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Abstract. Computing Herbrand equivalences of terms in data flow
frameworks is well studied in program analysis. While algorithms use
iterative fix-point computation on some abstract lattice of expressions
relevant to the flow graph, the definition of Herbrand equivalences is
based on an equivalence over all program paths formulation, on the
(infinite) set of all expressions. The aim of this paper is to develop
a lattice theoretic fix-point formulation of Herbrand equivalence on a
concrete lattice defined over the set of all terms constructible from vari-
ables, constants and operators of a program. This new formulation makes
explicit the underlying lattice framework as well as the monotone func-
tion involved in computing Herbrand equivalences. We introduce the
notion of Herbrand congruence and define an (infinite) concrete lat-
tice of Herbrand congruences. Herbrand equivalence is defined as the
maximum fix-point of a composite transfer function defined over an
appropriate product lattice of the above concrete lattice. We then re-
formulate the traditional meet over all paths definition in our lattice the-
oretic framework. and prove that the maximum fix-point (MFP) and the
meet-over-all-paths (MOP) formulations coincide as expected.

Keywords: Herbrand equivalence · Data flow framework · Fix-point

1 Introduction

Data flow frameworks are abstract representations of programs, used in pro-
gram analysis and compiler optimizations [1,2]. As detection of semantic equiv-
alence of expressions at program points is unsolvable [3], algorithms try to detect
a weaker, syntactic notion of equivalence called Herbrand equivalence [4–8].
Herbrand equivalence treats operators as uninterpreted functions, and expres-
sions obtained by applying the same operator on equivalent operands are treated
equivalent.

Kildall [9] used abstract interpretation [10] to compute Herbrand equivalences
at program points using an iterative fix point algorithm over a meet semi-lattice
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[2,3,11]. Several algorithms for computation of Herbrand equivalence of program
expressions are known [4,5,7,8,12,13]. Most of these algorithms use iterative fix-
point computation on an abstract lattice defined over a working set of expressions
relevant to the program. It is known that the working set needs to include certain
non-program expressions as well [9].

The theoretical question of describing the concrete lattice of all expres-
sion equivalences and the monotone function whose fix point defines the Her-
brand equivalence of expressions at program points seems to be unaddressed
in the literature. This is possibly due the fact that the traditional definition of
Herbrand equivalence of expressions (see [5, p. 393]) is based on an equivalence
over all program paths formulation, rather than a lattice based formulation. In
this work, we axiomatize the notion of congruence of all expressions over the
variables, constants and operators in a program. We then define a concrete lat-
tice of all congruences. We show that this lattice is complete, which ensures that
every monotone function f over the lattice indeed has a maximum fix-point [14],
though the lattice has infinite height.

Given a data flow framework, we define transfer functions and indefinite
assignments as certain monotone functions on the lattice described above. By
a standard product lattice construction, we then define a composite transfer
function [15,16], which is monotone over the product lattice. We define the
Herbrand equivalence at each program point as component maps (projections)
of the maximum fix-point of this composite transfer function. Finally, to validate
the new formulation against the existing definition of Herbrand equivalence, we
re-formulate the standard definition of Herbrand equivalence in [5] in our lattice
framework and show it to be equivalent to the fix-point formulation developed
in this paper.

Many of the standard proofs for the equivalence of fix-point and meet over
all paths formulations assume that the lattice is either of finite height or that
every chain has finite height [1,3,16], where equivalence holds whenever the
transfer function under consideration is a meet-morphism. Even though chains
are of infinite height, the transfer function being a complete-meet-morphism
guarantees that the equivalence still holds true for the formulation presented in
this paper. A proof of this equivalence is presented in Sect. 8.

