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Preface

This volume contains five fully revised selected regular papers, covering a wide range
of very hot topics in the fields of social networks, data stream systems, and linked data.
These include personalized social query expansion approaches, continuous query on
social media streams, elastic processing systems, and semantic interoperability for
smart grids and NoSQL environments. We would like to sincerely thank the editorial
board and the external reviewers for their thorough reviews of the submitted papers and
ensuring the high quality of this volume.

Special thanks go to Gabriela Wagner for her availability and her valuable work in
the realization of this TLDKS volume.

October 2018 Abdelkader Hameurlain
Franck Morvan
Lynda Tamine
Roland Wagner
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Personalized Social Query Expansion
Using Social Annotations

Mohamed Reda Bouadjenek1, Hakim Hacid2(B), and Mokrane Bouzeghoub3

1 Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Canada
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2 Zayed University, Dubai, United Arab Emirates

hakim.hacid@zu.ac.ae
3 University of Versailles, Versailles, France

mokrane.bouzeghoub@uvsq.fr

Abstract. Query expansion is a query pre-processing technique that
adds to a given query, terms that are likely to occur in relevant docu-
ments in order to improve information retrieval accuracy. A key problem
to solve is “how to identify the terms to be added to a query?” While con-
sidering social tagging systems as a data source, we propose an approach
that selects terms based on (i) the semantic similarity between tags com-
posing a query, (ii) a social proximity between the query and the user
for a personalized expansion, and (iii) a strategy for expanding, on the
fly, user queries. We demonstrate the effectiveness of our approach by an
intensive evaluation on three large public datasets crawled from delicious,
Flickr, and CiteULike. We show that the expanded queries built by our
method provide more accurate results as compared to the initial queries,
by increasing the MAP in a range of 10 to 16% on the three datasets.
We also compare our method to three state of the art baselines, and we
show that our query expansion method allows significant improvement
in the MAP, with a boost in a range between 5 to 18%.

Keywords: Personalization · Social Information Retrieval
Social networks · Query expansion

CR Subject Classification: H.3.3 [Information Systems]: Information
Storage and Retrieval · Information Search and Retrieval

1 Introduction

Web 2.0 has strengthened end-users position in the Web through their inte-
gration in the heart of the content generation ecosystem. This has been made
possible mainly through the availability of tools such as social networks, social
bookmarking systems, social news sites, etc., impacting the way information is
produced, processed, and consumed by both humans and machines. As a result,

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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2 M. R. Bouadjenek et al.

on the one hand, the user is no longer able to digest the large quantity of infor-
mation he has access to and is generally overwhelmed by it. On the other hand,
most of popular Information Retrieval (IR) systems lack in offering efficient per-
sonalization techniques, which provide users only with the necessary information
that fulfill their needs. Two types of constraints make the situation more com-
plex: information-dependent constraints and user-dependent constraints. The
first class of constraints includes (i) the large scale due to the continuous activi-
ties of users and their ability to generate new content, (ii) information diversity
or heterogeneity, since different types of media are used to communicate, e.g.,
text, image, video, etc. (iii) versatility, since information is dynamic and is con-
tinuously updated (confirmed, contradicted, etc.), (iv) its disparity, since it can
be in different places, and as a result (v) the variation in the quality of infor-
mation. The second class of constraints is mainly related to users’ diversity and
the high dynamics in their profiles.

To improve the IR process and reduce the amount of irrelevant documents,
there are mainly three possible improvement tracks: (i) query reformulation using
extra knowledge, i.e., expansion or refinement of the user query, (ii) post filtering
or re-ranking of the retrieved documents (based on the user profile or context),
and (iii) improvement of the IR model, i.e., reengineering of the IR process to
integrate contextual information and relevant ranking functions. In this paper,
we focus on query reformulation, especially on personalized query expansion for
personalized search, i.e., personalizing the reformulation of queries.

Query expansion consists of enriching the user’s initial query with additional
information so that the IR system may propose suitable results that better satisfy
user’s needs [14,15,19]. We explore the possibility of using the data available in
social networks, and more precisely data of social bookmarking systems, as a
source of explicit feedback information. These latter enable users to freely add,
annotate, edit, and share bookmarks of web resources, e.g., web pages. Basically,
we propose an approach which reuses the users vocabulary (the terms used to
annotate web pages) in order to expand their queries in a personalized way and
thus, increase their satisfaction regarding the quality of search. Exploiting social
knowledge for improving web search has a number of advantages:

– Feedback information in social networks is provided directly by the user,
so users interests accurate information can be harvested as people actively
express their opinions on social platforms. Thus, this user interest can be
easily modeled to provide personalized services.

– A huge amount of social information is published and available with the
agreement of the publishers. Exploiting these information should not violate
user privacy, in particular social tagging information, which doesn’t contain
sensitive information about users.

– Finally, social resources are often publicly accessible, as most of social net-
works provide APIs to access their data (even if often, a contract must be
established before any use of the data).
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Our approach in this work1 consists of three main steps: (i) determining
similar and related tags to a given query term through their co-occurrence over
resources and users, (ii) constructing a profile of the query issuer based on his
tagging activities, which is maintained and used to compute expansions, and
finally, (iii) expanding the query terms, where each term is enriched with the
most interesting tags based on their similarities and their interest to the user.

The problem we are tackling in this paper is strongly related to personaliza-
tion since we want to expand queries in a personalized way and consequently
propose adapted search results. Personalization allows to differentiate between
individuals by emphasizing on their specific domains of interest and their prefer-
ences. It is a key point in IR and its demand is constantly increasing by various
users for adapting their results [3]. Several techniques exist to provide person-
alized services among which the user profiling. The user profile is a collection
of personal information associated to a specific user that enables to capture his
interests. Details of how we model user profiles are given in Sects. 2 and 3.1.4.

The main contributions of this work can be summarized as follows:

1. We propose an approach in which we use social knowledge as explicit feedback
information for the expansion process. Reusing such a social knowledge aims
at expanding user queries with their own vocabularies instead of using a public
thesaurus, which is made by people who are not aware of the individual users
needs and expectations.

2. We propose a Personalized Social Query Expansion framework called PSQE.
This latter provides a user-dependent query expansion based on social knowl-
edge, i.e., for the same query of two different users, PSQE will provide two
different expanded queries, which will be processed by a search engine.

3. Using an evaluation on real data gathered from three different large book-
marking systems, we demonstrate the effectiveness of our framework for
socially driven query expansion compared to many state of the art approaches.

The rest of this paper is organized as follows: in Sect. 2 we introduce all the
concepts that we use throughout this paper. Section 3 introduces our method
of query expansion using folksonomy. In Sect. 4, we discuss the different experi-
ments that evaluate the performance of our approach. Related work is discussed
in Sect. 5. Finally, we conclude and provide some future directions in Sect. 6.

2 Background and Notations

In this section, we formally define the basic concepts that we use throughout this
paper namely, a bookmarks, a folksonomy, and a user profile. We also provide a
formal definition of the problem we are intending to solve.

1 This is an extended and revised version of a preliminary conference report that was
presented in [12].
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2.1 Background

Social bookmarking websites are based on the techniques of social tagging or
collaborative tagging. The principle behind social bookmarking platforms is to
provide the user with a means to annotate resources on the Web, e.g., URIs in
delicious2, videos in youtube3, images in flickr4, or academic papers in CiteU-
Like5. These annotations (also called tags) can be shared with others. This
unstructured (or better, free structured) approach to classification with users
assigning their own labels is variously referred to as a folksonomy [21,28]. A
folksonomy is based on the notion of bookmark, which is formally defined as
follows:

Definition 1 (Bookmark). Let U , T , R be respectively the set of Users, Tags
and Resources. A bookmark is a triplet (u, t, r) such as u ∈ U , t ∈ T , r ∈ R,
which represents a user u who used a tag t to annotate a resource r.

Then, a group of bookmarks which forms a folksonomy is formally defined
as follows:

Definition 2 (Folksonomy). Let U , T , R be respectively the set of Users,
Tags and Resources. A folksonomy F(U, T,R) is a subset of the cartesian product
U × T × R such that each triple (u, t, r) ∈ F is a bookmark.

A folksonomy can then be naturally represented by a tripartite-graph where
each ternary edge represents a bookmark. In particular, the graph representation
of the folksonomy F is defined as a tripartite graph G(V,E) where V = U ∪ T ∪ R
and E = {(u, t, r)|(u, t, r) ∈ F}. Figure 1 shows seven bookmarks provided by
two users on three resources using three tags.

Fig. 1. Example of a folksonomy. The triples (u, t, r) are represented as ternary-edges
connecting users, resources and tags.

2 http://www.delicious.com/.
3 http://www.youtube.com/.
4 http://www.flickr.com/.
5 http://www.citeulike.org/.

http://www.delicious.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.citeulike.org/
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Folksonomies have proven to be a valuable knowledge for user profiling [17,
35,41,43]. Especially, because users tag interesting and relevant information to
them with keywords that may be a good summary of their interest. Hence, in
this paper, and in the context of folksonomies, the profile includes all the terms
used as tags along with their weights to capture user’s tagging activities. It is
formally defined as follows:

Definition 3 (User Profile). Let U , T , R be respectively the set of Users, Tags
and Resources of a folksonomy F(U, T,R). A profile pu assigned to a user u ∈ U ,
is modeled as a weighted vector pu of m dimensions, where each dimension
represents a tag the user employed in his tagging actions. More formally, pu =
{wt1 , wt2 , ..., wtm} such that wtm is the weight of tm, such as tm ∈ T ∧ (∃r ∈ R |
(u, tm, r) ∈ F).

Thus, the profile includes the most relevant terms for the user and not all his
activities, i.e., the documents that he has tagged. A value is associated to each
term of the profile expressing its strength and importance for the given user.

Later in Sect. 3.1.4, we propose a method to assign weights to each term in
the user profile in order to better define his interests.

2.2 Problem Definition

As mentioned before, query expansion consists of enriching the initial query
with additional information. This expansion is generally expected to provide
better search results. However, providing merely a uniform expansion to all users
is, from our point of view, not really suitable nor efficient since relevance of
documents is relative for each user. Thus, a simple and uniform query expansion
is not enough to provide satisfactory search results for each user. Hence, having
a folksonomy F(U, T,R), the problem we are addressing can be formalized as
follows:

For a given user u ∈ U who issued a query q = {t1, t2, ..., tn}, how to provide
for each term ti ∈ q a ranked list of related terms L = {ti1, ti2, ..., tik}, such that
when expanding the term ti with the top k of L, the most relevant documents
are put earlier in the ranking?

3 Social Query Expansion Approach

The approach we are proposing aims at expanding user’s queries in a personalized
way. It can be decomposed into two parts: (i) an offline and (ii) an online part.
The offline part performs the heavy computation which consists of transforming
the whole social graph of a folksonomy F into a graph of tags where two tags
are related if they are semantically related. This part is also responsible for the
construction and the update of the users’ profiles, for serving the online part. The
online part of the approach is responsible for computing the concrete expansion
using the graph of tags and the user’ profiles constructed in the offline part. In
the following, we describe in more details each part and we explicitly highlight
our contributions.
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3.1 Offline Part

The offline part is also decomposed into two facets: (i) the transformation of
the social graph of a folksonomy F into a graph of tags, representing similarities
between tags that either occur on the same resources or are shared by the same
users, and (ii) the computation of the users’ profiles to highlight their interests
for personalizing their queries.

The approach is based on the creation and the maintenance of a graph of
tags that represents all the similarities that exist between the tags of F. There
exist two kinds of approaches that propose to achieve that: (i) an approach based
on the co-occurrence of tags over resources, and (ii) an approach based on their
co-occurrence over users.

3.1.1 Extracting Semantics from Resources
In the first category of approaches, [24,30,33] state that semantically related
tags are expected to occur over the same resources. For example, tags that most
occur for google.com on delicious are: search, google, engine, web, internet.

Thus, extracting semantically related tags can be carried out by computing
similarities. There exist many similarity measures [30], but all of them need pre-
processing that consists of reducing the dimensionality of the tripartite graph F

into a bipartite graph. This reduction is generally performed through aggrega-
tion methods. From the study of existing aggregation methods proposed in [30],
we have chosen the projectional aggregation along with the Jaccard, the Dice,
and the Overlap similarity measures to compute the similarity between tags.
We choose this aggregation method because its simplicity, and it is one which
gives better results in semantic information extraction [30]. Hence, we follow the
same process as [30] to extract a graph of related tags from F according to their
co-occurrence over resources:

1. Using a function F on the whole folksonomy F performs a projectional aggre-
gation over the user dimension, resulting in a bipartite graph Tag-Resource.

2. Then, using a function G on the resulting bipartite graph Tag-Resource pro-
vides a graph of tags TR, in which each link is weighted with the simi-
larity between tags according using the Jaccard, the Dice or the Overlap
metrics [30].

Therefore, we may obtain either a graph of tags TR using the Jaccard, the
Dice, or the Overlap. Note that we do not merge the similarity measures in a
same graph of tags, meaning that a graph of tags is constructed using only one
similarity measure.

We end-up with an undirected weighted graph in which nodes represent tags,
and an edge between two tags represents the fact that these tags occur together
at least on one resource. The weights associated to edges are computed from
similarities between tags as explained beforehand. This first step is illustrated
in the left upper part of Fig. 2.
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Fig. 2. Summary of the graph reduction process, which transform the whole folksonomy
F into a graph of tags TUR. The similarity values on the Figure are computed using
the Jaccard measure on both graphs TR and TU , and using α = 0.5 on the graph TUR.

3.1.2 Extracting Semantics from Users
In the second category, [4,33] state that correlated tags are also used by the
same users to annotate resources. For example, the tags Collaborative and Blog
have been used 13,557 times together by users in our delicious dataset.

This observation is more expected to happen in certain folksonomies, where
users are encouraged to upload their personal resources which leads to generate
private bookmarks, e.g., a folksonomy such as CiteULike, Flickr, or YouTube
where users are expected to upload respectively their research papers, images,
and videos. Therefore, similarly to the previous approach, [33] proposes to
extract semantically related tags using the following process:
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1. Using a function G′ on the folksonomy F performs a projectional aggregation
over the resource dimension for obtaining a bipartite graph Tag-User.

2. Then the function F ′ is used to get another graph of tags TU where simi-
larities between tags are computed using one of the three previous similarity
measures.

This process is illustrated in the right upper part of Fig. 2. Notice that the
structure of the graph of tags TR is different from the one of the graph of
tags TU .

3.1.3 Construction of the Graph of Tag Similarities
Using only one of the two previous methods to construct a graph representing
similarities between tags leads to a loss of information on one side or the other.
For example, if we choose to extract related tags according to their co-occurrence
over resources, we neglect the fact that there are some tags which are expected
to be shared by the same users and vice versa.

Therefore, we propose to use a function M which is applied on the graphs of
tags TR and TU to merge them and to get a unique graph of tags TUR where the
new similarity values are computed by merging the values using the Weighted
Borda Fuse (WBF ) [18]. This merge is summarized in Eq. 1, where 0 ≤ α ≤ 1:

SimTUR(ti, tj) = α × SimTR
(ti, tj) + (1 − α) × SimTU (ti, tj) (1)

Where, SimTUR(ti, tj) calculates the similarity between two tags relying on the
two other types of nodes, i.e., users and resources. The parameter α represents
the importance one wants to give to the two types of graphs, i.e., resources or
users, in the consideration of the similarity calculation. In fact, depending on the
context, when computing the similarity between two tags, one may want to give
a higher importance to users sharing these two tags than documents having these
tags as a common tags. Another user may want to give more importance to their
co-occurrence over resources than to the users sharing these tags. Depending on
the nature of the folksonomy, we set α to its optimal value in order to maximize
the tags semantics extraction. Finally, it should be noted that the merge is
performed between graphs generated with the same similarity measure.

This step of the offline part extracts semantics from the whole social graph
of F without a loss of information, i.e., by exploiting the co-occurrences of tags
over resources and users. This step leads to the creation of a graph of tags, where
edges represent semantic relations between tags. This graph will be further used
to extract terms that are semantically related to a given term of a query to
perform the query expansion. The contribution at this stage is the combination
of the graphs resulting from resources and users to construct a better graph of
tag similarities without loss of information. This is different from the existing
approaches where only one graph is used.

In the following, we introduce our method of constructing and weighting the
user profiles in order to personalize the expansions.
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3.1.4 Construction of the User Profile
To achieve a personalized expansion, we also propose to build a user profile
that consists of capturing information regarding real user interests. There are
different ways to build user profiles [23,40,41]. For example, a person may be
modeled as a vector of attributes of his online personal profiles including the
name, affiliation, and interests. Such simple factual data provides an inadequate
description of the individual, as they are often incomplete, mostly subjective and
do not reflect dynamic changes [23].

Since we focus on folksonomies, the user feedback is expected to be mostly
explicit (because of the tagging action, where the user explicitly assigns tags to
resources).

Thus, in a folksonomy, users are expected to tag and annotate resources
that are interesting to them using tags that summarize their understanding of
resources. In other words, these tags are in turn expected to be a good summary
of the user’s topics of interests as also discussed in [2,17,23,35,37,43]. Hence,
each user can be modeled as a set of tags and their weights.

The definition of a user profile is given in Definition 3. The main challenge
here is how to define the weight of each tag in the user profile? We propose
to use an adaptation of the well known tf-idf measure to estimate this weight.
Hence, we define the weight wti of the term ti in the user profile as the user
term frequency, inverse user frequency (utf-iuf), which is computed as follows:

utf − iufti,uj
=

nti,uj∑

tk∈pm
u

ntk,uj

× log

(
|U |
|Uti |

)
(2)

where nti,uj
is the number of time the user uj used the tag ti.

A high value of utf-iuf is reached by a high user term frequency and a low
user frequency of the term in the whole set of users. Note that we perform a
stemming on tags before computing the profiles, to eliminate the differences
between terms having the same root to better estimate the weight of each term.

User profiles are created offline and maintained incrementally. This is moti-
vated by the fact that profiles and tagging actions are not evolving as quickly
as query formulation on the system. As an analogy, it is well known that 90%
of users in the social Web consume the content (i.e., query formulation), 9%
update content, and 1% generate new content (profile updates) [34]. Thus, we
have decided to handle the profile construction as an offline task while providing
a maintenance process for keeping it up to date.

In summary, at the end of the offline part, we build two assets: (i) a graph
of tags similarities which is used to represent semantically relatedness of terms,
and (ii) user profiles which are leveraged in the personalization step.

3.2 Online Part

The online part of the approach is responsible for computing the concrete expan-
sion using the graph TUR and the profiles constructed in the offline part. Before
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presenting our algorithm of query expansion, we propose a method to compute,
on the fly, the interest of a user to a given tag.

3.2.1 Interest Measure to Tag
Having computed the similarity graph between tags and built users’ profiles
containing the degree to which a set of tags are representative of a user, it
becomes possible to compute a degree of interest a user may have to other tags,
e.g., query tags. This is useful in our approach to compute, in real time, the
suitable expansions of a tag w.r.t. a given user. In our approach, this interest
is seen as a similarity between the user profile pu and a tag ti. Intuitively, the
computed similarity captures the interest of the user u in the query term ti
denoted Iu

ti :
Iu(ti) =

∑

tj∈pu

(SimTUR(ti, tj) × wj) (3)

where Sim(ti, tj) is the similarity between the term ti and tj , the jth term of the
user profile, and wj is the weight of the term tj in the profile computed during
the previous process. Notice that any similarity measure can be used for com-
puting Sim(ti, tj), as discussed in [30]. In this work, we consider the Jaccard, the
Overlap, and the Dice similarity measures, as discussed in the previous sections.

3.2.2 Effective Query Expansion
In this step of query expansion, we consider that the similarity between two
terms ti (a query term) and tj (a potential candidate for the expansion of ti), to
be influenced by two main features: (i) the semantic similarity between ti and
tj (the semantic strength between the two terms), and (ii) the extent to which
the tag tj is likely to be interesting to the considered user.

Once these two similarities are computed, a merge operation is necessary to
obtain a final ranking value that indicates the similarity of tj with ti w.r.t. the
user u. For this, several aggregation methods and algorithms exist. We choose
the Weighted Borda Fuse (WBF) as summarized in Eq. 4, where 0 ≤ γ ≤ 1 is
a parameter that controls the strength of the semantic and social parts of our
approach. Using Eq. 4, we can rank a list of terms L, which are semantically
related to a given term ti from a user perspective.

Ranku
t (tj) =

Semantic Part︷ ︸︸ ︷
γ × SimTUR(t, tj) + (1 − γ) × Iu

tj︸ ︷︷ ︸
Social Part

(4)

The effective social query expansion is summarized in Algorithm 1. Hence,
for a query q = t1 ∧ t2 ∧ ... ∧ tm issued by a user u, we first get the user’s profile,
which is computed as explained above (Sect. 3.1.4 and Line 1 in Algorithm 1).
At this stage, the purpose is to enrich each term ti of q with related terms (line
2). Then, the objective is to get all the neighboring tags tj of ti in the tag graph
TUR (line 3). After that (in line 4), we compute for each tj , the ranking value
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that indicates its similarity with ti w.r.t. the user u using formula 4 (line 5).
Next, the neighbor list has to be sorted according to the computed values and
we keep only the k top tags (line 7). Finally, ti and its remaining neighbors must
be linked with the OR (∨) logical connector (line 8) and updated in q′.

Algorithm 1. Effective Social Query Expansion
Require: A folksonomy F

u : a User. q = {t1, t2, ..., tn} : a Query.

1: pu[m] ← extract profile of u from F

2: for all ti ∈ q do
3: L ← list of neighbor of ti in tag graph TUR
4: for all tj ∈ l do
5: tj .V alue ← Compute the ranking score Ranku

ti(tj)
6: end for
7: Sort L according to tj .V alue and keep only the top k terms in L
8: Make a logical OR (∨) connection between ti and all terms of L
9: Set the weight of the new terms tj as the tj .V alue or the TF-IDF value, depend-

ing on the choosed strategy (See Section 3.2.3)
10: Insert L in q′

11: end for
12: return q′

Example 1. If a user issues a query q = t1 ∧ t2 ∧ ... ∧ tm, it will be expanded to
q′ = {(t1∨ t11∨ ...∨ t1l) ∧ (t2∨ t21∨ ...∨ t2k) ∧ ...∧ (tm∨ tm1∨ ...∨ tmr)}, where
tij is a term that is semantically related to ti ∈ q and socially to u.

It should be noted that in this paper, we consider that the selection of each
query term is determined independently, without considering latent term rela-
tions. Most past work on modeling term dependencies has analyzed three dif-
ferent underlying dependency assumptions: full independence, sequential depen-
dence [39], and full dependence [32]. Taking into account terms dependency is
part of our future works.

3.2.3 Terms Weighting
Term weighting in query expansion is challenging since there is no formal method
for assigning weights to new terms. Indeed, appropriately weighting terms should
result in better retrieval performance. Thus, we experiment the following two
strategies for weighting new terms:

– Using the ranking values of Formula 4 as the weight of the new expanded
terms. This strategy provides personalized term weight assignment while con-
sidering both semantic strength and user interest.
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– Using the Term Frequency-Inverse Document Frequency (TF-IDF) [1] as the
weight of the new expanded terms as follows:

tf − idfti,q = tfti × log

(
|D|
|Dti |

)
(5)

where tfti denotes the term frequency of ti in the query q. This strategy
provides a uniform term weight to the query while keeping the personalizing
aspect in choosing terms. Notice that weights are assigned to terms in the
line 9 of Algorithm 1.

4 Evaluations

In this section, we describe the two types of evaluations we performed on our
approach: (i) an estimation of the parameters of our approach to provide insights
regarding their potential impact on the system, and (ii) a comparison study,
where our approach is compared to the closest state of the art approaches to
provide insights about the obtained results and position the proposal.

4.1 Datasets

A number of social bookmarking systems exist [21]. We have selected three
datasets to perform an offline evaluation: delicious, flickr and CiteULike. These
datasets are available and public. The interest of using such data instead of
crawled data is to work on widely accepted data sets, reduce the risk of noise,
and an ability to reproduce the evaluations by others as well as the ability to
compare our approach to other approaches on “standardized datasets”. Hereafter
is the description of the different datasets.

– Delicious: a social bookmarking web service for storing, sharing, and dis-
covering web bookmarks. We have used a dataset which is described and
analyzed in [42]6.

– Flickr: an image hosting, tagging and sharing website. The Flickr dataset is
the one used and studied in [38]7.

– CiteULike: an online bookmarking service that allows users to bookmark
academic articles. This dataset is the one provided by the CiteULike website8.

Before the experiments, we performed three data preprocessing tasks: (1) Sev-
eral annotations are too personal or meaningless, such as “toread”, “Imported
IE Fa-vorites”, “system:imported”, etc. We remove some of them manually. (2)
Although the annotations from delicious are easy for users to read and under-
stand, they are not designed for machine use. For example, some users may
concatenate several words to form an annotation such as “java.programming”
6 http://data.dai-labor.de/corpus/delicious/.
7 http://www.tagora-project.eu/data/#flickrphotos.
8 http://static.citeulike.org/data/2007-05-30.bz2.

http://data.dai-labor.de/corpus/delicious/
http://www.tagora-project.eu/data/#flickrphotos
http://static.citeulike.org/data/2007-05-30.bz2
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or “java/programming”. We split this kind of annotations before using them
in the experiments. (3) The list of terms undergoes a stemming by means of
the Porter’s algorithm [36] in such a way to eliminate the differences between
terms having the same root. In the same time, the system records the relations
between stemmed terms and original terms. As for the delicious dataset, we
add two other data preprocessing tasks: (i) we downloaded all the available web
pages while removing those which are no longer available, and (ii) we removed
all the non-english web pages. This operation was performed using Apache Tika
toolkit. Table 1 gives a description of these datasets.

Table 1. Corpus details

Bookmarks Users Resources Tags

Delicious 9,675,294 318,769 425,183 1,321,039

Flickr 22,140,211 112,033 327,188 912,102

CiteULike 16,164,802 107,066 3,508,847 712,912

4.2 Evaluation Methodology

Making evaluations for personalized search is a challenge in itself since relevance
judgements can only be assessed by end-users themselves [17]. This is difficult to
achieve at a large scale. Different contributions [5,8,25,31] state that the tagging
behavior of a user of folksonomies closely reflects his behavior of search on the
Web. In other words, if a user u tags a resource r with a tag t, he will choose
to access the resource r if it appears in the result obtained by submitting t as a
query to the search engine. Thus, we can easily state that any bookmark (u, t, r)
can be used as a test query for evaluations. The main idea of the experiments is
based on the following assumption:

Proposition 1. For a personalized query q = {t} issued by a user u with a
query term t, the relevant documents are those tagged by u with t.

Hence, in the off-line study, for each evaluation, we randomly select 2, 000
pairs (u, t), which are considered to form a personalized query set. For each
corresponding pair (u, t), we remove all the bookmarks (u, t, r) ∈ F,∀r ∈ R in
order to not promote the resource r in the obtained results. For each pair, the
user u sends the query q = {t} to the system. Then, the query q is enriched and
transformed into q′ following our approach. For the delicious dataset, documents
that match q′ are retrieved, ranked and sorted using the Apache Lucene. For the
Flickr and CiteULike datasets, we retrieve all resources that are annotated with
tags of q′ while representing them according to the Vector Space Model (VSM).
Then, the cosine similarity is used to compute similarity between a query q′ and
a resource rj .

For the Flickr and CiteULike datasets, we rank all the retrieved resources
using values of the cosine similarity and we consider that relevant resources are
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those tagged by u using tags of q′ to assess the obtained results. The random
selection was carried out 10 times independently, and we report the average
results.

A query expansion is expected to provide more resources as an answer to a
query because of its enrichment, which generally causes an increase in the total
recall. In our evaluation, we are more interested in studying the ability of the
method to push relevant documents to the top of the ranking. Thus, we use
the Mean Average Precision (MAP) and the Mean Reciprocal Rank (MRR), two
performance measures that take into account the ranking of relevant resources.

4.3 Study of the Parameters

We intend here to observe the parameters of our approach and estimate their
optimal values. These parameters are:

– γ, which controls the semantic part and the social part in the ranking of
tags for an expansion (see Eq. 4). The higher its value is, the stronger is the
semantic part in tag similarity ranking, and vice versa.

– The number of tags which are suitable for the expansion.
– α, which gives either a higher importance to resources or to users, when

computing the graph of tags TUR. We set this parameter such that: the higher
its value is, the stronger are the resources’ links, and thus weaker the users
links are, and vice versa (see Eq. 1).

– We evaluate two strategies for weighting the expanded terms (see Sect. 3.2.3).
– Finally, we observe the impact of the similarity measures over the search

results.

We refer to our approach in Figs. 3, 4, 5, and 6 as Personalized Social Query
Expansion (PSQE). Also, all the Figures contain the results according to each
similarity measure, and for each similarity measure, the results of the two weight-
ing strategies are shown (this results in six curves per graph).

4.3.1 Impact of the Social Interest (γ)
The results showing the impact of the user interest w.r.t. the semantic similarity
is given in Fig. 3. This latter shows the evolution of the MAP and the MRR
for different values of γ, while fixing α = 0.5 and query size to 4 for our three
datasets, and using the three similarity measures. We note that the smaller the
value of γ is, the better is the performance. This can be explained by the fact
that the higher the value of the user interest part, the more resources that the
user tags are highlighted (probably other users tag them with the same tags),
and the higher is the value of the MAP and the MRR. However, we consider that
neglecting the semantic part of Eq. 4 is not suitable for the following reasons: (i)
First, if we fix γ to 0, we are going to neglect the semantic part, and perhaps
lose the query sense (even if the potential terms to expand the query are those
related to the query terms); (ii) Second, if we fix γ to 0 we are going to face
cold start problems, since new users don’t have an initial profile that allows us
to rank terms. Thus, we choose to fix γ to 0.5 for the rest of the evaluations.
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Fig. 3. Measuring the impact of the social interest (γ). For different values of γ, we fix
α = 0.5, query size = 4 and we use the three similarity measures and the two weighting
strategies for new terms averaged over 1000 queries, using the VSM.

4.3.2 Impact of the Query Size
The objective here is to check if the length of a query impacts the obtained
results. The results are illustrated in Fig. 4. Through all the experiments we
have performed, it comes out that the maximum performance is achieved while
adding 4 to 6 related terms to the query. Adding more than 6 related terms
has no impact on the quality of the results when using values of Eq. 4 as weight

Fig. 4. Evaluating the impact of the query size on the expansion. For different values
of the query size, we use γ = 0.5, α = 0.5 and our two strategies of weighting new
terms.



16 M. R. Bouadjenek et al.

for new term. This has even a negative impact when using TF-IDF values for
term weighting as Fig. 4 shows. For the first case, this is due to the fact that the
weight of the added terms is close to 0 (we remind that the weight of the added
terms is the value of Eq. 4). Hence, this makes it natural and intuitive to pick a
value in the provided interval, between 4 and 6.

4.3.3 Impact of the Users and Resources (α)
The importance of users and resources on the way the expansion is performed
can be tuned by the parameter α of Eq. 1. Fixing α = 0 considers only links
between tags based on common users while fixing α = 1 considers only links
between tags based on common resources. The results regarding this parameter
are illustrated in Fig. 5, where the MAP and the MRR’s behaviors are quite
different on the three datasets.

Fig. 5. Evaluating the impact of the users/resources on the expansion. For values of α,
using the three similarity measures, γ = 0.5, query size = 4 and for our two strategies
of weighting new terms.

Indeed, in the delicious dataset, the values of the MAP and MRR increase
by increasing the value of α using both the Jaccard and the Dice similarities
achieving an optimal performance at α = 1. As for Flickr and CiteULike, the
optimal performance is achieved for α = 0.2 and α = 0.5 respectively. We believe
that this is due to the fact that in social bookmarking systems like delicious,
users are expected to share and annotate the same resources (URLs in delicious)
to give rise to less private resources. Therefore, annotations are expected to
occur more on resources than on users. However, in social bookmarking systems
like Flickr and CiteULike, users are expected to upload their own resources
(images and papers) resulting in more private resources. Thus, annotations are
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expected to occur more on users than on resources, a property which has been
also observed and reported in [16].

4.3.4 Impact of the Weight of Terms
In Sect. 3.2.3, we explain that we experiment two strategies for weighting the
new expanded terms by either (i) using value of Formula 4, or (ii) the TF-IDF
value using Formula 5. We note that the performances follow almost the same
distribution while varying γ and α in Fig. 3 and 5, and for our three similarity
measures over our three datasets. However, we report that each time, the TF-
IDF weighting strategy provides better performance. Hence, we conclude that
personalizing the term weighting is less advantageous and less efficient comparing
to a uniform weighting approach as used in the second strategy.

4.3.5 Impact of the Similarity Measures
The behavior of the performance seem to be the same for the three similarity
measures with each time a small advantage to the Dice measure. Hence, taking
into account the ratio between all the entities to which two tags are associated
together versus the union of these entities leads to a better estimation of the
similarity in folksonomies.

4.4 Comparison with Existing Approaches

Our objective here is to estimate how well our approach meets the users’ infor-
mation needs and compare its retrieval quality to that of other approaches,
objectively. Our approach is evaluated using the optimal values computed in the
previous section and using our two strategies of term weighting as explained in
Sect. 3.2.3. The results are illustrated in Fig. 6 as “PSQE-W = Ranking” for the
first strategy and “PSQE-W = TFIDF” for the second strategy, where we select
four baselines for comparison as described in the following. Note that we choose
the parameters that give the optimal performance for each of these baselines.

4.4.1 PSQE vs NoQE
The first approach for comparison is that with no query expansion or personal-
ization. Documents that match queries are retrieved, and ranked as explained
above. We report the following improvements:

Delicious dataset: we obtain an improvement of almost 13% of the MAP
and 18% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 16% of the MAP and 24%
of the MRR for our second strategy of term weighting using the Dice similarity
measure.
Flickr dataset: we obtain an improvement of almost 13% of the MAP and
21% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 14% of the MAP and 21%
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Fig. 6. Comparison with the different baselines of the MAP and MRR, while fixing
γ = 0.5 and query size = 4, using the delicious, Flickr, and CiteULike datasets. We
choose the optimal value of α for each similarity measure.

of the MRR for our second strategy of term weighting using the Dice similarity
measure.
CiteULike dataset: we obtain an improvement of almost 10% of the MAP
and 7% of the MRR for our first strategy of term weighting using the Jaccard
similarity measure, and an improvement of almost 15% of the MAP and 14%
of the MRR for our second strategy of term weighting using the Overlap
similarity measure.

Thus, it is clear that the query expansion has an evident advantage compared
to a strategy with no expansion. We refer to this approach as NoQE in Fig. 6.

4.4.2 PSQE vs N-BasedExp
The second approach is the neighborhood based approach, which is based on
the co-occurrence of terms over resources. This approach consists of enriching
the query q with the most related terms without considering the user profile.
Thus, queries are enriched similarly for each user. Our approach significantly
outperform the neighborhood based approach as follows:
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Delicious dataset: we obtain an improvement of almost 12% of the MAP
and 19% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 14% of the MAP and 22%
of the MRR for our second strategy of term weighting using the Dice similarity
measure.
Flickr dataset: we obtain an improvement of almost 8% of the MAP and
12% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 9% of the MAP and 12% of
the MRR for our second strategy of term weighting using the Dice similarity
measure.
CiteULike dataset: we obtain an improvement of almost 8% of the MAP
and 5% of the MRR for our first strategy of term weighting using the Jaccard
similarity measure, and an improvement of almost 13% of the MAP and 12%
of the MRR for our second strategy of term weighting using the Overlap
similarity measure.

Therefore, we conclude that our personalized query expansion efforts bring
a considerable contribution according to an approach based on the most related
terms. We refer to this approach as N-BasedExp in Fig. 6.

4.4.3 PSQE vs ExSemSe
The third approach is an approach proposed in [4], which is a strategy that
uses semantic search with query expansion named Expanded Semantic Search.
In summary, this strategy consists of adding to the query q, k possible expansion
tags with the largest similarity to the original tags in order to enrich its results.
For each query, the query initiator u, ranks results using BM25 and tag similarity
scores. We implemented this strategy and evaluated it over our datasets. We refer
to this approach as ExSemSe in Fig. 6. We report the following improvements:

Delicious dataset: we obtain an improvement of almost 5% of the MAP
and 7% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 7% of the MAP and 10% of
the MRR for our second strategy of term weighting using the Dice similarity
measure.
Flickr dataset: we obtain an improvement of almost 11% of the MAP and
16% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 12% of the MAP and 16%
of the MRR for our second strategy of term weighting using the Dice similarity
measure.
CiteULike dataset: we obtain an improvement of almost 12% of the MAP
and 10% of the MRR for our first strategy of term weighting using the Jaccard
similarity measure, and an improvement of almost 17% of the MAP and 17%
of the MRR for our second strategy of term weighting using the Overlap
similarity measure.
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4.4.4 PSQE vs TagRank
The fourth approach is an approach proposed in [6], which is an algorithm called
TagRank that automatically determines which tags best expand a list of tags in a
given query. We implemented this strategy and evaluated it over our datasets. We
refer to this approach as TagRank in Fig. 6. We report the following improve-
ments:

Delicious dataset: we obtain an improvement of almost 18.10% of the MAP
and 21, 79% of the MRR for our first strategy of term weighting using the
Overlap similarity measure, and an improvement of almost 20.83% of the
MAP and 26.42% of the MRR for our second strategy of term weighting
using the Dice similarity measure.
Flickr dataset: we obtain an improvement of almost 12.20% of the MAP and
16, 67% of the MRR for our first strategy of term weighting using the Overlap
similarity measure, and an improvement of almost 12.94% of the MAP and
17.58% of the MRR for our second strategy of term weighting using the Dice
similarity measure.
CiteULike dataset: we obtain an improvement of almost 10.23% of the
MAP and 8, 79% of the MRR for our first strategy of term weighting using
the Jaccard similarity measure, and an improvement of almost 16.49% of the
MAP and 18.35% of the MRR for our second strategy of term weighting using
the Overlap similarity measure.

In summary, the obtained results show that our approach of personalization
in query expansion using social knowledge may significantly improve web search.
By comparing the PSQE framework to the closest state of the art approaches, we
show that it is a very competitive approach that mays provide high quality results
whatever the dataset used. Finally, we notice that the better performance are
obtained with the Dice similarity measure and using TF-IDF for term weighting
over our three datasets.

5 Related Work

Current models of information retrieval are blind to the social context that
surrounds information resources, e.g., the authorship and usage of information
sources, and the social context of the user that issues the query, i.e., his social
activities of commenting, rating and sharing resources in social platforms. There-
fore, recently, the fields of Information Retrieval (IR) and Social Networks Anal-
ysis (SNA) have been bridged resulting in Social Information Retrieval (SIR)
models [20]. These models are expected to extend conventional IR models to
incorporate social information [11].

In this paper, we are mainly interested in how to use social information to
improve classic web search, in particular the query expansion process. Hence, we
cite in the following, the main works that deal with social query expansion:

Biancalana et al. [7] proposed Nereau, a Query expansion strategy where
the co-occurrence matrix of terms in documents is enhanced with meta-data
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retrieved from social bookmarking services. The system can record and interpret
users’ behavior, in order to provide personalized search results, according to their
interests in such a way that allows the selection of terms that are candidates of
the expansion based on original terms inserted by the user.

Bender et al. [4] consider SIR from both the query expansion and results
ranking and propose a model that deals more with ranking results than query
expansion. Lioma et al. [27] provide Social-QE by considering the query expan-
sion (QE) as a logical inference and by considering the addition of tags as an
extra deduction to this process. In the same spirit, Jin et al. [24] propose a
method in which the used expansion terms are selected from a large amount of
social tags in folksonomy. A tag co-occurrence method for similar terms selec-
tion is used to choose good expansion terms from the candidate tags directly
according to their potential impact on the retrieval effectiveness. The work in
[29] proposes a unified framework to address complex queries on multi-modal
“social” collections. The approach they proposed includes a query expansion
strategy that incorporates both textual and social elements. Finally, Lin et al.
[26] propose this to enrich the source of terms expansion initially composed of
relevant feedback data with social annotations. In particular, they propose a
learning term ranking approach based on this source in order to enhance and
boost the IR performances. Note that in these works, there is no personalization
of the expansion process.

