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Abstract. We describe how the model theory of modules is adapted to
deal with sheaves of modules.
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1 Introduction

A sheaf may be thought of as a set of structures, indexed by the points of a
topological space, which “vary in a continuous way”. For example, a sheaf O
of rings over a topological space X is given by a set {OX,x : x ∈ X} of rings
(which we assume to be associative, not necessarily commutative, and each with
a 1) together with a certain type of topology on the union of these sets. This is
the étalé-space view of a sheaf, which we will point out after approaching the
definition of a sheaf through that of a presheaf.

Sheaves arise typically in geometry, topology and analysis. Our, algebraic/
model-theoretic, interest will be in the model theory of sheaves of modules over
sheaves of rings.

The model theory of modules is very well-developed and has found many
applications. We will describe how to set up model theory for sheaves of modules
in a way which naturally generalises how this is done for modules over a fixed
ring (that is the case where the space X has just one point). The key change is
that we should regard sheaves as multi-sorted structures. The outcome is that,
over topological spaces X which satisfy some mild conditions, one can apply all
the techniques and results of the model theory of modules.

A great deal of what we say applies to sheaves over sites (where Grothendieck
topologies replace topologies in the usual sense) and to sheaves of structures
other than modules but our aim is to explain the particularities of the model
theory of sheaves of modules in the relatively concrete context of sheaves over
topological spaces.

2 Model Theory for Modules

Here we give a very brief overview of some relevant aspects of the model theory
of modules.
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The model theory of modules was originally set up to deal with modules over
a fixed ring R (always assumed to be associative and with a 1).1 By default, by
“R-module” we will mean “right R-module”, and we will denote the category
of these by Mod-R. Since the left R-modules are the right modules over the
ring Rop with the opposite multiplication, it is immaterial for the general theory
whether we deal with right or left modules.

The language LR used has a binary operation symbol + for the addition on
a module, a constant symbol 0 for the zero element of a module and, for each
r ∈ R, a 1-ary function symbol to express multiplication-by-r on a module. In
practice we use natural notation, writing the value of multiplication by r ∈ R on
an element a of a module M by ar, rather than introducting a more explicitly
functional notation (such as fr(a)). Also, for instance, we would write an atomic
formula in variables x1, . . . , xn in the (simplified, using the theory of R-modules)
form

∑n
i=1 xiri = 0. The background theory is that generated by the usual

axioms for (right) R-modules.
The key result in the model theory of modules is pp-elimination of quantifiers

(see, for example, [8, Sect. 2.4]).

Theorem 1. Let R be any ring. Modulo the theory of (right) R-modules, every
formula is equivalent to the conjunction of a sentence and finite boolean combi-
nation of pp formulas. Moreover, every sentence is a finite boolean combination
of invariants conditions.

A pp (for positive primitive), also called regular, formula, is an existen-
tially quantified conjunction of atomic formulas, that is, in our context, an exis-
tentially quantified system of R-linear equations (perhaps inhomogeneous equa-
tions if the formula contains parameters from a module). The solution set, φ(M),
of a pp formula φ, in any module M , is a subgroup of Mn, where n is the number
of free variables of φ. These subgroups are the groups pp-definable in M or,
as commonly said more loosely, the pp-definable subgroups of M . If φ, ψ are
pp formulas in the same free variables, then we write ψ ≤ φ if ψ(M) ≤ φ(M) for
every module M . In fact (see e.g. [9, 1.2.23]), it is enough to check this for every
finitely presented module M , because every module is a direct limit (=directed
colimit) lim−→λ

Mλ of finitely presented modules Mλ and pp formulas commute
with direct limits in the sense that φ(lim−→λ

Mλ) = lim−→λ
φ(Mλ). Recall that a

module M is finitely presented if it is finitely generated and finitely related,
equivalently if the functor HomR(M,−), which we simply denote by (M,−),
commutes with direct limits.

An invariants condition is a sentence which says, of some pp-pair ψ ≤ φ,
that the index of the subgroup defined by ψ in that defined by φ either is less
than, equal to, or greater than, n, for some particular integer n.

1 One could let the ring vary by using a two-sorted language: one sort for the ring, one
for the module, so that the structures are (ring, module) pairs (R,MR). The model
theory of such pairs is, however, much less well-behaved than that for modules over
a fixed ring, and not at all as amenable to useful analysis.
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This partial elimination of quantifiers allowed greatly simplified proofs of
much that had already been shown about the model theory of modules and it
stimulated a fundamental transformation of the subject.

