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Abstract. In this paper we study some basic algebraic structures of
rough algebras. We proved that the class of topological quasi-Boolean
algebra 5s (tqBabs) has the finite embeddability property (FEP). Further
we also extend this result to some related classes of algebras.

1 Introduction

The algebraic structures called Pre-rough algebras [1,2] arose as a natural
abstraction from the calculus of rough sets proposed by Pawlak in 1983 [3]. A
Pre-rough algebra is a topological quasi-Boolean algebra (tqBa) which is quasi-
Boolean algebra (see Definition 1) endowed with a topological (interior) operator.
Although quasi Boolean algebra and topological Boolean algebra are presented
in the similar work of Rasiowa [4], Topological quasi-Boolean algebra was first
introduced in [1]. As a further step towards Pre-rough algebras, an axiom corre-
sponding to modal logic axiom S5 has been added to tqBas resulting in tqBabs
[2]. Further studies with tqBas, tqBabs and related algebras have been carried
out in [1,2,5-7]. However, the finite embeddability property of these algebraic
structures have not been investigated before.

On the study of the connection between logical systems and classes of alge-
bras in general, one important and natural question is whether a given class of
algebras has a decidable equational or even universal theory. The finite embed-
dability property (or FEP for short) i.e., every finite partial subalgebra of an
algebra in the class is isomorphic to a subalgebra of a finite algebra in the class
of algebras, entails the decidability of its universal theory if this class of algebras
is finitely axiomatizable.

The study on FEP of classes of algebras dated back to Henkin [1956]. Henkin
proves that the class of abelian groups has FEP. It is also well-known that
the class HA of Heyting algebras has FEP. Block and Van Alten [8,9] show
that various integral residuated lattices (groupoids) have FEP. Farulewski [10]
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shows that the integral condition is not necessary and proves FEP for residu-
ated groupoids. Buszkowski [11] also proves that various lattice extensions of
residuated groupoids (including Heything and Boolean extensions) have FEP.
The first author of the current paper in [12] extends Buszkowski‘s results to
various lattice extensions of residuated groupoids with modalities. In [13] the
present authors investigate residuated Pre-rough algebras and show that resid-
uated Pre-rough algebras have decidable quasiequational theories (see definition
in Sect. 1), which entails that the pre-rough algebras have decidable quasiequa-
tional theories. Indeed residuated Pre-rough algebras have FEP. However FEP
for Pre-rough algebras still remain open. In the present paper we study the class
of the basic algebraic structures in Pre-rough algebras (the class of tqBabs) and
prove that it has FEP. This results can also be extended to Pre-rough and some
other modal extensions of quasi-Boolean algebras.

The method we developed in the present paper is inspired by [11] and [12].
A sequent calculus which admits the interpolant lemma (see Lemma 1) is intro-
duced and it plays a essential role in proof of FEP. Meanwhile a sequent calculus
which does not admit the interpolant lemma for tqBab was earlier introduced
n [14]. Our method can be regarded as an algebraic substitute of the filtration
method for Kripke frames [15].

The paper is organized as below. In the next section we recall some basic
algebraic definitions. Then in Sect. 3, we develop a sequent system for tqBabs
and prove the interpolant lemma. In Sect.4, we present the main results and
show FEP for the class of tqBabs. In Sect. 5, we conclude our paper and make
some simple extensions to some related classes of algebras. Hereafter, the class
of all topological quasi-Boolean algebra 5 will be denoted by tqBab5 also.

2 Some Basic Definitions

Definition 1. A quasi-Boolean algebra (qBa) is an algebra A = (A, A, V,—,0,1)
where (A4, A, V,0,1) is a bounded distributive lattice, and — is an unary operation
on A such that the following conditions hold for all a,b € A:

(DN) —-a = a, (DM) _‘(CL V b) = —aa A —b

A topological quasi-Boolean algebra (tqBa) is an algebra A =
(A, A, V,,0,1,0) where (A, A,V,—,0,1) is a quasi-Boolean algebra, and O is
an unary operation on A such that for all a,b € A:

(Kg) O(anb)=0aAnlb, (Ng) OT=T

(Tg) Oa<a, (4g) Oa <0O0a

A topological quasi-Boolean algebra 5 (tqBab) is a topological quasi-Boolean
algebra A = (A, A,V,—,0,0,1) such that for all a € A:

(5) Oa <Oa,

where ¢ is an unary operation on A defined by ¢a := -O-a.
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Proposition 1. For any tqBabd A = (A,A,V,—,0,0,1) and a,b € A, the
following hold:

(1) =0 =1 and -1 = 0.

