
Chapter 9
Deformable Objects and Matching
Functionals

9.1 General Principles

In the previous two chapters, we introduced and studied basic tools related to
deformations and their mathematical representation using diffeomorphisms. In this
chapter, we start investigating relations between deformations and the objects they
affect, which we will call deformable objects, and discuss the variations of match-
ing functionals, which are cost functions that measure the quality of the registration
between two deformable objects.

LetΩ be an open subset ofRd andG a group of diffeomorphisms onΩ . Consider
a set I of structures of interest, on which G has an action: for every I in I and every
ϕ ∈ G, the result of the action of ϕ on I is denoted ϕ · I and is a new element of I.
This requires (see Sect.B.5) that id · I = I and ϕ · (ψ · I ) = (ϕ ◦ ψ) · I . Elements
of I will be referred to as deformable objects.

A matching functional is based on a function D : I × I → [0,+∞) such that
D(I, I ′) measures the discrepancy between the two objects I and I ′, and is defined
over G by

EI,I ′(ϕ) = D(ϕ · I, I ′). (9.1)

So EI,I ′(ϕ) measures the difference between the target object I ′ and the deformed
one ϕ · I . Because it is mapped onto the target by the deformation, the object I will
often be referred to as the template (and ϕ · I as the deformed template).

Even if our discussion of matching principles and algorithms is rather extensive,
and occupies a large portion of this book, the size of the literature, and our choice
of privileging methods that implement diffeomorphic matching prevents us from
providing an exhaustive account of the registration methods that have been proposed
over the last few decades. The interested reader can refer to a few starting points in
order to complement the presentation that is made here, including [12, 13, 22, 27,
28, 41, 42, 111, 125, 240, 244, 275], and textbooks such as [132, 139, 208, 214].
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9.2 Differentiation with Respect to Diffeomorphisms

Wewill review, startingwith the next section, a series ofmatching functionals that are
adapted to different types of deformable objects (landmarks, images, curves, etc.).
We will also compute the derivative of each of them with respect to the diffeomor-
phism ϕ.

We also introduce a special form of differential which is adapted to variational
problems over diffeomorphisms. This shape, or Eulerian differential, as we will call
it, is a standard tool in shape optimization [80], and we will interpret it later on as a
gradient for a specific Riemannian metric over diffeomorphisms.

Recall that we have defined Diff p,∞ = Diff p,∞(Ω) to be the set of diffeomor-
phisms ψ such that

max(‖ψ − id‖p,∞, ‖ψ−1 − id‖p,∞) < ∞.

We have also defined Diff p,∞0 as the subgroup of Diff p,∞ whose elements converge
to the identity at infinity.

Definition 9.1 A function ϕ �→ U (ϕ) is (p,∞)-compliant if it is defined for all ϕ
in Diff p,∞0 .

A (p,∞)-compliant U is locally (p,∞)-Lipschitz if, for all ϕ ∈ Diff p,∞0 , there
exist positive numbers ε(ϕ) and C(ϕ) such that

|U (ψ) −U (ψ̃)| ≤ C(ϕ)‖ψ − ψ̃‖p,∞

whenever ψ and ψ̃ are diffeomorphisms such that

max(‖ψ − ϕ‖p,∞, ‖ψ̃ − ϕ‖p,∞) < ε(ϕ).

Note that a (p,∞)-compliant (resp. locally Lipschitz)U is (q,∞)-compliant (resp.
locally Lipschitz) for any q larger than p.

Because Diff p,∞0 is an open subset of id + C p
0 (�,Rd), both Gâteaux and Fréchet

derivatives are well defined for functions defined on this set (see Sect.C.1). In the
following, whenever we speak of a derivative (without a qualifier), this will always
mean in the strong (Fréchet) sense. A function U is C1 on Diff p,∞0 if and only if
U is Fréchet differentiable and dU (ψ) is continuous in ψ, which is equivalent (by
Proposition C.5) toU beingGâteaux differentiable and dU (ψ) continuous inψ. Note
also that U being C1 implies that U is (p,∞)-Lipschitz.

Using the group structure of Diff p,∞0 , we can define another type of differential
using the infinitesimal action of vector fields. If V is an admissible vector space and
v ∈ V , we will denote by ϕv

0t the flow associated to the equation

∂t y = v(y).
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Note that this is the same notation as the flow associated to a differential equation
∂t y = v(t, y), where v is now a time-dependent vector field. This is not a conflict of
notation if one agrees to identify vector fields, v, in V and the associated constant
time-dependent vector field defined by ṽ(t, ·) = v for all t .

Definition 9.2 Let V be an admissible Hilbert space continuously embedded in
C p
0 (Ω,Rd) (so that DiffV ⊂ Diff p,∞0 ). We say that a (p,∞)-compliant function U

over diffeomorphisms has an Eulerian differential in V at ψ if there exists a linear
form ∂̄U (ψ) ∈ V ∗ such that, for all v ∈ V ,

(
∂̄U (ψ)

∣∣ v
) = ∂εU (ϕv

0ε ◦ ψ)|ε=0 . (9.2)

If the Eulerian differential exists, the V -Eulerian gradient of U at ψ, denoted

∇V
U (ϕ) ∈ V , is defined by

〈∇V
U (ϕ) , v

〉
V

= (
∂̄U (ϕ)

∣∣ v
)
. (9.3)

In this case, ∇V
U (ϕ) = K∂̄U (ϕ), where K is the kernel operator of V .

The following proposition indicates when Eq. (9.2) remains valid with time-
dependent vector fields v.

Proposition 9.3 Let V be an admissible Hilbert space continuously embedded in
C p+1
0 (Ω,Rd). Let V and U satisfy the hypotheses of Definition 9.2. If U is (p,∞)-

locally Lipschitz and has a V -Eulerian differential at ψ and if v(t, ·) is a time-
dependent vector field such that

lim
ε→∞

1

ε

∫ ε

0
‖v(t, ·) − v(0, ·)‖V dt = 0, (9.4)

then (
∂̄U (ψ)

∣∣ v(0, ·) ) = ∂εU (ϕv
0ε ◦ ψ)|ε=0 . (9.5)

Proof Letting v0 = v(0, ·), we need to prove that

1

ε
(U (ϕv

0ε ◦ ψ) −U (ϕv0
0ε ◦ ψ)) → 0

as ε → 0. From Proposition 7.4, we know that if ψ,ϕ, ϕ̃ are in Diff p,∞0 , there exists
a constant Cp(ψ) such that

‖ϕ ◦ ψ − ϕ̃ ◦ ψ‖p,∞ ≤ Cp(ψ)‖ϕ − ϕ̃‖p,∞.

Now, since U is Lipschitz, we have, for small enough ε,
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|U (ϕv
0ε ◦ ψ) −U (ϕv0

0ε ◦ ψ)| ≤ C(ψ)‖ϕv
0ε ◦ ψ − ϕ̃v

0ε ◦ ψ‖p,∞
≤ C(ψ)Cp(ψ)‖ϕv

0ε − ϕv0
0ε‖p,∞

≤ C(ψ)Cp(ψ)C̃(v0)

∫ ε

0
‖v(t, ·) − v0‖V dt,

where C̃(v0) depends on ‖v0‖p+1,∞ and can be derived from Eq. (7.16), Noting
that ‖v‖X p+1,1,ε ≤ ε(C ′′ + ‖v0‖p+1,∞) for small enough ε, this proves the
proposition. �

Note also that, if U is C1, then the chain rule implies that

(
∂̄U (ϕ)

∣∣ v
) = (dU (ϕ) | v ◦ ϕ ). (9.6)

To the Eulerian gradient of U , we associate a “gradient descent” process (that
we will formally interpret as a Riemannian gradient descent for a suitable metric in
Sect. 11.4.3) which generates a time-dependent element of G by setting

∂tϕ(t, x) = −∇V
U (ϕ(t))(ϕ(t, x)). (9.7)

As long as
∫ t
0

∥∥∥∇V
U (ϕ(s))

∥∥∥
V
ds is finite, this generates a time-dependent element

of DiffV . This therefore provides an evolution within the group of diffeomorphisms,
an important property. Assuming that Proposition 9.3 applies at time t (e.g., if U is
C1), we can write

∂tU (ϕ(t)) = 〈∇V
U (ϕ(t)) , ∂tϕ

〉
V = −

∥∥∥∇V
U (ϕ(t))

∥∥∥
2

V
,

so that U (ϕ(t)) decreases with time.

9.3 Relation with Matching Functionals

As pointed out in the introduction, matching functionals take the form

U (ϕ) = UI (ϕ) = Z(ϕ · I ), (9.8)

where I is a fixed deformable object for some function Z (e.g., Z(I ) = D(I, I1) for
a fixed I1). Using the group action property, we have

UI (ψ) = Uϕ·I (ψ ◦ ϕ−1).

Using this property and the fact that the mapping ψ ◦ ϕ−1 is smooth (infinitely
differentiable) from Diff p,∞0 onto itself, we find that if UI is Gâteau or Fréchet
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differentiable at ψ = id for any I ∈ I, then it is differentiable at all ψ ∈ Diff p,∞0 ,
and

(dUI (ϕ) | h ) = (
dUϕ·I (id)

∣∣ h ◦ ϕ−1
)
.

A similar statement holds for the Eulerian differential, with

(
∂̄UI (ψ)

∣
∣ v

) = (
∂̄Uψ·I (id)

∣
∣ v

)
.

Notice that when U is differentiable at ψ = id, then ∂̄U (id) = dU (id). Finally, if
we assume that I is itself a Banach space (or an open subset of a Banach space), that
Z is differentiable and that the action RI : ϕ �→ ϕ · I is also differentiable, we have,
using the chain rule

(dUI (ϕ) | v ) = (dZ(ϕ · I ) | dRI (ϕ)v )

or dUI (ϕ) = dRI (ϕ)∗dZ(ϕ · I ). At ϕ = id, dRI (id)v is the infinitesimal action of
v on I , which we denote by v · I , so that

(dUI (id) | v ) = (dZ(I ) | v · I )

and (
∂̄UI (ψ)

∣∣ v
) = (dZ(ψ · I ) | v · (ψ · I ) ).

We now present a series of matching problems, involving different types of
deformable objects. In each case, we will introduce adapted matching function-
als and compute their differentials. As just remarked, derivatives with respect to the
diffeomorphisms can all be derived from that of the function Z , on which we will,
whenever possible, focus the computations.

9.4 Labeled Point Matching

The simplest way to represent a visual structure is with configurations of labeled
points, or landmarks attached to the structure. Anatomical shapes or images are
typical examples of structures onwhich landmarks can be easily defined; this includes
specific locations in faces (corners of the eyes, tip of the nose, etc.), fingertips for
hands, apex of the heart, etc. Manyman-made objects, like cars or other vehicles, can
be landmarked too. Finally, landmarks can represent the centers of simple objects,
like cells in biological images.

In the labeled point-matching problem, objects are ordered collections of N points
x1, . . . , xN ∈ Ω , where N is fixed. Diffeomorphisms act on such objects by:

ϕ · (x1, . . . , xN ) = (ϕ(x1), . . . ,ϕ(xN )). (9.9)
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The landmark-matching problem is not to find correspondences between two objects,
say I = (x1, . . . , xN ) and I ′ = (x ′

1, . . . , x
′
N ), sincewe know that xi and x ′

i are homol-
ogous, but to extrapolate these correspondences to the rest of the space.

Here we can take I = (Rd)N , or, if one restricts to distinct landmarks, the open
subset

I = {
(x1, . . . , xN ) ∈ (Rd)N , xi 
= x j if i 
= j

}
.

