
Md. Aquil Khan
Amaldev Manuel (Eds.)

 123

LN
CS

 1
16

00

8th Indian Conference, ICLA 2019
Delhi, India, March 1–5, 2019
Proceedings

Logic and
Its Applications

Lecture Notes in Computer Science 11600

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands
Anuj Dawar, University of Cambridge, UK
Philippe de Groote, Inria Nancy, France
Gerhard Jäger, University of Tübingen, Germany
Fenrong Liu, Tsinghua University, Beijing, China
Eric Pacuit, University of Maryland, USA
Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil
Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Md. Aquil Khan • Amaldev Manuel (Eds.)

Logic and
Its Applications
8th Indian Conference, ICLA 2019
Delhi, India, March 1–5, 2019
Proceedings

123

Editors
Md. Aquil Khan
Indian Institute of Technology Indore
Madhya Pradesh, India

Amaldev Manuel
Indian Institute of Technology Goa
Goa, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-58770-6 ISBN 978-3-662-58771-3 (eBook)
https://doi.org/10.1007/978-3-662-58771-3

Library of Congress Control Number: 2019930849

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE
part of Springer Nature
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-58771-3

Preface

The eighth edition of the Indian Conference on Logic and Its Applications
(ICLA 2019) was held during March 3–5, 2019, at IIT Delhi. The conference was
preceded by two pre-conference workshops (March 1–2) — the Workshop on Para-
consistent Logic and the Workshop on Logic and Cognition. This volume contains the
papers that were accepted to be published in the proceedings of ICLA 2019.

The ICLA is the biennial conference of ALI, the Association for Logic in India. The
aim of this conference series is to bring together researchers working in areas of
mathematics, computer science, and philosophy in which formal logic plays a signif-
icant role. Areas of interest include mathematical and philosophical logic, computer
science logic, foundations and philosophy of mathematics, use of formal logic in areas
of theoretical computer science and artificial intelligence, logic and linguistics, and the
relationship between logic and other branches of knowledge. Systems of logic in the
Indian tradition and their history are of special interest to the conference.

The conference received 34 submissions this year. These submissions underwent a
single-blind peer-review by at least three Program Committee members, and by
external experts in some cases. We thank all those who submitted papers to ICLA
2019. Following a discussion on the reviews, the Program Committee decided to accept
13 papers for publication and presentation. The accepted papers span a wide variety of
areas including model theory, modal and fixpoint logics, sequent calculus, rough set
theory, and computer-aided theorem proving. In addition to these selected papers,
authors of some submissions were offered to present their work at the conference. We
would like to extend our gratitude to the Program Committee members for their hard
work, patience, and knowledge in putting together an excellent technical program. We
also extend our thanks to the external reviewers for their efforts in providing expert
opinions and valuable feedback to the authors.

The program also included six invited talks. We are grateful to Johann A.
Makowsky, Carolin Antos, Philippe Balbiani, Martin Lange, Ian Pratt-Hartmann, and
Mike Prest for accepting our invitation to speak at ICLA 2019 and for contributing to
this proceedings volume.

On behalf of ALI, we thank the Department of Computer Science and Engineering,
IIT Delhi, for hosting the conference. The local Organizing Committee comprised
S. Arun-Kumar, Sanjiva Prasad, and Subodh V Sharma of IIT Delhi. We extend our
sincere gratitude to them for their commitment and efforts in ensuring the smooth
running of the conference. We are indebted to Divyanjali Sharma (IIT Delhi) for setting
up and maintaining the conference website. We thank Anil Seth for his great help in the
organization of ICLA 2019 and R. Ramanujam for his help in the discussions with
Springer. To Sujata Ghosh and Sanjiva Prasad, PC chairs of ICLA 2017, we extend our
sincere gratitude for their continuous help throughout the organization of this confer-
ence in every phase. We also express our appreciation of the tireless efforts of all the
volunteers who contributed to making the conference a success.

We thank the EasyChair conference management system, which we used from
managing the submissions to producing these proceedings. We are grateful to the
Editorial Board at Springer for publishing this volume in the LNCS series.

January 2019 Md. Aquil Khan
Amaldev Manuel

VI Preface

Organization

Program Committee

Sreejith Ajithkumar IIT Goa, India
S. Akshay IIT Bombay, India
S. Arun-Kumar IIT Delhi, India
Sankha Basu IIIT Delhi, India
Benedikt Bollig CNRS, LSV, ENS Paris-Saclay, France
Torben Braüner Roskilde University, Denmark
Mihir Chakraborty Jadavpur University, India
Kaustuv Chaudhuri École Polytechnique, France
Anuj Dawar University of Cambridge, UK
Ivo Duntsch Fujian Normal University, China
Soma Dutta University of Warmia and Mazury, Poland
Sujata Ghosh ISI Chennai Centre, India
Davide Grossi University of Groningen, The Netherlands
Stefan Göller University of Kassel, Germany
Md. Aquil Khan IIT Indore, India
Astrid Kiehn IIT Mandi, India
Amit Kuber IIT Kanpur, India
Denis Kuperberg CNRS, LIP, ENS Lyon, France
Benedikt Loewe University of Amsterdam, The Netherlands
Minghui Ma ILC, Sun Yat-Sen University, China
Amaldev Manuel IIT Goa, India
Benjamin Monmege CNRS, LIF, Aix-Marseille Université, France
Ramchandra

Phawade
IIT Dharwad, India

M. Praveen Chennai Mathematical Institute, India
Gabriele Puppis CNRS, LaBRI, Bordeaux, France
Arnaud Sangnier IRIF, Université Paris Diderot, France
Abhisekh Sankaran University of Cambridge, UK
Katsuhiko Sano Hokkaido University, Japan
Sunil Easaw Simon IIT Kanpur, India
Smita Sirker Jawaharlal Nehru University, India
Hans van Ditmarsch CNRS, LORIA, University of Lorraine, France
Richard Zach University of Calgary, Canada

Additional Reviewers

Baskar, A.
Bisht, Harshit
Chapman, Peter
D’Souza, Deepak
Emmeche, Claus
Lahiri, Utpal
Mathew, Anup Basil

S., Sheerazuddin
Srivastava, Shashi
Suresh, S. P.
Tarafder, Sourav
Thinniyam, Ramanathan
Verbrugge, Rineke

VIII Organization

Short Papers

On the Average Complexity of SAT

J. A. Makowsky

Department of Computer Science, Technion - Israel Institute of Technology,
Haifa, Israel

janos@cs.technion.ac.il

In 1995 I co-authored with A. Sharell the paper [MS95] which I will review in this talk
from today’s point of view. The results were discussed and interpreted by. S. Cook and
D. Mitchel in [CM97], but otherwise were little noticed.

In the paper we investigated natural distributions of clauses for the satisfiability
problem (SAT) of prepositional logic with input in conjunctive normal form, using
concepts previously introduced by to study the average-case complexity of
NP-complete problems.

Average case complexity was introduced in 1986 by L. Levin, [Lev86] who also
defined complete problems for the complexity class DistNP. In 1991 Y. Gurevich,
[Gur91], showed that a problem with a flat distribution is not DistNP complete (for
deterministic reductions), unless DEXPTime is different from NEXPTime. We
expressed the known results concerning fixed size and fixed density distributions for
CNF in the framework of average-case complexity and show that all these distributions
are flat. We introduced the family of symmetric distributions, which generalizes those
mentioned before, and showed that bounded symmetric distributions on ordered tuples
of clauses (CNFTupIes) and on k-CNF (sets of k-literal-clauses), are flat.

This eliminated all these distributions as candidates for provably hard (i.e. DistNP
complete) distributions for SAT, if one considered only deterministic reductions. Given
the (presumed) naturalness and generality of symmetric distributions, this result sup-
ported evidence that (at least polynomial-time, no-error) randomized reductions are
appropriate in average-case complexity.

We also observed, that there are non-flat distributions for which SAT is polynomial
on the average, but that this is due to the particular choice of the size functions. In
[CS88] V. Chvátal and E. Szemerédi (1988) have shown that for certain fixed size
distributions (which are also flat) resolution is exponential for almost all instances. We
used this to show that every resolution algorithm will need at least subexponential time
on the average. In other words, resolution-based algorithms will not establish that SAT,
with these distributions, is in AverP.

In later developments U. Feige established in 2002 [Fei02] a relationship between
average-case complexity and approximation complexity which also applies to SAT.
More recent papers [AV01, CDA+03, VSTER16] analyse random SAT more closely
and discuss phase transitions by letting the distribution of the instances vary along
various parameters. Experimental studies on the meaning of these parameters were
studied in [ZMW+17]. Phase transitions are also analyzed in the literature [MIDV07]
for HornSAT and 2SAT, which are polynomial time solvable in the worst case.

There is a big discrepancy between the complexity theory applied to SAT and
engineering practice. SAT-engineering is capable of solving very large problems in
practice. Theoreticians tried to explain this with structural properties of a typical
SAT-instance such as the width (tree-width or clique-width), cf. [FMR08]. However, it
seems that the density of the distribution, i.e. the ratio between the number of clauses
and the number of boolean variable, of the SAT-instances to be analyzed bears more
relevant information than other structural properties. For the better understanding of
average-case complexity still much has to be done, see also [Var14].

References

[AV01] Aguirre, A.S.M., Vardi, M.: Random 3-SAT and BDDs: the plot thickens further.
In: Walsh, T. (ed.) Principles and Practice of Constraint Programming—CP 2001.
CP 2001. LNCS, vol 2239, pp. 121–136. Springer, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-45578-7_9

[CDA+03] Coarfa, C., Demopoulos, D.D., Aguirre, A.S.M., Subramanian, D., Vardi, M.Y.:
Random 3-sat: the plot thickens. Constraints 8(3), 243–261 (2003)

[CM97] Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem. In:
Satisfiability Problem: Theory and Applications: DIMACS Workshop, vol. 35,
pp 1–17 (1997)

[CS88] Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM (JACM) 35
(4), 759–768 (1988)

[Fei02] Feige, U.: Relations between average case complexity and approximation com-
plexity. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory
of Computing, pp. 534–543. ACM (2002)

[FMR08] Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas
of bounded tree-width or clique-width. Discrete Appl. Math. 156(4), 511–529
(2008)

[Gur91] Gurevich, Y.: Average case completeness. J. Comput. Syst. Sci. 42(3), 346–398
(1991)

[Lev86] Levin, L.A.: Average case complete problems. SIAM J. Comput. 15(1), 285–286
(1986)

[MIDV07] Moore, C., Istrate, G., Demopoulos, D., Vardi, M.Y.: A continuous–discontinuous
second-order transition in the satisfiability of random horn-sat formulas. Random
Struct. Algorithms 31(2), 173–185 (2007)

[MS95] Makowsky, J.A., Sharell, A.: On average case complexity of sat for symmetric
distribution. J. Logic Comput. 5(1), 71–92 (1995)

[Var14] Vardi, M.Y.: Boolean satisfiability: theory and engineering. Commun. ACM 57(3),
5 (2014)

[VSTER16] Varga, M., Sumi, R., Toroczkai, Z., Ercsey-Ravasz, M.: Order-to-chaos transition in
the hardness of random boolean satisfiability problems. Phys. Rev. E 93(5), 052211
(2016)

[ZMW+17] Zulkoski, E., Martins, R., Wintersteiger, C., Robere, R., Liang, J., Czarnecki, K.,
Ganesh, V.: Relating complexity-theoretic parameters with sat solver performance.
arXiv preprint arXiv:1706.08611 (2017)

XII J. A. Makowsky

https://doi.org/10.1007/3-540-45578-7_9
http://arxiv.org/arXiv:1706.08611

What Did Tarski Have in Mind
with Elementary Geometry and Its

Decidability?

J. A. Makowsky

Department of Computer Science, Technion - Israel Institute of Technology,
Haifa, Israel

janos@cs.technion.ac.il

We survey the status of decidability of the first order consequences in various
axiomatizations of Hilbert-style Euclidean geometry. We draw attention to a widely
overlooked result by Martin Ziegler from 1980, which proves Tarski’s conjecture on
the undecidability of finitely axiomatizable theories of fields. We elaborate on how to
use Ziegler’s theorem to show that the consequence relations for the first order theory
of the Hilbert plane and the Euclidean plane are undecidable. As new results we add:

(A) The first order consequence relations for Wu’s orthogonal and metric geometries
(Wen-Tsün Wu, 1984), and for the axiomatization of Origami geometry (J. Justin
1986, H. Huzita 1991) are undecidable.

It was already known that the universal theory of Hilbert planes and Wu’s
orthogonal geometry is decidable. We show here using elementary model theoretic
tools that

(B) the universal first order consequences of any geometric theory T of Pappian planes
which is consistent with the analytic geometry of the reals is decidable.

The techniques used were all known to experts in mathematical logic and geometry
in the past but no detailed proofs are easily accessible for practitioners of symbolic
computation or automated theorem proving.

We also discuss the status of projective and hyperbolic geometry.
The talk is based on

J. A. Makowsky,
Can one design a geometry engine?
On the (un)decidability of certain affine Euclidean geometries.
Annals of Mathematics and Artificial Intelligence, 2019 (in press).
https://doi.org/10.1007/s10472-018-9610-1

1 Partially supported by a grant of Technion Research Authority. Work done in part while the author
was visiting the Simons Institute for the Theory of Computing in Fall 2016.

https://doi.org/10.1007/s10472-018-9610-1

Contents

Unification in Modal Logic . 1
Philippe Balbiani

Propositional Modal Logic with Implicit Modal Quantification 6
Anantha Padmanabha and R. Ramanujam

Infinite Liar in a (Modal) Finitistic Setting . 18
Michał Tomasz Godziszewski and Rafal Urbaniak

The Finite Embeddability Property for Topological Quasi-Boolean
Algebra 5. 30

Zhe Lin and Mihir Kumar Chakraborty

Specifying Program Properties Using Modal Fixpoint Logics:
A Survey of Results . 42

Martin Lange

A Modal Aleatoric Calculus for Probabilistic Reasoning 52
Tim French, Andrew Gozzard, and Mark Reynolds

Public Announcements for Epistemic Models and Hypertheories 64
Nenad Savić and Thomas Studer

Revisiting the Generalized Łoś-Tarski Theorem . 76
Abhisekh Sankaran

Model Theory for Sheaves of Modules . 89
Mike Prest

Transitivity and Equivalence in Decidable Fragments of First-Order Logic:
A Survey . 103

Ian Pratt-Hartmann

The Undecidability of FO3 and the Calculus of Relations with Just One
Binary Relation. 108

Yoshiki Nakamura

Satisfaction Classes via Cut Elimination. 121
Cezary Cieśliński

Sequent Calculi for Normal Update Logics. 132
Katsuhiko Sano and Minghui Ma

Logics for Rough Concept Analysis . 144
Giuseppe Greco, Peter Jipsen, Krishna Manoorkar,
Alessandra Palmigiano, and Apostolos Tzimoulis

A Fix-Point Characterization of Herbrand Equivalence of Expressions in
Data Flow Frameworks . 160

Jasine Babu, Karunakaran Murali Krishnan, and Vineeth Paleri

Logic Without Language . 173
Rohit Parikh

Towards a Constructive Formalization of Perfect Graph Theorems 183
Abhishek Kr Singh and Raja Natarajan

Author Index . 195

XVI Contents

Unification in Modal Logic

Philippe Balbiani(B)

Institut de recherche en informatique de Toulouse,
CNRS — Toulouse University, Toulouse, France

balbiani@irit.fr

Keywords: Modal logics · Unification problem ·
Elementary unification · Unification with constants ·
Computability of unification · Unification type

Let ϕ1, . . . , ϕn and ψ be some formulas. The figure ϕ1,...,ϕn

ψ is the inference rule
which for all substitutions σ, derives σ(ψ) from σ(ϕ1), . . . , σ(ϕn). It is admis-
sible in a propositional logic L whenever for all substitutions σ, σ(ψ) ∈ L if
σ(ϕ1), . . . , σ(ϕn) ∈ L. It is derivable in L whenever there is a derivation of ψ
in L from the hypothesis ϕ1, . . . , ϕn. It is evident that every derivable rule is
also admissible. L is called structurally complete when the converse holds. Some
propositional logics — such as Classical Propositional Logic — are structurally
complete. Others — like Intuitionistic Propositional Logic — are not. See [14,
Chap. 2]. When L is not structurally complete, owing to the importance of the
admissibility problem in the mechanization of propositional logics, it is crucial to
be able to recognize whether a given inference rule is admissible. The question of
the existence of a decidable modal logic with an undecidable admissibility prob-
lem has been negatively answered by Wolter and Zakharyaschev [41] within the
context of normal modal logics between K and K4 enriched with the universal
modality — see also the pioneering article of Chagrov [13] for an earlier example
of a decidable modal logic with an undecidable admissibility problem. In some
other cases, for instance Intuitionistic Propositional Logic and transitive normal
modal logics like K4, the question of the decidability of the admissibility prob-
lem has been positively answered by Rybakov [33–35]. See also [15,25,27,28,32].
The truth is that Rybakov’s decidability results are related to the fact that the
propositional logics he has considered are finitary [22–24].

The finitariness character of a propositional logic L originates in its unifica-
tion problem. The unification problem in L is to determine, given a formula ϕ,
whether there exists a substitution σ such that σ(ϕ) is in L. In that case, σ is a
unifier of ϕ. A formula ϕ is filtering if for all unifiers σ and τ of ϕ, there exists
a unifier of ϕ which is more general than σ and τ . We shall say that a set of
unifiers of a formula ϕ is complete if for all unifiers σ of ϕ, there exists a unifier τ
of ϕ in that set such that τ is more general than σ. An important question is the
following: when a formula is unifiable, has it a minimal complete set of unifiers?
When the answer is “no”, the formula is nullary. When the answer is “yes”, the
formula is either infinitary, or finitary, or unitary depending on the cardinalities
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 1–5, 2019.
https://doi.org/10.1007/978-3-662-58771-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_1&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_1

2 P. Balbiani

of its minimal complete sets of unifiers. Filtering formulas are always unitary, or
nullary. A propositional logic is called nullary if it possesses a nullary formula.
Otherwise, it is called either infinitary, or finitary, or unitary depending on the
types of its unifiable formulas. When every formula is filtering, the propositional
logic is called filtering. See [3,17,26] for details. It is evident that if L is con-
sistent then its unification problem can be reduced to its admissibility problem:
a given formula ϕ possesses a unifier in L if and only if the inference rule ϕ

⊥ is
not admissible. Reciprocally, if L is unitary, or finitary and the elements of the
minimal complete sets of unifiers given rise by its unifiable formulas can be com-
puted then its admissibility problem can be reduced to its unification problem:
a given inference rule ϕ1,...,ϕn

ψ is admissible in L if and only if either ϕ1∧ . . .∧ϕn

is not unifiable, or the substitutions that belong to a minimal complete set of
unifiers of ϕ1 ∧ . . . ∧ ϕn are unifiers of ψ.

In accordance with their capacity to talk about relational structures, normal
modal logics like epistemic logics, or temporal logics are playing a fundamental
role in many applications. By virtue of its close relationships with the admis-
sibility problem, the unification problem lies at the heart of their mechaniza-
tion. For this reason, as advocated by Babenyshev et al. [7], investigations in
the unification problem in normal modal logics can greatly contribute to the
development of their applications. Regarding the unification problem in normal
modal logics, we usually distinguish between elementary unification and unifi-
cation with constants. In elementary unification, all variables are likely to be
replaced by formulas when one applies a substitution. In unification with con-
stants, some variables — called constants — remain unchanged. In normal modal
logics extending KD, the elementary unification problem can be decided in non-
deterministic polynomial time, seeing that one can easily decide whether a given
variable-free formula is equivalent to ⊥, or is equivalent to �. In many transi-
tive normal modal logics like K4, solving the elementary unification problem is
more difficult. In some other normal modal logics like K, it is even unknown
whether the elementary unification problem is decidable. As for the unification
problem with constants, it is not known to be decidable even for a simple normal
modal logic such as Alt1. The truth is that the unification problem with con-
stants is only known to be decidable for a limited number of transitive normal
modal logics like K4. In many cases, the decidability of the unification problem
is a consequence of the decidability of the corresponding admissibility problem.
See [23,24,29,36–40] for details.

Concerning the unification types of normal modal logics, it is known that
S5 is unitary [3], KT is nullary [8], KD is nullary [9], Alt1 is nullary [11], S4.3
is unitary [19], transitive normal modal logics like K4 are finitary [24] and K
is nullary [30], though the nullariness character of KT and KD has only been
obtained within the context of unification with constants. For some other normal
modal logics such as the normal extensions of K4, they are filtering — therefore
they are unitary, or nullary — if and only if they contain the modal translation of
the weak law ¬p∨¬¬p of the excluded middle [26]. Taking a look at the literature
about unification types in normal modal logics [3,17,26], one will quickly notice

Unification in Modal Logic 3

that much remains to be done. For instance, the types of symmetric normal
modal logics like KB, KTB and KDB and the types of Church-Rosser normal
modal logics like KG, KTG and KDG are unknown. Even the types of simple
normal modal logics such as K + �k⊥ are unknown when k ∈ N is such that
k ≥ 2. In his proof that K is nullary, Jer̆ábek [30] has taken the formula (x → �x)
and has shown that it has no minimal complete set of unifiers. In this respect,
he has mainly used the following properties of the modality �: for all k, l ∈ N,
if (�l⊥ → �k⊥) ∈ K then l ≤ k; for all formulas ψ and for all k ∈ N, if
(ψ → �ψ) ∈ K and deg(ψ) ≤ k then ψ ∈ K, or (ψ → �k⊥) ∈ K. Since for
all k ∈ N, ¬�k⊥ ∈ KD, therefore the adaptation of Jer̆ábek’s argument to KT
and KD is not straightforward. It has been done in [8,9] by taking the formula
(x → p) ∧ (y → q) ∧ (x → �(q → y)) ∧ (y → �(p → x)) in the case of KT and
by taking the formula (x → p) ∧ (x → �(p → x)) in the case of KD.

In this talk, we will give a survey of the results on unification in modal logic
and we will present some of the open problems whose solution will have a great
impact on the future of the area. After an introductory part about unification
in equational theories, we will consider the case of Boolean unification [1,31], we
will study the unification problem in Intuitionistic Propositional Logic and tran-
sitive normal modal logics like K4 [21–23,36,37], we will introduce the notions
of projective and transparent unifiers [16–19,24] and we will define filtering uni-
fication [26]. Then, we will present the latest results obtained within the context
of unification in description logics [2,4,5,20] and in multimodal, tense and epis-
temic logics [6,10,12,16].

Special acknowledgement is heartily granted to Çiğdem Gencer (Istan-
bul Aydın University, Turkey), Mojtaba Mojtahedi (Tehran University, Iran),
Maryam Rostamigiv (Toulouse University, France) and Tinko Tinchev (Sofia
University, Bulgaria) for their feedback: their useful suggestions have been essen-
tial for improving a preliminary versions of this talk.

References

1. Baader, F.: On the complexity of Boolean unification. Inf. Process. Lett. 67, 215–
220 (1998)

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Brewka, G. et al. (eds.) Principles of Knowledge Representation
and Reasoning, pp. 568–572. AAAI Press (2012)

3. Baader, F., Ghilardi, S.: Unification in modal and description logics. Log. J. IGPL
19, 705–730 (2011)

4. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen,
R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02348-4 25

5. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31, 277–305 (2001)

6. Babenyshev, S., Rybakov, V.: Unification in linear temporal logic LTL. Ann. Pure
Appl. Log. 162, 991–1000 (2011)

https://doi.org/10.1007/978-3-642-02348-4_25

4 P. Balbiani

7. Babenyshev, S., Rybakov, V., Schmidt, R., Tishkovsky, D.: A tableau method for
checking rule admissibility in S4. Electron. Notes Theor. Comput. Sci. 262, 17–32
(2010)

8. Balbiani, P.: Remarks about the unification type of some non-symmetric non-
transitive modal logics. Log. J. IGPL (2018, to appear)

9. Balbiani, P., Gencer, Ç.: KD is nullary. J. Appl. Non Class. Log. 27, 196–205
(2017)

10. Balbiani, P., Gencer, Ç.: Unification in epistemic logics. J. Appl. Non Class. Log.
27, 91–105 (2017)

11. Balbiani, P., Tinchev, T.: Unification in modal logic Alt1. In: Advances in Modal
Logic, pp. 117–134. College Publications (2016)

12. Balbiani, P., Tinchev, T.: Elementary unification in modal logic KD45. J. Appl.
Log. IFCoLog J. Log. Appl. 5, 301–317 (2018)

13. Chagrov, A.: Decidable modal logic with undecidable admissibility problem. Alge-
bra i Logika 31, 83–93 (1992)

14. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford
(1997)

15. Cintula, P., Metcalfe, G.: Admissible rules in the implication-negation fragment of
intuitionistic logic. Ann. Pure Appl. Log. 162, 162–171 (2010)

16. Dzik, W.: Unitary unification of S5 modal logics and its extensions. Bull. Sect.
Log. 32, 19–26 (2003)

17. Dzik, W.: Unification Types in Logic. Wydawnicto Uniwersytetu Slaskiego, Katow-
ice (2007)

18. Dzik, W.: Remarks on projective unifiers. Bull. Sect. Log. 40, 37–46 (2011)
19. Dzik, W., Wojtylak, P.: Projective unification in modal logic. Log. J. IGPL 20,

121–153 (2012)
20. Fernández Gil, O.: Hybrid Unification in the Description Logic EL. Master thesis

of Technische Universität Dresden (2012)
21. Gencer, Ç.: Description of modal logics inheriting admissible rules for K4. Log. J.

IGPL 10, 401–411 (2002)
22. Gencer, Ç., de Jongh, D.: Unifiability in extensions of K4. Log. J. IGPL 17, 159–

172 (2009)
23. Ghilardi, S.: Unification in intuitionistic logic. J. Symb. Log. 64, 859–880 (1999)
24. Ghilardi, S.: Best solving modal equations. Ann. Pure Appl. Log. 102, 183–198

(2000)
25. Ghilardi, S.: A resolution/tableaux algorithm for projective approximations in

IPC. Log. J. IGPL 10, 229–243 (2002)
26. Ghilardi, S., Sacchetti, L.: Filtering unification and most general unifiers in modal

logic. J. Symb. Log. 69, 879–906 (2004)
27. Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. J. Symb.

Comput. 66, 281–294 (2001)
28. Iemhoff, R., Metcalfe, G.: Proof theory for admissible rules. Ann. Pure Appl. Log.

159, 171–186 (2009)
29. Jer̆ábek, E.: Complexity of admissible rules. Arch. Math. Log. 46, 73–92 (2007)
30. Jer̆ábek, E.: Blending margins: the modal logic K has nullary unification type. J.

Log. Comput. 25, 1231–1240 (2015)
31. Martin, U., Nipkow, T.: Boolean unification – the story so far. J. Symb. Comput.

7, 275–293 (1989)
32. Rozière, P.: Règles admissibles en calcul propositionnel intuitionniste. Thesis of

the University Paris VII (1993)

Unification in Modal Logic 5

33. Rybakov, V.: A criterion for admissibility of rules in the model system S4 and the
intuitionistic logic. Algebra Log. 23, 369–384 (1984)

34. Rybakov, V.: Bases of admissible rules of the logics S4 and Int. Algebra Log. 24,
55–68 (1985)

35. Rybakov, V.: Admissibility of Logical Inference Rules. Elsevier, Amsterdam (1997)
36. Rybakov, V.: Construction of an explicit basis for rules admissible in modal system

S4. Math. Log. Q. 47, 441–446 (2001)
37. Rybakov, V., Gencer, Ç., Oner, T.: Description of modal logics inheriting admis-

sible rules for S4. Log. J. IGPL 7, 655–664 (1999)
38. Rybakov, V., Terziler, M., Gencer, Ç.: An essay on unification and inference rules

for modal logics. Bull. Sect. Log. 28, 145–157 (1999)
39. Rybakov, V., Terziler, M., Gencer, Ç.: Unification and passive inference rules for

modal logics. J. Appl. Non Class. Log. 10, 369–377 (2000)
40. Rybakov, V., Terziler, M., Gencer, Ç.: On self-admissible quasi-characterizing infer-

ence rules. Stud. Logica. 65, 417–428 (2000)
41. Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility

problems for modal and description logics. ACM Trans. Comput. Log. 9, 25:1–25:20
(2008)

Propositional Modal Logic with Implicit
Modal Quantification

Anantha Padmanabha(B) and R. Ramanujam

Institute of Mathematical Sciences, HBNI, Chennai, India
{ananthap,jam}@imsc.res.in

Abstract. Propositional term modal logic is interpreted over Kripke
structures with unboundedly many accessibility relations and hence
the syntax admits variables indexing modalities and quantification over
them. This logic is undecidable, and we consider a variable-free propo-
sitional bi-modal logic with implicit quantification. Thus [∀]α asserts
necessity over all accessibility relations and [∃]α is classical necessity
over some accessibility relation. The logic is associated with a natural
bisimulation relation over models and we show that the logic is exactly
the bisimulation invariant fragment of a two sorted first order logic. The
logic is easily seen to be decidable and admits a complete axiomatization
of valid formulas. Moreover the decision procedure extends naturally to
the ‘bundled fragment’ of full term modal logic.

Keywords: Term modal logic · Implicitly quantified modal logic ·
Bisimulation invariance · Bundled fragment

1 Introduction

Propositional multi-modal logics [4,13] are used extensively in the context of
multi-agent systems, or to reason about labelled transition systems. In the former
case, �iα might refer to knowledge or belief of agent i that α holds. In the latter
case, ♦aα may assert the existence of an a-labelled transition from the current
state to one in which α holds. Such applications include epistemic reasoning
[6,7], games [12], system verification [1,5] and more.

In either of the settings, the indices of modalities come from a fixed finite
set. However, the applications themselves admit systems of unboundedly many
agents, or infinite alphabets of actions. The former is the case in dynamic net-
works of processes, and the latter in the case of systems handling unbounded
data. In fact, the set of agents relevant for consideration may itself be dynamic,
changing with state.

Such motivations naturally lead to modal logics with unboundedly many
modalities, and indeed quantification over modal indices. Grove and Halpern
[10,11] discuss epistemic logics where the agent set is not fixed and the agent
names are not common knowledge. Khan et al. [14] use unboundedly many
modalities and allow quantification over them to model information systems
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 6–17, 2019.
https://doi.org/10.1007/978-3-662-58771-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_2&domain=pdf
http://orcid.org/0000-0002-4265-5772
https://doi.org/10.1007/978-3-662-58771-3_2

Propositional Modal Logic with Implicit Modal Quantification 7

in approximation spaces. Other works on indexed modalities include Passy and
Tinchev [20], Gargov and Goranko [9], Blackburn [3].

Term Modal logic (TML), introduced by Fitting, Voronkov and Thalmann [8]
offers a natural solution to these requirements. It extends first order logic with
modalities of the form �xα where x is a variable (and hence can be quantified
over). Thus we can write a formula of the form: ∀x�x(p(x) ⊃ ∃y♦yq(x, y)). Kooi
[15] considers the expressivity of TML in epistemic setting. Wang and Seligman
[23] introduce a restricted version of TML where we have assignments in place
of quantifiers (formulas of the form [x := b]Kx(α) where b is a constant, whose
interpretation as an agent will be assigned to x).

Note that TML extends first order logic, and hence its satisfiability problem
is undecidable. In [17] we prove that the problem is undecidable even when the
atoms are restricted to boolean propositions (PTML). Hence the question of
finding decidable fragments of PTML is well motivated. In [17] we prove that the
monodic fragment of PTML is decidable. The monodic fragment is a restriction
allowing at most one free variable within the scope of a modality. i.e, every
subformula of the form �xα has FV (α) ⊆ {x}.

Orlandelli and Corsi [16] consider two decidable fragments: (1) When quan-
tifier occurrence is restricted to the form: ∃x�xα (denoted by [∃]α); (2) Quanti-
fiers appear in a restricted guarded form: ∀x(P (x) ⇒ �xα) and ∃x(P (x)∧�xα)
(and their duals). The corresponding first order modal logic counterparts of
the first of these fragments is studied by Wang [22]. Shtakser [21] considers a
monadic second order version of the guards (with propositional atoms) of the
form ∀X(P (X) ⇒ �Xα) and ∃X(P (X)∧�Xα) where X is quantified over sub-
sets of indices and P is interpreted appropriately. These fragments are semanti-
cally motivated from their interest in epistemic logic to model notions like ‘every-
one knows’, ‘someone knows’ and community knowledge (e.g. All eye-witnesses
know who killed Mary).

Note that when modalities and quantifiers are ‘bundled’ together and atomic
formulas are propositional, ∃x�xα can be replaced by a variable free modality
[∃]α, and similarly ∀x�xα by [∀]. In some sense this is the most natural variable
free fragment of PTML with modalities being implicitly quantified. This is the
logic IQML studied in this paper.

Just as propositional modal logic is the bisimulation-invariant fragment of
first order logic, we show that IQML is the bisimulation-invariant fragment of
an appropriate two-sorted first order logic. The notion of bisimulation needs
to be carefully re-defined to account for quantification over edge labels. Other
natural questions on IQML such as decidability of satisfiability and complete
axiomatization of valid formulas are answered easily. Interestingly, the natural
tableau procedure for the logic can be extended to the ‘bundled fragment’ of TML
with predicates of arbitrary arity, by an argument similar to the one developed
in [19] (for a ‘bundled fragment’ of first order modal logic).

8 A. Padmanabha and R. Ramanujam

2 Implicitly Quantified Modal Logic (IQML)

The implicitly quantified modal logic (IQML) is the variable free fragment of
PTML, as discussed above. For more details on PTML, refer [17].

Definition 1 (IQML syntax). Let P be a countable set of propositions. The
syntax of IQML is given by:

ϕ := p ∈ P | ¬ϕ | ϕ ∧ ϕ | [∃]ϕ | [∀]ϕ

Note that, [∃]ϕ translates to ∃x�xϕ in PTML. Similarly [∀]ϕ translates to
∀x�xϕ. Since there are no variables in IQML, it is closer to classical propositional
modal logics where the set of modal indices is not fixed a priori.

The boolean operators ∨ and ⊃ are defined in the standard way. Also we
define 〈∀〉ϕ = ¬[∃]¬ϕ and 〈∃〉ϕ = ¬[∀]¬ϕ to be the respective duals of the
modal operators.

In classical modal logics, the Kripke structure for n modalities is given by
M = (W,R1, · · · ,Rn, ρ) where each Ri ⊆ (W × W) is the accessibility relation
for the corresponding index and ρ is the valuation of propositions at every world.
But in case of IQML, the modal index set is specified along with the model.

Definition 2 (IQML structure). An IQML structure is given by M =
(W,RI, ρ) where W is a non-empty set of worlds, I is a non-empty countable
index set and R = {Ri | i ∈ I} where each Ri ⊆ (W × W) and ρ : W �→ 2P is
the valuation function.

Note that I is the agent set and could be finite or countably infinite. Hence
we assume I to be some initial segment of N or N itself. Thus we often denote
the model as M = (W, [R1,R2, · · ·], ρ) when I is clear from the context. Given
a model M, we refer to WM etc. to denote its corresponding components. The
semantics is defined naturally as follows:

Definition 3 (IQML semantics). Given a model M, a formula ϕ, w ∈ WM,
define M, w |= ϕ inductively as follows:

M, w |= p ⇔ p ∈ ρ(w)
M, w |= ¬ϕ ⇔ M, w, �|= ϕ
M, w |= (ϕ ∧ ψ) ⇔ M, w � ϕ and M, w |= ψ
M,w |= [∃]ϕ ⇔ there is some i ∈ I such that for all u ∈ W

if (w, u) ∈ Ri then M, u |= ϕ
M, w � [∀]ϕ ⇔ for all i ∈ I and for all u ∈ W

if (w, u) ∈ Ri then M, u |= ϕ

The formula ϕ ∈ IQML is satisfiable if there is some model M and w ∈ W
such that M, w |= ϕ. A formula ϕ is said to be valid if ¬ϕ is not satisfiable.
Table 1 gives a complete axiom system for the valid formulas of IQML.

In the sequel we adopt the following convention. Given any model M, w ∈ W
and a formula of the form [∃]ϕ, if M, w |= [∃]ϕ and i ∈ I is the corresponding
witness then we write M, w |= �iϕ (similarly we have M, w |= ♦iϕ for 〈∃〉ϕ).

Propositional Modal Logic with Implicit Modal Quantification 9

Table 1. IQML axiom system (AXA)

The axioms and inference rules are standard. Axiom A2 describes the inter-
action between [∀] and 〈∀〉 operators. The ([∃]Nec) rule is sound since I is non-
empty. Note that the axiom system is similar to the one in [11], except for
([∀]Nec) and ([∃]Nec). This is because IQML has no names, as opposed to the
logic considered in [11].

Theorem 1. �AXA is sound and complete for IQML.

The proof of completeness is by construction of canonical model for any
consistent formula. The details are presented in [18].

3 IQML Bisimulation and Elementary Equivalence

Modal logics are naturally associated with bisimulations. If two pointed models
are bisimilar, the related worlds agree on propositions and satisfy the so-called
“back and forth” property [4]. However, when we come to PTML, since the agent
set is not fixed, we need to have the notion of ‘world bisimilarity’ as well as
‘agent bisimilarity’. Towards this, in [17], we introduce a notion of bisimulation
for propositional term modal logic and show that it preserves PTML formulas.
Similar definitions of bisimulations for first order modal logics can be found in
[2,22].

Now we introduce the notion of bisimulation for IQML. Here the idea is that
two worlds are bisimilar if they agree on all propositions and every index in
one structure has a corresponding index in the other. The following definition of
bisimulation formalizes the notion of ‘corresponding index’.

Definition 4. Given two IQML models M1 and M2, an IQML-bisimulation on
them is a non-empty relation G ⊆ (W1 × W2) such that for all (w1, w2) ∈ G the
following conditions hold:
Val. ρ1(w1) = ρ2(w2).

[∃]forth. For all i ∈ I1 there is some j ∈ I2 such that, for all u2 such that

w2
j−→ u2, there is some u1 such that w1

i−→ u1 and (u1, u2) ∈ G.

10 A. Padmanabha and R. Ramanujam

[∃]back. For all j ∈ I2 there is some i ∈ I1 such that, for all u1 such that

w1
i−→ u1, there is some u2 such that w2

j−→ u2 and (u1, u2) ∈ G.
〈∃〉forth. For all i ∈ I1 and for all u1 such that w1

i−→ u1, there is some j ∈ I2

and some u2 such that w2
j−→ u2 and (u1, u2) ∈ G.

〈∃〉back. For all j ∈ I2 and for all u2 such that w2
j−→ u2, there is some i ∈ I1

and some u1 such that w1
i−→ u1 and (u1, u2) ∈ G.

Given two models M1 and M2 we say that w1, w2 are IQML bisimilar if there
is some IQML bisimulation G on the models such that (w1, w2) ∈ G and denote
it (M1, w1) � (M2, w2). Also, we say (M1, w1) ≡IQML (M2, w2) if they agree
on all IQML formulas i.e, for all ϕ ∈ IQML, M1, w1 |= ϕ iff M2, w2 |= ϕ.

Theorem 2. For any two models M1 and M2 and any w1 ∈ W1 and w2 ∈ W2,
if M1, w1 � M2, w2 then M1, w1 ≡IQML M2, w2.

The proof follows along the standard lines and is provided in [18]. Now we
prove that the converse holds over image finite models with finite index set (I).
M is said to be (index, image) finite if I is finite and N i(w) = {u | (w, u) ∈ Ri}
is finite for all w ∈ W and i ∈ I.

Theorem 3. Suppose M1 and M2 are (index, image) finite models then
M1, w1 � M2, w2 iff M1, w1 ≡IQML M2, w2.

Proof. (⇒) follows from Theorem 2.
For (⇐) suppose M1, w1 ≡IQML M2, w2, then define G = {(v1, v2) |

M1, v1 ≡IQML M2, v2}. Note that (w1, w2) ∈ G. Hence it suffices to show that
G is indeed an IQML bisimulation. For this, choose any (v1, v2) ∈ G. Clearly
[V al] holds since v1, v2 agree on all IQML propositions. Now we verify the other
conditions:

Now suppose that the ([∃]forth) condition does not hold. Then there is some

i ∈ I1 such that for all j ∈ I2 there is some uj(*) such that v2
j−→ uj and

for all v1
i−→ u′ we have u′ �≡IQML uj . Let I2 = {j1 · · · jn} and let ul be the

corresponding (*) for every jl. Also let i-successors of v1 be Ni(v1) = {s1 · · · sm}.
By above argument, we have ul �≡IQML sd for all l ≤ n and d ≤ m. Hence for
every ul and every sd ∈ Ni(v1) there is a formula ϕl

d such that M1, sd |= ϕl
d

but M2, ul |= ¬ϕl
d. Now consider the formula α = [∃](

∧

l

∨

d

ϕl
d). Note that for

all l and for all i-successors sd ∈ Ni(v1) we have M1, sd |= ϕl
d and hence

M1, v1 |= �i(
∧

l

∨

d

ϕl
d) which implies M1, wd |= α. On the other hand for every

jl ∈ I2 at ul we have M2, ul |= ∧

d

¬ϕl
d and hence M2, v2 |= 〈∀〉(∨

l

∧

d

¬ϕl
d)

which contradicts v1 ≡IQML v2.
The ([∃]back) condition is argued symmetrically.
Suppose that the (〈∃〉back) condition does not hold. Then there is some

j ∈ I2 and some w2
j−→ u2 such that for all i ∈ I1 and for all w1

i−→ u′ we have

Propositional Modal Logic with Implicit Modal Quantification 11

u′ �≡IQML u2. Let R =
⋃

i∈I1
}Ri and let N(w1) = {u′ | (v1, u′) ∈ R} be the set

of all successors of w1. Since M1 is (index, image) finite, let N(w1) = {t1 · · · tr}.
By above argument, for every td ∈ N(w1) there is a formula ψd such that
M1, td |= ψd and M2,u2 |= ¬ψd. Hence M2, w2 |= ♦j(

∧

d

¬ψd). Now consider

β = 〈∃〉(∧
d

¬ψd). Clearly M2, w2 |= β (with j and u2 as witnesses). On the other

hand, for any successor td of w1 since M1, td |= ψd we have M1, w1 |= [∀](
∨

d

ψd)

which contradicts our assumption that w1 and w2 satisfy the same formulas.
The (〈∃〉forth) is argued symmetrically.

An important consequence of the theorem above is that we can confine our-
selves to tree models for IQML formulas, since it is easily seen that an IQML
model is bisimilar to its tree unravelling.

Given a tree model M we define its restriction to level n in the obvious
manner: M|n is simply the same as M up to level n and the remaining nodes
in M are ‘thrown away’.

We can now sharpen the result above: we can define a notion of n-bisimilarity
and show that it preserves IQML formulas with modal depth at most n.

Definition 5. Given two tree models M1 and M2, and w1 in M1, w2 in M2,
we say w1 and w2 are 0-bisimilar if ρ1(w1) = ρ2(w2).

For n > 0, we say w1 and w2 are n-bisimilar if the following conditions hold:

n-[∃]forth. For all i ∈ I1 there is some j ∈ I2 such that for all w2
j−→ u2 there

is some w1
i−→ u1 such that u1 and u2 are (n − 1)-bisimilar.

n-[∃]back. For all j ∈ I2 there is some i ∈ I1 such that for all w1
i−→ u1 there is

some w2
j−→ u2 such that u1 and u2 are (n − 1)-bisimilar.

n-〈∃〉forth. For all i ∈ I1 and for all w1
i−→ u1 there is some j ∈ I2 and some

w2
j−→ u2 such that u1 and u2 are (n − 1)-bisimilar.

n-〈∃〉back. For all j ∈ I2 and for all w2
j−→ u2 there is some i ∈ I1 and some

w1
i−→ u1 such that u1 and u2 are (n − 1)-bisimilar.

We can now speak of an n-bisimulation relation between models and speak
of models being n-bisimilar, and employ the notation (M1, w1) �n (M2, w2).
Clearly, for tree models (M1, w1) �n (M2, w2) iff (M1|n,w1) � (M2|n,w2).

A routine re-working of the proof of Theorem2 shows that when two tree
models are n-bisimilar, they satisfy the same formulas of modal depth at most
n. That is, (M1, w1) �n (M2, w2) we have (M1, w1) ≡n

IQML (M2, w2). We can
go further and show that every n-bisimulation class is represented by a single
formula of modal depth at most n. For this, we assume (as is customary in modal
logic), that we have only finitely many atomic propositions.

Lemma 1. Suppose that P is a finite set. Then for any n and for any M, w
there is a formula χn

[M,w] ∈ IQML of modal depth n such that for any (M′, w′) |=
χn
[M,w] iff (M′, w′) �n (M, w).

12 A. Padmanabha and R. Ramanujam

Proof. Note that (⇐) follows from Theorem 2 specialized to n-bisimulation. For
the other direction, the proof is by induction on n. For n = 0, since P is finite,
χ0
[M,w] =

∧

p∈ρ(w)

p ∧ ∧

q �∈ρ(w)

¬q is the required formula.

Let R =
⋃ Ri and let Γn

M = {χn
[M,w] | w ∈ W}. Inductively Γn

M is finite.

For any S ⊆ Γn
M let

∨
S denote the disjunction

∨

ϕ∈S

S. For the induction step, the

characteristic formula is given by:

χn+1
[M,w]

= χ0
[M,w] ∧

[∃]forth
︷ ︸︸ ︷
∧

i∈I

[∃](
∨

(w,u)∈Ri

χn
[M,u]

) ∧

[∃]back
︷ ︸︸ ︷

∧

S⊆Γ n
M

(

[∃](
∨
S) ⊃

∨

i∈I

∧

(w,u)∈Ri

[∀](χn
[M,u] ⊃

∨
S)

)

∧

(w,u)∈R
〈∃〉χn

[M,u]

︸ ︷︷ ︸

〈∃〉forth

∧ [∀](
∨

(w,u)∈R
χn
[M,u]

)

︸ ︷︷ ︸

〈∃〉back

Note that the formula remains finite even if I is infinite or the number of
successors of w is infinite since inductively there are only finitely many charac-
teristic formulas of depth n. Showing that χn

[M,w] indeed captures n-bisimulation
classes is proved in [18].

4 Bisimulation Games and Invariance Theorem

Like every propositional modal logic, IQML is also a fragment of first order logic.
However, implicit quantification over domain elements in IQML needs to be made
explicit as well as quantification over worlds. Since these serve different purposes
in the semantics, we use a two sorted first order logic.

Definition 6 (2Sor.FO syntax). Let VX and Vτ be two countable and disjoint
sorts of variables and R a ternary predicate. The two sorted FO (2Sor.FO), cor-
responding to IQML is given by:

α ::= Qp(x) | R(x, τ, y) | ¬α | α ∧ α | ∃τ α | ∃x α

where Qp is the corresponding monadic predicate for every p ∈ P and x, y ∈ VX

and τ ∈ Vτ .

A 2Sor.FO structure is given by M = [(W, I), (R̂, ρ̂)] where (W, I) is the
two sorted domain and (R̂, ρ̂) are interpretations with R̂ ⊆ (W × I × W) and
ρ̂ : W �→ 2QP where QP = {Qp | p ∈ P}. The semantics � is defined for 2Sor.FO
in the standard way where the variables in VX range over the first sort (W) and
variables of Vτ range over second (I).

Given an IQML structure M = (W,RI, ρ) the corresponding 2Sor.FO struc-
ture is given by M = [(W, I), (R̂, ρ̂)] where (w, i, v) ∈ R̂ iff (w, v) ∈ Ri and
Qp ∈ ρ̂(w) iff p ∈ ρ(w). Similarly given any 2Sor.FO structure, it can be inter-
preted as an IQML structure. Thus there is a natural correspondence between
IQML structures and 2Sor.FO structures. For any IQML structure M let the
corresponding 2Sor.FO structure be denoted by M.

Propositional Modal Logic with Implicit Modal Quantification 13

Definition 7 (IQML to 2Sor.FO translation). The translation of ϕ ∈ IQML
into a 2Sor.FO parametrized by x ∈ VX is given by:
Tr(p : x) = Qp(x)
Tr(¬ϕ : x) = ¬Tr(ϕ : x)
Tr(ϕ ∧ ψ : x) = Tr(ϕ : x) ∧ Tr(ψ : x)
Tr([∃]ϕ : x) = ∃τ∀y (R(x, τ, y) ⊃ Tr(ϕ : y))
Tr([∀]ϕ : x) = ∀τ∀y (R(x, τ, y) ⊃ Tr(ϕ : y))

Proposition 1. For any formula ϕ ∈ IQML and any IQML structure M
M, w |= ϕ iff M, [x �→ w] � Tr(ϕ : x).

Hence IQML can be translated into 2Sor.FO with 2 variables of VX sort and
one variable of Vτ sort. Given two IQML models M1 and M2, the notion of
IQML bisimulation naturally translates to bisimulation over the corresponding
2Sor.FO models M1 and M2.

Now we state the van Benthem type characterization theorem: bisimulation
invariant 2Sor.FO formulas can be translated back into IQML. We say that α(x) ∈
2Sor.FO is bisimulation invariant if for all M1, w1 � M2, w2 we have M1, [x �→
w1] � α(x) iff M2, [x �→ w2] � α(x). We can similarly speak of α(x) being n-
bisimulation invariant as well. Also, α(x) is equivalent to some IQML formula if
there is some formula ϕ ∈ IQML such that for all M we have M, [x �→ w] � α(x)
iff M, w |= ϕ.

Theorem 4. Let α(x) ∈ 2Sor.FO with one free variable x ∈ VX . Then α(x) is
bisimulation invariant iff α(x) is equivalent to some IQML formula.

Note that ⇐ follows from Theorem 2. To prove (⇒) it suffices to show that
if α(x) is bisimulation invariant then, for some n it is n-bisimulation invariant,
since we have already shown in the last section that n-bisimulation classes are
defined by IQML formulas.

Towards proving this, we introduce a notion of locality for 2Sor.FO formulas.
For any tree model M and let M|n be the corresponding 2Sor.FO model of M
restricted to n depth.

Definition 8. We say that a formula α(x) is n-local if for any tree model
(M, w), M � α(w) iff M|n � α(w).

Lemma 2. For any α(x) ∈ 2Sor.FO formula which is bisimulation invariant
with x ∈ VX then α(x) is n-local for n = 2q where q = qx + qτ where qx is the
quantifier rank of VX sort in α(x) and qτ is the quantifier rank of Vτ in α(x).

Assuming this lemma, consider a 2Sor.FO formula α(x) which is bisimulation
invariant. It is n-local for a syntactically determined n. We now claim that α(x)
is n-bisimulation invariant. To prove this, consider M1, w1 �n M2, w2. We need
to show that M1, [x �→ w1] � α(x) iff M2, [x �→ w2] � α(x).

Suppose that M1, [x �→ w1] � α(x). By locality, M1|n, [x �→ w1] � α(x).
Now observe that M1|n,w1 � M2|n,w2. By bisimulation invariance of α(x),
M2|n, [x �→ w2] � α(x). But then again by locality, M2, [x �→ w2] � α(x), and
we are done.

14 A. Padmanabha and R. Ramanujam

Thus it only remains to prove the locality lemma. For this, it is convenient to
consider the Ehrenfeucht-Fraisse (EF) game for 2Sor.FO. In this game we have
two types of pebbles, one for W and the other for I.

The game is played between two players Spoiler (Sp) and Duplicator
(Dup) on two 2Sor.FO structures. A configuration of the game is given by
[(M, s); (M′, t)] where s ∈ (W ∪ I)∗ is a finite string (W ∪ I) and similarly
t ∈ (W ′ ∪ I′)∗.

Suppose the current configuration is [(M, s); (M′, t)]. In a W round, Sp places
a W pebble on some W sort in one of the structures and Dup responds by
placing a W pebble on a W sort in the other structure. In a I round, similarly
Sp picks one structure and places an I pebble on some I sort and Dup responds
by placing an I pebble on some I sort in the other structure. In both cases, the
new configuration is updated to [(M, ss); (M′, tt)] where s and t are the new
elements (either W or I sort) picked in the corresponding structures.

A (qx, qτ) round game is one where qx many pebbles of type W are used and
qτ many pebbles of type I is used. Player Dup wins after (qx, qτ) if after (qx, qτ)
rounds, if in [(M, s); (M′, t)] the mapping f(si) = ti forms a partial isomorphism
over M and M′. Otherwise Sp wins.

It can be easily shown that Dup has a winning strategy in the (qx, qτ) round
game over two structures iff they agree on all formulas with quantifier rank of
VX sort ≤ qx and quantifier rank of Vτ sort ≤ qτ .

Let M, w be any tree structure. To prove Lemma 2, we need to prove that
M, w |= α(x) iff M|n |= α(x).

Let q = qx +qτ and N be q disjoint copies of M and M|n. Note that inclusion
relation G over M and M|n forms a bisimulation. Also note that G continues to
be a bisimulation over the disjoint union of N�M, w and N�M|n, w. Moreover,
notice that (M, w) is bisimilar to (N � M, w) and further (M|n, w) is bisimilar
to (N � M|n, w).

Now since α(x) is bisimulation invariant, it is enough to show that Dup has
a winning strategy in the game starting from [(N � M, w), (N � M|n, w)].

The winning strategy for Dup is to ensure that at every round m < (qx +qτ)
the critical distance dm = 2q−m is respected:

If Sp places W pebble on a W sort which is within dm of an already pebbled
W pebble, Dup plays according to a local isomorphism in the dm- neighbour-
hoods of previously pebbled elements (exists since n = 2q and m < q); if Sp
places a W pebble somewhere beyond 2q−m distance from all W pebbles pre-
viously used, then, Dup responds in a fresh isomorphic copy of type M or
M|n correspondingly (again, it is guaranteed to exist since previously at most
m − 1(< q) would have been used).

If Sp decides to use an I pebble and places it on some I sort i in one structure,
then Dup responds by placing an I pebble on i in the mirror copy in the other
structure, where by mirror copy we mean: for M or M|n in N then the mirror
copy in the other structure is itself and the original M and M|n are mirror copies
of each other.

Propositional Modal Logic with Implicit Modal Quantification 15

5 Satisfiability Problem

The satisfiability problem for IQML can be solved by sharpening the complete-
ness proof of the axiom system by showing that every consistent formula is
satisfied in a model of bounded size. Indeed, a PSPACE decision procedure can
be given along the lines of Grove and Halpern [11]. However, we give a tableau
procedure for IQML which is instructive, and as we will observe later, neatly
generalizes to more expressive logics.

Given a formula ϕ, we set I = {cα | 〈∃〉α ∈ SF (ϕ)} ∪ {dβ | [∃]β ∈ SF (ϕ)}
where SF (ϕ), the set of subformulas of ϕ is defined in the standard way. This
forms the index set where cα and dβ act as witnesses for the corresponding
formulas.

We construct a tableau tree structure T = (W,V,E, λ) where W is a finite
set, (V,E) is a rooted tree and λ : V �→ L is a labelling map. Each element in L
is of the form (w : Γ, iχ), where w ∈ W , Γ is a finite set of formulas and iχ ∈ I.
The intended meaning of the label is that the node constitutes a world w that
satisfies the formulas in Γ and iχ is the incoming label edge of w.

The tableau rules for IQML are inspired from the tableau procedure for the
bundled fragment of first order modal logic introduced in [19]. The (∧) and (∨)
tableau rules are standard. For the modalities, the intuition for the correspond-
ing tableau rule is the following: Suppose that we are in an intermediate step of
tableau construction when we have formulas {〈∃〉α, [∃]β, 〈∀〉ϕ, [∀]ψ} to be sat-
isfied at a node w. For this, first we need to add a new cα successor node wvα

where α holds; this new node inherits not only α but also ψ. Also, we need
a dβ successor which inherits β, ϕ and ψ. Finally for each eγ ∈ I we need a
ϕ-successor which also inherits ψ.

The (BR) tableau rule extends this idea when there are multiple occurrences
of each kind of formulas above. In general if the set of formulas considered at
node w : (A,B,C,D) where A = {〈∃〉α1..〈∃〉αn1}; B = {[∃]β1..[∃]βn2}; C =
{〈∀〉ϕ1..〈∀〉ϕm1} and D = {[∀]ψ1..[∀]ψm2}. Let D′ = {ψ | [∀]ψ ∈ D}. The BR
rule is given as follows:

w : (A,B,C,D)
{〈wvαi

: (αi,D′), cαi
〉 | i ≤ n1}∪ (BR)

{〈wvk
βj

: (βj , ϕk,D′), dβj
〉 | k ≤ m1, j ≤ n2}∪

{〈wvk
eχ

: (ϕk,D), eχ〉 | l ≤ m1, χ �∈ (A ∪ B)}

From an ‘open tableau’ we can construct a model for ϕ, along the lines of [19].
Conversely it can be proved that every satisfiable formula has an open tableau.

This tableau construction can be extended to the ‘bundled fragment’ of full
TML where we have predicates of arbitrary arity and the quantifiers and modal-
ities occur (only) in the form ∀x�xϕ and ∃x�ϕ (and their duals). The proof
follows the lines of [19].

16 A. Padmanabha and R. Ramanujam

6 Discussion

We have studied the variable-free fragment of PTML, with implicit modal quan-
tification. We could also consider more forms of implicit quantification such as
�∀ and ♦∀ modalities, though there is no obvious semantics to them. These
logics are the obvious variable free versions of monadic ‘bundled’ fragments of
TML. One could consider a similar exercise for ‘bundled’ fragments of first order
modal logic (FOML). As [19] shows, this is a decidable logic for increasing domain
semantics.

Our study suggests that there are other forms of implicitly quantified modal
logics. For instance, is there an implicit hybrid version of the logic studied by
Wang and Seligman [23]?

A natural question is the delimitation of expressiveness of these logics: which
are the properties of models expressed only by ∃� or only by ∀� modalities? How
does nesting of these modalities increase expressive power? We believe that the
model theory of implicit modal quantification may offer interesting possibilities
for abstract specifications of some infinite-state systems. However, for such study,
we will need to consider transitive closures of accessibility relations, and this
seems to be quite challenging.

Recent developments in tools for model checking and other decision pro-
cedures for fragments of FOML offer a promising direction to develop similar
practical frameworks for IQML and other decidable fragments of term-modal
logics. Such tools can be of help in the synthesis and verification of some classes
of systems with unboundedly many agents.

Acknowledgement. We thank Yanjing Wang for his insightful and extensive discus-
sions on the theme of this paper. Also, we thank the anonymous reviewers for their
comments that helped us improve the presentation and quality of the paper.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

2. van Benthem, J., et al.: Frame correspondences in modal predicate logic. Proofs,
categories and computations: essays in honor of Grigori Mints, pp. 1–14 (2010)

3. Blackburn, P.: Nominal tense logic. Notre Dame J. Form. Log. 34(1), 56–83 (1993).
https://doi.org/10.1305/ndjfl/1093634564

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, Cambridge (2001)

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Programm.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

6. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library, vol. 337. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-
5839-4

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. A
Bradford Book, Cambridge (2004)

https://doi.org/10.1145/585265.585270
https://doi.org/10.1305/ndjfl/1093634564
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4

Propositional Modal Logic with Implicit Modal Quantification 17

8. Fitting, M., Thalmann, L., Voronkov, A.: Term-modal logics. Stud. Logica 69(1),
133–169 (2001). https://doi.org/10.1023/A:1013842612702

9. Gargov, G., Goranko, V.: Modal logic with names. J. Philos. Log. 22(6), 607–636
(1993). https://doi.org/10.1007/BF01054038

10. Grove, A.J.: Naming and identity in epistemic logic Part II: a first-order logic for
naming. Artif. Intell. 74(2), 311–350 (1995)

11. Grove, A.J., Halpern, J.Y.: Naming and identity in epistemic logics Part I: the
propositional case. J. Log. Comput. 3(4), 345–378 (1993)

12. van der Hoek, W., Pauly, M.: 20 modal logic for games and information. In: Studies
in Logic and Practical Reasoning, vol. 3, pp. 1077–1148. Elsevier (2007)

13. Hughes, M., Cresswell, G.: A New Introduction to Modal Logic. Routledge, London
and New York (1996)

14. Khan, M.A., Banerjee, M., Rieke, R.: An update logic for information systems.
Int. J. Approximate Reasoning 55(1), 436–456 (2014). https://doi.org/10.1016/j.
ijar.2013.07.007

15. Kooi, B.: Dynamic term-modal logic. In: A Meeting of the Minds, pp. 173–186
(2007)

16. Orlandelli, E., Corsi, G.: Decidable term-modal logics. In: Belardinelli, F., Argente,
E. (eds.) EUMAS/AT -2017. LNCS (LNAI), vol. 10767, pp. 147–162. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01713-2 11

17. Padmanabha, A., Ramanujam, R.: The monodic fragment of propositional
term modal logic. Stud. Logica 1–25 (2018). https://doi.org/10.1007/s11225-018-
9784-x

18. Padmanabha, A., Ramanujam, R.: Propositional modal logic with implicit modal
quantification. arXiv preprint arXiv:1811.09454 (2018)

19. Padmanabha, A., Ramanujam, R., Wang, Y.: Bundled fragments of first-order
modal logic: (un)decidability. In: 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2018, 11–
13 December 2018, Ahmedabad, pp. 43:1–43:20 (2018). https://doi.org/10.4230/
LIPIcs.FSTTCS.2018.43

20. Passy, S., Tinchev, T.: Quantifiers in combinatory PDL: completeness, definability,
incompleteness. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 512–519.
Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0028835

21. Shtakser, G.: Propositional epistemic logics with quantification over agents of
knowledge. Stud. Logica 106(2), 311–344 (2018)

22. Wang, Y.: A new modal framework for epistemic logic. In: Proceedings Sixteenth
Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2017,
Liverpool, 24–26 July 2017, pp. 515–534 (2017). https://doi.org/10.4204/EPTCS.
251.38

23. Wang, Y., Seligman, J.: When names are not commonly known: epistemic logic
with assignments. In: Advances in Modal Logic, vol. 12, pp. 611–628. College Pub-
lications (2018)

https://doi.org/10.1023/A:1013842612702
https://doi.org/10.1007/BF01054038
https://doi.org/10.1016/j.ijar.2013.07.007
https://doi.org/10.1016/j.ijar.2013.07.007
https://doi.org/10.1007/978-3-030-01713-2_11
https://doi.org/10.1007/s11225-018-9784-x
https://doi.org/10.1007/s11225-018-9784-x
http://arxiv.org/abs/1811.09454
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.43
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.43
https://doi.org/10.1007/BFb0028835
https://doi.org/10.4204/EPTCS.251.38
https://doi.org/10.4204/EPTCS.251.38

Infinite Liar in a (Modal) Finitistic
Setting

Micha�l Tomasz Godziszewski1 and Rafal Urbaniak2,3(B)

1 University of Warsaw, Warsaw, Poland
mtgodziszewski@gmail.com

2 University of Gdańsk, Gdańsk, Poland
rfl.urbaniak@gmail.com

3 Ghent University, Ghent, Belgium
https://uw.academia.edu/MichalGodziszewski

https://ugent.academia.edu/RafalUrbaniak

Abstract. Yablo’s paradox results in a set of formulas which (with local
disquotation in the background) turns out consistent, but ω-inconsistent.
Adding either uniform disquotation or the ω-rule results in inconsistency.
One might think that it doesn’t arise in finitary contexts. We study
whether it does. It turns out that the issue turns on how the finitistic
approach is formalized.

Keywords: Axiomatic theories of truth · Paradoxes ·
Yablo’s paradox · Finitism · Potential infinity

1 Introduction

[10] provided a by now famous example of a semantic paradox which, according
to the author, does not involve self-reference. Recall the paradox arises when
one considers the following sequence of sentences:

Y0 For any k > 0, Yk is false.
Y1 For any k > 1, Yk is false.
Y2 For any k > 2, Yk is false.

...
Yn For any k > n, Yk is false.

...

Take any Yn and suppose it is true. Then, for any j > n Yj is false. In
particular Yn+1 is false and also for any j > n + 1 Yj is false. But the second

This research has been supported by the FWO postdoctoral research grant and the
National Science Centre SONATA BIS research grant number 2016/22/E/HS1/00304.
The second author has been supported by the National Science Centre OPUS research
grant number 2014/13/B/HS1/02892.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 18–29, 2019.
https://doi.org/10.1007/978-3-662-58771-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_3&domain=pdf
http://orcid.org/0000-0002-3907-2242
http://orcid.org/0000-0002-6321-2866
https://doi.org/10.1007/978-3-662-58771-3_3

Infinite Liar in a (Modal) Finitistic Setting 19

conjunct is exactly what Yn+1 states, so Yn+1 is true after all. So Yn is false. So
for some k > n, Yk is true. But then, we obtain a contradiction by repeating for
Yk the same reasoning.

A fruitful study of the paradox formalized over arithmetic performed e.g. in
[1,3] has revealed that in order to derive the contradiction one needs a strong
assumption: “for all n, Yn if and only if �Yn� is true.” ∀n (Yn ≡ Tr(Yn)). If we
wanted to replace this uniform disquotation with an infinity of local disquota-
tion instances, contradiction could be obtained only if we used some infinitary
inference rule (requiring an infinite number of premises) such as the ω-rule.

So far, the story is rather well-known. What is somewhat less known, is that
there is a way of handling the paradox which relies on finitistic assumptions.
After all, if the world is finite, there aren’t enough things in the world to interpret
all sentences from the Yablo sequence, and the last interpreted one is vacuously
true without any threat of paradox.

The finitist owes us a story about how they make sense of arithmetic, and
how the whole thing should be studied by formal methods. Formal tools for this
task have already been developed [4–6]. In what follows we’ll explain what it
is, and we’ll use it to study the Yablo paradox in the finitistic setting. On this
approach, it will turn out that things are as we expected: Yablo sentences are
all false in potentially infinite domains, despite the fact that the framework is
rich enough to incorporate sufficiently strong arithmetic.