Bertier et al. [6] propose TagRank algorithm, an adaptation of the celebrated
PageRank algorithm, which automatically determines which tags best expand
a list of tags in a given query. This is achieved by creating and maintaining a
TagMap matrix, a central abstraction that captures the personalized relation-
ships between tags, which is constructed by dynamically computing the estima-
tion of a distance between taggers, based on cosine similarity between tags and
items. From our point of view, the proposed solution is not really suitable, since
it needs the creation and the maintenance of a TagMap matrix for each user and
the execution of an algorithm for determining close users with a high complexity.

Finally, a more recent work by Zhou et al. [44] proposes first a model to con-
struct user profiles using tags and annotations together with documents retrieved
from an external corpus. The model integrates the word embeddings text repre-
sentation, with topic models in two groups of pseudo-aligned documents. Based
on user profiles, the authors built two query expansion techniques based on:
(i) topical weights-enhanced word embeddings, and (ii) the topical relevance
between the query and the terms inside a user profile.

6 Conclusion and Future Work

This paper discusses a contribution to the area of query expansion leveraging
the social context of the Web. We proposed a new approach based on social
personalization to transform an initial query q to another query q′ enriched
with close terms that are mostly used by not only a given user but also by
his social relatives. Given a social graph (folksonomy), the proposed approach
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starts by creating and maintaining a similarity graph of tags, that represents
semantic strength between tags. The steps required to generate this graph of
tags is operated offline, before the system is ready to process any query. Once
this graph is created, a user profile is also created offline and maintained online
for each user. These structures are used to compute personalized expansions on
the fly thanks to the combination of the semantic and social dimensions. We
demonstrated the effectiveness of our approach by an intensive evaluation on
three large public datasets crawled from delicious, Flickr, and CiteULike. We
showed that the expanded queries built by our method provide more accurate
results as compared to the initial queries, by increasing the MAP in a range of
10 to 16% on the three datasets. We also compared our method to three state
of the art baselines, and we showed that our query expansion method allows
significant improvement in MAP, with a boost in a range between 5 to 18%.
Finally, the proposed approach is being integrated into a system called LAICOS
[9,13], which can be easily plugged into existing social bookmarking platforms.

Even with the interest of the proposed method, there are still possible
improvements that we can bring. We believe that our approach is complemen-
tary to some existing approaches in the area of SIR. Thus, we are convinced
that a combination with social ranking functions such as those proposed in
[10,17,22,35,43] can be of a great interest.
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Abstract. We witness a rapid increase in the number of social media
streams due to development of Web2.0, IoT and Cloud Computing tech-
nology. These sources include both traditional relational databases and
streaming data from messaging infrastructure. We would like to use mul-
tiple social media streams to answer complex queries to enable informa-
tion sharing and intelligence gathering for better collaboration. For this
purpose, we adopt data services as the basic abstraction for both tra-
ditional relational databases and data streams retrieval. A flexible con-
tinuous data service model with continuous query as service operation
is proposed. Service operation instance is modeled as a view defined on
data streams. In the view, data part and time synchronization part are
separated from each other. Based on the continuous data service model,
we proposed a continuous data service composition algorithm for answer-
ing queries across data streams and relational data. The main idea is to
find the contained rewriting of user query on views satisfying both data
part and time synchronization part containment relationship. We also
present use case and experimental studies that indicate that the app-
roach is effective and efficient.

Keywords: Data streams · Query rewriting · Data services
Service composition · Continuous query

1 Introduction

Recent years have witnessed a social media streams boom with the increasing
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useful services such as crisis management, market research and location-based
service are delivered by gathering, querying and analyzing these data streams.
Borrowing the idea of social platforms, modern enterprises also use enterprise
social platforms to enable information sharing and intelligence gathering for
better collaboration.

Web services technology is a general medium for sharing data and function-
ality and enabling cross-organization collaboration for enterprise and web-based
systems including social platforms. Data service [1] or data-providing service [2]
is a kind of services that allow query-like access to organization’s data. Data
services provide a more flexible, controlled and standardized approach to access
or query organization’s data sources without exposing organization’s databases
directly. Furthermore, when a user require access data sources across organiza-
tions, several services can be composed to answer user query [3–5].

Social media streams have the features of data streams which are continuously
arriving, rapid, time-varying, possibly unpredictable and unbounded [6]. Tradi-
tional access methods are no longer able to cope with the complexity of social
streaming data. Here comes the questions of continuous query on social media
streams using data services approach. How to access and share social streams
using a data service approach? How to model continuous data services to provide
query-like access to the underlying data streams? And how to compose contin-
uous data services to provide social stream query across organizations? Is there
a unified data service model of query and conjunctive query for both persistent
relations and transient data streams?

Though there are some related work on data service modeling and composi-
tion to support data sharing, the difference between data streams and traditional
data sources makes the problem of accessing and sharing social data streams chal-
lenging based on data service modeling and composition approach. (1) Different
from traditional data service model, data services for queries on data streams
need to continuously update service responses and consider temporal constraints.
(2) In order to answer queries over multiple data sources, one feasible solution
is to model services as parameterized views over data sources, and compose the
services using a query rewriting approach based on the service model. Because
most of the stream query languages do not support views [7], how to model data
services as views over data streams is not trivial. And what’s more, the com-
position algorithms need to be proposed to answer queries over multiple data
sources automatically satisfying both data and temporal constraints.

In this paper, we propose a data service composition approach for continuous
conjunctive query on social media streams. The proposed approach largely draws
from experiences in the areas of data service composition, answering queries over
views and views over data streams. The contributions of this paper are as follows:

1. Continuous Data Service Model—We introduce a continuous data service
model. Service operation inputs are not modeled as fixed query conditions.
They are arbitrary query conditions modeled as a set of optional attributes
of the underlying data model and condition predicates. The service model is
flexible because any continuous query on the underlying data streams that
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can be transformed into SyncSQL expression can be expressed as a service
operation. Thus the instance of the service operation can be modeled as a
view defined on data streams. The novelty of this data service model lies in
two aspects: (1) It is based on a synchronized relation model and SyncSQL
query semantics. (2) We model the inputs and outputs of a data service as
the synchronized relation stream set subscribed from or published to mes-
sage queue. Service operations support time constraints and are modeled as
SyncSQL query.

2. Answering Query Across Data Streams—We propose a novel continuous data
service composition algorithm for answering queries across data streams. The
idea behind the algorithm is the following: (1) We transform services and
service instances into views on data streams. Every view has two components:
data part and time synchronization part. (2) We find the contained rewriting
using algorithm for “answering queries using views” on traditional relational
data. Check the containment relationship between time synchronization part
of the query and the rewriting. (3) We determine input and output parameters
and values of service operation and add new attribute constrains to the view
of a service when the service is instantiated in the algorithm.

3. Implementation and Evaluation—We describe an implementation, a use case
and provide a performance evaluation of the proposed approach.

The rest of this paper is organized as follows: In Sect. 2, we motivate the need
for conjunctive query across social media streams, discuss the underlying chal-
lenges, and overview the proposed approach. In Sect. 3 we describe our model for
continuous data services. In Sect. 4, we propose a query rewriting approach and
the corresponding algorithms (SBucket and SMiniCon) for processing queries
over data services two algorithms. In Sect. 5, we describe our implementation
and evaluate our approach. We overview related work in Sect. 6. We provide
concluding remarks in Sect. 7.

2 Motivation and Overview of the Approach

In this section, we first describe a motivating scenario from social media applica-
tion for ocean transportation information services we use throughout the paper.
Then, we discuss the challenges to be addressed and give the overview of the
approach.

2.1 Motivation

Borrowing the idea of Internet social media platforms, some modern ocean
information companies develop enterprise social platforms to enable infor-
mation sharing and intelligence gathering for better collaboration. Vari-
ous vessels share their location and events information on the platform.
Various applications collect data like vessel trajectories, vessel basic infor-
mation and so on from social media platform and also their traditional
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resource management systems. Among these data sources, the data stream
vesseltraj(mmsi, long, lat, speed) records trajectory points of a vessel,
where mmsi is the Maritime Mobile Service Identity, long and lat is the longi-
tude and latitude of the vessel location, and speed is the vessel’s speed. The
relation data vesselinfo(mmsi, imo, callsign, name, type, length, width,
positionType, eta, draught) records static information of ships including the
mmsi, the International Maritime Organization (imo) code, call sign, name, type,
length, width, the Estimated Time of Arrival (eta) and draught of the vessel.
The relation data vesseltravelinfo(imo, dest, source) records the destina-
tion and the identification of the position message source.

These data streams are subordinate to different management domain and
won’t expose full data access interface of their data sources directly. They provide
access to the set of services with constraints described in Table 1. Note that
in this table, the value of mmsi is simplified from 9 digits to 4 digits for the
convenience of reading.

Table 1. Data services in the ocean data query scenario

Service Functionality and constraints Formal expression of the underlying

data streams

DS1 Query on those vessels whose imo

number less than 2000 with a time-based

sliding window of window size 5 s and

slide size 2 s

vesselinfo(mmsi, imo, callsign, name,

type, length, width, positionType, eta,

draught), vesseltraj(mmsi, long, lat,

speed), imo < 2000, wsize(5), slide(2)

DS2 Query on those vessels whose imo is

greater than 3000 with a time-based

sliding window of window size 5 s and

slide size 2 s

vesseltravelinfo(imo, dest, source),

imo> 3000, wsize(5), slide(2)

DS3 Query on those vessels whose speed is

less than 30 km/h with a time-based

sliding window of window size 5 s and

slide size 1 s

vesseltraj(mmsi, long, lat, speed),

speed < 30 km/h, wsize(5), slide(1)

DS4 Query on those vessels whose imo

number is greater than 3000 and speed is

greater than 30 km/h with a time-based

sliding window of window size 5 s and

slide size 2 s

vesseltravelinfo(imo, dest, source),

vesselinfo(mmsi, imo, callsign, name,

type, length, width, positionType, eta,

draught), imo > 3000, wsize(5), slide(2)

DS5 Query on those vessels whose mmsi is

greater than 1000 with a time-based

sliding window of window size 5 s and

slide size 4 s

vesselinfo(mmsi, imo, callsign, name,

type, length, width, positionType, eta,

draught), vesseltraj(mmsi, long, lat,

speed), mmsi > 1000, wsize(5), slide(4)

The underlying data streams of DS1 are vesselinfo and vesseltraj. They
have constraint that imo is less than 2000 with a time-based sliding window
of window size 5 s and slide size 2 s. The underlying data stream of DS2 is
vesseltravelinfo. This data stream has constraints that the imo is greater
than 3000 with window size 5 s and slide size 2 s. The underlying data stream of
DS3 is vesseltraj. This data stream has constraints that the speed is less than
30 km/h with window size 5 s and slide size 1 s. The underlying data streams of
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DS4 are vesseltravelinfo and vesselinfo. This service has constraints that
the imo is greater than 2000, with window size 5 s and slide size 2 s. The under-
lying data streams of DS5 is vesselinfo and vesseltraj. They have constraints
that the mmsi is greater than 1000 with window size 5 s and slide size 4 s.

Those services with sliding window constraints continuously push output to
the service consumer once the consumer create a connection with the service
producer. The output is the query results in range of the configured window size
and will be updated every slide size. So we call these services “continuous data
services”.

Now assume the following query asks for vessels which have outstanding
speed over a sliding window. Note we express the query as conjunctive queries
extended with time-based sliding-window semantics. The join predicates in this
notation are expressed by multiple occurrences of the same variables.

Q(mmsi, draught, dest, speed):-vesselinfo(mmsi, imo, callsign, name,
type, length, width, positionType, eta, draught), vesseltraj(mmsi, long,

lat, speed), vesseltravelinfo(imo, dest, source), speed ≥ 40,

wsize(5), slide(4)

Because the data sources can’t be accessed directly, we can’t join the data
sources directly using the existing data stream management systems. We will
discover the related services to answer query. Obviously service DS3 is not useful
to satisfy this query request, because DS3 has information only on vessels whose
speed is less than 30 km/h whereas we are interested in vessels which has speed
greater than 40 km/h. Although DS1 is relevant to user query, it only has mmsi,
draught, speed information and needs to retrieve dest information by invoking
other service like DS2 and DS4. However, DS1 only has information on vessels
with imo less than 2000, while DS2 and DS4 have information on vessels with
imo greater than 3000, meaning DS1 and DS2, DS4 are disjoint. So service DS1 is
also not useful to answer this user query. We are left with two possible plans to
use the services to answer this query. Firstly invoke DS5 to retrieve the list of
vessels with a sliding-window of window size 5 s and slide size 4 s. Then invoke
DS4 where imo is greater than 3000 with a sliding-window of window size 5 s
and slide size 2 s. Results from both services are joint to answer Q. Note that the
sliding-window constraints of DS4 and DS5 are different, we also need to judge if
the joint results can satisfy the query requirement. In the same way, we will also
find that DS5 and DS2 can be joint to answer Q.

2.2 Overview of the Approach

Some of the challenges involved in providing the above-mentioned tasks are:
(1) developing a model for continuous data services. Different from traditional
services, data services or data-providing services are concerned with data query
and retrieval. They generate the appropriate outputs given specific inputs as
query conditions. They do not provide any functionality beyond data query and



A Data Services Composition for Continuous Query 31

retrieval, and have no side effects. Unlike traditional data sources, social media
streams have features of temporality and dynamicity. This makes the problem
of data service modelling challenging. The data services for social media streams
query and retrieval should continuously generate outputs given specific inputs
as query conditions. For query over multiple social media streams,data services
model should support conjunctive query over data streams. Though some related
work [2–4,8,9] have proposed query model and data service model for data query,
retrieval and integration, they are not inapplicable for data stream query and
integration. and (2) developing techniques for answering continuous queries over
continuous data services. Users should be relieved from the burdensome task of
selecting, composing, and invoking data services. Given a continuous query over
multiple social media streams, it will be automatically executed by selecting and
orchestrating the right data services.

The overview of our approach is presented in Fig. 1. Continuous data services
are modeled as views over streams. Streams are represented as tagged streams
which will be introduced in details in Sect. 3.1. The details of the components of
a continuous data service will be introduced in Sect. 3.4. As the same as table
view in database, a view over streams can be seen as a function that maps a set
of input data streams into an output derived stream. In Fig. 1, this is represented
as that the data service subscribes the input streams and publishes the output
stream. Each service has service operations and data and/or time constraints
description on the input/output streams. User queries can be transformed as
SQL-like query over data streams with time constraints (we use Synchronized
SQL query language SyncSQL [7] in this paper, a closed language to express
composable queries over data streams). The mediator selects the services that
can be combined to answer the posed query using the techniques of query rewrit-
ing on views, which will be introduced in Sect. 4. Then, it generates a composite
service as an execution plan for the query, execute the composite service and
push results to user continuously. The composite service can be deployed as a
new continuous data service.

3 Model of Continuous Data Service

3.1 Data Model

We use the synchronized relation model for describing the contents of data
stream sources. The data model includes:

1. S and �(S). S is a tagged stream with the format of “Tag〈Attrs〉ts”, where
Tag can be either insert (+), update (u), or delete (-) and ts indicates the time
at which the modification takes place. For example, “+〈0001, 075, ...〉1”
represents a tuple in Vesseltraj inserted in the stream. The tagged stream
is the incremental representation format of a raw stream. Any raw stream
of a data stream source can be represented as a tagged stream. Any tagged
stream S has a corresponding time-varying relation �(S). The relation is
continuously modified by S’s tuples.
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Fig. 1. Overview of the proposed approach.

2. Attrs. Attrs are the attributes of the time-varying relation �(S).
3. ts. ts is the time point where the relation �(S) is modified by the underlying

S’s tuples.
4. Sync. Sync synchronized stream is a special tagged stream “+〈timepoint〉ts”,

where timepoint represents a time point which is the only attribute of Sync.
For example, “+〈0〉0, +〈2〉2” is a synchronized stream indicates the time point
sequences [0, 2, 4,. . . ]. In the following paper, unit time sequence [0, 1, 2,. . . ]
is denoted as Sync, [0, 2, 4,. . . ] is denoted Sync2 and so on. Synchronized
stream is a kind of tagged stream. So it also has a corresponding time-varying
relation �(Sync).

5. �Sync(S). �Sync(S) is a synchronized relation of any arity. �Sync2

(Vesseltraj) is a synchronized relation that Vesseltraj’s tuples are
reflected in �Sync2(Vesseltraj) only at the time points that are specified
by the synchronization stream Sync2. Figure 2 illustrates a synchronized rela-
tion of �Sync2(Vesseltraj). For example, at Time 1, �Sync2(Vesseltraj)
is empty and “+〈3001, ...〉1” is not inserted in �Sync2(Vesseltraj) until
Time 2.

DataModel of �Sync(S) can be represented as a tuple: 〈Attrs, SyncUnits〉,
where Attrs = {attr} is a set of attributes, SyncUnits is the subscript index of
the synchronization stream Sync. For example, The value of SyncUnits is 2 for
Sync2, 3 for Sync3 and 4 for Sync4 etc.
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Fig. 2. A synchronized relation of �Sync2(Vesseltraj)

3.2 Continuous Query

Continuous queries are expressed using SyncSQL. According to the SyncSQL
syntax, the query Q in the motivating example can be expressed as follows:

CREATEVIEW FourUnit sS l ide AS
SELECT 1 AS KeyAttr ,

MAX(T. TimePoint ) as currTime
FROM �( Sync4 ) T

CREATE STREAMED VIEW R5 S4 Q AS
SELECT T. mmsi , T. speed , I . draught ,

TRAVEL. des t
FROM �Sync4 ( V e s s e l t r a j ) T,

�( FourUnit sS l ide ) N,
Ve s s e l i n f o I ,
V e s s e l t r a v e l i n f o TRAVEL

WHERE T. speed ≥ 40 AND
N. currTime - 5 < T.TS ≤ N. currTime

In order to represent sliding-window query Q, FourUnitsSlide is defined as
a view on �(Sync4) as follows: “+〈1, 0〉0, u〈1, 4〉4, u〈1, 8〉8, ....”. Note this
synchronized stream has only one record that is updated every 4 s.

3.3 Continuous Query Containment

Query containment and equivalence checking provide a formal framework to
compare different queries in a data integration system. In relational databases,
a query Q1 is said to be contained in Q2, denoted by Q1 ⊆ Q2, if and only if
Q1(D) ⊆ Q2(D) for any database instance D. Q1 is equivalent to Q2 if and only if
Q1 ⊆ Q2 and Q2 ⊇ Q1. Containment mapping is used to test query containment
[10]. Assume Q1 and Q2 are two conjunctive query, a mapping ψ from the variables
of Q1 to the variables of Q2 is a containment mapping if (1) ψ maps every sub-
query in Q1 to a sub-query in Q2, and (2) ψ maps the head of Q1 to the head of
Q2. Q1 ⊇ Q2 if and only if there exists a containment mapping from Q1 to Q2.

In stream processing system, a continuous query over n tagged streams
S1...Sn is semantically equivalent to a materialized view that is defined by
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an SQL expression over the time-varying relations, �(S1)...�(Sn) [7]. The big
difference between time-varying relations and traditional relations is that the
time-varying relations have arbitrary refresh conditions. The solution is to iso-
late the synchronization streams out of the continuous query expression. Then
the containment relationship is tested in two steps: (1) test data containment
using traditional query containment test method, and (2) test synchronization
containment.

For example, to test the containment relationship between Q and a data ser-
vice DS, we first transform the queries into SyncSQL expression and isolate the
synchronization streams. Because SyncSQL expression is too long and not con-
venient for expressing conjunctive queries, we extend the notation of conjunctive
queries based on a very simple form of mathematical logic [10] with synchro-
nization notation to express the SyncSQL query (here we call this notation as
conjunctive queries with synchronization stream):

Q(X̄):-�(R1)(X̄1), ...,�(Rn)(X̄n), c1, ..., cm, tc, Synci ∩ Syncj ∩ ...

In the query, �(R1)(X1), . . . ,�(Rn)(Xn) are the sub-goals of the query. The
variables in X̄ are called head variables or distinguished variables. The cjs are
interpreted atoms and are of the form XθY, where X and Y are either variables or
constants, and at least one of X or Y is a variable. The operator θ is an interpreted
predicate such as =,≤,<, 
=,> or ≥. tc is the range time constraint. Synci is
the synchronization stream applied on R1 ... to Rn.

Accordingly, the query in Sect. 2 is:

Q(mmsi, draught, dest, speed):-�(T), I, TRAVEL, speed ≥ 40, 5, Sync4

and an example data service is:

DS(mmsi, speed):-�(T), I, mmsi > 3000, speed ≥ 30, 5, Sync1

To test the containment of DS and Q, we first test containment of data part of
DS and Q. Because any tuples satisfied by the selection and projection conditions
of Q also satisfied DS, the data part of Q is contained in data part of DS. The
synchronization relation part of Q (�Sync4(T)) is contained in the synchronization
relation part of DS (�Sync1(T)). We can conclude that Q is contained in DS.

3.4 Continuous Data Service

We model a continuous service as a view defined on the underlying data streams.
Any service subscribes one or multiple data streams or database tables, which
is defined as Subs. Any service has zero to multiple operations in which inputs,
outputs, window range, window slide size should be defined. Input and output
parameters are from the attributes of the underlying synchronized relations cor-
responding with Subs. Given a specific user inputs, the service has an associated
instance. A service instance can also be defined as a view on the underlying
data streams, which can be expressed as a SyncSQL query over the underlying
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synchronized relations. Each service can have multiple instances and thus can
express multiple SyncSQL queries. Every service instance publishes one tagged
stream on message queue.

Such service can be expressed as follows: DS = 〈ID, SubS, PubS, Ops〉, where:

1. ID is the unique identity of the service.
2. SubS is the stream set of the service subscribed from message queue. SubS =

{〈Ssub, DataConstrs, TimeConstr〉}, where DSsub is a tagged stream defined
in Sect. 3. A Data model 〈Attrs, SyncUnits〉 is corresponding with a time-
varying relations �(Ssub). DataConstrs and TimeConstr are the constraints
applied on content and time of the tagged stream.

3. PubS is the stream set of the service published to message queue.
PubStreams = {〈Spub, DataConstrs, TimeConstr〉}, where DSpub is a tagged
stream. It is corresponding with a time-varying relation �(Spub).

4. DataConstrs = {DataConstr}, where DataConstr = 〈attr, condop,
constant〉. attr is the attribute of �(Ssub). condop can be one of the con-
dition operator from >, =,<,≥, 
=,≤. constant is a constant value.

5. TimeConstr = 〈range〉, where range is range size of the sliding window of
synchronized relation. Note that tumbling window and hopping window are
both a special form of the sliding window. For tumbling window, range size is
equal to slide size. And for hopping window, range size is a multiple of slide
size.

6. Ops = {〈inputs, outputs, range, slide〉} is the service operations.
inputs = {input} are a set of attributes of DSsub, the corresponding con-
dition operator >, =,<,≥, 
=,≤ and constants. outputs = {output} are a
set of output parameters of the service operation. range and slide are the
time constraint of the service request. A SyncSQL expression can be gener-
ated from Ops.

A service description DS = 〈ID, SubS, PubS, Ops〉 can be transformed into a
view:

DS(X̄):-�(Ssub1), ...,�(Ssubn), ci, ..., cm, tc, Synci ∩ ... ∩ Syncm

where X̄ is all the attributes from all DSsub elements of SubS, �(Ssub1), . . . ,
�(Ssubn) are the underlying time-varying relation corresponding with all the
elements of SubS and ci, . . . , cm are the data constraints applied on them. tc
is the intersection of all the window range size constraints applied on them.
Synci is the synchronization stream applied on �(Ssubi). PubS of a service is
determined when a service is instantiated. When a service is instantiated, the
elements of the input set Ops are determined, which will add the additional data
constraints on the description as the following service instance description. We
describe a service using all the attributes from all DSsub as the default output
set. But the elements of the output set Ops are finally determined until a service
is instantiated.
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A service instance description of DS = 〈ID, SubS, PubS, Ops〉 can be trans-
formed into a view:

DS(X̄)inst:-�(DSsub1), ...,�(DSsubn), c1, ..., cm, cop1, ..., cops,

tc, Sync1 ∩ ... ∩ Syncm,∩Sync1 ∩ ... ∩ Synct

cop1, ..., cops are data constraints from inputs of service operations. Sync1 ∩
... ∩ Synct are synchronization stream from the time constraints of service
operations. tc is the intersection of all the window range size constraints applied
on �(Subi) and from service operations.

4 Data Services Composition for Answering Continuous
Query

Services composition is a very active area of research. The basic ingredient of any
composite application are the software components encapsulating functionality,
data, and/or a user interface. Services is a kind of software components provid-
ing a set of operations, which allow one to programmatically interact with the
encapsulated functionality and/or UI. Examples of typical service components
are SOAP and RESTful Web services. These software components can be com-
posed into a composite application by invoking their operations according to a
composition plan [11]. In this section, we present the data services composition
algorithm used for answering continuous query across multiple data streams and
relation data.

The algorithm is shown in Algorithm1.

Algorithm 1. Continuous Data Services Composition
Input: conjunctive query Q in two parts:

data part Qd of the form: Qd(X̄):-�(R1)(X̄1), ...,�(Rn)(X̄n), c1, ..., cl, tc

synchronization part SyncQ of the form: SyncQ = Sync1 ∩ ... ∩ Syncj;
a set of services S and service instances Sinst;

Output: a composed service CompS

1: Let S be the union of S and Sinst, each element is S′

2: using Qd(X̄) and a set of conjunctive views S′d(Ȳ) as inputs of SBucket algorithm
in or SMiniCon algorithm in Sect. 4.1, determine the input and output parameter
values of services, find the service composition plan W which is the largest contained
or equivalent rewriting set of Q, each element in W is a service instance description.

3: if W �= ∅ then
4: ExecutePlan(W)
5: CompS=GenerateCompService(W)
6: else
7: CompS = ∅
8: end if
9: return CompS
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We improve the Bucket algorithm and MiniCon algorithm [12] to find largest
contained or equivalent rewriting set in step 2. The improved algorithms is called
SBucket (Service Bucket) algorithm and SMiniCon (Service MiniCon) algorithm,
and will be introduced in Sects. 4.1 and 4.2.

The execution plan W is a conjunctive views of service instances and may
has some additional data constraints conditions. In step 4, to determine the
execution order of service instances, we first pop out the first head variable from
W and find those service instances that has this variable as join predicate. Join
these service instances results as R1(x1, . . . , xn) where xi are variables from
the joint service instances. Pop out the next head variable from W and find those
remaining service instances and R1 that has this variable as join predicate. Join
them as R2. Continue the above operations until there are no service instances
left.

Algorithm 2. Create buckets
Input: conjunctive query Q in two parts:

data part Qd of the form:
Qd(X̄):-�(R1)(X̄1), ...,�(Rn)(X̄n), c1, ..., cn, tc

synchronization part SyncQ of the form: SyncQ = Sync1 ∩ ... ∩ Syncn;
a set of views V transformed from service set S and service instance set Sinst;

Output: list of buckets
1: for 1 ≤ i ≤ n do
2: Initialize Bucketi to ∅
3: end for
4: for each subgoal gi in Q do
5: for each V ∈ V do
6: Let V be of the form:

V(Ȳ):-�(S1)(Ȳ1), ...,�(Sm)(Ȳm), d1, ..., ds, tcV, sync1 ∩ ... ∩ synct
7: if �(SyncV) ⊇ �(Syncq) and tcV ≥ tc then
8: if gi is an element of subgoals set of V then
9: if each x ∈ Xi is also an element of Ȳ then

10: if the data constraints of V satisfy the data constraints of Q then
11: add V into Bucketi
12: end if
13: end if
14: end if
15: end if
16: end for
17: end for

In step 5, CompS = 〈ID, SubS, PubS, Ops〉, where SubS are union of all PubS
from the service instances with the data constraints. PubS and the elements of
Ops = {〈inputs, outputs, range, slide〉} are determined when the service is
instantiated.
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4.1 SBucket Algorithm

In order to support finding relevant continuous data services or service instances,
we improve the Bucket algorithm by adding the synchronization stream contain-
ment judgement and determining the service operation inputs and outputs after
the relevant services are found. The approach for answering continuous query
based on our data service model has three steps.

The first step constructs for each subgoal g in the query a bucket of relevant
service or service instance atoms. It is shown in Algorithm 2.

The second step considers all the possible combinations of services and service
instances. Each combination should include one of the service or service instance
atoms from every bucket. Generate the candidate composition plans by checking
if each combination is satisfiable (if there exists no self-contradictory in the same
combination). Delete those that is unsatisfied.

Algorithm 3. Check whether a candidate plan is equivalent and instantiate the
services
Input: candidate services and service instances composition plan p(Ȳ);

conjunctive query Q(X̄);
a set of executable equivalent services and/or service instances composition plan
eqCompPlans

Output: the updated result of eqCompPlans
1: Denote the intersection of data constraints of p and Q as D∩ C, where D is the data

constraints set of p and C is the data constraints set of Q
2: Get all of the elements exist in set D ∩ C that don’t exist in set of data constraints

of p, denoted as A = D∩C\D. This set is the additional data constraints that should
be added on p in order to be equivalent to Q

3: if Q ⊆ p then
4: if there exists services (not service instance) in p then
5: for each subgoal g of p do
6: if g is a service then
7: A = g.genInstance(Ȳ ∩ X̄, A, sync)

8: end if
9: end for

10: if A = ∅ then
11: add p into eqCompPlans

12: end if
13: else
14: if p ⊆ Q then
15: add p into eqCompPlans

16: end if
17: end if
18: end if

The third step searches the equivalent service composition plans or the con-
tained service composition plans, and determine the input and output parame-
ters of service operations. Take searching the equivalent service composition plan
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as the example, the basic idea is to consider each candidate composition plan
p, check if p ≡ Q when there exists no service atom (in other words, all atoms
are service instances) in p. If there exist services in p and Q ⊆ p, we search the
additional constraints that can be applied on services when we instantiate it.
The concrete steps for considering each p are shown in Algorithm 3.

In step 3 and step 14, when we judge the containment relationship between
the plan and query, time synchronization containment relationship is checked
first.

In step 7, we use the additional data constraints A to instantiate a service.
A method genInstance(output, dataConstr, timeConstr) is called to deter-
mine the input and output parameters of the service operation. In this method,
the output parameter value is taken as the output parameter value of the service
operation. In step 7, we take additional data constraints in A as the input param-
eter values of the service operation. According to the first stage of SBucket,
time constraints of every service or service instance in p all contain the time
constraints of Q, so SBucket algorithm takes the time constraints of Q as the
time constraints of the service operation. In this method, we update A with the
unsatisfied data constraints and returned. After the loop 5, all the services in
p are instantiated. If the attributes of all the additional data constraints are
also the data attributes of �(gsub), it means that all the additional data con-
straints can be applied on the services, in other words, the services can satisfy
the data constraints after instantiation. Otherwise, the service composition plan
is abandoned.

In step 14, if Q ⊆ p, Q ⊇ p and all atoms of p are service instances, add p into
equivalent result set directly.

The above algorithm is to search the equivalent plan. To search the contained
composition plan, there is a difference that SBucket algorithm only consider the
plans whose data constraints haven’t existed in the contained result set. First,
if Q ⊇ p and all atoms of p are service instances, add p into contained result
set directly. If Q is not contained in p and data constraints of Q overlap with
that of p, and there exist service atoms in p, we should instantiate the services.
Check whether all the additional constraints can be applied on the services when
instantiating them. If they can’t be applied, this means that the services can not
satisfy the data constraints after instantiation, in other words, the plan is not
executable.

4.2 SMiniCon Algorithm

The above algorithm adopts the idea of Bucket algorithm into the composition
approach for continuous query, however, as illustrated in [12], Bucket algorithm
exists some redundant computing and has performance limitations. Firstly, it
misses some important interactions between view subgoals by considering each
subgoal in isolation. As a result, the buckets contain irrelevant views, and hence
the second step of the algorithm becomes very expensive. Second, if there exists
multiple homonymy predicates in query or view, Bucket algorithm would not
realize that if it uses the predicate, then it has to use the predicate multiple
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of the query subgoals. Realizing this would save the algorithm exploring use-
less combinations in the second phase. The concrete examples are illustrated in
Sect. 5.2.

So, we improve the MiniCon algorithm with continuous data service model in
this paper. The MiniCon algorithm begins like the Bucket algorithm, considering
which views contain subgoals that correspond to subgoals in the query. However,
once the algorithm finds a partial mapping from a subgoal g in the query to a
subgoal g1 in a view V, it changes perspective and looks at the variables in
the query. The algorithm considers the join predicates in the query (which are
specified by multiple occurrences of the same variable) and finds the minimal
additional set of subgoals that need to be mapped to subgoals in V, given that g
will be mapped to g1. This set of subgoals and mapping information is called a
MiniCon Description (MCD), and can be viewed as a generalization of buckets.

In order to better illustrate the difference between our SMiniCon algorithm
and MiniCon algorithm against continuous data service model, we simplify the
explanation of MiniCon by assuming that all the attributes of the relations with
the same relation name also have the same attribute name. In other words, we
don’t need to consider the attribute mapping, so the corresponding form of MCD
as well as some properties can be simplified:

MiniCon Description 1. An MCD for a query Q over a view V is a tuple of
the form (V, gc) where gc is a subset of subgoals in Q which are covered by some
subgoals in V

Based on the simplified MCD definition, the following conditions to determine
which subgoals should be added to the minimal additional set of subgoals:

Property 1. The simplified MiniCon algorithm considers an MCD for Q over
V only if it satisfied the following conditions:
C1. If attribute x of subgoal g is in head of Q, then the corresponding attribute x
of subgoal g1 must be in the head of V
C2. If x is not in head of V, and x is a join predicate in Q, then check every
subgoal which includes x in Q according to this property to expand the additional
set of subgoals.

MiniCon algorithm has two phases. The first phase is to form MCD according
to Property 1. The second phase is to create the query rewriting plan by com-
bining multiple MCDs. In this phase, the algorithm only considers such subset
of MCDS:

Property 2. The MiniCon Algorithm considers the subset mcds of MCDs
(formed as mcd1, . . .mcdn) only if it satisfies the following conditions:
(1). gcmcd1 ∪ gcmcd2 ∪ ... ∪ gcmcdn = subgoals(Q), in other word, the union of
all gc in mcds equals the subgoals set of Q (2). for each i 
= j, gci ∩ gcj = ∅.

Considering the application scenarios in Sect. 2, queries and views are usually
accompanied with comparison predicates. MiniCon algorithm can also support
the comparison predicates through adding the following conditions to Property 1
in the first phase of forming MCD:
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Property 3. The simplified MiniCon algorithm considers the MCD for Q over
V only if it satisfies Property 1 and the following conditions.
C3. If there exists a data constraint VDC with an attribute x in subgoal g1 of V,
then determine the containment relationship between VDC and the constraint QDC
in Q having the same attribute x. If VDC can’t be covered by QDC but intersect with
it, and x is in the head of V, then form the MCD.

In fact, the difference between a service and the corresponding view is, new
attribute constrains can be added to the view when the service is instantiated.
If VDC can’t be covered by QDC, it doesn’t mean that it can’t be covered by QDC
after the service is instantiated. Because it may be covered by QDC after attribute
constrains are added. So there is no need to exclude the construction of MCD
according to C3.

In order to instantiate the possible services in the second phase, we add
projDC as an attribute of MCD. projDC is the constraints intersection of Q and
V, and the attributes in projDC are all come from the attributes of V. So projDC
can be described as the projection of data range of V to data range of Q. And
what’s more, in order to distinguish between equivalent rewriting and contained
rewriting in the next phase, we add the mt as a tag of the MCD type, 0 represents
the MCD can be used to generate the equivalent rewriting, while 1 represents the
MCD is going to generate the contained rewriting. So we define the SMiniCon
description (abbreviated as SMCD) as a tuple form (V, gc, projDC, mt).

SMiniCon Description 1. An SMCD for a query Q over a continuous data
service DS is a tuple of the form (V, gc, projDC, mt), where gc is a subset of
subgoals in Q which are covered by some subgoals in the view V transformed from
data service DS, projDC is the constraints intersection of Q and V. When the data
constraints of V contains the data constraints of Q, mt is 0 to indicate the SMCD
can be used to generate the equivalent rewriting. Otherwise, mt is 1 to indicate
that the SMCD can be used to generate the contained rewriting.

We based on the following conditions of a SMCD to determine which subgoals
should be added to the minimal additional set of subgoals:

Property 4. The SMiniCon Algorithm considers the SMCD for Q over V only
if it satisfies the following conditions.
C1. If attribute x of subgoal g is in head of Q, then the corresponding attribute x
of subgoal g1 must be in the head of V
C2. If x is not in head of V, and x is a join predicate in Q, then check every
subgoal which includes x in Q according to this property to expand the additional
set of subgoals
C3. The synchronization part of Q is contained in the synchronization relation
part of V.
C4. If there exists a data constraint VDC with an attribute x in subgoal g1 of V,
then VDC and the constraint QDC in Q having the same attribute x are not disjoint.
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Algorithm 4. Form SMCD
Input: conjunctive query Q in two parts: data part Qd of the form:

Qd(X̄):-�(R1)(X̄1), ...,�(Rn)(X̄n), c1, ..., cn, tc synchronization part SyncQ of
the form: SyncQ = Sync1 ∩ ...Syncn; a set of views V transformed from services S
and service instances Sinst;

Output: a set of SMCD SMCDS

1: Initialize SMCDS to ∅, joinAttrs = genJoinAttrs(Q)

2: for each subgoal gi in Q do
3: for each V ∈ V do
4: Let V be of the form: V(Ȳ):-�(S1)(Ȳ1), ...,�(Sm)(Ȳm), d1, ..., dm, sync1∩

... ∩ syncm ∩ sync1 ∩ ... ∩ synct
5: if �(SyncQ) ⊆ �(SyncV) then
6: if there exists no SMCD that it’s name is V and it’s gc covers gi in SMCDS

then
7: create a null SMCD for V and SMCD.mt = 1
8: if the data constraints of V and the data constraints of Q are disjoint

then
9: break

10: else
11: if the data constraints of V contains the data constraints of Q,set

SMCD.mt as 0
12: end if
13: canGen, gc = genGc(gi, V, Q, joinAttrs)

14: if canGen is true then
15: SMCD.gc = gc

16: SMCD.projDC = the data constraints projection of V to Q

17: add SMCD to SMCDS

18: end if
19: end if
20: end if
21: end for
22: end for
23: return SMCDS

Our SMiniCon algorithm also has two phases. The first phase is to form
SMCD. The second phase is to combine SMCDs and instantiate the possible
services. The first phase of SMiniCon is shown in Algorithm 4, it creates all
possible SMCD for each V according to the SMCD Description 1 and Property 4.
We first check the synchronization containment relationship in step 5 to avoid
unnecessary calculations. Then a method genGc(subgoalOfQ, V, Q, joinAttrs)
is called to generate values of gc and canGen that denotes whether the gc can
be generated. This method extends the minimal additional set of subgoals that
can be covered by V through parameters of a subgoal of Q and joinAttrs (the
join predicates in Q). If canJoin equals true, the projDC would be determined
and add the SMCD to SMCDS.

The second phase is shown in Algorithm 5. It considers each subset of SMCDS
as smcds which satisfied the Property the same as Property 2. Each smcds cov-
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ers all subgoals of Q, however, in order to determine whether the combination of
SMCD can generate an executable rewriting plan, we need to determine whether
there is an intersection among the data ranges projected to Q (i.e. projDC) by
each SMCD in the combination. We take A as the intersection result of all the
projDC, if there is no constraint intersection for one attribute, A will be empty.
For example, if projDC1 is “mmsi > 3000, speed > 20 km” and projDC2 is
“mmsi < 2000, speed < 40 km”, there is no constraint intersection for mmsi,
so the value of A is empty. In other word, the data ranges are disjoint for this
combination, so the combination can’t generate an executable plan.

