order
- Post-order

Header table and node chains
of the same item

Yes Yes No No

Local order of items in a path
(from the root to a leave) is
based on

Global support Local support Global support Local
support

Local order of items in a path
is flexible

No Yes No Yes

Order of child nodes with the
same parent node

No Descending
of support

No No

1 Swapping two nodes is simply exchanging one’s item name to that of the other.
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transaction 3(f, a, c) is processed. Common item f is found that can be merged with node
f, so node f is swapped with node b. Item c is also a common one, but it is not able to be
merged with node c as node d does not satisfy the Descendant Swapping condition with
node c. Then the items a and c are added as a branch from node f. When transaction 4(a,
b, d, f, c, h) is added in Fig. 1(d), common items f, d, b, and c are merged straightfor-
wardly with corresponding nodes f, d, b, and c. The remaining items a and h are then
inserted into the subtree having root node c. The item h is found common with node h in
the second branch. Node h and item h, therefore, are merged together after node h is
swapped with node g. The last item a is then inserted as a new child branch from node
h. Insertion of transaction 5(b, d, c) is depicted in Fig. 1(e). All items in transaction 5 are
common, but they cannot be merged with nodes b, d, and c as node f does not guarantee
the Child Swapping condition. Thus, transaction 5 is added as a new child branch of the
root node.

After the dataset has been processed, each node in the IPPC-Tree is attached with a
pair of sequent numbers (pre-order, post-order) by scanning the tree with pre-order and
post-order traversals through procedure AssignPrePostOrder. For an example, node
(4, 6) is identified by pre-order = 4 and post-order = 6, and it registers item b with
support = 3. The above are all concepts of the IPPC-Tree construction; for a formal
and detail description, the Algorithm 1 for building the tree, BuildIPPCTree, is pre-
sented as follows.

Table 2. Example transaction dataset

ID Items in transactions

1 b, e, d, f, c
2 d, c, b, g, f, h
3 f, a, c
4 a, b, d, f, c, h
5 b, d, c

Fig. 1. An illustration for constructing an IPPC-Tree on example transaction dataset
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Algorithm 1: BuildIPPCTree
Input: Dataset D, root node R
Output: An IPPC-Tree with root R, item list 
1.  For Each transaction T D
2.   Update items and their supports in  from items in T;
3.   InsertTransaction(T, R);
4. End For 
5. AssignPrePostOrder(R);

Procedure InsertTransaction(Transaction T, Node R)
1.  subNode R; notMerged;
2.  While(T )
3.   notMerged true;
4.   For Each child node N of subNode
5.    If(N.item-name T)
6.     notMerged false; N.support++;
7.       subNode N; T  (T N.item-name); break;
8.    End If
9.   End For 
10.  If(notMerged) break;
11. End While
12. If(T ) Return;
13. For Each child node N of subNode
14.  If(MergeDescendants(T, N)) Return;
15. End For 
16. Insert T as a new branch from subNode (added nodes are ini-

tialized at 1 for their supports); 

Function MergeDescendants(Transaction T, Node N)
1.  subNode  N; mrgNode  N; merged false;
2.  While(subNode satisfies the Child Swapping condition)
3.   descendant subNode.child;
4.  If(descendant.item-name T)
5.   T  (T descendant.item-name); merged true;
6.    Exchange item names of mrgNode and descendant;
7.    mrgNode.support++; mrgNode mrgNode.child;
8.   End If
9.   subNode descendant;
10. End While 
11. If(merged) Insert T as a new branch from mrgNode.parent

(added nodes are initialized at 1 for their supports);
12. Return merged;

Procedure AssignPrePostOrder (Node R)
  // PreOrder and PostOrder are initialized at 1. 
1.  R.pre-order PreOrder; PreOrder++;
2.  For Each child node N of R Do AssignPrePostCode(N);
3.  R.post-order PostOrder; PostOrder++;

A Parallel Incremental Frequent Itemsets Mining IFIN+ 83



The IPPC-Tree construction requires only one dataset scanning and is independent
of the support threshold as well as the global order of items (based on items’ global
supports) in a dataset. The tree is a compact and information-lossless structure of the
whole items from all transactions in a given dataset. Therefore, a built IPPC-Tree from
a dataset D is mined at different support thresholds and reused to build up a new IPPC-
Tree corresponding to a new dataset D0 ¼ DþDD.

To complete providing the incremental ability for the IPPC-Tree, methods of
storing and loading for the tree and item list L must be proposed, in which the data
format and algorithms are their two features. For the simplicity of storing and loading
for L, this detail will not be mentioned here. Beside item-name and support, the
important information for loading a node is its parent’s information to identify where
the node was in the built tree. Our previous works [18, 19] utilize the pre-order (or
post-order), the global identity, to determine the parent node for a node. The expression
(1) shows the data format for a single node. For more efficient in storing and loading
the IPPC-Tree, we propose a new format for a single node at (2).

\parent's pre-order[ : \pre-order[ : \post-order[ : \item-name[ : \support[

ð1Þ

\1j0[\ijo[\item-name[ : \support[ ð2Þ

We employ Breadth-First-Search traversal to store the IPPC-Tree. In fact, the
storing phrase can utilize other strategies such as pre-order traversal, but the sequence
of node records generated by Breadth-First-Search traversal is more convenient for the
loading phase. The reason is that the records of all child nodes with the same parent
node are continuous together. Utilizing this property, the first element <1|0> in the new

Table 3. Stored data formats for IPPC-Tree

Stored format for IPPC-Tree New stored format for IPPC-Tree

<No. of Transactions>
-1:1:14:root:0
1:2:10:f:4
1:12:13:b:1
2:3:7:d:3
2:10:9:a:1
12:13:12:d:1
3:4:6:b:3
10:11:8:c:1
13:14:11:c:1
4:5:5:c:3
5:6:1:e:1
5:7:4:h:2
7:8:2:g:1
7:9:3:a:1

<No. of Transactions>
<No. of Nodes>
0if:4
0ib:1
1id:3
1ia:1
0id:1
1ib:3
0oc:1
1oc:1
0ic:3
1oe:1
1ih:2
0og:1
0oa:1
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format (2) is only a character with two possible values ‘1’ and ‘0’, but it contains
enough information to separate node groups (all nodes with the same parent). The
second element <i|o> indicates the corresponding node is an inner node with the
character ‘i’ or a leaf node with the character ‘o’. An inner node means that it is the
parent node of a certain node group. The parent node of the first group is the root node;
the parent node of the second group is the first inner node; the parent node of the third
one is the second inner node; and so on by that order all nodes will be placed at the
right positions where they were in the built tree.

By storing the data record of every single node on a line, the corresponding data for
the example tree in Fig. 1(e) with old format (1) and new format (2) is presented in the
left and the right columns of Table 3 respectively. Obviously, the new format is more
efficient than the old one in both aspects computation and storing volume. The algo-
rithm for loading the IPPC-Tree in IFIN [18], using old stored format, is shown in
procedure LoadIPPCTree.

When the dataset becomes larger with the progress of additional data accumulated,
the stored data for the built tree is also bigger; and the tree loading will consume more
time as a result. Therefore, improving efficiency for procedure LoadIPPCTree is
necessary. Loading the IPPC-Tree comprises three tasks for each line of data: (1) read a
line, (2) parse the line and build a corresponding node, (3) connect the node to the tree.
We realize that the second task takes most of the total time; and fortunately, the second
task is performed in main memory. Therefore, it will be not interrupted by waiting for
I/O when there is more than one thread shares the same I/O stream.

In this work, the parallelization for the IPPC-Tree loading is based on the new
format (2). The parallel design is depicted in the Fig. 2. The file of a built IPPC-Tree is
divided into n chunks of l lines and processed by k threads (k � n). The last chunk’s
number of lines may be lesser than l. Each time, a thread reads a chunk into its local
buffer and sequentially creates a node for each data line. A shared reference array
FArray is maintained for all created nodes, and a corresponding shared Boolean array

Procedure LoadIPPCTree(File F, Root R, , transCount)
1.   Load the list of items; 
2.  transCount  Load the count of transactions; 
3.  R  Load the root node; 
4.  parentNode R; nodeList ;
5.  For Each line L in data file F
6.   parentID  extract <parent’s pre-order> from L;
7.   Create a node N from L;
8.   Add N into the end of nodeList;
9.   While(parentID <> parentNode.pre-order){
10.   parentNode nodeList[0];
11.   Remove parentNode from nodeList;
12.  }
13.  Add N as a child of parentNode;
14. End For
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InnerNodePosition is used to indicate a node at a certain index in FArray is an inner
node or not. The group node information for a node is temporarily recorded in pre-
order property of the node. The connections among nodes in the IPPC-Tree will be
established after node creation stage has finished. We can see that the access address
spaces of individual threads in the FArray and InnerNodePosition are different. Hence,
independence between threads is guaranteed. The parallelization is given in procedure
ParallelLoadIPPCTree.

ParallelLoadIPPCTree(File F, Root R, , transCount, threadCount)
1.   Load list of items; 
2.  transCount  Load the count of transactions; 
3.  nodeCount  Load the count of nodes; 
4.  Allocate FArray, InnerNodePositions with length nodeCount;
5.  index  0; 
6.  For i From 1 To threadCount
7.   Start LoadingThread(F, FArray, InnerNodePosition, index);
8.  Synchronize all threads; 
9.  parentIndex  -1; parentNode R;
10. groupId FArray[0].pre-order;
11. For Each node N in FArray
12.  If(N.pre-order <> groupId){
13.    groupId N.pre-order;
14.   While(true) If(innerNodePosition[++parentIndex])break;
15.   parentNode FArray[parentIndex];
16.  }
17.  Add N as a child of parentNode;
18. End For 

LoadingThread(File F, FArray, InnerNodePosition, lineIndex)
1.  startIndex  0; lineCount  0;
2.  While(Work-Pool <> )
3.   Mutually-exclusive-region {
4.    startIndex lineIndex;
5.     Load a chunk from F into Buffer;
6.     lineCount  number of loaded lines; 
7.     lineIndex lineIndex + lineCount;
8.   }
9.   For i From startIndex To (startIndex + lineCount - 1){
10.    Create a node N from the next line L in Buffer;
11.   FArray[i] N;
12.   N.pre-order  (L[0] == ‘1’ ? 1 : 0); 
13.   InnerNodePosition[i]  (L[1] == ‘i’);  
14.  }
15. End While 
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The new stored format (2) does not contain pre-order and post-order information.
Hence after loading completely the tree, procedure AssignPrePostOrder is executed.
In case there is additional dataset, this procedure will be called after the tree is built up
with the new dataset.

4 Preliminaries

In this subsection, some IPPC-Tree related definitions and lemmas are introduced as
preliminaries for IFIN+ algorithm. For convenience in expressing the relative order
between two items in an item list L ¼ I1; I2; . . .; Inf g, we denote Ii � Ij to indicate that
Ii is in front of Ij 1� i\ j� nð Þ. There are two premises of traversing a tree with pre
order and post order as follows:

Premise 1: Traversing a tree to process a work at each node with pre-order, it must be
that (1) N1 is an ancestor of N2 or (2) N1 and N2 stay in two different branches (N1 in
the left and N2 in the right) iff the work is done at N1 before N2.

Premise 2: Traversing a tree to process a work at each node with post order, it must be
that (1) N1 is an ancestor of N2 or (2) N1 and N2 stay in two different branches (N1 in
the right and N2 in the left) iff the work is done at N2 before N1.

By applying a work which assigns an increasingly global number at each node on
Premise 1 & 2, two following lemmas are directly deduced.

Lemma 1: For any two different nodes N1 and N2 in the IPPC-Tree, N1 is an ancestor
of N2 iff N1.pre-order \N2.pre-order and N1.post-order [N2.post-order.

Lemma 2: For any two nodes N1 and N2 in two different branches of the IPPC-Tree,
N1 is in the left branch and N2 in the right one iff N1.pre-order \N2.pre-order and N1.
post-order \N2.post-order.

Definition 1 (nodeset of an item): Given an IPPC-Tree, the nodeset of an item I,
denoted by NSI , is a set of all nodes in the IPPC-Tree with ascending order of pre-order
and post-order in which all the nodes register the same item I.

In case N1 and N2 register the same item, N1 and N2 must be in two different
branches because of Property 1. By traversing the IPPC-Tree with pre order, all nodes

Fig. 2. The concept of parallelization for IPPC-Tree loading
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with the same item I, sequentially from the left-most branch to the right-most one, are
added into the end of the list of nodes reserved for the item I. Hence, according to
Lemma 2, the increasing orders of both pre-order and post-order are guaranteed.
Finally, we have nodesets for all items in L. For an instance, the nodeset for item c in
the example IPPC-Tree Fig. 1(e) will be NSc ¼ 5; 5; 3ð Þ; 11; 8; 1ð Þ; 14; 11; 1ð Þf g.
Here, each node N is depicted by a triplet of three numbers (N.pre-order, N.post-order,
N.support).

Lemma 3: Given an item I and its nodeset is NSI ¼ N1;N2; . . .;Nlf g, the support (or
global support) of item I is

Pl
i¼1 Ni:support.

Rationale: According to Definition 1, NSI includes all nodes registering the item I, and
each node’s support is the local support of the item I. Hence, the global support is the
sum of all nodes’ supports in NSI . ■

Definition 2 (nodeset of a k-itemset, k � 2): Given two (k-1)-itemsets P1 ¼
p1p2. . .pk	2pk	1 with nodesets NSP1 and P2 ¼ p1p2. . .pk	2pk with nodeset
NSP2 p1 � p2 � . . . � pkð Þ, the nodeset of k-itemset P ¼ p1p2. . .pk	2pk	1pk; NSP, is
defined as follows.

NSP ¼ Dk
Dk ¼ Descendant Ni; Mj

� �
with Ni 2 NSP1 ^Mj 2 NSP2

Dk 2 NSP1 ^ Dk 2 NSP2

�����
� �

Function Descendant Ni;Mj
� �

means that there has been an ancestor-descendant rela-
tionship between Ni and Mj, and the output is the descendant node.

Lemma 4: Given a k-itemset P and its nodeset is NSP ¼ fN1;N2; . . .;Nlg, the support
of the itemset P is

Pl
i¼1 Ni:support.

Proof. By the inductive method, the proof begins with nodesets for 2-itemsets.

According to the Definition 2, the nodeset of 2-itemset p1p2 p1 � p2ð Þ is a set of all
descendant nodes from all pairs of nodes Ni 2 NSp1 and Mj 2 NSp2 that both Ni and Mj

stay in the same path of nodes from root to a leave. Following the Property 2,
descendant nodes’ supports are lesser than or equal to that of the corresponding
ancestor nodes; so the supports of descendant nodes are the local supports of all 2-
itemsets p1p2 distributed in the IPPC-Tree. Consequently, Lemma 4 holds for case
k = 2.

Assume Lemma 4 holds for case k. We need to proof Lemma 4 also holds for case
k + 1. We have the assumptions:

1. k-itemset P1 ¼ p1p2. . .pk	1pk with its nodeset NSP1 ¼ fN1;N2; . . .;Nl1g.
2. k-itemset P2 ¼ p1p2. . .pk	1pkþ 1 with its nodeset NSP2 ¼ fM1;M2; . . .;Ml2g.
3. For each Ni, there will be a path of k nodes from the root to Ni (except the root

node); and Ni is the bottom node in the path visualized in Fig. 3(a). Each node in
the path registers a certain item in p1; p2; . . .; pk	1; pkf g. Each node Mj is similar to
Ni, see Fig. 3(b).

4. (k + 1)-itemset P ¼ p1p2. . .pk	1pkpkþ 1 with its nodeset NSP ¼ fD1;D2; . . .;Dl3g.
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According to the Definition 2, each Di will fall into one of two cases:

Case 1 (Fig. 3(c)): Di ¼ Descendant Ni;Mj
� �

, without loss of generality, assume
that Ni is the descendant node of Mj. In fact, two paths of nodes 1 ! 2 ! � � � !
k 	 1ð Þ ! k and 10 ! 20 ! � � � ! k 	 1ð Þ0! k0 must be in the same path from the
root to a leave node as each child node has only one parent node. Because two paths
of nodes share the common items in p1; p2; . . .; pk	1f g, and no duplicate nodes exist
in the same path (Property 1); there will be (k − 1) pairs of identical nodes in which
each pair includes one node from 1 ! 2 ! � � � ! k 	 1ð Þ and the other from
10 ! 20 ! � � � ! k 	 1ð Þ0! k0. This derives that there are only one path of (k + 1)
unique nodes registering (k + 1) items in the item list p1; p2; . . .; pkþ 1ð Þ. Therefore,
the support of Ni or Di is a local support of the (k + 1)-itemset
P ¼ p1p2. . .pk	1pkpkþ 1.
Case 2 (Fig. 3(d)): Ni 
 Mj. This means that the items of Ni and Mj are the same
and must register one in p1; p2; . . .; pk	1f g. Hence, (k − 2) remaining common items
are shared by two paths of nodes 1 ! 2 ! � � � ! k 	 1ð Þ and
10 ! 20 ! � � � ! k 	 1ð Þ0. By the same reasoning as in case 1, these two paths
must be in the same path and there are (k − 2) pairs of identical nodes. Conse-
quently, the number of unique nodes in the only node path is (1 + (k − 2) + 2 =
k + 1), and these (k + 1) nodes register (k + 1) items in the list of items
p1; p2; . . .; pkþ 1ð Þ. Thus, the support of Ni or Di is a local support of the (k + 1)-
itemset P ¼ p1p2. . .pk	1pkpkþ 1.

Based on the two cases, Lemma 4 also holds for case k + 1. Hence, Lemma 4
holds. ■

Given two (k − 1)-itemsets P1 ¼ p1p2. . .pk	2pk	1 and P2 ¼ p1p2. . .pk	2pk with
their nodesets NSP1 ¼ N1;N2; . . .;Nl1f g and NSP2 ¼ M1;M2; . . .;Ml2f g; at first
glance, the computational complexity of generating nodeset NSP for k-itemset P ¼
p1p2. . .pk is O l1 � l2ð Þ. In fact, this complexity can be reduced significantly to

Fig. 3. Cases in definition 2
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O l1þ l2ð Þ, a linear cost, by utilizing Lemmas 1 and 2. For each pair of nodes Ni andMj

1� i� l1; 1� j� l2ð Þ, there are the following five cases:

1. ðNi:pre-order[Mj:pre-orderÞ ^ ðNi:post-order[Mj:post-orderÞ: The relation-
ship between Ni and Mj is not an ancestor-descendant relationship, so no node is
added to NSP. Certainly, Mj also does not have this relationship with remaining
nodes in NSP1 as increasing orders of both pre-order and post-order in nodesets.
Therefore, Mjþ 1 is selected as the next node for the next comparison.

2. ðNi:pre-order[Mj:pre-orderÞ ^ ðNi:post-order\Mj:post-orderÞ: Ni is added to
NSP as Ni is the descendant node of Mj. Consequently, Niþ 1 is selected as the next
node for the next comparison.

3. ðNi:pre-order\Mj:pre-orderÞ ^ ðNi:post-order[Mj:post-orderÞ: Similar to the
case 2, Mj is added to NSP, and Mjþ 1 is the next node for the next comparison.

4. ðNi:pre-order\Mj:pre-orderÞ ^ ðNi:post-order\Mj:post-orderÞ: This case is
similar to the case 1; and Niþ 1, therefore, is the next node for the next comparison.

5. Ni 
 Mj: This identical node Ni is added to NSP. Two new nodes Niþ 1 and Mjþ 1

are selected for next comparison.

Based on analyses above, the algorithm for generating a nodeset, the procedure
NodesetGeneration, is as follows.

It is easy to see that the increasing order of nodes in NS is guaranteed as these nodes
are inserted to the end of NS in that order. Therefore, NS is also a nodeset.

Lemma 5 (superset equivalence): Given an item I and an itemset PðI 62 PÞ, if the
support of P is equal to the support of P[ If g, the support of A[P is equal to the
support of A[P[ If g. Here ðA\P ¼ ;Þ ^ ðI 62 AÞ.
Proof. As the support of itemset P is equal to that of P[ If g, any transaction con-
taining P also contains the item I. Apparently, if a transaction contains A[P, it must
contain P. This means that the numbers of transactions containing A[P and
A[P[ If g are the same. Therefore, Lemma 5 holds. ■

Procedure NodesetGeneration(Nodeset NS1, Nodeset NS2)
1.  i  1; j  1; NS;
2.  While((i < NS1.size)  (j < NS2.size))
3.   If(NS1[i].pre-order > NS2[j].pre-order)
4.    If(NS1[i].post-order > NS2[j].post-order) j++;
5.    Else {NS NS NS1[i]; i++;}
6.   Else If(NS1[i].pre-order < NS2[j].pre-order)
7.    If(NS1[i].post-order < NS2[j].post-order) i++; 
8.    Else {NS NS NS2[j]; j++;}
9.   Else {NS NS NS1[i]; i++; j++;}
10. End While 
11. Return NS;
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5 Algorithm IFIN+

In this section, we introduce the algorithm IFIN+ based on its serial version IFIN and
the preliminaries introduced in the previous section. For making this article self-
contained and easier to refer, algorithm IFIN will be represented here.

