
Logics for Rough Concept Analysis

Giuseppe Greco1 , Peter Jipsen2, Krishna Manoorkar3, Alessandra Palmigiano4,5 ,

and Apostolos Tzimoulis2(B)

1 Utrecht University, Utrecht, Netherlands
2 Chapman University, Orange, USA

apostolos@tzimoulis.eu
3 Indian Institute of Technology, Kanpur, India

4 Delft University of Technology, Delft, Netherlands
5 Department of Pure and Applied Mathematics, University of Johannesburg,

Johannesburg, South Africa

Abstract. Taking an algebraic perspective on the basic structures of Rough Con-
cept Analysis as the starting point, in this paper we introduce some varieties of
lattices expanded with normal modal operators which can be regarded as the nat-
ural rough algebra counterparts of certain subclasses of rough formal contexts,
and introduce proper display calculi for the logics associated with these varieties
which are sound, complete, conservative and with uniform cut elimination and
subformula property. These calculi modularly extend the multi-type calculi for
rough algebras to a ‘nondistributive’ (i.e. general lattice-based) setting.
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1 Introduction

This paper continues a line of investigation started in [10] and aimed at introducing
sequent calculi for the logics of varieties of ‘rough algebras’, introduced and discussed
in [1,20]. The ‘rough algebras’ considered in the present paper are nondistributive
(i.e. general lattice-based) generalizations of those of [20,21]; specifically, they are vari-
eties of lattices expanded with normal modal operators, natural examples of which arise
in connection with (certain subclasses of) rough formal contexts, introduced by Kent in
[15] as the basic notion of Rough Concept Analysis (RCA), a synthesis of Rough Set
Theory [19] and Formal Concept Analysis [8]. The core idea of Kent’s approach is to
use a given indiscernibility relation E on the objects of a formal context (A,X, I) to
generate E-definable approximations R and S of the relation I such that S ⊆ I ⊆ R.
The starting point of our approach is that R and S can be used to generate tuples of
adjoint normal modal operators 〈S 〉 � [S ] and 〈R〉 � [R]. We identify conditions under
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which [S ] and 〈R〉 are interior operators and [R] and 〈S 〉 are closure operators. This
provides the basic algebraic framework, which we axiomatically extend so as to define
‘nondistributive’ counterparts of the varieties introduced in [21], whenever possible.

From an algebraic perspective, it is interesting to observe that, unlike 〈S 〉 and [S ],
the modal operators 〈R〉 and [R] play the reverse roles they usually have in rough set
theory: namely, [R], being an inflationary map, plays naturally the role of the closure
operator providing the upper lax approximation of a given formal concept, and similarly
〈R〉, being a deflationary map, plays the role of the interior operator, providing the lower
lax approximation of a given formal concept.

From a proof-theoretic perspective, these properties make it possible to extend the
multi-type approach (thanks to which, a modular family of analytic calculi was intro-
duced in [10] for the logics of ‘rough algebras’) to varieties of ‘rough algebras’ on a
‘nondistributive’ propositional base. In particular, the calculi defined in Sect. 6 are all
proper display calculi (cf. [24]), the cut elimination and subformula property of which
can be straightforwardly verified by appealing to the meta-theorem of [5].1 An interest-
ing departure from the calculi of [10] concerns the counterparts of the IA3 condition,
which in the present paper comes in two variants: the lower (strict), and the upper
(lax). The inequality corresponding to the lower variant of IA3, which was analytic in
the presence of distributivity, is not analytic inductive in the absence of distributivity
(cf. [7, Definition 55]). However, the inequality corresponding to the upper variant of
IA3 is analytic inductive, and hence can be captured by an analytic structural rule.

This paper contains the first algebraic and proof-theoretic contribution to a line of
research aimed at integrating Rough Set Theory and Formal Concept Analysis, and at
building the necessary logical machinery to support formal reasoning about categoriza-
tion decisions under the assumption that categories and concepts can be vague. Future
directions concern enriching this basic framework so as to formally account for the fact
that the dynamics of categories also affect their becoming vaguer or sharper.

2 Preliminaries

The purpose of this section, which is based on [3, Appendix] and [2] and [18, Sects. 2.3
and 2.4], is to briefly recall the basic notions of the theory of enriched formal con-
texts (cf. Definition 2) while introducing the notation which will be used throughout the
paper. For any relation T ⊆ U ×V , and any U′ ⊆ U and V′ ⊆ V , let

T (0)[V′] := {u | ∀v(v ∈ V′ ⇒ uTv)} T (1)[U′] := {v | ∀u(u ∈ U′ ⇒ uTv)}.
It can be easily verified that U′ ⊆ T (0)[V′] iff V′ ⊆ T (1)[U′], that V1 ⊆ V2 ⊆ V (resp. U1 ⊆
U2 ⊆U) implies that T (0)[V2] ⊆ T (0)[V1] (resp. T (1)[U2] ⊆ T (1)[U1]), and S ⊆ T ⊆U×V
implies that S (0)[V′] ⊆ T (0)[V′] and S (1)[U′] ⊆ T (1)[U′] for all V′ ⊆ V and U′ ⊆ U.