Elimination of quantifiers also partly explained the, already-recognised,
importance (see e.g. [3,6,19]) of notions such as purity and pure-injectivity in the
model theory of modules, where we say that an inclusion N → M of modules is
pure if, for every pp formula φ in n free variables2, we have φ(N) = Nn ∩φ(M).
The key role of pp formulas is also seen in that they are exactly those whose
solution sets are preserved by R-linear maps: if f : M → N is a homomorphism
of R-modules then fφ(M) ≤ φ(N).

With elimination of quantifiers to hand, Garavaglia introduced (e.g. [5]) new
ideas and connections with algebra which inspired the fundamental paper [22]
of Ziegler. The area has subsequently seen yet further transformations as well as
many algebraic applications, for which one may look at [8] for model theory per
se and at [9] for the more algebraic/category-theoretic form of the theory and
many applications. Since then, there has been further widening in viewpoint, for
which one many consult [11,12].

In a short paper one can say little of all that has been done but, for the
purpose in hand, we pick out a couple of important aspects.

One is the extension of the theory to apply to multisorted modules, that is,
modules over rings with many objects or, said otherwise, additive functors from
a skeletally small preadditive category R to the category Ab of abelian groups.
This viewpoint is explained in [13] and below, in Sect. 4, we give the details that
we will need here. A preadditive category with one object is simply a ring and an
additive functor from that to Ab is exactly a module over that ring. Essentially
everything about modules, and about the model theory of modules, extends,
almost without change, to the general case of such “multisorted modules”. The
requirement that the preadditive category R be skeletally small, that is, to have
just a set of objects up to isomorphism, avoids set-theoretic difficulties. Model-
theoretically, the change in moving from modules over rings to modules over
rings with many objects is that we use a multisorted language with at least one
sort for each isomorphism class of object of R; we will see some examples later.

An important notion is that of a definable category. If M is the category of
modules over a ring (or, more generally, over a ring with many objects), then a
definable subcategory of M is the full subcategory on a class of modules which
is closed under isomorphism, direct products, direct limits and pure submodules.
We also use the term for the underlying class of objects.

Theorem 2. If M is the category of modules over a ring (or over a skeletally
small preadditive category), then the following conditions are equivalent on a
class D of modules:

(i) D is a definable subcategory, that is, closed in M under isomorphism, direct
products, direct limits and pure submodules;

2 In fact, [18], see [9, 2.1.6], it is enough to check for n = 1.
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(ii) D is the class of models of a theory which is axiomatised by sentences of
the form ∀x (φ → ψ) where ψ, φ are pp formulas (in free variables x);

(iii) D is an axiomatisable class of modules satisfying D = Add(D) (in fact
D = add(D) is enough).

By Add(D), respectively add(D), we mean the closure of D under direct
summands and arbitrary, resp. finite, direct sums.

By a definable category we mean one which is equivalent to a definable
subcategory of some module category. It has turned out that definable categories
are the natural context for the model theory of modules, in the sense that the
techniques apply, and the general results which hold for modules also hold (with
minor modifications) in any definable category. Furthermore, the model theory
of any definable category D is intrinsic, in the sense that an appropriate language
and theory for which D is the category of models, may be defined just from the
category structure of D (see [10, Chap. 12]).

3 Presheaves and Sheaves of Modules

Let X be a topological space. We use the notation X also for the underlying set
of the topology and we write OpX for the poset of open subsets of X, ordered by
inclusion. We can regard OpX as a category with objects being the open sets and
a (unique) arrow from V to U iff V ⊆ U . Let C be a category of structures - for
example the category of abelian groups, or rings, or commutative rings with 1.

A presheaf F of structures from C over X is given by the following data:

• for each open subset U of X, an object FU of C;
• for each inclusion of open subsets V ⊆ U of X, a morphism rF

UV = rUV :
FU → FV , usually referred to as a restriction map, of C,
such that:

• for every open set U , rUU is the identity map idFU of FU and
• given open sets W ⊆ V ⊆ U we have rUW = rV W rUV .

