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Abstract. We present a construction of a satisfaction class in an arbi-
trary countable recursively saturated models of first-order arithmetic.
Our construction is fully classical, namely, it employs nothing more than
the classical techniques of formal proof theory.

1 Introduction

The goal of this paper is to sketch a fully classical construction of a satisfaction
class for the language of first-order arithmetic. The initial introductory remarks
describe the motivation for this endeavor.

It is well-known that non-standard models of arithmetic contain nonstandard
arithmetical formulas. Indeed, for an arbitrary nonstandard model M there will
be an a ∈ M such that M |= ‘a is an arithmetical formula’ even though in
the real world a is not a formula at all. A natural question arises whether it is
possible to develop semantics for such objects (we will call them ‘formulas in the
sense of the model’). First attempts in this direction were made by Robinson
[8] and Krajewski [7]. To this aim, the notion of a satisfaction class has been
introduced. Roughly, a satisfaction class is a subset of the model which can be
treated as a reasonable interpretation of the satisfaction predicate obeying the
usual Tarski-style compositional clauses.

Further work on satisfaction classes brought remarkable results. In particu-
lar, it transpired that a non-inductive satisfaction class can be constructed in
an arbitrary countable recursively saturated model of arithmetic. This is the
famous theorem of Kotlarski, Krajewski and Lachlan (KKL in short), which
demonstrates the conservativity of non-inductive satisfaction axioms over first-
order arithmetic.1

However, the original proof of the theorem uses techniques which many read-
ers found exotic. From the author’s experience, the machinery of (so-called)
‘approximations’, developed by KKL in their paper, remains one of the main
stumbling blocks in the wider dissemination of this important result. Accord-
ingly, the question has been asked whether the result can be proved by purely
classical methods. One successful attempt in this direction has been recently
made by Enayat and Visser [2]. In their paper, they showed how to construct

1 See [5]. For an overview, see also [4,6].
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a satisfaction class using classical techniques of formal semantics (namely, com-
pactness and the union of elementary chain theorem).2

In the present paper I propose to prove the theorem by the classical tech-
niques of formal proof theory, namely, by cut elimination. Coupled with Enayat
and Visser construction, this makes the fascinating field of satisfaction classes
accessible to the students and the logicians, whose primary interest is either
model theory or proof theory.

2 Preliminaries

The language of first-order Peano arithmetic will be denoted here as LPA. Prim-
itive non-logical symbols of LPA are ‘+’, ‘×’, ‘0’, ‘S’. The expressions V ar, Tm,
Tmc, FmLPA

and SentLPA
will be used as referring (respectively) to the sets

of variables, terms, constant terms, formulas and sentences of LPA. We will also
use these expressions as shorthands for arithmetical predicates representing the
relevant sets in PA. Given a model M , we write SentLPA

(M) for the set of all
objects a such that a ∈ M and M |= SentLPA

(a).
The perspective adopted in this paper is that of truth, not satisfaction.

Accordingly, we will consider the language LT obtained from LPA by adding
the unary truth predicate ‘T (x)’ (instead of a binary satisfaction predicate).
SentLT

is the set of sentences of LT .
We introduce now the basic theory of truth, denoted as CT−. The acronym

‘CT ’ stands for ‘compositional truth’; the superscript indicates that in this the-
ory we have induction only for the arithmetical language (not with the truth
predicate).

Definition 1. CT− is the theory in the language LT axiomatized by all the
usual axioms of Peano arithmetic together with the following truth axioms:

• ∀s, t ∈ Tmc
(
T (s = t) ≡ val(s) = val(t)

)

• ∀ϕ
(
SentLPA

(ϕ) → (T¬ϕ ≡ ¬Tϕ)
)

• ∀ϕ∀ψ
(
SentLPA

(ϕ ∨ ψ) → (T (ϕ ∨ ψ) ≡ (Tϕ ∨ Tψ))
)

• ∀v∀ϕ(x)
(
SentLPA

(∀vϕ(v)) → (T (∀vϕ(v)) ≡ ∀xT (ϕ(ẋ)))
)

In effect, the truth axioms of CT− follow the familiar pattern of Tarski’s
inductive truth definition. Let us only emphasize that the quantifier axiom
given here employs numerals. A numeral is an arithmetical term of the form
‘S . . . S(0)’; in other words, numerals are expressions obtained by preceding the
symbol ‘0’ with arbitrarily many successor symbols. Accordingly, the intended
meaning of the quantifier axiom is that ‘∀vϕ(v)’ is true iff the result of substi-
tuting an arbitrary numeral for v in ϕ(v) is true.

