
Towards a Constructive Formalization
of Perfect Graph Theorems

Abhishek Kr Singh(B) and Raja Natarajan(B)

Tata Institute of Fundamental Research, Mumbai, India
{abhishek.singh,raja}@tifr.res.in

Abstract. Interaction between clique number ω(G) and chromatic num-
ber χ(G) of a graph is a well studied topic in graph theory. Perfect
Graph Theorems are probably the most important results in this direc-
tion. Graph G is called perfect if χ(H) = ω(H) for every induced sub-
graph H of G. The Strong Perfect Graph Theorem (SPGT) states that a
graph is perfect if and only if it does not contain an odd hole (or an odd
anti-hole) as its induced subgraph. The Weak Perfect Graph Theorem
(WPGT) states that a graph is perfect if and only if its complement is
perfect. In this paper, we present a formal framework for verifying these
results. We model finite simple graphs in the constructive type theory
of Coq Proof Assistant without adding any axiom to it. Finally, we use
this framework to present a constructive proof of the Lovász Replication
Lemma, which is the central idea in the proof of Weak Perfect Graph
Theorem.

1 Introduction

The chromatic number χ(G) of a graph G is the minimum number of colours
needed to colour the vertices so that every two adjacent vertices get distinct
colours. Finding out the chromatic number of a graph is NP-Hard [5]. However,
one obvious lower bound is clique number ω(G), the size of the biggest clique in
G. Consider the graphs shown in Fig. 1.

In each of these cases χ(G) = ω(G), i.e. the number of colours needed is
the minimum we can hope. Can we always hope χ(G) = ω(G) for every graph
G? The answer is no. Consider the cycle of odd length 5 and its complement
shown in Fig. 2. In this case one can see that χ(G) = 3 and ω(G) = 2 (i.e.
χ(G) > ω(G)). A cycle of odd length greater than or equal to 5 is called an
odd hole. Complement of an odd hole is called an odd anti-hole. Indeed, the gap
between χ(G) and ω(G) can be made arbitrarily large. Consider the other graph
shown in Fig. 2 which consist of two disjoint 5-cycles with all possible edges
between the two cycles.

This graph is a special case of the general construction where we have k
disjoint 5-cycles with all possible edges between any two copies. In this case
one can show [7] that χ(G) = 3k but ω(G) = 2k. In fact, there is an even
stronger result [9] which constructs triangle-free Micielski graph Mk that satisfies
χ(Mk) = k.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 183–194, 2019.
https://doi.org/10.1007/978-3-662-58771-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_17&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_17

184 A. Kr. Singh and R. Natarajan

Fig. 1. Some graphs where χ(G) = ω(G)

Fig. 2. Some graphs where, χ(G) > ω(G). For k disjoint 5-cycles χ(G) = 3k and
ω(G) = 2k.

In 1961, Claude Berge noticed the presence of odd holes (or odd anti-holes)
as induced subgraph in all the graphs presented to him that does not have a nice
colouring, i.e. χ(G) > ω(G). However, he also observed some graphs containing
odd holes, where χ(G) = ω(G). Consider the graphs shown in Fig. 3.

Fig. 3. Graphs with χ(G) = ω(G), and having odd hole as induced subgraph.

A good way to avoid such artificial construction is to make the notion of nice
colouring hereditary. We say that a graph H is an induced subgraph of G, if H
is a subgraph of G and E(H) = {uv ∈ E(G) | u, v ∈ V (H)}. A graph G is then
called a perfect graph if χ(H) = ω(H) for all of its induced subgraphs H.

Berge observed that the presence of odd holes (or odd anti-holes) as induced
subgraphs is the only possible obstruction for a graph to be perfect. These obser-
vations led Berge to the conjecture that a graph is perfect if and only if it does
not contain an odd hole (or an odd anti-hole) as its induced subgraph. This was
soon known as the Strong Perfect Graph Conjecture (SPGC). Berge thought this
conjecture to be a hard goal to prove and gave a weaker statement referred to
as the Weak Perfect Graph Conjecture (WPGC): a graph is perfect if and only
if its complement is perfect. Both the conjectures are theorems now. In 1972,
Lovász proved a result [8] (known as Lovász Replication Lemma) which finally
helped him to prove the WPGC. It took however three more decades to come
up with a proof for SPGC. The proof of Strong Perfect Graph Conjecture was
announced in 2002 by Chudnovsky et al. and finally published [3] in a 178-page
paper in 2006.