Formal contexts, or polarities, are structures P = (A,X, I) such that A and X are sets,
and I ⊆ A× X is a binary relation. Intuitively, formal contexts can be understood as
abstract representations of databases [8], so that A represents a collection of objects, X

1 In [22], sequent calculi for non-distributive versions of the logics associated with varieties of
‘rough algebras’ are introduced, which are sound and complete but without cut elimination.
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as a collection of features, and for any object a and feature x, the tuple (a, x) belongs
to I exactly when object a has feature x. In what follows, we use a,b (resp. x,y) for
elements of A (resp. X), and B (resp. Y) for subsets of A (resp. of X).

As is well known, for every formal context P = (A,X, I), the pair of maps

(·)↑ : P(A)→P(X) and (·)↓ : P(X)→P(A),

respectively defined by the assignments B↑ := I(1)[B] and Y↓ := I(0)[Y], form a Galois
connection and hence induce the closure operators (·)↑↓ and (·)↓↑ on P(A) and on P(X)
respectively.2 Moreover, the fixed points of these closure operators form complete sub-
∩-semilattices of P(A) and P(X) respectively, and hence are complete lattices which
are dually isomorphic to each other via the restrictions of the maps (·)↑ and (·)↓. This
motivates the following.

Definition 1. For every formal context P = (A,X, I), a formal concept of P is a pair
c = (B,Y) such that B ⊆ A, Y ⊆ X, and B↑ = Y and Y↓ = B. The set B is the extension of
c, which we will sometimes denote [[c]], and Y is the intension of c, sometimes denoted
([c]). Let L(P) denote the set of the formal concepts of P. Then the concept lattice of P is
the complete lattice

P
+ := (L(P),∧,∨),

where for every X ⊆ L(P),

∧X := (∩c∈X[[c]], (∩c∈X[[c]])↑) and ∨X := ((∩c∈X([c]))↓,∩c∈X([c])).

Then clearly,�P+ :=∧∅= (A,A↑) and⊥P+ :=∨∅= (X↓,X), and the partial order under-
lying this lattice structure is defined as follows: for any c,d ∈ L(P),

c ≤ d iff [[c]] ⊆ [[d]] iff ([d]) ⊆ ([c]).

Theorem 1 (Birkhoff’s theorem, main theorem of FCA). Any complete lattice L is iso-
morphic to the concept lattice P+ of some formal context P.

Definition 2. An enriched formal context is a tuple F= (P,R�,R�) such that P= (A,X, I)
is a formal context, and R� ⊆ A×X and R� ⊆ X×A are I-compatible relations, that is,
R(0)
� [x] (resp. R(0)

� [a]) and R(1)
� [a] (resp. R(1)

� [x]) are Galois-stable for all x ∈ X and
a ∈ A. The complex algebra of F is

F
+ = (P+, [R�], 〈R�〉),

where P+ is the concept lattice of P, and [R�] and 〈R�〉 are unary operations on P+

defined as follows: for every c ∈ P+,
[R�]c := (R(0)

� [([c])], (R(0)
� [([c])])↑) and 〈R�〉c := ((R(0)

� [[[c]]])↓,R(0)
� [[[c]]]).

Since R� and R� are I-compatible, [R�], 〈R�〉, [R−1
� ], 〈R−1

� 〉 : P+→ P+ are well-defined.

2 When B = {a} (resp. Y = {x}) we write a↑↓ for {a}↑↓ (resp. x↓↑ for {x}↓↑).
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Lemma 1 (cf. [18, Lemma 3]). For any enriched formal context F = (P,R�,R�),
the algebra F+ = (P+, [R�], 〈R�〉) is a complete lattice expanded with normal modal
operators such that [R�] is completely meet-preserving and 〈R�〉 is completely join-
preserving.

Definition 3. For any formal context P= (A,X, I) and any I-compatible relations R,T ⊆
A×X, the composition R ;T ⊆ A×X is defined as follows: for any a ∈ A and x ∈ X,

(R ;T )(1)[a] = R(1)[I(0)[T (1)[a]]] or equivalently (R ;T )(0)[x] = R(0)[I(1)[T (0)[x]]].

3 Motivation: Kent’s Rough Concept Analysis

Below, we report on the basic definitions and constructions in Rough Concept Analysis
[15], cast in the notational conventions of Sect. 2.

Rough formal contexts (abbreviated as Rfc) are tuples G = (P,E) such that P =
(A,X, I) is a polarity (cf. Sect. 2), and E ⊆ A× A is an equivalence relation (the indis-
cernibility relation between objects). For every a ∈ A we let (a)E := {b ∈ A | aEb}. The
relation E induces two relations R,S ⊆ A× I approximating I, defined as follows: for
every a ∈ A and x ∈ X,

aRx iff bIx for some b ∈ (a)E ; aS x iff bIx for all b ∈ (a)E . (1)

By definition, R,S are E-definable (i.e. R(0)[x] = ∪aRx(a)E and S (0)[x] = ∪aS x(a)E for
any x ∈ X), and E being reflexive immediately implies that

Lemma 2. For any Rfc G = (P,E), if R and S are defined as in (1), then

S ⊆ I and I ⊆ R. (2)