2 Terminology

Let C be a set of constants and X be a set of variables. For simplicity, we
assume that the set of operators Op = {+}. (More operators can be added
without any difficulty). The set of all terms over C ∪X, T = T (X,C) is defined
by t ::= c | x | (t+ t), with c ∈ C and x ∈ X. (Parenthesis is avoided when there
is no confusion.) Let P be a partition of T . Let [t]P (or simply [t] when there is
no confusion) denote the equivalence class from P containing the term t ∈ T . If
t′ ∈ [t]P , we write t ∼=P t′ (or simply t ∼= t′). For any A ⊆ T , A(x) denotes the
set of all terms in A in which the variable x appears and A(x) denotes the set
of all terms in A in which x does not appear. In particular, for any x ∈ X, T (x)
is the set of all terms containing the variable x and T (x) = T \ T (x).
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Definition 1 (Substitution). For t, α ∈ T , x ∈ X, substitution of x with α
in t, denoted by t[x ← α] is defined by: (1) If t = x, then t[x ← α] = α. (2) If
t /∈ T (x), t[x ← α] = t. (3) If t = t1 + t2 then t[x ← α] = t1[x ← α] + t2[x ← α].

For proofs of statements left unproven in the main text and proofs of some
elementary results of lattice theory which are used in the main text, the reader
may refer to the preprint [17].

3 Congruences of Terms

Definition 2 (Congruence of Terms). Let P be a partition of T . P is a
Congruence (of terms) if the following conditions hold:

1. For t, t′, s, s′ ∈ T , t′ ∼= t and s′ ∼= s if and only if t′ +s′ ∼= t+s. (Congruences
respect operators).

2. For any c ∈ C, t ∈ T , if t ∼= c then either t = c or t ∈ X. (The only non-
constant terms that are allowed to be congruent to a constant are variables).

Given a data flow framework, we will associate a congruence with each program
point. Each iteration refines the present congruence at each program point till
a fix-point is reached. The Herbrand equivalence at each program point will be
defined as this fix-point congruence.

Definition 3. The set of all congruences over T is denoted by G(T ).

We define a binary confluence operation on the set of congruences, G(T ).

Definition 4 (Confluence). Let P1 = {Ai}i∈I and P2 = {Bj}j∈J be two con-
gruences. For all i ∈ I and j ∈ J , define Ci,j = Ai ∩ Bj. The confluence of P1

and P2 is defined by: P1 ∧ P2 = {Ci,j : i ∈ I, j ∈ J,Ci,j 	= ∅}.

Theorem 5. If P1 and P2 are congruences, then P1 ∧ P2 is a congruence.

We next define an ordering on the set G(T ) and extend it to a complete lattice.

Definition 6 (Refinement of a Congruence). Let P, P ′ be congruences over
T . We say P � P ′ (read P is a refinement of P ′) if for each equivalence class
A ∈ P, there exists an equivalence class A′ ∈ P ′ such that A ⊆ A′.

Definition 7. The partition in which each term in T belongs to a different class
is defined as: ⊥ = {{t} : t ∈ T }.

The following observation is a direct consequence of the definition of ⊥.

Observation 8. ⊥ is a congruence. Moreover for any P ∈ G(T ), ⊥ ∧ P = ⊥.

Lemma 9. Every non-empty subset of (G(T ),�) has a greatest lower bound.

Next, we extend (G(T ),�) by artificially adding a top element 
, so that the
greatest lower bound of the empty set is also well defined.
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Definition 10. The lattice (G(T ),�,⊥,
) is defined over the set G(T ) =
G(T ) ∪ {
} with P � 
 for each P ∈ G(T ). In particular, 
 is the greatest
lower bound of ∅ and 
 ∧ P = P for every P ∈ G(T ).

Hereafter, we will be referring to the element 
 as a congruence. Combining
Lemma 9, Definition 10 and standard results in lattice theory, we get:

Theorem 11. (G(T ),�,⊥,
) is a complete lattice.

Definition 12 (Infimum). Let S = {Pi}i∈I be an arbitrary collection of con-
gruences in G(T ) (S may be empty or may contain 
). The infimum of S,
denoted by

∧
S or

∧
i∈I Pi, is defined as the greatest lower bound of the set

{Pi}i∈I .

Remark 13. The results in this paper only assumes the meet-completeness of
(G(T ),�,⊥,
) and the existence of a top element. Though the lattice is also
join-complete, our proofs do not rely on this property.