2 In their proof it is assumed that arithmetic is formulated in the relational language.
See [1] for extending the result to the language with function symbols.
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A ‘truth class’ in a model M is a subset T of M which makes all the axioms
of CT− true. Now, the conservativity theorem states that the truth axioms of
CT− are conservative not just over full Peano arithmetic, but also over the
fragments of arithmetic sufficient for reconstructing basic theory of syntax. In
particular, adding the truth axioms to IΣ1 (the theory just like Peano arithmetic
but with induction restricted to Σ1 arithmetical formulas) produces a conser-
vative extension of IΣ1. This is a direct corollary of the KKL theorem, which
can be formulated as an expandability result concerning recursively saturated
models of IΣ1.

Two definitions below introduce the notion of a recursive type and the con-
cept of a recursively saturated model.

Definition 2. Let Z be a set of formulas with one free variable x and with
parameters a1...an from a model M . We say that:

(a) Z is realized in M iff there is an s ∈ M such that every formula in Z is
satisfied in M under a valuation assigning s to x.

(b) Z is a type of M iff every finite subset of Z is realized in M .
(c) Z is a recursive type of M iff apart from being a type of M , Z is also

recursive.

Definition 3. M is recursively saturated iff every recursive type of M is realized
in M .

The KKL theorem can now be formulated as follows.

Theorem 4. For every M |= IΣ1, if M is countable and recursively saturated,
then there is a set T ⊂ M such that (M,T ) |= CT−.

3 From Consistent M -Logic to a Truth Class

From now on, we will work with a fixed countable and recursively saturated
model M of IΣ1. As in the original KKL’s argument, our first step is the devel-
opment of a proof system called ‘M -logic’ (ML in short). Intuitively, ML is a
system which permits us to process arbitrary sentences in the sense of M , includ-
ing the nonstandard ones. The system is described externally (not in the model)
in the form of a sequent calculus.3 We will use ‘⇒’ for the sequent arrow, with
expressions of the form ‘Γ ⇒ Δ’ referring to sequents. We shall always assume
that both Γ and Δ are externally finite sequences of M -sentences. Note that we
do not admit formulas with free variables in the sequents.

The definition of M -logic is framed after Gentzen’s original system LK
(see [3]). All the initial sequents have the form ϕ ⇒ ϕ, for an arbitrary

3 This is the first difference between our proof and the original KKL’s construction.
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ϕ ∈ SentLPA
(M). The following rules of ML are copied directly from Gentzen’s

system:

• Weakening, left and right (W-left and W-right):

Γ ⇒ Δ
Γ ⇒ Δ,ϕ

Γ ⇒ Δ
ϕ,Γ ⇒ Δ

• Exchange, left and right (E-left and E-right):

Γ, ψ, ϕ, Γ ′ ⇒ Δ

Γ,ϕ, ψ, Γ ′ ⇒ Δ

Γ ⇒ Δ,ψ, ϕ,Δ′

Γ ⇒ Δ,ϕ, ψ,Δ′

• Contraction, left and right (C-left and C-right):

ϕ,ϕ, Γ ⇒ Δ

ϕ,Γ ⇒ Δ

Γ ⇒ Δ,ϕ, ϕ

Γ ⇒ Δ,ϕ

• Cut:

Γ ⇒ Δ,ϕ ϕ,Σ ⇒ Λ

Γ,Σ ⇒ Δ,Λ

• ¬-left and ¬-right:

Γ ⇒ Δ,ϕ

¬ϕ, Γ ⇒ Δ

ϕ,Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ

• ∧-left and ∧-right (for arbitrary sentences A and B such that one of them is
ϕ):

ϕ, Γ ⇒ Δ

A ∧ B,Γ ⇒ Δ

Γ ⇒ Δ,ϕ Γ ⇒ Δ,ψ

Γ ⇒ Δ,ϕ ∧ ψ

• ∨-left and ∨-right (for arbitrary sentences A and B such that one of them is
ϕ):