Towards a Constructive Formalization of Perfect Graph Theorems 185

In this paper, we present a formal framework for verifying these results. In
Sect. 2 we provide an overview of the Lovász Replication Lemma which is the
key result used in the proof of WPGT. In Sect. 3 we present a constructive
formalization of finite simple graphs. In this constructive setting, we present a
formal proof of the Lovász Replication Lemma (Sect. 4). We summarise the work
in Sect. 5 with an overview of possible future works. The Coq formalization for
this paper is available at [1].

2 Overview of Lovász Replication Lemma

Let G be a graph and v ∈ V (G). We say that G′ is obtained from G by repeating
vertex v if G′ is obtained from G by adding a new vertex v′ such that v′ is
connected to v and to all the neighbours of v in G. For example, consider the
graphs shown in Fig. 4 obtained by repeating different vertices of a cycle of
length 5.

v1

v2

v3

v4

v5

G1

v1

v2

v3

v4

v5

v′
4

G2

v1

v2

v3

v4

v5

v′
4 v′

2

G3

Fig. 4. Graph G2 is obtained from G1 by repeating vertex v4 whereas the graph G3 is
obtained from G2 by repeating vertex v2. Note that χ(G2) = ω(G2) = 3 but χ(G3) >
ω(G3).

Note that the graph G2 has a nice coloring (i.e. χ(G2) = ω(G2)), however
the graph G3 which is obtained by repeating vertex v2 in graph G2, does not
have a nice coloring (i.e. χ(G3) > ω(G3)). Thus, property χ(G) = ω(G) is not
preserved by replication. Although, the property χ(G) = ω(G) is not preserved,
Lovász in 1971 came up with a surprising result which says that perfectness is
preserved by replication. It states that if G′ is obtained from a perfect graph G
by replicating a vertex, then G′ is perfect. Note that this result does not apply
to any graph shown in Fig. 4, since none of them is a perfect graph. All of these
graphs has an induced subgraph (odd hole of length 5) which does not admit a
nice coloring.

The process of replication can be continued to obtain a graph where each
vertex is replaced with a complete graph of arbitrary size (Fig. 5). This gives us
a generalised version of the Lovász Replication lemma.

Let G be a perfect graph and f : V (G) → N . Let G′ be the graph obtained
by replacing each vertex vi of the graph G with a complete graph of order
f(vi). Then G′ is a perfect graph. For example, consider the graphs shown in
Fig. 5. Vertex a in G1 is replaced by a complete graph Va of order 2 to obtain

186 A. Kr. Singh and R. Natarajan

d c

b

a

G1

Va

b

cd

G2

Va
Vb

cd

G3

Va
Vb

VcVd

G4

Fig. 5. The graphs resulting from repeated replication of vertices a, b and c of G1 to
form cliques Va, Vb and Vc of sizes 2, 3 and 4 respectively.

G2. Similarly, vertex b in G2 is replaced by a clique Vb of size 3 to obtain G3.
Since G1 is perfect, all the other graphs (G2, G3 and G4) obtained by repeated
replications are also perfect.

3 Modeling Finite Simple Graphs

There are very few formalization of graphs in Coq. The most extensive among
these is due to the formalization of four color theorem [6] which considers only
planar graphs. We use a definition for finite graphs which is closest to the one
used by Doczkal et. al. [4]. However due to reasons explained in this section we
represent the vertices of our graphs as sets over ordType instead of eqType. We
define finite simple graphs as a dependent record with six fields.

Record UG (A:ordType) : Type:= Build_UG {
nodes :> list A; nodes_IsOrd : IsOrd nodes; edg: A -> A -> bool;
edg_irefl: irefl edg; no_edg: edg only_at nodes; edg_sym: sym edg }.
Variable G: UG A.