For I = (x1, . . . , xN ), the action ϕ �→ ϕ · I is C1 on Diff p,∞0 for any p ≥ 0 (it is
the restriction of a linear map, with |ϕ · I |2 ≤ √

N‖ϕ‖∞). The simplest matching
functional that we can consider for this purpose is associated with

Z(I ) = |I − I ′|2 =
N∑

k=1

|xk − x ′
k |2

with (dZ(I ) | h ) = 2(I − I ′)T h (considering I , I ′ and h as dN -dimensional column
vectors). We have

UI (ϕ) = EI,I ′(ϕ) = |I ′ − ϕ · I |2 =
N∑

i=1

∣
∣x ′

i − ϕ(xi )
∣
∣2 , (9.10)

(dUI (ϕ) | v ) = 2
N∑

i=1

(ϕ(xi ) − x ′
i )

T v(xi ). (9.11)

This can be written as

dUI (ϕ) = 2
N∑

i=1

(ϕ(xi ) − x ′
i )δxi .

From (9.6), we have

(
∂̄UI (ϕ)

∣∣∣ h
)

= 2
N∑

i=1

(ϕ(xi ) − x ′
i )

T h ◦ ϕ(xi ) (9.12)

or

∂̄UI (ϕ) = 2
N∑

i=1

(ϕ(xi ) − x ′
i )δϕ(xi ),

and (9.3) gives

∇V
UI (ϕ) = 2

N∑

i=1

K (·,ϕ(xi ))(ϕ(xi ) − x ′
i ). (9.13)

The gradient descent algorithm (9.7) takes a very simple form:
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∂tϕ(t, x) = −2
N∑

i=1

K (ϕ(t, x),ϕ(t, xi ))(ϕ(t, xi ) − x ′
i ). (9.14)

This system can be solved in two steps: let yi (t) = ϕ(t, xi ). Applying (9.14) at
x = x j yields

∂t y j = −2
N∑

i=1

K (y j , yi )(yi − x ′
i ).

This is a differential system in y1, . . . , yN . The first step is to solve it with initial
conditions y j (0) = x j . Once this is done, the extrapolated value of ϕ(t, x) for a
general x is the solution of the differential equation

∂t y = −2
N∑

i=1

K (y, yi )(yi − x ′
i )

initialized at y(0) = x . Figure9.1 gives an example obtained by running this pro-
cedure, providing an illustration of the impact of the choice of the kernel for the
solution. The last panel in Fig. 9.1 also shows the limitations of this algorithm, in the
sense that it is trying to move the points in the direction of their targets at each step,
while a more indirect path can sometimes be found generating less distortion (these
results should be compared to Fig. 10.1 in Chapter 10).

9.5 Image Matching

Images, or more generally multivariate functions, are also important and widely used
instances of deformable objects. They correspond to functions I defined on Ω with
values in R. Diffeomorphisms act on them by:

(ϕ · I )(x) = I (ϕ−1(x))

for x ∈ Ω . Fixing two such functions I and I ′, the simplest matching functional
which can be considered is the squared L2 norm of the difference Z(I ) = ‖I − I ′‖22,
yielding

UI (ϕ) = EI,I ′(ϕ) =
∫

Ω

∣∣I ◦ ϕ−1(x) − I ′(x)
∣∣2 dx . (9.15)

We will need the derivative of the mapping Inv : ϕ �→ ϕ−1. Considering Inv as a
mapping from Diff p+1,∞

0 to Diff p,∞0 , it is given by (see Proposition 7.8)

dInv(ϕ)h = − (
dϕ ◦ ϕ−1

)−1
h ◦ ϕ−1 = −d(ϕ−1)h ◦ ϕ−1. (9.16)
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Fig. 9.1 Greedy landmark matching. Implementation of the gradient descent algorithm in (9.14),
starting with ϕ = id, for the correspondences depicted in the upper-left image (diamonds moving
to circles). The following three images provide the result after numerical convergence for Gaussian
kernels K (x, y) = exp(−|x − y|2/2σ2)Id withσ = 1, 2, 4 in grid units. Largerσ induce increasing
smoothness in the final solution, and deformations affecting a larger part of the space. As seen in
the figure for σ = 4, the evolution can result in huge deformations

Similarly Inv is Ck from Diff p+k,∞
0 to Diff p0 .

We now compute the derivative ofUI under the assumption that I ′ is square inte-
grable, I is compactly supported (on some set QI ) and continuously differentiable.
One can relax the differentiability assumption on I (considering, for example, piece-
wise smooth images), but the analysis is much more difficult, and we refer the reader
to results in [293–295] for more details. Define

ŨI (ϕ) =
∫

Ω

∣
∣I ◦ ϕ(x) − I ′(x)

∣
∣2 dx
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so thatUI = ŨI ◦ Inv. Fixing ϕ ∈ Diff p+1
0 , h ∈ C p+1

0 (Ω,Rd) and letting ϕε = ϕ +
εh for |ε| ≤ 1, we have

∂εŨI (ϕε) = 2
∫

Ω

(I ◦ ϕε(x) − I ′(x))∇ I ◦ ϕε(x)
T h(x) dx .

The integrand in the right-hand side is dominated by the integrable upper bound
(‖I‖∞ + |I ′(x)|)‖∇ I‖∞ ‖h‖∞1Q̃(x), where Q̃ is any compact set that contains
ϕ−1

ε (QI ) for |ε| ≤ 1, which justifies the derivation. Taking ε = 0, we obtain the
directional derivative of ŨI , which is

(
dŨI (ϕ)

∣
∣∣ h

)
= 2

∫

Ω

(I ◦ ϕ(x) − I ′(x))∇ I ◦ ϕ(x)T h(x) dx .

Our hypotheses on I imply that dŨI (ϕ) is continuous in ϕ ∈ Diff p,∞0 for any p ≥ 0.
Fixing ϕ and assuming ‖ϕ′ − ϕ‖∞ ≤ 1, we have

∣∣∣
(
dŨI (ϕ) − dŨI (ϕ

′)
∣∣∣ h

)∣∣∣

≤ 2
∫

Ω

(I ◦ ϕ(x) − I ◦ ϕ′(x))∇ I ◦ ϕ′(x)T h(x) dx

+ 2
∫

Ω

(I ◦ ϕ(x) − I ′(x))(∇ I ◦ ϕ(x) − ∇ I ◦ ϕ′(x))T h(x) dx

≤ 2|Q̃| ‖I ◦ ϕ − I ◦ ϕ′‖∞‖∇ I‖∞‖h‖∞

+ 2
√

|Q̃|‖I ◦ ϕ − I ′‖2‖∇ I ◦ ϕ − ∇ I ◦ ϕ′‖∞‖h‖∞,

where Q̃ is a compact set containing all (ϕ′)−1(QI ) for ‖ϕ′ − ϕ‖∞ ≤ 1. The facts
that I and ∇ I are uniformly continuous on QI imply that ‖I ◦ ϕ − I ◦ ϕ′‖∞ and
‖∇ I ◦ ϕ − ∇ I ◦ ϕ′‖∞ tend to 0 as ‖ϕ − ϕ′‖∞ tends to 0. (We have denoted by |Q̃|
the Lebesgue measure of the set Q̃.)

As a composition of C1 functions, we find that UI is C1 on Diff p+1,∞
0 for any

p ≥ 0, with (applying the chain rule)

(dUI (ϕ) | h ) =
− 2

∫

Ω

(I ◦ ϕ−1(x) − I ′(x))∇ I ◦ ϕ−1(x)T d(ϕ−1)h ◦ ϕ−1(x) dx . (9.17)

Notice that ∇(I ◦ ϕ−1)T = (∇ I T ◦ ϕ−1)d(ϕ−1), so that

(dUI (ϕ) | h ) = −2
∫

Ω

(I ◦ ϕ−1(x) − I ′(x))∇(I ◦ ϕ−1)(x)T h ◦ ϕ−1(x) dx

and we retrieve the formula

(dUI (ϕ) | h ) = (
dUϕ·I (id)

∣∣ h ◦ ϕ−1
)
.
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The Eulerian derivative is given by

(
∂̄UI (ϕ)

∣∣ v
) = (dUI (id) | v ◦ ϕ )

= −2
∫

Ω

(I ◦ ϕ−1(x) − I ′(x))∇(I ◦ ϕ−1)(x)T v(x) dx .

We introduce a notation that will be used throughout this chapter and that gen-
eralizes the one given for point measures in Eq. (8.4). If μ is a measure on Ω and
z : Ω → R

d a μ-measurable function, the vector measure (zμ) is the linear form
over vector fields on Ω defined by

(zμ | h ) =
∫

Ω

zT hdμ. (9.18)

With this notation we can write

∂̄UI (ϕ) = −2
(
(I ◦ ϕ−1 − I ′)∇(I ◦ ϕ−1)

)
dx . (9.19)

Notice also that, making a change of variable in (9.17), we have

dUI (ϕ) = −2
(
det(dϕ) (I − I ′ ◦ ϕ) dϕ−T∇ I

)
dx . (9.20)

To compute the Eulerian gradient ofUI , we need to apply the kernel operator,K,
to ∂̄UI (ϕ), which requires the following lemma.

Lemma 9.4 If V is a reproducing kernel Hilbert space (RKHS) of vector fields on
Ω with kernel operatorK and kernel K , μ is a measure on Ω and z a μ-measurable
function from Ω to Rd , then, for all x ∈ Ω ,

K(zμ)(x) =
∫

Ω

K (x, y)z(y)dμ(y).

Proof From the definition of the kernel, we have, for any a ∈ R
d :

aT
K(zμ)(x) = (aδx |K(zμ) )

= (zμ |K(aδx ) )

= (zμ | K (., x)a )

=
∫

Ω

zT (y)K (y, x)adμ(y)

= aT
∫

Ω

K (x, y)z(y)dμ(y),

which proves Lemma 9.4. �
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The expression of the Eulerian gradient of UI is now given by Lemma 9.4:

∇V
UI (ϕ) = −2

∫

Ω

(I ◦ ϕ−1(y) − I ′(y))K (., y)∇(I ◦ ϕ−1)(y)dy. (9.21)

This provides the following “greedy” image-matching algorithm [67, 278].

Algorithm 9.5 Greedy image matching Start with ϕ(0) = id and solve the evolu-
tion equation

∂tϕ(t, y) = 2
∫

Ω

(J (t, x) − I ′(x))K (ϕ(t, y), x)∇ J (t, x)dx (9.22)

with I (t, ·) = I ◦ (ϕ(t))−1.

This algorithm can also be written uniquely in terms of the evolving image, J , using
∂t J ◦ ϕ + (J ◦ ϕ)T∂tϕ = 0. This yields

∂t J (t, y) = −2
∫

Ω

K (y, x)(J (t, x) − I ′(x))∇ J (t, x)T∇ I (t, y)dx .

In contrast to what we did in the landmark case, this algorithm should not be run
indefinitely (or until numerical convergence). The fundamental difference is that, in
the landmark case, there is an infinity of solutions to the diffeomorphic interpolation
problem, and the greedy algorithm would generally run until it finds one of them
and then stabilize. In the case of images, it is perfectly possible (and even typical)
that there is no solution to the matching problem, i.e., no diffeomorphism ϕ such
that I ◦ ϕ−1 = I ′. In that case, Algorithm 9.5 will run indefinitely, creating huge
deformations while trying to solve an impossible problem.

To decide when the evolution should be stopped, an interesting suggestion has
been made in [278]. Define

v(t, x) = 2
∫

Ω

(J (t, x) − I ′(x))K (y, x)∇ J (t, x)dx

so that (9.22) reduces to ∂tϕ = v(t) ◦ ϕ. As we know from Chap.7, the smoothness
of ϕ at time t can be controlled by

∫ t

0
‖v(s)‖2V ds,

the norm being explicitly given by

‖v(s)‖2V
= 2

∫

Ω×Ω

K (y, x)(J (s, x) − I ′(x))(J (s, y) − I ′(y))∇ J (s, x)T∇ J (s, y)dxdy.
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Fig. 9.2 Greedy image matching. Output of Algorithm 9.5 when estimating a deformation of the
first image to match the second one. The third image is the obtained deformation of the first one
and the last provides the deformation applied to a grid

Define, for some parameter λ,

E(t) = 1

t

∫ t

0
‖v(s)‖2V ds + λ

∫

Ω

(J (t, y) − I ′(y))2dy.