In other words, a presheaf in C over X is a contravariant functor from the
poset OpX , regarded as a category, to C. From that point of view, a morphism
f : F → G of presheaves is defined simply to be a natural transformation, that
is, an OpX -indexed set (fU : FU → GU)U of morphisms of C such that, for
every inclusion V ⊆ U the following diagram commutes.

FU
fU ��

rF
UV

��

GU

rG
UV

��
FV

fV

�� GV

Thus we obtain the category of presheaves of C-objects over X and morphisms
between them.
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In particular, if C is the category of associative rings with 1 then we obtain
the notion of a presheaf of rings.

As a specific example, take X to be the unit circle S1 ⊆ R
2 in the real plane

with its usual topology, and define a presheaf of rings by assigning, to each open
subset U of S1, the ring C(U,R) of continuous functions from U to R, and by
assigning, to an inclusion V ⊆ U of open subsets of S1, the map from C(U,R)
to C(V,R) which takes a continuous function on U to its restriction to V . It is
easily checked that this is indeed a presheaf of rings. In fact it is a sheaf in the
sense of the following definition, which we state in a form which applies when
the category C is a category of sets with structure. In that case we refer to the
elements of FU , where F is a presheaf and U an open set, as sections (of F )
over U .

A presheaf F on a space X is a sheaf if:

• given an open cover U =
⋃

λ Uλ of an open set U ⊆ X, and given, for
each λ, some section sλ ∈ FUλ, if, for every λ, μ, we have rUλ,Uλ∩Uμ

(sλ) =
rUμ,Uλ∩Uμ

(sμ), then there is a section s ∈ FU such that, for every λ, the
restriction of s to Uλ is sλ, that is, rU,Uλ

(s) = sλ, and
• given an open cover U =

⋃
λ Uλ of an open set in X, and given sections

s, t ∈ FU which agree on each member of the cover - that is, if, for each λ we
have rUUλ

(s) = rUUλ
(t) - then s = t.

The second condition says that sections which locally agree (that is, agree
on some open cover) must be equal; in the case that the objects of C have an
underlying abelian group structure then it is enough to take t = 0. The first
condition says that sections on a cover may be glued together to make a section
on the set being covered provided that they agree on the intersections; if the
second condition also holds, then there is a unique such section.

Given a presheaf F over a space X, with values in a category C which has
direct limits (that is, directed colimits) and given a point x ∈ X, we define the
stalk of F at x to be Fx = lim−→U�x

FU , the direct limit being taken over the
directed (by intersection) system of open subsets that contain x. In the example
above, of continuous functions on open subsets of the circle S1, the stalk at a
point x ∈ S1 is the ring of so-called “germs” of continuous functions at x.

Now we come to our main definition, that of a sheaf of modules.
Suppose that RX = (X,R) is a ringed space, that is a sheaf R of rings

(associative with 1 under our conventions) over a topological space X. For each
open subset U ⊆ X we have the ring RU and the corresponding category, which
we denote by Mod-RU , of right modules over RU and for every point x ∈ X we
have the ring Rx and its corresponding category Mod-Rx of right modules. We
will use the notations R and RX fairly interchangeably.

We define a (right) RX -premodule to be a presheaf M which assigns to
each open subset U ⊆ X a right RU -module MU such that, for each inclusion
V ⊆ U of open subsets, the restriction rM

UV : MU → MV is a homomorphism of
RU -modules, where we regard MV as an RU -module via restriction of scalars
along the ring homomorphism rRX

UV : RU → RV . Strictly speaking this is not, as
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defined, a presheaf in the sense of our earlier definition since the category where
M takes values varies with U ! But there are ways around this - for example we
could just let M take values in the category of abelian groups and then add
extra conditions concerning the actions of the elements of the various RU . In
any case, it is convenient to think of the codomain category as varying. Note
that the stalk Mx at a point x will be a right RX,x-module.

A morphism f : M → N of RX -premodules is, if we regard M and N as
functors, a natural transformation, that is, for each open set U , an RU -linear
map fU : MU → NU such that, if V ⊆ U are open, then the diagram commutes.

MU
fU ��

rM
UV

��

NU

rN
UV

��
MV

fV

�� NV

One may check that such a morphism induces, at each x ∈ X, an RX,x-linear
map Mx → Nx of stalks at x. These definitions give us the category PreMod-RX

of RX -premodules. It is an abelian3 category and, is in fact, Grothendieck and
locally finitely presented. We will examine the reason for the latter since it leads
directly to setting up the model theory of such structures. We denote by Mod-RX

the category of sheaves of modules - the full subcategory of PreMod-RX with
objects those presheaves of modules which are actually sheaves. This also is
abelian and Grothendieck, but is not always locally finitely presented, though in
many important cases it is.