The last line in the above code declares a finite graph G whose vertices come from
an infinite domain A. The first field of G can be accessed using the term (nodes
G). It is a list that represents the set of vertices of G. The second field of G ensures
that the list of vertices can be considered as a set (details in Sect. 3.1). The third
field, which is accessed using the term (edg G), is a binary relation representing
the edges of the graph G. The terms (edg_irefl G) and (edg_sym G) are proof
terms whose type ensures that the edge relation of G is irreflexive and symmet-
ric. These restrictions on edge makes the graph G simple and undirected. For
simplicity in reasoning, the edge relation is considered false everywhere outside
the vertices of G. This fact is represented by the proof term (no_edg G).

3.1 Vertices as Constructive Sets

In our work we only consider finite graphs. Vertices of a finite graph can be rep-
resented using a finite set. The Mathematical Components library [6] describes
an efficient way of working with finite sets. Finite sets are implemented using

Towards a Constructive Formalization of Perfect Graph Theorems 187

finite functions (ffun) built over a finite type (finType). Since all the elements
of a set now come from a finite domain (i.e. finType) almost every property on
the set can be represented using computable (boolean) functions. These boolean
functions can be used to do case analysis on different properties of a finite set
in a constructive way.

The proof of WPGT involves expansion of graph in which the vertices of
the initial graph are replaced with cliques of different sizes. Therefore, in our
formalization we can’t assume that the vertices of our initial graph are sets over
some finType. Instead, we represent the set of vertices of a graph G as a list
whose elements come from an infinite domain (defined as ordType).

Reflection, eqType and ordType. The finType in ssreflect is defined
on a base type called eqType. The eqType is defined as a dependent record
which packs together a type (T:Type) and a boolean comparison operator
(eqb: T → T → bool) that can be used to check the equality of any two ele-
ments of type T. Therefore, it tries to capture the notion of a domain with
decidable equality. For example, consider the following canonical instance which
connects natural numbers to the theory of eqType.

Canonical nat_eqType: eqType:=
{|Decidable.E:= nat; Decidable.eqb:= Nat.eqb; Decidable.eqP:= nat_eqP|}.

Here, Nat.eqb is a boolean function that checks the equality of two natural num-
ber and the term nat_eqP is name of a lemma which ensures that the function
eqb evaluates equality in correct way.

Lemma 1. nat_eqP (m n:nat): reflect (m = n)(Nat.eqb m n).

Note, the use of reflect predicate to specify a boolean function. It is a
common practice in the ssreflect library. Once we connect a proposition P with a
boolean B using the reflect predicate we can easily navigate between them. This
makes case analysis on P possible even though the Excluded Middle principle is
not provable for an arbitrary proposition Q in the constructive type theory of
Coq. Consider the following lemma (from GenReflect.v), which makes case
analysis possible on a predicate P.

Lemma 2. reflect_EM (P: Prop)(b:bool): reflect P b -> P ∨ ¬ P.

To keep the library constructive we follow this style of proof development. All
the basic predicates on sets are connected with their corresponding boolean func-
tions using reflection lemmas. For example, consider the predicates mentioned
in Table 1.

These lemmas can be used to do case analysis on any statement about sets
containing elements of eqType. However, in this framework we can’t be con-
structive while reasoning about properties of power sets. Hence, we base our set
theory on ordType which is defined as a subtype of eqType.

The ordType inherits all the fields of eqType and has an extra boolean oper-
ator which we call the less than boolean operator (i.e. ltb). This new operator
represents the notion of ordering among elements of ordType.

188 A. Kr. Singh and R. Natarajan

Table 1. Some decidable predicates on sets from the file SetReflect.v

Propositions (P:Prop) Boolean functions (b:bool) Reflection lemmas

In a l memb a l membP

Equal l s equal l s equalP

∃ x, (In x l ∧ f x) existsb f l existsbP

∀ x, (In x l -> f x) forallb f l forallbP

Sets as Ordered Lists. Let T be an ordType. Sets on domain T is then defined
as a dependent record with two fields. The first field is a list of elements of type
T and the second field ensures that the list is ordered using the ltb relation of T.

Record set_on (T:ordType): Type := { S_of :> list T; IsOrd_S : IsOrd S_of }.

All the basic operations on sets (e.g. union, intersection and set difference)
are implemented using functions on ordered lists which outputs an ordered list.
An important consequence of representing sets using ordered list is the following
lemma (from OrdList.v) which states that the element wise equal sets can be
substituted for each other in any context.

