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Preface

This volume contains five fully revised selected regular papers, covering a wide range
of very hot topics in the fields of social networks, data stream systems, and linked data.
These include personalized social query expansion approaches, continuous query on
social media streams, elastic processing systems, and semantic interoperability for
smart grids and NoSQL environments. We would like to sincerely thank the editorial
board and the external reviewers for their thorough reviews of the submitted papers and
ensuring the high quality of this volume.

Special thanks go to Gabriela Wagner for her availability and her valuable work in
the realization of this TLDKS volume.

October 2018 Abdelkader Hameurlain
Franck Morvan

Lynda Tamine

Roland Wagner
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Abstract. Query expansion is a query pre-processing technique that
adds to a given query, terms that are likely to occur in relevant docu-
ments in order to improve information retrieval accuracy. A key problem
to solve is “how to identify the terms to be added to a query?” While con-
sidering social tagging systems as a data source, we propose an approach
that selects terms based on (i) the semantic similarity between tags com-
posing a query, (ii) a social proximity between the query and the user
for a personalized expansion, and (iii) a strategy for expanding, on the
fly, user queries. We demonstrate the effectiveness of our approach by an
intensive evaluation on three large public datasets crawled from delicious,
Flickr, and CiteULike. We show that the expanded queries built by our
method provide more accurate results as compared to the initial queries,
by increasing the MAP in a range of 10 to 16% on the three datasets.
We also compare our method to three state of the art baselines, and we
show that our query expansion method allows significant improvement
in the MAP, with a boost in a range between 5 to 18%.

Keywords: Personalization - Social Information Retrieval
Social networks - Query expansion

CR Subject Classification: H.3.3 [Information Systems]: Information
Storage and Retrieval - Information Search and Retrieval

1 Introduction

Web 2.0 has strengthened end-users position in the Web through their inte-
gration in the heart of the content generation ecosystem. This has been made
possible mainly through the availability of tools such as social networks, social
bookmarking systems, social news sites, etc., impacting the way information is
produced, processed, and consumed by both humans and machines. As a result,
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on the one hand, the user is no longer able to digest the large quantity of infor-
mation he has access to and is generally overwhelmed by it. On the other hand,
most of popular Information Retrieval (IR) systems lack in offering efficient per-
sonalization techniques, which provide users only with the necessary information
that fulfill their needs. Two types of constraints make the situation more com-
plex: information-dependent constraints and user-dependent constraints. The
first class of constraints includes (i) the large scale due to the continuous activi-
ties of users and their ability to generate new content, (ii) information diversity
or heterogeneity, since different types of media are used to communicate, e.g.,
text, image, video, etc. (iii) versatility, since information is dynamic and is con-
tinuously updated (confirmed, contradicted, etc.), (iv) its disparity, since it can
be in different places, and as a result (v) the variation in the quality of infor-
mation. The second class of constraints is mainly related to users’ diversity and
the high dynamics in their profiles.

To improve the IR process and reduce the amount of irrelevant documents,
there are mainly three possible improvement tracks: (i) query reformulation using
extra knowledge, i.e., expansion or refinement of the user query, (ii) post filtering
or re-ranking of the retrieved documents (based on the user profile or context),
and (iii) improvement of the IR model, i.e., reengineering of the IR process to
integrate contextual information and relevant ranking functions. In this paper,
we focus on query reformulation, especially on personalized query expansion for
personalized search, i.e., personalizing the reformulation of queries.

Query expansion consists of enriching the user’s initial query with additional
information so that the IR system may propose suitable results that better satisfy
user’s needs [14,15,19]. We explore the possibility of using the data available in
social networks, and more precisely data of social bookmarking systems, as a
source of explicit feedback information. These latter enable users to freely add,
annotate, edit, and share bookmarks of web resources, e.g., web pages. Basically,
we propose an approach which reuses the users vocabulary (the terms used to
annotate web pages) in order to expand their queries in a personalized way and
thus, increase their satisfaction regarding the quality of search. Exploiting social
knowledge for improving web search has a number of advantages:

— Feedback information in social networks is provided directly by the user,
so users interests accurate information can be harvested as people actively
express their opinions on social platforms. Thus, this user interest can be
easily modeled to provide personalized services.

— A huge amount of social information is published and available with the
agreement of the publishers. Exploiting these information should not violate
user privacy, in particular social tagging information, which doesn’t contain
sensitive information about users.

— Finally, social resources are often publicly accessible, as most of social net-
works provide APIs to access their data (even if often, a contract must be
established before any use of the data).
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Our approach in this work! consists of three main steps: (i) determining
similar and related tags to a given query term through their co-occurrence over
resources and users, (ii) constructing a profile of the query issuer based on his
tagging activities, which is maintained and used to compute expansions, and
finally, (iii) expanding the query terms, where each term is enriched with the
most interesting tags based on their similarities and their interest to the user.

The problem we are tackling in this paper is strongly related to personaliza-
tion since we want to expand queries in a personalized way and consequently
propose adapted search results. Personalization allows to differentiate between
individuals by emphasizing on their specific domains of interest and their prefer-
ences. It is a key point in IR and its demand is constantly increasing by various
users for adapting their results [3]. Several techniques exist to provide person-
alized services among which the user profiling. The user profile is a collection
of personal information associated to a specific user that enables to capture his
interests. Details of how we model user profiles are given in Sects. 2 and 3.1.4.

The main contributions of this work can be summarized as follows:

1. We propose an approach in which we use social knowledge as explicit feedback
information for the expansion process. Reusing such a social knowledge aims
at expanding user queries with their own vocabularies instead of using a public
thesaurus, which is made by people who are not aware of the individual users
needs and expectations.

2. We propose a Personalized Social Query Expansion framework called PSQE.
This latter provides a user-dependent query expansion based on social knowl-
edge, i.e., for the same query of two different users, PSQE will provide two
different expanded queries, which will be processed by a search engine.

3. Using an evaluation on real data gathered from three different large book-
marking systems, we demonstrate the effectiveness of our framework for
socially driven query expansion compared to many state of the art approaches.

The rest of this paper is organized as follows: in Sect.2 we introduce all the
concepts that we use throughout this paper. Section 3 introduces our method
of query expansion using folksonomy. In Sect. 4, we discuss the different experi-
ments that evaluate the performance of our approach. Related work is discussed
in Sect. 5. Finally, we conclude and provide some future directions in Sect. 6.

2 Background and Notations

In this section, we formally define the basic concepts that we use throughout this
paper namely, a bookmarks, a folksonomy, and a user profile. We also provide a
formal definition of the problem we are intending to solve.

! This is an extended and revised version of a preliminary conference report that was
presented in [12].
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2.1 Background

Social bookmarking websites are based on the techniques of social tagging or
collaborative tagging. The principle behind social bookmarking platforms is to
provide the user with a means to annotate resources on the Web, e.g., URIs in
delicious®, videos in youtube®, images in flickr*, or academic papers in CiteU-
Like®. These annotations (also called tags) can be shared with others. This
unstructured (or better, free structured) approach to classification with users
assigning their own labels is variously referred to as a folksonomy [21,28]. A
folksonomy is based on the notion of bookmark, which is formally defined as
follows:

Definition 1 (Bookmark). Let U, T, R be respectively the set of Users, Tags
and Resources. A bookmark is a triplet (u,t¢,7) such as w € U, t € T, r € R,
which represents a user v who used a tag ¢t to annotate a resource 7.

Then, a group of bookmarks which forms a folksonomy is formally defined
as follows:

Definition 2 (Folksonomy). Let U, T, R be respectively the set of Users,
Tags and Resources. A folksonomy F(U, T, R) is a subset of the cartesian product
U x T x R such that each triple (u,t,r) € F is a bookmark.

A folksonomy can then be naturally represented by a tripartite-graph where
each ternary edge represents a bookmark. In particular, the graph representation
of the folksonomy F is defined as a tripartite graph G(V, E) where V. =U UT UR
and E = {(u,t,7)|(u,t,r) € F}. Figure 1 shows seven bookmarks provided by
two users on three resources using three tags.

e e youtube.com

aljazeera.com

dailymotion.com

Fig. 1. Example of a folksonomy. The triples (u,t,7) are represented as ternary-edges
connecting users, resources and tags.

2 http://www.delicious.com/.
3 http://www.youtube.com/.
4 http://www.flickr.com/.

5 http://www.citeulike.org/.


http://www.delicious.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.citeulike.org/

Personalized Social Query Expansion Using Social Annotations 5

Folksonomies have proven to be a valuable knowledge for user profiling [17,
35,41,43]. Especially, because users tag interesting and relevant information to
them with keywords that may be a good summary of their interest. Hence, in
this paper, and in the context of folksonomies, the profile includes all the terms
used as tags along with their weights to capture user’s tagging activities. It is
formally defined as follows:

Definition 3 (User Profile). Let U, T, R be respectively the set of Users, Tags
and Resources of a folksonomy F(U, T, R). A profile p,, assigned to a user u € U,
is modeled as a weighted vector py of m dimensions, where each dimension
represents a tag the user employed in his tagging actions. More formally, p, =
{we, , Wiy, ..., wy,, } such that wy, is the weight of ¢,,, such as t,, e TA(Ir € R |
(u,tm,r) €F).

Thus, the profile includes the most relevant terms for the user and not all his
activities, i.e., the documents that he has tagged. A value is associated to each
term of the profile expressing its strength and importance for the given user.

Later in Sect.3.1.4, we propose a method to assign weights to each term in
the user profile in order to better define his interests.

2.2 Problem Definition

As mentioned before, query expansion consists of enriching the initial query
with additional information. This expansion is generally expected to provide
better search results. However, providing merely a uniform expansion to all users
is, from our point of view, not really suitable nor efficient since relevance of
documents is relative for each user. Thus, a simple and uniform query expansion
is not enough to provide satisfactory search results for each user. Hence, having
a folksonomy F(U, T, R), the problem we are addressing can be formalized as
follows:

For a given user u € U who issued a query q = {t1,ta,...,t, }, how to provide
for each term t; € q a ranked list of related terms L = {t;1,t;2, ..., tik }, such that
when expanding the term t; with the top k of L, the most relevant documents
are put earlier in the ranking?

3 Social Query Expansion Approach

The approach we are proposing aims at expanding user’s queries in a personalized
way. It can be decomposed into two parts: (i) an offline and (ii) an online part.
The offline part performs the heavy computation which consists of transforming
the whole social graph of a folksonomy F into a graph of tags where two tags
are related if they are semantically related. This part is also responsible for the
construction and the update of the users’ profiles, for serving the online part. The
online part of the approach is responsible for computing the concrete expansion
using the graph of tags and the user’ profiles constructed in the offline part. In
the following, we describe in more details each part and we explicitly highlight
our contributions.
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3.1 Offline Part

The offline part is also decomposed into two facets: (i) the transformation of
the social graph of a folksonomy F into a graph of tags, representing similarities
between tags that either occur on the same resources or are shared by the same
users, and (ii) the computation of the users’ profiles to highlight their interests
for personalizing their queries.

The approach is based on the creation and the maintenance of a graph of
tags that represents all the similarities that exist between the tags of F. There
exist two kinds of approaches that propose to achieve that: (i) an approach based
on the co-occurrence of tags over resources, and (ii) an approach based on their
CO-OCCUITENCE Over USers.

3.1.1 Extracting Semantics from Resources
In the first category of approaches, [24,30,33] state that semantically related
tags are expected to occur over the same resources. For example, tags that most
occur for google.com on delicious are: search, google, engine, web, internet.
Thus, extracting semantically related tags can be carried out by computing
similarities. There exist many similarity measures [30], but all of them need pre-
processing that consists of reducing the dimensionality of the tripartite graph F
into a bipartite graph. This reduction is generally performed through aggrega-
tion methods. From the study of existing aggregation methods proposed in [30],
we have chosen the projectional aggregation along with the Jaccard, the Dice,
and the Overlap similarity measures to compute the similarity between tags.
We choose this aggregation method because its simplicity, and it is one which
gives better results in semantic information extraction [30]. Hence, we follow the
same process as [30] to extract a graph of related tags from F according to their
CO-OCCUITENCe Over resources:

1. Using a function F on the whole folksonomy F performs a projectional aggre-
gation over the user dimension, resulting in a bipartite graph Tag-Resource.

2. Then, using a function G on the resulting bipartite graph Tag-Resource pro-
vides a graph of tags 7g, in which each link is weighted with the simi-
larity between tags according using the Jaccard, the Dice or the Overlap
metrics [30].

Therefore, we may obtain either a graph of tags 7r using the Jaccard, the
Dice, or the Ouverlap. Note that we do not merge the similarity measures in a
same graph of tags, meaning that a graph of tags is constructed using only one
similarity measure.

We end-up with an undirected weighted graph in which nodes represent tags,
and an edge between two tags represents the fact that these tags occur together
at least on one resource. The weights associated to edges are computed from
similarities between tags as explained beforehand. This first step is illustrated
in the left upper part of Fig. 2.



Personalized Social Query Expansion Using Social Annotations 7

Hide Userz NHide Resource
Nodes (f) Social Graph of Folksonomy Nodes (g)
« ¢ q‘ngg;

Tag-Resource Graph (RT) Tag-User Graph (TU)
Hide Resource Hide User
Nodes (g) Nodes (f')

®-0-® ®-9-9-0

Graph of Tag based on
Tag-User Graph (Tu)

Graph of Tag based on

Tag-Resource Graph (T R
Merge operation (h)
.»Sim—‘Sim’

Sim  sim

Graph of Tag based on
the merge operation (T

ur)

Fig. 2. Summary of the graph reduction process, which transform the whole folksonomy
F into a graph of tags 7yr. The similarity values on the Figure are computed using
the Jaccard measure on both graphs 7z and 7y, and using a = 0.5 on the graph 7yx.

3.1.2 Extracting Semantics from Users

In the second category, [4,33] state that correlated tags are also used by the
same users to annotate resources. For example, the tags Collaborative and Blog
have been used 13,557 times together by users in our delicious dataset.

This observation is more expected to happen in certain folksonomies, where
users are encouraged to upload their personal resources which leads to generate
private bookmarks, e.g., a folksonomy such as CiteULike, Flickr, or YouTube
where users are expected to upload respectively their research papers, images,
and videos. Therefore, similarly to the previous approach, [33] proposes to
extract semantically related tags using the following process:
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1. Using a function G’ on the folksonomy FF performs a projectional aggregation
over the resource dimension for obtaining a bipartite graph Tag-User.

2. Then the function F’ is used to get another graph of tags T;; where simi-
larities between tags are computed using one of the three previous similarity
measures.

This process is illustrated in the right upper part of Fig.2. Notice that the
structure of the graph of tags 7y is different from the one of the graph of
tags 7y.

3.1.3 Construction of the Graph of Tag Similarities

Using only one of the two previous methods to construct a graph representing
similarities between tags leads to a loss of information on one side or the other.
For example, if we choose to extract related tags according to their co-occurrence
over resources, we neglect the fact that there are some tags which are expected
to be shared by the same users and vice versa.

Therefore, we propose to use a function M which is applied on the graphs of
tags 7r and 7y, to merge them and to get a unique graph of tags 7;;z where the
new similarity values are computed by merging the values using the Weighted
Borda Fuse (WBF') [18]. This merge is summarized in Eq. 1, where 0 < a < 1:

SimTuR(ti,tj) =qa X SimTR(ti,tj) + (1 —a) X Simy, (ti,tj) (1)

Where, Simq;,, (t:,t;) calculates the similarity between two tags relying on the
two other types of nodes, i.e., users and resources. The parameter a represents
the importance one wants to give to the two types of graphs, i.e., resources or
users, in the consideration of the similarity calculation. In fact, depending on the
context, when computing the similarity between two tags, one may want to give
a higher importance to users sharing these two tags than documents having these
tags as a common tags. Another user may want to give more importance to their
co-occurrence over resources than to the users sharing these tags. Depending on
the nature of the folksonomy, we set « to its optimal value in order to maximize
the tags semantics extraction. Finally, it should be noted that the merge is
performed between graphs generated with the same similarity measure.