Intuitively, we can think of R as the lax version of I determined by E, and S as its strict
version determined by E. Following the methodology introduced in [4] and applied in
[2,3] to introduce a polarity-based semantics for the modal logics of formal concepts,
under the assumption that R and S are I-compatible (cf. Definition 2), the relations R
and S can be used to define normal modal operators [R], 〈R〉, [S ], 〈S 〉 on P+ defined as
follows: for any c ∈ P+,

[[[R]c]] := R(0)[([c])] = {a ∈ A | ∀x(x ∈ ([c])⇒ aRx)} (3)

[[[S ]c]] := S (0)[([c])] = {a ∈ A | ∀x(x ∈ ([c])⇒ aS x)}. (4)

That is, the members of [R]c are exactly those objects that satisfy (possibly by proxy of
some object equivalent to them) all features in the description of c, while the members
of [S ]c are exactly those objects that not only satisfy all features in the description of
c, but that ‘force’ all their equivalents to also satisfy them. The assumption that S ⊆ I
implies that [[[S ]c]]= S (0)[([c])]⊆ I(0)[([c])]= [[c]], hence [S ]c is a sub-concept of c. The
assumption that I ⊆ R implies that [[c]] = I(0)[([c])] ⊆ R(0)[([c])] = [[[R]c]], hence [R]c is
a super-concept of c. Moreover, for any c ∈ P+,

([〈R〉c]) := R(1)[[[c]]] = {x ∈ X | ∀a(a ∈ [[c]]⇒ aRx)} (5)
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([〈S 〉c]) := S (1)[[[c]]] = {x ∈ X | ∀a(a ∈ [[c]]⇒ aS x)}. (6)

That is, 〈R〉c is the concept described by those features shared not only by each member
of c but also by their equivalents, while 〈S 〉c is the concept described by the common
features of those members of c which ‘force’ each of their equivalents to share them.
The assumption that I ⊆ R implies that ([c]) = I(1)[[[c]]] ⊆ R(1)[[[c]]] = ([〈R〉c]), and hence
〈R〉c is a sub-concept of c. The assumption that S ⊆ I implies that ([〈S 〉c]) = S (1)[[[c]]] ⊆
I(1)[[[c]]] = ([c]), and hence 〈S 〉c is a super-concept of c. Summing up the discussion
above, we have verified that the conditions I ⊆ R and S ⊆ I imply that the following
sequents of the modal logic of formal concepts are valid on Kent’s basic structures:

�sφ � φ φ � ��φ φ � �sφ ��φ � φ, (7)

where �s is interpreted as [S ], �� as [R], �s as 〈S 〉 and �� as 〈R〉. Translated alge-
braically, these conditions say that �s and �� are deflationary, as interior operators are,
�s and �� are inflationary, as closure operators are. Hence, it is natural to ask under
which conditions they (i.e. their semantic interpretations) are indeed closure/interior
operators. The next definition and lemma provide answers to this question.

Definition 4. An Rfc G = (P,E) is amenable if E, R and S (defined as in (1)) are I-
compatible.3

Lemma 3. For any amenable Rfc G = (P,E), if and R and S are defined as in (1), then

R;R ⊆ R and S ⊆ S ;S . (8)

Proof. Let x ∈ X. To show that R(0)[I(1)[R(0)[x]]] ⊆ R(0)[x], let a ∈ R(0)[I(1)[R(0)[x]]]. By
adjunction, this is equivalent to I(1)[R(0)[x]] ⊆ R(1)[a], which implies that I(0)[R(1)[a]] ⊆
I(0)[I(1)[R(0)[x]]] = R(0)[x], the last equality holding since R is I-compatible by assump-
tion. Moreover, I ⊆ R (cf. Lemma 2) implies that I(1)[a] ⊆ R(1)[a], which implies that
I(0)[R(1)[a]] ⊆ I(0)[I(1)[a]] ⊆ (a)E , the last inclusion holding since E is I-compatible
by assumption. Hence, I(0)[R(1)[a]] ⊆ R(0)[x] ∩ (a)E . Suppose for contradiction that
a � R(0)[x]. By the E-definability of R, this is equivalent to R(0)[x]∩ (a)E = ∅. Hence
I(0)[R(1)[a]] = ∅, from which it follows that R(1)[a] = I(1)[I(0)[R(1)[a]]] = I(1)[∅] = X.
Hence, x ∈ R(1)[a], i.e. a ∈ R(0)[x], against the assumption that a � R(0)[x].

Let x ∈ X. To show that S (0)[x] ⊆ S (0)[I(1)[S (0)[x]]], assume that a ∈ S (0)[x]. Since
S is E-definable by construction, this is equivalent to (a)E ⊆ S (0)[x]. To show that a ∈
S (0)[I(1)[S (0)[x]]], we need to show that bIy for any b ∈ (a)E and any y ∈ I(1)[S (0)[x]]. Let
y ∈ I(1)[S (0)[x]]. Hence, by definition, b′Iy for every b′ ∈ S (0)[x]. Since (a)E ⊆ S (0)[x],
this implies that bIy for any b ∈ (a)E , as required.