Lemma 3. set_equal (A: ordType)(l s: set_on A): Equal l s -> l = s.

Another advantage of representing sets using ordered list is that we can now
enumerate all the subsets of a set S in a list using the function pw(S). Moreover,
we have following lemma which states that the list generated by pw(S) is a set.
The details of function pw(S) can be found in the file Powerset.v.

Lemma 4. pw_is_ord (S: list A): IsOrd (pw S).

Since all the subsets of S are present in the list pw(S) we can express any
predicate on power set using a boolean function on list. This gives us a construc-
tive framework for reasoning about properties of sets as well as their power sets.
For example, consider the following definition of a boolean function forall_xyb
and its corresponding reflection lemma forall_xyP from the file SetReflect.v.

Definition forall_xyb (g:A->A->bool)(l:list A):=
(forallb (fun x=> (forallb (fun y => g x y) l)) l).

Lemma forall_xyP (g:A->A->bool) (l:list A):
reflect (forall x y, In x l-> In y l-> g x y) (forall_xyb g l).

3.2 Decidable Edge Relation

The edges of graph G are represented using a decidable binary relation on the
vertices of G. Hence, one can check the presence of an edge between vertices u and
v by evaluating the expression (edg G u v). The decidability of edge relation
is useful for defining many other important properties of graphs as decidable
predicates.

Towards a Constructive Formalization of Perfect Graph Theorems 189

Cliques, Stable Set and Graph Coloring. Consider the following definition
of a complete graph K present in the graph G. Note that the proposition Cliq G
K is decidable because it is connected to a term of type bool (i.e. cliq G K) by
the reflection lemma cliqP.

Definition cliq(G:UG)(K:list A):=forall_xyb (fun x y=> (x==y) || edg G x y) K.
Definition Cliq(G:UG)(K:list A):=(forall x y,In x K->In y K-> x=y \/ edg G x y).
Lemma cliqP (G: UG)(K: list A): reflect (Cliq G K) (cliq G K).

In a similar way we also define independence set (or stable set) and graph
coloring using decidable predicates. The details can be found in the file UG.v and
MoreUG.v. Most of these these definitions together with their reflection lemmas
are listed in Table 2.

Table 2. Decidable predicates on finite graphs (from UG.v and MoreUG.v).

Propositions (P:Prop) Boolean functions (b:bool) Reflection lemmas

Subgraph G1 G2 subgraph G1 G2 subgraphP

Ind_Subgraph G1 G2 ind_subgraph G1 G2 ind_subgraphP

Stable G I stable G I stableP

Max_I_in G I max_I_in G I max_I_inP

Cliq G K cliq G K cliqP

Max_K_in G K max_K_in G K max_K_inP

Coloring_of G f coloring_of G f coloring_ofP

We call a graph G to be a nice graph if χ(G) = ω(G). A graph G is then called
a perfect graph if every induced subgraph of it is a nice graph.

Definition Nice (G: UG): Prop:= forall n, cliq_num G n -> chrom_num G n.
Definition Perfect (G: UG): Prop:= forall H, Ind_subgraph H G -> Nice H.

In this setting we have the following lemma establishing the obvious relationship
between χ(G) and ω(G). Here the expression (clrs_of f G) represents the set
containing all colors used by f to color the vertices of G.

Lemma 5. more_clrs_than_cliq_size (G: UG)(K: list A)(f: A -> nat):
Cliq_in G K-> Coloring_of G f -> |K| <= |clrs_of f G|.

Lemma 6. more_clrs_than_cliq_num (G: UG) (n:nat)(f: A->nat):
cliq_num G n-> Coloring_of G f -> n <= |clrs_of f G|.

3.3 Graph Isomorphism

It is typically assumed in any proof involving graphs that isomorphic graphs
have exactly the same properties. However, in a formal setting we need a proper
representation for graph isomorphism to claim the exact behaviour of isomorphic
graphs.

190 A. Kr. Singh and R. Natarajan

Definition iso_using (f: A->A)(G G’: @UG A) := (forall x, f (f x) = x) /\
(nodes G’) = (img f G) /\ (forall x y, edg G x y = edg G’ (f x) (f y)).