Algorithm 5. Find Executable Plans
Input: SMCDS:
Output: executable equal plans execEqlPlans and executable contained plans

execContainPlans

1: Initialize execEqlPlans and execContainPlans to ∅
2: for each subset smcds of SMCDs (formed as smcd1, smcd2...smcdn) that the union

of all gc in smcds equals the subgoals of Q and for every i �= j gci ∩ gcj = ∅ do
3: A = smcd1.projDC ∩ smcd2.projDC ∩ ... ∩ smcdn.projDC

4: p = ∅
5: if A includes all attributes in the union set of all smcd.projDC then
6: A = A \ (smcd1.V.c ∪ smcd2.V.c ∪ ... ∪ smcdn.V.c)

7: if there exists smcd such that smcd.V is a service then
8: for each smcd that smcd.V is a service do
9: A = smcd.V.genInstance(Ȳ ∩ X̄, A, sync)

10: end for
11: end if
12: if A = ∅ then
13: p = create a executable plan consists of all smcd.V in smcds

14: if all smcd.mt in smcds == 0 then
15: add p to execEqlPlans

16: else
17: add p to execContainPlans

18: end if
19: end if
20: end if
21: end for
22: return execEqlPlans and execContainPlans

If the combination can generate an executable plan, we update A as additional
data constraints by eliminating its own constraints of each smcd.V in smcds in
step 6, then we use A to instantiate the possible services in the combination. The
method genInstance in step 9 is the same as the genInstance in Algorithm 3.
If the A is digested to be empty by the services, it can create an executable
rewriting plan consisting of all views in smcds (services are instantiated). Oth-
erwise, there will be no executable plans to generate. Finally, the algorithm uses
the mt attribute to determine whether the rewriting is an equivalent rewriting or
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an contained rewriting. If mt are all equals 0 in the combination, the rewriting
must be an equivalent rewriting, and conversely, the rewriting is a contained
rewriting, note that the SMiniCon algorithm only consider contained rewriting
plans whose data constraints haven’t appeared yet in contained result set which
is similar to the SBucket algorithm.

5 Implementation and Evaluation

In this section, we first describe an implementation of our approach. Then we
provide a use case and experimental evaluation.

5.1 Implementation

The architecture of our system is shown in Fig. 3. Users interact with the system
through a web based interface. The interface enables users to register and browse
relational databases and data stream sources. The registered information about
the data sources are managed in the service registry. Users can formulate queries
either using SyncSQL templates or by combining such templates into conjunctive
query.

When a query is posed, the query rewriter module uses the information from
service registry to generate the service composition plans and determine the
inputs of the services. Implementation of the data service composition algo-
rithm is available on Github1. The service executor module is responsible for
determining the invocation and join order of the services and service instances.

Every service is implemented as a Spark Streaming [13] job. The underlying
data streams are subscribed (represented as “sub” in the Figure) by the service
using Kafka [14]. And the outputs of a service are published (represented as
“pub” in the Figure) to Kafka, which can be subscribed by later services. The
underlying data sources (relational databases, NoSQL databases and stream
data) are registered as continuous query services by publishing to Kafka and
being processed in spark streaming job after subscriptions (relational database
can also registered as a common data service directly, we provide CRUD opera-
tions for it). For those Web based clients, we expose continuous data service as
REST-like API [15] over HTTP protocol based on a Web-based push technology
- Sever-Sent Events (SSE) [16]. It allows the service to push query results to
clients continuously. The client sends a request to a service and opens a single
long-lived HTTP connection. The service then sends data continuously to the
client without further action from the client.

5.2 Case Study

In this section, we take the example introduced in Sect. 2 as the use case to
introduce how our approach works.

DS1.SubS ={(�Sync2(T), null, 5), (I, {imo < 2000}, 5)}
1 https://github.com/declouddataservice/servicecomposition.

https://github.com/declouddataservice/servicecomposition
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Fig. 3. Architecture of the implementation.

The SyncSQL expression of the query on the underlying data sources can be
generated from DS1.SubS as a streamed view as follows:

CREATE STREAMED VIEW DS1 Data AS
SELECT mmsi , imo , . . .
FROM �Sync2 ( V e s s e l t r a j ) T,

NowView N,
Ve s s e l i n f o I

WHERE I . imo < 2000 AND
N. currTime - 5 < T.TS ≤ N. currTime

Every instance of DS1 can be re-written as a SyncSQL expression on
DS1 Data. For example, assume the outputs of Ops of an instance of DS1 are
{mmsi, draught, speed} and no input parameters. range and slide are 5 and
2 separately.

DS1.Pubs and the SyncSQL expression of the query on the underlying data
sources can be generated as follows:

DS1.PubS = {(�Sync2〈mmsi, draught, speed〉, {imo < 2000}, 5)}

This instance of DS1 can be expressed as :

CREATE STREAMED VIEW R5 S2 DS1inst AS
SELECT mmsi , draught , speed
FROM �Sync2 ( V e s s e l t r a j ) T,

NowView N,
Ve s s e l i n f o I

WHERE I . imo < 2000 AND
N. currTime - 5 < T.TS ≤ N. currTime
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or in the form of:

DS1inst(mmsi, draught, speed):-�(T), I, imo < 2000, 5, Sync2

In a similar way, SubS, PubS and the instance of DS2 can be expressed as
follows:

DS2.SubS = {(TRAVEL, imo > 3000, 5)}
The PubS of DS2 for an instance is expressed as :

DS2.PubS = {(�Sync2〈dest, source〉, imo > 3000, 5)}
Then the instance of DS2 is:

DS2inst(dest, source):-TRAVEL, imo > 3000, 5, Sync2

SubS of DS3 is :

DS3.SubS = {(�Sync1(T), {speed < 30}, 5)}
PubS of DS3 for an instance is expressed as :

DS3.PubS = {(�Sync1〈mmsi, speed〉, {speed < 30}, 5)}
The instance of DS3 can be expressed as follows :

DS3inst(mmsi, speed):-�(T), speed < 30, 5, Sync1

SubS of DS4 is :

DS4.SubS = {(TRAVEL, {imo > 3000}, 5), (I, {imo > 3000}, 5)}
PubS of DS4 for an instance is expressed as :

DS4.PubS = {(�Sync2〈mmsi, draught, dest〉, {imo > 3000}, 5)}
The instance of DS4 can be expressed as follows :

DS4inst(mmsi, draught, dest):-TRAVEL, I, imo > 3000, 5, Sync2

SubS of DS5 is :

DS5.SubS = {(�Sync4(T), mmsi > 1000, 5), (I, mmsi > 1000, 5)}
Assume there is no instance for service DS5, so it is express as:

DS5(mmsi, long, lat, speed, imo, callsign, name, type,

length, width, positionType, eta, draught):-
I,�(T), mmsi > 1000, 5, Sync4
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Query is expressed as Sect. 3.2. This query has sub-goals �(T), I and TRAVEL.
According to our SBucket algorithm in Sect. 4.1, the steps to answer user query
are as follows:

In the first step the algorithm creates buckets for each sub-goal of Q. The
contents of bucket for sub-goal �(T) are: DS1inst(mmsi, draught, speed) and
DS5(mmsi, imo, speed, long, ...). DS3inst is not in this bucket because the
interpreted predicates of the view and the query are not mutually satisfi-
able. The contents of bucket for sub-goal TRAVEL are: DS2inst(dest, source)
and DS4inst(mmsi, draught, dest). The contents of bucket for sub-goal
I are: DS1inst(mmsi, draught, speed), DS4inst(mmsi, draught, dest), and
DS5(mmsi, imo, speed, long, ...).

In the second step of the algorithm, we combine elements from the buckets.
The first combination, involving the first element from each bucket, yields the
rewriting

Q1(mmsi, draught, speed, dest):-DS1inst(mmsi, draught, speed),

DS1inst(mmsi, draught, speed), DS2inst(dest, source
′)

After we remove the first sub-goal, which is redundant, Q1 finally
consists of DS1inst and DS2inst. While the attribute imo does not
appear in the head of DS2inst, so we will not be able to apply
the join predicate between vesseltravelinfo(imo, dest, source) and
vesselinfo(mmsi, imo, callsign, name, type, length, width, positionType,
eta, draught) in the query. Therefore, DS2inst is not usable to answer query,
and the combinations involving DS2inst, for example Q1, can’t be established to
answer the query.

Considering the second element in the left bucket yields the rewriting:

Q2(mmsi, draught, speed, dest):-DS1inst(mmsi, draught, speed),
DS1inst(mmsi, draught, speed), DS4inst(mmsi, draught, dest)

Remove the redundant sub-goal, Q2 actually consists of DS1inst and DS4inst,
while they are relevant to the query in isolation, their combination is guaranteed
to be empty because they cover disjoint sets of vessel imo numbers. Similarly,
combinations involving DS1inst and DS5 at the same time should be excluded.

After eliminating the combinations above, we consider to yield the following
rewriting:

Q3(mmsi, draught, speed, dest):-DS4inst(mmsi, draught, dest),

DS5(mmsi, imo
′, speed, long′, ...), DS4inst(mmsi, draught, dest)

Then we remove the redundant sub-goal, add the predicate speed ≥ 40, and
join with the synchronization stream. So we would obtain Q3, which is the only
contained rewriting the algorithm finds.

Then check the containment relationship between SyncQ3 = Sync2 ∩ Sync4
and SyncQ = Sync4. Apparently, SyncQ is contained in SyncQ3 . So the time part
of Q3 is Sync2 ∩ Sync4.
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The output parameters of DS5 are set to be variables from attributes
of the underlying data stream which are also in the head of Q, which is
mmsi, draught, speed. The inputs parameters of DS5 are speed ≥ 40.

The main inefficiency of this algorithm is that it misses some important
interactions between service subgoals by considering each subgoal in isolation.
So the buckets contain irrelevant services, for example DS2inst, and hence the
second step of the algorithm becomes very expensive. In our SMiniCon algorithm
proposed in Sect. 4.2, these interactions would be found in the first phase.

In the first phase, the algorithm creates an SMCD for each service. In order
to express the SMCD briefly, we only provide the information about subgoals
covered by each service. For DS1inst, it can cover vesseltraj. DS4inst cov-
ers vesselinfo and vesseltravelinfo synchronously, while DS5 can cover
vesselinfo or vesseltraj individually. Note that there are no any SMCD
created for DS3inst and DS2inst according to SMCD creation condition.

In the second phase, the SMiniCon algorithm only focuses on combinations
where the SMCDs cover mutually exclusive sets of subgoals in the query. There-
fore we only need to consider the following rewritings yielded by usable combi-
nations:

Q4(mmsi, draught, speed, dest):-DS1isnt(mmsi, draught, speed),
DS4inst(mmsi, draught, dest)

Q5(mmsi, draught, speed, dest):-DS4inst(mmsi, draught, dest),

DS5(mmsi, imo
′, speed, long′, ...)

As we discussed in the SBucket algorithm, Q4 will be excluded, so the final
usable rewriting is Q5. Meanwhile, the parameters determination is the same as
Q1. From the above, we can see that in the second phase SMiniCon only checks
two combinations while SBucket algorithm needs to consider each element of the
Cartesian product of the buckets.

5.3 Experimental Evaluation

In this section, we give an experimental evaluation of our approach. The goal
of the experimental evaluation is to (1) analyze the factors that affect the per-
formance of the service composition algorithm, and (2) analyze the factors that
affect the execution performance of the continuous data services.

The service composition algorithm experiments are run on a computer with
Intel(R) Core(TM) i5-2400 CPU 3.10 GHz and 8 GB memory. Experiments on
the execution performance of the continuous data services are run on a cluster
with the following configuration as shown in Table 2:
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Table 2. Experimental Environment Configuration

Host role CPU Mem. OS Framework

Master 4×AMD Opteron 6128(2.0GHz/8-core) 64GB CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0

Slave1 4×AMD Opteron 6128(2.0GHz/8-core) 64GB CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0

Slave2 2×Intel(R)Xeon E5620(2.4GHz/4-core) 64GB CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0

Slave3 2×Intel(R)Xeon E5620(2.4GHz/4-core) 72GB CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0

Slave4 2×Intel(R)Xeon E5620(2.4GHz/4-core) 72GB CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0

Slave5 2×Intel(R)Xeon E5620(2.4GHz/4-core) 72GB CentOS 7.0.1406 CDH(5.11)/Spark 1.6.0

In order to experimentally evaluate our approach, we select a set of queries
and generate a set of continuous data services and service instances.

Here we use three representative queries:

1. Query 1: query movie IDs and directors of those movies that exceed 100
million dollars on box office returns.

Q1(Title, Year, Dir) : -Movie(ID, Title, Year, Genre), Revenue(ID,
Amount), Director(ID, Dir), Amount > 100, wsize(5), slide(2)

2. Query 2: query those vessels whose speed exceed 40 km/h.

Q2(mmsi, draught, dest, speed) : -vesselinfo(mmsi, imo, callsign,
name, type, length, width, positionType, eta, draught), vesseltraj

(mmsi, long, lat, speed), vesseltravelinfo(imo, dest, source),

speed > 40, wsize(5), slide(4)

3. Query 3: query mmsi and callsign of those vessels whose speed exceed
40 km/h.

Q3(mmsi, callsign) : -vesselinfo(mmsi, imo, callsign, name, type,
length, width, positionType, eta, draught), vesseltraj(mmsi, long,

lat, speed), speed > 40, wsize(5), slide(4)

According to 80/20 rule (also known as Pareto principle) [17], we generate
data services and instances using a random method and enable the number of
services and service instances related to user queries are about 20% of the total
services and service instances.

For each query, we generate various number of data services and data service
instances from 200, 400, ... to 1000. We here present results obtained by running
each experiment ten times in Table 3.
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Table 3. Query statistics for queries 1, 2 and 3 as the number of data sources is varied
between 200 and 1000

Query Services Max bucket

size

Plans

enum.

Plans

gen.

Time per

plan (ms.)

Total time

(Sec.)

1 200 29 3193 24 15.61 0.27

400 59 25501 116 11.31 0.89

600 89 94092 343 4.31 1.29

800 118 212037 776 2.95 2.09

1000 144 390105 1355 2.44 3.08

2 200 22 3000 83 7.78 0.54

400 46 22351 515 2.51 1.21

600 69 78757 1600 1.26 1.92

800 88 191141 3668 0.90 3.30

1000 110 335315 6238 0.86 5.60

3 200 28 462 64 4.63 0.27

400 56 2000 231 2.65 0.59

600 87 4582 509 1.78 0.89

800 117 7763 903 1.18 1.04

1000 149 12568 1422 0.95 1.31

Maximum bucket size is the average number of sources in the largest bucket
created using SBucket algorithm in Algorithm2. Plans enumerated is the average
number of candidate rewriting plans (including the composition plans equivalent
to the query and contained in the query) enumerated in the algorithm. Table 3
gives the average total time taken to generate all composition plans and the
average time per composition.

Figure 4 plots the total and average time to generate all composition plans for
each query against the number of data sources. We can observe that the average
time per composition plan is within 20 ms. In this experiment, we select the
number of data sources according to the experimental results of Q2, because Q2
took the longest time and is the most valuable for the experimental performance
test. For Q2, if the number of data sources is above 3000, the time reaches 6 min
and 42 s to generate roughly the same number of composition plans. When the
number of data sources is above 3500, the maximum capacity has been reached.
When the number of data sources increases within a range of 200 to 1000, the
average time to generate a composition plan does not increases with the growth
of the data sources. It decreases and is within 20 ms.

We also compare the performance of SBucket algorithm and SMiniCon algo-
rithm for Q2 and Q3. As shown in Fig. 5, SMiniCon algorithm outperforms
SBucket algorithm apparently.

For Q2 and Q3, data services are generated from real data set. And the data
services for Q1 are generated from simulated data set. Here we do experiments
on Q2 and Q3 to analyze the factors that affect the execution performance of the
continuous data services.
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(a) total time to generate composition
plans

(b) average time to generate composi-
tion plans

Fig. 4. Total and average time to generate composition plans.

We send 20, 40, 60, 80, 100 data records generated from real
data sets every 10 ms to simulate data stream with the rate of
2000 (records)/s, 4000 (records)/s,..., 10000(records/s). We measure the
execution time of composite service with the formula ExecuteTime =
WindowComputeTime-ReadSQLTime, where WindowComputeTime is the time to
compute the query results on the data in the current window, and ReadSQLTime
is the time to read query request from HDFS file system or HBase. We select a
composition plan randomly and run the plan ten times. The average execution
time is shown in Fig. 6.

Under the situation of other conditions (window range and slide) being equal,
Fig. 6 shows that the input rate of data stream have almost no impact on exe-
cution time of a composition plan. The difference between Q2 and Q3 is that Q2
uses two service instances to answer the query while Q3 only need to use one
service instance. So the complexity of Q2 is higher than the complexity of Q3.
From the experimental results in Fig. 6, we can see that the execution time of
Q2 is more than the execution time of Q3. This indicates that the more complex
the query, the lower the query performance under the same conditions.

As shown in Fig. 6, under the situation of other conditions (window slide is
4 s and input rate is 4000 (records)/s) being equal, the execution performance
of the same query decreases as the window range widened. And the execution
performance of the same query decreases as the window range narrowed.
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(a) total time to generate composi-
tion plans (Query 2)

(b) average time to generate composi-
tion plans (Query 2)

(c) total time to generate composi-
tion plans (Query 3) (d) average time to generate composi-

tion plans (Query 3)

Fig. 5. Comparison of SMiniCon and SBucket.

Fig. 6. Execution time of a composition plan.
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6 Related Work

In this section, we compare our approach to related work in the following areas:
(1) Web Service Composition, (2) Services Modeling for Data Streams, (3) Data
Integration and (4) Answer Data Stream Query Using Views.

6.1 Web Service Composition

Most of the research work on web service composition focus on traditional Effect-
Providing services or Application-logic services instead of Data-Providing ser-
vices or data services. The Application-logic services provide business function-
ality such as processing an order or requesting the shipping of the goods, while
the data services provide data sources with a defined data structure. There are
some differences making the traditional service composition algorithms inap-
plicable and inefficient to data services: (1). The composition algorithm of the
traditional services compose the services automatically based on their imple-
mented functionalities, input and output constraints, preconditions, and effects
(IOPEs). While for data services, they all share the same business function (i.e.
data query) and have no side-effects. Hence the traditional composition algo-
rithm can not be applied to data services directly [3]. (2). The composition
constructs of Application-logic services are control-flow representing communi-
cations with atomic services and specify the execution order of communications.
The data transformations of the inputs and outputs are embedded in the ser-
vice control-flow implicitly using transformation rules. While the composition
constructs of the data services are data-flow representing transfer and transfor-
mation of the output of a service as input of another service [11]. Hence the
generated composition plans for application-logic services is inefficient for data
services because the data-flow is often not expressed separately.

6.2 Services Modeling for Data Streams

Some work have proposed some service modeling approaches for data streams
such as [18] and [19]. The data service model proposed in [18] accepts data
streams as inputs and defines several stream operations such as filter, sort, merge,
join and so on to process the input data streams. Our work differs from this work
in the aim. The aim of the service model in [18] is for event correlation and pro-
cessing. While the service model in our work is for generating composition plans
automatically for data integration. [19] classifies the continuous services into four
categories: producer, processor, storage and consumer. The data service model
proposed in our work falls into the category of “producer”. In [19], continuous
services is composed as a set of continuous operations applied to a set of streams.
The data to be processed are injected in the composition by “producer” services
and flow through “processor” services and “storage” services until reaching the
“consumer” services. The composition approach in [19] is abstracted as a task
mapping problem. This is different with our work because we focus on auto-
matically composition of “producer” services given user query request. In our
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previous work [20], a data stream service model is proposed to support querying
and accessing data streams continuously. But the data stream service composi-
tion approach has not been discussed yet.

6.3 Data Integration

Although the existing distributed stream processing systems [13,21,22] support
data stream sliding-window joins, they don’t support generating the view com-
position plans automatically.

There are some related research work from data integration area such as Info-
Master [23] and Information Manifold [24]. Our work differs with these works in
many ways. Firstly, these works target toward resolving specific queries given a
set of data sources, whereas in our work the focus is on constructing a compo-
sition of services that is independent of a particular input value. The composite
service can be reused to answer a set of queries instead of a specific queries.
Secondly, compared to previous query rewriting algorithms [12,25] that were
proposed for the traditional relational data model, our composition algorithm
is based on data stream model. As far as we know, our continuous data service
model is the first to address the problem of composing continuous data services
to support data stream integration.

Recent approaches addressed the problem of data services composition adopt-
ing the data integration approaches. There are three kinds of data integration
approaches (1) Global-As-View (2) Local-As-View and (3) Global-Local-As-
View (GLAV). Research work in [26] adopts Global-As-View approach. Com-
pared to Global-As-View approach, it is much easier to add new data services
for the Local-As-View approach. [27] utilized the Local-As-View approach, its
composition algorithm adopted the Inverse-Rules technique to generate the com-
position plan. As the Inverse-Rules are computed only based on the view defini-
tion without any consideration of the query context, it has been shown typically
slower than Bucket and MiniCon algorithm.

Some work are based on Local-As-View approach using the Bucket or Mini-
Con techniques to generate the composition plan [2–4,8,9]. Our approach is more
relevant to these research work. However, these data service models can only
express snap-shot queries over data tables, continuous queries over data streams
can not be supported by these models. In these work, data providing services
are modeled as parameterized views over data schemas. Based on the service
model, services can be composed using a query rewriting approach to answer
queries over multiple data sources. Because most of the stream query languages
do not support views [7], we can not model data services as views over data
streams using these data services modeling methods directly. Compared with
these research work on data services modeling and composition, our approach
support modeling data services as views over data streams. Our approach also
improved the traditional Bucket algorithm to answer continuous queries for data
streams based on a set of given data services.

There are also other work use visual mashup languages or constructs as
service composition approach to solve the problem of data integration [28,29].
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Compared with them, the approach proposed in this paper can automatically
generate composition plans given user query instead of visual programming.

6.4 Answer Data Stream Query Using Views

Some work has addressed the problem of supporting views in data stream man-
agement systems [7]. The judgement of continuous query containment relation-
ship in our work is based on it. However, the work is limited only to solve
the problem of supporting views over streams and the query plan optimization.
Given a query request and a view, the algorithm in [7] determines if the query
is contained in the view and rewrites the query in terms of the view to answer
the query. Our work goes further. We proposes a continuous data service model
which provides a flexible, controlled and standardized approach to access or
query data stream. We address data stream integration problem by providing
service composition approach to answer conjunctive query given a set of services.
The composite service can access a set of conditions as input instead of limiting
to answering specific queries.

7 Conclusion

In this paper, we presented an approach for conjunctive query on social media
streams by composing continuous data services. We introduce a flexible con-
tinuous data service model with continuous query as service operation. Service
operation instance is modeled as a view defined on data streams in which the
data part and time synchronization part are separated from each other. A con-
tinuous data service composition algorithm is introduced for answering queries
across data streams. An experimental study is provided to evaluate the scal-
ability and performance of our approach. The results show that the algorithm
scales up very well to high input rates of the underlying data streams and a large
number of services and service instances. Location is one of the most important
contextual features of social media streams. It is challenging to access context-
based data and information over social media streams. As a future work, we plan
to address location concerns when composing continuous data services, e.g. geo-
locating users. We also plan to consider the cost model and Quality of Service
(QoS) while processing queries and composing continuous data services.
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Abstract. In the last decade, stream processing has become a very
active research domain motivated by the growing number of stream-
based applications. These applications make use of continuous queries,
which are processed by a stream processing engine (SPE) to generate
timely results given the ephemeral input data. Variations of input data
streams, in terms of both volume and distribution of values, have a
large impact on computational resource requirements. Dynamic and
Automatic Balanced Scaling for Storm (DABS-Storm) is an
original solution for handling dynamic adaptation of continuous queries
processing according to evolution of input stream properties, while con-
trolling the system stability. Both fluctuations in data volume and dis-
tribution of values within data streams are handled by DABS-Storm to
adjust the resources usage that best meets processing needs. To achieve
this goal, the DABS-Storm holistic approach combines a proactive auto-
parallelization algorithm with a latency-aware load balancing strategy.

1 Introduction

With the proliferation of connected devices (smartphones, sensors, etc.), more
and more data stream sources emit real-time data with fluctuations in input
rate and value distribution over time [19]. Processing these Big Data streams
(volume and velocity) in soft-real time (i.e., low latency), satisfying end-user
performance requirements, still raises several research problems.

To process a stream set, a user can submit a query to the execution infras-
tructure. This query, called a continuous query [7,19], computes new results as
new stream elements are generated by sources over time. Users define continuous
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queries through declarative languages [2,6,7,12] or, more imperatively, through
a high-level language [28,41] (Java, Python, C, etc.). In any case, these contin-
uous queries are usually turned into direct acyclic graphs (DAG) of operators,
called workflows or topologies, corresponding to execution plans [1,2,28].

To generate timely results, a workflow requires some resources (CPU, RAM,
bandwidth). The problem is that any evolution of the input streams (in input
rate or value distribution) impacts the amount of ressources needed to process it.
Furthermore, end-users usually require a good end-to-end latency and no data
loss, regardless of any other consideration. Since, in general, evolutions of input
streams cannot be captured through a-priori knowledge, a dynamic method is
required that dynamically adapts the assigned resource according to evolution of
needs. Such a method has to be as precise as possible. Indeed, whatever its impre-
cision, its consequences are negative. On the one hand, an under-provisioning
may lead to congestion, implying reduced throughput and increased latency, or
worse, data loss [1]. On the other hand, an over-provisioning induces resource
and financial wastes, while potentially generating massive network overheads [39]
and resource shortage.

Industrial [9,20], open-source [4,5] and academic [1,2,6,8,12,13,36] stream
processing engines (SPE) have been developed to simplify stream management.
Nevertheless, due to a lack of holistic and automatic strategies embracing all
aspects related to elasticity, most of these solutions rely on user expertise and
reactivity to face critical fluctuations in input rate. In particular, this is the case
for the Storm family solutions.

To adapt provisioning, three linked problems have to be considered for each
operator: parallelism degree, scheduling, and load balancing. Operator paral-
lelism defines how many threads work together to process the incoming load of
one operator. Note that, until an asymptote is reached, increasing the number of
threads improves system performance. The scheduling strategy assigns threads
to available processing units. Finally, the load balancing strategy distributes the
incoming data among the available threads.

In this work, we aim at identifying and solving the issues raised by the
dynamic adaptation of an SPE resource allocation while facing critical fluctua-
tions in input rate and value distribution. Most existing SPEs integrate efficient
automatic scheduling strategies designed to implement different objectives. For
example, the Storm family includes RStorm [28], TStorm [39], and Stela [40]
which respectively aim at finding the scheduling plan that reduces the number of
active processing units, thus minimizing network traffic between processing units
and avoiding processing bottlenecks due to input overload. To attain this goal,
each strategy affects the scheduling plan so that data are processed with short
latency. For example, in TStorm [39], authors highlight overheads generated
by network communications. This observation is reused in [28] and extended
to resource usage to define an optimal scheduling plan, i.e., a scheduling plan
involving minimal computation overheads. In this paper, we focus on parallelism
degree and load balancing management so as to propose a solution that is com-
patible with each of the scheduling strategies. Our goal is to obtain a preventive
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solution which adapts the system to data stream evolutions before problems
occur. Furthermore, we expect as general a solution as possible, which does not
depend on users whether for obtaining information from their experience or for
triggering system adaptations. To reach this goal, we propose to build over two
already published solutions, Autoscale [24] and OSG [29–31]. Autoscale pro-
poses a method to fix the parallelism degree of each operator of a workflow with
an original data-driven approach, which considers the complete graph of opera-
tors and data streams in the workflow to avoid inconsistent local decisions that
lead to rapid revisions and therefore significant system instability. An example
of this is an operator starting a scale-in while it is apparent that its activity will
augment soon due to an increase of the output stream(s) of upstream(s) oper-
ator(s). Unfortunately, Autoscale presents some instability problems which
had to be studied and fixed. OSG (Online Shuffle Grouping) deals with
load balancing. Even if tuple processing times are not similar from one value to
the other, OSG aims at reducing tuple completion times by carefully scheduling
each incoming tuple.

The original contributions presented in this paper are three-fold:

1. An auto-parallelization strategy improving the approach presented in [24].
Autoscale+, thanks to a better modeling of Storm effective resource usage,
enables quicker deployment of adequate resources, thus improving system
throughput and stability.

2. The integration of Autoscale+ and OSG into Dynamic and Automatic
Balanced Scaling for Storm (DABS-Storm), a holistic and automatized
approach to parallelism and load balancing in stream processing systems, has
been enabled due to their compatibility.

3. A thorough experimental evaluation of DABS-Storm highlighting its ability
to process streams with critical fluctuations in input rate and value distribu-
tion for complex continuous queries. In addition, we compare DABS-Storm
with well-known approaches from the literature.

In the remainder of this paper, Sect. 2 presents the execution context from
logical and physical points of view. We describe how continuous queries are
processed over distributed infrastructures and the processing model. Section 3
presents the related work, reviewing the background on dynamic and elastic
stream processing and the main elasticity mechanisms at infrastructure and
query levels for handling variance in input load. Approaches for parallelism man-
agement and load balancing are described, respectively, in Sects. 4 and 5. Our
original approach, DABS-Storm, is detailed in Sect. 6 while Sect. 7 is devoted
to its experimental evaluation.

2 System Model

2.1 Execution Environment

To make things more concrete while introducing some notations, let us consider
three continuous queries Q1, Q2 and Q3 represented by workflows W1, W2 and
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W3 with respective associated output streams S’1, S’2 and S’3 (see Fig. 1). A
workflow W = (O,V) is a direct acyclic graph where O is the set of operators
and V the set of streams. Presented workflows are quite simple: W1 is linear,
W2 is a diamond, while W3 is a star. Despite their simplicity, these workflows
are interesting to study. Indeed, they are general patterns used to build much
more complex workflows [28]. Each workflow processes a set of input stream(s)
which, in our example, is included in {S1,S2,S3}.

A stream is a potentially infinite sequence of tuples, i.e., key/value pairs,
arriving over time. An input stream may have fluctuations in input rate and
value distribution as shown on the left of Fig. 1. It is worth noting the impact
these fluctuations can have, not only on the processing time, but also on the
selectivity of operators, i.e., the ratio between the number of output and input
tuples. This second point can be critical for operators such as joins [15,37] as
well as having direct impact on downstream operators.

Fig. 1. Distributed stream processing.

Each operator Oi ∈ O is processed in parallel. The parallelism degree d(Oi)
of operator Oi corresponds to the number of tasks assigned to the operator. For
instance, on Fig. 1, operator O2, executed by tasks T1

2 and T2
2, has a parallelism

degree of d(O2) = 2.
A scheduling strategy assigns tasks to the processing units, in this case eight

available machines (M1 to M8). For instance, on Fig. 1, the four tasks of the
workflow W1 are distributed on machines M1 to M4.

For a machine, three states are possible: active, configured and available. On
Fig. 1, machines M1 to M4 are active, and run some assigned tasks. Machines
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M5 and M6 are configured but inactive (no assigned tasks). Finally, M7 and M8

are available but not configured, which means the scheduler cannot assign tasks
to them.

While DABS-Storm could be extended to handle heterogeneous machines,
in this paper, for the simplicity’s sake, we restrict the execution context to homo-
geneous machines (H1), i.e., all machines have the same amount of CPU, RAM
and bandwidth. Furthermore, we also assume that there is never resource starva-
tion. In other words, there are always enough computational resources available
to process input streams, no matter their input rates (H2). Thus, a loss of qual-
ity or performance cannot be ascribed to a lack of resources. To enforce H2, if
the scenario does not ensure it, load shedding techniques [22,30] can be relied on,
which drop some of the inputs in order to prevent buffer overflows or trashing.

Stream elements are assumed to be heterogeneous with respect to process-
ing latency, depending on their values (H3). Consequently, DABS-Storm can
handle homogeneous data streams as well as heterogeneous ones.

Finally, as we aim at proposing a generic solution supporting user-defined
functions as well as common operators like filters and joins, we intend to deal
with stateless and stateful operators. However, in this paper, we focus on stateless
operators (H4). Indeed, it has been shown that solutions can also be useful for
other kinds of operators [31], and most SPEs supporting stateful operators, like
joins, provide a state management method while replicating these operators,
such that we can rely on them for this part.

2.2 Processing Model

Each operator Oi has a logical input stream σi = 〈e1, . . . , eq, . . . , em〉. Since
operator Oi may be executed in parallel by k = d(Oi) tasks T 1

i , . . . , T k
i , then each

task receives a physical input sub-stream σ1
i , . . . , σk

i . Notice that σi =
⋃

x∈[k] σ
x
i .

Tuples of σi are assigned to a sub-stream, and thus to a task, according to a
predefined load balancing strategy. We denote by f(e) the unknown frequency1

of tuple e, i.e., the number of occurrences of e in the stream of size m. Before
being processed, a tuple eq is buffered in a FIFO input queue consumed by a
task. The processing latency wx

i (q) of tuple eq on the task T x
i depends on the

time complexity of Oi, on the computational power available to task T x
i , and

potentially, on the values of eq attributes. Without loss of generality, we assume
that tuples in a stream σ are identified by a single integer drawn from a large
universe [n] = {1, . . . , n}. In other words, tuples can be modeled as single values.
The processing latency is modeled as an unknown function2 of the value of eq.
The probability distribution of eq values may vary over time. In a stable system
the average processing latency of operator Oi can be defined as

W i =
1

|σi|
∑

x∈[k]

∑

eq∈σx
i

wx
i (q) (1)

1 This definition of frequency is compliant with the data streaming literature [7,35].
2 The experimental evaluation relaxes the model by taking into account processing

latency variance.
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Let �(q) be the completion time or end-to-end latency of eq, i.e., how much
time it took for tuple eq from the instant it was inserted into the assigned task’s
buffer to when it was processed by the tasks. Then we can define the average
completion time for operator Oi as

Li =
1

|σi|
∑

eq∈σi

�(q) (2)

Table 1 summarizes the notation.

Table 1. Notations.

Workflow/topology W
Workflow input and output streams S, S′

Operator Oi ∈ O
Parallelism degree d(Oi)

Task of operator Oi T x
i , x ∈ [k]

Task T x
i and operator Oi input streams σx

i ⊆ σi

qth tuple in the stream σi eq ∈ σi

Processing latency of eq on tasks T x
i wx

i (q)

Average processing latency of operator Oi W i

Completion time of eq �(q)

Average completion time of operator Oi Li

Tuple e frequency f(e)

Tuple e empirical probability of occurrence p(e)

Size of the stream m

Number of distinct tuples in the stream n

2-universal hash function h

3 Related Works

This section presents and discusses the most relevant strategies in the literature.
Adaptation mechanisms aiming at maintaining processing within some perfor-
mance goals are said to be elastic [32], i.e., they adapt to input stream variance.
Considering the huge difference between elastic mechanisms working at physi-
cal level (i.e. adapting resource consumption at infrastructure level) and those
working at logical level (elastic mechanisms adapting workflows to fit processing
load requirements), in this paper we only focus on the latter.
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3.1 Elastic Mechanisms at Logical Level

Workflows can be adapted to handle variations in input load. Logical level
approaches can be classified as parallelism management, scheduling, and load-
balancing.

Parallelism Management—To process stream elements timely, operator out-
put throughput should be greater than input throughput (taking into account
also the selectivity factor). Nevertheless, with a fixed number of threads, two
critical cases can occur:

– If input throughput is greater than output throughput for a sizable time
period, then the number of elements in the buffering queue increases. This
scenario causes an unacceptable increase in end-to-end latency and may lead
to congestion [22,33].

– If input throughput is smaller than output throughput for a sizable time
period, then buffering queues are mostly empty and tasks are often idle. While
in this scenario the system has low latencies, it also implies that resource usage
is not maximized.

To handle these critical scenarios, SPEs should integrate a more refined par-
allelism management strategy. When facing an overload, SPEs should increase
the parallelism degree (scale-out) of operators, thus decreasing the queuing time
of incoming elements. Conversely, when input throughput is low, SPEs should
decrease the parallelism degree (scale-in) to minimize resource waste.

Scheduling Strategy—Given the operator parallelism degree, SPEs must
schedule the tasks to the available processing units (Fig. 1). We identify three
classes of scheduling strategies:

– Strategies based on CPU load balancing between all processing units [1,27,41]
assign threads on as many units as possible to divide processing load evenly.
Using all available resources is an appropriate solution to limit processing
bottlenecks due to CPU shortage. The problem is that it may imply massive
network overheads [39] and underused units.

– Strategies based on network traffic reduction [3,39] tend to concentrate as
many threads as possible on the same processing units to minimize network
traffic. These approaches improve throughput of SPEs [39] and reduce the
number of active machines compared to the previous class. However, when
input rate increases significantly, active machines tend to be overloaded more
quickly and imply major reconfiguration compared to strategies spreading
load evenly among all available units.

– Resource-aware strategies [3,28] aim at avoiding processing unit overload
and minimizing resource consumption. Through resource monitoring and pro-
cessing requirements, this class of scheduling strategies allows threads to be
grouped on processing units, thus minimizing resource waste. It offers efficient
scheduling while having resource requirements for each thread to be assigned.
The problem is that it requires accurate specifications about resource require-
ments and thus relies on user expertise. If user specifications are oversized or
undersized, this leads to a waste or lack of resources, respectively.
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Intra-operator Load Balancing—Operators can be classified as being either
stateful (e.g., standard deviation computation) or stateless (e.g., filtering).

When the target operator is stateful, its state must be kept continuously syn-
chronized among its instances, with potentially severe performance degradation
at runtime; a well-known workaround to this problem consists in partitioning the
operator state and letting each instance work on the subset of input stream con-
taining the tuples affecting its state partition [22]. In this case, key grouping is
the preferred choice as stream partitioning can be performed to correctly assign
all the tuples containing specific data values and only those to the same opera-
tor instance, thus greatly simplifying the development of parallelizable stateful
operators at the expense of performance.

In recent years there has been new interest in improving load balancing with
key grouping [17,26,31]. It is worth noting that all works cited assume that all
tuples of a stream have the same execution time.

Considering stateless operators, i.e., data operators whose output is only a
function of the current tuple in input, parallelization is straightforward. The
grouping function is free to assign the next tuple in input stream to any avail-
able instance of the receiving operator (contrary to stateful operators, where
tuple assignment is constrained). Such stream partitioning functions are often
called shuffle grouping and represent a fundamental element of a large number
of stream processing applications [22]. Notice that solutions for shuffle grouping
techniques can be applied to stateful operators as well, provided that the oper-
ator implementation includes some mechanism to warranty state consistency
(e.g., a subsequent reduce phase). Given its generality, in this work we consider
only shuffle grouping stream partitioning.

Typical implementations of shuffle groupings are based on round-robin
scheduling [4,5]. However, the processing latency of many operators are intrinsi-
cally sensitive to values. For example, an operator applying a transformation on
each character of a text has a processing latency depending on the length of the
text. Thus, high fluctuations in such values most likely increase load imbalance
considerably, which lead to performance problems.

3.2 Triggering Elastic Stream Processing

Solving operator congestion in a stream processing context is a complex prob-
lem. Out of the three major factors (parallelism management, scheduling, load
balancing), to our knowledge, most works [3,18,33,39] address only one at any
time.

However, a clear distinction can be made between reactive approaches [21,
33,40], which detect and remove potential problems from the current state of the
system, and proactive approaches which predict potential problems and antic-
ipate solutions [15,34]. Among reactive solutions, we distinguish between on
user-demand [40] and automatic [21,33] solutions.

In [40], authors suggest a solution triggering scale-in and scale-out on user
demand. This solution relies on the user adding enough resources when through-
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put declines. Consequently, this solution is mainly limited by the need for user
expertise and presence.