Bundling together the stalks of a sheaf gives an alternative view of a sheaf.
Given a sheaf F , we form the disjoint union of the stalks Fx, for x ∈ X of F . This
union is then given a topology which locally looks like that of X (see, e.g., [21] for
details) and the sections FU of F at an open set U then become the continuous
maps s, from U to the resulting étalé space, which are such that πs = idU where
π is the projection map from the étalé space to X which takes an element of Fx

to the point x (and idU is the identity map on U). One more piece of notation:
if F is a sheaf of additive structures then we define the support of a section
s ∈ FU to be the set, supp(s) = {x ∈ X : sx �= 0}, of points where the image sx

of s in Fx, under the natural map FU → Fx, is nonzero.

4 Model Theory for Presheaves of Modules

A category C is said to be finitely accessible (see [1]) if it has direct limits, if
there is, up to isomorphism, just a set of finitely presented objects of C and if
every object of C is a direct limit of finitely presented objects, where an object
A ∈ C is finitely presented if the functor C(A,−), which we abbreviate as
(A,−), commutes with direct limits. This is equivalent to the object A being

3 We will not present background on abelian category theory here but there are many
suitable references, for example [4,20].
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“finitely generated and finitely related” in C if those terms make sense in C (for
instance, if C is the category of rings, or of groups, or of modules over a ring).

To expand on the condition that the representable functor (A,−) commute
with direct limits, this means that, given any directed system, ((Cλ)λ∈Λ, (fλμ :
Cλ → Cμ)λ≤μ∈Λ) with direct limit (C, (fλ∞ : Cλ → C)λ) - so fμ∞fλμ = fλ∞
for all λ ≤ μ - and given any g : A → C, there is λ′ and g′ : A → Cλ′ such
that fλ′∞g′ = g. Moreover, such a factorisation must be essentially unique in
the sense that, if also there is λ′′ and g′′ : A → Cλ′′ such that fλ′′∞g′′ = g, then
there is μ ≥ λ′, λ′′ such that fλ′μg′ = fλ′′μg′′.

We denote by Cfp the full subcategory of finitely presented objects of C. If
C is finitely accessible and both complete and cocomplete then it is a locally
finitely presented category. Both the category all presheaves and of all sheaves
of modules over a ringed spaces are complete and cocomplete, so we will use the
terms finitely accessible and locally finitely presented interchangeably for these.

The fact that, for any ringed space RX , PreMod-RX is locally finitely pre-
sented is a special case of a general fact for functor categories and, as in that
general case, it is the representable functors which provide a generating collection
(a set up to isomorphism since OpX has just a set of objects) of finitely presented
presheaves. We describe these representable functors in specific presheaf terms.

Let U ∈ OpX be any open subset of X and let j : U → X denote the inclusion
map. We define the presheaf j0RU as follows (we will explain the notation after
that):

j0RU (V ) =

{
R(V ) if V ⊆ U

0 otherwise
.

Here j0 denotes a functor from PreMod-RU to PreMod-RX and RU denotes the
restriction, RX |U , of RX to U . For any presheaf F on a space X and open subset
U of X, the restriction of F to U is the presheaf F |U on U which is given by
F |UV = FV for V an open subset of U .4 It is direct from the definition that
the restriction of a sheaf is again a sheaf. For any G ∈ PreMod-RU the presheaf

j0 defined by j0G · V =

{
GV if V ⊆ U

0 otherwise
is the extension by 0 of G (to a

presheaf on X).

Proposition 1 (e.g. [2, p. 7 Proposition 6]). If RX is any ringed space, then
the category PreMod-RX of presheaves of RX-modules is abelian Grothendieck
and locally finitely presented, with the j0RU , for U ∈ OpX being a generating
set of finitely presented objects.