(2) =(a Ab) =—aV —b.

(3) If a <b, then =b < —a.

(4) 00 =0 and ¢(aVb) = OaV Ob.
(5) Oa =00a and ¢a = $Qa.

(6) Oa =00a and Oa = Oa.

(7) Oa <bif and only if a < Ob.

The proof of Proposition 1 can be found in [6,7].

We now recall some concepts from universal algebra. Equation (identity)
and quasi-equation (quasi-identity) are defined in standard manner (see Chap. 1
[16]). For any set of equations or quasi-equations X, let A (X)) be the class of all
algebras which validate all equations or quasi-equations in Y. A class of algebras
K is a variety if there is a set of equations X such that K = A(X). A class of
algebras K is a quasi-variety if there is a set of quasi-equations © such that
K=A(O).

Theorem 1. The class of tqBads is a variety.

Due to the definition of tqBab, the class of tqBabs can be classified by a set
of equations. Thus by Theorem 1.19, [16]. The class of tqBabs is a variety.

Corollary 1. The class of tqBaJbs is a quasi-variety.
Let A = (A, (f)icr) be an algebra of fixed type and B C A. Then

1

B = (B,(f)ics) is a partial subalgebra of A where for every n € N, every
n-ary function symbol flA with ¢ € I, and for every by,...,b, € B, one defines
fB(b1, ... bn) = fA(b1, ... by) if fA(by,...,b,) € B, otherwise, the value is not
defined. If A is ordered, then <B=<# |B, the restriction of <A to B. fzA denotes
the operation interpreting the symbol f; in the algebra A. However we write f;
for f2, if it does not cause confusion.

By an embedding from a partial algebra B into an algebra C, we mean an

injection h : B + C such that if by,...,b,, f2(b1,...,b,) € B, then

h(fB(blv s 7bn)) = fc(h(bl)v .- '7h(bn))'

If B and C are ordered, then h is required to be an order embedding i.e. a <®
b < h(a) <C h(b).

A class K of algebras has the finite embeddability property (FEP), if every
finite partial subalgebra of a member of K can be embedded into a finite member
of K. FEP usually has some consequences on finite model property. FEP implies
the strong finite model property (SFMP) i.e. every quasi-identity which fails to
hold in a class KK of algebras can be falsified in a finite member of K. SFMP and
FEP are equivalent in quasivarieties of finite type.
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Lemma 1 (Lemma 6.40 [16]). For any quasivariety K of finite type the
following are equivalent:

(1) K has FEP
(2) K have SFMP
(3) K is generated as a quasivarieties by its finite members

Remark 1. If a formal system S is strongly complete with respect to a class K
of algebras, then it yields, actually, an axiomatization of the quasiequational
theory of IK; hence SFMP for S with respect to K yields SFMP for K. By SFMP
for S, we mean that for any finite set of sequents &, if @ t/g I' = A, then there
exists a finite A € K and a valuation ¢ such that all sequents from @ are true in
(A o), but I' = A is not.

3 Sequent Calculus of tqBa5

In this section we develop a sequent system G5 for tqBab following the tradition
[17]. The language of the logic of tqBab is defined as follows

a:=p|L|TlaAnf|laVi|-al|da|Dq,

where p € Prop, the set of propositional variables.
Formula structure are defined as follows with a unary structural operation
():

— « is a formula structure if « is a formula
— (I')* is a formula structure if I" is a formula structure
Hereafter we abbreviate (... (a)...) by (@)™. Clearly if I' is a formula struc-
~——

n n
ture, then it is of the form (a)* for some formula a and number i > 0. We use
(), (B)*2,... where i1,i3 > 0 to denote formula structures. A sequent is an
expression of the form («)* = @ where ¢ > 0 for some formulae o and 3.