Dynamic and automatic approaches [18,33] also aim at adapting parallelism
degrees to avoid congestion of operators. They are based on global and local
consumption thresholds (CPU, memory), which aim at separating a normal con-
sumption from a critical one. In addition, in [21], authors suggest an algorithm
integrating a knowledge base, built through a learning phase and updated at run-
time. This knowledge base associates parallelism degrees with expected through-
put for each operator. These solutions share the fact of using current resource
consumption to detect potential congestion, thus making anticipation almost
impossible. Furthermore, they pay no attention to data distribution within the
input data streams.

Finally, some model-based solutions [15,34] anticipate congestion, thanks to
a complete model of the execution support and operator features (processing
latencies, pending queues, etc.). Here, the parallelism degrees are adapted to
minimize overall latency. Unfortunately, these solutions require detailed charac-
teristics of the system and do not support any evolution of the execution support.
In [38], authors suggest the Chronostream system, which is able to scale opera-
tors transparently and to manage internal states for both stateless and stateful
operators. Even if this approach has demonstrated its efficiency in terms of scal-
ability, Chronostream relies on stream partitioning to balance the load between
operator instances. Thus, if there is a significant difference between the average
processing latency for distinct keys, Chronostream is unable to compensate that
imbalance accurately.

Summarizing SPE elasticity at logical level, the elasticity of a SPE mainly
depends on choices related to parallelism management, scheduling, and load-
balancing. Other aspects like workflow optimization [2,6] and implementation
selection [22] are user-provided and cannot be modified at runtime. In this con-
text, we aim at suggesting a stream-based solution scaling treatments according
to stream evolution in terms of input rate and value distribution.

4 Parallelism Management with AUTOSCALE+

In [24] we defined a proactive approach, named Autoscale, to manage dynam-
ically and automatically the parallelism degree of operators using indicators
monitored on streams and operators. Our proposed algorithm decides which
operators have to be reconfigured (scale-out or scale-in) and what their new
parallelism degrees are. These decisions are based on estimations of data stream
evolution and resource consumption, which are computed from monitored indi-
cators. The main originality of Autoscale is that it considers the workflow as a
whole, and more precisely the dependencies between operators, when validating a
reconfiguration decision. It is worth noting that the algorithm we proposed offers
satisfying results in deciding when a reconfiguration is required, but that the new
parallelism degree computed was not always relevant, generating too frequent
reconfiguration, thus leading to system instability in some specific cases. We have
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investigated the reasons for such behaviors and identified two main causes. The
first corresponds to variations in computation times from one item to another
depending on their values. Clearly, variations in distribution of these values
within the input streams also has an impact. The problem is that such varia-
tions of computation times jeopardize the default Storm load balancing method.
To solve this problem, the only solution is to replace the load-balancing method
with a new method that has to pay attention to such variations (see Sect. 5). The
second cause is related to the Autoscale method itself. It transpired that the
resource consumption analysis was not precise enough. In Autoscale+, it has
to be improved to better fit the specificities of the Storm’s architecture. In this
section, we first recall the general principles of Autoscale before describing new
methods embedded in Autoscale+. This new proposal improves Autoscale,
taking CPU usage and user constraints into account.

4.1 AUTOSCALE+ Metrics

After presenting the general principles, we focus on the monitoring problem.
Finally, we detail the new metrics embedded in Autoscale+.

Principle
Just like its predecessor Autoscale [24], Autoscale+ anticipates potential
congestion of operators through stream and operator monitoring3. For each oper-
ator, input volumes in the near future are estimated according to time series anal-
ysis [10]. The two algorithms also share the analysis of many dynamic properties
like processing latency, pending queues, and the selectivity of each operator.
Based on these, processing rates, or capacity can be estimated. The combination
of these estimations make it possible to recommend scale-in, scale-out or nothing
for each operator. Depending on available and configured resources dedicated to
the SPE, a reconfiguration of threads running on the cluster could be triggered.

In contrast to Autoscale, Autoscale+ considers precise resource usage
in terms of CPU, RAM and bandwidth. This allows improvement of decisions,
for example avoiding reconfigurations when parallelism degree is not the root
cause of problems, and more quickly reaching the adequate parallelism degree.

Monitoring Management
Monitoring management is based on sliding windows observing simultaneously
all threads assigned on the execution support.

Let F be a set of monitoring sliding windows Fi = {(F i
j )}j∈N+ . Each window

Fi is associated with an operator Oi, and is composed of iterations F i
j . Each

iteration F i
j is defined by a duration Δ and gathers measurements collected

during this interval. These measurements are collected according to a predefined
set of timestamps Mi = {mi,1,mi,2, . . . , mi,n}n∈N+ . For each operator Oi, our
approach collects some measurements taking into account the stream elements

3 At each scale-in or scale-out, system monitoring is disabled while the system sta-
bilizes. Indeed, the data acquired during this transition period do not provide any
information about the nominal behavior of the new configuration of the system.



68 R. K. Kombi et al.

received and processed on the interval [mi,p−1,mi,p[ with p ∈ [n] where [n] =
{1, . . . , n}. More information about monitoring management is available in [24].

Let Ri be the set, potentially infinite, of stream elements received by operator
Oi. We consider Ri,j as the subset of elements received by Oi during the iteration
F i

j , and Ri,p the subset of elements received between [mi,p−1,mi,p[.
Let us now consider a parent operator Opar and a child operator Och consum-

ing stream elements produced by Opar. For both operators, we observe inputs
Ri,j . These inputs are inserted in pending queues where elements are consumed
by associated functions. We define as Inputi,j the sum of inputs processed cur-
rently by the function and stream elements pending in the queue during the
iteration F i

j . At the same time, we monitor the processing latency of the func-
tion and its selectivity factor for filter-based operators as presented in [23].

Metrics on Operator Input and Output
From these monitored values, we compute some metrics to analyze the activity
of each operator. The aim is to identify operators which could have critical input
volumes according to their processing capacities in the near future.

To do this, incoming volumes during the next iteration of the monitoring
window are estimated, see Fig. 2. This estimation, called EstimRi,j , is computed
using a regression function f i

j−1 computed based on the previous iteration as
follows:

EstimRi,j =
∑

mi
p∈Mi

�f i
j−1(m

i
p)� (3)

where each mi
k belongs to the next iteration of the window.

To estimate precisely f i
j−1, Autoscale+ selects the best candidate, i.e.

the one best fitting to the previous iteration, among three competitors: linear,
logarithmic, and exponential regression models. Compared to Autoscale, the
computation overhead is very small, while stream fluctuations are improved.
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Operator history is not the only information that can be considered. Indeed,
the near future of an operator is clearly influenced by antecedent operators.
Furthermore, for an (antecedent) operator, a simple combination of the already
computed EstimInputi,j with the average selectivity factor α(F i

j−1) provides an
estimation of its output EstimOutputi,j :

EstimOutputi,j = EstimInputF i
j

× α(F i
j−1) (4)

So, considering an operator who has ancestors, to estimate its inputs in a
near future, we have two pieces of information. On the one hand, we have
EstimInputi,j computed from its history, while, on the other hand, we have
EstimOutputi,j the estimated outputs of its antecedent operators. A combine
strategy is used to mix these elements. Last but not least, to approximate the
total volume of stream elements each operator will have to process during the
next iteration, attention must be paid to the pending queue. Stream elements
pending in the operator queue, noted pendingi,j−1, just have to be added to the
estimation. Finally, EstimInputi,j is defined as:

EstimInputi,j

= combine

⎛

⎝EstimRi,j ,
∑

p∈par(Oi)

EstimOutputp,j

⎞

⎠ + pendingi,j−1

(5)

where par(Oi) returns all parent operators of Oi.
Many different combine functions can be proposed or obtained by learn-

ing techniques. By default, Autoscale+ simply returns the max of the two
values. This corresponds to a cautious strategy with respect to scale-in oper-
ation. Indeed, scale-in is analyzed with respect to the highest estimation. On
the contrary, the combine strategy can return the min estimation to avoid over-
consumption of resources due to an ephemeral increase in input rates. The strat-
egy used will depend on the user’s priorities.

Operator Capacity Estimation
Intuitively, the capacity of an operator to treat items during a period Δ can be
estimated considering the processing time of elements.

IdealCapacityi,j =
Δ

Lati,j
(6)

where Lati,j is the processing latency.
This approximation would be quite good if computational resources used by

an operator were constant. Unfortunately, it is not so simple. For example, a task
can take advantage of free CPU to make use of more CPU than reserved. To
illustrate this point, let us consider an example of three operators OA, OB and
OC , executed, respectively, by threads TA, TB and TC , running on a single CPU,
C. As depicted on Fig. 3, some reservations have been made for each of them [28],
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let’s say ResaCPUA, ResaCPUB and ResaCPUC . While the interest of this
constraint is to avoid assignments leading to resource starvation, it should be
kept in mind that a resource used by a task is not fully defined by the reservations
made for it.

Fig. 3. Usable CPU for threads on one core

Considering Fig. 3, threads TB and TC use less CPU than they reserved.
Clearly, there is no congestion since some CPU time is not used. Thread TA

takes advantage of the situation.
Here, the problem is to estimate usable CPU in a near future, and this has to

be done for each operator/thread. We estimate the usable CPU by a thread TX

according to formula 7, where a weighting factor λ ∈ [0;1[ has been introduced
to underestimate slightly available CPU and thus avoid fast overload.

UtilCPU(TX , C) = λ × max(UsedCPU(TX , C), ResaCPUX)

+
1
n

(100 −
∑

∀TY �=TX

UsedCPU(TY , j)) (7)

Considering an operator Oi, to estimate the CPU it can use (UtilCPUi), all
its associated threads have to be considered (T 1

i , T 2
i , . . . , Tm

i ). The global CPU
time UtilCPUi for Oi is estimated as follows:

UtilCPUi = min
x=1...x=m

(UtilCPU(T x
i , CPU(T x

i )) (8)

Here, we assume that the input rate increase is spread evenly across all
threads.

Capacity is then estimated:

Capacityi,j =
Δ

Lati,j
× UtilCPUi (9)
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4.2 Parallelism Degree Management in AUTOSCALE+

We now have enough information to detect imbalances between processing
requirements and resource usage. Analysis of divergences will lead to one of
the following three conclusions: need for scale-out, possibility of scale-in, or do
nothing. If scale-out is often a need, scale-in is only a possibility. Indeed, these
two operations are costly, and system stability is important to avoid wasting
computing resources and time.

An “Ideal” Parellism Degree
Considering the estimations of the incoming workload and of the capacity, the
ideal parallelism degree, leading the operator to efficient stream processing and
denoted idealK, can be estimated according to:

idealK =
EstimInputi,j

Capacityi,j
(10)

A Working Interval for Stability Issues
Stability is a major issue for an automatic process and it is important to find a
good balance. As scale-outs are needed for the system to work correctly, the focus
is on scale-in operations. Intuitively, even if it is possible, the scale-in operation
will be retained until a large benefit is attained. To encode this intuition, we
introduce a “working interval”: this defines a zone where, even if the estimated
idealK is smaller than the actual parallelism degree, no reconfiguration will
be carried out due to a lack of benefits. Furthermore, we suggest a controllable
interval: its size should vary depending on the parallelism degree, and it should be
controllable with respect to different considerations (user preferences, evolution
-e.g. reducing- over time and so on). Trivially, to define an interval, two bounds
have to be defined. The upper bound will be the current parallelism degree, while
the lower bound mink will be a function of the current parallelism degree k :

mink = β × k (11)

where β ∈ ]0;1] is a controllable parameter. If β is close to 0, it means that
Autoscale+ performs scale-in only when input volumes are very small com-
pared to operator capacities. If β is close to 1, Autoscale+ performs scale-in
as soon as possible.

It is worth noting that the greater k, the greater the associated working
interval. We choose this property because the more tasks there are to merge, the
more time it takes to merge pending queues distributed over the cluster and to
re-route stream elements.

Decision of Parallelism Degree Modification
A scale-out should be performed for an operator Oi when idealK exceeds the
working interval as represented on Fig. 4.

On the other hand, if idealK is smaller than mink, a scale-in will be per-
formed.
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Fig. 4. Modification of parallelism degree

Otherwise, if idealK remains within the interval, even if a scale-in is possible,
the operator is not modified and retains the current parallelism degree.

Computation of the Appropriate Parallelism Degree
Thus, each time a change is decided, whether it is a scale-in or a scale-out,
Autoscale+ computes a new appropriate parallelism degree k ’ according to
estimated needs and computing resources possibilities:

argmink′(
EstimInputi,j

ResCapacityi,j
≤ k) (12)

where particular attention must be paid to denominator. Indeed, ResCapacityi,j

deals with resources, but compared to idealK there is a major difference: reserva-
tions ResCPUi are used instead of resource estimations. Indeed, such a change
may lead to reallocations of threads and the only guarantee we have is the
amount of resource required by the reservation. This leads to the formula:

ResCapacityi,j =
Δ

Lati,j
× ResCPUi × λ (13)

where α ∈ ]0;1] is a parameter allowing Autoscale+ to consider a relative
margin between effective CPU usage and CPU reservation. This means that
Autoscale+ takes into account the fact that some threads may need more than
their reservation at runtime. Just like β, the parameter λ can be defined using
several methods like empirical study, reinforcement learning or user expertise.

5 Load Balancing with OSG

While an adequate parallelism degree is important, alone it does not fully solve
the problem. Indeed, changing the parallelism degree is not enough to address
any variations in value distribution when facing a significant heterogeneity in
terms of computational resource needs. Failure to pay attention to load balanc-
ing, as round-robin scheduling would do, may lead to imbalance problems (see
Fig. 5).

Furthermore, imbalance problems could jeopardize any method trying to
manage the parallelism degree, as Autoscale+. A careful load balancing strat-
egy, compatible with our philosophy and proposed solutions, is definitely needed.
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Fig. 5. Worst and optimal cases of load balancing

First, it has to be proactive. Prevention is better than cure since it avoids mis-
leading the parallelism degree strategy. More generally, its behavior should not
interfere with Autoscale+ and both have to work together as smoothly as pos-
sible. Second, significant efforts have been made in Autoscale+ to limit any
dependence on the user. So as not to render these useless, the load balancing
strategy should not require any user intervention.

This section is devoted to OSG, a load balancing strategy which has been
specifically designed to deal with significant variations in computational resource
needs depending on stream item values. We present its principles and main
solutions. For more information, proofs and specific experimental evaluations,
readers should refer to [29–31]. Indeed, this paper is focussed on the evaluation
of DABS-Storm to study how Autoscale+ and OSG interact and react to
data stream fluctuations.

OSG is a shuffle grouping implementation based on a simple, yet effective
idea: if we assume to know of the execution time wx

i (t) of each tuple t the parallel
tasks of a given operator Oi, we can schedule the execution of incoming elements
on such tasks with the aim of minimizing the average per tuple completion time
of the tasks. However, the value of wx

i (t) is generally unknown. A common
solution to this problem is to build a cost model for the execution time and then
use it to pro-actively schedule the incoming load. However, building an accurate
cost model usually requires a large amount of a priori knowledge on the system.
Furthermore, once a model has been built, it can be hard to handle changes in
the system or input stream characteristics at runtime.

To overcome all these issues, OSG takes decisions based on the estima-
tion Ĉx

i of the execution time assigned to task T x
i of operator Oi, that is

Cx
i =

∑
t∈σx

i
wx

i (t). In order to do so, OSG computes an estimation ŵx
i (t) of the

execution time wx
i (t) of each tuple t on task T x

i of operator Oi. Then, OSG can
also compute the sum of the estimated execution times of the tuples assigned to
task T x

i , i.e., Ĉx
i =

∑
t∈σx

i
ŵx

i (t), which in turn is the estimation of Cx
i . A greedy

scheduling algorithm (Sect. 5.1) is then fed with estimations for all the available
operator tasks.
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To implement this approach, each operator task builds a sketch (i.e., a mem-
ory efficient data structure) that will track the execution time of the tuples it
processes. When a change in the stream or task(s) characteristics affects the tuple
execution times on some tasks, the concerned task(s) will forward an updated
sketch to the scheduler that will then be able to (again) correctly estimate the
tuples execution times. This solution does not require any a priori knowledge of
the stream composition or the system, and is designed to continuously adapt to
changes in the input distribution or the tasks load characteristics. Moreover, this
solution is proactive, namely its goal is to avoid imbalance through scheduling,
rather than detecting the unbalance and then attempting to correct it. A reac-
tive solution can hardly be applied to this problem, as it would schedule input
tuple on the basis of a previous, possibly stale, load state of the operator tasks.
Furthermore, reactive scheduling typically imposes a periodic overhead even if
the load distribution imposed by input tuples does not change over time.

For clarity’s sake, we consider a topology with two operators: a non par-
allelized operator Osched (i.e., a scheduler), which schedules the tuples of a
stream σop, and an operator Oop, whose k instances consume the stream σop

(see Fig. 6). To encompass topologies where the operator generating the stream
σop is itself parallelized, we can easily extend the model by taking into account
parallel tasks of the operator Osched. More precisely, there are s tasks/schedulers
T 1
sched, . . . , T

s
sched, where task/scheduler T x

sched schedules only a subset of σop, i.e.,
its own output. In [31] we also show that in this setting OSG performances are
better than the Round-Robin scheduling policy. In other words, OSG can be
deployed when the operator Osched is parallelized. Notice that our approach is
hop-by-hop, i.e., we consider a single shuffle grouped edge in the topology at a
time. However, OSG can be applied to any shuffle grouped stage of the topology.

5.1 Count Min Sketch Algorithm

In [14], Cormode and Muthukrishnan introduced the Count Min sketch that
provides, for each item e in the input stream, an (ε, δ)-additive-approximation

ˆf(e) of the frequency f(e).
An algorithm is said to be an (ε, δ)-additive-approximation of the function

φ on a stream σ if, for any prefix of size m of items of the input stream σ, the
algorithm output φ̂ is such that P{| φ̂ − φ |> εC} < δ, where ε, δ > 0 are
given as precision parameters and C is an arbitrary constant. The parameter ε
represents the precision of the approximation estimation. For instance ε = 0.1
means that the additive error is less than 10% and δ = 0.01 means that this
approximation will not be satisfied with a probability less than 1%.

The Count Min sketch consists of a two dimensional matrix Φ of size r × c,
where r = �log(1/δ)� and c = �2.7/ε�. Each row is associated with a different
2-universal hash function hi : [n] → [c].

A collection H of hash functions h : [n] → [c] is said to be 2-universal if for
every two different items x, y ∈ [n], for all h ∈ H, P{h(x) = h(y)} ≤ 1/c, which
is the probability of collision obtained if the hash function assigned truly random
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values in [c]. Carter and Wegman [11] provide an efficient method for building
large families of hash functions approximating the 2-universality property.

When the Count Min algorithm reads item e from the input stream, it
updates each row: ∀i ∈ [r], Φ[i, hi(e)] ← Φ[i, hi(e)] + 1. Thus, the cell value
is the sum of the frequencies of all the items mapped to that cell. Upon request
of fe estimation, the algorithm returns the smallest cell value among the cells
associated with t: f̂e = mini∈[r]{Φ[i, hi(e)]}.

Fed with a stream of m items, the space complexity of this algorithm is
O(log[(log m + log n)/δ]/ε) bits, while update and query time complexities are
O(log(1/δ)). The Count Min algorithm guarantees that the following bound
holds on the estimation accuracy for each item read from the input stream:
P{| f̂(e) − f(e) |≥ ε(m − fe)} ≤ δ, while f(e) ≤ f̂(e) is always true.

This algorithm can be easily generalized to provide (ε, δ)-additive-approxi-
mation of point queries Qe on a stream of updates, i.e., a stream where each item
e carries a positive integer update value ve. When the Count Min algorithm reads
the pair 〈e, ve〉 from the input stream, the update routine changes as follows:
∀i ∈ [r], Ω[i, hi(e)] ← Ω[i, hi(e)] + ve.

Greedy Online Scheduler. A classical problem in the load balancing liter-
ature is to schedule independent tasks on identical machines minimizing the
makespan, i.e., the Multiprocessor Scheduling problem. In this paper, we adapt
this problem to our setting, i.e., to schedule online independent tuples on non-
uniform operator instances in order to minimize the average per tuple completion
time L. Online scheduling means that the scheduler does not know in advance
the sequence of tasks it has to schedule. The Greedy Online Scheduler algo-
rithm assigns the currently submitted tuples to the less loaded available opera-
tor instance. In [31] we show that this algorithm is a (2 − 1

k )-approximation of
an optimal omniscient scheduling algorithm, namely an algorithm that knows
in advance all the tuples it will receive. Notice that this is a variant of the join-
shortest-queue (JSQ) policy [25], where we measure queue length as the time
needed to execute all the buffered tuples, instead of the number of buffered
tuples.

5.2 Online Shuffle Grouping Design

Each operator Oop task instance T x
op maintains two Count Min sketch matrices

(Fig. 6A): the first, denoted by Φx
op, tracks the tuple frequencies ft,op; the second,

denoted by Ωx
op, tracks tuples cumulated execution times Ωx

op = wx
op(t)× fx

op(t).
Both Count Min matrices have the same sizes and hash functions. The latter
is the generalized version of the Count Min presented in Sect. 5.1, where the
update value is the tuple execution time when processed by the instance (i.e.,
vt = wx

op(t)). The operator instance will update both matrices after each tuple
execution.

The operator tasks are modeled as a finite state machine (Fig. 7b) with two
states: START and STABILIZING. The START state lasts until the task has
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executed N tuples, where N is a user-defined window size parameter. The tran-
sition to the STABILIZING state (Fig. 7b A©) triggers the creation of a new
snapshot Ψx

op. A snapshot is a matrix of size r × c where ∀i ∈ [r], j ∈ [c] :
Ψx
op[i, j] = Ωx

op[i, j]/Φx
op[i, j]. We say that the Φx

op and Ωx
op matrices are stable

when the relative error ηx
op between the previous snapshot and the current one

is smaller than μ, that is if

ηx
op =

∑r
i=1

∑c
j=1

∣
∣
∣Ψx

op[i, j] − Ωx
op[i,j]

Φx
op[i,j]

∣
∣
∣

∑r
i=1

∑c
j=1 Ψx

op[i, j]
≤ μ (14)

is satisfied. Then, each time task T x
op has executed N tuples, it checks whether

Eq. 14 is satisfied. (i) If not, then Ψx
op is updated (Fig. 7b B©). (ii) Otherwise the

task sends the Φx
op and Ωx

op matrices to the scheduler (Fig. 6 B©), resets them
and moves back to the START state (Fig. 7b C©).

There is a delay between any change in the stream or operator task char-
acteristics and when the time the scheduler receives the updated Φx

op and Ωx
op

matrices from the affected operator tasks(s). This introduces a skew in the cumu-
lated execution times estimated by the scheduler. To compensate for this skew,
we introduce a synchronization mechanism that springs whenever the scheduler
receives a new pair of matrices from any task. Notice also that there is an initial
transient phase in which the scheduler has not yet received any information from
operator instances. This means that, in this first phase, it has no information
on the tuple execution times and is forced to use the Round-Robin policy. This
mechanism is thus also needed to initialize the estimated cumulated execution
times when the Round-Robin phase ends.

The scheduler maintains the estimated cumulated execution time for each
task, in a vector Ĉ of size k, and the set of pairs of matrices: {〈Φx

op, Ω
x
op〉},

initially empty.
The scheduler is modeled as a finite state machine with four states: Round-

Robin, Send All, Wait All, and Run.
The Round-Robin state is the initial state in which scheduling is performed

with the Round-Robin policy. In this state, the scheduler collects the Φx
op and

Ωx
op matrices sent by the operator tasks (Fig. 7a A©). After receiving the two

matrices from each instance (Fig. 7a B©), the scheduler is able to estimate the
execution time for each submitted tuple and moves to the Send All state.
When in the Send All state, the scheduler sends the synchronization requests
towards to the k tasks. To reduce overhead, requests are piggy backed (Fig. 6 D©)
with outgoing tuples applying the Round-Robin policy for the next k tuples:
the i-th tuple is assigned to operator instance i mod k. On the other hand,
the estimated cumulated execution time vector Ĉ is updated with the tuple
estimated execution time. When all the requests have been sent (Fig. 7a C©), the
scheduler moves to the Wait All state. This state collects the synchronization
replies from the operator tasks (Fig. 7a D©). Operator task T x

op reply (Fig. 6 E©)
contains the difference Δx

op between the instance cumulated execution time Cx
op

and the scheduler estimation Ĉ[op].
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In the Wait All state, scheduling is performed as in the Run state. When
all the replies for the current epoch have been collected, synchronization is per-
formed and the scheduler moves to the Run state (Fig. 7a E©). In the Run state,
the scheduler assigns the input tuple applying the Greedy Online Scheduler
algorithm, i.e., assigns the tuple to the task with the least estimated cumulated
execution time. Then it increments the target instance estimated cumulated exe-
cution time with the estimated tuple execution time. Finally, in any state except
Round-Robin, receiving an updated pair of matrices Φx

op and Ωx
op moves the

scheduler to the Send All state (Figure 7a F©).
Readers can refer to [29] for the complete theoretical analysis of OSG, in

terms of correctness, accuracy and complexities.

6 DABS-Storm

We now have two methods, Autoscale+, which adapts the parallelism degree
of each operator, and OSG, which carefully balance streams’ items between tasks
of an operator. Integration seems quite easy. Nevertheless, mixing methods can
always raise compatibility issues.

An auto-parallelization approach like Autoscale+ assumes that congestion
is due to an input overload of all tasks associated with an operator. In this case,
adding more tasks is indeed the recommended solution. The better the load
balance, the greater the scale-out effects will be. Furthermore, considering the
definition of UtilCPU (see Eq. 8), the assumption of a good load balancing is
present. Consequently, with a careful proactive load balancing preventing load
imbalance, OSG is expected to improve both the decision process and the effects
of Autoscale+. OSG is not a random choice. Indeed, the proactive aspect
is here of major importance. Although one might think that a reactive solu-
tion could work as well, sometimes (too often) a non-prevented load balancing
problem could lead to unnecessary scale-outs of an unpredictable magnitude.

On the other hand, to guarantee good performance, OSG needs a non-
congested environment. This means that scale-outs have to be performed before
any congestion occurs. It also means that scale-in has to be performed cautiously,
not too soon, to avoid any risk of congestion due to a reversal of the trend within
data streams. Autoscale is also a proactive method, and is designed to per-
form a scale-out before congestion occurs. For scale-in, things are less evident.
First, as explained in Sect. 4.1, page 11, users can choose between two strategies
(related to the choice of the combine function): a cautious one, or a resource-
oriented one aimed at avoiding over-consumption of resources. Second, the size
of the working interval, and more particularly the parameter β (see Sect. 4.2,
page 14), is of major importance here. Indeed, it controls the margin of security
thickness before performing a scale-in. To expect Autoscale and OSG to work
well together, the combine function must be a cautious one (i.e. a max func-
tion, which is the default choice), and the parameter β should be chosen close
to zero to perform scale-in only when input volumes are very small compared to
operator capacities.
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To summarize, to take advantage of the benefits of both methods, it is not
enough to use both of them. We must also ensure they are compatible. This seems
to be the case here, provided that two Autoscale+ parameters are correctly
selected. However, an experimental study is essential to confirm this hypothesis.

7 Experiments

The implementations of Autoscale+ and OSG which we use in experimental
evaluations, have been developed to be integrated with Apache Storm [5]. The
principles presented in Autoscale+ and OSG could be integrated with many
other DSMS, like for example Apache Spark Streaming [41], Flink [4], etc. How-
ever, for evident reasons of time and resources, at the beginning of the project
we had to make a choice. We settled on Storm mainly for three reasons. First,
in the Storm paradigm, stream elements must not be represented as key/value
pairs, necessary for MapReduce-based approaches [16]. Second, it offers great
flexibility for operator definition. Third, Storm serves as a guarantee that every
item will be tracked and processed until an operator discards it (e.g. a filter or
a final operator). Finally, it allows manual reconfiguration of parallelism degrees
at runtime.

Thus, this section starts with some general reminders about this DSMS.
Then we detail the experimental setups. Finally, we present and comment on
the obtained results.

7.1 Overview of Apache Storm

Apache Storm [5] is an open source DSMS allowing users to express their contin-
uous queries through a declarative language or to directly build their topologies
using a high-level language (Java, Python, Clojure, etc.).

Fig. 8. Storm architecture

Whatever the language used, an operator, named a component in Storm’s
terminology, belongs to one of the two categories: spouts or bolts. A spout is a
connector to a stream source, and thus can be used as an entry of a topology.
It distributes stream elements to components to which it is connected and can
process filtering operations if required. A bolt consumes items from any compo-
nent and computes a result for each element received (stateless bolt) or for a set
of elements (stateful bolt). Each component is executed in parallel by executors.
Each executor is assigned to a processing unit by the scheduler (see Fig. 8).
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7.2 Experimental Protocol

Experimental Setup. We experiment with the version 1.0.2 of Apache Storm.
Our test cluster is composed of 10 VMs each with a dual-core CPU Intel(R)
Xeon(R) E5-2620 running at 2.00 GHz, 4 GB of RAM and 40 GB of hard disk
space. A master VM, called Nimbus, is responsible for coordinating the 9 others
dedicated to task execution. Each of these VMs, called a Supervisor, manage 4
processing units, called workers. Our module, managing the operator parallelism
degree, implements the IScheduler interface of the Storm API. The module,
managing distribution of stream elements between executors, implements the
CustomStreamGrouping interface of the Storm API. We also deploy a MySQL
database on Nimbus to store collected measurements. We summarize the main
experimental parameters in Table 2:

Table 2. Main parameters

Component Description Symbol Value

Storm Monitoring frequency 10 s

Processing timeout 30 s

Autoscale+ Weighting factor λ 0.3

Scale-in control β 0.8

Combine strategy max

OSG Precision ε 0.05

Maximal probability of error δ 0.05

Test Topologies. To validate our approach, we demonstrate its effectiveness
on three topologies.

(a) Simple insensitive topology. (b) Simple sensitive topology.

Fig. 9. Simple topologies.

The simple insensitive topology (see Fig. 9a) composed of a spout (Source)
emitting stream elements without filtering them. These stream elements are
processed by a bolt (InsensitiveBolt) applying a function with a time complexity
independent from the value read in input. Finally, a bolt (FinalizeBolt) ends the
computation of each stream element by sending a termination signal to the
Storm monitor.
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The simple sensitive topology (see Fig. 9b) has the same structure as the
simple insensitive topology. However, the function applied by the intermediate
bolt (SensitiveBolt) has a time complexity that depends directly on the value
read in the input.

Fig. 10. Complex sensitive topology

The complex sensitive topology is inspired from real benchmark applications
for Storm4. It is composed of several operators with various selectivity factors
and average processing latencies. The spout (OpinionSource) emits stream ele-
ments concerning opinions submitted by users about a topic. Each opinion is
described by information on the user, like her age and code representing her
location, the topic and the user opinion. Stream elements are sent to a bolt (Cat-
egoryDispatcher) filtering unnecessary attributes and depending on the branch
downstream. Moreover, it filters stream elements concerning a predefined list of
irrelevant topics. A branch starts with a bolt (SensitiveBolt) retrieving informa-
tion on user location from the code. This bolt has exactly the same properties
as the sensitive bolt of the simple sensitive topology. Indeed, the time required
to retrieve information on the city varies according to the code. It allows us
to compare the impact of workflow structure and complexity on bolt behavior
and dynamic adaptation of its parallelism degree. Then, a bolt (CityAnalyzer)
extracts relevant subgroups according to opinion and location. The other branch,
starting from the bolt CategoryDispatcher, performs similar treatments in order
to define subgroups based on user opinion and age. Finally, the Persister takes
as its input descriptions of subgroups and persists them in a storage file system.

It is important to bear in mind a major difference between this experimen-
tal setup and previous one and the consequences. The critical operator is not
directly connected to the source. Stream elements are filtered and transformed by
upstream operators. Consequently, its input rate may significantly differ from
the source one, and strategies considering the workflow at a global scope will
have a way to differentiate from those working only on local considerations. As a
consequence, auto-parallelization strategies considering exclusively local obser-
vations cannot take advantage of fluctuations of input rate happening upstream.
At the opposite, auto-parallelization strategies adapting parallelism degree of
operators according to the global state of the workflow will have a natural
advantage. So, this experimental setup highlights the fundamental difference
between autoscale+ and other parallelization strategies considered in these
experiments.
4 https://github.com/yahoo/streaming-benchmarks.

https://github.com/yahoo/streaming-benchmarks
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Test Data Streams. As illustrated in Fig. 11, we build two synthetic streams
with the following common features: (1) at least one critical increase in input
rate leading the system to congestion with a minimal (one executor per operator)
and static configuration (2) decrease in input rate to evaluate system elasticity.
For each stream, we can set the distribution law, which may be uniform over all
possible values or biased according to a zipf law with a predefined skew. These
streams allow us to determine which impact of DABS-Storm when facing critical
fluctuations in both input rate and value distribution. The first corresponds to a
large increase with a plateau before a decrease. The second is much more sudden,
with far severer variations, highlighting system elasticity.

(a) Progressive stream. (b) Erratic stream.

Fig. 11. Input streams.

Baseline Methods. First, we have to deplore a lack of open source imple-
mentation of auto-parallelization strategies. We compare DABS-Storm to two
methods.

The first is simply the native static behavior of Apache Storm an incremen-
tal strategy (noted incremental hereafter) considering only thresholds on CPU
usage.

The second [18], is a reinforcement learning-based strategy mapping input
rates to appropriate parallelism degrees at runtime (noted Rlearning hereafter).
For the experiments, the methods take advantage of a knowledge base base
acquired through a training phase carried out using the test data streams. Then
the knowledge base covers all the fluctuations encountered (which is not always
the case in practice). More generally, this can be considered to be a favorable
conditions.

7.3 Experiments and Results

Not all the experiments conducted are presented here. More information can be
found on our companion website5. In addition, this website includes a comparison
between Autoscale and Autoscale+. It gives an overview of the gap between

5 https://dabs.liris.cnrs.fr.

https://dabs.liris.cnrs.fr
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the performance of the auto-parallelization strategy presented in [24] and results
presented below. In the remainder of this section, the results described corre-
spond to average values over 5 iterations for each configuration, thus lessening
the impact of punctual anomalies during tests.

Variations in the Input Stream Rate over an Insensitive Topology.
In this experiment, we confront the simple insensitive topology Fig. 9a with a
stream with large, but not too erratic, variations in input rate, see Fig. 11a.

In this configuration, the volume of stream elements to process is the only
impact factor and OSG is of little use. For the sake of equity, we choose to con-
duct an experiment where all compared solutions sharing the default grouping
solution of Storm were denoted shuffle grouping. This means that here we only
test the Autoscale+ component of DABS-Storm. Note that other experimen-
tal evaluations show that, in this case, OSG behaves quite similarly to Storm’s
shuffle grouping.

As expected, the reinforcement learning strategy increases the parallelism
degree of the observed operator InsensitiveBolt (Fig. 12a), before decreasing it
just following the input rate. Nevertheless, these modifications have a major

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 12. Simple insensitive topology with progressive stream.
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impact on average processing latency (Fig. 12b) and result quality (Fig. 12c).
Indeed, the system has been reconfigured (scale-in) with respect to the input
rate and without considering the pending queues (which were far from empty).

In comparison, the incremental strategy continuously increases the paral-
lelism degree of the operator as long as the workload exceeds the processing
rate (see Fig. 12). Even if the parallelism degree is increased, it cannot reach a
suitable value as quickly as it needs to. This results in a large increase in average
processing latency, causing a 29% loss of stream elements (dephased tuples) over
the complete execution (Fig. 12c)). Moreover, in terms of resource usage, due to
frequent system reconfigurations, the incremental strategy requires 64% more
active processing units than the reinforcement learning strategy and 18% more
than Autoscale.

With Autoscale+, Storm is able to anticipate suitable parallelism degrees
over the complete execution. Even if Autoscale+ tends to overestimate the
required parallelism degree due to regression, processing latency is much bet-
ter (Fig. 12b). It should also be noted that average processing latency remains
remarkably stable, reducing losses to 7%.

We can conclude that Autoscale+, thus DABS-Storm, outperform the
baseline methods when confronted with data streams with large input rate vari-
ations, even if workflow is unresponsive to data values.

Erratic Variations in the Input Stream Rate over an Insensitive Topol-
ogy. Compared to the previous experiment, the variations in the input stream
rate will be more erratic, confronting the same insensitive topology Fig. 9a with
the second data stream, see Fig. 11b.

As illustrated in Fig. 13a, the reinforcement learning strategy increases and
decreases the parallelism degree of the observed operator InsensitiveBolt accord-
ing to the two main peaks. However, the magnitude of the scale-out is not very
high. Indeed, brief increases in input rate do not increase significantly the aver-
age input rate in recent history. Nevertheless, the, the sudden accumulation of
a huge number of stream elements on pending queues increases the average pro-
cessing latency. Luckily, the impact on result quality remains negligible with only
13% of stream elements lost over the complete execution as shown on Fig. 13c.

As the incremental strategy over-provisions the operator, available resources
can hopefully handle brief increases in input rate. Consequently, the average
processing latency (see Fig. 13b) increases significantly only when the input rate
remains high over a long period of time such as for the last increase in the
erratic stream. While stream element losses (Fig. 13c) are reduced to 19% over
the complete execution, the usage of processing units remains higher than for
the reinforcement learning strategy.

Considering Fig. 13a, autoscale+ reacts faster to sudden input rates
increasing the parallelism degree. However, the increase is too high with respect
to the ephemeral nature of the phenomenon. In other words, autoscale+
overestimates processing requirements. This overestimation induces excessive
reconfiguration overheads, affecting punctually the average processing latency
(Fig. 13b). Although results are delivered, 18% of the entire stream cannot be
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(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 13. Simple insensitive topology with erratic stream

processed under the maximal threshold. As critical increase and decrease in
input rate are sudden and brief, they cannot be anticipated and affect process-
ing latency before autoscale+ reconfigures the system.

This experimental setup points out the limit of the predictive approach when
input streams vary suddenly in volume. Indeed, while a progressive evolution of
the input rate can be easily anticipated, sudden peaks in input rate induce inap-
propriate behavior of the system behavior. Several solutions can be considered
such as reinforcement learning that can help reduce this effect.

Variations in Input Stream Rate and Data Distribution over a Sensi-
tive Topology. We now include variations in data distribution in the picture.
The workflow and the data stream are of the same form as in experimentation
Sect. 7.3 but with two major differences: first, in the input stream (Fig. 11a) the
value distribution is biased, following a zipf distribution with a skew of 1.56; and
second, the workflow (Fig. 9b)) is sensitive to data values.

6 This choice is motivated by previous results on OSG detailed in [31].
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(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 14. Simple sensitive topology with progressive stream

For the sake of equity, in this experiment, each parallelism degree strategy is
combined with OSG to benefit from a better load balancing.

Here, Autoscale+ anticipates processing requirements (Fig. 14a) and is
able to maintain a smaller processing latency (Fig. 14b), while the stream is at
its maximal rate.

The reinforcement learning strategy is able to reduce processing latency sig-
nificantly (Fig. 14b) when the input rate decreases.

With a parallelism degree evolution (Fig. 14a) very closely approaching that
observed in experiment Sect. 7.3, the throughput of the incremental strategy is
clearly less good. Having looked into this matter, this phenomenon is due to some
kind of incompatibility between the incremental strategy and OSG. Indeed, step-
by-step strategy trivially imposes frequent modifications of parallelism degree.
At each step, OSG has to reevaluate its routing policy to keep a balance between
executors.

In terms of tuple loss, all solutions deliver a similar performance even if the
reinforcement learning strategy is able to keep losses under the incremental strat-
egy and autoscale+. This is due to an overestimation of parallelism performed
by autoscale+, affecting overall quality.
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Concerning throughput, all solutions deliver a similar performance even if
autoscale+ remains the auto-parallelization strategy keeping the smallest time
shift between fluctuation in input rate and throughput.