5.1 Algorithm IFIN

Algorithm 2: IFIN
Input: Stored tree Tree-D, incremental dataset D,
Output: Set of frequent k-itemsets L
1.  Create the root node R; ;
2.  If(Tree-D <> null) LoadIPPCTree(Tree-D, R, , transCount);
3.  If(D <> null) BuildIPPCTree(D, R, );
4.  HasMap<itemset, support> C2 ;
5.  LOOP:
6.  Ask for a new support threshold  or exit;
7.  Filter frequent items in  based on  and add to L1;
8.  If(C2 <> ) Goto SKIP;
9.  Scan Each node N in IPPC-Tree with pre order traversal 
10.  N.item-name;
11.  For Each ancestor A of N
12.   A.item-name;
13.   If( ) C2.add( , .support + N.support);
14.   Else C2.add( , .support + N.support);
15.  End For 
16. End Scan 
17. SKIP:
18. L2’ L2; L2 ;
19. Filter frequent itemsets in C2 based on  and add to L2;
20. Scan Each node N in IPPC-Tree with pre order traversal 
21.  N.item-name;
22.  For Each ancestor A of N
23.   A.item-name;
24.   If( ) IS ;
25.   Else IS ;
26.   If(( L2) (IS L2’)) nodesetIS.add(N);
27.  End For 
28. End Scan 
29. L L L1; L L L2;
30. For Each L2
31.  GenerateFrequentItemsets( , , );

32. Goto LOOP;
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IFIN algorithm can perform its mining at different support thresholds (lines 5–32)
with only one time of constructing the IPPC-Tree (lines 1–4). Lines 9–16 generate the
list of candidate 2-itemsets C2 as well as their respective supports. This task is ignored
if the current running session performs for following times of mining with other
support thresholds. Lines 20–28 create the corresponding nodeset for each frequent 2-
itemsets in L2. From the second time of mining, just new frequent 2-itemsets’ nodesets
are generated. In lines 30–31, each frequent 2-itemset in L2 will be extended by the
recursive procedure GenerateFrequentItemsets to discover all longer frequent item-
sets. This procedure searches a space of itemsets which is demonstrated by a set-
enumeration tree [6] constructing from the list of increasingly ordered frequent items
L1. An example of the search space for the dataset in Table 2 with support threshold
e ¼ 0:6 is visualized in Fig. 4. No exhausted search is performed on the space because
of two facts. The first is only sub spaces, whose prefix path are the frequent 2-itemsets,
are searched in. The second is the procedure employs two pruning strategies to greatly
narrow down the search space. The first strategy is that if P is not a frequent itemset, its
supersets are not either; and the second one is the superset equivalence introduced in
Lemma 5.

There are three input parameters for procedure GenerateFrequentItemsets:
(1) FIS is a frequent itemset which will be extended. (2) CI is a list of candidate items
used to expand the FIS with one more item. The expansion for FIS is based on
Definition 2 in Sect. 4. (3) Parent_FISs is a set of superset equivalence sets of items
generated at the parent of FIS in the set-enumeration tree. In that, each superset
equivalence set is formed from items which satisfy the condition of Lemma 5 at the
parent of FIS. In this procedure, lines 1–2 initialize some sets and make a copy
Curr_FISs of Parent_FISs. Lines 3–11 extend the FIS with each item I in the item list
CI that each item will drop in one of the following three cases:

• The extended itemset FIS[ If g is a frequent itemset: The item I is considered to be
a candidate item to expand the search space.

• The supports of FIS and FIS[ If g are equal: The item I satisfies the condition in
Lemma 5. Therefore, the item I will be added in to set of superset equivalence items
(eqItems); and the search in subspaces containing FIS[ If g in their prefix path does
not need to continue because the support of the itemsets FIS[ If g[ J1; . . .; Jkf g
ðI � J1 � . . . � JkÞ in these subspaces is equal to the support of itemsets
FIS[ J1; . . .; Jkf g in other spaces.

• The extended itemset FIS[ If g is not a frequent itemset: Stop searching all sub-
spaces which contain FIS[ If g in their prefix path.

Lines 12–21 update the set of superset equivalence sets Curr_FISs at the itemset
FIS in the set-enumeration tree and generate frequent itemsets based on FIS, Curr_FISs
and set of superset equivalence items eqItems. Lines 22–25 generate frequent itemsets
based on the extended frequent itemsets FIS[ If g and the updated superset equiva-
lence sets Curr_FISs. Finally, the progress of searching subspaces, whose prefix paths
are extended frequent itemsets, is continued in lines 26–27.
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Procedure GenerateFrequentItemsets(FIS, CI, Parent_FISs)
1.  nextCI ; eqItems ; extFISs ; Curr_FISs ;
2.   Curr_FISs  Curr_FISs  Parent_FISs;
3.  For Each item I CI
4.   IS = (FIS {FIS.last_item})  {I};
5.   extIS = FIS  {I};
6.   extIS.nodeset NodesetGeneration(FIS.nodeset,IS.nodeset);
7.   If(extIS.support = FIS.support) eqItems.add(I);
8.   Else If(extIS is a frequent itemset){
9.    nextCI.add(I); extFISs.add(extIS); F.add(extIS);
10.  }
11. End For
12. If(eqItems <> ){
13.  SoS  set of all subsets of eqItems, excluding ;
14.  For Each IS SoS Do F.add(FIS IS);
15.  If(Parent_FISs <> ){
16.   Production {P| P = P1 P2, P1 SoS, P2 Parent_FISs};
17.   For Each IS Production Do F.add(FIS IS);
18.   Curr_FISs Curr_FISs Production;
19.  }
20.  Curr_FISs Curr_FISs SoS;
21. }
22. If(Curr_FISs <> )
23.  Production {P| P = P1 P2, P1 extFISs, P2 Curr_FISs};
24.  F F Production;
25. }
26. For Each itemset IS extFISs
27.  GenerateFrequentItemsets(IS, nextCI, Curr_FISs);

5.2 IFIN Parallelization and Improvement

In this subsection, we present the improvement and parallelization to increase effi-
ciency and throughput for IFIN. Algorithm IFIN is divided into four phases and each
will be parallelized separately.

Fig. 4. Set-enumeration tree for example dataset Table 2, support threshold e ¼ 0:6
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The first phase, IPPC-Tree construction of IFIN in lines 1–3, includes loading the old
tree and building up the old tree with a new additional dataset. In that, the parallelization
for loading the old tree in the new stored format has been introduced in Sect. 3.

The item list L in algorithm IFIN may contain a numerous number of distinct items
in some datasets, some dozens of thousands of distinguishing items, even more; but
often only small percentage is of frequent items. This will cause IFIN to waste much
memory and computation overhead for a vast number of infrequent itemsets. To reduce
this, the item list L will be replaced by one its subset L0 which is generated by filtering
items in L based on a given lower bound of support thresholds e0 e0 � eð Þ; and then the
items in L0 are sorted in ascending order of their supports before being used in the
following phases.

The second phase, frequent 2-itemsets generation, is performed by lines 9–19.
Remaining the encoding for each 2-itemset as an ordered string of item names and the
set of 2-itemsets C2 as a hash map in the parallelized second phase will cause the
running time to be not improved, even worse, because of sharing and synchronization
between threads when updating 2-itemsets’ supports in C2. To overcome this, each
item is encoded as an integer which is its position in the item list L0 L0j j ¼ mð Þ; and
instead of a shared hash map C2, a m� m matrix of integers Mt is reserved for tth

thread. Two elements Mt(i, j) and Mt(j, i) partially indicate the support of a 2-itemset
comprising two items Ii and Ij at positions i and j in L0 respectively. In this phase, the
work pool is the built IPPC-Tree, and tasks in the work pool are the built tree’s direct
sub-trees. When a thread has no longer sub-trees to process, it calculates local supports
for 2-itemsets IiIj through Eq. (3). After the all threads have completed their work,
aggregation and filter operators are performed to achieve the global supports for all 2-
itemsets following Eq. (4) and to extract frequent 2-itemsets.

Local Supportt IiIj
� � ¼ Mt i; jð ÞþMt j; ið Þ; i\ jð Þ ð3Þ

Support IiIj
� � ¼

X
t
Local Supportt IiIj

� �
; i\ jð Þ ð4Þ

The third phase, nodesets generation for frequent 2-itemsets, is executed in lines
20–28. The same problems of sharing and synchronization in the second phase happen
as threads may concurrently update the same nodeset of a certain frequent 2-itemset.
For the purpose of independent execution between threads, nodesets for items need to
be generated in advance, and nodesets for frequent 2-itemsets are produced from two
nodesets of the two componential items. The work pool is now the list of frequent 2-
itemsets, and threads independently retrieve items’ nodesets and generate nodesets for
frequent 2-itemsets by applying the procedure NodesetGeneration in Sect. 4.

The fourth phase, discovering all frequent k-itemsets (k > 2) from each frequent 2-
itemsets, is executed in lines 30–31. In the set-enumeration tree, the 2-itemsets divide
the tree into individual subtrees which are separate subspaces of itemsets. Therefore,
threads of searching for longer frequent itemsets in subspaces, which are prefixed by
frequent 2-itemsets, are performed independently to each other. The same parallel
model as the previous phases, the work pool is a collection of search subspaces cor-
responding to frequent 2-itemsets. Threads continuously fetch frequent 2-itemsets and
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start searching the respective subspaces to discover longer frequent itemsets through
the procedure GenerateFrequentItemsets until the work pool is empty. Based on the
above presentation, the algorithm IFIN+ is designed as follows.

Algorithm 3: IFIN+

Input: Stored tree T, incremental dataset D, ,
Output: Set of frequent k-itemsets L
1.  Create the root node R; ;
2.  threadCount  the number of physical cores in the machine;
3.  If(T null) ParallelLoadIPPCTree(T, R, , threadCount);
4.  If(D null) BuildIPPCTree(D, R, );
5.   Filter items in  based on ;
6.  Sort items of  in ascending order of their supports; 
7.  Scan Each node N in IPPC-Tree with pre order traversal 
8.   If(  contains N.item-name) NodesetN.add(N);
9.  LOOP:
10. Ask for a new support threshold  or exit;
11. Filter frequent items in  based on  and add to L1;
12. If(  <> null) Goto SKIP;
13. Initialize matrixes  size m x m (m = );
14. childIndex  0; 
15. For t From 1 To threadCount
16.  Start ItemsetGenThread(R, childIndex, );
17. Synchronize all threads; 
18. ;

19. SKIP:
20. L2’ L2; L2 ;
21. For each L2.add( );
22. index  0;
23. For t From 1 To threadCount
24.  Start NodesetGenThread(L2\L2’, index);
25. Synchronize all threads;
26. L L L1; L L L2; index  0;
27. For t From 1 To threadCount
28.  Start GenerateFrequentItemsetsThread(L2, index);
29. Synchronize all threads; 
30. Goto LOOP;

GenerateFrequentItemsetsThread(Freq2Itemsets, index)
1.  While(true)
2.   Mutually-exclusive-region { 
3.    If(index Freq2Itemsets.length) break;
4.     = Freq2Itemsets[index]; index++;

5.   }
6.   GenerateFrequentItemsets( , , );

7.  End While 
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NodesetGenThread(NewFreq2Itemsets, index)
1.  While(true)
2.   Mutually-exclusive-region { 
3.    If(index NewFreq2Itemsets.length) break;
4.    IJ = NewFreq2Itemsets[index]; index++;
5.   }
6.   NodesetIJ = NodesetGeneration(NodesetI, NodesetJ);
7.  End While 

ItemsetGenThread(R, childIndex, Matrix)
1.  While(true)
2.   Mutually-exclusive-region { 
3.    If(childIndex R.childList.length) break;
4.    subTree = R.childList[childIndex];
5.    childIndex++;
6.   }
7.   Scan Each node N of subTree with pre order traversal 
8.    i = mapToIndex(N.item-name);
9.    If (i is invalid) continue;
10.   For Each ancestor A of N
11.    j = mapToIndex(A.item-name);
12.    If (j is invalid) continue;
13.    Matrix[i,j] = Matrix[i,j] + N.support;
14.   End For
15.  End Scan 
16. End While 
17. For i From 0 To Matrix.with-1
18.   For j From i+1 To Matrix.with-1
19.    Matrix[i,j] = Matrix[i,j] + Matrix[j,i];

6 Experiments

All experiments were conducted on a 1.86 GHz Intel Core (MT) i3-4030U processor,
and 4 GB memory computer with Window 8.1 operating system. To evaluate the
algorithms, we used the Market-Basket Synthetic Data Generator [7] based on the IBM
Quest to generate a synthetic dataset, and a real dataset named Kosarak [20], online
news portal click-stream data. The datasets’ properties are shown in Table 4.

The algorithm IFIN+ was compared with its original version IFIN, two state-of-the-
art algorithms FIN and PrePost+, and the well-known one FP-Growth. All the five
algorithms were implemented in Java. Experimental values of running time and used
memory are the average values from three corresponding individual ones. In our
previous works [18, 19], to guarantee available memory of 2 GB used for Java Heap,
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we set value “-Xmx2G” for _JAVA_OPTIONS, a Windows environment variable.
However, we realize that this causes the Java Garbage Collector (GC) to run many
times of full memory collection; and consequently, the total running time includes a
significant percentage, approximate 45%, for the garbage collection. To avoid this in
our current work, we set the value “-Xms2G-Xmx2G” for _JAVA_OPTIONS instead,
and result in the running time for garbage collection is reduced to 6% which reflects
more exactly the algorithms’ performance.

For emulating scenarios of incremental mining, the synthetic dataset was divided
into six equal parts, 200 thousand transactions for each one, and so on for Kosarak
dataset with five parts in which the last one contains just 190002 transactions. The
experiments start mining on the first part and then part by part from the second one is
accumulated and mined. Both IFIN and IFIN+ can perform following three scenarios:

• S1 (Incremental in Different Sessions): An IPPC-Tree corresponding with a dataset
had been constructed, mined and stored in a running session. In the following
sessions, the old tree is loaded and then built up with a new additional dataset.

• S2 (Incremental in the Same Session): An IPPC-Tree corresponding with a dataset
has been constructed and mined, and then it is built up with a new additional dataset
in the same session.

• S3 (Just Loading Tree): A stored IPPC-Tree in a previous session is loaded and
mined in the following sessions.

Each execution scenario can be performed with different support thresholds in the
same running session. The processor in our computer possesses two physical com-
putational units, and we found that the performance achieved its best with two threads
in parallel version IFIN+. The experiments will be presented in three parts: comparisons
between IFIN+ and IFIN, and IFIN+ against FP-Growth, FIN, and PrePost+ on each of
the two datasets.

6.1 IFIN+ Against IFIN

In this subsection, we present comparisons on the running time of the four partial
processing phases between IFIN+ and IFIN on the synthetic and Kosarak datasets.

Table 5 reports the running time in seconds of the execution phases for IFIN+ and
IFIN on the synthetic dataset in increasing sizes from 200k to 1200k transactions. In the

Table 4. The datasets’ properties

No. of
transactions

Max
length

Average
length

No. of total
distinct
items

No. of frequent items at
thresholds
0.001 0.002 0.006

Synthetic
dataset

1200000 32 10 932 843 774 525

Kosarak 990002 2498 8.1 41270 1260 568 116
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Tree Loading phase, the IFIN+’s execution is speeded up by more than 3� compared to
that of IFIN. More contrast, an approximate 10� speedup for IFIN+ is achieved in the
Frequent 2-itemset Generation phase. In the third phase, the IFIN+’s running time is
reduced to two-thirds of the running time of IFIN; and in the final phase, the perfor-
mance of IFIN+ is also improved compared to that of IFIN, approximate a quarter of the
running time of IFIN is reduced for IFIN+.

Table 5. Running time between IFIN+ and IFIN on the synthetic dataset at different sizes

200k 400k 600k 800k 1000k 1200k

Running time in IPPC-Tree loading phase
IFIN 1.4 s 2.4 s 3.6 s 4.7 s 5.8 s 7.4 s
IFIN+ 0.4 s 0.6 s 1.1 s 1.4 s 1.9 s 2.1 s
Running time in Frequent 2-itemset
Generation phase e ¼ 0:001ð Þ
IFIN 3.1 s 5.4 s 8 10.1 s 11.8 s 13.8 s
IFIN+ 0.4 s 0.5 s 0.8 s 0.9 s 1 s 1.4 s
Running time in Nodeset Generation phase
e ¼ 0:001ð Þ
IFIN 2.2 s 4.4 s 6 s 7.2 s 8.6 s 10.5 s
IFIN+ 1.4 s 2.4 s 3.7 s 4.3 s 6 s 6.3 s
Running time in Discover Frequent k-itemsets
phase e ¼ 0:001ð Þ
IFIN 1.9 s 3 s 4 s 5.8 s 6.9 s 8.2 s
IFIN+ 1.6 s 2.3 s 3.1 s 4.6 s 5.0 s 6.1 s

Table 6. Total running timea of the three versions on the synthetic dataset

Scenario S1,
e ¼ 0:001

IFIN [18] IFIN+ [19] IFIN+ ([19] applies the new stored
format for IPPC tree, and the
parallelization for Discover Frequent
k-itemsets phase)

200k 10.3 s 6.1 s 5.7 s
400k 17.7 s 10 s 8.5 s
600k 24.3 s 14 s 11.6 s
800k 33.2 18.6 14.8 s
1000k 37.6 s 22.5 s 17 s
1200k 43.8 s 26.6 s 20 s
aBeside the running time of the four presented phases, the total running time
includes the time for building up the loaded tree with an additional dataset,
generating nodesets for items, writing result, and parts of the Java GC time.
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Table 6 summarizes the total running time on the synthetic dataset (with scenario
S1 and support threshold = 0.001) of the three versions IFIN [18], IFIN+ [19], and
IFIN+ [19] applying the new stored format for IPPC tree and the parallelization for
Discover Frequent k-itemsets phase. As we can see, the performance of the current
version of IFIN+ is highest and more than twice higher than that of IFIN. For the used
memory, there are no differences among the three versions.

Table 7 shows the running time of the four processing phases for IFIN+ and IFIN
on Kosarak dataset in increasing sizes from 200k to 990002 transactions. Like the
synthetic dataset, the same ratios of performance improvement for IFIN+, approximate
speedups of 3� and 10� are respectively achieved in the first and the second phases for
Kosarak dataset. While there is no much running time reduction in the final phase, a
very sharp contrast of performance is revealed in the third phase between IFIN+ and
IFIN, approximate 20� faster for IFIN+ in most data accumulation steps. The third
processing phase makes a great difference between two datasets, 1.66� vs. 20�
speedup for the synthetic dataset and the real one Kosarak respectively. The reason for
this is as follows.

As introduced in Sect. 5, the third phase of IFIN is based on traversing on the
IPPC-Tree while the third phase of IFIN+ manipulates on the nodesets of items in L0 to
generate nodesets for all frequent 2-itemsets. The Kosarak dataset is much sparser than
the synthetic dataset (refer the Table 4) so the IPPC-Tree corresponding to Kosarak
dataset tends to be larger than the tree of the synthetic dataset. The number of frequent
2-itemsets of Kosarak dataset, 2469 in average, is much lesser than 9411 frequent 2-
itemsets of the synthetic dataset. Moreover, the nodesets’ average length in Kosarak
dataset is also shorter than that in the synthetic dataset.

Table 7. Running time between IFIN+ and IFIN on Kosarak datasets at different sizes

200k 400k 600k 800k 1000k

Running time in IPPC-Tree loading
phase
IFIN 1.3 s 2.5 s 3.7 s 4.8 s 6.2 s
IFIN+ 0.5 s 0.7 s 1.2 s 1.5 s 2.1 s
Running time in Frequent 2-itemset
Generation phase e ¼ 0:002ð Þ
IFIN 6.6 s 13.2 s 18.2 s 24 s 28.5 s
IFIN+ 0.6 s 1.1 s 1.7 s 2.3 s 2.5 s
Running time in Nodeset Generation
phase e ¼ 0:002ð Þ
IFIN 4.2 s 7.5 s 10.3 s 13.2 s 15.5 s
IFIN+ 0.2 s 0.3 s 0.5 s 0.6 s 0.8 s
Running time in Discover Frequent
k-itemsets phase e ¼ 0:002ð Þ
IFIN 0.9 s 1.8 s 3.5 s 5.6 s 7.1 s
IFIN+ 1 s 2.4 s 3.4 s 4.8 s 6.7 s
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Similar to Tables 6 and 8 reports the total running time of the three versions on
Kosarak dataset (with scenario S1 and support threshold = 0.002). The current IFIN+ is
the most efficient algorithm. Its running time approximates one third that of IFIN, and
there are no differences in used memory among the three versions.

In an overview of experiments on both datasets, the current IFIN+’s execution time
in phases is reduced substantially compared to that of its original version IFIN. The
larger the number of transactions is, the more the running time is saved for IFIN+. The
reason for such remarkable performance enhancement is that the efficient paralleliza-
tion is synergized with improvement in data representation.