Then, the stopping time proposed in [278] for Algorithm 9.5 is the first t at which
E(t) stops decreasing. Some experimental results using this algorithm and stopping
rule are provided in Fig. 9.2.

There are many other possible choices for a matching criterion, least squares
being, as we wrote, the simplest one. Among other possibilities, comparison criteria
involving histograms provide an interesting option, because they allow for contrast-
invariant comparisons.

Given a pair of images, I , I ′, associate to each x ∈ Ω and image valuesλ andλ′ the
local histogram Hx (λ,λ′), which counts the frequency of simultaneous occurrence
of values λ in I and λ′ in I ′ at the same location in a small window around x . One
computationally feasible way to define it is to use the kernel estimator
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HI,I ′(x,λ,λ′) =
∫

Ω

f (|I (y) − λ|) f (∣∣I ′(y) − λ′∣∣)g(x, y)dy

in which f is a positive function such that
∫
R
f (t)dt = 1 and f vanishes when t is

far from 0, and g ≥ 0 is such that for all x ,
∫
Ω

g(x, y)dy = 1 and g(x, y) vanishes
when y is far from x .

For each x , HI,I ′(x, ·, ·) is a bi-dimensional probability function, and there exist
several ways of measuring the degree of dependence between its components. The
simplest one, which is probably sufficient for most applications, is the correlation
ratio, given by

CI,I ′(x) = 1 −
∫
R2 λλ′HI,I ′(x,λ,λ′)dλdλ′

√∫
R2 λ2HI,I ′(x,λ,λ′)dλdλ′ ∫

R2(λ′)2HI,I ′(x,λ,λ′)dλdλ′
.

It is then possible to define the matching function by

UI (ϕ) =
∫

Ω

CI◦ϕ−1,I ′(x)dx .

The differential ofUI with respect to ϕ can be obtained after a lengthy (but elemen-
tary) computation. Some details can be found in [145]. A slightly simpler option is
to use criteria based on the global histogram, which is defined by

HI,I ′(λ,λ′) =
∫

Ω

f (|I (y) − λ|) f (∣∣I ′(y) − λ′∣∣)dy,

and the matching criterion is simply UI (ϕ) = CI◦ϕ−1,I ′ or, as introduced in
[185, 298], the mutual information computed from the joint histogram.

9.6 Measure Matching

The running assumption in Sect. 9.4was that the point sets (x1, . . . , xN )were labeled,
so that, when comparing two of them, the correspondences were known and the
problem was to extrapolate them to the whole space.

In some applications, correspondences are not given and need to be inferred as
part of the matching problem. One way to handle this is to include them as new
unknowns (in addition to the unknown diffeomorphism), add extra terms to the
energy that measures the quality of correspondences, and minimize the whole thing.
Such an approach is taken, for example, in [240, 241].

Another point of view is to start with a representation of the point set that does not
depend on how the points are ordered. A natural mathematical representation of a
subset ofRd is by the uniform measure on this set, at least when this is well-defined.
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For a very general class of sets, this corresponds to the Hausdorff measure for the
appropriate dimension [107], which, for finite sets, simply provides the sum of Dirac
measures at each point, i.e., x = (x1, . . . , xN ) is represented by

μx =
N∑

i=1

δxi .

For us, this raises the issue of comparing measures using diffeomorphisms, which
will be referred to as the measure-matching problem.

In line with all other matching problems we are considering in this chapter, spe-
cifying the measure-matching problem requires, first, defining the action of diffeo-
morphisms on the considered objects, and second, using a good comparison criterion
between two objects.

Let us start with the action of diffeomorphisms. The only fact we need here
concerning measures is that they are linear forms acting on functions on R

d via

(μ | f ) =
∫

Rd

f dμ.

In particular, if μx is as above, then

(μx | f ) =
N∑

i=1

f (xi ).

If ϕ is a diffeomorphism of Ω and μ a measure, we define a new measure
ϕ · μ by

(ϕ · μ | f ) = (μ | f ◦ ϕ ).

It is straightforward to check that this provides a group action. If μ = μx , we have

(ϕ · μx | f ) =
N∑

i=1

f ◦ ϕ(xi ) = (
μϕ(x)

∣∣ f
)
,

so that the transformation of the measure associated to a point set x is the measure
associated to the transformed point set, which is reasonable.

When μ has a density with respect to Lebesgue measure, say μ = zdx , this action
can be translated to a resulting transformation over densities as follows.

Proposition 9.6 If μ = z dx, where z is a positive, Lebesgue integrable function on
Ω ⊂ R

d , and ϕ is a diffeomorphism of Ω , then

ϕ · μ = det(d(ϕ−1)) z ◦ ϕ−1 dx . (9.23)
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The proposition is an immediate consequence of the definition of ϕ · μ and of the
change of variable formula (details are left to the reader). Note that the action of
diffeomorphisms does not change the total mass of a positive measure, that is (ϕ ·
μ)(Ω) = μ(Ω) if ϕ is a diffeomorphism of Ω .

Now that we have defined the action, we need to choose a function D(μ,μ′)
to compare two measures μ and μ′. Many such functions exist, especially when
measures are normalized to have a unit mass, since this allows for the use of
many comparison criteria defined in probability or information theory (such as
the Kullback–Leibler divergence [75]). A very general example is the Wasserstein
distance [238, 301], which is associated to a positive, symmetric, cost function
ρ : Ω × Ω → [0,+∞) and defined by

dρ(μ,μ′) = inf
ν

∫

Ω2
ρ(x, y)ν(dx, dy), (9.24)

where theminimization is over all ν with the first marginal given byμ, and the second
one by μ′. If μ and μ′ are uniform measures on discrete point sets, i.e.,

μ = 1

N

N∑

k=1

δxk , μ′ = 1

M

M∑

k=1

δx ′
k
,

then computing the Wasserstein distance reduces to minimizing

N∑

k=1

M∑

l=1

ρ(xk, x
′
l )ν(xk, x

′
l )

subject to the constraints

M∑

l=1

ν(xk, x
′
l ) = 1/N and

N∑

k=1

ν(xk, x
′
l ) = 1/M.

This linear assignment problem is solved by finite-dimensional linear programming.
If this is combined with diffeomorphic interpolation, i.e., if one tries to compute a
diffeomorphism ϕ minimizing dρ(ϕ · x, x ′), this results in a formulation that mixes
discrete and continuous optimization problems, similar to the methods introduced in
[240]. TheWasserstein distance is also closely related to the mass transport problem,
which can also be used to estimate diffeomorphisms, and will be discussed in the
next chapter. For the moment, we focus on matching functionals associated with
measures, and start with the case in which the compared measures are differentiable
with respect to Lebesgue measure, i.e., with the problem of matching densities.
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9.6.1 Matching Densities

Since densities are scalar-valued functions, we can use standard norms to design
matching functionals for them. As an example, we can take the simplest case of
the L2 norm, as we did with images. The difference with the image case is that the
action is different, and has the interesting feature of involving the derivative of the
diffeomorphism, via the Jacobian determinant.

So, let us consider the action ϕ � ζ given by

ϕ � ζ = det(d(ϕ−1)) z ◦ ϕ−1

and use the matching functional

Uζ(ϕ) = Eζ,ζ ′(ϕ) =
∫

Ω

(ϕ � ζ − ζ ′)2dx .

Since we will need it for the differentiation of the Jacobian, we recall the following
standard result on the derivative of the determinant.

Proposition 9.7 Let F(A) = det(A) be defined over Mn(R), the space of all n by
n matrices. Then, for any A, H ∈ Mn(R),

dF(A)H = trace(Adj(A)H), (9.25)

where Adj(A) is the adjugate matrix of A, i.e., the matrix with (i, j) entry given
by the determinant of A with the j th row and ith column removed, multiplied by
(−1)i+ j . (When A is invertible Adj(A) = det(A) A−1.)

For A = Id, we have
dF(Id)H = trace(H). (9.26)

Proof To prove this proposition, start with A = Id and use the facts that, if δi j is the
matrix with 1 as the (i, j) entry and 0 everywhere else, then det(Id + εδi j ) = 1 + ε
if i = j and 1 otherwise, which directly gives (9.26). Then, prove the result for an
invertible A using

det(A + εH) = det(A) det(Id + εA−1H)

and the fact that, when A is invertible, det(A)A−1 = Adj(A). This also implies
the result for a general (not necessarily invertible) A because the determinant is
a polynomial in the entries of a matrix, and so are its partial derivatives, and the
coefficients of these polynomials are fully determined by the values taken on the
dense set of invertible matrices. �

We have

Uζ(ϕ) =
∫

Ω

(
det(d(ϕ−1)) ζ ◦ ϕ−1 − ζ ′)2 dx .
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Under the assumptions that ζ is C1 and compactly supported and that ζ ′ is square
integrable, one can prove that Eζ,ζ ′ is C1 when defined over Diff p+2,∞

0 with p ≥ 0
(the details are left to the reader). To compute the derivative at any given ϕ, it will
be convenient to use the trick described at the end of Sect. 9.2, starting with the
computation of the differential at the identity and deducing from it the differential at
any ϕ by replacing ζ by ϕ · ζ.

Ifϕ(ε, ·) is a diffeomorphism that depends on a parameter ε, such thatϕ(0, ·) = id
and ∂εϕ(0, ·) = h ∈ C p+2

0 (Ω,Rd), then, at ε = 0, ∂εζ ◦ ϕ(ε, ·)−1 = −∇ζT h and
∂ε det(d(ϕ(ε, ·)−1)) = −trace(dh) = −div h. This implies that

∂ε

(
ζ ◦ ϕ(ε, ·)−1 det(d(ϕ(ε, ·))−1)

) = −∇ζT h − ζ div h = −div(ζh)

at ε = 0 and

∂εUζ(ϕε)|ε=0 = −2
∫

Ω

(ζ − ζ ′)div(ζh) dx .

So this gives
(
dUζ(id)

∣∣ h
) = −2

∫

Ω

(ζ − ζ ′)div(ζh) dx

and
(
dUζ(ϕ)

∣∣ h
) = −2

∫

Ω

(ϕ � ζ − ζ ′)(div((ϕ � ζ)h) dx . (9.27)

We can use the divergence theorem to obtain an alternative expression (using the fact
that h vanishes on ∂Ω or at infinity), yielding

(
dUζ(ϕ)

∣∣ h
) = 2

∫

Ω

∇(ϕ � ζ − ζ ′)(ϕ � ζ)hdx (9.28)

or
dUζ(ϕ) = 2(ϕ � ζ)∇(ϕ � ζ − ζ ′)dx . (9.29)

One can appreciate the symmetry of this expression compared with the one obtained
with images in (9.19).

9.6.2 Dual RKHS Norms on Measures

One of the limitations of functional norms, such as the L2 norm, is that they do not
apply to singular objects such as the Dirac measures that motivated our study of the
measure-matching problem. It is certainly possible to smooth out singular objects
and transform them into densities that can be compared using the previous matching
functional. For example, given a density function ρ (a Gaussian, for example) and a
point set (x1, . . . , xN ), one can compute a density
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ζx (y) =
N∑

k=1

ρ
( y − xk

σ

)
, (9.30)

where σ is a positive scale parameter (this is a standard kernel density estimator).
One can then compare two point sets, say x and x ′, by comparing the associated ζx
and ζx ′ using the previous method.