Definition iso (G G’: @UG A) := exists (f: A->A), iso_using f G G’.

Consider the following lemmas which shows the symmetric nature of graph iso-
morphism.

Lemma 7. iso_sym (G G’: UG): iso G G’ -> iso G’ G.

Note the self invertible nature of f which makes it injective on both G and G’.
The second condition (i.e. (nodes G’) = (img f G)) expresses the fact that f
maps all the vertices of G to the vertices of G’.

Lemma 8. iso_one_one (G G’: UG)(f: A-> A): iso_using f G G’->
one_one_on G f.

Lemma 9. iso_subgraphs (G G’ H :UG) (f: A-> A) : iso_using f G G’->
Ind_subgraph H G -> (∃ H’, Ind_subgraph H’ G’ ∧ iso_using f H H’).

For the graphs G and G’ Lemma 9 states that every induced subgraph H of G
has an isomorphic counterpart H’ in G’. In a similar way we can prove that
the stable sets and cliques in G has isomorphic counterparts in G’. For example,
consider the following lemmas from IsoUG.v summarising these results.

Lemma 10. iso_cliq (G G’: UG)(f:A-> A)(K:list A):iso_using f G G’->
Cliq G K -> Cliq G’ (img f K).

Lemma 11. iso_stable (G G’: UG)(f: A-> A)(I: list A):iso_using
f G G’-> Stable G I-> Stable G’ (img f I).

Lemma 12. iso_coloring(G G’:UG)(f:A->A)(C: A->nat):iso_using f G
G’ -> Coloring_of G C -> Coloring_of G’ (fun (x:A) => C (f x)).

Lemma 13. perfect_G’ (G G’:UG): iso G G’-> Perfect G -> Perfect G’.

3.4 Graph Constructions

Adding (or removing) edges in an existing graph to obtain a new graph is a
common procedure in proofs involving graphs. In such circumstances an explicit
specification of all the fields of the new graph becomes a tedious job.

For example, consider the definition of following function (nw_edg G a a’).

Definition nw_edg(G:UG)(a a’:A):= fun(x y:A)=> match (x==a), (y==a’) with
| _ , false => (edg G) x y
| true, true => true
|false, true => (edg G) x a

end.

The term (nw_edg G a a’) can be used to describe the edge relation of graph
G’ shown in Fig. 6, which is obtained from G by repeating the vertex a to a’.

This function has a simple definition and hence it is easy to prove various
properties about it. For example, we can prove following results establishing
connections between the edges of G and G’.

Towards a Constructive Formalization of Perfect Graph Theorems 191

v2 v3

a

v1

G

v2 v3

a′a

v1

G′

Fig. 6. Graph G′ is obtained from G by repeating vertex a to a′.

Lemma 14. nw_edg_xa_xa’ (G: UG)(a a’ x:A): (edg G) x a -> (nw_edg G a
a’) x a’.

Lemma 15. nw_edg_xy_xy (G: UG)(a a’ x y:A)(P’: ¬ In a’ G): (edg G) x
y -> (nw_edg G a a’) x y

Lemma 16.
nw_edg_xy_xy4 (G: UG)(a a’ x y:A)(P: In a G)(P’: ¬In a’ G):
y �= a’ -> (edg G) x y = (nw_edg G a a’) x y.

Although, the term (nw_edg G a a’) contains all the essential properties of
the construction it doesn’t have the irreflexive and symmetric properties neces-
sary for an edge relation. Hence, we can’t use this term for edge relation while
declaring G’ as an instance of UG. To ensure these properties one can add more
branches to the match statement and provide an extra term P of type a �= a’ as
argument to the function. However, this will result in a more complex function
and proving even the essential properties of the new function becomes hard.

Instead of writing complex edge relations every time we define functions
namely mk_irefl, mk_sym and E_res_to which make minimum changes and
convert any binary relation on vertices into an edge relation. For example con-
sider the following specification lemmas for the functions mk_irefl and mk_sym.

Lemma 17. mk_ireflP (E: A -> A-> bool): irefl (mk_irefl E).

Lemma 18. mk_symP (E: A-> A-> bool): sym (mk_sym E).

Lemma 19. irefl_inv_for_mk_sym (E: A-> A-> bool): irefl E -> irefl
(mk_sym E).