There is, however, a glitch. We’ll argue that the way quantifiers are handled
in this finitistic setting results in a somewhat scary arithmetical theory.

If your goal, as a finitist, is not to revise current mathematics, but to make
sense of it in terms of potential infinity, this approach isn’t for you.

There is another formal approach to potential infinity developed in [9], which
has already been used to obtain standard arithmetic, and to make sense of
abstraction principles (in the neologicist sense). In the third part of this paper
we study how this framework handles Yablo’s paradox. It turns out that the
price of making potential infinity digestible to classical mathematicians is that
the Yablo paradox strikes back, even with more power than in the standard
arithmetical setting.

2 Arithmetization of Yablo Sentences

Let’s start with going over the results pertaining to Yablo sentences obtained in
the standard arithmetical setting.

One might ask how we actually know that Yablo sequences exist in formal
theories. This is a legitimate question since we’re moving from the paradox as
formulated hand-wavily in natural language to its properly defined formalized
counterpart. It is possible to construct a Yablo sequence within a given theory
(but in order to do so, we need to use a general version of the diagonal lemma for
formulae with two free variables in the language containing the truth predicate).

20 M. T. Godziszewski and R. Urbaniak

Definition 1 (Yablo Formula). Y (x) is a Yablo formula in a theory T iff it
satisfies the Yablo condition, i.e.:

T � ∀x(Y (x) ≡ ∀w > x¬Tr(�Y (ẇ)�)). �
This also gives rise to a natural way of defining sentences belonging to a

Yablo sequence.

Definition 2 (Yablo Sentence). ϕ is a Yablo sentence in a theory T iff it is
obtained by substituting a numeral for x in Yablo formula Y (x). �
Theorem 1 (Existence of Yablo Formula [8]). Let T be a theory in a lan-
guage LTr containing Robinson arithmetic Q. Then there exists a Yablo formula
in T.

An interesting question one might ask is exactly what principles about Yablo
sentences lead to the inconsistency of a formal theory. Despite the fact that on
the level of natural language it is not difficult to derive contradiction from the
definition of Yablo sequence, the formal counterpart (to be specified below) is
only ω-inconsistent and consistent. Most of the results from this section were
originally obtained by [3].

Definition 3 (ω-consistency). Let T be a first-order theory in the arith-
metical language L. T is ω-consistent if there is no ϕ(x) ∈ FrmL such that
simultaneously:

∀n ∈ ω T � ¬ϕ(n)
T � ∃xϕ(x) �

If there is such a formula ϕ, then we say that T is an ω-inconsistent theory.

Definition 4 (Local Arithmetical Disquotation).

AD = {Tr(�ϕ�) ≡ ϕ : ϕ ∈ SentL} �
Definition 5 (Local Yablo Disquotation).

Y D = {Tr(�Y (n)�) ≡ Y (n) : Y (n) belongs to the Yablo sequence}. �
Definition 6 (PAD). Let PAT be a theory obtained from PA by extending the lan-
guage of arithmetic with a truth predicate Tr (this means that induction scheme
applies also to formulae containing Tr). Let PAD = PAT∪ AD ∪ Y D and let PA−

D

be PAD with the induction axiom scheme restricted to formulae without the truth
predicate.

Theorem 2. PAD is a consistent, yet ω-inconsistent conservative extension of PA.

Infinite Liar in a (Modal) Finitistic Setting 21

It is however still possible to derive a contradiction from the Yablo sequence,
but in order to achieve this we would have to use a generalized version of the
truth principle governing the Yablo sequence—it would be necessary to add to
our arithmetical theory principles that would be strong enough to prove a version
of disquotation schema uniform for all Yablo sentences.

Definition 7 (Uniform Yablo Disquotation).

∀x(Tr(�Y (ẋ)�) ≡ Y (x)) (UYD)

Theorem 3. Let S = PAT + UYD. S is inconsistent.

Definition 8 (ω-rule). The ω-rule is the following infinitary inference rule
defined for arithmetical formulae ϕ:

ϕ(0), ϕ(1), ϕ(2), ..., ϕ(n), ...

∀x ϕ(x)

Definition 9 (Tω). Let T be an axiomatizable first-order theory in the language
LTr. If α is an ordinal, a sequence (ϕ0, ..., ϕα) of formulae is a derivation in
ω-logic (ω-derivation) from T if and only if, for each ordinal β ≤ α:

1. ϕβ is an axiom of T or
2. there are γ < β and δ < β, such that ϕδ = (ϕγ → ϕβ), or
3. ϕβ = ∀xψ(x) for some ψ(x) ∈ FrmL with exactly one free variable and there

is an injective function f : ω → β such that ∀n ∈ ω ϕf(n) = ψ(n) (this
condition means that ϕβ has been introduced by means of the ω-rule).

We say that ϕ is a theorem of T in ω-logic if there is an ω-derivation of ϕ from
T. We also call such ϕ an ω-consequence of T and denote it as follows: Tω � ϕ.
Tω is a set of sentences that are theorems of T in ω-logic. �
Theorem 4. Let PAω−

D = (PAT− ∪ AD ∪ YD)ω. PAω−
D is inconsistent.

Let’s sum up the situation so far. We have a paradox in natural language.
Formalizing it, as long as we work in a disquotational theory of truth without
any other assumptions, even those theories which prove the existence of Yablo
sentences are still consistent (albeit ω-inconsistent). To obtain a contradiction,
we need either inferential rules that go beyond the standard means of first-order
logic (namely: the ω-rule), or a stronger uniform principle of disquotation for
Yablo sentences.

Since the paradox somehow involves the concept of infinity (as the essential
role of the ω-rule suggests), we’ll turn our attention to a formalization of Yablo’s
paradox in a setting that takes a somewhat different approach to infinity. It is the
framework developed by the late Marcin Mostowski and others in [4–7], meant
as a formalization of the concept of potential infinity. We’ll describe how one
could go about avoiding the paradox by taking the distinction between potential
and actual infinity seriously.

22 M. T. Godziszewski and R. Urbaniak

3 Potentially Infinite Domains and sl-Semantics

In this section we consider the so-called sl-semantics of FM -domains. This
framework was motivated by considerations in computational foundations of
mathematics and the search for the semantics under which first-order sentences
would be interpreted in potentially infnite domains.1

Potentially infinite domains are in this framework understood as sequences
of finite models increasing without any finite bound. Once we turn to actually
finite domains, we need to overcome a small technical obstacle concerning the
arithmetical language: it seems that the reference of some singular terms should
come out undefined. One way to go would be to employ the apparatus of partial
functions. A simpler method, however, uses relational symbols instead of function
symbols. This is the one that we’ll employ.

Let R ⊆ ωr be an r-ary relation on natural numbers. By R(n) we denote
R ∩ {0, 1, ..., n−1}r, the restriction of this relation to first n natural numbers. For
any model A over some fixed signature σ = (R1, ..., Rk) (in particular, one can
take the signature to comprise the relational counterpart of standard arithmetical
functions such as addition or multiplication) we define the FM -domain of A by
saying FM(A) = {An: n = 1, 2, ...} where An = ({0, 1, ..., n− 1}, R

(n)
1 , ..., R

(n)
k).

By N we denote the standard model of arithmetic (ω,+,×, 0, s, <), where the
arithmetical functions are interpreted as relations, so we have that: FM(N) =
{Nn: n = 1, 2, ...}, where Nn = ({0, 1, ..., n − 1},+(n),×(n), 0(n), s(n), <(n)).

Definition 10 (sl(FM(N))). For any ϕ ∈ SentL we say that ϕ is sl-true in
FM(N) (true in sufficiently large models, hence the shortcut sl):

FM(N) |=sl ϕ if and only if ∃m ∀k (k ≥ m ⇒ Nk |= ϕ).

Let us then denote:

sl(FM(N)) = {ϕ ∈ SentL: FM(N) |=sl ϕ}.

sl(FM(N)) is called the sl-theory of FM(N). Obviously, for a given vocabulary,
for any class K of finite models and for any set of sentences Δ we say that
K |=sl Δ if and only if K |=sl ϕ for any ϕ ∈ Δ. �

We consider the language obtained by adjoining the truth predicate Tr to
the arithmetical language L and we modify (FM(N)) by adding to its every
element Nk an interpretation Tk of the truth predicate Tr.

Definition 11 (FM(N)T). Let K = {(Nk, Tk):k ∈ ω and Tk ⊆ {0, ..., k − 1}}.
An FM(N)T -domain is any subset of K such that for any natural m it contains
exactly one model of the cardinality m. �

1 The methods we develop here – especially the semantics of quantifiers in FM -
domains – is similar to the framework of modal potentialism developed indepen-
dently in [2].

Infinite Liar in a (Modal) Finitistic Setting 23

We obviously have to ensure that Yablo sentences exist in sl((FM(N)T)) -
as in the case of axiomatic truth theories over arithemtic, this is not problematic
thanks to diagonal lemma.

Corollary 1 (Existence of Yablo sentences in FM(N)T -domains). There
exists a formula Y (x) such that for any FM(N)T -domain we have:

∀n ∈ ω FM(N)T |=sl Y (n) ≡ ∀x (x > n ⇒ ¬Tr(�Y (ẋ)�)),

i.e. Yablo sentences exist in sl(FM(N)T).

Proof. Obvious by the fact that the diagonal lemma is sl-true in FM(N)T .

Theorem 5 (Yablo sentences are false in the limit). For any class K of
finite models, if K |=sl AD + Y D, then for all n ∈ ω K |=sl ¬Y (n). In fact,
AD isn’t essential (it’s only added to ensure Tr behaves like a truth predicate):
for any n ∈ ω we have Y D |=sl ¬Y (n).

Proof. Let us fix a class K. For the sake of contradiction, suppose that there is
a Yablo sentence that is not false at sufficiently large models, that is which for
any size of a model is true at some model in K of at least that size, that is:

∃n∀k∃M ∈ K (card(M) ≥ k ∧ M |= Y (n)).

Let us take take such n. Let us fix k and take M ∈ K (without loss of generality
we could assume that M = N

T
k for some natural k) with card(M) ≥ k such that

�Y (n + 1)� ∈ |M| and:

(i) M |= Y (n).
(ii) M |= Y (n + 1) ≡ ∀x(x > n + 1 ⇒ ¬Tr(�Y (ẋ)�)).
(iii) M |= Y (n + 1) ≡ Tr(�Y (n + 1)�).

(i) will be satisfied by the assumption of the proof, (ii) follows from Theorem 1
and (iii) results from the assumption that K |=sl Y D once we have enough
numbers to code all the formulas needed for the claims to hold.

From (i) and the definition of Yablo sentences we obtain:

M |= ¬Tr(�Y (n + 1)�), (1)

as well as:

M |= ∀x(x > n + 1 → ¬Tr(�Y (ẋ)�)). (2)

Now, from (1), by (iii) we have that:

M |= ¬Y (n + 1),

and from (2), by (ii) we have that:

M |= Y (n + 1),

which gives a contradiction that ends the proof.

24 M. T. Godziszewski and R. Urbaniak

We will now show a construction of a class K such that K |=sl Y D + AD,
which means that Theorem 5 holds non-vacuously.

Definition 12 (FM(N)Y and sl(FM(N)Y)). We fix a formula Y (x) satis-
fying the condition specified in Corollary 1. A family of models FM(N)Y is
an FM(N)T -domain {NY

k : k ∈ ω} such that N
Y
k = (Nk, Tk), where Tk =

TAk ∪ TYk, and:

TAk = {�ϕ� : ϕ ∈ SentL and Nk |= ϕ} ∩ |Nk|
TYk = {�Y (m)� : �Y (m)� ∈ |Nk| ∧ �Y (m + 1)� /∈ |Nk|}.

Naturally, sl(FM(N)Y) = {ϕ : FM(N)Y |=sl ϕ}. �
Corollary 2. For any class K, if K |=sl Y D, then for sufficiently large M ∈ K,
there is exactly one n ∈ ω s.t. �Y (n)� ∈ TM.

Theorem 6. ∀n ∈ ω FM(N)Y |=sl ¬Y (n).

Proof. We claim that for any n there exists m such that for any k > m:

N
Y
k |= ¬Y (n).

Indeed, let us fix n and take m such that �Y (n+1)� ∈ |NY
m| and for any x < n+1

and any k > m we have:

N
Y
k |= Y (x) ≡ ∀w > x ¬Tr(�Y (ẇ)�).

Let k > m. Then obviously �Y (n + 1)� ∈ |NY
k |. Let j be the greatest number

such that �Y (j)� ∈ |NY
k |. Such a number exists since our FM -domain is infinite

and every model in it is finite. Obviously, n < j. From the definition of the class
FM(N)Y and by the choice of j we obtain:

N
Y
k |= Tr(�Y (j)�),

and for any x < j we get:

N
Y
k |= ∃w(w > x Tr(�Y (ẇ)�)).

hence for any x < j, by the definition of Yablo sentence Y (x) the following holds:

N
Y
k |= ¬Y (x).

Thus, since n < j, we obtain:

N
Y
k |= ¬Y (n),

which ends the proof.

Corollary 3. sl(FM(N)Y) is ω-inconsistent.

Infinite Liar in a (Modal) Finitistic Setting 25

Proof. We have just shown that

∀n ∈ ω (¬Y (n) ∈ sl(FM(N)Y)).

We obviously also have that there is m such that for all k > m there is j such
that NY

k |= Y (j), so by existential generalization we obtain that there is m such
that for all k > m N

Y
k |= ∃xY (x) and thus:

∃xY (x) ∈ sl(FM(N)Y).

So, it seems, there is a finitistic approach to arithmetic, according to which all
Yablo sentences are false. The cost of this move, however, isn’t negligible: the set
of arithmetical formulae true in the intended model is ω-inconsistent. Therefore,
we pursue the topic further, looking at another way to think finitistically about
the issue.

4 Modal Finitistic Semantics

Definition 13 (Accessibility relation in FM-domains). Let K be an FM-
domain. For any M,N ∈ K N is accessible from M (R(M,N)) if M ⊆ N . For
m,n ∈ ω and elements Nm, Nn of the FM-domain FM(N) this boils down to the
condition m ≤ n.

Definition 14 (Modal semantics for FM-domains (m-semantics)). Let
K be an FM-domain over some structure A (i.e. K = FM(A)) and M ∈ K:

– If ϕ is atomic, then (K,M) |=m ϕ, if M |= ϕ.
– Satisfaction clauses for boolean connectives and negation are standard.
– (K,M) |=m ∃xϕ(x) iff there are N ∈ K and a ∈ N s.t.

R(M,N) and (K, N) |=m ϕ[a].

Thus we also have that (K,M) |=m ∀xϕ(x) iff for all N ∈ K s.t. R(M,N) and
for all a ∈ N (K, N) |=m ϕ[a].

The intuition behind this semantics is as follows. ‘∃xϕ(x)’ reads ‘there could
be enough objects so that for some a, ϕ(a)’ and ‘∀x ϕ(x)’ reads ‘however many
more objects there could be, it still would be the case that for any a, ϕ(a)’.

Now, let msl(FM(N)) = {ϕ : ∃n ∀k k ≥ n ⇒ (FM(N),Nk) |=m ϕ}. That
is, intuitively, msl(FM(N)) is the set of those formulas, which are true in all
sufficiently large models, where the notion of truth involves the modal reading
of quantifiers.

As an example, let ϕ = ∃x ∀y x ≥ y—that is, ϕ says: there exists a maximal
element. While, as we remember, ϕ ∈ sl(FM(N)), things are different under
m-semantics—ϕ is false in every possible world of the FM-domain.

Before we move on, let us emphasize that just as with sl-semantics, we work
with a relational arithmetical language. While in the case of sl-semantics this
wasn’t too important, it becomes crucial when we turn to msl-semantics.

26 M. T. Godziszewski and R. Urbaniak

For otherwise, we need to treat, say, addition and successor as total func-
tions. This being the case, for each finite initial segment we’d need to identify
the candidates for the values of functions which intuitively should surpass the
capabilities of that segment. The least unnatural way to do this would be to
plug in loops at ends of segments, so that s(max(Nk)) = max(Nk) etc. But then
we would run into problems. For instance, take ϕ := ∃x x + x = x ∧ x �= 0. If we
evaluate atomic sentences in the elements of our FM-domain, then for any k we
have:

Nk |=m ϕ iff ∃j ≥ k ∃a < j Nj |= a + a = a ∧ a �= 0.

However, the above would come out true. after all, let a = max(Nj). Then,
a + a = s . . . s

︸ ︷︷ ︸

a

a = a and we have Nj |= a �= 0 ∧ a + a = a and so Nk |=m ϕ for

any k. Thus, we would have ϕ ∈ msl(FM(N)), while PA � ¬ϕ.
The underlying cause of the issue is that when we work with a functional lan-

guage we cannot think about the initial segments as submodels of larger initial
segments, because the functions are not preserved when we move to superstruc-
tures. The problem disappears when we abandon function symbols and use a
relational language instead. So this is what we’ll do in what follows.

In particular, we’ll be working towards a theorem according to which the
resulting arithmetic is the classical arithmetic, unlike in the previous case. We’ll
start with two lemmata.

Lemma 1. For any k > 0, Nk is a submodel of N.

Proof. This holds because our language is relational, and for any r-ary relation
symbol Rr we have (Rr)N ∩ N

r
k = (Rr)Nk .

Lemma 2. For any quantifier-free ϕ(x1, . . . , xn) and for any choice of param-
eters a1, . . . an ∈ N, if we have a1, . . . , an ∈ Nk, then it holds that:

Nk |= ϕ[a1, . . . , an] iff N |= ϕ[a1, . . . , an]

Proof. Immediate by Lemma 1.

Theorem 7. Let msl(FM(N)) denote the msl theory (i.e. the sl-theory of the
FM -domain of natural numbers with the modal interpretation of quantifiers).
Then we have: msl(FM(N)) = Th(N).

Proof. The proof is by induction on formula complexity.
For the basic case of quantifier-free formulae, the claim holds by Lemma 2.

For boolean connectives, the equivalence is trivial. The only interesting case is for
ϕ := ∃xψ(x).

⊇: Suppose ϕ ∈ Th(N), that is, N |= ∃xψ(x). Then there is a witness a ∈ N,
such that ψ[a] ∈ Th(N). By IH, ψ[a] ∈ msl(FM(N)). This means:

∃k ∀l ≥ kNl |=m ψ[a] (3)

Infinite Liar in a (Modal) Finitistic Setting 27

and from this it follows that:

∃k∀l ≥ k ∃j ≥ l ∃a < j Nj |=m ∃xψ(x). (4)

which means that ϕ ∈ msl(FM(N)).
⊆: Say ϕ := ∃xψ(x) ∈ msl(FM(N)). So (4) holds as well and there is an

a such that (3) also holds (this step essentially depends on the language being
relational). This means ψ[a] ∈ msl(FM(N)), and so by the IH, ψ[a] ∈ Th(N),
and therefore ϕ ∈ Th(N).

5 Yablo Sequences and Modal Interpretation
of Quantifiers

The semantics in sufficiently large models in potentially infinite domains under
modal interpretation of quantifiers presented above entails that Yablo sentences
stay paradoxical even for the finitist, if she interprets the quantifiers in the modal
manner. That is, we’ll be arguing that not even local Yablo Disquotation can be
included in an msl-theory. Let’s start with a lemma.

Lemma 3. For any FM(N)Y -domain with Y D ⊆ msl(FM(N)Y) it holds that:
∀n ∈ ω Y (n) �∈ msl(FM(N)Y).

Proof. Suppose some Yablo sentence is in the msl-theory, that is

∃nY (n) ∈ msl(FM(NY)).

This means:
∃l ∀k ≥ l Nk |=m Y (n).

Pick an l witnessing this. By the definition of Yablo sentences this entails:

∀k ≥ lNk |=m ∀x (x > n → ¬Tr(Y (x))).

By the semantics, this means:

∀k ≥ l∀p ≥ k∀a < p Np |=m a > n → ¬Tr(Y (a)).

But then:

∀p ≥ l ∀a ∈ (n, p) Np |= ¬Tr(Y (a)). (5)

So, by Yablo Disquotation, for sufficiently large p, we have that models of
size p fail to satisfy Yablo sentences for numbers between n and p:

∀p ≥ l ∀a ∈ (n, p) Np |=m ¬Y (a),

Now, fix p and a. By the definition of Y (x) the above means:

Np |=m ∃x > aTr(Y (x)).

28 M. T. Godziszewski and R. Urbaniak

By our definition of |=m this is equivalent to:

∃q ≥ p ∃b < qNq |=m b > a ∧ Tr(Y (b))

Hence:
∃q ≥ p ∃b ∈ (a, q)Nq |=m Tr(Y (b)).

This, however, contradicts (5), which completes the argument.

With this lemma at hand, we can proceed to the theorem which tells us that
not only Yablo sentences are not in any msl-theory, but also that no msl-domain
can (modally) satisfy the local Yablo Disquotation principles either.

Theorem 8. There is no FM(N)Y -domain such that Y D ⊆ msl(FM(N)Y).

Proof. Suppose there is an msl(FM(N)Y) which contains all Local Yablo Dis-
quotation sentences.

By Lemma 3, we know that ∀n Y (n) �∈ msl(FM(N)Y). We therefore have:

∀n∀l ∃k ≥ l Nk � |=m Y (n).

By the definition of the Yablo sentences we infer:

∀n∀l∃p ≥ l∃a > n Np |=m Tr(Y (a)).

Which, by Yablo Disquotation, yields:

∀n∀l∃p ≥ l∃a > n Np |=m Y (a).

The claim holds for any n and l. For us, it is enough to look at n = l = 0. By
the definition of Y (a) we obtain:

∃p, a > 0∀q ≥ p Nq |=m ∀x > a ¬Tr(Y (x)).

Pick an a > 0 witnessing the above claim. By the definition of msl-theory
we now have

Y (a) ∈ msl(FM(N)Y),

which is impossible by Lemma 3.

So, when we consider Yablo sequences with different treatments of infinity in
the background, the following observations come to mind:

1. In the standard setting, without potential infinity, Local Arithmetical Dis-
quotation and Local Yablo Disquotation are consistent, yet ω-inconsistent
with the background arithmetical theory. Once ω-rule or Uniform Yablo Dis-
quotation are introduced, the theory is inconsistent.

2. Under sl-semantics, Yablo sentences are all false (in the limit), yet the
sl-theory of a given FM -domain is consistent, but ω-inconsistent. This is
a particular case of a general flaw of sl-semantics, because sl(FM(N)) itself
is ω-inconsistent.

3. Under msl-semantics, i.e. semantics in sufficiently large models in potentially
infinite domains under the modal interpretation of quantifiers, even adding
only the Local Arithmetical Disquotation and Yablo Disquotation results in
an inconsistent theory. Uniform Yablo Disquotation or ω-rule are not needed
to ensure this.

Infinite Liar in a (Modal) Finitistic Setting 29

References

1. Godziszewski, M.T.: Yablo sequences in potentially infinite domains and partial
semantics (2018). [submitted]

2. Hamkins, J.D., Linnebo, Ø.: The modal logic of set-theoretic potentialism and the
potentialist maximality principles. Rev. Symb. Logic (2018, to appear). http://wp.
me/p5M0LV-1zC, arXiv:1708.01644

3. Ketland, J.: Yablo’s paradox and ω-inconsistency. Synthese 145, 295–302 (2005)
4. Mostowski, M.: On representing concepts in finite models. Math. Logic Q. 47,

513–523 (2001)
5. Mostowski, M.: On representing semantics in finite models. In: Rojszczak, A.,

Cachro, J., Kurczewsk, G. (eds.) Philosophical Dimensions of Logic and Science,
pp. 15–28. Kluwer Academic Publishers, Dordrecht (2001)

6. Mostowski, M., Zdanowski, K.: FM-representability and beyond. In: Cooper, S.B.,
Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 358–367. Springer,
Heidelberg (2005). https://doi.org/10.1007/11494645 45

7. Mostowski, M.: Truth in the limit. Rep. Mathe. Logic 51, 75–89 (2016)
8. Priest, G.: Yablo’s paradox. Analysis 57, 236–242 (1997)
9. Urbaniak, R.: Potential infinity, abstraction principles and arithmetic (Leśniewski

style). Axioms 5(2), 18 (2016)
10. Yablo, S.: Paradox without self-reference. Analysis 53, 251–252 (1993)

http://wp.me/p5M0LV-1zC
http://wp.me/p5M0LV-1zC
http://arxiv.org/abs/1708.01644
https://doi.org/10.1007/11494645_45

The Finite Embeddability Property
for Topological Quasi-Boolean Algebra 5

Zhe Lin1(B) and Mihir Kumar Chakraborty2

1 Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
pennyshaq@gmail.com

2 School of Cognitive Science, Jadavpur University, Kolkata, India
mihir4@gmail.com

Abstract. In this paper we study some basic algebraic structures of
rough algebras. We proved that the class of topological quasi-Boolean
algebra 5s (tqBa5s) has the finite embeddability property (FEP). Further
we also extend this result to some related classes of algebras.

1 Introduction

The algebraic structures called Pre-rough algebras [1,2] arose as a natural
abstraction from the calculus of rough sets proposed by Pawlak in 1983 [3]. A
Pre-rough algebra is a topological quasi-Boolean algebra (tqBa) which is quasi-
Boolean algebra (see Definition 1) endowed with a topological (interior) operator.
Although quasi Boolean algebra and topological Boolean algebra are presented
in the similar work of Rasiowa [4], Topological quasi-Boolean algebra was first
introduced in [1]. As a further step towards Pre-rough algebras, an axiom corre-
sponding to modal logic axiom S5 has been added to tqBas resulting in tqBa5s
[2]. Further studies with tqBas, tqBa5s and related algebras have been carried
out in [1,2,5–7]. However, the finite embeddability property of these algebraic
structures have not been investigated before.

On the study of the connection between logical systems and classes of alge-
bras in general, one important and natural question is whether a given class of
algebras has a decidable equational or even universal theory. The finite embed-
dability property (or FEP for short) i.e., every finite partial subalgebra of an
algebra in the class is isomorphic to a subalgebra of a finite algebra in the class
of algebras, entails the decidability of its universal theory if this class of algebras
is finitely axiomatizable.

The study on FEP of classes of algebras dated back to Henkin [1956]. Henkin
proves that the class of abelian groups has FEP. It is also well-known that
the class HA of Heyting algebras has FEP. Block and Van Alten [8,9] show
that various integral residuated lattices (groupoids) have FEP. Farulewski [10]

The work of the first author was supported by Chinese National Funding of Social
Sciences (No. 17CZX048).

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 30–41, 2019.
https://doi.org/10.1007/978-3-662-58771-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_4&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_4

The Finite Embeddability Property of tqBa5 31

shows that the integral condition is not necessary and proves FEP for residu-
ated groupoids. Buszkowski [11] also proves that various lattice extensions of
residuated groupoids (including Heything and Boolean extensions) have FEP.
The first author of the current paper in [12] extends Buszkowski‘s results to
various lattice extensions of residuated groupoids with modalities. In [13] the
present authors investigate residuated Pre-rough algebras and show that resid-
uated Pre-rough algebras have decidable quasiequational theories (see definition
in Sect. 1), which entails that the pre-rough algebras have decidable quasiequa-
tional theories. Indeed residuated Pre-rough algebras have FEP. However FEP
for Pre-rough algebras still remain open. In the present paper we study the class
of the basic algebraic structures in Pre-rough algebras (the class of tqBa5s) and
prove that it has FEP. This results can also be extended to Pre-rough and some
other modal extensions of quasi-Boolean algebras.

The method we developed in the present paper is inspired by [11] and [12].
A sequent calculus which admits the interpolant lemma (see Lemma 1) is intro-
duced and it plays a essential role in proof of FEP. Meanwhile a sequent calculus
which does not admit the interpolant lemma for tqBa5 was earlier introduced
in [14]. Our method can be regarded as an algebraic substitute of the filtration
method for Kripke frames [15].

The paper is organized as below. In the next section we recall some basic
algebraic definitions. Then in Sect. 3, we develop a sequent system for tqBa5s
and prove the interpolant lemma. In Sect. 4, we present the main results and
show FEP for the class of tqBa5s. In Sect. 5, we conclude our paper and make
some simple extensions to some related classes of algebras. Hereafter, the class
of all topological quasi-Boolean algebra 5 will be denoted by tqBa5 also.

2 Some Basic Definitions

Definition 1. A quasi-Boolean algebra (qBa) is an algebra A = (A,∧,∨,¬, 0, 1)
where (A,∧,∨, 0, 1) is a bounded distributive lattice, and ¬ is an unary operation
on A such that the following conditions hold for all a, b ∈ A:

(DN) ¬¬a = a, (DM) ¬(a ∨ b) = ¬a ∧ ¬b

A topological quasi-Boolean algebra (tqBa) is an algebra A =
(A,∧,∨,¬, 0, 1,�) where (A,∧,∨,¬, 0, 1) is a quasi-Boolean algebra, and � is
an unary operation on A such that for all a, b ∈ A:

(K�) �(a ∧ b) = �a ∧ �b, (N�) �� = �
(T�) �a ≤ a, (4�) �a ≤ ��a

A topological quasi-Boolean algebra 5 (tqBa5) is a topological quasi-Boolean
algebra A = (A,∧,∨,¬,�, 0, 1) such that for all a ∈ A:

(5) ♦a ≤ �♦a,

where ♦ is an unary operation on A defined by ♦a := ¬�¬a.

32 Z. Lin and M. K. Chakraborty

Proposition 1. For any tqBa5 A = (A,∧,∨,¬,�, 0, 1) and a, b ∈ A, the
following hold:

(1) ¬0 = 1 and ¬1 = 0.
(2) ¬(a ∧ b) = ¬a ∨ ¬b.
(3) If a ≤ b, then ¬b ≤ ¬a.
(4) ♦0 = 0 and ♦(a ∨ b) = ♦a ∨ ♦b.
(5) �a = ��a and ♦a = ♦♦a.
(6) ♦a = �♦a and �a = ♦�a.
(7) ♦a ≤ b if and only if a ≤ �b.

The proof of Proposition 1 can be found in [6,7].
We now recall some concepts from universal algebra. Equation (identity)

and quasi-equation (quasi-identity) are defined in standard manner (see Chap. 1
[16]). For any set of equations or quasi-equations Σ, let A(Σ) be the class of all
algebras which validate all equations or quasi-equations in Σ. A class of algebras
K is a variety if there is a set of equations Σ such that K = A(Σ). A class of
algebras K is a quasi-variety if there is a set of quasi-equations Θ such that
K = A(Θ).

Theorem 1. The class of tqBa5s is a variety.

Due to the definition of tqBa5, the class of tqBa5s can be classified by a set
of equations. Thus by Theorem 1.19, [16]. The class of tqBa5s is a variety.

Corollary 1. The class of tqBa5s is a quasi-variety.

Let A = 〈A, 〈fA

i 〉i∈I〉 be an algebra of fixed type and B ⊆ A. Then
B = 〈B, 〈fB

i 〉i∈I〉 is a partial subalgebra of A where for every n ∈ N, every
n-ary function symbol fA

i with i ∈ I, and for every b1, . . . , bn ∈ B, one defines
fB

i (b1, . . . , bn) = fA

i (b1, . . . , bn) if fA

i (b1, . . . , bn) ∈ B, otherwise, the value is not
defined. If A is ordered, then ≤B=≤A |B, the restriction of ≤A to B. fA

i denotes
the operation interpreting the symbol fi in the algebra A. However we write fi

for fA

i , if it does not cause confusion.
By an embedding from a partial algebra B into an algebra C, we mean an

injection h : B
→ C such that if b1, . . . , bn, fB(b1, . . . , bn) ∈ B, then

h(fB(b1, . . . , bn)) = fC(h(b1), . . . , h(bn)).

If B and C are ordered, then h is required to be an order embedding i.e. a ≤B

b ⇔ h(a) ≤C h(b).
A class K of algebras has the finite embeddability property (FEP), if every

finite partial subalgebra of a member of K can be embedded into a finite member
of K. FEP usually has some consequences on finite model property. FEP implies
the strong finite model property (SFMP) i.e. every quasi-identity which fails to
hold in a class K of algebras can be falsified in a finite member of K. SFMP and
FEP are equivalent in quasivarieties of finite type.

The Finite Embeddability Property of tqBa5 33

Lemma 1 (Lemma 6.40 [16]). For any quasivariety K of finite type the
following are equivalent:

(1) K has FEP
(2) K have SFMP
(3) K is generated as a quasivarieties by its finite members

Remark 1. If a formal system S is strongly complete with respect to a class K

of algebras, then it yields, actually, an axiomatization of the quasiequational
theory of K; hence SFMP for S with respect to K yields SFMP for K. By SFMP
for S, we mean that for any finite set of sequents Φ, if Φ �S Γ ⇒ A, then there
exists a finite A ∈ K and a valuation σ such that all sequents from Φ are true in
(A σ), but Γ ⇒ A is not.

3 Sequent Calculus of tqBa5

In this section we develop a sequent system G5 for tqBa5 following the tradition
[17]. The language of the logic of tqBa5 is defined as follows

α : := p | ⊥ | � | α ∧ β | α ∨ β | ¬α | ♦α | �α,

where p ∈ Prop, the set of propositional variables.
Formula structure are defined as follows with a unary structural operation

〈〉:
– α is a formula structure if α is a formula
– 〈Γ 〉i is a formula structure if Γ is a formula structure

Hereafter we abbreviate 〈. . . 〈
︸ ︷︷ ︸

n

α 〉 . . .〉
︸ ︷︷ ︸

n

by 〈α〉n. Clearly if Γ is a formula struc-

ture, then it is of the form 〈α〉i for some formula α and number i ≥ 0. We use
〈α〉i1 , 〈β〉i2 , . . . where i1, i2 ≥ 0 to denote formula structures. A sequent is an
expression of the form 〈α〉i ⇒ β where i ≥ 0 for some formulae α and β.

Definition 2. The Gentzen sequent calculus G5 consists of the following axioms
and inference rules:

(1) Axioms:
(Id) ϕ ⇒ ϕ (⊥) 〈⊥〉i ⇒ ϕ (�) 〈ϕ〉i ⇒ �

(D) ϕ ∧ (ψ ∨ χ) ⇒ (ϕ ∧ ψ) ∨ (ϕ ∧ χ) (DN) ϕ ⇔ ¬¬ϕ

(2) Connective rules:

〈ϕ〉i ⇒ χ

〈ϕ ∧ ψ〉i ⇒ χ
(∧L)

〈χ〉i ⇒ ϕ 〈χ〉i ⇒ ψ

〈χ〉i ⇒ ϕ ∧ ψ
(∧R)

〈ϕ〉i ⇒ χ 〈ψ〉i ⇒ χ

〈ϕ ∨ ψ〉i ⇒ χ
(∨L)

〈χ〉i ⇒ ψ

〈χ〉i ⇒ ψ ∨ ϕ
(∨R)

34 Z. Lin and M. K. Chakraborty

(3) Modal rules
〈ϕ〉i+1 ⇒ ψ

〈♦ϕ〉i ⇒ ψ
(♦L)

〈ϕ〉i ⇒ ψ

〈ϕ〉i+1 ⇒ ♦ψ
(♦R)

〈ϕ〉i ⇒ ψ

〈�ϕ〉i+1 ⇒ ψ
(�L)

〈ϕ〉i+1 ⇒ ψ

〈ϕ〉i ⇒ �ψ
(�R)

〈ϕ〉i+1 ⇒ ψ

〈ϕ〉i ⇒ ψ
(T)

〈ϕ〉i+1 ⇒ ψ

〈ϕ〉i+2 ⇒ ψ
(4)

〈ϕ〉i ⇒ ψ

〈¬ψ〉i ⇒ ¬ϕ
(♦�)

(4) Cut rule
〈ϕ〉i ⇒ χ 〈χ〉j ⇒ ψ

〈ϕ〉i+j ⇒ ψ
(Cut)

where i, j ≥ 0. By �G5 〈α〉i ⇒ β, we mean the sequent 〈α〉i ⇒ β is provable
in G5. A sequent is called simple sequent if it is of the form α ⇒ β for some
formulae α and β. Let Φ be a finite set of simple sequents. By Φ �G5 〈α〉i ⇒ β,
we mean that sequent 〈α〉i ⇒ β is derivable from Φ in G5.

Proposition 2. In G5, the following holds:

– �G5 ♦(α ∨ β) ⇒ ♦α ∨ ♦β
– �G5 �(α ∧ β) ⇒ �α ∧ �β
– �G5 �α ⇒ ��α
– �G5 �α ⇒ α
– �G5 ♦α ⇒ �♦α
– �G5 ♦α ⇒ ¬�¬α
– �G5 ¬�¬α ⇒ ♦α

Let F be a finite set of formulae closed under subformulae. Define F qb be the
closure of F under ∧,∨,¬. A set of formula T is called qb-closed if T = F qb for
some finite set F which is closed under subformulae. A sequent 〈α〉i ⇒ β is called
a T sequent if α, β ∈ T . A derivation from Φ in G5 of a T -sequent 〈α〉i ⇒ β is
called a T -derivation if all sequents appearing in the derivation are T -sequents,
which is denoted by Φ �G5 〈α〉i ⇒T β. Assume that Φ �G5 〈ϕ〉i+j ⇒T ψ. A
formula γ is called a T interpolant of 〈ϕ〉i if γ ∈ T , Φ �G5 〈ϕ〉i ⇒T γ and
Φ �G5 〈γ〉j ⇒T ψ and additionally Φ �G5 〈γ〉 ⇒T γ if i ≥ 1.

Lemma 2 (Interpolant). If Φ �G5 〈ϕ〉i+j ⇒T ψ, then 〈ϕ〉i has a T interpolant.

Proof. We proceed by induction on the length of derivation. Axiom is trivial.
(Cut) is easy. Assume that the end sequent is obtained by a rule (R). If i = 0
then obviously ϕ is a required interpolant. Let i ≥ 1 Here we consider three
cases. Others can be treated similarly.

(∨L) Assume the premise are 〈δ〉i+j ⇒T ψ and 〈χ〉i+j ⇒ ψ and ϕ = δ∨χ. Then
by induction hypothesis, there are γ1, γ2 ∈ T such that (1) Φ �G5 〈δ〉i ⇒T γ1,
(2) Φ �G5 〈χ〉i ⇒T γ2, (3) Φ �G5 〈γ1〉j ⇒T ψ, (4) Φ �G5 〈γ2〉j ⇒T ψ, (5)
Φ �G5 〈γ1〉 ⇒ γ1 and (6) Φ �G5 〈γ2〉 ⇒ γ2. By applying (∨R) to (1) and
(2), one gets (7) Φ �G5 〈δ〉i ⇒T γ1 ∨ γ2, (8) Φ �G5 〈χ〉i ⇒T γ1 ∨ γ2. Then

The Finite Embeddability Property of tqBa5 35

by applying (∨L) to (7) and (8), one obtains (9) Φ �G5 〈δ ∨ χ〉i ⇒T γ1 ∨ γ2.
Further by applying (∨L) to (3) and (4) one gets applying Φ �G5 〈γ1 ∨
γ2〉i ⇒T ψ. If i ≥ 1, then applying (∨R) and (∨L) to (5) and (6), one gets
Φ �G5 〈γ1 ∨ γ2〉 ⇒ γ1 ∨ γ2. Thus γ1 ∨ γ2 is a required interpolant.

(♦�) Assume that the premise is 〈ϕ〉i+j ⇒T ψ. By induction hypothesis there
is γ ∈ T such that Φ �G5 〈ϕ〉i ⇒T γ, Φ �G5 〈γ〉j ⇒T ψ and Φ �G5 〈γ〉 ⇒ γ.
Then by rule (♦�), one gets (1) Φ �G5 〈¬γ〉i ⇒ ¬ϕ, (2) Φ �G5 〈¬ψ〉i ⇒ ¬γ
and (3) Φ �G5 〈¬γ〉 ⇒T ¬γ. Thus Φ �G5 〈¬γ〉k ⇒T ¬γ for any k ≥ 0. Hence
one gets (5) Φ �G5 〈¬γ〉i ⇒T ¬γ and (6) Φ �G5 〈¬γ〉j ⇒T ¬γ. By applying
(T) to (1) and (2) one gets (7) Φ �G5 ¬ψ ⇒T ¬γ and (8) Φ �G5 ¬γ ⇒T ¬ϕ.
Then by (Cut) to (7) and (5), one gets Φ �G5 〈¬ψ〉i ⇒T ¬γ. By (Cut) to (8)
and (6), one gets Φ �G5 〈¬γ〉j ⇒T ¬ϕ. Obviously γ is a required interpolant.
Hence ¬γ ∈ T is a required interpolant.

(4) Assume that the premise is 〈ϕ〉k+1 ⇒T ψ and the conclusion is 〈ϕ〉k+2 ⇒T

ψ. Let i + j = k + 2. By induction hypothesis, there is γ ∈ T such that
Φ �G5 〈ϕ〉i ⇒T γ, Φ �G5 〈γ〉j−1 ⇒T ψ and Φ �G5 〈γ〉 ⇒T γ. Hence by (Cut)
one gets Φ �G5 〈γ〉j ⇒T ψ. Hence γ is a required interpolant.

Notice that we did not assume that the set T is closed under any modal
operations. Hence the above interpolant lemma with respect to this kind of T
is based on the fact that in our sequent calculus we introduce modal structural
operation and interpolate modal axioms by structural rules. Further the addi-
tional condition is required for the proof of case (4). Without the additional
condition, one can not prove the case (4) when k = 0 and i = 1.

An algebraic model of G5 is a pair (G, σ) such that G is a tqBa5, and σ is
a mapping from Prop into G, called a valuation, which is extended to formulae
and formula trees as follows:

σ(�α) = �σ(α), σ(♦α) = ♦σ(α)
σ(α ∧ β) = σ(α) ∧ σ(β), σ(α ∨ β) = σ(α) ∨ σ(β),

σ(¬α) = ¬σ(α), σ(〈α〉i+1) = ♦σ(〈α〉i).

A sequent 〈α〉i ⇒ β is said to be true in a model (G, σ) written G, σ |= 〈α〉i ⇒ β,
if σ(〈α〉i) ≤ σ(β) (here ≤ is the lattice order in G). It is valid in G, if it is true
in (G, σ), for any valuation σ. It is valid in a class of algebras K, if it is valid in
all algebras from K. Φ |= 〈α〉i ⇒ β with respect to K, if 〈α〉i ⇒ β is true in all
models (G, σ) such that G ∈ K and all sequents from Φ are true in (G, σ).

Remark 2. G5 is strongly complete with respect to class tqBa5: for any set of
sequents Φ and any sequent 〈α〉i ⇒ β, Φ �G5 〈α〉i ⇒ β if and only if Φ |=
〈α〉i ⇒ β with respect to tqBa5. So it follows that G5 is weakly complete with
respect to tqBa5: the sequents provable in G5 are precisely the sequents valid in
tqBa5. The proof of strongly completeness of G5 with respect to tqBa5 follows
from the same proof of strong finite model property (definition see Sect. 4) of
G5 in Sect. 4.

36 Z. Lin and M. K. Chakraborty

4 FEP for tqBa5

Given a qb-closed set of formula T and a set of simple T -sequents Φ, we define
an order ≤T on formula structures. The set of T formula structures denote by
T s, consist of all formula structures whose formulae appearing in them belong
to T . Let 〈α1〉i, 〈α2〉j ∈ T s, we say 〈α1〉i ≤T 〈α2〉j if Φ �G5 〈〈α2〉j〉t ⇒T β
implies Φ �G5 〈〈α1〉i〉t ⇒T β for any context 〈〉t where t ≥ 0 and T formula β.
Let 〈α1〉i ≈T 〈α2〉j if 〈α1〉i ≤T 〈α2〉j and 〈α2〉j ≤T 〈α1〉i. Obviously ≈T is a
equivalence relation on T formula structures.

We define
{〈α〉i}≈

T = {〈β〉j |〈β〉j ≈T 〈α〉i}(i, j ≥ 0)

Obviously
{α}≈

T = {〈β〉j |〈β〉j ≈T α}(j ≥ 0)

Let T s/≈T
denote the set of all {〈α〉i}≈

T where 〈α〉i ∈ T s where i ≥ 0 and
T/≈T

denote the set of all {α}≈
X where α ∈ T . Define {〈α〉i}≈

T �T {〈β〉j}≈
T if

〈α〉i ≤T 〈β〉j . This is well defined since if {〈α〉i}≈
T �T {〈β〉j}≈

T , 〈ϕ〉p ∈ {〈α〉i}≈
T

and 〈ψ〉q ∈ {〈α〉i}≈
T , then 〈ϕ〉p ≤T 〈ψ〉q.

We define a closure operation C on T≈ as follows:

C({〈α〉i}≈
T) = {

∧

︸︷︷︸

1≤j≤n

βj}≈
T for any {βj}≈

T ∈ T≈ s.t. {〈α〉i}≈
T �T {βj}≈

T

Remark 3. For any {〈α〉i}≈
T , {〈α〉i}≈

T �T {�}≈
T . Thus C({〈α〉i}≈

T) always exists.
Since T is closed under ∧, for any C({〈α〉i}≈

T) there exists a {β}≈
T such that

C({〈α〉i}≈
T) = {β}≈

T . Let C(T s/≈T
) denoted the sets of all C({〈α〉i}≈

T). Clearly
C(T s/≈T

) ⊆ T/≈T
. Since T is qb-closed, T/≈T

is finite. Thus C(T s/≈T
) is finite.

Lemma 3. For any {〈α〉i}≈
T , {〈β〉j}≈

T ∈ T≈, the following hold:

(1) {〈α〉i}≈
T �T C({〈α〉i}≈

T).
(2) if {〈α〉i}≈

T �T {〈β〉j}≈
T , then C({〈α〉i}≈

T) �T C({〈β〉j}≈
T).

(3) C(C({〈α〉i}≈
T)) ⊆ C({〈α〉i}≈

T)

Proof. (1) Let C({〈α〉i}≈
T) = {ϕ1∧. . .∧ϕn}≈

T such that {〈α〉i}≈
T �T {ϕj}≈

T where
1 ≤ j ≤ n. We suffice to show that 〈α〉i ≤T ϕ1 ∧ . . . ∧ ϕn. Since {〈α〉i}≈

T �T

{ϕj}≈
T where 1 ≤ i ≤ n, 〈α〉i ≤T ϕj for all 1 ≤ j ≤ n. Assume that Φ �G5

〈ϕ1 ∧ . . . ∧ ϕn〉t ⇒T ψ. Further by (∧R), one gets Φ �G5 〈α〉i ⇒T ϕ1 ∧ . . . ∧ ϕn.
Then by (Cut) Φ �G5 〈〈α〉i〉t ⇒T ψ. Thus 〈α〉i ≤T ϕ1 ∧ . . . ∧ ϕn. Consequently
{〈α〉i}≈

T �T C({〈α〉i}≈
T).

(2) Let C({〈β〉j}≈
T) = {ϕ}≈

T . By (1) {〈β〉j}≈
T �T {ϕ}≈

T . Since {〈α〉i}≈
T �T

{〈β〉j}≈
T , {〈α〉i}≈

T �T {ϕ}≈
T . Hence by definition C({〈α〉i}≈} = {ϕ∧χ}≈

T for some
χ ∈ T . We suffice to show that ϕ∧χ ≤T ϕ. Assume that Φ �G5 〈ϕ〉t ⇒T ψ. Since
Φ �G5 ϕ ∧ χ ⇒T ϕ, by (Cut), one gets Φ �G5 〈ϕ ∧ χ〉t ⇒T ψ. Thus ϕ ∧ χ ≤T ϕ.
Consequently C({〈α〉i}≈

T) = {ϕ ∧ χ}≈
T �T {ϕ}≈

T = C({〈β〉j}≈
T).

The Finite Embeddability Property of tqBa5 37

(3) First we show that C({ϕ}≈
T) �T {ϕ}≈

T . Since {ϕ}≈
T �T {ϕ}≈

T , by def-
inition C({ϕ}≈

T) = {ϕ ∧ χ}≈
T for some ϕ ∈ T . Obviously ϕ ∧ χ ≤T ϕ. Thus

{ϕ ∧ χ}≈
T �T {ϕ}≈

T . Hence C({ϕ}≈
T) =�T {ϕ}≈

T . Clearly for any C({〈α〉i}≈
T),

there is a {ϕ}≈
T where ϕ ∈ T such that C({ϕ}≈

T) = {ϕ}≈
T . Consequently

C(C({ϕ}≈
T)) ⊆ C({ϕ}≈

T).

We defined a interitor operation I on T≈ as follows:

I({〈α〉i}≈
T) = {

∨

︸︷︷︸

1≤j≤n

βj}≈
T for any {βj}≈

T s.t. {βj}≈
T �T {〈α〉i}≈

T .

Remark 4. For any {〈α〉i}≈
T , {⊥}≈

T �T {〈α〉i}≈
T . Thus C({〈α〉i}≈

T) always exists.
Since T is closed under ∨, for any I({〈α〉i}≈

T) there exists a {β}≈
T such that

I({〈α〉i}≈
T) = {β}≈

T . Let I(T s/≈T
) denoted the sets of all I({〈α〉i}≈

T). Clearly
C(T s/≈T

) ⊆ T/≈T
. Since T is qb-closed, T/≈T

is finite. Thus I(T s/≈T
) is finite.

Lemma 4. For any {〈α〉i}≈
T , {〈β〉j}≈

T ∈ T≈, the following hold:

(1) I({〈α〉i}≈
T) �T {〈α〉i}≈

T .
(2) if {〈α〉i}≈

T �T {〈β〉j}≈
T , then I({〈α〉i}≈

T) �T I({〈β〉j}≈
T).

(3) I({〈α〉i}≈
T) ⊆ I(I({〈α〉i}≈

T))

Proof. (1) Let I({〈α〉i}≈
T) = {ϕ1 ∨ . . . ∨ ϕn}≈

T such that {ϕj}≈
T �T {〈α〉i}≈

T

where 1 ≤ j ≤ n. We suffice to show that ϕ1 ∨ . . .∨ϕn ≤T 〈α〉i. Since {ϕj}≈
T �T

{〈α〉i}≈
T where 1 ≤ j ≤ n, ϕj ≤T 〈α〉i for all 1 ≤ j ≤ n. Assume that Φ �G5

〈〈α〉i〉t ⇒T ψ. Then Φ �G5 〈ϕj〉t ⇒T ψ for all 1 ≤ j ≤ n. Further by (∨L), one
gets Φ �G5 〈ϕ1 ∨ . . . ∨ ϕn〉t ⇒T ψ. Thus ϕ1 ∨ . . . ∨ ϕn ≤T 〈α〉i. Consequently
I({〈α〉i}≈

T) �T {〈α〉i}≈
T .

(2) Let I({〈α〉i}≈
T) = {ϕ}≈

T . By (1) {ϕ}≈
T �T {〈α〉i}≈

T . Since {〈α〉i}≈
T �T

{〈β〉j}≈
T , {ϕ}≈

T �T {〈β〉j}≈
T . Hence by definition I({〈β〉j}≈} = {ϕ∨χ}≈

T for some
χ ∈ T . We suffice to show that ϕ ≤T ϕ ∨ χ. Assume that Φ �G5 〈ϕ ∨ χ〉t ⇒T ψ.
Since Φ �G5 ϕ ⇒T ϕ∨χ, by (Cut), one gets Φ �G5 〈ϕ〉t ⇒T ψ. Thus ϕ ≤T ϕ∨χ.
Consequent I({〈α〉i}≈

T) = {ϕ}≈
T �T {ϕ ∨ χ}≈

T = I({〈β〉j}≈
T).

(3) First we show that {ϕ}≈
T �T I({ϕ}≈

T). Since {ϕ}≈
T �T {ϕ}≈

T , by definition
I({ϕ}≈

T) = {ϕ∨χ}≈
T for some χ ∈ T . Obviously ϕ ≤T ϕ∨χ. Thus {ϕ∧χ}≈

T �T .
Hence {ϕ}≈

T �T I({ϕ}≈
T)T . Clearly for any I({〈α〉i}≈

T), there is a {ϕ}≈
T where

ϕ ∈ T such that I({〈α〉i}≈
T) = {ϕ}≈

T . Consequently I({〈α〉i}≈
T) ⊆ I(I({〈α〉i}≈

T)).

We define a unary operations ♦ and � on T≈:

♦{〈α〉i}≈
T = {〈α〉i+1}≈

T

�{〈α〉i}≈
T = {〈ϕ〉j}≈

T s.t (bc1) and (bc2) holds

where (bc1): 〈ϕ〉j+1 ≤T 〈α〉i and (bc2): for any 〈δ〉k ≤T 〈α〉i, 〈δ〉k ≤T 〈ϕ〉i+1

(k ≥ 1). Notice that such {〈ϕ〉j}≈
T always exists. Since for any 〈δ1〉k

1 ≤T 〈α〉i and
〈δ2〉k

2 ≤T 〈α〉i where k1, k2 ≥ 1, we have 〈δ1〉k
1 ≤ 〈δ1 ∨ δ2〉, 〈δ1〉k

1 ≤T 〈δ1 ∨ δ2〉 and
〈δ1 ∨ δ2〉 ≤T 〈α〉i.

38 Z. Lin and M. K. Chakraborty

Lemma 5. If {〈ϕ〉i}≈
T �T {〈ψ〉j}≈

T where i, j ≥ 0, then ♦{〈ϕ〉i}≈
T �T

♦{〈ψ〉j}≈
T .

Proof. Assume that {〈ϕ〉i}≈
T �T {〈ψ〉j}≈

T . Then 〈ϕ〉i ≤T 〈ψ〉j . Let �G5

〈〈〈ψ〉i〉〉t ⇒T χ. We get �G5 〈〈〈ϕ〉j〉〉t ⇒T χ for any 〈−〉t and χ. Hence
〈ϕ〉i+1 ≤T 〈ψ〉j+1. Consequently ♦{〈ϕ〉i}≈

T �T ♦{〈ψ〉j}≈
T .

Lemma 6. For any {〈α〉i}≈
T , {〈β〉j}≈

T ∈ T≈, ♦C({〈α〉i}≈
T) �T C(♦{〈α〉i}≈

T).

Proof. Let C(♦{〈α〉i}≈
T) = {δ}≈

T . Then Lemma 3 (1) ♦{〈α〉i}≈
T ≤T {δ}≈

T .
Thus 〈α〉i+1 ≤T δ. Hence �G5 〈α〉i+1 ⇒T δ. By Lemma 2 there is a γ such
that �G5 〈α〉i ⇒T γ and �G5 〈γ〉 ⇒T δ. Consequently {〈α〉i}≈

T �T {γ}≈
T

and ♦{γ}≈
T �T {δ}≈

T . By definition, C({〈α〉i}≈
T) �T {γ}≈

T . By Lemma 5
one gets ♦C({〈α〉i}≈

T) �T ♦{γ}≈
T . Hence ♦C({〈α〉i}≈

T) �T {δ}≈
T . Therefore

♦C({〈α〉i}≈
T) �T C(♦{〈α〉i}≈

T).

We define two unary operation on T/≈T
as follows:

�({ϕ}≈
T) = C(♦({ϕ}≈

T))

�({ϕ}≈
T) = I(�({ϕ}≈

T))

Lemma 7. For any {ϕ}≈
T ∈ T/≈T

, the following hold:

(1) ��({ϕ}≈
T) �T �({ϕ}≈

T)
(2) ({ϕ}≈

T) �T �({ϕ}≈
T)

(3) If �(({ϕ}≈
T)) �T {ψ}≈

T , then �(({¬ψ}≈
T)) �T {¬ϕ}≈

T

Proof. (1) Let �G5 〈〈ϕ〉〉t ⇒T ψ for some context 〈−〉t and formula ψ ∈ T .
By rule (4), one gets �G5 〈〈ϕ〉2〉t ⇒T ψ. Thus 〈ϕ〉2 ≤T 〈ϕ〉. Hence ♦♦{ϕ}≈

T �
♦{ϕ}≈

T . By Lemma 3 (2), one gets C(♦♦{ϕ}≈
T) �T C(♦{ϕ}≈

T). By Lemma 6,
one gets ♦C(♦{ϕ}≈

T) �T C(♦♦{ϕ}≈
T). Therefore ♦C(♦{ϕ}≈

T) �T C(♦{ϕ}≈
T).

By Lemma 3 (2) and (3), one gets C(♦C(♦{ϕ}≈
T)) �T C(♦{ϕ}≈

T). Hence
��({ϕ}≈

T) �T �({ϕ}≈
T).

(2) Let �G5 〈〈ϕ〉〉t ⇒T ψ for some context 〈−〉t and formula ψ ∈ T . By rule
(T), one gets �G5 〈ϕ〉t ⇒T ψ. Thus ϕ ≤T 〈ϕ〉. Hence {ϕ}≈

T �T ♦{ϕ}≈
T . By

Lemma 3 (1), ♦{ϕ}≈
T �T C(♦{ϕ}≈

T). Thus {ϕ}≈
T �T C(♦{ϕ}≈

T).
(3) Assume that �({ϕ}≈

T) �T {ψ}≈
T . By Lemma 6, one can get ♦({ϕ}≈

T) �T

�({ϕ}≈
T). Thus ♦({ϕ}≈

T) �T {ψ}≈
T . Hence 〈ϕ〉 ≤T ψ. Therefore �G5 〈ϕ〉 ⇒T ψ.

By rule (♦�), one gets �G5 〈¬ψ〉 ⇒T ¬ϕ. Hence ♦({¬ψ}≈
T) �T {¬ϕ}≈

T . By
definition �(({¬ψ}≈

T)) �T {¬ϕ}≈
T

Lemma 8. For any {ϕ}≈
T , {ψ}≈

T ∈ T/≈T
, �({ϕ}≈

T) �T {ψ}≈
T iff {ϕ}≈

T �T

�{ψ}≈
T .

The Finite Embeddability Property of tqBa5 39

Proof. Assume that �{ϕ}≈
T �T {ψ}≈

T . Then C(♦{ϕ}≈
T) �T {ψ}≈

T . Thus
C({〈ϕ〉}≈

T) �T {ψ}≈
T . By Lemma 3 (1), {〈ϕ〉}≈

T �T {ψ}≈
T . Hence 〈ϕ〉 ≤T

ψ. So {ϕ}≈
T �T �{ψ}≈

T . By definition {ϕ}≈
T �T I(�{ψ}≈

T) = �{ψ}≈
T .

Conversely assume that {ϕ}≈
T �T �{ψ}≈

T . Then {ϕ}≈
T �T I(�{ψ}≈

T]). By
Lemma 4 (1), one gets {ϕ}≈

T �T �{ψ}≈
T . Let �{ψ}≈

T = {〈γ〉i}≈
T such that

〈γ〉i+1 ≤T ψ. Hence {〈γ〉i+1}≈
T �T {ψ}≈

T . By Lemma 5 ♦{ϕ}≈
T �T ♦{〈γ〉i}≈

T .
Thus {〈ϕ〉}≈

T �T {〈γ〉i+1}≈
T . Consequently {〈ϕ〉}≈

T �T {ψ}≈
T . By definition,

C(♦{ϕ}≈
T) = C({〈ϕ〉}≈

T) �T {ψ}≈
T . Thus �{ϕ}≈

T �T {ψ}≈
T .

Now we construct a finite tqBa5 on T/≈T
. For any {ϕ}≈

T , {ψ}≈
T ∈ T/≈T

one
defines:

– {ϕ}≈
T ∧ {ψ}≈

T = {ϕ ∧ ψ}≈
T ,

– {ϕ}≈
T ∨ {ψ}≈

T = {ϕ ∨ ψ}≈
T

– ¬{ϕ}≈
T = {¬ϕ}≈

T

Let � and � be defined as above. Let A(T, Φ) = (T/≈T
,∧,∨,¬,�,�). Clearly

A(T, Φ) is a qBa. By Lemma 6 and 7, A(T, Φ) is a tqBa5. Since T/≈T
is finite,

A(T, Φ) is finite.
We define a assignment σ from T -formulae to A(T, Φ) as follows: σ(p) = {p}≈

T

for any p ∈ T . σ can be extended to formulae and formula structures naturally.
By induction on the complexity of formulae, one obtains the following fact

Proposition 3. σ(ϕ) = {ϕ}≈
T

Lemma 9. ♦i{ϕ}≈
T �T ♦i

c{ϕ}≈
T

Proof. By induction on the number i. If i = 1, then the claim holds by Lemma
5. Otherwise by induction hypothesis, one gets ♦i−1{ϕ}≈

T �T ♦i−1
c {ϕ}≈

T . Then
by Lemma 4 and Lemma 3 (2), one gets C(♦♦i−1{ϕ}≈

T) �T ♦i
c{ϕ}≈

T . By Lemma
5, ♦i{ϕ}≈

T �T C(♦♦i−1{ϕ}≈
T). Hence ♦i{ϕ}≈

T �T ♦i
c{ϕ}≈

T .

Lemma 10. If Φ �G5 〈ϕ〉i ⇒T ψ, then Φ |=A(T,Φ) σ(〈ϕ〉i) �T σ(ψ)

Proof. Let α ⇒ β ∈ Φ. Then Φ �G5 α ⇒ β. Hence α ≤T β. Thus {α}≈
T � {β}≈

T .
Hence |=A(T,Φ) Φ. Assume that |=A(T, Φ)σ(〈ϕ〉i) �T σ(ψ). Since σ(〈ϕ〉i) =
♦i

c{ϕ}≈
T and σ(ψ) = {ψ}≈

T . Hence ♦i
c{ϕ}≈

T �T {ψ}≈
T . Further by Lemma 8

♦i{ϕ}≈
T �T ♦i

c{ϕ}≈
T . Thus ♦i{ϕ}≈

T �T {ψ}≈
T which yields 〈ϕ〉i ≤T ψ. Therefore

Φ �G5 〈ϕ〉i ⇒ ψ. Contradiction.

Theorem 2. If Φ �G5 〈ϕ〉i ⇒ ψ then there exists a model (G, σ) s.t. G is finite
tqBa5 such that all sequents in Φ is true while 〈ϕ〉i ⇒ ψ is not.

Proof. Let Φ �G5 〈ϕ〉i ⇒ ψ. Then Φ �G5 〈ϕ〉i ⇒T ψ. Therefore by Lemma 9,
the claim holds.

Theorem 4 means that G5 has SFMP so from Remark 1, we get

Theorem 3. The variety tqBa5 has SFMP

Theorem 4. The variety tqBa5 has FEP.

40 Z. Lin and M. K. Chakraborty

5 Concluding Remarks

In this paper we have proved FEP for the class of tqBa5s. Indeed the class of
Pre-rough algebras also has FEP.

A Pre-rough algebra is a tqBa5 enriched with the following conditions:

(IA1) �a ∨ ¬�a ≤ 1
(IA2) �(a ∨ b) ≤ �a ∨ �b
(IA3) ♦a ≤ ♦b and �a ≤ �b implies a ≤ b

Clearly in pre-rough one gets (i) ♦(a∧b) = ♦a∧♦b and (ii) ♦(a∨b) = ♦a∨♦b.
Let T be a set of formula closed under ¬,∧,∨,♦. By the standard Lindenbaum
Tarski method, one can construct a Pre-rough algebra from a sequent calculus
for pre-rough with respect to a set of formulae T whose universe is the set of
equivalence classes of formulae in T . Clearly by the De-morgan rules and (i), (ii),
it is finite. Consequently the class of Pre-rough algebras has SFMP whence has
FEP. By similar arguments the classes of intermediate pre-rough algebras those
containing (IA2) have FEP. Since tqBa5 does not admit (IA2), the FEP for the
class of tqBa5s can not be easily established by standard Lindenbaum Tarski
method. The FEP for other classes of intermediate pre-rough algebras without
(IA2) including IA1, IA3 remain open. The results in the present paper can also
be extended to quasi Boolean algebra enriched with modal logic axioms (K)
and (B) and its extensions. Further research can be finding more intermediate
pre-rough algebras or modal quasi boolean algebras.

References

1. Banerjee, M., Chakraborty, M.: Rough algebra. Bull. Pol. Acad. Sci. (Math.) 41(4),
293–297 (1993)

2. Banerjee, M., Chakraborty, M.: Rough sets through algebraic logic. Fundamenta
Informaticae 28(3–4), 211–221 (1996)

3. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
4. Rasiowa, H.: An Algebraic Approach to Non-Classical Logics. North-Holland

Publishing
5. Banerjee, M.: Rough sets and 3-valued lukasiewicz logic. Fundamenta Informatica

31, 213–220 (1997)
6. Saha, A., Sen, J., Chakraborty, M.: Algebraic structures in the vicinity of pre-rough

algebra and their logics. Inf. Sci. 282, 296–320 (2014)
7. Saha, A., Sen, J., Chakraborty, M.: Algebraic structures in the vicinity of pre-rough

algebra and their logics II. Inf. Sci. 333, 44–60 (2016)
8. Block, W., van Alten, C.: The finite embeddability property for residuated lattices

pocrims and bckcalgebras. Algebra Universalis 48, 253–271 (2002)
9. Block, W., van Alten, C.: On the finite embeddability property for residuated

ordered groupoids. Trans. Am. Math. Soc. 357(10), 4141–4157 (2004)
10. Farulewski, M.: Finite embeddability property for residuated groupoids. Rep.

Math. Logic 43, 25–42 (2008)
11. Buszkowski, W.: Interpolation and FEP for logic of residuated algebras. Logic J.