The representation in (9.30) is somewhat imperfect, in the sense that, for the natu-
ral actions we have defined, we have in general ϕ � ζx 
= ζϕ·x : the density associated
to a deformed point set is not the deformed density. If the goal is to compare two
point sets, it makes more sense to use ζϕ·x instead of ϕ · ζx as a density resulting
from the deformation, and to rather use the cost function

Ux (ϕ) = Ex,x ′(ϕ) =
∫

Rd

(ζϕ·x − ζx ′)2dy, (9.31)

which can be written, if x = (x1, . . . , xN ) and x ′ = (x ′
1, . . . , x

′
M), and introducing

the function

ξ(z, z′) =
∫

Rd

ρ
( y − z

σ

)
ρ
( y − z′

σ

)
dy, (9.32)

as

Ux (ϕ) =
N∑

k,l=1

ξ(ϕ(xk),ϕ(xl))

− 2
N∑

k=1

M∑

l=1

ξ(ϕ(xk), x
′
l ) +

M∑

k,l=1

ξ(x ′
k, x

′
l ). (9.33)

Before computing the variations of this energy, we make the preliminary remark
that the obtained expression is a particular case of what comes from a representation
of measures as linear forms over RKHSs of scalar functions. Indeed, since measures
are linear forms on functions, we can evaluate their dual norm, given by

‖μ‖ = sup {(μ | f ) : ‖ f ‖ = 1} . (9.34)

Following [128], assume that the function norm in (9.34) is that of an RKHS. More
precisely, let W be an RKHS of real-valued functions, so that we have an operator
KW : W ∗ → W with KW δx := ξ(·, x) and with the identity (μ | f ) = 〈

KWμ , f
〉
W

for μ ∈ W ∗, f ∈ W . With this choice, (9.34) becomes

‖μ‖W ∗ = sup {(μ | f ) : ‖ f ‖W = 1}
= sup

{〈
KWμ , f

〉
W : ‖ f ‖W = 1

}

= ‖KWμ‖W .
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This implies that
‖μ‖2W ∗ = 〈

KWμ , KWμ
〉
W = (μ |KWμ ).

If μ is a measure, this expression is very simple and is given by

‖μ‖2W ∗ =
∫

ξ(x, y)dμ(x)dμ(y).

This is becauseKWμ(x) = (δx |KWμ ) = (μ |KW δx ) = ∫
ξ(y, x)dμ(y). Sowe can

take
Uμ(ϕ) = Eμ,μ′(ϕ) = ‖ϕ · μ − μ′‖2W ∗ . (9.35)

Expanding the norm, we get

Uμ(ϕ) = 〈
ϕ · μ , ϕ · μ

〉
W ∗ − 2

〈
ϕ · μ , μ′〉

W ∗ + 〈
μ′ , μ′〉

W ∗

= (ϕ · μ | ξ(ϕ · μ) ) − 2
(
ϕ · μ

∣∣ ξμ′ ) + (
μ′ ∣∣ ξμ′ )

=
∫

ξ(ϕ(x),ϕ(y))dμ(x)dμ(y) − 2
∫

ξ(ϕ(x), y)dμ(x)dμ′(y)

+
∫

ξ(x, y)dμ′(x)dμ′(u).

We retrieve (9.33) when μ and μ′ are sums of Dirac measures and ξ is chosen as in
(9.32), but the RKHS formulation is more general.

Assume that μ is bounded and that ξ is continuously differentiable and bounded,
with bounded derivatives. Then (leaving the proof to the reader)UI is C1 on Diff p,∞0
for any p ≥ 0 with derivative

(
∂Uμ(ϕ)

∣∣ h
) = 2

∫
∇1ξ(ϕ(x),ϕ(y))T h(x)dμ(x)dμ(y)

−2
∫

∇1ξ(ϕ(x), z)T h(x)dμ(x)dμ′(z).

In particular,

dUμ(id) = ∂̄Uμ(id) = 2

(∫
∇1ξ(·, y)dμ(y) −

∫
∇1ξ(·, z)dμ′(z)

)
μ. (9.36)

To obtain the Eulerian differential at a generic ϕ, it suffices to replace μ by ϕ · μ,
which yields:

Proposition 9.8 The Eulerian derivative and gradient of (9.35) are

∂̄Uμ(ϕ) = 2

(∫
∇1ξ(·,ϕ(y))dμ(y) −

∫
∇1ξ(·, z)dμ′(z)

)
(ϕ · μ) (9.37)
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and

∇V
Uμ(ϕ)(·) = 2

∫
K (·,ϕ(x))

(∫
∇1ξ(ϕ(x),ϕ(y))dμ(y) − ∇1ξ(ϕ(x), z)dμ′(z)

)
dμ(x). (9.38)

The derivative of the expression in (9.33) can be directly deduced from this expres-
sion. This leads to the following unlabeled point-matching evolution for point sets
x = (x1, . . . , xN ) and x ′ = (x ′

1, . . . , x
′
M):

∂tϕ(z) = −2
N∑

i=1

K (ϕ(z),ϕ(xi ))

⎛

⎝
N∑

j=1

∇1ξ(ϕ(xi ),ϕ(x j )) −
M∑

h=1

∇1ξ(ϕ(xi ), x
′
h)

⎞

⎠ . (9.39)

As discussed in the case of labeled point sets, this equation may be solved in two
stages: letting zi (t) = ϕ(t, xi ), first solve the system

∂t zq = −2
N∑

i=1

K (zq , zi )

⎛

⎝
N∑

j=1

∇1ξ(zi , z j ) −
M∑

h=1

∇1ξ(zi , x
′
h)

⎞

⎠ .

Once this is done, the trajectory of an arbitrary point z(t) = ϕt (z0) is

∂t z = −2
N∑

i=1

K (z, zi )

⎛

⎝
N∑

j=1

∇1ξ(zi , z j ) −
M∑

h=1

∇1ξ(zi , x
′
h)

⎞

⎠ .

9.7 Matching Curves and Surfaces

Curves in two dimensions and surfaces in three dimensions are probably the most
natural representations of shapes, and their comparison using matching functionals
is a fundamental issue. In this section, we discuss a series of representations that can
be seen as extensions of measure-matching methods. (This is not the unique way to
compare such objects, and we will see a fewmore methods in the following chapters,
especially for curves.)

Note that we are looking here for correspondences between points in the curves
and surfaces that derive from global diffeomorphisms of the ambient space. The
curve- (or surface-) matching problems are often studied in the literature as attempts
to find diffeomorphic correspondences between points along the curve (or surface)
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only. Even if such restricted diffeomorphisms can generally be extended to diffeo-
morphisms of the whole space, the two approaches generally lead to very different
algorithms. The search for correspondences within the structures is often imple-
mented as a search for correspondences between parametrizations. This is easier for
curves (looking, for example, for correspondences of the arc-length parametriza-
tions), than for surfaces, which may not be topologically equivalent in the first place
(a sphere cannot be matched to a torus); when matching topologically equivalent
surfaces, special parametrizations, like conformal maps [72, 269] can be used. In
this framework, once parametrizations are fixed, one can look for diffeomorphisms
in parameter space that optimally align somewell-chosen, preferably intrinsic, repre-
sentation. In the case of curves, one can choose the representation s �→ κγ(s), where
κγ is the curvature of a curve γ, with the curve rescaled to have length 1 to fix the
interval over which this representation is defined. One can then use image-matching
functionals to compare them, i.e., find ϕ (a diffeomorphism of the unit interval) such
that ϕ · κγ � κγ′ .

But, as we wrote, the main focus in this chapter is the definition of matching
functionals for deformable objects in R

d , and we now address this problem for
curves and surfaces.

9.7.1 Curve Matching with Measures

We can arguably make a parallel between point sets and curves in that labeled point
sets correspond to parametrized curves and unlabeled point sets to curves mod-
ulo parametrization. In this regard we have a direct generalization of the labeled
point-matching functional to parametrized curves (assumed to be defined over the
same interval, say [0, 1]), simply given by

Eγ,γ′(ϕ) =
∫ 1

0
|ϕ(γ(u)) − γ′(u)|2du.

But being given two consistent parametrizations of the curves (to allow for direct
comparisons as done above) almost never happens in practice. Interesting formu-
lations of the curve matching problem should therefore consider curves modulo
parametrization, so that the natural analogy is with unlabeled point sets. The coun-
terpart of a uniform measure over a finite set of points is the uniform measure on the
curve, defined by, if γ, parametrized over an interval [a, b], is C1 and regular

(
μγ

∣∣ f
) =

∫

γ

f dσγ =
∫ b

a
f (γ(u)) |γ̇(u)| du.

This is clearly a parametrization-independent representation. Now, if ϕ is a diffeo-
morphism, we have, by definition of the action of diffeomorphisms on measures



264 9 Deformable Objects and Matching Functionals

(
ϕ · μγ

∣∣ f
) =

∫

γ

f ◦ ϕ dσγ =
∫ b

a
f (ϕ(γ(u))) |γ̇(u)| du.

However, we have

(
μϕ·γ

∣∣ f
) =

∫

ϕ(γ)

f dσϕ(γ) =
∫ b

a
f (ϕ(γ(u))) |dϕ(γ(u))γ̇(u)| du.

So, in contrast to point sets, for which we had ϕ · μx = μϕ(x), the image of the
measure associated to a curve is not the measure associated to the image of a curve.
When the initial goal is to compare curves, and not measures, it is more natural to
use the second definition, μϕ·γ , rather than the first one. Using the notation of the
previous section, and introducing a target curve γ′ defined on [a′, b′], we can set

Eγ,γ′(ϕ) = ‖μϕ·γ − μγ′ ‖2W ∗ (9.40)

= 〈
μϕ·γ , μϕ·γ

〉
W ∗ − 2

〈
μϕ·γ , μγ′

〉
W ∗ + 〈

μγ′ , μγ′
〉
W ∗

= (
μϕ·γ

∣
∣ ξ(μϕ·γ)

) − 2
(
μϕ·γ

∣
∣ ξμγ′

) + (
μγ′

∣
∣ ξμγ′

)

=
∫ b

a

∫ b

a
ξ(ϕ(γ(u)),ϕ(γ(v))) |dϕ(γ(u))γ̇(u)| |dϕ(γ(v))γ̇(v)| dudv

− 2
∫ b

a

∫ b′

a′
ξ(ϕ(γ(u)), γ′(v)) |dϕ(γ(u))γ̇(u)| |γ̇′(v)| dudv

+
∫ b′

a′

∫ b′

a′
ξ(γ′(u), γ′(v)) |γ̇′(u)| |γ̇′(v)| dudv.

If ξ is C1, then Eγ,γ′ is C1 on Diff p+1,∞
0 for any p ≥ 0. To explicitly compute the

derivative, take ϕ(ε, ·) such that ϕ(0, ·) = id and ∂εϕ(0, ·) = h, so that

∂εE(ϕ(ε, ·)) = 2∂ε

〈
μϕ(ε,·)·γ − μγ′ , μγ − μγ′

〉
W ∗ = 2∂ε

〈
μϕ(ε,·)·γ , μγ − μγ′

〉
W ∗ ,

the derivatives being computed at ε = 0. Introduce

Ẽ(ϕ) = 〈
μϕ·γ , μγ − μγ′

〉
W ∗

and let, for a given curve γ̃,

Z γ̃(·) =
∫

γ̃

ξ(·, p)dσγ̃(p). (9.41)

Let also ζ = Zγ − Zγ′
and, for further use, ζϕ = Zϕ·γ − Zγ′

. With this notation, we
have

Ẽ(ϕ) =
∫

ϕ(γ)

ζ(p)dσϕ(γ)(p)

and we can use Theorem 5.2 to derive, letting p0 and p1 be the extremities of γ,
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∂ε Ẽ(ϕ(ε, ·))|ε=0 = ζ(p1)h(p1)
T T γ(p1) − ζ(p0)h(p0)

T T γ(p0)

+
∫

γ

(∇ζT N γ − ζκγ
)
hT N γdl.