By the general theory developed in [4] and applied to enriched formal contexts in [18,
Proposition 5], properties (8) guarantee that the following sequents of the modal logic
of formal concepts are also valid on amenable Rfc’s:

�sφ � �s�sφ ����φ � ��φ �s�sφ � �sφ ��φ � ����φ. (9)

3 The assumption that E is I-compatible does not follow from R and S being I-compatible. Let
G = (P, IdA) for any polarity P such that not all singleton sets of objects are Galois-stable.
Hence E = IdA is not I-compatible. However, if E = IdA, then R = S = I are I-compatible.



Logics for Rough Concept Analysis 149

Finally, again by [18, Proposition 5], the fact that by construction �s and �s (resp. ��
and ��) are interpreted by operations defined in terms of the same relation guarantees
the validity of the following sequents on amenable Rfc’s:

φ � �s�sφ �s�sφ � φ φ � ����φ ����φ � φ. (10)

Axioms (7), (9) and (10) constitute the starting point and motivation for the proof-
theoretic investigation of the logics associated to varieties of algebraic structures which
can be understood as abstractions of amenable Rfc’s. We define these varieties in the
next section.

4 Kent Algebras

In the present section, we introduce basic Kent algebras (and the variety of abstract
Kent algebras (aKa) to which they naturally belong), as algebraic generalizations of
amenable Rfc’s, and then introduce some subvarieties of aKas in the style of [20,21].

Definition 5. A basic Kent algebra is a structure A = (L,�s,�s,��,��) such that L is a
complete lattice, and �s,�s,��,�� are unary operations on L such that for all a,b ∈ L,

�sa ≤ b iff a ≤ �sb and ��a ≤ b iff a ≤ ��b, (11)

and for any a ∈ L,
�sa ≤ a a ≤ �sa a ≤ ��a ��a ≤ a (12)

�sa ≤ �s�sa �s�sa ≤ �sa ����a ≤ ��a ��a ≤ ����a (13)

We let KA+ denote the class of basic Kent algebras.

From (11) it follows that, in basic Kent algebras, �s and �� are completely meet-
preserving,�s and�� are completely join-preserving. For any amenable RfcG= (P,E),
if R and S are defined as in (1), then

G
+ := (P+, [S ], 〈S 〉, [R], 〈R〉)

where P+ is the concept lattice of the formal context P and [S ], 〈S 〉, [R], 〈R〉 are defined
as in (3)–(6). The following proposition is an immediate consequence of [18, Propo-
sition 5], using Lemmas 2 and 3, and the fact that [R] and 〈R〉 (resp. [S ] and 〈S 〉) are
defined using the same relation.

Proposition 1. If G = (P,E) is an amenable Rfc, then G+ is a basic Kent algebra.

The natural variety containing basic Kent algebras is defined as follows.

Definition 6. An abstract Kent algebra (aKa) is a structure A = (L,�s,�s,��,��) such
that L is a lattice, and �s,�s,��,�� are unary operations on L validating (11), (12)
and (13). We let KA denote the class of abstract Kent algebras.

From (11) it follows that, in aKas, �s and �� are finitely meet-preserving, �s and ��
are finitely join-preserving.



150 G. Greco et al.

Lemma 4. For any aKa A = (L,�s,�s,��,��) and every a ∈ L,
�sa∨��a ≤ ��a∧�sa. (14)

a ≤ �s�sa �s�sa ≤ a a ≤ ����a ����a ≤ a (15)

�sa ≤ �s�sa �s�sa ≤ �sa ��a ≤ ����a ����a ≤ ��a. (16)

�s�sa ≤ �sa �sa ≤ �s�sa ����a ≤ ��a ��a ≤ ����a. (17)

Proof. The inequalities in (15) are straightforward consequences of (11). The inequal-
ities in (14) and (16) follow from (12) and (15), using the transitivity of the order. The
inequalities in (17) follow from those in (13) using (11).

Conditions (17) define the‘Kent algebra’ counterparts of topological quasi Boolean
algebras 5 (tqBa5) [21]. In the next definition, we introduce ‘Kent algebra’ counter-
parts of some other varieties considered in [21] (omitting those the axiomatization of
which involves negation and those that cannot be captured by multi-type analytic rules
in the present setting), and also varieties characterized by interaction axioms between
lax and strict connectives which follow the pattern of the 5-axioms in rough algebras.

Definition 7. An aKa A as above is an aKa5’ if for any a ∈ L,

��a ≤ �s��a �s��a ≤ ��a �sa ≤ ���sa ���sa ≤ �sa; (18)

is a K-IA3s if for any a,b ∈ L,
�sa ≤ �sb and �sa ≤ �sb imply a ≤ b, (19)

and is a K-IA3� if for any a,b ∈ L,
��a ≤ ��b and ��a ≤ ��b imply a ≤ b. (20)

Notice that the axioms above do not need to be analytic inductive in order for the
resulting logic to be (multi-type) properly displayable: interestingly, the third and fourth
inequality in (18) are not analytic inductive (cf. [7, Definition 55]), but are equivalent to
analytic inductive inequalities in the multi-type language of the heterogeneous algebras
discussed in the next section. This is an illustration of the technical advantage of mov-
ing to the multi-type setting (see also [10, Introduction, Sect. 4], where it is discussed
how the multi-type approach was key in overcoming the difficulties encountered by the
authors of [17] in introducing an analytic calculus for IA3).