This step of the offline part extracts semantics from the whole social graph
of F without a loss of information, i.e., by exploiting the co-occurrences of tags
over resources and users. This step leads to the creation of a graph of tags, where
edges represent semantic relations between tags. This graph will be further used
to extract terms that are semantically related to a given term of a query to
perform the query expansion. The contribution at this stage is the combination
of the graphs resulting from resources and users to construct a better graph of
tag similarities without loss of information. This is different from the existing
approaches where only one graph is used.

In the following, we introduce our method of constructing and weighting the
user profiles in order to personalize the expansions.
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3.1.4 Construction of the User Profile

To achieve a personalized expansion, we also propose to build a user profile
that consists of capturing information regarding real user interests. There are
different ways to build user profiles [23,40,41]. For example, a person may be
modeled as a vector of attributes of his online personal profiles including the
name, affiliation, and interests. Such simple factual data provides an inadequate
description of the individual, as they are often incomplete, mostly subjective and
do not reflect dynamic changes [23].

Since we focus on folksonomies, the user feedback is expected to be mostly
explicit (because of the tagging action, where the user explicitly assigns tags to
resources).

Thus, in a folksonomy, users are expected to tag and annotate resources
that are interesting to them using tags that summarize their understanding of
resources. In other words, these tags are in turn expected to be a good summary
of the user’s topics of interests as also discussed in [2,17,23,35,37,43]. Hence,
each user can be modeled as a set of tags and their weights.

The definition of a user profile is given in Definition 3. The main challenge
here is how to define the weight of each tag in the user profile? We propose
to use an adaptation of the well known #f-idf measure to estimate this weight.
Hence, we define the weight w;, of the term ¢; in the user profile as the user
term frequency, inverse user frequency (utf-iuf), which is computed as follows:

= ufi 0, = 5 o () @)
t;

tr,uy
treEpT

where ny, ., is the number of time the user u; used the tag ;.

A high value of utf-iuf is reached by a high user term frequency and a low
user frequency of the term in the whole set of users. Note that we perform a
stemming on tags before computing the profiles, to eliminate the differences
between terms having the same root to better estimate the weight of each term.

User profiles are created offline and maintained incrementally. This is moti-
vated by the fact that profiles and tagging actions are not evolving as quickly
as query formulation on the system. As an analogy, it is well known that 90%
of users in the social Web consume the content (i.e., query formulation), 9%
update content, and 1% generate new content (profile updates) [34]. Thus, we
have decided to handle the profile construction as an offline task while providing
a maintenance process for keeping it up to date.

In summary, at the end of the offline part, we build two assets: (i) a graph
of tags similarities which is used to represent semantically relatedness of terms,
and (ii) user profiles which are leveraged in the personalization step.

3.2 Online Part

The online part of the approach is responsible for computing the concrete expan-
sion using the graph 7z and the profiles constructed in the offline part. Before
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presenting our algorithm of query expansion, we propose a method to compute,
on the fly, the interest of a user to a given tag.

3.2.1 Interest Measure to Tag
Having computed the similarity graph between tags and built users’ profiles
containing the degree to which a set of tags are representative of a user, it
becomes possible to compute a degree of interest a user may have to other tags,
e.g., query tags. This is useful in our approach to compute, in real time, the
suitable expansions of a tag w.r.t. a given user. In our approach, this interest
is seen as a similarity between the user profile p,, and a tag t;. Intuitively, the
computed similarity captures the interest of the user u in the query term ¢;
denoted Z:

Tu(ti) = Y (Simag (ti ty) x w;) (3)

tj EPu

where Sim(t;,t;) is the similarity between the term ¢; and ¢;, the 4t term of the
user profile, and w; is the weight of the term ¢; in the profile computed during
the previous process. Notice that any similarity measure can be used for com-
puting Sim(t;,t;), as discussed in [30]. In this work, we consider the Jaccard, the
Overlap, and the Dice similarity measures, as discussed in the previous sections.

3.2.2 Effective Query Expansion

In this step of query expansion, we consider that the similarity between two
terms ¢; (a query term) and ¢; (a potential candidate for the expansion of ¢;), to
be influenced by two main features: (i) the semantic similarity between ¢; and
t; (the semantic strength between the two terms), and (ii) the extent to which
the tag t; is likely to be interesting to the considered user.

Once these two similarities are computed, a merge operation is necessary to
obtain a final ranking value that indicates the similarity of ¢; with ¢; w.r.t. the
user u. For this, several aggregation methods and algorithms exist. We choose
the Weighted Borda Fuse (WBF) as summarized in Eq.4, where 0 < v < 1 is
a parameter that controls the strength of the semantic and social parts of our
approach. Using Eq.4, we can rank a list of terms £, which are semantically
related to a given term ¢; from a user perspective.

Semantic Part

—

Social Part

The effective social query expansion is summarized in Algorithm 1. Hence,
for a query ¢ = t1 Ats A ... A ty, issued by a user u, we first get the user’s profile,
which is computed as explained above (Sect.3.1.4 and Line 1 in Algorithm 1).
At this stage, the purpose is to enrich each term ¢; of ¢ with related terms (line
2). Then, the objective is to get all the neighboring tags t; of ¢; in the tag graph
Tur (line 3). After that (in line 4), we compute for each ¢;, the ranking value
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that indicates its similarity with ¢; w.r.t. the user u using formula 4 (line 5).
Next, the neighbor list has to be sorted according to the computed values and
we keep only the k top tags (line 7). Finally, ¢; and its remaining neighbors must
be linked with the OR (V) logical connector (line 8) and updated in ¢'.

Algorithm 1. Effective Social Query Expansion
Require: A folksonomy FF
u : a User. ¢ = {t1,t2,...,tn} : a Query.

1: pu[m] < extract profile of u from F
2: for all t; € g do
3: L « list of neighbor of ¢; in tag graph Tyr
for all t; €l do
tj.Value «— Compute the ranking score Ranky, (t;)
end for
Sort £ according to t;.Value and keep only the top k terms in £
Make a logical OR (V) connection between ¢; and all terms of £
Set the weight of the new terms t; as the t;.Value or the TF-IDF value, depend-
ing on the choosed strategy (See Section 3.2.3)
10:  Insert £ in ¢
11: end for
12: return ¢’

Example 1. If a user issues a query ¢ = t1 Aty A ... Aty, it will be expanded to
¢ ={(t1V t11V ..V t11) A (t2V t1V ..V tak) A A BV tmaV LV ty) b, where
t;; is a term that is semantically related to ¢; € ¢ and socially to w.

It should be noted that in this paper, we consider that the selection of each
query term is determined independently, without considering latent term rela-
tions. Most past work on modeling term dependencies has analyzed three dif-
ferent underlying dependency assumptions: full independence, sequential depen-
dence [39], and full dependence [32]. Taking into account terms dependency is
part of our future works.

3.2.3 Terms Weighting

Term weighting in query expansion is challenging since there is no formal method
for assigning weights to new terms. Indeed, appropriately weighting terms should
result in better retrieval performance. Thus, we experiment the following two
strategies for weighting new terms:

— Using the ranking values of Formula4 as the weight of the new expanded
terms. This strategy provides personalized term weight assignment while con-
sidering both semantic strength and user interest.
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— Using the Term Frequency-Inverse Document Frequency (TF-IDF) [1] as the
weight of the new expanded terms as follows:

tf — idfti,q = tft1 X lOg ( |D| ) (5)
|Dti |
where tf;, denotes the term frequency of ¢; in the query ¢. This strategy
provides a uniform term weight to the query while keeping the personalizing
aspect in choosing terms. Notice that weights are assigned to terms in the
line 9 of Algorithm 1.

4 Evaluations

In this section, we describe the two types of evaluations we performed on our
approach: (i) an estimation of the parameters of our approach to provide insights
regarding their potential impact on the system, and (ii) a comparison study,
where our approach is compared to the closest state of the art approaches to
provide insights about the obtained results and position the proposal.

4.1 Datasets

A number of social bookmarking systems exist [21]. We have selected three
datasets to perform an offline evaluation: delicious, flickr and CiteULike. These
datasets are available and public. The interest of using such data instead of
crawled data is to work on widely accepted data sets, reduce the risk of noise,
and an ability to reproduce the evaluations by others as well as the ability to
compare our approach to other approaches on “standardized datasets”. Hereafter
is the description of the different datasets.

— Delicious: a social bookmarking web service for storing, sharing, and dis-
covering web bookmarks. We have used a dataset which is described and
analyzed in [42]°.

— Flickr: an image hosting, tagging and sharing website. The Flickr dataset is
the one used and studied in [38]".

— CiteULike: an online bookmarking service that allows users to bookmark
academic articles. This dataset is the one provided by the Cite ULike website®.

Before the experiments, we performed three data preprocessing tasks: (1) Sev-
eral annotations are too personal or meaningless, such as “toread”, “Imported
IE Fa-vorites”, “system:imported”, etc. We remove some of them manually. (2)
Although the annotations from delicious are easy for users to read and under-
stand, they are not designed for machine use. For example, some users may
concatenate several words to form an annotation such as “java.programming”

5 http://data.dai-labor.de/corpus/delicious/.
" http://www.tagora-project.cu/data/#fickrphotos.
8 http://static.citeulike.org/data,/2007-05-30.bz2.
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http://www.tagora-project.eu/data/#flickrphotos
http://static.citeulike.org/data/2007-05-30.bz2
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or “java/programming”. We split this kind of annotations before using them
in the experiments. (3) The list of terms undergoes a stemming by means of
the Porter’s algorithm [36] in such a way to eliminate the differences between
terms having the same root. In the same time, the system records the relations
between stemmed terms and original terms. As for the delicious dataset, we
add two other data preprocessing tasks: (i) we downloaded all the available web
pages while removing those which are no longer available, and (ii) we removed
all the non-english web pages. This operation was performed using Apache Tika
toolkit. Table 1 gives a description of these datasets.

Table 1. Corpus details

Bookmarks | Users | Resources | Tags

Delicious | 9,675,294 |318,769 | 425,183 |1,321,039
Flickr 22,140,211 | 112,033 327,188 | 912,102
CiteULike | 16,164,802 | 107,066 | 3,508,847 | 712,912

4.2 Evaluation Methodology

Making evaluations for personalized search is a challenge in itself since relevance
judgements can only be assessed by end-users themselves [17]. This is difficult to
achieve at a large scale. Different contributions [5,8,25,31] state that the tagging
behavior of a user of folksonomies closely reflects his behavior of search on the
Web. In other words, if a user u tags a resource r with a tag t, he will choose
to access the resource r if it appears in the result obtained by submitting ¢ as a
query to the search engine. Thus, we can easily state that any bookmark (u, ¢, 7)
can be used as a test query for evaluations. The main idea of the experiments is
based on the following assumption:

Proposition 1. For a personalized query q = {t} issued by a user u with a
query term t, the relevant documents are those tagged by u with t.

Hence, in the off-line study, for each evaluation, we randomly select 2,000
pairs (u,t), which are considered to form a personalized query set. For each
corresponding pair (u,t), we remove all the bookmarks (u,t,r) € F,Vr € R in
order to not promote the resource r in the obtained results. For each pair, the
user u sends the query ¢ = {t} to the system. Then, the query ¢ is enriched and
transformed into ¢’ following our approach. For the delicious dataset, documents
that match ¢’ are retrieved, ranked and sorted using the Apache Lucene. For the
Flickr and CliteULike datasets, we retrieve all resources that are annotated with
tags of ¢’ while representing them according to the Vector Space Model (VSM).
Then, the cosine similarity is used to compute similarity between a query ¢’ and
a resource ;.

For the Flickr and CiteULike datasets, we rank all the retrieved resources
using values of the cosine similarity and we consider that relevant resources are



14 M. R. Bouadjenek et al.

those tagged by u using tags of ¢’ to assess the obtained results. The random
selection was carried out 10 times independently, and we report the average
results.

A query expansion is expected to provide more resources as an answer to a
query because of its enrichment, which generally causes an increase in the total
recall. In our evaluation, we are more interested in studying the ability of the
method to push relevant documents to the top of the ranking. Thus, we use
the Mean Average Precision (MAP) and the Mean Reciprocal Rank (MRR), two
performance measures that take into account the ranking of relevant resources.

4.3 Study of the Parameters

We intend here to observe the parameters of our approach and estimate their
optimal values. These parameters are:

— 7, which controls the semantic part and the social part in the ranking of
tags for an expansion (see Eq.4). The higher its value is, the stronger is the
semantic part in tag similarity ranking, and vice versa.

— The number of tags which are suitable for the expansion.

— «a, which gives either a higher importance to resources or to users, when
computing the graph of tags Ty;». We set this parameter such that: the higher
its value is, the stronger are the resources’ links, and thus weaker the users
links are, and vice versa (see Eq. 1).

— We evaluate two strategies for weighting the expanded terms (see Sect. 3.2.3).

— Finally, we observe the impact of the similarity measures over the search
results.

We refer to our approach in Figs.3, 4, 5, and 6 as Personalized Social Query
Ezpansion (PSQE). Also, all the Figures contain the results according to each
similarity measure, and for each similarity measure, the results of the two weight-
ing strategies are shown (this results in six curves per graph).

4.3.1 Impact of the Social Interest ()

The results showing the impact of the user interest w.r.t. the semantic similarity
is given in Fig.3. This latter shows the evolution of the MAP and the MRR
for different values of v, while fixing & = 0.5 and query size to 4 for our three
datasets, and using the three similarity measures. We note that the smaller the
value of v is, the better is the performance. This can be explained by the fact
that the higher the value of the user interest part, the more resources that the
user tags are highlighted (probably other users tag them with the same tags),
and the higher is the value of the MAP and the MRR. However, we consider that
neglecting the semantic part of Eq.4 is not suitable for the following reasons: (i)
First, if we fix v to 0, we are going to neglect the semantic part, and perhaps
lose the query sense (even if the potential terms to expand the query are those
related to the query terms); (ii) Second, if we fix v to 0 we are going to face
cold start problems, since new users don’t have an initial profile that allows us
to rank terms. Thus, we choose to fix 7 to 0.5 for the rest of the evaluations.



Personalized Social Query Expansion Using Social Annotations 15

——— PSQE Overlap W=Ranking ~~—3}— PSQE Dice W=Ranking ~—{l— PSQE Jaccard W=Ranking ~ ——3— PSQE Overlap W=TFIDF  —f—f— PSQE Dice W=TFIDF  ——J— PSDEJaecamW:TF\DFI

0.85 0.9 0. 92 = % T T
08 f 0. 85 iz g 0.9y
) 0.8 \\,v% i PSS s
0.75 n 0.75 , i i
K% : . o 084 R o
0.7 0.7 ‘X 0.82 R\
0.65 N\ oo A o7 N
) N 0.6 [ Y 0.76
0.6 ) 0.55 B 0.74
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Values of vy Values of vy Values of y
(a) MAP on delicious. (b) MRR on delicious. (c) MAP on Flickr.
0.95 oy T T 0.88 T
P, 0. 86 s e
0.9 »"“vég 0.84 =
O 0.82 ey
0.85 <y 0.8 L
0.8 A i1 0.78 \' L
) 0.76 3 ]
0.75 0.74
0.72
0.7 L 0.7 .
0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Values of vy Values of vy Values of y
(d) MRR on Flickr. (e) MAP on CiteULike. (f) MRR on CiteULike.

Fig. 3. Measuring the impact of the social interest (). For different values of v, we fix
a = 0.5, query size =4 and we use the three similarity measures and the two weighting
strategies for new terms averaged over 1000 queries, using the VSM.

4.3.2 Impact of the Query Size

The objective here is to check if the length of a query impacts the obtained
results. The results are illustrated in Fig.4. Through all the experiments we
have performed, it comes out that the maximum performance is achieved while
adding 4 to 6 related terms to the query. Adding more than 6 related terms
has no impact on the quality of the results when using values of Eq. 4 as weight
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Fig. 4. Evaluating the impact of the query size on the expansion. For different values
of the query size, we use v = 0.5, @ = 0.5 and our two strategies of weighting new

terms.
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for new term. This has even a negative impact when using TF-IDF values for
term weighting as Fig. 4 shows. For the first case, this is due to the fact that the
weight of the added terms is close to 0 (we remind that the weight of the added
terms is the value of Eq. 4). Hence, this makes it natural and intuitive to pick a
value in the provided interval, between 4 and 6.