Replacing γ by ϕ · γ, this provides the expression of the Eulerian derivative of E
at ϕ, namely

1

2
∂̄Eγ,γ′(ϕ) = ζϕT γ(δp1−δp0)

+ (
(∇ζϕ)T Nϕ·γ − ζϕκϕ·γ)Nϕ·γμϕ·γ . (9.42)

The Eulerian gradient on V therefore is

1

2
∇̄Eγ,γ′(ϕ) = K (·, p1)ζϕ(p1)T

γ(p1) − K (·, p0)ζϕ(p0)T
γ(p0)

+
∫

ϕ·γ

(
∇ζϕ(p)T Nϕ·γ(p) − ζϕ(p)κϕ·γ(p)

)
K (·, p)Nϕ·γ(p)dσϕ·γ(p). (9.43)

To write this expression, we have implicitly assumed that γ is C2. In fact, we
can give an alternative expression for the Eulerian gradient that does not require
this assumption, by directly computing the variation of Ẽ(ϕ(ε, ·)) without applying
Theorem 5.2. This yields, using the fact that, if z is a function of a parameter ε, then
∂ε|z| = (żT z)/|z|,

∂ε|dϕ(ε, ·)(γ)γ̇||ε=0 = (T γ)T dh(γ)γ̇ = (T γ)T dh(γ)T γ |γ̇|

and ∂ε Ẽ(ϕ(ε, ·)) =
∫

γ

(∇ζT h + ζ(T γ)T dhT γ
)
dσγ .

The term involving dh can be written in terms of V -dot products of h with derivatives
of the kernel, K , since (we use the notation introduced in Sect. 8.1.3, Eq. (8.9))

aT dh(x)b = 〈
h , ∂2K (·, x)(a, b)

〉
V . (9.44)

This gives

∂ε Ẽ(ϕ(ε, ·)) =
∫

γ

(〈
K (·, p)∇ζ(p) , h

〉
V

+ 〈
ζ(p)∂2K (·, p)(T γ(p), T γ(p)) , h

〉
V

)
dσγ(p)

and a new expression of the Eulerian gradient
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1

2
∇V

Eγ,γ′(ϕ) =
∫

ϕ·γ

(
K (·, p)∇ζϕ(p)

+ ζϕ(p)∂2K (., p)(T ϕ·γ(p), T ϕ·γ(p))
)
dσγ(p). (9.45)

To be complete, let us consider the variation of a discrete form of Eγ,γ′(ϕ). If a
curve γ is discretized with points x0, . . . , xN (with xN = x0 if the curve is closed),
one can define the discrete measure, still denoted μγ

(
μγ

∣∣ f
) =

N∑

i=1

f (ci )|τi |

with ci = (xi + xi−1)/2 and τi = xi − xi−1. Use a similar expression for themeasure
associated to a discretization of ϕ · γ, with cϕ

i = (ϕ(xi ) + ϕ(xi−1))/2 and τ
ϕ
i =

ϕ(xi ) − ϕ(xi−1). Finally, let γ′ be discretized in x ′
1, . . . , x

′
M , and define

Eγ,γ′(ϕ) =
N∑

i, j=1

ξ(cϕ
i , cϕ

j )|τϕ
i | |τϕ

j | (9.46)

− 2
N∑

i=1

N∑

j=1

ξ(cϕ
i , c′

j )|τϕ
i | |τ ′

j | +
M∑

i, j=1

ξ(c′
i , c

′
j )|τ ′

i | |τ ′
j |

in which we identify indices 1 and N + 1 or M + 1 (assuming closed curves). Note
that this functional depends on ϕ · x and x ′. The computation of the differential
proceeds as above. Define, for a point set x̃ = (x̃1, . . . , x̃Q)

Z x̃ (·) =
Q∑

j=1

ξ(·, c̃ j )|τ̃ j |,

and ζ = Zx − Zx ′
, ζϕ = Zϕ·x − Zx ′

. We then obtain

1

2
dEγ,γ′(id) =

N∑

i=1

(∇ζ(ci )|τi | + ∇ζ(ci+1)|τi+1|)δxi

− 2
N∑

i=1

(
ζ(ci+1)

τi+1

|τi+1| − ζ(ci )
τi

|τi |
)
δxi .

The Eulerian differential at ϕ 
= id is obtained by replacing ζ, ci , τi by ζϕ, cϕ
i , τ

ϕ
i

and the Eulerian gradient by applying the V -kernel to it.
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9.7.2 Curve Matching with Vector Measures

Instead of describing a curve with a measure, which is a linear form on functions,
it is possible to represent it by a vector measure, which is a linear form on vector
fields. Given a parametrized curve γ : [a, b] → R

d , we define a vector measure νγ ,
which associates to each vector field f on Rd a number

(
νγ

∣∣ f
)
given by

(
νγ

∣∣ f
) =

∫ b

a
γ̇(u)T f ◦ γ(u)du,

i.e., νγ = T γμγ where T γ is the unit tangent to γ and μγ is the line measure along
γ, as defined in the previous section. This definition is invariant under a change of
parametrization, but depends on the orientation of γ. If ϕ is a diffeomorphism, we
then have

νϕ·γ( f ) =
∫ b

a
(dϕ(γ(u))γ̇(u))T f ◦ ϕ(γ(u))du.

As done with scalar measures, we can use a dual norm for the comparison of two
vector measures. Such a norm is defined by

‖ν‖W ∗ = sup {(ν | f ) : ‖ f ‖W = 1} ,

where W is now an RKHS of vector fields, and we still have ‖ν‖2W ∗ = (ν |KWν ).
Still letting ξ denote the kernel of W (which is now matrix-valued), we have

‖νγ‖2W ∗ =
∫ b

a

∫ b

a
γ̇(u)T ξ(γ(u), γ(v))γ̇(v)dudv

and

‖νϕ·γ‖2W ∗ =
∫ b

a

∫ b

a
γ̇(u)T dϕ(γ(u))T ξ(ϕ(γ(u)),ϕ(γ(v)))dϕ(γ(v))γ̇(v)dudv.

Define Eγ,γ′(ϕ) = ‖νϕ·γ − νγ′ ‖2W ∗ . We follow the same pattern as in the previous
section and define

Ẽ(ϕ) = 〈
νϕ·γ , νγ − νγ′

〉
W ∗ ,

which (introducing ϕ(ε, ·) with ϕ(0, ·) = id and ∂εϕ(0, ·) = h) is such that
∂εE(ϕ(ε, ·)) = 2∂ε Ẽ(ϕ(ε, ·)) at ε = 0. Define

Z γ̃(·) =
∫

γ̃

ξ(·, p)N γ̃(p)dp,

and ζ = Zγ − Zγ′
, ζϕ = Zϕ·γ − Zγ′

, so that (using (T ϕ·γ)T T γ′ = (Nϕ·γ)T N γ′
)
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Ẽ(ϕ) =
∫

ϕ·γ
ζT Nϕ·γdσϕ·γ .

We can use Theorem 5.2, Eq. (5.4), to find

∂εE(ϕ(ε, ·)) = −[det(ζ, h)]Δ0 +
∫

γ

div(ζ)(N γ)T hdl.

This yields in turn (replacing γ by ϕ · γ, and letting p0 and p1 be the extremities of
γ)

1

2
∂̄Eγ,γ′(ϕ) = −(Rπ/2ζ

ϕ)(δϕ(p1) − δϕ(p0)) + div(ζϕ)νϕ·γ, (9.47)

where Rπ/2 is a 90o rotation. This final expression is remarkably simple, especially
for closed curves, for which the first term cancels. A discrete version of the matching
functional can also be defined, namely, using the notation of the previous section:

Eγ,γ′(ϕ) =
N∑

i, j=1

ξ(cϕ
i , cϕ

j )(τ
ϕ
i )T τ

ϕ
j

−2
N∑

i=1

N∑

j=1

ξ(cϕ
i , c′

j )(τ
ϕ
i )T τ ′

j +
M∑

i, j=1

ξ(c′
i , c

′
j )(τ

′
i )

T τ ′
j .

We leave the computation of the associated Eulerian differential (which is a slight
variation of the one we made with measures) to the reader.

9.7.3 Surface Matching

We now extend to surfaces the matching functionals that we just studied for curves.
The construction is formally very similar. If S is a surface in R3, one can compute a
measure μS and a vector measure νS defined by

(μS | f ) =
∫

S
f (x)dσS(x) for a scalar f (9.48)

and

(νS | f ) =
∫

S
f (x)T N (x)dσS(x) for a vector field f, (9.49)

where dσS is the volume measure on S and N is the unit normal (S being assumed
to be oriented in the definition of νS).

We state without proof the following result:
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Proposition 9.9 If S is a surface and ϕ a diffeomorphism of R3 that preserves the
orientation (i.e., with positive Jacobian), we have

(
μϕ(S)

∣∣ f
) =

∫

S
f ◦ ϕ(x)|dϕ(x)−T N | det(dϕ(x))dσS(x)

for a scalar f and for a vector-valued f ,

(
νϕ(S)

∣∣ f
) =

∫

S
f ◦ ϕ(x)T dϕ(x)−T N det(dϕ(x))dσS(x).

If e1(x), e2(x) is a basis of the tangent plane to S at x, we have

dϕ(x)−T N det(dϕ(x)) = (dϕ(x)e1 × dϕ(x)e2)/|e1 × e2|. (9.50)

The last formula implies in particular that if S is parametrized by
(u, v) �→ m(u, v), then (since N = (∂1m × ∂2m)/|∂1m × ∂2m| and dσS = |∂1m ×
∂2m| dudv)

(νS | f ) =
∫

f (x)T (∂1m × ∂2m)dudv

=
∫

det(∂1m, ∂2m, f )dudv

and
(
νϕ(S)

∣∣ f
) =

∫
det(dϕ∂1m, dϕ∂2m, f ◦ ϕ)dudv.

IfW is an RKHS of scalar functions or vector fields, we can compare two surfaces
by using the norm of the difference of their associated measures on W ∗. So define
(in the scalar measure case)

ES,S′(ϕ) = ‖μϕ·S − μS′ ‖2W ∗ (9.51)

and the associated
Ẽ(ϕ) = 〈

μϕ·S , μS − μS′
〉
W ∗

so that, for ϕ(ε, ·) such that ϕ(0, ·) = id and ∂εϕ(0, ·) = h

∂εEγ,γ′(ϕ(ε, ·)) = 2∂ε Ẽ(ϕ(ε, ·)).

To a given surface S̃, associate the function

Z S̃(·) =
∫

S̃
ξ(·, p)dσS̃(p)
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and ζ = Z S − Z S′
, ζϕ = Zϕ·S − Z S′

. Since

Ẽ(ϕ) =
∫

ϕ·S
ζ(p)dσϕ·S(p),

Theorem 5.4 yields

∂ε Ẽ(ϕ(ε, ·)) = −
∫

∂S
ζ (nS)T hdσ∂S

+
∫

S

( − 2ζHS + ∇ζT N S
)
(NS)T hdσS

where HS is the mean curvature on S. This implies

1

2
∂̄ES,S′(ϕ) = −ζϕnϕ·Sμϕ·∂S + ( − 2ζϕHϕ·S + (∇ζϕ)T Nϕ·S)νϕ·S. (9.52)

If we now use vector measures, so that

ES,S′(ϕ) = ‖νϕ·S − νS′ ‖2W ∗ (9.53)

and
Ẽ(ϕ) = 〈

νϕ·S , νS − νS′
〉
W ∗ ,

we need to define

Z S̃(·) =
∫

S̃
ξ(·, p)N S̃dσS̃(p)

and ζ = Z S − Z S′
, ζϕ = Zϕ·S − Z S′

, so that

Ẽ(ϕ) =
∫

ϕ·S
ζT Nϕ·S dσϕ·S.