6.2 Experiments on the Synthetic Dataset

In this subsection, we benchmark the running time and peak used memory of IFIN+

against that of the three algorithms FP-Growth, FIN and PrePost+ on the synthetic
dataset. In that, the algorithm IFIN+ experiments with all its possible execution sce-
narios S1, S2, and S3 as referred.

Figures 5 and 6 sequentially demonstrate the running time and peak memory of the
algorithms in steps of data accumulation at the support threshold e ¼ 0:1%. For all
algorithms, both running time and peak memory increase linearly when the dataset is
accumulated. While FP-Growth is the slowest algorithm, it uses memory more efficient
than FIN and PrePost+. Algorithm PrePost+ consumes the most memory, but it runs
faster than FP-Growth and FIN. Algorithm IFIN+ is the most efficient for both running
time and consumed memory. Follow the increasing of the dataset size, while the
advantage in used memory of IFIN+ remains stable; the execution time of IFIN+

becomes more dominant, lesser than a haft, compared to the remaining algorithms’.
Among the three execution scenarios of IFIN+, the running time of S2 and S3 is almost
the same and better than S1’s but not much difference. Beside the high performance of
mining phases in algorithm IFIN+, one more reason can be found out in Table 9 which
benchmarks the algorithms’ tree construction time.

Note that the IPPC-Tree construction does not depend on support threshold, but the
other three trees. The trees of FIN and PrePost+ are almost the same, so their running
time for tree building is nearly equal. The tree construction of IFIN+ achieves the best
performance, much better than the three algorithms’. Especially in scenario S3, the time

Table 8. Total running time of the three versions for Kosarak dataset

Scenario S1,
e ¼ 0:002

IFIN [18] IFIN+ [19] IFIN+ ([19] applies the new stored
format for IPPC tree, and the
parallelization for Discover Frequent
k-itemsets phase)

200k 21.6 s 10 s 9.2 s
400k 36.4 s 15 s 14.7 s
600k 47.7 s 18.6 s 17.4 s
800k 61.2 s 24.2 s 22.1 s
1000k 72.1 s 28.3 s 25.3 s
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ratios are 1:7 and 1:6 compared to FP-Growth’s and PrePost+’s respectively. At the
same dataset size, building tree in S3 is faster than that in S1, approximate 2.3 s in
average; since the execution scenario S1 must build up the loaded tree with a new
additional dataset of 200k transactions. This also reveals that constructing an IPPC-
Tree by loading its stored data is much efficient than building that tree from the
corresponding dataset of transactions.

In Figs. 7 and 8, the running time and peak used memory are visualized for the
algorithms mining on the synthetic dataset of 1.2 million transactions with different
support thresholds e. Start at e ¼ 0:6%, IFIN+ can perform one of two scenarios S1 or
S3 that their two running time values are shown in Fig. 7. For other e values, IFIN+ just

Table 9. Tree construction time of the algorithms for the synthetic dataset

200k 400k 600k 800k 1000k 1200k

IFIN+ (S1) 2.1 3.0 3.2 4.1 4.3 5.1
IFIN+ (S3) 0.4 0.6 1.1 1.4 1.9 2.1
FP-Growth e ¼ 0:001ð Þ 3.4 5.7 8.7 10 12.9 16.2
Fin=PrePostþ e ¼ 0:001ð Þ 2.5 4.5 6.7 9.7 11.9 14.7
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run its mining tasks since the built tree is completely reused. Furthermore, only a
portion of its mining is performed. Consequently, with following values of e\0:6%,
the running time of IFIN+ takes an overwhelming dominance against that of the three
algorithms. The consumed memory of IFIN+ is lesser than the rest algorithms’. The
algorithm FP-Growth uses memory more efficient than the two algorithms FIN and
PrePost+. However, its running time is considerably longer than that of FIN and Pre-
Post+. Algorithm PrePost+ run faster than FIN and FP-Growth, but it uses the most
memory.

6.3 Experiments on Kosarak Dataset

Similar to Subsect. 6.2, this part presents the running time and peak memory of the
algorithms for Kosarak dataset.

Figures 9 and 10 respectively visualize the algorithms’ running time and peak used
memory in data accumulation steps at the support threshold e ¼ 0:2%. Like experi-
ments on the synthetic dataset, for all algorithms, the running time and used memory
increase linearly when the dataset is accumulated. Among the three algorithms FP-
Growth, FIN and PrePost+, the orders in the efficiency of using memory and the
performance are similar to that in case of the previous dataset. FP-Growth still is the
slowest algorithm, but it uses memory more efficient than PrePost+ and FIN. While
PrePost+ runs considerably faster than FP-Growth and FIN, it becomes to consume
more memory than FP-Growth and FIN follow the increasing of dataset size.

However, between IFIN+ and the rest three algorithms, there are some changes in
running time and used memory. In Fig. 10, at the dataset of 200k transactions, IFIN+

uses memory better than the others. However, its used memory increases faster than the
other algorithms’ and is the most for larger sizes, approximate the PrePost+’s memory
at full size of Kosarak dataset in scenarios S1 and S3. In contrast to this, the corre-
sponding experiments on the synthetic dataset in Fig. 6 show that IFIN+ consumes the
least memory for all sizes and execution scenarios.
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As we knew that the IPPC-Tree of IFIN+ is a compact structure of all items in a
dataset, but the trees of the rest algorithms depend on the support threshold and contain
only frequent items in a dataset. Looking into Table 4 for a clear reason, the synthetic
dataset comprises a considerable percentage of frequent items, [90% − 56%] for the
support threshold e 2 0:001	 0:006½ �; but just a very small quantity, [1.38% − 0.28%]
for e 2 0:002	 0:006½ �, is for frequent items in Kosarak dataset. Therefore, in the case
of Kosarak dataset, the used memory to maintain the IPPC-Tree of IFIN+ is much larger
than that of the trees of FP-Growth, FIN and PrePost+; while the affection of this
disadvantage to IFIN+ is not considerable in the synthetic dataset case.

Beside the memory, computational overhead to construct the IPPC-Tree is also
more than that of the other trees in the case of Kosarak dataset. Table 10 reports the
running time for building the trees of algorithms on Kosarak dataset. Building up the
IPPC-Trees takes most of the total time of the IFIN+’s tree construction in scenario S1,

Table 10. Tree construction time of the algorithms for Kosarak dataset

200k 400k 600k 800k 1000k

IFIN+ (S1) 7.2 s 10.4 s 11.4 s 13.9 s 14.7 s
IFIN+ (S3) 0.5 s 0.7 s 1.2 s 1.4 s 2.1 s
FP-Growth e ¼ 0:002ð Þ 3.3 s 6.2 s 9.2 s 12.6 s 15.3 s
Fin=PrePostþ e ¼ 0:002ð Þ 2.1 s 3.7 s 5.1 s 6.6 s 7.5 s
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average 12.5 s for each accumulated dataset of 200k transactions. However, the tree
construction in execution scenario S3, just by loading the built tree, takes the least time
and once again asserts its very high performance. The tree constructions of FIN and
PrePost+ on this dataset are very efficient and take only 7.5 s for the full size of
Kosarak dataset. The above facts have explained the trend of the algorithms’ running
time in the Fig. 9. Execution scenario S3 of IFIN+ runs fastest for all steps of data
accumulation while the running time of scenarios S1 and S2 becomes better than the all
remaining algorithms’ until the step of 800k transactions.

Figures 11 and 12 sequentially depict the running time and peak used memory of
the algorithms mining on Kosarak dataset of 990002 transactions with different support
thresholds e. Start at e ¼ 0:6%, IFIN+ can execute one of two scenarios S1 or S3 whose
two respective running time values are shown in Fig. 11. The difference in performance
between the two values is considerable because of overhead for building up the loaded
tree in scenario S1. For other e values, the same results as the corresponding experi-
ments on the synthetic dataset in Fig. 7, the running time of IFIN+ takes an over-
whelming advantage against that of the three remaining algorithms. IFIN+ consumes
the most memory since it needs more memory to maintain its tree. FP-Growth uses
memory less efficient than the two algorithms FIN and PrePost+ for e [ 0:3%.
However, its consumed memory becomes better than other algorithms’ for e � 0:3%.
FP-Growth’s running time is considerably longer than that of FIN and PrePost+.
Algorithm PrePost+ run faster than FIN, but this dominance of PrePost+ is not
significant.
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7 Conclusions

In this paper, we proposed a solution, IFIN+, for parallelizing the frequent itemsets
mining algorithm IFIN. Most portions of the serial version were changed in means
which increases the efficiency and computational independence for convenience in
designing parallel computation with the load balance model, Work-Pool. Hence,
computational throughput and efficiency are increased significantly compared to its
serial version.

We conducted extensive experiments on a synthetic and a real dataset Kosarak to
evaluate the efficiency of both running time and peak consumed memory of IFIN+

against the well-known algorithm FP-Growth and two state-of-the-art ones FIN and
PrePost+. The experiments showed that for a dataset which a large enough percentage
of its items is used to construct the corresponding trees of FP-Growth, FIN and Pre-
Post+, the efficiency of IFIN+ on execution time and used memory takes clear domi-
nance over these algorithms’. Otherwise, with a dataset having a small percentage of
such items in a huge number of distinct items, IFIN+ reduces its advantage since it uses
more computation and memory overhead than the three remaining algorithms to
construct and retain its IPPC-Tree. However, IFIN+ is compensated by the incremental
abilities to construct its tree structure and mining that is very helpful to deal with the
high-velocity property of Big Data and the data mining practices which often try with
different threshold values. This allows IFIN+ to save some computational overhead
when support threshold changes and not to waste time to rebuild the IPPC-Tree when
new data is accumulated. The IPPC-Tree is a compact structure of all items in a dataset.
Therefore, the tree can be completely reused to mine with different support thresholds
in the same session of the tree building; or in following sessions, the built tree is loaded
very efficiently, much faster than constructing the tree from the original dataset in all
the four algorithms.

The aim of shared-memory based parallelized algorithm IFIN+ is to increase the
throughput for its serial version IFIN by utilizing as much as possible the computa-
tional power of commodity multi-cores processors. In fact, to deal with the running
time problem in Big Data, it is just a minor solution. For a major and much preferred
one, a parallelization solution for IFIN+ on the distributed environment will be pro-
posed to better confront with the running time and memory scalability problems of Big
Data.
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Abstract. Role-Based Access Control (RBAC) has made great attention in the
security community and is widely deployed in the enterprise as a major tool to
manage security and restrict system access to unauthorized users. As the RBAC
model evolves to meet enterprise requirements, the RBAC policies will become
complex and need to be managed by multiple collaborative administrators. The
collaborative administrator may interact unintendedly with the policies, creates
the undesired effect to the security requirements of the enterprise. Consequently,
researchers have studied various safety analyzing techniques that are useful to
prevent such issues in RBAC, especially with the Administrative Role-Based
Access Control (ARBAC97). For critical applications, several extensions of
RBAC, such as Spatial-Temporal Role-Based Access Control (STRBAC), are
being adopted in recent years to enhance the security of an application on
authorization with contextual information such as time and space. The features,
which proposed in STRBAC for collaborative administrators, may interact in
subtle ways that violate the original security requirements. However, the anal-
ysis of it has not been considered in the literature.
In this research, we consider the security analysis technique for the extension

of STRBAC, named Administrative STRBAC (ASTRBAC), and illustrate the
safety analysis technique to detect and report the violation of the security
requirements. This technique leverages First-Order Logic and Symbolic Model
Checking (SMT) by translating the policies to decidable reachability problems,
which are essential to understand the security policies and inform policies
designer using this model to take appropriate actions. Our extensive experi-
mental evaluation demonstrates the correctness of our proposed solutions in
practice, which supports finite ASTRBAC policies analysis without prior
knowledge about the number of users in the system.

Keywords: Computer security � Security analysis � Access control �
Role-Based Access Control � Spatial-Temporal Role-Based Access Control

1 Introduction

Role-based access control (RBAC) [4, 5] is gaining more attention in protecting
enterprise data against malicious users and criminals. Access control [1] is essential to
mediate every request to enterprise resources and decide whether to approve or reject
each request. Manipulating these requests requires access control policies to define
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higher level rules to regulate and control who and what kind of permissions can access
specific resources. Although many access control models have been developed like
Discretionary Access Control (DAC) [2] or Mandatory Access Control (MAC) [3],
only RBAC achieves awareness against users and vendors due to its benefits for
organizations which separates responsibilities in a system where multiple roles are
fulfilled.

In RBAC, the access permissions are associated with roles, and users must be made
members of appropriate roles to grant access. Using Principle of Least Privilege and
Separation of Duties, no one can have discretionary access to enterprise resources to
perform malicious activities since no standalone individual has all permissions needed
for an important operation. RBAC simplifies management of authorization and flexible
in specifying and enforcing policies which can be added or removed for a particular
role as needed. Research works [5, 6] have been dedicated to expanding RBAC model
to support enterprises in management policies where the number of users and
administrators keep increasing. Administrative Role-Based Access Control (ARBAC)
[7] is proposed for changing management in policies by administrators and decen-
tralized policies administration. As the enterprises grow, the policies may be modified
frequently by adding or removing some tuples in the policies when the employee
changes their job or gets promoted. The changing process might be done by many
administrators, each of whom can make small changes to parts of the policies that, at
first look, seems harmless. However, when applying, the combination of all of these
changes may lead to an unsafe state which violates security properties of the policies.
Therefore, it is necessary to have a solid change management solution which checks for
vulnerabilities and violations in security before applying those changes to the system.
This vulnerable in Administrative Role-Based Access Control (ARBAC97) [10] have
been intensively done [17].

Over the last few year, several extensions of RBAC such as Spatial-Temporal Role-
Based Access Control (STRBAC) [8] are being focused to enhance the security of an
application on authorization with contextual information such as time and space;
however, there isn’t much focus on the security analysis of the Administrative model of
STRBAC (ASTRBAC) [9]. In order to overcome these shortcomings, in this research,
we propose a security analysis technique for ASTRBAC based on First-Order Logic
and Symbolic Model Checking [18]. The main idea is to adapt First-Order Logic and
Symbolic Model Checking to translate the security analysis problem of ASTRBAC
policies to decidable reachability problem where total users and roles are finite but the
exact number is not known in order to mechanize the analysis. Based on the model
checking proposed in [16], we create a framework to help security officers aware of the
existence of vulnerabilities in the policies before applying those policies to production
systems. This model can also return the group of actions which cause the vulnerability
to help security officers in detecting and modifying security policies easier according to
their needs and keep compliance with security requirements of the organization.

The paper is organized as follows: Sect. 2 briefly introduces RBAC, its adminis-
trative model and STRBAC model. Section 3 presents our automated analysis tech-
nique for STRBAC policies. Our extensive experiment is illustrated in Sect. 4. Finally,
Sect. 5 concludes the paper.
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2 Role-Based Access Control, Spatial-Temporal Role-Based
Access Control, and Administration

2.1 RBAC

In 1992, Ferraiolo and Kuhn firstly proposed Role-based Access Control model, which
was standardized by National Institute of Standards and Technology (NIST) [6]. Its
main idea is that permissions are associated with roles and users must be assigned to
appropriate roles to gain those permissions.

RBAC has been considered as an alternative to the well-known tradition access
controls such as DAC and MAC. In general, the RBAC policies are a tuple (U, R, P,
UA, PA) which consists of a set U of users, a set R of Roles, a set P of Permissions, a
User-Role Assignment relation UA � U � R, a Role-Permission Assignment relation
PA � R � P, and for simplicity, we ignore the role hierarchy (see [15, 29] for more
details).

As stated in RBAC, a user u is a member of a role r if (u, r) 2 UA; a role r is
assigned permission p if (p, r) 2 PA. Thus, a user is granted to permission p if and only
if there exists a role r 2 R such that (p, r) 2 PA and u are the member of r. The UA
relations in RBAC keep changing according to the growth and reduction of human
resources in an organization while the PA will be less likely to change because of the
fact that the change of this part means there is a change in organization structure and
this may impact the entire system.

RBAC model has the advantage of being simple, efficient, and convenient for
management, which is suitable for many applications in reality. However, the RBAC
model still has many limitations such as not suitable for applications with security
resources that are unknown; not appropriate for complex access control rules when
access control is based not only on roles but also on many other contextual elements.

2.2 Requirement for RBAC Policies Change Management

Typically, RBAC policies consist of two parts UA and PA. A user u can use a per-
mission p of the system if and only if user u is granted a role r and a permission p has
been assigned to that role r.

In Fig. 1, the user u1 is assigned the Trainer role, the user u2 is assigned the Intern
role in a company system (table UA). Therefore, u1 is granted write access to the

User Role
u1 Trainer
u2 Intern

Role Permission
Tester WriteObject

InternAssistant ReadObject
Trainer WriteObject
Intern AppendObject

User Assignment (UA) Permission Assignment (PA)

Fig. 1. RBAC
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system, u2 has the permission to insert into the system because the Trainer has been
granted write access to the system, the Intern role is granted permission to insert into
the system (table PA of policies). We also notice that u2 does not write to the system
because the intern role is not granted access to that system.

In reality, the policies will keep changing, for example, when employees are pro-
moted or leaving, which makes the policies need to be updated by deleting, modifying,
or adding new rules to reflect the change of organization. The role assignment in UA is
frequently changed as new employees entering or leaving the job or changing their
roles that led to the UA being edited while assigning permission in PA is less likely to
change, since changing the PA will change the structure of the organization. Therefore,
in our research, we will focus on the change management in the UA of the policies.

2.3 Administrative Role-Based Access Control (ARBAC)

The ARBAC is the most accepted administrative framework to control how RBAC
policies might change through administrative actions by assigning or revoking user
memberships into roles (URA model, a sub-model of ARBAC [7]).

The ARBAC model consists of three main components: User to Role Assignment
(URA97), Role to Permission Assignment, and Role to Role Assignment (RRA97).
URA97 and PRA97 manipulate changes on UA and PA relationships by assigning rules
or revoking rules in administrator actions: can_assign and can_revoke, respectively.
RRA97 controls the change in the Role Hierarchies by modifying rules in administrator
actions can_modify. However, in our research, we focus on the changes in RBAC
policies by assignment rules and revoking rules.

In the URA97 model, administrators can only update the relations in UA using the
defined administrative actions while the relations in PA keeps constant. The first
administrative action is to assign users to roles and is defined using ternary relation
can_assign(A, C, r) where A (called Administrative) and C (called Simple) are pre-
conditions and r is a role (called target role). The second administrative action is to
revoke users from roles and is defined using binary relation can_revoke(A,r) where
A (called Administrative) is a pre-condition and r is a role (called target role). A pre-
condition C is defined as a finite set of signed role, which expressed using +r or −r for r
2 R. We can say that a user u 2 U satisfied a pre-condition C (written as u ⊧ C) if for
each c 2 C, u is the member of r 2 R when c is +r and u is not a member of r 2 R when
c is −r.

For example, consider a can_assign ({+Manager}, {+Trainer, −Intern}, Group-
Lead), this rule allows administrators with role Manager to assign any users, who have
been assigned the role Trainer and haven’t been assigned the role Intern, to a new role
GroupLead in the company training program. Consider the can_revoke ({+Manager},
Intern), this rule allows administrators with role Manager to revoke any users who
have been assigned the role Intern in the company training program.

2.4 User-Role Reachability Problem

While URA97 restrictions can limit the administrative actions, research [11] has found
that the change to RBAC policies by one administrator may interact in unintended or
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malicious ways with other administrator’s actions. This problem is well-known as the
safety problem (also called the reachability problem), which the effects of these
interactions may lead to an unintended role assignment to an untrusted user, and let that
user have the ability to view or stole sensitive information or resources.

Consider the system that has policies P1 as shown in previous Fig. 1 and a set of
ARBAC rules as follows:

Rule 1: can_assign({+GroupLead}, {+TrainerAssistant,−Trainer}, InternAssistant);
Rule 2: can_assign({+Manager}, {+InternAssistant}, Tester)

The system requires that a user with the role Intern is not allowed to grant the role
Tester. This requirement is often referred as the security requirements of the system,
also known as the security attributes. In Fig. 2, Rule 1 can be executed by GroupLead
u3 to assign the user u2 the role InternAssistant as mentioned in the previous example.
After executing this rule, policies P1 will be modified as shown in Fig. 3. Next, using
Rule 2 on policies P2 can_assign({+Manager}, {+InternAssistant}, Tester).