IGPL 19(3), 437–454 (2011)

The Finite Embeddability Property of tqBa5 41

12. Zhe, L.: Non-associative Lambek calculus with modalities: interpolation, complex-
ity and FEP Zhe Lin. Logic J. IGPL 22(3), 494–512 (2014)

13. Lin, Z., Chakraborty, M.K., Ma, M.: Decidability in pre-rough algebras: extended
abstract. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przyby�la-Kasperek, M. (eds.) IJCRS
2018. LNCS (LNAI), vol. 11103, pp. 511–521. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99368-3 40

14. Chakraborty, M., Sen, J.: A study of interconnections between rough and 3-valued
lukasiewicz logics. Fundam. Inf. 51, 311–324 (2002)

15. van Benthem, J., Bezhanishvili, G.: Modal logic of spaces. In: Aliello, M., Pratt-
Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4 5

16. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Springer (2007)

17. Lambek, J.: On the calculus of syntactic types. Am. Math. Soc. XII, C178 (1961)

https://doi.org/10.1007/978-3-319-99368-3_40
https://doi.org/10.1007/978-3-319-99368-3_40
https://doi.org/10.1007/978-1-4020-5587-4_5

Specifying Program Properties
Using Modal Fixpoint Logics:

A Survey of Results

Martin Lange(B)

University of Kassel, Kassel, Germany
martin.lange@uni-kassel.de

Abstract. The modal µ-calculus is a well-known program specification
language with desirable properties like decidability of satisfiability and
model checking, axiomatisability etc. Its expressive power is limited by
Monadic Second-Order Logic or parity tree automata. Hence, it can only
express regular properties.

In this talk I will argue in favour of specification languages whose
expressiveness reaches beyond regularity. I will present Viswanathan and
Viswanathan’s Higher-Order Fixpoint Logic as a natural extension of the
modal µ-calculus with highly increased expressive power. We will see how
this logic can be used to specify some interesting non-regular properties
and then survey results on it with a focus on open questions in this area.

1 The Modal µ-Calculus

The modal μ-calculus Lμ [23] is a well-known specification formalism for concur-
rent, reactive systems. Its formulas are interpreted in states of labeled transition
systems. It extends multi-modal logic with restricted second-order quantification
in the form of least and greatest fixpoints. This makes it a reasonably expressive
temporal logic. It can express properties that are built recursively from basic
ones like “there is a successor s.t. . . .” (♦) or “all successors . . .” (�) using the
usual Boolean operations. Least fixpoints (μ) intuitively correspond to termi-
nating recursion, greatest fixpoints (ν) to not necessarily terminating recursion.

Examples of such recursive properties are “every path ends in some state
without a successor” or “there is a path on which infinitely many states satisfy
p”. The former is expressed by ϕend := μX.�X. A helpful tool for understand-
ing such formulas is the fixpoint unfolding principle κX.ϕ ≡ ϕ[κX.ϕ/X] for
κ ∈ {μ, ν} stating that the set of states satisfying κX.ϕ is indeed a fixpoint of
the mapping that takes a set X and returns those satisfying ϕ(X). With this
principle we get that

μX.�X ≡ �μX.�X ≡ ��μX.�X ≡ . . .

Knowing that a state s that has no successors satisfies �ψ for any ψ, one
can see that any state that is at the source of finite paths only, satisfies μX.�X.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 42–51, 2019.
https://doi.org/10.1007/978-3-662-58771-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_5&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_5

Specifying Program Properties Using Modal Fixpoint Logics 43

A second helpful tool for understanding formulas that comes on handy at this
point is the characterisation of Lμ’s model checking problem in terms of parity
games [33]. Here, two players play with a token on a state s in a transition system
and another on ϕ’s syntax tree in order to find out whether s satisfies ϕ or not.
Verifier chooses disjuncts whenever a disjunction is reached, and successor
states whenever a ♦ is reached, likewise Refuter chooses at conjunctions and
�-formulas. When reaching a fixpoint variable the game simply continues with
the defining fixpoint formula. Verifier wins in a situation where the currently
selected state blatantly satisfies the currently selected formula. In case of μX.�X
above, only Refuter makes choices by continuously selecting successor states.
If he follows a (maximal) finite path s . . . t then this will ultimately end in a
situation with t and �X being selected, and since t is assumed to have no
successors, Verifier wins, indicating that the original formula holds in s.

However, if there is an infinite path starting in s, then Refuter can traverse
this and the resulting play of the game is infinite. Then the winner is determined
by the type of the outermost fixpoint that gets traversed infinitely often. In the
case of μX.�X there is only one candidate – a least fixpoint – which makes
Refuter the winner. As an exercise one may check that the second property
named above about the existence of an infinite path is expressed by the formula
νX.μY.(p ∧ ♦X) ∨ ♦Y . The key is to see that the game rules make Verifier
select a path, and she can only traverse through the outer greatest fixpoint if this
path has infinitely many states satisfying p. Otherwise any play will eventually
only traverse through the inner least fixpoint which would make Refuter the
winner again.

Lμ is well understood in terms of its expressivity and the computational
complexity of the standard decision problems associated with a (temporal) logic.
We quickly recall the most important results on Lμ, for further and more detailed
overviews see also [4–6] and [14, Chap. 8].

– Lμ respects, like multi-modal logic, bisimulation-invariance, i.e. it cannot dis-
tinguish bisimilar models. Despite sounding negatively, this is a good property
to have since program specification formalisms should not distinguish states
of transition systems that exhibit the same temporal behaviour.

– Many standard temporal and other logics can be embedded into Lμ, for
instance CTL and PDL with simple linear translations, but also CTL∗ (and
therefore LTL) with exponential translations [13], [14, Theorem 10.2.7].

– On trees, Lμ is equi-expressive to alternating parity tree automata (APT)
and, since alternation can be eliminated, therefore also to nondeterministic
tree automata [15]. Bearing the first point in mind, this statement is not quite
accurate since APT in their usual form are aware of directions in trees and
can therefore specify non-bisimulation-invariant properties. To be precise, Lμ

is in fact only equi-expressive to APT over classes of ranked trees of bounded
branching-degree where it has access to a specific successor, not just some.
Over the class of all trees, Lμ is equi-expressive to so-called symmetric APT
[17,38].

44 M. Lange

There is of course also a well-known connection between tree automata and
Monadic Second-Order Logic (MSO) [32]. Even without automata at hand it
is easy to see that Lμ can be embedded into MSO. The cannot hold as MSO
is not bisimulation-invariant. However, it turns out that Lμ is as expressive
as MSO when restricted to bisimulation-invariant properties [20].

– Satisfiability is decidable and ExpTime-complete. The upper bound is a con-
sequence of the linear translation into APT and an exponential emptiness
test there [15]. The lower bound is inherited from PDL for instance [18].

– There are relatively simple sound and complete axiomatic systems for Lμ

[1,23], but establishing completeness is typically a challenging task [17,36].
– Model checking over finite transition systems is trivially decidable. It is in fact

computationally equivalent to the problem of solving a parity game [33,35].
The best lower bound is known to date is P-hardness since Lμ can express
winning in a reachability game. The currently best known upper bounds –
found only recently after a long time of research in this area – are quasi-
polynomial [12,21,27].
Model checking is even decidable over richer classes of infinite transition sys-
tems: for pushdown systems it is ExpTime-complete [37], for higher-order
recursion schemes it is of non-elementary complexity [31].

– An interesting source of computational and pragmatic complexity in Lμ for-
mulas is the alternation depth [16,30], measuring the degree to which recur-
sion is defined by entangling least and greatest fixpoints. It is the determining
element in the asymptotic complexity of many algorithms, being exponential
in it. It is also a major source of obfuscation when trying to understand
the property expressed by a given Lμ formula. It is therefore interesting to
know how much fixpoint alternation is necessary for writing down all defin-
able properties. It turned out that the fixpoint alternation hierarchy is strict
[2,7]: for any alternation depth there are definable properties that cannot be
specified using this depth only.

A consequence of Lμ’s connection to APT and MSO is the fact that it can only
define regular properties. There are, however, many non-regular properties which
are more or less interesting, depending on potential application areas. Typical
examples include “all executions of a program terminate at the same moment”,
“no two executions can be distinguished from the outside”, “there is no underflow
in an unbounded buffer”, “there is a maximal path of length n2 for some n”, etc.

There are a few proposals for modal logics that are capable of expressing
non-regular properties, for instance PDL[CFL] [19], FLC [29] and HFL [34].
FLC extends Lμ, and HFL (vastly) extends FLC. PDL[CFL] is orthogonal to
Lμ in terms of expressive power but is already captured by FLC. In the following
we will turn our attention to Higher-Order Fixpoint Logic (HFL), the most
expressive among these. We compare it to Lμ and its properties as laid out
above. We will explain how the increase in expressive power comes at a very high
price, not just computationally but also in terms of the number of questions on
certain aspects of HFL that remain unanswered to date.

Specifying Program Properties Using Modal Fixpoint Logics 45

2 Higher-Order Fixpoint Logic

We refrain from giving a detailed definition of the syntax and semantics of the
logic HFL. Instead we concentrate on the presentation of those principles that
are used there, especially for the semantics. The goal of this exposition is not
detailed mathematical completeness but the intuition behind the constructs in a
modal fixpoint logic that achieves high expressive power. For a formal definition
see [34].

HFL results from a merger between the modal μ-calculus with a simply typed
λ-calculus. Its formulas are typed in a simple type system that inductively builds
types from a single base type • using three function type constructors:

σ, τ ::= • | σv → τ v ::= + | − | 0

Formulas of base type are predicates as in Lμ; formally the type represents the
powerset lattice of the set of states of a given transition system. The type σv → τ
then represents functions from objects of type σ to objects of type τ which are
monotone (if v = +), antitone (if v = −) resp. unrestricted (if v = 0).

Formulas are given by the following grammar.

ϕ ::= p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ | [a]ϕ | μXτ .ϕ | νXτ .ϕ | λXτ .ϕ | ϕ ϕ

where X is a variable, p is an atomic proposition interpreted by a set of states
in a transition system, a is an action interpreted as a set of edges in a transi-
tion system, and τ is a type. However, not every object formed in this way is
a formula. The type system guarantees well-formedness of formulas; it mainly
ensures that

– in an application of the form ϕ ψ the formula ψ has some type σ, and ϕ has
a type σ → τ , and

– in a fixpoint formula κX.ϕ, the mapping X 	→ ϕ(X) is monotone in order to
guarantee the existence of least and greatest fixpoints.

The order of a type is defined via ord(•) = 0 and ord(σv → τ) = max{ord(τ), 1+
ord(σ)}. The fragment HFLk, k ≥ 0, consists of all formulas of type • which use
types of order at most k.

Consider the formula

ϕ := λf•0→•.λg•0→•.λX•.f(g(X)) .

Its type is
(•0 → •)+ → (•0 → •)+ → •+ → •

and ϕ is therefore a formula of order 2.
The semantics of a formula with type τ is a function of type τ in a transition

system. Its definition is straightforward given that each type induces a com-
plete lattice of pointwise ordered (monotone/antitone/unrestricted) functions in
a transition system. Fixpoint formulas can therefore be given meaning through

46 M. Lange

the Knaster-Tarski Theorem. Instead of listing the formal definitions here we
present some examples of formulas with the aim of giving some intuition on how
to specify complex program properties in HFL. The important concepts for this
are the fixpoint unfolding principle and β-reduction: (λX.ϕ) ψ ≡ ϕ[ψ/X].

We will use the following abbreviations with appropriate type annotation
which are left out for brevity here.

g ◦ f := λX.g (f X), f i := f ◦ . . . ◦ f
︸ ︷︷ ︸

i times

, ♦ := λX.♦X

Example 1. Consider the formula

ϕqpath := μF.λg.λf.(g �ff) ∨ F (g ◦ f2 ◦ ♦) (f ◦ ♦)

Using fixpoint unfolding and β-reduction we see that ϕqpath ♦ ♦ unfolds to

♦�ff ∨ (ϕqpath ♦4 ♦2) ≡ ♦�ff ∨ ♦4�ff ∨ (ϕqpath ♦9 ♦3)

and so on. In fact, after unfolding n times and β-reducing appropriately we obtain
∨n

i=1 ♦i2�ff∨(ϕqpath ♦(n+1)2 ♦n+1). This uses the fact that (n+1)2 = n2+2n+1.
Hence, in HFL2 it is possible to define the property of having a maximal

path of quadratic length.

Example 2. The property of a tree being balanced can be defined in HFL1

already. Note that being balanced means there is some n such that every path of
length n ends in a state without successors, and that no path of shorter length
does so. This is defined by

(

μF.λX.X ∨ (F (♦tt ∧ �X)
)

�ff

which, again, can be unfolded and reduced to yield
∨

i≥0

♦tt ∧ �(♦tt ∧ �(. . . ∧ ♦tt ∧ �
︸ ︷︷ ︸

i times

�ff))

Example 3. A similar construction principle is used in ϕunb := (νF.λX.X ∧
(F ♦X)) tt. It unfolds to

∧

i=0 ♦itt and therefore states that are paths of
unbounded length. Note that this is not the same as stating there is an infi-
nite path.

Example 4. Note that the context-free grammar S → out | inS S generates the
language of all words that have one more out than in’s but no prefix does so.
It represents the runs of potentially unbounded buffers that see an underflow.
This grammar can immediately be transferred into an HFL1 formula:

¬
(
(

μS.λX.〈out〉X ∨ 〈in〉(S (S X))
)

tt
)

states that no execution is of a form that falls into this grammar. Hence, it states
that all runs of a buffer do not underflow.

Specifying Program Properties Using Modal Fixpoint Logics 47

2.1 Results on HFL

We survey results on HFL that are known and problems that are still open,
comparing this in particular to the situation with Lμ.

Embeddings. HFLs ubsumes Lμ in the simple sense that Lμ is HFL0, even
syntactically. HFL1 also subsumes the aforementioned FLC [34] with, in turn,
subsumes PDL[CFL] [26].

Model Properties. HFL retains bisimulation-invariance [34]. However, HFL1

already does not possess the finite model property anymore. Consider the formula
ϕunb ∧ ϕend. It requires paths of unbounded length to exist but every path to be
finite. This is satisfiable but not in a finite model.

Satisfiability. Strongly connected to the loss of the finite model property is
the high undecidability of satisfiability checking, even for HFL1. It is at least
Σ1

1 -hard: this is proved originally for PDL[CFL] [19] and then transferred to
stronger logics.

So far, no non-trivial fragments of HFLw ith a decidable satisfiability problem
have been found.

Proof Systems. The situation on the proof-theoretic side of a theory of higher-
order modal fixpoint logics is even more bleak. It is not known whether there are
fragments of HFLo r even some HFLk which can be axiomatised in a sound and
complete way, not even when giving up on completeness (looking for non-trivial
fragments in that case of course).

Model Checking. The model checking problem for HFL over finite transition
systems is decidable and, roughly speaking, k-ExpTime-complete for formulas
of order k.1 The upper bound is obtained in a more or less straightforward
way by computing the semantics of a formula bottom-up, the lower bound can
be obtained using standard reductions for k-ExpTime-complete problems, for
instance tiling game problems [3].

Given that HFL has complete model checking problems for every level of the
exponential time hierarchy, it is a fair question to ask whether something similar
holds for the exponential space hierarchy. The answer is positive: it is possible
to identify a syntactic criterion on formulas called tail recursion such that the
model checking problem for HFLk formulas restricted in this way becomes (k−1)-
ExpSpace-complete [10].

There seems to be no chance to extend the decidability result to any meaning-
ful class of infinite-state systems. One can show undecidability of model checking
1 This does not hold for k = 0, i.e. Lµ. It also requires an assumption of a bound on

the number of arguments a function can take. Otherwise the upper bound is one
exponential higher.

48 M. Lange

for FLC, resp. HFL1 formulas over BPA processes already [29]. It remains to be
seen whether there is in fact a – necessarily very small – class of infinite-state
transition systems for which HFL1 model checking is decidable.

On the other hand, there is a connection between model checking higher-order
formulas and higher-order model checking: the problems of model checking a Lμ

formula over a higher-order recursion scheme is computationally equivalent to
the problem of model checking an HFL formula over a finite transition system
[22]. This can be seen as a trade-off between higher order on the formula side and
higher order on the model side. It is worth noting that the translations preserve
maximal order.

Automata for HFL. There is a counterpart to HFL in the world of automata.
Bruse has been able to come up with an automaton model that captures HFL
in the sense that every formula is equivalent to an automaton and vice-versa [8].
The model is called Alternating Parity Krivine Automata (APKA) and is an
extension of APT that uses the mechanisms of the Krivine machine to handle
higher-order functions (using a call-by-name technique). The main combinatorial
difficulty in designing such an automaton model is the correct capturing of the
interplay of fixpoints in the presence of higher-order features by an appropriate
acceptance condition. Bruse has shown [9] that in the case of HFL1, one can use
a neater acceptance condition which is closer to the stair-parity condition [24]
used in visibly pushdown games [28].

It remains to be seen whether this neater condition can be extended to frag-
ments beyond first-order functions. We also suspect that Boolean alternation
cannot be eliminated from APKA as it can be for APT. There is, however, no
proof of this or the contrary.

Fixpoint Alternation. The richness of HFL as opposed to Lμ opens up a
variety of questions regarding the strictness or collapse of fixpoint alternation
hierarchies. Besides the obvious restriction to particular classes of models one
can now also ask whether the fixpoint alternation hierarchy in some HFLk, say
Lμ for instance, despite being strict in itself, collapses in some HFLk for k > 0.
I.e. it is conceivable that one may be able to reduce fixpoint alternation when
one is willing to pay with higher function orders. This is indeed true in some
case, namely finite models. One can express the Kleene iteration of length at
most ω of a greatest fixpoint at order 0 using a least fixpoint at order 1 and
an embedded but non-alternating greatest fixpoint of order 0. Hence, over finite
models, every Lμ formula is equivalent to an alternation-free HFL1 formula.

One has to admit, though, that fixpoint alternation is not easy to define
syntactically. Using β-expansion it is always possible to decouple nested fixpoints
so that syntactically they look like they are not dependent on each other. This,
however, only shows that the definition of fixpoint alternation that is used for
Lμ, is too coarse for HFL. Bruse has suggested to define fixpoint alternation
via the minimal number of priorities used in equivalent APKA. This way he has

Specifying Program Properties Using Modal Fixpoint Logics 49

managed to show that the fixpoint alternation hierarchy is strict within HFL1

[9], resembling similar proofs for Lμ [2] and FLC [25].
The trick of trading in fixpoint alternation for higher order can be extended

slightly beyond order 0 [11]. Here, simulating the Kleene iteration of a greatest
fixpoint is more difficult because one has to test two first-order functions for
equality, rather than two sets. This would in principle require the enumeration
of all possible sets which HFL2 cannot do due to bisimulation-invariance. It
turns out, though, that it suffices to enumerate all modal formulas as possible
arguments to such first-order functions.

In summary, results on fixpoint alternation in HFL are sparse. In particular,
it is currently open whether general strictness results or, equivalently, strictness
over trees, can be extended to order higher than 1. On the other hand, it is
equally open whether collapse results based on the trade-in of alternation against
higher orders can be extended beyond low orders.

References

1. Afshari, B., Leigh, G.E.: Cut-free completeness for modal mu-calculus. In: Pro-
ceedings of the 32nd ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, pp. 1–12. IEEE (2017)

2. Arnold, A.: The modal µ-calculus alternation hierarchy is strict on binary trees.
RAIRO Theor. Inform. Appl. 33, 329–339 (1999)

3. Axelsson, R., Lange, M., Somla, R.: The complexity of model checking higher-order
fixpoint logic. Log. Methods Comput. Sci. 3, 1–33 (2007)

4. Bradfield, J., Stirling, C.: Modal logics and µ-calculi: an introduction. In: Bergstra,
J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 293–330. Else-
vier, New York (2001)

5. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic: Studies in Logic and Practical Rea-
soning, vol. 3, pp. 721–756. Elsevier, New York (2007)

6. Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
871–919. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 26

7. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict. In: Monta-
nari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 233–246. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7 58

8. Bruse, F.: Alternating Parity Krivine Automata. In: Csuhaj-Varjú, E., Dietzfel-
binger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 111–122. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8 10

9. Bruse, F.: Alternation is strict for higher-order modal fixpoint logic. In: Proceedings
of the 7th International Symposium on Games, Automata, Logics and Formal
Verification, GandALF 2016. EPTCS, vol. 226, pp. 105–119 (2016)

10. Bruse, F., Lange, M., Lozes, E.: Space-efficient fragments of higher-order fixpoint
logic. In: Hague, M., Potapov, I. (eds.) RP 2017. LNCS, vol. 10506, pp. 26–41.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67089-8 3

11. Bruse, F., Lange, M., Lozes, E.: Collapses of fixpoint alternation hierarchies in low
type-levels of higher-order fixpoint logic. In: Proceedings Workshop on Program-
ming and Reasoning on Infinite Structures, PARIS 2014 (2018)

https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/3-540-61604-7_58
https://doi.org/10.1007/978-3-662-44522-8_10
https://doi.org/10.1007/978-3-319-67089-8_3

50 M. Lange

12. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, pp. 252–263. ACM (2017)

13. Dam, M.: CTL∗ and ECTL∗ as fragments of the modal µ-calculus. TCS 126(1),
77–96 (1994)

14. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge (2016)

15. Emerson, E.A., Jutla, C.S.: Tree automata, µ-calculus and determinacy. In: Pro-
ceedings of the 32nd Symposium on Foundations of Computer Science, San Juan,
pp. 368–377. IEEE (1991)

16. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the proposi-
tional µ-calculus. In: Symposion on Logic in Computer Science, Washington, D.C.,
pp. 267–278. IEEE (1986)

17. Enqvist, S., Seifan, F., Venema, Y.: Completeness for the modal µ-calculus: sep-
arating the combinatorics from the dynamics. Theor. Comput. Sci. 727, 37–100
(2018)

18. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

19. Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs.
J. Comput. Syst. Sci. 26(2), 222–243 (1983)

20. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 60

21. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games. In:
Proceedings of the 32nd ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, pp. 1–9. IEEE (2017)

22. Kobayashi, N., Lozes, É., Bruse, F.: On the relationship between higher-order
recursion schemes and higher-order fixpoint logic. In Proceedings of POPL 2017,
pp. 246–259. ACM (2017)

23. Kozen, D.: Results on the propositional µ-calculus. TCS 27, 333–354 (1983)
24. Lange, M.: Local model checking games for fixed point logic with chop. In: Brim,

L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 240–254. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-
5 17

25. Lange, M.: The alternation hierarchy in fixpoint logic with chop is strict too. Inf.
Comput. 204(9), 1346–1367 (2006)

26. Lange, M., Somla, R.: Propositional dynamic logic of context-free programs and
fixpoint logic with chop. Inf. Process. Lett. 100(2), 72–75 (2006)

27. Lehtinen, K.: A modal µ perspective on solving parity games in quasi-polynomial
time. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, pp. 639–648. ACM (2018)

28. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya,
K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30538-5 34

29. Müller-Olm, M.: A modal fixpoint logic with chop. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 510–520. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-49116-3 48

30. Niwiński, D.: Fixed point characterization of infinite behavior of finite-state sys-
tems. Theor. Comput. Sci. 189(1–2), 1–69 (1997)

https://doi.org/10.1007/3-540-61604-7_60
https://doi.org/10.1007/3-540-45694-5_17
https://doi.org/10.1007/3-540-45694-5_17
https://doi.org/10.1007/978-3-540-30538-5_34
https://doi.org/10.1007/3-540-49116-3_48
https://doi.org/10.1007/3-540-49116-3_48

Specifying Program Properties Using Modal Fixpoint Logics 51

31. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of the 21st IEEE Symposium on Logic in Computer
Science, LICS 2006, pp. 81–90. IEEE Computer Society (2006)

32. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

33. Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka,
S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60218-6 1

34. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 33

35. Walukiewicz, I.: Monadic second order logic on tree-like structures. In: Puech,
C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 399–413. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 33

36. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional
µ-calculus. Inf. Comput. 157(1–2), 142–182 (2000)

37. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

38. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bull.
Belgian Math. Soc. 8(2), 359–391 (2001)

https://doi.org/10.1007/3-540-60218-6_1
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1007/3-540-60922-9_33

A Modal Aleatoric Calculus
for Probabilistic Reasoning

Tim French(B), Andrew Gozzard, and Mark Reynolds

The University of Western Australia, Perth, Western Australia
{tim.french,mark.reynolds}@uwa.edu.au,andrew.gozzard@research.uwa.edu.au

Abstract. We consider multi-agent systems where agents actions and
beliefs are determined aleatorically, or “by the throw of dice”. This sys-
tem consists of possible worlds that assign distributions to independent
random variables, and agents who assign probabilities to these possible
worlds. We present a novel syntax and semantics for such system, and
show that they generalise Modal Logic. We also give a sound and com-
plete calculus for reasoning in the base semantics, and a sound calculus
for the full modal semantics, that we conjecture to be complete. Finally
we discuss some application to reasoning about game playing agents.

Keywords: Probabilistic modal logic · Proof theory ·
Multi-agent systems

1 Introduction

This paper proposes a probabilistic generalisation of modal logic for reasoning
about probabilistic multi-agent systems. There has been substantial work in this
direction before [1,6,13]. However, here, rather than extending a propositional
modal logic with the capability to represent and reason about probabilities, we
revise all logical operators so that they are interpreted probabilistically. Thus we
differentiate between reasoning about probabilities and reasoning probabilistically.
Interpreting probabilities as epistemic entities suggests a Bayesian approach [2],
where agents assess the likelihood of propositions based on a combination of
prior assumptions and observations.

We provide a lightweight logic, the aleatoric calculus, for reasoning about sys-
tems of independent random variables, and give an extension, the modal aleatoric
calculus for reasoning about multi-agent systems of random variables. We show
that this is a true generalisation of modal logic and provide some initial proof
theoretic results. The modal aleatoric calculus allows agents to express strate-
gies in games or theories of how other agents will act, and we present a basic
demonstration of this.

2 Related Work

There has been significant and long-standing interest in reasoning about prob-
ability and uncertainty, to apply the precision of logical deduction in uncertain
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 52–63, 2019.
https://doi.org/10.1007/978-3-662-58771-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_6&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_6

A Modal Aleatoric Calculus for Probabilistic Reasoning 53

and random environments. Hailperin’s probability logic [9] and Nilsson’s prob-
abilistic logic [16] seek to generalise propositional, so the semantics of true and
false are replaced by probability measures. These approaches in turn are gener-
alised in fuzzy logics [19] where real numbers are used to model degrees of truth
via T-norms. In [18] Williamson provide an inference system based on Bayesian
epistemology.

These approaches lose the simplicity of Boolean logics, as deductive systems
must deal with propositions that are not independent. This limits their practi-
cality as well defined semantics require the conditional probabilities of all atoms
to be known. However, these approaches have been successfully combined with
logic programming [12] and machine learning [3]. Feldman and Harel [7] and
Kozen [14] gave a probabilistic variation of propositional dynamic logic for rea-
soning about the correctness of programs with random variables. Importantly,
this work generalises a modal logic (PDL) as a many valued logic.

More general foundational work on reasoning probabilistically was done by
de Finetti [4] who established an epistemic notion of probability based on what
an agent would consider to be a rational wager (the Dutch book argument). In
[15], Milne incorporates these ideas into the logic of conditional events. Stalnaker
has also considered conditional events and has presented conditional logic [17].
Here, conditional refers to the interpretation of one proposition being contingent
on another, although this is not quantified nor assigned a probability.

The other approach to reasoning about uncertainty is to extend traditional
Boolean and modal logics with operators for reasoning about probabilities.
Modal and epistemic logics have a long history for reasoning about uncertainty,
going back to Hintikka’s work on possible worlds [11]. More recent work on
dynamic epistemic logic [5] has looked at how agents incorporate new informa-
tion into their belief structures. There are explicit probabilistic extensions of
these logics, that maintain the Boolean interpretation of formulae, but include
probabilistic terms [6,10]. Probabilistic terms are converted into Boolean terms
through arithmetic comparisons. For example, “It is more likely to snow than it is
to rain” is a Boolean statement, whereas the likelihood of snow is a probabilistic
statement.

3 Syntax and Semantics

We take a many-valued approach here. Rather than presenting a logic that
describes what is true about a probabilistic scenario, we present the Modal
Aleatoric Calculus (MAC) for determining what is likely. The different is sub-
tle: In probabilistic dynamic epistemic logic [13] it is possible to express that
the statement “Alice thinks X has probability 0.5” is true; whereas the calcu-
lus here simply has a term “Alice’s expectation of X” which may have a value
that is greater than 0.5. We present a syntax for constructing complex terms in
this calculus, and a semantics for assignment values to terms, given a particular
interpretation or model.

54 T. French et al.

3.1 Syntax

The syntax is given for a set of random variables X, and a set of agents N . We
also include constants � and ⊥. The syntax of the dynamic aleatoric calculus,
MAC, is as follows:

α:: = x | � | ⊥ | (α?α :α) | (α |α)i

where x ∈ X is a variable and i ∈ N is a modality. We typically take an epistemic
perspective, so the modality corresponds to an agent’s beliefs. As usual, we let
v(α) refer to the set of variables that appear in α. We refer to � as always and
⊥ as never. The if-then-else operator (α?β : γ) is read if α then β else γ and
uses the ternary conditional syntax of programming languages such as C. The
conditional expectation operator (α |β)i is modality i’s expectation of α given β
(the conditional probability i assigns to α given β).

3.2 Semantics

The modal aleatoric calculus is interpreted over probability models similar to the
probability structures defined in [10], although they have random variables in
place of propositional assignments.

Definition 1. Given a set S, we use the notation PD(S) to notate the set of
probability distributions over S, where μ ∈ PD(S) implies: μ : S −→ [0, 1]; and
either Σs∈Sμ(s) = 1, or Σs∈Sμ(s) = 0. In the latter case, we say μ is the empty
distribution.

Definition 2. Given a set of variables X and a set of modalities N , a proba-
bility model is specified by the tuple P = (W,π, f), where:

– W is a set of possible worlds.
– π : N −→ W −→ PD(W) assigns for each world w ∈ W and each modality

i ∈ N , a probability distribution πi(w) over W . We will write πi(w, v) in place
of π(i)(w)(v).

– f : W −→ X −→ [0, 1] is a probability assignment so for each world w, for
each variable x, fw(x) is the probability of x being true.

Given a model P we identify the corresponding tuple as (WP , πP , fP). A pointed
probability model, Pw = (W,π, f, w), specifies a world in the model as the point
of evaluation.

We note that we have not placed any restraints on the function π. If π were
to model agent belief we might expect all worlds in the probability distribution
πi(w) to share the same probability distribution of worlds. However, at this stage
we have chosen to focus on the unconstrained case.

Given a pointed model Pw, the semantic interpretation of a MAC formula
α is Pw(α) ∈ [0, 1] which is the expectation of the formula being supported
by a sampling of the model, where the sampling is done with respect to the
distributions specified by π and f .

A Modal Aleatoric Calculus for Probabilistic Reasoning 55

Definition 3. The semantics of the modal aleatoric calculus take a pointed prob-
ability model, fw, and a proposition defined in MAC, α, and calculate the expec-
tation of α holding at Pw. Given an agent i, a world w and a MAC formula α,
we define i’s expectation of α at w as

Ei
w(α) =

∑

u∈W

πi(w, u) · Pu(α).

Then the semantics of MAC are as follows:

Pw(�) = 1 Pw(⊥) = 0 Pw(x) = fw(x)
Pw((α?β :γ)) = Pw(α) · Pw(β) + (1 − Pw(α)) · Pw(γ)

Pw((α |β)i) = Ei
w(α∧β)
Ei

w(β) if Ei
w(β) > 0 and 1 otherwise

We say two formulae, α and β, a semantically equivalent (written α ∼= β) if for
all pointed probability models Pw we have Pw(α) = Pw(β).

The concept of sampling is intrinsic in the rational of these semantics. The
word aleatoric has its origins in the Latin for dice-player (aleator), and the
semantics are essentially aleatoric, in that they use dice (or sample probability
distributions) for everything. If we ask whether a variable is true at a world,
the variable is sampled according to the probability distribution at that world.
Likewise, to interpret a modality the corresponding distribution of worlds is
sampled, and the formula is evaluated at the selected world. However, we are not
interested in the result of any one single sampling activity, but in the expectation
derived from the sampling activity.

This gives us an interesting combination approaches for understanding prob-
ability. Aleatoric approaches appeal to frequentist interpretations of probability,
where likelihoods are fixed and assume arbitrarily large sample sizes. This con-
trasts the Bayesian approach where probability is intrinsically epistemic, where
we consider what likelihood an agent would assign to an event, given the evidence
they have observed. Our approach can be seen as an aleatoric implementation
of a Bayesian system. By this we mean that: random variables are aleatoric,
always sampled from a fixed distribution, and modalities are Bayesian, always
conditioned on a set of possible worlds.

The if-then-else operator, (α?β :γ), can be imagined as a sampling protocol.
We first sample α, and if α is true, we proceed to sample β and otherwise we
sample γ. We imagine an evaluator interpreting the formula by flipping a coin: if
it lands heads, we evaluate β; if it lands tails, we evaluate γ. This corresponds to
the additive property of Bayesian epistemology: if A and B are disjoint events,
then P (A or B) = P (A) + P (B) [2]. Here the two disjoint events are α and β
and ¬α and γ, but disjointedness is only guaranteed if α and ¬α are evaluated
from the same sampling.

The conditional expectation operator (α | β)i expresses modality i’s expec-
tation of α marginalised by the expectation of β. This is, as in the Kolmogorov
definition of conditional probability, i’s expectation of α∧β divided by i’s expec-
tation of β. The intuition for these semantics corresponds to a sampling protocol.

56 T. French et al.

The modality i samples a world from the probability distribution and samples
β at that world. If β is true, then i samples α at that world and returns the
result. Otherwise agent i resamples a world from their probability distribution,
and repeats the process. In the case that β is never true, we assign (α | β)i

probability 1, as being vacuously true.

Abbreviations: Some abbreviations we can define in MAC are as follows:

α ∧ β = (α?β :⊥) α ∨ β = (α?� :β) α → β = (α?β :�) ¬α = (α?⊥ :�)
Eiα = (α |�)i �iα = (⊥|¬α)i

α
0
b = � α

a
b = ⊥ if b < a α

a
b = (α?α

a−1
b−1 :α

a
b−1) if a ≤ b

where a and b are natural numbers. We will show later that under certain circum-
stances these operators do correspond with their Boolean counterparts. However,
this is not true in the general case. The formula α∧β does not interpret directly
as α is true and β is true. Rather it is the likelihood of α being sampled as true,
followed by β being sampled as true. For this reason α ∧ α is not the same as α.
Similarly α ∨ β is the likelihood of α being sampled as true, or in the instance
that it was not true, that β was sampled as true.

The modality Eiα is agent i’s expectation of α being true, which is just
α conditioned on the uniformly true �. The operator �iα corresponds to the
necessity operator of standard modal logic, and uses a property of the condi-
tional operator: it evaluates (α |β)i as vacuously true if and only if there is no
expectation that β can ever be true. Therefore, (⊥ | ¬α)i can only be true if
modality i always expects ¬α to be false, and thus for the modality i, α is nec-
essarily true. The formula α

a
b allows us to explicitly represent degrees of belief

in the language. It is interpreted as α is true at least a times out of b. Note that
this is not a statement saying what the frequency of α is. Rather it describes the
event of α being true a times out of b. Therefore, if α was unlikely (say true 5%
of the time) then α

9
9 describes an incredibly unlikely event.

3.3 Example

We will give simple example of reasoning in MAC. Suppose we have an aleator
(dice player), considering the outcome of a role of a die. While the dice is fair, our
aleator does not know whether it is a four sided die or a six sided die. We consider
a single proposition: p1 if the result of throw of the die is 1. The aleator considers
two worlds equally possible: w4 where the die has four sides, and w6 where the
die has 6 sides. The probability model P = (W,π, f) is depicted in Fig. 1: We
can formulate properties such as “at least one of the next two throws will be a
1”: p

1
2
1 = (p1?� :p1). We can calculate Pw4(p

1
2
1) = 7

16 , while Pw6(p
1
2
1) = 11

36 . Now
if we asked our aleator what are the odds of rolling a second 1, given the first roll
was 1, we would evaluate the formula (p1 |p1)a (where a is our aleator), and in
either world this evaluates to 5

24 . Note that this involves some speculation from
the aleator.

A Modal Aleatoric Calculus for Probabilistic Reasoning 57

p1 : 1
4

w4

p1 : 1
6

w6

1
2

1
2

Fig. 1. A probability model for an aleator who does not know whether the die is four
sided (w4) or six sided (w6).

4 Axioms for the Modal Aleatoric Calculus

Having seen the potential for representing stochastic games, we will now look
at some reasoning techniques. First we will consider some axioms to derive con-
straints on the expectations of propositions, as an analogue of a Hilbert-style
proof system for modal logic. In the following section we will briefly analyse the
model checking problem, as a direct application of the semantic definitions.

Our approach here is to seek a derivation system that can generate equalities
that are always valid in MAC. For example, α ∧ β 	 β ∧ α will be satisfied by
every world of every model. We use the relation 	 to indicate that two formulae
are equivalent in the calculus, and the operator ∼= to indicate the expectation
assigned to each formula will be equal in all probability models. We show that
the calculus is sound, and sketch a proof of completeness in the most basic case.

4.1 The Aleatoric Calculus

The aleatoric calculus, AC, is the language of �, ⊥, x and (α?β : γ), where
x ∈ X. The interpretation of this fragment only depends on a single world and
it is the analogue of propositional logic in the non-probabilistic setting. The
axioms of the calculus are:

id x � x vacuous (x?� :⊥) � x
ignore (x?y :y) � y tree ((x?y :z)?p :q) � (x?(y?p :q) : (z?p :q))
always (�?x :y) � x swap (x?(y?p :q) : (y?r :s)) � (y?(x?p :r) : (x?q :s))
never (⊥?x :y) � y

We also have the rules of transitivity, symmetry and substitution for 	:

Trans : If α 	 β and β 	 γ then α 	 γ
Sym : If α 	 β then β 	 α
Subs : If α 	 β and γ 	 δ then α[x\γ] 	 β[x\δ]

where α[x\γ] is α with every occurrence of the variable x replaced by γ. We let
this system of axioms and rules be referred to as AC.

As an example of reasoning in this system, we will show that the commuta-
tivity of ∧ holds:

(x?y :⊥) 	 (x?(y?� :⊥) : (y?⊥ :⊥)) vacuous, ignore
	 (y?(x?� :⊥) : (x?⊥ :⊥)) swap
	 (y?x :⊥) vacuous, ignore

58 T. French et al.

The axiom system AC is sound. The majority of these axioms are simple
to derive from Definition 3, and all proofs essentially show that the semantic
interpretation of the left and right side of the equation are equal. The rules
Trans and Sym come naturally with equality, and the rule Subs follows because
at any world, all formulae are probabilistically independent.

We present arguments for the soundness of the less obvious tree and swap
in the long version of the paper [8].

Lemma 1. The axiom system AC is sound for AC.

Proof. This follows from Lemmas 2 and 3 presented in [8], and Definition 3.2.
Also, from the semantics we can see that the interpretation of subformulae are
independent of one another, so the substitution rule holds, and the remaining
rules follow directly from the definition of 	.

To show that AC complete for the aleatoric calculus, we aim to show that any
aleatoric calculus formula that are semantically equivalent can be transformed
into a common form. As the axioms of AC are equivalences this is sufficient to
show that the formulae are provably equivalent. The proofs are presented in the
long version of the paper.

A tree form Aleatoric Calculus formula is either atomic, or it has an atomic
random variable condition and both its left and right subformulae are in tree
form.

Definition 4. The set of all tree form Aleatoric Calculus formulae T ⊂ Φ is
generated by the following grammar:

ϕ:: = � | ⊥ | (x?ϕ :ϕ)

Lemma 2. For any Aleatoric Calculus formula there exists an equivalent
(by) tree form formula.

Definition 5. A path in a tree form aleatoric calculus formula is a sequence
of tokens from the set {x, x | x ∈ X} corresponding to the outcomes of random
trials involved in reaching a terminal node in the tree. We define the functions
�� and ⊥⊥ to be the set of paths that terminate in a � or a ⊥ respectively:

��(�) = ⊥⊥(⊥) = {()}, ��(⊥) = ⊥⊥(�) = ∅,

��((x?α :β)) = {(x)�
a | a ∈ ��(α)} ∪ {(x)�

b | b ∈ ��(β)}

⊥⊥((x?α :β)) = {(x)�
a | a ∈ ⊥⊥(α)} ∪ {(x)�

b | b ∈ ⊥⊥(β)}
where � is the sequence concatenation operator:

(a1, . . . , an)�(b1, . . . , bn) = (a1, . . . , an, b1, . . . , bn)

We say two paths are multi-set equivalent if the multiset of tokens that appear
in each path are equivalent, and define PP (φ) = ��(φ) ∪ ⊥⊥(φ) to be the set of all
paths through a formula.

A Modal Aleatoric Calculus for Probabilistic Reasoning 59

Lemma 3. For any tree form aleatoric calculus formula α:

P (α) =
∑

t∈��(α)

∏

x∈t

P (x)

where P (x) = (1 − P (x)).

Proof. This follows immediately from the Definition 3.

Lemma 4. Suppose that φ is a formula in tree form such that a = (a0, . . . , an) ∈
��(φ) (resp. ⊥⊥(φ)). Then, for any i < n there is some formula φi

a such that:

1. φ 	 φi
a

2. (a0, . . . , ai−1, ai+1, ai, ai+2, . . . , an) ∈ ��(φi
a) (resp. ⊥⊥(φ))

3. φ and φi
a agree on all paths that do not have the prefix (a0, . . . , ai−1. That is,

for all b ∈ PP (φ) ∪ PP (φi
a), where for some j < i, bj = aj, we have b ∈ ��(φ)

if and only if b ∈ ��(φi
a) and b ∈ ⊥⊥(φ) if and only if b ∈ ⊥⊥(φi

a).

Lemma 5. Given a pair of multi-set equivalent paths a and b in a tree form
aleatoric calculus formula, φ, such that a ∈ ��(φ) and b ∈ ⊥⊥(φ), we can find a
formula φb

a 	 φ where

1. a ∈ ⊥⊥(φb
a) and b ∈ ��(φb

a)
2. ��(φb

a) − {b} = ��(φ) − {a},
3. ⊥⊥(φb

a) − {a} = ⊥⊥(φ) − {b}.
Lemma 6. For any pair of tree form aleatoric calculus formulae, φ and ψ, there
exists a pair of tree forms φ′ 	 φ and ψ′ 	 ψ, such that PP (φ′) = PP (ψ′).

Theorem 1. For any pair of semantically equivalent aleatoric calculus formulae
φ and ψ, we can show φ 	 ψ.

Proof. By Lemma 2 it is possible to convert both formulae in question, φ and ψ,
into tree form, respectively φτ and ψτ . By Lemma 6 it is then possible to convert
φτ and ψτ to a pair of equivalent formulae, respectively Φ and Ψ , with the same
structure (so ��(Φ) ∪ ⊥⊥(Φ) = ��(Ψ) ∪ ⊥⊥(Ψ)), but possibly different leaves (so
��(Φ) is possibly not the same as ��(Ψ)). By Lemma 5 it is possible to swap any
multiset-equivalent paths between ��(Φ) and ⊥⊥(Φ). By Lemma 3 two formula, Φ
and Ψ , with the same structure are semantically equivalent if and only if there is
a one-to-one correspondence between paths of Φ and Ψ such that corresponding
paths a and b are multi-set equivalent, and a ∈ ��(Φ) if and only if b ∈ ��(Ψ).
Therefore, if and only if the two formulae are equivalent we are able to define Φ′

by swapping paths between ��(Φ) and ⊥⊥(Φ) such that Φ′ = Ψ . As all steps are
performed using the axioms and are reversible, this is sufficient to show φ 	 ψ.

60 T. French et al.

4.2 The Modal Aleatoric Calculus

The modal aleatoric calculus includes the propositional fragment, as well as
the conditional expectation operator (α | β)i that depends on the modality i’s
probability distribution over the set of worlds.

The axioms we have for the conditional expectation operator are as follows:

A0 : ((x?y :z) |c)i 	 ((x |c)i?(y |(x?c :⊥))i : (z |(x?⊥ :c))i).
A1 : (⊥|x)i ∧ (x |y)i 	 (⊥|x ∨ y)i

A2 : (⊥|x)i 	 ((⊥|x)i?(⊥|x)i :¬(⊥|x)i)
A3 : (�|x)i 	 �
A4 : (x |⊥)i 	 �

We let the axiom system MAC be the axiom system AC along with the axioms
A0-A5.

We note that the conditional expectation operator (x |y)i is its own dual, but
only in the case that agent i does not consider x and y to be mutually exclusive:
(¬x |y)i 	 (x |y)i → �i(¬(x ∧ y)). We can see this in the following derivation:

(¬x |y)i 	 ((x?⊥ :�) |y)i abb.
	 ((x |y)i?(⊥|x ∧ y)i : (�|(x?⊥ :⊥))i) A0
	 (x |y)i → �i¬(x ∧ y) abb.

The main axiom in MAC is the axiom A0 which is a rough analogue of the
K axiom in modal logic. We note that in this axiom:

((x?y :z) |c)i 	 ((x |c)i?(y |(x?c :⊥))i : (z |(x?⊥ :c))i)

if we substitute � for y and ⊥ for w, we have: Eix∧ (y |x)i 	 Ei(x∧y) whenever
agent i considers x possible (so that (⊥|¬x)i 	 ⊥). In that case we can “divide”
both sides of the semantic equality by Pw(Eix) which gives the Kolmogorov
definition of conditional probability:

Pw((y |x)i) =
Pw(Ei(x ∧ y))

Pw(Eix)
.

Axioms A1 and A2 deal with formulas of the type (⊥|α)i. The probability
associated with such formulas is non-zero if and only if α is impossible in all the
successor states, so in these states, we are able to substitute α with ⊥.

Finally axioms A3 and A4 allow us to eliminate conditional expectation
operators.

As with the aleatoric calculus, soundness can be shown by deriving equiva-
lence of the semantic evaluation equations, although the proofs are more com-
plex.

Lemma 7. The system MAC is sound for MAC.

Proof. The nontrivial cases of A0 and A1 are presented in the long version of
the paper [8]. and the axioms A2, A3 and A4 follow immediately from the
semantics.

A Modal Aleatoric Calculus for Probabilistic Reasoning 61

Given its correspondence to axiomatizations of modal logic and adequacy for
proving small equivalences, we conjecture that MAC is complete for the given
semantics.

5 Expressivity

In this section we show that the modal aleatoric calculus generalises the modal
logic K. The syntax and semantics of modal logic are given over a set of atomic
propositions Q. The syntax of Kn is given by:

φ:: = q | φ ∧ φ | ¬φ | �φ

where q ∈ Q, and the operators are respectively and, not, necessary. The seman-
tics of Kn are given with respect to an epistemic model M = (W,R, V) where
W is the nonempty, countable set of possible worlds, R ⊆ W ×W is the accessi-
bility relation, and V : Q −→ 2W is an assignment of propositions to states. We
require that:

1 ∀w, u, v ∈ W, u ∈ R(w) and v ∈ R(w) implies v ∈ R(u)
2 ∀w, u, v ∈ W, u ∈ R(w) and v ∈ R(u) implies v ∈ R(w)
3 ∀w ∈ W, R(w) = ∅.

We describe the set of worlds ‖α‖M in the model M = (W,R, V) that satisfy
the formula α by induction as follows:

‖q‖M = V (q) ‖α ∧ β‖M = ‖α‖M ∩ ‖β‖M

‖¬]α‖M = W − ‖α‖M ‖�α‖M = {u ∈ W | uR ⊆ ‖α‖M}
where ∀u ∈ W , uRα = uR∩‖α‖M , if uRα∩‖α‖M = ∅ and uRα = uR, otherwise.

We say MAC generalises K if there is some map Λ from pointed epistemic
models to pointed probability models, and some map λ from K formulae to
MAC formulae such that for all pointed epistemic models Mw, for all K formulae
φ, w ∈ ‖φ‖M if and only if Λ(Mw)(λ(φ)) = 1.

We suppose that for every atomic proposition q ∈ Q, there is a unique atomic
variable xq ∈ X. Then the map Λ is defined as follows: Given M = (W,R, V)
and w ∈ W , Λ(Mw) = Pw where P = (W,π, f) and

– ∀u, v ∈ W , πi(u, v) > 0 if and only if v ∈ uR1.
– ∀w ∈ W , ∀q ∈ Q, fw(xq) = 1 if w ∈ V (q) and fw(xq) = 0 otherwise.

This transformation replaces the atomic propositions with variables that, at
each world, are either always true or always false, and replaces the accessibility
relation at a world w with a probability distribution that is non-zero for precisely
the worlds accessible from w. It is clear that there is a valid probability model
that satisfies these properties.

We also define the map λ from K to MAC with the following induction:

λ(q) = xq λ(α ∧ β) = (λ(α)?λ(β) :⊥)
λ(¬α) = (λ(α)?⊥ :�) λ(�α) = (⊥|(λ(α)?⊥ :�))

1 We note this function is not deterministic, but this does not impact the final result.

62 T. French et al.

Lemma 8. For all epistemic models M = (W,R, V), for all w ∈ W , for all K
formula φ, we have w ∈ ‖φ‖M if and only if Λ(Mw)(λ(φ)) = 1.

The proof may be found in the long version of this paper [8].

6 Case Study

We present a case study using some simple actions in a dice game illustrating
the potential for reasoning in AI applications. A simple version of the game pig2

uses a four sided dice, and players take turns. Each turn, the player rolls the
dice as many times as they like, adding the numbers the roll to their turn total.
However, if they roll a 1, their turn total is set to 0, and their turn ends. They
can elect to stop at any time, in which case their turn total is added to their
score.

To illustrate the aleatoric calculus we suppose that for our dice we have two
random variables, odd and gt2 (greater than 2). Every roll of the dice can be seen
as a sampling of these two variables: 1 is an odd number not greater than 2, and
so on. Now we suppose that there is some uncertainty to the fairness of the dice,
so it is possible that there is a 70% chance of the dice rolling a number greater
than 2. However, we consider this unlikely and only attach a 10% likelihood to
this scenario. Finally, we suppose there is an additional random variable called
risk which can be used to define a policy. For example, we might roll again if
the risk variable is sampled as true. This scenario if visualised in Fig. 2, and
the formalization of relevant properties is given in Fig. 3.

Fig. 2. A simple two world represen-
tation of the game pig, where the dice
is possibly biased.

Fig. 3. Formulas describing different event in
the model at the left world.

These formulas show the different types of information that can be repre-
sented: bust and four are true random variables (aleatoric information), whereas
ifBust and if-4-1 are based on an agent’s mental model (Bayesian informa-
tion). Finally roll describes the condition for a policy to roll again. In a dynamic
extension of this calculus, given prior assumptions about policies, agents may
apply Bayesian conditioning to learn probability distributions from observations.

2 https://en.wikipedia.org/wiki/Pig (dice game).

A Modal Aleatoric Calculus for Probabilistic Reasoning 63

7 Conclusion

The modal aleatoric calculus is shown to be a true generalisation of modal logic,
but gives a much richer language that encapsulates probabilistic reasoning and
degrees of belief. We have shown that the modal aleatoric calculus is able to
describe probabilistic strategies for agents. We have provided a sound axioma-
tization for the calculus, shown it is complete for the aleatoric calculus and we
are working to show that the axiomatization is complete for the modal aleatoric
calculus. Future work will consider dynamic variations of the logic, where agents
apply Bayesian conditioning based on their observations to learn the probability
distribution of worlds.

References

1. Baltag, A., Smets, S.: Group belief dynamics under iterated revision: fixed points
and cycles of joint upgrades. In: Proceedings of 12th TARK, pp. 41–50 (2009)

2. Bovens, L., Hartmann, S.: Bayesian Epistemology. Oxford University Press, Oxford
(2003)

3. Cohen, W.W., Yang, F., Mazaitis, K.R.: TensorLog: deep learning meets proba-
bilistic DBs. arXiv preprint arXiv:1707.05390 (2017)

4. De Finetti, B.: Theory of Probability: A Critical Introductory Treatment. Wiley,
Chichester (1970)

5. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library, vol. 337. Springer, Dordrecht (2007)

6. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Inf. Comput. 87(1–2), 78–128 (1990)

7. Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, pp. 181–195 (1982)

8. French, T., Gozzard, A., Reynolds, M.: A modal aleatoric calculus for probabalistic
reasoning: extended version (2019). http://arxiv.org/abs/1812.11741

9. Hailperin, T.: Boole’s Logic and Probability: A Critical Exposition from the Stand-
point of Contemporary Algebra, Logic and Probability Theory. North-Holland Pub.
Co., Amsterdam (1976)

10. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2017)
11. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
12. Hommersom, A., Lucas, P.J.: Generalising the interaction rules in probabilistic

logic. In: 22nd International Joint Conference on Artificial Intelligence (2011)
13. Kooi, B.P.: Probabilistic dynamic epistemic logic. J. Log. Lang. Inf. 12(4), 381–408

(2003)
14. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
15. Milne, P.: Bruno de Finetti and the logic of conditional events. Br. J. Philos. Sci.

48(2), 195–232 (1997)
16. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
17. Stalnaker, R.C., Thomason, R.H.: A semantic analysis of conditional logic 1. Theo-

ria 36(1), 23–42 (1970)
18. Williamson, J.: From Bayesian epistemology to inductive logic. J. Appl. Log. 11(4),

468–486 (2013)
19. Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected

Papers by Lotfi A Zadeh, pp. 394–432. World Scientific (1996)

http://arxiv.org/abs/1707.05390
http://arxiv.org/abs/1812.11741

Public Announcements for Epistemic
Models and Hypertheories

Nenad Savić(B) and Thomas Studer

Institute of Computer Science, University of Bern, Bern, Switzerland
{savic,tstuder}@inf.unibe.ch

http://www.ltg.unibe.ch

Abstract. Artemov has recently proposed a modernization of the
semantics and proof theory of epistemic logic. We take up his approach
and extend his framework with public announcements and the corre-
sponding belief change operation. We establish a soundness and com-
pleteness result and show that our model update operation satisfies the
AGM postulate of minimal change. Further, we also show that the stan-
dard approach cannot be directly employed to capture knowledge change
by truthful announcements.

Keywords: Modal logic · Public announcements · Epistemic models ·
Hypertheories

1 Introduction

Artemov [3–6] suggests a modernization of the semantics and proof theory of
epistemic logic. He proposes new foundations for epistemic logic with

1. a semantics that does not assume models to be common knowledge and
2. a matching framework of hypertheories for reasoning with partial information.

He introduces the class of epistemic models, which includes Kripke models, but
can cover many more epistemic situations. The main difference is that in epis-
temic models, the Kripkean definition of satisfiability of a belief formula

u � �iA ⇔ Ri(u) � A, (1)

is replaced by a weaker condition

u |= �iA ⇒ Ri(u) |= A,

where we write Ri(u) � A for ∀v(Ri(u, v) ⇒ v � A) and similarly for Ri(u) |=
A. Hence the fully explanatory property of models is avoided, i.e., we do not
have that if a sentence holds at all possible states, then it is believed.

This work was supported by the Swiss National Science Foundation grant
200021 165549.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 64–75, 2019.
https://doi.org/10.1007/978-3-662-58771-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_7&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_7

Public Announcements for Epistemic Models and Hypertheories 65

In this paper, we extend Artemov’s epistemic models and hypertheories with
public announcements. The idea behind public announcements in the Kripkean
case is that a public announcement induces a model change: after the public
announcement of a formula A, the model is restricted in a way that preserves
only the relations between states where A holds [11,14,16,18]. In the case of
epistemic models, however, only restricting the model does not yield new beliefs
since (1) does not hold. To model public announcements properly, we also have
to explicitly take care of what the new beliefs are. We will make use of public
announcements that are total [7,16,17], i.e., new information can always be
announced. Moreover, our explicit treatment of belief change is influenced by
dynamic epistemic justification logics [2,8,9,12,13,15].

Our approach gives us more control over the belief dynamics that takes place
when an announcement occurs. In particular, we can define the updated model
such that the minimal change property of the AGM postulates is satisfied [1,10].
This is not possible in the traditional Kripkean setting.

We also show that there is no straightforward adaptation of our approach to
the case of knowledge change. Namely, with a help of one example, it is showed
that a restricted S4n-models are not well-defined.

The content of this paper is as follows. In Sect. 2 we present epistemic mod-
els and hypertheories formally. In Sect. 3 we propose the logic KPAn of pub-
lic announcements and prove soundness and completeness of the corresponding
hypertheories w.r.t. epistemic models. In Sect. 4 we discuss a problem concern-
ing truthful public announcements over S4n-epistemic models. We conclude the
paper in Sect. 5.

2 Epistemic Models and Hypertheories

Recall the multi-agent modal logic Kn. Let Prop = {p, q, r, . . . } be a countable set
of propositional letters. The language of the logic Kn consists Prop, the classical
propositional connectives ¬ and ∧, and modalities �i, for i = 1, . . . , n. The set
of formulas Fml is generated by the following grammar:

A := p | ¬A | (A ∧ A) | �iA.

The other connectives are defined as usual. An axiomatization of Kn con-
tains, besides the axioms of classical propositional logic and Modus Ponens, the
following belief postulates:

Distributivity: �i(A → B) → (�iA → �iB);
Necessitation rule: From A, infer �iA.

The semantics of Kn is standard Kripke semantics. Namely, a model is a
tuple K = (W,R1, . . . , Rn,�), where

(K1) W �= ∅;
(K2) Ri is a binary relation on W , for i = 1, . . . , n;
(K3) �: Prop → 2W .

66 N. Savić and T. Studer

We call (W,R1, . . . , Rn) a frame.
Truth in Kripke semantics is then defined inductively, starting from atomic

propositions, with classical conditions for Boolean connectives and

u � �iA :⇔ Ri(u) � A. (2)

In epistemic models, the situation is quite different since we use belief sets
instead of (2) to model the agents’ beliefs. Belief sets contain all theorems of
a logic and they are closed under Modus Ponens. We use the following closure
operation.

Definition 1 (Closure of a Set of Formulas). Let L be a logic and T be a
set of formulas.

1. cl0L(T) = T ∪ {A | L
 A};
2. clj+1

L (T) = cljL(T) ∪ {A | B ∈ cljL(T) and B → A ∈ cljL(T), for some B};
3. F ∈ clL(T) iff F ∈ cljL(T), for some j.

Definition 2 (Belief Set). For a given logic L, an L-belief set is a set of for-
mulas T with T = clL(T).

Remark 1. The set clL(T) is a belief set for any set of formulas T .

Remark 2. Instead of belief sets, Artemov uses complete truth assignments in
his definition of epistemic model. For the purpose of this paper, however, belief
sets are better suited.

For a set Z ⊆ X × Y and an element x ∈ X, we set (Z)x := {y | (x, y) ∈ Z}.

Definition 3 (Pre-epistemic Model). Let L be a logic. A pre-epistemic L-
model is a tuple E = (W,R1, . . . , Rn, ν, ν1

B, . . . , νn
B), where:

– W �= ∅ is a non-empty set of states;
– R1, . . . , Rn are binary relations on W ;
– ν ⊆ W × Prop;
– νi

B ⊆ W × For, such that for every u ∈ W , (νi
B)u is an L-belief set.

Definition 4 (Satisfaction Relation). Let E be a pre-epistemic L-model and
u ∈ W . The satisfaction relation, |=, is defined as follows:

– E , u |= p iff (u, p) ∈ ν;
– E , u |= A ∧ B iff E , u |= A and E , u |= B;
– E , u |= ¬A iff E , u �|= A;
– E , u |= �iA iff (u,A) ∈ νi

B.

Definition 5 (Epistemic Model). Let L be a logic. An epistemic L-model is
a pre-epistemic L-model that satisfies

E , u |= �iA ⇒ E , Ri(u) |= A. (3)

Public Announcements for Epistemic Models and Hypertheories 67

In contrast to Kripke models, the truth value of belief formulas in epistemic
models is provided by belief sets and (3) is a set of constraints. Also note that
in (3) we only have the implication ‘from left to right’, while we have an equiv-
alence in (2). Hence the fully explanatory property, which states that

if a sentence is valid at all possible states, then it is believed,

does not hold for epistemic models.
The following theorem shows the relationship between Kripke and epistemic

models: for any given epistemic Kn-model, there is a Kripke model that con-
tains it.

Theorem 1 (Embedding Theorem). For any epistemic Kn-model

E = (W,R1, . . . , Rn, ν, ν1
B, . . . , νn

B),

there exists a Kripke model

K = (˜W, ˜R1, . . . , ˜Rn,�),

such that:

(a) W ⊆ ˜W ;
(b) Ri ⊆ ˜Ri;
(c) for each u ∈ W and each formula A,

E , u |= A iff K, u � A.

Theorem 1 tells us that epistemic models are contained in Kripke models,
where the containing Kripke model is obtained by adding appropriate states to
the epistemic model. The following example illustrates this fact.

Example 1. Consider W consisting of a single state u at which p is true but the
agent does not believe that p. The appropriate epistemic model is:

p,¬�ip

u

Note that it is not a Kripke model (since p holds in every possible state but
is not believed), but can be extended to one:

p,¬�ip

u

¬p,¬�ip

v

68 N. Savić and T. Studer

This example shows one important difference between epistemic and Kripke
models: in epistemic models we do not have to add new states in order to rep-
resent situations where an agent does not believe a true fact, as it is the case in
Kripke models.

Hypertheories provide the proof-theoretic framework that matches epistemic
models.

Definition 6 (Hypertheory). A hypertheory is a tuple

H = (W,R1, . . . , Rn, T),

where:

– (W,R1, . . . , Rn) is a frame;
– T assigns a set of formulas Tu to each u ∈ W .

Note that Tu need not be maximal, i.e., we may have neither p ∈ Tu nor
¬p ∈ Tu. This reflects the fact, mentioned in the introduction, that hypertheories
represent a tool for dealing with partial information.

Definition 7. An epistemic L-model E = (W,R1, . . . , Rn, ν, ν1
B, . . . , νn

B) is a
model of H = (W,R1, . . . , Rn, T) if for each u ∈ W ,

u |= Tu (i.e. u |= A, for each A ∈ Tu).

A formula A logically L-follows from a hypertheory H = (W,R1, . . . , Rn, T) at
state u ∈ W , denoted by

H, u |=L A,

if E , u |= A for each epistemic L-model E of H.

Hyperderivations provide the syntactic consequence relation for
hypertheories.

Definition 8 (Hyperderivation). Let H be a hypertheory. A formula A is
L-hyperderivable at u ∈ W (write H, u (L A) if A can be obtained by the rules:

(1) classical inference1:
(a) u (L A, if A ∈ Tu;
(b) u (L A, if L
 A;
(c) u (L A, if u (L B → A and u (L B for some formula B;

(2) transition: u (L �iA ⇒ Ri(u) (L A;
(3) deduction: u∪A(L B ⇒ u(L A → B, where for a hypertheory H, Hv∪A is

defined as a hypertheory H where Tv is replaced by Tv ∪{A} and u∪A(L B
stands for Hu∪A, u (L B;

(4) consistency: if uRiv, then v (L ⊥ ⇒ u (L ⊥.

1 As usual, we write u L A instead of H, u L A when H is clear from the context.

Public Announcements for Epistemic Models and Hypertheories 69

Note that the transition rule “goes only in one direction”, which corresponds
to (3).

Artemov established the following soundness and completeness result for Kn.

Theorem 2. For a hypertheory H and any Fml-formula A,

H, u (Kn
A iff H, u |=Kn

A.

3 Public Announcements

In this section we discuss how to model public announcements in epistemic mod-
els. For simplicity we follow an approach where the agents believe any formula
that is announced—no matter whether the announcement is truthful or whether
it is consistent with the current beliefs.

The logic KPAn is an extension of the logic Kn with an announcement oper-
ator [·]. The set of formulas Fml[·] is generated by the following grammar:

A := p | ¬A | (A ∧ A) | �iA | [A]A.

Read [A]B as: “after the announcement of A, it holds that B”. The logic KPAn

is given by the following axioms and rules:

Axiom schemes:

(B1) all instantiations of classical propositional tautologies
(B2) �i(A → B) → (�iA → �iB)
(B3) [A]p ↔ p
(B4) [A]¬B ↔ ¬[A]B
(B5) [A](B ∧ C) ↔ ([A]B ∧ [A]C)
(B6) [A]�iB ↔ �i(A → B)
(B7) [A][B]C ↔ [A ∧ B]C

Inference rules:

(IR1) Modus Ponens
(IR2) From A, infer �iA.

Since atomic propositions represent facts, axiom B3 says that announcements
of formulas do not change facts (only agents’ beliefs). Axioms B4 and B5 state
that negation and conjunction behave as expected, while axiom B6 explains
what it means that after an announcements of a formula, an agent beliefs that B.
Finally, axiom B7 says that announcing first a formula A and then B is the same
as announcing A ∧ B.

We already have the definitions of KPAn-belief sets and pre-epistemic KPAn-
models. To define the corresponding satisfaction relation, we add the following
clause to Definition 4:

– E , u |= [A]B iff E|A, u |= B,

70 N. Savić and T. Studer

where the restricted model E|A = (W ′, R′
1, . . . , R

′
n, ν′, ν′1

B , . . . , ν′n
B) is given by:

W ′ = W ,
R′

i = Ri ∩ ([[A]]E × [[A]]E),
ν′ = ν,
ν′i

B = {(w,B) | w ∈ W and B ∈ clKPAn((νi
B)w ∪ {A})},

with [[A]]E = {w ∈ W | E , w |= A}.
Epistemic KPAn-models are now given by Definition 5. We show that the

restriction E|A of an epistemic KPAn-model is well-defined.

Lemma 1. For any formula A, if E is an epistemic KPAn-model, then the
restricted model E|A is an epistemic KPAn-model, too.

Proof. Directly from the definition, we have that W ′ is non-empty, R′
i are binary

relations on W ′, ν′ ⊆ W ′ × Prop, and for any u ∈ W ′, (ν′i
B)u is a belief set and

therefore E|A is a pre-epistemic KPAn-model. We need to prove that for any
formula B, the constraint

E|A, u |= �iB ⇒ E|A, Ri(u) |= B (4)

holds as well. Suppose that E|A, u |= �iB, i.e.,

B ∈ clKPAn
((νi

B)u ∪ {A}).