Variations derive again from Theorem 5.4, yielding

∂ε Ẽ = −
∫

∂S
((ζT N S)(hT nS) − (ζT nS)(hT N S)) dσ∂S

+
∫

S
div(ζ)(NS)T h dσS.
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We therefore have

1

2
∂̄ES,S′(ϕ) = −(

(ζϕ)T Nϕ·S nϕ·S − (ζϕ)T nϕ·S Nϕ·S)μϕ·∂S

+ div(ζϕ)νϕ·S. (9.54)

Again the expression is remarkably simple for surfaces without boundary.
Consider now the discrete case and let S be a triangulated surface [289]. Let

x1, . . . , xN be the vertices of S and f1, . . . , fQ be the faces (triangles) which are
ordered triples of vertices fi = (xi1, xi2, xi3). Let ci be the center of fi , Ni its oriented
unit normal and ai its area. Define the discrete versions of the previous measures by

(μS | h ) =
Q∑

i=1

h(ci )ai , for a scalar h (9.55)

and

(νS | h ) =
Q∑

i=1

(h(ci )
T Ni )ai , for a vector field h. (9.56)

The previous formulae can be written as

(μS | h ) =
K∑

i=1

h
( xi1 + xi2 + xi3

3

)
|(xi2 − xi1) × (xi3 − xi1)|

and

(νS | h ) =
K∑

i=1

h
( xi1 + xi2 + xi3

3

)T

(xi2 − xi1) × (xi3 − xi1),

where the last formula requires that the vertices or the triangles are ordered consis-
tently with the orientation (see Sect. 4.2). The transformed surfaces are now repre-
sented by the same expressions with xik replaced byϕ(xik). If, given two triangulated
surfaces, one defines ES,S′(ϕ) = ‖μϕ·S − μS′ ‖2W ∗ , then (leaving the computation to
the reader)

1

2
∂̄ES,S′(id) =

N∑

k=1

( ∑

i :xk∈ fi

(∇ζ(ci )
ai
3

− ζ(ci )eik × Ni )
)
δxk ,

where eik is the edge opposite xk in fi (oriented so that (xk, eik) is positively ordered),
and ζ = Z S − Z S′

, with

Z S̃(·) =
K̃∑

i=1

ξ(·, c̃i )ãi
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for a triangulated surface S̃. The Eulerian differential at ϕ is obtained by replacing
all xk’s by ϕ(xk).

For the vector-measure form, ES,S′(ϕ) = ‖νϕ·S − νS′ ‖2W ∗ , we get

1

2
∂̄ES,S′(id) =

N∑

k=1

( ∑

i :xk∈ fi

(dζ(ci )Ni )
ai
3

− eik × ζ(ci )
)
δxk

still with ζ = Z S − Z S′
, but with

Z S̃(·) =
K̃∑

i=1

ξ(·, c̃i )Niai .

9.7.4 Induced Actions and Currents

We have designed the action of diffeomorphisms on measures by (ϕ · μ | h ) =
(μ | h ◦ ϕ ). Recall that we have the usual action of diffeomorphisms on functions
defined by ϕ · h = h ◦ ϕ−1, so that we can write (ϕ · μ | h ) = (

μ
∣∣ϕ−1 · h )

. In the
case of curves, we have seen that this action on the induced measure did not corre-
spond to the image of the curve by a diffeomorphism, in the sense that μϕ·γ 
= ϕ · μγ .
Here, we discuss whether the transformations μγ → μϕ·γ or νγ → νϕ·γ (and the
equivalent transformations for surfaces) can be described by a similar operation, e.g.,
whether one can write (ϕ · μ | h ) = (

μ
∣∣ϕ−1 � h

)
where � would represent another

action of diffeomorphisms on functions (or on vector fields for vector measures).
For μγ , the answer is negative. We have, letting T (γ(u)) be the unit tangent

to γ,

(
μϕ·γ

∣∣ h
) =

∫ b

a
h(ϕ(γ(u)))|dϕ(γ(u))γ̇(u)|du

=
∫ b

a
h(ϕ(γ(u)))|dϕ(γ(u))T (u)||γ̇(u)|du,

so that
(
μϕ·γ

∣∣ h
) = (

μγ

∣∣ h ◦ ϕ|dϕ T |), with some abuse of notation in the last
formula, since T is only defined along γ. The important fact here is that the function
h is transformed according to a rule which depends not only on the diffeomorphism
ϕ, but also on the curve γ, and therefore the result cannot be put in the form ϕ−1 � h.

The situation is different for vector measures. Indeed, we have

νϕ·γ(h) =
∫ b

a
(dϕ(γ(u))γ̇(u))T h ◦ ϕ(γ(u))du

= (
νγ

∣∣ dϕT h ◦ ϕ
)
.
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So, if we define ϕ � h = d(ϕ−1)T h ◦ ϕ−1, we have
(
νϕ·γ

∣∣ h
) = (

νγ

∣∣ϕ−1 � h
)
. The

transformation (ϕ, h) �→ ϕ � h is a valid action of diffeomorphisms on vector fields,
since id � h = h and ϕ � (ψ � h) = (ϕ ◦ ψ) � h, as can easily be checked.

The same analysis can be made for surfaces; scalar measures do not transform
in accordance to an action, but vector measures do. Let us check this last point by
considering the formula in a local chart, where

(
νϕ(S)

∣∣ h
) =

∫
det(dϕ∂1m, dϕ∂2m, h ◦ ϕ)dudv

=
∫

det(dϕ) det(∂1m, ∂2m, (dϕ)−1h ◦ ϕ)dudv

= (
νS

∣∣ det(dϕ)(dϕ)−1h ◦ ϕ
)
.

So, we need here to define

ϕ � h = det(d(ϕ−1))(dϕ−1)−1h ◦ ϕ−1 = (dϕ h/ det(dϕ)) ◦ ϕ−1.

Here again, a direct computation shows that this is an action.
We have just proved that vector measures are transformed by a diffeomorphism ϕ

according to a rule (ϕ · μ | h ) = (
μ

∣∣ϕ−1 � h
)
, the action � being apparently differ-

ent for curves and surfaces. In fact, all these actions (including the scalar one) can be
placed within a single framework if one replaces vector fields by differential forms
and measures by currents [126, 127, 289].

The reader may refer to Sects.B.7.1 and B.7.2 for basic definitions of linear and
differential forms, in which the space of differential k-forms on R

d is denoted Ωk ,
or Ωd

k . We can consider spaces of smooth differential k-forms, and in particular,
reproducing kernel Hilbert spaces of such forms: a space W ⊂ Ωk is an RKHS if,
for every x ∈ R

d and e1, . . . , ek ∈ R
d , the evaluation function

(e1, . . . , ek)δx : q �→ (q(x) | e1, . . . , ek )

belongs to W ∗. Introduce the duality operator, so that KW ((e1, . . . , ek)δx ) ∈ W .
Introduce, for x, y ∈ R

d , the 2k-linear form ξ(x, y) defined by

(ξ(x, y) | e1, . . . , ek; f1, . . . , fk ) = (KW ((e1, . . . , ek)δx )(y) | f1, . . . , fk ).

Notice that this form is skew-symmetric with respect to its first k and its last k
variables and that

〈
ξx (e1, . . . , ek) , ξy( f1, . . . , fk)

〉
W = (ξ(x, y) | e1, . . . , ek; f1, . . . , fk ),

so that ξ may be called the reproducing kernel ofW . Similar to vector fields, kernels
for differential k-forms can be derived from scalar kernels by letting
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(ξ(x, y) | e1, . . . , ek; f1, . . . , fk ) =
ξ(x, y)

〈
e1 × · · · × ek , f1 × · · · × fk

〉
Λd−k

,

(9.57)

where the dot product on the space of k-linear forms, Λk , is the product of coeffi-
cients of the forms over a basis formed by all cross products of subsets of k elements
of an orthonormal basis of Rd , as described in Sect.B.7.1.

Elements of the dual space, W ∗, to W are therefore linear forms over differential
k-forms, and are special instances of k-currents [107, 210] (k-currents are bounded
differential forms over C∞ differential k-forms with compact support, which is less
restrictive than being bounded on W ). Important examples of currents are those
associated to submanifolds of Rd , and are defined as follows. Let M be an oriented
k-dimensional submanifold of Rd . To a differential k-form q, associate the quantity

(ηM | q ) =
∫

M
(q(x) | e1(x), . . . , ek(x) ), dσM(x)

where e1, . . . , ek is, for all x , a positively oriented orthonormal basis of the tangent
space to M at x (by Eq. (B.16), the result does not depend on the chosen basis).

If W is an RKHS of differential k-forms, ηM belongs to W ∗ and we can compute
the dual norm of ηM , which is

‖ηM‖2W ∗ =
∫

M

∫

M
(ξ(x, y) | e1(x), . . . , ek(x); e1(y), . . . , ek(y) )dσM(x)dσM(y)

or, for a scalar kernel defined by (9.57),

‖ηM‖2W ∗ =
∫

M

∫

M
ξ(x, y)

〈
e1(x) × · · · × ek(x) , e1(y) × · · · × ek(y)

〉
Λd−k

dσM(x)dσM(y).

The expressions of ηM and its norm in a local chart of M are quite simple. Indeed,
if (u1, . . . , uk) is the parametrization in the chart and (∂1m, . . . , ∂km) the associated
tangent vectors (assumed to be positively oriented), we have, for a k-form q (using
(B.16))

(q | ∂1m, . . . , ∂km ) = (q | e1, . . . , ek ) det(∂1m, . . . , ∂km)

which immediately yields

(q | ∂1m, . . . , ∂km )du1 . . . duk = (q | e1, . . . , ek )dσM .

We therefore have, in the chart,

(ηM | q ) =
∫

(q | ∂1m, . . . , ∂km )du1 . . . duk



9.7 Matching Curves and Surfaces 275

and similar formulas for the norm.
Now consider the action of diffeomorphisms. If M becomes ϕ(M), the formula

in the chart yields

(
ηϕ(M)

∣∣ q
) =

∫
(q ◦ ϕ | dϕ∂1m, . . . , dϕ∂km )du1 . . . duk

so that
(
ηϕ(M)

∣∣ q
) = (ηM | q̃ ) with

(q̃(x) | f1, . . . , fk ) = (q(ϕ(x)) | dϕ f1, . . . , dϕ fk ).

As we did with vector measures, we can introduce the left action on k-forms (also
called the push-forward of the k-form):

(ϕ � q | f1, . . . , fk ) = (
q ◦ ϕ−1

∣∣ d(ϕ−1) f1, . . . , d(ϕ−1) fk
)

and the resulting action on p-currents

(ϕ · η | q ) = (
η

∣∣ϕ−1 � q
)
, (9.58)

so that we can write ηϕ(M) = ϕ · ηM .
This is reminiscent of what we have obtained for measures, and for vector mea-

sures with curves and surfaces. We now check that these examples are particular
cases of the previous discussion.

Measures are linear forms on functions, which are also differential 0-forms. The
definition (ϕ · μ | f ) = (μ | f ◦ ϕ ) is exactly the same as in (9.58).

Consider now the case of curves, which are 1D submanifolds, so that k = 1. If γ
is a curve, and T is its unit tangent, we have

(
ηγ

∣∣ q
) =

∫

γ

(q(γ) | T )dσγ =
∫ b

a
(q(γ(u)) | γ̇(u) )du.

To a vector field h on R
d , we can associate the differential 1-form qh defined by

(qh(x) | v ) = h(x)T v. In fact all differential 1-forms can be expressed as qh for
some vector field h. Using this identification and noting that

(
νγ

∣∣ h
) = (

ηγ

∣∣ qh
)
,

we can see that the vector measure for curve matching is a special case of the currents
that we have considered here.

For surfaces in three dimensions, we need to take k = 2, and if S is a surface, we
have

(ηS | q ) =
∫

S
(q(x) | e1(x), e2(x) )dσS(x).