• u5 satisfies the administrative condition {+manager} because (u5, manager)
belongs to p2

• u2 satisfies the user condition {+internassistant} because (u2, internassistant)
belongs to p2

User Role
u1 Trainer
u2 Intern
u3 GroupLead
u2 TrainerAssistant
u5 Manager

can_assign

({+GroupLead}, {+Train-

erAssistant, -Trainer}, In-

ternAssistant)

===========>

User Role
u1 Trainer
u2 Intern
u3 GroupLead
u2 TrainerAssistant
u5 Manager
u2 InternAssistant

User Assignment (UA)
P1

User Assignment (UA)
P2

Fig. 2. Policies P1 is changed to P2

User Role
u1 Trainer
u2 Intern
u3 GroupLead
u2 TrainerAssistant
u5 Manager

can_assign

({+GroupLead}

, {+Trainer

Assistant, 

-Trainer}, 

InternAssistant)

=====>

User Role
u1 Trainer
u2 Intern
u3 GroupLead

u2 Trainer
Assistant

u5 Manager

u2 Intern
Assistant

can_assign
({
+Manager
},{
+Intern
Assistant}, 
Tester)
=======>

User Role
u1 Trainer
u2 Intern
u3 GroupLead

u2 Trainer
Assistant

u5 Manager

u2 Intern
Assistant

u2 Tester
User Assignment (UA) 

P1
User Assignment (UA) 

P2
User Assignment (UA) 

P3

Fig. 3. Executing rule 2 on policies P2
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So, the Manager u5 can continue to assign the Tester role to u2 users by executing
rule 2 on P2 policies as shown in Fig. 3.

Finally, in the P3 policies, user u2 has both Intern and role Tester role, which
violates the security requirements of the system. In conclusion, executing a series of
ARBAC rules can make the RBAC policies violate the security requirements of the
system, and there should be a tool to assist policies designers to answer the question of
whether the implementation of the ARBAC rules on those policies would result in a
violation of system security requirements.

2.5 Spatial-Temporal Role-Based Access Control (STRBAC)

In many scenarios, authorization depends on additional contextual information such as
the location of the user and the time of the day. In this case, an intern of an organization
should only be authorized to access the information system of a company only in the
branch he is working and during working hours such as between 7 am and 11 am. In
order to understand the authorization conditions that depend on spatial-temporal con-
straints, we need to introduce the model of location and time.

In [20, 21], the TRBAC model of time is usually specified by means of intervals
periodically repeating time intervals, such as day and night-time (two intervals
repeating daily), each hour per day (twenty-four intervals repeating daily), or each day
per week (seven intervals repeating weekly). Let TMAX be a positive integer and a is a
non-negative integer such that a + 1 � TMAX, A time slot is a pair (a; a + 1); to ease
the readability, we will use (8 am; 4 pm), (4 pm; 12 am), and (12 am; 8 am) to denote
time slots (0; 1), (1; 2), and (2; 3), respectively. The set of all time slots is TSTMAX =
{(a; a + 1) | 0 � a < TMAX}. We will usually write TS in place of TSTMAX when
TMAX is clear from context and in this research, we assume TMAX to be given so that
the set TS is fixed. A time instant is a non-negative real number. A time instant
t belongs to a time slot (a; a + 1), written as t 2 (a; a + 1), if and only if a � (t mod
TMAX) < a + 1 where mod is the usual modulo operator, i.e., t0 = t mod TMAX if and
only if there exists a non-negative integer k such that t = t0 + k � TMAX.

The location of a user proposed in [22] should be updated automatically using a
position determination system (PDS). GPS is one of the most well-known methods to
get locations using satellite. Another method requires infrared sensors base station,
infrared transponders and active infrared badges that can respond to the sensors to
detect and inform user location to the base station in small organizations. Other
methods use wireless signal strength information from multiple stations to estimate the
locations more accurately, which is usually found on mobile devices. In order to make
RBAC spatially capable, the authors want to express location in a convenient way that
can be interpreted by humans easily and to have a standard way of representing the
location in raw format, as stored by the system. They define two levels of locations,
namely Primitive Location and Logical Location. A Primitive Location Lp is either the
volume associated with the basic unit of a position that is returned by the PDS, or an
artificially created volume defined by the administrator for PDSs that have high res-
olution. These may be created using Constructive Solid Geometry from basic geometric
shapes defined by their coordinates. A logical location Ll is a combination of one or
more logical or raw locations joined by a [ , \ and / or \ operator combined with other
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primitive locations to form a logical location. For the sake of simplicity, we will focus
on logical location and assume that the location Ll to be updated by the PDS.

An enhanced version of STRBAC is the ESTRBAC model [23], this model pro-
poses new concepts of role extent and permission extent to define the spatial-temporal
access control policies. ESTARBAC still consists components of RBAC, namely,
users, roles and permissions but they are associated with either spatial extents or
spatial-temporal extents. In ESTRBAC model, a set I of intervals is a set of all time
slots that participate in at least one spatial-temporal access control policy specification
(e.g., I is a subset of TS. For simplicity, we consider I = TS in this research, i.e., every
time slot participating in policy specification). Roles and permissions can be available
only at specific locations and during specific time intervals, namely, Role Extents (RE)
and Permission Extents (PE). In this research, we will use these RE and PE to support
our analysis.

In this research, we assume that both Ll and TMAX are given so that the set TS of all
time slots is fixed and the set UL of all user logical locations UL � U � L is updated
from the PDS. STRBAC extends RBAC by adding the Role Extents relation RE �
R � L � TS, the Permission Extends PE � P � L � TS and replacing the user-role
assignment UA with its spatial-temporal user-role assignment relation UA � U � R
L � TS. For the sake of simplicity, following [24], we exclude role hierarchies.

An extent is a pair (l, ts) which associates spatial-temporal extent to roles or
permissions. A role r is enabled at logical location l and time instant t if and only if
there exists a time interval ts such that t belongs to ts and ts 2 TS and (r, l, ts) 2 RE.
A user u is a member of role r at location l and interval ts if and only if r is enabled at
location l and interval ts and (u; r; l, ts) 2 UA. A user u can activate role r at location
l and interval ts if and only if u is a member of role r within extent (l, ts) and u is at
location l: (u, l) 2 UL and the current time-slot is ts. Similarly, a permission p is
enabled at location l and interval ts if and only if (p; l, ts) 2 PE. A user u has
permission p at location l and interval ts if and only if there exists role r such that (p; r)
2 PA and p is enabled within extent (l, ts) and u is a member of r within extent (l, ts).
A user u can access permission p at location l and interval ts if and only if u has
permission p within extent (l, ts) and u is at location l: (u, l) 2 UL and the current time-
slot is ts. Our STRBAC policies is a tuple (U; R; P; UA; PA; L; TS; UL; RE; PE).

In Fig. 4, the role Manager is enabled for users in the A1 building at 8:00 am–

11:00 am (RE), if Alice’s current condition matches the location at A1 building at time
8:00 am–11:00 am (UA), Alice can grant the role Manager. Write o1 is activated for
the role in A1 building at 8:00 am–11:00 am (PE). If role Manager’s current condition
matches the location at A1 building at 8:00 am–11:00 am (PA), the role Manager will
grant Write o1 permission. Since Alice has the role Manager and the role Manager has
the right to Write o1 during the time mentioned (8:00 am–11:00 am), Alice has the
permission to Write o1. Since Bob has the role Engineer and the role Engineer only has
to Write o2 permission between 1:00 pm–5:00 pm, different from the required times
(8:00 am–11:00 am), Bob has no Write o2 permission.
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2.6 Administrative Spatial-Temporal Role-Based Access Control
(ASTRBAC)

One of the Administrative model designed to manage the change of STRBAC policies
named ADMINESTAR [9], which allows multiple administrators to modify the
STRBAC policies while ensures they cannot abuse the system using their powers. An
administrative action consists two components, administrative policies and adminis-
trative operation, to define which administrators are allowed to modify ESTRBAC
policies. Administrative Policies governs a set of administrative rules to specify which
administrative role is authorized to modify ESTARBAC entities of which regular role
range. From now on, we focus on the set of administrative rules. All ESTARBAC
entities together define the system state, which changes when one or more of the
entities change. Administrative Operations are the change of the system state upon their
completion only if the administrative policies allow. Administrative Policies and
Administrative Operations become more complex if their access control has more
attributes.

Our model in [30] based on ADMINESTAR [9], has more constraints in admin-
istrative rule. In ADMINESTAR, the administrator condition only has one role so it
cannot express actions that require the administrator to have more than one role. In our
ASTRBAC model, administrator rule is a set of roles so that administrative actions can
describe the more administrative scenario. ASTRBAC focuses on managing data of
these entities: UA, RE, PE, PA by providing actions on them. These actions are divided
into four groups depending on their target, can_assign_UA, and can_revoke_UA are
designed to manage entity UA; can_assign_PA and can_revoke_PA are designed to
manage entity PA; can_add_RE and can_delete_RE are designed to manage entity RE;
and can_add_PE and can_delete_PE are designed to manage entity PE.

We assume that entity UL is automatically managed by PDS so there are no actions
to manage UL in this research; that the basic entities R, P, L, and TS are finite and
constant; and that entity U is infinite. Thus, the STRBAC policies depend on the entities

User Role Location Interval

Alice Manager A1 
building

Morning(8:00am 
- 11:00am)

Bob Engineer A2 
building

Morning (8:00am 
- 11:00am)

User Assignment (UA)

Role Permission
Manager Write o1
Engineer Write o2

Technician Read o2
Permission Assignment (PA)

Role Location Interval

Manager A1 building Morning(8:00am 
- 11:00am)

Engineer A1 building Morning (8:00am 
- 11:00am)

Engineer A2 building Morning (8:00am 
- 11:00am)

Role Extent (RE)

Permission Location Interval

Read o2 A3 
building

Afternoon(1:00pm 
– 5:00pm)

Write o2 A2 
building

Afternoon(1:00pm 
– 5:00pm)

Write o1 A1 
building

Morning(8:00am 
- 11:00am)

Permission Extent (PE)
User Location User 
Alice A1 building Location 
Bob A2 building (UL)

Fig. 4. STRBAC

114 K. K. Q. Dinh and A. Truong



UA, RE, PE, PA. If one of those entities is modified, the STRBAC state will be changed.
Hence, the administrative actions need to be examined carefully as these actions can
lead the STRBAC policies to a state in which the security requirement of the system is
violated. Such problem is well-known as the reachability problem [10, 11].

In the following, let a = (U; R; P; UA; PA; L; TS; UL; RE; PE) be the STRBAC
policies. A signed role is an expression of the form +r or −r. A role condition is a finite
set of signed roles. A signed role r in a condition C is positive when there exists a role
r such that r = +r, a condition C is negative when there exists a role r such that r = −r.
An administrative action is a tuple ({Arule, la, tsa}, {Rrule, lu, tsu}, Ud) where tuple {Arule,
la, tsa} is called admin pre-condition, Arule is a role condition, (la, tsa) are location and
time-slot that together describe spatial temporal constraint on Arule; Tuple {Rrule, lu, tsu}
is called user pre-condition where Rrule is a role condition; (lu, tsu) are location and
time-slot that express spatial temporal constraint on Rrule that are used together to limit
the users whose extents can be modified by the administrator; the Ud element can be an
element or many elements depend on each action. The user pre-condition is optional
while admin pre-condition is compulsory for all actions.

2.7 ASTRBAC Pre-condition

The admin pre-condition is passed if at least, one administrator satisfies tuple {Arule, la,
tsa}, the positive roles +r in Arule specify the roles administrators must activate at
location la during time slot tsa, the negative roles −r in Arule describe the roles
administrators cannot activate within the extent (la, tsa). Administrator a can activate
role r within the extent (l, ts) if and only if the formula 9 tscur: [(ad, l) 2 UL ^ (ad, r, l,
ts) 2 UA ^ (r, l, ts) 2 RE ^ (tscur= ts)] returns true, where tscur is the current time-slot
determined by system. The following check_role_admin formula ensures the admin
pre-condition is checked, if it returns true, there exist an administrator can perform the
corresponding action, otherwise, the action is rejected since there is no administrator
who can satisfy admin pre-condition.

check_role_admin (Arule, la, tsa): 9 ad, ts [((ad, la) 2 UL) ^ (tscur = tsa)
^ (role 2 Arule) ((ad, r, la, tsa) 2 UA ^ (r, la, tsa) 2 RE) if role = +r
^ (role 2 Arule) ((ad, r, la, tsa) 62 UA _ (r, la, tsa) 62 RE) if role = −r]

The user pre-condition {Rrule, lu, tsu} limits which users whose extents can be
modified by administrators. The positive roles +r in Rrule specify the roles user must
be assigned within extent (lu, tsu), negative roles −r specify the roles users must not be
assigned within extent (lu, tsu). The User Role Assignment relation UA needs to be
checked if user u satisfies (Rrule, lu, tsu) using check_role_user formula

check_role_user(u, Rrule, lu, tsu):
V

(role2 Rrule) ((u, r, lu, tsu) 2 UA if role = +r)
^ (role2 Rrule) ((u, r, lu, tsu) 62 UA if role = −r)

If check_role_user returns true, extents (role or permission extents) of user u can be
updated, otherwise, it cannot be updated with this action. In conclusion for this pre-
condition, an action can be performed if and only if admin pre-condition is passed and
there exist a user can be updated (in some actions).
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2.8 Administrative Actions

The STRBAC policies have four main sets, set UA, RE, PE, and PA. The corre-
sponding action for these sets is listed below.

• Can_Assign_UA (Arule, la, tsa, Rrule, lu, tsu, r)
Can_Revoke_UA (Arule, la, tsa, Rrule, lu, tsu, r)

• Can_Add_RE (Arule, la, tsa, r, l, ts) Can_Delete_RE (Arule, la, tsa, r, l, ts)
• Can_Assign_PA (Arule, la, tsa, rt, pt) Can_Revoke_PA (Arule, la, tsa, rt, pt)
• Can_Add_PE (Arule, la, tsa, p, l, ts) Can_Delete_PE (Arule, la, tsa, p, l, ts)

As we only focus on User-Reachability Problem, we will use 4 main administrative
actions: Can_Assign_UA, Can_Revoke_UA, Can_Add_RE, Can_Delete_RE.

User-Assignment Actions: such actions are designed to manage the actions add or
delete tuples in relation UA using role assignment and role revocation actions of users
within certain spatial-temporal extents.

Can_Assign_UA (Arule, la, tsa, Rrule, lu, tsu, r), where {Arule, la, tsa} is admin pre-
condition, [Rrule, lu, tsu] is user pre-condition, (lu, tsu, r) is the update tuple. Arule and
Rrule can contain positive roles +r in companion within extent (lu, tsu), negative roles is
−r conflict within extent (lu, tsu). Notice that, this action can assign (lu, tsu, r) to any
users that satisfy user pre-condtion. Can_Assign_UA is enabled if admin pre-condition
is satisfied and there exists a user u satisfy user pre-condition Rrule.

9 u (check_role_admin (Arule, la, tsa)
V

check_role_user(u, Rrule, lu, tsu))
Once this rule is passed, the tuple (u, r, lu, tsu) is added to UA using UA’ = UA [

(u, r, lu, tsu) where u is the user need to assign new roles.
Can_Revoke_UA (Arule, la, tsa, Rrule, lu, tsu, r) where (Arule, la, tsa) is admin pre-

condition, (lu, tsu,r) is update tuple. Rrule can contain positive roles +r in companion
within extent (lu, tsu), negative roles are −r conflict within extent (lu, tsu). Can_
Revoke_UA revoke (lu, tsu, r) from any users. The administrator needs to satisfy the
admin pre-condition to enable this rule and there exists a user u satisfy user pre-
condition Rrule, this check uses formula check_role_admin(Arule, la, tsa). Once this rule
is passed, the tuple (u, lu, tsu, r) is removed from UA: 9 u UA’ = UA\(u, r, lu, tsu) where
u is the user need to revoke user roles.

RoleExtent Actions: such actions are designed to manage the actions add or delete
tuples in relation RE using adding and deleting actions of role within certain spatial-
temporal extents. Role extents that are registered in RE can be assigned to users in
entity UA. In order to activate a role within a spatial-temporal extent, that role must be
assigned to the user in UA and enable within that extent in RE.

Can_Add_RE (Arule, la, tsa, r, l, ts) where (Arule, la, tsa) is admin pre-condition, (r, l,
ts) is the update tuple. The admin pre-condition must be checked using the formula:
check_role_admin (Arule, la, tsa). Once this rule is passed, the spatial-temporal extent of
role r is added with tuple (l, ts): RE’ = RE [ (r, l, ts).

Can_Delete_RE (Arule, la, tsa, r, l, ts) where (Arule, la, tsa) is admin pre-condition, (r,
l, ts) is the update tuple. The admin pre-condition must be checked to enable this action
using the formula: check_role_admin (Arule, la, tsa). Once this rule is passed, the
spatial-temporal extent of role r is deleted with tuple (l, ts): RE’ = RE\(r, l, ts).
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A run of an ASTRBAC system (a0; u) is a (possibly infinite) sequence (a0;
0) … (ai; ti); (ai+1; ti+1), … of states such that (ai; ti) ! (ai+1; ti+1) and ti � ti+1 for i =
1… n − 1 with n > 1. If the run is finite, i.e. it is of the form (a0; 0) … (an; tn) for some
n � 0, we say that (an; tn) is the final state of the run.

2.9 User-Role Reachability for STRBAC

Even if administrators can only execute a given set of administrative actions mentioned
above, it is still very difficult to foresee all possible interleaving of actions when many
administrators perform their administrative actions together with their effect on the
initial STRBAC policies. Therefore, in some cases, an untrusted user can gain, in some
spatial-temporal, a permission which that person should not gain. In order to identify
this situation, we need to solve the next analysis problem.

A reachability problem for an ASTRBAC system (a0; u) is identified by a tuple (u;
Cf; lf, tsf) and a set of administrator actions u to check if there exists a finite run of the
ASTRBAC system whose final state (af; lf, tsf) is such that user u, location ls and
timeslot tsf satisfy condition Cf under UAf and ls, tsf satisfies Cf under REf, and ls, tsf
satisfies Cf under PEf where af = (UAf; REf; PEf).

Example 1: Similar to the ARBAC model, here is an example of a system that has
policies P1 as shown in Fig. 5, which has the security requirement (write o1, A1,
afternoon), and a set of ARBAC rules as follows:

1. Can_Update_ UL (Marry, A2)
2. Can_Assign_PA ({manager}, A1, morning, engineer, write o1)

User Role Location Interval

Alice manager A1 
building

Morning(8:00am -
11:00am)

Bob engineer A2 
building

Morning (8:00am 
- 11:00am)

Peter technician A3 
building

Afternoon(1:00pm 
– 5:00pm)

Shan Engineer A1 
building

Afternoon(1:00pm 
– 5:00pm)

User Assignment (UA)

Role Permission
manager Write o1
engineer Write o2

technician Read o2
manager Write o2

Permission Assignment (PA)

Role Location Interval
Manager A2 building Morning (8:00am - 11:00am)
Engineer A1 building Morning (8:00am - 11:00am)

Engineer A2 building Morning (8:00am - 11:00am)

Manager A1 building Morning (8:00am - 11:00am)
Techni-

cian A3 building Afternoon (1:00pm –
5:00pm)

Role Extent (RE)

Per-
mis-
sion

Location Interval

Read 
o2

A3 
building

Afternoon (1:00pm 
– 5:00pm)

Write 
o2

A2 
building

Morning (8:00am -
11:00am)

Write 
o1

A1 
building

Afternoon (1:00pm 
– 5:00pm)

Permission Extent (PE)
User Location User Location

(UL)Alice A1 building
Bob A2 building
Shan A1 building
Peter A3 building

Fig. 5. STRBAC – P1
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3. Can_Assign_UA({manager}, A1, morning, {engineer, −technician,
−manager}, tester, A2, afternoon)
4. Can_Add_RE ({manager}, A1, morning, engineer, A1, afternoon)
5. Can_Add_RE({manager, A1, morning, tester, A2, afternoon)
6. Can_Add_PA({engineer}, A1, morning, tester, read o2)

After that, Alice can execute Administrative Rule 2 Can_Assign_PA ({manager},
A1, morning, engineer, write o1) to add the line (engineer, Write o1) to the PA table.
After implementing this rule, policies P1 will be transformed as shown in Fig. 6.

Next, Alice can execute Rule 4 Can_Add_RE ({manager}, A1, morning, engineer,
A1, afternoon). After applying this rule, policies P1 will be changed as in Fig. 7.
Finally, using the policies P3, user Shan who has the role Engineer can write o1, which
violates the original security requirement of the system.

3 Automated Analysis for ASTRBAC

At first, we translate ASTRBAC policies to First-Order Logic formula which belongs
to Bernays-Schonfinkel-Ramsey (BSR) [27] class to determine the satisfy-ability of
formula, which has the form 9 x. 8 y.u (x; y), where u is a quantifier-free formula,
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Fig. 6. STRBAC – P2
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x and y are (disjoint and possibly empty) tuples of variable. After that, we use Model
Checking Modulo Theories (MCMT) [25], which is a framework to solve reachability
problem for infinite state systems that can be represented by transition systems whose
set of states and transitions are encoded as constraints in First-Order Logic. MCMT
framework uses a backward reachability procedure to solve a particular class of con-
straint satisfy-ability problems, called Satisfy-ability Modulo Theories (SMT) prob-
lems. According to [26], MCMT framework is a scalable and efficient SMT solver
currently available.