5 Multi-type Presentation of Kent Algebras

Similarly to what holds for rough algebras (cf. [10, Sect. 3]), since the modal operations
of any aKa A = (L,�s,�s,��,��) are either interior operators or closure operators, each
of them factorizes into a pair of adjoint normal modal operators which are retractions
or co-retractions, as illustrated in the following table:



Logics for Rough Concept Analysis 151

�s = ◦I ·�I �I · ◦I = idSI �s = ◦C ·�C �C · ◦C = idSC
◦I : SI ↪→ L �I : L� SI �C : L� SC ◦C : SC ↪→ L
�� = �C · •C •C ·�C = idLC �� = �I · •I •I ·�I = idLI

•C : L� LC �C : LC ↪→ L �I : LI ↪→ L •I : L� LI

where SI := �s[L], SC := �s[L], LC := ��[L], and LI := �s[L], and such that for all
α ∈ SI , δ ∈ SC , a ∈ L, π ∈ LI , σ ∈ LC ,

◦I α≤ a iff α≤�I a �C a≤ δ iff a≤ ◦C δ •C a≤ π iff a≤�C π �Iσ≤ a iff σ≤ •I a.
(21)

Again similarly to what observed in [10], the lattice structure of L can be exported
to each of the sets SI ,SC ,LC and LI via the corresponding pair of modal operators as
follows.

Definition 8. For any aKa A, the strict interior kernel SI = (SI ,∪I ,∩I , tI , fI) and the
strict closure kernel SC = (SC ,∪C ,∩C , tC , fC) are such that, for all α,β ∈ S I, and all
δ,γ ∈ SC,

α∪I β := �I (◦I α∨◦I β) δ∪C γ := �C (◦C δ∨◦C γ)
α∩I β := �I (◦I α∧◦I β) δ∩C γ := �C (◦C δ∧◦C γ)
tI := �I�, fI := �I⊥ tC := �C�, fC = �C⊥

The lax interior kernel LI = (LI ,�I ,�I ,1I,0I) and the lax closure kernel LC =
(LC ,�C ,�C ,1C,0C) are such that, for all π,ξ ∈ LI, and all σ,τ ∈ LC,

π�I ξ := •I (�I π∨�I ξ) σ�C τ := •C (�Cσ∨�C τ)
π�I ξ := •I (�I π∧�I ξ) σ�C τ := •C (�Cσ∧�C τ)
1I := •I�, 0I := •I⊥ 1C := •C�, 0C = •C⊥

Similarly to what observed in [10], it is easy to verify that the algebras defined above
are lattices, and the operations indicated with a circle (either black or white) are lattice
homomorphisms (i.e. are both normal box-type and normal diamond-type operators).
The construction above justifies the following definition of class of heterogeneous alge-
bras equivalent to aKas:

Definition 9. A heterogeneous aKa (haKa) is a tuple

H = (L,SI,SC,LI,LC,◦I ,�I ,◦C ,�C ,•I ,�I ,•C ,�C )

such that:

H1 L,SI,SC,LI,LC are bounded lattices;
H2 ◦I : SI ↪→ L, ◦C : SC ↪→ L, •I : L� LI, •C : L� LC are lattice homomorphisms;
H3 ◦I � �I �C � ◦C •C � �C �I � •I ;
H4 �I ◦I = idSI �C ◦C = idSC •C �C = idLC •I�I = idLI

4

The haKas corresponding to the varieties of Definition 7 are defined as follows:

4 Condition H3 implies that �I :L�SI and �I : LI ↪→L are∧-hemimorphisms and�C :L�SC
and �C : LC ↪→ L are ∨-hemimorphisms; condition H4 implies that the black connectives are
surjective and the white ones are injective.
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Algebra Acronym Conditions
heterogeneous aKa5’ haKa5’ �I π ≤ ◦I �I�I π ◦C�C �Cσ ≤ �Cσ

◦I α ≤ �I •I ◦I α �C •C ◦C δ ≤ ◦C δ
heterogeneous K-IA3s hK-IA3s �I a ≤ �I b and �C a ≤ �C b imply a ≤ b
heterogeneous K-IA3� hK-IA3� �C •C a ≤ �C •C b and �I •I a ≤ �I •I b imply a ≤ b

Notice that the inequalities defining haKa5’ are all analytic inductive. A hetero-
geneous algebra H is perfect if every lattice in the signature of H is perfect (cf. [4,
Definition 1.8]), and every homomorphism (resp. hemimorphism) in the signature of H
is a complete homomorphism (resp. hemimorphism).

Similarly to what discussed in [10, Sect. 3], one can readily show that the classes of
haKas defined above correspond to the varieties defined in Sect. 4. That is, for any
aKa A one can define its corresponding haKa A+ using the factorizations described at
the beginning of the present section and Definition 8, and conversely, given a haKa H,
one can define its corresponding aKa H+ by endowing its first domain L with modal
operations defined by taking the appropriate compositions of pairs of heterogeneous
maps of H. Then, for every K ∈ {aKa, aKa5’, K-IA3s, K-IA3�}, letting HK denote its
corresponding class of heterogeneous algebras, the following holds:

Proposition 2. 1. If A ∈ K, then A+ ∈ HK.
2. If H ∈ HK, then H+ ∈ K.
3. A � (A+)+ and H � (H+)+.
4. The isomorphisms of the previous item restrict to perfect members of K and HK.
5. If A ∈ K, then Aδ � ((A+)δ)+ and if H ∈ HK, then Hδ � ((H+)δ)+.