Again, a vector field f on R
3 induces a 2-form q f , defined by

(
q f

∣∣ v1, v2
) =

det( f, v1, v2) = f T (v1 × v2), and every 2-form can be obtained this way. Using the
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fact that, if (e1, e2) is a positively oriented basis of the tangent space to the surface,
then e1 × e2 = N , we retrieve (νS | f ) = (

ηS

∣∣ q f
)
.

9.7.5 Varifolds

A differential k-form ω onRd uniquely defines a function on the product spaceRd ×
G̃r(d, k), the product space ofRd with the set of all oriented k-dimensional subspaces
of Rd (called the oriented Grassmannian, on which a manifold structure similar to
the one discussed in Sect.B.6.7 for the Grassmannmanifold can be defined). One can
indeed assign to any pair (x,α) in that set the scalar Fq(x,α) = (q(x) | e1, . . . , ek )

where e1, . . . , ek is any positively oriented orthonormal basis ofα, and the value does
not depend on the chosen basis. Given an oriented k-dimensional submanifold ofRd ,
one can define the linear form on continuous functions F defined on Rd × G̃r(d, k),
given by

(ρ̃M | F ) =
∫

M
F(p, TpM)dσM ,

where TpM is considered with its orientation. The current ηM defined in the previous
section is such that (ηM | q ) = (

ρ̃M

∣∣ Fq
)
.

When one wants to disregard orientation, which may be convenient, and some-
times necessary in practice, it is natural to replace G̃r(d, k) by Gr(d, k) (the Grass-
mannian) and define the same linear form (that we now call ρM ) on functions defined
onRd × Gr(d, k). The linear form ρM is a special case of a varifold, where varifolds
are defined as (Radon) measures on R

d × Gr(d, k).
From this point, and following [61], one can make a construction analogous to

the one just described for measures on Rd . Given a reproducing kernel Hilbert space
W of functions defined on R

d × Gr(d, k), define the square distance between two
k-dimensional submanifolds of Rd by

D(M, M ′) = ‖ρM − ρM ′ ‖2W ∗ .

For the approach to be practical, one needs to have explicit kernels onRd × Gr(d, k).
Referring to [61] for a complete discussion, we note here that a class of such kernels
can be designed based on the following observations.

(i) The function defined for α,β ∈ G̃r(d, k) by

ξ̃(α,β) = 〈
e1(x) × · · · × ek(x) , f1(y) × · · · × fk(y)

〉
Λd−k

,

where (e1, . . . , ek) and ( f1, . . . , fk) are positively oriented orthonormal bases
of α̃ and β̃, is a positive definite kernel. Hence, the function defined for α,β ∈
Gr(d, k)
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ξ(α,β) = 〈
e1(x) × · · · × ek(x) , f1(y) × · · · × fk(y)

〉2
Λd−k

,

where (e1, . . . , ek) and ( f1, . . . , fk) are orthonormal bases of α and β, is also
definite positive. More generally, if ξ̃ is positive definite on G̃r(d, k), then
ξ = f (ξ̃) is definite positive onGr(d, k) for any even analytic function f whose
derivatives at 0 are all non-negative, and at least one of them positive. These
statements simply use the fact that products of positive kernels remain positive.

(ii) If η is a positive kernel on differential p-forms, then ξ̃ defined by

ξ̃(x,α; y,β) = (η(x, y) | e1, . . . , ek; f1, . . . , fk )

is a positive kernel on R
d × G̃r(d, k).

(iii) If ξ(1) is a reproducing kernel on Rd and ξ(2) a reproducing kernel on Gr(d, k),
then ξ defined by

ξ(x,α; y,β) = ξ(1)(x, y)ξ(2)(α,β)

is a reproducing kernel on R
d × Gr(d, k).

Applying this to surfaces, for example, and using the discussion at the end of the
previous section, we find that taking

〈
ρS , ρS̃

〉
W ∗ =

∫

S

∫

S̃
ξ(x, x̃)

(
1 + a

(
N (x)T Ñ (x̃)

)2
)
dσS̃(x̃)dσS(x),

where ξ is a reproducing kernel on R
d , provides an RKHS dual inner-product on

varifolds. The discretization of such a norm is similar to those detailed for scalar and
vector measures and is left to the reader.

9.8 Matching Vector Fields

We now study vector fields as deformable objects. They correspond, for example, to
velocity fields (that can be observed for weather data), or to gradient fields that can
be computed for images. Orientation fields (that can be represented by unit vector
fields) are also interesting. They can correspond, for example, to fiber orientations
in tissues observed in medical images.

We want to compare two vector fields f and f ′, i.e., two functions from R
d to

R
d . To simplify, we restrict ourselves to E f, f ′(ϕ) being the L2 norm between ϕ · f

and f ′, and focus our discussion on the definition of the action of diffeomorphisms
on vector fields.

The simplest choice is to use the same action as in image matching and take
ϕ · f = f ◦ ϕ−1, where f is a vector field on R

d . It is, however, natural (and more
consistent with applications) to combine the displacement of the points at which f
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is evaluated with a reorientation of f , also induced by the transformation. Several
choices can be made for such an action and all may be of interest depending on the
context.

For example, we can interpret a vector field as a velocity field, assuming that
each point in Ω moves on to a trajectory x(t) and that f (x) = ẋ(t), say at time
t = 0. If we make the transformation x �→ x ′ = ϕ(x), and let f ′ be the transformed
vector field, such that ẋ ′(0) = f ′(x ′), we get: ẋ ′(0) = dϕ(x)ẋ(0) = f ′ ◦ ϕ(x) so
that f ′ = (dϕ f ) ◦ ϕ−1. The transformation f �→ (dϕ f ) ◦ ϕ−1 is an important Lie
group operation, called the adjoint representation (Adϕ f ). This is anecdotal here,
but we will use it again later as a fundamental tool. So, our first action is

ϕ ∗ f = (dϕ f ) ◦ ϕ−1.

To define a second action, we now consider vector fields that are obtained as
gradients of a function I : f = ∇ I . If I becomes ϕ · I = I ◦ ϕ−1, then f becomes
d(ϕ−1)T∇ I ◦ ϕ−1. This defines a new action

ϕ � f = d(ϕ−1)T f ◦ ϕ−1 = (dϕ−T f ) ◦ ϕ−1.

This action can be applied to any vector field, not only gradients, but one can check
that the set of vector fields f such that curl f = 0 is left invariant by this action.

Sometimes, it is important that the norms of the vector fields at each point remain
invariant under the transformation,whendealing, for example,with orientationfields.
This can be achieved in both cases by normalizing the result, and we define the
following normalized actions:

ϕ ∗̄ f =
(

| f | dϕ f

|dϕ f |
)

◦ ϕ−1

ϕ �̄ f =
(

| f | dϕ−T f

|dϕ−T f |
)

◦ ϕ−1

(taking, in both cases, the right-hand side equal to 0 if | f | = 0).
We now evaluate the differential of E f, f ′(ϕ) = ‖ϕ · f − f ′‖22, where ϕ · f is one

of the actions above. We will make the computation below under the assumption
that f is C1 and compactly supported. For the ∗ action, we can observe that, for
ϕ = id + h,

ϕ ∗ f − f = dh f ◦ (id + h)−1 + f ◦ (id + h)−1 − f,

so that

ϕ ∗ f − f − dh f + d f h = dh( f ◦ (id + h)−1 − f ) + f ◦ (id + h)−1

− f ◦ (id − h) + f ◦ (id − h) − f + d f h.
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Using the fact that ‖(id + h)−1 − id‖∞ = ‖h‖∞,

‖(id + h)−1 − (id − h)‖∞ = ‖h ◦ (id + h) − h‖∞ ≤ ‖h‖21,∞
and letting

ω(1)
f (ε) = sup

x∈Rd

sup
|δ|<ε

| f (x + δ) − f (x) − d f (x)δ|

we find that

‖ϕ ∗ f − f − dh f + d f h‖∞ ≤ ‖ f ‖∞‖h‖21,∞ + ‖ f ‖1,∞‖h‖21,∞ + ω(1)
f (‖h‖∞).

Noting that ω(1)
f (ε) = o(ε), we find that

‖ϕ ∗ f − f − dh f + d f h‖∞ = o(‖h‖1,∞). (9.59)

Using this estimate, it is now easy to show that E f, f ′ : Diff1,∞0 → R is differen-
tiable at ϕ = id with derivative

(
dE f, f ′(id)

∣∣ h
) = 2

〈
dh f − d f h , f − f ′〉

2

= 2
∫

Ω

(dh f − d f h)T ( f − f ′)dx .

For f �→ ϕ ∗ f to map compactly supported C1 vector fields into vector fields
with the same property, we need to take twice-differentiable diffeomorphisms, i.e.,
ϕ ∈ Diff2,∞0 . Over this group, we find that E f, f ′ is differentiable everywhere, with(
dE f, f ′(ψ)

∣∣ h
) = (

dEψ∗ f, f ′(id)
∣∣ h ◦ ψ−1

)
.

The Eulerian derivative is then given by

(
∂̄E f, f ′(ψ)

∣∣ v
) = (

dEψ∗ f, f ′(id)
∣∣ v

)

= 2
〈
dv (ψ ∗ f ) − d(ψ ∗ f ) v , ψ ∗ f − f ′〉

2.

This expression can be combined with (9.44) to obtain the Eulerian gradient of U ,
namely

∇V
E f, f ′(ψ) =
2

∫

Ω

(
∂2K (., x)(ψ ∗ f − f ′,ψ ∗ f ) − K (., x)d(ψ ∗ f )T (ψ ∗ f − f ′)

)
dx .

The Eulerian differential can be rewritten in another form to avoid the intervention
of the differential of h. The following lemma is a consequence of the divergence
theorem.

Lemma 9.10 If Ω is a bounded open domain of Rd and v,w, h are smooth vector
fields on R

d , then
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∫

Ω

vT dhw dx =
∫

∂Ω

(vT h)(wT N )dσ∂Ω

−
∫

Ω

(
wT dvT h + (divw)(vT h)

)
dx . (9.60)

Equation (9.60) can be rewritten as

〈
dh w , v

〉
2 = (

(wT N )vσ∂Ω

∣
∣ h

) − 〈
dv w + (divw) v , h

〉
2. (9.61)

Proof To prove this, introduce the coordinates h1, . . . , hd for h and v1, . . . , vd for
v so that

vT dhw =
d∑

i=1

vi (∇hi )Tw.

Now, use the fact that

div(vT h w) = div
( d∑

i=1

vi hiw
)

=
d∑

i=1

(
vi (∇hi )Tw + hi (∇vi )Tw + hiv

idivw
)

= vT dhw + hT dvw + (hT v)divw

and the divergence theorem to obtain the result. �

Using this lemma with Ω large enough so that f vanishes on ∂Ω , we find

(
dE f, f ′(id)

∣∣ h
) = −2

〈
(d f − d f ′) f + div f ( f − f ′) + d f T ( f − f ′) , h

〉
2,

which directly provides a new version of the Eulerian derivative at an arbitrary ϕ,
with the corresponding new expression of the Eulerian gradient:

∇V
E f, f ′(ϕ) = −2

∫

Ω

K (·, x)
(
d(ϕ ∗ f − f ′)(ϕ ∗ f )

+ div(ϕ ∗ f )(ϕ ∗ f − f ′) + d(ϕ ∗ f )T (ϕ ∗ f − f ′)
)
dx .

Let us now consider the normalized version of this action. We will make the
computation under a few additional assumptions on f , namely, that f is compactly
supported and f/| f | can be replaced by a smooth unit vector field that can be extended
to an open set that contains the support of f .More precisely, wewill assume that there
exists a scalar function ρ, continuously differentiable and supported by a compact
set Q, and a vector field u such that |u(x)| = 1 for all x in an open set Ω containing
Q, u is continuously differentiable on Ω and f (x) = ρ(x)u(x). With this notation,
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we have
ϕ ∗̄ f = ρ ◦ ϕ−1 ϕ ∗ u

|ϕ ∗ u| .