3.1 Implementing the Translator

We implement our technique which will be discussed below in a tool called
ASASPSPACETIME (Automated Symbolic Analysis of Security Policies tool with
SPACE and TIME). As in Fig. 8, this tool has two main parts, the Translator,
implemented in Python, will get the input of our ASTRBAC reachability problem (u;
C; l; ts) as reachability problem for STRBAC policies (a0; u), and translate all the
ASTRBAC policy and Goal to BSR-STS. The second part of the analysis of ASTR-
BAC policies uses SMT-based model checker named MCMT [25] to solve our
problem. Based on the result from MCMT, our tool will answer our problem with
statement “reachable” or “unreachable” and show the sequence of actions which
changed our STRBAC policies from ao to an where an can satisfy (u; C; l; ts).
According to [27, 28], we try to reduce our reachability problem for ASTRBAC model
to a (finite) sequence of constraint satisfaction problem.
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Fig. 7. STRBAC – P3
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Here is how we translate the ASTRBAC to First-Order Logic in BSR class. We
need to translate an initial state, the administrative actions, time passing, and the goal.

• Our state variable in ASTRBAC contains re, ua, loc, and at where re is a variable
of for the current role extent RE, similarly, ua for UA, loc for UL and at is current
system time.

• Our initial state contains the tuple a0 = (RE, UA, UL, ts0) where ts is timeslot,
which can be translated as below.

Example 2: We analyze a simple example of ASTRBAC

Let U = {Alice; Bob; Peter}
R = {Manager; Engineer; Technician; Tester; Developer}
L = {A1 building; A2 building}
I = {Morning: [8:00 am–12:00 pm]; Afternoon: (12:00 pm–18:00 pm), Night:
(18:00 pm–8:00 am)}
UA = {(Alice, Manager, A1 building, Morning); (Bob, Engineer, A2 building,
Morning);}
RE = {(Engineer, A1 building, Morning: [8:00 am–12:00 pm]), (Technician, A2
building, Afternoon: [12:00 pm–18:00 pm])}
UL = {(Alice, A1 building); (Bob, A2 building)}
Current time = 8am;

The ASTRBAC rule contains these rule.

1. Can_Assign_UA({manager}, a1 building, morning, {engineer}, a2 building,
afternoon, tester)
2. Can_Revoke_UA({manager}, a1 building, morning, {engineer}, a2 building,
afternoon, tester)
3. Can_Add_RE ({manager}, a1 building, morning, engineer, a1 building,
afternoon)
4. Can_Delete_RE ({manager}, a1 building, morning, engineer, a1 building,
afternoon)

Fig. 8. Our technique to solve the reachability problem for ASTRBAC
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According the example above, the current time belongs to time slots Morning, so
our initial state will be

Our ASTRBAC now contains 4 actions (Can_Assign_UA, Can_Revoke_UA,
Can_Add_RE, Can_Delete_RE) and a goal. We translate each of them as follow.

Example 3: According to Example 2, the Can_Assign_UA({Manager}, A1 building,
Morning, {Engineer}, A2 building, Afternoon, Tester) can be translated as

9 ua, u, ts. at(ts)
at(ts) ^ ts = Morning ^

Loc(Manager, A1 building) ^
re(Manager, A1 building, Morning) ^
ua(ua, Manager, A1 building, Morning) ^
ua(u, Engineer, A2 building, Afternoon) ^
(8x, y, z, t ua’(x, y, z, t) , ua(x, y, z, t)

_ (x = u ^ y = Tester ^ z = A2 building ^ t = Afternoon)) ^
(8x, y, z, t re’(y, z, t) , re(y, z, t)) ^
(8x, y, z, t loc’(x, z) , loc(x, z))
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Example 4: According to Example 2, the Can_Revoke_UA({Manager}, A1 building,
Morning, {Engineer}, A2 building, Afternoon, Tester) can be translated as

9 ua, u, ts. at(ts)
at(ts) ^ ts = Morning ^

Loc(Manager, A1 building) ^
re(Manager, A1 building, Morning) ^
ua(ua, Manager, A1 building, Morning) ^
ua(u, Engineer, A2 building, Afternoon) ^
(8x, y, z, t ua’(x, y, z, t) , ua(x, y, z, t)

^ ¬ (x = u ^ y = Tester ^ z = A2 building ^ t = Afternoon)) ^
(8x, y, z, t re’(y, z, t) , re(y, z, t)) ^
(8x, y, z, t loc’(x, z) , loc(x, z))

Example 5: According to Example 2, the Can_Add_RE ({Manager}, A1 building,
Morning, Engineer, A1 building, Afternoon) can be translated as

9 ua, u, ts. at(ts) ^ ts = Manager ^
Loc(A1 building, Morning) ^
re(Manager, A1 building, Morning) ^
ua(ua, Manager, A1 building, Morning) ^
(8x, y, z, t ua’(x, y, z, t) , ua(x, y, z, t) ^
(8x, y, z, t re’(y, z, t) , re(y, z, t))

_ (y = Engineer ^ z = A1 building ^ t = Afternoon)) ^
(8x, y, z, t loc’(x, z) , loc(x, z))
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Example 6: According to Example 2, the Can_Delete_RE ({Manager}, A1 building,
Morning, Engineer, A1 building, Afternoon) can be translated as

9 ua, u, ts. at(ts) ^ ts = Manager ^
Loc(A1 building, Morning) ^
re(Manager, A1 building, Morning) ^
ua(ua, Manager, A1 building, Morning) ^
(8x, y, z, t ua’(x, y, z, t) , ua(x, y, z, t) ^
(8x, y, z, t re’(y, z, t) , re(y, z, t)) ^ ¬ (y = Engineer

^ z = A1 building ^ t = Afternoon)) ^
(8x, y, z, t loc’(x, z) , loc(x, z))

Example 7: Our goal (Alice, Write_O1, A1 building, Afternoon) can be translated as

9 u, r, l, ts. re(r, l, ts) ^ ua(u, r, l, ts) ^ u = Alice
^ r = Write_O1 ^ l = A1 building
^ ts = Afternoon

After translating all the ASTRBAC policies to BSR, we need to do an AND operator
on all the translated formulas.

• If the result returns true, then our goal is reachable, otherwise, it is unreachable.
• If the state is reachable, we know that our system is unsafe, otherwise, it is safe.

Heuristics
As mentioned before, safety analysis of the ASTRBAC system may lead to the state
space explosion, which is often seen with model checking approaches. Therefore, this
research also focuses on the design and implement heuristics to reduce the state space
explosion problem and improve the performance of our solutions. Here is an example
of the initial settings and the corresponding administrative actions as follows.
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Example 8: We use integers representing roles with the set R = {1, 2, …, 16}, set
interval I = {ts1, ts2, ts3, ts4, ts5}, location L = {l1, l2, l3, l4, l5} and goal (1, l2, ts1).
The ASTRBAC rule contains these rules.

1. Can_Assign_UA(6, l5, ts4, {true}, l1, ts4, 4)
2. Can_Assign_UA(6, l2, ts1, {true}, l3, ts2, 4)
3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)
9. Can_Add_RE(10, l2, ts2, {−1 −10}, l2, ts2, 9)
10. Can_Add_RE(12, l2, ts2, {10}, l2, ts2, 11)

3.1.1 Forwarding
Forwarding is used to reduce administrative actions need to be checked. From the
initial administrator actions, the heuristic starts filtering the administrative actions
needed to be check and removing unrelated administrative actions. The initial state in
the above example is when no user has been assigned the role or we can say that the UA
set is empty. Initially, the heuristic starts filtering the administrative actions that can be
executed from the initial state in one step by checking if both administrative conditions
A and user conditions Ru is satisfied:

• The administrative conditions A will be satisfied if the roles in A are enabled and
assigned to the location la and timeslot tsa.

• The user conditions Ru are satisfied if the roles in R are enabled and assigned to the
location lu and timeslots tsu.

The administrative actions taken in this step are called useful actions in one-step
from the initial state. After that, the heuristic calculates states that can be reached after
executing useful actions in one step from the initial state. These states are used to filter
out useful actions in the next step (useful action in 2 steps from the initial stage). This
process is repeated until there is no more administrator to add (the useful actions set is
no longer expandable).

Finally, the administrative actions filtered by forwarding can have fewer actions
than the original actions since it removed the administrative actions that are not nec-
essary for the checking.

Example 9: We will run the reachability problem in Example 8 by using forwarding.
In the first step, the administrative actions were taken:

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)
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In the first step, action (3) is taken because:

• The administrative condition A is satisfied: the condition of the action (3) is true,
ensuring A is always satisfied

• The user condition Ru is satisfied: the condition is true, ensuring that Ru is always
satisfied.

Similarly for actions (5), (7). Actions (8) is taken for:

• Administrators conditions A is satisfied: the condition of the action (8) is true,
ensuring A is always satisfied

• The user condition Ru is satisfied: is that the condition C of the action (5.8) is the
negative roles, ensuring that Ru is always satisfied

In the second step, the heuristic will calculate the new states that are likely to be
reached:

(4, l3, ts2) after execution (3); (6, l4, ts2) after execution (5);
(9, l3, ts2) after execution (7);

and role 6 is enabled at l4 and ts2 after execution (8).
Then, the heuristic will take useful actions in the second step by finding possible

actions taken from these new states.

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)

In this step, action (6) is taken because:

• The administrative condition A is satisfied: the condition of the action (6) is satisfied
since role 6 is enabled at l4 and ts2 by using administrative action (8) and role 6 is
assigned to a user at l4 and ts2 by using administrative action (5) when performing
useful actions in the first step as described above;

• The user condition Ru is satisfied: the condition is true, ensuring that Ru is always
satisfied.

In the third step, the heuristic will calculate the new states that are likely to be
reached:

(4, l3, ts2) after execution (3); (6, l4, ts2) after execution (5);
(9, l2, ts1) after execution (6); (9, l3, ts2) after execution (7);

and role 6 is enabled at l4 and ts2 after execution (8).
Then, heuristic will take useful actions in third step by finding possible actions

taken from these new states.

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
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6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)

In this step, action (4) is taken because:

• The administrative condition A is satisfied: the condition of the action (4) is sat-
isfied since role 6 is enabled at l4 and ts2 by using administrative action (8) as
mentioned before, and role 6 is assigned to a user at l4 and ts2 by using admin-
istrative action (5) when performing useful actions in first step as mentioned before;

• The user condition Ru is satisfied: role 9 is assigned at l2 and ts1 by using action (6)
in second step.

In the fourth step, the heuristic will calculate the new states that are likely to be
reached and the possible actions will be (3), (4), (5), (6), (7), (8). However, when
heuristic tries to find more useful actions, the number of actions taken are similar to the
third step (3), (4), (5), (6), (7), (8). Obviously, the actions cannot be extended anymore
(reaching Fix-Point). The administrative actions taken will be used instead of the
original actions in Example 8.

3.1.2 Backwarding
This heuristic is similar to forwarding introduced above. However, in this heuristic, the
checking process will start from the goal. From the administrative actions that exe-
cuting it will reach the goal in one step, the heuristic starts filtering administrative
actions related to the checking and removing unrelated administrative actions.

At first, the heuristic filters the administrative actions that executing it can reach the
goal in one step; the filtered actions should satisfy the same administrative conditions A
and user conditions Ru as same as the Forwarding heuristic. Then, backwarding will
continue filtering administrative actions that accomplish it will reach the goal in two
steps, three steps, … to n steps until no further administrative actions can be added.

Finally, the filtered administrative actions can be fewer than the original actions
since it removed the administrative actions that are not necessary for the checking.

Example 10: We will run the reachability problem in Example 8 by using back-
warding. In the first step, the administrative actions were taken:

4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)

In this step, action (4) is taken because:

• The target role (1, l2, ts2) which is similar to final goal, thus, executing this action
will reach the final goal in one step.

In the second step, the administrative actions were taken:

4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)
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In this step, we see that in order to execute action (4):

• The administrative condition A must be satisfied: the condition of the action (4) is
satisfied when role 6 is enabled at l4 and ts2 and role 6 is assigned at l4 and ts2.

• The user condition Ru must be satisfied: the condition of the action (4) is satisfied
when role 9 is assigned at l2 and ts1.

In this step, action (8) is taken because:

• The condition satisfied the administrative condition of the action (4) when role 6 is
enabled at l4 and ts2.

• The administrative condition A is satisfied when it is true.
• The user condition Ru is satisfied when it contains negative role.

In this step, action (5) is taken because:

• The condition satisfied the administrative condition of the action (4) when role 6 is
enabled at l4 and ts2.

• The administrative condition A is satisfied when it is true.
• The user condition Ru is satisfied when it is true.

In this step, action (6) is taken because:

• The condition satisfied the user condition of the action (4) when role 9 is assigned at
l2 and ts1.

• The administrative condition A is satisfied when role 6 is enabled at l4 and ts2.
• The user condition Ru is satisfied when it is true.

In the third step, the heuristic will calculate the new states that are likely to be
reached. However, no administrative actions are added. Obviously, the action sets
cannot be extended anymore (reaching Fix-Point). The administrative actions taken
will be used instead of the original administrative action set in Example 8.

3.1.3 Combining Forwarding and Backwarding
This heuristic filters the intersection of administrative actions obtained after the exe-
cution of the Forwarding and Backwarding since these actions are effective in the
checking progress.

It is obvious that if the goal is reachable, the set of administrative actions required
for the checking from the initial state to the goal state must be within the filtered actions
from the Forwarding heuristic and Backwarding heuristic. Filtering the intersection of
administrative actions will remove actions that do not contribute to the checking
whether the goal has been reached.

In best case scenario, this heuristic can be very useful and can contain less actions
from the original actions. In some cases, the result may be empty when the two sets do
not intersect, which can return result faster and optimize the runtime.

Example 11: We will run the reachability problem in Example 8 by using the result
from forwarding (Example 9) and backwarding (Example 10), the action set obtained
after running the heuristic:
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Forwarding
3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)

Backwarding
4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)

The intersection of these two sets will be:

4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)

The administrative actions taken will be used instead of the original administrative
action set in the example 8 and even Examples 9 and 10.

3.1.4 Combining Complement Actions
From the administrative action set obtained by the previous heuristic, the heuristic will
combine administrator actions pairs to get the equivalent actions and reduce the number
of actions,

The heuristic will perform the search for pairs of administrative actions which can
combine into equivalent actions. If there are two actions which are combinable, the
heuristics will replace both actions, which are not used for the checking, with a new
equivalent action.

Example 12: We will run the reachability problem in an example below by using this
heuristic to combine complement actions. In this step, the heuristic will search for any
complement actions. If there exist 2 actions such as:

11. Can_Assign_UA(true, l2, ts2, {7, 12}, l2, ts4, 8)
12. Can_Assign_UA(true, l2, ts2, {7, −12}, l2, ts4, 8).

Since these 2 actions are complement, the next step is to combine these 2 actions
into Can_Assign_UA(true, l2, ts2, {7}, l2, ts4, 8). The new action will replace both the
original actions.
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3.1.5 Removing Duality Actions
From the administrative actions obtained by the previous heuristic, this heuristic
removes the unneeded actions from the duality administrator actions to reduce the
number of actions needs checking.

The first heuristic will perform the search for pairs of duality administrative actions.
If there are two duality administrative actions, the heuristics will remove the actions
which are not used for the checking.

Example 13: We will run the reachability problem in an example by using this
heuristic to remove duality actions. In this step, the heuristic will search for any duality
actions.

If there are 2 actions such as:

13. Can_Assign_UA(true, l3, ts1, {−5, 7}, l2, ts1, 13)
14. Can_Assign_UA(true, l3, ts1, {5}, l2, ts1, 7)

In action (13), the user condition Ru require role {−5} and role {7} to be able to
assign role {13}. However, in action (14), the user condition Ru require role {5} to be
able to assign role {7}.

If there’s no other action to assign role (7) and to revoke role (5) than we can
remove the action (13) since action (14) is always executable while action (13) will
never be executed.

If there are 3 actions such as:

15. Can_Assign_UA(true, l3, ts1, {5, 7}, l2, ts1, 15)
16. Can_Assign_UA(true, l3, ts1, {1 −2}, l2, ts1, 5)
17. Can_Assign_UA(true, l3, ts1, {−1 2}, l2, ts1, 7)

In action (15), the user condition Ru require role {5} and role {7} to be able to assign
role {15}.

In action (16), the user condition Ru require role {1} and role {−2} to be able to
assign role {5}.

In action (17), the user condition Ru require role {−1} and role {2} to be able to
assign role {7}.

If there’s no other action to assign role (5) and role (7) and to revoke role (1) and
role (2) than we can remove the action (15) since action (15) will never be executed.

3.1.6 Sort Actions
The MCMT module process actions in order, starting from the top to the bottom (from
the first action to the last actions). This heuristic will arrange the administrative actions
that MCMT can easily execute at the beginning.

During automated checking by the MCMT module (in the ASASPSPACETIME
model), this module will, in turn, check each administrative action in the input data to
calculate the states that can reach the goal by executing that action. In many cases, the
administrative actions that executing that action reach the Goal from the initial state is
at the end of the administrative actions set. Therefore, it is necessary to design the
heuristic to perform the prioritization of administrative actions so that administrative
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actions that solve the problem will be prioritized for early analysis, thus, making the
process faster and more efficient.

The heuristic will arrange the administrative actions closest to the initial state on the
top position. Then, if the administrative action can be executed from the initial state,
the MCMT module can quickly return the result. The priority is as follow:

• The administrative actions and user conditions which are set with “true” will be on
the top because when these actions are checked, they will satisfy the initial state
without checking any other actions.

• Next, the priority is given to actions that have administrative conditions that are
“true” and that the user conditions have roles that are negative (and vice versa)
because these actions are easily satisfied by the initial state since, by default, no user
is assigned a role, so the user role condition is easily satisfied.

• Next, other administrative actions will be sorted by the total number of positive
roles in administrative conditions and user conditions since the more positive roles
need to be checked, the more time required. Administrative actions with fewer
positive roles will be prioritized

Example 14: We will run this heuristic with the reachability problem in Example 8:
When running through the initial set, we will check the roles of the administrator

conditions and user conditions to start the sorting.
In the first step, the actions taken are:

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)

Actions (3), (5), (7) are taken because the admin conditions are true and the user
conditions are true.

In the second step, the actions are updated:

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)

Action (8) is added because of the administrator conditions are true and the user
conditions are the negative role

In the third step, the actions are updated to:

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)
1. Can_Assign_UA(6, l5, ts4, {true}, l1, ts4, 4)
2. Can_Assign_UA(6, l2, ts1, {true}, l3, ts2, 4)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
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Actions (1), (2), (6) are added because the positive roles in the administrator
conditions and the user conditions in total are one condition.

In the fourth step, the actions to be updated are:

3. Can_Assign_UA(true, l4, ts3, {true}, l3, ts2, 4)
5. Can_Assign_UA(true, l2, ts2, {true}, l4, ts2, 6)
7. Can_Assign_UA(true, l2, ts1, {true}, l3, ts2, 9)
8. Can_Add_RE(true, l2, ts1, {−1 −10}, l4, ts2, 6)
1. Can_Assign_UA(6, l5, ts4, {true}, l1, ts4, 4)
2. Can_Assign_UA(6, l2, ts1, {true}, l3, ts2, 4)
6. Can_Assign_UA(6, l4, ts2, {true}, l2, ts1, 9)
4. Can_Assign_UA(6, l4, ts2, {9}, l2, ts1, 1)
9. Can_Add_RE(10, l2, ts2, {−1 −10}, l2, ts2, 9)
10. Can_Add_RE(12, l2, ts2, {10}, l2, ts2, 11)

Since the all the actions has been updated, the sorting is complete and the system
will start safety checking.

3.1.7 Separating Complex Goal
Usually, this reachability problem will contain the goal (u; C; l, ts) in which C is a set
of roles (complex goal). Obviously, solving the problem in C with the complex goal
will be harder than with a single goal. In many cases, solving the single goal will likely
return the result for the complex goal.

Therefore, the heuristic for complex goal is based on the idea of dividing complex
goal into many single goals and start checking on every single goals. After that, based
on the results received from the system, the heuristic can conclude the result for the
initial complex goal. There are two main cases:

Case 1: If the system checks every single goal and one of the results is unreachable
(one goal is not reached) then we conclude that the complex goal is not reached
(unreachable). The reason is that for a complex goal to be reachable, all the roles in the
set C are required to be reachable. If only a single goal in C (goal) cannot be reached,
we conclude that the complex goal is unreachable, as well.

Case 2: If all results of every single goals are reachable, we still cannot conclude that
the goal is reachable because there’s a chance that the set of actions that make single
goal reachable might not intersect (and therefore, the complex goal might not reach-
able). In this case, we will test the system again with the complex goal to return the
final result. However, because ASASPSPACETIME only supports the single goal, this
heuristic will add one more administrative action to the actions sets of the reachability
problem to transform the complex goal into a single goal. The added administrative
action is structured as the admin condition is true, the user condition contains the single
goal, the new goal needs to execute with the maximum number of roles plus one, and
the locations and timeslots are as same as the original goal. After that, this set of
administrative actions (including newly added actions and new goal) will be included
in ASASPSPACETIME for checking. If the result is not reached then the system
returns unreachable and vice versa.
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For Example: The goal (3, l2, ts1) is considered a single goal.
In cases, a new reachability problem with a complex goal ({3, 4, 9}, l2, ts1). In this

case, the heuristic would divide the reachability problem with the goal (3, 4, 9), l2, ts1)
into 3 subsets of the reachability problem with single goal (3, l2, ts1), (4, l2, ts1), (9, l2,
ts1). After that, the heuristic will call ASASPSPACETIME to check these three
problems. Based on the results of these problems, the technique will determine the
outcome of the complex goal.