4 Transfer Functions

A transfer function describes the effect of an assignment on a congruence.

Definition 14 (Transfer Functions). Let y ∈ X and β ∈ T (y). (Note that
y does not appear in β). The transfer function f

y=β
transforms a congruence

P = {Ai}i∈I to f
y=β

(P), a collection of subsets of T , given by the following:

– If P = {Ai}i∈I , then let Bi = {t ∈ T : t[y ← β] ∈ Ai}, for each i ∈ I.
– f

y=β
(P) = {Bi : i ∈ I, Bi 	= ∅}.

See Fig. 1 for an example.

A1 = {1}, A2 = {2}, A3 = {x}, A4 = {y}, A5 = {z},

B1 = {1, x}, B2 = {2}, B4 = {y}, B5 = {z},

C1 = {1, x}, C2 = {2, y}, C5 = {z}, C6 = {1 + 1, 1 + x, x + 1, x + x},

D1 = {1, x, z}, D2 = {2, y},

f
x=1

f
y=2

fz=x

A6 = {1 + 1}, A7 = {1 + x}, A8 = {x + 1}, A9 = {1 + y},

B6 = {1 + 1, 1 + x, x + 1, x + x}, B9 = {1 + y, x + y},

C11 = {1 + 2, x + 2, 1 + y, x + y},...

A10 = {x + y}, A11 = {1 + 2},...

B11 = {1 + 2, x + 2},...

D6 = {1 + 1, 1 + x, x + 1, x + x, 1 + z, z + 1, z + z, z + x, x + z},
D11 = {1 + 2, x + 2, 1 + y, x + y, z + 2, z + y},...

x := 1

y := 2

z := x

entry point

Fig. 1. Application of transfer functions

Note that statements of the form y := y + c can be transformed to the
form permitted by Definition 14. We write f(P) instead of f

y=β
(P) to avoid

cumbersome notation.
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Theorem 15. If P is a congruence, then for any y ∈ X, β ∈ T (y), f
y=β

(P) is
a congruence.

Next, we extend the definition of transfer functions to (G(T ),�,⊥,
).

Definition 16. Let y ∈ X and β ∈ T (y). Let P ∈ G(T ). The extended transfer
function f

y=β
(P) : G(T ) −→ G(T ) transforms P to f

y=β
(P) ∈ G(T ) given by

f
y=β

(P) = f
y=β

(P) for all P ∈ G(T ) and f
y=β

(
) = 
.

We will write f
y=β

(P) (or f(P)) instead of f
y=β

(P) and call it a transfer function.
We next show that transfer functions are complete-meet-morphisms over the

complete lattice (G(T ),�,⊥,
). Let f = f
y=β

, where y ∈ X, β ∈ T (y). For
arbitrary collections of congruences S ⊆ G(T ), The notation f(S) denotes the
set {f(s) : s ∈ S}.

Theorem 17. f is a complete-meet-morphism. That is, for any ∅ 	= S ⊆ G(T ),
f(

∧
S) =

∧
f(S).

5 Indefinite Assignment

Indefinite (or non-deterministic) assignments model input statements in
programs.

Definition 18. Let y ∈ X. The transfer function f
y=∗ transforms a congruence

P ∈ G(T ) to f(P) = f
y=∗(P), a collection of subsets of T given by: for every

t, t′ ∈ T , t ∼=f(P) t′ if and only if both the following conditions are satisfied: (1)
t ∼=P t′. (2) For every β ∈ T \ T (y), t[y ← β] ∼=P t′[y ← β].

Theorem 19. If P is a congruence, then for any y ∈ X, f
y=∗(P) is a

congruence.

We write
∧

β∈T (y) f
y=β

(P) to denote the set
∧

{f
y=β

(P) : β ∈ T (y)}. The next
theorem shows that each indefinite assignment may be expressed as a confluence
of (an infinite collection of) transfer function operations.

Theorem 20. If P is a congruence, then for any y ∈ X,
fy=∗(P) = P ∧

(∧
β∈T (y) f

y=β
(P)

)
.