Erratic Variations in Input Stream Rate and Data Distribution over
a Sensitive Topology. Considering DABS-Storm, the average processing
latency (Fig. 15b) remains low except for two punctual increases during the first
two peaks in input rate and before the last increase in input rate which lasts
longer. The loss of stream elements (Fig. 15c) is limited to 4.8%.

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 15. Simple sensitive topology with erratic stream

The reinforcement learning strategy provides only the suitable number of
executors (Fig. 15a) to avoid congestion.

While the incremental strategy maintains a low processing latency (Fig. 15b)
and delivers a throughput close to the input rate, it uses considerably more
resources to complete the treatment of the entire stream (Fig. 15a). Moreover,
tuple loss (Fig. 15c) has the worst score of all three approaches.

It is also interesting to notice that DABS-Storm is quite reactive, maintain-
ing a smaller time shift between fluctuations in input rate and throughput than
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the reinforcement learning solution. So, even if stream elements arrive at high
rates, the proactive reconfiguration performed by DABS-Storm does not delay
their treatment.

We observe with this configuration that DABS-Storm offers the best com-
promise between performance with moderate increases, in average, processing
latency and acceptable losses.

Real Sensitive Topology Confronted with a Progressive Stream with
Data Distribution Fluctuations. The topology used here, see Fig. 10, is
representative of real-world continuous queries. It includes common operators
such as filters on values and attributes, joins with static databases and also
user-defined functions from expert domains such as data mining.

In such realistic conditions, DABS-Storm can take advantage of its global
workflow approach. While a greater consumption of resources compared with
other methods, see Fig. 16a, can be observed, it all other solutions in terms of pro-
cessing latency, see Fig. 16b, and it also minimizes the loss of tuples, see Fig. 16c,
while the parallelism degree clearly adapts to the input rate, see Fig. 16a.

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 16. Complex sensitive topology with progressive stream.
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Real Sensitive Topology Confronted with an Erratic Stream. The rein-
forcement learning strategy keeps reacting to local average input rate to adjust
the parallelism degree. It results in an inconsistent scale-in at workflow scope,
which is contradicted afterwards with a major impact on processing latency and
result quality as illustrated on Fig. 17b and c.

(a) Observed operator parallelism degree.

(b) Average global processing latency. (c) Cumulated dephased tuples.

Fig. 17. Complex sensitive topology with erratic stream

Even when confronted with erratic stream variations again, considering both
processing latency (Fig. 17b) and loss of tuples (Fig. 17c), we can conclude that
DABS-Storm copes better than other solutions. This confirms the interest of
not limiting the analysis to local considerations for each operator, but rather
of having a data-driven approach to analyze the behavior on the entire work-
flow, as well as the complementarity and the compatibility of our two proposals,
Autoscale+ and OSG, making up DABS-Storm.

8 Conclusion

Proliferation and diversification of stream sources lead to new techniques in order
to process large amounts of data with high velocity and quality. These techniques
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have to solve simultaneously three problems relating to management of the oper-
ators composing the workflow: parallelization, scheduling, and load balancing.
In this paper, which focuses mainly on state-less operators, we have presented
Autoscale+, a proactive and coherent auto-parallelization strategy improving
on Autoscale [24]. It has been integrated into Storm with OSG, a cautious
aware load balancing strategy, introducing a new member to the Storm family
named DABS-Storm. Indeed, Autoscale+ and OSG can be made perfectly
compatible, complementing each other very well as two sides of the same coin. On
the one side, OSG does not work well if the parallelism degree is underestimated,
while Autoscale anticipates to avoid such situation. On the other side, OSG
improves load balancing, thus having a positive effect on the accuracy of estima-
tions conducted by AUTOSCALE+ and reducing unnecessary reconfigurations.
Such an agreement between two strategies is not systematic. For example, the
experiments conducted highlight some incompatibility problems between OSG
and the progressive strategy, which changes the parallelism degree one step at
a time. Furthermore, DABS-Storm can be used in combination with different
existing scheduling strategies.

Experimental evaluations have shown that DABS-Storm improves the sys-
tem stability and performances. For example, even when facing brief and unpre-
dictable fluctuations in input data streams, Autoscale+ keeps loss of tuples
under 18%. On complex real workflows, thanks to a global workflow analysis,
DABS-Storm does even better, cutting losses to 10%. As long as the necessary
resources are available, faced with large or very large fluctuations in input data
streams, whether in terms of volume or data distribution (as can be observed, for
example, in microblogging analysis), DABS-Storm is able to adapt. This auto-
matic adaptation has many advantages. First, human supervision is no longer
required to trigger and manage system reconfigurations. Note that a scarcity
of resource remains a problem. Indeed, in the event of lack of resources block-
ing scale-out, DABS-Storm does not change its strategies as one would expect.
One of our future research goals is thus to study the problem of resources star-
vation and to search for a solution that maximizes system throughput. Second,
thanks to careful load balancing, dynamic parallelism degree adaptation with a
global workflow analysis, and a data-driven approach, DABS-Storm manages
computing resources better, reaching an interesting equilibrium between system
stability and limited resource consumption.

References

1. Abadi, D.J., et al.: The design of the borealis stream processing engine. In: CIDR
2005, Second Biennial Conference on Innovative Data Systems Research, Online
Proceedings, Asilomar, CA, USA, 4–7 January 2005, pp. 277–289. www.cidrdb.org
(2005). http://cidrdb.org/cidr2005/papers/P23.pdf

2. Abadi,D.J., etal.:Aurora:anewmodelandarchitecture fordatastreammanagement.
VLDB J. 12(2), 120–139 (2003). https://doi.org/10.1007/s00778-003-0095-z

http://cidrdb.org/cidr2005/papers/P23.pdf
https://doi.org/10.1007/s00778-003-0095-z


DABS-Storm: A Data-Aware Approach for Elastic Stream Processing 91

3. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in storm. In:
Chakravarthy, S., Urban, S.D., Pietzuch, P.R., Rundensteiner, E.A. (eds.) The
7th ACM International Conference on Distributed Event-Based Systems, DEBS
2013, Arlington, TX, USA, 29 June–03 July 2013, pp. 207–218. ACM (2013).
http://doi.acm.org/10.1145/2488222.2488267

4. Apache Flink. https://flink.apache.org/
5. Apache Storm. https://storm.apache.org/
6. Arasu, A., et al.: STREAM: the Stanford data stream management system. In:

Garofalakis, M.N., Gehrke, J., Rastogi, R. (eds.) Data Stream Management.
DSA, pp. 317–336. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
540-28608-0 16

7. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006). https://doi.
org/10.1007/s00778-004-0147-z

8. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Load management and high
availability in the medusa distributed stream processing system. In: Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data, pp.
929–930. ACM (2004)

9. Biem, A., et al.: IBM infosphere streams for scalable, real-time, intelligent trans-
portation services. In: Elmagarmid, A.K., Agrawal, D. (eds.) Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 1093–1104. ACM (2010).
http://doi.acm.org/10.1145/1807167.1807291

10. Box, G.: Box and Jenkins. In: Time Series Analysis, Forecasting and Con-
trol, pp. 161–215. Palgrave Macmillan, London (2013). https://doi.org/10.1057/
9781137291264 6

11. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979). https://doi.org/10.1016/0022-0000(79)90044-8

12. Chandrasekaran, S., et al.: TelegraphCQ: continuous dataflow processing. In:
Halevy, A.Y., Ives, Z.G., Doan, A. (eds.) Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego, California, USA,
9–12 June 2003, p. 668. ACM (2003). http://doi.acm.org/10.1145/872757.872857

13. Cherniack, M., et al.: Scalable distributed stream processing. In: CIDR 2003, First
Biennial Conference on Innovative Data Systems Research, Online Proceedings,
Asilomar, CA, USA, 5–8 January 2003. www.cidrdb.org (2003). http://www-db.
cs.wisc.edu/cidr/cidr2003/program/p23.pdf

14. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005). https://doi.
org/10.1016/j.jalgor.2003.12.001

15. Das, R., Tesauro, G., Walsh, W.E.: Model-based and model-free approaches
to autonomic resource allocation. Technical report, RC23802, IBM Research
Report, November 2005. http://domino.watson.ibm.com/library/cyberdig.
nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!
OpenDocument&Highlight=0,tesauro

16. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Brewer, E.A., Chen, P. (eds.) 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, 6–8 December 2004,
pp. 137–150. USENIX Association (2004). http://www.usenix.org/events/osdi04/
tech/dean.html

17. Gedik, B.: Partitioning functions for stateful data parallelism in stream processing.
VLDB J. 23(4), 517–539 (2014). https://doi.org/10.1007/s00778-013-0335-9

http://doi.acm.org/10.1145/2488222.2488267
https://flink.apache.org/
https://storm.apache.org/
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
http://doi.acm.org/10.1145/1807167.1807291
https://doi.org/10.1057/9781137291264_6
https://doi.org/10.1057/9781137291264_6
https://doi.org/10.1016/0022-0000(79)90044-8
http://doi.acm.org/10.1145/872757.872857
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!OpenDocument&Highlight=0,tesauro
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!OpenDocument&Highlight=0,tesauro
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/f5e3b7f574b24bad852570c1005e35a9!OpenDocument&Highlight=0,tesauro
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1007/s00778-013-0335-9


92 R. K. Kombi et al.

18. Gedik, B., Schneider, S., Hirzel, M., Wu, K.: Elastic scaling for data stream pro-
cessing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014). https://doi.
org/10.1109/TPDS.2013.295
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22. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of
stream processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2013).
http://doi.acm.org/10.1145/2528412

23. Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins over unbounded
streams. In: Dayal, U., Ramamritham, K., Vijayaraman, T.M. (eds.) Proceedings
of the 19th International Conference on Data Engineering, 5–8 March 2003, Banga-
lore, India, pp. 341–352. IEEE Computer Society (2003). https://doi.org/10.1109/
ICDE.2003.1260804

24. Kombi, R.K., Lumineau, N., Lamarre, P.: A preventive auto-parallelization app-
roach for elastic stream processing. In: Lee, K., Liu, L. (eds.) 37th IEEE Interna-
tional Conference on Distributed Computing Systems, ICDCS 2017, Atlanta, GA,
USA, 5–8 June 2017, pp. 1532–1542. IEEE Computer Society (2017). https://doi.
org/10.1109/ICDCS.2017.253

25. Mukhopadhyay, A., Mazumdar, R.R.: Analysis of randomized join-the-shortest-
queue (JSQ) schemes in large heterogeneous processor-sharing systems. IEEE
Trans. Control Netw. Syst. 3(2), 116–126 (2016). https://doi.org/10.1109/TCNS.
2015.2428331
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Abstract. Nowadays, an electricity blackout can have a domino effect
on the overall power system, causing extremely bad effects on the
economical, ecological and operational countries perspectives. All this
emphasizes the need for conceiving an upgraded vision of today’s and
tomorrow’s power systems that have to be smart to meet the society
expectations. Smart grids have been emerging as an appropriate solu-
tion for such needs. This work addresses two main related challenges
encountered in the management of such power systems: (1) the semantic
interoperability needed between their heterogeneous components in order
to ensure seamless communication and integration, and (2) a means to
consider their various objectives from economical, ecological, and opera-
tional perspectives, to mention some. In this paper, we propose a three-
layered smart grid management framework, aiming at resolving these two
issues. The backbone of the framework is SSG, a generic ontology-based
model, detailed here. It aims at modeling the smart grid components,
their features and properties, allowing the achievement of the smart grid
objectives. Several evaluations have been conducted in order to validate
our proposed framework and emphasize the SSG importance and utility
in the energy domain. Obtained results are satisfactory and draw several
promising perspectives.

Keywords: Information modeling · Ontology · Power system
Smart grid

1 Introduction

In the era of new technologies and with the growing need for reliable ecological
energy supplies [8], current electrical grids have to be upgraded in order to
be smarter, more flexible and able to operate, monitor and heal themselves
autonomously. Here comes the SG as one of the main contributor in the power
systems update. However, there are several challenges have to be solved before.
One of the most important challenges is related to heterogeneity. In essence,
SGs consists of a number of heterogeneous components (built and supplied by
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different companies, for different purposes, and using various protocols [16]).
In addition, the heterogeneity of such power systems would arise further from
the internal and external interactions of their components as well as with the
external environment. All this underlines the need of an appropriate semantic
interoperability ensuring a seamless information exchange between components
within three layers as discussed in [14,15]: Field Layer, Knowledge Layer, and
Management Layer. The three layers will be briefly described in what follows.

• Field Layer (FL): Via this layer, the data collector gathers all data
exchanged between components via a low-level communication environment
relying on standardized protocols (e.g., BACnet, Modbus, etc.). Once gath-
ered, those data are stored in a low-level data repository and pushed up to
the next layers.

• Knowledge Layer (KL): In order to resolve the interoperability issues and
open up the possibility to model the new trends in today’s energy systems (i.e.,
prosumers, electric vehicle, etc.), it is essential to capture and understand the
semantics of exchanged data to ensure a seamless communication between the
components within the power system. Through this layer, the semantic middle-
ware insures the semantic translation of the collected data using our proposed
ontology-based information model called SSG. Furthermore, the reasoner is
responsible of processing information and using it to infer additional value
thanks to many rules and constraints defined in this layer.

• Management Layer (ML): In this layer, a collaborative diagnostics, a self-
optimization for disturbance, and a remote visualization for the users (via
an integrated simulation and synthesis) are provided. Besides, the informa-
tion extracted from the knowledge layer is processed in order to achieve the
objectives of the power system. To do so, a battery of advanced management
services (e.g., Demand side management, minimization of transmission losses,
etc.) is designed.

In addition to the operational aspect related to the components operating,
the SG needs to ensure several services each targeting a different objective.
First, a SG aims at providing reliable and secured identification when incorpo-
rating heterogeneous components. In today’s digital world, cyber-attacks [18,20],
such as intentionally switching off the SG operators, could cause cascade dam-
ages on the grid. Hence, it is important to provide such an identification for
the components helping in reducing the grid intrusions. Second, each compo-
nent can play multiple roles, participating in the emergence of a new paradigm
known as ‘Prosumer’ [12,21], referring to the components able to PROduce
power and conSUME energy at the same time. Hence, an SG can be seen as a
multi-objective system that depends on a potential interaction among different
stakeholders (i.e., energy sources, energy consumption loads, etc.), having each
its objectives, which emphasizes the need of taking into account all the aspects
involved in the achievement of the SG objectives. Third, the SG needs to cope
with the mobility of the several components (e.g., electric vehicles, boats, etc.)
during their lifetime. Fourth, an SG would become an important player in the
electricity market relying on its components participation in the environment.
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The goal of this study is to address the above issues and challenges by pro-
viding an appropriate information modeling for SGs. In other words, our goal
is to propose a recommended data model for SG description, allowing to create
an interoperable power system that enables the integration and the validation
of the various new heterogeneous renewable distributed generation systems and
various storage technologies.

In this paper, we present a dedicated framework for better management of
SG driven by adapted tools and services. We also detail here our ontology-
based SG model called SSG, capable of: (1) being compliant and aligned with
existing information models, coping with the interoperability between all the
layers, providing the reasoning capabilities and smart features needed, as well
as (4) solving the multi-objective aspect of the SG.

The rest of this paper is organized as follows. Section 2 presents the state of
the art of existing power systems information models. Section 3 presents our SSG
ontology through its main concepts. Section 4 describes the evaluation method-
ology and results of the proposed framework and ontology. Section 5 concludes
the paper.

2 Related Work

Several approaches have been provided in the literature addressing the problem
of ‘Power system information modeling’. They can be categorized into syntactic-
based and semantic-based approaches. The syntactic-based models are intended
to provide a standard way to represent the data of the system. The semantic-
based models are ontology-based information models, aiming at providing a
richer and complex knowledge representation about the entities and relations
between them.

2.1 Syntactic Based Models

2.1.1 Common Information Model
The Common Information Model (CIM) [19] is a widely accepted electricity
information model being part of the IEC 61970 standards. Its main objec-
tive is to develop a platform independent data model for enabling better grid
interoperability. This model includes the exchange between market participants
and market operators as well as communication between market operators.
In the CIM model, the PowerSystemResource concept is composed of the
Equipment concept that contains the components of a power system that are
physical devices, electronic or mechanical. Two types of equipment exist: (1)
ConductingEquipment and (2) Powertransformer. A ConductingEquipment
concept, represents the parts of the power system that are designed to carry cur-
rent. A Powertransformer is an electrical device, allowing a mutual coupling
between electric circuits.

From the multi-objective perspective, the CIM model [19] does not fully
describe all the operational properties of the distributed energy sources and
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the storage systems. In addition, it covers partially the ecological aspect
(using the EmissionType parameter) and the economical aspect (using the
CostPerEnergyUnit and CostPerHour parameters). The identification aspect
is limited to only two parameters: Id, Name. However, the mobility and the
multi-role aspects were totally absent in the model. From the interoperability
perspective, the CIM model does not cover completely the field layer. In addi-
tion, since it is an UML based model, this impoverishes the semantic relations
between the concepts, which limits its knowledge coverage. In addition, as men-
tioned before, since there is a lack in representing all the objective aspects of a
power system, this also affects negatively the management layer.

2.1.2 MIRABEL FlexEnergy Data Model
The MIRABEL smart grid system [23] comes to hand over the flexibility in
energy demand and supply. It incorporates the power profile concept which asso-
ciates a consumption/production schedule for each branch.

In order to achieve such flexibility in energy demand and supply in the power
grid, a data model has been developed in [23] consisting of five main classes:
branch, actor, energyprofile, constraint and flex-offer. A branch is an energy
consumer or producer that has a specific energy load over a certain time span
(called energyprofile). An actor has minimum or maximum demands (called
constraints) on their energy load, price and time. These constraints are issued
(by an actor) toward the branches owned by the actor. The flex-offer class
defines two types of demands: flexible demand and non-flexible demand. Flexible
demand can often be shifted from the peak demand times to lower demand times,
while non-flexible demand should be satisfied immediately.

From the multi-objective perspective, the model in [23] provides a high eco-
nomical aspect representation and a slighter representation of the operational
and identification aspects, since it is dedicated to conceive a flexible market
power exchange. However, the ecological, mobility and multi-roles aspects are
absent in it. From the interoperability perspective, the MIRABEL model does
not cover completely the field layer. Similarly to the CIM model, Mirabel is
an UML based model, which impoverishes its semantic expressiveness and the
knowledge coverage. In addition, as mentioned before, since there is a lack in
representing all the objective aspects, affecting negatively the management layer.

2.1.3 Facility Smart Grid Information Model
The Facility Smart Grid Information Model (FSGIM) [7] is developed with the
aim of enabling energy consuming branches and control systems in the customer
premises so to manage electrical loads and energy sources in response to commu-
nications with the smart grid. To achieve this, an object-oriented information
model is defined to support a wide range of energy management applications
and electrical service provider interactions. The proposed information model [7]
provides a common basis to describe, manage, and communicate information on
aggregate electrical energy consumption and forecasts.
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From the multi-objective perspective, the FSGIM model covers almost all
the components of a power system, except the storage devices (only the ther-
mal storage systems are modeled). However, the model takes fully into account
the economical and identification aspects. Concerning the ecological aspect, it
is partially covered in the model (using Emission parameter). The multi-role
aspect is completely absent in the model. From the interoperability perspective,
the FSGIM model does not cover completely the field layer. In addition, since
it is an object-oriented model, it has a limited means to express the semantic
relations between the components and the reasoning capabilities of the system.
All this causes a partial management layer coverage.

2.1.4 OASIS Energy Interoperation
OASIS Energy Interoperation [4] enables collaborative use of energy in a power
network. It defines XML-based vocabularies for the interoperable and stan-
dard exchange of information related to energy prices and bids (demand and
response), network reliability, emergency signals and the prediction of loads con-
sumption. This information relies on the WS −Calendar [5] and EMIX (elec-
tricity market Information Exchange Specification) [3]. The first defines how to
specify and communicate the duration and time of a schedule, while the later
specifies the semantics in electricity markets.

From the multi-objective perspective, the OASIS model covers completely
the economic aspect since it targets the electricity market information model.
However, it neglects the remaining aspects. From the interoperability perspec-
tive, the OASIS model covers partially the three layers, since it does not cover
completely all the components and operational parameters, without taking into
account all the semantic relations between the components.

2.2 Semantic Approaches

2.2.1 Facility Ontology
The Facility Ontology1 aims at conceiving a standard nomenclature for the
power systems, by providing a representation of its components and their control
parameters. Complying with the Suggested Upper Merged Ontology (SUMO),
the proposed ontology aims to classify the power system in two main con-
cepts: the Physical and the Abstract concepts. The Physical concept serves
for describing the physical components of the power system (i.e., production
unit, storage unit, consumption unit and conversion unit) with a set of related
properties. Concerning the Abstract concept, two concepts are introduced: the
Management concept, and the Policy concept. The Management concept con-
sists of four sub concepts: (i) the Energy trading, (ii) the Lc operation, (iii)
the Mgcc operation and (iv) the Operational modes. The Lc operation and
Mgcc operation concepts contain all the information related to the load and cen-
tral controllers. The Energy trading concept represents the information related

1 https://github.com/usnistgov/facility.

https://github.com/usnistgov/facility
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to the power exchanged in the grid, such as the power prices, the minimum and
the maximum power quantity. And finally, the Policy concept, refers to the infor-
mation related to the constitution (Design concept), the operation (Operation
class) and interface (integration concept) of the power system.

From the multi-objective perspective, the ontology shows a high efficiency in
representing the operational aspect, by modeling all the components of the power
system. Similarly to the operational aspect, the economical one was taken into
account via the Energy trading concept. The identification aspect was limited
to the definition of the ID, Mode and Manufacturer parameters. However,
the mobility, the ecological and the multi-role aspects were totally absent in
the ontology. From the interoperability perspective, the Facility Ontology covers
completely the field layer. However, it is poor in representing the semantic rela-
tions between the components (limited to the “hasSubClass” relations), which
limits its knowledge coverage. In addition, as mentioned before, there is a lack in
representing all the objective aspects of a power system which affects negatively
the management layer.

2.2.2 Prosumer Ontology
In [9], the authors propose a classification of the power system components
using several predefined scenarios. Based on the UK property classification, five
power consumption patterns are identified, namely: (1) commercial premises
consisting of the consumers having varying operating times, (2) business related
premises consisting of the consumers having fixed operating times (e.g., office
times), (3) residential premises consisting of the houses consumption, (4)
non − residential premises consisting of non-residential premises (e.g., hospi-
tals, schools, etc.) having more critical power needs, and (5) industrial premises
consisting of the factories consumption having uninterrupted power needs. Con-
cerning the energy sources classification, two categories were also introduced in
[9]: renewable and non− renewable energy sources, while three energy storage
systems categories were identified, according to the type, produced power and
charge and discharge efficiency, namely: (1) energy management, (2) power
quality, and (3) bridging power. In addition, the component connectivity
focuses on enabling the exact connectivity relationships between the produc-
ers and the consumers. And finally, the Service Contracts comes to describe
the information exchanged between the producers and the consumers in a com-
petitive market. It contains the Start/End Date of the contract, the type of
payment and the charges per units of power.

From the multi-objective perspective, the ontology in [9] shows a lack in the
operational aspect, since it is limited to modeling the main components of a
power system, without taking into account their operational parameters. When
it comes to the economic aspect, it is partially taken into account by model-
ing the contracts between producers and the consumers. The ecological aspect
is partially modeled by distinguishing the renewable and non-renewable energy
sources. The remaining aspects are totally absent in this model [9]. From the
interoperability perspective, the Prosumer ontology covers partially the field
layer. This affects directly the knowledge layer modeling. Here again, the man-
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agement layer can partially be addressed due to the lacks in the multi-objective
aspect modeling.

2.2.3 Upper Ontology for Power Engineering Application
Based on the Common Information Model (CIM) [19], the authors in [2] propose
an ontology that mainly aims at monitoring the health status of the power
systems. In this model, the concept Measurement represents anything that can
be measured, including data taken from sensors and historical data. In addition,
anything that is extracted from raw data is represented as an Interpreted Data,
and specifically as a Summary Interpretation or a Detailed Interpretation.
Moreover, the components’ operations in the system are represented via the
Agent Action. This model supports the exchange of messages between agents,
but not explicitly defined. Although adopted by several applications, the upper
ontology usually needs to be enriched with additional concepts to cover all the
required information.

From the multi-objective perspective, and since this model [2] is based on
the CIM [19], this leads to inherit the same objective aspects coverage. Hence,
the upper ontology covers partially the operational, identification, economical
and ecological aspects, but doesn’t take into account the mobility and multi-
roles aspects. From the interoperability perspective, the upper ontology covers
partially the field layer. In addition, it neglects the semantic relations between
the components, which makes the knowledge layer incomplete. All this causes a
lack in the management layer.

2.3 Summary

In this section, we present a comparison summary between the existing
approaches, highlighting their strengths and drawbacks with respect to their
ability to resolve the interoperability issue within a power system, and the inte-
gration of the necessary aspects allowing the achievement of related services.
Three symbols for comparison will be used in whats follows: (1) ‘−’ to express
the low capabilities of an approach in covering a feature, (2) ‘partial’ when an
approach has middle coverage capabilities, and (3) ‘+’ to express the high cov-
erage capabilities of an approach.

2.3.1 Interoperability Aspect
Table 1 shows the ability of the existing approaches to cope with the interoper-
ability issue. In short, most of them cover the modeling of the field layer, which
contains the physical components of the power systems. Concerning the Knowl-
edge/Information layer, the semantic-based approaches show a better potential
in the knowledge modeling, compared to the syntactic-based ones, represented by
the classification and the categorizing of the power systems components, but lack
in fully modeling the relationships between them. Table 1 also shows that exist-
ing approaches cannot provide an appropriate modeling of the management layer,
since they are mostly limited to modeling the electricity market information.
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Table 1. Comparison of existing power system information models with respect to the
interoperability aspect

Interoperability layers

Field layer Knowledge/Information layer Management layer

CIM [19] Partial Partial Partial

FSGIM [7] + Partial Partial

OASIS [4] − − −
MIRABEL [23] − − −
Prosumer [9] Partial Partial Partial

Facility ontology (see footnote 1) + Partial Partial

EFEFEFUpper ontology [2] Partial Partial Partial

2.3.2 Multi-objective Aspect
Table 2 summarizes the main commonalities and differences between existing
approaches with respect to the six categories of aspects used in the achievement of
the Power Systems objectives. In short, few take properly into account the identi-
fication aspect. In contrast, the operational aspect is the core of most of the exist-
ing models, whose aim was to standardize the technical vocabulary in the power
systems, except MIRABEL system which mainly focuses on the electricity mar-
ket modeling. Clearly, as the comparison table shows, the economical aspect is
highly modeled since most of the existing models aim at conceiving a market power
exchange. Moreover, the ecological aspect is merely modeled through a small set of
properties related to the gas emission of the components. However, two aspects are
almost absent in the existing information models, namely: (1) the mobility aspect
representing the shifts of the components in the system, and (2) the multi-roles
aspect, representing the roles played by a component during its lifetime accord-
ing to a certain context. To sum up, none of the existing approaches completely
addresses the interoperability and the mutli-objective aspect of the power system.
In the following section, we provide our SG Management System framework, aim-
ing at resolving interoperability issues from the information perspective by inte-
grating all the power system aspects related to its objectives.

Table 2. Comparing existing power system information models regarding the SG
multi-aspect

MG objective aspect

Identification Operation Mobility Economy Ecology Multi-roles

CIM [19] Partial Partial − Partial Partial −
FCGIM [7] + Partial Partial Partial + Partial

OASIS [4] − − − + − −
MIRABEL [23] Partial Partial − + − −
Prosumer [9] − Partial − − Partial −
Facility ontology

(see footnote 1)

Partial + − + − −

Upper ontology [2] Partial Partial − Partial Partial −
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3 SSG Ontology

As seen in our related work study, semantic-based models showed a higher
expressive power in dealing with interoperability issues and to some extend with
the multi-objective aspect of the SGs. Thus, this drove us to adopt a semantic-
based approach called SSG, a generic ontology-based model, aiming at model-
ing the SG components, their parameters and additional properties allowing the
achievement of its objectives.

3.1 Why “Ontologies are Appropriate” Means for Semantic
Approaches?

Due to its importance [13] in information systems and artificial intelligence,
an ontology-based SG information model would provide a shared knowledge
conceptualization allowing an easier system interaction and manipulation, espe-
cially for non-computer scientists, while giving the grid reasoning capabilities
and autonomy.

3.1.1 Ontology as a Shared Knowledge
Since an SG consists of a number of heterogeneous components, it is important
to define a shared representation of the exchanged information. In addition,
each component has a direct/indirect impact on the other components and on
the overall grid.

3.1.2 Ontology as a Better Means for Information Retrieval
Since a power system is usually managed by non-computer-scientists, an ontology
would help them interact and manipulate the system in an easier and more
intuitive way. Besides, an ontology would provide a structure that is flexible,
and that naturally organizes the information in multidimensional ways.

3.1.3 Ontology as a Reasoning Strategy
Due to the intermittent aspect [6] of the renewable energy sources and the expo-
sure of the power system to predictable and non-predictable events (power sys-
tem anomalies, storms, etc.), an ontology becomes essential since it can also
represent beliefs, goals, hypotheses, and predictions. These latter will give the
components the ability to act and react autonomously or collectively according
to a certain event or goal.

3.2 SSG Overview

While conceiving an ontology, the main target is to settle a shared terminology
describing the power system. Several steps were conducted while developing our
ontology [22]. In the aim of being compliant with existing standards, the first step
was to identify the well-known and most adopted standards in the power domain.
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Two important standards have been identified: the CIM/IEC 61790 model, and
the IEC 61850-7-420 related to the basic communication structure for distributed
energy resources logical nodes. The second step consisted of grouping the con-
cepts into categories in order to check the coverage of the ontology regarding the
needed aspects. And finally, the refinement phase consisted of establishing the
semantic relations between the defined concepts. Thus, to cope with the interop-
erability issues, the skeleton structure of the SG (called the basic structure)
is mainly based on the CIM standard and the multi-objective aspect (called
extended structure) is based on the IEC 61850 standard and completed with
a set of additional properties.

3.3 Why CIM and IEC 61850

CIM is an open standard for representing power system components developed
by the Electric Power Research Institute (EPRI) in North America. The standard
was developed as part of the IEC TC57 WG13 on developing a Control Centre
Application Programming Interface (CCAPI) to provide a common model for
describing the components in power systems for use in a common Energy Man-
agement System (EMS) Application Programming Interface (API). Besides the
fact that the CIM is a standardized data model, this format has been adopted by
the major EMS vendors to allow the exchange of data between their applications,
independent of their internal software architecture or operating Platform.

IEC 61850 is a standardized data model for representing distributed energy
resources (DER), which comprise dispersed generation devices and dispersed
storage devices, including reciprocating engines, fuel cells, microturbines, pho-
tovoltaics, combined heat and power, and energy storage. The IEC 61850 is
now an International Standard, that addresses most of the issues that migration
to the digital world entails, especially, standardization of data names, creation
of a comprehensive set of services, implementation over standard protocols and
hardware, and definition of a process bus. Multi-vendor interoperability has been
demonstrated and compliance certification processes are being established.

All the aforementioned reasons mentioned above, lead us to adopt both stan-
dards in the aim of being compliant with international norms and protocols. Our
ontology, called SSG, is a graph representing a collection of subject-relation-
object triples, where:

• Nodes designate subjects, objects, or subject/object properties: (1) SG
branches and components (e.g., EnergyStorageBranch, WindTurbine, etc.),
and (2) Corresponding property values (e.g., panelWidth, totalCost, etc.)

• Edges connecting source/destination nodes, designate relations: (1) Rela-
tions between components (e.g., WindTurbine isA DistributedEnergySource,
etc.), and (2) Property and value relations (e.g., windTurbine HasSpeed 50,
solarPanel HasCost 7500, etc.)

The property values and edges in SSG are mainly classified into five cat-
egories: identification, mobility, operation, economic, and ecology. Details are
provided in what follows.
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3.4 SSG Basic Structure

To cope with the interoperability issues, our SSG basic structure is a seman-
tic translation of the CIM extension proposed in [24]. Knowing that the
CIM is not dedicated to cover specifically the SG components modeling, the
authors in [24] proposed additional features (e.g., solar power, wind power,
etc.). Here comes the importance of our ontology that represents in a simple
and clean way, each branch structure which contains the set of the equipment
that composes it. Figure 1 shows the ‘Microgrid’ concept, inheriting from the
‘CIM:SubControlArea’, which describes relative information of the power system
operation and allows the creation of several connected power systems instances.
Based on the branch concept defined in [24], four main branches are added
here: (1) Distributed energy resource branch, (2) Energy storage branch, (3)
Electrical load branch, and (4) Infrastructure Branch, where each has its own
Branch Switch and Branch Controller. The Branch Switch is responsible of turn-
ing on/off the branch, and the Branch controller is the manager of the branch
operations. All concepts borrowed from CIM have been prefixed with ‘CIM:’ in
the following figures of the provided ontology.

Fig. 1. Extract of the SSG skeleton structure

3.4.1 Distributed Energy Resource (DER) Branch
The distributed energy resource branch consists of renewable or non-renewable
energy sources. Figure 2 shows the DER branch concept, consisting of a Solar
Power Branch, Wind Power Branch, Combined Heat Power Branch and Fuel
Power Branch.
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Fig. 2. Extract of the DER branch

Note that a branch is a combination of several equipment, when working
together, they accomplish a specific function in the SG (e.g., a Solar Cell and
a Converter are two main equipment constituting the Solar Power branch and
allowing its functioning in the power system). In more details, a Solar Power
branch (cf. Fig. 3) consists mainly of a Solar Cell and a converter. The Solar Cell
is an electrical device that converts the energy of light directly into electricity
by the photovoltaic effect, which is a physical and chemical phenomenon. The
converter is a branch for altering the nature of an electric current or signal,
especially from AC to DC (Ac/Dc Converter) or vice versa (commonly called
Inverter). This latter can be a Monophasic inverter or a Triphasic inverter.

Fig. 3. Extract of the photovoltaic branch package

Figure 4 depicts the wind power branch. It includes mainly, the wind tur-
bine and the converter. The wind turbine generates electricity from the kinectic
power of the wind. The wind turns two or three propeller-like blades around
a rotor. The rotor is connected to the main shaft, which spins a generator to
create electricity. Similarly to the photovoltaic branch, the converter consists an
essential component in the wind power structure.
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Fig. 4. Extract of the wind power branch

3.4.2 Energy Storage (ES) Branch
Recently, the energy storage systems start to have a great potential in radi-
cally transforming the global energy landscape, helping to solve key issues in
the integration of renewable energy systems. Energy storage systems play an
essential role in stabilizing the SG, improving the quality of power supply, and
achieving power peak shaving. The energy storage branch consists mainly of the
energy storage device (e.g., Pumped-Storage Hydroelectricity (PSH), batteries,
etc.) and a converter (cf. Fig. 5).

Fig. 5. Extract of the energy storage branch
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3.4.3 Electrical Load (EL) Branch
An electrical Load is an electrical component or branch that consumes electric
power. It is mainly consisting of the electrical appliance components (cf. Fig. 6).

Fig. 6. Extract of the electrical load branch

3.5 SSG Extended Structure

To cope with the multi-objective aspect of an SG, OntoMG aims to model all
the aspects/functionalities participating in the achievement of its objectives.
Hence, six concepts are defined, each covering an objective aspect, namely: (1)
identification, (2) economical, (3) operation, (4) mobility, (5) ecological and (6)
multi-roles. Those concepts are the key for conceiving an SG able to reason and
act autonomously.

3.5.1 Identification Concept
An SG consists of several heterogeneous branches, each having its own char-
acteristics and operation modes during its lifetime. Thus, when joining an SG,
each branch is associated, through an identification service, with an ‘identity’
consisting of a number of properties distinguishing it from the others and giving
it the possibility to be automatically recognized. The identification concept con-
sists of a number of properties (cf. Table 3): the serial number which is a unique
value, the type, brand and model designating a certain provider.

Table 3. Identification concept

Name Description Type

Serial# Unique identifier of a component within the system String

Type Type to which a component belongs String

Brand Feature that distinguishes one seller’s component from those of others String

Model Style or design of a particular component String



108 K. Salameh et al.

3.5.2 Economic Concept
Due to the importance of the SG from economic perspective, it is essential to
consider related properties of its components. Those properties imply several
features related to the SG participation in the electricity market. Table 4 shows
the main properties of the economic aspect consisting of: the maintenance cost,
the total cost, the start up cost, the stop cost, the installation cost, the equipment
cost and the operating cost. Two additional properties are only assigned to the
branches being able to sell their produced/stored power are the power price per
KWh, the power price per hour, and the power cost.

Table 4. Economic concept

Name Description Type

EqCost Equipment cost of a component Number

MaintenanceCost Maintenance cost of a component Number

InstallCost Installation cost of a component Number

OpCost Operating cost of a component Number

TotalCost Total cost of a component Number

StrCost Start up cost of a component Number

StopCost Stop cost of a component Number

PwrKWhPrice Power price vector per KWh Number

PwrhPrice Power price vector per hour Number

PwrCost Production power cost vector Number

CptBill Consumption bill vector Number

3.5.3 Operation Concept
The operation concept encompasses the technical properties related to the com-
ponents functioning during their lifetime in the power system. Since our model
is based on the IEC 61850 in its extended structure, this eases the exchanges of
the technical information between the SG components.
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Tables 5, 6 and 7 show the list of the distributed energy source (DES), energy
storage (ES) and electrical load (EL) operation properties, respectively.

Table 5. DER operation concept

Name Description Type

IEC : V Rtg Voltage level rating Number

IEC : ARtg Current rating under nominal voltage under nominal power factor Number

IEC : HzRtg Nominal frequency Number

IEC : TmpRtg Max temperature rating Number

IEC : V ARtg Max volt-amps rating Number

IEC : WRtg Max watt rating Number

IEC : V artg Max var rating Number

IEC : MaxWOut Max watt output - continuous Number

IEC : WRtg Rated Watts Number

IEC : MinWOut Min watt output - continuous Number

IEC : EffRtgPct Efficiency at rated capacity as percent Number

LaunchCount Number of time the components is launched during an interval of time Number

Penalty Waiting time penalty of launching the component Number

SInit Desired schedule of the component Double

SOp Operational schedule of the component Double

Table 6. ES operation concept

Name Description Type

IEC : AhrRtg Amp-hour capacity rating Number

IEC : BatV Nom Nominal voltage of battery Number

IEC : BatSerCnt Number of cells in series Number

IEC : BatParCnt Number of cells in parallel Number

IEC : DisChaCnt Discharge curve Number

IEC : DisChaTimDischarge curve by time Number

IEC : DisChaRte Self discharge rate Number

IEC : EffRtgPct Efficiency at rated capacity as percent Number

IEC : SOCPct Battery level as percent Number

IEC : SOHPct Battery lifetime as percent Number

LaunchCount Number of time the components is launched during an interval of time Number

Penalty Waiting time penalty of launching the component Number

SInit Desired schedule of the component Double

SOp Operational schedule of the component Double
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Table 7. EL operation concept

Name Description Type

ActhAm A.m active hours Number

ActhPm P.m active hours Number

Cpt Current consumption Number

MaxCpt Maximum consumption Number

MinCpt Minimum consumption Number

MinStrTim Minimum start time consumption DateTimeStamp

MaxStrTim Maximum start time consumption DateTimeStamp

StrTim Start time consumption DateTimeStamp

MinStopTim Minimum stop time consumption DateTimeStamp

MaxStopTim Maximum stop time consumption DateTimeStamp

StopTim Stop time consumption DateTimeStamp

isPrimary Designates a critical load Boolean

isSecondary Designates a non-critical load Boolean

isShiftable Designates a shiftable load Boolean

LaunchCount Number of time the components is launched during an interval of time Number

Penalty Waiting time penalty of launching the component Number

SInit Desired schedule of the component Double

SOp Operational schedule of the component Double

3.5.4 Ecology Concept
Knowing the importance of the SG in the integration of green energy produc-
tion, it becomes essential to take into account the components contribution in the
environment. This participation is modeled through ecology concept (cf. Table 8)
using several properties, such as the carbon emission ratio, the Ethylene emission
ratio, and others gas emissions ratios, expressed in g/Kg. In addition, the pol-
lution costs related to the toxic emissions are modeled using several properties:
Carbon Emission Cost, Etyl Emission Cost.

