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Abstract. The modal µ-calculus is a well-known program specification
language with desirable properties like decidability of satisfiability and
model checking, axiomatisability etc. Its expressive power is limited by
Monadic Second-Order Logic or parity tree automata. Hence, it can only
express regular properties.

In this talk I will argue in favour of specification languages whose
expressiveness reaches beyond regularity. I will present Viswanathan and
Viswanathan’s Higher-Order Fixpoint Logic as a natural extension of the
modal µ-calculus with highly increased expressive power. We will see how
this logic can be used to specify some interesting non-regular properties
and then survey results on it with a focus on open questions in this area.

1 The Modal µ-Calculus

The modal μ-calculus Lμ [23] is a well-known specification formalism for concur-
rent, reactive systems. Its formulas are interpreted in states of labeled transition
systems. It extends multi-modal logic with restricted second-order quantification
in the form of least and greatest fixpoints. This makes it a reasonably expressive
temporal logic. It can express properties that are built recursively from basic
ones like “there is a successor s.t. . . .” (♦) or “all successors . . .” (�) using the
usual Boolean operations. Least fixpoints (μ) intuitively correspond to termi-
nating recursion, greatest fixpoints (ν) to not necessarily terminating recursion.

Examples of such recursive properties are “every path ends in some state
without a successor” or “there is a path on which infinitely many states satisfy
p”. The former is expressed by ϕend := μX.�X. A helpful tool for understand-
ing such formulas is the fixpoint unfolding principle κX.ϕ ≡ ϕ[κX.ϕ/X] for
κ ∈ {μ, ν} stating that the set of states satisfying κX.ϕ is indeed a fixpoint of
the mapping that takes a set X and returns those satisfying ϕ(X). With this
principle we get that

μX.�X ≡ �μX.�X ≡ ��μX.�X ≡ . . .

Knowing that a state s that has no successors satisfies �ψ for any ψ, one
can see that any state that is at the source of finite paths only, satisfies μX.�X.
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A second helpful tool for understanding formulas that comes on handy at this
point is the characterisation of Lμ’s model checking problem in terms of parity
games [33]. Here, two players play with a token on a state s in a transition system
and another on ϕ’s syntax tree in order to find out whether s satisfies ϕ or not.
Verifier chooses disjuncts whenever a disjunction is reached, and successor
states whenever a ♦ is reached, likewise Refuter chooses at conjunctions and
�-formulas. When reaching a fixpoint variable the game simply continues with
the defining fixpoint formula. Verifier wins in a situation where the currently
selected state blatantly satisfies the currently selected formula. In case of μX.�X
above, only Refuter makes choices by continuously selecting successor states.
If he follows a (maximal) finite path s . . . t then this will ultimately end in a
situation with t and �X being selected, and since t is assumed to have no
successors, Verifier wins, indicating that the original formula holds in s.

However, if there is an infinite path starting in s, then Refuter can traverse
this and the resulting play of the game is infinite. Then the winner is determined
by the type of the outermost fixpoint that gets traversed infinitely often. In the
case of μX.�X there is only one candidate – a least fixpoint – which makes
Refuter the winner. As an exercise one may check that the second property
named above about the existence of an infinite path is expressed by the formula
νX.μY.(p ∧ ♦X) ∨ ♦Y . The key is to see that the game rules make Verifier
select a path, and she can only traverse through the outer greatest fixpoint if this
path has infinitely many states satisfying p. Otherwise any play will eventually
only traverse through the inner least fixpoint which would make Refuter the
winner again.

Lμ is well understood in terms of its expressivity and the computational
complexity of the standard decision problems associated with a (temporal) logic.
We quickly recall the most important results on Lμ, for further and more detailed
overviews see also [4–6] and [14, Chap. 8].

– Lμ respects, like multi-modal logic, bisimulation-invariance, i.e. it cannot dis-
tinguish bisimilar models. Despite sounding negatively, this is a good property
to have since program specification formalisms should not distinguish states
of transition systems that exhibit the same temporal behaviour.

– Many standard temporal and other logics can be embedded into Lμ, for
instance CTL and PDL with simple linear translations, but also CTL∗ (and
therefore LTL) with exponential translations [13], [14, Theorem 10.2.7].