We extend indefinite assignments to (G(T ),�,⊥,
).

Definition 21. Let y ∈ X and P ∈ G(T ). The extended transfer function
f

y=∗(P) : G(T ) �→ G(T ) transforms P to f
y=∗(P) ∈ G(T ) given by: f

y=∗(P) =
fy=∗(P) for all P ∈ G(T ), and f

y=∗(
) = 
.

We will write f
y=∗(P) instead of f

y=∗(P) to simplify notation.

Theorem 22. f
y=∗ is a complete-meet-morphism. That is, for any ∅ 	= S ⊆

G(T ), f
y=∗(

∧
S) =

∧
f

y=∗(S), where f
y=∗(S) = {f

y=∗(s) : s ∈ S}.
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We show that indefinite assignments can be characterized in terms of just three
congruences (instead of dealing with infinitely many as in Theorem 20).

Theorem 23. Let P ∈ G(T ) and let c1, c2 ∈ C, c1 	= c2. Then, for any y ∈ X,
f

y=∗(P) = P ∧ f
y←c1

(P) ∧ f
y←c2

(P).

6 Data Flow Analysis Frameworks

We next formalize the notion of a data flow framework and apply the formal-
ism developed above to characterize Herbrand equivalence at each point in a
program.

Definition 24. A control flow graph G(V,E) is a directed graph over the vertex
set V = {1, 2, . . . , n} for some n ≥ 1 satisfying the following properties:

– 1 ∈ V is called the entry point and has no predecessors.
– Every vertex i ∈ V , i 	= 1 is reachable from 1 and has at least one predecessor

and at most two predecessors.
– Vertices with two predecessors are called confluence points.
– Vertices with a single predecessor are called (transfer) function points.

x := 1

y := 1 + 1

z := x+ y

entry point

z := 3 Read z

s := x+ y

t := x+ 1

x := t

w := x

f1 = ⊥

f2 = h2 ◦ π1

f3 = h3 ◦ π2

f4 = h4 ◦ π3

f5 = h5 ◦ π4

f7 = π5,6

f8 = h8 ◦ π7

f10 = h10 ◦ π9

f11 = h11 ◦ π10

f12 = h12 ◦ π11

h2 = f
x=1

1

2

h3 = f
y=1+1

h4 = f
z=x+y

h5 = f
z=3

h6 = f
z=∗

3

4

5 6
7

8

9

10

11

12

h8 = f
s=x+y

h10 = f
t=x+1

h11 = f
x=t

h12 = f
w=x

f6 = h6 ◦ π4

f9 = π8,11

Fig. 2. Component maps of the composite transfer function
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Definition 25. A data flow framework over T is a pair D = (G,F ), where
G(V,E) is a control flow graph on the vertex set V = {1, 2, . . . , n} and F is a
mapping from the set of function points in V to the set of transfer functions
over G(T ). The transfer function associated with function point i will be denoted
as hi.

Data flow frameworks can be used to represent programs. An example is
given in Fig. 2. In the sections that follow, we will use hi to denote the extended
transfer function hi (see Definitions 16 and 21) without further explanation.

7 Herbrand Equivalence

Let D = (G,F ) be a data flow framework over T . In the following, we will define
the Herbrand Congruence function HD : V (G) �→ G(T ). For each vertex i ∈
V (G), the congruence HD(i) will be called the Herbrand Congruence associated
with the vertex i of the data flow framework D. The function HD will be defined
as the maximum fix-point of a complete-meet-morphism f

D
: G(T )

n �→ G(T )
n
.

The function f
D

will be called the composite transfer function associated with
the data flow framework D.

Definition 26 (Product Lattice). Let n be a positive integer. The product
lattice, (G(T )

n
,�n,⊥n,
n) is defined as follows: for P = (P1,P2, . . . ,Pn), Q =

(Q1,Q2, . . . ,Qn) ∈ G(T )
n
, P �n Q if Pi � Qi for each 1 ≤ i ≤ n, ⊥n =

(⊥,⊥, . . . ,⊥) and 
n = (
,
, . . . ,
).