By induction on the buildup of clKPAn((νi
B)u ∪ {A}), we prove E|A, Ri(u) |= B.

(1) (i) If B ∈ (νi
B)u, from the assumption that E is an epistemic model we get

that E|A, Ri(u) |= B.
(ii) If B = A or KPAn
 B, the claim follows from the definition of an
restricted model.

(2) There exists a formula C, such that both

C,C → B ∈ clKPAn
((νi

B)u ∪ {A}).

By induction hypothesis, E|A, Ri(u) |= C and E|A, Ri(u) |= C → B. Thus
E|A, Ri(u) |= B. ��

Note that KPAn is a conservative extension of the modal logic Kn with respect
to announcement-free formulas. We have for each Fml-formula A,

KPAn
 A iff Kn
 A.

This conservativity result can be transfered to logical consequence.

Lemma 2. Let H be a hypertheory consisting of Fml-formulas and let u be a
state of H. We have for each Fml-formula A,

H, u |=KPAn
A iff H, u |=Kn

A.

Public Announcements for Epistemic Models and Hypertheories 71

We say that a formula A is KPAn-valid, if for any epistemic KPAn-model E
and state u, we have that E , u |= A. We have the following result.

Lemma 3. Axioms B3–B7 are KPAn-valid.

Proof

(B3)
E , u |= [A]p iff E|A, u |= p iff E , u |= p.

(B4)

E , u |= ¬[A]B iff E , u �|= [A]B
iff E|A, u �|= B

iff E|A, u |= ¬B

iff E , u |= [A]¬B.

(B5)

E , u |= [A](B ∧ C) iff E|A, u |= B ∧ C

iff E|A, u |= B and E|A, u |= C

iff E , u |= [A]B and E , u |= [A]C
iff E , u |= [A]B ∧ [A]C.

(B6)
(←) (u,A → B) ∈ νi

B implies (u,A → B) ∈ ν′i
B , where

ν′i
B = {(w,B) | w ∈ W and B ∈ clKPAn

((νi
B)w ∪ {A})}.

Obviously, (u,A) ∈ ν′i
B as well and hence (u,B) ∈ ν′i

B , i.e., E , u |= [A]�iB.
(→)

E , u |= [A]�iB iff E|A, u |= �iB

iff B ∈ clKPAn
((νi

B)u ∪ {A}).

We prove that E , u |= �i(A → B) by induction on the construction of
clKPAn

((νi
B)u ∪ {A}).

(1) (i) If (u,B) ∈ νi
B, since (u,B → (A → B)) ∈ νi

B as well, we obtain that
(u,A → B) ∈ νi

B, i.e., E , u |= �i(A → B).
(ii) If B = A, since KPAn
 A → A, we get (u,A → A) ∈ νi

B.
(iii) If KPAn
 B, the claim follows from the same reasoning as in (i).

(2) Suppose that there exists a formula C, such that both

C,C → B ∈ clKPAn((νi
B)u ∪ {A}).

By induction hypothesis,

E , u |= �i(A → C) and E , u |= �i(A → (C → B)).

Since belief sets are closed under classical propositional reasoning, we
finally obtain E , u |= �i(A → B).

72 N. Savić and T. Studer

(B7) Directly from the fact that (E|A)|B = E|A∧B . ��

From the axiomatization of the logic KPAn, it is clear that we have the
usual “rewriting” property for public announcements, which makes it possible
to remove all announcements from an arbitrary formula (see, e.g., [18]). Namely,
it can be proved that for any Fml[·]-formula A, there exists an Fml-formula AK

such that
KPAn
 A ↔ AK. (5)

Hence we can do the usual completeness by reduction proof for KPAn.

Theorem 3 (Soundness and Completeness Theorem). Let H be a hyper-
theory containing Fml-formulas. For each Fml[·]-formula A, we have

H, u (KPAn
A iff H, u |=KPAn

A.

Proof. From Lemma 3 we know that axioms B3–B7 are sound, while from the
definition of an epistemic KPAn-model follows that the axioms B1–B2, both
inference rules, as well as transition, deduction and consistency constraints from
KPAn-hyperderivations are sound as well, i.e., the direction from left to right is
established.

Completeness is obtained from the following observation:

H, u |=KPAn
A implies H, u |=KPAn

AK (by (5) and soundness)

implies H, u |=Kn
AK (Lemma 2)

implies H, u (Kn
AK (Theorem 2)

implies H, u (KPAn
A.

��

Our belief change operation satisfies the AGM postulates [1,10] for belief
expansion. First of all, it is obvious from our semantics that all announcements
are successful, i.e., after any announcement of A, each agent beliefs A. Formally,
we have that

[A]�iA

is KPAn-valid.
Further, we have persistence of beliefs, i.e, no announcement will change

existing beliefs. The formula

�iA → [B]�iA

is KPAn-valid. Indeed, for an arbitrary epistemic KPAn-model E and formula B:

E , u |= �iA iff (u,A) ∈ νi
B

then A ∈ clKPAn((νi
B)u ∪ {B})

iff E|B , u |= �iA

iff E , u |= [B]�iA.

Public Announcements for Epistemic Models and Hypertheories 73

The belief sets of the restricted model are given as a least fixed point of a
monotone operator. It is an immediate consequence of this definition that our
model update satisfies the requirement of minimal change. We have the following
lemma.

Lemma 4 (Minimal Change). Let E be an epistemic KPAn-model with a
state w. Let F be any epistemic KPAn-model with a state v such that

1. F , v |= �iA
2. E , w |= �iB implies F , v |= �iB for all formulas B.

Then we find that for all formulas B,

E|A, w |= �iB implies F , v |= �iB.

4 The Case of Knowledge Change in Epistemic Models

In this section we show that there is no straightforward adaptation of our app-
roach to the case of knowledge change. Let us investigate public announcements
over S4n. In order to model them, we consider so-called truthful announcements.
For a given Kripke model M = (W,R1, . . . , Rn,�), we define satisfiability of
announcement formulas by

M, s � [A]B iff M, s � A implies M|A, s � B, (6)

where M|A = (W ′, R′
1, . . . , R

′
n,�′) is the restriction of the model defined as

W ′ = [[A]]M,
R′

i = Ri ∩ ([[A]]M × [[A]]M),
�′ = � ∩[[A]]M,

for [[A]]M = {w ∈ W | w � A}.
Adapting this strategy for an epistemic S4n-model

E = (W,R1, . . . , Rn, ν, ν1
B, . . . , νn

B)

yields the following definition of satisfiability:

E , s |= [A]B iff E , s |= A implies E|A, s |= B,

where E|A is given by

W ′ = [[A]]E ,
R′

i = Ri ∩ ([[A]]E × [[A]]E),
ν′ = ν,
ν′i

B = {(w,B) | w ∈ [[A]]E and B ∈ clS4n((νi
B)w ∪ {A})},

74 N. Savić and T. Studer

where clS4n is given as in Definition 1 with the addition of

– if A ∈ cljS4n(T), then �iA ∈ clj+1
S4n

(T),
– if �iA ∈ cljS4n(T), then A ∈ clj+1

S4n
(T).

Unfortunately, restricted S4n-models are not well-defined. There exists an
epistemic S4n-model E and a formula A such that the restriction E|A is not an
epistemic S4n-model. Consider E = (W,R, ν, νB) with

W = {w},
R = {(w,w)},
ν = {(w, p)},
νB = {(w,A) | A ∈ clS4n({�p → �q})}.

This is an epistemic S4n-model. We can depict it as follows:

p,¬q,¬�p,¬�q,�(�p → �q)

w

Since p holds at the state w, the restriction of E to the formula p yields

E|p = (W,R, ν, ν′
B) with ν′

B = {(w,A) | A ∈ clS4n({�p → �q, p})}.

Thus, by the closure conditions of clS4n , we get �p ∈ (ν′
B)w, thus �q ∈ (ν′

B)w
and finally q ∈ (ν′

B)w. However, now we have the situation that E|p, w |= �q
but also E|p, w �|= q. Since we also have R(w,w), we find that condition (3) in
the definition of an epistemic model is not satisfied.

5 Conclusion

We introduced public announcements for epistemic models and studied the cor-
responding belief dynamics. We showed that our model update operation sat-
isfies the AGM postulate of minimal change. We also adapted hypertheories to
support public announcements and established soundness and completeness.

In the case of knowledge change and truthful announcements, the situation
gets more complicated. We presented an example showing that the standard app-
roach cannot be used in a straightforward way to capture public announcements
over epistemic S4n-models. This remains a topic for future research.

Moreover, it will be interesting to see how other belief change operations can
be implemented in the framework of epistemic models. The fact that minimal
change is satisfied for public announcements is a strong hint that using epistemic
models is a promising approach to dealing with belief change.

Public Announcements for Epistemic Models and Hypertheories 75

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530
(1985)

2. Artemov, S.N.: The logic of justification. RSL 1(4), 477–513 (2008)
3. Artemov, S.N.: Knowing the model. ArXiv e-prints https://arxiv.org/abs/1610.

04955 (2016)
4. Artemov, S.N.: New foundations of epistemic logic. Talk given at OST 2018, Bern

(2018). http://ost18.inf.unibe.ch/
5. Artemov, S.N.: Rebuilding epistemic logic. Talk given at Trends in Logic XVIII,

Milan (2018). https://www.unicatt.it/meetings/trends-home
6. Artemov, S.N.: Revising epistemic logic. Talk given at LFCS 2018, Deerfield Beach

(2018). http://lfcs.ws.gc.cuny.edu/lfcs-2018/
7. Brünnler, K., Flumini, D., Studer, T.: A logic of blockchain updates. In: Artemov,

S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 107–119. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72056-2 7

8. Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change.
In: Arrazola, X., Ponte, M. (eds.) LogKCA-2010, pp. 135–155. University of the
Basque Country Press (2010)

9. Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifica-
tions. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014)

10. Gärdenfors, P.: Knowledge in Flux. The MIT Press, Cambridge (1988)
11. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. Log. Lang.

Inf. 6(2), 147–169 (1997)
12. Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S.,

Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35722-0 19

13. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications.
(in preparation)

14. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007).
Reprinted from Emrich, M.L., et al. (eds.) Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems (ISMIS 1989), pp. 201–216.
Oak Ridge National Laboratory, ORNL/DSRD-24 (1989)

15. Renne, B.: Public communication in justification logic. J. Log. Comput. 21(6),
1005–1034 (2011). Published online July 2010

16. Steiner, D.: Belief change functions for multi-agent systems. Ph.D. thesis, Univer-
sity of Bern (2009)

17. Steiner, D., Studer, T.: Total public announcements. In: Artemov, S.N., Nerode,
A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 498–511. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72734-7 35

18. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5839-4

https://arxiv.org/abs/1610.04955
https://arxiv.org/abs/1610.04955
http://ost18.inf.unibe.ch/
https://www.unicatt.it/meetings/trends-home
http://lfcs.ws.gc.cuny.edu/lfcs-2018/
https://doi.org/10.1007/978-3-319-72056-2_7
https://doi.org/10.1007/978-3-642-35722-0_19
https://doi.org/10.1007/978-3-540-72734-7_35
https://doi.org/10.1007/978-1-4020-5839-4

Revisiting the
Generalized �Loś-Tarski Theorem

Abhisekh Sankaran(B)

Department of Computer Science and Technology,
University of Cambridge, Cambridge, UK

as2269@cam.ac.uk

Abstract. We present a new proof of the generalized �Loś-Tarski
theorem (GLT(k)) from [6], over arbitrary structures. Instead of using λ-
saturation as in [6], we construct just the “required saturation” directly
using ascending chains of structures. We also strengthen the failure of
GLT(k) in the finite shown in [7], by strengthening the failure of the
�Loś-Tarski theorem in this context. In particular, we prove that not just
universal sentences, but for each fixed k, even Σ0

2 sentences containing k
existential quantifiers fail to capture hereditariness in the finite. We con-
clude with two problems as future directions, concerning the �Loś-Tarski
theorem and GLT(k), both in the context of all finite structures.

Keywords: �Loś-Tarski theorem · k-hereditary · k-ary cover · Chain

1 Introduction

Preservation theorems are a class of results from classical model theory that pro-
vide syntactic characterizations of first order (FO) definable classes of arbitrary
structures (structures that could be finite or infinite), that are closed under given
model-theoretic operations. One of the earliest such results is the �Loś-Tarski the-
orem that states that a class of arbitrary structures defined by an FO sentence
is hereditary (closed under substructures) if, and only if, it is definable by a
universal sentence (an FO sentence that contains only universal quantifiers) [2].
The theorem in “dual” form characterizes extension closed FO definable classes
of arbitrary structures in terms of existential sentences. The theorem extends to
theories (sets of sentences) as well. The �Loś-Tarski theorem is historically impor-
tant for classical model theory since its proof constituted the earliest applications
of the FO Compactness theorem (a central result of model theory), and since
it triggered off an extensive study of preservation theorems for various other
model-theoretic operations (homomorphisms, unions of chains, direct products,
etc.), also for logics beyond FO (such as infinitary logics) [3].

Recently [6], a generalization of the �Loś-Tarski theorem was proven by intro-
ducing and characterizing a new semantic property that generalizes hereditari-
ness in a parameterized manner. We refer to this property, called preservation
under substructures modulo k-cruxes in [6], as k-hereditariness in this paper.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 76–88, 2019.
https://doi.org/10.1007/978-3-662-58771-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_8&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_8

Revisiting the Generalized �Loś-Tarski Theorem 77

A class of structures is said to be k-hereditary if every structure in the class con-
tains a set of at most k elements, called a k-crux of the structure, such that all
substructures (of the mentioned structure) containing the k-crux are also in the
class. For instance, consider the class of arbitrary graphs that contain a dominat-
ing set of size at most k. (A dominating set in graph is a set S of vertices such that
every vertex in the graph is either in S or adjacent to a vertex in S.) This class can
be described by the FO sentence ϕ := ∃x1 . . . ∃xk∀y

(∨i=k
i=1((y = xi)∨E(y, xi))

)
.

In any model of ϕ, any witnesses to the existential quantifiers of ϕ form a domi-
nating set, and any such set is a k-crux of the model; then ϕ defines a k-hereditary
class. Observe that ϕ is an ∃k∀∗ sentence, i.e. a sentence in prenex normal form
whose quantifier prefix is a string of k existential quantifiers followed by uni-
versal quantifiers1. By a similar reasoning as above, it can be shown that any
∃k∀∗ sentence defines a k-hereditary class. The authors of [6] proved that the
converse is true as well, that any FO definable k-hereditary class of arbitrary
structures is always definable by an ∃k∀∗ sentence, thus proving a generalized
�Loś-Tarski theorem, that we denote GLT(k) (following [6]). Observe that the
�Loś-Tarski theorem is a special case of GLT(k) when k is 0.

The proof of GLT(k) from [6] goes via first showing GLT(k) over a special class
of structures called λ-saturated structures where λ is an infinite cardinal. These
structures, intuitively speaking, realize many types (maximal consistent sets of
formulae in a given number of free variables); in particular, such a structure
A realizes all the types that are realized in all structures elementarily equiva-
lent to A, i.e. structures which satisfy the same FO sentences as A. Then using
the fact that every structure has an elementarily equivalent extension that is
λ-saturated for some λ, the truth of GLT(k) is “transferred” to all structures.
To show GLT(k) over λ-saturated structures, a notion dual to k-hereditariness
is introduced, called preservation under k-ary covered extensions, that we call
k-extension closure in this paper. Given a structure A, define a set R of substruc-
tures of A to be a k-ary cover of A if every set of k elements of A is contained in
some structure of R. We then say A is a k-extension of R. A class is k-extension
closed if every k-extension of a set of structures of the class, is also in the class.
One sees that a class is k-extension closed if, and only if, its complement is k-
hereditary. Then GLT(k) is shown by proving its dual form that characterizes
k-extension closure in terms of ∀k∃∗ sentences. The heart of this proof – Lemma
4.2 of [6] – shows that if Γ is the theory of the ∀k∃∗ implications of a sentence ϕ
that defines a k-extension closed class, then every λ-saturated model of Γ has a
k-ary cover consisting of the models of ϕ. It follows that the λ-saturated model
then itself models ϕ, showing that ϕ and Γ are equivalent; then one application
of the Compactness theorem shows ϕ to be equivalent to a single sentence of Γ .

The first result of this paper is motivated by the above proof of [6]. In par-
ticular, we give a new proof of GLT(k) that completely avoids using λ-saturated
structures, by making the key observation that the full power of λ-saturation
is hardly used in the proof of the mentioned Lemma 4.2 of [6]. The formulae

1 See [5] for a variety of graph properties of interest in parameterized algorithms and
finite model theory, that are k-hereditary and expressible as ∃k∀∗ sentences.

78 A. Sankaran

that play a central role in the proof are not arbitrary FO formulae, but are in
fact formulae that have only one quantifier alternation at best. We therefore
construct just the “required saturation” as is needed for our proof, by showing
a “weaker” version of the mentioned Lemma 4.2, that states that for Γ and ϕ as
above, every model of Γ has an elementarily equivalent extension that might not
be λ-saturated for any λ, but still contains a k-ary cover consisting of models
of ϕ; see (1) → (3) of Lemma 3 of this paper. Then showing (the dual form
of) GLT(k) over the class of the mentioned elementary extensions is sufficient to
transfer GLT(k) out to all structures. The aforementioned implication is in turn
shown by defining in the natural way, the more general notion of a k-ary cover
of a structure in a superstructure of it, and then using (transfinite) induction
over the k-tuples of elements of a given model A of Γ , to construct an elemen-
tary extension A′ of A such that A has a k-ary cover consisting of models of ϕ
in A′; see (1) → (2) of Lemma 3. Applying this implication iteratively to the
elementary extensions it gives, we get a chain of structures whose union is an
elementary extension of A that has a (self-contained) k-ary cover of models of ϕ;
see (2) → (3) of Lemma 3. Our new proof is therefore much “from the scratch”
as opposed to the proof in [6] which uses established notions of model theory.

The second result of this paper is a strengthening of the failure of the �Loś-
Tarski theorem in the finite. In the research programme of investigating classical
model theoretic results over all finite structures, which is amongst the major
themes of finite model theory, one of the first results identified to fail was the
�Loś-Tarski theorem [1]. (In fact, Tait had already shown this failure in 1959 [8].)
Specifically, there is an FO sentence that is hereditary over the class of all finite
structures, but that is not equivalent over this class to any universal sentence.
In the spirit of [1], one can ask if there is a different syntactic characterization
of hereditariness in the finite, or even a syntactic (proper) subfragment of FO
that is expressive enough to contain (up to equivalence) all FO sentences that
are hereditary when restricted to the finite. We show in Theorem 4 that for no
fixed k, is the class of ∃k∀∗ sentences such a subfragment. Specifically, for each
k, we construct a sentence ϕk whose finite models form a hereditary class, and
yet ϕk is not equivalent over all finite structures to any ∃k∀∗ sentence.

This result also strengthens the failure of GLT(k) in the finite as shown in [7].
For every k, the authors of [7] present a counterexample to GLT(k) (over all finite
structures) that is k-hereditary but not (k−1)-hereditary. The sentence ϕk given
by our Theorem 4 provides a counterexample to GLT(k), that is l-hereditary for
all l. The proof of Theorem 4 proceeds by constructing for each ∃k∀n sentence γ,
a model A of ϕk such that, if A models γ, then one can “edit” A depending on the
witnesses (in A) of the existential quantifiers of γ, to obtain a non-model B of
ϕk, that also models γ. This proof can be seen as being based on an Ehrenfeucht-
Fräissé game in which the Spoiler picks k elements from A in the first move, in
response to which the Duplicator first constructs the structure B and then picks
k elements from it, and in the next move, the Spoiler picks n elements from B
to which the Duplicator responds by picking n elements from A. Interestingly,
the sentence ϕk itself turns out to be equivalent to an ∃k+1∀∗ sentence.

Revisiting the Generalized �Loś-Tarski Theorem 79

Paper Organization: In Sect. 2, we introduce terminology and notation used
in the paper, and formally state GLT(k). In Sect. 3, we present our new proof of
GLT(k) and in Sect. 4, we prove the strengthened failure of the �Loś-Tarski theo-
rem in the finite. We conclude in Sect. 5 by presenting two problems for future
investigation, one concerning the �Loś-Tarski theorem and the other concerning
GLT(k), both in the context of all finite structures.

2 Preliminaries and Background

We assume the reader is familiar with standard notation and terminology used
in the syntax and semantics of FO [2]. A vocabulary τ is a set of predicate,
function and constant symbols. In this paper, we will always be concerned with
arbitrary finite vocabularies, unless explicitly stated otherwise. We denote by
FO(τ) the set of all FO formulae over vocabulary τ . A sequence (x1, . . . , xk)
of variables is denoted by x̄. A formula ψ whose free variables are among x̄,
is denoted by ψ(x̄). A formula with no free variables is called a sentence. An
FO(τ) theory is a set of FO(τ) sentences. An FO(τ) theory with free variables
x̄ is a set of FO(τ) formulae, all of whose free variables are among x̄. When τ
is clear from context, we call an FO(τ) theory, a theory simply. We denote by
N, the natural numbers including zero. We abbreviate a block of quantifiers of
the form Qx1 . . . Qxk by Qkx̄ or Qx̄ (depending on what is better suited for
understanding), where Q ∈ {∀,∃} and k ∈ N. By Q∗, we mean a block of k Q
quantifiers, for some k ∈ N. For every non-zero n ∈ N, we denote by Σ0

n and Π0
n,

the classes of all FO formulae in prenex normal form, whose quantifier prefixes
begin with ∃ and ∀ respectively, and consist of n − 1 alternations of quantifiers.
We call Σ0

1 formulae existential and Π0
1 formulae universal. We call Σ0

2 formulae
with k existential quantifiers ∃k∀∗ formulae, and Π0

2 formulae with k universal
quantifiers ∀k∃∗ formulae.

We use standard notions of τ -structures (denoted A,B etc.; we refer to
these simply as structures when τ is clear from context), substructures (denoted
A ⊆ B), extensions, isomorphisms (denoted A ∼= B), isomorphic embeddings
(denoted A ↪→ B), elementary equivalence (denoted A ≡ B), elementary sub-
structures (denoted A
 B) and elementary extensions, as defined in [2]. Given
a structure A, we use UA to denote the universe of A, and |A| to denote the size
(or power) of A which is the cardinality of UA. For an FO sentence ϕ and an
FO theory T , we denote by A |= ϕ and A |= T that A is a model of ϕ and T
respectively. In Sect. 3 of the paper, we consider structures that could be finite
or infinite, whereas in Sect. 4 we restrict ourselves to only finite structures.

Finally, we use standard abbreviations of English phrases that commonly
appear in mathematical literature. Specifically, ‘w.l.o.g’ stands for ‘without loss
of generality’, ‘iff’ stands for ‘if and only if’, and ‘resp.’ stands for ‘respectively’.

2.1 The Generalized �Loś-Tarski Theorem

We recall the notions of preservation under substructures modulo k-cruxes,
k-ary covered extensions and preservation under k-ary covered extensions

80 A. Sankaran

introduced in [6], that we resp. call in this paper k-hereditariness, k-extensions
and k-extension closure. These notions for k = 0 correspond exactly to heredi-
tariness, extensions and extension closure resp.

Definition 1 (Definition 3.1 [6]).

a. Let U be a class of arbitrary structures and k ∈ N. A subclass S of U is said
to be k-hereditary over U , if for every structure A of S, there is a set C ⊆ UA

of size ≤ k such that if B ⊆ A, B contains C and B ∈ U , then B ∈ S. The
set C is called a k-crux of A w.r.t. S over U .

b. Given theories T and V , we say T is k-hereditary modulo V , if the class of
models of T ∪ V is k-hereditary over the class of models of V . A sentence ϕ
is k-hereditary modulo V if the theory {ϕ} is k-hereditary modulo V .

Definition 2 (Definitions 3.5 and 3.8 [6]).

a. Given a structure A, a non-empty collection R of substructures of A is said to
be a k-ary cover of A if for every set C ⊆ UA of size ≤ k, there is a structure
in R that contains C. We call A a k-extension of R.

b. For a class U of arbitrary structures and k ∈ N, a subclass S of U is said to
be k-extension closed over U if for every collection R of structures of S, if A
is a k-extension of R and A ∈ U , then A ∈ S.

c. Given theories V and T , we say T is k-extension closed modulo V if the
class of models of T ∪ V is k-extension closed over the class of models of V .
A sentence ϕ is k-extension closed modulo V if the theory {ϕ} is k-extension
closed modulo V .

We extend the above definitions slightly to formulae and theories with free
variables. Given a vocabulary τ , let τn denote the vocabulary obtained by
expanding τ with n fresh and distinct constant symbols c1, . . . , cn. For a given
FO(τ) theory T (x1, . . . , xn), let T ′ denote the FO(τn) theory (without free vari-
ables) obtained by substituting ci for xi in T (x1, . . . , xn) for each i ∈ {1, . . . , n}.
Then we say T (x1, . . . , xn) is k-hereditary, resp. k-extension closed, modulo an
FO(τ) theory V (without free variables) if T ′ is k-hereditary, resp. k-extension
closed, modulo V where V is seen as an FO(τn) theory. A formula ϕ(x1, . . . , xn)
is k-hereditary, resp. k-extension closed, modulo V if the theory {ϕ(x1, . . . , xn)}
is k-hereditary, resp. k-extension closed, modulo V . The following lemma estab-
lishes the duality of the introduced preservation properties.

Lemma 1 (Lemma 3.9 [6]). Let U be a class of arbitrary structures, S be a
subclass of U and S be the complement of S in U . Then S is k-hereditary over
U iff S is k-extension closed over U , for each k ∈ N. In particular, if U is
defined by a theory V , then a formula ϕ(x̄) is k-hereditary modulo V iff ¬ϕ(x̄)
is k-extension closed modulo V .

We now recall GLT(k) as proved in [6]. This theorem gives syntactic character-
izations of FO definable k-hereditary and k-extension closed classes of structures.
Observe that the case of k = 0 gives exactly the �Loś-Tarski theorem. Below, for

Revisiting the Generalized �Loś-Tarski Theorem 81

FO(τ) formulae ϕ(x̄) and ψ(x̄) where x̄ = (x1, . . . , xn), we say ϕ(x̄) is equivalent
to ψ(x̄) modulo V if for every τ -structure A and every n-tuple ā from A, we have
(A, ā) is a model of {ϕ(x̄)} ∪ V iff it is a model of {ψ(x̄)} ∪ V .

Theorem 1 (Generalized �Loś-Tarski theorem: GLT(k); Corollaries 4.4
and 4.6 [6]). Let ϕ(x̄) and V be a given formula and theory respectively, and
k ∈ N. Then the following are true:

1. The formula ϕ(x̄) is k-hereditary modulo V iff it is equivalent modulo V to
an ∃k∀∗ formula whose free variables are among x̄.

2. The formula ϕ(x̄) is k-extension closed modulo V iff it is equivalent modulo
V to a ∀k∃∗ formula whose free variables are among x̄.

3 A New Proof of GLT(k)

We give a new proof to a more general result than Theorem 1, from [6]. This
result is a generalization of the “extensional” version of GLT(k) to theories. We
extend in the natural way the aforestated notion of equivalence modulo a theory,
of formulae, to theories with free variables.

Theorem 2 (Theorem 4.1 [6]). A theory T (x̄) is k-extension closed modulo
a theory V if, and only if, T (x̄) is equivalent modulo V to a theory (consisting)
of ∀k∃∗ formulae all of whose free variables are among x̄.

Using the above result, Theorem 1 can be proved as below.

Proof (of Theorem 1). We prove part (2) of Theorem 1. Part (1) of Theorem 1
easily follows from part (2) and Lemma 1.

The ‘If’ direction is straightforward. Let ϕ(x̄) be equivalent modulo V to
the ∀k∃∗ formula ψ(x̄). Then the theory {ϕ(x̄)} is equivalent modulo V to the
theory {ψ(x̄)}. Then {ϕ(x̄)}, and hence ϕ(x̄), is k-extension closed modulo V by
Theorem 2. For the ‘Only if’ direction, let ϕ(x̄) be k-extension closed modulo V ;
then so is the theory {ϕ(x̄)}. By Theorem 2, {ϕ(x̄)} is equivalent to a theory Z(x̄)
of ∀k∃∗ formulae whose free variables are among x̄. By Compactness theorem,
{ϕ(x̄)} is equivalent modulo V to a finite subset Y (x̄) of Z(x̄). Then ϕ(x̄) is
equivalent modulo V to the conjunction of the formulae of Y (x̄). Since any
conjunction of ∀k∃∗ formulae is equivalent (modulo any theory) to a single ∀k∃∗

formula, the result follows. �
Towards Theorem 2, we first recall some important notions and results from

the classical model theory literature [2] that are needed for our proof.

Lemma 2 (Corollary 5.4.2, Chap. 5 [2]). Let A and B be structures such that
every existential sentence that is true in B is true in A. Then B is isomorphically
embeddable in an elementary extension of A.

82 A. Sankaran

Given a cardinal λ, an ascending chain, or simply a chain, (Aη)η<λ of struc-
tures is a sequence A0,A1, . . . of structures such that A0 ⊆ A1 ⊆ The union
of this chain is a structure A defined as follows: (i) UA =

⋃
η<λ UAη

, (ii) cA = cAη

for every constant symbol c ∈ τ and every η < λ, (iii) RA =
⋃

η<λ RAη for every
relation symbol R ∈ τ , and (iv) fA =

⋃
η<λ fAη for every function symbol f ∈ τ

(here, in taking the union of functions, we view an n-ary function as its corre-
sponding (n + 1)-ary relation). Observe that A is well-defined. We denote A as⋃

η<λ Aη. If it is additionally the case that A0
 A1
 . . . above, then we say
(Aη)η<λ is an elementary chain. We now have the following result.

Theorem 3 (Tarski-Vaught elementary chain theorem, Theorem 3.1.9,
Chap. 3 [2]). Let (Aη)η<λ be an elementary chain of structures. Then

⋃
η<λ Aη

is an elementary extension of Aη for each η < λ.

The key element of our proof of Theorem 2 is the notion of a k-ary cover
of a structure A in an extension of A. Below is the definition. Observe that
this notion generalizes the notion of k-ary cover seen in Definition 2 – the latter
corresponds to the notion in Definition 3, with A+ being the same as A.

Definition 3. Let A be a structure and A+ be an extension of A. A non-empty
collection R of substructures of A+ is said to be a k-ary cover of A in A+ if for
every k-tuple ā of elements of A, there exists a structure in R that contains (the
elements of) ā.

The following lemma is at the heart of our proof. It (along with its application
in proving Theorem 2) shows why “full” λ-saturation as is used in a similar result
(Lemma 4.2) in [6], is not needed for Theorem 2. Below, a consistent theory is one
that has a model, and Γ is the set {ϕ | (V ∪T) → ϕ where ϕ is a ∀k∃∗ sentence}.

Lemma 3. Let V and T be consistent theories and k ∈ N. Let Γ be the set of
∀k∃∗ consequences of T modulo V . Then for every model A of V , the following
are equivalent:

1. A is a model of V ∪ Γ .
2. A is a model of V ∪Γ , and there exists an elementary extension A+ of A and

a k-ary cover R of A in A+ such that B |= (V ∪ T) for every B ∈ R.
3. There exists an elementary extension A+ of A and a k-ary cover R of A+ (in

A+) such that B |= (V ∪ T) for every B ∈ R.

Using the above lemma, Theorem 2 can be proved as follows.

Proof (of Theorem 2). We prove the theorem for theories without free variables;
the proof for theories with free variables follows from definitions.

If: Suppose T is equivalent modulo V to a theory Z of ∀k∃∗ sentences. Let
A |= V and let R be a k-ary cover of A consisting of models of V ∪ T . We
show that A |= T . Consider a sentence ϕ := ∀kx̄ψ(x̄) ∈ Z where ψ(x̄) is an
existential formula. Let ā be a k-tuple from A. Since R is a k-ary cover of A,
there exists B ∈ R such that B ⊆ A and B contains ā. Since B |= V ∪ T ,

Revisiting the Generalized �Loś-Tarski Theorem 83

we have B |= Z (since Z and T are equivalent modulo V); then B |= ϕ and
hence (B, ā) |= ψ(x̄). Since existential formulae are preserved under extensions
by �Loś-Tarski theorem, we have (A, ā) |= ψ(x̄). Since ā is an arbitrary k-tuple
of A, we have A |= ϕ. Finally, since ϕ is an arbitrary sentence of Z, we have
A |= Z, and hence A |= T .

Only if: Conversely, suppose T is k-extension closed modulo V . If V ∪ T is
unsatisfiable, we are trivially done. Else, let Γ be the set of ∀k∃∗ consequences
of T modulo V . Then (V ∪T) → (V ∪Γ). Conversely, suppose A |= (V ∪Γ). By
Lemma 3, there exists an elementary extension A+ of A (hence A+ |= V) for
which there is a k-ary cover consisting of models of V ∪ T . Then A+ |= T since
T is k-extension closed modulo V , whereby A |= T . In other words, (V ∪ Γ) →
(V ∪ T), so that T is equivalent to Γ modulo V. Then Γ is the desired ∀k∃∗

theory. �
Towards the proof of Lemma 3, we would require an auxiliary lemma that

we state and prove below.

Lemma 4. Let V, T and Γ be as in the statement of Lemma 3, and suppose
A |= (V ∪ Γ). Given an elementary extension A′ of A and a k-tuple ā of A,
there exist an elementary extension A′′ of A′ and a substructure B of A′′, such
that (i) B contains ā and (ii) B |= (V ∪ T).

Proof. Let tpΠ,A,ā(x̄) denote the Π0
1 -type of ā in A, that is, the set of all Π0

1

formulae that are true of ā in A (so |x̄| = |ā|). Let Z(x̄) be the theory given by
Z(x̄) := V ∪ T ∪ tpΠ,A,ā(x̄). We show below that Z(x̄) is satisfiable. Assuming
this, it follows that if (D, d̄) |= Z(x̄), then every existential sentence that is true
in (D, d̄) is also true in (A, ā), and hence in (A′, ā). Then by Lemma 2, there is an
isomorphic embedding f of (D, d̄) in an elementary extension (A′′, ā) of (A′, ā).
If the vocabulary of A is τ , then taking B to be the τ -reduct of the image of
(D, d̄) under f , we see that B and A′′ are as desired.

We show Z(x̄) is satisfiable by contradiction. Suppose Z(x̄) is inconsistent;
then by Compactness theorem, there is a finite subset of Z(x̄) that is inconsistent.
Since tpΠ,A,ā(x̄) is closed under finite conjunctions and since each of tpΠ,A,ā(x̄),
V and T is consistent, there exists ψ(x̄) ∈ tpΠ,A,ā(x̄) such that V ∪T ∪{ψ(x̄)} is
inconsistent. In other words, (V ∪T) → ¬ψ(x̄). Since V ∪T has no free variables,
we have (V ∪T) → ϕ, where ϕ := ∀kx̄ ¬ψ(x̄). Observe that ¬ψ(x̄) is equivalent to
an existential formula; then ϕ is equivalent to a sentence in Γ , and hence A |= ϕ.
Then (A, ā) |= ¬ψ(x̄), contradicting our inference that ψ(x̄) ∈ tpΠ,A,ā(x̄). �
Proof (of Lemma 3). (3) → (1): This implication is established along similar
lines as the ‘If’ direction of Theorem 2. We show that A+ models ϕ for each
sentence ϕ of Γ ; then A models ϕ as well since A
 A+, and hence A |= Γ .

(1) → (2): We have two cases here depending on whether A is finite or infinite.
(1) A is finite: Given a k-tuple ā of A, by Lemma 4 there exists an elementary

extension A′′ of A and a substructure Bā of A′′ such that (i) Bā contains ā and
(ii) Bā |= (V ∪ T). Since A is finite, and since elementary equivalence is the

84 A. Sankaran

same as isomorphism over finite structures [2], we have A′′ = A. Then taking
A+ = A and R = {Bā | ā ∈ (UA)k}, we see that A+ and R are respectively
indeed the desired elementary extension of A and k-ary cover of A in A+.

(2) A is infinite: The proof for this case is along the lines of the proof of
the characterization of Π0

2 sentences in terms of the property of preservation
under unions of chains (see proof of Theorem 3.2.3 in Chap. 3 of [2]). Let λ be
the successor cardinal of |A| and (āκ)κ<λ be an enumeration of the k-tuples of
A. For η ≤ λ, given sequences (Eκ)κ<η and (Fκ)κ<η of structures, we say that
P((Eκ)κ<η, (Fκ)κ<η) is true iff (Eκ)κ<η is an elementary chain and A
 E0, and
for each κ < η, we have (i) Fκ ⊆ Eκ, (ii) Fκ contains āκ, and (iii) Fκ |= (V ∪T).
We show below the existence of sequences (Aκ)κ<λ and (Bκ)κ<λ of structures
such that P((Aκ)κ<λ, (Bκ)κ<λ) is true. Then taking A+ =

⋃
κ<λ Aκ and R =

{Bκ | κ < λ}, we see by Theorem 3 that A+ and R are respectively indeed the
elementary extension of A and k-ary cover of A in A+ as desired.

We construct the sequences (Aκ)κ<λ and (Bκ)κ<λ by constructing for each
positive ordinal η < λ, the partial (initial) sequences (Aκ)κ<η and (Bκ)κ<η and
showing that P((Aκ)κ<η, (Bκ)κ<η) is true. We do this by (transfinite) induction
on η. For the base case of η = 1, we see by Lemma 4 that if A′ = A, then there
exists an elementary extension A′′ of A and a substructure B of A′′ such that (i)
B contains ā0 and (ii) B |= (V ∪T). Then taking A0 = A′′ and B0 = B, we see
that P((A0), (B0)) is true. As the induction hypothesis, assume that we have
constructed sequences (Aκ)κ<η and (Bκ)κ<η such that P((Aκ)κ<η, (Bκ)κ<η) is
true. Then by Theorem 3, the structure A′ =

⋃
κ<η Aκ is such that Aκ
 A′ for

each κ < η. Then for the tuple āη of A, by Lemma 4, there exists an elementary
extension C of A′ and a substructure D of C such that (i) D contains āη and (ii)
D |= (V ∪ T). Then taking Aη = C and Bη = D, and letting μ be the successor
ordinal of η, we see that P((Aκ)κ<μ, (Bκ)κ<μ) is true, completing the induction.

(2) → (3): Any elementary extension of A models V ∪ Γ . Then by applying the
implication (1) → (2) iteratively to the elementary extensions that (2) produces,
we get a sequence (Ai)i≥0 of elementary extensions of A, and a sequence (Ri)i≥0

of collections of structures with the following properties:

1. (Ai)i≥0 is an elementary chain such that A0 = A (whereby Ai |= V for i ≥ 0).
2. For each i ≥ 0, Ri is a k-ary cover of Ai in Ai+1 such that B |= (V ∪ T) for

every B ∈ Ri.

Consider the structure A+ =
⋃

i≥0 Ai. By Theorem 3, we have Ai
 A+ for
each i ≥ 0, and (hence) that A+ |= V . Consider any k-tuple ā of A+; there exists
j ≥ 0 such ā is contained in Aj . Then there exists a structure Bā ∈ Rj such that
(i) Bā contains ā and (ii) Bā |= (V ∪T). Since Bā ∈ Rj , we have Bā ⊆ Aj+1 and
since Aj+1
 A+, we have Bā ⊆ A+. Then R = {Bā | ā is a k-tuple from A+}
is the desired k-ary cover of A+ such that B |= (V ∪ T) for each B ∈ R. �

4 A Stronger Failure of �Loś-Tarski Theorem in the Finite

In this section, we strengthen the known failure of the �Loś-Tarski theorem in the
finite [8]. As a consequence, we get a strengthening of the failure of GLT(k) in

Revisiting the Generalized �Loś-Tarski Theorem 85

the finite for each k, over the one proved in [7]. Below, by ϕk is (k-)hereditary
over S we mean that the class of finite models of ϕk is (k-)hereditary over S.

Theorem 4. There exists a vocabulary τ such that if S is the class of all finite
τ -structures, then for each k ≥ 0, there exists an FO(τ) sentence ϕk that is
hereditary over S, but that is not equivalent over S, to any ∃k∀∗ sentence. It
follows that there is a sentence that is k-hereditary over S (ϕk being one such
sentence) but that is not equivalent over S to any ∃k∀∗ sentence.

Proof. The second part of the theorem follows from the first part since a sentence
that is hereditary over S is also k-hereditary over S for each k ≥ 0. We now prove
the first part of the theorem. Consider the vocabulary τ = {≤, S, P, c, d} where
≤ and S are binary relation symbols, P is a unary relation symbol, and c and
d are constant symbols. The sentence ϕk is constructed along the lines of the
counterxample to the �Loś-Tarski theorem in the finite as given in [1].

ϕk := (ξ1 ∧ ξ2 ∧ ξ3) ∧ ¬(ξ4 ∧ ξ5)
ξ1 := “ ≤ is a linear order”
ξ2 := “c is minimum under ≤ and d is maximum under ≤ ”
ξ3 := ∀x∀y S(x, y) → “y is the successor of x under ≤ ”
ξ4 := ∀x (x �= d) → ∃yS(x, y)
ξ5 := “There exist at most k elements in (the set interpreting) P”

Each of ξ1, ξ2, ξ3 and ξ5 can be expressed using a universal sentence. In partic-
ular, ξ1 and ξ3 can be expressed using a ∀3 sentence each, ξ2 using a ∀ sentence,
and ξ5 using a ∀k+1 sentence. Then ϕk is equivalent to an ∃k+1∀3 sentence.

We first show that ϕk is hereditary over S, by showing that ψk := ¬ϕk is
extension closed over S. Let A |= ψk and A ⊆ B. If α := (ξ1 ∧ ξ2 ∧ ξ3) is
such that A |= ¬α, then since ¬α is equivalent to an existential sentence, we
have B |= ¬α; then B |= ψk. Else, A |= α ∧ ξ4. Suppose B |= α and b is an
element of B that is not in A. Then there are two cases as below based on the
position of b in the linear order underlying B. In both of these cases, we get a
contradiction, showing that B |= ¬α and hence B |= ψk.

1. (B, a1, b, a2) |= ((x ≤ y) ∧ (y ≤ z)) for two elements a1, a2 of A such that
(A, a1, a2) |= S(x, z); then B |= ¬ξ3 and hence B |= ¬α.

2. (B, b) |= ((d ≤ x) ∨ (x ≤ c)). Since the interpretations of c, d in B are resp.
the same as those of c, d in A, we have B |= ¬ξ2 and hence B |= ¬α.

We now show that ϕk is not equivalent over S to any ∃k∀∗ sentence. Towards
a contradiction, suppose ϕk is equivalent over S to the sentence γ := ∃x1 . . . ∃xk

∀nȳβ(x1, . . . , xk, ȳ), where β is a quantifier-free formula. Consider the structure
A = (UA,≤A, SA, PA, cA, dA), where the universe UA = {1, . . . , (8n+1)×(k+1)},
≤A and SA are respectively the usual linear order and successor relation on UA,
cA = 1, dA = (8n+1)×(k+1) and PA = {(4n+1)+i×(8n+1) | i ∈ {0, . . . , k}}.
We see that A |= (ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ¬ξ5) and hence A |= ϕk. Then A |= γ. Let
a1, . . . , ak be the witnesses in A to the k existential quantifiers of γ.

86 A. Sankaran

It is clear that there exists i∗ ∈ {0, . . . , k} such that aj does not belong to
{(8n+1)×i∗+1, . . . , (8n+1)×(i∗+1)} for each j ∈ {1, . . . , k}. Then consider the
structure B that is identical to A except that PB = PA\{(4n+1)+i∗×(8n+1)}.
It is clear from the definition of B that B |= (ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ∧ ξ5) and hence
B |= ¬ϕk. We now show a contradiction by showing that B |= γ.

We show that B |= γ by showing that (B, a1, . . . , ak) |= ∀nȳβ(x1, . . . , xk, ȳ).
This is in turn done by showing that for any n-tuple ē = (e1, . . . , en) from B,
there exists an n-tuple f̄ = (f1, . . . , fn) from A such that the (partial) map
ρ : B → A given by ρ(1) = 1, ρ((8n+1)×(k+1)) = (8n+1)×(k+1), ρ(aj) = aj

for j ∈ {1, . . . , k} and ρ(ej) = fj for j ∈ {1, . . . , n} is such that ρ is a partial
isomorphism from B to A. Then since (A, a1, . . . , ak) |= ∀nȳβ(x1, . . . , xk, ȳ),
we have (A, a1, . . . , ak, f̄) |= β(x1, . . . , xk, ȳ) whereby (B, a1, . . . , ak, ē) |=
β(x1, . . . , xk, ȳ). As ē is an arbitrary n-tuple from B, we have (B, a1, . . . , ak) |=
∀nȳβ(x1, . . . , xk, ȳ).

Define a contiguous segment in B to be a set of l distinct elements of B,
for some l ≥ 1, that are contiguous w.r.t. the linear ordering in B. That is,
if b1, . . . , bl are the distinct elements of the aforesaid contiguous segment, then
(bj , bj+1) ∈ SB for j ∈ {1, . . . , l−1}. We represent such a contiguous segment as
[b1, bl], and view it as an interval in B. Given an n-tuple ē from B, a contiguous
segment of ē in B is a contiguous segment in B, all of whose elements belong to
(the set underlying) ē. A maximal contiguous segment of ē in B is a contiguous
segment of ē in B that is not strictly contained in another contiguous segment
of ē in B. Let CS be the set of all maximal contiguous segments of ē in B. Let
CS1 ⊆ CS be the set of all those segments of CS that have an intersection with
the set {1, . . . , (8n + 1) × i∗} ∪ {(8n + 1) × (i∗ + 1) + 1, . . . , (8n + 1) × (k + 1)}.
Let CS2 = CS \ CS1. Then all intervals in CS2 are contained in the inter-
val [(8n + 1) × i∗ + 1, (8n + 1) × (i∗ + 1)]. Let CS2 = {[i1, j1] , [i2, j2] . . . , [ir, jr]}
such that i1 ≤ j1 < i2 ≤ j2 < . . . < ir ≤ jr. Observe that r ≤ n. Let CS3 be the
set of contiguous segments in A defined as CS3 = {[i′1, j

′
1] , [i

′
2, j

′
2] , . . . , [i

′
r, j

′
r]}

where i′1 = (8n + 1) × i∗ + n + 1, j′
1 = i′1 + (j1 − i1), and for 2 ≤ l ≤ r, we have

i′l = j′
l−1 + 2 and j′

l = i′l + (jl − il). Observe that the sum of the lengths of the
segments of CS2 is at most n, so that j′

r ≤ (8n + 1) × i∗ + 3n + 1.
Now consider the tuple f̄ = (f1, . . . , fn) defined using ē = (e1, . . . , en) as

follows. Let Elements(CS1), resp. Elements(CS2), denote the elements contained
in the segments of CS1, resp. CS2. For 1 ≤ l ≤ n, if el ∈ Elements(CS1), then
fl = el. Else suppose el belongs to the segment [is, js] of CS2 where 1 ≤ s ≤ r,
and suppose that el = is + t for some t ∈ {0, . . . , (js − is)}. Then choose fl =
i′s + t. We now verify that the (partial) map ρ : B → A given by ρ(1) = 1,
ρ((8n + 1) × (k + 1)) = (8n + 1) × (k + 1), ρ(aj) = aj for j ∈ {1, . . . , k} and
ρ(el) = fl for l ∈ {1, . . . , n}, is indeed a partial isomorphism from B to A. �

5 Conclusion and Future Directions

In this paper, we presented a new proof of the extensional form of the generalized
�Loś-Tarski theorem (GLT(k)) for theories, first shown in [6], and thereby obtained

Revisiting the Generalized �Loś-Tarski Theorem 87

a new proof of the theorem for sentences in both its forms substructural and
extensional. Our proof avoids using λ-saturation as used in [6], and instead
constructs structures with just the “needed saturation” to prove the theorem.
As our second result, we presented a strengthening of the failure of the �Loś-
Tarski theorem in the finite by showing that not only universal sentences, but
even ∃k∀∗ sentences for any fixed k are not expressive enough to capture the
semantic property of hereditariness in the finite.

We now mention two future directions concerning our results. The first is
in connection with the �Loś-Tarski theorem in the finite. The counterexample
to this theorem in the finite as presented in [1] uses two binary relations and
two constants. But what happens if the vocabulary contains only one binary
relation and some constants/unary relations? There are positive results shown
when the binary relation is constrained to be interpreted as special kinds of
posets, specifically linear orders or (more generally) poset-theoretic trees, or
special kinds of graphs, specifically subclasses of bounded clique-width graphs
such as classes of bounded tree-depth/shrub-depth and m-partite cographs [4].
(In fact, over all these classes, even GLT(k) is true for all k.) But the case of an
unconstrained binary relation remains open, motivating the following question.

Problem 1. Is the (relativized version of the) �Loś-Tarski theorem true over all
finite colored directed graphs? The same question also for undirected graphs.

Our second future direction concerns GLT(k) over all finite structures.
Theorem 4 exhibits for each k, a sentence ϕk that is hereditary over all finite
structures but that is not equivalent over this class to any ∃k∀∗ sentence. We
however observe that ϕk is itself equivalent to an ∃k+1∀∗ sentence. So that this
counterexample to GLT(k) is not a counterexample to GLT(k + 1). This raises
the natural question of whether all counterexamples to GLT(k) in the finite, are
simply Σ0

2 sentences, or sentences equivalent to these. Given that any Σ0
2 sen-

tence is k-hereditary for some k, we pose the aforesaid question as the following
problem.

Problem 2. Is it the case that over the class of all finite structures, a sentence
is k-hereditary for some k if, and only if, it is equivalent to a Σ0

2 sentence?

Observe that the version of Problem 2 in which arbitrary structures are con-
sidered instead of finite structures, has a positive answer due to Theorem 1
(which is a stronger statement). Much like the �Loś-Tarski theorem, results
from classical model theory almost invariably fail in the finite [1]. Resolving
Problem 2 in the affirmative would then give us a preservation theorem that
survives passage to all finite structures.

Acknowledgments. I would like to thank Anuj Dawar for pointing out the
Ehrenfeucht-Fräissé game perspective to the arguments contained in the proof of
Theorem 4. I also thank the anonymous referees for their comments and suggestions.

88 A. Sankaran

References

1. Alechina, N., Gurevich, Y.: Syntax vs. semantics on finite structures. In: Mycielski,
J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science.
A Selection of Essays in Honor of A. Ehrenfeucht. LNCS, vol. 1261, pp. 14–33.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63246-8 2

2. Chang, C.C., Keisler, H.J.: Model Theory, vol. 73. Elsevier, Amsterdam (1990)
3. Hodges, W.: Model Theory (Draft 20 Jul 00) (2000). http://wilfridhodges.co.uk/

history07.pdf
4. Sankaran, A.: A generalization of the �Loś-Tarski preservation theorem. Ph.D. thesis,

Department of Computer Science and Engineering, Indian Institute of Technology
Bombay. CoRR abs/1609.06297 (2016)

5. Sankaran, A.: A generalization of the �Loś-Tarski preservation theorem – dissertation
summary. CoRR abs/1811.01014 (2018)

6. Sankaran, A., Adsul, B., Chakraborty, S.: A generalization of the �Loś-Tarski preser-
vation theorem. Ann. Pure Appl. Log. 167(3), 189–210 (2016)

7. Sankaran, A., Adsul, B., Madan, V., Kamath, P., Chakraborty, S.: Preservation
under substructures modulo bounded cores. In: Proceedings of WoLLIC 2012,
Buenos Aires, Argentina, 3–6 September, 2012, pp. 291–305 (2012)

8. Tait, W.W.: A counterexample to a conjecture of Scott and Suppes. J. Symb. Log.
24(1), 15–16 (1959)

https://doi.org/10.1007/3-540-63246-8_2
http://wilfridhodges.co.uk/history07.pdf
http://wilfridhodges.co.uk/history07.pdf

Model Theory for Sheaves of Modules

Mike Prest(B)

School of Mathematics, University of Manchester, Manchester M13 9PL, UK
mprest@manchester.ac.uk

Abstract. We describe how the model theory of modules is adapted to
deal with sheaves of modules.

Keywords: Model theory · Sheaves · Multisorted · Modules

1 Introduction

A sheaf may be thought of as a set of structures, indexed by the points of a
topological space, which “vary in a continuous way”. For example, a sheaf O
of rings over a topological space X is given by a set {OX,x : x ∈ X} of rings
(which we assume to be associative, not necessarily commutative, and each with
a 1) together with a certain type of topology on the union of these sets. This is
the étalé-space view of a sheaf, which we will point out after approaching the
definition of a sheaf through that of a presheaf.

Sheaves arise typically in geometry, topology and analysis. Our, algebraic/
model-theoretic, interest will be in the model theory of sheaves of modules over
sheaves of rings.

The model theory of modules is very well-developed and has found many
applications. We will describe how to set up model theory for sheaves of modules
in a way which naturally generalises how this is done for modules over a fixed
ring (that is the case where the space X has just one point). The key change is
that we should regard sheaves as multi-sorted structures. The outcome is that,
over topological spaces X which satisfy some mild conditions, one can apply all
the techniques and results of the model theory of modules.

A great deal of what we say applies to sheaves over sites (where Grothendieck
topologies replace topologies in the usual sense) and to sheaves of structures
other than modules but our aim is to explain the particularities of the model
theory of sheaves of modules in the relatively concrete context of sheaves over
topological spaces.

2 Model Theory for Modules

Here we give a very brief overview of some relevant aspects of the model theory
of modules.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 89–102, 2019.
https://doi.org/10.1007/978-3-662-58771-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_9&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_9

90 M. Prest

The model theory of modules was originally set up to deal with modules over
a fixed ring R (always assumed to be associative and with a 1).1 By default, by
“R-module” we will mean “right R-module”, and we will denote the category
of these by Mod-R. Since the left R-modules are the right modules over the
ring Rop with the opposite multiplication, it is immaterial for the general theory
whether we deal with right or left modules.

The language LR used has a binary operation symbol + for the addition on
a module, a constant symbol 0 for the zero element of a module and, for each
r ∈ R, a 1-ary function symbol to express multiplication-by-r on a module. In
practice we use natural notation, writing the value of multiplication by r ∈ R on
an element a of a module M by ar, rather than introducting a more explicitly
functional notation (such as fr(a)). Also, for instance, we would write an atomic
formula in variables x1, . . . , xn in the (simplified, using the theory of R-modules)
form

∑n
i=1 xiri = 0. The background theory is that generated by the usual

axioms for (right) R-modules.
The key result in the model theory of modules is pp-elimination of quantifiers

(see, for example, [8, Sect. 2.4]).

Theorem 1. Let R be any ring. Modulo the theory of (right) R-modules, every
formula is equivalent to the conjunction of a sentence and finite boolean combi-
nation of pp formulas. Moreover, every sentence is a finite boolean combination
of invariants conditions.

A pp (for positive primitive), also called regular, formula, is an existen-
tially quantified conjunction of atomic formulas, that is, in our context, an exis-
tentially quantified system of R-linear equations (perhaps inhomogeneous equa-
tions if the formula contains parameters from a module). The solution set, φ(M),
of a pp formula φ, in any module M , is a subgroup of Mn, where n is the number
of free variables of φ. These subgroups are the groups pp-definable in M or,
as commonly said more loosely, the pp-definable subgroups of M . If φ, ψ are
pp formulas in the same free variables, then we write ψ ≤ φ if ψ(M) ≤ φ(M) for
every module M . In fact (see e.g. [9, 1.2.23]), it is enough to check this for every
finitely presented module M , because every module is a direct limit (=directed
colimit) lim−→λ

Mλ of finitely presented modules Mλ and pp formulas commute
with direct limits in the sense that φ(lim−→λ

Mλ) = lim−→λ
φ(Mλ). Recall that a

module M is finitely presented if it is finitely generated and finitely related,
equivalently if the functor HomR(M,−), which we simply denote by (M,−),
commutes with direct limits.

An invariants condition is a sentence which says, of some pp-pair ψ ≤ φ,
that the index of the subgroup defined by ψ in that defined by φ either is less
than, equal to, or greater than, n, for some particular integer n.

1 One could let the ring vary by using a two-sorted language: one sort for the ring, one
for the module, so that the structures are (ring, module) pairs (R,MR). The model
theory of such pairs is, however, much less well-behaved than that for modules over
a fixed ring, and not at all as amenable to useful analysis.

Model Theory for Sheaves of Modules 91

This partial elimination of quantifiers allowed greatly simplified proofs of
much that had already been shown about the model theory of modules and it
stimulated a fundamental transformation of the subject.

Elimination of quantifiers also partly explained the, already-recognised,
importance (see e.g. [3,6,19]) of notions such as purity and pure-injectivity in the
model theory of modules, where we say that an inclusion N → M of modules is
pure if, for every pp formula φ in n free variables2, we have φ(N) = Nn ∩φ(M).
The key role of pp formulas is also seen in that they are exactly those whose
solution sets are preserved by R-linear maps: if f : M → N is a homomorphism
of R-modules then fφ(M) ≤ φ(N).

With elimination of quantifiers to hand, Garavaglia introduced (e.g. [5]) new
ideas and connections with algebra which inspired the fundamental paper [22]
of Ziegler. The area has subsequently seen yet further transformations as well as
many algebraic applications, for which one may look at [8] for model theory per
se and at [9] for the more algebraic/category-theoretic form of the theory and
many applications. Since then, there has been further widening in viewpoint, for
which one many consult [11,12].

In a short paper one can say little of all that has been done but, for the
purpose in hand, we pick out a couple of important aspects.

One is the extension of the theory to apply to multisorted modules, that is,
modules over rings with many objects or, said otherwise, additive functors from
a skeletally small preadditive category R to the category Ab of abelian groups.
This viewpoint is explained in [13] and below, in Sect. 4, we give the details that
we will need here. A preadditive category with one object is simply a ring and an
additive functor from that to Ab is exactly a module over that ring. Essentially
everything about modules, and about the model theory of modules, extends,
almost without change, to the general case of such “multisorted modules”. The
requirement that the preadditive category R be skeletally small, that is, to have
just a set of objects up to isomorphism, avoids set-theoretic difficulties. Model-
theoretically, the change in moving from modules over rings to modules over
rings with many objects is that we use a multisorted language with at least one
sort for each isomorphism class of object of R; we will see some examples later.

An important notion is that of a definable category. If M is the category of
modules over a ring (or, more generally, over a ring with many objects), then a
definable subcategory of M is the full subcategory on a class of modules which
is closed under isomorphism, direct products, direct limits and pure submodules.
We also use the term for the underlying class of objects.

Theorem 2. If M is the category of modules over a ring (or over a skeletally
small preadditive category), then the following conditions are equivalent on a
class D of modules:

(i) D is a definable subcategory, that is, closed in M under isomorphism, direct
products, direct limits and pure submodules;

2 In fact, [18], see [9, 2.1.6], it is enough to check for n = 1.

92 M. Prest

(ii) D is the class of models of a theory which is axiomatised by sentences of
the form ∀x (φ → ψ) where ψ, φ are pp formulas (in free variables x);

(iii) D is an axiomatisable class of modules satisfying D = Add(D) (in fact
D = add(D) is enough).

By Add(D), respectively add(D), we mean the closure of D under direct
summands and arbitrary, resp. finite, direct sums.

By a definable category we mean one which is equivalent to a definable
subcategory of some module category. It has turned out that definable categories
are the natural context for the model theory of modules, in the sense that the
techniques apply, and the general results which hold for modules also hold (with
minor modifications) in any definable category. Furthermore, the model theory
of any definable category D is intrinsic, in the sense that an appropriate language
and theory for which D is the category of models, may be defined just from the
category structure of D (see [10, Chap. 12]).

3 Presheaves and Sheaves of Modules

Let X be a topological space. We use the notation X also for the underlying set
of the topology and we write OpX for the poset of open subsets of X, ordered by
inclusion. We can regard OpX as a category with objects being the open sets and
a (unique) arrow from V to U iff V ⊆ U . Let C be a category of structures - for
example the category of abelian groups, or rings, or commutative rings with 1.

A presheaf F of structures from C over X is given by the following data:

• for each open subset U of X, an object FU of C;
• for each inclusion of open subsets V ⊆ U of X, a morphism rF

UV = rUV :
FU → FV , usually referred to as a restriction map, of C,
such that:

• for every open set U , rUU is the identity map idFU of FU and
• given open sets W ⊆ V ⊆ U we have rUW = rV W rUV .

In other words, a presheaf in C over X is a contravariant functor from the
poset OpX , regarded as a category, to C. From that point of view, a morphism
f : F → G of presheaves is defined simply to be a natural transformation, that
is, an OpX -indexed set (fU : FU → GU)U of morphisms of C such that, for
every inclusion V ⊆ U the following diagram commutes.

FU
fU ��

rF
UV

��

GU

rG
UV

��
FV

fV

�� GV

Thus we obtain the category of presheaves of C-objects over X and morphisms
between them.

Model Theory for Sheaves of Modules 93

In particular, if C is the category of associative rings with 1 then we obtain
the notion of a presheaf of rings.

As a specific example, take X to be the unit circle S1 ⊆ R
2 in the real plane

with its usual topology, and define a presheaf of rings by assigning, to each open
subset U of S1, the ring C(U,R) of continuous functions from U to R, and by
assigning, to an inclusion V ⊆ U of open subsets of S1, the map from C(U,R)
to C(V,R) which takes a continuous function on U to its restriction to V . It is
easily checked that this is indeed a presheaf of rings. In fact it is a sheaf in the
sense of the following definition, which we state in a form which applies when
the category C is a category of sets with structure. In that case we refer to the
elements of FU , where F is a presheaf and U an open set, as sections (of F)
over U .

A presheaf F on a space X is a sheaf if:

• given an open cover U =
⋃

λ Uλ of an open set U ⊆ X, and given, for
each λ, some section sλ ∈ FUλ, if, for every λ, μ, we have rUλ,Uλ∩Uμ

(sλ) =
rUμ,Uλ∩Uμ

(sμ), then there is a section s ∈ FU such that, for every λ, the
restriction of s to Uλ is sλ, that is, rU,Uλ

(s) = sλ, and
• given an open cover U =

⋃
λ Uλ of an open set in X, and given sections

s, t ∈ FU which agree on each member of the cover - that is, if, for each λ we
have rUUλ

(s) = rUUλ
(t) - then s = t.

The second condition says that sections which locally agree (that is, agree
on some open cover) must be equal; in the case that the objects of C have an
underlying abelian group structure then it is enough to take t = 0. The first
condition says that sections on a cover may be glued together to make a section
on the set being covered provided that they agree on the intersections; if the
second condition also holds, then there is a unique such section.

Given a presheaf F over a space X, with values in a category C which has
direct limits (that is, directed colimits) and given a point x ∈ X, we define the
stalk of F at x to be Fx = lim−→U�x

FU , the direct limit being taken over the
directed (by intersection) system of open subsets that contain x. In the example
above, of continuous functions on open subsets of the circle S1, the stalk at a
point x ∈ S1 is the ring of so-called “germs” of continuous functions at x.

Now we come to our main definition, that of a sheaf of modules.
Suppose that RX = (X,R) is a ringed space, that is a sheaf R of rings

(associative with 1 under our conventions) over a topological space X. For each
open subset U ⊆ X we have the ring RU and the corresponding category, which
we denote by Mod-RU , of right modules over RU and for every point x ∈ X we
have the ring Rx and its corresponding category Mod-Rx of right modules. We
will use the notations R and RX fairly interchangeably.

We define a (right) RX -premodule to be a presheaf M which assigns to
each open subset U ⊆ X a right RU -module MU such that, for each inclusion
V ⊆ U of open subsets, the restriction rM

UV : MU → MV is a homomorphism of
RU -modules, where we regard MV as an RU -module via restriction of scalars
along the ring homomorphism rRX

UV : RU → RV . Strictly speaking this is not, as

94 M. Prest

defined, a presheaf in the sense of our earlier definition since the category where
M takes values varies with U ! But there are ways around this - for example we
could just let M take values in the category of abelian groups and then add
extra conditions concerning the actions of the elements of the various RU . In
any case, it is convenient to think of the codomain category as varying. Note
that the stalk Mx at a point x will be a right RX,x-module.

A morphism f : M → N of RX -premodules is, if we regard M and N as
functors, a natural transformation, that is, for each open set U , an RU -linear
map fU : MU → NU such that, if V ⊆ U are open, then the diagram commutes.

MU
fU ��

rM
UV

��

NU

rN
UV

��
MV

fV

�� NV

One may check that such a morphism induces, at each x ∈ X, an RX,x-linear
map Mx → Nx of stalks at x. These definitions give us the category PreMod-RX

of RX -premodules. It is an abelian3 category and, is in fact, Grothendieck and
locally finitely presented. We will examine the reason for the latter since it leads
directly to setting up the model theory of such structures. We denote by Mod-RX

the category of sheaves of modules - the full subcategory of PreMod-RX with
objects those presheaves of modules which are actually sheaves. This also is
abelian and Grothendieck, but is not always locally finitely presented, though in
many important cases it is.

Bundling together the stalks of a sheaf gives an alternative view of a sheaf.
Given a sheaf F , we form the disjoint union of the stalks Fx, for x ∈ X of F . This
union is then given a topology which locally looks like that of X (see, e.g., [21] for
details) and the sections FU of F at an open set U then become the continuous
maps s, from U to the resulting étalé space, which are such that πs = idU where
π is the projection map from the étalé space to X which takes an element of Fx

to the point x (and idU is the identity map on U). One more piece of notation:
if F is a sheaf of additive structures then we define the support of a section
s ∈ FU to be the set, supp(s) = {x ∈ X : sx �= 0}, of points where the image sx

of s in Fx, under the natural map FU → Fx, is nonzero.