Table 8. Ecology concept

Name Description Type

CarbEss Carbon emission ratio Number

EthylEss Ethyl emission ratio Number

HeatEss Heat emission ratio Number

CarbEssCost Carbon emission Cost Number

EthylEssCost Ethyl emission Cost Number

HeatEssCost Heat emission Cost Number

3.5.5 Mobility Concept
In order to model the components ability to move during their lifetime in the SG,
a two-dimensional tracking is represented through two concepts: ‘Time tracking’
and ‘Position tracking’. Each concept has a set of properties allowing a fine-
grained tracking (cf. Tables 9 and 10).
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Table 9. Time tracking concept

Name Description Type

DepT im Departure Time of a mobile component DateTimeStamp

ArvT im Arrival Time of a mobile component DateTimeStamp

Table 10. Location tracking concept

Name Description Type

Ctry Country String

Lat Latitude Double

Long Longitude Double

PosInMG Position in the SG String

3.5.6 Multi-roles Concept
Future SG are going through comprehensive changes, especially due to the inte-
gration of the Prosumers, where an entity can consume and produce simultane-
ously in a complete paradigm shift [12].

Fig. 7. Multi-role concept

Figure 7 shows the ‘Role’ concept defined to model the different roles that a
component can play during their lifetime in the grid. Besides, three additional
properties are defined (cf. Fig. 11): the ‘RoleCondition’, the ‘RoleStartTime’ and
the ‘Duration’.

3.6 Discussion

Our SSG ontology design and structure highlight its capabilities in resolving the
interoperability issues from the three layers:

• Field Interoprability Layer: This is resolved thanks to the use of the CIM and
IEC international standards allowing to be compliant with existing standards
in the domain. In addition, new concepts are added aiming at covering new
technologies and concepts such as electrical vehicle, etc.

• Knowledge/Information Layer: This is resolved thanks to the adoption of an
ontology-based model, which allows the semantic modeling of the data.

• Management Layer: This is resolved thanks to the integration of several
parameters allowing to cover the six services’ categories of the SGs:
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Table 11. Multi-roles concept

Name Description Type

RoleCondition Required Condition to play a specific role String

RoleStartT ime Start Time of a specific role DateTimeStamp

Duration Play duration of a specific role Double

– Identification Services: the main identification services are the Authen-
tication and the Registration. In the aim of establishing a secure access
to the power system, an Authentication service is required. It verifies the
identity of any component wishing to access the SG. The Registration
service, is the process of registering the components in the power system
using a set of parameters defined in the information/knowledge layer.

– Operational Services: the main operational services are: (1) the Voltage
and frequency regulation, (2) the Fault detection, (3) the Power loss min-
imization, and (4) the Peak power reduction. The Voltage and frequency
regulation consists of maintaining a balanced output of the voltage and
frequency iof the grid, done despite the systems’ disturbances and the load
variations. The Fault detection consists of detecting power system errors
as fast as possible, so that an appropriate action can be immediately taken
before major problems can happen. The Power loss minimization con-
sists of ensuring the power exchange between the components in a way to
reduce the power transmission losses. The Peak power reduction consists
of reducing the maximum power consumption (for instance, by apply-
ing prediction techniques of electrical consumption [11] and demand-side
management techniques).

– Economical Services: they consist of managing the impact of the com-
ponents on the electricity market. They play an essential role in dele-
gating the cheapest component that should be launched or implemented
to satisfy a certain need. For instance, one main economical service is
the electricity market management which consists of establishing auction
algorithms in order to find the optimal power prices and to maximize the
net benefit of the components.

– Ecological Services: they consist of managing the participation of the
components in the environment. The main ecological service is the Green
decisions management. It consists of ensuring a cooperation in the power
system by gathering the components that have mutual benefits, in order to
make green decisions (e.g., putting up consumers having high power needs
with the renewable energy sources in the aim of reducing the pollution
ratio).

– Mobility Services: they are related to the components movements [17] in
the power system. The main mobility service is the Components location
tracking. It consists of determining and tracking the precise location of a
component at any time. It is also used by the Fault detection service by
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facilitating the detection of the location of any problem in order to fix it
more rapidly.

– Multi-roles Services: they are related to the components which are able to
execute many roles during their lifetime in the SG. The main multi-roles
service is the Role forcing which forces a component to play a certain role
(i.e., produce, consume or store power) when there is an essential need in
the SG.

4 Experiments

We conducted several experiments in order to validate our proposed framework
and emphasize the SSG importance and utility in the electricity domain. Before
detailing the conducted tests, it is important to quickly describe the SSG design
process. We developed SSG after exploring the current standards in power
domain. In essence, we designed it iteratively by: (1) exploring and comparing
the current standards in power domain, (2) presenting our observations and con-
clusions to several experts, (3) considering their feedback regarding their future
needs and expectations. This iterative process has taken almost two years long
in order to come up with a stable version. Hence, the feedback and knowledge of
the experts have constantly been used to improve the ontology in every iteration.

4.1 Evaluation Criteria

It is worthy to note that there is no unique methodology for developing and
evaluating ontologies. Developing ontology is usually an iterative process that
can start with a rough first pass at the ontology and then revise and refine the
evolving ontology. This process of iterative design will likely continue through
the entire lifecycle of the ontology. In our study, we adopted two main quality
criteria provided in [10] to evaluate SSG:

• Comprehensibility: it refers to how easily the language can be understood
by technical actors (agents, engineers, etc.). Important aspects are the sup-
port of abstraction mechanisms (hiding details), uniform constructs, and a
reasonable number of concepts.

• Domain coverage: it refers to the ability of the ontology to capture and
cover the domain knowledge. It is related to the structure of the provided
representation (concepts and relationships) and is the most important aspect
of the ontology evaluation.

4.2 Evaluation Context

Although automatic or semi-automatic evaluation techniques are attracting more
and more interests, manual evaluation or what is called ‘human assessment eval-
uation’ remains commonly adopted in the literature when addressing ontology
evaluation [1]. Thus, we conducted manual evaluations to validate the core of
SSG. We also deployed SSG into two projects. Before detailing the obtained
results, we detail in what follows: (1) the ontology layers that has been evaluated,
(2) corresponding evaluation metrics, and (3) the testers’ profiles.
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4.2.1 Ontology Layers
Three main ontology layers have been evaluated in our experiments:

• The syntactic layer includes respectively the ABox (concepts/classes) and
the TBox (instances) of SSG

• The semantic layer encompasses the semantic relations between concepts
(e.g., isA, hasPart, etc.), shaping the structure of the ontology

• The context layer includes the additional properties related to the SG needs,
which are here reflected by its multi-objective aspects.

4.2.2 Evaluation Metrics
In order to correctly evaluate the ontology, three evaluation metrics have been
used (the 3Cs requirements [25]):

• The Correctness aims at evaluating the clarity of the vocabulary and data of
the syntactic layer of the ontology. It is used in our experiments to mainly
measure the comprehensibility criteria,

• The Consistency targets the evaluation of the semantic layer of an ontology.
It is also used to measure the comprehensibility,

• The Completeness targets the evaluation of the syntactic and context layers.
It aims at evaluating the domain coverage criteria with the services that a
SG must deal with.

4.2.3 Tests and Testers
Three tests were conducted, each targeting a specific evaluation metric: an ambi-
guity test, a quiz test, and a real use case scenario to evaluate the correctness,
consistency and completeness, respectively. The first two tests were conducted
by:

• 80 experts in electrical engineering (45 participants) and electronics (35 par-
ticipants),

• 45 non-experts in electrical engineering and electronics (mainly computer
scientists).

Note that our experts and non-experts are the assistant professors, associate
professors, full professors and PhD students of the University of the Basque
Country, Spain and the University of Pau and Pays de l‘Adour - France.

The choice of having computer scientists in our tests is related to the fact that
we believe that future power systems will be multidisciplinary and would require
some expertise in Information Technologies in order to understand how things
are working together. In what follows, a detailed explanation of each evaluation
is presented.

4.3 Comprehensibility Results

In what follows, we show the results obtained with the two metrics of Correctness
and Consistency to measure the comprehensibility criteria.
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4.3.1 Correctness
A first ‘semantic ambiguity test’ was done to evaluate the ontology correctness
that targets the syntactic layer evaluation. A semantic ambiguity refers to the
ambiguity of a word to be used in different contexts in order to express different
meanings. In this test, the participants were asked to rate the ambiguity degree
(if the word is clear/understandable or not) of a list of 60 items on a scale of
0 to 4 (4 expresses a very clear concept with no ambiguity, and 0 expresses
a high ambiguity). Those items are categorized into two main categories: the
low-level and the high-level items. The low-level items, target the technical data
related to the power system structure and branches (i.e., the basic structure).
However, the high-level items target the semantic data extracted related to the
identification, ecological, economical, operational and mobility concepts (i.e., the
extended structure). The obtained results are as follows:

Fig. 8. Experimental results

• For non experts: Figure 8a shows the results of the tests conducted by the
45 testers in computer science. The ambiguity rates vary from 2.66 (Basic
structure) to 3.25 (Mobility concept), which can be considered as a very
good result for non-experts in the electricity domain. A closer look to the
rates led us to conclude that the hardest part was related to the evaluation
of the low-level items, driving an ambiguity rate of 2.66. However, it was
easier for them to understand the high-level items, resulting an ambiguity rate
that varies from 2.85 (Economic concept) to 3.25 (Mobility concept). This is
explained by the fact that the computer scientists are less familiar with the
technical vocabulary related to the power systems (e.g., solar cell, flywheel,
etc.), yet they are globally aware about the high-level concepts related to
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the electricity market (e.g., Power Price, etc.), ecology (e.g., Gas Emission,
etc.), identification (e.g., Serial Number, etc.), and mobility (e.g., Component
Position, etc.).

• For electrical engineers: Figure 8b shows the results of the 45 testers in the
electrical domain. The ambiguity rates vary from 2.35 (Identification con-
cept) to 3.6 (Operational concept), which is very satisfactory. We observed
that the easiest part for electrical experts, contrarily to non-experts, was to
evaluate the ambiguity of the technical part, leading to an ambiguity rate of
3.6 (Operation concept). However, it was more difficult for them to under-
stand the high-level items, resulting an ambiguity rate that varies between
2.35 (Identification concept) and 2.975 (Ecology concept).

• For electronic engineers: Figure 8c shows the results of the remaining 35
testers (most of them are students). The ambiguity rates vary between 2.58
(Mobility concept) and 3.25 (Operation concept). A closer look to the rates
led us to conclude that the results were not converging, since the lowest ambi-
guity rate is 2.58 for the mobility concept which is related to the high-level
terms, while the highest ambiguity rate is 3.25 for the technical terms. This
will allow in the future to measure and compare the Learning load of an
expert and a non-expert in order to master the proposed vocabulary.

4.3.2 Consistency
A second test was conducted to evaluate the ontology consistency. In this test,
the testers were kindly requested to choose the adequate relations between the
concepts in a given ontology extract. Similarly to correctness, the list of 6 ontol-
ogy extracts (each related to an ontology structure and concept) is categorized
into two main categories: the low-level and the high-level extracts. The low-level
one targets the technical data related to the SSG basic structure, while the
high-level category targets the semantic data related to the identification, ecol-
ogy, economic, operation and mobility concepts. For this evaluation, we adopted
the precision and recall metrics commonly adopted in Information Retrieval since
they meet our needs in evaluating whether the relations between the concepts
are relevant or not. Please note that Precision (PR) computes the ratio of the
number of correct answers w.r.t. the total number of answers (correct and false),
while Recall (R) underlines the number of correctly identified answers w.r.t. the
total number of correct answers, including those not answered by the user. The
obtained results are as follows:

• For non experts: Figure 8d shows that the highest precision obtained by the
computer scientists was reached when dealing with the mobility concept (of
1). This comes from the intuitiveness of the answers (which are the concepts
in the ontology such as Country, Latitude and Longitude) that do not need
an expertise in the power domain. However, the lowest precision (of 0.74) was
reached when dealing with the basic structure. This comes from the specificity
of the answers related to the different basic components that compose the
‘SG’. On the other hand, Fig. 8d shows that the highest recall (of 1) is reached
when dealing with the basic structure. This comes from the fact that since
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the testers are not experts in the power domain, they chose multiple answers,
which increased sometimes the percentage of the correct answers. However,
the lowest precision (of 0.658) was reached when dealing with the operation
concept. This result confirms our expectation regarding SSG.

• For electrical engineers: Figure 8e shows that the highest precision (of 1)
obtained by the electrical scientists was reached when dealing with the mobil-
ity concept (similarly to the computer scientists). However, the lowest pre-
cision (of 0.78) was reached when dealing with the identification concept.
This comes from the fact that this concept is brand new for the testers who
were assuming that some technical information (e.g., nominal active power,
etc.) is enough to provide component identification. In addition, those details
were modeled in the operation concept and were not linked to the identifica-
tion one. After discussion with them, they understood the identification risks
and agreed about the limitations of only considering the technical details.
Figure 8e shows also the highest recall (1) reached when dealing with the
basic structure. This comes from the fact that our testers are experts in the
power domain, hence they all chose the correct answers without forgetting
any correct one. However, the lowest precision (of 0.575) was reached when
dealing with the economic aspect, because some answered by choosing oper-
ational aspect parameters, since they considered that they are also related to
the economic aspect.

• For electronic engineers: Figure 8f shows that the highest precision (of 1)
obtained by our testers is also reached when dealing with the mobility aspect
branch. However, the lowest precision (0.81) was reached when dealing with
the operational aspect. This comes from the fact that the electricians are not
all familiar with the operational and technical concepts of a power system.
Figure 8f shows that the highest recall (of 1) is reached when dealing with the
basic structure. This comes from the fact that most of them were not aware of
all the details in the ‘SG’ domain. Hence, they chose almost all the proposed
answers to avoid forgetting any correct one. However, the lowest precision (of
0.5) was reached when dealing with the operational aspect. This comes from
the numerous correct answers, since testers focused on what they considered
the most pertinent ones.

In order to consolidate the validation of our ontology structure, an additional
experiment was added. In [1], the authors define consistency as a criterion that
verifies if the ontology includes or allows any contradictions and propose the
following SPARQL queries that search for anti-patterns, a strong indicator of
in-consistencies, in the ontology. The first query detects concepts with no parent
(cf. Fig. 9), and the second detects abnormally disjointed concepts in the ontology
(cf. Fig. 10): We executed both queries and found no inconsistencies in our SSG
ontology structure. This denotes the soundness of the integration of newly added
concepts with the CIM and IEC standards.
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Fig. 9. Anti-pattern of subsuming nothing

Fig. 10. Anti-pattern of skewed partitions

4.3.3 Discussion
Those results show that our ontology provides promising results in term of cor-
rectness and consistency, reflecting the comprehensibility and the clarity of our
ontology concepts and relations for the experts and non-experts.

4.4 Domain Coverage Results

The domain coverage criterion comes down to evaluate the context layer of SSG.
This latter targets the ontology capability of modeling the properties allowing the
power system to meet the end-users needs by executing corresponding services.
Hence, in order to evaluate it, SSG has been deployed into two main projects:
HIT2GAP and ISare as detailed below. SSG has been serialized into RDF/OWL
and posted online2.

4.4.1 Integrating SSG in HIT2GAP
The HIT2GAP3 is an European joint collaboration research project (EU/H2020
Grant Agreement No: 680708) for developing a next generation building control
tool for optimizing energy usage. The main objective of this project is to propose
a new paradigm of an energy management platform for smart buildings. The
project consortium is composed of 22 partners from 10 European countries. The
HIT2GAP platform relies on an ontology allowing different partners to query
data so to extract some information and events (through a set of services) from
a smart building data. Figure 11 shows an extract of the ontological data model
used for modeling and storing data within the platform. It shows its alignment
with several main standards:

• IFC4: to represent the building related concepts,
• SSN5: to represent the data acquired from the sensors, and
2 http://spider.sigappfr.org/research-projects/ontomg/.
3 http://www.hit2gap.eu.
4 http://www.buildingsmart-tech.org/specifications/ifc-overview.
5 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn.

http://spider.sigappfr.org/research-projects/ontomg/
http://www.hit2gap.eu
http://www.buildingsmart-tech.org/specifications/ifc-overview
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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• SSG: to represent all the power system equipment since a smart building can
be considered as an SG.

Related concepts are prefixed with ifc:, ssn:, and SSG:. As one can see,
SSG is integrated as a backbone of the information model of HIT2GAP platform.
The following concepts have been aligned with HIT2GAP ontology:

Fig. 11. Extract of HIT2GAP data model

1. SSG:DERBranch is aligned with ifc:DistributionSystem in order to extend
the IFC with the distributed energy sources and their corresponding param-
eters,

2. SSG:ESBranch is aligned with ifc:DistributionElement in order to extend
the IFC with the energy storage systems and their corresponding parameters,

3. SSG:ELBranch is aligned with ifc:DistributionElement in order to extend
the IFC with the electrical loads and their corresponding parameters,

4. SSG:InfraBranch is aligned with ifc:DistributionCircuit in order to
extend the IFC with the infrastructure equipment (e.g., cables, fiber optic,
etc.) and their corresponding parameters,
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5. SSG:BranchController is aligned with ifc:Controller in order to extend
the IFC with the DES, ES, EL, Infrastructure controllers, and their corre-
sponding parameters.

This alignment proves two main points:

• SSG is completely included in the HIT2GAP ontology since it allows to
cover an important domain related to smart buildings: power domain. This
will allow building actors to count on the expressiveness of SSG in order to
represent/extract data and reason on it.

• SSG extends IFC which is the standard in building modelling that mainly
focuses on the representation of the building equipment and constituents (e.g.,
floor, stair, wall, etc.), while neglecting the full coverage of the power related
concepts in its vocabulary. This may weaken the building modeling since each
equipment in the building can be considered as an energy source, storage or
consumer, which highlights the importance of the SSG extension of the IFC.

It is to be noted that the HIT2GAP project is currently on-going. Hence, we
have not had any feedback yet regarding the domain coverage of SSG. The
feedback of partners are expected to be received by the end of 2018 and will be
posted online on the project website (See footnote 2).

4.4.2 Aligning SSG with ISare
In collaboration of Jema Irizar Group, leader of the ISare Microgrid (MG)
project, we fully implemented SSG in it in order to highlight the potential of the
ontology in answering the needs and objectives. ISare MG is installed in Spain
and electrifies 12 offices. The generation system comprises 10 kW of solar gener-
ation, a nominal 53 kWh battery bank, 105 kW of wind generation and a 120 kW
diesel genset. A second solar array of about 15 kW, mounted on the roof of the
control system building, is connected to an SMA inverter and a 70 kWh of gas
turbine to provide power for monitoring and communication. In addition, 50 kW
of electric vehicle charger were installed, equipped with a protection system, to
ensure a mobile power. The ISare MG has been modeled using our SSG, result-
ing the ISare-SSGmodel. As a power system, the ISare MG has several needs.
ISare MG needs to be modeled via an interoperable structure, that enables the
integration and the validation of the various new heterogeneous renewable dis-
tributed generation systems and various storage technologies. In order to enable
ISare MG managers to have intuitive data querying and management, we devel-
oped a dedicated framework with an easy-to-use pool of predefined services so
to achieve the objectives.

The ISare-SSGmodel has been implemented (cf. Fig. 12) as an OWL graph,
on a central entity. Queries are executed through a SPARQL querying interface.
Note that, SPARQL is a query language, that is, a semantic query language,
able to retrieve and manipulate data stored in Web Ontology Language (OWL).
Then, the HermiT reasoner has been added in order to interfere new knowledge
and to allow the autonomous behavior of the MG. The idea behing choosing
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HermiT is that it can determine whether or not the ontology is consistent and
identify subsumption relationships between classes. In order to highlight the
advantages provided by our ISare-SSG, three scenarios are presented in the
following for illustration.

Fig. 12. ISare framework architecture

• Scenario 1 (Fig. 13): If an end-user needs to identify the consumer hav-
ing the highest power consumption bill and advise him/her about the
energy sources and storage systems that should be implemented in order
to satisfy the demands at a lower cost, several concepts need to be used
in the search engine from ISare-SSG. The basic-structure concepts are:
ELBranch, ESBranch and DERBranch. Those of the Extended Structure
are: Operation and Economic, with the following properties: CptBill, EqCost,
MaintenanceCost, InstallCost, OpCost, TotalCost, StrCost, StopCost,
PwrKWhPrice, PwrhPrice and PwrCost.

• Scenario 2 (Fig. 14): If an end-user needs to determine the most environmental
friendly energy source, able to satisfy a consumer’s power need at a certain
weather condition, two basic-structure concepts are to be used: ELBranch
and DERBranch, with other extended-structure concepts such as: Operation
and ecology, with the following properties: CarbEss, EthylEss, HeatEss.

• Scenario 3 (Fig. 15): If an end-user wants to visualize the type, brand and
model of the most implemented renewable energy sources (e.g., solar plant,
wind plant, etc.) in the power system, his/her query will include the fol-
lowing basic-structure concepts: ELBranch, DERBranch, ESBranch and
InfraBranch. It will also include one extended concept: Identification and
all its properties (i.e., Serial#, Type, Brand and Model).
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Fig. 13. Scenario 1 query example

Fig. 14. Scenario 2 query example

Fig. 15. Scenario 3 query example

4.4.3 Discussion
Those two applications show that our ontology provides a promising solid base
for a better sharing of knowledge leading to a seamless communication between
the components of the system (whether it is a smart building or a power sys-
tem). In addition, it allows a better information querying and retrieval, and
participates in increasing the reasoning capability of the system.

5 Conclusion

This paper introduces SSG, an ontology-based information model for SGs. The
contributions of our work are four-folded: (1) it allows to resolve interoperabil-
ity issues (syntactic and semantic) encountered between SG components, (2) it
helps SG to represent and consider their (economical, ecological and operational)
objectives directly in the information model (which is not the case of existing
models) and allows to provide reasoning features to reach the fixed objectives,
and (3) it allows to consider mobility and diversity of roles that can have each
component involved in the SGs, and (4) it provides an evolutionary solution
able to be extended easily to cover future needs. Several evaluations have been
conducted to evaluate SSG resulting satisfactory results.
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Abstract. RDF-based data integration is often hampered by the lack
of methods to translate data locked in heterogeneous silos into RDF
representations. In this paper, we tackle the challenge of bridging the
gap between the Semantic Web and NoSQL worlds, by fostering the
development of SPARQL interfaces to heterogeneous databases. To avoid
defining yet another SPARQL translation method for each and every
database, we propose a two-phase method. Firstly, a SPARQL query is
translated into a pivot abstract query. This phase achieves as much of
the translation process as possible regardless of the database. We show
how optimizations at this abstract level can save subsequent work at
the level of a target database query language. Secondly, the abstract
query is translated into the query language of a target database, tak-
ing into account the specific database capabilities and constraints. We
demonstrate the effectiveness of our method with the MongoDB NoSQL
document store, such that arbitrary MongoDB documents can be aligned
on existing domain ontologies and accessed with SPARQL. Finally, we
draw on a real-world use case to report experimental results with respect
to the effectiveness and performance of our approach.

Keywords: Query rewriting · SPARQL · RDF · NoSQL · xR2RML
Linked data

1 Introduction

The Resource Description Framework (RDF) [11] is increasingly adopted as the
pivot format for integrating heterogeneous data sources. It offers a unified data
model that allows building upon countless existing vocabularies and domain
ontologies, while benefiting from Semantic Web’s reasoning capabilities. It also
allows leveraging the growing, world-scale knowledge base referred to as the
Web of Data. Today, increasing amounts of RDF data are published on the
Web, notably following the Linked Data principles [2,19]. These data often orig-
inate from heterogeneous silos that are inaccessible to data integration systems
and search engines. Hence, a first step to enabling RDF-based data integration
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consists in translating legacy data from heterogeneous formats into RDF repre-
sentations.

During the last fifteen years, much work has investigated how to translate
common databases and data formats into RDF. Relational databases were pri-
marily targeted [34,36], along with a handful of data formats such as XML [3]
and CSV [28]. Meanwhile, the database landscape has significantly diversi-
fied with the adoption of various non-relational models. Initially designed as
the core system of Big Data Web applications, NoSQL databases have gained
momentum and are now increasingly adopted as general-purpose, commonplace
databases. Today, companies and institutions store massive amounts of data in
NoSQL instances. So far however, these data often remain inaccessible to RDF-
based data integration systems, and consequently invisible to the Web of Data.
although unleashing their data could potentially spur new integration opportu-
nities and push the Web of Data forward.

The Semantic Web and NoSQL worlds build upon very different paradigms
that are challenging to bridge over: whereas the former handles highly connected
graphs along with the rich expressiveness of SPARQL, the latter trades off query
expressiveness for scalability and fast retrieval of denormalized data1. As a result
of these discrepancies, bridging the gap between those two worlds is a challenging
endeavor.

Two strategies generally apply when it comes to access non-RDF data
as RDF. In the graph materialization strategy, the transformation is applied
exhaustively to the database content, the resulting RDF graph is loaded into a
triple store and accessed through a SPARQL query engine [18] or by derefer-
encing URIs (as Linked Data). On the one hand, this strategy easily supports
further processing or analysis, since the graph is made available at once. On
the other hand, the materialized RDF graph may rapidly become outdated if
the pace of database updates is high. Running the transformation process peri-
odically is a common workaround, but in the context of large data sets, the
cost (in time, memory and CPU) of materializing and reloading the graph may
become out of reach. To work out this issue, the query rewriting strategy aims
to access heterogeneous databases as virtual RDF graphs. A query processor
rewrites a SPARQL query into the query language of the target database. The
target database query is evaluated at run-time such that only relevant data are
fetched from the database and translated into RDF triples. This strategy better
scales to big data sets and guarantees data freshness, but entails overheads that
may penalize performances if complex analysis is needed.

In previous works we defined a generic mapping language, xR2RML [25], that
enables the translation of a broad scope of data sources into RDF. The mapping
instructs how to translate each data item from its original format into RDF
triples, by adapting to the multiplicity of query languages and data models. We

1 We refer to key-value stores, document stores and column family stores but leave
out graph stores that generally come with a richer query expressiveness.



Bridging the Semantic Web and NoSQL Worlds 127

applied xR2RML to the MongoDB NoSQL document store2 and we implemented
the graph materialization strategy.

To cope with large and frequently updated data sets though, we wish to tackle
the question of accessing such databases using the query rewriting strategy.
Hence, to avoid defining yet another SPARQL translation method for each and
every database, in this paper we investigate a general two-phase method. Firstly,
given a set of xR2RML mappings, a SPARQL query is rewritten into a pivot
abstract query. This phase achieves as much of the translation process as possible
regardless of the database, and enforces early query optimizations. Secondly, the
abstract query is translated into the target database query language, taking
into account the specific database capabilities and constraints. We demonstrate
the effectiveness of our method in the case of MongoDB, accessing arbitrary
MongoDB documents with SPARQL. We show that we can always rewrite an
abstract query into a union of MongoDB find queries that shall return all the
documents required to answer the SPARQL query.

The rest of this article is organized as follows. After a review of SPARQL
query rewriting approaches in Sect. 2, we quickly remind the principles and main
features of the xR2RML mapping language in Sect. 3. Then, in Sects. 4 and 5
we describe the two-phase method introduced above. In Sect. 6, we describe
a real-world use case and we report experimental results with respect to the
effectiveness and performance of our approach. Finally, we discuss our solution
and envision some perspectives in Sect. 7, and we draw some conclusions in
Sect. 8.

2 Related Works

2.1 Rewriting SPARQL to SQL and XQuery

Since the early 2000’s, various works have investigated methods to query legacy
data sources with SPARQL. Relational databases (RDB) have caught much
attention, either in the context of RDB-backed RDF stores [10,14,35] or using
arbitrary relational schemas [5,29,31,32,38]. These methods harness the ability
of SQL to support joins, unions, nested queries and various string manipulation
functions. Typically, a conjunction of two SPARQL basic graph patterns (BGP)
results in the inner join of their respective translations; their union results in
a SQL UNION ALL clause; the SPARQL OPTIONAL clause results in a left
outer join, and a SPARQL FILTER results in an encapsulating SQL SELECT
WHERE clause.

Chebotko’s algorithm [10] focused on RDB-based triple stores. Priyatna et
al. [29] extended it to support custom R2RML mappings (the W3C recommen-
dation of an RDB-to-RDF mapping language [12]) while applying several query
optimizations. Two limitations can be emphasized though: (i) R2RML map-
pings must have constant predicates, i.e. the predicate term of the generated

2 https://www.mongodb.org/.

https://www.mongodb.org/
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RDF triples cannot be built from database values; (ii) Triple patterns are consid-
ered and translated independently of each other, even when they share SPARQL
variables. The resulting SQL query embeds unnecessary complexity that is taken
care of later on, in the SQL query optimization step. Unbehauen et al. [38] clear
the first limitation by defining the concept of compatibility between the RDF
terms of a SPARQL triple pattern and R2RML mappings, which enables man-
aging variable predicates. Furthermore, to address the second limitation, they
pre-checking join constraints implied by shared variables in order to reduce the
number of candidate mappings for each triple pattern. Yet again, two limitations
can be noticed: (iii) References between R2RML mappings are not considered,
hence joins implied by shared variables are dealt with but joins declared in the
R2RML mapping graph are ignored. (iv) The rewriting process associates each
part of a mapping to a set of columns, called column group, which enables filter,
join and data type compatibility checks. This leverages SQL capabilities (CASE,
CAST, string concatenation, etc.), making it hardly applicable out of the scope
of SQL-based systems. In the three aforementioned approaches, the optimization
is dependent on the target database language, and can hardly be generalized. In
our attempt to rewrite SPARQL queries in the general case, such optimization
are performed earlier, regardless of the target database capabilities.

In a somewhat different approach, Rodŕıguez-Muro and Rezk [32] extend
the ontop Ontology-Based Data Access (OBDA) system to support R2RML
mappings. A SPARQL query and an R2RML mapping graph are translated
into a Datalog program. This formal representation is used to combine and
apply optimization techniques from logic programming and SQL querying. The
optimized program is then translated into an executable SQL query.

Other approaches investigated the querying of XML databases in a rather
similar philosophy. For instance, SPARQL2XQuery [4] relies on the ability of
XQuery to support joins, nested queries and complex filtering. Typically, a
SPARQL FILTER is translated into an encapsulating For-Let-Where XQuery
clause.

Finally, it occurs that the rich expressiveness of SQL and XQuery makes
it possible to translate a SPARQL 1.0 query into a single, possibly deeply
nested, target query, whose semantics is provably strictly equivalent to that of
the SPARQL query. Commonly, query optimization issues are addressed at the
level of the produced target query, or they may even be delegated to the target
database optimization engine. Hence, the above reviewed methods are tailored
to the expressiveness of the target query language, such that SQL or XQuery
specificities are woven into the translation method itself, which undermines the
ability to use such methods beyond their initial scope.

2.2 Rewriting SPARQL to NoSQL

To the best of our knowledge, little work has investigated how to perform RDF-
based data integration over the NoSQL family of databases. An early work3

3 https://github.com/agrueneberg/Sessel.

https://github.com/agrueneberg/Sessel
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has tackled the translation of CouchDB4 documents into RDF, but did not
addressed SPARQL rewriting. MongoGraph5 is an extension of the AllegroGraph
triple store to query arbitrary MongoDB documents with SPARQL. But very
much like the Direct Mapping [1] defined in the context of RDBs, both works
come up with an ad-hoc ontology (e.g. each JSON field name is turned into
a predicate) and hardly supports the reuse of existing ontologies. Tomaszuk
proposed to use a MongoDB database as an RDF triple store [37]. In this context,
the author devised a translation of SPARQL queries into MongoDB queries,
that is however closely tied to the specific database schema and thus is unfit for
arbitrary documents.

More in line with our work, Botoeva et al. proposed a generalization of
the OBDA principles [30] to MongoDB [8]. They describe a two-step rewrit-
ing process of SPARQL queries into a MongoDB aggregate pipeline. In Sect. 7,
we analyze in further details the relationship between their approach and ours.
Interestingly, to the best of our knowledge, only one approach tackled the key-
value store subset of NoSQL databases. Mugnier et al. [26] define the NO-RL
rule language that can express lightweight ontologies to be applied to key-value
stores. Leveraging the formal semantics of NO-RL, they propose an algorithm to
reformulate a query under a NO-RL ontology, but SPARQL is not considered.

Finally, since NoSQL document stores are based on JSON, let us mention
the JSON-LD syntax that is meant for the serialization of Linked Data in the
JSON format. When applied to existing JSON documents, a JSON-LD profile
can be considered as a lightweight method to interpret JSON data as RDF.
Such a profile could be exploited by a SPARQL rewriting engine to enable the
querying of document stores with SPARQL. This approach would be limited
though, since JSON-LD is not meant to describe rich mappings from JSON to
RDF, but simply to interpret JSON as RDF. It lacks the expressiveness and
flexibility required to align JSON documents with domain ontologies that may
model data in a rather different manner. Besides, we do not want to define
a method specifically tailored to MongoDB; our point is to provide a generic
rewriting method that can be applied to the concrete case of MongoDB as well
as various other databases.

3 The xR2RML Mapping Language

The xR2RML mapping language [25] intends to foster the translation of legacy
data sources into RDF. It can describe the mapping of an extensible scope of
databases to RDF, independently of any query language or data model. It is
backward compatible with R2RML and relies on RML [13] for the handling of
various data formats. It can translate data with mixed embedded formats and
generate RDF collections and containers.

An xR2RML mapping defines a logical source (property xrr:logicalSource)
as the result of executing a query against an input database (xrr:query and
4 http://couchdb.apache.org/.
5 http://franz.com/agraph/support/documentation/4.7/mongo-interface.html.

http://couchdb.apache.org/
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rr:tableName). An optional iterator (value of property rml:iterator) can be
applied to each query result, and a xrr:uniqueRef property can identify unique
fields. Data from the logical source is mapped to RDF terms (literal, IRI, blank
node) by term maps. There exists four types of term maps: a subject map gener-
ates the subject of RDF triples, predicate and object maps produce the predicate
and object terms, and an optional graph map is used to name a target graph.
Listing 1.1 depicts two mappings <#Mbox> and <#Knows>, each consisting of a sub-
ject map, a predicate map and an object map.

Term maps extract data from query results by evaluating xR2RML references
whose syntax depends on the target database and is an implementation choice:
typically, this may be a column name in case of a relational database, an XPath
expression in case of an XML database, or a JSONPath6 expression in case of
NoSQL document stores like MongoDB or CouchDB. xR2RML references are
used with property xrr:reference whose value is a single xR2RML reference,
and property rr:template whose value is a template string which may contain
several references. In Listing 1.1, both subject maps use a template to build IRI
terms by concatenating http://example.org/member/ with the value of the "id"

JSON field.
<#Mbox >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [ xrrxrrxrr:queryqueryquery "db.people.find({’emails ’:{$ne: null }})" ];
rrrrrr:subjectMapsubjectMapsubjectMap [ rrrrrr:templatetemplatetemplate "http :// example.org/member/{$.id}" ];
rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate foaf:mbox;
rrrrrr:objectMapobjectMapobjectMap [ rrrrrr:templatetemplatetemplate "mailto:{$.emails .*}"; rrrrrr:termTypetermTypetermType rrrrrr:IRIIRIIRI ]

].
<#Knows >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [
xrrxrrxrr:queryqueryquery "db.people.find({’contacts ’:{ $size: {$gte :1}}})" ];

rrrrrr:subjectMapsubjectMapsubjectMap [ rrrrrr:templatetemplatetemplate "http :// example.org/member/{$.id}" ];
rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate foaf:knows;
rrrrrr:objectMapobjectMapobjectMap [

rrrrrr:parentTriplesMapparentTriplesMapparentTriplesMap <#Mbox >;
rrrrrr:joinConditionjoinConditionjoinCondition [ rrrrrr:childchildchild "$.contacts .*"; rrrrrr:parentparentparent "$.emails .*" ] ]

].

Listing 1.1. xR2RML example mapping graph

When the evaluation of an xR2RML reference produces several RDF terms,
the xR2RML processor creates one triple for each term. Alternatively, the
rr:termType property of a term map can be used to group the terms in an RDF
collection while specifying a language tag or data type. Besides, the default iter-
ation model can be modified using nested term maps, notably useful to parse
nested collections of values and generate appropriate triples.

xR2RML allows to model cross-references by means of referencing object
maps that use values produced by the subject map of a parent mapping as
the objects of triples produced by a child mapping. Properties rr:child and
rr:parent specify the join condition between documents of both mappings.

Running Example. To illustrate the description of our method, we define a
running example that we shall use throughout this paper. Let us consider a
6 http://goessner.net/articles/JsonPath/.

http://example.org/member/
http://goessner.net/articles/JsonPath/
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{ "ididid": 105632 ,
"firstnamefirstnamefirstname ":" John",
"emailsemailsemails": [" john@foo.com"," john@example.org"],
"contactscontactscontacts ": [" chris@example.org", "alice@foo.com"] }

{ "ididid": 327563 ,
"firstnamefirstnamefirstname ":" Alice",
"emailsemailsemails": [" alice@foo.com"],
"contactscontactscontacts ": [" john@foo.com"] }

Listing 1.2. MongoDB collection “people” containing two documents

MongoDB database with a collection people depicted in Listing 1.2: each JSON
document provides the identifier, email addresses and contacts of a person; con-
tacts are identified by their email addresses.

Let us now consider the xR2RML mapping graph in Listing 1.1, consisting
of two mappings <#Mbox> and <#Knows>. The logical source of mappings <#Mbox>,
respectively <#Knows>, is a MongoDB query that retrieves documents having
a non-null emails field, respectively a contacts array field with at least one
element. Both subject maps use a template to build IRI terms by concatenating
http://example.org/member/ with the value of JSON field id. Applied to the
documents in Listing 1.2, the xR2RML mapping graph generates the following
RDF triples:
<http :// example.org/member /105632 >

foaf:mbox <mailto:john@foo.com >, <mailto:john@example.org >;
foaf:knows <http :// example.org/member /327563 >.

<http :// example.org/member /327563 >
foaf:mbox <mailto:alice@foo.com >;
foaf:knows <http :// example.org/member /105632 >.

4 From SPARQL to Abstract Queries

Section 2 emphasized that SPARQL rewriting methods for SQL or XQuery
rely on prior knowledge about the target query language expressiveness. This
makes possible the semantics-preserving translation of a SPARQL query into a
single equivalent target query. In the general case however (beyond SQL and
XQuery), the target query language may not support joins, unions, sub-queries
and/or filtering. To tackle this challenge, our method first enacts the database-
independent steps of the rewriting process. To generate the abstract query, we
rely on and extend the R2RML-based SPARQL rewriting approaches reviewed
in Sect. 2, while taking care of avoiding the limitations highlighted. More specif-
ically, we focus on rewriting a SPARQL 1.0 graph pattern, whatever the query
form (SELECT, ASK, DESCRIBE, etc.). The translation of a SPARQL graph
pattern into an abstract query consists of four steps, sketched in Fig. 1 and
described in the next sub-sections. Sect. 4.1: A SPARQL 1.0 graph pattern is
rewritten into an abstract expression exhibiting operators of the abstract query
language. Sect. 4.2: We identify candidate xR2RML mappings likely to gener-
ate RDF triples that match each triple pattern. Sect. 4.3: Each triple pattern is

http://example.org/member/
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translated into a sub-query according to the set of xR2RML mappings identified.
A sub-query consists of operators of the abstract query language and atomic
abstract queries. Sect. 4.4: We enforce several optimizations on the resulting
abstract query, e.g. self-joins or self-unions elimination.