Definition 2. The Gentzen sequent calculus G5 consists of the following azioms
and inference rules:

(1) Azioms: 4 .
) p=¢ (L) L= (M{)'=>T

D) AW VXx)=(@AY)V(eAx)  (DN)p & g

(2) Connective rules:

(p) = x X)'=e ()=
(pAY)t = x( L)

() =>x @) =x (x)' =1
(pV)t =x (VL)
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(3) Modal rules

()T =) (p)!
(Op)t =9 (OL) <90>Z+ (QR)
() =1 (o)t = w
T =5 Y (oisop Th)
e P L G S P Ly
s D s e Gars Y

(4) Cut rule ' 4
P)r=x =1
(o) *7 =14

where i,7 > 0. By Fgs (a)! = 3, we mean the sequent (a)® = (3 is provable
in G5. A sequent is called simple sequent if it is of the form o = [ for some
formulae a and 3. Let @ be a finite set of simple sequents. By @ g5 (o) = £,
we mean that sequent (a)? = 3 is derivable from & in G5.

(Cut)

Proposition 2. In G5, the following holds:

—Fas OlaV B) = Oa v OB
- Fes O(@AB) = 0an0p
- Fas Do = O0a

— tas Ua= a

- Fas Oa = 00«

- Fgs Oa = O-a

- Fgs "O-a = Qa

Let F be a finite set of formulae closed under subformulae. Define F'?° be the
closure of F under A,V, . A set of formula T is called gb-closed if T = F4 for
some finite set F which is closed under subformulae. A sequent (a)? = £ is called
a T sequent if o, 3 € T. A derivation from @ in G5 of a T-sequent (a)’ = 3 is
called a T-derivation if all sequents appearing in the derivation are T-sequents,
which is denoted by @ g5 (a)! =1 (. Assume that @ g5 (@) =7 . A
formula « is called a T interpolant of (p)¢ if v € T, ® kg5 (p)* =1 v and
@ s (7)) =71 1 and additionally @ g5 (v) =7 v if i > 1.

Lemma 2 (Interpolant). If® g5 (p)*t =1 4, then (@) has a T interpolant.

Proof. We proceed by induction on the length of derivation. Axiom is trivial.
(Cut) is easy. Assume that the end sequent is obtained by a rule (R). If i = 0
then obviously ¢ is a required interpolant. Let ¢ > 1 Here we consider three
cases. Others can be treated similarly.

(VL) Assume the premise are (§)**/ =7 1 and (x)**7/ = 1 and ¢ = 6V x. Then
by induction hypothesis, there are 1, v, € T such that (1) @ g5 (8)" =1 1,
(2) @ Fas (X)" =71 72, 3) @ Fas () =1 9, (4) D Fas (12)! =71 9, (5)
® a5 (m1) = 7 and (6) @ ka5 (12) = 2. By applying (VR) to (1) and
(2), one gets (7) @ Fgs (0)" =17 11 V2, (8) D Fas (X)' =1 71 V Y2. Then
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by applying (VL) to (7) and (8), one obtains (9) @ g5 (6 V X)! =1 71 V 2.
Further by applying (VL) to (3) and (4) one gets applying & g5 (71 V
y2)t =7 1. If i > 1, then applying (VR) and (VL) to (5) and (6), one gets
D Fas (y1 Vy2) = 71V y2. Thus 41 V 42 is a required interpolant.

(00) Assume that the premise is (¢)i™/ =1 1. By induction hypothesis there
is v € T such that @ g5 (@) =77, @ Fgs (V) =7 ¢ and @ kg5 (7) = 7.
Then by rule (00), one gets (1) @ Fgs (—)! = —p, (2) @ Fas (—Y) = —
and (3) @ g5 () =71 —y. Thus @ Fgs (—=7)* =1 = for any k > 0. Hence
one gets (5) @ ks ()" =1 —y and (6) @ Fgs (—7)? =1 —. By applying
(T) to (1) and (2) one gets (7) D Fgs ~¢ =7 —y and (8) D a5 —y =1 —.
Then by (Cut) to (7) and (5), one gets ® g5 (—)* =1 —y. By (Cut) to (8)
and (6), one gets @ g5 (=) =7 —p. Obviously v is a required interpolant.
Hence —y € T is a required interpolant.