4.3.3 Impact of the Users and Resources ()

The importance of users and resources on the way the expansion is performed
can be tuned by the parameter o of Eq.1. Fixing @ = 0 considers only links
between tags based on common users while fixing @ = 1 considers only links
between tags based on common resources. The results regarding this parameter
are illustrated in Fig.5, where the MAP and the MRR’s behaviors are quite
different on the three datasets.
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Fig. 5. Evaluating the impact of the users/resources on the expansion. For values of «,
using the three similarity measures, v = 0.5, query size =4 and for our two strategies
of weighting new terms.

Indeed, in the delicious dataset, the values of the MAP and MRR increase
by increasing the value of « using both the Jaccard and the Dice similarities
achieving an optimal performance at o = 1. As for Flickr and CiteULike, the
optimal performance is achieved for @ = 0.2 and a = 0.5 respectively. We believe
that this is due to the fact that in social bookmarking systems like delicious,
users are expected to share and annotate the same resources (URLSs in delicious)
to give rise to less private resources. Therefore, annotations are expected to
occur more on resources than on users. However, in social bookmarking systems
like Flickr and CiteULike, users are expected to upload their own resources
(images and papers) resulting in more private resources. Thus, annotations are
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expected to occur more on users than on resources, a property which has been
also observed and reported in [16].

4.3.4 Impact of the Weight of Terms

In Sect.3.2.3, we explain that we experiment two strategies for weighting the
new expanded terms by either (i) using value of Formula 4, or (ii) the TF-IDF
value using Formula 5. We note that the performances follow almost the same
distribution while varying v and « in Fig.3 and 5, and for our three similarity
measures over our three datasets. However, we report that each time, the TF-
IDF weighting strategy provides better performance. Hence, we conclude that
personalizing the term weighting is less advantageous and less efficient comparing
to a uniform weighting approach as used in the second strategy.

4.3.5 Impact of the Similarity Measures

The behavior of the performance seem to be the same for the three similarity
measures with each time a small advantage to the Dice measure. Hence, taking
into account the ratio between all the entities to which two tags are associated
together versus the union of these entities leads to a better estimation of the
similarity in folksonomies.

4.4 Comparison with Existing Approaches

Our objective here is to estimate how well our approach meets the users’ infor-
mation needs and compare its retrieval quality to that of other approaches,
objectively. Our approach is evaluated using the optimal values computed in the
previous section and using our two strategies of term weighting as explained in
Sect. 3.2.3. The results are illustrated in Fig. 6 as “PSQE-W = Ranking” for the
first strategy and “PSQE-W = TFIDF” for the second strategy, where we select
four baselines for comparison as described in the following. Note that we choose
the parameters that give the optimal performance for each of these baselines.

4.4.1 PSQE vs NoQE

The first approach for comparison is that with no query expansion or personal-
ization. Documents that match queries are retrieved, and ranked as explained
above. We report the following improvements:

Delicious dataset: we obtain an improvement of almost 13% of the MAP
and 18% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 16% of the MAP and 24%
of the MRR for our second strategy of term weighting using the Dice similarity
measure.

Flickr dataset: we obtain an improvement of almost 13% of the MAP and
21% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 14% of the MAP and 21%
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Fig. 6. Comparison with the different baselines of the MAP and MRR, while fixing
v = 0.5 and query size =4, using the delicious, Flickr, and CiteULike datasets. We
choose the optimal value of a for each similarity measure.

of the MRR for our second strategy of term weighting using the Dice similarity
measure.

CiteULike dataset: we obtain an improvement of almost 10% of the MAP
and 7% of the MRR for our first strategy of term weighting using the Jaccard
similarity measure, and an improvement of almost 15% of the MAP and 14%
of the MRR for our second strategy of term weighting using the Overlap
similarity measure.

Thus, it is clear that the query expansion has an evident advantage compared
to a strategy with no expansion. We refer to this approach as NoQE in Fig. 6.

4.4.2 PSQE vs N-BasedExp

The second approach is the neighborhood based approach, which is based on
the co-occurrence of terms over resources. This approach consists of enriching
the query ¢ with the most related terms without considering the user profile.
Thus, queries are enriched similarly for each user. Our approach significantly
outperform the neighborhood based approach as follows:
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Delicious dataset: we obtain an improvement of almost 12% of the MAP
and 19% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 14% of the MAP and 22%
of the MRR for our second strategy of term weighting using the Dice similarity
measure.

Flickr dataset: we obtain an improvement of almost 8% of the MAP and
12% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 9% of the MAP and 12% of
the MRR for our second strategy of term weighting using the Dice similarity
measure.

CiteULike dataset: we obtain an improvement of almost 8% of the MAP
and 5% of the MRR for our first strategy of term weighting using the Jaccard
similarity measure, and an improvement of almost 13% of the MAP and 12%
of the MRR for our second strategy of term weighting using the Overlap
similarity measure.

Therefore, we conclude that our personalized query expansion efforts bring
a considerable contribution according to an approach based on the most related
terms. We refer to this approach as N-BasedExp in Fig. 6.

4.4.3 PSQE vs ExSemSe

The third approach is an approach proposed in [4], which is a strategy that
uses semantic search with query expansion named FEzxpanded Semantic Search.
In summary, this strategy consists of adding to the query ¢, k possible expansion
tags with the largest similarity to the original tags in order to enrich its results.
For each query, the query initiator u, ranks results using BM25 and tag similarity
scores. We implemented this strategy and evaluated it over our datasets. We refer
to this approach as ExSemSe in Fig. 6. We report the following improvements:

Delicious dataset: we obtain an improvement of almost 5% of the MAP
and 7% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 7% of the MAP and 10% of
the MRR for our second strategy of term weighting using the Dice similarity
measure.

Flickr dataset: we obtain an improvement of almost 11% of the MAP and
16% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 12% of the MAP and 16%
of the MRR for our second strategy of term weighting using the Dice similarity
measure.

CiteULike dataset: we obtain an improvement of almost 12% of the MAP
and 10% of the MRR for our first strategy of term weighting using the Jaccard
similarity measure, and an improvement of almost 17% of the MAP and 17%
of the MRR for our second strategy of term weighting using the Overlap
similarity measure.
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4.4.4 PSQE vs TagRank

The fourth approach is an approach proposed in [6], which is an algorithm called
TagRank that automatically determines which tags best expand a list of tags in a
given query. We implemented this strategy and evaluated it over our datasets. We
refer to this approach as TagRank in Fig. 6. We report the following improve-
ments:

Delicious dataset: we obtain an improvement of almost 18.10% of the MAP
and 21,79% of the MRR for our first strategy of term weighting using the
Overlap similarity measure, and an improvement of almost 20.83% of the
MAP and 26.42% of the MRR for our second strategy of term weighting
using the Dice similarity measure.

Flickr dataset: we obtain an improvement of almost 12.20% of the MAP and
16,67% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 12.94% of the MAP and
17.58% of the MRR for our second strategy of term weighting using the Dice
similarity measure.

CiteULike dataset: we obtain an improvement of almost 10.23% of the
MAP and 8,79% of the MRR for our first strategy of term weighting using
the Jaccard similarity measure, and an improvement of almost 16.49% of the
MAP and 18.35% of the MRR for our second strategy of term weighting using
the Overlap similarity measure.

In summary, the obtained results show that our approach of personalization
in query expansion using social knowledge may significantly improve web search.
By comparing the PSQE framework to the closest state of the art approaches, we
show that it is a very competitive approach that mays provide high quality results
whatever the dataset used. Finally, we notice that the better performance are
obtained with the Dice similarity measure and using TF-IDF for term weighting
over our three datasets.

5 Related Work

Current models of information retrieval are blind to the social context that
surrounds information resources, e.g., the authorship and usage of information
sources, and the social context of the user that issues the query, i.e., his social
activities of commenting, rating and sharing resources in social platforms. There-
fore, recently, the fields of Information Retrieval (IR) and Social Networks Anal-
ysis (SNA) have been bridged resulting in Social Information Retrieval (SIR)
models [20]. These models are expected to extend conventional IR models to
incorporate social information [11].

In this paper, we are mainly interested in how to use social information to
improve classic web search, in particular the query expansion process. Hence, we
cite in the following, the main works that deal with social query expansion:

Biancalana et al. [7] proposed Nereau, a Query expansion strategy where
the co-occurrence matrix of terms in documents is enhanced with meta-data
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retrieved from social bookmarking services. The system can record and interpret
users’ behavior, in order to provide personalized search results, according to their
interests in such a way that allows the selection of terms that are candidates of
the expansion based on original terms inserted by the user.

Bender et al. [4] consider SIR from both the query expansion and results
ranking and propose a model that deals more with ranking results than query
expansion. Lioma et al. [27] provide Social-QE by considering the query expan-
sion (QE) as a logical inference and by considering the addition of tags as an
extra deduction to this process. In the same spirit, Jin et al. [24] propose a
method in which the used expansion terms are selected from a large amount of
social tags in folksonomy. A tag co-occurrence method for similar terms selec-
tion is used to choose good expansion terms from the candidate tags directly
according to their potential impact on the retrieval effectiveness. The work in
[29] proposes a unified framework to address complex queries on multi-modal
“social” collections. The approach they proposed includes a query expansion
strategy that incorporates both textual and social elements. Finally, Lin et al.
[26] propose this to enrich the source of terms expansion initially composed of
relevant feedback data with social annotations. In particular, they propose a
learning term ranking approach based on this source in order to enhance and
boost the IR performances. Note that in these works, there is no personalization
of the expansion process.

Bertier et al. [6] propose TagRank algorithm, an adaptation of the celebrated
PageRank algorithm, which automatically determines which tags best expand
a list of tags in a given query. This is achieved by creating and maintaining a
TagMap matrix, a central abstraction that captures the personalized relation-
ships between tags, which is constructed by dynamically computing the estima-
tion of a distance between taggers, based on cosine similarity between tags and
items. From our point of view, the proposed solution is not really suitable, since
it needs the creation and the maintenance of a TagMap matrix for each user and
the execution of an algorithm for determining close users with a high complexity.

Finally, a more recent work by Zhou et al. [44] proposes first a model to con-
struct user profiles using tags and annotations together with documents retrieved
from an external corpus. The model integrates the word embeddings text repre-
sentation, with topic models in two groups of pseudo-aligned documents. Based
on user profiles, the authors built two query expansion techniques based on:
(i) topical weights-enhanced word embeddings, and (ii) the topical relevance
between the query and the terms inside a user profile.

6 Conclusion and Future Work

This paper discusses a contribution to the area of query expansion leveraging
the social context of the Web. We proposed a new approach based on social
personalization to transform an initial query ¢ to another query ¢ enriched
with close terms that are mostly used by not only a given user but also by
his social relatives. Given a social graph (folksonomy), the proposed approach
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starts by creating and maintaining a similarity graph of tags, that represents
semantic strength between tags. The steps required to generate this graph of
tags is operated offline, before the system is ready to process any query. Once
this graph is created, a user profile is also created offline and maintained online
for each user. These structures are used to compute personalized expansions on
the fly thanks to the combination of the semantic and social dimensions. We
demonstrated the effectiveness of our approach by an intensive evaluation on
three large public datasets crawled from delicious, Flickr, and CiteULike. We
showed that the expanded queries built by our method provide more accurate
results as compared to the initial queries, by increasing the MAP in a range of
10 to 16% on the three datasets. We also compared our method to three state
of the art baselines, and we showed that our query expansion method allows
significant improvement in MAP, with a boost in a range between 5 to 18%.
Finally, the proposed approach is being integrated into a system called LAICOS
[9,13], which can be easily plugged into existing social bookmarking platforms.

Even with the interest of the proposed method, there are still possible
improvements that we can bring. We believe that our approach is complemen-
tary to some existing approaches in the area of SIR. Thus, we are convinced
that a combination with social ranking functions such as those proposed in
[10,17,22,35,43] can be of a great interest.
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Abstract. We witness a rapid increase in the number of social media
streams due to development of Web2.0, IoT and Cloud Computing tech-
nology. These sources include both traditional relational databases and
streaming data from messaging infrastructure. We would like to use mul-
tiple social media streams to answer complex queries to enable informa-
tion sharing and intelligence gathering for better collaboration. For this
purpose, we adopt data services as the basic abstraction for both tra-
ditional relational databases and data streams retrieval. A flexible con-
tinuous data service model with continuous query as service operation
is proposed. Service operation instance is modeled as a view defined on
data streams. In the view, data part and time synchronization part are
separated from each other. Based on the continuous data service model,
we proposed a continuous data service composition algorithm for answer-
ing queries across data streams and relational data. The main idea is to
find the contained rewriting of user query on views satisfying both data
part and time synchronization part containment relationship. We also
present use case and experimental studies that indicate that the app-
roach is effective and efficient.

Keywords: Data streams - Query rewriting - Data services
Service composition - Continuous query

1 Introduction

Recent years have witnessed a social media streams boom with the increasing
number of social platforms (e.g. Twitter, Facebook, Weibo, WeChat). A lot of
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useful services such as crisis management, market research and location-based
service are delivered by gathering, querying and analyzing these data streams.
Borrowing the idea of social platforms, modern enterprises also use enterprise
social platforms to enable information sharing and intelligence gathering for
better collaboration.

Web services technology is a general medium for sharing data and function-
ality and enabling cross-organization collaboration for enterprise and web-based
systems including social platforms. Data service [1] or data-providing service [2]
is a kind of services that allow query-like access to organization’s data. Data
services provide a more flexible, controlled and standardized approach to access
or query organization’s data sources without exposing organization’s databases
directly. Furthermore, when a user require access data sources across organiza-
tions, several services can be composed to answer user query [3-5].

Social media streams have the features of data streams which are continuously
arriving, rapid, time-varying, possibly unpredictable and unbounded [6]. Tradi-
tional access methods are no longer able to cope with the complexity of social
streaming data. Here comes the questions of continuous query on social media
streams using data services approach. How to access and share social streams
using a data service approach? How to model continuous data services to provide
query-like access to the underlying data streams? And how to compose contin-
uous data services to provide social stream query across organizations? Is there
a unified data service model of query and conjunctive query for both persistent
relations and transient data streams?

Though there are some related work on data service modeling and composi-
tion to support data sharing, the difference between data streams and traditional
data sources makes the problem of accessing and sharing social data streams chal-
lenging based on data service modeling and composition approach. (1) Different
from traditional data service model, data services for queries on data streams
need to continuously update service responses and consider temporal constraints.
(2) In order to answer queries over multiple data sources, one feasible solution
is to model services as parameterized views over data sources, and compose the
services using a query rewriting approach based on the service model. Because
most of the stream query languages do not support views [7], how to model data
services as views over data streams is not trivial. And what’s more, the com-
position algorithms need to be proposed to answer queries over multiple data
sources automatically satisfying both data and temporal constraints.

In this paper, we propose a data service composition approach for continuous
conjunctive query on social media streams. The proposed approach largely draws
from experiences in the areas of data service composition, answering queries over
views and views over data streams. The contributions of this paper are as follows:

1. Continuous Data Service Model—We introduce a continuous data service
model. Service operation inputs are not modeled as fixed query conditions.
They are arbitrary query conditions modeled as a set of optional attributes
of the underlying data model and condition predicates. The service model is
flexible because any continuous query on the underlying data streams that
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can be transformed into SyncSQL expression can be expressed as a service
operation. Thus the instance of the service operation can be modeled as a
view defined on data streams. The novelty of this data service model lies in
two aspects: (1) It is based on a synchronized relation model and SyncSQL
query semantics. (2) We model the inputs and outputs of a data service as
the synchronized relation stream set subscribed from or published to mes-
sage queue. Service operations support time constraints and are modeled as
SyncSQL query.

2. Answering Query Across Data Streams—We propose a novel continuous data
service composition algorithm for answering queries across data streams. The
idea behind the algorithm is the following: (1) We transform services and
service instances into views on data streams. Every view has two components:
data part and time synchronization part. (2) We find the contained rewriting
using algorithm for “answering queries using views” on traditional relational
data. Check the containment relationship between time synchronization part
of the query and the rewriting. (3) We determine input and output parameters
and values of service operation and add new attribute constrains to the view
of a service when the service is instantiated in the algorithm.

3. Implementation and Evaluation—We describe an implementation, a use case
and provide a performance evaluation of the proposed approach.