By a generating set G of objects of an Grothendieck abelian category C we
mean that for every object C ∈ C there is an exact sequence H ′ → H → C → 0
where H ′,H are direct sums (possibly infinite) of copies of objects in G. We
do not mean that it is lim−→-generating (in the sense of the definition of finitely
accessible category). But, if G is a set of finitely presented objects which is

4 In category-theoretic terms it is the restriction of the contravariant functor F to the
full subcategory on the objects with a morphism to U .
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generating in the sense just defined, then C ∈ C will be finitely presented iff
there is such a presentation where both H ′ and H are finite direct sums of
copies of objects in G and it is the case that the collection of finitely presented
objects of C will be lim−→-generating in C, so C will be finitely accessible (indeed
locally finitely presented).

The basic idea for setting up (finitary) model theory in any finitely accessible
category (with products) C is that, since every object C ∈ C is determined by
the morphisms to it from finitely presented objects, we take these morphisms
to be the “elements” of C. But morphisms with different domains should be
elements of different kinds - formally of different sorts. This means that the
formal language we set up is naturally multisorted, with one sort, σA say, for
each finitely presented object A of C and with the elements of C ∈ C of sort σA

being the elements of the set, (A,C), of morphisms from A to C. We should use a
set G (rather than a proper class) of sorts, so we restrict A to range over some set
of finitely presented objects which contains at least one copy (to isomorphism)
of each finitely presented object. This gives us the sorts of our language for
C. It does not depend, in any way that matters, on the actual choice of set of
finitely presented objects that we use, as long as it has a copy of each (or indeed,
“enough”) of the finitely presented objects.

We also introduce function symbols, one for each morphism between objects
in our chosen set G of finitely presented objects. If f : A → B is such a morphism,
then the corresponding function symbol, for which we will use the same symbol
f , has domain σB and codomain σA, reflecting the direction of the induced
morphism (f,−) : (B,−) → (A,−), given by g 
→ gf (where f ∈ (B,C) for any
C ∈ C), between representable functors.

This viewpoint on what are the “elements” of a structure might seem unfa-
miliar but it is exactly what is seen in the basic fact from module theory that
a module M over a ring R is isomorphic to the module5 of homomorphisms
(RR,M) from RR, meaning R regarded as a right R-module, to M . That is
because each homomorphism is determined by the image of 1 and every element
of M is such an image.

For example, under this expanded viewpoint, if we take a direct product R(n)

of copies of RR, then the “elements” of a module M of sort R(n) are exactly the
n-tuples of elements of M . More generally, if A is a finitely presented module,
then the elements of a module M in sort A (that is, of σAM) could be regarded
as the n-tuples (if A is n-generated) of elements of M which satisfy certain
R-linear relations, namely those which generate all the R-linear relations on a
chosen generating set of n elements for A.

This example of modules also shows that it is not necessary to represent every
isomorphism class of finitely presented object when setting up the language -
it is enough to have a set of sorts corresponding to a set of finitely presented
objects which generate the category in the sense defined after Proposition 1 (that
refers to the special case of a Grothendieck abelian category, but it is such
categories with which we will be concerned). Any two such languages set up

5 It is a right module via the left action of R on the module RR.
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using generating sets will be inter-interpretable (each formula in the one language
can be translated to an equivalent formula in the other), so will give the same
model theory for the structures in C. In the case of categories, PreMod-RX , of
presheaves we will use the representable functors - the extensions by 0 - defined
above. Let us return now to this case.

The presheaves j0RU as U ranges over subsets of X form a generating set of
finitely presented objects of PreMod-RX , so we will use these, hence the open
subsets of X, to index the sorts of our language for PreMod-RX . We should
describe the functors (j0RU ,−) and the morphisms between them in order to
understand something of what can be expressed in this language.

Lemma 1. Suppose that RX is a ringed space. Let j : U → X be the inclusion
of an open subset in X, let F ∈ PreMod-RU and let G ∈ PreMod-RX . Then
there is a natural isomorphism of groups (j0F,G) � (F,G|U ).

If U is an open subset of X, then the functor (j0RU ,−) is, in the view
of presheaves as contravariant functors on OpX , the representable functor cor-
responding to U ∈ OpX hence, by the Yoneda Lemma, (j0RU , G) � GU .
In particular, if U,W are arbitrary open subsets of X, then (j0RU , j0RW ) �
j0RW · U =

{
RXU if U ⊆ W

0 otherwise
. We can understand this application of the

Yoneda Lemma more algebraically by noting that j0RU is generated by the
section 1U ∈ j0RU · U = RXU , in the sense that, for every open subset V of U ,
the image, rUV (1U ), of 1U under the restriction map from U to V , is equal to
1V ∈ RXV , which generates RXV = j0RU · V as an RXV -module. Therefore
any morphism f : j0RU → G|U will be determined by the image fU (1U ) ∈ GU
where fU is the component of f at U .