4 Model Theory for Presheaves of Modules

A category C is said to be finitely accessible (see [1]) if it has direct limits, if
there is, up to isomorphism, just a set of finitely presented objects of C and if
every object of C is a direct limit of finitely presented objects, where an object
A ∈ C is finitely presented if the functor C(A,−), which we abbreviate as
(A,−), commutes with direct limits. This is equivalent to the object A being

3 We will not present background on abelian category theory here but there are many
suitable references, for example [4,20].

Model Theory for Sheaves of Modules 95

“finitely generated and finitely related” in C if those terms make sense in C (for
instance, if C is the category of rings, or of groups, or of modules over a ring).

To expand on the condition that the representable functor (A,−) commute
with direct limits, this means that, given any directed system, ((Cλ)λ∈Λ, (fλμ :
Cλ → Cμ)λ≤μ∈Λ) with direct limit (C, (fλ∞ : Cλ → C)λ) - so fμ∞fλμ = fλ∞
for all λ ≤ μ - and given any g : A → C, there is λ′ and g′ : A → Cλ′ such
that fλ′∞g′ = g. Moreover, such a factorisation must be essentially unique in
the sense that, if also there is λ′′ and g′′ : A → Cλ′′ such that fλ′′∞g′′ = g, then
there is μ ≥ λ′, λ′′ such that fλ′μg′ = fλ′′μg′′.

We denote by Cfp the full subcategory of finitely presented objects of C. If
C is finitely accessible and both complete and cocomplete then it is a locally
finitely presented category. Both the category all presheaves and of all sheaves
of modules over a ringed spaces are complete and cocomplete, so we will use the
terms finitely accessible and locally finitely presented interchangeably for these.

The fact that, for any ringed space RX , PreMod-RX is locally finitely pre-
sented is a special case of a general fact for functor categories and, as in that
general case, it is the representable functors which provide a generating collection
(a set up to isomorphism since OpX has just a set of objects) of finitely presented
presheaves. We describe these representable functors in specific presheaf terms.

Let U ∈ OpX be any open subset of X and let j : U → X denote the inclusion
map. We define the presheaf j0RU as follows (we will explain the notation after
that):

j0RU (V) =

{
R(V) if V ⊆ U

0 otherwise
.

Here j0 denotes a functor from PreMod-RU to PreMod-RX and RU denotes the
restriction, RX |U , of RX to U . For any presheaf F on a space X and open subset
U of X, the restriction of F to U is the presheaf F |U on U which is given by
F |UV = FV for V an open subset of U .4 It is direct from the definition that
the restriction of a sheaf is again a sheaf. For any G ∈ PreMod-RU the presheaf

j0 defined by j0G · V =

{
GV if V ⊆ U

0 otherwise
is the extension by 0 of G (to a

presheaf on X).

Proposition 1 (e.g. [2, p. 7 Proposition 6]). If RX is any ringed space, then
the category PreMod-RX of presheaves of RX-modules is abelian Grothendieck
and locally finitely presented, with the j0RU , for U ∈ OpX being a generating
set of finitely presented objects.

By a generating set G of objects of an Grothendieck abelian category C we
mean that for every object C ∈ C there is an exact sequence H ′ → H → C → 0
where H ′,H are direct sums (possibly infinite) of copies of objects in G. We
do not mean that it is lim−→-generating (in the sense of the definition of finitely
accessible category). But, if G is a set of finitely presented objects which is

4 In category-theoretic terms it is the restriction of the contravariant functor F to the
full subcategory on the objects with a morphism to U .

96 M. Prest

generating in the sense just defined, then C ∈ C will be finitely presented iff
there is such a presentation where both H ′ and H are finite direct sums of
copies of objects in G and it is the case that the collection of finitely presented
objects of C will be lim−→-generating in C, so C will be finitely accessible (indeed
locally finitely presented).

The basic idea for setting up (finitary) model theory in any finitely accessible
category (with products) C is that, since every object C ∈ C is determined by
the morphisms to it from finitely presented objects, we take these morphisms
to be the “elements” of C. But morphisms with different domains should be
elements of different kinds - formally of different sorts. This means that the
formal language we set up is naturally multisorted, with one sort, σA say, for
each finitely presented object A of C and with the elements of C ∈ C of sort σA

being the elements of the set, (A,C), of morphisms from A to C. We should use a
set G (rather than a proper class) of sorts, so we restrict A to range over some set
of finitely presented objects which contains at least one copy (to isomorphism)
of each finitely presented object. This gives us the sorts of our language for
C. It does not depend, in any way that matters, on the actual choice of set of
finitely presented objects that we use, as long as it has a copy of each (or indeed,
“enough”) of the finitely presented objects.

We also introduce function symbols, one for each morphism between objects
in our chosen set G of finitely presented objects. If f : A → B is such a morphism,
then the corresponding function symbol, for which we will use the same symbol
f , has domain σB and codomain σA, reflecting the direction of the induced
morphism (f,−) : (B,−) → (A,−), given by g
→ gf (where f ∈ (B,C) for any
C ∈ C), between representable functors.

This viewpoint on what are the “elements” of a structure might seem unfa-
miliar but it is exactly what is seen in the basic fact from module theory that
a module M over a ring R is isomorphic to the module5 of homomorphisms
(RR,M) from RR, meaning R regarded as a right R-module, to M . That is
because each homomorphism is determined by the image of 1 and every element
of M is such an image.

For example, under this expanded viewpoint, if we take a direct product R(n)

of copies of RR, then the “elements” of a module M of sort R(n) are exactly the
n-tuples of elements of M . More generally, if A is a finitely presented module,
then the elements of a module M in sort A (that is, of σAM) could be regarded
as the n-tuples (if A is n-generated) of elements of M which satisfy certain
R-linear relations, namely those which generate all the R-linear relations on a
chosen generating set of n elements for A.

This example of modules also shows that it is not necessary to represent every
isomorphism class of finitely presented object when setting up the language -
it is enough to have a set of sorts corresponding to a set of finitely presented
objects which generate the category in the sense defined after Proposition 1 (that
refers to the special case of a Grothendieck abelian category, but it is such
categories with which we will be concerned). Any two such languages set up

5 It is a right module via the left action of R on the module RR.

Model Theory for Sheaves of Modules 97

using generating sets will be inter-interpretable (each formula in the one language
can be translated to an equivalent formula in the other), so will give the same
model theory for the structures in C. In the case of categories, PreMod-RX , of
presheaves we will use the representable functors - the extensions by 0 - defined
above. Let us return now to this case.

The presheaves j0RU as U ranges over subsets of X form a generating set of
finitely presented objects of PreMod-RX , so we will use these, hence the open
subsets of X, to index the sorts of our language for PreMod-RX . We should
describe the functors (j0RU ,−) and the morphisms between them in order to
understand something of what can be expressed in this language.

Lemma 1. Suppose that RX is a ringed space. Let j : U → X be the inclusion
of an open subset in X, let F ∈ PreMod-RU and let G ∈ PreMod-RX . Then
there is a natural isomorphism of groups (j0F,G) � (F,G|U).

If U is an open subset of X, then the functor (j0RU ,−) is, in the view
of presheaves as contravariant functors on OpX , the representable functor cor-
responding to U ∈ OpX hence, by the Yoneda Lemma, (j0RU , G) � GU .
In particular, if U,W are arbitrary open subsets of X, then (j0RU , j0RW) �
j0RW · U =

{
RXU if U ⊆ W

0 otherwise
. We can understand this application of the

Yoneda Lemma more algebraically by noting that j0RU is generated by the
section 1U ∈ j0RU · U = RXU , in the sense that, for every open subset V of U ,
the image, rUV (1U), of 1U under the restriction map from U to V , is equal to
1V ∈ RXV , which generates RXV = j0RU · V as an RXV -module. Therefore
any morphism f : j0RU → G|U will be determined by the image fU (1U) ∈ GU
where fU is the component of f at U .

Thus, if we use the language for PreMod-RX based on the generating set
(j0RU)U∈OpX

, then the function symbols of the language, beyond those used to
express the abelian group structure of each sort σU = (j0RU ,−) are as follows:
given open subsets U,W of X then, if U ⊆ W the function symbols from sort
σW to sort σU are naturally indexed by the elements of RXU , otherwise there
is only the zero function symbol from σW to σU .

Using the Yoneda Lemma as above, we can explicitly describe the interpre-
tations of these function symbols, as follows.

Given open sets U ⊆ W and t ∈ RXU , regarded (as above) as an element
of j0RW · U , hence as a morphism from j0RU to j0RW , and given any G ∈
PreMod-RX , we have the following diagram in PreMod-RX showing the action
of t:

j0RU
t ��

rW U s·t
��

j0RW

s

��
G

98 M. Prest

namely t : (j0RW , G) = GW = σW G → (j0RU , G) = GU = σUG, takes a
section s ∈ GW to its restriction to U followed by multiplication by t - the
result is a section in GU .

We can regard these actions, as multiplications by elements of a ring with
many objects (see [13], also [12], for this point of view). Thus the RX -presheaves
become “modules over a ring with many objects” and, in fact (see [13] for an
overview, [9] for details) the model theory of modules over the usual, 1-sorted,
rings is applicable in its entirety. Let us give some examples (also see [14] and
[17]) of what one can say with this language. After that, we will move on to the
category of RX -sheaves.

First, a notational point. If V ⊆ U are open then, in any presheaf, F , the
restriction map rF

UV is the interpretation of a function symbol r (from sort σU

to σV) in the language. The functional notation for the value of this map on a
section a ∈ FU is rUV (a), whereas the right module notation is ar. In practice,
since perhaps the meaning is clearer, we shall use the former, functional notation,
but bear in mind that it is naturally written in the module language as a right
multiplication.

A presheaf F is said to be separated if, for every open set U , open cover
(Uλ)λ of U and sections s, t ∈ FU , if, for every λ we have rUUλ

(s) = rUUλ
(t)

then s = t (that is, if sections agree locally, then they are equal). Of course in
the additive situation, it is enough to consider the case where t = 0. Given such
an open set and open cover of it, note that there is a possibly infinitary sentence
-

∀x, y
((∧

λ

rUUλ
(x) = rUUλ

(y)
) → (x = y)

)

- which expresses this condition (where the variables have sort σU). If the cover
is, or may be taken to be, finite (so, in particular if U is compact) then this
will be, or be equivalent to, a sentence of finitary model theory. As we let these
sentences range over all open sets and open covers (finite if possible), then we
see that the property of being a separated presheaf is expressible in an infinitary
version of our language, finitary if every open set is compact (that is, if the
space is noetherian). We deduce that over any noetherian space the category
of separated presheaves is definable in the sense discussed in Sect. 2.

The other condition necessary for a presheaf F to be a sheaf is that, given any
open set U , open cover (Uλ)λ of U and set (sλ ∈ FUλ)λ of compatible sections
(meaning that, for every λ, μ, rF

Uλ,Uλ∩Uμ
(sλ) = rF

Uμ,Uλ∩Uμ
(sμ)), there is s ∈ FU

such that rF
UUλ

(s) = sλ for every λ. We see that this can be expressed by the
sentence, infinitary if the cover is infinite,

∀(xλ)λ

(∧

λμ

rUλ,Uλ∩Uμ
(xλ) = rUμ,Uλ∩Uμ

(xμ)
) → (∃x

∧

λ

rUUλ
(x) = xλ

))

(where the variable xλ has sort σλ and x has sort σU). These sentences, ranging
over open sets and covers, therefore axiomatise the glueing property. Combin-
ing this with the observations on the separation property, we deduce that over
any noetherian space the category of sheaves is a definable subcategory of the

Model Theory for Sheaves of Modules 99

category of presheaves (one may also prove the converse, so this characterises
noetherian spaces - see [15, 3.12]). But we will see in the next section that it
is possible for the category of sheaves to be definable (that is a definable sub-
category of some category of multisorted modules), without necessarily being a
definable subcategory of the category of presheaves.

For another example of what can be expressed using this language, if U is any
open set then the (closure under isomorphism) of the class of presheaves of the
form j0F for some F ∈ PreMod-RU is axiomatised by the set of sentences of the
form ∀xV (xV = 0) where V ranges over the open sets which are not contained
in U (and the notation xV indicates that x is a variable of sort σV).

As yet another type of example, the constant presheaves (those such that
each restriction map is an isomorphism) are axiomatised by the set of sentences
of the form

(∀y ∃x (y = rUV (x))
) ∧ (∀x (rUV (x) = 0V → x = 0U)

)
as V,U range

over open subsets with V ⊆ U , where x has sort σU , y has sort σV and the
subscripts on the constant symbols 0 indicate their sort.

5 Model Theory for Sheaves of Modules

There is a canonical functor, sheafification, which turns each presheaf F into
the sheaf aF which best approximates it in the category of sheaves. More pre-
cisely, sheafification is left adjoint to the forgetful functor (that is, the inclusion)
u : Mod-RX → PreMod-RX . So for every F ∈ PreMod-RX and M ∈ Mod-RX

there are natural isomorphisms (F, uM) � (aF,M). Roughly, aF is formed from
F by first identifying every two sections which agree on some open cover, so
as to obtain a separated presheaf, then adding, as new sections, the results of
glueing together compatible families of sections. In the context of presheaves of
modules, sheafification is localisation in the sense of Gabriel (see [20]). For, the
presheaves F such that, for every U ∈ OpX and section s ∈ FU , there is an
open cover of U such that each restriction of s is zero, are exactly those whose
sheafification aF = 0, and these form a hereditary torsion class of presheaves,
localisation with respect to which is the sheafification functor.

In the particular case where the space X is noetherian, this is a finite-type
localisation [15, 3.8], which has the consequence that the sheaves form an axioma-
tisable, indeed, definable, subcategory of PreMod-RX [15, 3.12]. In that case,
therefore, the language for presheaves described above also may be used for
developing the model theory of Mod-RX since the objects in the latter category
form an elementary class of presheaves. But it is not necessary that X be noethe-
rian in order to have a good model theory for sheaves; a basis B of compact open
sets closed under intersection is enough [16, 3.3] since, in that case, the category
Mod-RX of sheaves is locally finitely presented [16, 3.5]. That is, rather than
indexing the sorts of the language using all open sets, it is enough to use those
from B. Because we are using finitary model theory, we need such a basis con-
sisting of compact open sets. That is because our “elements” of sorts of sheaves
- that is, sections over open sets in the basis - should be “finitary elements”,
meaning that if such an element belongs to a directed sum or union, then it

100 M. Prest

belongs to some member of that sum or union. Having just a basis of compact
sets is enough because sections are locally determined. The requirement that
B be closed under intersection enables us to write the compatibility-of-sections
condition in the resulting formal language. We give some details, but quite briefly
since they are very similar to those seen for presheaves.

Suppose then that B is a basis, closed under intersection, of open sets for
the topology on X. Then it turns out that the sheaves j!RU for U ∈ B form a
generating set of finitely presented objects of Mod-RX . Here j!RU denotes the
sheafification, a(j0RU), of j0RU ; it is the sheaf extension by 0 of RU to X. In
general, if G ∈ Mod-RU then its sheaf extension, j!G, by 0 to X may be defined
by

j!G(V) = {s ∈ G(V ∩ U) : supp(s) is closed in V }.

The functor j! from Mod-RU to Mod-RX is left adjoint to the restriction-to-U
functor, so (j!G,F) � (G,F |U) for G ∈ Mod-RU and F ∈ Mod-RX , and j! is
an equivalence between Mod-RU and the subcategory of Mod-RX consisting of
the sheaves which have support contained in U (see [7, pp. 106/7]). Thus the
j!RU play a very similar role in Mod-RX to that played in PreMod-RX by the
j0RU . But, in contrast to the presheaves j0RU , they are not necessarily finitely
presented. However:

Proposition 2 ([16, 3.7]). If X has a basis, closed under intersection, of com-
pact open subsets and if U is compact open, then j!RU is a finitely presented
sheaf.

Furthermore, we don’t need all the j!RU in order to generate Mod-RX :

Proposition 3 ([16, 3.2]). If B is a basis of open subsets for the topology on X
then the j!RU for U ∈ B together generate Mod-RX .

Corollary 1 ([16, 3.5]). If (X,RX) is a ringed space and if B is a basis, closed
under intersection, of compact open subsets of X, then the category Mod-RX

of RX-modules is locally finitely presented, with the j!RU , for U ∈ B forming a
generating set of finitely presented objects.

In that case therefore, having fixed such a basis B, what we have said about
the multisorted model theory for a locally finitely presented category applies, to
give us a language LB for RX -modules. This language has a sort for each U ∈ B
and a function symbol for each morphism in each (j!RU , j!RV) with U, V ∈ B.
Given any F ∈ Mod-RX , the resulting LB-structure has value (j!RU , F) � FU
in sort σU and the description of the interpretations of the function symbols of
LB as maps between these sorts is similar to that for presheaves. Namely ([14,
p. 1189, 1.4]) the elements of (j!RU , j!RV) may be identified with the sections
r of RU∩V which have support closed in U and the action of such r (that is,
the interpretation of the corresponding function symbol on a sheaf F), regarded
as a map from FV to FU , is restriction from FV to F (U ∩ V), followed by
multiplication by r regarded as an element of RU∩V , followed by inclusion in
FU .

Model Theory for Sheaves of Modules 101

We remark that in many examples, in particular those typically seen in alge-
braic geometry, it will be the case that the underlying space X has a basis of com-
pact open sets which is closed under intersection, hence the category Mod-RX

will be locally finitely presented and we will have a good, finitary, model theory
of sheaves. Indeed, in many examples, every open set will be compact, therefore
sections over any open set can be referred to by variables in our language.

One can see a variety of examples of what can be expressed about sheaves
using this language in [14], where strongly minimal sheaves are considered and
there is some comparison of stalkwise, local and global properties. There are also
many examples of definable subcategories (and definable = interpretation func-
tors between them) in the recent paper [17], though that paper uses alternative,
algebraic, characterisations of these concepts rather than explicitly introducing
the formal language.

References

1. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press,
Cambridge (1994)

2. Borceux, F., Van den Bossche, G.: Algebra in a Localic Topos with Applications
to Ring Theory. LNM, vol. 1038. Springer, Heidelberg (1983). https://doi.org/10.
1007/BFb0073030

3. Eklof, P., Sabbagh, G.: Model-completions and modules. Ann. Math. Logic 2(3),
251–295 (1971)

4. Freyd, P.: Abelian Categories. Harper and Row, New York (1964)
5. Garavaglia, S.: Dimension and rank in the model theory of modules. Preprint,

University of Michigan (1979). Revised 1980
6. Gruson, L., Jensen, C.U.: Modules algébriquement compact et foncteurs lim←−

(i).
C. R. Acad. Sci. Paris 276, 1651–1653 (1973)

7. Iversen, B.: Cohomology of Sheaves. Springer, Heidelberg (1986). https://doi.org/
10.1007/978-3-642-82783-9

8. Prest, M.: Model Theory and Modules. London Mathematical Society Lecture Note
Series, vol. 130. Cambridge University Press, Cambridge (1988)

9. Prest, M.: Purity, Spectra and Localisation. Encyclopedia of Mathematics and its
Applications, vol. 121. Cambridge University Press, Cambridge (2009)

10. Prest, M.: Definable Additive Categories: Purity and Model Theory. Memoirs of
the American Mathematical Society, vol. 210/no. 987. American Mathematical
Society, Providence (2011)

11. Prest, M.: Abelian categories and definable additive categories. arXiv:1202.0426
12. Prest, M.: Modules as exact functors. In: Proceedings of 2016 Auslander Distin-

guished Lectures and Conference, Contemporary Mathematics, vol. 716. American
Mathematical Society. arXiv:1801.08015 (to appear)

13. Prest, M.: Multisorted modules and their model theory. In: Contemporary Math-
ematics. arXiv:1807.11889 (to appear)

14. Prest, M., Puninskaya, V., Ralph, A.: Some model theory of sheaves of modules.
J. Symbolic Logic 69(4), 1187–1199 (2004)

15. Prest, M., Ralph, A.: On sheafification of modules. Preprint, University of Manch-
ester (2001). Revised 2004. https://personalpages.manchester.ac.uk/staff/mike.
prest/publications.html

https://doi.org/10.1007/BFb0073030
https://doi.org/10.1007/BFb0073030
https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/10.1007/978-3-642-82783-9
http://arxiv.org/abs/1202.0426
http://arxiv.org/abs/1801.08015
http://arxiv.org/abs/1807.11889
https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html
https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html

102 M. Prest

16. Prest, M., Ralph, A.: Locally finitely presented categories of sheaves of mod-
ules. Preprint, University of Manchester (2001). Revised 2004 and 2018. https://
personalpages.manchester.ac.uk/staff/mike.prest/publications.html

17. Prest, M., Slávik, A.: Purity in categories of sheaves. Preprint. arXiv:1809.08981
(2018)

18. Rothmaler, Ph.: A trivial remark on purity. In: Proceedings of the 9th Easter
Conference on Model Theory, Gosen 1991, Seminarber. 112, Humboldt-Univ. zu
Berlin, p. 127 (1991)

19. Sabbagh, G.: Sous-modules purs, existentiellement clos et élementaires. C. R. Acad.
Sci. Paris 272, 1289–1292 (1971)

20. Stenström, B.: Rings of Quotients. Springer, Heidelberg (1975). https://doi.org/
10.1007/978-3-642-66066-5

21. Tennison, B.R.: Sheaf Theory. London Mathematical Society Lecture Note Series,
vol. 20. Cambridge University Press, Cambridge (1975)

22. Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26(2), 149–213 (1984)

https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html
https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html
http://arxiv.org/abs/1809.08981
https://doi.org/10.1007/978-3-642-66066-5
https://doi.org/10.1007/978-3-642-66066-5

Transitivity and Equivalence in Decidable
Fragments of First-Order Logic: A Survey

Ian Pratt-Hartmann1,2(B)

1 School of Computer Science, University of Manchester, Manchester, UK
2 Wydzia�l Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski,

Warsaw, Poland
ipratt@cs.man.ac.uk

Abstract. In this talk, I survey recent work on extensions of various
well-known decidable fragments of first-order logic, in which certain dis-
tinguished predicates are required to denote transitive relations or equiv-
alence relations. I explain the origins of this work in modal logic, and
outline the current state-of-the-art.

Keywords: First-order logic · Transitivity · Equivalence · Complexity

1 Introduction

In their work Grundzüge der theoretischen Logik, Hilbert and Ackermann
[8,9] formulated the so-called Entscheidungsproblem for (what we now call) first-
order logic: is there an algorithm which, when given a first-order formula as
input, will determine whether that formula is universally valid? This question
was answered negatively by Church [2] and Turing [21]: no computer program
can determine the universal validity—or, dually, the satisfiability—of a given
first-order formula. Since it is impossible to write a first-order formula satisfied
exactly when the domain of interpretation is finite, the Entscheidungsproblem has
a natural finitary version: is there an algorithm which, when given a first-order
formula as input, will determine whether that formula is satisfiable in some finite
structure? This question too was answered negatively, by Trakhtenbrot [20].

There are two responses to this situation, both of which have led over the
years to remarkable insights of both theoretical and practical significance. The
first is to develop programs designed to test the satisfiability of arbitrary collec-
tions of first-order formulas, accepting that, however well they generally work in
practice, there will always be instances that defeat them. The second is to restrict
attention to a subset—or, as we say, fragment—of first-order logic, for which the
satisfiability problem (or finite satisfiability problem) is decidable, exploiting the
fact that, in many real-life situations, the formulas we encounter fit comfortably
into such fragments. Of course, these two approaches are not antagonistic: many
general first-order theorem provers borrow techniques developed in the context
of research into restricted fragments of logic to guarantee termination on certain
categories of problems; conversely, techniques developed for general first-order
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 103–107, 2019.
https://doi.org/10.1007/978-3-662-58771-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_10&domain=pdf
http://orcid.org/0000-0003-0062-043X
https://doi.org/10.1007/978-3-662-58771-3_10

104 I. Pratt-Hartmann

theorem-proving have frequently proved useful in demonstrating the decidability
of certain first-order fragments.

2 The Two-Variable Fragment and its Relatives

The two-variable-fragment, FO2, is the set of formulas of first-order logic (with
equality) that do not contain function symbols and that use only two variables.
For example, the formula ∀x∃y(r(x, y) ∧ ∀x(r(y, x) → x = y)), stating that
every element is r-related to some element whose only r-successor is itself, is in
FO2. Note in particular the ‘re-use’ of the variable x by nested quantifiers in
this example. The fragment FO2 is easily seen to include the (propositional)
modal logic K under the standard translation, which maps modal formulas to
FO2-formulas with a single free variable x. For example, the modal formula
�♦�p corresponds to the FO2-formula ∀y(r(x, y) → ∃x(r(y, x) ∧ ∀y(r(x, y) →
p(y)))). We remark that the equality predicate is not needed for translating
modal formulas.

The two-variable fragment has an interesting history. Scott [18] showed that
any formula of the two-variable fragment can be transformed into a formula in
the so-called Gödel fragment: the set of first-order formulas which, when put
in prenex form, have quantifier prefixes matching the pattern ∃∗∀∀∃∗. Earlier,
Gödel [3] showed that this fragment (without equality) has the finite model prop-
erty and claimed en passant that this would still be the case with equality, a
claim which was later shown to be false by Goldfarb [4]. Thus, Scott’s reduc-
tion showed only that the satisfiability problem for the two-variable fragment
without equality is decidable. That full FO2 has the finite model property was
established by Mortimer [13], and an exponential size-bound on these models
was eventually proved by Grädel, Kolaitis and Vardi [6], thus showing that the
satisfiability problem for this fragment is NExpTime-complete. By contrast, the
satisfiability problem for the modal logic K is only PSpace-complete, as shown
by Ladner [12].

The guarded fragment of first-order logic, here denoted G, was originally
developed by Andréka, van Benthem and Németi [1] as a generalization of propo-
sitional modal logic K. The idea is that quantifiers must be guarded by atomic
formulas featuring all the free variables in their scope. More precisely: a formula
∀u.ϕ counts as guarded if ϕ is of the form α → ψ, where ψ is itself guarded, and
α is an atomic formula featuring all free variables of ψ. (Existentially quantified
formulas are treated dually.) The guarded fragment has a decidable satisfiabil-
ity problem, with complexity 2-ExpTime-complete. However, if we consider the
subfragment Gk obtained by restricting attention to formulas with k-variables,
then, for any k ≥ 2, the complexity of satisfiability falls to ExpTime-complete,
as shown by Grädel [5]. It is easy to see that the standard translations of modal
formulas into FO2 are all in fact guarded, and thus lie in the 2-variable guarded
fragment G2. In terms of expressive power, G2 lies strictly in between K and
FO2, and the complexity of its satisfiability problem is (on standard separation
assumptions) correspondingly situated.

Transitivity and Equivalence in Decidable Fragments of First-Order Logic 105

It is possible to extend all three fragments just mentioned—K, G2 and
FO2—with counting quantifiers ∃≤C , ∃≥C and ∃=C , where C is a non-negative
integer. We read ∃≤Cx.ϕ as “there exist at most C x such that ϕ”, and
similarly for ∃≥C and ∃=C ; the formal semantics is as expected. Thus, for
example “Every number has at most one successor” can be written using the
formula ∀x(number(x) → ∃≤1y.succ(x, y)). The extension of the two-variable
fragment, FO2, with counting quantifiers is standardly denoted C2. The defini-
tion of guarded quantification applies to counting quantifiers in a natural way.
The extension of the guarded two-variable fragment, G2, with counting quanti-
fiers will be denoted here GC2.

Counting quantification does not take us beyond first-order logic; however, it
does strictly extend the fragments FO2 and G2. In particular, C2 and GC2 lack
the finite model-property: that is, they contain axioms of infinity. For example,
the GC2-formula ∀x∃y.s(x, y)∧∀x∃≤1y.s(y, x)∧∃x∀y.¬s(y, x) is easily seen to be
satisfiable, but only in infinite structures. Thus, when it comes to these logics, we
may ask separately about the decidability and computational complexity of the
satisfiability and the finite satisfiability problems. For C2, both problems were
shown to be decidable by Grädel, Otto and Rosen [7], and by Pacholski, Szwast
and Tendera [14,15], and to be NExpTime-complete by Pratt-Hartmann [16].
Likewise, the satisfiability and finite satisfiability problems for GC2 are both
ExpTime-complete (Kazakov [10], Pratt-Hartmann [17]).

When extending modal logic with counting quantification, one employs the
graded modalities ♦≤Cϕ, ♦≥Cϕ and ♦=Cϕ for C ≥ 0. Specifically, the formula
♦≤Cϕ may be glossed: “ϕ is true at no more than C accessible worlds,” and
similarly for ♦≥Cϕ and ♦=C . The semantics for graded modal logic generalize the
relational semantics for ordinary modal logic in the expected way, and translate
unproblematically into the logic GC2. We denote by GM the extension of basic
modal logic K with graded modalities. Thus, for example, the GM-formula
q0∧♦≥2(¬q1∧♦=1q2) translates to the GC2-formula q0(x)∧∃≥2y(r(x, y)∧¬q1(y)∧
∃=1x(r(y, x) ∧ q2(x))). The logic GM is not expressive enough to force infinite
models. Its satisfiability problem is PSpace-complete, as shown by Tobies [19].

3 Transitivity and Equivalence

One significant expressive limitation of FO2 (and indeed of C2) is that it can-
not express the property of transitivity. The same is true of many other famil-
iar classes of relations, including, most saliently perhaps, equivalence relations.
Modal logicians have always been at home in this situation. We cannot state
in propositional modal logic that the underlying accessibility relation is transi-
tive, or is an equivalence relation; however, we can assume such properties, and
investigate the characteristics of the logic thus defined. Thus, for example, in the
modal logic K4, we have (syntactically) the same formulas as K, but we assume
that the modal accessibility relation is transitive. Similarly, the modal logic S5
is characterized by the assumption that the accessibility relation is an equiv-
alence relation. The satisfiability problem for K4 remains PSpace-complete;

106 I. Pratt-Hartmann

the satisfiability problem for S5 is NPTime-complete. These results have coun-
terparts for the corresponding graded systems. Thus, the logic GM1T (graded
modal logic under the assumption that the accessibility relation is transitive)
has NExpTime-complete satisfiability problem, while the corresponding prob-
lem for GM1E (accessibility is an equivalence relation) is still NPTime-complete
(Kazakov and Pratt-Hartmann [11]).

The question then presents itself: what happens if the two-variable logics
FO2, G2, C2 or GC2 are extended in a similar way? That is, what happens if,
for any of these fragments, we add the stipulation that some number of distin-
guished binary predicates satisfy a property such as being transitive, or being
an equivalence relation? What complexity-theoretic landscape presents itself?
What tools and techniques are required to explore these questions? Denote by
FO2kE the logic FO2 in which k distinguished binary predicates are required
to be interpreted as transitive relations, and by FO2kE the logic FO2 in which
k distinguished binary predicates are required to be interpreted as equivalence
relations. Similarly for G2, GC2 and C2. In each case, we ask whether the sat-
isfiability and finite satisfiability problems are decidable and, if so, what their
computational complexity is. In my talk, I present a survey of these questions,
outlining what is known, and which problems are still open. The results (due to
many authors) are summarized in Table 1.

Table 1. Known complexity bounds for the satisfiability and finite satisfiability prob-
lems for logics with two-variables and a finite number of distinguished predicates
required to be interpreted as transitive relations or as equivalence relations. All bounds
are tight unless otherwise indicated.

1E 2E kE (k ≥ 3) 1T kT (k ≥ 2)

K PSpace NPTime PSpace

G2 ExpTime NExpTime 2-ExpTime Undec. 2-ExpTime Undec.

FO2 NExpTime NExpTime 2-NExpTime Undec. ≤3-NExpTimea Undec.

GM PSpace NPTime NExpTime

GC2 ExpTime NExpTime Undec. Undec. Undec. Undec.

C2 NExpTime NExpTime Undec. Undec. Undec. Undec.
aUpper bound only, and finite satisfiability only.

References

1. Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments
of predicate logic. J. Philos. Logic 27, 217–274 (1998)

2. Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936)
3. Gödel, K.: Zum Entscheidungsproblem des logischen Funktionenkalküls. Monat-

shefte für Mathematik und Physik 40, 433–443 (1933)
4. Goldfarb, W.: The unsolvability of the Gödel class with identity. J. Symbolic Logic

49, 1237–1252 (1984)

Transitivity and Equivalence in Decidable Fragments of First-Order Logic 107

5. Grädel, E.: On the restraining power of guards. J. Symbolic Logic 64, 1719–1742
(1999)

6. Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-
order logic. Bull. Symbolic Logic 3(1), 53–69 (1997)

7. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable.
In: Proceedings of the 12th IEEE Symposium on Logic in Computer Science, pp.
306–317. IEEE Online Publications (1997)

8. Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik. Springer,
Heidelberg (1928)

9. Hilbert, D., Ackermann, W.: Grundzüge der Theoretischen Logik. DGW, vol. 27.
Springer, Heidelberg (1938). https://doi.org/10.1007/978-3-662-41928-1

10. Kazakov, Y.: A polynomial translation from the two-variable guarded fragment
with number restrictions to the guarded fragment. In: Alferes, J.J., Leite, J. (eds.)
JELIA 2004. LNCS (LNAI), vol. 3229, pp. 372–384. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30227-8 32

11. Kazakov, Y., Pratt-Hartmann, I.: A note on the complexity of the satisfiability
problem for graded modal logic. In: 24th IEEE Symposium on Logic in Computer
Science, pp. 407–416. IEEE Online Publications (2009)

12. Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6, 467–480 (1980)

13. Mortimer, M.: On languages with two variables. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik 21, 135–140 (1975)

14. Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with count-
ing. In: Proceedings of the 12th IEEE Symposium on Logic in Computer Science,
pp. 318–327. IEEE Online Publications (1997)

15. Pacholski, L., Szwast, W., Tendera, L.: Complexity results for first-order two-
variable logic with counting. SIAM J. Comput. 29(4), 1083–1117 (1999)

16. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. J. Logic Lang. Inform. 14, 369–395 (2005)

17. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with count-
ing quantifiers. J. Logic Comput. 17, 133–155 (2007)

18. Scott, D.: A decision method for validity of sentences in two variables. J. Symbolic
Logic 27, 477 (1962)

19. Tobies, S.: PSPACE reasoning for graded modal logics. J. Logic Comput. 11(1),
85–106 (2001)

20. Trakhtenbrot, B.: The impossibility of an algorithm for the decision problem for
finite models. Dokl. Akad. Nauk SSSR 70, 596–572 (1950). English translation in:
AMS Trans. Ser. 2, vol. 23, 1–6 (1963)

21. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)

https://doi.org/10.1007/978-3-662-41928-1
https://doi.org/10.1007/978-3-540-30227-8_32

The Undecidability of FO3 and the
Calculus of Relations with Just One

Binary Relation

Yoshiki Nakamura(B)

Tokyo Institute of Technology, Tokyo, Japan
nakamura.y.ay@is.c.titech.ac.jp

Abstract. The validity problem for first-order logic is a well-known
undecidable problem. The undecidability also holds even for FO3 and
(equational formulas of) the calculus of relations. In this paper we tighten
these undecidability results to the following: (1) FO3 with just one binary
relation is undecidable even without equality; and (2) the calculus of
relations with just one character and with only composition, union, and
complement is undecidable. Additionally we prove that the finite validity
problem is also undecidable for the above two classes.

Keywords: First-order logic · The calculus of relations ·
Undecidability

1 Introduction

The validity problem for first-order logic (a.k.a. the Entscheidungsproblem) is
the problem to decide whether a given formula of first-order logic (FO) is valid
or not. The problem is recursively enumerable by Gödel’s completeness theorem
[6], but is undecidable shown by Church [4] and Turing [23]. In connection with
the undecidability result, many decidable and undecidable variants of FO are
studied (we refer to the book [3]).

One restriction is to consider the validity problem over a restricted signature.
In 1915, Löwenheim [12] proved that monadic FO with equality is decidable
(more precisely, coNEXPTIME-complete [11, p. 318]). Monadic FO is FO with
only unary relation symbols. In 1919, Skolem [19] extended the decidability
result to monadic second-order logic (see also [24]). Subsequently Büchi [18]
extended the decidability result to monadic second-order logic with the linear
order (called S1S). In contrast to this, FO with just one binary relation symbol
is undecidable even without equality. Löwenheim [12] proved the undecidability
of FO with only binary relation symbols, but the number of binary relation
symbols is countably infinite. Subsequently the number was reduced to three by
Herbrand [8] and to just one by Kalmár [10], see e.g., [3, p. 6] or [2, Theorem 21.4

Supported by JSPS KAKENHI Grant Number 16J08119.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 108–120, 2019.
https://doi.org/10.1007/978-3-662-58771-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_11&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_11

The Undecidability of FO3 and the Calculus of Relations 109

(The Church-Herbrand theorem)]. Over finite models, FO with just one binary
relation symbol is also undecidable by Trakhtenbrot’s Theorem [22] (moreover,
the undecidability holds even over finite graphs of vertex-degree at most 3 [26]).

Another restriction is with respect to the number of variables occurring in
formulas. FOk denotes the restriction of FO to formulas with at most k distinct
variables. In these classes, it is known that FO3 with countably infinitely many
binary relation symbols and without equality is undecidable (because the ∀∃∀
case is undecidable [9]), whereas FO2 (even with equality) is decidable [16] and
coNEXPTIME-complete [7, Corollary 5.4]. FO2 has connection with modal logic
in the sense of that some propositional modal logics can be embedded into FO2
[25]. With respect to the expressive power of unary relations, FO2 is equivalent
to boolean modal logic with relational converse and the identity relation [13].
As for FO3, it has connection with the calculus of (binary) relations [20]. We
denote the full signature of the calculus of relations by 〈·, •−,∪, •�, 1〉, where · is
relational composition, •− is set-theoretic complement, ∪ is set-theoretic union,
•� is relational converse, and 1 is the identity relation. Actually, with respect
to the expressive power of binary relations, FO3 with equality is equivalent to
terms of the calculus of relations [21] (see also [5]).

In this paper we prove that the intersection of the above two restrictions is
also undecidable, i.e., the validity problem for FO3 with just one binary relation
symbol and without equality is undecidable. Moreover we prove the finite valid-
ity problem for the class is undecidable. The class is the minimal undecidable
fragment with respect to the above two restrictions since both monadic FO and
FO2 are decidable. As for the calculus of relations, we prove that the validity
problem and the finite validity problem for equational formulas of the calculus
of relations with just one character over the signature 〈·, •−,∪〉 are undecidable.

Outline
Figure 1 gives the outline of this paper. Every arrow denotes that there is a
conservative reduction (a reduction preserving validity and finite validity) from
the source to the target and A denotes a countably infinite set. In Sect. 2 we
introduce first-order logic and the calculus of relations, and we show that FO3
with equality and the calculus of relations are equivalent in the sense of expressive
power of binary relations. In this section we prove that relational converse •�

and the identity relation symbol 1 can be eliminated by using fresh variables
preserving validity and finite validity. In Sect. 3 we give reductions for reducing
the number of characters to one. Finally, in Sect. 4 we conclude this paper.

2 FO3 and the Calculus of Relations

Let V be a countably infinite set of (first-order) variables. In this paper we
assume that every signature of first-order logic is a set of binary relation symbols.
Let A be a set denoting a signature. The set of formulas of first-order logic over
A, written FO=

A, is defined by the following grammar (we omit parentheses and
we use them in ambiguous situations when it is not clear how to parse):

ϕ, ψ ∈ FO=
A:: = a(x, y) | x = y | ϕ ∨ ψ | ∃x.ϕ | ¬ϕ (a ∈ A and x, y ∈ V)

110 Y. Nakamura

Fig. 1. An overview of reductions

We use the following abbreviations: (1) ϕ∧ψ :≡ ¬((¬ϕ)∨ (¬ψ)); (2) ϕ→ψ :≡
(¬ϕ)∨ψ; (3) ϕ↔ψ :≡ (ϕ→ψ)∧(ψ→ϕ); (4) ∀x.ϕ :≡ ¬∃x.¬ϕ. FOA denotes the
subset of FO=

A whose formulas do not contain the symbol =. FOk=
A (resp. FOkA)

denotes the subset of FO=
A (resp. FOA) whose formulas contain at most k distinct

variables1. FO= denotes the set of all formulas in FO=
A over a signature A.

A model over A is a tuple M = 〈|M |,RM 〉, where |M | is a nonempty set; and
RM : A → ℘(|M |2) is a function. Each RM (a) denotes a binary relation on |M |.
We may view every model as a graph, e.g., each element of |M | is called a vertex
and each element of R(a) is called an edge labelled with a. An interpretation I on
M is a function from V to |M |. The semantics of every formula ϕ on 〈M, I〉 is a
truth value. 〈M, I〉 |= ϕ (resp. 〈M, I〉
|= ϕ) denotes that the value of ϕ on 〈M, I〉
is true (resp. false). 〈M, I〉 |= ϕ is defined as follows: (1) 〈M, I〉 |= a(x, y) :⇐⇒
〈I(x), I(y)〉 ∈ RM (a) for a ∈ A; (2) 〈M, I〉 |= x = y :⇐⇒ I(x) = I(y); (3)
〈M, I〉 |= ϕ ∨ ψ :⇐⇒ 〈M, I〉 |= ϕ or 〈M, I〉 |= ψ; (4) 〈M, I〉 |= ∃x.ϕ :⇐⇒
there is v ∈ |M | s.t. 〈M, [v/x]I〉 |= ϕ; (5) 〈M, I〉 |= ¬ϕ :⇐⇒ 〈M, I〉
|= ϕ, where
[v/x]I denotes the function I in which I(x) has been replaced by the element v.
Then the semantics of ϕ on M is defined by �ϕ�M :={I : V → |M | | 〈M, I〉 |= ϕ}.
M |= ϕ denotes that, for any interpretation I, 〈M, I〉 |= ϕ holds. �ϕ��x

M denotes
the projection of �ϕ�M with respect to �x, i.e., �ϕ��x

M := {〈I(x1), . . . , I(xn)〉 | I ∈
�ϕ�M}, where �x = 〈x1, . . . , xn〉.

A formula ϕ over the signature A is called valid (resp. finitely valid) if, for any
model (resp. finite model) M over A, M |= ϕ holds. The validity problem (resp.
the finite validity problem) is the problem to decide whether a given formula is
valid (resp. finitely valid). In this paper we rely on the undecidability of the ∀∃∀
case [9] and modify the result for FO3 and the calculus of relations. This class
is a conservative reduction class [3, Definition 2.1.35] (i.e., there is a recursive
function from every first-order logic formula over any signature to a formula of
the class preserving validity and finite validity). From this, the following holds.

Lemma 1 (A corollary of [3, Theorem 3.1.1]). Let A be any countably infinite
set. Then
1 For example, ∃x.∃y.∃z.∃w.a(x, y) is not an FO3{a} formula (the formula is an FO4{a}

formula), but ∃x.∃y.∃z.∃x.a(x, y) is an FO3{a} formula.

The Undecidability of FO3 and the Calculus of Relations 111

– The validity problem for FO3A is undecidable; and
– The finite validity problem for FO3A is undecidable.

We now define the calculus of relations. Let X be a set and let R and R′ be
binary relations. The identity relation (Y) on a set Y is defined as {〈v, v〉 |
v ∈ Y }. The relational composition R · R′ is defined as {〈v, v′〉 | ∃v′′.〈v, v′′〉 ∈
R∧〈v′′, v′〉 ∈ R′}. The relational converse R� is defined as {〈v′, v〉 | 〈v, v′〉 ∈ R}.
The union R ∪ R′ and the complement R− are defined as set-theoretic union
and complement (in particular, R− := |X|2 \ R). Let A be a set of characters.
The set of terms over A, written TA, is defined by the following grammar:

t, u ∈ TA:: = a | t · u | t− | t ∪ u | t� | 1 (a ∈ A)

We use the following abbreviations: (1) t∩u :≡ (t− ∪u−)−; (2) � :≡ a∪ a−; (3)
0 :≡ a ∩ a−; (4) tn+1 :≡ tn · t and t1 :≡ t, where a is some character in A and
n ≥ 1. T ς

A denotes the set of terms over A and over the signature ς, where ς is a
subset of {·, •−,∪, •�, 1}. Note that the symbols, •� and 1, are not used in these
abbreviations.

Let M be a model over A. The semantics of every term t on M , written
�t�M , is a binary relation on |M |, defined as follows: (1) �a�M := RM (a); (2)
�t · u�M := �t�M · �u�M ; (3) �t−�M := |M |2 \ �t�M ; (4) �t ∪ u�M := �t�M ∪ �u�M ;
(5) �t��M := �t��

M ; (6) �1�M := (|M |). Note that �t ∩ u�M = �t�M ∩ �u�M ,
���M = |M |2, and �0�M = ∅ hold. We also define the set of formulas of the
calculus of the relations over a set T , written Φ[T], by the following grammar:

ϕ,ψ ∈ Φ[T]:: = t = u | ϕ ∨ ψ | ¬ϕ (t, u ∈ T)

where T is a set of terms. The semantics of every formula ϕ ∈ Φ[T] on M is
a truth value. M |= ϕ (resp. M
|= ϕ) denotes that the value of ϕ on M is
true (resp. false) defined as follows: (1) M |= t = u :⇐⇒ �t�M = �u�M ;
(2) M |= ϕ ∨ ψ :⇐⇒ M |= ϕ or M |= ψ; (3) M |= ¬ϕ :⇐⇒ M
|= ϕ. A
formula of the form t = u is called an equational formula. We denote the set of
equational formulas over a set T by Eq[T]. Actually every formula is equivalent
to an equational formula by the following lemma.

Lemma 2 (cf. [14, Theorem 1]). For any formula ϕ in Φ[TA], there is an
equational formula ψ of the form t = 0 in Eq[TA] s.t. for any M over A,
M |= ϕ ⇐⇒ M |= ψ.

Proof (Sketch). It is proved by using the following equivalences: (1) M |= t =
u ⇐⇒ M |= (t∩u−)∪(t−∩u)=0; (2) M |= (t=0)∨(u=0) ⇐⇒ M |= t·�·u=0;
(3) M |= ¬(t = 0) ⇐⇒ M |= (� · t · �)− = 0.

By Lemma 2, every formula of the calculus of relations can be translated to an
equational formula preserving validity and finite validity. For simplicity, we may
use formulas of the calculus of relations (but it is not essential). Note that the
symbols, •� and 1, are not used in the translation in Lemma2.

112 Y. Nakamura

FO3= and the calculus of relations are equivalent in the sense of expressive
power of binary relations. We use [n] to denote the set {1, . . . , n} for every natural
number n ≥ 0. The following lemma shows that every term of the calculus of
relations has an equivalent FO3= formula.

Lemma 3 (e.g., [21, p. 28][5]). Let x1, x2, and x3 are three distinct variables.
There is a recursive function G from TA × [3]2 to FO3=A s.t., for any 〈t, i, j〉 and
any model M over A, �t�M = �G(t, i, j)�xi,xj

M holds.

Proof (Sketch). We define G(t, i, j) as follows: (1) G(a, i, j) :=a(xi, xj); (2) G(t ·
u, i, j) :=∃k.G(t, i, k)∧G(u, k, j); (3) G(t−, i, j) :=¬G(t, i, j); (4) G(t∪u, i, j) :=
G(t, i, j) ∨ G(u, i, j); (5) G(t�, i, j) := G(t, j, i); (6) G(1, i, j) := xi = xj , where k
is the minimum element in [3] \ {i, j}. Then �t�M = �G(t, xi, xj)�

xi,xj

M is proved
by induction on the structure of t.

Actually the converse of Lemma 3 also holds, i.e., FO3= and the calculus of
relations are equivalent in the sense of expressive power of binary relations.

Lemma 4 (e.g., [21, Sect. 3.9][5]). There is a recursive function H from
FO3=A × V 2 to TA s.t., for any 〈ϕ, v, w〉 and any model M over A, �ϕ�v,w

M =
�H(ϕ, v, w)�M .

By Lemmas 3 and 4, every equational formula of the calculus of relations can be
translated to an FO3 sentence, and vice versa, by the following:

M |= t = u ⇐⇒ M |= ∀x1.∀x2.G(t, 1, 2) ↔ G(u, 1, 2)
M |= ϕ ⇐⇒ M |= H(ϕ, x, x) = �

where x is an arbitrary variable. Therefore the following also holds.

Lemma 5. Let A be any countably infinite set. Then both the validity problem
and the finite validity problem for Eq[T 〈·,•−,∪,•�,1〉

A] are undecidable.

2.1 Elimination of Relational Converse (Using the Identity
Relation)

In this subsection, we show that relational converse •� can be eliminated by
using fresh variables preserving validity and finite validity (Lemma7). Let Ă be
a countably infinite set that is disjoint with A. We use ă to denote the character
in Ă denoting the converse of the character a in A. The following two axioms
force that ă is the converse of a: (Ca.1) (a · ă−)∩1=0; and (Ca.2) (ă ·a−)∩1=0.
(Ca.1-2) denotes the formula (Ca.1) ∧ (Ca.2). In fact the following holds.

Proposition 6. For any model M over the alphabet A ∪ Ă, the following hold:
(1) M |= (Ca.1-2) ⇐⇒ M |= a� = ă; (2) M |= (t · u)� = u� · t�; (3) M |=
(t−)� = (t�)−; (4) M |= (t∪u)� = t� ∪u�; (5) M |= (t�)� = t; (6) M |= (1)� = 1.

The Undecidability of FO3 and the Calculus of Relations 113

Proof. (2)–(6) are easily proved by the definition of �t�M . We only prove (1).
(⇒): We assume that there is a pair 〈v, w〉 such that 〈v, w〉 ∈ �a��

M \ �ă�M .
Then, by 〈w, v〉 ∈ �a�M and 〈v, w〉 ∈ �ă−�M , 〈w,w〉 ∈ �(a · ă−) ∩ 1�M . However
this contradicts to (Ca.1). Therefore �a��

M ⊆ �ă�M . We assume that there is
a pair 〈v, w〉 such that 〈v, w〉 ∈ �ă�M \ �a��

M . Then, by 〈v, w〉 ∈ �ă�M and
〈w, v〉 ∈ �a−�M , 〈v, v〉 ∈ �(ă · a−) ∩ 1�M . However this contradicts to (Ca.2).
Therefore �a��

M ⊇ �ă�M , and thus M |= a�=ă. (⇐): We prove the contraposition.
If M
|= (Ca.1), there are v and w such that 〈v, w〉 ∈ �a�M and 〈w, v〉 ∈ �ă−�M .
Then by 〈w, v〉 ∈ �a��M and 〈w, v〉
∈ �ă�M , M
|= a� = ă. If M
|= (Ca.2), there
are v and w such that 〈v, w〉 ∈ �ă�M and 〈w, v〉 ∈ �a−�M . Then by 〈v, w〉
∈ �a��M

and 〈v, w〉 ∈ �ă�M , M
|= a� = ă. ��

Let CF(t) be the normal form of a term t w.r.t. the following rewriting rule: (1)
(a)� � ă; (2) (t · u)� � u� · t�; (3) (t−)� � (t�)−; (4) (t ∪ u)� � t� ∪ u�; (5)
(t�)� � t; (6) (1)� � 1. Note that, for any term t, CF(t) does not contain •�.
We use Aϕ to denote the finite set of all characters occurring in ϕ.

Lemma 7. For any t, u ∈ TA, the following are equivalent: (1) t = u is valid
(resp. finitely valid). (2) (

∧
a∈At=u

(Ca.1-2)) → CF(t) = CF(u) is valid (resp.
finitely valid).

Proof. (2) ⇒ (1): Let M be a model over A such that M
|= t = u. We define
the model M ′ over A ∪ Ă by M ′ = (|M |,R′), where R′(a) = RM (a) for a ∈
A; and R′(ă) = RM (a)� for ă ∈ Ă. Then M ′ |=

∧
a∈At=u

(Ca.1-2) holds by
Proposition 6 (1). Moreover, for any term t ∈ TA, �t�M = �CF(t)�M ′ holds by
using Proposition 6. Therefore M ′
|= CF(t) = CF(u). (1) ⇒ (2): Let M be a
model over A such that M |=

∧
a∈At=u

(Ca.1-2) holds, but M
|= CF(t)=CF(u).
Then �t�M = �CF(t)�M holds for any term t ∈ TA by using Proposition 6, and
thus M
|= t = u. ��

By Lemma 2, Each formula (
∧

a∈A(t=u)(Ca.1-2))→CF(t)=CF(u) can be trans-
lated to an equational formula without •�.

2.2 Elimination of the Identity Relation

In this subsection, we also eliminate the identity relation symbol 1 by using
a fresh variable E. The key is to construct an equivalence relation denoting
the identity relation not using 1 or •�. Let consider the following axioms: (E.1)
E ·�=�; (E.2) (E− ·E)∩E=0; (E.3) (E ·E−)∩E=0; and (E.4) (E ·E)∩E−=0.
(E.1-4) denotes the formula (E.1) ∧ · · · ∧ (E.4).

Proposition 8. M |= (E.1-4) ⇐⇒ �E�M is an equivalence relation on |M |.

Proof. (⇐): (E.1) is by the reflexivity. (E.4) is by the transitivity. (E.2) and
(E.3) are by the symmetry and the transitivity. (⇒): The reflexivity is shown
by (E.1) and (E.2). Let v be any vertex in |M |. Then let w be a vertex such
that 〈v, w〉 ∈ �E�M holds (such w always exists by (E.1)). We assume that

114 Y. Nakamura

〈v, v〉
∈ �E�M . Then, by 〈v, v〉 ∈ �E−�M , 〈v, w〉 ∈ �(E− · E) ∩ E�M holds.
However this contradicts to (E.2). Therefore 〈v, v〉 ∈ �E�M . The symmetry is by
the reflexivity and (E.3). Let 〈v, w〉 ∈ �E�M . We assume 〈w, v〉
∈ �E�M . Then
〈v, v〉 ∈ �(E · E−) ∩ E�M by the reflexivity. However this contradicts to (E.3).
Therefore 〈w, v〉 ∈ �E�M . The transitivity is by (E.4). ��

For every term t, the term IF(t) is inductively defined as follows:(1) IF(a):=E ·a·
E; (2) IF(t ·u) := IF(t) · IF(u); (3) IF(t−) := IF(t)−; (4) IF(t∪u) := IF(t)∪ IF(u);
(5) IF(t�) := IF(t)�; (6) IF(1) := E. Note that (i) IF(t) does not contain the
symbol 1; and (ii) if t does not contain •�, then IF(t) also does not contain •�.

Lemma 9. For any t, u ∈ T 〈·,•−,∪,1,•�〉
A , The following are equivalent: (1) t=u is

valid (resp. finitely valid). (2) (E.1-4)→ IF(t)= IF(u) is valid (resp. finitely valid).

Proof. (2) ⇒ (1): Let M be a model over A such that M
|= t = u. We define the
model M ′ over A ∪ {E} by M ′ := (|M |,R′), where R′(a) = RM (a) for a ∈ A and
R′(E) = (|M |). Then M ′ |= (E.1-4) holds because �E�M ′ is an equivalence rela-
tion. Also M ′
|= IF(t)=IF(u) holds because �t�M = �IF(t)�M ′ holds by the defini-
tion of M ′. (1) ⇒ (2): Let M be a model over A∪{E} such that M |= (E.1-4) holds,
but M
|= IF(t) = IF(u). We define the model M ′ over A by M ′ := (|M |/E,R′),
where |M |/E is the quotient set of |M | by E; [v]E denotes the equivalence class of
an element v with respect to E; and R′(a) = {〈[v]E , [w]E〉 | 〈v, w〉 ∈ RM (a)} for
a ∈ A. Then {〈[v]E , [w]E〉 | 〈v, w〉 ∈ �IF(t)�M} = �t�M ′ holds for any term t. This
is proved by induction on the structure of t. Therefore M ′
|= t = u. ��

We can eliminate both converse and the identity relation preserving validity and
finite validity by Lemmas 7 and 9. Therefore the following holds.

Corollary 10. Let A be a countably infinite set. Then both the validity problem
and the finite validity problem for Eq[T 〈·,•−,∪〉

A] are undecidable.

3 Reductions to the One Binary Relation Case

In this section we consider to reduce the number of characters. Let A be an
ordered set {a1, a2, . . . }. Without loss of generality, we can assume that every
term is in T 〈·,•−,∪〉

A by Corollary 10. In this section we give two reductions to
the one binary relation case. First we give a simple reduction, but this reduction
uses the identity relation. The second reduction is a bit more complex than the
first reduction, but the reduction does not use the identity relation.

3.1 A Conservative Reduction Using Identity

We first give a reduction T1 from T 〈·,•−,∪,1〉
A to T 〈·,•−,∪,1〉

{a} . The term T1(t) is
inductively defined as follows: (1) T1(ai) := (a ∩ 1) · a · ((a− ∩ 1) · a)i · (a ∩ 1); (2)
T1(t · u) := T1(t) · T1(u); (3) T1(t−) := (a ∩ 1) · T1(t)− · (a ∩ 1); (4) T1(t ∪ u) :=
T1(t) ∪ T1(u); (5) T1(1) := (a ∩ 1).

The Undecidability of FO3 and the Calculus of Relations 115

Figure 2 is an example of transforming from models over A to models over {a}
in Lemma 11. Each blue (resp. red, gray) colored edge denotes an edge labeled
with a1 (resp. a2, a).

Fig. 2. A transformation to the one binary relation case using identity (Color figure
online)

Lemma 11. For any t, u ∈ T 〈·,•−,∪,1〉
A , The following are equivalent: (1) t = u

is valid (resp. finitely valid). (2) T1(t) = T1(u) is valid (resp. finitely valid).

Proof. (2) ⇒ (1): Let M be a model over At=u such that M
|= t=u. We define
the model M ′ over {a} by M ′ := 〈|M ′|,R′〉, where |M ′| := |M | ∪ {〈v, w, i, j〉 |
〈v, w〉 ∈ RM (ai), j ∈ [i]} and R′(a) := (|M |) ∪ {〈v, 〈v, w, i, 1〉〉, 〈〈v, w, i, i〉, w〉 |
〈v, w〉 ∈ RM (ai)} ∪ {〈〈v, w, i, j〉, 〈v, w, i, j + 1〉〉 | 〈v, w〉 ∈ RM (ai), j ∈ [i − 1]}.
The right-hand side in Fig. 2 is an example of M ′. Note that if M is finite, M ′

is also finite because At=u is finite. Then �t�M = �T1(t)�M ′ holds. This is easily
proved by induction on the structure of t. Therefore M ′
|= T1(t)=T1(u). (1) ⇒
(2): Let M be a model over {a} such that M
|= T1(t) = T1(u). Then we define
the model M ′ over A by M ′ := 〈|M ′|,R′〉, where |M ′| := {v | 〈v, v〉 ∈ �a�M} and
R′(ai) := |M ′|2 ∩ �T1(ai)�M . Then �t�M ′ = �T1(t)�M holds. This is easily proved
by induction on the structure of t. Therefore M ′
|= t = u. ��

By the above lemma, the following has been proved.

Theorem 12. Let a be a character. Then both the validity problem and the finite
validity problem for Eq[T 〈·,•−,∪,1〉

{a}] are undecidable.

Remark 13. The undecidability of the validity problem for the calculus of rela-
tions with just one character over the signature 〈·, •−,∪, •�, 1〉 had been shown
by Maddux [15, p. 399]. More strongly, Theorem12 shows that the validity prob-
lem is undecidable even without •� and shows that the finite validity problem is
also undecidable. Furthermore, Theorem 12 will be strengthened to Theorem 17.

Combining Theorem 12 and Lemma 9, the following is also proved.

Corollary 14. Let a1, a2 be two distinct characters. Then both the validity prob-
lem and the finite validity problem for Eq[T 〈·,•−,∪〉

{a1,a2}] are undecidable.

116 Y. Nakamura

3.2 A Conservative Reduction Not Using Identity

In this subsection we give another reduction, which is not using the identity
relation and relational converse. The key is how to distinguish the vertices of
a given model and the other vertices on the transformed model, not relying on
the identity relation. Without loss of generality we can assume that the size of
character is 2 by Corollary 14. Now we consider the following axioms: (Ax.1)
(a∩ a2) · �= (a∩ a2) · (a∩ a3) · �; and (Ax.2) � · (a∩ a3)=� · (a∩ a2) · (a∩ a3).
(Ax.1-2) denotes the formula (Ax.1) ∧ (Ax.2). These axioms are used to force
cod(�a ∩ a2�M) = dom(�a ∩ a3�M), where dom(R) (resp. cod(R)) denote the
domain (resp. codomain) of a binary relation R, i.e., dom(R) := {v | ∃w.〈v, w〉 ∈
R} and cod(R) := {w | ∃v.〈v, w〉 ∈ R}. In fact the following holds.

Proposition 15. M |= (Ax.1-2) ⇐⇒ cod(�a ∩ a2�M) = dom(�a ∩ a3�M).

Proof. By M |= (Ax.1) ⇐⇒ cod(�a ∩ a2�M) ⊆ dom(�a ∩ a3�M) and M |=
(Ax.2) ⇐⇒ cod(�a ∩ a2�M) ⊇ dom(�a ∩ a3�M). ��

We define a reduction T2 from T 〈·,•−,∪〉
{a1,a2} to T 〈·,•−,∪〉

{a} as follows: (1) T2(ai) :=
(a ∩ a3) · ai+1 · (a ∩ a2); (2) T2(t · u) := T2(t) · T2(u); (3) T2(t−) := ((a ∩ a3) ·
�) ∩ (� · (a ∩ a2)) ∩ T2(t)−; (4) T2(t ∪ u) := T2(t) ∪ T2(u). Intuitively, both the
codomain of a ∩ a2 and the domain of a ∩ a3 denote the set of vertices in the
pre-transformed model in the above reduction.

Figure 3 is an example of transforming models over {a1, a2} to models over
{a} in Lemma 16. Each blue (resp. red, gray) colored edge denotes an edge
labeled with a1 (resp. a2, a).

Fig. 3. A transformation to the one binary relation case not using identity (Color figure
online)

Lemma 16. For any t, u ∈ T 〈·,•−,∪〉
{a1,a2} , the following are equivalent: (1) t=u is valid

(resp. finitely valid). (2) (Ax.1-2) → T2(t) = T2(u) is valid (resp. finitely valid).

Proof. (2) ⇒ (1): Let M be a model over {a1, a2} such that M
|= t=u. We define
the model M ′ over {a} by M ′ :=〈|M ′|,R′〉, where |M ′|:=(|M |×[6])∪{〈v, w, i, j〉 |
〈v, w〉 ∈ RM (ai), j ∈ [i]} and R′(a) is the union of the following:

(i)
⋃

v∈|M |({〈〈v, i〉, 〈v, i + 1〉〉 | i ∈ [5]} ∪ {〈〈v, 1〉, 〈v, 3〉〉, 〈〈v, 3〉, 〈v, 6〉〉});
(ii)

⋃
i∈{1,2}{〈v, 〈v, w, i, 1〉〉, 〈〈v, w, i, i〉, w〉 | (v, w) ∈ RM (ai)}); and

(iii) {〈〈v, w, 2, 1〉, 〈v, w, 2, 2〉〉 | (v, w) ∈ RM (a2)}.

The Undecidability of FO3 and the Calculus of Relations 117

The right-hand side in Fig. 3 is an example of M ′.
First M ′ |= (Ax.1-2) holds by cod(�a ∩ a2�M ′) = {〈v, 3〉 | v ∈ |M |} =

dom(�a∩a3�M ′). Moreover the following holds: {〈〈v, 3〉, 〈w, 3〉〉 | (v, w) ∈ �t�M} =
�T2(t)�M ′ · · · (♥). M ′
|= T2(t) = T2(u) is proved by (♥). We prove (♥) by
induction on t.

If t ≡ ai, let 〈v, w〉 be a pair such that 〈v, w〉 ∈ �ai�M . Then 〈〈v, 3〉, 〈w, 3〉〉 ∈
�(a∩a3) ·ai+1 ·(a∩a2)�M ′ is easily checked. Conversely, if 〈v, w〉 ∈ �(a∩a3) ·ai+1 ·
(a∩a2)�M ′ , then then there are v′, w′ ∈ |M | such that 〈v, w〉 = 〈〈v′, 3〉, 〈w′, 3〉〉 by
cod(�a ∩ a2�M ′) = dom(�a ∩ a3�M ′) = {〈v, 3〉 | v ∈ |M |}. Then {v | 〈〈v′, 3〉, v〉 ∈
�a ∩ a3�M ′} = {〈v′, 6〉} and {w | 〈w, 〈w′, 3〉〉 ∈ �a ∩ a2�M ′} = {〈w′, 1〉} hold, and
thus 〈〈v′, 6〉, 〈w′, 1〉〉 ∈ �ai+1�M ′ . If we assume 〈v′, w′〉
∈ �ai�M , then 〈w′, 1〉 is not
reachable from 〈v′, 6〉 in i+1 steps because i+1 ≤ 3 and the length of paths from
〈v′, 6〉 to 〈w′, 1〉 via some 〈w′′, 1〉 is at least 6, where w′′ is an element in |M | not
equal to w′. (More concretely, the following path is the shortest path from 〈v′, 6〉
to 〈w′, 1〉 via 〈w′′, 1〉: 〈v′, 6〉 � 〈v′, w′′, 1, 1〉 � 〈w′′, 1〉 � 〈w′′, 3〉 � 〈w′′, 6〉 �
〈w′′, w′, 1, 1〉 � 〈w′, 1〉.) However this contradicts to 〈〈v′, 6〉, 〈w′, 1〉〉 ∈ �ai+1�M ′ .
Therefore 〈v′, w′〉 ∈ �ai�M .
If t ≡ t · u:

�T2(t · u)�M′ = �T2(t) · T2(u)�M′ = �T2(t)�M′ · �T2(u)�M′

= {〈〈v, 3〉, 〈v′′, 3〉〉 | 〈v, v′′〉 ∈ �t�M} · {〈〈v′′, 3〉, 〈v′, 3〉〉 | 〈v′′, v′〉 ∈ �u�M} (I.H.)
= {〈〈v, 3〉, 〈v′, 3〉〉 | 〈v, v′〉 ∈ �t · u�M}.