(4) Assume that the premise is (p)**! =7 1 and the conclusion is (p)*+2 =7
1. Let i + j = k + 2. By induction hypothesis, there is v € T such that
D Fas () =17, ®Fas (7)1 =7 and @ kg5 () =71 7. Hence by (Cut)
one gets @ g5 (v)7 =7 1. Hence v is a required interpolant.

Notice that we did not assume that the set T is closed under any modal
operations. Hence the above interpolant lemma with respect to this kind of T
is based on the fact that in our sequent calculus we introduce modal structural
operation and interpolate modal axioms by structural rules. Further the addi-
tional condition is required for the proof of case (4). Without the additional
condition, one can not prove the case (4) when k = 0 and ¢ = 1.

An algebraic model of G5 is a pair (G, o) such that G is a tqBa5, and o is
a mapping from Prop into G, called a valuation, which is extended to formulae
and formula trees as follows:

o(0a) =Oo(a),0(0a) = Qo(a)
olanp)=c(a)ANa(B), olaVp)=oc(a)Va(B),
o(ma) = =o(a),  o((@)™*) = Oo((a)’).
A sequent {a)! = f3is said to be true in amodel (G, o) written G, o | {(a)! = S,
if 0((a)?) < o(B) (here < is the lattice order in G). It is valid in G, if it is true
in (G, o), for any valuation o. It is valid in a class of algebras K, if it is valid in
all algebras from K. @ = (a)? = 3 with respect to K, if (o) = £ is true in all
models (G, o) such that G € K and all sequents from & are true in (G, o).

Remark 2. G5 is strongly complete with respect to class tqBab: for any set of
sequents @ and any sequent (a)! = 3, ® Fqgs () = 3 if and only if & |=
()t = B3 with respect to tqBab. So it follows that G5 is weakly complete with
respect to tqBab: the sequents provable in G5 are precisely the sequents valid in
tqBab. The proof of strongly completeness of G5 with respect to tqBab follows
from the same proof of strong finite model property (definition see Sect.4) of
G5 in Sect. 4.
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4 FEP for tqBa5

Given a gb-closed set of formula 7" and a set of simple T-sequents @, we define
an order <t on formula structures. The set of T" formula structures denote by
T7, consist of all formula structures whose formulae appearing in them belong
to T. Let {a1)?,{ag)? € T°, we say {a1)’ <7 {(ag)/ if ® Fgs {{(a)!)t =1 3
implies @ g5 ((a1))! =1 B for any context ()* where t > 0 and T formula £3.
Let (1) =7 {ag)? if (aq)? <7 (@) and {(a3)? <7 {ay)’. Obviously ~r is a
equivalence relation on 7' formula structures.

We define , , , 4
{{a)'}7 = {(BY(B) =7 () }i,j = 0)
Obviously ‘ ‘
{a}7 = {BY[(B)! =r a}(j > 0)

Let T%/~, denote the set of all {{a)'}5 where (a)? € T* where i > 0 and
T/~, denote the set of all {a}5 where a € T. Define {(a)'}5 =<7 {(B)7}7 if
(o)t <7 (B)7. This is well defined since if {{a)"}F <7 {(B)7}F, (p)? € {{a)'}F
and ()7 € {(a)'}7, then (p)? <r (¢)7.

We define a closure operation C' on T as follows:

CH@F) ={ N\ B}F forany {8;}F € T¥s.t. {()'}F =1 {5;}F
l?jzn

Remark 3. For any {(a)'}, {(a)}F =r {T}7. Thus C({(a)'}7) always exists.
Since T is closed under A, for any C({(a)'}3) there exists a {$}3 such that
C({{a)'}3) = {B}%. Let C(T%/~,) denoted the sets of all C({(a)*}5). Clearly
C(T?/~yp) €T/~ Since T is gb-closed, T/~ is finite. Thus C(T°®/~,.) is finite.