Thus, if we use the language for PreMod-RX based on the generating set
(j0RU )U∈OpX

, then the function symbols of the language, beyond those used to
express the abelian group structure of each sort σU = (j0RU ,−) are as follows:
given open subsets U,W of X then, if U ⊆ W the function symbols from sort
σW to sort σU are naturally indexed by the elements of RXU , otherwise there
is only the zero function symbol from σW to σU .

Using the Yoneda Lemma as above, we can explicitly describe the interpre-
tations of these function symbols, as follows.

Given open sets U ⊆ W and t ∈ RXU , regarded (as above) as an element
of j0RW · U , hence as a morphism from j0RU to j0RW , and given any G ∈
PreMod-RX , we have the following diagram in PreMod-RX showing the action
of t:

j0RU
t ��

rW U s·t
��

j0RW

s

��
G



98 M. Prest

namely t : (j0RW , G) = GW = σW G → (j0RU , G) = GU = σUG, takes a
section s ∈ GW to its restriction to U followed by multiplication by t - the
result is a section in GU .

We can regard these actions, as multiplications by elements of a ring with
many objects (see [13], also [12], for this point of view). Thus the RX -presheaves
become “modules over a ring with many objects” and, in fact (see [13] for an
overview, [9] for details) the model theory of modules over the usual, 1-sorted,
rings is applicable in its entirety. Let us give some examples (also see [14] and
[17]) of what one can say with this language. After that, we will move on to the
category of RX -sheaves.

First, a notational point. If V ⊆ U are open then, in any presheaf, F , the
restriction map rF

UV is the interpretation of a function symbol r (from sort σU

to σV ) in the language. The functional notation for the value of this map on a
section a ∈ FU is rUV (a), whereas the right module notation is ar. In practice,
since perhaps the meaning is clearer, we shall use the former, functional notation,
but bear in mind that it is naturally written in the module language as a right
multiplication.

A presheaf F is said to be separated if, for every open set U , open cover
(Uλ)λ of U and sections s, t ∈ FU , if, for every λ we have rUUλ

(s) = rUUλ
(t)

then s = t (that is, if sections agree locally, then they are equal). Of course in
the additive situation, it is enough to consider the case where t = 0. Given such
an open set and open cover of it, note that there is a possibly infinitary sentence
-

∀x, y
(( ∧

λ

rUUλ
(x) = rUUλ

(y)
) → (x = y)

)

- which expresses this condition (where the variables have sort σU ). If the cover
is, or may be taken to be, finite (so, in particular if U is compact) then this
will be, or be equivalent to, a sentence of finitary model theory. As we let these
sentences range over all open sets and open covers (finite if possible), then we
see that the property of being a separated presheaf is expressible in an infinitary
version of our language, finitary if every open set is compact (that is, if the
space is noetherian). We deduce that over any noetherian space the category
of separated presheaves is definable in the sense discussed in Sect. 2.

The other condition necessary for a presheaf F to be a sheaf is that, given any
open set U , open cover (Uλ)λ of U and set (sλ ∈ FUλ)λ of compatible sections
(meaning that, for every λ, μ, rF

Uλ,Uλ∩Uμ
(sλ) = rF

Uμ,Uλ∩Uμ
(sμ)), there is s ∈ FU

such that rF
UUλ

(s) = sλ for every λ. We see that this can be expressed by the
sentence, infinitary if the cover is infinite,

∀(xλ)λ

( ∧

λμ

rUλ,Uλ∩Uμ
(xλ) = rUμ,Uλ∩Uμ

(xμ)
) → (∃x

∧

λ

rUUλ
(x) = xλ

))

(where the variable xλ has sort σλ and x has sort σU ). These sentences, ranging
over open sets and covers, therefore axiomatise the glueing property. Combin-
ing this with the observations on the separation property, we deduce that over
any noetherian space the category of sheaves is a definable subcategory of the
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category of presheaves (one may also prove the converse, so this characterises
noetherian spaces - see [15, 3.12]). But we will see in the next section that it
is possible for the category of sheaves to be definable (that is a definable sub-
category of some category of multisorted modules), without necessarily being a
definable subcategory of the category of presheaves.