– On trees, Lμ is equi-expressive to alternating parity tree automata (APT)
and, since alternation can be eliminated, therefore also to nondeterministic
tree automata [15]. Bearing the first point in mind, this statement is not quite
accurate since APT in their usual form are aware of directions in trees and
can therefore specify non-bisimulation-invariant properties. To be precise, Lμ

is in fact only equi-expressive to APT over classes of ranked trees of bounded
branching-degree where it has access to a specific successor, not just some.
Over the class of all trees, Lμ is equi-expressive to so-called symmetric APT
[17,38].
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There is of course also a well-known connection between tree automata and
Monadic Second-Order Logic (MSO) [32]. Even without automata at hand it
is easy to see that Lμ can be embedded into MSO. The cannot hold as MSO
is not bisimulation-invariant. However, it turns out that Lμ is as expressive
as MSO when restricted to bisimulation-invariant properties [20].

– Satisfiability is decidable and ExpTime-complete. The upper bound is a con-
sequence of the linear translation into APT and an exponential emptiness
test there [15]. The lower bound is inherited from PDL for instance [18].

– There are relatively simple sound and complete axiomatic systems for Lμ

[1,23], but establishing completeness is typically a challenging task [17,36].
– Model checking over finite transition systems is trivially decidable. It is in fact

computationally equivalent to the problem of solving a parity game [33,35].
The best lower bound is known to date is P-hardness since Lμ can express
winning in a reachability game. The currently best known upper bounds –
found only recently after a long time of research in this area – are quasi-
polynomial [12,21,27].
Model checking is even decidable over richer classes of infinite transition sys-
tems: for pushdown systems it is ExpTime-complete [37], for higher-order
recursion schemes it is of non-elementary complexity [31].

– An interesting source of computational and pragmatic complexity in Lμ for-
mulas is the alternation depth [16,30], measuring the degree to which recur-
sion is defined by entangling least and greatest fixpoints. It is the determining
element in the asymptotic complexity of many algorithms, being exponential
in it. It is also a major source of obfuscation when trying to understand
the property expressed by a given Lμ formula. It is therefore interesting to
know how much fixpoint alternation is necessary for writing down all defin-
able properties. It turned out that the fixpoint alternation hierarchy is strict
[2,7]: for any alternation depth there are definable properties that cannot be
specified using this depth only.

A consequence of Lμ’s connection to APT and MSO is the fact that it can only
define regular properties. There are, however, many non-regular properties which
are more or less interesting, depending on potential application areas. Typical
examples include “all executions of a program terminate at the same moment”,
“no two executions can be distinguished from the outside”, “there is no underflow
in an unbounded buffer”, “there is a maximal path of length n2 for some n”, etc.

There are a few proposals for modal logics that are capable of expressing
non-regular properties, for instance PDL[CFL] [19], FLC [29] and HFL [34].
FLC extends Lμ, and HFL (vastly) extends FLC. PDL[CFL] is orthogonal to
Lμ in terms of expressive power but is already captured by FLC. In the following
we will turn our attention to Higher-Order Fixpoint Logic (HFL), the most
expressive among these. We compare it to Lμ and its properties as laid out
above. We will explain how the increase in expressive power comes at a very high
price, not just computationally but also in terms of the number of questions on
certain aspects of HFL that remain unanswered to date.
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2 Higher-Order Fixpoint Logic

We refrain from giving a detailed definition of the syntax and semantics of the
logic HFL. Instead we concentrate on the presentation of those principles that
are used there, especially for the semantics. The goal of this exposition is not
detailed mathematical completeness but the intuition behind the constructs in a
modal fixpoint logic that achieves high expressive power. For a formal definition
see [34].

HFL results from a merger between the modal μ-calculus with a simply typed
λ-calculus. Its formulas are typed in a simple type system that inductively builds
types from a single base type • using three function type constructors:

σ, τ ::= • | σv → τ v ::= + | − | 0

Formulas of base type are predicates as in Lμ; formally the type represents the
powerset lattice of the set of states of a given transition system. The type σv → τ
then represents functions from objects of type σ to objects of type τ which are
monotone (if v = +), antitone (if v = −) resp. unrestricted (if v = 0).

Formulas are given by the following grammar.

ϕ ::= p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ | [a]ϕ | μXτ .ϕ | νXτ .ϕ | λXτ .ϕ | ϕ ϕ

where X is a variable, p is an atomic proposition interpreted by a set of states
in a transition system, a is an action interpreted as a set of edges in a transi-
tion system, and τ is a type. However, not every object formed in this way is
a formula. The type system guarantees well-formedness of formulas; it mainly
ensures that

– in an application of the form ϕ ψ the formula ψ has some type σ, and ϕ has
a type σ → τ , and

– in a fixpoint formula κX.ϕ, the mapping X 	→ ϕ(X) is monotone in order to
guarantee the existence of least and greatest fixpoints.