The rest of this paper is organized as follows: In Sect. 2, we motivate the need
for conjunctive query across social media streams, discuss the underlying chal-
lenges, and overview the proposed approach. In Sect. 3 we describe our model for
continuous data services. In Sect. 4, we propose a query rewriting approach and
the corresponding algorithms (SBucket and SMiniCon) for processing queries
over data services two algorithms. In Sect.5, we describe our implementation
and evaluate our approach. We overview related work in Sect.6. We provide
concluding remarks in Sect. 7.

2 DMotivation and Overview of the Approach

In this section, we first describe a motivating scenario from social media applica-
tion for ocean transportation information services we use throughout the paper.
Then, we discuss the challenges to be addressed and give the overview of the
approach.

2.1 Motivation

Borrowing the idea of Internet social media platforms, some modern ocean
information companies develop enterprise social platforms to enable infor-
mation sharing and intelligence gathering for better collaboration. Vari-
ous vessels share their location and events information on the platform.
Various applications collect data like vessel trajectories, vessel basic infor-
mation and so on from social media platform and also their traditional
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resource management systems. Among these data sources, the data stream
vesseltraj(mmsi, long, lat, speed) records trajectory points of a vessel,
where mmsi is the Maritime Mobile Service Identity, long and lat is the longi-
tude and latitude of the vessel location, and speed is the vessel’s speed. The
relation data vesselinfo(mmsi, imo, callsign, name, type, length, width,
positionType, eta, draught) records static information of ships including the
mmsi, the International Maritime Organization (imo) code, call sign, name, type,
length, width, the Estimated Time of Arrival (eta) and draught of the vessel.
The relation data vesseltravelinfo(imo, dest, source) records the destina-
tion and the identification of the position message source.

These data streams are subordinate to different management domain and
won’t expose full data access interface of their data sources directly. They provide
access to the set of services with constraints described in Table1l. Note that
in this table, the value of mmsi is simplified from 9 digits to 4 digits for the
convenience of reading.

Table 1. Data services in the ocean data query scenario

Service | Functionality and constraints Formal expression of the underlying
data streams
DSy Query on those vessels whose imo vesselinfo(mmsi, imo, callsign, name,
number less than 2000 with a time-based | type, length, width, positionType, eta,
sliding window of window size 5s and draught), vesseltraj(mmsi, long, lat,
slide size 2s speed), imo < 2000, wsize(5), slide(2)
DS, Query on those vessels whose imo is vesseltravelinfo (imo, dest, source),

greater than 3000 with a time-based
sliding window of window size 5s and
slide size 2s

imo > 3000, wsize(5), slide(2)

DSs Query on those vessels whose speed is vesseltraj(mmsi, long, lat, speed),
less than 30 km/h with a time-based speed < 30 km/h, wsize(5), slide(1)
sliding window of window size 5s and
slide size 1s

DS, Query on those vessels whose imo vesseltravelinfo (imo, dest, source),
number is greater than 3000 and speed is | vesselinfo(mmsi, imo, callsign, name,
greater than 30 km/h with a time-based |type, length, width, positionType, eta,
sliding window of window size 5s and draught), imo > 3000, wsize(5), slide(2)
slide size 2s

DSs Query on those vessels whose mmsi is vesselinfo(mmsi, imo, callsign, name,

greater than 1000 with a time-based
sliding window of window size 5s and

type, length, width, positionType, eta,
draught), vesseltraj(mmsi, long, lat,

slide size 4s

speed), mmsi > 1000, wsize(5), slide(4)

The underlying data streams of DSy are vesselinfo and vesseltraj. They
have constraint that imo is less than 2000 with a time-based sliding window
of window size 5s and slide size 2s. The underlying data stream of DSy is
vesseltravelinfo. This data stream has constraints that the imo is greater
than 3000 with window size 5 s and slide size 2 s. The underlying data stream of
DS3 is vesseltraj. This data stream has constraints that the speed is less than
30km/h with window size 5s and slide size 1 s. The underlying data streams of
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DSy are vesseltravelinfo and vesselinfo. This service has constraints that
the imo is greater than 2000, with window size 5 s and slide size 2's. The under-
lying data streams of DSg is vesselinfo and vesseltraj. They have constraints
that the mmsi is greater than 1000 with window size 5s and slide size 4 s.

Those services with sliding window constraints continuously push output to
the service consumer once the consumer create a connection with the service
producer. The output is the query results in range of the configured window size
and will be updated every slide size. So we call these services “continuous data
services”.

Now assume the following query asks for vessels which have outstanding
speed over a sliding window. Note we express the query as conjunctive queries
extended with time-based sliding-window semantics. The join predicates in this
notation are expressed by multiple occurrences of the same variables.

Q(mmsi, draught, dest, speed):-vesselinfo(mmsi, imo, callsign, name,
type, length, width, positionType, eta, draught) , vesseltraj(mmsi, long
lat, speed), vesseltravelinfo(imo, dest, source), speed > 40,
wsize(5), slide(4)

Because the data sources can’t be accessed directly, we can’t join the data
sources directly using the existing data stream management systems. We will
discover the related services to answer query. Obviously service DSz is not useful
to satisfy this query request, because DSz has information only on vessels whose
speed is less than 30 km/h whereas we are interested in vessels which has speed
greater than 40km/h. Although DS; is relevant to user query, it only has mmsi,
draught, speed information and needs to retrieve dest information by invoking
other service like DSy and DS4. However, DSy only has information on vessels
with imo less than 2000, while DSy and DS4 have information on vessels with
imo greater than 3000, meaning DSy and DSg, DS4 are disjoint. So service DSy is
also not useful to answer this user query. We are left with two possible plans to
use the services to answer this query. Firstly invoke DSg to retrieve the list of
vessels with a sliding-window of window size 5s and slide size 4 s. Then invoke
DS4 where imo is greater than 3000 with a sliding-window of window size 5s
and slide size 2 s. Results from both services are joint to answer Q. Note that the
sliding-window constraints of DS4 and DSg are different, we also need to judge if
the joint results can satisfy the query requirement. In the same way, we will also
find that DSs and DSy can be joint to answer Q.

2.2 Overview of the Approach

Some of the challenges involved in providing the above-mentioned tasks are:
(1) developing a model for continuous data services. Different from traditional
services, data services or data-providing services are concerned with data query
and retrieval. They generate the appropriate outputs given specific inputs as
query conditions. They do not provide any functionality beyond data query and
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retrieval, and have no side effects. Unlike traditional data sources, social media
streams have features of temporality and dynamicity. This makes the problem
of data service modelling challenging. The data services for social media streams
query and retrieval should continuously generate outputs given specific inputs
as query conditions. For query over multiple social media streams,data services
model should support conjunctive query over data streams. Though some related
work [2-4,8,9] have proposed query model and data service model for data query,
retrieval and integration, they are not inapplicable for data stream query and
integration. and (2) developing techniques for answering continuous queries over
continuous data services. Users should be relieved from the burdensome task of
selecting, composing, and invoking data services. Given a continuous query over
multiple social media streams, it will be automatically executed by selecting and
orchestrating the right data services.

The overview of our approach is presented in Fig. 1. Continuous data services
are modeled as views over streams. Streams are represented as tagged streams
which will be introduced in details in Sect. 3.1. The details of the components of
a continuous data service will be introduced in Sect.3.4. As the same as table
view in database, a view over streams can be seen as a function that maps a set
of input data streams into an output derived stream. In Fig. 1, this is represented
as that the data service subscribes the input streams and publishes the output
stream. Each service has service operations and data and/or time constraints
description on the input/output streams. User queries can be transformed as
SQL-like query over data streams with time constraints (we use Synchronized
SQL query language SyncSQL [7] in this paper, a closed language to express
composable queries over data streams). The mediator selects the services that
can be combined to answer the posed query using the techniques of query rewrit-
ing on views, which will be introduced in Sect. 4. Then, it generates a composite
service as an execution plan for the query, execute the composite service and
push results to user continuously. The composite service can be deployed as a
new continuous data service.

3 Model of Continuous Data Service

3.1 Data Model

We use the synchronized relation model for describing the contents of data
stream sources. The data model includes:

1. S and R(S). S is a tagged stream with the format of “Tag(Attrs)ts”, where
Tag can be either insert (+), update (u), or delete (-) and ts indicates the time
at which the modification takes place. For example, “+(0001, 075, ...)1”
represents a tuple in Vesseltraj inserted in the stream. The tagged stream
is the incremental representation format of a raw stream. Any raw stream
of a data stream source can be represented as a tagged stream. Any tagged
stream S has a corresponding time-varying relation $(S8). The relation is
continuously modified by S’s tuples.
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Fig. 1. Overview of the proposed approach.

2. Attrs. Attrs are the attributes of the time-varying relation R (S).

3. ts. ts is the time point where the relation R (8) is modified by the underlying
S’s tuples.

4. Sync. Sync synchronized stream is a special tagged stream “+(timepoint)ts”,
where timepoint represents a time point which is the only attribute of Sync.
For example, “+(0)0, +(2)2” is a synchronized stream indicates the time point
sequences [0, 2, 4,...]. In the following paper, unit time sequence [0, 1, 2,...]
is denoted as Sync, [0, 2, 4,...] is denoted Syncy and so on. Synchronized
stream is a kind of tagged stream. So it also has a corresponding time-varying
relation # (Sync).

5. RNsync (8). MNsync (8) is a synchronized relation of any arity. Rsync,
(Vesseltraj) is a synchronized relation that Vesseltraj’s tuples are
reflected in Rgync, (Vesseltraj) only at the time points that are specified
by the synchronization stream Syncsy. Figure 2 illustrates a synchronized rela-
tion of Rsync, (Vesseltraj). For example, at Time 1, Rgync, (Vesseltraj)

is empty and “+(3001, ...)1” is not inserted in Rgync, (Vesseltraj) until
Time 2.

DataModel of Rsync(S) can be represented as a tuple: (Attrs, SyncUnits),
where Attrs = {attr} is a set of attributes, SyncUnits is the subscript index of
the synchronization stream Sync. For example, The value of SyncUnits is 2 for
Syncg, 3 for Syncs and 4 for Syncy etc.
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Fig. 2. A synchronized relation of Rsync, (Vesseltraj)

3.2 Continuous Query

Continuous queries are expressed using SyncSQL. According to the SyncSQL
syntax, the query Q in the motivating example can be expressed as follows:

CREATE VIEW FourUnitsSlide AS
SELECT 1 AS KeyAttr,

MAX(T. TimePoint) as currTime
FROM R(Syncg) T

CREATE STREAMED VIEW R5.S4_Q AS
SELECT T.mmsi, T.speed, I.draught,
TRAVEL. dest
FROM Rsync, (Vesseltraj) T,
R(FourUnitsSlide) N,
Vesselinfo I,
Vesseltravelinfo TRAVEL
WHERE T.speed > 40 AND
N.currTime - 5 < T.TS < N.currTime

In order to represent sliding-window query Q, FourUnitsSlide is defined as
a view on R (Syncya) as follows: “+(1, 0)0, u(1, 4)4, u(1, 8)8, ....”. Note this
synchronized stream has only one record that is updated every 4s.

3.3 Continuous Query Containment

Query containment and equivalence checking provide a formal framework to
compare different queries in a data integration system. In relational databases,
a query Qi is said to be contained in Qz, denoted by Q1 C Qg, if and only if
Q1 (D) C Q2 (D) for any database instance D. Qi is equivalent to Qg if and only if
Q1 € Q2 and Qz 2 Q1. Containment mapping is used to test query containment
[10]. Assume Q1 and Q2 are two conjunctive query, a mapping ¢ from the variables
of Q1 to the variables of Qs is a containment mapping if (1) ¥ maps every sub-
query in Q; to a sub-query in Qg, and (2) ¢ maps the head of Q1 to the head of
Q2. Q1 2 Qo if and only if there exists a containment mapping from Qi to Qs.

In stream processing system, a continuous query over n tagged streams
S1...8y is semantically equivalent to a materialized view that is defined by
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an SQL expression over the time-varying relations, R(S1) .. .3 (Sy) [7]. The big
difference between time-varying relations and traditional relations is that the
time-varying relations have arbitrary refresh conditions. The solution is to iso-
late the synchronization streams out of the continuous query expression. Then
the containment relationship is tested in two steps: (1) test data containment
using traditional query containment test method, and (2) test synchronization
containment.

For example, to test the containment relationship between Q and a data ser-
vice DS, we first transform the queries into SyncSQL expression and isolate the
synchronization streams. Because SyncSQL expression is too long and not con-
venient for expressing conjunctive queries, we extend the notation of conjunctive
queries based on a very simple form of mathematical logic [10] with synchro-
nization notation to express the SyncSQL query (here we call this notation as
conjunctive queries with synchronization stream):

QO :-RR) X)), ..., RRBn) Xn), €1, ..., Cn, tC, Synci NSyncy N ...

In the query, R(R1) (X1), ..., R(Ry) (Xy) are the sub-goals of the query. The
variables in X are called head variables or distinguished variables. The cjs are
interpreted atoms and are of the form X0Y, where X and Y are either variables or
constants, and at least one of X or Y is a variable. The operator 6 is an interpreted
predicate such as =, <, <, #, > or >. tc is the range time constraint. Sync; is
the synchronization stream applied on Ry ... to Ry.

Accordingly, the query in Sect. 2 is:

Q(mmsi, draught, dest, speed) -} (T), I, TRAVEL, speed > 40, 5, Synca
and an example data service is:
DS(mmsi, speed):-R(T), I, mmsi > 3000, speed > 30, 5, Syncy

To test the containment of DS and Q, we first test containment of data part of
DS and Q. Because any tuples satisfied by the selection and projection conditions
of Q also satisfied DS, the data part of Q is contained in data part of DS. The
synchronization relation part of Q (Rsync, (T) ) is contained in the synchronization
relation part of DS (?]‘EsynCl (T)). We can conclude that Q is contained in DS.

3.4 Continuous Data Service

We model a continuous service as a view defined on the underlying data streams.
Any service subscribes one or multiple data streams or database tables, which
is defined as Subs. Any service has zero to multiple operations in which inputs,
outputs, window range, window slide size should be defined. Input and output
parameters are from the attributes of the underlying synchronized relations cor-
responding with Subs. Given a specific user inputs, the service has an associated
instance. A service instance can also be defined as a view on the underlying
data streams, which can be expressed as a SyncSQL query over the underlying
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synchronized relations. Each service can have multiple instances and thus can
express multiple SyncSQL queries. Every service instance publishes one tagged
stream on message queue.

Such service can be expressed as follows: DS = (ID, SubS, PubS, Ops), where:

1. ID is the unique identity of the service.

2. SubsS is the stream set of the service subscribed from message queue. SubS =
{(Ssub, DataConstrs, TimeConstr)}, where DSgyp is a tagged stream defined
in Sect.3. A Data model (Attrs, SyncUnits) is corresponding with a time-
varying relations 3 (Sgyp) . DataConstrs and TimeConstr are the constraints
applied on content and time of the tagged stream.

3. PubS is the stream set of the service published to message queue.
PubStreams = {(Spub, DataConstrs, TimeConstr)}, where DSpyp is a tagged
stream. It is corresponding with a time-varying relation  (Spup).

4. DataConstrs = {DataConstr}, where DataConstr = (attr, condop,
constant). attr is the attribute of R (Sgyp). condop can be one of the con-
dition operator from >, =, <, >, #, <. constant is a constant value.

5. TimeConstr = (range), where range is range size of the sliding window of
synchronized relation. Note that tumbling window and hopping window are
both a special form of the sliding window. For tumbling window, range size is
equal to slide size. And for hopping window, range size is a multiple of slide
size.

6. Ops = {(inputs, outputs, range, slide)} is the service operations.
inputs = {input} are a set of attributes of DSgup, the corresponding con-
dition operator >, =, <, >, #, < and constants. outputs = {output} are a
set of output parameters of the service operation. range and slide are the
time constraint of the service request. A SyncSQL expression can be gener-
ated from Ops.