3.1.8 Applying All Heuristics
In this section, we describe the overall architecture of the ASASPSPACETIME system
with all the heuristics mentioned above. The architecture of the model is depicted in
Fig. 9. The system will receive input as the reachability issue of the ASTRBAC
policies. Then, the complex Goal module will be called to process the complex goal (if
exists). Next, the system will run Forward and Backward. In the following step, the
system will get the intersection of administrative actions of the Forward and Backward
heuristics. After that, the system will combine any possible administrative actions.
Then, the system will remove any duality administrator actions. Finally, the system
uses the sorting heuristic to prioritize administrative actions. The final administrative
actions will be used for safety analyzing. This final set of administrative actions with
other configurations of the reachability problem will be the input for the Translator
module to transform into BSR-STS (BSR-State Transitions System) reachability
problem. Then, this problem will be analyzed by the module BSR to return the result of
whether the violation of security requirement exists or not.

It’s also noted that the heuristics suggested in this research must ensure that the
reachable/unreachable result is not altered with or without the use of heuristics. This is
crucial because if the heuristics alter the result, for example, a goal in practice is
reachable but using heuristics makes it become unreachable, the heuristics are mean-
ingless as they do not find vulnerabilities in the system. Thus, deploying policies that
are certified safe when using these heuristics will be very dangerous. The proof of the
correctness of the heuristics will be based on the result of the backward reachability
procedure (BR) as in the study of Ranise [15, 16].

Fig. 9. ASASPSPACETIME with heuristics
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4 Evaluations

All our experiments are performed on an Intel Core i7 CPU with 4 GB Ram running
Ubuntu 12.04 LTS 32 bit. We use real scenario test cases, synthesized from [12, 14, 16,
19, 30], which contain university and hospital benchmark, and are widely used in
security analysis communities. We run 5 experiments with our test cases. Our first
experiments use the heuristics to run the experiment 15 times with different goals and
calculate the average time for each test cases, the results are in Table 1.

The first column shows our test case names; test cases 1 to 6 is our simple test cases
created to test this program, test cases from 7 to 12 are taken from hospitals sets, test
cases from 13 to 16 were taken from university sets. Each configuration contains 3
number representing max roles, max locations and max time slots in our STRBAC. The
number of actions contain the number of administrative actions in ASTRBAC policies.
We configure our experiment with a maximum number of roles, locations, and time
slots.

In our second experiments, we use simple test cases, set 34 for the maximum
number of roles, 10 for the maximum number of locations and 10 for the maximum
number of time slots. Then, we keep increasing the number of actions and run these test
cases with heuristics each time to get their average run time in Table 2 and Fig. 10.

Table 1. Our first experimental result with heuristics

# Testcase Config Number
of actions

Average runtime
with heuristic (sec)

1 Test1 3 3 3 4 3.74
2 Test2 3 3 3 5 1.31
3 Test3 3 3 3 7 4.92
4 Test4 3 3 3 4 1.31
5 Test5 3 3 3 5 1.95
6 Test6 3 3 3 6 2.15
7 AGTHos1_test 16 4 5 125 2.06
8 AGTHos2_test 16 4 5 131 8.51
9 AGTHos3_test 35 6 10 165 1.01
10 AGTHos4_test 35 6 10 283 12.71
11 AGTHos5_test 16 8 20 355 141.79
12 AGTHos6_test 16 8 20 398 139.75
13 AGTUniv1_test 35 4 5 146 21.64
14 AGTUniv2_test 35 4 5 188 22.78
15 AGTUniv3_test 35 6 10 209 44.39
16 AGTUniv4_test 35 6 10 246 42.04
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In our third experiments, we use simple test cases without spatial-temporal con-
straints, set 16 for the maximum number of roles, and 10 for the maximum number of
time slots. Then, we run these tests with randomly added locations each time to the test
cases to get their average run time in Table 3 and Fig. 11.

Table 2. Our second experimental result with increasing number of actions

# Testcase Config Number
of actions

Average
runtime (sec)

1 AGTHos1_a100 34 10 10 100 4.49
2 AGTHos1_a200 34 10 10 200 2.50
3 AGTHos1_a300 34 10 10 300 7.04
4 AGTHos1_a400 34 10 10 400 5.5
5 AGTHos1_a500 34 10 10 500 2.46
6 AGTHos1_a600 34 10 10 600 2.87
7 AGTHos1_a700 34 10 10 700 5.68
8 AGTHos1_a800 34 10 10 800 6.57
9 AGTHos1_a900 34 10 10 900 6.76
10 AGTHos1_a1000 34 10 10 1000 2.67

Fig. 10. Our average run time with increasing number of actions

Table 3. Our third experimental result with increasing number of locations

# Testcase Config Number
of actions

Average
runtime (sec)

1 AGTHos1_l3 16 3 10 3 2.02
2 AGTHos1_l6 16 6 10 6 2.2
3 AGTHos1_l9 16 9 10 9 2.21
4 AGTHos1_l12 16 12 10 12 2.48
5 AGTHos1_l15 16 15 10 15 2.64
6 AGTHos1_l18 16 18 10 18 2.77

134 K. K. Q. Dinh and A. Truong



In our fourth experiments, we try another test case, set 16 for the maximum number
of roles, and 10 for the maximum number of locations. Then, we add random time slots
each time to the test cases to get their average run time in Table 4 and Fig. 12.

In our last experiments, we disable the heuristics to run the experiment 1 again 15
times with different goals and calculate the average time for each test cases, the results
are in Table 5 and Fig. 13.

In our first and last experiments (Tables 1 and 5), we can conclude that our
heuristics work and scalable with different goals. In our second experiments (Table 2),

Fig. 11. Our average run time with increasing number of locations

Table 4. Our fourth experimental result with increasing number of time slots.

# Testcase Config Number
of actions

Average
runtime (sec)

1 AGTHos1_t3 16 10 3 3 1.53
2 AGTHos1_t6 16 10 6 6 1.89
3 AGTHos1_t9 16 10 9 9 2.25
4 AGTHos1_t12 16 10 12 12 2.54
5 AGTHos1_t15 16 10 15 15 2.8
6 AGTHos1_t18 16 10 18 18 3.11

Fig. 12. Our average run time with increasing number of time slots
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as the number of actions in ASTRBAC keeps increasing, the runtime of the heuristics is
not affected much. The third and fourth experiments (Tables 3 and 4) clearly show that
the increase in the number of time slots and the locations affect slightly to the run time
of our system. After these experiments, we can conclude that our heuristics work and
scalable, and our technique help reduce the runtime in the system when the number of
actions, locations and the time slots keep increasing.

Table 5. Our last experimental result with and without heuristics.

# Testcase Config Number
of actions

Average runtime
with heuristic (sec)

Average runtime
without heuristic
(sec)

1 Test1 3 3 3 4 3.74 7.58
2 Test2 3 3 3 5 1.31 1.53
3 Test3 3 3 3 7 4.92 8.4
4 Test4 3 3 3 4 1.31 2.48
5 Test5 3 3 3 5 1.95 4.05
6 Test6 3 3 3 6 2.15 13.14
7 AGTHos1_test 16 4 5 125 2.06 16.34
8 AGTHos2_test 16 4 5 131 8.51 87.67
9 AGTHos3_test 35 6 10 165 1.01 370.27
10 AGTHos4_test 35 6 10 283 12.71 106.29
11 AGTHos5_test 16 8 20 355 141.79 794.58
12 AGTHos6_test 16 8 20 398 139.75 913.67
13 AGTUniv1_test 35 4 5 146 21.64 251.47
14 AGTUniv2_test 35 4 5 188 22.78 317.48
15 AGTUniv3_test 35 6 10 209 44.39 367.51
16 AGTUniv4_test 35 6 10 246 42.04 480.78

Fig. 13. Our average run time with and without heuristics

136 K. K. Q. Dinh and A. Truong



5 Conclusions

In this research, we introduce solutions to analyze the security policies of ASTRBAC
with no prior knowledge of the number of users. Such solutions assist security
designers in identifying potential security risks so that they can modify the policies to
meet security requirements. If the policies have security holes which are deployed
without modification, these policies may cause serious security problems consequently.
Not only that, in cases of any violation of the initial security requirements, our solu-
tions can also return the group actions, which by running these actions, the security
requirement of the system may get into the security violation states. Our solutions can
inform the security officers of the violation with useful information so that they can
make appropriate decisions. We also focus on reducing the analysis runtime and
improving performance by using heuristics that try to alleviate the state space problem.

An interesting line of research for future work is to consider role hierarchies in the
analysis. Indeed, the presence of role hierarchies in the authorization policies will make
the analysis much more complex because of its affect such as inheritance. Thus, a more
sophisticated techniques processing such role hierarchies before the analysis should be
designed and integrated into the proposed analysis technique.
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Abstract. This paper presents the process of building a new logistic regression
model, which aims to support the decision-making process in medical database.
The developed logistic regression model, J48 classifier and Random Tree
algorithm define the probability of the disease and indicates the statistically
significant changes that affect the onset of the disease. In our work, we
attempted to build a classifier that would classify patients undergoing ulcerative
colitis and other conditions within the lower gastrointestinal tract. The value of
probability can be treated as one of the feature in decision process of patient’s
future treatment.

Keywords: Selection � Classification � Decision system � Information system

1 Introduction

Rapid development of computerization gave rise to the possibility of quick access to
information sources and storage of huge data resources. Technological progress has
made it necessary to look for methods that have made it possible to analyze and process
information. There was a need to develop new methods of data analysis. The methods
developed in the context of knowledge mining from databases proved to be the answer
to this demand. A number of methods have been created that fit in two main areas of
data mining: statistics and data mining. Currently, data analysis opens up opportunities
for extracting medical knowledge. This is extremely important, considering the search
for symptoms and various factors conditioning the emergence of diseases or enabling
the distinction of disease entities. The use of data analysis methods also leads to the
creation of knowledge bases, in which the collected data can be used in further
knowledge mining processes, indicating specific features that should be changed, e.g.
in the treatment process, to improve the patient’s health. This fact is testimony about
the great possibilities offered by data analysis using statistical methods or data mining
methods. In this paper, the factors causing the onset of intestinal disease during
experiments are sought. Ulcerative colitis is a disease that causes long-term inflam-
mation of the colon, which creates irritation or ulcers. This can lead to debilitating
abdominal pain and potentially life-threatening complications. It affects only the colon
or rectum and destroys the innermost part of the mucosa, not passing through the
mouth. Ulcerative colitis causes inflammation and ulcers in the large intestine, which
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can cause a frequent feeling of need for bowel movement. Exact causes of the disease
are not known, therefore their search is extremely important.

Work in an orderly manner introduces issues related to the extraction of knowledge
from information systems. The second section is devoted to the description of the
information system definition. The next third section discusses the issue of classifi-
cation. Discussed are decision tree algorithms, which in the medical expression were
used to build classifiers. The problem of logistic regression has been discussed
extensively. Logistic regression models are used to explain the relationship between
independent variables and dependent variable expressed on the dichotomic scale.
Subsequent parts of the work are devoted to the description of the research sample, the
experiment and the results of the research. The last part was devoted to the conclusions.

2 Main Assumptions

We take into consideration S ¼ X;A;Vð Þ, which is an information system, where:

– X is a nonempty, finite set of objects,
– A is a nonempty, finite set of attributes,
– V ¼ Va : a 2 Af g is a set of all attributes values.

Additionally, a : X ! Va is a function for any a 2 A, that returns the value of the
attribute of a given object [4]. The attributes are divided into different categories: set of
stable attributes ASt, set of flexible attributes AFl and set of decision attributes D; such
that A ¼ ASt [AFl [D. In this paper we analyze information systems with only one
decision attribute d. The example of an information system S is represented as Table 1
[7, 15].

Information system is represented by eight objects, one stable attribute a, two
flexible attributes b; c and one decision attribute d.

In many cases, decision-making processes are based on multiple regression models,
i.e. in which we analyze the influence of several independent variables on one
dependent variable of the measurable type [16].

Table 1. Information system S

X a b c d

x1 a1 b2 c2 d1
x2 a1 b1 c1 d1
x3 a2 b1 c1 d1
x4 a2 b2 c1 d2
x5 a2 b2 c2 d2
x6 a2 b1 c1 d1
x7 a2 b2 c1 d2
x8 a2 b1 c2 d2
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In contrast, when a dependent variable is of a dichotomous type, we can apply
logistic regression. In economic studies, a very popular example of the application of
logistic regression is the analysis of the ability to repay bank loans, while in medicine
the possibility of indicating the probability of, for example, the occurrence of a certain
disease, from the point of view of the (statistically significant) characteristics of the
patient and the specificity of the disease. The advantage of logistic regression is that the
interpretation of results is very similar to methods used in classical regression method.
However, it should also be noted that compared to multiple regression, logistic
regression is more complex computationally [1].

3 Classification

The classifier is an algorithm that implements classification, especially in a concrete
implementation. We use for this classification - model finding process that is used to
partitioning data into different classes according to some constrains. In other words, we
can say that classification is the process of generalizing the data according to different
instances. There are many different classifiers and many different types of dataset
resulting in difficulty in knowing which will perform most effectively in any given
case. It is already widely known that some classifiers perform better than others on
different datasets. It is always possible that another classifier may work better. In
deciding which classifier will work best for a given dataset there are two options. First
is to put all the trust in an expert’s opinion based on knowledge and experience. Second
is to run through every possible classifier that could work on the dataset, identifying
rationally the one which performs best [5, 7].

Classification is a data mining algorithm that creates a step-by-step guide for how to
determine the output of a new data instance. It is the process of finding a set of models
that differentiate data classes and concepts. We used it to predict group memberships
for data instances. In first step we describe a set of predetermined classes. Each tuple is
assumed to belong to a predefined class as determined by class label attribute, the set of
tuples are used for model construction, called training sets. The model is represented as
classification rules, decision trees or mathematical formulas. This model is used to
classifying future data trends and unknown objects. It estimates the accuracy of the
constructed model by using certain test cases. Test sets are always independent of the
training sets [7, 8].

3.1 Decision Trees

Among the classification methods, one of the most popular method is is the induction
of decision trees. It is particularly attractive because of the intuitive way of knowledge
representation understood by people [20].

Initially decision trees appeared in the 1960s in the areas of research on psychology
and sociology. In informatics, for the first time they found their application in the
works in the 80 [2, 21].

Compared to other methods of classification, decision trees can be constructed
relatively quickly. Their main advantage is the clear representation of knowledge, the
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possibility of using multidimensional data, and scalability with the use of large data
sets. In addition, the accuracy of this method is comparable to the accuracy of other
classification methods. However, the main disadvantage of the discussed method is the
high sensitivity to the missing values of attributes, because at their bases there is an
explicitly expressed assumption of full availability of information gathered in the
database. The disadvantages also include the inability to capture the correlation
between attributes [21].

In the decision tree method, the result of their action is a directed, consistent graph
with a tree structure. He uses the graphical data structure and presents their possible
consequences, helping in making decisions. The structure obtained in this way is a set
of decision nodes connected by means of “branches” that propagate down from the
“root” to the ending “leaf” tree.

Classification trees are used to determine the affiliation of objects to the quality
class of a dependent variable. This is done based on measurements of one or more
prediction variables. The classification tree presents the process of dividing the set of
objects into homogeneous classes. The division is based on the values of the features of
the objects, the leaves correspond to the classes to which the objects belong, while the
edges of the tree represent the values of the features on the basis of which the division
was made [21].

The process of creating a decision tree is based on the recursive division of the
teaching set into subsets, which takes place to achieve their homogeneity due to the
belonging of objects to classes. The goal is to create a tree with the fewest number of
nodes, and as a consequence, the simplest classification rules [2].

The decision tree creation algorithm can be written as follows [10, 18]:

– For a given set of objects it should be checked whether they belong to the same
class (if they belong - end the proceedings, if they do not belong - consider all
possible divisions of a given set into the possibly homogeneous subsets);

– Evaluate the quality of each of these subsets according to the previously accepted
criterion and select the best one;

– Split the set of objects in the chosen way;
– Perform steps for each of the subsets.

ID3 algorithm
One of the earliest proposals for implementing learning systems and acquiring

knowledge presented in the form of a decision tree is the ID3 algorithm, which was
developed by Quinlan [21]. It generates a decision tree based on a series of unit cases.
The decision tree is a structural record of the knowledge extracted, allowing on
the basis of the values of certain features to assign specific values to decision-making
[7, 21].

In order to generate a decision tree with the ID3 algorithm, a relatively large set of
examples describing a given situation is necessary. Each example from the set takes a
specific value for each attribute from the list of conditional attributes and the decision
attribute. Each attribute describing a given example takes one value from the list of
possible values. The described set of examples is a training set. When a list of attributes
is given together with lists of available values and a training set, it is possible to start
building a decision tree [18].
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The ID3 algorithm:
Input: training set D, set of conditional attributes A, method of selecting the parti-

tion point SS.
Output: decision tree rooted at the apex N.
procedure BuildTree (D, A, SS):
create the top of the decision tree N;

if all records of set D belong to the same class C then
return the vertex N as the leaf of the decision tree and assign the class C label 

to the given vertex;
end if
if attribute_list A is empty then
return the vertex N as the number of the tree and assign the label of the dom-

inant class to the vertex in the training set D;
end if

use the SS method to select the subdivision attribute from file A;
assign the attribute tip to the vertex of N;
for all values of the attribute-division to
← set of D records with the attribute value-division = ; 
← BuildTree ( , (attribute list A) - (attribute-division), SS);

create an edge with N to Ni labeled with the value of ai;
end for

return tip N.

The disadvantage of the ID3 algorithm is operation only for nominal attributes,
with incomplete data the algorithm does not work. In addition, the final trees are too
adapted to the data and the measure of information gain favors features with a large
number of values. The described algorithm is characterized by the lack of resistance to
the phenomenon of overfitting, because it does not cope with data that disturbs their
general information, which can lead to a high error rate on test data [10, 18]. These
problems were eliminated after the introduction of subsequent versions of the ID3
algorithm (including C4.5).
C4.5 algorithm

The C4.5 algorithm is one of the two most popular algorithms used in practice. This
algorithm is in fact an extension of the ID3 algorithm.

The C4.5 algorithm recursively passes through all nodes, selecting the possible
division until further subdivisions are possible. For qualitative attributes, this algorithm
by definition creates separate branches for each value of the qualitative attribute. This
may be the result of a greater branching of the tree than is desirable, because some
values may be rare and be naturally related to other values [3, 10].

For continuous attributes, the discussed algorithm considers all possible subdivi-
sions into two subsets, determined by the division point w. Unlike discrete attributes,
continuous attributes can appear on multiple levels of the same branch of the decision
tree. For each of the possible divisions, its quality is assessed by measuring the relative
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value of the information gain. Selects the option that gives maximum information gain
[10, 18].

The C4.5 algorithm, in addition to the decision tree induction method, makes it
possible to transform a tree into a set of rules. The rules are treated here as a classi-
fication model different from the tree, because they are not a faithful representation of
the tree.

3.2 Regression Analysis

The object of regression analysis belongs to the applications of mathematics, related to
the solution of some problems of mathematical statistics using probabilistic methods.
The primary goal of this field is to determine the relationship between the quantities we
are interested in (variables), its character and strength, as well as the structure of the
model that describes this relationship well. Most often, the only way to study such
relationships is to conduct experiments and only in a few cases they can be obtained
theoretically. Examples of such dependencies are: dependence of soil yield on various
mineral fertilizers; dependence of the bank’s profit level on the number of clients, the
amount of investment, the amount of loans issued, etc.

It is worth noting that the word regression in Latin translation means undoing. The
use of the word regression in the name of this domain, as well as in the name of several
other terms, is historical and rather unfortunate. This name was probably first used in
1885 by the English scientist Sir F. Galton (Darwin’s student) while studying the
relationship between the growth of offspring and parental growth. He showed that
extremely tall parents (much higher above mediocrity) have children of lower growth,
while parents with a significantly lower than average rise have children higher than
them. Galton called this phenomenon a backwardness towards mediocrity. But in fact,
the field dealing with the search for dependencies on the basis of experimentation is
much older: for example, French mathematicians (especially Laplace) in the eighteenth
century carried out analyzes that we would call regression.

Let, then, let us be interested in quantities (hereafter we call them variables)
Y ;X 1ð Þ; . . .;X mð Þ;m� 1: The variable Y is called the dependent variable and the vari-
ables X 1ð Þ; . . .;X mð Þ; independent variables. The question we would like to get an
answer to is: is there a relationship between Y and X 1ð Þ; . . .;X mð Þ; (in other words,
whether the variables X 1ð Þ; . . .;X mð Þ; affect Y )? And if the dependence is, then we
would like to express it with a certain model (equation) [6].