Lemma 20. sym_inv_for_mk_irefl (E: A->A-> bool): sym E ->
sym (mk_irefl E).

Note that these functions do not change the properties ensured by each other.
The file UG.v contains other invariance results about these functions proving
that these functions work well when used together. For example, consider the
following declaration of G’ as an instance of UG.

Definition ex_edg(G:UG)(a a’:A):=
mk_sym(mk_irefl((nw_edg G a a’) at_ (add a’ G))).

Variable G: UG.
Definition G’:= refine({| nodes:= add a’ G; edg:= (ex_edg G a a’);

|}); unfold ex_edg. all: auto. Defined.

192 A. Kr. Singh and R. Natarajan

Note that the term (ex_edg G a a’) obtained from (nw_edg G a a’) by
using these functions have all the properties of an edge relation. Now, we can
simply use the tactic all: auto to discharge all the proof obligations generated
while declaring G’ as an instance of UG. Therefore these functions can signifi-
cantly ease the construction of new graphs.

All the important properties of the final edge relation (i.e. ex_edg G a a’)
can now be derived from the properties of nw_edg G a a’ by using the specifi-
cation lemmas for the functions mk_irefl, mk_sym and E_res_to. For example
consider following lemmas (from Lovasz.v) which describes the final edge rela-
tion (i.e. ex_edg) of graph G’.

Lemma 21. Exy_E’xy (x y:A)(P: In a G)(P’: ¬ In a’ G): edg G x y -> edg
G’ x y.

Lemma 22. In_Exy_eq_E’xy (x y:A)(P: In a G)(P’: ¬ In a’ G): In x G->
In y G-> edg G x y=edg G’ x y.

Lemma 23. Exy_eq_E’xy (x y:A)(P: In a G)(P’: ¬ In a’ G): x �= a’-> y
�= a’-> edg G x y = edg G’ x y.

Lemma 24. Exa_eq_E’xa’ (x:A)(P: In a G)(P’: ¬ In a’ G): x �= a-> x �=
a’-> edg G x a = edg G’ x a’.

Lemma 25. Eay_eq_E’a’y (y:A)(P: In a G)(P’: ¬ In a’ G): y �= a -> y �=
a’ -> edg G a y = edg G’ a’ y.

4 Constructive Proof of Lovász Replication Lemma

Let G and G’ be the graphs discussed in Sect. 3.4, where G’ is obtained from G
by repeating the vertex a to a’. Then we have the following lemma.

Lemma 26. ReplicationLemma Perfect G -> Perfect G’.

Proof: We prove this result using induction on the size of graph G.

– Induction hypothesis (IH): ∀ X, |X|<|G|-> Perfect X -> Perfect X’

Let H’ be an arbitrary induced subgraph of G’, then we need to prove that
χ(H’) = ω(H’). We prove this equality in both of the following cases.

– Case-1 (H’ �= G’): In this case H’ is strictly included in G’. We further do
case analysis on the proposition (a ∈ H’).

• Case-1A (a /∈ H’): In this case if a’ /∈ H’ then H’ is an induced sub-
graph of G and hence χ(H’) = ω(H’). Now consider the case when
a’ ∈ H’. Let H be the induced subgraph of H’ restricted to the vertex-
set (H’\a’) ∪ {a}. Note that H’ is isomorphic to H and H is an induced
subgraph of G. Hence H’ is a perfect graph and we have χ(H’) = ω(H’).

Towards a Constructive Formalization of Perfect Graph Theorems 193

• Case-1B (a ∈ H’): Again in this case if a’ /∈ H’ then H’ is an induced
subgraph of G and hence χ(H’) = ω(H’). Now we are in the case where
a ∈ H’, a’ ∈ H’ and H’ is strictly included in G’. Therefore, the set
H’\a’ is strictly included in G. Let H be the induced subgraph of G with
vertex set H’\a’. Note that H’ can be obtained by repeating a to a’ in H.
But, we know that |H| < |G|, hence H’ is a perfect graph by induction
hypothesis (IH) and we have χ(H’) = ω(H’).

– Case-2 (H’ = G’): In this case we need to prove χ(G’) = ω(G’). We further
split this case into two sub cases.