6 Multi-type Calculi for the Logics of Kent Algebras

In the present section, we introduce the multi-type calculi associated with each class of
algebras K ∈ {aKa,aKa5′,K-IA3�}. The language of these logics matches the language
of haKas, and is built up from structural and operational (i.e. logical) connectives. Each
structural connective is denoted by decorating its corresponding logical connective with
ˆ (resp. ˇ or ˜). In what follows, we will adopt the convention that unary connectives
bind more strongly than binary ones.

general lattice L
A ::= p | � | ⊥ | ◦I α | ◦C δ | �I π | �Cσ | A∧A | A∨A

X ::= A | ⊥̌ | �̂ | ◦̃I Γ | ◦̃C Δ | �̂IΠ | �̌IΠ | �̂C Σ | �̌C Σ | X ∧̂X | X ∨̌X

strict-interior kernel SI lax-interior kernel LI
α ::= �I A | �I A π ::= •I A
Γ ::= α | �̂I X | �̌I X | f̌I | t̂I | Γ ∩̂I Γ | Γ ∪̌I Γ Π ::= π | •̃I X | 0̌I | 1̂I | Π �̂I Π | Π �̌I Π

strict-closure kernel SC lax-closure kernel LC
δ ::= �C A | �C A σ ::= •C A
Δ ::= δ | �̂C X | �̌C X | f̌C | t̂C | Δ ∩̂C Δ | Δ ∪̌C Δ Σ ::= σ | •̃C X | 0̌C | 1̂C | Σ �̂C Σ | Σ �̌C Σ
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– Interpretation of structural connectives as their logical counterparts5

1. structural and operational pure L-type connectives:

structural operations �̂ ⊥̌ ∧̂ ∨̌
logical operations � ⊥ ∧ ∨

2. structural and operational pure SI-type and SC-type connectives:

structural operations t̂I f̌I ∩̂I ∪̌I t̂C f̌C ∩̂C ∪̌C
logical operations tI fI ∩I ∪I tC fC ∪C ∩C

3. structural and operational pure LI-type and LC-type connectives:

structural operations 1̂I 0̌I �̂I �̌I 1̂C 0̌C �̂C �̌C
logical operations 1I 0I �I �I 1C 0C �C �C

4. structural and operational multi-type strict connectives:

types L→ SI L→ SC SI→ L SC→ L
structural operations �̂I �̌I �̂C �̌C ◦̃I ◦̃C

logical operations �I �I �C �C ◦I ◦C
5. structural and operational multi-type lax connectives:

types LI→ L LC→ L L→ LI L→ LC
structural operations �̂I �̌I �̂C �̌C •̃I •̃C

logical operations �I �I �C �C •I •C
In what follows, we will use x,y,z as structural variables of arbitrary types, a,b,c as

term variables of arbitrary types.
The calculus D.AKA consists of the following axiom and rules.

– Identity and Cut:

IdL p � p
x � a a � y

Cutx � y
– Multi-type display rules (we omit the display rules capturing the adjunctions �I �
•I � �I and �I � •I � �I ):

◦̃I Γ � X
adLSI

Γ � �̌I X
X � ◦̃I Γ

adLSI
�̂I X � Γ

X � ◦̃C Δ
adLSC

�̂C X � Δ
◦̃C X � Δ

adLSC
X � �̌C Δ

– Multi-type structural rules for strict-kernel operators:

5 The connectives which appear in a grey cell in the synoptic tables will only be included in the
present language at the structural level.
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◦̃I t̂I � X◦̃ t̂I �̂ � X
X � ◦̃I f̌I ◦̃I f̌I
X � ⊥̌

◦̃C t̂C � X◦̃C t̂C �̂ � X
X � ◦̃C f̌C ◦̃C f̌C
X � ⊥̌

�̂I ◦̃I Γ � Γ′
�̂I ◦̃I

Γ � Γ′
Γ′ � �̌I ◦̃I Γ

�̌I ◦̃I
Γ′ � Γ

�̂C ◦̃C Δ � Δ′
�̂C ◦̃C

Δ � Δ′
Δ′ � �̌C ◦̃C Δ

�̌C ◦̃C
Δ′ � Δ

◦̃I �̂I X � Y◦̃I �̂I X � Y
Y � ◦̃I �̌I X ◦̃I �̌I
Y � X

◦̃C �̂C X � Y◦̃C �̂C X � Y
Y � ◦̃C �̌C X ◦̃C �̌C
Y � X

– Multi-type structural rules for lax-kernel operators:

•̃I �̂ � Π•̃I 1̂I

1̂I � Π
Π � •̃I ⊥̌ •̃I 0̌I

Π � 0̌I

•̃C �̂ � Σ•̃ 1̂C
1̂C � Σ

Σ � •̃C ⊥̌ •̃C 0̌C
Σ � 0̌C

Π � Π ′
�̂I •̃I

�̂I •̃IΠ � Π ′
Π ′ � Π

�̌I •̃I
Π ′ � �̌I •̃IΠ

Σ � Σ′
�̂C •̃C

�̂C •̃C Σ � Σ′
Σ′ � Σ

�̌C •̃C
Σ′ � �̌C •̃C Σ

•̃I �̂IΠ � Π ′•̃I �̂I
Π � Π ′

Π ′ � •̃I �̌IΠ •̃I �̌I
Π ′ � Π

•̃C �̂C Σ � Σ′•̃C �̂C
Σ � Σ′

Σ′ � •̃C �̌C Σ •̃C �̌C
Σ′ � Σ

– Multi-type structural rules for the correspondence between kernels:

◦̃I �̂I X � Y◦̃ �̂ ◦̃C �̂C X � Y
Y � �̌I •̃I X

�̌ •̃
Y � �̌C •̃C X

– Logical rules for multi-type connectives related to strict kernels:

�̂I A � Γ�I
�I A � Γ

X � A �I

�̂I X � �I A

A � X�C
�C A � �̌C X

Δ � �̌C A
�C

Δ � �C A

◦̃I α � X◦I ◦I α � X
X � ◦̃I α ◦I
X � ◦I α

◦̃C δ � X◦C ◦C δ � X
X � ◦̃C δ ◦C
X � ◦C δ

– Logical rules for lattice connectives:

�̂I π � X�I
�I π � X

Π � π �I

�̂IΠ � �I π

σ � Σ�C
�Cσ � �̌C Σ

X � �̌Cσ �C
X � �Cσ

•̃I A � Π◦I •I A � Π
Π � •̃I A •I
Π � •I A

•̃C A � Σ•C •C A � Σ
Σ � •̃C A •C
Σ � •C A

– Logical rules for lattice connectives:

�̂ � X� � � X ��̂ � � ⊥ ⊥ � ⊥̌
X � ⊥̌ ⊥
X � ⊥

Ai∈{1,2} � X∧i
A1∧A2 � X

X � A X � B ∧
X � A∧B

A � X B � X∨
A∨B � X

X � Ai∈{1,2} ∨i
X � A1∨A2

The proper display calculi for the subvarieties of aKa discussed in Sect. 4 are
obtained by adding the following rules:
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Logic Calculus Rules

H.aKa5′ D.aKa5′

�̂IΠ � X◦̃I �̂I �̂I ◦̃I �̂I �̂IΠ � X
X � �̌C Σ ◦̃C �̌C �̌C
X � ◦̃C �̌C �̌C Σ

�̂I •̃I ◦̃I Γ � X
�̂I •̃I ◦̃I ◦̃I Γ � X

X � �̌C •̃C ◦̃C Δ
�̌C •̃C ◦̃C

X � ◦̃C Δ

K-IA3� D.K-IA3�
X � �̌I •̃I Y �̂C •̃C X � Y

k-ia3�
X � Y

These calculi enjoy the properties of soundness, completeness, conservativity, cut
elimination and subformula property the verification of which is standard and follows
from the general theory of proper display calculi (cf. [6,11–14,16,23]). These verifica-
tions are discussed in the appendix.

A Properties

Throughout this section, we let K ∈ {aKa,aKa5′,K-IA3�}, and HK the class of heteroge-
neous algebras corresponding to K. Further, we let D.K denote the multi-type calculus
for the logic H.K canonically associated with K.

A.1 Soundness for Perfect HK Algebras

The verification of the soundness of the rules of D.K w.r.t. the semantics of perfect
elements of HK (see Definition 9) is analogous to that of many other multi-type cal-
culi (cf. [6,11–14,16,23]). Here we only discuss the soundness of the rule k-ia3�. By
definition, the following quasi-inequality is valid on every K-IA3�:

��a ≤ ��b and ��a ≤ ��b imply a ≤ b.
This quasi-inequality equivalently translates into the multi-type language as follows:

�C •C a ≤ �C •C b and �I •I a ≤ �I •I b imply a ≤ b.
By adjunction, the quasi-inequality above can be equivalently rewritten as follows:

�C •C �C •C a ≤ b and a ≤ �I •I�I •I b imply a ≤ b,
which, thanks to a well known property of adjoint maps, simplifies as:

�C •C a ≤ b and a ≤ �I •I b imply a ≤ b.
Hence, the quasi-inequality above is equivalent to the following inequality:

a∧�I •I b ≤ �C •C a∨b.
The inequality above is analytic inductive (cf. [7, Definition 55]), and hence running
ALBA on this inequality produces:
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∀a∀b[a∧�I •I b ≤ �C •C a∨b]
iff ∀p∀q∀a∀b[(p ≤ a∧�I •I b & �C •C a∨b ≤ q)⇒ p ≤ q]
iff ∀p∀q∀a∀b[(p ≤ a & p ≤ �I •I b & b ≤ q & �C •C a ≤ q)⇒ p ≤ q]
iff ∀p∀q[(p ≤ �I •I q & �C •C p ≤ q)⇒ p ≤ q].

The last quasi-inequality above is the semantic translation of the rule k-ia3�:

X � �̌I •̃I Y �̂C •̃C X � Y
k-ia3�

X � Y
which we then proved to be sound on every perfect heterogeneous K-IA3�, by the
soundness of the ALBA steps. Likewise, the defining condition of K-IA3� translates
into the inequality

a∧◦C�C b ≤ ◦I �I a∨b,
which, however, is not analytic inductive, and hence it cannot be transformed into an
analytic rule via ALBA.