A service description DS = (ID, SubS, PubS, Ops) can be transformed into a
view:

DS(X):-R(Ssuby)s - --» N(Ssuby) 5 Cis «--5Cm, tC, Synci N ... N Syncy

where X is all the attributes from all DSgyp elements of SubS, R(Ssup,), -- - »
R (Ssub,) are the underlying time-varying relation corresponding with all the
elements of SubS and cj, ..., cy are the data constraints applied on them. tc
is the intersection of all the window range size constraints applied on them.
Sync; is the synchronization stream applied on R (Sgup; ). PubS of a service is
determined when a service is instantiated. When a service is instantiated, the
elements of the input set Ops are determined, which will add the additional data
constraints on the description as the following service instance description. We
describe a service using all the attributes from all DSgyp as the default output
set. But the elements of the output set Ops are finally determined until a service
is instantiated.
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A service instance description of DS = (ID, SubS, PubS, Ops) can be trans-
formed into a view:

DS(X)inst:-R(DSsuby) s « - - » R(DSsuby) > €15 - - - » Cms Copy s « + - » Copg »
tc, Syncyi N ... NSyncy, NSyncy M ... N Syncy

Copys - - -5 Cops are data constraints from inputs of service operations. Syncy N
... N 8yncy are synchronization stream from the time constraints of service
operations. tc is the intersection of all the window range size constraints applied
on R (Sub;) and from service operations.

4 Data Services Composition for Answering Continuous
Query

Services composition is a very active area of research. The basic ingredient of any
composite application are the software components encapsulating functionality,
data, and/or a user interface. Services is a kind of software components provid-
ing a set of operations, which allow one to programmatically interact with the
encapsulated functionality and/or Ul Examples of typical service components
are SOAP and RESTful Web services. These software components can be com-
posed into a composite application by invoking their operations according to a
composition plan [11]. In this section, we present the data services composition
algorithm used for answering continuous query across multiple data streams and
relation data.
The algorithm is shown in Algorithm 1.

Algorithm 1. Continuous Data Services Composition

Input: conjunctive query Q in two parts:
data part Q% of the form: Q% (X):-R(R1) (X1), ..., R(Ra) Kn), C1, ..., €1, tC
synchronization part Syncq of the form: Syncq = Synci N ... N Syncj;
a set of services S and service instances Sinst;

Output: a composed service CompS

1: Let S be the union of S and Sinst, each element is S’

2: using Q¥(X) and a set of conjunctive views $'4(¥) as inputs of SBucket algorithm
in or SMiniCon algorithm in Sect. 4.1, determine the input and output parameter
values of services, find the service composition plan W which is the largest contained
or equivalent rewriting set of Q, each element in W is a service instance description.

: if W70 then
ExecutePlan(W)
CompS= GenerateCompService(W)
else
Comp$S =
: end if
: return CompS

© 0D w
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We improve the Bucket algorithm and MiniCon algorithm [12] to find largest
contained or equivalent rewriting set in step 2. The improved algorithms is called
SBucket (Service Bucket) algorithm and SMiniCon (Service MiniCon) algorithm,
and will be introduced in Sects. 4.1 and 4.2.

The execution plan W is a conjunctive views of service instances and may
has some additional data constraints conditions. In step 4, to determine the
execution order of service instances, we first pop out the first head variable from
W and find those service instances that has this variable as join predicate. Join
these service instances results as Ry (x1, ..., Xn) where x; are variables from
the joint service instances. Pop out the next head variable from W and find those
remaining service instances and Ry that has this variable as join predicate. Join
them as Ry. Continue the above operations until there are no service instances
left.

Algorithm 2. Create buckets
Input: conjunctive query Q in two parts:
data part Q¥ of the form:
Q¥ (X RR1) (K1), ..., R(B) (Ka), €1, ..., Cn, tC
synchronization part Syncq of the form: Syncg = Syncy N ... N Syncy;
a set of views V transformed from service set S and service instance set Sinst;
Output: list of buckets
1: for 1 <i<ndo

2:  Initialize Bucket; to ()
3: end for
4: for each subgoal gi in Q do
5: for each V € V do
6: Let V be of the form:
VARG (Y1), ..., R(Sw) (Yn), di, ..., ds, tcy, syncy N ... Nsynce
7 if N(Syncy) D RN(Syncq) and tcy > tc then
8: if g; is an element of subgoals set of V then
9: if each x € X; is also an element of Y then
10: if the data constraints of V satisfy the data constraints of Q then
11: add V into Bucket;
12: end if
13: end if
14: end if
15: end if
16: end for
17: end for

In step 5, CompS = (ID, SubS, Pub$S, Ops), where SubS are union of all PubS
from the service instances with the data constraints. PubS and the elements of
Ops = {(inputs, outputs, range, slide)} are determined when the service is
instantiated.
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4.1 SBucket Algorithm

In order to support finding relevant continuous data services or service instances,
we improve the Bucket algorithm by adding the synchronization stream contain-
ment judgement and determining the service operation inputs and outputs after
the relevant services are found. The approach for answering continuous query
based on our data service model has three steps.

The first step constructs for each subgoal g in the query a bucket of relevant
service or service instance atoms. It is shown in Algorithm 2.

The second step considers all the possible combinations of services and service
instances. Each combination should include one of the service or service instance
atoms from every bucket. Generate the candidate composition plans by checking
if each combination is satisfiable (if there exists no self-contradictory in the same
combination). Delete those that is unsatisfied.

Algorithm 3. Check whether a candidate plan is equivalent and instantiate the
services
Input: candidate services and service instances composition plan p(Y);
conjunctive query Q(X);
a set of executable equivalent services and/or service instances composition plan
eqCompPlans
Output: the updated result of eqCompPlans
1: Denote the intersection of data constraints of p and Q as DN C, where D is the data
constraints set of p and C is the data constraints set of Q
2: Get all of the elements exist in set DN C that don’t exist in set of data constraints
of p, denoted as A =DNC\D. This set is the additional data constraints that should
be added on p in order to be equivalent to Q

3: if Q C p then

4:  if there exists services (not service instance) in p then
5: for each subgoal g of p do

6: if g is a service then

T A =g.genInstance(YNX, A, sync)
8: end if

9: end for

10: if A=0 then

11: add p into eqCompPlans

12: end if

13:  else

14: if p C Q then

15: add p into eqCompPlans

16: end if

17 end if

18: end if

The third step searches the equivalent service composition plans or the con-
tained service composition plans, and determine the input and output parame-
ters of service operations. Take searching the equivalent service composition plan
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as the example, the basic idea is to consider each candidate composition plan
p, check if p = Q when there exists no service atom (in other words, all atoms
are service instances) in p. If there exist services in p and Q C p, we search the
additional constraints that can be applied on services when we instantiate it.
The concrete steps for considering each p are shown in Algorithm 3.

In step 3 and step 14, when we judge the containment relationship between
the plan and query, time synchronization containment relationship is checked
first.

In step 7, we use the additional data constraints A to instantiate a service.
A method genInstance(output, dataConstr, timeConstr) is called to deter-
mine the input and output parameters of the service operation. In this method,
the output parameter value is taken as the output parameter value of the service
operation. In step 7, we take additional data constraints in A as the input param-
eter values of the service operation. According to the first stage of SBucket,
time constraints of every service or service instance in p all contain the time
constraints of Q, so SBucket algorithm takes the time constraints of Q as the
time constraints of the service operation. In this method, we update A with the
unsatisfied data constraints and returned. After the loop 5, all the services in
p are instantiated. If the attributes of all the additional data constraints are
also the data attributes of R(ggyp), it means that all the additional data con-
straints can be applied on the services, in other words, the services can satisfy
the data constraints after instantiation. Otherwise, the service composition plan
is abandoned.

In step 14, if Q C p, Q 2 p and all atoms of p are service instances, add p into
equivalent result set directly.

The above algorithm is to search the equivalent plan. To search the contained
composition plan, there is a difference that SBucket algorithm only consider the
plans whose data constraints haven’t existed in the contained result set. First,
if @ O p and all atoms of p are service instances, add p into contained result
set directly. If Q is not contained in p and data constraints of Q overlap with
that of p, and there exist service atoms in p, we should instantiate the services.
Check whether all the additional constraints can be applied on the services when
instantiating them. If they can’t be applied, this means that the services can not
satisfy the data constraints after instantiation, in other words, the plan is not
executable.

4.2 SMiniCon Algorithm

The above algorithm adopts the idea of Bucket algorithm into the composition
approach for continuous query, however, as illustrated in [12], Bucket algorithm
exists some redundant computing and has performance limitations. Firstly, it
misses some important interactions between view subgoals by considering each
subgoal in isolation. As a result, the buckets contain irrelevant views, and hence
the second step of the algorithm becomes very expensive. Second, if there exists
multiple homonymy predicates in query or view, Bucket algorithm would not
realize that if it uses the predicate, then it has to use the predicate multiple
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of the query subgoals. Realizing this would save the algorithm exploring use-
less combinations in the second phase. The concrete examples are illustrated in
Sect. 5.2.

So, we improve the MiniCon algorithm with continuous data service model in
this paper. The MiniCon algorithm begins like the Bucket algorithm, considering
which views contain subgoals that correspond to subgoals in the query. However,
once the algorithm finds a partial mapping from a subgoal g in the query to a
subgoal g1 in a view V, it changes perspective and looks at the variables in
the query. The algorithm considers the join predicates in the query (which are
specified by multiple occurrences of the same variable) and finds the minimal
additional set of subgoals that need to be mapped to subgoals in V, given that g
will be mapped to g1. This set of subgoals and mapping information is called a
MiniCon Description (MCD), and can be viewed as a generalization of buckets.

In order to better illustrate the difference between our SMiniCon algorithm
and MiniCon algorithm against continuous data service model, we simplify the
explanation of MiniCon by assuming that all the attributes of the relations with
the same relation name also have the same attribute name. In other words, we
don’t need to consider the attribute mapping, so the corresponding form of MCD
as well as some properties can be simplified:

MiniCon Description 1. An MCD for a query Q over a view V is a tuple of
the form (V, gc) where gc is a subset of subgoals in Q which are covered by some
subgoals in V

Based on the simplified MCD definition, the following conditions to determine
which subgoals should be added to the minimal additional set of subgoals:

Property 1. The simplified MiniCon algorithm considers an MCD for Q over
V only if it satisfied the following conditions:

C1. If attribute x of subgoal g is in head of Q, then the corresponding attribute x
of subgoal g1 must be in the head of V

C2. If x is not in head of V, and x is a join predicate in Q, then check every
subgoal which includes x in Q according to this property to expand the additional
set of subgoals.

MiniCon algorithm has two phases. The first phase is to form MCD according
to Property 1. The second phase is to create the query rewriting plan by com-
bining multiple MCDs. In this phase, the algorithm only considers such subset
of MCDS:

Property 2. The MiniCon Algorithm considers the subset mcds of MCDs
(formed as mcdy, ...mcdy) only if it satisfies the following conditions:

(1). gCmed, U gCmed, U - - - U gnea, = subgoals(Q), in other word, the union of
all gc in mcds equals the subgoals set of Q (2). for each i ¥ j, gci Ngej = 0.

Considering the application scenarios in Sect. 2, queries and views are usually
accompanied with comparison predicates. MiniCon algorithm can also support
the comparison predicates through adding the following conditions to Property 1
in the first phase of forming MCD:
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Property 3. The simplified MiniCon algorithm considers the MCD for Q over
V only if it satisfies Property 1 and the following conditions.

C3. If there exists a data constraint VDC with an attribute x in subgoal g1 of V,
then determine the containment relationship between VDC and the constraint QDC
in Q having the same attribute x. If VDC can’t be covered by QDC but intersect with
it, and x is in the head of V, then form the MCD.

In fact, the difference between a service and the corresponding view is, new
attribute constrains can be added to the view when the service is instantiated.
If VDC can’t be covered by QDC, it doesn’t mean that it can’t be covered by QDC
after the service is instantiated. Because it may be covered by QDC after attribute
constrains are added. So there is no need to exclude the construction of MCD
according to C3.

In order to instantiate the possible services in the second phase, we add
projDC as an attribute of MCD. projDC is the constraints intersection of Q and
V, and the attributes in projDC are all come from the attributes of V. So projDC
can be described as the projection of data range of V to data range of Q. And
what’s more, in order to distinguish between equivalent rewriting and contained
rewriting in the next phase, we add the mt as a tag of the MCD type, 0 represents
the MCD can be used to generate the equivalent rewriting, while 1 represents the
MCD is going to generate the contained rewriting. So we define the SMiniCon
description (abbreviated as SMCD) as a tuple form (V, gc, projDC, mt).

SMiniCon Description 1. An SMCD for a query Q over a continuous data
service DS is a tuple of the form (V, gc, projDC, mt), where gc is a subset of
subgoals in Q which are covered by some subgoals in the view V transformed from
data service DS, projDC is the constraints intersection of Q and V. When the data
constraints of V contains the data constraints of Q, mt is 0 to indicate the SMCD
can be used to generate the equivalent rewriting. Otherwise, mt s 1 to indicate
that the SMCD can be used to generate the contained rewriting.

We based on the following conditions of a SMCD to determine which subgoals
should be added to the minimal additional set of subgoals:

Property 4. The SMiniCon Algorithm considers the SMCD for Q over V only
if it satisfies the following conditions.

C1. If attribute x of subgoal g is in head of Q, then the corresponding attribute x
of subgoal g1 must be in the head of V

C2. If x is not in head of V, and x is a join predicate in Q, then check every
subgoal which includes x in Q according to this property to expand the additional
set of subgoals

C3. The synchronization part of Q is contained in the synchronization relation
part of V.

Cy4. If there exists a data constraint VDC with an attribute x in subgoal g1 of V,
then VDC and the constraint QDC in Q having the same attribute x are not disjoint.
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Algorithm 4. Form SMCD

Input: conjunctive query Q in two parts: data part Q¥ of the form:
Q) :-R@R1) (X1), ..., RBa) Xn), 1, - .., ca, tc synchronization part Syncq of
the form: Syncq = Syncy N .. .Syncy; a set of views V transformed from services S
and service instances Sinst;
Output: a set of SMCD SMCDS
1: Initialize SMCDS to (), joinAttrs = genJoinAttrs(Q)
2: for each subgoal g; in Q do
3: foreach VeV do
4 Let V be of the form: V(¥):-%(S1) (Y1), ..., R(Sn) (Yu), d1, ..., dn, synci N
...MNsyncpMNsyncy M ... syncg

5: if R(Syncg) C R(Syncy) then
6: if there exists no SMCD that it’s name is V and it’s gc covers g;i in SMCDS
then

7 create a null SMCD for V and SMCD.mt = 1

8: if the data constraints of V and the data constraints of Q are disjoint
then

9: break

10: else

11: if the data constraints of V contains the data constraints of Q,set

SMCD.mt as 0

12: end if

13: canGen, gc = genGe(gi, V, Q, joinAttrs)

14: if canGen is true then

15: SMCD.gc = gc

16: SMCD. projDC = the data constraints projection of V to Q

17: add SMCD to SMCDS

18: end if

19: end if

20: end if

21:  end for

22: end for

23: return SMCDS

Our SMiniCon algorithm also has two phases. The first phase is to form
SMCD. The second phase is to combine SMCDs and instantiate the possible
services. The first phase of SMiniCon is shown in Algorithm4, it creates all
possible SMCD for each V according to the SMCD Description 1 and Property 4.
We first check the synchronization containment relationship in step 5 to avoid
unnecessary calculations. Then a method genGec (subgoal0£fQ, V, Q, joinAttrs)
is called to generate values of gc and canGen that denotes whether the gc can
be generated. This method extends the minimal additional set of subgoals that
can be covered by V through parameters of a subgoal of Q and joinAttrs (the
join predicates in Q). If canJoin equals true, the projDC would be determined
and add the SMCD to SMCDS.

The second phase is shown in Algorithm 5. It considers each subset of SMCDS
as smcds which satisfied the Property the same as Property 2. Each smcds cov-
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ers all subgoals of Q, however, in order to determine whether the combination of
SMCD can generate an executable rewriting plan, we need to determine whether
there is an intersection among the data ranges projected to Q (i.e. projDC) by
each SMCD in the combination. We take A as the intersection result of all the
projDC, if there is no constraint intersection for one attribute, A will be empty.
For example, if projDCy is “mmsi > 3000, speed > 20km” and projDCs is
“mmsi < 2000, speed < 40km”, there is no constraint intersection for mmsi,
so the value of A is empty. In other word, the data ranges are disjoint for this
combination, so the combination can’t generate an executable plan.