Lemma 3. For any {{a)'}5,{(8)"}% € T=, the following hold:

(1) {{)'}F =1 C{{)'}7). ‘ ‘
(2) if {7 2 {(B) )7, then C({{«)"}7) =r C({(B)’}7)-
(3) C(CH{{(@)'}7)) € C({(a)'}7)

Proof. (1) Let C({{a)*}5) = {@1A...Apn }F such that {{a)'}5 <7 {p;}5 where
1 < j < n. We suffice to show that (a)® <7 o1 A ... A p,. Since {(a)}5 =7
{©;}3 where 1 < i < n, (a)’ <7 ¢; for all 1 < j < n. Assume that & g5
(1 Ao Apn)t =7 1. Further by (AR), one gets @ g5 () =7 01 A... Ay.
Then by (Cut) @ Fgs ((a)?)t = 9. Thus (a)® <7 p1 A ... A @,. Consequently
{{@)'}7 20 C({{a)"} 7). ‘ ‘

(2) Let C({(B)}7) = {¢}7- By (1) {(B)7}%F =1 {¢}7F. Since {()'}5 =r
{(B8Y 7, {{a)"}F =1 {®}F. Hence by definition C'({{a)"}*} = {@Ax}7F for some
X € T. We suffice to show that ¢ Ax <r ¢. Assume that @ g5 (@)t =71 1. Since
D tas o Ax =71 @, by (Cut), one gets @ Fas (@ A x)t =7 1. Thus ¢ A x <t .
Consequently C({()'}7) = {¢ A X}T =21 {p}T7 = C{(B)}7)-
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(3) First we show that C({¢}7) <r {¢}7F. Since {¢}F =<r {¢}5F, by def-
inition C({¢}5) = {¢ A x}F for some ¢ € T. Obviously ¢ A x <r ¢. Thus

{oAX}T =1 {#}7. Hence C({¢}7) ==r {¢}7. Clearly for any C({{e)'}7),
there is a {p}7 where ¢ € T such that C({¢}7) = {¢}F. Consequently

C{e}7)) € CHel7)-

We defined a interitor operation I on T as follows:

I{(@) ) ={ \V B}F forany {5} st {8;}F =r {(a)}7
1?3‘22

Remark 4. For any {(a)'}5, {L}5 <7 {{a)"}F. Thus C({{«)"}F) always exists.
Since T is closed under V, for any I({(a)'}5) there exists a {8}5 such that
I({{a)'}5) = {B}3F. Let I(T?/~,) denoted the sets of all I({{a)}5). Clearly
C(T?/~p) € T/ny- Since T is gb-closed, T/~ is finite. Thus I(T%/~.,.) is finite.

Lemma 4. For any {{a)*}5,{(8)7}3 € T=, the following hold:

(1) I({{a)"}7) =r {{a)"}7. ‘ ,
(2) if {{e)*}7 = UGBV }7, then I({{)*}7) = I({(B)'}7)-
(3) I({{e)"}7) € TI({{)'}7))

Proof. (1) Let I({{a)'}3) = {¢1 V...V ¢, }F such that {ei}7 =1 {{a)}5
where 1 < j < n. We suffice to show that ¢1 V...V, <p (a)’. Since {¢;}F =r
{{a)'}% where 1 < j < n, ¢; <r ()’ for all 1 < j < n. Assume that & g5
{{a)®)t =7 1. Then @ g5 (@)t =7 ¢ for all 1 < j < n. Further by (VL), one
gets @ Fas (o1 V...V o,)t =7 9. Thus @1 V...V ¢, <7 (a)’. Consequently
I{{a)'}7) =21 {{a)'} 5. 4 4

(2) Let I({{a)'}5) = {¢}5. By (1) {¢}F <r {()i}3. Since {(a)'}F =r
{85, {p}5 =1 {(B)7}F. Hence by definition I({(B)7}*} = {pVx}5 for some
x € T. We suffice to show that ¢ <7 ¢V x. Assume that @ Fgs (0 V )t =7 9.
Since @ g5 p =71 @V X, by (Cut), one gets ® g5 (@)t =7 1. Thus ¢ <7 pVx.
Consequent 1({{a)'}3) = {¢)F =r {pV \)F = I{(3)7}7).

(3) First we show that {¢}F < I({¢}7F). Since {¢}F =<1 {¢}7F, by definition
I{e}%) = {pV x}7F for some x € T. Obviously ¢ <p ¢V x. Thus {¢ A Xx}F =r.
Hence {p}5 <7 I({¢}5)T. Clearly for any I({(a)"}5), there is a {¢}5 where
o € T such that I({{a)'}3) = {}F. Consequently T({{a)"}F) C T(I({{a)"}3)).