Fig. 1. Translation of a SPARQL 1.0 graph pattern into an optimized abstract query

4.1 Translation of a SPARQL Graph Pattern

Our pivot abstract query language complies with the grammar depicted in Defi-
nition 1. It derives from the syntax and semantics of SPARQL [27]: the language
keeps the names of several SPARQL operators (UNION, LIMIT, FILTER) and
prefers the SQL terms INNER JOIN ON and LEFT OUTER JOIN ON to refer
to join operations more explicitly. A notable difference with SPARQL is that, in
the tree representation of a query, the leaves of a SPARQL query are triple pat-
terns. Conversely, the leaves of an abstract query are Atomic Abstract Queries
(Sect. 4.3).

The INNER JOIN and LEFT OUTER JOIN operators stem from the join
constraints implied by shared variables. Somehow, the second INNER JOIN
in Definition 1, including the “AS child” and“AS parent” notations, is entailed
by the join constraints expressed in xR2RML mappings using referencing object
maps and properties rr:child and rr:parent. Notation v1, ...vn, in the join oper-
ators, stands for the set of SPARQL variables on which the join is to be per-
formed. Notation <Ref> stands for any valid xR2RML data element reference,
i.e. a column name for a tabular data source, an XPath expression for an XML
database, a JSONPath expression for a NoSQL document store such as Mon-
goDB and CouchDB, etc.

Definition 1. Grammar of the Abstract Pivot Query Language

<AbstractQuery > ::= <AtomicQuery > | <Query > |
<Query > FILTERFILTERFILTER <SPARQL filter > | <Query > LIMITLIMITLIMIT <integer >

<Query > ::= <AbstractQuery > INNERINNERINNER JOINJOINJOIN <AbstractQuery > ONONON {v1 ,...vn} |
<AbstractQuery > ASASAS child INNERINNERINNER JOINJOINJOIN <AbstractQuery > ASASAS parent

ONONON child/<Ref > = parent/<Ref > |
<AbstractQuery > LEFTLEFTLEFT OUTEROUTEROUTER JOINJOINJOIN <AbstractQuery > ONONON {v1 ,... vn}|
<AbstractQuery > UNIONUNIONUNION <AbstractQuery >

<AtomicQuery > ::= {From , Project , Where , Limit}
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The first query transformation step is implemented by function transm
depicted in Definition 2. It rewrites a well-designed SPARQL graph pattern [27]
into an abstract query while making no assumption with respect to the target
database query capabilities. It extends the algorithms proposed in [10,29,38].

Definition 2. Translation of a SPARQL query into an abstract query
under xR2RML mappings (functiontransm).
Let m be an xR2RML mapping graph consisting of a set of xR2RML mappings.
Let gp be a well-designed SPARQL graph pattern, f be a SPARQL filter and l an
integer limit value representing the maximum number of results.
We denote by transm(gp, f, l) the translation, under m, of “gp FILTER f”
into an abstract query that shall not return more than l results. We denote by
transm(gp) the result of transm(gp, true, ∞). Function transm is defined recur-
sively as follows:

– if gp consists of a single triple pattern tp, transm(gp, f, l) = transTPm(tp,
sparqlCond(tp, f), l)
where transTPm translates a single triple pattern into an abstract
query (Sect. 4.3) and sparqlCond discriminates SPARQL filter conditions
(Sect. 4.1).

– if gp is (P LIMIT l’), transm(gp, f, l) = transm(gp, f, min(l, l’))
– if gp is (P FILTER f’), transm(gp, f, l) = transm(P, f ∧ f ’, ∞) FILTER

sparqlCond(P, f ∧ f ’) LIMIT l
– if gp is (P1 AND P2), transm(gp, f, l) = transm(P1, f, ∞) INNER JOIN

transm(P2, f, ∞) ON var(P1) ∩ var(P2) LIMIT l
– if gp is (P1 OPTIONAL P2), transm (gp, f, l) =

transm(P1, f, ∞) LEFT OUTER JOIN transm(P2, f, ∞) ON var(P1) ∩
var(P2) LIMIT l

– if gp is (P1 UNION P2), transm(gp, f, l) = transm(P1, f, l) UNION
transm(P2, f, l) LIMIT l

As a simplification, notations “FILTER true” and“LIMIT ∞” may be omitted.

Example. Let us give a first simple illustration. SPARQL query Q1 contains a
graph pattern gp1 that consists of two triple patterns, tp1 and tp2:
Q1: SELECTSELECTSELECT ?x WHEREWHEREWHERE {

?x foaf:mbox ?mbox. # tp1
?x foaf:knows ?y. } # tp2

The application of function transm to the graph pattern gp1 is as follows:
transm(gp1)
= transm(gp1, true , ∞)
= transTPm(tp1, true , ∞) INNERINNERINNER JOINJOINJOIN

transTPm(tp2, true , ∞) ONONON {var(tp1) ∩ var(tp2)}
LIMIT ∞

= transTPm(tp1) INNERINNERINNER JOINJOINJOIN transTPm(tp2) ONONON {?x}
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Dealing with SPARQL Filters. SPARQL rewriting methods reviewed in
Sect. 2 generally adopt a bottom-up approach where, typically, a SPARQL FIL-
TER translates into an encapsulating query (e.g. a SELECT-WHERE clause
in the case of SQL). Thus, filters in the outer query do not contribute to the
selectivity of inner-queries that may return large intermediate results. This flaw
is commonly worked out in a subsequent SQL query optimization step, or by
assuming that the underlying database engine can take care of this optimization.

In our context though, we cannot assume that the target query can be opti-
mized nor that the database query engine is capable of doing it. We therefore
consider SPARQL filters at the earliest stage: function transm pushes SPARQL
filters down into the translation of each inner query in order to return only
necessary intermediate results.

Let us consider a SPARQL filter f as a conjunction of n conditions (n ≥ 1):
C1 ∧ ... Cn. Function sparqlCond, formally defined in [22], discriminates between
these conditions with regards to two criteria:

(i) A condition C i is pushed into the translation of triple pattern tp if all vari-
ables of C i show up in tp, e.g. a condition involving variables ?x and ?y is
pushed into the translation of tp only if tp involves at least ?x and ?y.

(ii) A condition C i is part of the abstract FILTER operator if at least one
variable of C i is shared by several triple patterns, e.g. if C i contains variable
?x, and variable ?x also shows up in two different triple patterns, then C i

is in the condition of the abstract FILTER operator.

Note that both criteria are not exclusive: a condition may simultaneously show
up in the translation of a triple pattern and in the FILTER abstract operator.

Example. SPARQL query Q2, depicted in Listing 1.3, contains the graph pat-
tern gp2 that consists of three triple patterns tp1, tp2 and tp3, and a filter con-
sisting of the conjunction of two conditions c1 and c2:
SELECTSELECTSELECT ?x WHEREWHEREWHERE {

?x foaf:mbox ?mbox. # tp1
?y foaf:mbox <mailto:john@foo.com >. # tp2
?x foaf:knows ?y. # tp3
FILTERFILTERFILTER {

contains(str(?mbox), "foo.com") # c1
&& ?x != ?y } } # c2

Listing 1.3. SPARQL query Q2

Let us compute function sparqlCond for each triple pattern:

– tp1 has two variables, ?x and ?mbox. No condition involves both variables,
but c1 involves ?mbox and has no other variable, thereby c1 matches criterion
(i) for tp1. Condition c2 involves ?x but it also involves ?y that is not in tp1.
Hence, c2 does not match criterion (i) for tp1, and sparqlCond(tp1, c1 ∧ c2)

= c1.
– tp2 has one variable, ?y, and no condition involves only ?y. Hence, no condi-

tion can be pushed into the translation of tp2, denoted
sparqlCond(tp2, c1 ∧ c2) = true.
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– tp3 has two variables ?x and ?y, and only condition c2 involves them both.
Hence, only c2 matches criterion (i) for tp3 and sparqlCond(tp3, c1 ∧ c2) =

c2.
– Lastly, only condition c2 involves variables shared by several triples patterns:

?x and ?y. Thus, only c2 matches criterion (ii), which entails the generation
of the abstract filter FILTER(c2).

As a result, gp2 is rewritten into the following abstract query:
transm(gp2, c1 ∧ c2) = transTPm(tp1, c1)

INNERINNERINNER JOINJOINJOIN transTPm(tp2, true) ONONON {}
INNERINNERINNER JOINJOINJOIN transTPm(tp3, c2) ONONON {?x,?y}
FILTERFILTERFILTER(c2)

Dealing with the LIMIT Solution Modifier. Similar to the case of SPARQL
filters, the common bottom-up approach of SQL rewriting methods consists in
rewriting a LIMIT into an encapsulating query. Thus, again, sub-queries may
return unnecessary large intermediate results. Therefore, function transm pushes
the LIMIT value down into the translation of each triple pattern using the limit
argument l, initialized to ∞. During the parsing of the graph pattern by function
transm, the limit argument is updated according to the graph pattern encoun-
tered. Below, we elaborate on some of the situations tackled in Definition 2:

– In a graph pattern P LIMIT l’, the smallest limit is kept, hence the min(l,
l’) in transm(gp, f, min(l, l’)).

– In a graph pattern P FILTER f’, we cannot know in advance how many
results will be filtered out by the FILTER clause. Consequently, we have to
run the query with no limit and apply the filter afterward. Hence the ∞
argument in transm(P, f ∧ f ’, ∞) FILTER sparqlCond(...) LIMIT l.

– Similarly, in the case of an inner or left join, we cannot know in advance how
many results will be returned. Consequently, the left and right queries alike
are run with no limit first, the join is computed, and only then can we limit
the number of results. Hence the ∞ argument in the expressions:
transm(P1, f,∞) ... INNER JOIN transm(P2, f,∞) ... LIMIT l.

Dealing with Other Solution Modifiers. For the sake of simplicity, we do
not describe in further details the management of SPARQL solution modifiers
OFFSET, ORDER BY and DISTINCT. Let us simply mention that they are
managed in the very same way as the SPARQL FILTER clause and LIMIT
solution modifier, i.e. as additional parameters of the transm and transTPm

functions, and additional operators of the abstract query language.

4.2 Binding xR2RML Mappings to Triple Patterns

An important step in the rewriting process consists in figuring out which of the
mappings are good candidates to answer the SPARQL query. More precisely, for
each triple pattern tp of the SPARQL graph pattern, we must figure out which
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mappings can possibly generate triples that match tp. We call this the triple
pattern binding7, defined in Definition 3:

Definition 3. Triple Pattern Binding.
Let m be an xR2RML mapping graph consisting of a set of xR2RML mappings,
and tp be a triple pattern. A mapping M ∈ m is bound to tp if it is likely to
produce triples that match tp. A triple pattern binding is a pair (tp, MSet)
where MSet is the set of mappings of m that are bound to tp.

Function bindm (Definition 4) determines, for a graph pattern gp, the bind-
ings of each triple pattern of gp. It takes into account join constraints implied
by shared variables and by cross-references defined in the mapping (xR2RML
referencing-object map), and the SPARQL filter constraints whose unsatisfia-
bility can be verified statically. This is achieved by means of two functions:
compatible and reduce. These functions were introduced in [38] but important
details were left untold. Especially, the authors did not formally define what the
compatibility between a term map and a triple pattern term means, and they
did not investigate the compatibility between a term map and a SPARQL filter.
In this section we give a detailed insight into these functions. A formal definition
is provided in [22].

Definition 4. Binding xR2RML mappings to triple patterns (bindm).
Let m be a set of xR2RML mappings, gp be a well-designed graph pattern, and f
be a SPARQL filter. Let M.sub, M.pred and M.obj respectively denote the subject
map, the predicate map and the object map of an xR2RML mapping M.
We denote by bindm(gp, f) the set of triple pattern bindings of “gp FILTER f”
under m, and we denote by bindm(gp) the result of bindm(gp, true).
Function bindm(gp, f) is defined recursively as follows:

– if gp consists of a single triple pattern tp, bindm(gp, f) is the pair (tp, MSet)
where MSet = {M | M ∈ m ∧ compatible(M.sub, tp.sub, f) ∧ compati-
ble(M.pred, tp.pred, f) ∧ compatible(M.obj, tp.obj, f)}
where compatible verifies the compatibility between a term map, a triple pat-
tern term and a SPARQL filter

– if gp is (P1 AND P2), bindm(gp, f) = reduce(bindm(P1, f), bindm(P2, f))
∪ reduce(bindm(P2, f), bindm(P1, f))
where reduce utilizes dependencies between graph patterns to reduce their
bindings

– if gp is (P1 OPTIONAL P2), bindm(gp, f) = bindm(P1, f) ∪
reduce(bindm(P2, f), bindm(P1, f))

– if gp is (P1 UNION P2), bindm(gp, f) = bindm(P1, f) ∪ bindm(P2, f)
– if gp is (P FILTER f’), bindm(gp, f) = bindm(P, f ∧ f ’)
7 We adapt the triple pattern binding proposed by Unbehauen et al. in [38], and we

assume that xR2RML mappings are normalized in the sense defined by [32], i.e. they
contain exactly one predicate-object map with exactly one predicate map and one
object map, and any rr:class property is replaced by an equivalent predicate-object
map with a constant predicate rdf:type.
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Function compatible checks whether a term map is compatible with (i) a term
of a triple pattern and (ii) a SPARQL filter, so as to rule out incompatible asso-
ciations. When the triple pattern term is constant (literal, IRI or blank node),
incompatibilities may occur when its type does not mach the term map type
(e.g. when the triple pattern term is a literal whereas the term map produces
IRIs). Incompatibilities may also occur for literals when language tags or data
types do not match. When the triple pattern term is a variable, incompatibil-
ities may arise from unsatisfiable SPARQL filters. These situations pertain to
type constraints expressed using SPARQL functions isIRI, isLiteral or isBlank,
as well as language and data type constraints expressed using functions lang,
langMatches and datatype. For instance, if variable ?v is associated with a term
map that produces literals, the SPARQL filter isIRI(?v) can never be satisfied,
which ensures that the association is invalid. We provided a formal definition of
function compatible in [23].

Function reduce uses the variables shared by two triple patterns to detect
unsatisfiable join constraints, and accordingly to reduce the set of mappings
bound to each triple pattern. For instance, let us consider two triple patterns
tp1 and tp2 that have a shared variable ?v. Mapping M 1 is bound to tp1 and
mapping M 2 is bound to tp2. If the term map associated to ?v in M 1 generates
literals whereas the term map associated to ?v in M 2 generates IRIs, we say
that the term maps are incompatible. Consequently, function reduce rules out
M 1 from the bindings of tp1 and M 2 from the bindings of tp2. In other words,
reduce(bindm(tp1), bindm(tp2)) returns the reduced bindings of tp1 such that
the term maps associated to ?v in the bindings of tp1 are compatible with the
term maps associated to ?v in the bindings of tp2.

Running Example. Let us consider query Q2 depicted in Listing 1.3. We first
compute the triple pattern bindings for tp1, tp2 and tp3 independently. The
constant predicate of tp1 and tp2 matches the constant predicate map of mapping
<#Mbox>. The subject and object of tp1 are both variables, and the constant object
of tp2 (<mailto:john@foo.com>) is compatible with the object map of <#Mbox>.
Hence, <#Mbox> is bound to both triple patterns:

bindm(tp1, c1 ∧ c2) = (tp1, {<#Mbox>})
bindm(tp2, c1 ∧ c2) = (tp2, {<#Mbox>})

Likewise, we can show that <#Knows> is bound to tp3:
bindm(tp3, c1 ∧ c2) = (tp3, {<#Knows>}).

Let us consider the join constraint implied by variable ?y:
?y foaf:mbox <mailto:john@foo.com >. # tp2
?x foaf:knows ?y. # tp3

?y is the subject in tp2 that is bound to <#Mbox>, ?y is thereby associated to
<#Mbox>’s subject map. ?y is also the object in tp3 that is bound to <#Knows>, ?y
is thereby associated to <#Knows>’s object map. Therefore, the expression

reduce(bindm(tp2, c1 ∧ c2), bindm(tp3, c1 ∧ c2))

checks whether the subject map of <#Mbox> is compatible with the object map of
<#Knows>. But since the object map of <#Knows> is a referencing object map whose
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parent is <#Mbox>, this amounts to check whether the subject map of <#Mbox>

is compatible with itself, which is obvious. Consequently, the join constraint
implied by variable ?y does not rule out any binding.

Similarly, we can show that the join constraint implied by variable ?x, shared
by tp1 and tp3, does not rule out any binding. Lastly, the set of triple pattern
bindings for the graph pattern of query Q2 is as follows:
bindm(tp1 AND tp2 AND tp3, c1 ∧ c2) =

(tp1,{<#Mbox>}), (tp2,{<#Mbox>}), (tp3,{<#Knows>})

4.3 Translation of a SPARQL Triple Pattern

The last step of the rewriting towards the abstract query language consists in
the translation of each triple pattern into an abstract query, under the set of
xR2RML mappings bound to that triple pattern by function bindm. This is
achieved by function transTPm defined in Definition 5, that may have to deal
with various situations.

Definition 5. Translation of a SPARQL Triple Pattern into Atomic
Abstract Queries (function transTPm).
Let m be an xR2RML mapping graph consisting of a set of xR2RML mappings,
gp be a well-designed graph pattern, and tp a triple pattern of gp. Let l be the
maximum number of query results, and f be a SPARQL filter expression. Let
getBoundMm(gp, tp, f) be the function that, given gp, tp and f, returns the set
of mappings of m that are bound to tp in bindm(gp, f).
We denote by transTPm(tp, f, l) the translation, under getBoundMm(gp, tp,
f), of tp into an abstract query whose results can be translated into at most l
RDF triples matching “tp FILTER f”. The resulting abstract query, denoted
<ResultQuery> in the grammar below, is a union of per-mapping subqueries,
where a subquery is either an Atomic Abstract Query or the inner join of two
Atomic Abstract Queries.
As a simplification, arguments f and l may be omitted when their values are
“true” and ∞ respectively.

<ResultQuery > ::= <SubQuery > (UNIONUNIONUNION <SubQuery >)*
<SubQuery > ::= <AtomicQuery > |

<AtomicQuery > ASASAS child INNERINNERINNER JOINJOINJOIN <AtomicQuery > ASASAS parent
ONONON child/<Ref >= parent/<Ref >

Let us now give an insight into how transTPm deals with these situations.

(1) The most simple situation is encountered when a simple triple pattern tp is
bound with a single xR2RML mapping M . If M has a regular object map
(not a referencing object map denoting a cross-reference), then tp translates
into an atomic abstract query. We will define the concept of atomic abstract
query further on in this section. At this point, let us just notice that it is
an abstract query obtained by matching the terms of a triple pattern with
their respective term maps in a mapping.
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(2) If the mapping M denotes a cross-reference by means of a referencing object
map, i.e. it refers to another mapping for the generation of object terms,
then the result of transTPm is the INNER JOIN of two atomic abstract
queries, denoted:
<AtomicQuery1 > ASASAS child INNERINNERINNER JOINJOINJOIN
<AtomicQuery2 > ASASAS parent ONONON
child/childRef=parent/parentRef

where childRef and parentRef denote the values of properties rr:child and
rr:parent respectively.

(3) We have seen, in the definition of bindm, that several mappings may be
bound to a single triple pattern tp, each one may produce a subset of the
RDF triples that match tp. In such a situation, transTPm translates tp into
a union of per-mapping atomic abstract queries.

Interestingly enough, we notice that INNER JOINs may be implied either by
shared SPARQL variables (Definition 2) or cross-references denoted in the map-
pings (situation (2) described above). Similarly, UNIONs may arise either from
the SPARQL UNION operator (Definition 2) or the binding of several mappings
to the same triple pattern (situation (3) described above).

Due to size constraints, we do not go through the full algorithm of transTPm

in this paper, however the interested reader is referred to [22] for a comprehensive
description.

Atomic Abstract Query. An atomic abstract query consists of four parts,
denoted by {From, Project, Where, Limit}. We now describe these components
and the way they are computed by function transTPm.

– From. The From part provides the concrete query that the abstract query
relies on. It contains the logical source of an xR2RML mapping, that consists
of the xrr:query or rr:tableName properties, an optional iterator (property
rml:iterator) and the optional xrr:uniqueRef property. With the example of
query Q2 (Listing 1.3), the From part for tp1 simply consists of the logical
source of <#Mbox>: db.people.find({’emails’:{$ne: null}}).

– Project. Traditionally, the projection part of a database query restricts the
set of attributes that must be returned in the query response. In relational
algebra, this is denoted by the projection operator π: πa1,...an

(R) denotes
the tuple obtained when the attributes of tuple R are restricted to the set
{a1, ...an}. Similarly, the Project part of an atomic abstract query is a set
of xR2RML references. For each variable in the triple pattern, the xR2RML
references in the term map matched with that variable are projected. In our
running example, the subject and object of tp1 are ?x and ?mbox1. They are
matched with the subject and object maps of mapping <#Mbox>. Thus, the
corresponding xR2RML references within these subject map and object map
must be projected. Hence the Project part for tp1: {$.id AS ?x, $.emails.*

AS ?mbox1}. Furthermore, the child and parent joined references of a refer-
encing object map must be projected in order to accommodate databases
that do not support joins. In the relational database case, these projections
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transtranstransm(gp2) =
transTPtransTPtransTPm(tp1, c1) INNERINNERINNER JOINJOINJOIN
transTPtransTPtransTPm(tp2, true) ONONON {} INNERINNERINNER JOINJOINJOIN
transTPtransTPtransTPm(tp3, c2) ONONON {?x,?y}
FILTERFILTERFILTER(?x != ?y)

transTPtransTPtransTPm(tp1, c1) =
{ FromFromFrom: {"db.people.find({’emails ’: {$ne: null }})"} ,

ProjectProjectProject: {$.id ASASAS ?x, $.emails.* ASASAS ?mbox1},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.emails.*),

sparqlFiltersparqlFiltersparqlFilter(contains(str(?mbox1),"foo.com "))}}

transTPtransTPtransTPm(tp2, true) =
{ FromFromFrom: {"db.people.find({’emails ’: {$ne: null }})"} ,

ProjectProjectProject: {$.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), equalsequalsequals($.emails.*," john@foo.com ")}}

transTPtransTPtransTPm(tp3, c2) =
{ FromFromFrom: {"db.people.find({’contacts ’:{$size: {$gte :1}}})"} ,

ProjectProjectProject: {$.id ASASAS ?x, $.contacts .*},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.contacts .*),

sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS childchildchild
INNERINNERINNER JOINJOINJOIN
{ FromFromFrom: {"db.people.find({’emails ’:{$ne: null }})" },

ProjectProjectProject: {$.emails.*, $.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.emails.*), isNotNullisNotNullisNotNull($.id),

sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS parentparentparent
ONONON childchildchild/$.contacts .* = parentparentparent/$.emails.*

Listing 1.4. Rewriting of the graph pattern gp2 of query Q2 (Listing 1.3) into an
abstract query

would be useless since the database can compute the join internally. But the
abstract query must accommodate any target database, hence the systematic
projection of joined references.

– Where. The Where part is a set of conditions about xR2RML references.
They are produced by matching each term of a triple pattern tp with its
corresponding term map in mapping M : the subject of tp is matched with
M ’s subject map, the predicate with M ’s predicate map and the object with
M ’s object map. Additional conditions are entailed from the SPARQL filter
f. In [22], we show that three types of condition may be created:
(i) a SPARQL variable in the triple pattern is turned into a not-null condition

on the xR2RML reference corresponding to that variable in the term map,
denoted by isNotNull(<xR2RML reference>);

(ii) A constant term in the triple pattern (IRI or literal) is turned into an
equality condition on the xR2RML reference corresponding to that term
in the term map, denoted by equals(<xR2RML reference>, value);

(iii) A SPARQL filter condition about a SPARQL variable is turned into a
filter condition, denoted by sparqlFilter(<xR2RML reference>, f).

Running Example. In the case of query Q2 (Listing 1.3), triple pattern tp2 is
matched with mapping <#Mbox>. It has the variable ?y in the subject position,
which entails an isNotNull condition. It also has a constant term in the object
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transtranstransm(tp1 AND tp2 AND tp3 , c1 ∧ c2) =
{ FromFromFrom: {"db.people.find({’emails ’:{$ne:null }})"} ,

ProjectProjectProject: {$.id ASASAS ?x, $.emails.* ASASAS ?mbox1},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.emails.*),

sparqlFiltersparqlFiltersparqlFilter(contains(str(?mbox1),"foo.com "))}}
INNERINNERINNER JOINJOINJOIN
{ FromFromFrom: {"db.people.find({’contacts ’:{$size: {$gte :1}}})"} ,

ProjectProjectProject: {$.id ASASAS ?x, $.contacts .*},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.id), isNotNullisNotNullisNotNull($.contacts .*),

sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS childchildchild
INNERINNERINNER JOINJOINJOIN
{ FromFromFrom: {"db.people.find({’emails ’:{$ne: null }})" },

ProjectProjectProject: {$.emails.*, $.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.emails.*), isNotNullisNotNullisNotNull($.id),

equalsequalsequals($.emails.*," john@foo.com"),
sparqlFiltersparqlFiltersparqlFilter (?x != ?y)}} ASASAS parentparentparent

ONONON childchildchild/$.contacts .* = parentparentparent/$.emails.* )
ONONON {?x,?y}
FILTERFILTERFILTER(?x != ?y)

Listing 1.5. Optimization of transm(gp2) (Listing 1.4) by self-join elimination

position, which entails an equals condition. Finally, the Where part for tp2 con-
tains two conditions: isNotNull($.id) and equals($.emails.*,"john@foo.com").
When we put all the pieces together, we can rewrite the graph pattern gp2 of
SPARQL query Q2 into the abstract query depicted in Listing 1.4.

4.4 Abstract Query Optimization

At this point, the method we have exposed translates a SPARQL graph pattern
into an effective abstract query, i.e. that preserves the semantics of the SPARQL
query. Yet, shortcomings such as unnecessary complexity or redundancy may
lead to the generation of inefficient queries, and consequently yield poor perfor-
mances. Although we may postpone the query optimization to the translation
into a concrete query language, it is beneficial to figure out which optimizations
can be done at the abstract query level first, and leave only database-specific
optimizations to the subsequent stage.

SPARQL-to-SQL methods proposed various SQL query optimizations such
as [14,32,39]. In this section, we review some of these techniques, referring to the
terminology defined in [39]. We show how these optimizations can be adapted
to fit in the context of our abstract query language. In particular, we show that
our translation method implements some of these optimizations by construction.
In addition, we propose a new optimization, the Filter Propagation, that, to our
knowledge, was not proposed in any SPARQL-to-SQL rewriting method.

Filter Optimization. In a naive approach, strings generated by R2RML tem-
plates are dealt with using an SQL comparison of the resulting strings rather
than the database values used in the template. Typically, when the translation of
an R2RML template relies on the SQL string concatenation, a SPARQL query
can been rewritten into something like this:
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SELECT ... FROM ... WHERE
(’http :// domain/’ || TABLE.ID) = ’http :// domain/1’

Such a query returns the expected results but is likely to perform very poorly:
due to the concatenation, the query evaluation engine cannot take advantage of
existing database indexes. Conversely, a much more efficient query would be:

SELECT (’http :// domain/’ || TABLE.ID)... FROM ...
WHERE TABLE.ID = 1

In our approach, equality conditions apply to xR2RML references rather than
on the template-generated values, hence the Filter Optimization is enforced by
construction.

Filter Pushing. As mentioned earlier, the translation of a SPARQL filter into
an encapsulating SELECT WHERE clause lowers the selectivity of inner queries,
and the query evaluation process may have to deal with unnecessarily large
intermediate results. In our approach, Filter pushing is enforced by construction
by the sparqlCond function: relevant SPARQL conditions are pushed down, as
much as possible, in the translation of individual triple patterns.

Self-join Elimination. A self-join may occur when several mappings share
the same logical source. This can lead to several triple patterns being translated
into atomic abstract queries with the same From part. The Self-join Elimination
consists in merging the criteria of several atomic queries into a single equivalent
query. In Listing 1.4, the atomic query in transTPm(tp2, true) and the second
atomic query in transTPm(tp3, c2) have the same From part and project the
same JSONPath expression as variable ?y. Using joins commutativity, those two
queries can be merged into a single one depicted in the third atomic abstract
query in Listing 1.58.

Self-union Elimination. A UNION operator can be created either due to the
SPARQL UNION operator or during the translation of a triple pattern to which
several mappings are bound (in function transTPm). Analogously to the Self-
join Elimination, a union of several atomic abstract queries sharing the same
logical source can be merged into a single query when they have the same From
part.

Constant Projection. The Constant Projection optimization detects cases
where the only projected variables in the SPARQL query are matched with
constant values in the bound mappings. In the relational database context, it
has been referred to as the Projection Pushing optimization [39]. Let us consider
the example query below:

SELECT DISTINCT ?p WHERE {?s ?p ?o}.

In a naive approach, all mappings are bound to the triple pattern ?s ?p ?o.
Hence, the resulting abstract query is a union of the atomic queries derived from
all the possible mappings. In other words, this query will materialize the whole

8 Note that for a self-join elimination to be safe, additional conditions must be met,
that we do not detail here.



Bridging the Semantic Web and NoSQL Worlds 143

AND(<exp1>, <exp2>, ...) → $andandand:[<exp1 >,<exp2 >,...]
OR(<exp1>, <exp2>, ...) → $ororor:[<exp1 >,<exp2 >,...]
WHERE(<JavaScript exp >) → $wherewherewhere:’<JavaScript exp >’
ELEMMATCH(<exp1 >,<exp2 >...) → $elemMatchelemMatchelemMatch:{<exp1 >,<exp2 >...}
FIELD(p1) ... FIELD(pn) → "p1. ... .pn":
SLICE(<exp >, <number >) → <exp >:{$slicesliceslice:<number >}
COND(equals(v)) → $eqeqeq:v
COND(isNotNull) → $existsexistsexists:truetruetrue , $nenene:nullnullnull
EXISTS(<exp >) → <exp >:{$existsexistsexists:truetruetrue}
NOT_EXISTS(<exp >) → <exp >:{$existsexistsexists:falsefalsefalse}
COMPARE(<exp >, <op>, <v>) → <exp >:{<op >:<v>}
NOT_SUPPORTED → ∅
UNION(<query1 >, <query2 >...) Same semantics as OR, although OR is processed

by the NoSQL engine whereas UNION is processed
by the query processing engine

Listing 1.6. Abstract representation of a MongoDB query and translation to a concrete
query string. <op> stands for one of the MongoDB comparison operators: $eq, $ne, $lt,
$lte, $gt, $gte, $size and $regex.

database before it can provide an answer. Very frequently, xR2RML predicate
maps are constant-valued: the predicate is not computed from a database value,
on the contrary it is defined statically in the mapping. This is typically the
case in our running example that has only constant predicate maps (values of
property rr:predicate: foaf:knows and foaf:mbox (Listing 1.1). In such cases,
given that the SPARQL query retrieves only DISTINCT values of the predicate
variable ?p, no query needs to be run against the database at all: it is sufficient to
collect the distinct constant values that variable ?p can be matched with. More
generally, this optimization checks if the variables projected in the SPARQL
query are matched with constant term maps. If this is verified, the SPARQL
query is rewritten such that the values of the projected variables be provided as
an inline solution sequence using the SPARQL 1.1 VALUES clause. Using the
mapping graph of our running example, we would rewrite the query in this way:

SELECT DISTINCT ?p WHERE
{ VALUES ?p ( foaf:mbox foaf:knows )}

Filter Propagation. We identified another type of optimization that was not
implemented in the SPARQL-to-SQL context. This optimization applies to the
inner join or left outer join of two atomic queries, and seeks to narrow down one
of the joined queries by propagating filter conditions from the other query. In an
inner join, if the two queries have shared variables, then equals and isNotNull
conditions of one query on those shared variables can be propagated to the other
query. In a left join, propagation can happen only from right to left query since
null values must still be allowed in the right query.

5 Application to the MongoDB NoSQL Database

In the previous section, we have exhibited an abstract query model and a method
to translate a SPARQL graph pattern into an optimized abstract query, relying
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on the xR2RML mapping of a target database to RDF. We now want to illus-
trate the effort it takes to translate from the abstract query language towards a
concrete query language with a somewhat different expressiveness.

To this end, we consider the MongoDB NoSQL database. Its JSON-based
data model and its query language differ greatly from SQL-based systems for
which many rewriting works have been proposed. Hence, we believe that it should
provide an interesting illustration of our method. Besides, MongoDB has become
a popular NoSQL actor in recent years. It is provided as a service by major cloud
service providers and tends to become common within the scientific community,
suggesting that it is increasingly adopted as a commonplace database.

In this section, we first glance at the MongoDB query language, and we
describe an abstract representation of MongoDB queries (Sect. 5.1). Then, we
show that the translation from the abstract query language towards MongoDB
is made challenging by the expressiveness discrepancy between the two lan-
guages (Sect. 5.2) and we describe a complete method to achieve this. Finally,
we summarize the whole SPARQL-to-MongoDB process orchestration, from the
SPARQL graph pattern translation until the generation of the RDF triples that
match this graph pattern (Sect. 5.3).

5.1 The MongoDB Query Language

MongoDB comes with a rich set of APIs to allow applications to query a database
in an imperative way. In addition, the MongoDB interactive interface defines a
JSON-based declarative query language consisting of two query methods. The
find method retrieves documents matching a set of conditions and returns a cur-
sor to the matching documents. Optional modifiers amend the query to impose
limits and sort orders. Alternatively, the aggregate method allows for the defini-
tion of processing pipelines: each document of a collection passes through each
stage of a pipeline thereby creating a new collection. This allows for a richer
expressiveness but comes with a higher resource consumption that entails less
predictable performances. Thus, as a first approach, this work considers the find
query method, hereafter called the MongoDB query language.

The MongoDB find query method takes two arguments formatted as JSON
documents. The first argument describes conditions about the documents to
search for. Query operators are denoted by a heading ‘$’ character. The optional
projection argument specifies the fields of the matching documents to return.
For instance, the query below matches all documents with a field “emails” and
returns only the“id” field of each matching document.

db.people.find ({" emails": {$exists: true}}, {"id": true})

The MongoDB documentation provides a rich description of the find query
that however lacks precision as to the formal semantics of some operators.
Attempts were made to clarify this semantics while underlining some limita-
tions and ambiguities: Botoeva et al. [7] mainly focus on the aggregate query
and ignore some of the operators we use in our translation, such as $where,
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$elemMatch, $regex and $size. On the other hand, Husson [20] describes the
find query, yet some restrictions on the operator $where are not formalized.

Hence, in [22] we specified the grammar of the subset of the query lan-
guage that we consider. We also defined an abstract representation of MongoDB
queries, that allows for handy manipulation during the query construction and
optimization phases. Listing 1.6 details the constructs of this representation and
their equivalent concrete query string, when relevant. The NOT SUPPORTED
clause helps keep track of any location, within the query, where a condition can-
not translate into an equivalent MongoDB query element. It shall be used in the
last rewriting and optimization phase.

Let us consider the following abstract representation of a MongoDB query
(or “abstract MongoDB query” for short):

AND( COMPARE(FIELD(p) FIELD(0), $eq, 10),
FIELD(q) ELEMMATCH(COND(equals("val")) )

It matches all documents where “p” is an array field whose first element (at
index 0) is 10, and“q” is an array field in which at least one element has value
“val”. Its concrete representation is:

$and: [ {"p.0": {$eq:10}} ,
{"q": {$elemMatch: {$eq:"val "}}} ]

5.2 Translation of an Abstract Query into MongoDB Queries

Section 4 elaborated on how a SPARQL graph pattern translates into an abstract
query based on xR2RML mappings. Abstract operators INNER JOIN, LEFT
OUTER JOIN and UNION relate sub-queries. The lowest level of sub-queries
consists of atomic abstract queries of the form {From, Project, Where, Limit},
that stem from the translation of individual triple patterns. The From part con-
tains the logical source of a mapping bound to the triple pattern to translate.
The Project part lists the xR2RML data element references that are projected,
i.e. that are part of the query result. In the context of MongoDB, these xR2RML
data element references are JSONPath expressions. The Where part is calculated
by matching triple pattern terms with relevant xR2RML term maps. This gen-
erates conditions on JSONPath expressions (isNotNull conditions for SPARQL
variables or equals conditions for constant triple pattern terms) and sparqlFilter
conditions that encapsulate SPARQL filters. Finally, the Limit part denotes an
optional maximum number of results.

Fig. 2. Translation of atomic abstract queries into concrete MongoDB queries

To achieve a translation from the abstract query language towards the Mon-
goDB query language, we must figure out which components of an abstract
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query have an equivalent MongoDB rewriting, and, conversely, which compo-
nents shall be computed by the query-processing engine. Below, we analyze the
possible situations.

– Inner and left outer joins. MongoDB find queries do not support joins.
Consequently, there does not exist any MongoDB query that would be equiv-
alent to the INNER JOIN and LEFT OUTER JOIN operators. These opera-
tors need to be processed by the query-processing engine by joining the RDF
triples generated for both sub-queries.

– UNION. The rewriting of the UNION operator depends on the graph pat-
terns to which it applies. Let us consider the following SPARQL graph pat-
tern, where tpn is any triple pattern: {tp1. tp2.} UNION {tp3. tp4.} Each
member of the union translates into an INNER JOIN. Since joins cannot
be processed within MongoDB, the outer UNION operator cannot be pro-
cessed within MongoDB either. The issue occurs likewise as soon as one of
the members is either an INNER JOIN or LEFT OUTER JOIN. Under some
circumstances, a UNION operator may be translated into the MongoDB $or
operator. Yet, the MongoDB language definition imposes specific restrictions
as to how operators can be nested. Consequently, in a first approach, we
always shift the processing of the UNION abstract operator to the query-
processing engine. Further works could attempt to characterize more specifi-
cally the situations where a UNION can be processed within MongoDB.

– FILTER and LIMIT. In Sect. 4, we showed that the FILTER and LIMIT
SPARQL solution modifiers are pushed down into relevant atomic abstract
queries (as sparqlFilter conditions of the Where part or as the Limit part of
an atomic query, respectively). When FILTER and LIMIT SPARQL clauses
cannot be pushed down in atomic queries, they end up as abstract operators
with the same names, FILTER and LIMIT. The latter apply to abstract sub-
queries made of UNION, INNER JOIN and/or LEFT OUTER JOIN opera-
tors. Hence, given that UNION and INNER/LEFT OUTER JOIN operators
are not processed within MongoDB, the FILTER and LIMIT operators can-
not be processed within MongoDB either.

Ultimately, it occurs that only the atomic abstract queries can be processed
within MongoDB, while other abstract operators shall be taken care of by the
query-processing engine. More generally, the translation from the abstract query
language towards MongoDB consists of two steps depicted in Fig. 2. In step 1
(detailed in Sect. 5.2), the translation of each atomic abstract query towards
MongoDB amounts to translate projections of JSONPath expressions (Project
part) into MongoDB projection arguments, and conditions on JSONPath expres-
sions (Where part) into equivalent abstract MongoDB queries. Several shortcom-
ings may appear at this stage, such as unnecessary complexity or untranslatable
conditions. Thus, in step 2 (detailed in Sect. 5.2) each abstract MongoDB query
is optimized and rewritten into valid, concrete MongoDB queries.

In the current status of this work, we do not consider the translation of
SPARQL filters (conditions sparqlFilter) for the sake of simplicity. SPARQL 1.0
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filters come with a broad set of conditional expressions including logical com-
parisons, literal manipulation expressions (string, numerical, boolean), XPath
constructor functions, casting functions for additional data types of the RDF
data model, and SPARQL built-in functions (lang, langmatches, datatype, bound,
sameTerm, isIRI, isURI, isBlank, isLiteral, regex). Handling these expressions
within the translation towards MongoDB would yield a significant additional
complexity without changing the translation principles though. Yet, an imple-
mentation should handle them for the sake of performance and completeness.

