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Abstract. We consider multi-agent systems where agents actions and
beliefs are determined aleatorically, or “by the throw of dice”. This sys-
tem consists of possible worlds that assign distributions to independent
random variables, and agents who assign probabilities to these possible
worlds. We present a novel syntax and semantics for such system, and
show that they generalise Modal Logic. We also give a sound and com-
plete calculus for reasoning in the base semantics, and a sound calculus
for the full modal semantics, that we conjecture to be complete. Finally
we discuss some application to reasoning about game playing agents.
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Multi-agent systems

1 Introduction

This paper proposes a probabilistic generalisation of modal logic for reasoning
about probabilistic multi-agent systems. There has been substantial work in this
direction before [1,6,13]. However, here, rather than extending a propositional
modal logic with the capability to represent and reason about probabilities, we
revise all logical operators so that they are interpreted probabilistically. Thus we
differentiate between reasoning about probabilities and reasoning probabilistically.
Interpreting probabilities as epistemic entities suggests a Bayesian approach [2],
where agents assess the likelihood of propositions based on a combination of
prior assumptions and observations.

We provide a lightweight logic, the aleatoric calculus, for reasoning about sys-
tems of independent random variables, and give an extension, the modal aleatoric
calculus for reasoning about multi-agent systems of random variables. We show
that this is a true generalisation of modal logic and provide some initial proof
theoretic results. The modal aleatoric calculus allows agents to express strate-
gies in games or theories of how other agents will act, and we present a basic
demonstration of this.

2 Related Work

There has been significant and long-standing interest in reasoning about prob-
ability and uncertainty, to apply the precision of logical deduction in uncertain
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and random environments. Hailperin’s probability logic [9] and Nilsson’s prob-
abilistic logic [16] seek to generalise propositional, so the semantics of true and
false are replaced by probability measures. These approaches in turn are gener-
alised in fuzzy logics [19] where real numbers are used to model degrees of truth
via T-norms. In [18] Williamson provide an inference system based on Bayesian
epistemology.

These approaches lose the simplicity of Boolean logics, as deductive systems
must deal with propositions that are not independent. This limits their practi-
cality as well defined semantics require the conditional probabilities of all atoms
to be known. However, these approaches have been successfully combined with
logic programming [12] and machine learning [3]. Feldman and Harel [7] and
Kozen [14] gave a probabilistic variation of propositional dynamic logic for rea-
soning about the correctness of programs with random variables. Importantly,
this work generalises a modal logic (PDL) as a many valued logic.

More general foundational work on reasoning probabilistically was done by
de Finetti [4] who established an epistemic notion of probability based on what
an agent would consider to be a rational wager (the Dutch book argument). In
[15], Milne incorporates these ideas into the logic of conditional events. Stalnaker
has also considered conditional events and has presented conditional logic [17].
Here, conditional refers to the interpretation of one proposition being contingent
on another, although this is not quantified nor assigned a probability.

The other approach to reasoning about uncertainty is to extend traditional
Boolean and modal logics with operators for reasoning about probabilities.
Modal and epistemic logics have a long history for reasoning about uncertainty,
going back to Hintikka’s work on possible worlds [11]. More recent work on
dynamic epistemic logic [5] has looked at how agents incorporate new informa-
tion into their belief structures. There are explicit probabilistic extensions of
these logics, that maintain the Boolean interpretation of formulae, but include
probabilistic terms [6,10]. Probabilistic terms are converted into Boolean terms
through arithmetic comparisons. For example, “It is more likely to snow than it is
to rain” is a Boolean statement, whereas the likelihood of snow is a probabilistic
statement.