ϕ, Γ ⇒ Δ ψ,Γ ⇒ Δ,

ϕ ∨ ψ, Γ ⇒ Δ

Γ ⇒ Δ,ϕ

Γ ⇒ Δ,A ∨ B

• →-left and →-right:

Γ ⇒ Δ,ϕ ψ,Σ ⇒ Λ

ϕ → ψ, Γ,Σ ⇒ Δ,Λ

ϕ, Γ ⇒ Δ,ψ

Γ ⇒ Δ,ϕ → ψ

In addition, M -logic has the following rules of inference:

• The truth rule for literals (Tr-lit). Let ϕ be of the form t = s with M |= t = s
or of the form t 
= s with M |= t 
= s:

ϕ, Γ ⇒ Δ

Γ ⇒ Δ
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• The M -rule, left and right (M -left, M -right):

{ϕ(a), Γ ⇒ Δ : a ∈ M}
∃xϕ(x), Γ ⇒ Δ

{Γ ⇒ Δ,ϕ(a) : a ∈ M}
Γ ⇒ Δ,∀xϕ(x)

• ∃-right and ∀-left:

Γ ⇒ Δ,ϕ(a)
Γ ⇒ Δ,∃xϕ(x)

ϕ(a), Γ ⇒ Δ

∀xϕ(x), Γ ⇒ Δ

Proofs in ML are (possibly infinite) trees of finite height, where the height
of a proof is defined (as usual) as the length of the maximal path. By definition,
trees with no maximal path do not qualify as proofs in ML. Observe that in
ML, the infinitary rules M -left and M -right replace the original rules ∃-left and
∀-right of Gentzen.4 It should be also emphasized that in all the quantifier rules
of ML we employ numerals. Thus, for example, in order to apply ∃-right, we need
a sentence ϕ(a) with a numeral for a. In contrast, in Gentzen’s original system
the rule ∃-right would permit us to derive Γ ⇒ Δ,∃xϕ(x) from Γ ⇒ Δ,ϕ(t) for
an arbitrary term t, not necessarily a numeral. The effect of this modification
of Gentzen’s system is that the truth class which we construct can contain term
pathologies. Thus, in a model (M,T ) of CT− which we eventually obtain there
can exist a nonstandard formula ϕ(x) such that for some term t, ϕ(t) belongs
to T (so that, loosely speaking, the model thinks that ϕ(t) is true), while the
sentence ¬∃xϕ(x) also belongs to T . In this way we obtain a disconcerting effect:
the model thinks that ¬∃xϕ(x) is true even though it considers as true some term
instantiation of ϕ(x).5 However, this accords with our formulation of CT−, where
all the quantifier axioms employ numerals.

Lemma 5. If M -logic is consistent, then M can be expanded to a model of CT−.

For the proof of the lemma, we introduce first the family of unary arithmetical
predicates ‘Prn(S)’ with the intuitive reading ‘sequent S has a proof in M -logic
of height at most n’ (in short, S is n-provable). Observe that for each rule R
of M -logic, the relation ‘S can be obtained by R from n-provable sequents’ can
always be expressed by an arithmetical formula, provided that n-provability is
arithmetically expressible. In view of this, we introduce the following definition.

Definition 6

• Pr0(S) := S is an initial sequent,
• Prn+1(S) := Prn(S) ∨ ∨

R∈ML

(S can be obtained by R from n-provable

sequents).

4 Proof systems with similar infinitary rules have already been studied in the literature
in the context of cut elimination. See, for example, [9].

5 This will happen if all the numerical instantiations of ϕ(x) are seen as false by the
model, that is, if for all numerals a, the sentence ¬ϕ(a) belongs to T .



126 C. Cieśliński

By external induction on natural numbers it can be demonstrated that:

Observation 7. ∀k ∈ ω ∀S
[
ML �k S ≡ M |= Prk(S)

]
.

We can now turn to the proof of Lemma5.

Proof. Let ϕ0, ϕ1, . . . be an enumeration of the set of M -sentences (this is the
only place where the countability assumption is used).