For S ⊂ G(T )
n
, the notation

∧
S will be used to denote the greatest lower bound

of S in the product lattice.
By Theorem 11, and standard results in lattice theory, we have:

Theorem 27. The product lattice satisfies the following properties:

1. (G(T )
n
,�n,⊥n,
n) is a complete lattice.

2. If S̃ ⊆ G(T )
n

is non-empty, with S̃ = S1 × S2 × · · · × Sn, where Si ⊆ G(T )
for 1 ≤ i ≤ n. Then

∧
S̃ = (

∧
S1,

∧
S2, . . . ,

∧
Sn).

As preparation for defining the composite transfer function, we introduce the
following functions:

Definition 28 (Projection Maps). Let n be a positive integer. For each i ∈
{1, 2, . . . , n},

– The projection map to the ith co-ordinate, πi : G(T )
n �→ G(T ) is defined by

πi(P1,P2, . . . ,Pn) = Pi for any (P1,P2, . . . ,Pn) ∈ G(T )
n
.

– The confluence map πi,j : G(T )
n �→ G(T ) is defined by

πi,j(P1,P2, . . . ,Pn) = Pi ∧ Pj for any (P1,P2, . . . ,Pn) ∈ G(T )
n
.
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In addition to the above functions, we will also use the constant map which
maps each element in G(T )

n
to ⊥. The following observation is a consequence

of standard results in lattice theory.

Observation 29. Constant maps, projection maps and confluence maps are
complete-meet-morphisms.

For each k ∈ V (G), Pred(k) denotes the set of predecessors of the vertex k in
the control flow graph G.

Definition 30 (Composite Transfer Function). Let D = (G,F ) be a data
flow framework over T . For each k ∈ V (G), define the component map fk :
G(T )

n �→ G(T ) as follows:

1. If k = 1, the entry point, then fk = ⊥. (f1 is the constant function that
always returns the value ⊥).

2. If k is a function point with Pred(k) = {j}, then fk = hk ◦ πj, where hk is
the (extended) transfer function corresponding to the function point k, and
πj the projection map to the jth coordinate as defined in Definition 28.

3. If k is a confluence point with Pred(k) = {i, j}, then fk = πi,j, where πi,j is
the confluence map as defined in Definition 28.

The composite transfer function of D is defined to be the unique function f
D

satisfying πk ◦ f
D

= fk for each k ∈ V (G).

The purpose of defining f
D

is the following. Suppose we have associated a con-
gruence with each program point in a data flow framework. Then f

D
speci-

fies how a simultaneous and synchronous application of all the transfer func-
tions/confluence operations at the respective program points modifies the con-
gruences at each program point. The definition of f

D
conservatively sets the

confluence at the entry point to ⊥, treating terms in G(T ) to be inequivalent to
each other at the entry point. See Fig. 2 for an example. The following observa-
tion is a direct consequence of the above definition.

Observation 31. The composite transfer function f
D

(Definition 30) satisfies
the following properties:

1. If k = 1, the entry point, then πk ◦ f
D

= ⊥.
2. If k is a function point with Pred(k) = {j}, then fk = πk ◦f

D
= hk ◦πj, where

hk is the (extended) transfer function corresponding to the function point k.
3. If k is a confluence point with Pred(k) = {i, j}, then fk = πk ◦ f

D
= πi,j.

The following lemma is a consequence of Observation 31.

Lemma 32. Let D = (G,F ) be a data flow framework over T and k ∈ V (G).
Let S = {f

D
(
n), f2

D
(
n), . . .}, where f

D
is the composite transfer function of D.