Algorithm 5. Find Executable Plans

Input: SMCDS:
Output: executable equal plans execEqlPlans and executable contained plans
execContainPlans

1: Initialize execEqlPlans and execContainPlans to {)
2: for each subset smcds of SMCDs (formed as smcdy, smcdy. . .smcdy) that the union
of all gc in smecds equals the subgoals of Q and for every i #j gci Ngej =0 do
3: A = smcdy .projDC N smcdy.projDC M ... N smcdn.projDC
4: p=20
5:  if A includes all attributes in the union set of all smcd.projDC then
6: A=A\ (smcdy.V.cUsmecdz.V.cU ... Usmcdy.V.c)
T if there exists smcd such that smcd.V is a service then
8: for each smcd that smcd.V is a service do
9: A = smcd.V.genInstance(YNX, A, sync)
10: end for
11: end if
12: if A =0 then
13: p = create a executable plan consists of all smcd.V in smcds
14: if all smcd.mt in smcds == 0 then
15: add p to execEqlPlans
16: else
17: add p to execContainPlans
18: end if
19: end if
20:  end if
21: end for

22: return execEqlPlans and execContainPlans

If the combination can generate an executable plan, we update A as additional
data constraints by eliminating its own constraints of each smcd.V in smcds in
step 6, then we use A to instantiate the possible services in the combination. The
method genInstance in step 9 is the same as the genInstance in Algorithm 3.
If the A is digested to be empty by the services, it can create an executable
rewriting plan consisting of all views in smcds (services are instantiated). Oth-
erwise, there will be no executable plans to generate. Finally, the algorithm uses
the mt attribute to determine whether the rewriting is an equivalent rewriting or
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an contained rewriting. If mt are all equals 0 in the combination, the rewriting
must be an equivalent rewriting, and conversely, the rewriting is a contained
rewriting, note that the SMiniCon algorithm only consider contained rewriting
plans whose data constraints haven’t appeared yet in contained result set which
is similar to the SBucket algorithm.

5 Implementation and Evaluation

In this section, we first describe an implementation of our approach. Then we
provide a use case and experimental evaluation.

5.1 Implementation

The architecture of our system is shown in Fig. 3. Users interact with the system
through a web based interface. The interface enables users to register and browse
relational databases and data stream sources. The registered information about
the data sources are managed in the service registry. Users can formulate queries
either using SyncSQL templates or by combining such templates into conjunctive
query.

When a query is posed, the query rewriter module uses the information from
service registry to generate the service composition plans and determine the
inputs of the services. Implementation of the data service composition algo-
rithm is available on Github!. The service executor module is responsible for
determining the invocation and join order of the services and service instances.

Every service is implemented as a Spark Streaming [13] job. The underlying
data streams are subscribed (represented as “sub” in the Figure) by the service
using Kafka [14]. And the outputs of a service are published (represented as
“pub” in the Figure) to Kafka, which can be subscribed by later services. The
underlying data sources (relational databases, NoSQL databases and stream
data) are registered as continuous query services by publishing to Kafka and
being processed in spark streaming job after subscriptions (relational database
can also registered as a common data service directly, we provide CRUD opera-
tions for it). For those Web based clients, we expose continuous data service as
REST-like API [15] over HTTP protocol based on a Web-based push technology
- Sever-Sent Events (SSE) [16]. It allows the service to push query results to
clients continuously. The client sends a request to a service and opens a single
long-lived HTTP connection. The service then sends data continuously to the
client without further action from the client.

5.2 Case Study

In this section, we take the example introduced in Sect.2 as the use case to
introduce how our approach works.

DSy .SubS ={ (Rsync, (T), null, 5), (I, {imo < 2000}, 6) }

! https://github.com/declouddataservice /servicecomposition.
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Fig. 3. Architecture of the implementation.

The SyncSQL expression of the query on the underlying data sources can be
generated from DS;.SubS as a streamed view as follows:

CREATE STREAMED VIEW DS; _Data AS
SELECT mmsi, imo ,
FROM Rsync, (Vesseltraj) T,
NowView N,
Vesselinfo 1

WHERE 1 .imo < 2000 AND
N.currTime - 5 < T.TS < N.currTime

Every instance of DS; can be re-written as a SyncSQL expression on
DSy Data. For example, assume the outputs of Ops of an instance of DSy are
{mmsi, draught, speed} and no input parameters. range and slide are 5 and
2 separately.

DS; .Pubs and the SyncSQL expression of the query on the underlying data
sources can be generated as follows:

DS; .PubS = { (Rsync, (mmsi, draught, speed), {imo < 2000}, 5) }

This instance of DSy can be expressed as :

CREATE STREAMED VIEW R5_S2 _DS;inst AS
SELECT mmsi, draught , speed
FROM Rsync, (Vesseltraj) T,

NowView N,

Vesselinfo 1

WHERE 1 .imo < 2000 AND
N.currTime - 5 < T.TS < N.currTime
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or in the form of:
DSiinst (mmsi, draught, speed):-R(T), I, imo < 2000, 5, Syncy

In a similar way, SubS, PubS and the instance of DSy can be expressed as
follows:

DS5.SubS = { (TRAVEL, imo > 3000, 5) }
The PubS of DS, for an instance is expressed as :
DSy .PubS = { (Rsync, (dest, source), imo > 3000, 5) }
Then the instance of DSs is:
DSpinst(dest, source):-TRAVEL, imo > 3000, 5, Syncy
SubS of DS3 is :
DS3.8ubS = { (Rgync, (T) , {speed < 30}, 5) }
Pub$S of DS3 for an instance is expressed as :
DS3.PubS = { (Rsync, (mmsi, speed), {speed < 30}, 5) }
The instance of DSz can be expressed as follows :
DSzinst (mmsi, speed):-R(T), speed < 30, 5, Syncy
SubS of DSy is :
DS4.SubS = { (TRAVEL, {imo > 3000}, 5), (I, {imo > 3000}, 5)}
PubS of DSy for an instance is expressed as :
DSy .PubS = { Rsync, (mmsi, draught, dest), {imo > 3000}, 5) }
The instance of DS4 can be expressed as follows :
DSainst (mmsi, draught, dest):-TRAVEL, I, imo > 3000, 5, Syncsp
SubS of DSg is :
DSs . SubS = { (Rsync, (T) , mmsi > 1000, 5), (I, mmsi > 1000, 5) }
Assume there is no instance for service DSs, so it is express as:

DSs (mmsi, long, lat, speed, imo, callsign, name, type,
length, width, positionType, eta, draught) -
I, R(T), mmsi > 1000, 5, Synca
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Query is expressed as Sect. 3.2. This query has sub-goals R(T), I and TRAVEL.
According to our SBucket algorithm in Sect. 4.1, the steps to answer user query
are as follows:

In the first step the algorithm creates buckets for each sub-goal of Q. The
contents of bucket for sub-goal R(T) are: DSjinst (mmsi, draught, speed) and
DSg (mmsi, imo, speed, long, ...). DSzinst is not in this bucket because the
interpreted predicates of the view and the query are not mutually satisfi-
able. The contents of bucket for sub-goal TRAVEL are: DSpinst (dest, source)
and DSginst(mmsi, draught, dest). The contents of bucket for sub-goal
I are: DSyinst(mmsi, draught, speed), DSginst (mmsi, draught, dest), and
DSg (mmsi, imo, speed, long, ...).

In the second step of the algorithm, we combine elements from the buckets.
The first combination, involving the first element from each bucket, yields the
rewriting

Q1 (mmsi, draught, speed, dest):-DSyinst (mmsi, draught, speed),

DSjinst (mmsi, draught, speed) , DSpinst (dest, source’)

After we remove the first sub-goal, which is redundant, Qi finally
consists of DSiinst and DSpinst. While the attribute imo does not
appear in the head of DSyinst, so we will not be able to apply
the join predicate between vesseltravelinfo(imo, dest, source) and
vesselinfo(mmsi, imo, callsign, name, type, length, width, positionType
eta, draught) in the query. Therefore, DSoinst is not usable to answer query,
and the combinations involving DSpinst, for example Q1, can’t be established to
answer the query.

Considering the second element in the left bucket yields the rewriting:

Q2 (mmsi, draught, speed, dest):-DS;inst (mmsi, draught, speed),
DSiinst (mmsi, draught, speed) , DSginst (mmsi, draught, dest)

Remove the redundant sub-goal, Qo actually consists of DS;inst and DSginst,
while they are relevant to the query in isolation, their combination is guaranteed
to be empty because they cover disjoint sets of vessel imo numbers. Similarly,
combinations involving DS;inst and DS5 at the same time should be excluded.

After eliminating the combinations above, we consider to yield the following
rewriting:

Q3 (mmsi, draught, speed, dest):-DSginst (mmsi, draught, dest),

DS5 (mmsi, imo’, speed, long’, ...), DSginst (mmsi, draught, dest)

Then we remove the redundant sub-goal, add the predicate speed > 40, and
join with the synchronization stream. So we would obtain Qs, which is the only
contained rewriting the algorithm finds.

Then check the containment relationship between Syncg, = Syncs N Syncg
and Syncq = Syncs. Apparently, Syncq is contained in Syncq,. So the time part
of Q3 is Syncy N Synca.
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The output parameters of DSs are set to be variables from attributes
of the underlying data stream which are also in the head of Q, which is
mmsi, draught, speed. The inputs parameters of DS are speed > 40.

The main inefficiency of this algorithm is that it misses some important
interactions between service subgoals by considering each subgoal in isolation.
So the buckets contain irrelevant services, for example DSpinst, and hence the
second step of the algorithm becomes very expensive. In our SMiniCon algorithm
proposed in Sect. 4.2, these interactions would be found in the first phase.

In the first phase, the algorithm creates an SMCD for each service. In order
to express the SMCD briefly, we only provide the information about subgoals
covered by each service. For DSjinst, it can cover vesseltraj. DSginst cov-
ers vesselinfo and vesseltravelinfo synchronously, while DSs can cover
vesselinfo or vesseltraj individually. Note that there are no any SMCD
created for DSzinst and DSyinst according to SMCD creation condition.

In the second phase, the SMiniCon algorithm only focuses on combinations
where the SMCDs cover mutually exclusive sets of subgoals in the query. There-
fore we only need to consider the following rewritings yielded by usable combi-
nations:

Qs (mmsi, draught, speed, dest):-DSyisnt (mmsi, draught, speed),
DSsinst (mmsi, draught, dest)
Qs (mmsi, draught, speed, dest):-DSginst (mmsi, draught, dest),

DSs (mmsi, imo’, speed, long/, oY)

As we discussed in the SBucket algorithm, Q4 will be excluded, so the final
usable rewriting is Qs. Meanwhile, the parameters determination is the same as
Q1. From the above, we can see that in the second phase SMiniCon only checks
two combinations while SBucket algorithm needs to consider each element of the
Cartesian product of the buckets.

5.3 Experimental Evaluation

In this section, we give an experimental evaluation of our approach. The goal
of the experimental evaluation is to (1) analyze the factors that affect the per-
formance of the service composition algorithm, and (2) analyze the factors that
affect the execution performance of the continuous data services.

The service composition algorithm experiments are run on a computer with
Intel(R) Core(TM) i5-2400 CPU 3.10 GHz and 8 GB memory. Experiments on
the execution performance of the continuous data services are run on a cluster
with the following configuration as shown in Table 2:
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Table 2. Experimental Environment Configuration

Host role| CPU Mem. |OS Framework

Master |[4xXAMD Opteron 6128(2.0 GHz/8-core) |64 GB|CentOS 7.0.1406/CDH(5.11) /Spark 1.6.0
Slavel |4xAMD Opteron 6128(2.0 GHz/8-core) |64 GB|CentOS 7.0.1406|CDH(5.11) /Spark 1.6.0
Slave2  |2xIntel(R)Xeon E5620(2.4 GHz/4-core) 64 GB|CentOS 7.0.1406/ CDH(5.11)/Spark 1.6.0
Slave3  |2xIntel(R)Xeon E5620(2.4 GHz/4-core)|72 GB|CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0
Slave4  |2xIntel(R)Xeon E5620(2.4 GHz/4-core) 72 GB|CentOS 7.0.1406| CDH(5.11) /Spark 1.6.0
Slave5  |2xIntel(R)Xeon E5620(2.4 GHz/4-core)|72 GB|CentOS 7.0.1406| CDH(5.11)/Spark 1.6.0

In order to experimentally evaluate our approach, we select a set of queries
and generate a set of continuous data services and service instances.
Here we use three representative queries:

1. Query 1: query movie IDs and directors of those movies that exceed 100
million dollars on box office returns.

Q1 (Title, Year, Dir) : -Movie(ID, Title, Year, Genre), Revenue(ID,
Amount) , Director(ID, Dir), Amount > 100, wsize(5), slide(2)

2. Query 2: query those vessels whose speed exceed 40 km /h.

Qo (mmsi, draught, dest, speed) : -vesselinfo(mmsi, imo, callsign,
name, type, length, width, positionType, eta, draught) , vesseltraj
(mmsi, long, lat, speed), vesseltravelinfo(imo, dest, source),
speed > 40, wsize(5), slide(4)

3. Query 3: query mmsi and callsign of those vessels whose speed exceed
40km/h.

Q3 (mmsi, callsign) : -vesselinfo(mmsi, imo, callsign, name, type,
length, width, positionType, eta, draught), vesseltraj(mmsi, long,
lat, speed), speed > 40, wsize(5), slide(4)

According to 80/20 rule (also known as Pareto principle) [17], we generate
data services and instances using a random method and enable the number of
services and service instances related to user queries are about 20% of the total
services and service instances.

For each query, we generate various number of data services and data service
instances from 200, 400, ... to 1000. We here present results obtained by running
each experiment ten times in Table 3.
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Table 3. Query statistics for queries 1, 2 and 3 as the number of data sources is varied
between 200 and 1000

Query |Services| Max bucket |Plans Plans |Time per Total time
size enum. |gen. |plan (ms.)|(Sec.)
1 200 29 3193 24 |15.61 0.27
400 59 25501 116 |11.31 0.89
600 89 94092 | 343 4.31 1.29
800 118 212037 | 776 2.95 2.09
1000 144 390105 1355 2.44 3.08
2 200 22 3000 83 7.78 0.54
400 46 22351 515 2.51 1.21
600 69 78757 1600 1.26 1.92
800 88 191141 |3668 0.90 3.30
1000 110 335315 |6238 0.86 5.60
3 200 28 462 64 4.63 0.27
400 56 2000 | 231 2.65 0.59
600 87 4582 | 509 1.78 0.89
800 117 7763 | 903 1.18 1.04
1000 149 12568 |1422 0.95 1.31

Mazximum bucket size is the average number of sources in the largest bucket
created using SBucket algorithm in Algorithm 2. Plans enumerated is the average
number of candidate rewriting plans (including the composition plans equivalent
to the query and contained in the query) enumerated in the algorithm. Table 3
gives the average total time taken to generate all composition plans and the
average time per composition.

Figure 4 plots the total and average time to generate all composition plans for
each query against the number of data sources. We can observe that the average
time per composition plan is within 20ms. In this experiment, we select the
number of data sources according to the experimental results of Qa, because Qg
took the longest time and is the most valuable for the experimental performance
test. For Qo, if the number of data sources is above 3000, the time reaches 6 min
and 42s to generate roughly the same number of composition plans. When the
number of data sources is above 3500, the maximum capacity has been reached.
When the number of data sources increases within a range of 200 to 1000, the
average time to generate a composition plan does not increases with the growth
of the data sources. It decreases and is within 20 ms.

We also compare the performance of SBucket algorithm and SMiniCon algo-
rithm for Qa2 and Q3. As shown in Fig.5, SMiniCon algorithm outperforms
SBucket algorithm apparently.

For Q2 and Qgz, data services are generated from real data set. And the data
services for Qi are generated from simulated data set. Here we do experiments
on Q2 and Q3 to analyze the factors that affect the execution performance of the
continuous data services.
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Fig. 4. Total and average time to generate composition plans.