3 Syntax and Semantics

We take a many-valued approach here. Rather than presenting a logic that
describes what is true about a probabilistic scenario, we present the Modal
Aleatoric Calculus (MAC) for determining what is likely. The different is sub-
tle: In probabilistic dynamic epistemic logic [13] it is possible to express that
the statement “Alice thinks X has probability 0.5” is true; whereas the calcu-
lus here simply has a term “Alice’s expectation of X” which may have a value
that is greater than 0.5. We present a syntax for constructing complex terms in
this calculus, and a semantics for assignment values to terms, given a particular
interpretation or model.
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3.1 Syntax

The syntax is given for a set of random variables X, and a set of agents N . We
also include constants � and ⊥. The syntax of the dynamic aleatoric calculus,
MAC, is as follows:

α:: = x | � | ⊥ | (α?α :α) | (α |α)i

where x ∈ X is a variable and i ∈ N is a modality. We typically take an epistemic
perspective, so the modality corresponds to an agent’s beliefs. As usual, we let
v(α) refer to the set of variables that appear in α. We refer to � as always and
⊥ as never. The if-then-else operator (α?β : γ) is read if α then β else γ and
uses the ternary conditional syntax of programming languages such as C. The
conditional expectation operator (α |β)i is modality i’s expectation of α given β
(the conditional probability i assigns to α given β).

3.2 Semantics

The modal aleatoric calculus is interpreted over probability models similar to the
probability structures defined in [10], although they have random variables in
place of propositional assignments.

Definition 1. Given a set S, we use the notation PD(S) to notate the set of
probability distributions over S, where μ ∈ PD(S) implies: μ : S −→ [0, 1]; and
either Σs∈Sμ(s) = 1, or Σs∈Sμ(s) = 0. In the latter case, we say μ is the empty
distribution.

Definition 2. Given a set of variables X and a set of modalities N , a proba-
bility model is specified by the tuple P = (W,π, f), where:

– W is a set of possible worlds.
– π : N −→ W −→ PD(W ) assigns for each world w ∈ W and each modality

i ∈ N , a probability distribution πi(w) over W . We will write πi(w, v) in place
of π(i)(w)(v).

– f : W −→ X −→ [0, 1] is a probability assignment so for each world w, for
each variable x, fw(x) is the probability of x being true.

Given a model P we identify the corresponding tuple as (WP , πP , fP ). A pointed
probability model, Pw = (W,π, f, w), specifies a world in the model as the point
of evaluation.

We note that we have not placed any restraints on the function π. If π were
to model agent belief we might expect all worlds in the probability distribution
πi(w) to share the same probability distribution of worlds. However, at this stage
we have chosen to focus on the unconstrained case.

Given a pointed model Pw, the semantic interpretation of a MAC formula
α is Pw(α) ∈ [0, 1] which is the expectation of the formula being supported
by a sampling of the model, where the sampling is done with respect to the
distributions specified by π and f .
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Definition 3. The semantics of the modal aleatoric calculus take a pointed prob-
ability model, fw, and a proposition defined in MAC, α, and calculate the expec-
tation of α holding at Pw. Given an agent i, a world w and a MAC formula α,
we define i’s expectation of α at w as

Ei
w(α) =

∑

u∈W

πi(w, u) · Pu(α).

Then the semantics of MAC are as follows:

Pw(�) = 1 Pw(⊥) = 0 Pw(x) = fw(x)
Pw((α?β :γ)) = Pw(α) · Pw(β) + (1 − Pw(α)) · Pw(γ)

Pw((α |β)i) = Ei
w(α∧β)
Ei

w(β) if Ei
w(β) > 0 and 1 otherwise

We say two formulae, α and β, a semantically equivalent (written α ∼= β) if for
all pointed probability models Pw we have Pw(α) = Pw(β).

The concept of sampling is intrinsic in the rational of these semantics. The
word aleatoric has its origins in the Latin for dice-player (aleator), and the
semantics are essentially aleatoric, in that they use dice (or sample probability
distributions) for everything. If we ask whether a variable is true at a world,
the variable is sampled according to the probability distribution at that world.
Likewise, to interpret a modality the corresponding distribution of worlds is
sampled, and the formula is evaluated at the selected world. However, we are not
interested in the result of any one single sampling activity, but in the expectation
derived from the sampling activity.