Translation of Projections and Conditions. Two functions, named proj
and trans, handle the translation of the Project and Where parts of an atomic
abstract query respectively. Below, we illustrate their principles on an example.
The interested reader shall find their formal definition in [22].

In Listing 1.5, the third atomic abstract query is as follows (the sparqlFilter
condition has been omitted):
{FromFromFrom: {"db.people.find({’emails ’:{$ne: null }})"} ,
ProjectProjectProject: {$.emails.*, $.id ASASAS ?y},
WhereWhereWhere: {isNotNullisNotNullisNotNull($.emails.*), isNotNullisNotNullisNotNull($.id),

equalsequalsequals($.emails.*," john@foo.com") }}

Function proj converts the JSONPath expressions of the From part into a list
of paths to be projected. In the example, expressions $.emails.* and $.id trans-
late into their MongoDB projection counterparts: "emails":true and "id":true.

Function trans translates a condition of the Where part into a MongoDB
query element expressed using the abstract representation in Listing 1.6. In
the example, condition isNotNull($.emails.*) is translated into the following
abstract representation:

FIELD(emails) ELEMMATCH(COND(isNotNull)).
Later on, this abstract representation will be translated into an equivalent

concrete query: "emails": {$elemMatch: {$exists:true, $ne:null}}. Sim-
ilarly, condition isNotNull($.id) will be translated into: "id":

{$exists:true, $ne:null}, and condition equals($.emails.*,"john@foo.com")

will be translated into: "emails": {$elemMatch: {$eq:’john@foo.com’}}.
These conditions are used to augment the query of the From part, initially

provided by the mapping’s logical source. When we put all the pieces together,
the atomic abstract query is translated into the concrete MongoDB query below,
where all conditions are operands of an $and operator:
db.people.find(
# Query argument
{ $and: [

{" emails": {$ne:null}}, # from the From part
{" emails": {$elemMatch: {$exists:true ,$ne:null}}},
{"id": {$exists:true ,$ne:null}},
{" emails": {$elemMatch: {$eq:’john@foo.com ’}}} ]

},
# Projection argument
{ "emails": true , "id": true }

)
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Fig. 3. Complete SPARQL-to-MongoDB query translation and evaluation

Optimization and Rewriting into Concrete MongoDB Queries. In the
previous section, function trans produces abstract MongoDB queries that can be
rewritten into concrete queries straightaway. Yet, this rewriting may be hindered
by three potential issues:

(i) During the translation process, nested OR or AND clauses may be produced,
as well as sibling WHERE clauses. Such unnecessary complexity may yield
an underperforming query.

(ii) It may not be possible to translate some JSONPath expressions into equiv-
alent MongoDB operators. This occurs with specific JSONPath array slice
notations, or in JSONPath expressions assuming that the root document is
an array field and not a document field (which is forbidden in MongoDB).
In such cases, a NOT SUPPORTED clause tracks the location of this failed
translation.

(iii) The MongoDB $where operator passes a JavaScript expression or function
to the query system. It provides greater flexibility than other operators,
however it is valid only in the top-level query document: it cannot be used
inside a nested query such as the $elemMatch operator. During the trans-
lation process though, function trans may nest a WHERE clause beneath
other clauses, yielding an invalid query.

To take care of these issues, in [24] we described a post-translation function
rewrite, depicted by step 2 in Fig. 2. First, a set of rewriting rules address issue (i)
by flattening nested OR, nested AND and nested UNION clauses, and merging
sibling WHERE clauses.

To address issue (ii), these rules remove NOT SUPPORTED clauses while
ensuring that the resulting query returns a superset of the valid answers: all the
correct answers are returned, along with possibly incorrect answers. In turn, the
transformation of this superset into RDF triples shall produce all the triples that
match the SPARQL query, in addition to triples that may not match the query.
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The latter are ruled out during the query evaluation process by running a late
SPARQL query evaluation.

A second set of rewriting rules address issue (iii) by “pulling up” WHERE
clauses at the top-level query. This is notably achieved by replacing OR clauses
with UNION clauses that have the same semantics but are processed differ-
ently. An OR clause represents the $or operator and is processed by MongoDB.
Conversely, the UNION clause has no equivalent MongoDB operator: it is pro-
cessed outside of MongoDB by the query processing engine. As a consequence,
an abstract MongoDB query may be rewritten into a union of valid, concrete
MongoDB queries.

Finally, Theorem1 captures two key properties of the rewriting process. It
has been proved in [22].

Theorem 1. Let C be an equality or not-null condition on a JSONPath expres-
sion. Let Q = (Q1 ... Qn) be the abstract MongoDB query produced by trans(C).
Rewritability: It is always possible to rewrite Q into a query Q

′
=union(Q

′
1,

..., Q
′
m) such that ∀i ∈ [1,m] Q

′
i is a valid MongoDB query, i.e. Q

′
i does not

contain any not supported clause, and a where clause only shows at the
top-level of Q

′
i.

Completeness: Executing Q
′
against the database retrieves all the documents

matching condition C. If Q contains at least one not supported clause, then
Q

′
may retrieve additional documents that do not match condition C.

A corollary of Theorem1 is that, using the xR2RML mapping of a MongoDB
database to RDF, we can rewrite any SPARQL 1.0 graph pattern into an abstract
query whose atomic abstract queries are valid MongoDB queries or unions of
valid MongoDB queries.

5.3 Complete SPARQL-to-MongoDB Query Translation
and Evaluation

Figure 3 summarizes the whole SPARQL-to-MongoDB process orchestration,
from the graph pattern translation to the subsequent MongoDB queries eval-
uation and the production of RDF triples.

In step 1, function transm (Sect. 4.1) translates a SPARQL graph pattern
into an abstract query under a set of xR2RML mappings denoted by m. It
leverages function transTPm (Sect. 4.3) to translate a triple pattern tp into
an abstract query under the set of mappings bound to tp by function bindm
(Sect. 4.2). The resulting abstract query contains atomic abstract queries of the
form {From, Project, Where, Limit}, combined with abstract operators INNER
JOIN, LEFT OUTER JOIN, UNION, FILTER, LIMIT. The Project part of an
atomic abstract query is a set of xR2RML references (i.e. JSONPath expressions
for MongoDB) that must be projected. The Where part consists of isNotNull,
equals and sparqlFilter conditions on JSONPath expressions. In step 2, function
proj translates each projected JSONPath expression into a MongoDB projection
argument, function trans translates each isNotNull and equals condition into an
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abstract representation of a MongoDB query (Sect. 5.2), and function rewrite
(Sect. 5.2) optimizes and rewrites this abstract representation into a concrete
MongoDB query or a union of concrete MongoDB queries.

Two steps remain, that we have not described yet. In step 3, the concrete
queries are executed against the database. In step 4, the result JSON docu-
ments are translated into RDF triples according to the xR2RML mappings,
then the query processing engine evaluates the abstract query by computing the
INNER/LEFT OUTER JOIN, UNION, FILTER and LIMIT operators. Finally,
in case one atomic abstract query contained a NOT SUPPORTED clause, a late
SPARQL evaluation is performed to rule out the RDF triples that do not match
the query (as explained in Sect. 5.2).

6 Experimentation and Evaluation

To date, to our knowledge, the method proposed in this paper and the MongoDB-
enabled ontop software [8] are the only approaches meant to query arbitrary
MongoDB documents with SPARQL. So far though, this ontop version is not
available for test, which hinders possible performance comparison. Addition-
ally, no benchmark similar to the Berlin SPARQL Benchmark for relational
databases [6] exists so far for querying NoSQL databases with SPARQL.

Therefore, in this section, we describe a real-world use case that we used to
build a test database, and we report experimental results with respect to the
effectiveness and performance of our approach.

6.1 Prototype Implementation

Morph-xR2RML is the prototype implementation we developed to evaluate the
effectiveness of the xR2RML mapping language and the SPARQL-to-MongoDB
method proposed in this paper. It comes with connectors for the MySQL and
Postgres relational databases, and for the MongoDB document store. It can
process an xR2RML mapping graph in either the data materialization or the
query rewriting modes.

Morph-xR2RML is available on GitHub9 under the Apache 2.0 license, it is
written in the Scala programming language. It is based on and extends the
Morph-RDB [29] R2RML implementation. We performed a substantial code
refactoring in order to isolate any RDB-related code into a dedicated software
module. As a result, our prototype is extensible by design: supporting a new type
of database amounts to create a new software module that implements a given
set of interfaces, thereby encapsulating and isolating any database-specific con-
cerns from the rest of the project code. Following this approach, we developed
a connector for the MongoDB document store, to translate MongoDB JSON
documents into RDF and rewrite SPARQL queries into MongoDB queries.

9 https://github.com/frmichel/morph-xr2rml/.

https://github.com/frmichel/morph-xr2rml/
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Morph-xR2RML relies on several open-source Java APIs, the most salient
ones are listed here. Jena10 is a well known Java framework consisting of several
APIs meant to build Semantic Web Data applications. We use the Jena RDF API
that helps handle RDF triples and graphs. MongoDB comes with a native Java
API11 that allows for imperative style querying only. The Jongo API12 builds
on top of it to translate a declarative MongoDB query (a find query in our case)
into imperative code. Lastly, Jayway JsonPath13 is a Java implementation of the
JSONPath language.

The query rewriting experimentation we report in this section was conducted
on a server equipped with a 3.0 GHz CPU with two physical cores, and 8 GB
RAM. The MongoDB engine and the Morph-xR2RML Java virtual machine
alike were running on the same server. The Java virtual machine was allowed a
maximum of 4 GB memory.

6.2 Experimentation Database

TAXREF [15] is the French national taxonomic register for fauna, flora and
fungus, maintained and distributed by the French National Museum of Natural
History (MNHN). It is a manually curated register of all the species invento-
ried in metropolitan France and overseas territories, organized as a hierarchy of
over 485.000 scientific names (in version 9) that mark a national and interna-
tional consensus. As an example, the listing below shows a JSON excerpt from
TAXREF’s Web service14, describing the common dolphin species (Delphinus
delphis). Annotation "habitat":1 states that it lives in a marine habitat, anno-
tation "rang":"ES" states that the taxon belongs to the “species” taxonomical
rank. Annotation "fr":"P" characterizes one of its biogeographical statuses: it
states that Delphinus delphis is present in mainland France.
{

"codeTaxon ":"60878" ,
"codeReference ":"60878" , "codeParent ":"191591" ,
"rang ":"ES",
"libelleNom ":" Delphinus delphis",
"libelleAuteur ":" Linnaeus , 1758" ,
"nomVernaculaire ":" Dauphin commun",
"nomVernaculaireAnglais ":" Common Dolphin",
"url":" http :// inpn.mnhn.fr/espece/cd_nom /60878" ,
"habitat ":"1" ,
"fr":"P",
(...)

}

We are involved in an on-going collaboration with TAXREF experts from
MNHN, aimed to publish TAXREF on the Web of Data as a SKOS thesaurus [9].
In this context, we imported into a MongoDB database the JSON representa-
tion of TAXREF v9.0, wherein each of the 485.189 JSON documents accounts for
10 http://jena.apache.org/.
11 https://mongodb.github.io/mongo-java-driver/.
12 http://jongo.org/.
13 https://github.com/json-path/JsonPath.
14 https://taxref.mnhn.fr/taxref-web/api/doc.

http://jena.apache.org/
https://mongodb.github.io/mongo-java-driver/
http://jongo.org/
https://github.com/json-path/JsonPath
https://taxref.mnhn.fr/taxref-web/api/doc
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one scientific name, may it be a taxon reference of synonymous name. Listing 1.7
exemplifies the SKOS modeling with taxon Delphinus delphis and its synonym
Delphinus vulgaris. The taxon is represented as a SKOS concept (line 10). The
skos:broader property models the relationships towards the parent taxon in the
classification (line 13), i.e. genus Delphinus in this example. The taxon refer-
ence and synonymous names are represented as SKOS-XL labels (lines 23–33),
referred to with properties skosxl:prefLabel and skosxl:altLabel respectively
(lines 14–15). The taxonomical rank, habitat and bio-geographical status are
properties of the SKOS concept (lines 16–21), while the authorities and vernac-
ular names are properties of SKOS labels (lines 25–27 and 31–33).

Leveraging this existing database, we set up an experimentation of the
SPARQL-to-MongoDB query rewriting. In the next section, we shortly describe
the xR2RML mappings designed for the experimentation.

1 @prefix txrp: <http :// inpn.mnhn.fr/taxref/properties/> .
2 @prefix txrbgs: <http :// inpn.mnhn.fr/taxref/bioGeoStatus#>.
3 @prefix nt: <http :// purl.obolibrary.org/obo/ncbitaxon#>.
4 @prefix dwc: <http ://rs.tdwg.org/dwc/terms/>.
5 @prefix txn: <http ://lod.taxonconcept.org/ontology/txn.owl#>.
6 @prefix dct: <http :// purl.org/dc/elements /1.1/ >.
7 @prefix skos: <http ://www.w3.org /2004/02/ skos/core#>.
8 @prefix skosxl: <http ://www.w3.org /2008/05/ skos -xl#>.
9

10 <http :// inpn.mnhn.fr/taxref /9.0/ taxon /60878 > a skos:Concept;
11 skos:inScheme <http :// inpn.mnhn.fr/taxref /9.0/ Taxref >;
12 skos:note "Delphinus delphis ";
13 skos:broader <http :// inpn.mnhn.fr/taxref /9.0/ taxon /191591 >;
14 skosxl:prefLabel <http :// inpn.mnhn.fr/taxref/label /60878 >;
15 skosxl:altLabel <http :// inpn.mnhn.fr/taxref/label /577834 >;
16 txrp:habitat <http :// inpn.mnhn.fr/taxref/habitat#Marine >;
17 nt:has_rank <http :// inpn.mnhn.fr/taxref/taxrank#Species >;
18 txrp:bioGeoStatusIn [
19 rdfs:label "Metropolitan France";
20 dct:spatial <http ://sws.geonames.org /3017382/ >;
21 dwc:locationId "TDWG:FRA; WOEID :23424819";
22 dwc:occurrenceStatus txrbgs:P ].
23
24 <http :// inpn.mnhn.fr/taxref/label /60878 > a skosxl:Label;
25 txrp:isPrefLabelOf <http :// inpn.mnhn.fr/taxref /9.0/ taxon /60878 >;
26 txn:authority "Linnaeus , 1758";
27 txrp:vernacularName "Common Dolphin"@en , "Dauphin commun"@fr;
28 skosxl:literalForm "Delphinus delphis ".
29
30 <http :// inpn.mnhn.fr/taxref/label /577834 > a skosxl:Label;
31 txrp:isAltLabelOf <http :// inpn.mnhn.fr/taxref /9.0/ taxon /60878 >;
32 txn:authority "Lacepede , 1804";
33 txrp:vernacularName "Common Dolphin"@en , "Dauphin commun"@fr;
34 skosxl:literalForm "Delphinus vulgaris ".

Listing 1.7. SKOS representation of the Delpinus delphis taxon

6.3 Experimentation xR2RML Mapping Graph

The xR2RML mapping graph designed to generate the TAXREF-based SKOS
thesaurus is provided in the xR2RML GitHub repository15. It consists of 90
15 xR2RML mapping graph for TAXREF v9: https://github.com/frmichel/morph-

xr2rml/blob/master/morph-xr2rml-dist/example taxref/xr2rml taxref v9.ttl.

https://github.com/frmichel/morph-xr2rml/blob/master/morph-xr2rml-dist/example_taxref/xr2rml_taxref_v9.ttl
https://github.com/frmichel/morph-xr2rml/blob/master/morph-xr2rml-dist/example_taxref/xr2rml_taxref_v9.ttl
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mappings, a somewhat high number that spawns from the distance between
the internal structure of TAXREF JSON documents and the targeted SKOS
modeling. We illustrate this distance with an example.

Habitats are coded in TAXREF with integer values, e.g. value ‘1’ represents
the marine habitat, ‘2’ represents fresh water, etc. Translating the marine habitat
into URI http://inpn.mnhn.fr/taxref/habitat#1 would be straightforward using
a template that would append the value read from the database to http://
inpn.mnhn.fr/taxref/habitat#. A single mapping would be sufficient to generate
the triples related to all types of habitat. However, our modeling targets the
generation of more meaningful URIs that cannot be generated by a template, e.g.
http://inpn.mnhn.fr/taxref/habitat#Marine; instead, we must write a mapping
whose query filters only taxa with habitat ‘1’:
<#TM_Habitat_Marine >
xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [ xrrxrrxrr:queryqueryquery """db.taxrefv9.find(

{$where: ’this.codeTaxon ==this.codeReference ’,
’habitat ’:’1’} )""" ];

rrrrrr:subjectMapsubjectMapsubjectMap <#SM_Taxon >;
rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [
rrrrrr:predicatepredicatepredicate txrfp:habitat;
rrrrrr:objectMapobjectMapobjectMap [
rrrrrr:constantconstantconstant
<http :// inpn.mnhn.fr/taxref/habitat#Marine >;

rrrrrr:termTypetermTypetermType rrrrrr:IRIIRIIRI ]].

Such a mapping must be written for each of the 8 habitat values. A similar situ-
ation is observed for the 48 taxonomical ranks and 30 bio-geographical statuses,
that all comme with dedicated mappings.

6.4 Experimentation Results

In Sect. 5, we showed that atomic abstract queries can be translated into equiv-
alent MongoDB queries, but other operators of the abstract query language
(INNER JOIN, LEFT OUTER JOIN, UNION) must be computed by the query-
processing engine, i.e. Morph-xR2RML. Therefore, a first series of tests aimed
to assess the performance of Morph-xR2RML with a SPARQL query consisting
of a single triple pattern, bound to exactly one mapping and producing a single
MongoDB query (Sect. 6.4). In a second series of tests, we measured the comple-
tion time of SPARQL queries involving joins and/or unions, and we compared
them to the time needed for a single triple pattern. Furthermore, we measured
the gain obtained by performing optimizations at the level of the abstract query
(Sect. 6.4).

Processing a Single Triple Pattern. To measure the performance of Morph-
xR2RML in the case of a single triple pattern translated into a single MongoDB
query, we selected seven SPARQL SELECT queries (Q0 to Q6) tailored to pro-
duce an increasing number of results: from 1 result in Q0 to 227,224 results in
Q6. In each case, one JSON document yields one RDF triple. Table 1 lists each
query along with the corresponding triple pattern and semantics, the number of
results it retrieves from the database, and the average time it took to process

http://inpn.mnhn.fr/taxref/habitat#1
http://inpn.mnhn.fr/taxref/habitat#
http://inpn.mnhn.fr/taxref/habitat#
http://inpn.mnhn.fr/taxref/habitat#Marine
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Table 1. Execution time of SPARQL queries with one triple pattern

Q. Id Query semantics and SPARQL triple pattern No. results Exec. time

± std dev.

(ms)

Exec. time

per result

(ms)

Q0 Find the reference name for taxon 60587

?t skosxl:prefLabel

<http://inpn.mnhn.fr/taxref/label/60587>

1 451 ± 36 451.00

Q1 Get synonyms of taxon 95372

<http://inpn.mnhn.fr/taxref/9.0/taxon/95372>

skosxl:altLabel ?a

164 522 ± 14 3.18

Q2 Get all bio-geographical statuses in

St Pierre et Miquelon

?bgs dct:spatial

<http://sws.geonames.org/3424932/>

4835 4.056 ± 65 0.84

Q3 Get all bio-geographical statuses in Guadeloupe

?bgs dct:spatial

<http://sws.geonames.org/3579143/>

17956 9665 ± 45 0.54

Q4 Get all bio-geographical statuses in

New Caledonia

?bgs dct:spatial

<http://sws.geonames.org/2139685/>

35703 17289 ± 78 0.48

Q5 Get bio-geographical statuses in mainland France

?bgs dct:spatial

<http://sws.geonames.org/3017382/>

128018 61645 ± 671 0.48

Q6 Get all taxa (that are SKOS concepts)

?c a skos:Concept

227224 108508 ± 459 0.48

Fig. 4. Average query processing time as a function of the number of results. Dotted
lines represent the linear regression lines of both series. (Color figure online)

http://inpn.mnhn.fr/taxref/label/60587
http://inpn.mnhn.fr/taxref/9.0/taxon/95372
http://sws.geonames.org/3424932/
http://sws.geonames.org/3579143/
http://sws.geonames.org/2139685/
http://sws.geonames.org/3017382/


Bridging the Semantic Web and NoSQL Worlds 155

Fig. 5. Processing time overhead imposed by Morph-xR2RML, compared to a direct
database query. The overhead comprises rewriting the SPARQL query and translating
the MongoDB results into RDF triples

Fig. 6. Overhead of querying MongoDB through the Jongo API compared to a direct
query through MongoDB’s Java API

the query (the query processing spans the SPARQL query rewriting, the query
evaluation against MongoDB and the RDF triples generation). For each query,
10 measures were performed: we report the average value and standard devia-
tion. The last column gives the average processing time per query result, that
converges towards 0.48 ms.
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Figure 4 depicts the average query processing time (fourth column of Table 1)
as a function of the number of results (blue line). Since Morph-xR2RML relies on
the Jongo API to process a MongoDB query, we also measured the time needed
by Jongo to parse the query, pass it on to MongoDB and retrieve the results from
MongoDB. Red dots represent the measures when simply querying MongoDB
with Jongo, while blue dots represent the measures of the whole process executed
by Morph-xR2RML.

The distance between the two lines gives an estimation of the overhead
imposed by Morph-xR2RML to rewrite the query and generate the triples.
Figure 5 depicts this overhead. The confidence for Q0 and Q1, and to some
extend for Q2, is very low as attested by the large error bars. Indeed, mate-
rializing a few triples is barely measurable (<1 ms for Q0, and in the order of
30 ms for Q1), such that the measure is very sensitive to environment variations.
Conversely, the confidence for Q3 to Q6 is quite high. Q3, Q4 and Q5 show a
similar overhead of approximately 19%. Although we could expect the overhead
percentage to be constant with higher numbers of results, it reaches 32% for Q6.
A detailed analysis shows that the difference lies in the time needed to generate
the RDF triples. Compared to Q5, the number of results in Q6 increases by 77%
while the materialization time increases by 120%. The variable term in Q3, Q4
and Q5 is a blank node whereas it is a URI in Q6. A tentative explanation is that
Morph-xR2RML may be faster when producing blank nodes than when produc-
ing URIs, unless this difference lies in the Jena API on which Morph-xR2RML
relies to handle RDF triples. Further works should consider using more sub-
stantial databases to assess this difference with more precision. In any case, the
processing performed by Morph-xR2RML adds no more than a 30% overhead
to the time needed to query the database and retrieve the results.

Yet, waiting 10 s to get 18000 results (query Q3) can be considered surpris-
ingly long compared to native RDF triple stores. To investigate this question,
we compared the time it takes to run a query (i) through the Jongo API (the
case of Morph-xR2RML) and (ii) directly through MongoDB’s own Java API.
The results are presented in Fig. 6. Surprisingly, they attest that, while Jongo
is efficient for few results (in the order of 100), it entails a significant overhead
for larger results: 116% overhead for query Q6 (i.e. using Jongo more than dou-
bles the query time). Jongo’s authors argue that the library is almost as fast as
querying MongoDB directly, under the assumption that the marshalling/unmar-
shalling of JSON documents is left to Jongo. Morph-xR2RML retrieves JSON
documents from Jongo as Java strings in order to evaluate them with JSON-
Path expressions. It is likely that converting documents to strings and evaluating
them with a third-party JSONPath library significantly impairs performances.
Further investigation should be conducted to figure this out more precisely, keep-
ing in mind that solving this issue could approximately save a factor 2 during
the processing of large result sets.

Impact of Query Optimizations. In this section, we measure the completion
time of two example SPARQL queries involving joins. Notably, we measure the
gain obtained by performing optimizations at the level of the abstract query,
namely the self-join elimination and the filter propagation. Additional example
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queries are reported in [22] along with measures of the impact of the self-union
elimination and the constant projection optimizations.

Join Query, Self-join Elimination. SPARQL query Q7, depicted below, looks
for taxa (variable ?t) that are present in the overseas collectivity of Saint-Pierre-
et-Miquelon (http://sws.geonames.org/3424932/). The graph pattern matches
12,708 triples that yield a SPARQL result set of 4,236 solutions.
SELECTSELECTSELECT * WHEREWHEREWHERE {

?t taxrefprop:bioGeoStatusIn ?bgs . # tp1
?bgs dct:spatial

<http ://sws.geonames.org /3424932/ > . # tp2
?bgs dwc:occurrenceStatus taxrefbgs:P . # tp3

}

Executed separately, the first triple pattern would be bound to 15 mappings
(one for each geographical location) and would yield 311,489 RDF triples; the
second one would be bound to one mapping and would yield 4,835 triples, and
the third one would be bound to 15 mapping and would yield 260,631 documents.
Executed as such, query Q7 completes in almost 10 min (600 s).

[ { BindingBindingBinding(tp1: ?t taxrefprop:bioGeoStatusIn ?bgs -> TM_SBG_SPM)
FromFromFrom : db.taxrefv9.find({$where:’this.codeTaxon ==this.codeReference ’,

’spm ’:{$ne:’’},’spm ’:{$ne:null }})
ProjectProjectProject: $.codeTaxon ASASAS ?t, $.codeTaxon ASASAS ?bgs
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon) }

] INNERINNERINNER JOINJOINJOIN [
[ { BindingBindingBinding(tp2: ?bgs dct:spatial http ://sws.geonames.org /3424932/

-> TM_SBG_SPM_BN2)
FromFromFrom

: db.taxrefv9.find({$where:’this.codeTaxon ==this.codeReference ’,
’spm ’:{$ne:’’}, ’spm ’:{$ne:null }})

ProjectProjectProject: $.codeTaxon ASASAS ?bgs
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon) }

] INNERINNERINNER JOINJOINJOIN [
{ BindingBindingBinding(tp3: ?bgs dwc:occurrenceStatus taxrefbgs:P ->TM_SBG_SPM_BN1)

FromFromFrom
: db.taxrefv9.find({$where:’this.codeTaxon ==this.codeReference ’,

’spm ’:{$ne:’’}, ’spm ’:{$ne:null }})
ProjectProjectProject: $.codeTaxon ASASAS ?bgs)
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.spm , P) }

] ONONON ?bgs
] ONONON ?bgs

{ BindingBindingBinding(tp1: ?t taxrefprop:bioGeoStatusIn ?bgs -> TM_SBG_SPM),
BindingBindingBinding(tp2: ?bgs dct:spatial http ://sws.geonames.org /3424932/

-> TM_SBG_SPM_BN2),
BindingBindingBinding(tp3: ?bgs dwc:occurrenceStatus taxrefbgs:P -> TM_SBG_SPM_BN1)
FromFromFrom : db.taxrefv9.find({$where:’this.codeTaxon == this.codeReference ’,

’spm ’:{$ne:’’}, ’spm ’:{$ne:null }})
ProjectProjectProject: $.codeTaxon ASASAS ?t, $.codeTaxon ASASAS ?bgs
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.spm , P)

}

Listing 1.8. Top: rewriting of the graph pattern of query Q7 after bindings reduction.
Bottom: the same query after self-join elimination.
Compared to the notation used in previous sections, each atomic abstract query con-
tains heading lines providing the binding(s) of the triple pattern(s) that this atomic
query accounts for, denoted by Binding(triple pattern -> mapping name).

http://sws.geonames.org/3424932/
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[{ BindingBindingBinding (?t skosxl:prefLabel http :// inpn.mnhn.fr/taxref/label /60585
-> TM_Taxon_PrefLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon ==this.codeReference ’ } )

ProjectProjectProject: $.codeTaxon ASASAS ?t
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeTaxon , 60585) }

] INNERINNERINNER JOINJOINJOIN [
[{ BindingBindingBinding (?t skosxl:altLabel ?a -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?a
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeReference), isNotNullisNotNullisNotNull($.codeTaxon) }

] INNERINNERINNER JOINJOINJOIN [
{ BindingBindingBinding (?t skosxl:altLabel ?b -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?b
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeReference), isNotNullisNotNullisNotNull($.codeTaxon) }

] ONONON ?t
] ONONON ?t

Listing 1.9. Rewriting of the graph pattern of query Q8.

The binding reduction step (Sect. 4.2) removes all but one mapping bound to
the first and third triple patterns. The query now amounts to the join of three
atomic abstract queries depicted in Listing 1.8 (top). The first and second atomic
queries yield 4,835 RDF triples while the third query yields 4,236 triples. Under
such reduced bindings, query Q7 completes in 8.53 s in average, the querying to
MongoDB accounts for 47% of this total time, the generation of the RDF triples
accounts for 11% and the processing of joins for 39%.

A closer look to the abstract query shows that it contains two self-joins that
can be eliminated for the following reasons: (i) all three queries share the same
From part (the logical source), (ii) they are joined on the ?bgs variable that
is always projected from the same reference $.codeTaxon, and (iii) $.codeTaxon

is declared as a unique identifier in at least one mapping bound to the three
triple patterns (with property xrr:uniqueRef). This self-join elimination yields an
optimized query that now consists of a single atomic query depicted in Listing 1.9
(bottom). Note that the Project and Where parts have been merged, and the
three bindings now apply to this atomic query: the same MongoDB query is
used to generate RDF triples matching the three triple patterns. This optimized
query completes in 2,966 ms in average, i.e. a 65% gain compared to the query
with reduced bindings.

Filter Propagation. SPARQL query Q8, pictured herebelow, retrieves the
taxon (variable ?t) whose preferred label has a certain URI, alongside two of
its alternate labels (variables ?a and ?b).
SELECTSELECTSELECT * WHEREWHEREWHERE {

?t skosxl:prefLabel
<http :// inpn.mnhn.fr/taxref/label /60585 > .

?t skosxl:altLabel ?a .
?t skosxl:altLabel ?b .
FILTERFILTERFILTER (?a != ?b)

}
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In a first step, Q8 translates into the inner join of three atomic abstract
queries, portrayed in Listing 1.9. The first atomic query retrieves 1 document
from the database, while the second and third queries retrieve 257,965 documents
each. Executed naively, the inner-most join computes the join of 257,965 triples
with another 257,965 triples generated from the same database documents. With
a smarter join ordering, the triple produced by the first atomic query is joined
with the 257,965 triples of the second one to produce two triples (taxon 60585
has two synonyms), that, in turn, are joined with the 257,965 triples of the third
query. Yet, two joins of 257,965 triples with one then two triples have to be
performed. Some tests show that the time needed to complete this query is in
the order of 4 min.

[{ BindingBindingBinding (?t skosxl:prefLabel http :// inpn.mnhn.fr/taxref/label /60585
-> TM_Taxon_PrefLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon ==this.codeReference ’ } )

ProjectProjectProject: $.codeTaxon ASASAS ?t
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeTaxon , 60585) }

] INNERINNERINNER JOINJOINJOIN [
[{ BindingBindingBinding (?t skosxl:altLabel ?a -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?a
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeReference , 60585) }

] INNERINNERINNER JOINJOINJOIN [
{ BindingBindingBinding (?t skosxl:altLabel ?b -> TM_Taxon_AltLabel)

FromFromFrom : db.taxrefv9.find( {
$where: ’this.codeTaxon !=this.codeReference ’ } )

ProjectProjectProject: $.codeReference ASASAS ?t, $.codeTaxon ASASAS ?b
WhereWhereWhere : isNotNullisNotNullisNotNull($.codeTaxon), equalsequalsequals($.codeReference , 60585) }

] ONONON ?t
] ONONON ?t

Listing 1.10. Rewriting of the graph pattern of query Q8 after enforcing the filter
propagation optimization.

The Filter Propagation optimization leverages some situations where, within
the join of two sub-queries, a condition on a variable shared by both sub-queries
can be propagated from one sub-query to the other. In the example, the two
joins are performed on variable ?t. The first atomic query projects ?t as expres-
sion $.codeTaxon and has condition equals($.codeTaxon, 60585). In the second
and third queries, variable ?t is projected as $.codeReference. Therefore, the
join condition can only be satisfied if expression $.codeReference returns the
value 60585. In other words, we can propagate the condition on $.codeTaxon,
equals($.codeTaxon, 60585) to the second and third queries as a condition
on $.codeReference: equals($.codeReference, 60585). The optimized abstract
query is pictured in Listing 1.10. The second and third queries now only yield
two RDF triples. Finally, the execution of this query lasts 565 ms in average,
that is a gain factor in the order of 400.
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7 Discussion and Perspectives

In the case of MongoDB, the processing of joins is shifted to the query processing
engine, and can ensue poor performances when joined sub-queries are not selec-
tive enough. Furthermore, real-world SPARQL queries often contain substantial
graph patterns with multiple joined triple patterns. It is therefore critical to be
able to process joins efficiently. Thus, beyond the optimizations that we imple-
mented at the abstract query level, query-plan optimization techniques shall be
investigated to help answer the following questions:

– Can we rewrite a SPARQL graph pattern in a way that facilitates the pro-
duction of an efficient abstract query?

– How to inject intermediate results into a subsequent query, as performed in
the bind join optimization [17]?

– How to reorder joins considering the number of results of sub-queries, in a
way similar to methods proposed by distributed query engines? [16,21,33]

– Can we perform lazy evaluation of joins by progressively materializing triples
on each side of the join until the expected number of results is reached? This
would typically resemble the method employed in the non-blocking evaluation
of queries in the context of Triple Pattern Fragments [40].

Additionally, several leads could be investigated to overcome the limitations
of the translation from the abstract query language to MongoDB.

– Our method generates the RDF triples resulting from each atomic queries
and subsequently performs joins (INNER JOIN, LEFT OUTER JOIN). In
some cases though, joins may rule out many of the triples that were just
materialized. Hence, it should be studied when joins can be evaluated on the
database documents. This would typically rule out unnecessary documents
earlier in the process, thus saving the useless generation of RDF triples.

– Our implementation of xR2RML for MongoDB relies on JSONPath to extract
data elements from MongoDB results. In turn, the SPARQL rewriting pro-
cess must handle conditions on JSONPath expressions. Consequently, we have
to cope with the expressiveness discrepancy between SPARQL and Mon-
goDB, and between JSONPath and MongoDB alike. While we must cope with
the earlier (our goal is specifically to access heterogeneous databases with
SPARQL), the latter is somewhat more an implementation choice. Hence,
an investigation should figure out whether considering a restricted subset of
JSONPath may produce a simpler solution while still enabling to address
most mapping situations.

– Beyond this, another promising lead is to determine what type of MongoDB
query should be used preferably: find or aggregate queries. We address this
question in Sect. 7, as part of a broader discussion about the similarities and
discrepancies between our approach and that of ontop’s authors.
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Comparison with the MongoDB-Enabled Ontop. To the best of our
knowledge, the only other approach meant to access arbitrary MongoDB doc-
uments with SPARQL has been proposed by the authors of ontop, Botoeva
et al. [8]. This approach starts with deriving a set of type constraints (lit-
eral, object, array) from the mapping assertions, called the MongoDB database
schema. Then, a relational view over the database is defined with respect to
that schema, notably by flattening array fields. A SPARQL query is rewrit-
ten into relational algebra (RA) query, and RA expressions over the relational
view are translated into MongoDB aggregate queries. Similarly, we translate a
SPARQL query into an abstract representation (that is not relational algebra)
under xR2RML mappings. To deal with the tree structure of JSON documents
we use JSONPath expressions. On the one hand, this avoids the definition of
a relational view over the database, but this comes with additional complexity
in the translation process, as translating conditions on JSONPath expressions
is not straightforward. On the other hand, the advantage of our method is that
the query evaluation relies on existing database indexes, whereas in the case of
Botoeva et al., the flattening step prevents from exploiting these indexes.

The mappings are quite similar in both approaches although xR2RML is
more flexible: (i) class names (in triples ?x rdf:type A) and predicates can be
built from database values whereas they are constant in the approach proposed
by Botoeva et al., and (ii) xR2RML allows to turn an array field into an RDF
collection or container, while the latter approach only supports the multiple-
triples strategy.

Finally, the main differences pertain to the type of target query. Botoeva et
al. produce MongoDB aggregate queries, with the major advantage of ensuring a
semantics-preserving SPARQL-to-MongoDB query translation, thus delegating
the whole processing to MongoDB and making the query translation simpler. In
practice however, aggregate pipelines may perform poorly. To optimize them, an
option suggested by the authors is to decompose the pipeline into smaller queries
and have the query-processing engine perform the remaining steps. Our approach
works the other way around: it produces less-expressive MongoDB find queries,
leaving much more work to the query-processing engine. Nevertheless, having
the job done outside of the database engine allows to leverage extensive works
about smart query optimizations [16,17,21,33], whereas this is not possible when
the database performs an aggregate query in a black-box manner.

Typically though, in situations involving large joins, aggregate queries per-
form faster than find queries as they can leverage database indexes. In the future,
it would be interesting to assess whether we could characterize mappings with
respect to the type of query that shall perform best: single vs. multiple separate
queries, find vs. aggregate, and figure out a balance between the two approaches.

Furthermore, unlike ontop, xR2RML allows for rich JSONPath expressions
to evaluate a JSON document and generate RDF terms. In this matter, further
studies should figure out how to translate such expressions into aggregate queries.
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8 Conclusion

The method proposed in this paper aims at fostering the development of
SPARQL interfaces to heterogeneous databases, as we believe this is a key to
push the Web of Data forward. In particular, we think that this should help to
bridge the gap between the Semantic Web and the NoSQL family of databases.

To achieve this goal without defining yet another SPARQL translation
method for each and every database, we proposed a two-phase approach. First,
we defined an abstract query language deriving from the syntax and semantics
of SPARQL. Utilizing the xR2RML mapping language and leveraging R2RML-
based SPARQL-to-SQL works, we introduced a generic method to translate a
SPARQL 1.0 graph pattern into an abstract query. We showed how optimiza-
tions can be beneficially enforced at this abstract level, saving subsequent work
at the level of a target database language. In a second phase, the abstract query
is translated into the query language of a target database. To demonstrate the
effectiveness of our approach, we applied it to the MongoDB NoSQL document
store. We devised a method to translate an abstract query into MongoDB find
queries, and we showed that this translation is challenged by the expressiveness
discrepancy between SPARQL and the MongoDB query language.

Finally, we conducted an experimentation based on the real-world use case of
a taxonomical reference stored in a MongoDB database. Utilizing a mapping of
this database to a SKOS thesaurus, we first measured performances in the case
of single SPARQL triple patterns that translate into single MongoDB queries.
Then, we measured the performances of richer SPARQL queries and we demon-
strated the effectiveness of some of the optimizations performed at the level of
the abstract query language. We underlined some limitations of the translation
from the abstract query language to MongoDB, that can impair performances.
In Sect. 7 we discuss several improvement leads that could be investigated.

From a broader perspective, we have shown that translating a SPARQL query
into efficient concrete queries can be challenging when it comes to address data
sources such as NoSQL databases. These systems are generally optimized for fast
storage and retrieval of vast collections of documents. They favor scalability, high
throughput and availability over consistency and query language expressiveness.
As a consequence, they often come with denormalized data models where redun-
dancy is common, and barely support joins. This is the case of other document
stores such as CouchDB that are designed in a way very similar to MongoDB.
Column family stores usually allow for a richer data model and provide a more
expressive query language. But although their columnar data model makes them
easily compared with relational systems, they often suffer the same limitations
as document stores with respect to the limited support of joins. Key-value stores
are designed for fast retrieval of data e.g. accessed by key. They are typically used
to implement cache systems, for which a very simple query language (consisting
essentially of put and retrieve by key operations) covers most use cases.

Consequently, it is likely that the hurdles we encountered with MongoDB will
be encountered with other NoSQL databases alike. The situation may not be so
much different for the last category of NoSQL databases, namely graph stores.
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By nature, their data models are closer to RDF. Still, whereas RDF predicates
can be used with literal values as well as resources, graph databases such as
Neo4J16 manage literals (called node attributes) and other graph nodes in a
very different way. As a result, querying a graph database with SPARQL may
be more challenging that it seems, and we believe that our two-phase approach
may be relevant in this context too.
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