For another example of what can be expressed using this language, if U is any
open set then the (closure under isomorphism) of the class of presheaves of the
form j0F for some F ∈ PreMod-RU is axiomatised by the set of sentences of the
form ∀xV (xV = 0) where V ranges over the open sets which are not contained
in U (and the notation xV indicates that x is a variable of sort σV ).

As yet another type of example, the constant presheaves (those such that
each restriction map is an isomorphism) are axiomatised by the set of sentences
of the form

(∀y ∃x (y = rUV (x))
) ∧ (∀x (rUV (x) = 0V → x = 0U )

)
as V,U range

over open subsets with V ⊆ U , where x has sort σU , y has sort σV and the
subscripts on the constant symbols 0 indicate their sort.

5 Model Theory for Sheaves of Modules

There is a canonical functor, sheafification, which turns each presheaf F into
the sheaf aF which best approximates it in the category of sheaves. More pre-
cisely, sheafification is left adjoint to the forgetful functor (that is, the inclusion)
u : Mod-RX → PreMod-RX . So for every F ∈ PreMod-RX and M ∈ Mod-RX

there are natural isomorphisms (F, uM) � (aF,M). Roughly, aF is formed from
F by first identifying every two sections which agree on some open cover, so
as to obtain a separated presheaf, then adding, as new sections, the results of
glueing together compatible families of sections. In the context of presheaves of
modules, sheafification is localisation in the sense of Gabriel (see [20]). For, the
presheaves F such that, for every U ∈ OpX and section s ∈ FU , there is an
open cover of U such that each restriction of s is zero, are exactly those whose
sheafification aF = 0, and these form a hereditary torsion class of presheaves,
localisation with respect to which is the sheafification functor.

In the particular case where the space X is noetherian, this is a finite-type
localisation [15, 3.8], which has the consequence that the sheaves form an axioma-
tisable, indeed, definable, subcategory of PreMod-RX [15, 3.12]. In that case,
therefore, the language for presheaves described above also may be used for
developing the model theory of Mod-RX since the objects in the latter category
form an elementary class of presheaves. But it is not necessary that X be noethe-
rian in order to have a good model theory for sheaves; a basis B of compact open
sets closed under intersection is enough [16, 3.3] since, in that case, the category
Mod-RX of sheaves is locally finitely presented [16, 3.5]. That is, rather than
indexing the sorts of the language using all open sets, it is enough to use those
from B. Because we are using finitary model theory, we need such a basis con-
sisting of compact open sets. That is because our “elements” of sorts of sheaves
- that is, sections over open sets in the basis - should be “finitary elements”,
meaning that if such an element belongs to a directed sum or union, then it
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belongs to some member of that sum or union. Having just a basis of compact
sets is enough because sections are locally determined. The requirement that
B be closed under intersection enables us to write the compatibility-of-sections
condition in the resulting formal language. We give some details, but quite briefly
since they are very similar to those seen for presheaves.

Suppose then that B is a basis, closed under intersection, of open sets for
the topology on X. Then it turns out that the sheaves j!RU for U ∈ B form a
generating set of finitely presented objects of Mod-RX . Here j!RU denotes the
sheafification, a(j0RU ), of j0RU ; it is the sheaf extension by 0 of RU to X. In
general, if G ∈ Mod-RU then its sheaf extension, j!G, by 0 to X may be defined
by

j!G(V ) = {s ∈ G(V ∩ U) : supp(s) is closed in V }.

The functor j! from Mod-RU to Mod-RX is left adjoint to the restriction-to-U
functor, so (j!G,F ) � (G,F |U ) for G ∈ Mod-RU and F ∈ Mod-RX , and j! is
an equivalence between Mod-RU and the subcategory of Mod-RX consisting of
the sheaves which have support contained in U (see [7, pp. 106/7]). Thus the
j!RU play a very similar role in Mod-RX to that played in PreMod-RX by the
j0RU . But, in contrast to the presheaves j0RU , they are not necessarily finitely
presented. However:

Proposition 2 ([16, 3.7]). If X has a basis, closed under intersection, of com-
pact open subsets and if U is compact open, then j!RU is a finitely presented
sheaf.