If t ≡ t−:

�T2(t
−)�M′ = �((a ∩ a3) · �) ∩ (� · (a ∩ a2)) ∩ T2(t)

−�M′

= {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ |M |2} ∩ �T2(t)
−�M′

= {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ |M |2} \ �T2(t)�M′

= {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ |M |2} \ {〈〈v, 3〉, 〈w, 3〉 | 〈v, w〉 ∈ �t�M} (I.H.)
= {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ �t−�M}.

If t ≡ t ∪ u:

�T2(t ∪ u)�M′ = �T2(t) ∪ T2(u)�M′ = �T2(t)�M′ ∪ �T2(u)�M′

= {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ �t�M} ∪ {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ �u�M} (I.H.)
= {〈〈v, 3〉, 〈w, 3〉〉 | 〈v, w〉 ∈ �t ∪ u�M}.

(1) ⇒ (2): Let M be a model over {a} such that M |= (Ax.1-2), but M
|=
T2(t) = T2(u). Then we define the model M over A by M ′ := 〈|M ′|,R′〉, where
|M ′| :=dom(�a∩a3�M) and R′(ai) :=�T2(ai)�M . Note that R′(ai) ⊆ |M ′|2 holds
because dom(�a∩a3�M) = cod(�a∩a2�M) by Proposition 15. Then the following
holds: �t�M ′ = �T2(t)�M · · · (♥). M ′
|= t = u is proved by (♥). We now prove
(♥) by induction on the structure of t.

118 Y. Nakamura

If t ≡ ai, �ai�M ′ = �T2(ai)�M is shown by the definition of M ′.
If t ≡ t · u,

�t · u�M′ = �t�M′ · �u�M′ = �T2(t)�M · �T2(u)�M (I.H.)
= �T2(t) · T2(u)�M = �T2(t · u)�M .

If t ≡ t−,

�t−�M′ = |M ′|2 \ �t�M′ = |M ′|2 \ �T2(t)�M (I.H.)

= �((a ∩ a3) · �) ∩ (� · (a ∩ a2))�M \ �T2(t)�M

= �((a ∩ a3) · �) ∩ (� · (a ∩ a2)) ∩ T2(t)
−�M = �T2(t

−)�M .

If t ≡ t ∪ u,

�t ∪ u�M′ = �t�M′ ∪ �u�M′ = �T2(t)�M ∪ �T2(u)�M (I.H.)
= �T2(t) ∪ T2(u)�M = �T2(t ∪ u)�M .

��

By Lemma 16, the next theorem has been proved.

Theorem 17. Let a be a character. Then both the validity problem and the finite
validity problem for Eq[T 〈·,•−,∪〉

{a}] are undecidable.

Combining Theorem 17 and Lemma 3, the following is also proved. Note that, if
a term t does not contain 1, the formula G(t, i, j) does not contain =.

Theorem 18. Let a be a character. Then both the validity problem and the finite
validity problem for FO3{a} are undecidable.

4 Conclusion

In this paper we showed that the validity problem and the finite validity problem
are undecidable for the following classes: (1) FO3 with just one binary relation
symbol and without equality; and (2) equational formulas of the calculus of
relations with just one character over the signature 〈·, •−,∪〉. In connection with
(2), the following decidable fragments are known.

Theorem 19 ([1, Theorem 5] for (1)). The validity problem and the finite
validity problem are decidable for the following classes: (1) the calculus of rela-
tions over the signature 〈·,∪〉 (even with •�, 1, 0,�,∩, and atomic negation); and
(2) the calculus of relations over the signature 〈•−,∪〉 (even with •�, 1).

These decidability results are proved by the reduction to FO3 (Lemma 3) and
using the decidability of the satisfiability problem and the finite model property
of the ∃∗∀∗ case with equality (proved by Ramsey [17] in 1930, see also [3, Sect.
6.2.2]). To the best of our knowledge, the (un)decidability of the validity problem
and the finite validity problem for equational formulas of the calculus of relations
over the signature 〈·, •−〉 are open regardless of the number of characters.

The Undecidability of FO3 and the Calculus of Relations 119

References

1. Andréka, H., Bredikhin, D.A.: The equational theory of union-free algebras
of relations. Algebr. Univers. 33(4), 516–532 (1995). https://doi.org/10.1007/
BF01225472

2. Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. 5th edn.,
p. 350. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/
CBO9780511804076

3. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem, p. 482.
Springer, Heidelberg (1997)

4. Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936).
https://doi.org/10.2307/2269326

5. Givant, S.: The calculus of relations as a foundation for mathematics. J. Autom.
Reason. 37(4), 277–322 (2007). https://doi.org/10.1007/s10817-006-9062-x

6. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monat-
shefte für Mathematik und Physik 37(1), 349–360 (1930). https://doi.org/10.1007/
BF01696781

7. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable
first-order logic. Bull. Symb. Log. 3(01), 53–69 (1997). https://doi.org/10.2307/
421196

8. Herbrand, J.: Sur le problème fondamental de la logique mathématique. Sprawoz-
dania z posiedezen Towarzysta Naukowego Warszawskiego, Wydzial III 24, 12–56
(1931)

9. Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the AEA
case. Proc. Natl. Acad. Sci. 48(3), 365–377 (1962). https://doi.org/10.1073/pnas.
48.3.365

10. Kalmár, L.: Zuriickftihrung des Entscheidungsproblems auf den Fall von Formeln-
mit einer einzigen, bindren, Funktionsvariablen. In: Compositiomathematica, p. 4
(1936)

11. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980). https://doi.org/10.1016/0022-0000(80)90027-6

12. Löwenheim, L.: Über Möglichkeiten im Relativkalköl. Mathematische Annalen
76(4), 447–470 (1915)

13. Lutz, C., Sattler, U., Wolter, F.: Modal logic and the two-variable fragment. In:
Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 247–261. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44802-0 18

14. Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of
Mathematics, vol. 150, p. 758. Elsevier (2006). https://doi.org/10.1016/S0049-
237X(06)80023-6

15. Maddux, R.D.: Undecidable semiassociative relation algebras. J. Symb. Log.
59(02), 398–418 (1994). https://doi.org/10.2307/2275397

16. Mortimer, M.: On languages with two variables. Math. Log. Q. 21(1), 135–140
(1975). https://doi.org/10.1002/malq.19750210118

17. Ramsey, F.P.: On a problem of formal logic. In: Classic Papers in Combinatorics,
pp. 1–24. Birkhäuser-Verlag (2009). https://doi.org/10.1007/978-0-8176-4842-8 1

18. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Inter-
national Congress on Logic, Method, and Philosophy of Science, pp. 1–11. Stanford
University Press (1962)

https://doi.org/10.1007/BF01225472
https://doi.org/10.1007/BF01225472
https://doi.org/10.1017/CBO9780511804076
https://doi.org/10.1017/CBO9780511804076
https://doi.org/10.2307/2269326
https://doi.org/10.1007/s10817-006-9062-x
https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01696781
https://doi.org/10.2307/421196
https://doi.org/10.2307/421196
https://doi.org/10.1073/pnas.48.3.365
https://doi.org/10.1073/pnas.48.3.365
https://doi.org/10.1016/0022-0000(80)90027-6
https://doi.org/10.1007/3-540-44802-0_18
https://doi.org/10.1016/S0049-237X(06)80023-6
https://doi.org/10.1016/S0049-237X(06)80023-6
https://doi.org/10.2307/2275397
https://doi.org/10.1002/malq.19750210118
https://doi.org/10.1007/978-0-8176-4842-8_1

120 Y. Nakamura

19. Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls und
ÜberProduktations- und Summationsprobleme, welche gewisse Klassen
von Aussagen betreffen. In: Videnskapsselskapets skrifter, I. Matematisk-
naturvidenskabelig, vol. 3, p. 37 (1919)

20. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941). https://
doi.org/10.2307/2268577

21. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, vol. 41,
p. 318. Colloquium Publications. American Mathematical Society (1987)

22. Trakhtenbrot, B.A.: The Impossibility of an algorithm for the decision problem in
finite classes. In: Detlovs, V.K. (ed.) Nine Papers on Logic and Quantum Electro-
dynamics. American Mathematical Society Translations Series 2, vol. 23, pp. 1–5.
American Mathematical Society (1963)

23. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. s2–42(1), 230–265 (1937). https://doi.org/
10.1112/plms/s2-42.1.230

24. Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai,
S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-92701-3 7

25. Vardi, M.Y.: Why is modal logic so robustly decidable? Technical report, p. 24
(1997)

26. Willard, R.: Hereditary undecidability of some theories of finite structures. J. Symb.
Log. 59(04), 1254–1262 (1994). https://doi.org/10.2307/2275703

https://doi.org/10.2307/2268577
https://doi.org/10.2307/2268577
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/978-3-540-92701-3_7
https://doi.org/10.2307/2275703

Satisfaction Classes via Cut Elimination

Cezary Cieśliński(B)

Institute of Philosophy, University of Warsaw, Warsaw, Poland
c.cieslinski@uw.edu.pl

Abstract. We present a construction of a satisfaction class in an arbi-
trary countable recursively saturated models of first-order arithmetic.
Our construction is fully classical, namely, it employs nothing more than
the classical techniques of formal proof theory.

1 Introduction

The goal of this paper is to sketch a fully classical construction of a satisfaction
class for the language of first-order arithmetic. The initial introductory remarks
describe the motivation for this endeavor.

It is well-known that non-standard models of arithmetic contain nonstandard
arithmetical formulas. Indeed, for an arbitrary nonstandard model M there will
be an a ∈ M such that M |= ‘a is an arithmetical formula’ even though in
the real world a is not a formula at all. A natural question arises whether it is
possible to develop semantics for such objects (we will call them ‘formulas in the
sense of the model’). First attempts in this direction were made by Robinson
[8] and Krajewski [7]. To this aim, the notion of a satisfaction class has been
introduced. Roughly, a satisfaction class is a subset of the model which can be
treated as a reasonable interpretation of the satisfaction predicate obeying the
usual Tarski-style compositional clauses.

Further work on satisfaction classes brought remarkable results. In particu-
lar, it transpired that a non-inductive satisfaction class can be constructed in
an arbitrary countable recursively saturated model of arithmetic. This is the
famous theorem of Kotlarski, Krajewski and Lachlan (KKL in short), which
demonstrates the conservativity of non-inductive satisfaction axioms over first-
order arithmetic.1

However, the original proof of the theorem uses techniques which many read-
ers found exotic. From the author’s experience, the machinery of (so-called)
‘approximations’, developed by KKL in their paper, remains one of the main
stumbling blocks in the wider dissemination of this important result. Accord-
ingly, the question has been asked whether the result can be proved by purely
classical methods. One successful attempt in this direction has been recently
made by Enayat and Visser [2]. In their paper, they showed how to construct

1 See [5]. For an overview, see also [4,6].

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 121–131, 2019.
https://doi.org/10.1007/978-3-662-58771-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_12&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_12

122 C. Cieśliński

a satisfaction class using classical techniques of formal semantics (namely, com-
pactness and the union of elementary chain theorem).2

In the present paper I propose to prove the theorem by the classical tech-
niques of formal proof theory, namely, by cut elimination. Coupled with Enayat
and Visser construction, this makes the fascinating field of satisfaction classes
accessible to the students and the logicians, whose primary interest is either
model theory or proof theory.

2 Preliminaries

The language of first-order Peano arithmetic will be denoted here as LPA. Prim-
itive non-logical symbols of LPA are ‘+’, ‘×’, ‘0’, ‘S’. The expressions V ar, Tm,
Tmc, FmLPA

and SentLPA
will be used as referring (respectively) to the sets

of variables, terms, constant terms, formulas and sentences of LPA. We will also
use these expressions as shorthands for arithmetical predicates representing the
relevant sets in PA. Given a model M , we write SentLPA

(M) for the set of all
objects a such that a ∈ M and M |= SentLPA

(a).
The perspective adopted in this paper is that of truth, not satisfaction.

Accordingly, we will consider the language LT obtained from LPA by adding
the unary truth predicate ‘T (x)’ (instead of a binary satisfaction predicate).
SentLT

is the set of sentences of LT .
We introduce now the basic theory of truth, denoted as CT−. The acronym

‘CT ’ stands for ‘compositional truth’; the superscript indicates that in this the-
ory we have induction only for the arithmetical language (not with the truth
predicate).

Definition 1. CT− is the theory in the language LT axiomatized by all the
usual axioms of Peano arithmetic together with the following truth axioms:

• ∀s, t ∈ Tmc
(
T (s = t) ≡ val(s) = val(t)

)

• ∀ϕ
(
SentLPA

(ϕ) → (T¬ϕ ≡ ¬Tϕ)
)

• ∀ϕ∀ψ
(
SentLPA

(ϕ ∨ ψ) → (T (ϕ ∨ ψ) ≡ (Tϕ ∨ Tψ))
)

• ∀v∀ϕ(x)
(
SentLPA

(∀vϕ(v)) → (T (∀vϕ(v)) ≡ ∀xT (ϕ(ẋ)))
)

In effect, the truth axioms of CT− follow the familiar pattern of Tarski’s
inductive truth definition. Let us only emphasize that the quantifier axiom
given here employs numerals. A numeral is an arithmetical term of the form
‘S . . . S(0)’; in other words, numerals are expressions obtained by preceding the
symbol ‘0’ with arbitrarily many successor symbols. Accordingly, the intended
meaning of the quantifier axiom is that ‘∀vϕ(v)’ is true iff the result of substi-
tuting an arbitrary numeral for v in ϕ(v) is true.

2 In their proof it is assumed that arithmetic is formulated in the relational language.
See [1] for extending the result to the language with function symbols.

Satisfaction Classes via Cut Elimination 123

A ‘truth class’ in a model M is a subset T of M which makes all the axioms
of CT− true. Now, the conservativity theorem states that the truth axioms of
CT− are conservative not just over full Peano arithmetic, but also over the
fragments of arithmetic sufficient for reconstructing basic theory of syntax. In
particular, adding the truth axioms to IΣ1 (the theory just like Peano arithmetic
but with induction restricted to Σ1 arithmetical formulas) produces a conser-
vative extension of IΣ1. This is a direct corollary of the KKL theorem, which
can be formulated as an expandability result concerning recursively saturated
models of IΣ1.

Two definitions below introduce the notion of a recursive type and the con-
cept of a recursively saturated model.

Definition 2. Let Z be a set of formulas with one free variable x and with
parameters a1...an from a model M . We say that:

(a) Z is realized in M iff there is an s ∈ M such that every formula in Z is
satisfied in M under a valuation assigning s to x.

(b) Z is a type of M iff every finite subset of Z is realized in M .
(c) Z is a recursive type of M iff apart from being a type of M , Z is also

recursive.

Definition 3. M is recursively saturated iff every recursive type of M is realized
in M .

The KKL theorem can now be formulated as follows.

Theorem 4. For every M |= IΣ1, if M is countable and recursively saturated,
then there is a set T ⊂ M such that (M,T) |= CT−.

3 From Consistent M -Logic to a Truth Class

From now on, we will work with a fixed countable and recursively saturated
model M of IΣ1. As in the original KKL’s argument, our first step is the devel-
opment of a proof system called ‘M -logic’ (ML in short). Intuitively, ML is a
system which permits us to process arbitrary sentences in the sense of M , includ-
ing the nonstandard ones. The system is described externally (not in the model)
in the form of a sequent calculus.3 We will use ‘⇒’ for the sequent arrow, with
expressions of the form ‘Γ ⇒ Δ’ referring to sequents. We shall always assume
that both Γ and Δ are externally finite sequences of M -sentences. Note that we
do not admit formulas with free variables in the sequents.

The definition of M -logic is framed after Gentzen’s original system LK
(see [3]). All the initial sequents have the form ϕ ⇒ ϕ, for an arbitrary

3 This is the first difference between our proof and the original KKL’s construction.

124 C. Cieśliński

ϕ ∈ SentLPA
(M). The following rules of ML are copied directly from Gentzen’s

system:

• Weakening, left and right (W-left and W-right):

Γ ⇒ Δ
Γ ⇒ Δ,ϕ

Γ ⇒ Δ
ϕ,Γ ⇒ Δ

• Exchange, left and right (E-left and E-right):

Γ, ψ, ϕ, Γ ′ ⇒ Δ

Γ,ϕ, ψ, Γ ′ ⇒ Δ

Γ ⇒ Δ,ψ, ϕ,Δ′

Γ ⇒ Δ,ϕ, ψ,Δ′

• Contraction, left and right (C-left and C-right):

ϕ,ϕ, Γ ⇒ Δ

ϕ,Γ ⇒ Δ

Γ ⇒ Δ,ϕ, ϕ

Γ ⇒ Δ,ϕ

• Cut:

Γ ⇒ Δ,ϕ ϕ,Σ ⇒ Λ

Γ,Σ ⇒ Δ,Λ

• ¬-left and ¬-right:

Γ ⇒ Δ,ϕ

¬ϕ, Γ ⇒ Δ

ϕ,Γ ⇒ Δ

Γ ⇒ Δ,¬ϕ

• ∧-left and ∧-right (for arbitrary sentences A and B such that one of them is
ϕ):

ϕ, Γ ⇒ Δ

A ∧ B,Γ ⇒ Δ

Γ ⇒ Δ,ϕ Γ ⇒ Δ,ψ

Γ ⇒ Δ,ϕ ∧ ψ

• ∨-left and ∨-right (for arbitrary sentences A and B such that one of them is
ϕ):

ϕ, Γ ⇒ Δ ψ,Γ ⇒ Δ,

ϕ ∨ ψ, Γ ⇒ Δ

Γ ⇒ Δ,ϕ

Γ ⇒ Δ,A ∨ B

• →-left and →-right:

Γ ⇒ Δ,ϕ ψ,Σ ⇒ Λ

ϕ → ψ, Γ,Σ ⇒ Δ,Λ

ϕ, Γ ⇒ Δ,ψ

Γ ⇒ Δ,ϕ → ψ

In addition, M -logic has the following rules of inference:

• The truth rule for literals (Tr-lit). Let ϕ be of the form t = s with M |= t = s
or of the form t
= s with M |= t
= s:

ϕ, Γ ⇒ Δ

Γ ⇒ Δ

Satisfaction Classes via Cut Elimination 125

• The M -rule, left and right (M -left, M -right):

{ϕ(a), Γ ⇒ Δ : a ∈ M}
∃xϕ(x), Γ ⇒ Δ

{Γ ⇒ Δ,ϕ(a) : a ∈ M}
Γ ⇒ Δ,∀xϕ(x)

• ∃-right and ∀-left:

Γ ⇒ Δ,ϕ(a)
Γ ⇒ Δ,∃xϕ(x)

ϕ(a), Γ ⇒ Δ

∀xϕ(x), Γ ⇒ Δ

Proofs in ML are (possibly infinite) trees of finite height, where the height
of a proof is defined (as usual) as the length of the maximal path. By definition,
trees with no maximal path do not qualify as proofs in ML. Observe that in
ML, the infinitary rules M -left and M -right replace the original rules ∃-left and
∀-right of Gentzen.4 It should be also emphasized that in all the quantifier rules
of ML we employ numerals. Thus, for example, in order to apply ∃-right, we need
a sentence ϕ(a) with a numeral for a. In contrast, in Gentzen’s original system
the rule ∃-right would permit us to derive Γ ⇒ Δ,∃xϕ(x) from Γ ⇒ Δ,ϕ(t) for
an arbitrary term t, not necessarily a numeral. The effect of this modification
of Gentzen’s system is that the truth class which we construct can contain term
pathologies. Thus, in a model (M,T) of CT− which we eventually obtain there
can exist a nonstandard formula ϕ(x) such that for some term t, ϕ(t) belongs
to T (so that, loosely speaking, the model thinks that ϕ(t) is true), while the
sentence ¬∃xϕ(x) also belongs to T . In this way we obtain a disconcerting effect:
the model thinks that ¬∃xϕ(x) is true even though it considers as true some term
instantiation of ϕ(x).5 However, this accords with our formulation of CT−, where
all the quantifier axioms employ numerals.

Lemma 5. If M -logic is consistent, then M can be expanded to a model of CT−.

For the proof of the lemma, we introduce first the family of unary arithmetical
predicates ‘Prn(S)’ with the intuitive reading ‘sequent S has a proof in M -logic
of height at most n’ (in short, S is n-provable). Observe that for each rule R
of M -logic, the relation ‘S can be obtained by R from n-provable sequents’ can
always be expressed by an arithmetical formula, provided that n-provability is
arithmetically expressible. In view of this, we introduce the following definition.

Definition 6

• Pr0(S) := S is an initial sequent,
• Prn+1(S) := Prn(S) ∨ ∨

R∈ML

(S can be obtained by R from n-provable

sequents).

4 Proof systems with similar infinitary rules have already been studied in the literature
in the context of cut elimination. See, for example, [9].

5 This will happen if all the numerical instantiations of ϕ(x) are seen as false by the
model, that is, if for all numerals a, the sentence ¬ϕ(a) belongs to T .

126 C. Cieśliński

By external induction on natural numbers it can be demonstrated that:

Observation 7. ∀k ∈ ω ∀S
[
ML �k S ≡ M |= Prk(S)

]
.

We can now turn to the proof of Lemma5.

Proof. Let ϕ0, ϕ1, . . . be an enumeration of the set of M -sentences (this is the
only place where the countability assumption is used).

We define:
T0 = ∅

Tn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tn ∪ {ϕn} if ML � (Tn → ¬ϕn) and ϕn is not existential,

Tn ∪ {∃xψ(x)} ∪ {ψ(a)} if ϕn = ∃xψ(x) and ML � (Tn → ¬ϕn),

for an a ∈ M such that ML � (Tn → ¬ψ(a)),

Tn ∪ {¬ϕn} otherwise.

The expression ‘Tn’ on the right side of the definition (as in ‘ML � (Tn → ¬ϕn)’)
stands for the conjunction of all the sentences ϕi or their negations, whichever
of them were added on previous levels. We need to verify that whenever ML �

(Tn → ¬∃xψ(x)), there will exist an a ∈ M such that ML � (Tn → ¬ψ(a)).
This is the only place where recursive saturation is employed.

Thus, assume that ML � (Tn → ¬∃xψ(x)). Define:

p(x) = {¬Prk(Tn → ¬ψ(x)) : k ∈ ω}.

We observe that p(x) is a type. Otherwise there is a natural number k such that
M |= ∀aPrk(Tn → ¬ψ(a)). Hence for all a, ML �k Tn → ¬ψ(a). But then by
the M -rule and cut, ML � Tn → ¬∃xψ(x), which is a contradiction.

Since p(x) is a type, by recursive saturation there is an a ∈ M which realizes
it and we have: ∀kM |= ¬Prk(Tn → ¬ψ(a)), hence the sentence Tn → ¬ψ(a) is
not provable in M -logic, as required.

Checking that (M,T) |= CT− provided that M -logic is consistent is now
routine and we leave it to the reader. �

4 Consistency of M -Logic

At this stage all that is missing is the proof of consistency of M -logic. In KKL [5]
the consistency of M -logic is proved by the technique of approximations. Here
we propose cut elimination as the proof method. Let us start by the following
simple observation.

Observation 8. If every sequent provable in M -logic has a cut-free proof, then
M -logic is consistent.

Proof. If M -logic is inconsistent, then it proves that 0 = 1. By cut elimination,
take a cut-free proof P of 0 = 1. It is easy to observe that every sentence in

Satisfaction Classes via Cut Elimination 127

P has to be either atomic or negated atomic.6 For a sequent S belonging to P ,
let the height of S in P be defined as the length of maximal path generated by S
in P .7 Let Tr0(x) be the arithmetical truth predicate for atomic sentences and
their negations. By external induction on the height of sequents in P , it can be
demonstrated that for every sequent S in P , if all sentences in the antecedent
of S are Tr0, then some sentence in the succedent of S is Tr0. It immediately
follows that M |= Tr0(0 = 1), which is impossible. �

Lemma 9. For every sequent S, if S is provable in ML, then S has a cut-free
proof in ML.

The aim of the remaining part of the paper is to lead the proof of Lemma9
to the point at which it can be completed simply by repeating Gentzen’s original
argument for cut elimination. It should be emphasized that we are not there yet.
Our setting is that of possibly nonstandard sentences (sentences in the sense of
M) and this generates an obstacle which first has to be removed.

In order to see the obstacle, let us recap the classical argument. The aim is to
show that the system with the following mix rule (which is a generalized version
of cut) admits mix elimination:

Γ ⇒ Δ Σ ⇒ Λ
Γ,Σ∗ ⇒ Δ∗, Λ

(ϕ)

where Σ and Δ contain ϕ (the mix formula); Σ∗ and Δ∗ differ from Σ and Δ
only in that they do not contain any occurrence of ϕ. Since mix and cut produce
equivalent proof systems, mix elimination gives us the desired result.

In the next stage it is demonstrated that mix can be eliminated from any
proof which contains only a single application of the mix rule in the last step.
This is done by double induction on the degree of proofs (main induction) and
on the rank of proofs (subinduction). For proofs with mix used only in the last
step, we define:

• The left rank of the proof is the largest number of consecutive sequents in
a path starting with the left-hand upper sequent of the mix and such that
every sequent in the path contains the mix formula in the succedent.

• The right rank of the proof is the largest number of consecutive sequents in
a path starting with the right-hand upper sequent of the mix and such that
every sequent in the path contains the mix formula in the antecedent.

• The rank of the proof is the left rank of the proof + the right rank of the
proof.

• The degree of the proof is the syntactic complexity of the mix formula.

There is no problem in our setting with induction on the rank of proofs, since
both the left and the right rank of the proof in ML will always be a (standard)
6 Without cut, (Tr-Lit) is the only rule that permits us to eliminate sentences in the

proof and (Tr-Lit) can eliminate literals only.
7 Thus, sequents which are initial in P have height 0 and the maximal height of a

sequent in P is not larger than the height of P .

128 C. Cieśliński

natural number, restricted by the height of the proof. However, the induction
on the degree of proofs is quite problematic. Since the mix formula might be
non-standard, its syntactic complexity might be a non-standard element of M .
Arguing externally by induction on non-standard numbers is clearly an invalid
move and this is the main obstacle complicating the situation.

Our remedy is to replace the general notion of a degree with a notion rela-
tivized to a proof. Assume that we are given a proof P with mix applied only
in the last step, that eliminates the (possibly non-standard) mix formula ϕ. The
guiding intuition formalized below is that in the cut elimination proof the syn-
tactic shape of ϕ matters only comparatively. For example, ϕ might have the
form ¬ψ. The intuition is that this will matter only provided that ψ itself (with-
out negation) appears somewhere in P ; otherwise ϕ might just as well be treated
as a formula of complexity 0, even if it is non-standard.

Our objective is to make these ideas precise. In what follows the word
‘sequence’ should always be interpreted externally; in other words, sequences
are finite or infinite objects in the real world, not necessarily elements of M .
The length of a finite sequence a = (a0 . . . ak) is the number of its elements, that
is, lh(a) = k + 1. For an infinite sequence a we define lh(a) as ω.

Definition 10

• x � y (‘x is a direct subsentence of y’) is an abbreviation of the following
arithmetical formula:

SentLPA
(x) ∧ SentLPA

(y) ∧(
∃ψ ∈ SentLPA

(y = �¬ψ� ∧ x = ψ)
∨ ∃ϕ,ψ ∈ SentLPA

(y = �ϕ ◦ ψ� ∧ x = ϕ ∨ x = ϕ)
∨ ∃θ(x) ∈ FmLPA

∃a∃v ∈ V ar(y = �Qvθ(v)� ∧ x = �θ(a)�)
)
.

• Let ϕ ∈ SentLPA
(M). We say that s is a �-sequence for ϕ iff s0 = ϕ and for

every k < lh(s) − 1 sk+1 � sk.

The notion of a degree can now be defined in the following way.

Definition 11. Let P be an arbitrary proof in ML with mix used only in the
last step. Let ϕ be the mix formula in P . We define:

• d(ϕ,P) (the degree of ϕ in P) = sup{lh(s) : s is a �-sequence for ϕ such
that for every k < lh(s) sk ∈ P}.

• d(P) (the degree of P) is defined as d(ϕ,P).

Lemma 12. Let P be an arbitrary proof in ML with mix used only in the last
step. Then d(P) is a natural number (in other words, it is never ω).

In order to prove the lemma, we introduce first the function str(x) (‘the
structure of a formula x’). Let the letter p be a new symbol (it will be treated
as a propositional variable). The function is defined as follows (Q is either ∃ or
∀ and ◦ is an arbitrary binary connective).

Satisfaction Classes via Cut Elimination 129

Definition 13

• str(�t = s�) = �p�
• str(�¬ψ�) = ¬str(�ψ�)
• str(�ϕ ◦ ψ�) = str(�ϕ�) ◦ str(�ψ�)
• str(�Qxϕ�) = Qx str(�ϕ�)

Intuitively, given a formula ϕ, the function produces a formula which is exactly
like ϕ, except that the letter ‘p’ is substituted for all occurences of atomic for-
mulas in ϕ. Abbreviate str(ϕ) = str(ψ) as ϕ ∼ ψ. The key property of the
equivalence relation ∼ is encapsulated in the following observation.

Observation 14. Let Z ⊆ SentLPA
(M). For every s, if s is a �-sequence with

elements from Z, then lh(s) ≤ card
({[ϕ]∼ : ϕ ∈ Z}), where [ϕ]∼ is a class of

sentences ψ from Z such that ϕ ∼ ψ.

Let compl(ϕ) be the number of connectives and quantifiers in ϕ. Observa-
tion 14 follows immediately from the following fact (we use �∗ for the transitive
closure of �).

Fact 15

(a) ∀ϕ,ψ
(
ϕ �∗ ψ → compl(ϕ) < compl(ψ)

)
.

(b) ∀ϕ,ψ
(
ϕ ∼ ψ → compl(ϕ) = compl(ψ)

)
.

The proof of Fact 15 is done by easy induction and does not contain any surprises.
For part (a), proceed with induction on the length of the �-sequence s leading
from ψ to ϕ. Part (b) can be done by induction on the complexity of ψ.

Proof of Lemma 12 (idea). Fix a proof P in ML which contains mix only in the
last step. Let Z be the set of all sentences which appear in P . We demonstrate
that {[ϕ]∼ : ϕ ∈ Z} is finite, which by Observation 14 guarantees the conclusion
of Lemma 12.

For an arbitrary sequent S in P , let l(S) (the level of S) be the length of
the path leading from S to the end sequent of P . We denote by Si the set of all
sequents in P whose level is not greater than i. Let Senti be defined as the set
of all sentences which appear in some element of Si. Let k be the height of P .
The task is to show that:

∀i ≤ k{[ϕ]∼ : ϕ ∈ Senti} is finite.

This will end the proof, since Sentk = Z.
We proceed by induction. Observe that for i = 0 the conclusion is trivial, as

Sent0 itself is finite (Sent0 is the set of sentences which appear in the end sequent
of P). The proof is concluded by demonstrating that {[ϕ]∼ : ϕ ∈ Senti+1} is
finite, under the assumption that {[ϕ]∼ : ϕ ∈ Senti} is finite.8 �
8 Here the argument proceeds by cases, corresponding to various ways in which ele-

ments of Senti can be obtained from elements of Senti+1.

130 C. Cieśliński

In effect, Definition 11 and Lemma 12 give us a notion of a degree of the proof
which can be used in a Gentzen-style proof even in a non-standard setting. The
way to proving cut elimination, and thus the consistency of ML, is now open.

I will not present the whole cut elimination proof, since it is mostly a rep-
etition of Gentzen’s reasoning. Instead, I will restrict myself to discussing one
example of a new rule (the one not present in the original Gentzen’s system).

Our task is to demonstrate that mix can be eliminated from any proof which
contains only a single application of the mix rule in the last step. Let us assume
(main induction) that cut can be eliminated in every proof of a degree < n. Let
us also assume (subinduction) that cut can be eliminated in every proof of a
degree n but with rank < k. Our task is to show that cut can be eliminated in
proofs of degree n and rank k.

The proof starts with the case of k = 2 (the lowest possible rank) and pro-
ceeds by analysing subcases. Here we analyse only one subcase corresponding to
a rule of ML absent in LK. Namely, let us assume that the mix formula of the
form ∀xϕ(x)9 is obtained by a logical rule in both the succedent of the left-hand
upper sequent of the mix and in the antecedent of the right-hand upper sequent
of the mix. Then the last stage of the proof runs as follows:

{Γ ⇒ Δ,ϕ(a) : a ∈ M}
M -right

Γ ⇒ Δ,∀xϕ(x)
ϕ(c), Σ ⇒ Λ ∀-left∀xϕ(x), Σ ⇒ Λ

mix
Γ,Σ ⇒ Δ,Λ

We can then eliminate mix in the following way:

Γ ⇒ Δ,ϕ(c) ϕ(c), Σ ⇒ Λ
mix

Γ,Σ∗ ⇒ Δ∗, Λ
possibly, some weakenings and exchanges

Γ,Σ ⇒ Δ,Λ

We use the inductive assumption here, namely, we show that the same end
sequent can be obtained by applying mix to the formula ϕ(c), which has the
degree n − 1 in P (the sentence ∀xϕ(x) has the degree n). Observe that in the
modified proof ϕ(c) will preserve the same degree n − 1; observe also that the
modification did not involve adding to the proof any new formula (in general: in
the present setting new proofs without mix are produced from sentences belong-
ing to the initial proof P).

Acknowledgements. The author was supported by a grant from the National Science
Centre in Cracow (NCN), project number 2017/27/B/HS1/01830.

9 The case of the existential mix formula is closely analogous and I do not discuss it
separately.

Satisfaction Classes via Cut Elimination 131

References

1. Cieśliński, C.: The Epistemic Lightness of Truth: Deflationism and its Logic. Cam-
bridge University Press, Cambridge (2017)

2. Enayat, A., Visser, A.: New constructions of satisfaction classes. In: Achourioti, T.,
Galinon, H., Mart́ınez Fernández, J., Fujimoto, K. (eds.) Unifying the Philosophy
of Truth. LEUS, vol. 36, pp. 321–335. Springer, Dordrecht (2015). https://doi.org/
10.1007/978-94-017-9673-6 16

3. Gentzen, G.: Investigations into logical deduction. Am. Philos. Q. 1(4), 288–306
(1964)

4. Kotlarski, H.: Full satisfaction classes: a survey. Notre Dame J. Formal Logic 32(4),
573–579 (1991)

5. Kotlarski, H., Krajewski, S., Lachlan, A.: Construction of satisfaction classes for
nonstandard models. Can. Math. Bull. 24(3), 283–293 (1981)

6. Kotlarski, H., Ratajczyk, Z.: Inductive full satisfaction classes. Ann. Pure Appl.
Logic 47(3), 199–223 (1990)

7. Krajewski, S.: Non-standard satisfaction classes. In: Marek, W., Srebrny, M., Zarach,
A. (eds.) Set Theory and Hierarchy Theory: A Memorial Tribute to Andrzej
Mostowski. LNM, vol. 537, pp. 121–144. Springer, Heidelberg (1976). https://doi.
org/10.1007/BFb0096898

8. Robinson, A.: On languages which are based on non-standard arithmetic. Nagoya
Math. J. 22, 83–117 (1963)

9. Yasugi, M.: Cut elimination theorem for second order arithmetic with the Π1
1 -

comprehension axiom and the ω-rule. J. Math. Soc. Jpn. 22(3), 308–324 (1970)

https://doi.org/10.1007/978-94-017-9673-6_16
https://doi.org/10.1007/978-94-017-9673-6_16
https://doi.org/10.1007/BFb0096898
https://doi.org/10.1007/BFb0096898

Sequent Calculi for Normal Update Logics

Katsuhiko Sano1(B) and Minghui Ma2

1 Graduate School of Letters, Hokkaido University, Sapporo, Japan
v-sano@let.hokudai.ac.jp

2 Institute of Logic and Cognition, Sun Yat-Sen University, Guangzhou, China
mamh6@mail.sysu.edu.cn

Abstract. Normal update logic is the temporalization of normal con-
ditional logic. Sequent calculi for the least normal update logic UCK
by Andreas Herzig (1998) and some of its extensions are developed.
The subformula property of these sequent calculi is shown by Takano’s
semantic method. Consequently we prove the finite model property and
decidability of these sequent calculi.

1 Introduction

The normal update logic in Herzig [9] is an extension of Chellas’ (normal)
conditional logic [3,4] by update operators. Let [ϕ]ψ be the conditional with
antecedent ϕ and consequent ψ. In Herzig’s normal update logic, the formula
[ϕ]ψ (usually called conditional operator) is read as a hypothetical update, i.e.,
if the belief base (a finite set of beliefs) is updated by ϕ, then ψ follows. Herzig
introduced the update operator as the left adjoint of the conditional operator.
We express the formula constructed by the update operator as 〈ϕ−〉ψ in the
present paper which can be read “ψ has been updated by ϕ”. These operators
are widely used in database theory, and they are linked to belief change in formal
epistemology. Herzig [9] provided the formal account of the update operator in
terms of models for conditionals. The fundamental feature of Herzig’s account
is that the following adjointness law holds in the normal update logic:

(Adjointness) 〈ϕ−〉ψ � χ if and only if ψ � [ϕ]χ.

It follows that the normal update logic can be viewed as a temporal extension
of the normal conditional logic since the adjointness law is fundamental for the
definition of basic tense logic (cf. [2]). But there is still a difference: the condi-
tional and update operators are binary while tense operators in basic tense logic
are unary. In a normal update logic, the antecedent of the conditional operator

K. Sano—Partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists
(B) Grant Number 15K21025 and Grant-in-Aid for Scientific Research (B) Grant Num-
ber 17H02258, and JSPS Core-to-Core Program (A. Advanced Research Networks).
M. Ma—Supported by the key project of National Social Science Found of China
(Grant no. 18ZDA033).

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 132–143, 2019.
https://doi.org/10.1007/978-3-662-58771-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_13&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_13

Sequent Calculi for Normal Update Logics 133

can be replaced with an equivalent formula. This point makes the normal update
logic different from basic tense logic.

There are several proof-theoretic studies [1,5,6,8,11,14,19,24] on the nor-
mal conditional logic and its extensions in terms of sequent calculi. As far as
the authors know, however, there is no proof-theoretic study on normal update
logics. The aim of the present paper is to investigate logical properties of normal
update logic, including the finite model property and decidability, in the setting
of proof theory. The most fundamental result in proof theory is cut-elimination
(cf. [7,15,23]). A form of cut rule in a sequent calculus is formulated as follows:

Γ ⇒ Δ,ϕ ϕ,Π ⇒ Θ

Γ,Π ⇒ Δ,Θ
(Cut)

where Γ , Δ, Π, Θ are finite multisets of formulas, and the formula ϕ is said
to be the cut formula. A sequent Γ ⇒ Δ can be read as “if all formulas in Γ
hold, then some formulas in Δ holds.” Clearly the cut formula ϕ may not be a
subformula of a formula in the lower sequent of the cut rule. If the cut rule is
eliminable from a given system, then a derivation possibly with the cut rule can
be transformed into a derivation without any application of the cut rule. As a
result, a provable sequent in the calculus under consideration has a derivation
such that every formula occurred in the derivation is a subformula of a formula
in the sequent (subformula property), provided that all other rules in the system
satisfy the condition that each formula in the upper sequent is a subformula of
a formula in the lower sequent.

It is well known that a sequent calculus for the modal logic S5 based on the
ordinary notion of sequent does not enjoy the cut-elimination (see [17, p. 116]). By
a syntactic argument, however, Takano [20] showed that, for a provable sequent,
we have a derivation such that each formula in it consists of subformulas of the
provable sequent, where it is noted that the cut formula in an application of (Cut)
can be restricted to a subformula of the provable sequent. That is, the modal logic
S5 still enjoys the subformula property. A semantic proof of Takano’s result on S5
can be found in [18]. Takano [21,22] also gives the semantic proof of the subformula
property for all fifteeen modal logics determined by the modal axioms T, B, 4,
5 and D. Furthermore, in a sequent calculus for the basic tense logic Kt, which
was first proposed by [16], the cut-elimination theorem also fails, and Takano [20]
commented that the analytic cut property holds for the sequent calculus of Kt. A
semantic proof of the analytic cut property for the tense extension of the modal
logic K4 can be found in [12,13]. A semantic proof of the subformula property of
bi-intuitionistic logic was given by Kowalski and Ono [10].

We develop sequent calculi for four normal update logics from [9]. Our sequent
calcului can be regarded as combinations of one-sided cut-free sequent calcului
for normal conditional logics in [19] and two-sided sequent calculus for basic
tense logic Kt in [16]. We shall apply a Takano-style semantic proof to show the
subformula property for these sequent calculi. By the semantic proof, we obtain
the finite model property and hence the decidability of these logics.

This paper is structured as follows. Section 2 presents some preliminaries on
normal update logics. Section 3 gives sequent calculi for normal update logics.

134 K. Sano and M. Ma

Section 4 proves the subformula property, finite model property and decidability
of some sequent calculi.

2 Preliminaries

In this section, we recall some basic concepts and results in normal update logic
which can be found in Herzig [9].

Definition 1. Given a countably infinite set Prop of propositional variables, the
set of all formulas LUC is defined inductively as follows:

LUC � ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) | [ϕ]ϕ | 〈ϕ−〉ϕ,

where p ∈ Prop. Define ϕ ↔ ψ := (ϕ → ψ)∧(ψ → ϕ). The dual of [ϕ]ψ is defined
as 〈ϕ〉ψ := ¬[ϕ]¬ψ. The dual of 〈ϕ−〉ψ is defined as [ϕ−]ψ := ¬〈ϕ−〉¬ψ. The
logical constants ⊥ and are defined as usual.

For any formula ϕ ∈ LUC, the set of all subformulas of ϕ, denoted by Sub(ϕ),
is defined recursively as usual. For any set of formulas Γ , we define the set of
all subformulas occurred in Γ as the set Sub(Γ) =

⋃{Sub(ϕ) | ϕ ∈ Γ}. A set of
formulas Γ is called subformula closed if Γ = Sub(Γ).

Definition 2. A conditional frame is a pair F = (W, f) where W is a non-
empty set of states, and f : W × P(W) → P(W) is a function from the product
W ×P(W) to the powerset P(W). The function f in a conditional frame is called
a selection function. A conditional model is a triple M = (W, f, V) where (W, f)
is a conditional frame and V : Prop → P(W) is a valuation.

Definition 3. Given a formula ϕ ∈ LUC, a conditional model M = (W, f, V),
and a state w ∈ W , we define recursively the notion of a formula ϕ being true
(or satisfied) at w in M, notation M, w |= ϕ, as follows:

M, w |= p iff w ∈ V (p),
M, w |= ¬ϕ iff M, w � |= ϕ,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ,
M, w |= ϕ → ψ iff M, w |= ϕ implies M, w |= ψ,
M, w |= [ϕ]ψ iff for any u ∈ W, if u ∈ f(w, �ϕ�M), then M, u |= ψ,
M, w |= 〈ϕ−〉ψ iff there exists u ∈ W s.t. w ∈ f(u, �ϕ�M) and M, u |= ψ,

where the set �ϕ�M := {u ∈ W | M, u |= ϕ} (the subscript M is dropped from
�ϕ�M if it is clear from the context). A formula ϕ is valid in a conditional model
M, notation M |= ϕ, if �ϕ�M = W . A formula ϕ is valid in a conditional frame
F = (W, f), notation F |= ϕ, if �ϕ�(F,V) = W for any valuation V on F.

A formula ϕ is valid in a class of conditional frames C, notation C |= ϕ, if
F |= ϕ for all F ∈ C. For any class of conditional frames C, the update logic of
C is defined as the set Log(C) = {ϕ ∈ LUC | C |= ϕ}.

A set of formulas Γ defines or corresponds to a class of conditional frames
C if, for any conditional frame F, all formulas in Γ are valid in F if and only if
F ∈ C. If Γ is a singleton set {ϕ }, we say that ϕ defines a class C.

Sequent Calculi for Normal Update Logics 135

Definition 4. The class of all conditional frames is denoted by CF. We define
CID as the class of all conditional frames F = (W, f) satisfying the following
condition for all w ∈ W and X ⊆ W :

f(w,X) ⊆ X. (FCID)

We define CMP as the class of all conditional frames F = (W, f) satisfying the
following condition for all w ∈ W and X ⊆ W :

w ∈ X implies w ∈ f(w,X). (FCMP)

We define IDMP = CID∩CMP. Let UCK = Log(CF), UID = Log(CID), UMP =
Log(CMP) and UIDMP = Log(IDMP) be update logics.

Proposition 1. The following definability results hold:

(1) [p]p defines CID.
(2) (p ∧ [p]q) → q defines CMP.
(3) [p]p ∧ ((q ∧ [q]r) → r) defines IDMP.

Herzig [9] proves that the update logics are finitely axiomatized by the
following Hilbert-style systems.

Definition 5. The Hilbert-style system HUCK consists of the following axiom
schema and inference rules:

(1) (Taut) All instances of classical propositional tautologies.
(2) Inference rules:

ϕ1 ↔ ϕ2

〈ϕ−
1 〉ψ ↔ 〈ϕ−

2 〉ψ (UEA)
ϕ ϕ → ψ

ψ
(MP)

〈ϕ−〉ψ → χ

ψ → [ϕ]χ
(Ad1)

ψ → [ϕ]χ
〈ϕ−〉ψ → χ

(Ad2)

Given a set {ϕ1, . . . , ϕn} of formulas, let HUCK⊕ϕ1⊕. . .⊕ϕn be the axiomatic
extension of HUCK by adding ϕ1, . . . , ϕn as new axiom schemata. Consider the
following two additional axiom schemata:

(CID) [ϕ]ϕ, (CMP) (ϕ ∧ [ϕ]ψ) → ψ.

We define the axiomatic extensions HUID = HUCK ⊕ (CID), HUMP = HUCK ⊕
(CMP), and HUIDMP = HUCK ⊕ (CID) ⊕ (CMP).

For any axiomatic system H, the notation H � ϕ stands for that ϕ is provable
(or a theorem) in the system H.

Proposition 2. The following formulas and rules are provable in HUCK:

(Cnv1) ϕ → [ψ]〈ψ−〉ϕ, (Cnv2) 〈ψ−〉[ψ]ϕ → ϕ,
(CN) [ϕ] ↔ , (CR) [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ),
(UR) 〈ϕ−〉⊥ ↔ ⊥, (UN) 〈ϕ−〉(ψ ∨ χ) ↔ (〈ϕ−〉ψ ∨ 〈ϕ−〉χ),

ϕ1 ↔ ϕ2

[ϕ1]ψ ↔ [ϕ2]ψ
(CEA),

ϕ1 → ϕ2

[ψ]ϕ1 → [ψ]ϕ2
(CRM),

ϕ1 → ϕ2

〈ψ−〉ϕ1 → 〈ψ−〉ϕ2
(URM).

Moreover, HUID � 〈ϕ−〉ψ → ϕ and HUMP � (ϕ ∧ ψ) → 〈ϕ−〉ψ.

136 K. Sano and M. Ma

Herzig [9] introduced the canonical model for a Hilbert-style system of normal
update logic and the following soundness and completeness results are obtained
(see [9, Theorem 3.14]):

Fact 1. For any formula ϕ ∈ LUC, the following hold:

(1) HUCK � ϕ if and only if CF |= ϕ,
(2) HUID � ϕ if and only if CID |= ϕ,
(3) HUMP � ϕ if and only if CMP |= ϕ,
(4) HUIDMP � ϕ if and only if IDMP |= ϕ.

3 Sequent Calculi for Normal Update Logics

Let Γ,Δ,Σ etc. with or without subscripts denote finite (possibly empty) mul-
tisets of formulas. A sequent is an expression of the form Γ ⇒ Δ where Γ
and Δ are finite multisets of formulas. When we write Γ,Δ, the comma “,” is
understood as the multiset union. A sequent rule is an inference rule of the form

Γ1 ⇒ Δ1 · · · Γn ⇒ Δn

Γ0 ⇒ Δ0
(r)

where Γi ⇒ Δi for 1 � i � n are called premisses of (r), and Γ0 ⇒ Δ0 is called
the conclusion of (r). For any finite multiset Γ of formulas, [ϕ]Γ and 〈ϕ−〉Γ are
defined as the multisets where [ϕ] and 〈ϕ−〉 are prefixed to all elements in Γ ,
respectively. In particular, if Γ is empty, then it is noted that both [ϕ]Γ and
〈ϕ−〉Γ are empty.

Definition 6. For any ϕ0, . . . , ϕn ∈ LUC, we write ϕ0 ⇔ · · · ⇔ ϕn to mean all
the set of all sequents of the form ϕ0 ⇒ ϕi and ϕi ⇒ ϕ0 for all 1 � i � n. The
sequent calculi GUCK, GUID, GUMP and GUIDMP are defined in Table 1.

We use G to denote any sequent calculus in Table 1. Note that the sequent
calculus LK for classical propositional logic is taken as the basis, and additional
rules for conditional and update operators are supplied. In these additional rules,
note that Θi and Σi are possibly empty in ([·]), (〈·−〉) and ([·]CID). If each Θi is
empty in the rules ([·]) and ([·]CID), we obtain the following two rules:

ϕ0 ⇔ · · · ⇔ ϕn Σ1, . . . , Σn ⇒ ψ

[ϕ1]Σ1, . . . , [ϕn]Σn ⇒ [ϕ0]ψ
([·]),

ϕ0 ⇔ · · · ⇔ ϕn ϕ0, Σ1, . . . , Σn ⇒ ψ

[ϕ1]Σ1, . . . , [ϕn]Σn ⇒ [ϕ0]ψ
([·]CID)

.

They can be regarded as the two-sided reformulation of the inference rules (CKg)
and (CKIDg) in [19, p. 14, Fig. 3].

A derivation in G is a finite tree D in which each node is a sequent obtained
by an axiom or a rule in G. The height of a derivation D in G is the maximal
length of a branch from the root node. We say that a sequent Γ ⇒ Δ is provable
in G, notation G � Γ ⇒ Δ, if there is a derivation D in G such that the root
node of D is the sequent Γ ⇒ Δ.

Sequent Calculi for Normal Update Logics 137

Table 1. Sequent calculi for normal update logics

Definition 7. For any conditional model M = (W, f, V), we say that a sequent
Γ ⇒ Δ is true in M, notation M |= Γ ⇒ Δ, if for any state w ∈ W , M, w |=∧

Γ implies M, w |= ∨
Δ. A sequent rule

138 K. Sano and M. Ma

Γ1 ⇒ Δ1 . . . Γn ⇒ Δn

Γ0 ⇒ Δ0
(r)

preserves truth in a model M, if M |= Γ0 ⇒ Δ0 whenever M |= Γi ⇒ Δi for
all 1 � i � n. A sequent Γ ⇒ Δ is valid in a conditional frame F, notation
F |= Γ ⇒ Δ, if F, V |= Γ ⇒ Δ for all valuations V in F. Given a class C of
conditional frames, by C |= Γ ⇒ Δ we mean that F |= Γ ⇒ Δ for all F ∈ C.

Proposition 3 (Soundness). For any sequent Γ ⇒ Δ, the following hold: (1)
if GUCK � Γ ⇒ Δ, then CF |= Γ ⇒ Δ; (2) if GUID � Γ ⇒ Δ, then CID |=
Γ ⇒ Δ; (3) if GUMP � Γ ⇒ Δ, then CMP |= Γ ⇒ Δ; (4) if GUIDMP � Γ ⇒ Δ,
then IDMP |= Γ ⇒ Δ.

Given any finite multiset Γ of formulas,
∧

Γ and
∨

Γ are defined to be the
conjunction and the disjunction of all elements of Γ , respectively, where

∧ ∅ is
understood as and

∨ ∅ as ⊥.

Theorem 1. Let H be the Hilbert-style system corresponding to a sequent cal-
culus G. Then the following hold:

(1) If G � Γ ⇒ Δ then H � ∧
Γ → ∨

Δ.
(2) If H � ϕ then G � ⇒ ϕ.
(3) H � ϕ if and only if G � ⇒ ϕ.
(4) G � Γ ⇒ Δ if and only if H � ∧

Γ → ∨
Δ.

Note that the formulas ϕ → [ψ]〈ψ−〉ϕ and 〈ψ−〉[ψ]ϕ → ϕ which are obtained
from the adjointness in Hilbert-style systems are provable in GUCK as follows:

ψ ⇔ ψ 〈ψ−〉ϕ ⇒ 〈ψ−〉ϕ
ϕ ⇒ [ψ]〈ψ−〉ϕ ([·])

⇒ ϕ → [ψ]〈ψ−〉ϕ (⇒→)
,

ψ ⇔ ψ [ψ]ϕ ⇒ [ψ]ϕ
〈ψ−〉[ψ]ϕ ⇒ ϕ

(〈·−〉)

〈ψ−〉[ψ]ϕ → ϕ
(⇒→)

.

Theorem 2 (Completeness). For any sequent Γ ⇒ Δ, the following hold: (1)
if CF |= Γ ⇒ Δ, then GUCK � Γ ⇒ Δ; (2) if CID |= Γ ⇒ Δ, then GUID �
Γ ⇒ Δ; (3) if CMP |= Γ ⇒ Δ, then GUMP � Γ ⇒ Δ; (4) if IDMP |= Γ ⇒ Δ,
then GUIDMP � Γ ⇒ Δ.

Proof. Let G be a sequent calculus, H be the corresponding Hilbert-style system,
and C be corresponding class of frames. Assume C |= Γ ⇒ Δ. Then C |=∧

Γ → ∨
Δ. By Fact 1, H � ∧

Γ → ∨
Δ. By Theorem 1, G � Γ ⇒ Δ. ��

Now we shall prove that the sequent calculi in Table 1 does not enjoy the cut-
elimination. For any formula ϕ, let ϕn denote the multiset containing exactly n
occurrences of ϕ. In particular, if n = 0, ϕn is understood as the empty multiset.

Proposition 4. Let G be any sequent calculus in Table 1 and G− be the sequent
calculus obtained from G by deleting the cut rule. The sequent p, 〈q−〉[q]¬p ⇒ is
not derivable in G−. Therefore (Cut) is not eliminable from G.

Sequent Calculi for Normal Update Logics 139

The following is a derivation of the sequent ⇒ p → ¬〈q−〉[q]¬p in any sequent
calculus defined in Table 1, where (Cut) is not eliminable by Proposition 4:

[q]¬p ⇒ [q]¬p

〈q−〉[q]¬p ⇒ ¬p
(〈·−〉) p ⇒ p

¬p, p ⇒ (¬ ⇒)

p, 〈q−〉[q]¬p ⇒ (Cut)
.

p ⇒ ¬〈q−〉[q]¬p
(⇒ ¬)

⇒ p → ¬〈q−〉[q]¬p
(⇒→)

All sequent calculi G in Table 1 lacks the cut-elimination. We can apply Takano’s
semantic method to show the subformula property of G.

4 Subformula Property and Decidability

For any sequent calculus, we say that an inference rule (r) has the subformula
property if every formula in the upper sequent(s) of the rule is a subformula
of a formula in the lower sequent. Clearly the rules (Cut), ([·]) and (〈·−〉) in
GUCK have no subformula property. As a result, some derivations of a sequent,
say, in GUCK, may contain a formula which is not a subformula of a formula in
the sequent. Our derivation of the sequent ⇒ p → ¬〈q−〉[q]¬p in the previous
section, however, suggest that we may add restrictions on the rules ([·]), (〈·−〉),
([·]CID) and (Cut) to obtain the subformula property. We say that a sequent
system has the subformula property if, whenever a sequent Γ ⇒ Δ is derivable
in the system, there is a derivation D such that all formulas occurring in D
are subformulas of formulas in the sequent Γ ⇒ Δ. Obviously, if all the rules
of a system have the subformula property, then the system has the subformula
property. The goal of this section is to establish that any sequent calculus G
in Table 1 has the subformula property. For this purpose, we are going to show
that, if a sequent Γ ⇒ Δ is derivable in G, then it has a derivation in G where
all formulas in the derivation are subformulas of the original sequent Γ ⇒ Δ.

In what follows in this section, we use the lower roman letters a, b, c, etc. to
denote sets of formulas. Basically we follow a stragety employed in [10] for bi-
intuitionistic logic to establish the subformula property of normal update logics.

Definition 8. Let Ξ be a subformula closed finite set of formulas. We say that
Γ ⇒ Δ is Ξ-provable in G (simply, Ξ-provable, if no confusion arises, and it is
written as G �Ξ Γ ⇒ Δ) if it is provable by a derivation such that all formulas
in the derivation belong to Ξ. A pair (a, b) of two subsets of Ξ is Ξ-disjoint
in G if a ⇒ b is not Ξ-provable in G, i.e., G ��Ξ a ⇒ b. A pair (a, b) ∈ Ξ2 is
Ξ-saturated in G if it is maximally Ξ-disjoint, i.e., (a, b) is Ξ-disjoint, and the
following two conditions hold:

(i) For all γ ∈ Ξ \ a, γ, a ⇒ b is Ξ-provable,
(ii) For all γ ∈ Ξ \ b, a ⇒ b, γ is Ξ-provable.

We say that a ⊆ Ξ is Ξ-saturated in G if the pair (a,Ξ \ a) is Ξ-saturated in G.
A pair (a, b) is Ξ-complete, if ϕ ∈ a or ϕ ∈ b for all ϕ ∈ Ξ.

140 K. Sano and M. Ma

In what follows in this section, we always use Ξ as a subformula closed finite
set of formulas. We note that a ∩ b = ∅ for a Ξ-disjoint pair (a, b). Given any
a ⊆ Ξ, we use a to mean Ξ \ a.

Lemma 1. Let (a, b) ∈ Ξ2 be Ξ-disjoint in G. Then the pair (a, b) is Ξ-saturated
in G if and only if (a, b) is Ξ-complete.

Lemma 2. If (a, b) is Ξ-disjoint in G, then there exists a Ξ-saturated pair
(a+, b+) in G such that a ⊆ a+ and b ⊆ b+.

Definition 9. Let Ξ be subformula closed finite set of formulas and G be a
sequent calculus. We define the set WΞ

G as follows:

WΞ
G = { a | a is Ξ-saturated in G } .

For any formula ϕ ∈ Ξ, we define |ϕ| = { a ∈ WΞ | ϕ ∈ a }.
Let f : WΞ

G ×P(WΞ
G) → P(WΞ

G) be a function. We say that f is [.]-saturated,
if for any a ∈ WΞ

G , the following holds:

[ϕ]ψ ∈ a, if and only if, for all b ∈ WΞ
G , b ∈ fΞ

0 (a, |ϕ|) implies b ∈ ψ.

We also say that f is 〈.−〉-saturated, if for any a ∈ WΞ
G , the following holds:

〈ϕ−〉ψ ∈ b, if and only if, for some a ∈ WΞ
G , b ∈ fΞ

0 (a, |ϕ|) and a ∈ ψ.

We define that MΞ
G = (WΞ

G , f, V Ξ) is a conditional Ξ-model for G if f is both
[.]-saturated and 〈.−〉-saturated, and V Ξ(p) = |p| for all variables p ∈ Ξ.

Lemma 3. Let a, b ∈ WΞ
G and ϕ,ψ ∈ Ξ. Whenever the formula on the left

belongs to Ξ, the appropriate equivalence below holds.

(1) ϕ ∧ ψ ∈ a, if and only if, ϕ ∈ a and ψ ∈ a.
(2) ϕ ∨ ψ ∈ a, if and only if, ϕ ∈ a or ψ ∈ a.
(3) ϕ → ψ ∈ a, if and only if, ϕ ∈ a implies ψ ∈ a.
(4) ¬ϕ ∈ a, if and only if, ϕ ∈ a.

Proof. The items from (1) to (4) are easily shown by definition of Ξ-saturation
and the corresponding propositional rules of G. ��
Lemma 4. Let MΞ

G be the conditional Ξ-model for G. For all formulas ϕ ∈ Ξ
and a ∈ WΞ , ϕ ∈ a if and only if MΞ

G , a |= ϕ.

Proof. By induction on construction of formulas with the help of Lemma 3 and
[.]-saturation and 〈.−〉-saturation. ��
Lemma 5. Let G ∈ {GUCK,GUMP }. For any a ∈ WΞ

G and X ⊆ WΞ
G , we

define the function fΞ
0 (a,X) as follows:

Sequent Calculi for Normal Update Logics 141

– Let X = |γ| for some γ ∈ Ξ. We define b ∈ fΞ
0 (a,X) if and only if:

{
(i) [α]β ∈ a, then β ∈ b; and
(ii) 〈α−〉β ∈ b, then β ∈ a.

for all formulas α, β ∈ Ξ with |α| = X.
– When X �= |γ| for any γ ∈ Ξ, then fΞ

0 (a,X) := X.

Then the following hold: (1) fΞ
0 is [.]-saturated; (2) fΞ

0 is 〈.−〉-saturated; (3) if
G = GUMP, then fΞ

0 satisfies the condition (FUMP) in Definition 4.

Proof. We only check the item (1). We establish [.]-saturation. The ‘only if’ direc-
tion is immediately obtained by the condition (i) of the definition of fΞ

0 (a, |ϕ|).
So we focus on the ‘if’ direction below. Suppose [ϕ]ψ ∈ a. Let ϕ1, . . . , ϕn be all
the formulas in Ξ such that |ϕ| = |ϕi| for all 1 � i � n. Now we show that, for
all 1 � i � n, G �Ξ ϕ ⇒ ϕi and G �Ξ ϕi ⇒ ϕ. Without loss of generality, it
suffices to show G �Ξ ϕ ⇒ ϕi. Assume that G ��Ξ ϕ ⇒ ϕi. By Lemma 2, there
is a Ξ-saturated pair (b, b) such that ϕ ∈ b and ϕi ∈ b. Since |ϕ| = |ϕi|, we have
ϕi ∈ b. Then G �Ξ b ⇒ b, a contradiction with Ξ-disjointness of (b, b). Next, for
all 1 � i � n, we define

Πi = { γ | [ϕi]γ ∈ a } and Θi =
{

δ ∈ a | 〈ϕ−
i 〉δ ∈ Ξ

}
.

Now we show that G ��Ξ (〈ϕ−
i 〉Θi,Πi)1�i�n ⇒ ψ. Suppose not. Then we have

ϕ ⇔ · · · ⇔ ϕn (〈ϕ−
i 〉Θi,Πi)1�i�n ⇒ ψ

(Θi, [ϕi]Πi)1�i�n ⇒ [ϕ]ψ
([·]◦)

where we note that 〈ϕ−
i 〉Θi ⊆ Ξ. Since (Θi, [ϕi]Πi)1�i�n ⊆ a and [ϕ]ψ ∈ a, we

have G �Ξ a ⇒ a, a contradiction with Ξ-disjointness.
Since G ��Ξ (〈ϕ−

i 〉Θi,Πi)1�i�n ⇒ ψ, by Lemma 2, there exists b ∈ WΞ
G such

that (〈ϕ−
i 〉Θi,Πi)1�i�n ⊆ b and ψ ∈ b. Now we show that b ∈ fΞ

0 (a, |ϕ|). We
need to check two conditions (i) and (ii). We fix any α ∈ Ξ such that |α| =
|ϕ|. Let α = ϕi (recall the definition of ϕis in the beginning of the proof). The
condition (i) follows directly from Πi ⊆ b as follows. Suppose that [ϕi]δ ∈ a.
By the definition of Πi, δ ∈ Πi. It follows from Π ⊆ b that δ ∈ b. This finishes
to establish (i). For the condition (ii), suppose 〈ϕ−

i 〉δ ∈ b. Our goal is to show
δ ∈ a. Suppose for contradiction that δ ∈ a. Since 〈ϕ−

i 〉δ ∈ b ⊆ Ξ, we derive
from δ ∈ a that 〈ϕ−

i 〉δ ∈ Θi ⊆ b. This is a contradition with the Ξ-disjointness
of b ⇒ b. So we can conclude that δ ∈ a. ��
Lemma 6. Let G ∈ {GUID,GUIDMP }. For any a ∈ WΞ and X ⊆ WΞ , the
function fΞ

ID(a,X) is defined as follows.

– Let X = |γ| for some γ ∈ Ξ.

b ∈ fΞ
ID(a,X) iff

⎧
⎪⎨

⎪⎩

(i) [α]β ∈ a implies β ∈ b,

(ii) 〈α−〉β ∈ b implies β ∈ a,

(iii) b ∈ |α|,
for all formulas α, β ∈ Ξ such that |α| = X.

142 K. Sano and M. Ma

– Let X �= |α| for any α ∈ Ξ. Then fΞ
ID(a,X) := X.

Then the following hold.

(1) fΞ
ID is [.]-saturated.

(2) fΞ
ID is 〈.−〉-saturated.

(3) If G = GUIDMP, then fΞ
ID satisfies the condition (FUMP) of Definition 4.

(4) fΞ
ID satisfies the condition (FCID) of Definition 4.

Lemma 7. Let G be any sequent calculus given in Table 1. Let Γ ⇒ Δ be a
sequent and Ξ := Sub(Γ,Δ). If Γ ⇒ Δ is not Ξ-provable in G, then the sequent
is refuted at some state in a finite conditional model MΞ

G whose frame is belonging
to the corresponding class of conditonal frames to G.

Proof. Suppose that Γ ⇒ Δ is not Ξ-provable in G. By Lemma 2, there is
a ∈ WΞ

G such that Γ ⊆ a and Δ ⊆ a. By Lemma 4, MΞ
G , a �|= Γ ⇒ Δ. Let

FΞ be the frame part of MΞ . When G ∈ {GUID,GUIDMP }, FΞ ∈ CID holds
by definition of fΞ

ID. When G ∈ {GUMP,GUIDMP }, FΞ ∈ CMP is obtained by
Lemmas 5 (3) and 6 (3). ��
Theorem 3 (Subformula Property). Let G be any sequent calculus given in
Table 1. If Γ ⇒ Δ is provable in G, then it is Sub(Γ,Δ)-provable in G.