We send 20, 40, 60, 80, 100 data records generated from real
data sets every 10ms to simulate data stream with the rate of
2000 (records) /s, 4000 (records)/s,..., 10000(records/s). We measure the
execution time of composite service with the formula ExecuteTime =
WindowComputeTime-ReadSQLTime, where WindowComputeTime is the time to
compute the query results on the data in the current window, and ReadSQLTime
is the time to read query request from HDFS file system or HBase. We select a
composition plan randomly and run the plan ten times. The average execution
time is shown in Fig. 6.

Under the situation of other conditions (window range and slide) being equal,
Fig. 6 shows that the input rate of data stream have almost no impact on exe-
cution time of a composition plan. The difference between Qo and Qs is that Qs
uses two service instances to answer the query while Q3 only need to use one
service instance. So the complexity of Qg is higher than the complexity of Qs.
From the experimental results in Fig. 6, we can see that the execution time of
Q2 is more than the execution time of Q3. This indicates that the more complex
the query, the lower the query performance under the same conditions.

As shown in Fig. 6, under the situation of other conditions (window slide is
4s and input rate is 4000 (records)/s) being equal, the execution performance
of the same query decreases as the window range widened. And the execution
performance of the same query decreases as the window range narrowed.
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6 Related Work

In this section, we compare our approach to related work in the following areas:
(1) Web Service Composition, (2) Services Modeling for Data Streams, (3) Data
Integration and (4) Answer Data Stream Query Using Views.

6.1 Web Service Composition

Most of the research work on web service composition focus on traditional Effect-
Providing services or Application-logic services instead of Data-Providing ser-
vices or data services. The Application-logic services provide business function-
ality such as processing an order or requesting the shipping of the goods, while
the data services provide data sources with a defined data structure. There are
some differences making the traditional service composition algorithms inap-
plicable and inefficient to data services: (1). The composition algorithm of the
traditional services compose the services automatically based on their imple-
mented functionalities, input and output constraints, preconditions, and effects
(IOPEs). While for data services, they all share the same business function (i.e.
data query) and have no side-effects. Hence the traditional composition algo-
rithm can not be applied to data services directly [3]. (2). The composition
constructs of Application-logic services are control-flow representing communi-
cations with atomic services and specify the execution order of communications.
The data transformations of the inputs and outputs are embedded in the ser-
vice control-flow implicitly using transformation rules. While the composition
constructs of the data services are data-flow representing transfer and transfor-
mation of the output of a service as input of another service [11]. Hence the
generated composition plans for application-logic services is inefficient for data
services because the data-flow is often not expressed separately.

6.2 Services Modeling for Data Streams

Some work have proposed some service modeling approaches for data streams
such as [18] and [19]. The data service model proposed in [18] accepts data
streams as inputs and defines several stream operations such as filter, sort, merge,
join and so on to process the input data streams. Our work differs from this work
in the aim. The aim of the service model in [18] is for event correlation and pro-
cessing. While the service model in our work is for generating composition plans
automatically for data integration. [19] classifies the continuous services into four
categories: producer, processor, storage and consumer. The data service model
proposed in our work falls into the category of “producer”. In [19], continuous
services is composed as a set of continuous operations applied to a set of streams.
The data to be processed are injected in the composition by “producer” services
and flow through “processor” services and “storage” services until reaching the
“consumer” services. The composition approach in [19] is abstracted as a task
mapping problem. This is different with our work because we focus on auto-
matically composition of “producer” services given user query request. In our
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previous work [20], a data stream service model is proposed to support querying
and accessing data streams continuously. But the data stream service composi-
tion approach has not been discussed yet.

6.3 Data Integration

Although the existing distributed stream processing systems [13,21,22] support
data stream sliding-window joins, they don’t support generating the view com-
position plans automatically.

There are some related research work from data integration area such as Info-
Master [23] and Information Manifold [24]. Our work differs with these works in
many ways. Firstly, these works target toward resolving specific queries given a
set of data sources, whereas in our work the focus is on constructing a compo-
sition of services that is independent of a particular input value. The composite
service can be reused to answer a set of queries instead of a specific queries.
Secondly, compared to previous query rewriting algorithms [12,25] that were
proposed for the traditional relational data model, our composition algorithm
is based on data stream model. As far as we know, our continuous data service
model is the first to address the problem of composing continuous data services
to support data stream integration.

Recent approaches addressed the problem of data services composition adopt-
ing the data integration approaches. There are three kinds of data integration
approaches (1) Global-As-View (2) Local-As-View and (3) Global-Local-As-
View (GLAV). Research work in [26] adopts Global-As-View approach. Com-
pared to Global-As-View approach, it is much easier to add new data services
for the Local-As-View approach. [27] utilized the Local-As-View approach, its
composition algorithm adopted the Inverse-Rules technique to generate the com-
position plan. As the Inverse-Rules are computed only based on the view defini-
tion without any consideration of the query context, it has been shown typically
slower than Bucket and MiniCon algorithm.

Some work are based on Local-As-View approach using the Bucket or Mini-
Con techniques to generate the composition plan [2—4,8,9]. Our approach is more
relevant to these research work. However, these data service models can only
express snap-shot queries over data tables, continuous queries over data streams
can not be supported by these models. In these work, data providing services
are modeled as parameterized views over data schemas. Based on the service
model, services can be composed using a query rewriting approach to answer
queries over multiple data sources. Because most of the stream query languages
do not support views [7], we can not model data services as views over data
streams using these data services modeling methods directly. Compared with
these research work on data services modeling and composition, our approach
support modeling data services as views over data streams. Our approach also
improved the traditional Bucket algorithm to answer continuous queries for data
streams based on a set of given data services.

There are also other work use visual mashup languages or constructs as
service composition approach to solve the problem of data integration [28,29].
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Compared with them, the approach proposed in this paper can automatically
generate composition plans given user query instead of visual programming.

6.4 Answer Data Stream Query Using Views

Some work has addressed the problem of supporting views in data stream man-
agement systems [7]. The judgement of continuous query containment relation-
ship in our work is based on it. However, the work is limited only to solve
the problem of supporting views over streams and the query plan optimization.
Given a query request and a view, the algorithm in [7] determines if the query
is contained in the view and rewrites the query in terms of the view to answer
the query. Our work goes further. We proposes a continuous data service model
which provides a flexible, controlled and standardized approach to access or
query data stream. We address data stream integration problem by providing
service composition approach to answer conjunctive query given a set of services.
The composite service can access a set of conditions as input instead of limiting
to answering specific queries.

7 Conclusion

In this paper, we presented an approach for conjunctive query on social media
streams by composing continuous data services. We introduce a flexible con-
tinuous data service model with continuous query as service operation. Service
operation instance is modeled as a view defined on data streams in which the
data part and time synchronization part are separated from each other. A con-
tinuous data service composition algorithm is introduced for answering queries
across data streams. An experimental study is provided to evaluate the scal-
ability and performance of our approach. The results show that the algorithm
scales up very well to high input rates of the underlying data streams and a large
number of services and service instances. Location is one of the most important
contextual features of social media streams. It is challenging to access context-
based data and information over social media streams. As a future work, we plan
to address location concerns when composing continuous data services, e.g. geo-
locating users. We also plan to consider the cost model and Quality of Service
(QoS) while processing queries and composing continuous data services.
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Abstract. In the last decade, stream processing has become a very
active research domain motivated by the growing number of stream-
based applications. These applications make use of continuous queries,
which are processed by a stream processing engine (SPE) to generate
timely results given the ephemeral input data. Variations of input data
streams, in terms of both volume and distribution of values, have a
large impact on computational resource requirements. DYNAMIC AND
AUTOMATIC BALANCED SCALING FOR STORM (DABS-STORM) is an
original solution for handling dynamic adaptation of continuous queries
processing according to evolution of input stream properties, while con-
trolling the system stability. Both fluctuations in data volume and dis-
tribution of values within data streams are handled by DABS-STORM to
adjust the resources usage that best meets processing needs. To achieve
this goal, the DABS-STORM holistic approach combines a proactive auto-
parallelization algorithm with a latency-aware load balancing strategy.

1 Introduction

With the proliferation of connected devices (smartphones, sensors, etc.), more
and more data stream sources emit real-time data with fluctuations in input
rate and value distribution over time [19]. Processing these Big Data streams
(volume and velocity) in soft-real time (i.e., low latency), satisfying end-user
performance requirements, still raises several research problems.

To process a stream set, a user can submit a query to the execution infras-
tructure. This query, called a continuous query [7,19], computes new results as
new stream elements are generated by sources over time. Users define continuous
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queries through declarative languages [2,6,7,12] or, more imperatively, through
a high-level language [28,41] (Java, Python, C, etc.). In any case, these contin-
uous queries are usually turned into direct acyclic graphs (DAG) of operators,
called workflows or topologies, corresponding to execution plans [1,2,28].

To generate timely results, a workflow requires some resources (CPU, RAM,
bandwidth). The problem is that any evolution of the input streams (in input
rate or value distribution) impacts the amount of ressources needed to process it.
Furthermore, end-users usually require a good end-to-end latency and no data
loss, regardless of any other consideration. Since, in general, evolutions of input
streams cannot be captured through a-priori knowledge, a dynamic method is
required that dynamically adapts the assigned resource according to evolution of
needs. Such a method has to be as precise as possible. Indeed, whatever its impre-
cision, its consequences are negative. On the one hand, an under-provisioning
may lead to congestion, implying reduced throughput and increased latency, or
worse, data loss [1]. On the other hand, an over-provisioning induces resource
and financial wastes, while potentially generating massive network overheads [39]
and resource shortage.

Industrial [9,20], open-source [4,5] and academic [1,2,6,8,12,13,36] stream
processing engines (SPE) have been developed to simplify stream management.
Nevertheless, due to a lack of holistic and automatic strategies embracing all
aspects related to elasticity, most of these solutions rely on user expertise and
reactivity to face critical fluctuations in input rate. In particular, this is the case
for the STORM family solutions.

To adapt provisioning, three linked problems have to be considered for each
operator: parallelism degree, scheduling, and load balancing. Operator paral-
lelism defines how many threads work together to process the incoming load of
one operator. Note that, until an asymptote is reached, increasing the number of
threads improves system performance. The scheduling strategy assigns threads
to available processing units. Finally, the load balancing strategy distributes the
incoming data among the available threads.

In this work, we aim at identifying and solving the issues raised by the
dynamic adaptation of an SPE resource allocation while facing critical fluctua-
tions in input rate and value distribution. Most existing SPEs integrate efficient
automatic scheduling strategies designed to implement different objectives. For
example, the STORM family includes RSTORM [28], TSTORM [39], and Stela [40]
which respectively aim at finding the scheduling plan that reduces the number of
active processing units, thus minimizing network traffic between processing units
and avoiding processing bottlenecks due to input overload. To attain this goal,
each strategy affects the scheduling plan so that data are processed with short
latency. For example, in TSTORM [39], authors highlight overheads generated
by network communications. This observation is reused in [28] and extended
to resource usage to define an optimal scheduling plan, i.e., a scheduling plan
involving minimal computation overheads. In this paper, we focus on parallelism
degree and load balancing management so as to propose a solution that is com-
patible with each of the scheduling strategies. Our goal is to obtain a preventive
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solution which adapts the system to data stream evolutions before problems
occur. Furthermore, we expect as general a solution as possible, which does not
depend on users whether for obtaining information from their experience or for
triggering system adaptations. To reach this goal, we propose to build over two
already published solutions, AUTOSCALE [24] and OSG [29-31]. AUTOSCALE pro-
poses a method to fix the parallelism degree of each operator of a workflow with
an original data-driven approach, which considers the complete graph of opera-
tors and data streams in the workflow to avoid inconsistent local decisions that
lead to rapid revisions and therefore significant system instability. An example
of this is an operator starting a scale-in while it is apparent that its activity will
augment soon due to an increase of the output stream(s) of upstream(s) oper-
ator(s). Unfortunately, AUTOSCALE presents some instability problems which
had to be studied and fixed. OSG (ONLINE SHUFFLE GROUPING) deals with
load balancing. Even if tuple processing times are not similar from one value to
the other, OSG aims at reducing tuple completion times by carefully scheduling
each incoming tuple.
The original contributions presented in this paper are three-fold:

1. An auto-parallelization strategy improving the approach presented in [24].
AUTOSCALE+, thanks to a better modeling of STORM effective resource usage,
enables quicker deployment of adequate resources, thus improving system
throughput and stability.

2. The integration of AUTOSCALE+ and OSG into DYNAMIC AND AUTOMATIC
BALANCED SCALING FOR STORM (DABS-STORM), a holistic and automatized
approach to parallelism and load balancing in stream processing systems, has
been enabled due to their compatibility.

3. A thorough experimental evaluation of DABS-STORM highlighting its ability
to process streams with critical fluctuations in input rate and value distribu-
tion for complex continuous queries. In addition, we compare DABS-STORM
with well-known approaches from the literature.

In the remainder of this paper, Sect.2 presents the execution context from
logical and physical points of view. We describe how continuous queries are
processed over distributed infrastructures and the processing model. Section 3
presents the related work, reviewing the background on dynamic and elastic
stream processing and the main elasticity mechanisms at infrastructure and
query levels for handling variance in input load. Approaches for parallelism man-
agement and load balancing are described, respectively, in Sects.4 and 5. Our
original approach, DABS-STORM, is detailed in Sect.6 while Sect.7 is devoted
to its experimental evaluation.

2 System Model

2.1 Execution Environment

To make things more concrete while introducing some notations, let us consider
three continuous queries Q1, Q2 and Qs represented by workflows W1, W2 and
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W3 with respective associated output streams S’y, S’y and S’3 (see Fig.1). A
workflow W = (0, V) is a direct acyclic graph where O is the set of operators
and V the set of streams. Presented workflows are quite simple: W1 is linear,
W2 is a diamond, while W3 is a star. Despite their simplicity, these workflows
are interesting to study. Indeed, they are general patterns used to build much
more complex workflows [28]. Each workflow processes a set of input stream(s)
which, in our example, is included in {S1, S2,S3}.

A stream is a potentially infinite sequence of tuples, i.e., key/value pairs,
arriving over time. An input stream may have fluctuations in input rate and
value distribution as shown on the left of Fig. 1. It is worth noting the impact
these fluctuations can have, not only on the processing time, but also on the
selectivity of operators, i.e., the ratio between the number of output and input
tuples. This second point can be critical for operators such as joins [15,37] as
well as having direct impact on downstream operators.

Q1 SELECT* Q2 SELECT* Q3 SELECT*
FROM S1[Range 30min] FROM S2[Range 30min] FROM 51,52,53[Range 30min]
WHERE attr2 = A WHERE attrl = AOR attr2 >B WHERE Sl.attrl = S2.attrl
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Fig. 1. Distributed stream processing.

Each operator O; € O is processed in parallel. The parallelism degree d(O;)
of operator O; corresponds to the number of tasks assigned to the operator. For
instance, on Fig. 1, operator O, executed by tasks T3 and T3, has a parallelism
degree of d(O3) = 2.

A scheduling strategy assigns tasks to the processing units, in this case eight
available machines (M; to Mg). For instance, on Fig.1, the four tasks of the
workflow W1 are distributed on machines M; to My.

For a machine, three states are possible: active, configured and available. On
Fig. 1, machines M; to M, are active, and run some assigned tasks. Machines
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Mj; and Mg are configured but inactive (no assigned tasks). Finally, M7 and Mg
are available but not configured, which means the scheduler cannot assign tasks
to them.

While DABS-STORM could be extended to handle heterogeneous machines,
in this paper, for the simplicity’s sake, we restrict the execution context to homo-
geneous machines (H1), i.e., all machines have the same amount of CPU, RAM
and bandwidth. Furthermore, we also assume that there is never resource starva-
tion. In other words, there are always enough computational resources available
to process input streams, no matter their input rates (H2). Thus, a loss of qual-
ity or performance cannot be ascribed to a lack of resources. To enforce H2, if
the scenario does not ensure it, load shedding techniques [22,30] can be relied on,
which drop some of the inputs in order to prevent buffer overflows or trashing.

Stream elements are assumed to be heterogeneous with respect to process-
ing latency, depending on their values (H3). Consequently, DABS-STORM can
handle homogeneous data streams as well as heterogeneous ones.