This gives us an interesting combination approaches for understanding prob-
ability. Aleatoric approaches appeal to frequentist interpretations of probability,
where likelihoods are fixed and assume arbitrarily large sample sizes. This con-
trasts the Bayesian approach where probability is intrinsically epistemic, where
we consider what likelihood an agent would assign to an event, given the evidence
they have observed. Our approach can be seen as an aleatoric implementation
of a Bayesian system. By this we mean that: random variables are aleatoric,
always sampled from a fixed distribution, and modalities are Bayesian, always
conditioned on a set of possible worlds.

The if-then-else operator, (α?β :γ), can be imagined as a sampling protocol.
We first sample α, and if α is true, we proceed to sample β and otherwise we
sample γ. We imagine an evaluator interpreting the formula by flipping a coin: if
it lands heads, we evaluate β; if it lands tails, we evaluate γ. This corresponds to
the additive property of Bayesian epistemology: if A and B are disjoint events,
then P (A or B) = P (A) + P (B) [2]. Here the two disjoint events are α and β
and ¬α and γ, but disjointedness is only guaranteed if α and ¬α are evaluated
from the same sampling.

The conditional expectation operator (α | β)i expresses modality i’s expec-
tation of α marginalised by the expectation of β. This is, as in the Kolmogorov
definition of conditional probability, i’s expectation of α∧β divided by i’s expec-
tation of β. The intuition for these semantics corresponds to a sampling protocol.
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The modality i samples a world from the probability distribution and samples
β at that world. If β is true, then i samples α at that world and returns the
result. Otherwise agent i resamples a world from their probability distribution,
and repeats the process. In the case that β is never true, we assign (α | β)i

probability 1, as being vacuously true.

Abbreviations: Some abbreviations we can define in MAC are as follows:

α ∧ β = (α?β :⊥) α ∨ β = (α?� :β) α → β = (α?β :�) ¬α = (α?⊥ :�)
Eiα = (α |�)i �iα = (⊥|¬α)i

α
0
b = � α

a
b = ⊥ if b < a α

a
b = (α?α

a−1
b−1 :α

a
b−1 ) if a ≤ b

where a and b are natural numbers. We will show later that under certain circum-
stances these operators do correspond with their Boolean counterparts. However,
this is not true in the general case. The formula α∧β does not interpret directly
as α is true and β is true. Rather it is the likelihood of α being sampled as true,
followed by β being sampled as true. For this reason α ∧ α is not the same as α.
Similarly α ∨ β is the likelihood of α being sampled as true, or in the instance
that it was not true, that β was sampled as true.

The modality Eiα is agent i’s expectation of α being true, which is just
α conditioned on the uniformly true �. The operator �iα corresponds to the
necessity operator of standard modal logic, and uses a property of the condi-
tional operator: it evaluates (α |β)i as vacuously true if and only if there is no
expectation that β can ever be true. Therefore, (⊥ | ¬α)i can only be true if
modality i always expects ¬α to be false, and thus for the modality i, α is nec-
essarily true. The formula α

a
b allows us to explicitly represent degrees of belief

in the language. It is interpreted as α is true at least a times out of b. Note that
this is not a statement saying what the frequency of α is. Rather it describes the
event of α being true a times out of b. Therefore, if α was unlikely (say true 5%
of the time) then α

9
9 describes an incredibly unlikely event.

3.3 Example

We will give simple example of reasoning in MAC. Suppose we have an aleator
(dice player), considering the outcome of a role of a die. While the dice is fair, our
aleator does not know whether it is a four sided die or a six sided die. We consider
a single proposition: p1 if the result of throw of the die is 1. The aleator considers
two worlds equally possible: w4 where the die has four sides, and w6 where the
die has 6 sides. The probability model P = (W,π, f) is depicted in Fig. 1: We
can formulate properties such as “at least one of the next two throws will be a
1”: p

1
2
1 = (p1?� :p1). We can calculate Pw4(p

1
2
1 ) = 7

16 , while Pw6(p
1
2
1 ) = 11

36 . Now
if we asked our aleator what are the odds of rolling a second 1, given the first roll
was 1, we would evaluate the formula (p1 |p1)a (where a is our aleator), and in
either world this evaluates to 5

24 . Note that this involves some speculation from
the aleator.
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p1 : 1
4

w4

p1 : 1
6

w6

1
2

1
2

Fig. 1. A probability model for an aleator who does not know whether the die is four
sided (w4) or six sided (w6).