We define:
T0 = ∅

Tn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tn ∪ {ϕn} if ML � (Tn → ¬ϕn) and ϕn is not existential,

Tn ∪ {∃xψ(x)} ∪ {ψ(a)} if ϕn = ∃xψ(x) and ML � (Tn → ¬ϕn),

for an a ∈ M such that ML � (Tn → ¬ψ(a)),

Tn ∪ {¬ϕn} otherwise.

The expression ‘Tn’ on the right side of the definition (as in ‘ML � (Tn → ¬ϕn)’)
stands for the conjunction of all the sentences ϕi or their negations, whichever
of them were added on previous levels. We need to verify that whenever ML �

(Tn → ¬∃xψ(x)), there will exist an a ∈ M such that ML � (Tn → ¬ψ(a)).
This is the only place where recursive saturation is employed.

Thus, assume that ML � (Tn → ¬∃xψ(x)). Define:

p(x) = {¬Prk(Tn → ¬ψ(x)) : k ∈ ω}.

We observe that p(x) is a type. Otherwise there is a natural number k such that
M |= ∀aPrk(Tn → ¬ψ(a)). Hence for all a, ML �k Tn → ¬ψ(a). But then by
the M -rule and cut, ML � Tn → ¬∃xψ(x), which is a contradiction.

Since p(x) is a type, by recursive saturation there is an a ∈ M which realizes
it and we have: ∀kM |= ¬Prk(Tn → ¬ψ(a)), hence the sentence Tn → ¬ψ(a) is
not provable in M -logic, as required.

Checking that (M,T ) |= CT− provided that M -logic is consistent is now
routine and we leave it to the reader. �

4 Consistency of M -Logic

At this stage all that is missing is the proof of consistency of M -logic. In KKL [5]
the consistency of M -logic is proved by the technique of approximations. Here
we propose cut elimination as the proof method. Let us start by the following
simple observation.

Observation 8. If every sequent provable in M -logic has a cut-free proof, then
M -logic is consistent.

Proof. If M -logic is inconsistent, then it proves that 0 = 1. By cut elimination,
take a cut-free proof P of 0 = 1. It is easy to observe that every sentence in
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P has to be either atomic or negated atomic.6 For a sequent S belonging to P ,
let the height of S in P be defined as the length of maximal path generated by S
in P .7 Let Tr0(x) be the arithmetical truth predicate for atomic sentences and
their negations. By external induction on the height of sequents in P , it can be
demonstrated that for every sequent S in P , if all sentences in the antecedent
of S are Tr0, then some sentence in the succedent of S is Tr0. It immediately
follows that M |= Tr0(0 = 1), which is impossible. �

Lemma 9. For every sequent S, if S is provable in ML, then S has a cut-free
proof in ML.

The aim of the remaining part of the paper is to lead the proof of Lemma9
to the point at which it can be completed simply by repeating Gentzen’s original
argument for cut elimination. It should be emphasized that we are not there yet.
Our setting is that of possibly nonstandard sentences (sentences in the sense of
M) and this generates an obstacle which first has to be removed.

In order to see the obstacle, let us recap the classical argument. The aim is to
show that the system with the following mix rule (which is a generalized version
of cut) admits mix elimination:

Γ ⇒ Δ Σ ⇒ Λ
Γ,Σ∗ ⇒ Δ∗, Λ

(ϕ)

where Σ and Δ contain ϕ (the mix formula); Σ∗ and Δ∗ differ from Σ and Δ
only in that they do not contain any occurrence of ϕ. Since mix and cut produce
equivalent proof systems, mix elimination gives us the desired result.

In the next stage it is demonstrated that mix can be eliminated from any
proof which contains only a single application of the mix rule in the last step.
This is done by double induction on the degree of proofs (main induction) and
on the rank of proofs (subinduction). For proofs with mix used only in the last
step, we define:

• The left rank of the proof is the largest number of consecutive sequents in
a path starting with the left-hand upper sequent of the mix and such that
every sequent in the path contains the mix formula in the succedent.

• The right rank of the proof is the largest number of consecutive sequents in
a path starting with the right-hand upper sequent of the mix and such that
every sequent in the path contains the mix formula in the antecedent.

• The rank of the proof is the left rank of the proof + the right rank of the
proof.

• The degree of the proof is the syntactic complexity of the mix formula.