The order of a type is defined via ord(•) = 0 and ord(σv → τ) = max{ord(τ), 1+
ord(σ)}. The fragment HFLk, k ≥ 0, consists of all formulas of type • which use
types of order at most k.

Consider the formula

ϕ := λf•0→•.λg•0→•.λX•.f(g(X)) .

Its type is
(•0 → •)+ → (•0 → •)+ → •+ → •

and ϕ is therefore a formula of order 2.
The semantics of a formula with type τ is a function of type τ in a transition

system. Its definition is straightforward given that each type induces a com-
plete lattice of pointwise ordered (monotone/antitone/unrestricted) functions in
a transition system. Fixpoint formulas can therefore be given meaning through
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the Knaster-Tarski Theorem. Instead of listing the formal definitions here we
present some examples of formulas with the aim of giving some intuition on how
to specify complex program properties in HFL. The important concepts for this
are the fixpoint unfolding principle and β-reduction: (λX.ϕ) ψ ≡ ϕ[ψ/X].

We will use the following abbreviations with appropriate type annotation
which are left out for brevity here.

g ◦ f := λX.g (f X), f i := f ◦ . . . ◦ f
︸ ︷︷ ︸

i times

, ♦ := λX.♦X

Example 1. Consider the formula

ϕqpath := μF.λg.λf.(g �ff) ∨ F (g ◦ f2 ◦ ♦) (f ◦ ♦)

Using fixpoint unfolding and β-reduction we see that ϕqpath ♦ ♦ unfolds to

♦�ff ∨ (ϕqpath ♦4 ♦2) ≡ ♦�ff ∨ ♦4�ff ∨ (ϕqpath ♦9 ♦3)

and so on. In fact, after unfolding n times and β-reducing appropriately we obtain
∨n

i=1 ♦i2�ff∨(ϕqpath ♦(n+1)2 ♦n+1). This uses the fact that (n+1)2 = n2+2n+1.
Hence, in HFL2 it is possible to define the property of having a maximal

path of quadratic length.

Example 2. The property of a tree being balanced can be defined in HFL1

already. Note that being balanced means there is some n such that every path of
length n ends in a state without successors, and that no path of shorter length
does so. This is defined by

(

μF.λX.X ∨ (F (♦tt ∧ �X)
)

�ff

which, again, can be unfolded and reduced to yield
∨

i≥0

♦tt ∧ �(♦tt ∧ �(. . . ∧ ♦tt ∧ �
︸ ︷︷ ︸

i times

�ff))

Example 3. A similar construction principle is used in ϕunb := (νF.λX.X ∧
(F ♦X)) tt. It unfolds to

∧

i=0 ♦itt and therefore states that are paths of
unbounded length. Note that this is not the same as stating there is an infi-
nite path.

Example 4. Note that the context-free grammar S → out | inS S generates the
language of all words that have one more out than in’s but no prefix does so.
It represents the runs of potentially unbounded buffers that see an underflow.
This grammar can immediately be transferred into an HFL1 formula:

¬
(
(

μS.λX.〈out〉X ∨ 〈in〉(S (S X))
)

tt
)

states that no execution is of a form that falls into this grammar. Hence, it states
that all runs of a buffer do not underflow.
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2.1 Results on HFL

We survey results on HFL that are known and problems that are still open,
comparing this in particular to the situation with Lμ.

Embeddings. HFLs ubsumes Lμ in the simple sense that Lμ is HFL0, even
syntactically. HFL1 also subsumes the aforementioned FLC [34] with, in turn,
subsumes PDL[CFL] [26].

Model Properties. HFL retains bisimulation-invariance [34]. However, HFL1

already does not possess the finite model property anymore. Consider the formula
ϕunb ∧ ϕend. It requires paths of unbounded length to exist but every path to be
finite. This is satisfiable but not in a finite model.

Satisfiability. Strongly connected to the loss of the finite model property is
the high undecidability of satisfiability checking, even for HFL1. It is at least
Σ1

1 -hard: this is proved originally for PDL[CFL] [19] and then transferred to
stronger logics.

So far, no non-trivial fragments of HFLw ith a decidable satisfiability problem
have been found.

Proof Systems. The situation on the proof-theoretic side of a theory of higher-
order modal fixpoint logics is even more bleak. It is not known whether there are
fragments of HFLo r even some HFLk which can be axiomatised in a sound and
complete way, not even when giving up on completeness (looking for non-trivial
fragments in that case of course).