4 Axioms for the Modal Aleatoric Calculus

Having seen the potential for representing stochastic games, we will now look
at some reasoning techniques. First we will consider some axioms to derive con-
straints on the expectations of propositions, as an analogue of a Hilbert-style
proof system for modal logic. In the following section we will briefly analyse the
model checking problem, as a direct application of the semantic definitions.

Our approach here is to seek a derivation system that can generate equalities
that are always valid in MAC. For example, α ∧ β 	 β ∧ α will be satisfied by
every world of every model. We use the relation 	 to indicate that two formulae
are equivalent in the calculus, and the operator ∼= to indicate the expectation
assigned to each formula will be equal in all probability models. We show that
the calculus is sound, and sketch a proof of completeness in the most basic case.

4.1 The Aleatoric Calculus

The aleatoric calculus, AC, is the language of �, ⊥, x and (α?β : γ), where
x ∈ X. The interpretation of this fragment only depends on a single world and
it is the analogue of propositional logic in the non-probabilistic setting. The
axioms of the calculus are:

id x � x vacuous (x?� :⊥) � x
ignore (x?y :y) � y tree ((x?y :z)?p :q) � (x?(y?p :q) : (z?p :q))
always (�?x :y) � x swap (x?(y?p :q) : (y?r :s)) � (y?(x?p :r) : (x?q :s))
never (⊥?x :y) � y

We also have the rules of transitivity, symmetry and substitution for 	:

Trans : If α 	 β and β 	 γ then α 	 γ
Sym : If α 	 β then β 	 α
Subs : If α 	 β and γ 	 δ then α[x\γ] 	 β[x\δ]

where α[x\γ] is α with every occurrence of the variable x replaced by γ. We let
this system of axioms and rules be referred to as AC.

As an example of reasoning in this system, we will show that the commuta-
tivity of ∧ holds:

(x?y :⊥) 	 (x?(y?� :⊥) : (y?⊥ :⊥)) vacuous, ignore
	 (y?(x?� :⊥) : (x?⊥ :⊥)) swap
	 (y?x :⊥) vacuous, ignore
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The axiom system AC is sound. The majority of these axioms are simple
to derive from Definition 3, and all proofs essentially show that the semantic
interpretation of the left and right side of the equation are equal. The rules
Trans and Sym come naturally with equality, and the rule Subs follows because
at any world, all formulae are probabilistically independent.

We present arguments for the soundness of the less obvious tree and swap
in the long version of the paper [8].

Lemma 1. The axiom system AC is sound for AC.

Proof. This follows from Lemmas 2 and 3 presented in [8], and Definition 3.2.
Also, from the semantics we can see that the interpretation of subformulae are
independent of one another, so the substitution rule holds, and the remaining
rules follow directly from the definition of 	.

To show that AC complete for the aleatoric calculus, we aim to show that any
aleatoric calculus formula that are semantically equivalent can be transformed
into a common form. As the axioms of AC are equivalences this is sufficient to
show that the formulae are provably equivalent. The proofs are presented in the
long version of the paper.

A tree form Aleatoric Calculus formula is either atomic, or it has an atomic
random variable condition and both its left and right subformulae are in tree
form.

Definition 4. The set of all tree form Aleatoric Calculus formulae T ⊂ Φ is
generated by the following grammar:

ϕ:: = � | ⊥ | (x?ϕ :ϕ)

Lemma 2. For any Aleatoric Calculus formula there exists an equivalent
(by 	) tree form formula.

