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Let ϕ1, . . . , ϕn and ψ be some formulas. The figure ϕ1,...,ϕn

ψ is the inference rule
which for all substitutions σ, derives σ(ψ) from σ(ϕ1), . . . , σ(ϕn). It is admis-
sible in a propositional logic L whenever for all substitutions σ, σ(ψ) ∈ L if
σ(ϕ1), . . . , σ(ϕn) ∈ L. It is derivable in L whenever there is a derivation of ψ
in L from the hypothesis ϕ1, . . . , ϕn. It is evident that every derivable rule is
also admissible. L is called structurally complete when the converse holds. Some
propositional logics — such as Classical Propositional Logic — are structurally
complete. Others — like Intuitionistic Propositional Logic — are not. See [14,
Chap. 2]. When L is not structurally complete, owing to the importance of the
admissibility problem in the mechanization of propositional logics, it is crucial to
be able to recognize whether a given inference rule is admissible. The question of
the existence of a decidable modal logic with an undecidable admissibility prob-
lem has been negatively answered by Wolter and Zakharyaschev [41] within the
context of normal modal logics between K and K4 enriched with the universal
modality — see also the pioneering article of Chagrov [13] for an earlier example
of a decidable modal logic with an undecidable admissibility problem. In some
other cases, for instance Intuitionistic Propositional Logic and transitive normal
modal logics like K4, the question of the decidability of the admissibility prob-
lem has been positively answered by Rybakov [33–35]. See also [15,25,27,28,32].
The truth is that Rybakov’s decidability results are related to the fact that the
propositional logics he has considered are finitary [22–24].

The finitariness character of a propositional logic L originates in its unifica-
tion problem. The unification problem in L is to determine, given a formula ϕ,
whether there exists a substitution σ such that σ(ϕ) is in L. In that case, σ is a
unifier of ϕ. A formula ϕ is filtering if for all unifiers σ and τ of ϕ, there exists
a unifier of ϕ which is more general than σ and τ . We shall say that a set of
unifiers of a formula ϕ is complete if for all unifiers σ of ϕ, there exists a unifier τ
of ϕ in that set such that τ is more general than σ. An important question is the
following: when a formula is unifiable, has it a minimal complete set of unifiers?
When the answer is “no”, the formula is nullary. When the answer is “yes”, the
formula is either infinitary, or finitary, or unitary depending on the cardinalities
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of its minimal complete sets of unifiers. Filtering formulas are always unitary, or
nullary. A propositional logic is called nullary if it possesses a nullary formula.
Otherwise, it is called either infinitary, or finitary, or unitary depending on the
types of its unifiable formulas. When every formula is filtering, the propositional
logic is called filtering. See [3,17,26] for details. It is evident that if L is con-
sistent then its unification problem can be reduced to its admissibility problem:
a given formula ϕ possesses a unifier in L if and only if the inference rule ϕ

⊥ is
not admissible. Reciprocally, if L is unitary, or finitary and the elements of the
minimal complete sets of unifiers given rise by its unifiable formulas can be com-
puted then its admissibility problem can be reduced to its unification problem:
a given inference rule ϕ1,...,ϕn

ψ is admissible in L if and only if either ϕ1∧ . . .∧ϕn

is not unifiable, or the substitutions that belong to a minimal complete set of
unifiers of ϕ1 ∧ . . . ∧ ϕn are unifiers of ψ.

In accordance with their capacity to talk about relational structures, normal
modal logics like epistemic logics, or temporal logics are playing a fundamental
role in many applications. By virtue of its close relationships with the admis-
sibility problem, the unification problem lies at the heart of their mechaniza-
tion. For this reason, as advocated by Babenyshev et al. [7], investigations in
the unification problem in normal modal logics can greatly contribute to the
development of their applications. Regarding the unification problem in normal
modal logics, we usually distinguish between elementary unification and unifi-
cation with constants. In elementary unification, all variables are likely to be
replaced by formulas when one applies a substitution. In unification with con-
stants, some variables — called constants — remain unchanged. In normal modal
logics extending KD, the elementary unification problem can be decided in non-
deterministic polynomial time, seeing that one can easily decide whether a given
variable-free formula is equivalent to ⊥, or is equivalent to �. In many transi-
tive normal modal logics like K4, solving the elementary unification problem is
more difficult. In some other normal modal logics like K, it is even unknown
whether the elementary unification problem is decidable. As for the unification
problem with constants, it is not known to be decidable even for a simple normal
modal logic such as Alt1. The truth is that the unification problem with con-
stants is only known to be decidable for a limited number of transitive normal
modal logics like K4. In many cases, the decidability of the unification problem
is a consequence of the decidability of the corresponding admissibility problem.
See [23,24,29,36–40] for details.

Concerning the unification types of normal modal logics, it is known that
S5 is unitary [3], KT is nullary [8], KD is nullary [9], Alt1 is nullary [11], S4.3
is unitary [19], transitive normal modal logics like K4 are finitary [24] and K
is nullary [30], though the nullariness character of KT and KD has only been
obtained within the context of unification with constants. For some other normal
modal logics such as the normal extensions of K4, they are filtering — therefore
they are unitary, or nullary — if and only if they contain the modal translation of
the weak law ¬p∨¬¬p of the excluded middle [26]. Taking a look at the literature
about unification types in normal modal logics [3,17,26], one will quickly notice
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that much remains to be done. For instance, the types of symmetric normal
modal logics like KB, KTB and KDB and the types of Church-Rosser normal
modal logics like KG, KTG and KDG are unknown. Even the types of simple
normal modal logics such as K + �k⊥ are unknown when k ∈ N is such that
k ≥ 2. In his proof that K is nullary, Jer̆ábek [30] has taken the formula (x → �x)
and has shown that it has no minimal complete set of unifiers. In this respect,
he has mainly used the following properties of the modality �: for all k, l ∈ N,
if (�l⊥ → �k⊥) ∈ K then l ≤ k; for all formulas ψ and for all k ∈ N, if
(ψ → �ψ) ∈ K and deg(ψ) ≤ k then ψ ∈ K, or (ψ → �k⊥) ∈ K. Since for
all k ∈ N, ¬�k⊥ ∈ KD, therefore the adaptation of Jer̆ábek’s argument to KT
and KD is not straightforward. It has been done in [8,9] by taking the formula
(x → p) ∧ (y → q) ∧ (x → �(q → y)) ∧ (y → �(p → x)) in the case of KT and
by taking the formula (x → p) ∧ (x → �(p → x)) in the case of KD.

In this talk, we will give a survey of the results on unification in modal logic
and we will present some of the open problems whose solution will have a great
impact on the future of the area. After an introductory part about unification
in equational theories, we will consider the case of Boolean unification [1,31], we
will study the unification problem in Intuitionistic Propositional Logic and tran-
sitive normal modal logics like K4 [21–23,36,37], we will introduce the notions
of projective and transparent unifiers [16–19,24] and we will define filtering uni-
fication [26]. Then, we will present the latest results obtained within the context
of unification in description logics [2,4,5,20] and in multimodal, tense and epis-
temic logics [6,10,12,16].

Special acknowledgement is heartily granted to Çiğdem Gencer (Istan-
bul Aydın University, Turkey), Mojtaba Mojtahedi (Tehran University, Iran),
Maryam Rostamigiv (Toulouse University, France) and Tinko Tinchev (Sofia
University, Bulgaria) for their feedback: their useful suggestions have been essen-
tial for improving a preliminary versions of this talk.
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