Proof. Put Ξ := Sub(Γ,Δ). We prove the contrapositive implication of it. Sup-
pose that Γ ⇒ Δ is not Ξ-provable in G. By Lemma 7, the sequent is refuted in
a finite conditional frame which belongs to the corresponding frame class to G.
By soundness of G for the corresponding conditional frames (Proposition 3), we
obtain that Γ ⇒ Δ is not provable in G, as desired. ��

Given any X ∈ {UCK,UID,UMP,UIDMP }, we say that Hilbert system HX
has the finite model property if there is a class C of conditonal frames such that
C |= ϕ for all theorems ϕ of H and every non-theorem ψ of H is refuted in a
finite conditional frame in C.

Corollary 1. Let X ∈ {UCK,UID,UMP,UIDMP }. Then, HX has the finite
model property and is decidable.

Proof. By Proposition 3, Theorem 1 and Lemma 7. We note that the non-
theoremhood of ϕ in H implies the unprovability of ⇒ ϕ in G because provability
of a sequent in G implies provability of the same sequent in G.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal condi-
tional logics. J. Logic Comput. 26(1), 7–50 (2013)

2. Burgess, J.P.: Basic tense logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of
Philosophical Logic, Reidel, Dordrecht, vol. II, pp. 89–133 (1984)

3. Chellas, B.F.: Basic conditional logic. J. Philosophcal Logic 4(2), 133–153 (1975)
4. Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)

Sequent Calculi for Normal Update Logics 143

5. de Swart, H.C.: A Gentzen-or Beth-type system, a practical decision procedure
and a constructive completeness proof for the counterfactual logics VC and VCS.
J. Symbolic Logic 48(1), 1–20 (1983)

6. Gent, P.: A sequent- or tableau-style system for Lewis’s counterfactual logic. Notre
Dame J. Formal Logic 33(3), 369–382 (1992)

7. Gentzen, G.: Untersuchungen über das logische Schließen, Mathematische
Zeitschrift, 39(1), pp. 176–210 (1935)

8. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi
for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016.
LNCS (LNAI), vol. 10021, pp. 272–287. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48758-8 18

9. Herzig, A.: Logics for belief base updating. In: Dubois, D., Przde, H. (eds.) Hand-
book of Defeasible Reasoning and Uncertainty Management System, vol. 3, pp.
189–231. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5054-
5 5

10. Kowalski, T., Ono, H.: Analytic cut and interpolation for bi-intuisionistic logic.
The Review of Symbolic Logic, 10(2), pp. 259–283 (2017)

11. Lellmann, B., Pattinson, D.: Sequent systems for Lewis’ conditional logics. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp.
320–332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-
8 25

12. Maruyama, A.: Towards combined system of modal logics - a syntactic and seman-
tic study, Ph.D. thesis, School of Information Science, Japan Advanced Institute
of Science and Technology (2003)

13. Maruyama, A., Tojo, S., Ono, H.: Decidability of temporal epistemic logics for
multi-agent models. In: Proceedings of the ICLP’01 Workshop on Computational
Logic in Multi-Agent Systems (CLIMA-01), pp. 31–40 (2001)

14. Negri, S., Sabrdolini, G.: Proof analysis for Lewis counterfactuals. Rev. Symbolic
Logic 9(1), 44–75 (2016)

15. Negri, S., Von Plato, J.: Structural Proof Theory. Cambridge University Press,
Cambridge (2001)

16. Nishimura, H.: A study of some tense logics by Gentzen’s sequential method. Publ.
Res. Inst. Math. Sci. 16, 343–353 (1980)

17. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi II. Osaka J. Math.
11(2), 115–120 (1959)

18. Ono, H.: Semantical approach to cut elimination and subformula property in modal
logic. In: Yang, S.C.-M., Deng, D.-M., Lin, H. (eds.) Structural Analysis of Non-
Classical Logics. LASLL, pp. 1–15. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-48357-2 1

19. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional
logic. Logical Methods Comput. Sci. 7(1:4), 1–28 (2011)

20. Takano, M.: Subformula property as a substitute for cut-elimination in modal
propositional logics. Math. Jpn. 37(6), 1129–1145 (1992)

21. Takano, M.: A modified subformula property for the modal logics K5 and K5D.
Bull. Sect. Logic 30(2), 115–122 (2001)

22. Takano, M.: A semantical analysis of cut-free calculi for modal logics. Rep. Math.
Logic 53, 43–65 (2018)

23. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge
University Press, Cambridge (2000)

24. Zach, R.: Non-analytic tableaux for Chellas’s conditional logic CK and Lewis’s
logic of counterfactuals VC. Australas. J. Logic 15(3), 609–628 (2018)

https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-94-011-5054-5_5
https://doi.org/10.1007/978-94-011-5054-5_5
https://doi.org/10.1007/978-3-642-33353-8_25
https://doi.org/10.1007/978-3-642-33353-8_25
https://doi.org/10.1007/978-3-662-48357-2_1
https://doi.org/10.1007/978-3-662-48357-2_1

Logics for Rough Concept Analysis

Giuseppe Greco1 , Peter Jipsen2, Krishna Manoorkar3, Alessandra Palmigiano4,5 ,

and Apostolos Tzimoulis2(B)

1 Utrecht University, Utrecht, Netherlands
2 Chapman University, Orange, USA

apostolos@tzimoulis.eu
3 Indian Institute of Technology, Kanpur, India

4 Delft University of Technology, Delft, Netherlands
5 Department of Pure and Applied Mathematics, University of Johannesburg,

Johannesburg, South Africa

Abstract. Taking an algebraic perspective on the basic structures of Rough Con-
cept Analysis as the starting point, in this paper we introduce some varieties of
lattices expanded with normal modal operators which can be regarded as the nat-
ural rough algebra counterparts of certain subclasses of rough formal contexts,
and introduce proper display calculi for the logics associated with these varieties
which are sound, complete, conservative and with uniform cut elimination and
subformula property. These calculi modularly extend the multi-type calculi for
rough algebras to a ‘nondistributive’ (i.e. general lattice-based) setting.

Keywords: Rough set theory · Formal Concept Analysis ·Modal logic ·
Lattice-based logics · Algebras for rough sets · Proper display calculi

1 Introduction

This paper continues a line of investigation started in [10] and aimed at introducing
sequent calculi for the logics of varieties of ‘rough algebras’, introduced and discussed
in [1,20]. The ‘rough algebras’ considered in the present paper are nondistributive
(i.e. general lattice-based) generalizations of those of [20,21]; specifically, they are vari-
eties of lattices expanded with normal modal operators, natural examples of which arise
in connection with (certain subclasses of) rough formal contexts, introduced by Kent in
[15] as the basic notion of Rough Concept Analysis (RCA), a synthesis of Rough Set
Theory [19] and Formal Concept Analysis [8]. The core idea of Kent’s approach is to
use a given indiscernibility relation E on the objects of a formal context (A,X, I) to
generate E-definable approximations R and S of the relation I such that S ⊆ I ⊆ R.
The starting point of our approach is that R and S can be used to generate tuples of
adjoint normal modal operators 〈S 〉 � [S] and 〈R〉 � [R]. We identify conditions under

The research of the fourth author is supported by the NWO Vidi grant 016.138.314, the NWO
Aspasia grant 015.008.054, and a Delft Technology Fellowship awarded in 2013.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 144–159, 2019.
https://doi.org/10.1007/978-3-662-58771-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_14&domain=pdf
http://orcid.org/0000-0002-4845-3821
http://orcid.org/0000-0001-9656-7527
https://doi.org/10.1007/978-3-662-58771-3_14

Logics for Rough Concept Analysis 145

which [S] and 〈R〉 are interior operators and [R] and 〈S 〉 are closure operators. This
provides the basic algebraic framework, which we axiomatically extend so as to define
‘nondistributive’ counterparts of the varieties introduced in [21], whenever possible.

From an algebraic perspective, it is interesting to observe that, unlike 〈S 〉 and [S],
the modal operators 〈R〉 and [R] play the reverse roles they usually have in rough set
theory: namely, [R], being an inflationary map, plays naturally the role of the closure
operator providing the upper lax approximation of a given formal concept, and similarly
〈R〉, being a deflationary map, plays the role of the interior operator, providing the lower
lax approximation of a given formal concept.

From a proof-theoretic perspective, these properties make it possible to extend the
multi-type approach (thanks to which, a modular family of analytic calculi was intro-
duced in [10] for the logics of ‘rough algebras’) to varieties of ‘rough algebras’ on a
‘nondistributive’ propositional base. In particular, the calculi defined in Sect. 6 are all
proper display calculi (cf. [24]), the cut elimination and subformula property of which
can be straightforwardly verified by appealing to the meta-theorem of [5].1 An interest-
ing departure from the calculi of [10] concerns the counterparts of the IA3 condition,
which in the present paper comes in two variants: the lower (strict), and the upper
(lax). The inequality corresponding to the lower variant of IA3, which was analytic in
the presence of distributivity, is not analytic inductive in the absence of distributivity
(cf. [7, Definition 55]). However, the inequality corresponding to the upper variant of
IA3 is analytic inductive, and hence can be captured by an analytic structural rule.

This paper contains the first algebraic and proof-theoretic contribution to a line of
research aimed at integrating Rough Set Theory and Formal Concept Analysis, and at
building the necessary logical machinery to support formal reasoning about categoriza-
tion decisions under the assumption that categories and concepts can be vague. Future
directions concern enriching this basic framework so as to formally account for the fact
that the dynamics of categories also affect their becoming vaguer or sharper.

2 Preliminaries

The purpose of this section, which is based on [3, Appendix] and [2] and [18, Sects. 2.3
and 2.4], is to briefly recall the basic notions of the theory of enriched formal con-
texts (cf. Definition 2) while introducing the notation which will be used throughout the
paper. For any relation T ⊆ U ×V , and any U′ ⊆ U and V′ ⊆ V , let

T (0)[V′] := {u | ∀v(v ∈ V′ ⇒ uTv)} T (1)[U′] := {v | ∀u(u ∈ U′ ⇒ uTv)}.
It can be easily verified that U′ ⊆ T (0)[V′] iff V′ ⊆ T (1)[U′], that V1 ⊆ V2 ⊆ V (resp. U1 ⊆
U2 ⊆U) implies that T (0)[V2] ⊆ T (0)[V1] (resp. T (1)[U2] ⊆ T (1)[U1]), and S ⊆ T ⊆U×V
implies that S (0)[V′] ⊆ T (0)[V′] and S (1)[U′] ⊆ T (1)[U′] for all V′ ⊆ V and U′ ⊆ U.

Formal contexts, or polarities, are structures P = (A,X, I) such that A and X are sets,
and I ⊆ A× X is a binary relation. Intuitively, formal contexts can be understood as
abstract representations of databases [8], so that A represents a collection of objects, X

1 In [22], sequent calculi for non-distributive versions of the logics associated with varieties of
‘rough algebras’ are introduced, which are sound and complete but without cut elimination.

146 G. Greco et al.

as a collection of features, and for any object a and feature x, the tuple (a, x) belongs
to I exactly when object a has feature x. In what follows, we use a,b (resp. x,y) for
elements of A (resp. X), and B (resp. Y) for subsets of A (resp. of X).

As is well known, for every formal context P = (A,X, I), the pair of maps

(·)↑ : P(A)→P(X) and (·)↓ : P(X)→P(A),

respectively defined by the assignments B↑ := I(1)[B] and Y↓ := I(0)[Y], form a Galois
connection and hence induce the closure operators (·)↑↓ and (·)↓↑ on P(A) and on P(X)
respectively.2 Moreover, the fixed points of these closure operators form complete sub-
∩-semilattices of P(A) and P(X) respectively, and hence are complete lattices which
are dually isomorphic to each other via the restrictions of the maps (·)↑ and (·)↓. This
motivates the following.

Definition 1. For every formal context P = (A,X, I), a formal concept of P is a pair
c = (B,Y) such that B ⊆ A, Y ⊆ X, and B↑ = Y and Y↓ = B. The set B is the extension of
c, which we will sometimes denote [[c]], and Y is the intension of c, sometimes denoted
([c]). Let L(P) denote the set of the formal concepts of P. Then the concept lattice of P is
the complete lattice

P
+ := (L(P),∧,∨),

where for every X ⊆ L(P),

∧X := (∩c∈X[[c]], (∩c∈X[[c]])↑) and ∨X := ((∩c∈X([c]))↓,∩c∈X([c])).

Then clearly,�P+ :=∧∅= (A,A↑) and⊥P+ :=∨∅= (X↓,X), and the partial order under-
lying this lattice structure is defined as follows: for any c,d ∈ L(P),

c ≤ d iff [[c]] ⊆ [[d]] iff ([d]) ⊆ ([c]).

Theorem 1 (Birkhoff’s theorem, main theorem of FCA). Any complete lattice L is iso-
morphic to the concept lattice P+ of some formal context P.

Definition 2. An enriched formal context is a tuple F= (P,R�,R�) such that P= (A,X, I)
is a formal context, and R� ⊆ A×X and R� ⊆ X×A are I-compatible relations, that is,
R(0)
� [x] (resp. R(0)

� [a]) and R(1)
� [a] (resp. R(1)

� [x]) are Galois-stable for all x ∈ X and
a ∈ A. The complex algebra of F is

F
+ = (P+, [R�], 〈R�〉),

where P+ is the concept lattice of P, and [R�] and 〈R�〉 are unary operations on P+

defined as follows: for every c ∈ P+,
[R�]c := (R(0)

� [([c])], (R(0)
� [([c])])↑) and 〈R�〉c := ((R(0)

� [[[c]]])↓,R(0)
� [[[c]]]).

Since R� and R� are I-compatible, [R�], 〈R�〉, [R−1
�], 〈R−1

� 〉 : P+→ P+ are well-defined.

2 When B = {a} (resp. Y = {x}) we write a↑↓ for {a}↑↓ (resp. x↓↑ for {x}↓↑).

Logics for Rough Concept Analysis 147

Lemma 1 (cf. [18, Lemma 3]). For any enriched formal context F = (P,R�,R�),
the algebra F+ = (P+, [R�], 〈R�〉) is a complete lattice expanded with normal modal
operators such that [R�] is completely meet-preserving and 〈R�〉 is completely join-
preserving.

Definition 3. For any formal context P= (A,X, I) and any I-compatible relations R,T ⊆
A×X, the composition R ;T ⊆ A×X is defined as follows: for any a ∈ A and x ∈ X,

(R ;T)(1)[a] = R(1)[I(0)[T (1)[a]]] or equivalently (R ;T)(0)[x] = R(0)[I(1)[T (0)[x]]].

3 Motivation: Kent’s Rough Concept Analysis

Below, we report on the basic definitions and constructions in Rough Concept Analysis
[15], cast in the notational conventions of Sect. 2.

Rough formal contexts (abbreviated as Rfc) are tuples G = (P,E) such that P =
(A,X, I) is a polarity (cf. Sect. 2), and E ⊆ A× A is an equivalence relation (the indis-
cernibility relation between objects). For every a ∈ A we let (a)E := {b ∈ A | aEb}. The
relation E induces two relations R,S ⊆ A× I approximating I, defined as follows: for
every a ∈ A and x ∈ X,

aRx iff bIx for some b ∈ (a)E ; aS x iff bIx for all b ∈ (a)E . (1)

By definition, R,S are E-definable (i.e. R(0)[x] = ∪aRx(a)E and S (0)[x] = ∪aS x(a)E for
any x ∈ X), and E being reflexive immediately implies that

Lemma 2. For any Rfc G = (P,E), if R and S are defined as in (1), then

S ⊆ I and I ⊆ R. (2)

Intuitively, we can think of R as the lax version of I determined by E, and S as its strict
version determined by E. Following the methodology introduced in [4] and applied in
[2,3] to introduce a polarity-based semantics for the modal logics of formal concepts,
under the assumption that R and S are I-compatible (cf. Definition 2), the relations R
and S can be used to define normal modal operators [R], 〈R〉, [S], 〈S 〉 on P+ defined as
follows: for any c ∈ P+,

[[[R]c]] := R(0)[([c])] = {a ∈ A | ∀x(x ∈ ([c])⇒ aRx)} (3)

[[[S]c]] := S (0)[([c])] = {a ∈ A | ∀x(x ∈ ([c])⇒ aS x)}. (4)

That is, the members of [R]c are exactly those objects that satisfy (possibly by proxy of
some object equivalent to them) all features in the description of c, while the members
of [S]c are exactly those objects that not only satisfy all features in the description of
c, but that ‘force’ all their equivalents to also satisfy them. The assumption that S ⊆ I
implies that [[[S]c]]= S (0)[([c])]⊆ I(0)[([c])]= [[c]], hence [S]c is a sub-concept of c. The
assumption that I ⊆ R implies that [[c]] = I(0)[([c])] ⊆ R(0)[([c])] = [[[R]c]], hence [R]c is
a super-concept of c. Moreover, for any c ∈ P+,

([〈R〉c]) := R(1)[[[c]]] = {x ∈ X | ∀a(a ∈ [[c]]⇒ aRx)} (5)

148 G. Greco et al.

([〈S 〉c]) := S (1)[[[c]]] = {x ∈ X | ∀a(a ∈ [[c]]⇒ aS x)}. (6)

That is, 〈R〉c is the concept described by those features shared not only by each member
of c but also by their equivalents, while 〈S 〉c is the concept described by the common
features of those members of c which ‘force’ each of their equivalents to share them.
The assumption that I ⊆ R implies that ([c]) = I(1)[[[c]]] ⊆ R(1)[[[c]]] = ([〈R〉c]), and hence
〈R〉c is a sub-concept of c. The assumption that S ⊆ I implies that ([〈S 〉c]) = S (1)[[[c]]] ⊆
I(1)[[[c]]] = ([c]), and hence 〈S 〉c is a super-concept of c. Summing up the discussion
above, we have verified that the conditions I ⊆ R and S ⊆ I imply that the following
sequents of the modal logic of formal concepts are valid on Kent’s basic structures:

�sφ � φ φ � ��φ φ � �sφ ��φ � φ, (7)

where �s is interpreted as [S], �� as [R], �s as 〈S 〉 and �� as 〈R〉. Translated alge-
braically, these conditions say that �s and �� are deflationary, as interior operators are,
�s and �� are inflationary, as closure operators are. Hence, it is natural to ask under
which conditions they (i.e. their semantic interpretations) are indeed closure/interior
operators. The next definition and lemma provide answers to this question.

Definition 4. An Rfc G = (P,E) is amenable if E, R and S (defined as in (1)) are I-
compatible.3

Lemma 3. For any amenable Rfc G = (P,E), if and R and S are defined as in (1), then

R;R ⊆ R and S ⊆ S ;S . (8)

Proof. Let x ∈ X. To show that R(0)[I(1)[R(0)[x]]] ⊆ R(0)[x], let a ∈ R(0)[I(1)[R(0)[x]]]. By
adjunction, this is equivalent to I(1)[R(0)[x]] ⊆ R(1)[a], which implies that I(0)[R(1)[a]] ⊆
I(0)[I(1)[R(0)[x]]] = R(0)[x], the last equality holding since R is I-compatible by assump-
tion. Moreover, I ⊆ R (cf. Lemma 2) implies that I(1)[a] ⊆ R(1)[a], which implies that
I(0)[R(1)[a]] ⊆ I(0)[I(1)[a]] ⊆ (a)E , the last inclusion holding since E is I-compatible
by assumption. Hence, I(0)[R(1)[a]] ⊆ R(0)[x] ∩ (a)E . Suppose for contradiction that
a � R(0)[x]. By the E-definability of R, this is equivalent to R(0)[x]∩ (a)E = ∅. Hence
I(0)[R(1)[a]] = ∅, from which it follows that R(1)[a] = I(1)[I(0)[R(1)[a]]] = I(1)[∅] = X.
Hence, x ∈ R(1)[a], i.e. a ∈ R(0)[x], against the assumption that a � R(0)[x].

Let x ∈ X. To show that S (0)[x] ⊆ S (0)[I(1)[S (0)[x]]], assume that a ∈ S (0)[x]. Since
S is E-definable by construction, this is equivalent to (a)E ⊆ S (0)[x]. To show that a ∈
S (0)[I(1)[S (0)[x]]], we need to show that bIy for any b ∈ (a)E and any y ∈ I(1)[S (0)[x]]. Let
y ∈ I(1)[S (0)[x]]. Hence, by definition, b′Iy for every b′ ∈ S (0)[x]. Since (a)E ⊆ S (0)[x],
this implies that bIy for any b ∈ (a)E , as required.

By the general theory developed in [4] and applied to enriched formal contexts in [18,
Proposition 5], properties (8) guarantee that the following sequents of the modal logic
of formal concepts are also valid on amenable Rfc’s:

�sφ � �s�sφ ����φ � ��φ �s�sφ � �sφ ��φ � ����φ. (9)

3 The assumption that E is I-compatible does not follow from R and S being I-compatible. Let
G = (P, IdA) for any polarity P such that not all singleton sets of objects are Galois-stable.
Hence E = IdA is not I-compatible. However, if E = IdA, then R = S = I are I-compatible.

Logics for Rough Concept Analysis 149

Finally, again by [18, Proposition 5], the fact that by construction �s and �s (resp. ��
and ��) are interpreted by operations defined in terms of the same relation guarantees
the validity of the following sequents on amenable Rfc’s:

φ � �s�sφ �s�sφ � φ φ � ����φ ����φ � φ. (10)

Axioms (7), (9) and (10) constitute the starting point and motivation for the proof-
theoretic investigation of the logics associated to varieties of algebraic structures which
can be understood as abstractions of amenable Rfc’s. We define these varieties in the
next section.

4 Kent Algebras

In the present section, we introduce basic Kent algebras (and the variety of abstract
Kent algebras (aKa) to which they naturally belong), as algebraic generalizations of
amenable Rfc’s, and then introduce some subvarieties of aKas in the style of [20,21].

Definition 5. A basic Kent algebra is a structure A = (L,�s,�s,��,��) such that L is a
complete lattice, and �s,�s,��,�� are unary operations on L such that for all a,b ∈ L,

�sa ≤ b iff a ≤ �sb and ��a ≤ b iff a ≤ ��b, (11)

and for any a ∈ L,
�sa ≤ a a ≤ �sa a ≤ ��a ��a ≤ a (12)

�sa ≤ �s�sa �s�sa ≤ �sa ����a ≤ ��a ��a ≤ ����a (13)

We let KA+ denote the class of basic Kent algebras.

From (11) it follows that, in basic Kent algebras, �s and �� are completely meet-
preserving,�s and�� are completely join-preserving. For any amenable RfcG= (P,E),
if R and S are defined as in (1), then

G
+ := (P+, [S], 〈S 〉, [R], 〈R〉)

where P+ is the concept lattice of the formal context P and [S], 〈S 〉, [R], 〈R〉 are defined
as in (3)–(6). The following proposition is an immediate consequence of [18, Propo-
sition 5], using Lemmas 2 and 3, and the fact that [R] and 〈R〉 (resp. [S] and 〈S 〉) are
defined using the same relation.

Proposition 1. If G = (P,E) is an amenable Rfc, then G+ is a basic Kent algebra.

The natural variety containing basic Kent algebras is defined as follows.

Definition 6. An abstract Kent algebra (aKa) is a structure A = (L,�s,�s,��,��) such
that L is a lattice, and �s,�s,��,�� are unary operations on L validating (11), (12)
and (13). We let KA denote the class of abstract Kent algebras.

From (11) it follows that, in aKas, �s and �� are finitely meet-preserving, �s and ��
are finitely join-preserving.

150 G. Greco et al.

Lemma 4. For any aKa A = (L,�s,�s,��,��) and every a ∈ L,
�sa∨��a ≤ ��a∧�sa. (14)

a ≤ �s�sa �s�sa ≤ a a ≤ ����a ����a ≤ a (15)

�sa ≤ �s�sa �s�sa ≤ �sa ��a ≤ ����a ����a ≤ ��a. (16)

�s�sa ≤ �sa �sa ≤ �s�sa ����a ≤ ��a ��a ≤ ����a. (17)

Proof. The inequalities in (15) are straightforward consequences of (11). The inequal-
ities in (14) and (16) follow from (12) and (15), using the transitivity of the order. The
inequalities in (17) follow from those in (13) using (11).

Conditions (17) define the‘Kent algebra’ counterparts of topological quasi Boolean
algebras 5 (tqBa5) [21]. In the next definition, we introduce ‘Kent algebra’ counter-
parts of some other varieties considered in [21] (omitting those the axiomatization of
which involves negation and those that cannot be captured by multi-type analytic rules
in the present setting), and also varieties characterized by interaction axioms between
lax and strict connectives which follow the pattern of the 5-axioms in rough algebras.

Definition 7. An aKa A as above is an aKa5’ if for any a ∈ L,

��a ≤ �s��a �s��a ≤ ��a �sa ≤ ���sa ���sa ≤ �sa; (18)

is a K-IA3s if for any a,b ∈ L,
�sa ≤ �sb and �sa ≤ �sb imply a ≤ b, (19)

and is a K-IA3� if for any a,b ∈ L,
��a ≤ ��b and ��a ≤ ��b imply a ≤ b. (20)

Notice that the axioms above do not need to be analytic inductive in order for the
resulting logic to be (multi-type) properly displayable: interestingly, the third and fourth
inequality in (18) are not analytic inductive (cf. [7, Definition 55]), but are equivalent to
analytic inductive inequalities in the multi-type language of the heterogeneous algebras
discussed in the next section. This is an illustration of the technical advantage of mov-
ing to the multi-type setting (see also [10, Introduction, Sect. 4], where it is discussed
how the multi-type approach was key in overcoming the difficulties encountered by the
authors of [17] in introducing an analytic calculus for IA3).

5 Multi-type Presentation of Kent Algebras

Similarly to what holds for rough algebras (cf. [10, Sect. 3]), since the modal operations
of any aKa A = (L,�s,�s,��,��) are either interior operators or closure operators, each
of them factorizes into a pair of adjoint normal modal operators which are retractions
or co-retractions, as illustrated in the following table:

Logics for Rough Concept Analysis 151

�s = ◦I ·�I �I · ◦I = idSI �s = ◦C ·�C �C · ◦C = idSC
◦I : SI ↪→ L �I : L� SI �C : L� SC ◦C : SC ↪→ L
�� = �C · •C •C ·�C = idLC �� = �I · •I •I ·�I = idLI

•C : L� LC �C : LC ↪→ L �I : LI ↪→ L •I : L� LI

where SI := �s[L], SC := �s[L], LC := ��[L], and LI := �s[L], and such that for all
α ∈ SI , δ ∈ SC , a ∈ L, π ∈ LI , σ ∈ LC ,

◦I α≤ a iff α≤�I a �C a≤ δ iff a≤ ◦C δ •C a≤ π iff a≤�C π �Iσ≤ a iff σ≤ •I a.
(21)

Again similarly to what observed in [10], the lattice structure of L can be exported
to each of the sets SI ,SC ,LC and LI via the corresponding pair of modal operators as
follows.

Definition 8. For any aKa A, the strict interior kernel SI = (SI ,∪I ,∩I , tI , fI) and the
strict closure kernel SC = (SC ,∪C ,∩C , tC , fC) are such that, for all α,β ∈ S I, and all
δ,γ ∈ SC,

α∪I β := �I (◦I α∨◦I β) δ∪C γ := �C (◦C δ∨◦C γ)
α∩I β := �I (◦I α∧◦I β) δ∩C γ := �C (◦C δ∧◦C γ)
tI := �I�, fI := �I⊥ tC := �C�, fC = �C⊥

The lax interior kernel LI = (LI ,�I ,�I ,1I,0I) and the lax closure kernel LC =
(LC ,�C ,�C ,1C,0C) are such that, for all π,ξ ∈ LI, and all σ,τ ∈ LC,

π�I ξ := •I (�I π∨�I ξ) σ�C τ := •C (�Cσ∨�C τ)
π�I ξ := •I (�I π∧�I ξ) σ�C τ := •C (�Cσ∧�C τ)
1I := •I�, 0I := •I⊥ 1C := •C�, 0C = •C⊥

Similarly to what observed in [10], it is easy to verify that the algebras defined above
are lattices, and the operations indicated with a circle (either black or white) are lattice
homomorphisms (i.e. are both normal box-type and normal diamond-type operators).
The construction above justifies the following definition of class of heterogeneous alge-
bras equivalent to aKas:

Definition 9. A heterogeneous aKa (haKa) is a tuple

H = (L,SI,SC,LI,LC,◦I ,�I ,◦C ,�C ,•I ,�I ,•C ,�C)

such that:

H1 L,SI,SC,LI,LC are bounded lattices;
H2 ◦I : SI ↪→ L, ◦C : SC ↪→ L, •I : L� LI, •C : L� LC are lattice homomorphisms;
H3 ◦I � �I �C � ◦C •C � �C �I � •I ;
H4 �I ◦I = idSI �C ◦C = idSC •C �C = idLC •I�I = idLI

4

The haKas corresponding to the varieties of Definition 7 are defined as follows:

4 Condition H3 implies that �I :L�SI and �I : LI ↪→L are∧-hemimorphisms and�C :L�SC
and �C : LC ↪→ L are ∨-hemimorphisms; condition H4 implies that the black connectives are
surjective and the white ones are injective.

152 G. Greco et al.

Algebra Acronym Conditions
heterogeneous aKa5’ haKa5’ �I π ≤ ◦I �I�I π ◦C�C �Cσ ≤ �Cσ

◦I α ≤ �I •I ◦I α �C •C ◦C δ ≤ ◦C δ
heterogeneous K-IA3s hK-IA3s �I a ≤ �I b and �C a ≤ �C b imply a ≤ b
heterogeneous K-IA3� hK-IA3� �C •C a ≤ �C •C b and �I •I a ≤ �I •I b imply a ≤ b

Notice that the inequalities defining haKa5’ are all analytic inductive. A hetero-
geneous algebra H is perfect if every lattice in the signature of H is perfect (cf. [4,
Definition 1.8]), and every homomorphism (resp. hemimorphism) in the signature of H
is a complete homomorphism (resp. hemimorphism).

Similarly to what discussed in [10, Sect. 3], one can readily show that the classes of
haKas defined above correspond to the varieties defined in Sect. 4. That is, for any
aKa A one can define its corresponding haKa A+ using the factorizations described at
the beginning of the present section and Definition 8, and conversely, given a haKa H,
one can define its corresponding aKa H+ by endowing its first domain L with modal
operations defined by taking the appropriate compositions of pairs of heterogeneous
maps of H. Then, for every K ∈ {aKa, aKa5’, K-IA3s, K-IA3�}, letting HK denote its
corresponding class of heterogeneous algebras, the following holds:

Proposition 2. 1. If A ∈ K, then A+ ∈ HK.
2. If H ∈ HK, then H+ ∈ K.
3. A � (A+)+ and H � (H+)+.
4. The isomorphisms of the previous item restrict to perfect members of K and HK.
5. If A ∈ K, then Aδ � ((A+)δ)+ and if H ∈ HK, then Hδ � ((H+)δ)+.

6 Multi-type Calculi for the Logics of Kent Algebras

In the present section, we introduce the multi-type calculi associated with each class of
algebras K ∈ {aKa,aKa5′,K-IA3�}. The language of these logics matches the language
of haKas, and is built up from structural and operational (i.e. logical) connectives. Each
structural connective is denoted by decorating its corresponding logical connective with
ˆ (resp. ˇ or ˜). In what follows, we will adopt the convention that unary connectives
bind more strongly than binary ones.

general lattice L
A ::= p | � | ⊥ | ◦I α | ◦C δ | �I π | �Cσ | A∧A | A∨A

X ::= A | ⊥̌ | �̂ | ◦̃I Γ | ◦̃C Δ | �̂IΠ | �̌IΠ | �̂C Σ | �̌C Σ | X ∧̂X | X ∨̌X

strict-interior kernel SI lax-interior kernel LI
α ::= �I A | �I A π ::= •I A
Γ ::= α | �̂I X | �̌I X | f̌I | t̂I | Γ ∩̂I Γ | Γ ∪̌I Γ Π ::= π | •̃I X | 0̌I | 1̂I | Π �̂I Π | Π �̌I Π

strict-closure kernel SC lax-closure kernel LC
δ ::= �C A | �C A σ ::= •C A
Δ ::= δ | �̂C X | �̌C X | f̌C | t̂C | Δ ∩̂C Δ | Δ ∪̌C Δ Σ ::= σ | •̃C X | 0̌C | 1̂C | Σ �̂C Σ | Σ �̌C Σ

Logics for Rough Concept Analysis 153

– Interpretation of structural connectives as their logical counterparts5

1. structural and operational pure L-type connectives:

structural operations �̂ ⊥̌ ∧̂ ∨̌
logical operations � ⊥ ∧ ∨

2. structural and operational pure SI-type and SC-type connectives:

structural operations t̂I f̌I ∩̂I ∪̌I t̂C f̌C ∩̂C ∪̌C
logical operations tI fI ∩I ∪I tC fC ∪C ∩C

3. structural and operational pure LI-type and LC-type connectives:

structural operations 1̂I 0̌I �̂I �̌I 1̂C 0̌C �̂C �̌C
logical operations 1I 0I �I �I 1C 0C �C �C

4. structural and operational multi-type strict connectives:

types L→ SI L→ SC SI→ L SC→ L
structural operations �̂I �̌I �̂C �̌C ◦̃I ◦̃C

logical operations �I �I �C �C ◦I ◦C
5. structural and operational multi-type lax connectives:

types LI→ L LC→ L L→ LI L→ LC
structural operations �̂I �̌I �̂C �̌C •̃I •̃C

logical operations �I �I �C �C •I •C
In what follows, we will use x,y,z as structural variables of arbitrary types, a,b,c as

term variables of arbitrary types.
The calculus D.AKA consists of the following axiom and rules.

– Identity and Cut:

IdL p � p
x � a a � y

Cutx � y
– Multi-type display rules (we omit the display rules capturing the adjunctions �I �
•I � �I and �I � •I � �I):

◦̃I Γ � X
adLSI

Γ � �̌I X
X � ◦̃I Γ

adLSI
�̂I X � Γ

X � ◦̃C Δ
adLSC

�̂C X � Δ
◦̃C X � Δ

adLSC
X � �̌C Δ

– Multi-type structural rules for strict-kernel operators:

5 The connectives which appear in a grey cell in the synoptic tables will only be included in the
present language at the structural level.

154 G. Greco et al.

◦̃I t̂I � X◦̃ t̂I �̂ � X
X � ◦̃I f̌I ◦̃I f̌I
X � ⊥̌

◦̃C t̂C � X◦̃C t̂C �̂ � X
X � ◦̃C f̌C ◦̃C f̌C
X � ⊥̌

�̂I ◦̃I Γ � Γ′
�̂I ◦̃I

Γ � Γ′
Γ′ � �̌I ◦̃I Γ

�̌I ◦̃I
Γ′ � Γ

�̂C ◦̃C Δ � Δ′
�̂C ◦̃C

Δ � Δ′
Δ′ � �̌C ◦̃C Δ

�̌C ◦̃C
Δ′ � Δ

◦̃I �̂I X � Y◦̃I �̂I X � Y
Y � ◦̃I �̌I X ◦̃I �̌I
Y � X

◦̃C �̂C X � Y◦̃C �̂C X � Y
Y � ◦̃C �̌C X ◦̃C �̌C
Y � X

– Multi-type structural rules for lax-kernel operators:

•̃I �̂ � Π•̃I 1̂I

1̂I � Π
Π � •̃I ⊥̌ •̃I 0̌I

Π � 0̌I

•̃C �̂ � Σ•̃ 1̂C
1̂C � Σ

Σ � •̃C ⊥̌ •̃C 0̌C
Σ � 0̌C

Π � Π ′
�̂I •̃I

�̂I •̃IΠ � Π ′
Π ′ � Π

�̌I •̃I
Π ′ � �̌I •̃IΠ

Σ � Σ′
�̂C •̃C

�̂C •̃C Σ � Σ′
Σ′ � Σ

�̌C •̃C
Σ′ � �̌C •̃C Σ

•̃I �̂IΠ � Π ′•̃I �̂I
Π � Π ′

Π ′ � •̃I �̌IΠ •̃I �̌I
Π ′ � Π

•̃C �̂C Σ � Σ′•̃C �̂C
Σ � Σ′

Σ′ � •̃C �̌C Σ •̃C �̌C
Σ′ � Σ

– Multi-type structural rules for the correspondence between kernels:

◦̃I �̂I X � Y◦̃ �̂ ◦̃C �̂C X � Y
Y � �̌I •̃I X

�̌ •̃
Y � �̌C •̃C X

– Logical rules for multi-type connectives related to strict kernels:

�̂I A � Γ�I
�I A � Γ

X � A �I

�̂I X � �I A

A � X�C
�C A � �̌C X

Δ � �̌C A
�C

Δ � �C A

◦̃I α � X◦I ◦I α � X
X � ◦̃I α ◦I
X � ◦I α

◦̃C δ � X◦C ◦C δ � X
X � ◦̃C δ ◦C
X � ◦C δ

– Logical rules for lattice connectives:

�̂I π � X�I
�I π � X

Π � π �I

�̂IΠ � �I π

σ � Σ�C
�Cσ � �̌C Σ

X � �̌Cσ �C
X � �Cσ

•̃I A � Π◦I •I A � Π
Π � •̃I A •I
Π � •I A

•̃C A � Σ•C •C A � Σ
Σ � •̃C A •C
Σ � •C A

– Logical rules for lattice connectives:

�̂ � X� � � X ��̂ � � ⊥ ⊥ � ⊥̌
X � ⊥̌ ⊥
X � ⊥

Ai∈{1,2} � X∧i
A1∧A2 � X

X � A X � B ∧
X � A∧B

A � X B � X∨
A∨B � X

X � Ai∈{1,2} ∨i
X � A1∨A2

The proper display calculi for the subvarieties of aKa discussed in Sect. 4 are
obtained by adding the following rules:

Logics for Rough Concept Analysis 155

Logic Calculus Rules

H.aKa5′ D.aKa5′

�̂IΠ � X◦̃I �̂I �̂I ◦̃I �̂I �̂IΠ � X
X � �̌C Σ ◦̃C �̌C �̌C
X � ◦̃C �̌C �̌C Σ

�̂I •̃I ◦̃I Γ � X
�̂I •̃I ◦̃I ◦̃I Γ � X

X � �̌C •̃C ◦̃C Δ
�̌C •̃C ◦̃C

X � ◦̃C Δ

K-IA3� D.K-IA3�
X � �̌I •̃I Y �̂C •̃C X � Y

k-ia3�
X � Y

These calculi enjoy the properties of soundness, completeness, conservativity, cut
elimination and subformula property the verification of which is standard and follows
from the general theory of proper display calculi (cf. [6,11–14,16,23]). These verifica-
tions are discussed in the appendix.

A Properties

Throughout this section, we let K ∈ {aKa,aKa5′,K-IA3�}, and HK the class of heteroge-
neous algebras corresponding to K. Further, we let D.K denote the multi-type calculus
for the logic H.K canonically associated with K.

A.1 Soundness for Perfect HK Algebras

The verification of the soundness of the rules of D.K w.r.t. the semantics of perfect
elements of HK (see Definition 9) is analogous to that of many other multi-type cal-
culi (cf. [6,11–14,16,23]). Here we only discuss the soundness of the rule k-ia3�. By
definition, the following quasi-inequality is valid on every K-IA3�:

��a ≤ ��b and ��a ≤ ��b imply a ≤ b.
This quasi-inequality equivalently translates into the multi-type language as follows:

�C •C a ≤ �C •C b and �I •I a ≤ �I •I b imply a ≤ b.
By adjunction, the quasi-inequality above can be equivalently rewritten as follows:

�C •C �C •C a ≤ b and a ≤ �I •I�I •I b imply a ≤ b,
which, thanks to a well known property of adjoint maps, simplifies as:

�C •C a ≤ b and a ≤ �I •I b imply a ≤ b.
Hence, the quasi-inequality above is equivalent to the following inequality:

a∧�I •I b ≤ �C •C a∨b.
The inequality above is analytic inductive (cf. [7, Definition 55]), and hence running
ALBA on this inequality produces:

156 G. Greco et al.

∀a∀b[a∧�I •I b ≤ �C •C a∨b]
iff ∀p∀q∀a∀b[(p ≤ a∧�I •I b & �C •C a∨b ≤ q)⇒ p ≤ q]
iff ∀p∀q∀a∀b[(p ≤ a & p ≤ �I •I b & b ≤ q & �C •C a ≤ q)⇒ p ≤ q]
iff ∀p∀q[(p ≤ �I •I q & �C •C p ≤ q)⇒ p ≤ q].

The last quasi-inequality above is the semantic translation of the rule k-ia3�:

X � �̌I •̃I Y �̂C •̃C X � Y
k-ia3�

X � Y
which we then proved to be sound on every perfect heterogeneous K-IA3�, by the
soundness of the ALBA steps. Likewise, the defining condition of K-IA3� translates
into the inequality

a∧◦C�C b ≤ ◦I �I a∨b,
which, however, is not analytic inductive, and hence it cannot be transformed into an
analytic rule via ALBA.

A.2 Completeness

Let Aτ � Bτ be the translation of any sequent A � B in the language of H.K into the
language of D.K induced by the correspondence between K and HK described in Sect. 5.

Proposition 3. For every H.K-derivable sequent A � B, the sequent Aτ � Bτ is deriv-
able in D.K.

Below we provide the multi-type translations of the single-type sequents corre-
sponding to inequalities (11). All of them are derivable in D.AKA by logical intro-
duction rules, display rules, and the rules �̌ •̃ and ◦̃ �̂ .

�sA � B iff A � �sB � ◦C�C A � B iff A � ◦I �I B
��A � B iff A � ��B � �I •I A � B iff A � �C •C B

Below we provide the multi-type translations of the single-type sequents corresponding
to inequalities (12) and (13), respectively. All of them are derivable in D.AKA by logical
introduction rules and display rules.

�sA � A � ◦I �I A � A �sA � �s�sA � ◦I �I A � ◦I �I ◦I �I A
A � �sA � A � ◦C�C A �s�sA � �sA � ◦C�C ◦C �C A � ◦C�C A
A � ��A � A � �C •C A ����A � ��A � �C •C �C •C A � �C •C A
��A � A � �I •I A � A ��A � ����A � �I •I A � �I •I�I •I A

Below we provide the multi-type translation of the single-type sequents correspond-
ing to inequalities (18). All of them are derivable in D.AKA5’.

��A � �s��A � �I •I A � ◦I �I�I •I A
�s��A � ��A � ◦C�C �C •C A � �C •C A
�sA � ���sA � ◦I �I A � �I •I ◦I �I A
���sA � �sA � �C •C ◦C �C A � ◦C�C A

Logics for Rough Concept Analysis 157

Below we provide the multi-type translations of the single-type rules corresponding
to quasi-inequality (20), respectively.

��A � ��B and ��A � ��B imply A � B �
�I •I A � �I •I B and �C •C A � �C •C B imply A � B

Below, we derive (20). Firstly, A∧�C •C B � �I •I A∨ B is derivable via k-ia3� by
means of the following derivationD:

B � B
B � �I •I A ∨̌B
B � �I •I A∨B

•̃C B � •̃C (�I •I A∨B)
•C B � •̃C (�I •I A∨B)

�C •C B � �̌C •̃C (�I •I A∨B)

A ∧̂�C •C B � �̌C •̃C (�I •I A∨B)
A∧�C •C B � �̌C •̃C (�I •I A∨B)

A � A
A ∧̂�C •C B � A
A∧�C •C B � A

•̃I (A∧�C •C B) � •̃I A
•̃I (A∧�C •C B) � •I A

�̂I •̃I (A∧�C •C B) � �I •I A
�̂I •̃I (A∧�C •C B) � �I •I A ∨̌B
�̂I •̃I (A∧�C •C B) � �I •I A∨B k-ia3�

A∧�C •C B � �I •I A∨B
Assuming �I •I A � �I •I B and �C •C A � �C •C B, we derive A � B via cut as fol-

lows:

A.3 Conservativity

To argue that D.K is conservative w.r.t. H.K, we follow the standard proof strategy
discussed in [7,9]. We need to show that, for all formulas A and B in the language of
H.K, if Aτ � Bτ is a D.K-derivable sequent, then A � B is derivable in H.K. This claim
can be proved using the following facts: (a) The rules of D.K are sound w.r.t. perfect
members of HK (cf. Sect. A.1); (b) H.K is complete w.r.t. the class of perfect algebras
in K; (c) A perfect element of K is equivalently presented as a perfect member of HK
so that the semantic consequence relations arising from each type of structures preserve
and reflect the translation. Let A,B be as above. If Aτ � Bτ is D.K-derivable, then by
(a), |=HK Aτ � Bτ. By (c), this implies that |=K A � B, where |=K denotes the semantic
consequence relation arising from the perfect members of class K. By (b), this implies
that A � B is derivable in H.K, as required.

A.4 Cut Elimination and Subformula Property

Cut elimination and subformula property for each D.K are obtained by verifying the
assumptions of [5, Theorem 4.1]. All of them except C′8 are readily satisfied by inspect-
ing the rules. Condition C′8 requires to check that reduction steps can be performed for

158 G. Greco et al.

every application of cut in which both cut-formulas are principal, which either remove
the original cut altogether or replace it by one or more cuts on formulas of strictly lower
complexity. In what follows, we only show C′8 for some heterogeneous connectives.

... π1

Γ � �̌I A
Γ � �I A

... π2

A � Y
�I A � �̌I Y

Γ � �̌I Y �

... π1

Γ � �̌I A
◦̃I Γ � A

... π2

A � Y
◦̃I Γ � Y
Γ � �̌I Y

... π1

X � ◦̃I α
X � ◦I α

... π2

◦̃I α � Y
◦I α � Y

X � Y �

... π1

X � ◦̃I α
�̂I X � α

... π2

◦̃I α � Y
α � �̌I Y

�̂I X � �̌I Y
X � Y

The remaining cases are analogous.

References

1. Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundamenta Infor-
maticae 28(3, 4), 211–221 (1996)

2. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Cat-
egories: how I learned to stop worrying and love two sorts. In: Väänänen, J., Hirvonen, Å.,
de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 145–164. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52921-8 10

3. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.:
Toward an epistemic-logical theory of categorization. In: Proceedings of the TARK 2017.
EPTCS, vol. 251, pp. 167–186 (2017)

4. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-
distributive logics. Annals of Pure and Applied Logic ArXiv:1603.08515

5. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In:
Indrzejczak, A., et al. (eds.) Proceedings of the Trends in Logic XIII, pp. 81–93 (2014)

6. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquisitive logic.
In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp.
215–233. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8 14

7. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a
proof-theoretic tool. J. Logic Comput. 28(7), 1367–1442 (2018)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Hei-
delberg (1999). https://doi.org/10.1007/978-3-642-59830-2

9. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. In: Grossi, D.,
Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp. 135–148. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40948-6 11

10. Greco, G., Liang, F., Manoorkar, K., Palmigiano, A.: Proper multi-type display calculi for
rough algebras. arXiv preprint 1808.07278

https://doi.org/10.1007/978-3-662-52921-8_10
http://arxiv.org/abs/1603.08515
https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-40948-6_11
https://arxiv.org/pdf/1808.07278.pdf

Logics for Rough Concept Analysis 159

11. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus for semi De
Morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388,
pp. 199–215. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2 14

12. Greco, G., Liang, F., Palmigiano, A., Rivieccio, U.: Bilattice logic properly displayed. Fuzzy
Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.05.007

13. Greco, G., Palmigiano, A.: Linear logic properly displayed. arXiv preprint: 1611.04184
14. Greco, G., Palmigiano, A.: Lattice logic properly displayed. In: Kennedy, J., de Queiroz,

R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 153–169. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-55386-2 11

15. Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis.
Fundamenta Informaticae 27(2, 3), 169–181 (1996)

16. Liang, F.: Multi-type algebraic proof theory. Ph.D. thesis, TU Delft (2018)
17. Ma, M., Chakraborty, M.K., Lin, Z.: Sequent calculi for varieties of topological quasi-

Boolean algebras. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS
2018. LNCS (LNAI), vol. 11103, pp. 309–322. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99368-3 24

18. Manoorkar, K., Nazari, S., Palmigiano, A., Tzimoulis, A., Wijnberg, N.M.: Rough concepts
(2018, Submitted)

19. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst. 29(7), 661–
688 (1998)

20. Saha, A., Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra
and their logics. Inf. Sci. 282, 296–320 (2014)

21. Saha, A., Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra
and their logics II. Inf. Sci. 333, 44–60 (2016)

22. Sen, J., Chakraborty, M.K.: A study of interconnections between rough and 3-valued
Łukasiewicz logics. Fundamenta Informaticae 51(3), 311–324 (2002)

23. Tzimoulis, A.: Algebraic and proof-theoretic foundations of the logics for social behaviour.
Ph.D. thesis, TUDelft (2018)

24. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 8, pp. 61–145. Springer, Dordrecht (2002). https://
doi.org/10.1007/978-94-010-0387-2 2

https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1016/j.fss.2018.05.007
https://arxiv.org/abs/1611.04181
https://doi.org/10.1007/978-3-662-55386-2_11
https://doi.org/10.1007/978-3-319-99368-3_24
https://doi.org/10.1007/978-3-319-99368-3_24
https://doi.org/10.1007/978-94-010-0387-2_2
https://doi.org/10.1007/978-94-010-0387-2_2

A Fix-Point Characterization of Herbrand
Equivalence of Expressions in Data Flow

Frameworks

Jasine Babu1(B), Karunakaran Murali Krishnan2, and Vineeth Paleri2

1 Indian Institute of Technology Palakkad, Palakkad, India
jasine@iitpkd.ac.in

2 National Institute of Technology Calicut, Kozhikode, India
{kmurali,vpaleri}@nitc.ac.in

Abstract. Computing Herbrand equivalences of terms in data flow
frameworks is well studied in program analysis. While algorithms use
iterative fix-point computation on some abstract lattice of expressions
relevant to the flow graph, the definition of Herbrand equivalences is
based on an equivalence over all program paths formulation, on the
(infinite) set of all expressions. The aim of this paper is to develop
a lattice theoretic fix-point formulation of Herbrand equivalence on a
concrete lattice defined over the set of all terms constructible from vari-
ables, constants and operators of a program. This new formulation makes
explicit the underlying lattice framework as well as the monotone func-
tion involved in computing Herbrand equivalences. We introduce the
notion of Herbrand congruence and define an (infinite) concrete lat-
tice of Herbrand congruences. Herbrand equivalence is defined as the
maximum fix-point of a composite transfer function defined over an
appropriate product lattice of the above concrete lattice. We then re-
formulate the traditional meet over all paths definition in our lattice the-
oretic framework. and prove that the maximum fix-point (MFP) and the
meet-over-all-paths (MOP) formulations coincide as expected.

Keywords: Herbrand equivalence · Data flow framework · Fix-point

1 Introduction

Data flow frameworks are abstract representations of programs, used in pro-
gram analysis and compiler optimizations [1,2]. As detection of semantic equiv-
alence of expressions at program points is unsolvable [3], algorithms try to detect
a weaker, syntactic notion of equivalence called Herbrand equivalence [4–8].
Herbrand equivalence treats operators as uninterpreted functions, and expres-
sions obtained by applying the same operator on equivalent operands are treated
equivalent.

Kildall [9] used abstract interpretation [10] to compute Herbrand equivalences
at program points using an iterative fix point algorithm over a meet semi-lattice
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 160–172, 2019.
https://doi.org/10.1007/978-3-662-58771-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_15&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_15

A Fix-Point Characterization of Herbrand Equivalence of Expressions 161

[2,3,11]. Several algorithms for computation of Herbrand equivalence of program
expressions are known [4,5,7,8,12,13]. Most of these algorithms use iterative fix-
point computation on an abstract lattice defined over a working set of expressions
relevant to the program. It is known that the working set needs to include certain
non-program expressions as well [9].

The theoretical question of describing the concrete lattice of all expres-
sion equivalences and the monotone function whose fix point defines the Her-
brand equivalence of expressions at program points seems to be unaddressed
in the literature. This is possibly due the fact that the traditional definition of
Herbrand equivalence of expressions (see [5, p. 393]) is based on an equivalence
over all program paths formulation, rather than a lattice based formulation. In
this work, we axiomatize the notion of congruence of all expressions over the
variables, constants and operators in a program. We then define a concrete lat-
tice of all congruences. We show that this lattice is complete, which ensures that
every monotone function f over the lattice indeed has a maximum fix-point [14],
though the lattice has infinite height.

Given a data flow framework, we define transfer functions and indefinite
assignments as certain monotone functions on the lattice described above. By
a standard product lattice construction, we then define a composite transfer
function [15,16], which is monotone over the product lattice. We define the
Herbrand equivalence at each program point as component maps (projections)
of the maximum fix-point of this composite transfer function. Finally, to validate
the new formulation against the existing definition of Herbrand equivalence, we
re-formulate the standard definition of Herbrand equivalence in [5] in our lattice
framework and show it to be equivalent to the fix-point formulation developed
in this paper.

Many of the standard proofs for the equivalence of fix-point and meet over
all paths formulations assume that the lattice is either of finite height or that
every chain has finite height [1,3,16], where equivalence holds whenever the
transfer function under consideration is a meet-morphism. Even though chains
are of infinite height, the transfer function being a complete-meet-morphism
guarantees that the equivalence still holds true for the formulation presented in
this paper. A proof of this equivalence is presented in Sect. 8.

2 Terminology

Let C be a set of constants and X be a set of variables. For simplicity, we
assume that the set of operators Op = {+}. (More operators can be added
without any difficulty). The set of all terms over C ∪X, T = T (X,C) is defined
by t ::= c | x | (t+ t), with c ∈ C and x ∈ X. (Parenthesis is avoided when there
is no confusion.) Let P be a partition of T . Let [t]P (or simply [t] when there is
no confusion) denote the equivalence class from P containing the term t ∈ T . If
t′ ∈ [t]P , we write t ∼=P t′ (or simply t ∼= t′). For any A ⊆ T , A(x) denotes the
set of all terms in A in which the variable x appears and A(x) denotes the set
of all terms in A in which x does not appear. In particular, for any x ∈ X, T (x)
is the set of all terms containing the variable x and T (x) = T \ T (x).

162 J. Babu et al.

Definition 1 (Substitution). For t, α ∈ T , x ∈ X, substitution of x with α
in t, denoted by t[x ← α] is defined by: (1) If t = x, then t[x ← α] = α. (2) If
t /∈ T (x), t[x ← α] = t. (3) If t = t1 + t2 then t[x ← α] = t1[x ← α] + t2[x ← α].

For proofs of statements left unproven in the main text and proofs of some
elementary results of lattice theory which are used in the main text, the reader
may refer to the preprint [17].

3 Congruences of Terms

Definition 2 (Congruence of Terms). Let P be a partition of T . P is a
Congruence (of terms) if the following conditions hold:

1. For t, t′, s, s′ ∈ T , t′ ∼= t and s′ ∼= s if and only if t′ +s′ ∼= t+s. (Congruences
respect operators).

2. For any c ∈ C, t ∈ T , if t ∼= c then either t = c or t ∈ X. (The only non-
constant terms that are allowed to be congruent to a constant are variables).

Given a data flow framework, we will associate a congruence with each program
point. Each iteration refines the present congruence at each program point till
a fix-point is reached. The Herbrand equivalence at each program point will be
defined as this fix-point congruence.

Definition 3. The set of all congruences over T is denoted by G(T).

We define a binary confluence operation on the set of congruences, G(T).

Definition 4 (Confluence). Let P1 = {Ai}i∈I and P2 = {Bj}j∈J be two con-
gruences. For all i ∈ I and j ∈ J , define Ci,j = Ai ∩ Bj. The confluence of P1

and P2 is defined by: P1 ∧ P2 = {Ci,j : i ∈ I, j ∈ J,Ci,j 	= ∅}.

Theorem 5. If P1 and P2 are congruences, then P1 ∧ P2 is a congruence.

We next define an ordering on the set G(T) and extend it to a complete lattice.

Definition 6 (Refinement of a Congruence). Let P, P ′ be congruences over
T . We say P � P ′ (read P is a refinement of P ′) if for each equivalence class
A ∈ P, there exists an equivalence class A′ ∈ P ′ such that A ⊆ A′.

Definition 7. The partition in which each term in T belongs to a different class
is defined as: ⊥ = {{t} : t ∈ T }.

The following observation is a direct consequence of the definition of ⊥.

Observation 8. ⊥ is a congruence. Moreover for any P ∈ G(T), ⊥ ∧ P = ⊥.

Lemma 9. Every non-empty subset of (G(T),�) has a greatest lower bound.

Next, we extend (G(T),�) by artificially adding a top element , so that the
greatest lower bound of the empty set is also well defined.

A Fix-Point Characterization of Herbrand Equivalence of Expressions 163

Definition 10. The lattice (G(T),�,⊥,) is defined over the set G(T) =
G(T) ∪ {} with P � for each P ∈ G(T). In particular, is the greatest
lower bound of ∅ and ∧ P = P for every P ∈ G(T).

Hereafter, we will be referring to the element as a congruence. Combining
Lemma 9, Definition 10 and standard results in lattice theory, we get:

Theorem 11. (G(T),�,⊥,) is a complete lattice.

Definition 12 (Infimum). Let S = {Pi}i∈I be an arbitrary collection of con-
gruences in G(T) (S may be empty or may contain). The infimum of S,
denoted by

∧
S or

∧
i∈I Pi, is defined as the greatest lower bound of the set

{Pi}i∈I .

Remark 13. The results in this paper only assumes the meet-completeness of
(G(T),�,⊥,) and the existence of a top element. Though the lattice is also
join-complete, our proofs do not rely on this property.

4 Transfer Functions

A transfer function describes the effect of an assignment on a congruence.

Definition 14 (Transfer Functions). Let y ∈ X and β ∈ T (y). (Note that
y does not appear in β). The transfer function f

y=β
transforms a congruence

P = {Ai}i∈I to f
y=β

(P), a collection of subsets of T , given by the following:

– If P = {Ai}i∈I , then let Bi = {t ∈ T : t[y ← β] ∈ Ai}, for each i ∈ I.
– f

y=β
(P) = {Bi : i ∈ I, Bi 	= ∅}.

See Fig. 1 for an example.

A1 = {1}, A2 = {2}, A3 = {x}, A4 = {y}, A5 = {z},

B1 = {1, x}, B2 = {2}, B4 = {y}, B5 = {z},

C1 = {1, x}, C2 = {2, y}, C5 = {z}, C6 = {1 + 1, 1 + x, x + 1, x + x},

D1 = {1, x, z}, D2 = {2, y},

f
x=1

f
y=2

fz=x

A6 = {1 + 1}, A7 = {1 + x}, A8 = {x + 1}, A9 = {1 + y},

B6 = {1 + 1, 1 + x, x + 1, x + x}, B9 = {1 + y, x + y},

C11 = {1 + 2, x + 2, 1 + y, x + y},...

A10 = {x + y}, A11 = {1 + 2},...

B11 = {1 + 2, x + 2},...

D6 = {1 + 1, 1 + x, x + 1, x + x, 1 + z, z + 1, z + z, z + x, x + z},
D11 = {1 + 2, x + 2, 1 + y, x + y, z + 2, z + y},...

x := 1

y := 2

z := x

entry point

Fig. 1. Application of transfer functions

Note that statements of the form y := y + c can be transformed to the
form permitted by Definition 14. We write f(P) instead of f

y=β
(P) to avoid

cumbersome notation.

164 J. Babu et al.

Theorem 15. If P is a congruence, then for any y ∈ X, β ∈ T (y), f
y=β

(P) is
a congruence.

Next, we extend the definition of transfer functions to (G(T),�,⊥,).

Definition 16. Let y ∈ X and β ∈ T (y). Let P ∈ G(T). The extended transfer
function f

y=β
(P) : G(T) −→ G(T) transforms P to f

y=β
(P) ∈ G(T) given by

f
y=β

(P) = f
y=β

(P) for all P ∈ G(T) and f
y=β

() = .

We will write f
y=β

(P) (or f(P)) instead of f
y=β

(P) and call it a transfer function.
We next show that transfer functions are complete-meet-morphisms over the

complete lattice (G(T),�,⊥,). Let f = f
y=β

, where y ∈ X, β ∈ T (y). For
arbitrary collections of congruences S ⊆ G(T), The notation f(S) denotes the
set {f(s) : s ∈ S}.

Theorem 17. f is a complete-meet-morphism. That is, for any ∅ 	= S ⊆ G(T),
f(

∧
S) =

∧
f(S).

5 Indefinite Assignment

Indefinite (or non-deterministic) assignments model input statements in
programs.

Definition 18. Let y ∈ X. The transfer function f
y=∗ transforms a congruence

P ∈ G(T) to f(P) = f
y=∗(P), a collection of subsets of T given by: for every

t, t′ ∈ T , t ∼=f(P) t′ if and only if both the following conditions are satisfied: (1)
t ∼=P t′. (2) For every β ∈ T \ T (y), t[y ← β] ∼=P t′[y ← β].

Theorem 19. If P is a congruence, then for any y ∈ X, f
y=∗(P) is a

congruence.

We write
∧

β∈T (y) f
y=β

(P) to denote the set
∧

{f
y=β

(P) : β ∈ T (y)}. The next
theorem shows that each indefinite assignment may be expressed as a confluence
of (an infinite collection of) transfer function operations.

Theorem 20. If P is a congruence, then for any y ∈ X,
fy=∗(P) = P ∧

(∧
β∈T (y) f

y=β
(P)

)
.

We extend indefinite assignments to (G(T),�,⊥,).

Definition 21. Let y ∈ X and P ∈ G(T). The extended transfer function
f

y=∗(P) : G(T) �→ G(T) transforms P to f
y=∗(P) ∈ G(T) given by: f

y=∗(P) =
fy=∗(P) for all P ∈ G(T), and f

y=∗() = .

We will write f
y=∗(P) instead of f

y=∗(P) to simplify notation.

Theorem 22. f
y=∗ is a complete-meet-morphism. That is, for any ∅ 	= S ⊆

G(T), f
y=∗(

∧
S) =

∧
f

y=∗(S), where f
y=∗(S) = {f

y=∗(s) : s ∈ S}.

A Fix-Point Characterization of Herbrand Equivalence of Expressions 165

We show that indefinite assignments can be characterized in terms of just three
congruences (instead of dealing with infinitely many as in Theorem 20).

Theorem 23. Let P ∈ G(T) and let c1, c2 ∈ C, c1 	= c2. Then, for any y ∈ X,
f

y=∗(P) = P ∧ f
y←c1

(P) ∧ f
y←c2

(P).

6 Data Flow Analysis Frameworks

We next formalize the notion of a data flow framework and apply the formal-
ism developed above to characterize Herbrand equivalence at each point in a
program.

Definition 24. A control flow graph G(V,E) is a directed graph over the vertex
set V = {1, 2, . . . , n} for some n ≥ 1 satisfying the following properties:

– 1 ∈ V is called the entry point and has no predecessors.
– Every vertex i ∈ V , i 	= 1 is reachable from 1 and has at least one predecessor

and at most two predecessors.
– Vertices with two predecessors are called confluence points.
– Vertices with a single predecessor are called (transfer) function points.

x := 1

y := 1 + 1

z := x+ y

entry point

z := 3 Read z

s := x+ y

t := x+ 1

x := t

w := x

f1 = ⊥

f2 = h2 ◦ π1

f3 = h3 ◦ π2

f4 = h4 ◦ π3

f5 = h5 ◦ π4

f7 = π5,6

f8 = h8 ◦ π7

f10 = h10 ◦ π9

f11 = h11 ◦ π10

f12 = h12 ◦ π11

h2 = f
x=1

1

2

h3 = f
y=1+1

h4 = f
z=x+y

h5 = f
z=3

h6 = f
z=∗

3

4

5 6
7

8

9

10

11

12

h8 = f
s=x+y

h10 = f
t=x+1

h11 = f
x=t

h12 = f
w=x

f6 = h6 ◦ π4

f9 = π8,11

Fig. 2. Component maps of the composite transfer function

166 J. Babu et al.

Definition 25. A data flow framework over T is a pair D = (G,F), where
G(V,E) is a control flow graph on the vertex set V = {1, 2, . . . , n} and F is a
mapping from the set of function points in V to the set of transfer functions
over G(T). The transfer function associated with function point i will be denoted
as hi.

Data flow frameworks can be used to represent programs. An example is
given in Fig. 2. In the sections that follow, we will use hi to denote the extended
transfer function hi (see Definitions 16 and 21) without further explanation.

7 Herbrand Equivalence

Let D = (G,F) be a data flow framework over T . In the following, we will define
the Herbrand Congruence function HD : V (G) �→ G(T). For each vertex i ∈
V (G), the congruence HD(i) will be called the Herbrand Congruence associated
with the vertex i of the data flow framework D. The function HD will be defined
as the maximum fix-point of a complete-meet-morphism f

D
: G(T)

n �→ G(T)
n
.

The function f
D

will be called the composite transfer function associated with
the data flow framework D.

Definition 26 (Product Lattice). Let n be a positive integer. The product
lattice, (G(T)

n
,�n,⊥n,n) is defined as follows: for P = (P1,P2, . . . ,Pn), Q =

(Q1,Q2, . . . ,Qn) ∈ G(T)
n
, P �n Q if Pi � Qi for each 1 ≤ i ≤ n, ⊥n =

(⊥,⊥, . . . ,⊥) and n = (,, . . . ,).

For S ⊂ G(T)
n
, the notation

∧
S will be used to denote the greatest lower bound

of S in the product lattice.
By Theorem 11, and standard results in lattice theory, we have:

Theorem 27. The product lattice satisfies the following properties:

1. (G(T)
n
,�n,⊥n,n) is a complete lattice.

2. If S̃ ⊆ G(T)
n

is non-empty, with S̃ = S1 × S2 × · · · × Sn, where Si ⊆ G(T)
for 1 ≤ i ≤ n. Then

∧
S̃ = (

∧
S1,

∧
S2, . . . ,

∧
Sn).