• Case-2A: In this case we assume that there exists a clique K of size
ω(G) such that a ∈ K. Hence K gets extended to a clique of size ω(G)+1
in G’ and ω(G’)= ω(G)+1. Now we can assign a new color to the
vertex a’ which is different from all the colors assigned to G. Hence
χ(G’)= χ(G)+1=ω(G)+1=ω(G’).

• Case-2B: In this case we assume that a does not belong to any clique K of
size ω(G). Since G is a perfect graph let f be a coloring of graph G which
uses exactly ω(G) colors. Let G∗ = { v∈ G: f(v) �= f(a) ∨ v=a }.
For the subgraph G∗ we can then show that ω(G∗) < ω(G). Hence there
must exist a coloring f∗ which uses ω(G∗) colors for coloring G∗. Since
ω(G∗) < χ(G) we can safely assume that f∗ does not use the color f
(a) for coloring the vertices of G∗. Now consider a coloring f’ which
assigns a vertex x color f∗(x) if x belongs to G∗ otherwise f’ (x) = f
(a). Note that the number of colors used by f is at most ω(G). Hence
χ(G’) = ω(G’).

Note that all the cases in the above proof correspond to predicates on sets and
finite graphs. Since we have decidable representations for all of these predicates,
we could do case analysis on them without assuming any axiom. �

5 Conclusions and Future Work

Formal verification of a mathematical theory can often lead to a deeper under-
standing of the verified results and hence increases our confidence in the the-
ory. However, the task of formalization soon becomes overwhelming because the
length of formal proofs blows up significantly. In such circumstances having a
library of facts on commonly occurring mathematical structures can be really
helpful. The main contribution of this paper is a constructive formalisation of
finite simple graphs in the Coq proof assistant [2]. This formalization can be
used as a framework to verify other important results on finite graphs. To keep
the formalisation constructive we follow a proof style similar to the small scale
reflections technique of the ssreflect. We use small boolean functions in a sys-
tematic way to represent various predicates over sets and graphs. These func-
tions together with their specification lemmas can help in avoiding the use of
Excluded-Middle in the proof development. We also describe functions to ease
the process of new graph construction. These functions can help in discharging

194 A. Kr. Singh and R. Natarajan

most of the proof obligation generated while creating a new instance of finite
graph. Finally, we use this framework to present a fully constructive proof of the
Lovász Replication Lemma [8], which is the central idea in the proof of Weak
Perfect Graph Theorem. One can immediately extend this work by formally ver-
ifying Weak Perfect Graph Theorem in the same framework. Another direction
of work could be to add in the present framework all the basic classes of graphs
and decompositions involved in the proof of Strong Perfect Graph Theorem.
This can finally result in a constructive formalisation of strong Perfect Graph
Theorem in the Coq proof assistant.

References

1. Coq formalization. https://github.com/Abhishek-TIFR/List-Set
2. The Coq Standard Library. https://coq.inria.fr/library/
3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph

theorem. Annal. Math. 164, 51–229 (2006)
4. Doczkal, C., Combette, G., Pous, D.: A formal proof of the minor-exclusion property

for treewidth-two graphs. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS,
vol. 10895, pp. 178–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94821-8_11

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

6. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reason. 3(2), 95–152 (2010)

7. Gyarfas, A., Sebo, A., Trotignon, N.: The chromatic gap and its extremes. J. Comb.
Theory, Series B 102(5), 1155–1178 (2012)

8. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math.
2(3), 253–267 (1972)

9. Mycielski, J.: Sur le coloriage des graphs. Colloquium Mathematicae 3(2), 161–162
(1955)

https://github.com/Abhishek-TIFR/List-Set
https://coq.inria.fr/library/
https://doi.org/10.1007/978-3-319-94821-8_11
https://doi.org/10.1007/978-3-319-94821-8_11

	Towards a Constructive Formalization of Perfect Graph Theorems
	1 Introduction
	2 Overview of Lovász Replication Lemma
	3 Modeling Finite Simple Graphs
	3.1 Vertices as Constructive Sets
	3.2 Decidable Edge Relation
	3.3 Graph Isomorphism
	3.4 Graph Constructions

	4 Constructive Proof of Lovász Replication Lemma
	5 Conclusions and Future Work
	References