Definition 5. A path in a tree form aleatoric calculus formula is a sequence
of tokens from the set {x, x | x ∈ X} corresponding to the outcomes of random
trials involved in reaching a terminal node in the tree. We define the functions
�� and ⊥⊥ to be the set of paths that terminate in a � or a ⊥ respectively:

��(�) = ⊥⊥(⊥) = {()}, ��(⊥) = ⊥⊥(�) = ∅,

��((x?α :β)) = {(x)�
a | a ∈ ��(α)} ∪ {(x)�

b | b ∈ ��(β)}

⊥⊥((x?α :β)) = {(x)�
a | a ∈ ⊥⊥(α)} ∪ {(x)�

b | b ∈ ⊥⊥(β)}
where � is the sequence concatenation operator:

(a1, . . . , an)�(b1, . . . , bn) = (a1, . . . , an, b1, . . . , bn)

We say two paths are multi-set equivalent if the multiset of tokens that appear
in each path are equivalent, and define PP (φ) = ��(φ) ∪ ⊥⊥(φ) to be the set of all
paths through a formula.
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Lemma 3. For any tree form aleatoric calculus formula α:

P (α) =
∑

t∈��(α)

∏

x∈t

P (x)

where P (x) = (1 − P (x)).

Proof. This follows immediately from the Definition 3.

Lemma 4. Suppose that φ is a formula in tree form such that a = (a0, . . . , an) ∈
��(φ) (resp. ⊥⊥(φ)). Then, for any i < n there is some formula φi

a such that:

1. φ 	 φi
a

2. (a0, . . . , ai−1, ai+1, ai, ai+2, . . . , an) ∈ ��(φi
a) (resp. ⊥⊥(φ))

3. φ and φi
a agree on all paths that do not have the prefix (a0, . . . , ai−1. That is,

for all b ∈ PP (φ) ∪ PP (φi
a), where for some j < i, bj = aj, we have b ∈ ��(φ)

if and only if b ∈ ��(φi
a) and b ∈ ⊥⊥(φ) if and only if b ∈ ⊥⊥(φi

a).

Lemma 5. Given a pair of multi-set equivalent paths a and b in a tree form
aleatoric calculus formula, φ, such that a ∈ ��(φ) and b ∈ ⊥⊥(φ), we can find a
formula φb

a 	 φ where

1. a ∈ ⊥⊥(φb
a) and b ∈ ��(φb

a)
2. ��(φb

a) − {b} = ��(φ) − {a},
3. ⊥⊥(φb

a) − {a} = ⊥⊥(φ) − {b}.
Lemma 6. For any pair of tree form aleatoric calculus formulae, φ and ψ, there
exists a pair of tree forms φ′ 	 φ and ψ′ 	 ψ, such that PP (φ′) = PP (ψ′).

Theorem 1. For any pair of semantically equivalent aleatoric calculus formulae
φ and ψ, we can show φ 	 ψ.

Proof. By Lemma 2 it is possible to convert both formulae in question, φ and ψ,
into tree form, respectively φτ and ψτ . By Lemma 6 it is then possible to convert
φτ and ψτ to a pair of equivalent formulae, respectively Φ and Ψ , with the same
structure (so ��(Φ) ∪ ⊥⊥(Φ) = ��(Ψ) ∪ ⊥⊥(Ψ)), but possibly different leaves (so
��(Φ) is possibly not the same as ��(Ψ)). By Lemma 5 it is possible to swap any
multiset-equivalent paths between ��(Φ) and ⊥⊥(Φ). By Lemma 3 two formula, Φ
and Ψ , with the same structure are semantically equivalent if and only if there is
a one-to-one correspondence between paths of Φ and Ψ such that corresponding
paths a and b are multi-set equivalent, and a ∈ ��(Φ) if and only if b ∈ ��(Ψ).
Therefore, if and only if the two formulae are equivalent we are able to define Φ′

by swapping paths between ��(Φ) and ⊥⊥(Φ) such that Φ′ = Ψ . As all steps are
performed using the axioms and are reversible, this is sufficient to show φ 	 ψ.
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4.2 The Modal Aleatoric Calculus

The modal aleatoric calculus includes the propositional fragment, as well as
the conditional expectation operator (α | β)i that depends on the modality i’s
probability distribution over the set of worlds.