Model Checking. The model checking problem for HFL over finite transition
systems is decidable and, roughly speaking, k-ExpTime-complete for formulas
of order k.1 The upper bound is obtained in a more or less straightforward
way by computing the semantics of a formula bottom-up, the lower bound can
be obtained using standard reductions for k-ExpTime-complete problems, for
instance tiling game problems [3].

Given that HFL has complete model checking problems for every level of the
exponential time hierarchy, it is a fair question to ask whether something similar
holds for the exponential space hierarchy. The answer is positive: it is possible
to identify a syntactic criterion on formulas called tail recursion such that the
model checking problem for HFLk formulas restricted in this way becomes (k−1)-
ExpSpace-complete [10].

There seems to be no chance to extend the decidability result to any meaning-
ful class of infinite-state systems. One can show undecidability of model checking
1 This does not hold for k = 0, i.e. Lµ. It also requires an assumption of a bound on

the number of arguments a function can take. Otherwise the upper bound is one
exponential higher.
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for FLC, resp. HFL1 formulas over BPA processes already [29]. It remains to be
seen whether there is in fact a – necessarily very small – class of infinite-state
transition systems for which HFL1 model checking is decidable.

On the other hand, there is a connection between model checking higher-order
formulas and higher-order model checking: the problems of model checking a Lμ

formula over a higher-order recursion scheme is computationally equivalent to
the problem of model checking an HFL formula over a finite transition system
[22]. This can be seen as a trade-off between higher order on the formula side and
higher order on the model side. It is worth noting that the translations preserve
maximal order.

Automata for HFL. There is a counterpart to HFL in the world of automata.
Bruse has been able to come up with an automaton model that captures HFL
in the sense that every formula is equivalent to an automaton and vice-versa [8].
The model is called Alternating Parity Krivine Automata (APKA) and is an
extension of APT that uses the mechanisms of the Krivine machine to handle
higher-order functions (using a call-by-name technique). The main combinatorial
difficulty in designing such an automaton model is the correct capturing of the
interplay of fixpoints in the presence of higher-order features by an appropriate
acceptance condition. Bruse has shown [9] that in the case of HFL1, one can use
a neater acceptance condition which is closer to the stair-parity condition [24]
used in visibly pushdown games [28].

It remains to be seen whether this neater condition can be extended to frag-
ments beyond first-order functions. We also suspect that Boolean alternation
cannot be eliminated from APKA as it can be for APT. There is, however, no
proof of this or the contrary.

Fixpoint Alternation. The richness of HFL as opposed to Lμ opens up a
variety of questions regarding the strictness or collapse of fixpoint alternation
hierarchies. Besides the obvious restriction to particular classes of models one
can now also ask whether the fixpoint alternation hierarchy in some HFLk, say
Lμ for instance, despite being strict in itself, collapses in some HFLk for k > 0.
I.e. it is conceivable that one may be able to reduce fixpoint alternation when
one is willing to pay with higher function orders. This is indeed true in some
case, namely finite models. One can express the Kleene iteration of length at
most ω of a greatest fixpoint at order 0 using a least fixpoint at order 1 and
an embedded but non-alternating greatest fixpoint of order 0. Hence, over finite
models, every Lμ formula is equivalent to an alternation-free HFL1 formula.

One has to admit, though, that fixpoint alternation is not easy to define
syntactically. Using β-expansion it is always possible to decouple nested fixpoints
so that syntactically they look like they are not dependent on each other. This,
however, only shows that the definition of fixpoint alternation that is used for
Lμ, is too coarse for HFL. Bruse has suggested to define fixpoint alternation
via the minimal number of priorities used in equivalent APKA. This way he has
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managed to show that the fixpoint alternation hierarchy is strict within HFL1

[9], resembling similar proofs for Lμ [2] and FLC [25].
The trick of trading in fixpoint alternation for higher order can be extended

slightly beyond order 0 [11]. Here, simulating the Kleene iteration of a greatest
fixpoint is more difficult because one has to test two first-order functions for
equality, rather than two sets. This would in principle require the enumeration
of all possible sets which HFL2 cannot do due to bisimulation-invariance. It
turns out, though, that it suffices to enumerate all modal formulas as possible
arguments to such first-order functions.

In summary, results on fixpoint alternation in HFL are sparse. In particular,
it is currently open whether general strictness results or, equivalently, strictness
over trees, can be extended to order higher than 1. On the other hand, it is
equally open whether collapse results based on the trade-in of alternation against
higher orders can be extended beyond low orders.
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