1. If k = 1, the entry point, then πk ◦f l
D

(
n) = ⊥ for all l ≥ 1, hence πk(
∧

S) =
⊥.
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2. If k is a function point with Pred(k) = {j}, then for all l ≥ 1,

(πk ◦ f l
D

)(
n) = (πk ◦ f
D

)(f l−1
D

(
n))

= (hk ◦ πj ◦ f l−1
D

)(
n)

3. If k is a confluence point with Pred(k) = {i, j}, then for all l ≥ 1,

(πk ◦ f l
D

)(
n) = (πk ◦ f
D

)(f l−1
D

(
n))

= (πi,j)(f l−1
D

(
n))

=
(
(πi ◦ f l−1

D
)(
n)

)
∧

(
(πj ◦ f l−1

D
)(
n)

)

By standard facts in lattice theory, we have:

Theorem 33. The following properties hold for the composite transfer function
f

D
(Definition 30):

1. f
D

is monotone, and is a complete-meet-morphism.
2. The component maps fk = πk ◦ f

D
are complete-meet-morphisms for all k ∈

{1, 2, . . . , n}.
3. f

D
has a maximum fix-point.

4. If S = {
, f
D

(
n), f2
D

(
n), . . .}, then
∧

S is the maximum fix-point of f
D
.

The objective of defining Herbrand Congruence as the maximum fix-point of
the composite transfer function is possible now.

Definition 34 (Herbrand Congruence). Given a data flow framework D =
(G,F ) over T , the Herbrand Congruence function HD : V (G) �→ G(T ) is defined
as the maximum fix-point of the composite transfer function f

D
. For each k ∈

V (G), the value HD(k) ∈ G(T ) is referred to as the Herbrand Congruence at
program point k.

The following is a consequence of Theorem 33 and the definition of Herbrand
Congruence.

Observation 35. For each k ∈ V (G), HD(k) =
∧

{(πk ◦ f
D

l)(
n) : l ≥ 0}.

Proof

HD(k) = πk(
∧

n{f
D

l(
n) : l ≥ 0}) (by Theorem 33)

=
∧

{πk(f
D

l(
n)) : l ≥ 0} (because πk is a complete-meet-morphism)

=
∧

{(πk ◦ f
D

l)(
n) : l ≥ 0}

��

The definition of Herbrand congruence must be shown to be consistent with the
traditional meet-over-all-paths description of Herbrand equivalence of terms in
a data flow framework. The next section addresses this issue.
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8 MOP Characterization

In this section, we give a meet over all paths characterization for the Herbrand
Congruence at each program point. This is essentially a lattice theoretic refor-
mulation of the characterization by Steffen et al. [5, p. 393]. Consider a data
flow framework D = (G,F ) over T , with V (G) = {1, 2, . . . , n}.

Definition 36 (Path). For any non-negative integer l, a program path (or sim-
ply a path) of length l to a vertex k ∈ V (G) is a sequence α = (v0, v2, . . . vl)
satisfying v0 = 1, vl = k and (vi−1, vi) ∈ E(G) for each i ∈ {1, 2, . . . l}. For each
i ∈ {0, 1, . . . , l}, αi denotes the initial segment of α up to the ith vertex, given
by (v0, v1, . . . , vi).

Next, we associate a congruence in G(T ) with each path in D. The path function
captures the effect of application of transfer functions along the path on the
initial congruence ⊥, in the order in which the transfer functions appear along
the path.

Definition 37 (Path Congruence). Let α = (v0, v1, . . . , vl) be a path of
length l to vertex k ∈ V (G) for some l ≥ 0. We define:

1. When i = 0, mαi
= ⊥.

2. If i > 0 and vi = j, where j ∈ V (G) is a function point, then mαi
=

hj(mαi−1), where hj ∈ F is the extended transfer function associated with the
function point j.

3. If i > 0 and vi is a confluence point, then mαi
= mαi−1 .

4. The path congruence associated with α, mα = mαl
.

For k ∈ V (G) and l ≥ 0, let Φl(k) denote the set of all paths of length less
than l from the entry point 1 to the vertex k. In particular, Φ0(k) = ∅, for all
k ∈ V (G). The following observation is a consequence of the definition of Φl(k).

Observation 38. If k ∈ V (G) and l ≥ 1,

1. If k is the entry point, then Φl(k) = {(1)}, the set containing only the path
of length zero, starting and ending at vertex 1.