Let us assume that we can carry out n experiments, n measurements of the variable
Y size depending on certain sizes of variables X 1ð Þ; . . .;X mð Þ;. The values of the above
variables, obtained during the experiments, will mean the appropriate lower-case let-

ters. So, the starting point in our reasoning will be observations x 1ð Þ
i ; . . .; x mð Þ

i ; yi
� �

,

i ¼ 1; . . .; n.
It is worth noting that variables can be related to each other by functional depen-

dence or statistical dependence. The functional relationship is characterized by the fact
that each one of the values of independent variables is represented by only one,
univocally determined value of the dependent variable (for example, the square field is
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a function of its side). However, we rarely deal with data that accurately describes a
similar relationship. More often we deal with the so-called statistical dependence. The
statistical relationship is based on the fact that specific values of independent variables
correspond to strictly defined mean values of the dependent variable. This dependence
can be described using the function E Y jX 1ð Þ ¼ x 1ð Þ; . . .;X mð Þ ¼ x mð Þ� �

:

Well, we assume further that the values of the dependent variable are random (the
values of independent variables will conveniently be considered non-random). So, the
observed values yif g contain some random components, often called or interpreted as
measurement errors. In fact, the sources of these random factors can be very different:
from errors caused by the imprecision of measuring devices to errors caused by not
taking into account all factors affecting the dependent variable [6, 16].

As an illustration of the concept of statistical dependence, consider the following
example, taken from [17].

Example 1
Let us consider the results of the colloquium (scale from 0 to 25 points) and the final
exam (scale from 0 to 50 points) from the mathematical statistics. 19 students of a
technical school took part in the colloquium and the exam. The results of the collo-
quium and the exam are given in the Table 2:

The relationship between the result of the final exam (dependent variable) and the
colloquium (independent variable) is presented in Fig. 1. This figure is called the
scatterplot and is a useful graphical representation of dependencies between variables.
It is created by pairs of points xi; yið Þ; i ¼ 1; . . .; 19. Let us note that in the case when
we deal with one independent variable, the problem of model construction should
always start with the preparation of a scatter chart. We see that we are dealing here with
a statistical dependency, not a functional one, because we have students whose result
the colloquium is the same, but the result of the exam differs (for example, students
with numbers 5, 17 and 19 have the same test result – 17 points, but different result of
the exam – 35, 34 and 40 points respectively).

Generally, the process of model construction proceeds in the following stages.

Stage 1. Model specification. At this stage, we make a choice of the model’s form
(linear, square, nonlinear, etc.) which we will consider. The choice is made on the
basis of a scatter chart, or some knowledge about the possible nature of dependence.

Table 2. The results for example 1

Number 1 2 3 4 5 6 7 8 9 10

Test 7 11 12 14 17 15 21 22 19 13
Exam 20 24 25 30 35 30 43 42 41 24
Number 11 12 13 14 15 16 17 18 19
Test 5 12 16 14 21 20 17 10 17
Exam 14 27 35 28 42 40 34 23 40
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We can also suggest searching for the simplest solution, i.e. choosing a linear
model.
Stage 2. Statistical inference about the parameters of the model. At this stage, using
appropriate statistical methods and based on the data we have, we estimate the
parameters of the model and, if necessary, test hypotheses about these parameters.
Stage 3. Model verification. Next, it should be checked whether the model con-
structed at the previous stage under certain assumptions actually meets these
assumptions and whether it fits well with the possessed data. Here, too, using
statistical methods, we estimate the significance of the parameters obtained. If the
model does not meet the requirements, we formulate a new model and go back to
the previous stage.
Stage 4. Using the model. If the created model is considered correct, then we can
use it further, for example for predicting the value of a dependent variable in the
case of other than the values obtained so far, the values of independent variables, or
for controlling - that is, determining the values of independent variables to obtain
the appropriate value of the dependent variable.

Thus, according to stage 1 (stage of model selection), we narrow the circle of the
considered functions describing dependence to a certain parametric class of the H
function, i.e. we assume that the model is described by a function from class H:

H ¼ h x; hð Þ; h �H � R
k; x ¼ x 1ð Þ; . . .; x mð Þ

� �
�Rm

n o
; ð1Þ

where h : Rm � R
k ! R is a continuous function. The function h is called the

regression function. It is worth emphasizing the different role of the x and h arguments
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of the regression function. The x values are responsible for the experimental conditions
and can often be selected prior to the experiments. On the other hand, h is an unknown
argument (parameter) that we do not have influence on. We would like to emphasize
once again that in this situation the problem of searching for a good model describing
dependence is reduced to searching (estimating) h [6, 16]

hð x; hð Þ ¼
Xk
j¼1

hjfj xð Þ; ð2Þ

where fj : Rm ! R they are preset continuous functions, j ¼ 1; . . .; k:
Examples: We will give some common linear models (first three examples), an

example of a nonlinear model (the last one) and an example of a linearized model
(penultimate), i.e. one that can be reduced to a linear model by means of simple
transformations.

1. Simple linear regression: m ¼ 1; k ¼ 2; h x; hð Þ ¼ h0 þ h1x.
2. Multiple linear regression:

k ¼ mþ 1; h x; hð Þ ¼ h0 þ h1x
1ð Þ þ . . .þ hmx

mð Þ:

3. Polynomial regression degree p[ 1:

m ¼ 1; k ¼ pþ 1; h x; hð Þ ¼ h0 þ h1xþ . . .þ hpx
p:

4. Power regression: m ¼ 1; k ¼ 2; h x; hð Þ ¼ h0xh1 . In this case, we use the loga-
rithmic function to import the regression function to linear form:
h0 x0; h0ð Þ ¼ h00 þ h01x

0, where h0 ¼ ln h; h01 ¼ ln h0; h
0
1 ¼ h1; x0 ¼ ln x:

5. Nonlinear regression: m ¼ 1; k ¼ 3; h x; hð Þ ¼ h0 þ h1e�h2x. In this situation, no
transformation will bring a regression function to the linear function of parameters.

3.3 Logistic Regression Models

Logistic regression models are used to explain qualitative variables depending on the
level of exogenous variables (qualitative or quantitative). Logistic regression has
important applications, for example in modeling the risk of finding themselves in a
certain unit testing condition. We are dealing with a binomial model if the explanatory
variable accepts two states, i.e. whether the investigated phenomenon occurs or not.

Nowadays, logistic models are widely used in banks to assess credit risk and
enterprises to assess customer loyalty. They are also one of the tools used by actuaries
to assess insurance risk to evaluate the chances of conversion and retention of insurance
policies [7]. In life insurance, this model allows estimating the probability of death
based on the underlying demographic characteristics such as sex, age, place of
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residence [6, 9, 11], and also if we have a sufficiently large history database of insured
clients, we can include information collected through medical surveys.

In the field of demography, parametric (analytical) models of the human survival
process (so-called measurability law) are usually sought only in dependence from age,
building models for men and women separately (possibly for people living in cities and
in the countryside). For this purpose, curvilinear regression is used. As analytical
models of death rates, the following functions are most often used: exponential, power,
polynomial, polynomial-exponential, and logistic functions [18]. Access to more and
better-quality databases and the development of numerical methods and computer
software make these models more and more complex. There are many attempts to
create demographic analytical models in the literature, but rarely meet the use of
generalized linear models (GLM), including logistic regression, for the analysis of
demographic data.

It is especially useful when the dependent variable is a qualitative variable. Here we
will limit ourselves to considering the case when it only accepts two values: 1 and 0
(example: 1 - the event will occur, 0 - the event will not occur). In this situation, the use
of linear regression is unhelpful and may even be devoid of an interpretative sense.

The logistic regression model for the dichotomous variable can be expressed by the
formula [13]:

Y � B 1; pð Þ;
p ¼ E Y jXð Þ ¼ exp bXð Þ

1þ exp bXð Þ :
ð3Þ

Where B 1; pð Þ is a binomial distribution with the probability of success p.
Last equality assumes the choice of the canonical join function - logit. Modeling

p with logit allows for a convenient interpretation of logistic regression results in terms
of chance.

The odds are a function of probability. Instead of calculating the classical proba-
bility, i.e. the ratio of the number of successes to the number of all trials, we calculate
the ratio of the probability of the success to the probability of the failure. Let’s o mean a
chance and a probability of success [16, 19]. Then:

o ¼ p
1� p

ð4Þ

p ¼ o
1þ o

ð5Þ

The probability of the event p 2 0; 1ð Þ, so the chance takes values in the range
0;1ð Þ, and its logarithm of the range �1;1ð Þ:
Example 2
Let us consider hypothetical events: A - in a sample of 100 people smoked cigarettes 80
got cancer and B - out of 100 non-smokers fell ill 10.

Then o Að Þ ¼ 80
20 ¼ 4; o Bð Þ ¼ 10

90 � 0:1. This means that the probability of occur-
rence of event A is fourth times greater than the probability of its occurrence among
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smokers. We can also say that the probability of the event A is 4: 1 (similarly interpret
the event B).

Logistic regression is based precisely on such way of expressing probability [9]. In
the logistic regression model for one explanatory variable X1 the chance is equal to:

P Xð Þ
1� P Xð Þ ¼ exp b0 þ b1X1ð Þ ð6Þ

While the logarithm of chance:

log
P Xð Þ

1� P Xð Þ ¼ b0 þ b1X1 ð7Þ

The logarithm of opportunity is linearly dependent on the explanatory variable X1,
so that b1 can be easily interpreted. This factor tells us about the change in the
logarithm of the opportunity associated with the change in unit of the factor described
by X1. By going from the logarithm of chance to chance of b1 is a relative change in the
occurrence of an event by the factor described by the variable X1.

• If eb1 [ 1 the factor described by the variable X1 has a stimulating effect on the
occurrence of the studied phenomenon.

• If eb1\1 the factor is limiting.
• If eb1 ¼ 1 this factor does not affect the event described.

The odds ratio is used for comparison of two classes of observations. This is the
odds ratio that the event occurs in the first group elements, and that it also occurs in the
other. It is described by the formula [19]:

OR ¼ p1
1� p1

1� p2
p2

¼ p1 1� p2ð Þ
p2 1� p1ð Þ ð8Þ

Where pi means the probability of an event in the i-th class of observation. We
interpret them as follows:

• If OR[ 1, then in the first group the occurrence of the event is more likely.
• If OR\1, the event occurs in the second group more likely.
• If OR ¼ 1, then the event is equally likely in both observational classes.

Example 3
Based on the data from the previous example, we calculate the odds ratio of group A to
group B. We thus: OR ¼ 4

0:1 ¼ 40: The chance of developing cancer in smokers is 40
times higher than that of non-smokers.

The logistic regression model does not require some of the assumptions needed for
linear regression. Vector explanatory variables and the rest need not have normal
distribution, heteroskedasticity is acceptable. However, it is necessary to meet several
other conditions [9]:
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• The relationship between the log of opportunity and the vector of explanatory
variables must be linear.

• The explanatory variable must be binary, where the level coded as “1” represents
the desired result (success).

• Observations must be independent - we use this to derive the form of the reliability
function.

• The model must be well matched, that is to say only those explanatory variables that
affect the explanatory variable, and do not ignore any such variable.

• There is no strong collinearity in data - it is a source of numerical problems.

The last two conditions are more of a guideline than assumption. We do not use
them to derive logistic regression theory, but a model that does not meet them can lead
to incorrect conclusions.

Likelihood Function
We derive the form of the reliability function L for logistic regression. The explanatory
variable Y is binary and for single observation i and occurs:

YijXi ¼ 1with probability p Xið Þ
0with probability 1� p Xið Þ

�
ð9Þ

Hence:

L Xi; bð Þ ¼ PðYi ¼ 1jXiÞYi � PðYi ¼ 0jXiÞ1�Yi ¼ pðXiÞYi ½pðXiÞ	1�Yi ð10Þ

Wherein the vector of estimated parameters b is involved as a function of p, in
accordance with the formula:

L Xi; . . .;Xn; bð Þ ¼
Yn
i¼1

pðXiÞYi ½1� p Xið Þ	1�Yi ð11Þ

The likelihood function is used to estimate the parameters b and the maximum
likelihood for the hypothesis testing.

Testing of Hypothesis
In particular, the hypotheses of the statistical significance of variables (the hypothesis
on the question of whether a model that contains a certain variable) provides much
more information about the variable elucidated from the model without that variable.
Testing such hypothesis is based on comparing the observed values of the explanatory
variable Y with its Ŷ matched values by two models, one with the explanatory variable
we are interested in.

We introduce the concept of saturated model. It concerns not only logistic regres-
sion, but the whole class of generalized linear models [6].

By saturated model we mean a model with a number of parameters equal to the
number of observations.

For example, for a set of data with two observations the full model is such as:
g EYð Þ ¼ b0 þ b1X1. The concept of a full model enables another interpretation of the
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value of the observed variable being interpreted - as matched values of a full model for
a given dataset.

The significance test of the explanatory variable uses deviation statistics D:

D ¼ �2log
value of the likelihood function of the estimation model

value of the likeluhood function of the full model

� �
ð12Þ

Multiplied by the (−2) logarithm of the likelihood ratio has a known distribution, so
it is suitable for testing statistical hypotheses. The tests that are based on it are the
reliability quotient tests:

D ¼ �2
Xn
i¼1

Yi log
p Xið Þ
Yi

	 

þ 1� Yið Þlog 1� p Xið Þ

1� Yi

	 
� �
ð13Þ

In the logistic regression model, the value of the reliability function for the full
model is 1, which can be shown by inserting p Xið Þ ¼ Yi (property of the full model)
into (13):

L full modelð Þ ¼
Yn
i¼1

YYi
i ½1� Yi	1�Yi ¼ 1 ð14Þ

From (10) and (12) we get:

D ¼ �2 log value of the reliability function of the estimatedmodelð Þ ð15Þ

In addition to the likelihood-ratio test, there are two alternative methods of testing
the significance of the explanatory variables: Wald test and test Score [9]. As with the
reliability quotient test, it is needed to set a sufficient number of observations n. The
Wald test is divided by the estimation of the parameter at variable X
 by the standard
error of this estimate (as determined by the SE):

W ¼ b̂

SE b̂


� � ð16Þ

Based on null hypothesis (b
 ¼ 0), W has asymptotically decomposed N 0; 1ð Þ. The
test score is based on the statistics obtained from the derivative of the logarithm of the
likelihood function and does not require the calculation of the MNW estimators of the
b parameters. The term score is determined derivative of the logarithm of the likelihood
function:

U bð Þ ¼ @logLðbjxÞ
@b

ð17Þ
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The test statistic for the null hypothesis b
 ¼ 0 has asymptotically v2 distribution
and amounts:

S ¼ U 0ð Þ2I 0ð Þ�1 ð18Þ

Where U 0ð Þ score of parameter b
 and I is the Fisher information.

Determination of Confidence Intervals
Confidence intervals for factor estimates in the logistic regression model are con-
structed on the basis of the Walt test statistics. Using that W has an asymptotic standard
normal distribution [6]:

W ¼ b̂

SE b̂


� � � N 0; 1ð Þ ð19Þ

The limits of the confidence interval at significance level 100� að Þ% for estimating
the parameter b are:

b̂� z1�a
2
SE b̂

� �
ð20Þ

Where z1�a=2 is the quantum decomposition N 0; 1ð Þ of order 1� a=2.
In mathematical statistics, the ROC curve is a graphical representation of the pre-

dictive model efficiency by plotting the binary classifier’s quality characteristics using
multiple cutoff points. Other words - each point of the ROC curve corresponds to
another error matrix obtained by modifying the cut-off point. The more different points
we cut, the more points we get on the ROC curve. Finally, we put TPR (True-Positive
Rate) and FPR (False-Positive Rate) [6, 22].

The ROC curve, as a function of the cutoff point, represents the TPR variance
(coverage of the actual positive class coverage) depending on the FPR (level of error
actually negative). There is a compromise when we choose “cut-off” and we want to
maximize TPR “keeping in line” FPR error.

The additive parameter that is defined for the classifier which is the regression model
is the AUC. The AUC (Area Under the ROC) interpretation is the probability that the
predicted predictive model will score higher (score) a random element of a positive
class from a random negative element [4].

4 Experiments

In the experiment, an attempt was made to discern methods of data mining (decision
trees) and statistical methods (logistic regression). The aim of the comparison is to
choose the method that best classifies patients, thus providing a very beaver prediction
quality of the constructed classifier. The results compared the calculated measures of
the quality of constructed classifiers.
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Dataset contains clinical data of 152 patients affected by Ulcerative Colitis
(UC) and other colon diseases. Patients are characterized by 117 attributes and clas-
sified into two groups: patients with ulcerative colitis and patients with other diseases
of the digestive system, which is not a coexisting disease for the disease under
examination. Our goal was to find rules which help to reclassify patients from one
group to group of not healthy persons.

Too many variables can negatively impact the performance of the model. As a
consequence, the first stages of the study, during which initial data processing is
performed, are important. The data can be subjected to selection, transformation, or
delete unwanted variables.

After removing variables where the percentage of missing data exceeded 60%, the
number of attributes decreased. There are 73 attributes left. Subsequently, all the
attributes associated with treatment were excluded from the analysis, since predicates
describing the treatment cannot determine the occurrence of the disease. Finally, there
are 152 cases that describe 64 attributes to the next stages of analysis.

In order to reduce the amount of data, they are subjected to selection methods to
obtain the set of attributes that are most strongly associated with the classifier (de-
pendent). Selected attributes are following: age, smoke, blood_feces, eosinophils, AlAT,
sodium, potassium (Table 3).

Due to the fact that the classification models are very sensitive to data gaps, the k-
nearest neighbors have been filled in (missing parameters = k neighbors = 3, number
of patterns = 10).

J48 classifier
The J48 method uses the C4.5 algorithm to generate a decision tree. The C4.5

algorithm divides the original dataset from each attribute. The obtained confusion
matrix shown in the Table 4.

Table 3. Classification attributes

Attribute Value

Age Numeric
Smoke {0-no, 1-yes}
Blood feces {0-no, 1-yes}
Eosinophils Numeric
AlAT Numeric
Sodium Numeric
Potassium Numeric

Table 4. Confusion matrix

Observed effects Expected effects
Ulcerative colitis No ulcerative colitis

Ulcerative colitis 78 8
No ulcerative colitis 8 58
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The first stage of the modeling process was the evaluation of its most important
statistics. This allowed for the preliminary determination of the accuracy of the deci-
sion rules generated and provided information on the type of possible errors. Table 5
shows a summary of basic statistics defining the quality assessment of the J48 model.

The percentage of correctly classified attributes by the decision tree is 89%. It is a
high, correct result and indicates good quality of the generated decision tree. The
Kappa Statistics indicator is relatively low, which means that there are nearly 22% of
observations with which the random classifier did not manage (Table 5).

Table 6 presents a set of quality measures for the J48 model. For the classification
attribute characterizing the lack of relapse, the value of the true positive meter turned
out to be very high (91%), which is a satisfactory result. The false positive rate is lower
(12%), which may indicate a sufficient quality of the generated model.

The F-Measure measure, which estimates the overall quality of the model, has a
high value (91%) and indicates a correctly built medical process.
Random Tree

The Random Tree method of classification of decision trees is an algorithm that
combines decision trees and random forest methods (Random Forest). The model of the
decision tree itself is sufficient when a smaller range of variables is examined.

The below tables show the confusion matrix (Table 7) and statistics (Table 8) on
the quality evaluation of the modeled process. The obtained value of correctly clas-
sified attributes is very high (98%), which suggests very good quality of the tree. The

Table 5. Statistics for J48 model

Factor Value

Correctly classified instances 89%
Incorrectly classified instances 11%
Kappa statistic 0.7858

Table 6. Measures for J48 model

Class TP rate FP rate Precision Recall F-Measure AUC

Ulcerative colitis 0.907 0.121 0.907 0.907 0.907 0.969
No ulcerative colitis 0.876 0.093 0.879 0.879 0.879 0.969

Table 7. Confusion matrix

Observed effects Expected effects
Ulcerative colitis No ulcerative colitis

Ulcerative colitis 86 0
No ulcerative colitis 2 64
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assessment of the goodness of the model is confirmed by the high Kappa statistic. This
fact informs about a high, 97% of the number of classified observations.

Table 9 contains a set of quality measures for the modeled process. The attribute
representing no relapse in the true positive meter category has a value of 100%. The
false positive meter is an absolutely different value close to 3%. Based on these two
values, we can conclude a very good fit of the modeled process. Other indicators
(Precision, Recall and F-Measure) also prove the accuracy of the above conclusion.
Logistic regression

After constructing a formal logistic regression model, its structural parameters were
estimated. In Table 10 we have presented the results of the estimation.

The model predicted 46% of the variation in terms of the dependent variable, based
on Nagelkerke R-squared. Based on the analysis, it was found that the model indeed
provides a dependent variable: v2(5) = 38.82; p = 0.01. Based on the criterion of
Hosmer and Lemeshow it found that the model was good suited to the data: v2
(8) = 9.25; p = 0.421.