The axioms we have for the conditional expectation operator are as follows:

A0 : ((x?y :z) |c)i 	 ((x |c)i?(y |(x?c :⊥))i : (z |(x?⊥ :c))i).
A1 : (⊥|x)i ∧ (x |y)i 	 (⊥|x ∨ y)i

A2 : (⊥|x)i 	 ((⊥|x)i?(⊥|x)i :¬(⊥|x)i)
A3 : (�|x)i 	 �
A4 : (x |⊥)i 	 �

We let the axiom system MAC be the axiom system AC along with the axioms
A0-A5.

We note that the conditional expectation operator (x |y)i is its own dual, but
only in the case that agent i does not consider x and y to be mutually exclusive:
(¬x |y)i 	 (x |y)i → �i(¬(x ∧ y)). We can see this in the following derivation:

(¬x |y)i 	 ((x?⊥ :�) |y)i abb.
	 ((x |y)i?(⊥|x ∧ y)i : (�|(x?⊥ :⊥))i) A0
	 (x |y)i → �i¬(x ∧ y) abb.

The main axiom in MAC is the axiom A0 which is a rough analogue of the
K axiom in modal logic. We note that in this axiom:

((x?y :z) |c)i 	 ((x |c)i?(y |(x?c :⊥))i : (z |(x?⊥ :c))i)

if we substitute � for y and ⊥ for w, we have: Eix∧ (y |x)i 	 Ei(x∧y) whenever
agent i considers x possible (so that (⊥|¬x)i 	 ⊥). In that case we can “divide”
both sides of the semantic equality by Pw(Eix) which gives the Kolmogorov
definition of conditional probability:

Pw((y |x)i) =
Pw(Ei(x ∧ y))

Pw(Eix)
.

Axioms A1 and A2 deal with formulas of the type (⊥|α)i. The probability
associated with such formulas is non-zero if and only if α is impossible in all the
successor states, so in these states, we are able to substitute α with ⊥.

Finally axioms A3 and A4 allow us to eliminate conditional expectation
operators.

As with the aleatoric calculus, soundness can be shown by deriving equiva-
lence of the semantic evaluation equations, although the proofs are more com-
plex.

Lemma 7. The system MAC is sound for MAC.

Proof. The nontrivial cases of A0 and A1 are presented in the long version of
the paper [8]. and the axioms A2, A3 and A4 follow immediately from the
semantics.
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Given its correspondence to axiomatizations of modal logic and adequacy for
proving small equivalences, we conjecture that MAC is complete for the given
semantics.

5 Expressivity

In this section we show that the modal aleatoric calculus generalises the modal
logic K. The syntax and semantics of modal logic are given over a set of atomic
propositions Q. The syntax of Kn is given by:

φ:: = q | φ ∧ φ | ¬φ | �φ

where q ∈ Q, and the operators are respectively and, not, necessary. The seman-
tics of Kn are given with respect to an epistemic model M = (W,R, V ) where
W is the nonempty, countable set of possible worlds, R ⊆ W ×W is the accessi-
bility relation, and V : Q −→ 2W is an assignment of propositions to states. We
require that:

1 ∀w, u, v ∈ W, u ∈ R(w) and v ∈ R(w) implies v ∈ R(u)
2 ∀w, u, v ∈ W, u ∈ R(w) and v ∈ R(u) implies v ∈ R(w)
3 ∀w ∈ W, R(w) = ∅.

We describe the set of worlds ‖α‖M in the model M = (W,R, V ) that satisfy
the formula α by induction as follows:

‖q‖M = V (q) ‖α ∧ β‖M = ‖α‖M ∩ ‖β‖M

‖¬]α‖M = W − ‖α‖M ‖�α‖M = {u ∈ W | uR ⊆ ‖α‖M}
where ∀u ∈ W , uRα = uR∩‖α‖M , if uRα∩‖α‖M = ∅ and uRα = uR, otherwise.