Furthermore, we don’t need all the j!RU in order to generate Mod-RX :

Proposition 3 ([16, 3.2]). If B is a basis of open subsets for the topology on X
then the j!RU for U ∈ B together generate Mod-RX .

Corollary 1 ([16, 3.5]). If (X,RX) is a ringed space and if B is a basis, closed
under intersection, of compact open subsets of X, then the category Mod-RX

of RX-modules is locally finitely presented, with the j!RU , for U ∈ B forming a
generating set of finitely presented objects.

In that case therefore, having fixed such a basis B, what we have said about
the multisorted model theory for a locally finitely presented category applies, to
give us a language LB for RX -modules. This language has a sort for each U ∈ B
and a function symbol for each morphism in each (j!RU , j!RV ) with U, V ∈ B.
Given any F ∈ Mod-RX , the resulting LB-structure has value (j!RU , F ) � FU
in sort σU and the description of the interpretations of the function symbols of
LB as maps between these sorts is similar to that for presheaves. Namely ([14,
p. 1189, 1.4]) the elements of (j!RU , j!RV ) may be identified with the sections
r of RU∩V which have support closed in U and the action of such r (that is,
the interpretation of the corresponding function symbol on a sheaf F ), regarded
as a map from FV to FU , is restriction from FV to F (U ∩ V ), followed by
multiplication by r regarded as an element of RU∩V , followed by inclusion in
FU .
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We remark that in many examples, in particular those typically seen in alge-
braic geometry, it will be the case that the underlying space X has a basis of com-
pact open sets which is closed under intersection, hence the category Mod-RX

will be locally finitely presented and we will have a good, finitary, model theory
of sheaves. Indeed, in many examples, every open set will be compact, therefore
sections over any open set can be referred to by variables in our language.

One can see a variety of examples of what can be expressed about sheaves
using this language in [14], where strongly minimal sheaves are considered and
there is some comparison of stalkwise, local and global properties. There are also
many examples of definable subcategories (and definable = interpretation func-
tors between them) in the recent paper [17], though that paper uses alternative,
algebraic, characterisations of these concepts rather than explicitly introducing
the formal language.
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(i).
C. R. Acad. Sci. Paris 276, 1651–1653 (1973)

7. Iversen, B.: Cohomology of Sheaves. Springer, Heidelberg (1986). https://doi.org/
10.1007/978-3-642-82783-9

8. Prest, M.: Model Theory and Modules. London Mathematical Society Lecture Note
Series, vol. 130. Cambridge University Press, Cambridge (1988)

9. Prest, M.: Purity, Spectra and Localisation. Encyclopedia of Mathematics and its
Applications, vol. 121. Cambridge University Press, Cambridge (2009)

10. Prest, M.: Definable Additive Categories: Purity and Model Theory. Memoirs of
the American Mathematical Society, vol. 210/no. 987. American Mathematical
Society, Providence (2011)

11. Prest, M.: Abelian categories and definable additive categories. arXiv:1202.0426
12. Prest, M.: Modules as exact functors. In: Proceedings of 2016 Auslander Distin-

guished Lectures and Conference, Contemporary Mathematics, vol. 716. American
Mathematical Society. arXiv:1801.08015 (to appear)

13. Prest, M.: Multisorted modules and their model theory. In: Contemporary Math-
ematics. arXiv:1807.11889 (to appear)

14. Prest, M., Puninskaya, V., Ralph, A.: Some model theory of sheaves of modules.
J. Symbolic Logic 69(4), 1187–1199 (2004)

15. Prest, M., Ralph, A.: On sheafification of modules. Preprint, University of Manch-
ester (2001). Revised 2004. https://personalpages.manchester.ac.uk/staff/mike.
prest/publications.html

https://doi.org/10.1007/BFb0073030
https://doi.org/10.1007/BFb0073030
https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/10.1007/978-3-642-82783-9
http://arxiv.org/abs/1202.0426
http://arxiv.org/abs/1801.08015
http://arxiv.org/abs/1807.11889
https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html
https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html


102 M. Prest

16. Prest, M., Ralph, A.: Locally finitely presented categories of sheaves of mod-
ules. Preprint, University of Manchester (2001). Revised 2004 and 2018. https://
personalpages.manchester.ac.uk/staff/mike.prest/publications.html
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