A.2 Completeness

Let Aτ � Bτ be the translation of any sequent A � B in the language of H.K into the
language of D.K induced by the correspondence between K and HK described in Sect. 5.

Proposition 3. For every H.K-derivable sequent A � B, the sequent Aτ � Bτ is deriv-
able in D.K.

Below we provide the multi-type translations of the single-type sequents corre-
sponding to inequalities (11). All of them are derivable in D.AKA by logical intro-
duction rules, display rules, and the rules �̌ •̃ and ◦̃ �̂ .

�sA � B iff A � �sB � ◦C�C A � B iff A � ◦I �I B
��A � B iff A � ��B � �I •I A � B iff A � �C •C B

Below we provide the multi-type translations of the single-type sequents corresponding
to inequalities (12) and (13), respectively. All of them are derivable in D.AKA by logical
introduction rules and display rules.

�sA � A � ◦I �I A � A �sA � �s�sA � ◦I �I A � ◦I �I ◦I �I A
A � �sA � A � ◦C�C A �s�sA � �sA � ◦C�C ◦C �C A � ◦C�C A
A � ��A � A � �C •C A ����A � ��A � �C •C �C •C A � �C •C A
��A � A � �I •I A � A ��A � ����A � �I •I A � �I •I�I •I A

Below we provide the multi-type translation of the single-type sequents correspond-
ing to inequalities (18). All of them are derivable in D.AKA5’.

��A � �s��A � �I •I A � ◦I �I�I •I A
�s��A � ��A � ◦C�C �C •C A � �C •C A
�sA � ���sA � ◦I �I A � �I •I ◦I �I A
���sA � �sA � �C •C ◦C �C A � ◦C�C A
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Below we provide the multi-type translations of the single-type rules corresponding
to quasi-inequality (20), respectively.

��A � ��B and ��A � ��B imply A � B �
�I •I A � �I •I B and �C •C A � �C •C B imply A � B

Below, we derive (20). Firstly, A∧�C •C B � �I •I A∨ B is derivable via k-ia3� by
means of the following derivationD:

B � B
B � �I •I A ∨̌B
B � �I •I A∨B

•̃C B � •̃C (�I •I A∨B)
•C B � •̃C (�I •I A∨B)

�C •C B � �̌C •̃C (�I •I A∨B)

A ∧̂�C •C B � �̌C •̃C (�I •I A∨B)
A∧�C •C B � �̌C •̃C (�I •I A∨B)

A � A
A ∧̂�C •C B � A
A∧�C •C B � A

•̃I (A∧�C •C B) � •̃I A
•̃I (A∧�C •C B) � •I A

�̂I •̃I (A∧�C •C B) � �I •I A
�̂I •̃I (A∧�C •C B) � �I •I A ∨̌B
�̂I •̃I (A∧�C •C B) � �I •I A∨B k-ia3�

A∧�C •C B � �I •I A∨B
Assuming �I •I A � �I •I B and �C •C A � �C •C B, we derive A � B via cut as fol-

lows:

A.3 Conservativity

To argue that D.K is conservative w.r.t. H.K, we follow the standard proof strategy
discussed in [7,9]. We need to show that, for all formulas A and B in the language of
H.K, if Aτ � Bτ is a D.K-derivable sequent, then A � B is derivable in H.K. This claim
can be proved using the following facts: (a) The rules of D.K are sound w.r.t. perfect
members of HK (cf. Sect. A.1); (b) H.K is complete w.r.t. the class of perfect algebras
in K; (c) A perfect element of K is equivalently presented as a perfect member of HK
so that the semantic consequence relations arising from each type of structures preserve
and reflect the translation. Let A,B be as above. If Aτ � Bτ is D.K-derivable, then by
(a), |=HK Aτ � Bτ. By (c), this implies that |=K A � B, where |=K denotes the semantic
consequence relation arising from the perfect members of class K. By (b), this implies
that A � B is derivable in H.K, as required.

A.4 Cut Elimination and Subformula Property

Cut elimination and subformula property for each D.K are obtained by verifying the
assumptions of [5, Theorem 4.1]. All of them except C′8 are readily satisfied by inspect-
ing the rules. Condition C′8 requires to check that reduction steps can be performed for
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every application of cut in which both cut-formulas are principal, which either remove
the original cut altogether or replace it by one or more cuts on formulas of strictly lower
complexity. In what follows, we only show C′8 for some heterogeneous connectives.

... π1

Γ � �̌I A
Γ � �I A

... π2

A � Y
�I A � �̌I Y

Γ � �̌I Y �

... π1

Γ � �̌I A
◦̃I Γ � A

... π2

A � Y
◦̃I Γ � Y
Γ � �̌I Y

... π1

X � ◦̃I α
X � ◦I α

... π2

◦̃I α � Y
◦I α � Y

X � Y �

... π1

X � ◦̃I α
�̂I X � α

... π2

◦̃I α � Y
α � �̌I Y

�̂I X � �̌I Y
X � Y

The remaining cases are analogous.
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