We define a unary operations ¢ and [0 on T%:

O{{a)}7 = ()" 1}7
O{(a) Y5 = {{p)?}F st (bcl) and (bc2) holds

where (bcl): ()7t <p (@) and (bc2): for any (5)F <7 (a)?, (§ ) 1 (p)itt
(k > 1). Notice that such {(p)7}5 always exists. Since for any (5;)% § ( )t and
(02)5 <r (a)’ where ki1, ks > 1, we have (01)F < (61V d2), (61)F <r (01 V d2) and
<(51 V (52> ST <O¢>Z.
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Lemma 5. If {(p)'}7 =r {(¥)/}F where i,5 > 0, then O{(p)'}7 =r
O{W) 17

Proof. Assume that {(¢)'}7 =r {(¥)’}F. Then (p)' <7 (¢)?. Let kgs

(YNt =1 x. We get Fas (((¢)7))" =7 x for any ()" and x. Hence
(@)1 <p (¥)7*1. Consequently O{(p)}F < O{(¥)7}7.

Lemma 6. For any {(a)"}7,{(8)'}7 € T~, 0C({{a)"}7) =1 C(O{()"}7).

Proof. Let C(O{(a)'}5) = {6}5. Then Lemma 3 (1) O{(a)'}3 <r {d}%.
Thus (a)**! <7 §. Hence Fg5 (o)™ = 6. By Lemma 2 there is a v such
that g5 (@) =r v and Fgs (7) =71 0. Consequently {(a)}5 =<1 {7}F
and O{v}% =r {6}5. By definition, C({{)*}5) =7 {y}5. By Lemma 5
one gets OC({(a)'}53) =r O{y}5%. Hence OC({{a)'}3) =r {6}5. Therefore
0C({{a)'}3) =r CO{(a)}5).

We define two unary operation on 7'/, as follows:
*({v}7) = CO(el7))

B({e}7) = I(0O(#}7))

Lemma 7. For any {¢}7 € T/, the following hold:

(1) 48({p}7) = #({#}7)
(2) ({}7) =7 ¢({#}7)
(3) If #(({e}7)) =1 {v}3, then $(({—¥}5)) =1 {—~¢}7

Proof. (1) Let Fgs {({¢))t =71 1 for some context (—)! and formula ¢ € T.
By rule (4), one gets Fgs ((¢)%)! =1 . Thus (¢)? < (). Hence 0O{p}5 =<
O{¥}F. By Lemma 3 (2), one gets C(O0{¢}F) =r C(0{¢}7). By Lemma 6,
one gets OC(0{p}7) =21 C(00{p}7). Therefore OC(O{p}7) 21 C(O{p}7).
By Lemma 3 (2) and (3), one gets C(OC(0{¢}%)) =r C(0{¢}F). Hence
0 ({0}7) =1 ¢({e}7).

(2) Let Fgs ({¢))! =1 9 for some context (—)! and formula ¢ € T. By rule
(T), one gets Fas ()! =7 ¥. Thus ¢ <7 (p). Hence {p}5 =<1 O0{p}F. By
Lemma 3 (1), O{p}7 21 C(0{p}7). Thus {}7 21 C(0{¢}7).

(3) Assume that 4({¢}7) =r {¥}F. By Lemma 6, one can get O({¢}7) =r
#({}5). Thus O({}F) =r {¥}5. Hence () <r 1. Therefore s (¢) =1 .
By rule (00), one gets Fags (—¢) =1 —p. Hence O({—}5) <1 {-¢}F. By
definition $(({~}3)) =7 (-}

Lemma 8. For any {p}7,{¢}7 € T/x., #({p}7) =r {O}7 if {¢}7 =r
B{y}7.
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Proof. Assume that #{o}F =r {¥}F. Then C(0{v}F) =<r {¢¥}F. Thus
C{{¥)}7) =Zr {¢}7. By Lemma 3 (1), {(¢)}7 =r {¢}7. Hence (p) <r
¥ So {ep}7 =r D{y}T. By definition {p}7 =p I({4}7) = B{4}7.
Conversely assume that {¢}7 =r B{¢}F. Then {p}T7 =r I(O{¥}7]). By
Lemma 4 (1), one gets {p}7 =r O{y}F. Let O{y)}7 = {(7)'}F such that
() < . Hence {(1)7115 = {0}, By Lemma 5 0{¢}F =r 0{(1)'}3.
Thus {{¢)}F =<7 {{(7)""'}5. Consequently {(p)}F =< {¢}F. By definition,
C(0{e}F) = CUINF) <r {¥)F. Thus #{p}F =7 (9}5.