Based on the results of the Wald test, it was found that age significantly affected the
occurrence of illness W (1) = 6.55; p = 0.01 (result on the border of statistical trends).
Age highest the chance of ilness based on B = 0.03, but it is very small value.

Variable ‘AIAT’ also significantly affected the occurrence of ulcerative colitis W
(1) = 12.34; p = 0.0004. AIAT increase the chance of disease based on B = 0.06.

As we can see the dependent variable is significantly affected by the level of
sodium (W (1) = 11.03; p = 0.0009). According to the results the variable increases the
chance of ilness based on B = 0.32.

The frequency of smoke significantly affects the occurrence of ulcerative colitis W
(1) = 142.94; p < 0.000. The smoke increases the chance of disease (B = 5.08 for
“yes” and B = 5.53 for “no”). As we can see, a smoker is less likely to get sick.

The intensity of number of blood feces also significantly affects the occurrence of
disease W (1) = 214.59; p < 0.000. The intensity decreases the chance of illness
(B = −7.29 and B = −5.73). This means that increased blood in the stool increases the
likelihood of getting sick.

Table 8. Measures for Random Tree model

Factor Value

Correctly classified instances 98%
Incorrectly classified instances 2%
Kappa statistic 0.9731

Table 9. Measures for Random Tree model

Class TP rate FP rate Precision Recall F-Measure AUC

Ulcerative colitis 1 0.03 0.977 1 0.989 0.985
No ulcerative colitis 0.97 0 1 0.97 0.985 0.985
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Tables 11, 12 and 13 show statistics on the quality evaluation of the modeled
process. The obtained value of correctly classified attributes is very high (82%), which
suggests very good quality of classification. The attribute representing no relapse in the
true positive meter category has a value of 86%. The false positive meter is an abso-
lutely different value close to 24%. Based on these two values, we can conclude a good
fit of the modeled process. Other indicators (Precision, Recall and F-Measure) also
prove the accuracy of the above conclusion. The ROC curve indicates that the built
classifier very well classifies cases into the appropriate group (category 0 - sick).
AUC = 0.919 confirms the above statement.

Table 10. Parameters of the model – Wald test

Parameter B Standard error Wald statistic 95% CI of Exp
(B)

p-value

High Low

Age 0.0338 0.01319 6.5548 0.0079 0.0596 0.010460
AIAT 0.0562 0.01601 12.3409 0.0249 0.0876 0.000443
Sodium 0.3176 0.09562 11.0319 0.1302 0.5050 0.000896
Smoke (1) 5.0761 0.42458 142.9370 4.2440 5.9083 0.000000
Smoke (0) 5.5347
Blood_feces (0) −7.2963 0.49808 214.5892 −8.2725 −6.3201 0.000000
Blood_feces (1) −5.7304
Constant 0.0338 0.01319 6.5548 0.0079 0.0596 0.010460

Table 11. Parameters for the model

Observed effects Expected effects
Ulcerative colitis No ulcerative colitis

Ulcerative colitis 74 12
No ulcerative colitis 16 50

Table 12. Model parameters

Correctly classified instances 124 81.5789%
Incorrectly classified instances 28 18.4211%

Table 13. Model parameters

Class TP rate FP rate Precision Recall F-Measure AUC

Ulcerative colitis 0.86 0.242 0.822 0.86 0.841 0.919
No ulcerative colitis 0.758 0.14 0.806 0.758 0.781 0.919

Classification Methods in Colon Disease Information System 157



5 Conclusion

In this paper, we built classification models for dependent variable. It becomes
important to refer to the features that will enable you to get the highest impact on
patient’s recovery. This paper discusses the most commonly used classification algo-
rithms. Classification methods are widely used in medicine. In our work, we attempted
to build a classifier that would classify patients undergoing ulcerative colitis and other
conditions within the lower gastrointestinal tract. We calculated the basic statistics of
each model. Random Tree turned out to be the best (98% correctly classified instances),
so in the future be used to build a recommendation system for hospitals.

This work was supported by MB/WM/8/2016 and financed with use of funds for
science of MNiSW. The Bioethical Commission gave permission for the analysis and
publication of results.
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Abstract. Glucose measurement by using handheld devices is applied widely
due to their comfortabilities. They are easy to use and can give results quickly.
However, the accuracy of measurement results is affected by interferences, in
which hematocrit (HCT) is one of the most highly affecting factors. In this
paper, an approach for glucose correction based on the neural network is pre-
sented. The regularized online sequential learning is utilized for hematocrit
estimation. The transduced current curve which is produced by the chemical
reaction during glucose measurement is used as an input feature of neural net-
work. The experimental results shown that the proposed approach is promising.

Keywords: Hematocrit � Neural network � Online training �
Glucose correction � Handheld device

1 Introduction

Diabetes mellitus is one of the leading diseases worldwide. It relates to several the long-
term complications including cardiovascular, hypoglycemia diabetic ketoacidosis,
hyperosmolar, retinopathy, neuropathy, and nephropathy. The current treatment methods
for insulin dependent diabetes such as continuous infusion of insulin or subcutaneous
insulin injection require frequently evaluating the variation of glucose concentration.

The major tools for managing the glucose concentration are the point-of-care
(POC) or handheld blood glucose meters. They are easy to use and relatively cheap,
however their accuracy is affected by various interferences, in which the hematocrit is
one of the most highly affecting factors for POC and handheld glucose measurements
[1, 2]. It was reported that a low hematocrit is associated with overestimation, while a
high hematocrit is associated with underestimation of glucose results [3–5]. Hence, one
of approaches to improve the accuracy of glucose measurement is to reduce the effects
of hematocrit level. The hematocrit level can be estimated by employing commercial
impedance analyzers with traditional centrifugation measurements or by dielectric
spectroscopy [6]. These approaches are in vitro, quite complicated or require individual
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devices, they cannot be applied in the handheld devices. In this study, we present an
approach for hematocrit estimation based on neural networks which are trained by the
regularized online sequential algorithm.

The neural network is widely applied in several applications [7–10] due to its
abilities to solve problems which are difficult to handle by using traditional approaches
and to approximate complex nonlinear mappings directly from input patterns. Several
network architectures have been developed, however it was shown that the single
hidden layer feedforward neural networks (SLFN) can approximate any function if the
activation function is chosen properly. Hence, in this study, we have investigated in the
SLFN for biomedical processing. Several training algorithms have been developed for
SLFNs, in which one of the effective ones is extreme learning machine (ELM) [11, 12].
This algorithm can obtain good performance with higher learning speed in many
applications. Besides batch learning types, sequential learning algorithms are preferred
for neural networks in many applications, they do not require the fully available
training set and do not require retraining whenever a new training data received. In this
paper, the neural network is trained by the regularized online sequential learning
algorithm. The rest of this paper is organized as follow. Section 2 presents the materials
and methods. The experimental results and analysis are shown in Sect. 3. Finally, we
make the conclusion in Sect. 4.

2 Materials and Methods

2.1 Transduced Current Curves

In this study, we focus on the handheld glucose meters using the biosensors. These
biosensors use enzymes to break the blood glucose down. One of enzymes commonly
used to detect the glucose levels is the glucose oxidase (GOD), it catalyzes the oxi-
dation of glucose by oxygen to produce gluconic acid and hydrogen peroxide.

Fig. 1. Anodic current curve
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GlucoseþO2 þGO/FA ! Gluconic acidþH2O2 þGO/FADH2

GO/FADH2 þ Ferriciniumþ ! GO/FADþ Ferricinium

Ferrocence ! Ferrocenceþ þ e�:

The reduced form of the enzyme (GO/FADH2) is oxidized to its original state by an
electron mediator (ferrocence). The active electrode then oxidizes the resulting reduced
mediator to produce the transduced anodic current. The transduced anodic current
curve obtained in the first 14 s is represented in Fig. 1 [13]. It was shown that the first
eight seconds do not contain the information of hematocrit and glucose level; it may be
an incubation time for waiting the enzyme reaction to be activated. In our study, we
concentrate on the second part of the current curve during the next six seconds. In the
period of the next six seconds, the anodic current curve is sampled at a frequency of
10 Hz to produce current points.

Fig. 2. Effects of hematocrit on glucose measurement: (a) same measured value on current curve
but different glucose values, (b) differentmeasured values on current curves but same glucose value.

162 H. T. Huynh and Y. Won



The glucose values can be obtained from this transduced current curve. However, it
was shown that the accuracy is affected by the hematocrit is the most highly effecting
factor. Figure 2 illustrates a case where three current curves from time point 11.5 s to
14 s as shown in Fig. 2a. It provides the same value (the measured values of three
curves at time point 14 s are the same as 17.3439) even though glucose values cor-
responding to these current curves are different those are 147 mg/dL, 161 mg/dL and
157 mg/dL for the hematocrit of 27%, 45.6% and 39.4%, respectively. In Fig. 2b, the
same glucose value of 262 mg/dL, the measured values on three current curves cor-
responding to different hematocrit levels are different.

Other researches also demonstrated the relationship between the errors of glucose
measurement and hematocrit levels [6, 13, 14]. The result from Louie et al. [15] also
shows that the accuracy of glucose measurement can be improved if the effects of
hematocrit is reduced. However, we cannot apply the traditional methods for hemat-
ocrit estimation. In this study, an approach using the transduced current curves is
proposed.

2.2 Neural Networks Trained by Online Training Algorithms
for Hematocrit Estimation

The vector of d current points sampled from the second part of the j-th current curve
can be denoted as xj ¼ xj1; xj2; . . .; xjd

� �
. This vector is used as the input features of the

neural network for estimating hematocrit. The architecture neural network used in this
study is single hidden layer feedforward neural network (SLFN) which can approxi-
mate any function if the number of hidden nodes and the activation function are chosen
properly. The typical architecture of SLFN is shown in Fig. 3, which includes d input
nodes, N hidden nodes and C output nodes.

x1

x2

xd

wi αi

o1

oC

Fig. 3. The architecture of SLFN
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Let f(�) be the activation function of hidden units. Mathematically, the SLFNs can
be modeled as:

o ¼
XN
i¼1

aif ðwi � xþ biÞ; x 2 R
d ; ð1Þ

where o is the output vector, wi ¼ wi1;wi2; . . .;wiN½ � is the input weight vector con-
necting from the input units to the i-th hidden unit, ai is the weight vector connecting
from the i-th hidden unit to the output units, and bi is the threshold of the i-th hidden
unit, wi � x ¼ \wi; x[ is the inner product of wi and x. One of big problems in
neural networks is training.

Given n training patterns xj; tj
� �

; j ¼ 1; 2; . . .; n, where xj ¼ xj1xj2. . .xjd
� �

T and
tj ¼ tj1tj2. . .tjC

� �
T are the j-th input pattern and its target, respectively. The main goal of

training process is to determine the network weights wi, ai, and biases bi that minimize
the error function defined by

E ¼
Xn
j¼1

oj � tj
� �2

; ð2Þ

where oj is the output vector corresponding to the j-th input pattern. Traditionally, this
task is performed based on the gradient descent, in which the network weights
g (consisting of w, a and b) are updated iteratively by:

gk ¼ gk�1 � g
@E
@g

; ð3Þ

where η is the learning rate. One of the most popular training algorithms based on
gradient descent is backpropagation, in which the network weights are updated from
the output layer to the input layer. This algorithm has some problems such as local
minima, overtraining, learning rate, etc. There are some improvements for neural
networks developed by different research groups. However, up to now, most training
algorithms based on gradient descent are still slow due to iterative processes [11, 12].

One of non-iterative training algorithms which can overcome some problems in the
gradient descent-based ones is extreme learning machine (ELM). Let H be the hidden-
layer-output matrix of SLFN which was defined as

H ¼
f ðw1 � x1 þ b1Þ � � � f ðwN � x1 þ bNÞ

..

. . .
. ..

.

f ðw1 � xn þ b1Þ � � � f ðwN � xn þ bNÞ

2
64

3
75; ð4Þ

The main goal in ELM is to determine the network weights based on the linear model
defined by
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HA ¼ T; ð5Þ

where T ¼ t1t2. . .tn½ �T , A ¼ a1a2. . .aN½ �T. In the ELM, the input weights and biases of
hidden units are randomly assigned, and the output weights are determined by

Â ¼ HyT; ð6Þ

where H† is the pseudo-inverse of H.
When the training data is very large or not available fully, the online training

approaches should be addressed. An online training method based on the ELM called
sequential extreme learning machine (OS-ELM) was proposed by Liang et al. [16]. The
OS-ELM supposes that HTH is nonsingular and pseudo-inverse of H is given by

Hy ¼ HTH
� ��1

HT : ð7Þ

From above assumptions, the output weights are updated by following rules:

Ak ¼ Ak�1 þL�1
k HT

k ðTk �HkAk�1Þ; ð8Þ

Lk ¼ Lk�1 þHT
kHk ð9Þ

where Tk ¼ ½tPk�1

i¼0
ni þ 1

tPk�1

i¼0
ni þ 2

. . .tPk

i¼0
ni
�T , Hk ¼ ½hPk�1

i¼0
ni þ 1

hPk�1

i¼0
ni þ 2

. . .

hPk

i¼0
ni
�T , and hj ¼ f w1 � xj

� �
; . . .; f wN � xj

� �� �T. The initialization of Ak corre-

sponding to an initial training set S0 ¼ xj; tj
� �jj ¼ 1; . . .; n0

� �
is given by

A0 ¼ L�1
0 HT

0T0; ð10Þ

where L0 ¼ HT
0H0, T0 ¼ t1t2. . .tn0½ �T , and H0 ¼ h1h2. . .hn0½ �T . In summation, the OS-

ELM algorithm is described as follows:

(1) Initialization:
For the initial training subset S0 ¼ xj; tj

� �jj ¼ 1; . . .; n0
� �

,

– Assign random values for w’s and b’s.
– Calculate hidden layer output matrix H0.
– Determine L0 and then A0 using by using Eq. 10.

(2) Updating weight: For the arriving training subset
Sk ¼ fðxj; tjÞjj ¼

Pk�1
i¼0 ni þ 1; . . .;

Pk
i¼0 nig,

– Determine Hk.
– Determine Lk by Eq. 9.
– Update the output weights Ak by Eq. 8.
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In the first step of algorithm (initialization) the input weights and biases are assigned by
random values; then the output weight matrix A0 is computed. Following the initial-
ization step, the updating process is performed, in which the output weights are updated
for each arriving data of one-by-one or chunk-by-chunk.

In the real applications, the collected data are often included noise. Hence, the risk
minimization as shown in (2) may lead to a poor generalization. One of approaches
which can overcome this problem is to optimize the norm of output weight vector. The
solution for A of Eq. 5 can be replaced by seeking A that minimizes

HA� Tk k2 þ k Ak k2; ð11Þ

where ||∙|| is Euclidean norm and k is a positive constant. The solution for A from
Eq. 11 is given by

Â ¼ HTHþ kI
� ��1

HTT: ð12Þ

The learning rules for online sequential learning process were given by Huynh et al.
[17]. For an initial training set S0 ¼ xj; tj

� �jj ¼ 1; . . .; n0
� �

, the output weights are
initialized by

A0 ¼ L�1
0 HT

0T0; ð13Þ

where L0 ¼ HT
0H0 þ kI; T0 ¼ t1t2. . .tn0½ �T , and H0 ¼ h1h2. . .hn0½ �T . In the updating

phase, the output weights are updated by

Uk ¼ Uk�1 � Uk�1HT
k ðIþHkUk�1HT

k Þ�1HkUk�1 ð14Þ

Ak ¼ Ak�1 þUkHT
k ðTk �HkAk�1Þ: ð15Þ

where

U0 ¼ ðHT
0H0 þ kIÞ�1

¼ 1
k
I� 1

k
HT

0 ðkIþH0HT
0 Þ�1H0

ð16Þ

2.3 Glucose Correction

Let gp, gr be the measured glucose values from portable device and reference machine
(YSI2700 or YSI2300), respectively. The residual rp is given by

rp ¼ gp � gr: ð17Þ
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The main goal of correction process is to find mapping

f : gp ! gc; ð18Þ

where gc is the corrected glucose values corresponding to gp. The proposed mapping
for f is given by:

gc ¼ gp � rp: ð19Þ

It is important to find a function g mapping from hematocrit to residual rp as follows g:
HCTp!rp

rp ¼ g HCTp
� �

; ð20Þ

where HCTp is hematocrit estimated from the transduced current curve. The simplest
approach is to apply a linear model. The mapping function g is represented by:

r jp ¼ gðHCT j
pÞ ¼ agxHCT j

p þ bg; ð21Þ

where ag and bg are two parameters which must be determined. For n training samples
ðHCT j

p ; r
j
pÞ, j ¼ 1; 2; . . .; n. The parameters can be approximated with minimum error

of the following equation:

r ¼ HHCTag; ð22Þ

where r ¼ ½r1p r2p � � � rnp �T , ag ¼ ag bg
� �T , andHHCT¼ HCT1

p HCT2
p � � � HCTn

p
1 1 � � � 1

� 	T
.

The least mean square error solution for (22) is given by

âg ¼ ðHT
HCTHHCTÞ�1HT

HCTr: ð23Þ

The residual for any sample is given by

rp ¼ ½HCTp1�âg: ð24Þ

3 Experimental Results

In this study, we evaluate the performance on the dataset which was obtained from 191
blood samples. These samples were obtained from randomly selected volunteers. There
are four measurements for each sample including (1) the accurate hematocrit using
centrifugation method, (2) accurate glucose using YSI2700, (3) glucose values using a
handheld device, and (4) the anodic current curves. From the second part of curve,
which is after the incubation time, fifty-nine current points are sampled at a frequency of
10 Hz. The dataset was divided into two subsets, in which the forty percent of dataset is
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used for training and the sixty percent is used for blind testing. In our experiment, the
neural networks were trained by the OS-ELM, our proposed method and offline ELM.
The number of hidden units was 12 for ELM and online training algorithms.

3.1 Hematocrit Estimation

The hematocrit values collected from centrifugation method have the distribution as
shown in Fig. 4, in which the mean is 36.02 and the deviation is 6.39. The average
result of fifty trials with the whole current curve is shown in Table 1. The root mean
square error (RMSE) is computed by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

j¼1
oj � tj
� �2r

ð25Þ

where oj is the estimated value and tj is the reference value.

From the Table 1 we can see that the accuracy of the proposed method corre-
sponding to the testing set is 4.18 which is compatible to that of the offline training

Table 1. Comparison with reference hematocrit measurements using centrifugation

Method Training Testing # nodes
RMSE Std RMSE Std

ELM (offline) 3.67 0.34 4.49 0.51 12
OS-ELM [16] 3.69 0.26 4.37 0.37 12
Proposed approach 3.65 0.28 4.18 0.35 12

Fig. 4. Distribution of collected hematocrit
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methods for the same number of hidden nodes. Note that, for the online training
method, the devices can be still trained with new samples during the using process
which can expect to improve the performance further.

3.2 Glucose Correction

There is a relationship between hematocrit and residuals which are defined as differ-
ences of handheld glucose measurements minus the YSI2007 glucose measurements.
In addition, using the test statistic for the slope given by

tslope ¼ slope
rslope

ð26Þ

and using the P-test we see that the slope value is significantly different than 0
(p < 0.01). Therefore, we can conclude that effect of hematocrit on handheld mea-
surements is significant which is consistent with the previous reports. The RMSE for
handheld on the test set without error correction is 16.4149 while that with error
correction is 13.53. The t-test for slope without error correction is −3.846 (p-
value < 0.001) which shows dependence of residuals on hematocrit levels, while the t-
test for slope with the error correction is 0.23, these results show that the effects of
hematocrit are reduced after error correction.

On the error tolerance of ±15 mg/dL for glucose levels � 100 mg/dL and p% for
glucose levels >100 mg/dL, Table 2 presents comparison results (within the error
tolerance) of error correction corresponding different values of p.

The criteria proposed by the National Committee for Clinical Laboratory Standards
are that error tolerances of ±15 mg/dL for glucose levels � 100 mg/dL and ±20% for
glucose levels >100 mg/dL. At least 95% of glucose meter measurements should fall
within these error tolerances. We can see that both approaches, before and after error
correction, have 96.95% of glucose measurements within the error tolerances which
satisfies the criteria proposed by the National Committee for Clinical Laboratory
Standards. However, the error correction provides an improved performance at levels
of error tolerance from 15% to 19%.

Table 2. Comparison results on different criteria of error tolerance.

p(%) Before error correction After error correction

15 91.60% 94.66%
16 94.66% 95.42%
17 94.66% 96.18%
18 95.42% 96.95%
19 96.18% 96.95%
20 96.95% 96.95%
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4 Conclusion

In this study, we developed an approach for glucose correction in handheld devices by
reducing the effect of hematocrit. The hematocrit estimation is performed by using the
online sequential method with input features from transduced current curves. The
transduced current changing curves are produced by chemical reactions of glucose
oxidase in the electrochemical biosensors. The experimental results showed that the
online training method is compatible to the offline training methods but note that the
accuracy of devices can be still improve during the using process. The accuracy of
glucose measurement using electrochemical biosensors is improved after reducing the
effects of hematocrit.
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