Finally, as we aim at proposing a generic solution supporting user-defined
functions as well as common operators like filters and joins, we intend to deal
with stateless and stateful operators. However, in this paper, we focus on stateless
operators (H4). Indeed, it has been shown that solutions can also be useful for
other kinds of operators [31], and most SPEs supporting stateful operators, like
joins, provide a state management method while replicating these operators,
such that we can rely on them for this part.

2.2 Processing Model

Each operator O; has a logical input stream o; = (e1,...,€q,...,€n). Since
operator O; may be executed in parallel by k = d(O;) tasks T}, . .. 7Tik, then each
task receives a physical input sub-stream o}, ...,oF. Notice that o; = |, ) 7 -

Tuples of o; are assigned to a sub-stream, and thus to a task, according to a
predefined load balancing strategy. We denote by f(e) the unknown frequency!
of tuple e, i.e., the number of occurrences of e in the stream of size m. Before
being processed, a tuple e, is buffered in a FIFO input queue consumed by a
task. The processing latency w¥(q) of tuple e, on the task T* depends on the
time complexity of O;, on the computational power available to task 77", and
potentially, on the values of e, attributes. Without loss of generality, we assume
that tuples in a stream o are identified by a single integer drawn from a large
universe [n] = {1,...,n}. In other words, tuples can be modeled as single values.
The processing latency is modeled as an unknown function? of the value of e,.
The probability distribution of e, values may vary over time. In a stable system
the average processing latency of operator O; can be defined as

7, = |01i| S 3 wig) (1)

! This definition of frequency is compliant with the data streaming literature [7,35].
2 The experimental evaluation relaxes the model by taking into account processing
latency variance.
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Let £(g) be the completion time or end-to-end latency of e, i.e., how much
time it took for tuple e, from the instant it was inserted into the assigned task’s
buffer to when it was processed by the tasks. Then we can define the average
completion time for operator O; as

T = ﬁ 3" ta) (2)

eq€o;

Table 1 summarizes the notation.

Table 1. Notations.

Workflow/topology 12%
Workflow input and output streams S, s’
Operator 0,€0
Parallelism degree d(0;)
Task of operator O; T7,x € [K]
Task T} and operator O; input streams oy Co;
g™ tuple in the stream o; eq € 0;
Processing latency of eq on tasks T;° wi (q)

Average processing latency of operator O; | W,

Completion time of e, £(q)
L

Average completion time of operator O;

Tuple e frequency f

3

—~|=
[

N

Tuple e empirical probability of occurrence

Size of the stream

Number of distinct tuples in the stream

S 3 |3

2-universal hash function

3 Related Works

This section presents and discusses the most relevant strategies in the literature.
Adaptation mechanisms aiming at maintaining processing within some perfor-
mance goals are said to be elastic [32], i.e., they adapt to input stream variance.
Considering the huge difference between elastic mechanisms working at physi-
cal level (i.e. adapting resource consumption at infrastructure level) and those
working at logical level (elastic mechanisms adapting workflows to fit processing
load requirements), in this paper we only focus on the latter.
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3.1 Elastic Mechanisms at Logical Level

Workflows can be adapted to handle variations in input load. Logical level
approaches can be classified as parallelism management, scheduling, and load-
balancing.

Parallelism Management—To process stream elements timely, operator out-
put throughput should be greater than input throughput (taking into account
also the selectivity factor). Nevertheless, with a fixed number of threads, two
critical cases can occur:

— If input throughput is greater than output throughput for a sizable time
period, then the number of elements in the buffering queue increases. This
scenario causes an unacceptable increase in end-to-end latency and may lead
to congestion [22,33].

— If input throughput is smaller than output throughput for a sizable time
period, then buffering queues are mostly empty and tasks are often idle. While
in this scenario the system has low latencies, it also implies that resource usage
is not maximized.

To handle these critical scenarios, SPEs should integrate a more refined par-
allelism management strategy. When facing an overload, SPEs should increase
the parallelism degree (scale-out) of operators, thus decreasing the queuing time
of incoming elements. Conversely, when input throughput is low, SPEs should
decrease the parallelism degree (scale-in) to minimize resource waste.

Scheduling Strategy—Given the operator parallelism degree, SPEs must
schedule the tasks to the available processing units (Fig.1). We identify three
classes of scheduling strategies:

— Strategies based on CPU load balancing between all processing units [1,27,41]
assign threads on as many units as possible to divide processing load evenly.
Using all available resources is an appropriate solution to limit processing
bottlenecks due to CPU shortage. The problem is that it may imply massive
network overheads [39] and underused units.

— Strategies based on network traffic reduction [3,39] tend to concentrate as
many threads as possible on the same processing units to minimize network
traffic. These approaches improve throughput of SPEs [39] and reduce the
number of active machines compared to the previous class. However, when
input rate increases significantly, active machines tend to be overloaded more
quickly and imply major reconfiguration compared to strategies spreading
load evenly among all available units.

— Resource-aware strategies [3,28] aim at avoiding processing unit overload
and minimizing resource consumption. Through resource monitoring and pro-
cessing requirements, this class of scheduling strategies allows threads to be
grouped on processing units, thus minimizing resource waste. It offers efficient
scheduling while having resource requirements for each thread to be assigned.
The problem is that it requires accurate specifications about resource require-
ments and thus relies on user expertise. If user specifications are oversized or
undersized, this leads to a waste or lack of resources, respectively.
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Intra-operator Load Balancing—Operators can be classified as being either
stateful (e.g., standard deviation computation) or stateless (e.g., filtering).

When the target operator is stateful, its state must be kept continuously syn-
chronized among its instances, with potentially severe performance degradation
at runtime; a well-known workaround to this problem consists in partitioning the
operator state and letting each instance work on the subset of input stream con-
taining the tuples affecting its state partition [22]. In this case, key grouping is
the preferred choice as stream partitioning can be performed to correctly assign
all the tuples containing specific data values and only those to the same opera-
tor instance, thus greatly simplifying the development of parallelizable stateful
operators at the expense of performance.

In recent years there has been new interest in improving load balancing with
key grouping [17,26,31]. It is worth noting that all works cited assume that all
tuples of a stream have the same execution time.

Considering stateless operators, i.e., data operators whose output is only a
function of the current tuple in input, parallelization is straightforward. The
grouping function is free to assign the next tuple in input stream to any avail-
able instance of the receiving operator (contrary to stateful operators, where
tuple assignment is constrained). Such stream partitioning functions are often
called shuffle grouping and represent a fundamental element of a large number
of stream processing applications [22]. Notice that solutions for shuffle grouping
techniques can be applied to stateful operators as well, provided that the oper-
ator implementation includes some mechanism to warranty state consistency
(e.g., a subsequent reduce phase). Given its generality, in this work we consider
only shuffle grouping stream partitioning.

Typical implementations of shuffle groupings are based on round-robin
scheduling [4,5]. However, the processing latency of many operators are intrinsi-
cally sensitive to values. For example, an operator applying a transformation on
each character of a text has a processing latency depending on the length of the
text. Thus, high fluctuations in such values most likely increase load imbalance
considerably, which lead to performance problems.

3.2 Triggering Elastic Stream Processing

Solving operator congestion in a stream processing context is a complex prob-
lem. Out of the three major factors (parallelism management, scheduling, load
balancing), to our knowledge, most works [3,18,33,39] address only one at any
time.

However, a clear distinction can be made between reactive approaches [21,
33,40], which detect and remove potential problems from the current state of the
system, and proactive approaches which predict potential problems and antic-
ipate solutions [15,34]. Among reactive solutions, we distinguish between on
user-demand [40] and automatic [21,33] solutions.

In [40], authors suggest a solution triggering scale-in and scale-out on user
demand. This solution relies on the user adding enough resources when through-
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put declines. Consequently, this solution is mainly limited by the need for user
expertise and presence.

Dynamic and automatic approaches [18,33] also aim at adapting parallelism
degrees to avoid congestion of operators. They are based on global and local
consumption thresholds (CPU, memory), which aim at separating a normal con-
sumption from a critical one. In addition, in [21], authors suggest an algorithm
integrating a knowledge base, built through a learning phase and updated at run-
time. This knowledge base associates parallelism degrees with expected through-
put for each operator. These solutions share the fact of using current resource
consumption to detect potential congestion, thus making anticipation almost
impossible. Furthermore, they pay no attention to data distribution within the
input data streams.

Finally, some model-based solutions [15,34] anticipate congestion, thanks to
a complete model of the execution support and operator features (processing
latencies, pending queues, etc.). Here, the parallelism degrees are adapted to
minimize overall latency. Unfortunately, these solutions require detailed charac-
teristics of the system and do not support any evolution of the execution support.
In [38], authors suggest the Chronostream system, which is able to scale opera-
tors transparently and to manage internal states for both stateless and stateful
operators. Even if this approach has demonstrated its efficiency in terms of scal-
ability, Chronostream relies on stream partitioning to balance the load between
operator instances. Thus, if there is a significant difference between the average
processing latency for distinct keys, Chronostream is unable to compensate that
imbalance accurately.

Summarizing SPE elasticity at logical level, the elasticity of a SPE mainly
depends on choices related to parallelism management, scheduling, and load-
balancing. Other aspects like workflow optimization [2,6] and implementation
selection [22] are user-provided and cannot be modified at runtime. In this con-
text, we aim at suggesting a stream-based solution scaling treatments according
to stream evolution in terms of input rate and value distribution.

4 Parallelism Management with AUTOSCALE+

In [24] we defined a proactive approach, named AUTOSCALE, to manage dynam-
ically and automatically the parallelism degree of operators using indicators
monitored on streams and operators. Our proposed algorithm decides which
operators have to be reconfigured (scale-out or scale-in) and what their new
parallelism degrees are. These decisions are based on estimations of data stream
evolution and resource consumption, which are computed from monitored indi-
cators. The main originality of AUTOSCALE is that it considers the workflow as a
whole, and more precisely the dependencies between operators, when validating a
reconfiguration decision. It is worth noting that the algorithm we proposed offers
satisfying results in deciding when a reconfiguration is required, but that the new
parallelism degree computed was not always relevant, generating too frequent
reconfiguration, thus leading to system instability in some specific cases. We have
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investigated the reasons for such behaviors and identified two main causes. The
first corresponds to variations in computation times from one item to another
depending on their values. Clearly, variations in distribution of these values
within the input streams also has an impact. The problem is that such varia-
tions of computation times jeopardize the default STORM load balancing method.
To solve this problem, the only solution is to replace the load-balancing method
with a new method that has to pay attention to such variations (see Sect.5). The
second cause is related to the AUTOSCALE method itself. It transpired that the
resource consumption analysis was not precise enough. In AUTOSCALE+, it has
to be improved to better fit the specificities of the STORM’s architecture. In this
section, we first recall the general principles of AUTOSCALE before describing new
methods embedded in AUTOSCALE+. This new proposal improves AUTOSCALE,
taking CPU usage and user constraints into account.

4.1 AUTOSCALE+ Metrics

After presenting the general principles, we focus on the monitoring problem.
Finally, we detail the new metrics embedded in AUTOSCALE+.

Principle
Just like its predecessor AUTOSCALE [24], AUTOSCALE+ anticipates potential
congestion of operators through stream and operator monitoring®. For each oper-
ator, input volumes in the near future are estimated according to time series anal-
ysis [10]. The two algorithms also share the analysis of many dynamic properties
like processing latency, pending queues, and the selectivity of each operator.
Based on these, processing rates, or capacity can be estimated. The combination
of these estimations make it possible to recommend scale-in, scale-out or nothing
for each operator. Depending on available and configured resources dedicated to
the SPE, a reconfiguration of threads running on the cluster could be triggered.
In contrast to AUTOSCALE, AUTOSCALE+ considers precise resource usage
in terms of CPU, RAM and bandwidth. This allows improvement of decisions,
for example avoiding reconfigurations when parallelism degree is not the root
cause of problems, and more quickly reaching the adequate parallelism degree.

Monitoring Management
Monitoring management is based on sliding windows observing simultaneously
all threads assigned on the execution support.

Let F be a set of monitoring sliding windows F; = {(F})},en+. Each window
F; is associated with an operator O;, and is composed of iterations FJZ Each
iteration F]’ is defined by a duration A and gathers measurements collected
during this interval. These measurements are collected according to a predefined
set of timestamps M; = {m®»!, m®2 ..., m®"}, cy+. For each operator O;, our
approach collects some measurements taking into account the stream elements

3 At each scale-in or scale-out, system monitoring is disabled while the system sta-
bilizes. Indeed, the data acquired during this transition period do not provide any
information about the nominal behavior of the new configuration of the system.
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received and processed on the interval [m*P~1 m®?[ with p € [n] where [n] =

{1,...,n}. More information about monitoring management is available in [24].

Let R be the set, potentially infinite, of stream elements received by operator
;. We consider R*/ as the subset of elements received by O; during the iteration
F ;, and R*P the subset of elements received between [m*P~1 m®P|.

Let us now consider a parent operator O, and a child operator O, consum-
ing stream elements produced by O,,,. For both operators, we observe inputs
R%J. These inputs are inserted in pending queues where elements are consumed
by associated functions. We define as Input®’ the sum of inputs processed cur-
rently by the function and stream elements pending in the queue during the
iteration F j’ At the same time, we monitor the processing latency of the func-
tion and its selectivity factor for filter-based operators as presented in [23].

Metrics on Operator Input and Output
From these monitored values, we compute some metrics to analyze the activity
of each operator. The aim is to identify operators which could have critical input
volumes according to their processing capacities in the near future.

To do this, incoming volumes during the next iteration of the monitoring
window are estimated, see Fig. 2. This estimation, called EstimR", is computed
using a regression function f;_l computed based on the previous iteration as

follows: N .
Bstim®' = 3 [fi_y(m)] 3)
mieM;

where each m} belongs to the next iteration of the window.

To estimate precisely f;qa AUTOSCALE+ selects the best candidate, i.e.
the one best fitting to the previous iteration, among three competitors: linear,
logarithmic, and exponential regression models. Compared to AUTOSCALE, the
computation overhead is very small, while stream fluctuations are improved.
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Fig. 2. Illustrating metrics considering two operators.
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Operator history is not the only information that can be considered. Indeed,
the near future of an operator is clearly influenced by antecedent operators.
Furthermore, for an (antecedent) operator, a simple combination of the already
computed EstimInput® with the average selectivity factor a(F;_l) provides an
estimation of its output EstimOutput’:

EstimOutput™ = EstimInput pi x E(F;_l) (4)

So, considering an operator who has ancestors, to estimate its inputs in a
near future, we have two pieces of information. On the one hand, we have
EstimInput’ computed from its history, while, on the other hand, we have
EstimOutput™ the estimated outputs of its antecedent operators. A combine
strategy is used to mix these elements. Last but not least, to approximate the
total volume of stream elements each operator will have to process during the
next iteration, attention must be paid to the pending queue. Stream elements
pending in the operator queue, noted pending®?~!, just have to be added to the
estimation. Finally, FstimInput®’ is defined as:

EstimInput™’

= combine | EstimR", Z EstimOutput?? | + pending® !
pEpar(0;)

(5)

where par(QO;) returns all parent operators of O;.

Many different combine functions can be proposed or obtained by learn-
ing techniques. By default, AUTOSCALE+ simply returns the maz of the two
values. This corresponds to a cautious strategy with respect to scale-in oper-
ation. Indeed, scale-in is analyzed with respect to the highest estimation. On
the contrary, the combine strategy can return the min estimation to avoid over-
consumption of resources due to an ephemeral increase in input rates. The strat-
egy used will depend on the user’s priorities.

Operator Capacity Estimation
Intuitively, the capacity of an operator to treat items during a period A can be
estimated considering the processing time of elements.

(6)

ipafid —
IdealCapacity®’ = Tatid
where Lat®7 is the processing latency.

This approximation would be quite good if computational resources used by
an operator were constant. Unfortunately, it is not so simple. For example, a task
can take advantage of free CPU to make use of more CPU than reserved. To
illustrate this point, let us consider an example of three operators O 4, Op and
O¢, executed, respectively, by threads T4, T and T, running on a single CPU,
C'. As depicted on Fig. 3, some reservations have been made for each of them [28],
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let’s say ResaCPU,, ResaCPUp and ResaCPUg. While the interest of this
constraint is to avoid assignments leading to resource starvation, it should be
kept in mind that a resource used by a task is not fully defined by the reservations
made for it.
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