There is no problem in our setting with induction on the rank of proofs, since
both the left and the right rank of the proof in ML will always be a (standard)
6 Without cut, (Tr-Lit) is the only rule that permits us to eliminate sentences in the

proof and (Tr-Lit) can eliminate literals only.
7 Thus, sequents which are initial in P have height 0 and the maximal height of a

sequent in P is not larger than the height of P .
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natural number, restricted by the height of the proof. However, the induction
on the degree of proofs is quite problematic. Since the mix formula might be
non-standard, its syntactic complexity might be a non-standard element of M .
Arguing externally by induction on non-standard numbers is clearly an invalid
move and this is the main obstacle complicating the situation.

Our remedy is to replace the general notion of a degree with a notion rela-
tivized to a proof. Assume that we are given a proof P with mix applied only
in the last step, that eliminates the (possibly non-standard) mix formula ϕ. The
guiding intuition formalized below is that in the cut elimination proof the syn-
tactic shape of ϕ matters only comparatively. For example, ϕ might have the
form ¬ψ. The intuition is that this will matter only provided that ψ itself (with-
out negation) appears somewhere in P ; otherwise ϕ might just as well be treated
as a formula of complexity 0, even if it is non-standard.

Our objective is to make these ideas precise. In what follows the word
‘sequence’ should always be interpreted externally; in other words, sequences
are finite or infinite objects in the real world, not necessarily elements of M .
The length of a finite sequence a = (a0 . . . ak) is the number of its elements, that
is, lh(a) = k + 1. For an infinite sequence a we define lh(a) as ω.

Definition 10

• x � y (‘x is a direct subsentence of y’) is an abbreviation of the following
arithmetical formula:

SentLPA
(x) ∧ SentLPA

(y) ∧(
∃ψ ∈ SentLPA

(y = �¬ψ� ∧ x = ψ)
∨ ∃ϕ,ψ ∈ SentLPA

(y = �ϕ ◦ ψ� ∧ x = ϕ ∨ x = ϕ)
∨ ∃θ(x) ∈ FmLPA

∃a∃v ∈ V ar(y = �Qvθ(v)� ∧ x = �θ(a)�)
)
.

• Let ϕ ∈ SentLPA
(M). We say that s is a �-sequence for ϕ iff s0 = ϕ and for

every k < lh(s) − 1 sk+1 � sk.

The notion of a degree can now be defined in the following way.

Definition 11. Let P be an arbitrary proof in ML with mix used only in the
last step. Let ϕ be the mix formula in P . We define:

• d(ϕ,P ) (the degree of ϕ in P ) = sup{lh(s) : s is a �-sequence for ϕ such
that for every k < lh(s) sk ∈ P}.

• d(P ) (the degree of P ) is defined as d(ϕ,P ).

Lemma 12. Let P be an arbitrary proof in ML with mix used only in the last
step. Then d(P ) is a natural number (in other words, it is never ω).

In order to prove the lemma, we introduce first the function str(x) (‘the
structure of a formula x’). Let the letter p be a new symbol (it will be treated
as a propositional variable). The function is defined as follows (Q is either ∃ or
∀ and ◦ is an arbitrary binary connective).
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Definition 13

• str(�t = s�) = �p�
• str(�¬ψ�) = ¬str(�ψ�)
• str(�ϕ ◦ ψ�) = str(�ϕ�) ◦ str(�ψ�)
• str(�Qxϕ�) = Qx str(�ϕ�)

Intuitively, given a formula ϕ, the function produces a formula which is exactly
like ϕ, except that the letter ‘p’ is substituted for all occurences of atomic for-
mulas in ϕ. Abbreviate str(ϕ) = str(ψ) as ϕ ∼ ψ. The key property of the
equivalence relation ∼ is encapsulated in the following observation.

Observation 14. Let Z ⊆ SentLPA
(M). For every s, if s is a �-sequence with

elements from Z, then lh(s) ≤ card
({[ϕ]∼ : ϕ ∈ Z}), where [ϕ]∼ is a class of

sentences ψ from Z such that ϕ ∼ ψ.

Let compl(ϕ) be the number of connectives and quantifiers in ϕ. Observa-
tion 14 follows immediately from the following fact (we use �∗ for the transitive
closure of �).