We say MAC generalises K if there is some map Λ from pointed epistemic
models to pointed probability models, and some map λ from K formulae to
MAC formulae such that for all pointed epistemic models Mw, for all K formulae
φ, w ∈ ‖φ‖M if and only if Λ(Mw)(λ(φ)) = 1.

We suppose that for every atomic proposition q ∈ Q, there is a unique atomic
variable xq ∈ X. Then the map Λ is defined as follows: Given M = (W,R, V )
and w ∈ W , Λ(Mw) = Pw where P = (W,π, f) and

– ∀u, v ∈ W , πi(u, v) > 0 if and only if v ∈ uR1.
– ∀w ∈ W , ∀q ∈ Q, fw(xq) = 1 if w ∈ V (q) and fw(xq) = 0 otherwise.

This transformation replaces the atomic propositions with variables that, at
each world, are either always true or always false, and replaces the accessibility
relation at a world w with a probability distribution that is non-zero for precisely
the worlds accessible from w. It is clear that there is a valid probability model
that satisfies these properties.

We also define the map λ from K to MAC with the following induction:

λ(q) = xq λ(α ∧ β) = (λ(α)?λ(β) :⊥)
λ(¬α) = (λ(α)?⊥ :�) λ(�α) = (⊥|(λ(α)?⊥ :�))

1 We note this function is not deterministic, but this does not impact the final result.
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Lemma 8. For all epistemic models M = (W,R, V ), for all w ∈ W , for all K
formula φ, we have w ∈ ‖φ‖M if and only if Λ(Mw)(λ(φ)) = 1.

The proof may be found in the long version of this paper [8].

6 Case Study

We present a case study using some simple actions in a dice game illustrating
the potential for reasoning in AI applications. A simple version of the game pig2

uses a four sided dice, and players take turns. Each turn, the player rolls the
dice as many times as they like, adding the numbers the roll to their turn total.
However, if they roll a 1, their turn total is set to 0, and their turn ends. They
can elect to stop at any time, in which case their turn total is added to their
score.

To illustrate the aleatoric calculus we suppose that for our dice we have two
random variables, odd and gt2 (greater than 2). Every roll of the dice can be seen
as a sampling of these two variables: 1 is an odd number not greater than 2, and
so on. Now we suppose that there is some uncertainty to the fairness of the dice,
so it is possible that there is a 70% chance of the dice rolling a number greater
than 2. However, we consider this unlikely and only attach a 10% likelihood to
this scenario. Finally, we suppose there is an additional random variable called
risk which can be used to define a policy. For example, we might roll again if
the risk variable is sampled as true. This scenario if visualised in Fig. 2, and
the formalization of relevant properties is given in Fig. 3.

Fig. 2. A simple two world represen-
tation of the game pig, where the dice
is possibly biased.

Fig. 3. Formulas describing different event in
the model at the left world.

These formulas show the different types of information that can be repre-
sented: bust and four are true random variables (aleatoric information), whereas
ifBust and if-4-1 are based on an agent’s mental model (Bayesian informa-
tion). Finally roll describes the condition for a policy to roll again. In a dynamic
extension of this calculus, given prior assumptions about policies, agents may
apply Bayesian conditioning to learn probability distributions from observations.

2 https://en.wikipedia.org/wiki/Pig (dice game).
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7 Conclusion

The modal aleatoric calculus is shown to be a true generalisation of modal logic,
but gives a much richer language that encapsulates probabilistic reasoning and
degrees of belief. We have shown that the modal aleatoric calculus is able to
describe probabilistic strategies for agents. We have provided a sound axioma-
tization for the calculus, shown it is complete for the aleatoric calculus and we
are working to show that the axiomatization is complete for the modal aleatoric
calculus. Future work will consider dynamic variations of the logic, where agents
apply Bayesian conditioning based on their observations to learn the probability
distribution of worlds.
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