2. If k is a function point with Pred(k) = {j}, then
{αl−1 : α ∈ Φl(k)} = {α′ : α′ ∈ Φl−1(j)} = Φl−1(j).

3. If k is a confluence point with Pred(k) = {i, j}, then
{αl−1 : α ∈ Φl(k)} = {α′ : α′ ∈ Φl−1(i)} ∪ {α′ : α′ ∈ Φl−1(j)} = Φl−1(i) ∪
Φl−1(j).

For l ≥ 0, we define the congruence Ml(k) to be the meet of all path congruences
associated with paths of length less than l from the entry point to vertex k in
G. Stated formally,

Ml(k) =
∧

{mα : α ∈ Φl(k)}, for l ≥ 0
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Observation 39. If l = 0, Φl(k) = ∅ and hence M0(k) = 
, for all k ∈ V (G).
Further, M1(1) = ⊥ and M1(k) = 
, for k 	= 1. In general, Ml(k) = 
 if there
are no paths of length less than l from 1 to k in G.

We define Φk to be the set of all paths from vertex 1 to vertex k in G, i.e., Φk =⋃
l≥1 Φl(k) and MOP (k) =

∧
{mα : α ∈ Φ(k)} =

∧
{Ml(k) : l ≥ 0}. (The second

equality follows from standard results in lattice theory and Observation 39.) The
congruence MOP (k) is the meet of all path congruences associated with paths
in Φk.

Our objective is to prove MOP (k) = HD(k) for each k ∈ {1, 2, . . . , n} so that
HD captures the meet over all paths information about equivalence of expressions
in T . As noted in the introduction, the proof does not immediately follow from
the transfer function being a meet-morphism, as in [1,3,16] since the lattice is
neither of finite height nor the chains in the lattice stabilize at finite height.

We begin with the following observations.

Lemma 40. For each k ∈ V (G) and l ≥ 1

1. If k = 1, the entry point, then Ml(k) = ⊥.
2. If k is a function point with Pred(k) = {j}, then Ml(k) = hk(Ml−1(j)), where

hk is the (extended) transfer function corresponding to the function point k.
3. If k is a confluence point with Pred(k) = {i, j}, then Ml(k) = Ml−1(i) ∧

Ml−1(j).

Lemma 41. For each k ∈ V (G) and l ≥ 0, Ml(k) = (πk ◦ f
D

l)(
n).

Finally, we show that the iterative fix-point characterization of Herbrand equiv-
alence and the meet over all paths characterization coincide.

Theorem 42. Let D = (G,F ) be a data flow framework. Then, for each k ∈
V (G), MOP (k) = HD(k).

Proof

MOP (k) =
∧

{mα : α ∈ Φ(k)}

=
∧

{Ml(k) : l ≥ 0} ( by Observation 39)

=
∧

{(πk ◦ f
D

l)(
n) : l ≥ 0} (by Lemma 41)

= HD(k) (by Observation 35)

��

Note that the proof of Observation 35 requires the composite transfer function
to be a complete-meet-morphism.
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9 Conclusion

We have shown that Herbrand equivalences of terms at program points in a data
flow framework can be formulated in terms of the maximum fix-point of a com-
posite transfer function defined over an infinite complete lattice of congruences.
The standard definition of Herbrand equivalence [5] is reformulated as a meet
over all paths definition in this new lattice framework and is shown to be equiv-
alent to the fix-point formulation. The equivalence of the MFP characterization
with the standard formulation provides a theoretical justification for the use of
fix-point algorithms used in practice for computing Herbrand equivalences. The
new fix-point formulation permits us to view the existing working set based fix-
point algorithms as instances of abstract interpretation from the ideal concrete
lattice into appropriately defined abstract lattices. We hope that this view can
help to make correctness proofs of working set algorithms more transparent.
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5. Steffen, B., Knoop, J., Rüthing, O.: The value flow graph: a program representa-
tion for optimal program transformations. In: Jones, N. (ed.) ESOP 1990. LNCS,
vol. 432, pp. 389–405. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-
52592-0 76
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