As preparation for defining the composite transfer function, we introduce the
following functions:

Definition 28 (Projection Maps). Let n be a positive integer. For each i ∈
{1, 2, . . . , n},

– The projection map to the ith co-ordinate, πi : G(T)
n �→ G(T) is defined by

πi(P1,P2, . . . ,Pn) = Pi for any (P1,P2, . . . ,Pn) ∈ G(T)
n
.

– The confluence map πi,j : G(T)
n �→ G(T) is defined by

πi,j(P1,P2, . . . ,Pn) = Pi ∧ Pj for any (P1,P2, . . . ,Pn) ∈ G(T)
n
.

A Fix-Point Characterization of Herbrand Equivalence of Expressions 167

In addition to the above functions, we will also use the constant map which
maps each element in G(T)

n
to ⊥. The following observation is a consequence

of standard results in lattice theory.

Observation 29. Constant maps, projection maps and confluence maps are
complete-meet-morphisms.

For each k ∈ V (G), Pred(k) denotes the set of predecessors of the vertex k in
the control flow graph G.

Definition 30 (Composite Transfer Function). Let D = (G,F) be a data
flow framework over T . For each k ∈ V (G), define the component map fk :
G(T)

n �→ G(T) as follows:

1. If k = 1, the entry point, then fk = ⊥. (f1 is the constant function that
always returns the value ⊥).

2. If k is a function point with Pred(k) = {j}, then fk = hk ◦ πj, where hk is
the (extended) transfer function corresponding to the function point k, and
πj the projection map to the jth coordinate as defined in Definition 28.

3. If k is a confluence point with Pred(k) = {i, j}, then fk = πi,j, where πi,j is
the confluence map as defined in Definition 28.

The composite transfer function of D is defined to be the unique function f
D

satisfying πk ◦ f
D

= fk for each k ∈ V (G).

The purpose of defining f
D

is the following. Suppose we have associated a con-
gruence with each program point in a data flow framework. Then f

D
speci-

fies how a simultaneous and synchronous application of all the transfer func-
tions/confluence operations at the respective program points modifies the con-
gruences at each program point. The definition of f

D
conservatively sets the

confluence at the entry point to ⊥, treating terms in G(T) to be inequivalent to
each other at the entry point. See Fig. 2 for an example. The following observa-
tion is a direct consequence of the above definition.

Observation 31. The composite transfer function f
D

(Definition 30) satisfies
the following properties:

1. If k = 1, the entry point, then πk ◦ f
D

= ⊥.
2. If k is a function point with Pred(k) = {j}, then fk = πk ◦f

D
= hk ◦πj, where

hk is the (extended) transfer function corresponding to the function point k.
3. If k is a confluence point with Pred(k) = {i, j}, then fk = πk ◦ f

D
= πi,j.

The following lemma is a consequence of Observation 31.

Lemma 32. Let D = (G,F) be a data flow framework over T and k ∈ V (G).
Let S = {f

D
(n), f2

D
(n), . . .}, where f

D
is the composite transfer function of D.

1. If k = 1, the entry point, then πk ◦f l
D

(n) = ⊥ for all l ≥ 1, hence πk(
∧

S) =
⊥.

168 J. Babu et al.

2. If k is a function point with Pred(k) = {j}, then for all l ≥ 1,

(πk ◦ f l
D

)(n) = (πk ◦ f
D

)(f l−1
D

(n))

= (hk ◦ πj ◦ f l−1
D

)(n)

3. If k is a confluence point with Pred(k) = {i, j}, then for all l ≥ 1,

(πk ◦ f l
D

)(n) = (πk ◦ f
D

)(f l−1
D

(n))

= (πi,j)(f l−1
D

(n))

=
(
(πi ◦ f l−1

D
)(n)

)
∧

(
(πj ◦ f l−1

D
)(n)

)

By standard facts in lattice theory, we have:

Theorem 33. The following properties hold for the composite transfer function
f

D
(Definition 30):

1. f
D

is monotone, and is a complete-meet-morphism.
2. The component maps fk = πk ◦ f

D
are complete-meet-morphisms for all k ∈

{1, 2, . . . , n}.
3. f

D
has a maximum fix-point.

4. If S = {, f
D

(n), f2
D

(n), . . .}, then
∧

S is the maximum fix-point of f
D
.

The objective of defining Herbrand Congruence as the maximum fix-point of
the composite transfer function is possible now.

Definition 34 (Herbrand Congruence). Given a data flow framework D =
(G,F) over T , the Herbrand Congruence function HD : V (G) �→ G(T) is defined
as the maximum fix-point of the composite transfer function f

D
. For each k ∈

V (G), the value HD(k) ∈ G(T) is referred to as the Herbrand Congruence at
program point k.

The following is a consequence of Theorem 33 and the definition of Herbrand
Congruence.

Observation 35. For each k ∈ V (G), HD(k) =
∧

{(πk ◦ f
D

l)(n) : l ≥ 0}.

Proof

HD(k) = πk(
∧

n{f
D

l(n) : l ≥ 0}) (by Theorem 33)

=
∧

{πk(f
D

l(n)) : l ≥ 0} (because πk is a complete-meet-morphism)

=
∧

{(πk ◦ f
D

l)(n) : l ≥ 0}

��

The definition of Herbrand congruence must be shown to be consistent with the
traditional meet-over-all-paths description of Herbrand equivalence of terms in
a data flow framework. The next section addresses this issue.

A Fix-Point Characterization of Herbrand Equivalence of Expressions 169

8 MOP Characterization

In this section, we give a meet over all paths characterization for the Herbrand
Congruence at each program point. This is essentially a lattice theoretic refor-
mulation of the characterization by Steffen et al. [5, p. 393]. Consider a data
flow framework D = (G,F) over T , with V (G) = {1, 2, . . . , n}.

Definition 36 (Path). For any non-negative integer l, a program path (or sim-
ply a path) of length l to a vertex k ∈ V (G) is a sequence α = (v0, v2, . . . vl)
satisfying v0 = 1, vl = k and (vi−1, vi) ∈ E(G) for each i ∈ {1, 2, . . . l}. For each
i ∈ {0, 1, . . . , l}, αi denotes the initial segment of α up to the ith vertex, given
by (v0, v1, . . . , vi).

Next, we associate a congruence in G(T) with each path in D. The path function
captures the effect of application of transfer functions along the path on the
initial congruence ⊥, in the order in which the transfer functions appear along
the path.

Definition 37 (Path Congruence). Let α = (v0, v1, . . . , vl) be a path of
length l to vertex k ∈ V (G) for some l ≥ 0. We define:

1. When i = 0, mαi
= ⊥.

2. If i > 0 and vi = j, where j ∈ V (G) is a function point, then mαi
=

hj(mαi−1), where hj ∈ F is the extended transfer function associated with the
function point j.

3. If i > 0 and vi is a confluence point, then mαi
= mαi−1 .

4. The path congruence associated with α, mα = mαl
.

For k ∈ V (G) and l ≥ 0, let Φl(k) denote the set of all paths of length less
than l from the entry point 1 to the vertex k. In particular, Φ0(k) = ∅, for all
k ∈ V (G). The following observation is a consequence of the definition of Φl(k).

Observation 38. If k ∈ V (G) and l ≥ 1,

1. If k is the entry point, then Φl(k) = {(1)}, the set containing only the path
of length zero, starting and ending at vertex 1.

2. If k is a function point with Pred(k) = {j}, then
{αl−1 : α ∈ Φl(k)} = {α′ : α′ ∈ Φl−1(j)} = Φl−1(j).

3. If k is a confluence point with Pred(k) = {i, j}, then
{αl−1 : α ∈ Φl(k)} = {α′ : α′ ∈ Φl−1(i)} ∪ {α′ : α′ ∈ Φl−1(j)} = Φl−1(i) ∪
Φl−1(j).

For l ≥ 0, we define the congruence Ml(k) to be the meet of all path congruences
associated with paths of length less than l from the entry point to vertex k in
G. Stated formally,

Ml(k) =
∧

{mα : α ∈ Φl(k)}, for l ≥ 0

170 J. Babu et al.

Observation 39. If l = 0, Φl(k) = ∅ and hence M0(k) = , for all k ∈ V (G).
Further, M1(1) = ⊥ and M1(k) = , for k 	= 1. In general, Ml(k) = if there
are no paths of length less than l from 1 to k in G.

We define Φk to be the set of all paths from vertex 1 to vertex k in G, i.e., Φk =⋃
l≥1 Φl(k) and MOP (k) =

∧
{mα : α ∈ Φ(k)} =

∧
{Ml(k) : l ≥ 0}. (The second

equality follows from standard results in lattice theory and Observation 39.) The
congruence MOP (k) is the meet of all path congruences associated with paths
in Φk.

Our objective is to prove MOP (k) = HD(k) for each k ∈ {1, 2, . . . , n} so that
HD captures the meet over all paths information about equivalence of expressions
in T . As noted in the introduction, the proof does not immediately follow from
the transfer function being a meet-morphism, as in [1,3,16] since the lattice is
neither of finite height nor the chains in the lattice stabilize at finite height.

We begin with the following observations.

Lemma 40. For each k ∈ V (G) and l ≥ 1

1. If k = 1, the entry point, then Ml(k) = ⊥.
2. If k is a function point with Pred(k) = {j}, then Ml(k) = hk(Ml−1(j)), where

hk is the (extended) transfer function corresponding to the function point k.
3. If k is a confluence point with Pred(k) = {i, j}, then Ml(k) = Ml−1(i) ∧

Ml−1(j).

Lemma 41. For each k ∈ V (G) and l ≥ 0, Ml(k) = (πk ◦ f
D

l)(n).

Finally, we show that the iterative fix-point characterization of Herbrand equiv-
alence and the meet over all paths characterization coincide.

Theorem 42. Let D = (G,F) be a data flow framework. Then, for each k ∈
V (G), MOP (k) = HD(k).

Proof

MOP (k) =
∧

{mα : α ∈ Φ(k)}

=
∧

{Ml(k) : l ≥ 0} (by Observation 39)

=
∧

{(πk ◦ f
D

l)(n) : l ≥ 0} (by Lemma 41)

= HD(k) (by Observation 35)

��

Note that the proof of Observation 35 requires the composite transfer function
to be a complete-meet-morphism.

A Fix-Point Characterization of Herbrand Equivalence of Expressions 171

9 Conclusion

We have shown that Herbrand equivalences of terms at program points in a data
flow framework can be formulated in terms of the maximum fix-point of a com-
posite transfer function defined over an infinite complete lattice of congruences.
The standard definition of Herbrand equivalence [5] is reformulated as a meet
over all paths definition in this new lattice framework and is shown to be equiv-
alent to the fix-point formulation. The equivalence of the MFP characterization
with the standard formulation provides a theoretical justification for the use of
fix-point algorithms used in practice for computing Herbrand equivalences. The
new fix-point formulation permits us to view the existing working set based fix-
point algorithms as instances of abstract interpretation from the ideal concrete
lattice into appropriately defined abstract lattices. We hope that this view can
help to make correctness proofs of working set algorithms more transparent.

References

1. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, vol. 1.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, vol. 2. Addison-Wesley Reading, Boston (2006)

3. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informat-
ica 7(3), 305–317 (1977)

4. Rüthing, O., Knoop, J., Steffen, B.: Detecting equalities of variables: combining
efficiency with precision. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 232–247. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48294-
6 15

5. Steffen, B., Knoop, J., Rüthing, O.: The value flow graph: a program representa-
tion for optimal program transformations. In: Jones, N. (ed.) ESOP 1990. LNCS,
vol. 432, pp. 389–405. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-
52592-0 76

6. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 79–96. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 6

7. Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value number-
ing. Sci. Comput. Program. 64(1), 97–114 (2007)

8. Pai, R.R.: Detection of redundant expressions: a precise, efficient, and pragmatic
algorithm in SSA. Comput. Lang. Syst. Struct. 46, 167–181 (2016)

9. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 1973, pp. 194–206. ACM (1973)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM (1977)

11. Kam, J.B., Ullman, J.D.: Global data flow analysis and iterative algorithms. J.
ACM 23(1), 158–171 (1976)

https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/3-540-48294-6_15
https://doi.org/10.1007/3-540-48294-6_15
https://doi.org/10.1007/3-540-52592-0_76
https://doi.org/10.1007/3-540-52592-0_76
https://doi.org/10.1007/978-3-540-30579-8_6

172 J. Babu et al.

12. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 1988, pp. 1–11. ACM (1988)

13. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant
computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 1988, pp. 12–27. ACM (1988)

14. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5(2), 285–309 (1955)

15. Cousot, P.: Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice. In: Research Report R.R. 88, Laboratoire
IMAG, Université scientifique et médicale de Grenoble, Grenoble, France, 15 p.,
September 1977

16. Geser, A., Knoop, J., Lüttgen, G., Rüthing, O., Steffen, B.: Non-monotone fixpoint
iterations to resolve second order effects. In: Gyimóthy, T. (ed.) CC 1996. LNCS,
vol. 1060, pp. 106–118. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61053-7 56

17. Babu, J., Krishnan, K.M., Paleri, V.: A fix-point characterization of herbrand
equivalence of expressions in data flow frameworks. arXiv:1708.04976 (2017)

https://doi.org/10.1007/3-540-61053-7_56
https://doi.org/10.1007/3-540-61053-7_56
http://arxiv.org/abs/1708.04976

Logic Without Language

Rohit Parikh(B)

City University of New York, Brooklyn College and CUNY Graduate Center,
New York, USA

rparikh@gc.cuny.edu

Abstract. Does a dog think? Does a prelingual child think? Creatures
without language seem to be making some logical inferences which allow
them to make decisions. We offer a utility and perception based account
which allows us to deal with this phenomenon formally. We offer the
suggestion that non-lingual creatures have a certain perception of the
world and that they make the best decisions relative to that perception.
Logic may be “used” to infer non-perceived facts from perceived facts.

1 Davidson on Animals

Neither an infant one week old nor a snail is a rational creature. If the infant
survives long enough he will probably become rational while this is not true of
the snail....

The difference consists, it is argued, in the having of propositional attitudes
such as belief, desire, intention, and shame. This raises the question of how to
tell when a creature has propositional attitudes. Snails, we may agree, do not but
how about dogs or chimpanzees?...

It is next contended that language is a necessary concommitant of any of the
propositional attitudes. This idea is not new, but there seem to be few arguments
in its favor in the literature. One is attempted here.

Donald Davidson, Rational Animals, Dialectica, 1982

2 But Is Davidson Correct?

Here is Rescorla, citing Sextus Empiricus: Sextus Empiricus, who credits the
argument to Chrysippus, presents it as follows: [Chrysippus] declares that the
dog makes use of the fifth complex indemonstrable1 syllogism when, on arriving
at a spot where three ways meet..., after smelling at the two roads by which the
quarry did not pass, he rushes off at once by the third without stopping to smell.
For, says the old writer, the dog implicitly reasons thus: “The animal went either
by this road, or by that, or by the other: but it did not go by this or that, therefore
he went the other way.”

1 (modus tollendo ponens, or disjunctive syllogism).

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 173–182, 2019.
https://doi.org/10.1007/978-3-662-58771-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_16&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_16

174 R. Parikh

And here is Jakob von Uexküll: explaining his notion of the Umwelt or ‘per-
sonal world’. or2

This little monograph does not claim to point the way to a new science.
Perhaps it should be called strolls into unfamiliar worlds, worlds strange to us
but known to other creatures manifold and varied as the animals themselves. The
best time to set out on such an adventure is on a sunny day. The place, a flower
strewn meadow humming with insects, fluttering with butterflies. Here we may
glimpse the worlds of the lowly dwellers of the meadow. To do so we must first
blow in fancy a soap bubble around each creature to represent its own world filled
with the perceptions of which it alone knows.

When we ourselves step into one of these bubbles, The familiar meadow is
transformed. Many of its colorful features disappear, others no longer belong
together but appear in new relationships. A new world comes into being. Through
the bubble we see the world of the burrowing worm, of the butterfly, or of the
field mouse; the world as it appears to the animals themselves, not as it appears
to us. This we may call the phenomenal world or the self-world of the animal.

Jakob von Uexküll, Forays into the worlds of animals and men, [8]
The purpose of this paper is to make the contrast between Davidson and

Uexküll more explicit by bringing in utility based reasoning, which is appropriate
for both humans and animals, and relating this reasoning to a logical language.3

For those of us technically minded, the Umwelt is the semantics (or semiotics)
of the agent. If we see this agent as having beliefs and desires (in the BDI sense,
see [4].) then we need to understand what world these beliefs and desires are
about. Logics for action and belief need to use the real semantics of such agents.
We will offer a path towards formalizing such logics.

And then we can understand what actions will come about from these beliefs
and desires.

3 Introduction

Suppose that Aruna has a sofa in her living room. If you ask her if she knows
that she has a sofa in her living room she will say, “Are you crazy? Of course I
know.” but if you say to her “How many pounds of air are in your apartment?”
She would have no idea. (It could be about 750 pounds in a typical apartment.)

The sofa is in her apartment and so is the air so why does she know about
the one but not the other? Aren’t they both part of her world? But the sofa is
part of her Umwelt and the weight of the air is not.

Why does the fly get caught in the spider’s web? Because a thread in the
web is too fine for the fly’s vision. So it does not know that the web is there.
Once caught, it knows quite well because it is no longer using its eyes but its
sense of touch.

2 Uexküll seems here to anticipate the discussion in Nagel [3].
3 See Vigo and Allen [7] for a related discussion.

Logic Without Language 175

There are certain things that we are all supposed to know like whether there
is a sofa in our living room but we do not usually know about the air, even
though it too is in our living room.

Now for us humans, our individual Umwelt is supplemented by the commu-
nity Umwelts which include information from the Umwelts of others, and also
from science. The sun and the moon look to us as if they are at the same distance
but science tells us that the sun is much further.

And we certainly did not send a man to the moon using just the phenomenal
world (Umwelt). But animals and young humans tend to act primarily or entirely
in terms of their phenomenal worlds.

4 Agent? Or Machine?

The mechanists have pieced together the sensory and motor organs of animals,
like so many parts of a machine, ignoring their real functions of perceiving and
acting, and have gone on to mechanize man himself. According to the behav-
iorists, man’s own sensations and will are mere appearance, to be considered,
if at all, only as disturbing static. But we who still hold that our sense organs
serve our perceptions, and our motor organs our actions, see in animals as well
not only the mechanical structure, but also the operator, who is built into their
organs as we are into our bodies.

(Uexküll [8])

5 Two Computer Scientists Respond

On this basis we shall say that an entity is intelligent if it has an adequate model
of the world (including the intellectual world of mathematics, understanding of
its own goals and other mental processes), if it is clever enough to answer a wide
variety of questions on the basis of this model, if it can get additional information
from the external world when required, and can perform such tasks in the external
world as its goals demand and its physical abilities permit.

(McCarthy and Hayes, Some philosophical problems from the point of view
of AI, [2] 1969)

6 And a Psychologist Offers His View

If the organism carries a ‘small-scale model’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies
which face it.

(Kenneth Craik, The Nature of Explanation, 1943: 61)

176 R. Parikh

7 Umwelts

We can think of the Umwelt as a homomorphic image of the real world. And
that means that some information is missing. A child does not know that the
moon is much farther than a tree. In view of this missing information the best
action for an agent is not always the same as the apparent best action4. When
an agent is in a world w, then for all it knows, it could be in some other world w′,
indistinguishable from w. The best action is that action which has the highest
utility over all these other possible worlds. But it might not be the best action
for the actual world w.

Now the expected value of the apparent best action increases when more
information is received. But in order to receive more information the animal
needs to develop tools for getting that information, and these tools incur a cost,
so unless the cost is less than the gain the improvement will not be sought.
The fly could have had better eyesight and be caught less often, but that more
sophisticated eye would be expensive to maintain.

In this context, reconsider Uexküll’s account of the life story of a tick. A tick
has three perceptions. And three effectors (or actions).

The typical tick climbs on a grass blade or something similar and waits.5

When a mammal passes under the grass blade, its skin releases butyric acid
which the tick detects and it drops onto the mammal. It knows it is a mammal
because of the warmth.

Then it moves around in the mammal’s skin until it finds a bald spot. It sucks
blood and then drops to the ground where it lays its eggs and dies.

So the tick needs three perceptions,

(1) the sunlight to know which direction is up and so to rise,
(2) the smell of butyric acid which tells it when to drop, and
(3) the feeling of warmth which enables it to know that precious blood is avail-

able.

It also has three actions, (1) rising, (2) dropping, (3) sucking blood and then
(again) (2) dropping.

The tick can be easily represented by a transducer finite automaton. The
perception and abilities of the tick are strikingly similar to that of the agent in
the Wumpus world, see [6], Chap. 7. Dennett’s The intentional Stance [1] has
asimilar considerations.

It also uses default reasoning, see [5], because it does not (bother to) distin-
guish between blood and some other warm liquid supplied to it by an exper-
imenter. Under normal circumstances it is blood and the tick does not need
expensive equipment to distinguish blood from fake blood.

4 A child who thinks the moon is close by may ask her father to bring the moon to
her. The request which we may find amusingly irrational is in fact rational in the
child’s Umwelt.

5 Apparently a tick can wait for several years without starving to death.

Logic Without Language 177

Uexküll has lots of examples of creatures being fooled in this way when the
best action in their Umwelt is not the best action in the real world.

Default reasoning is a rational strategy when we would incur too high a cost
to deviate from it. It’s cheaper to assume that what you see is what you expect
to see.

Uexküll is skeptical of the idea that there is the “real world” which we see
imperfectly. We shall not follow him or ask the reader to. Rather our represen-
tation will assume that there is a real world which is perceived imperfectly by
every creature, whether a bat or a dog or a child.

Thus each creature sees a homomorphism from real world to its personal
world.

8 A Little Bit of Mathematics

Definition 1. An Umwelt U consists of two parts. A homomorphism H (many
one mapping) from the actual world to the perceived world. And a set A of pos-
sible actions. Thus U = (H,A). In addition each creature has a utility function
u, so that u(a,w) = x is the utility of action a performed when the world is w.
We will assume that x is a real number. (In actuality it could be some level of
satisfaction for us humans, or the expected number of progeny for animals).

Given a world w, the best action b(w) for the creature is that a which maxi-
mizes the expected utility u(a,w′) over the set {w′|H(w′) = H(w)}. (There is an
implicit probability distribution here which we will not specify). The expected
value E(U) of the Umwelt U is the expected value of the random variable a.

Definition 2. Umwelt U ′ = (H ′, A′) refines Umwelt U = (H,A) if

(a) H ′(w) = H ′(w′) → H(w) = H(w′) and
(b) A ⊆ A′.

Thus H ′ has more information and more abilities than H.

Theorem 1. If U ′ refines U then E(U) ≤ E(U ′).

The more you know and the more you can do, the better off you are.

Proof. U ′ can refine U in two ways. Either by having more actions or by having
more information. Clearly if there are more actions, then the best action from
a larger set will be at least as good as the best action from a smaller set. What
about more information? (let us keep the set of actions constant for the moment.)

Suppose that w is world, let the cell of w according to U be C = {w′|H(w′) =
H(w)}. Let a be the best U -action over C. Now, since U ′ has more information
than U , C according to U ′ will break up into a number of cells C,..., Ck. Now,
the best action ai over Ci will be at least as good as a (over Ci). U ′ will give
rise to action ai over Ci and their average over C will be at least as good as the

178 R. Parikh

value of a over C. Hence U ′ will give a better average overall, and E(U ′) will be
at least as large as E(U).

Now suppose that U ′ has both more actions and more information. Then
let U ′′ have the same actions as U and the same information as U ′. Then the
preceding two arguments show that E(U) ≤ E(U ′′) as well as E(U ′′) ≤ E(U ′)
This gives E(U) ≤ E(U ′′). �

Here is the intuitive idea. Suppose I am driving to New Jersey and can take
either the tunnel or the bridge. Normally the tunnel is better as it is closer. But
it might be closed.

The procedure if the tunnel is open then take the tunnel else take the bridge
has a higher average utility than either just take the tunnel or just take the
bridge. But that if then else procedure can only be carried out in the refined
Umwelt where the question about the tunnel has been answered.

Thus it pays to know more and it also pays to have more options for action.

9 Uninformed Agent

Here A and B are incompatible conditions which might obtain. X and Y are
possible actions of the agent.

A B
Action X −100, 25 10
Action Y 6 −50, 15

This is a decision theoretic matrix. In condition A, the agent does not know
whether the payoff will be 25 or −100 if action X is performed. Thus if A is true
then the best action is Y and if B is true then the best action is X. The utility
of the Umwelt is

(6 + 10)/2 = 8.

In this more detailed table P is an additional condition about which the agent
could find out.

10 Better Informed Agent

A and P A and -P B and P B and -P
Action X −100 25 10 10
Action Y 6 6 15 −50

So the best action is (if A&P then Y or else if A&-P then X or if B&P then
Y or else if B&-P then X). The utility of the Umwelt is now 56/4 = 14. Knowing
about P has pushed the utility up by 6 and so one could say that the knowledge
of P is worth 6 units.

Logic Without Language 179

11 Learning More

Why then does a creature not have a maximal U where H is the identity function
and A is enormous?

Because acquiring more information and acquiring more possible actions has
a cost and the benefit may not justify the cost.

And for Darwinian creatures which rely on evolution to ‘learn,’ the entire
species has to have the extra sensory ability so that one creature may benefit.
The cost summed up over the entire species may not be justified by the benefit
to one member or a few members of the species.

If I have an Umwelt U and I ask a question Q then the H becomes refined to
a finer H ′. The utility of the new Umwelt will be greater but the question will
have a cost. To ask the question requires me to make sure that the cost is less
than the utility gain.

If I am at a train station and ask the agent what time my train is leaving, I
will benefit from the answer.

But if I ask how many dishes are available in the Dining Car, the agent’s
rudeness will be too high a price to pay for any answer.

Similarly for an increase in actions. If I am going mountain climbing then
it makes sense for me to undergo training so that I have more actions available
while on the mountain. But if I am not going mountain climbing then the effort
gains me nothing.

12 Symbiosis

Suppose that two different creatures have two different Umwelts.6 For example
a man with eyesight but no legs, riding another man without vision but with
legs.7 Or it could be a dog leading a man who is blind. in that case the combined
Umwelt would be to the benefit of both. What is essential in that case that the
Umwelts supplement each other and that their utilities align.

Consider two creatures with Umwelts U and U ′ and a common utility8.
Then the two together have joint Umwelt U ′′ whose H ′′ is the least upper

bound of H and H ′ and whose action set A′′ is A ∪ A′. I.e. H ′′(w) = H ′′(w′) iff
H(w) = H(w′) and H ′(w) = H ′(w′).

Then the joint Umwelt refines both the individual Umwelts and (with a rea-
sonable bargain) yields a higher utility for both creatures. This explains why we
have cases of symbiosis among animals and massive cooperation among humans9.
6 While the Umwelt is personal, the homomorphism is objective and two different

homomorphisms can be combined.
7 Something like this happens in one of the Sinbad stories.
8 The utility need not be common but the two utilities must be compatible. See e.g.

John Nash’s work on The Bargaining Problem, Econometrica 1950.
9 There is also the issue of compatible utilities. A leopard and a deer do not have

compatible utilities unless we think of the leopard as having the job of keeping the
deer herd under control.

180 R. Parikh

Here is an example. In the ocean, certain species, like shrimps and gobies,
will clean fish. They remove parasites, dead tissue, and mucus.

13 Animal Logic

A tiger watches a deer going towards a bush from the left. Then the deer is not
seen any more. And it has not emerged on the other side. So the tiger knows
and believes that the deer is behind the bush.

The tiger is inferring the presence of the deer behind the bush, which it does
not see, from the previous appearance of the deer to the left of the bush, and
from the non-appearance of the deer to the right of the bush.

Thus it is inferring some variable free sentences which it does not experience,
from other variable free sentences which it has experienced.

14 A General Framework: Theories Enter

Suppose we are given a first order theory T with plenty of constants and variable
free terms. T defines a relation R between finite sets X of variable free sentences
and other sets Y of variable free sentences as follows:

R(X,Y) iff T ∪ X |= φ for all φ ∈ Y.

Clearly R is monotonic in X, in T , and anti-monotonic in Y .
Suppose the tiger’s behavior shows awareness of Y on the basis of X.
Does the tiger then believe T?
Not necessarily. There are many such theories which will work. And the tiger

may be using some other means to infer Y .
But it can be harmless if we attribute to the tiger such a theory T as long

as we are aware that this is merely a facon de parler. We try to enter the tiger’s
world and reason as we think it does. This is fine as long as our predictions of
the tiger’s behavior match its actual behavior.

Thus it is fine for us to say, “the tiger acts as if it believes T”.
Question: For which relations R does there exist a finite first order theory

which ‘explains’ R?
One could also ask which R are computable in polytime or even in linear

time.

15 The Usefulness of a Theory

Suppose an agent knows some atomic formulas U . It also knows a theory T .
Then using T it can infer other atomic formulas V (where we assume, using
reflexivity that U ⊆ V). Let X be the set of worlds satisfying U and Y the set of
worlds satisfying V . Then Y ⊆ X and the best action b over Y may be different

Logic Without Language 181

from the best action a over X. The utility of b over Y minus the utility of a over
Y is the gain from knowing theory T . It is easy to see that if T ⊆ T ′ then the
utility of T ′ will be greater than the utility of T .

Presumably Chrysippus’ dog knew A ∨ B ∨ C where A,B,C are the three
roads. On finding ¬A, ¬B the dog infers C.

Here the dog merely makes an inference which is logically necessary. But the
tiger inferring that the deer is behind the bush is not making an inference which
is logically necessary. Rather the inference depends on properties of the physical
world. A driverless car may even make inferences which are not necessitated by
the laws of physics but by traffic laws or even by plausible inferences about other
cars.

16 Can Logic Exist Without Language?

Two kinds of agents considered by AI are as follows.

1. Stimulus response creatures. These are creatures whose reactions are fixed
given what they perceive. In AI they are represented by means of a table.
And indeed the head of a Turing machine is just that. It sees something on a
square and it acts.

2. Creatures with a ‘knowledge base’. These are creatures who have some cache
of ‘facts’ which they revise and which they use to infer other facts.

It is easy to see that the second kind of creature could well do with some
logic.

But does this logic need to be expressed in language? Perhaps not, but if we
see our logic as reflected in the behavior of a creature without language then we
have added to our understanding.

17 Conclusion

We have made a start towards formalizing some ideas implicit in Uexküll, Den-
nett and Nagel as well as others. Such a preliminary effort must leave many loose
ends untied. Here is an example.

The logic of a creature need not use an average utility over some set of
possible worlds. It may well have some default worlds which are assumed to be
the only possible ones and the creature’s actions will then be in terms of these
default worlds.

But these are also issues for a sequel.

Acknowledgments. We thank Priya Chakraborty, John Greenwood, Peter Godfrey-
Smith, Steve Pinker, Vaughan Pratt, Jesse Prinz, Yunqi Xue and two referees for useful
suggestions to an earlier version of this research.

182 R. Parikh

References

1. Dennett, D.C.: The Intentional Stance. MIT Press, Cambridge (1989)
2. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of

artificial intelligence. Stanford University, Computer Science Department (1969)
3. Nagel, T.: What is it like to be a bat? Philos. Rev. 83(4), 435–450 (1974)
4. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: ICMAS 1995

(1995)
5. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
6. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Edu-

cation Limited, New Delhi (2016)
7. Vigo, R., Allen, C.: How to reason without words: inference as categorization. Cogn.

Process. 10(1), 77–88 (2009)
8. Von Uexküll, J.: A stroll through the worlds of animals and men: a picture book of

invisible worlds. Semiotica 89(4), 319–391 (1992). There are other versions, 1934,
and 1957, of the same paper

Towards a Constructive Formalization
of Perfect Graph Theorems

Abhishek Kr Singh(B) and Raja Natarajan(B)

Tata Institute of Fundamental Research, Mumbai, India
{abhishek.singh,raja}@tifr.res.in

Abstract. Interaction between clique number ω(G) and chromatic num-
ber χ(G) of a graph is a well studied topic in graph theory. Perfect
Graph Theorems are probably the most important results in this direc-
tion. Graph G is called perfect if χ(H) = ω(H) for every induced sub-
graph H of G. The Strong Perfect Graph Theorem (SPGT) states that a
graph is perfect if and only if it does not contain an odd hole (or an odd
anti-hole) as its induced subgraph. The Weak Perfect Graph Theorem
(WPGT) states that a graph is perfect if and only if its complement is
perfect. In this paper, we present a formal framework for verifying these
results. We model finite simple graphs in the constructive type theory
of Coq Proof Assistant without adding any axiom to it. Finally, we use
this framework to present a constructive proof of the Lovász Replication
Lemma, which is the central idea in the proof of Weak Perfect Graph
Theorem.

1 Introduction

The chromatic number χ(G) of a graph G is the minimum number of colours
needed to colour the vertices so that every two adjacent vertices get distinct
colours. Finding out the chromatic number of a graph is NP-Hard [5]. However,
one obvious lower bound is clique number ω(G), the size of the biggest clique in
G. Consider the graphs shown in Fig. 1.

In each of these cases χ(G) = ω(G), i.e. the number of colours needed is
the minimum we can hope. Can we always hope χ(G) = ω(G) for every graph
G? The answer is no. Consider the cycle of odd length 5 and its complement
shown in Fig. 2. In this case one can see that χ(G) = 3 and ω(G) = 2 (i.e.
χ(G) > ω(G)). A cycle of odd length greater than or equal to 5 is called an
odd hole. Complement of an odd hole is called an odd anti-hole. Indeed, the gap
between χ(G) and ω(G) can be made arbitrarily large. Consider the other graph
shown in Fig. 2 which consist of two disjoint 5-cycles with all possible edges
between the two cycles.

This graph is a special case of the general construction where we have k
disjoint 5-cycles with all possible edges between any two copies. In this case
one can show [7] that χ(G) = 3k but ω(G) = 2k. In fact, there is an even
stronger result [9] which constructs triangle-free Micielski graph Mk that satisfies
χ(Mk) = k.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Md. A. Khan and A. Manuel (Eds.): ICLA 2019, LNCS 11600, pp. 183–194, 2019.
https://doi.org/10.1007/978-3-662-58771-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58771-3_17&domain=pdf
https://doi.org/10.1007/978-3-662-58771-3_17

184 A. Kr. Singh and R. Natarajan

Fig. 1. Some graphs where χ(G) = ω(G)

Fig. 2. Some graphs where, χ(G) > ω(G). For k disjoint 5-cycles χ(G) = 3k and
ω(G) = 2k.

In 1961, Claude Berge noticed the presence of odd holes (or odd anti-holes)
as induced subgraph in all the graphs presented to him that does not have a nice
colouring, i.e. χ(G) > ω(G). However, he also observed some graphs containing
odd holes, where χ(G) = ω(G). Consider the graphs shown in Fig. 3.

Fig. 3. Graphs with χ(G) = ω(G), and having odd hole as induced subgraph.

A good way to avoid such artificial construction is to make the notion of nice
colouring hereditary. We say that a graph H is an induced subgraph of G, if H
is a subgraph of G and E(H) = {uv ∈ E(G) | u, v ∈ V (H)}. A graph G is then
called a perfect graph if χ(H) = ω(H) for all of its induced subgraphs H.

Berge observed that the presence of odd holes (or odd anti-holes) as induced
subgraphs is the only possible obstruction for a graph to be perfect. These obser-
vations led Berge to the conjecture that a graph is perfect if and only if it does
not contain an odd hole (or an odd anti-hole) as its induced subgraph. This was
soon known as the Strong Perfect Graph Conjecture (SPGC). Berge thought this
conjecture to be a hard goal to prove and gave a weaker statement referred to
as the Weak Perfect Graph Conjecture (WPGC): a graph is perfect if and only
if its complement is perfect. Both the conjectures are theorems now. In 1972,
Lovász proved a result [8] (known as Lovász Replication Lemma) which finally
helped him to prove the WPGC. It took however three more decades to come
up with a proof for SPGC. The proof of Strong Perfect Graph Conjecture was
announced in 2002 by Chudnovsky et al. and finally published [3] in a 178-page
paper in 2006.

Towards a Constructive Formalization of Perfect Graph Theorems 185

In this paper, we present a formal framework for verifying these results. In
Sect. 2 we provide an overview of the Lovász Replication Lemma which is the
key result used in the proof of WPGT. In Sect. 3 we present a constructive
formalization of finite simple graphs. In this constructive setting, we present a
formal proof of the Lovász Replication Lemma (Sect. 4). We summarise the work
in Sect. 5 with an overview of possible future works. The Coq formalization for
this paper is available at [1].

2 Overview of Lovász Replication Lemma

Let G be a graph and v ∈ V (G). We say that G′ is obtained from G by repeating
vertex v if G′ is obtained from G by adding a new vertex v′ such that v′ is
connected to v and to all the neighbours of v in G. For example, consider the
graphs shown in Fig. 4 obtained by repeating different vertices of a cycle of
length 5.

v1

v2

v3

v4

v5

G1

v1

v2

v3

v4

v5

v′
4

G2

v1

v2

v3

v4

v5

v′
4 v′

2

G3

Fig. 4. Graph G2 is obtained from G1 by repeating vertex v4 whereas the graph G3 is
obtained from G2 by repeating vertex v2. Note that χ(G2) = ω(G2) = 3 but χ(G3) >
ω(G3).

Note that the graph G2 has a nice coloring (i.e. χ(G2) = ω(G2)), however
the graph G3 which is obtained by repeating vertex v2 in graph G2, does not
have a nice coloring (i.e. χ(G3) > ω(G3)). Thus, property χ(G) = ω(G) is not
preserved by replication. Although, the property χ(G) = ω(G) is not preserved,
Lovász in 1971 came up with a surprising result which says that perfectness is
preserved by replication. It states that if G′ is obtained from a perfect graph G
by replicating a vertex, then G′ is perfect. Note that this result does not apply
to any graph shown in Fig. 4, since none of them is a perfect graph. All of these
graphs has an induced subgraph (odd hole of length 5) which does not admit a
nice coloring.

The process of replication can be continued to obtain a graph where each
vertex is replaced with a complete graph of arbitrary size (Fig. 5). This gives us
a generalised version of the Lovász Replication lemma.

Let G be a perfect graph and f : V (G) → N . Let G′ be the graph obtained
by replacing each vertex vi of the graph G with a complete graph of order
f(vi). Then G′ is a perfect graph. For example, consider the graphs shown in
Fig. 5. Vertex a in G1 is replaced by a complete graph Va of order 2 to obtain

186 A. Kr. Singh and R. Natarajan

d c

b

a

G1

Va

b

cd

G2

Va
Vb

cd

G3

Va
Vb

VcVd

G4

Fig. 5. The graphs resulting from repeated replication of vertices a, b and c of G1 to
form cliques Va, Vb and Vc of sizes 2, 3 and 4 respectively.

G2. Similarly, vertex b in G2 is replaced by a clique Vb of size 3 to obtain G3.
Since G1 is perfect, all the other graphs (G2, G3 and G4) obtained by repeated
replications are also perfect.

3 Modeling Finite Simple Graphs

There are very few formalization of graphs in Coq. The most extensive among
these is due to the formalization of four color theorem [6] which considers only
planar graphs. We use a definition for finite graphs which is closest to the one
used by Doczkal et. al. [4]. However due to reasons explained in this section we
represent the vertices of our graphs as sets over ordType instead of eqType. We
define finite simple graphs as a dependent record with six fields.

Record UG (A:ordType) : Type:= Build_UG {
nodes :> list A; nodes_IsOrd : IsOrd nodes; edg: A -> A -> bool;
edg_irefl: irefl edg; no_edg: edg only_at nodes; edg_sym: sym edg }.
Variable G: UG A.

The last line in the above code declares a finite graph G whose vertices come from
an infinite domain A. The first field of G can be accessed using the term (nodes
G). It is a list that represents the set of vertices of G. The second field of G ensures
that the list of vertices can be considered as a set (details in Sect. 3.1). The third
field, which is accessed using the term (edg G), is a binary relation representing
the edges of the graph G. The terms (edg_irefl G) and (edg_sym G) are proof
terms whose type ensures that the edge relation of G is irreflexive and symmet-
ric. These restrictions on edge makes the graph G simple and undirected. For
simplicity in reasoning, the edge relation is considered false everywhere outside
the vertices of G. This fact is represented by the proof term (no_edg G).

3.1 Vertices as Constructive Sets

In our work we only consider finite graphs. Vertices of a finite graph can be rep-
resented using a finite set. The Mathematical Components library [6] describes
an efficient way of working with finite sets. Finite sets are implemented using

Towards a Constructive Formalization of Perfect Graph Theorems 187

finite functions (ffun) built over a finite type (finType). Since all the elements
of a set now come from a finite domain (i.e. finType) almost every property on
the set can be represented using computable (boolean) functions. These boolean
functions can be used to do case analysis on different properties of a finite set
in a constructive way.

The proof of WPGT involves expansion of graph in which the vertices of
the initial graph are replaced with cliques of different sizes. Therefore, in our
formalization we can’t assume that the vertices of our initial graph are sets over
some finType. Instead, we represent the set of vertices of a graph G as a list
whose elements come from an infinite domain (defined as ordType).

Reflection, eqType and ordType. The finType in ssreflect is defined
on a base type called eqType. The eqType is defined as a dependent record
which packs together a type (T:Type) and a boolean comparison operator
(eqb: T → T → bool) that can be used to check the equality of any two ele-
ments of type T. Therefore, it tries to capture the notion of a domain with
decidable equality. For example, consider the following canonical instance which
connects natural numbers to the theory of eqType.

Canonical nat_eqType: eqType:=
{|Decidable.E:= nat; Decidable.eqb:= Nat.eqb; Decidable.eqP:= nat_eqP|}.

Here, Nat.eqb is a boolean function that checks the equality of two natural num-
ber and the term nat_eqP is name of a lemma which ensures that the function
eqb evaluates equality in correct way.

Lemma 1. nat_eqP (m n:nat): reflect (m = n)(Nat.eqb m n).

Note, the use of reflect predicate to specify a boolean function. It is a
common practice in the ssreflect library. Once we connect a proposition P with a
boolean B using the reflect predicate we can easily navigate between them. This
makes case analysis on P possible even though the Excluded Middle principle is
not provable for an arbitrary proposition Q in the constructive type theory of
Coq. Consider the following lemma (from GenReflect.v), which makes case
analysis possible on a predicate P.

Lemma 2. reflect_EM (P: Prop)(b:bool): reflect P b -> P ∨ ¬ P.

To keep the library constructive we follow this style of proof development. All
the basic predicates on sets are connected with their corresponding boolean func-
tions using reflection lemmas. For example, consider the predicates mentioned
in Table 1.

These lemmas can be used to do case analysis on any statement about sets
containing elements of eqType. However, in this framework we can’t be con-
structive while reasoning about properties of power sets. Hence, we base our set
theory on ordType which is defined as a subtype of eqType.

The ordType inherits all the fields of eqType and has an extra boolean oper-
ator which we call the less than boolean operator (i.e. ltb). This new operator
represents the notion of ordering among elements of ordType.

188 A. Kr. Singh and R. Natarajan

Table 1. Some decidable predicates on sets from the file SetReflect.v

Propositions (P:Prop) Boolean functions (b:bool) Reflection lemmas

In a l memb a l membP

Equal l s equal l s equalP

∃ x, (In x l ∧ f x) existsb f l existsbP

∀ x, (In x l -> f x) forallb f l forallbP

Sets as Ordered Lists. Let T be an ordType. Sets on domain T is then defined
as a dependent record with two fields. The first field is a list of elements of type
T and the second field ensures that the list is ordered using the ltb relation of T.

Record set_on (T:ordType): Type := { S_of :> list T; IsOrd_S : IsOrd S_of }.

All the basic operations on sets (e.g. union, intersection and set difference)
are implemented using functions on ordered lists which outputs an ordered list.
An important consequence of representing sets using ordered list is the following
lemma (from OrdList.v) which states that the element wise equal sets can be
substituted for each other in any context.

Lemma 3. set_equal (A: ordType)(l s: set_on A): Equal l s -> l = s.

Another advantage of representing sets using ordered list is that we can now
enumerate all the subsets of a set S in a list using the function pw(S). Moreover,
we have following lemma which states that the list generated by pw(S) is a set.
The details of function pw(S) can be found in the file Powerset.v.

Lemma 4. pw_is_ord (S: list A): IsOrd (pw S).

Since all the subsets of S are present in the list pw(S) we can express any
predicate on power set using a boolean function on list. This gives us a construc-
tive framework for reasoning about properties of sets as well as their power sets.
For example, consider the following definition of a boolean function forall_xyb
and its corresponding reflection lemma forall_xyP from the file SetReflect.v.

Definition forall_xyb (g:A->A->bool)(l:list A):=
(forallb (fun x=> (forallb (fun y => g x y) l)) l).

Lemma forall_xyP (g:A->A->bool) (l:list A):
reflect (forall x y, In x l-> In y l-> g x y) (forall_xyb g l).

3.2 Decidable Edge Relation

The edges of graph G are represented using a decidable binary relation on the
vertices of G. Hence, one can check the presence of an edge between vertices u and
v by evaluating the expression (edg G u v). The decidability of edge relation
is useful for defining many other important properties of graphs as decidable
predicates.

Towards a Constructive Formalization of Perfect Graph Theorems 189

Cliques, Stable Set and Graph Coloring. Consider the following definition
of a complete graph K present in the graph G. Note that the proposition Cliq G
K is decidable because it is connected to a term of type bool (i.e. cliq G K) by
the reflection lemma cliqP.

Definition cliq(G:UG)(K:list A):=forall_xyb (fun x y=> (x==y) || edg G x y) K.
Definition Cliq(G:UG)(K:list A):=(forall x y,In x K->In y K-> x=y \/ edg G x y).
Lemma cliqP (G: UG)(K: list A): reflect (Cliq G K) (cliq G K).

In a similar way we also define independence set (or stable set) and graph
coloring using decidable predicates. The details can be found in the file UG.v and
MoreUG.v. Most of these these definitions together with their reflection lemmas
are listed in Table 2.

Table 2. Decidable predicates on finite graphs (from UG.v and MoreUG.v).

Propositions (P:Prop) Boolean functions (b:bool) Reflection lemmas

Subgraph G1 G2 subgraph G1 G2 subgraphP

Ind_Subgraph G1 G2 ind_subgraph G1 G2 ind_subgraphP

Stable G I stable G I stableP

Max_I_in G I max_I_in G I max_I_inP

Cliq G K cliq G K cliqP

Max_K_in G K max_K_in G K max_K_inP

Coloring_of G f coloring_of G f coloring_ofP

We call a graph G to be a nice graph if χ(G) = ω(G). A graph G is then called
a perfect graph if every induced subgraph of it is a nice graph.

Definition Nice (G: UG): Prop:= forall n, cliq_num G n -> chrom_num G n.
Definition Perfect (G: UG): Prop:= forall H, Ind_subgraph H G -> Nice H.

In this setting we have the following lemma establishing the obvious relationship
between χ(G) and ω(G). Here the expression (clrs_of f G) represents the set
containing all colors used by f to color the vertices of G.

Lemma 5. more_clrs_than_cliq_size (G: UG)(K: list A)(f: A -> nat):
Cliq_in G K-> Coloring_of G f -> |K| <= |clrs_of f G|.

Lemma 6. more_clrs_than_cliq_num (G: UG) (n:nat)(f: A->nat):
cliq_num G n-> Coloring_of G f -> n <= |clrs_of f G|.

3.3 Graph Isomorphism

It is typically assumed in any proof involving graphs that isomorphic graphs
have exactly the same properties. However, in a formal setting we need a proper
representation for graph isomorphism to claim the exact behaviour of isomorphic
graphs.

190 A. Kr. Singh and R. Natarajan

Definition iso_using (f: A->A)(G G’: @UG A) := (forall x, f (f x) = x) /\
(nodes G’) = (img f G) /\ (forall x y, edg G x y = edg G’ (f x) (f y)).

Definition iso (G G’: @UG A) := exists (f: A->A), iso_using f G G’.

Consider the following lemmas which shows the symmetric nature of graph iso-
morphism.

Lemma 7. iso_sym (G G’: UG): iso G G’ -> iso G’ G.

Note the self invertible nature of f which makes it injective on both G and G’.
The second condition (i.e. (nodes G’) = (img f G)) expresses the fact that f
maps all the vertices of G to the vertices of G’.

Lemma 8. iso_one_one (G G’: UG)(f: A-> A): iso_using f G G’->
one_one_on G f.

Lemma 9. iso_subgraphs (G G’ H :UG) (f: A-> A) : iso_using f G G’->
Ind_subgraph H G -> (∃ H’, Ind_subgraph H’ G’ ∧ iso_using f H H’).

For the graphs G and G’ Lemma 9 states that every induced subgraph H of G
has an isomorphic counterpart H’ in G’. In a similar way we can prove that
the stable sets and cliques in G has isomorphic counterparts in G’. For example,
consider the following lemmas from IsoUG.v summarising these results.

Lemma 10. iso_cliq (G G’: UG)(f:A-> A)(K:list A):iso_using f G G’->
Cliq G K -> Cliq G’ (img f K).

Lemma 11. iso_stable (G G’: UG)(f: A-> A)(I: list A):iso_using
f G G’-> Stable G I-> Stable G’ (img f I).

Lemma 12. iso_coloring(G G’:UG)(f:A->A)(C: A->nat):iso_using f G
G’ -> Coloring_of G C -> Coloring_of G’ (fun (x:A) => C (f x)).

Lemma 13. perfect_G’ (G G’:UG): iso G G’-> Perfect G -> Perfect G’.

3.4 Graph Constructions

Adding (or removing) edges in an existing graph to obtain a new graph is a
common procedure in proofs involving graphs. In such circumstances an explicit
specification of all the fields of the new graph becomes a tedious job.

For example, consider the definition of following function (nw_edg G a a’).

Definition nw_edg(G:UG)(a a’:A):= fun(x y:A)=> match (x==a), (y==a’) with
| _ , false => (edg G) x y
| true, true => true
|false, true => (edg G) x a

end.

The term (nw_edg G a a’) can be used to describe the edge relation of graph
G’ shown in Fig. 6, which is obtained from G by repeating the vertex a to a’.

This function has a simple definition and hence it is easy to prove various
properties about it. For example, we can prove following results establishing
connections between the edges of G and G’.

Towards a Constructive Formalization of Perfect Graph Theorems 191

v2 v3

a

v1

G

v2 v3

a′a

v1

G′

Fig. 6. Graph G′ is obtained from G by repeating vertex a to a′.

Lemma 14. nw_edg_xa_xa’ (G: UG)(a a’ x:A): (edg G) x a -> (nw_edg G a
a’) x a’.

Lemma 15. nw_edg_xy_xy (G: UG)(a a’ x y:A)(P’: ¬ In a’ G): (edg G) x
y -> (nw_edg G a a’) x y

Lemma 16.
nw_edg_xy_xy4 (G: UG)(a a’ x y:A)(P: In a G)(P’: ¬In a’ G):
y �= a’ -> (edg G) x y = (nw_edg G a a’) x y.

Although, the term (nw_edg G a a’) contains all the essential properties of
the construction it doesn’t have the irreflexive and symmetric properties neces-
sary for an edge relation. Hence, we can’t use this term for edge relation while
declaring G’ as an instance of UG. To ensure these properties one can add more
branches to the match statement and provide an extra term P of type a �= a’ as
argument to the function. However, this will result in a more complex function
and proving even the essential properties of the new function becomes hard.

Instead of writing complex edge relations every time we define functions
namely mk_irefl, mk_sym and E_res_to which make minimum changes and
convert any binary relation on vertices into an edge relation. For example con-
sider the following specification lemmas for the functions mk_irefl and mk_sym.

Lemma 17. mk_ireflP (E: A -> A-> bool): irefl (mk_irefl E).

Lemma 18. mk_symP (E: A-> A-> bool): sym (mk_sym E).

Lemma 19. irefl_inv_for_mk_sym (E: A-> A-> bool): irefl E -> irefl
(mk_sym E).

Lemma 20. sym_inv_for_mk_irefl (E: A->A-> bool): sym E ->
sym (mk_irefl E).

Note that these functions do not change the properties ensured by each other.
The file UG.v contains other invariance results about these functions proving
that these functions work well when used together. For example, consider the
following declaration of G’ as an instance of UG.

Definition ex_edg(G:UG)(a a’:A):=
mk_sym(mk_irefl((nw_edg G a a’) at_ (add a’ G))).

Variable G: UG.
Definition G’:= refine({| nodes:= add a’ G; edg:= (ex_edg G a a’);

|}); unfold ex_edg. all: auto. Defined.

192 A. Kr. Singh and R. Natarajan

Note that the term (ex_edg G a a’) obtained from (nw_edg G a a’) by
using these functions have all the properties of an edge relation. Now, we can
simply use the tactic all: auto to discharge all the proof obligations generated
while declaring G’ as an instance of UG. Therefore these functions can signifi-
cantly ease the construction of new graphs.

All the important properties of the final edge relation (i.e. ex_edg G a a’)
can now be derived from the properties of nw_edg G a a’ by using the specifi-
cation lemmas for the functions mk_irefl, mk_sym and E_res_to. For example
consider following lemmas (from Lovasz.v) which describes the final edge rela-
tion (i.e. ex_edg) of graph G’.

Lemma 21. Exy_E’xy (x y:A)(P: In a G)(P’: ¬ In a’ G): edg G x y -> edg
G’ x y.

Lemma 22. In_Exy_eq_E’xy (x y:A)(P: In a G)(P’: ¬ In a’ G): In x G->
In y G-> edg G x y=edg G’ x y.

Lemma 23. Exy_eq_E’xy (x y:A)(P: In a G)(P’: ¬ In a’ G): x �= a’-> y
�= a’-> edg G x y = edg G’ x y.

Lemma 24. Exa_eq_E’xa’ (x:A)(P: In a G)(P’: ¬ In a’ G): x �= a-> x �=
a’-> edg G x a = edg G’ x a’.

Lemma 25. Eay_eq_E’a’y (y:A)(P: In a G)(P’: ¬ In a’ G): y �= a -> y �=
a’ -> edg G a y = edg G’ a’ y.

4 Constructive Proof of Lovász Replication Lemma

Let G and G’ be the graphs discussed in Sect. 3.4, where G’ is obtained from G
by repeating the vertex a to a’. Then we have the following lemma.

Lemma 26. ReplicationLemma Perfect G -> Perfect G’.

Proof: We prove this result using induction on the size of graph G.

– Induction hypothesis (IH): ∀ X, |X|<|G|-> Perfect X -> Perfect X’

Let H’ be an arbitrary induced subgraph of G’, then we need to prove that
χ(H’) = ω(H’). We prove this equality in both of the following cases.

– Case-1 (H’ �= G’): In this case H’ is strictly included in G’. We further do
case analysis on the proposition (a ∈ H’).

• Case-1A (a /∈ H’): In this case if a’ /∈ H’ then H’ is an induced sub-
graph of G and hence χ(H’) = ω(H’). Now consider the case when
a’ ∈ H’. Let H be the induced subgraph of H’ restricted to the vertex-
set (H’\a’) ∪ {a}. Note that H’ is isomorphic to H and H is an induced
subgraph of G. Hence H’ is a perfect graph and we have χ(H’) = ω(H’).

Towards a Constructive Formalization of Perfect Graph Theorems 193

• Case-1B (a ∈ H’): Again in this case if a’ /∈ H’ then H’ is an induced
subgraph of G and hence χ(H’) = ω(H’). Now we are in the case where
a ∈ H’, a’ ∈ H’ and H’ is strictly included in G’. Therefore, the set
H’\a’ is strictly included in G. Let H be the induced subgraph of G with
vertex set H’\a’. Note that H’ can be obtained by repeating a to a’ in H.
But, we know that |H| < |G|, hence H’ is a perfect graph by induction
hypothesis (IH) and we have χ(H’) = ω(H’).

– Case-2 (H’ = G’): In this case we need to prove χ(G’) = ω(G’). We further
split this case into two sub cases.

• Case-2A: In this case we assume that there exists a clique K of size
ω(G) such that a ∈ K. Hence K gets extended to a clique of size ω(G)+1
in G’ and ω(G’)= ω(G)+1. Now we can assign a new color to the
vertex a’ which is different from all the colors assigned to G. Hence
χ(G’)= χ(G)+1=ω(G)+1=ω(G’).

• Case-2B: In this case we assume that a does not belong to any clique K of
size ω(G). Since G is a perfect graph let f be a coloring of graph G which
uses exactly ω(G) colors. Let G∗ = { v∈ G: f(v) �= f(a) ∨ v=a }.
For the subgraph G∗ we can then show that ω(G∗) < ω(G). Hence there
must exist a coloring f∗ which uses ω(G∗) colors for coloring G∗. Since
ω(G∗) < χ(G) we can safely assume that f∗ does not use the color f
(a) for coloring the vertices of G∗. Now consider a coloring f’ which
assigns a vertex x color f∗(x) if x belongs to G∗ otherwise f’ (x) = f
(a). Note that the number of colors used by f is at most ω(G). Hence
χ(G’) = ω(G’).

Note that all the cases in the above proof correspond to predicates on sets and
finite graphs. Since we have decidable representations for all of these predicates,
we could do case analysis on them without assuming any axiom. �

5 Conclusions and Future Work

Formal verification of a mathematical theory can often lead to a deeper under-
standing of the verified results and hence increases our confidence in the the-
ory. However, the task of formalization soon becomes overwhelming because the
length of formal proofs blows up significantly. In such circumstances having a
library of facts on commonly occurring mathematical structures can be really
helpful. The main contribution of this paper is a constructive formalisation of
finite simple graphs in the Coq proof assistant [2]. This formalization can be
used as a framework to verify other important results on finite graphs. To keep
the formalisation constructive we follow a proof style similar to the small scale
reflections technique of the ssreflect. We use small boolean functions in a sys-
tematic way to represent various predicates over sets and graphs. These func-
tions together with their specification lemmas can help in avoiding the use of
Excluded-Middle in the proof development. We also describe functions to ease
the process of new graph construction. These functions can help in discharging

194 A. Kr. Singh and R. Natarajan

most of the proof obligation generated while creating a new instance of finite
graph. Finally, we use this framework to present a fully constructive proof of the
Lovász Replication Lemma [8], which is the central idea in the proof of Weak
Perfect Graph Theorem. One can immediately extend this work by formally ver-
ifying Weak Perfect Graph Theorem in the same framework. Another direction
of work could be to add in the present framework all the basic classes of graphs
and decompositions involved in the proof of Strong Perfect Graph Theorem.
This can finally result in a constructive formalisation of strong Perfect Graph
Theorem in the Coq proof assistant.

References

1. Coq formalization. https://github.com/Abhishek-TIFR/List-Set
2. The Coq Standard Library. https://coq.inria.fr/library/
3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph

theorem. Annal. Math. 164, 51–229 (2006)
4. Doczkal, C., Combette, G., Pous, D.: A formal proof of the minor-exclusion property

for treewidth-two graphs. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS,
vol. 10895, pp. 178–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94821-8_11

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

6. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reason. 3(2), 95–152 (2010)

7. Gyarfas, A., Sebo, A., Trotignon, N.: The chromatic gap and its extremes. J. Comb.
Theory, Series B 102(5), 1155–1178 (2012)

8. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math.
2(3), 253–267 (1972)

9. Mycielski, J.: Sur le coloriage des graphs. Colloquium Mathematicae 3(2), 161–162
(1955)

https://github.com/Abhishek-TIFR/List-Set
https://coq.inria.fr/library/
https://doi.org/10.1007/978-3-319-94821-8_11
https://doi.org/10.1007/978-3-319-94821-8_11

Author Index

Babu, Jasine 160
Balbiani, Philippe 1

Chakraborty, Mihir Kumar 30
Cieśliński, Cezary 121

French, Tim 52

Godziszewski, Michał Tomasz 18
Gozzard, Andrew 52
Greco, Giuseppe 144

Jipsen, Peter 144

Lange, Martin 42
Lin, Zhe 30

Ma, Minghui 132
Manoorkar, Krishna 144
Murali Krishnan, Karunakaran 160

Nakamura, Yoshiki 108
Natarajan, Raja 183

Padmanabha, Anantha 6
Paleri, Vineeth 160
Palmigiano, Alessandra 144
Parikh, Rohit 173
Pratt-Hartmann, Ian 103
Prest, Mike 89

Ramanujam, R. 6
Reynolds, Mark 52

Sankaran, Abhisekh 76
Sano, Katsuhiko 132
Savić, Nenad 64
Singh, Abhishek Kr 183
Studer, Thomas 64

Tzimoulis, Apostolos 144

Urbaniak, Rafal 18

	Preface
	Organization
	Short Papers
	On the Average Complexity of SAT
	What Did Tarski Have in Mind with Elementary Geometry and Its Decidability?��
	Contents
	Unification in Modal Logic
	References

	Propositional Modal Logic with Implicit Modal Quantification
	1 Introduction
	2 Implicitly Quantified Modal Logic (IQML)
	3 IQML Bisimulation and Elementary Equivalence
	4 Bisimulation Games and Invariance Theorem
	5 Satisfiability Problem
	6 Discussion
	References

	Infinite Liar in a (Modal) Finitistic Setting
	1 Introduction
	2 Arithmetization of Yablo Sentences
	3 Potentially Infinite Domains and sl-Semantics
	4 Modal Finitistic Semantics
	5 Yablo Sequences and Modal Interpretation of Quantifiers
	References

	The Finite Embeddability Property for Topological Quasi-Boolean Algebra 5
	1 Introduction
	2 Some Basic Definitions
	3 Sequent Calculus of tqBa5
	4 FEP for tqBa5
	5 Concluding Remarks
	References

	Specifying Program Properties Using Modal Fixpoint Logics: A Survey of Results
	1 The Modal -Calculus
	2 Higher-Order Fixpoint Logic
	2.1 Results on HFL

	References

	A Modal Aleatoric Calculus for Probabilistic Reasoning
	1 Introduction
	2 Related Work
	3 Syntax and Semantics
	3.1 Syntax
	3.2 Semantics
	3.3 Example

	4 Axioms for the Modal Aleatoric Calculus
	4.1 The Aleatoric Calculus
	4.2 The Modal Aleatoric Calculus

	5 Expressivity
	6 Case Study
	7 Conclusion
	References

	Public Announcements for Epistemic Models and Hypertheories
	1 Introduction
	2 Epistemic Models and Hypertheories
	3 Public Announcements
	4 The Case of Knowledge Change in Epistemic Models
	5 Conclusion
	References

	Revisiting the Generalized Łoś-Tarski Theorem
	1 Introduction
	2 Preliminaries and Background
	2.1 The Generalized Łoś-Tarski Theorem

	3 A New Proof of GLT(k)
	4 A Stronger Failure of Łoś-Tarski Theorem in the Finite
	5 Conclusion and Future Directions
	References

	Model Theory for Sheaves of Modules
	1 Introduction
	2 Model Theory for Modules
	3 Presheaves and Sheaves of Modules
	4 Model Theory for Presheaves of Modules
	5 Model Theory for Sheaves of Modules
	References

	Transitivity and Equivalence in Decidable Fragments of First-Order Logic: A Survey
	1 Introduction
	2 The Two-Variable Fragment and its Relatives
	3 Transitivity and Equivalence
	References

	The Undecidability of FO3 and the Calculus of Relations with Just One Binary Relation
	1 Introduction
	2 FO3 and the Calculus of Relations
	2.1 Elimination of Relational Converse (Using the Identity Relation)
	2.2 Elimination of the Identity Relation

	3 Reductions to the One Binary Relation Case
	3.1 A Conservative Reduction Using Identity
	3.2 A Conservative Reduction Not Using Identity

	4 Conclusion
	References

	Satisfaction Classes via Cut Elimination
	1 Introduction
	2 Preliminaries
	3 From Consistent M-Logic to a Truth Class
	4 Consistency of M-Logic
	References

	Sequent Calculi for Normal Update Logics
	1 Introduction
	2 Preliminaries
	3 Sequent Calculi for Normal Update Logics
	4 Subformula Property and Decidability
	References

	Logics for Rough Concept Analysis
	1 Introduction
	2 Preliminaries
	3 Motivation: Kent's Rough Concept Analysis
	4 Kent Algebras
	5 Multi-type Presentation of Kent Algebras
	6 Multi-type Calculi for the Logics of Kent Algebras
	A Properties
	A.1 Soundness for Perfect HK Algebras
	A.2 Completeness
	A.3 Conservativity
	A.4 Cut Elimination and Subformula Property

	References

	A Fix-Point Characterization of Herbrand Equivalence of Expressions in Data Flow Frameworks
	1 Introduction
	2 Terminology
	3 Congruences of Terms
	4 Transfer Functions
	5 Indefinite Assignment
	6 Data Flow Analysis Frameworks
	7 Herbrand Equivalence
	8 MOP Characterization
	9 Conclusion
	References

	Logic Without Language
	1 Davidson on Animals
	2 But Is Davidson Correct?
	3 Introduction
	4 Agent? Or Machine?
	5 Two Computer Scientists Respond
	6 And a Psychologist Offers His View
	7 Umwelts
	8 A Little Bit of Mathematics
	9 Uninformed Agent
	10 Better Informed Agent
	11 Learning More
	12 Symbiosis
	13 Animal Logic
	14 A General Framework: Theories Enter
	15 The Usefulness of a Theory
	16 Can Logic Exist Without Language?
	17 Conclusion
	References

	Towards a Constructive Formalization of Perfect Graph Theorems
	1 Introduction
	2 Overview of Lovász Replication Lemma
	3 Modeling Finite Simple Graphs
	3.1 Vertices as Constructive Sets
	3.2 Decidable Edge Relation
	3.3 Graph Isomorphism
	3.4 Graph Constructions

	4 Constructive Proof of Lovász Replication Lemma
	5 Conclusions and Future Work
	References

	Author Index