Fact 15

(a) ∀ϕ,ψ
(
ϕ �∗ ψ → compl(ϕ) < compl(ψ)

)
.

(b) ∀ϕ,ψ
(
ϕ ∼ ψ → compl(ϕ) = compl(ψ)

)
.

The proof of Fact 15 is done by easy induction and does not contain any surprises.
For part (a), proceed with induction on the length of the �-sequence s leading
from ψ to ϕ. Part (b) can be done by induction on the complexity of ψ.

Proof of Lemma 12 (idea). Fix a proof P in ML which contains mix only in the
last step. Let Z be the set of all sentences which appear in P . We demonstrate
that {[ϕ]∼ : ϕ ∈ Z} is finite, which by Observation 14 guarantees the conclusion
of Lemma 12.

For an arbitrary sequent S in P , let l(S) (the level of S) be the length of
the path leading from S to the end sequent of P . We denote by Si the set of all
sequents in P whose level is not greater than i. Let Senti be defined as the set
of all sentences which appear in some element of Si. Let k be the height of P .
The task is to show that:

∀i ≤ k{[ϕ]∼ : ϕ ∈ Senti} is finite.

This will end the proof, since Sentk = Z.
We proceed by induction. Observe that for i = 0 the conclusion is trivial, as

Sent0 itself is finite (Sent0 is the set of sentences which appear in the end sequent
of P ). The proof is concluded by demonstrating that {[ϕ]∼ : ϕ ∈ Senti+1} is
finite, under the assumption that {[ϕ]∼ : ϕ ∈ Senti} is finite.8 �
8 Here the argument proceeds by cases, corresponding to various ways in which ele-

ments of Senti can be obtained from elements of Senti+1.
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In effect, Definition 11 and Lemma 12 give us a notion of a degree of the proof
which can be used in a Gentzen-style proof even in a non-standard setting. The
way to proving cut elimination, and thus the consistency of ML, is now open.

I will not present the whole cut elimination proof, since it is mostly a rep-
etition of Gentzen’s reasoning. Instead, I will restrict myself to discussing one
example of a new rule (the one not present in the original Gentzen’s system).

Our task is to demonstrate that mix can be eliminated from any proof which
contains only a single application of the mix rule in the last step. Let us assume
(main induction) that cut can be eliminated in every proof of a degree < n. Let
us also assume (subinduction) that cut can be eliminated in every proof of a
degree n but with rank < k. Our task is to show that cut can be eliminated in
proofs of degree n and rank k.

The proof starts with the case of k = 2 (the lowest possible rank) and pro-
ceeds by analysing subcases. Here we analyse only one subcase corresponding to
a rule of ML absent in LK. Namely, let us assume that the mix formula of the
form ∀xϕ(x)9 is obtained by a logical rule in both the succedent of the left-hand
upper sequent of the mix and in the antecedent of the right-hand upper sequent
of the mix. Then the last stage of the proof runs as follows:

{Γ ⇒ Δ,ϕ(a) : a ∈ M}
M -right

Γ ⇒ Δ,∀xϕ(x)
ϕ(c), Σ ⇒ Λ ∀-left∀xϕ(x), Σ ⇒ Λ

mix
Γ,Σ ⇒ Δ,Λ

We can then eliminate mix in the following way:

Γ ⇒ Δ,ϕ(c) ϕ(c), Σ ⇒ Λ
mix

Γ,Σ∗ ⇒ Δ∗, Λ
possibly, some weakenings and exchanges

Γ,Σ ⇒ Δ,Λ

We use the inductive assumption here, namely, we show that the same end
sequent can be obtained by applying mix to the formula ϕ(c), which has the
degree n − 1 in P (the sentence ∀xϕ(x) has the degree n). Observe that in the
modified proof ϕ(c) will preserve the same degree n − 1; observe also that the
modification did not involve adding to the proof any new formula (in general: in
the present setting new proofs without mix are produced from sentences belong-
ing to the initial proof P ).

Acknowledgements. The author was supported by a grant from the National Science
Centre in Cracow (NCN), project number 2017/27/B/HS1/01830.

9 The case of the existential mix formula is closely analogous and I do not discuss it
separately.
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