Now we construct a finite tqBab on T'/~,.. For any {¢}%,{¢}5 € T/~, one
defines:

~Aeir MU ={e N Y1T,
Ao}z VAT = {e Vv iir
- et = {7
Let 4 and M be defined as above. Let A(T,®) = (T/~,, A, V,—, ¢, W), Clearly
A(T,P) is a qBa. By Lemma 6 and 7, A(T,®) is a tqBab. Since T/, is finite,
A(T,®) is finite.

We define a assignment o from T-formulae to A(T, @) as follows: o(p) = {p}F
for any p € T. o can be extended to formulae and formula structures naturally.
By induction on the complexity of formulae, one obtains the following fact

Proposition 3. o(p) = {¢}F
Lemma 9. 0'{o}5 <1 0L {p}7

Proof. By induction on the number ¢. If ¢ = 1, then the claim holds by Lemma
5. Otherwise by induction hypothesis, one gets 0"~ {o}5 =<1 0:"1{p}5. Then
by Lemma 4 and Lemma 3 (2), one gets C((}Oi’l{cp}%) =<7 0i{¢}F. By Lemma
5, 0437 =r C(00H{p}7). Hence O} X1 OL{p}7.

Lemma 10. If @ /g5 (p)" =1 9, then @ f=pra) 0(()") 21 o(¥)

Proof. Let a = 3 € . Then @ g5 a = (. Hence o <7 . Thus {a}F < {5}%.
Hence |=p(r,g) @. Assume that =40, @)o((¢)!) =r o(¥). Since o({p)’) =
Ot{p}7 and o(v) = {Y}F. Hence OL{e}T =<r {¢}7. Further by Lemma 8
O}z =1 Ol{p}7. Thus O'{p}7 =<7 {1}F which yields (p)* <7 9. Therefore
D a5 (p)" = 1. Contradiction.

Theorem 2. If D /g5 (¢)! = 9 then there exists a model (G, o) s.t. G is finite
tgBab such that all sequents in ® is true while {p)* = 1 is not.

Proof. Let @ t/gs5 (p)* = 9. Then @ /g5 (¢)* =71 1. Therefore by Lemma 9,
the claim holds.

Theorem 4 means that G5 has SFMP so from Remark 1, we get
Theorem 3. The variety tqBa5 has SEMP

Theorem 4. The variety tqBa5 has FEP.
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5 Concluding Remarks

In this paper we have proved FEP for the class of tqBabs. Indeed the class of
Pre-rough algebras also has FEP.
A Pre-rough algebra is a tqBab enriched with the following conditions:

(IA].) Oa vV —Oa S 1
(TA2) O(a Vvb) <OaVDOb
(IA3) Oa < Ob and Ua < b implies a < b

Clearly in pre-rough one gets (i) O(aAb) = Qan®b and (ii) O(aVbd) = GaVOb.
Let T be a set of formula closed under —, A, V, . By the standard Lindenbaum
Tarski method, one can construct a Pre-rough algebra from a sequent calculus
for pre-rough with respect to a set of formulae 7' whose universe is the set of
equivalence classes of formulae in T'. Clearly by the De-morgan rules and (i), (ii),
it is finite. Consequently the class of Pre-rough algebras has SFMP whence has
FEP. By similar arguments the classes of intermediate pre-rough algebras those
containing (IA2) have FEP. Since tqBa5 does not admit (IA2), the FEP for the
class of tqBabs can not be easily established by standard Lindenbaum Tarski
method. The FEP for other classes of intermediate pre-rough algebras without
(IA2) including IA1, IA3 remain open. The results in the present paper can also
be extended to quasi Boolean algebra enriched with modal logic axioms (K)
and (B) and its extensions. Further research can be finding more intermediate
pre-rough algebras or modal quasi boolean algebras.
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