Note that, for z 
= 0, the derivative of z/|z| is

h �→ h/|z| − zzT h/|z|3 = 1

|z|πz⊥(h),

where πz⊥ is the orthogonal projection on the space of vectors perpendicular to z.
Considerϕ = id + h for some h ∈ Diff1,∞0 . Let δ = dist(Q,Ωc) and assume that

‖h‖∞ = ‖ϕ−1 − id‖∞ < δ/2.

From (9.59), we have, letting Ω ′ be the set of x ∈ R
d such that dist(x, Q) < δ,

sup
x∈Ω ′

|(ϕ ∗ u)(x) − u(x) − dh(x)u(x) + du(x)h(x)| = o(‖h‖1,∞),

from which we deduce

sup
x∈Ω ′

∣∣∣∣
(ϕ ∗ u)(x)

|(ϕ ∗ u)(x)| − u(x) − πu⊥ (dh(x)u(x) − du(x)h(x))

∣∣∣∣ = o(‖h‖1,∞).

Since ‖ρ ◦ ϕ−1 − ρ − ∇ρT h‖∞ = o(‖h‖∞), we obtain the fact that E f, f ′ is differ-
entiable at ϕ = id with

(
dE f, f ′(id)

∣
∣ h

) = 2
(−∇ρT h u + ρ πu⊥(dh u − du h)

∣
∣ f − f ′ )

= −2
(∇ρT h u

∣∣ f − f ′ ) − 2
(
ρ (dh u − du h)

∣∣πu⊥( f ′)
)
.

Assuming now that ψ ∈ Diff2,∞0 , we obtain the fact that E f, f ′ is differentiable at ψ,
with (

dE f, f ′(ψ)
∣∣ h

) = (
dEψ∗̄ f, f ′(id)

∣∣ h ◦ ψ−1
)
.

The Eulerian derivative is

(
∂̄E f, f ′(ψ)

∣∣ v
) = (

dEψ∗̄ f, f ′(id)
∣∣ v

)
.

Finally, we note that after integration by parts, we can write

dE f, f ′(id) = 2
( − uT ( f − f ′)∇ρ + ρ duT (πu⊥( f ′))
+d(πu⊥( f ′)) f + div( f )πu⊥( f ′)

)
dx .

The computations for ϕ � f = (dϕ−T f ) ◦ ϕ−1 and its normalized version are
very similar. One only needs to note that (9.59) is now replaced by
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‖ϕ � f − f + dhT f + d f h‖∞ = o(‖h‖1,∞). (9.62)

As a consequence, the formulas for the differentials of the � and �̄ can be deduced
from the ∗ and ∗̄ actions by replacing (dh f − d f f ) by (−dhT f − d f h).

For the unnormalized action, this yields

(
dE f, f ′(id)

∣
∣ h

) = −2
〈
dh( f − f ′) , f

〉
2 − 2

〈
d f T ( f − f ′) , h

〉
2

= 2
〈
(d f − d f T )( f − f ′) + div( f − f ′) f , h

〉
2

and ∂̄E f, f ′(ϕ) is obtained by replacing f byϕ � f . To obtain the differential of E f, f ′

for the normalized � action, we get

(
dE f, f ′(id)

∣∣ h
) = −2

(∇ρT h u
∣∣ f − f ′ ) + 2

(
ρ (dhT u + du h)

∣∣πu⊥( f ′)
)
,

where f = ρ u as above, which can also be written as

dE f, f ′(id) = 2
( − uT ( f − f ′)∇ρ + (ρduT − d f )(πu⊥( f ′)) − div(πu⊥( f ′)) f

)
dx .

As an example of application of vector field matching, let us consider contrast-
invariant image registration [90]. If I : Ω → R is an image, a change of contrast is a
transformation I �→ q ◦ I , where q is a scalar diffeomorphism of the image intensity
range. The level sets Iλ = {x, I (x) ≤ λ} are simply relabeled by a change of contrast,
and one obtains a contrast-invariant representation of the image by considering the
normals to these level sets, i.e., the vector field

f = ∇ I/|∇ I |

with the convention that f = 0 when ∇ I = 0. Two images represented in this way
can now be compared using vector field matching. Since we are using normalized
gradients, the natural action is (ϕ, f ) �→ ϕ �̄ f . For our results to hold, some reg-
ularization needs to be applied, replacing f by ρ f̃ where ρ = 1 and f̃ = f when
| f | = 1, f̃ is a unit vector field that smoothly extends f over a neighborhood of the
domain over which | f | = 1, ρ is smooth and vanishes outside this neighborhood.

9.9 Matching Fields of Frames

We now extend vector field deformation models to define an action of diffeomor-
phisms onfields of positively oriented orthogonalmatrices, or frames.Wewill restrict
ourselves to dimension 3, so that the deformable objects considered in this section
are mappings x �→ R(x), with, for all x ∈ Ω , R(x) ∈ SO3(R) (the group of rotation
matrices).

The ∗ and � actions we have just defined on vector fields have the nice property
of conserving the Euclidean dot product when combined, that is
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(ϕ ∗ f )T (ϕ � g) = ( f T g) ◦ ϕ−1.

Since ∗̄ and �̄ also conserve the norm, we find that (ϕ ∗̄ f,ϕ �̄ g) is orthonormal as
soon as ( f, g) is.

We now define an action of diffeomorphisms on fields on frames.Writing R(x) =
( f1(x), f2(x), f3(x)), we let

ϕ · R = (ϕ ∗̄ f1, (ϕ �̄ f3) × (ϕ ∗̄ f1),ϕ �̄ f3). (9.63)

That this defines an action is a straightforward consequence of ∗̄ and �̄ being actions.
The action can be interpreted as follows. Given a local chart in R

3, which is
a diffeomorphic change of coordinates x = m(s, t, u), one uniquely specifies a
positively oriented frame Rm = ( f1, f2, f3) by f1 = ∂1m/|∂1m| and f3 = (∂1m ×
∂2m)/|∂1m × ∂2m|. Then, the action we have just defined is such that ϕ · R is the
frame associated to the change of coordinates ϕ ◦ m, i.e.,

Rϕ◦m ◦ ϕ = ϕ · Rm .

The transformationm → Rm has in turn the following interpretation, which is rel-
evant for somemedical imagingmodalities. Let the change of coordinates be adapted
to the following stratified description of a tissue. Curves s �→ m(s, t, u) correspond
to tissue fibers, and surfaces (s, t) �→ m(s, t, u) describe a layered organization. The
cardiac muscle, for example, exhibits this kind of structure. Then f1 in Rm represents
the fiber orientation, and f3 the normal to the layers; ϕ · Rm then corresponds to the
tissue to which the deformation ϕ has been applied.

Frame fields are typically observed over some object-dependent subregion of the
observation domain. To account for this, we assume thatwe are dealingwithweighted
fields of frames, taking the form A = ρ R, where the weight ρ vanishes outside a
compact set and R is smooth over a neighborhood of this compact set. We will then
consider the action

ϕ · A = (ρ ◦ ϕ−1)ϕ · R.

The computations of the previous sections can now be applied to each column of A.
In particular, letting ϕ = id + h, we have ϕ · A = A + (w1, w2, w3) + o(‖h‖1,∞)

with, writing R = ( f1, f2, f3),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w1 = − (∇ρT h) f1 + ρπ f ⊥
1
(dh f1 − d f1h),

w3 = − (∇ρT h) f3 − ρπ f ⊥
3
(dhT f3 + d f3h),

w2 = − (∇ρT h) f2 − ρ
(
π f ⊥

3
(dhT f3 + d f3h)

)
× f1

+ ρ f3 ×
(
π f ⊥

1
(dh f1 − d f1h)

)
.

Noticing that, for any vector u ∈ R
3,



284 9 Deformable Objects and Matching Functionals

(
π f ⊥

3
u
)

× f1 = (
(uT f1) f1 + (uT f2) f2

) × f1 = −(uT f2) f3

and similarly f3 ×
(
π f ⊥

1
u
)

= −(uT f2) f1, we can simplify the expression of w2,

yielding ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w1 = − (∇ρT h) f1 + ρπ f ⊥
1
(dh f1 − d f1h),

w2 = − (∇ρT h) f2 + ρ((dhT f3 + d f3h)T f2) f3

− ρ((dh f1 − d f1h)T f2) f1,

w3 = − (∇ρT h) f3 − ρπ f ⊥
3
(dhT f3 + d f3h).

(9.64)

Consider the matching functional

EA,A′(ϕ) =
∫

R3
|ϕ · A − A′|2 dx

with |A|2 = trace(AT A). If A = ρ R and A′ = ρ′ R′, then

|A − A′|2 = 3ρ2 − 2ρρ′trace(RT R′) + 3ρ′2

= 3(ρ − ρ′)2 + 2ρρ′trace(Id − RT R′).

Introducing the rotation angle, θ, from R to R′, defined by

trace(RT R′) = 1 + 2 cos θ, (9.65)

we get
|A − A′|2 = 3(ρ − ρ′)2 + 4ρρ′(1 − cos θ).

Obviously, if A = (u1, u2, u3) and A′ = ρ(u′
1, u

′
2, u

′
3), we also have

|A − A′|2 = |u1 − u′
1|2 + |u2 − u′

2|2 + |u3 − u′
3|2.

Using this, one gets the expression of the differential of EA,A′ at ϕ = id,

(
dEA,A′(id)

∣∣ h
) = 2

∫

R2
trace(WT (A − A′)) dx,

where W = (w1, w2, w3) is given by (9.64). In particular,

trace(WT (A − A′)) = −∇ρT h
(
3ρ − ρ′trace(RT R′)

)

+ ρρ′(dh f1 − d f1h)T
(
−π f ⊥

1
( f ′

1) + ( f T1 f ′
2) f2

)

− ρρ′(dhT f3 + d f3h)T
(
−π f ⊥

3
( f ′

3) + ( f T3 f ′
2) f2

)
.
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Letting

u1A,A′ = ρρ′
(
−π f ⊥

1
( f ′

1) + ( f T1 f ′
2) f2

)

u3A,A′ = ρρ′
(
−π f ⊥

3
( f ′

3) + ( f T3 f ′
2) f2

)

and using Lemma 9.10 to eliminate dh, we find

dEA,A′(id) = 2
(

− (
3ρ − ρ′trace(RT R′)

) ∇ρ − du1A,A′ f1 − div( f1)u
1
A,A′

− d f T1 u1A,A′ + div(u3A,A′) f3
)
dx .

(9.66)

9.10 Matching Tensors

The last class of deformable objects we will consider in this chapter are fields of
matrices (or tensor fields). For general matrices, we can use the actions we have
defined on vector fields, and apply them to each column of M , where M is a field of
matrices. The differential of matching functionals is then computed as done in the
previous two sections.

One sometimes needs to consider subclasses of tensors, and therefore define an
action that leaves this subclass invariant.Hereweconsider symmetricmatrices,which
have especially been studied in diffusion tensor imaging (DTI) [6]. The previous
actions applied to each column do not work, because they would break the symmetry.
A simple choice to address this is to make the diffeomorphism also act on the right,
in transpose form, defining, for a field x �→ S(x) of symmetric matrices

ϕ ∗ S = (dϕSdϕT ) ◦ ϕ−1

ϕ � S = (dϕ−T Sdϕ−1) ◦ ϕ−1.

We leave to the reader the computation of the differentials of objective functions
derived from these actions.

These actions are not necessarilywell adapted toDTI data, though, forwhich alter-
native optionsmaybe considered.DTI produces, at each point x in space, a symmetric
positive definite matrix S(x) that measures the diffusion of water molecules in the
imaged tissue. Roughly speaking, the tensor S(x) is such that if a water molecule is
at s at time t , the probability of being at x + dx at time t + dt is centered Gaussian
with variance dt2dxT S(x)dx .

If we return to the structured tissue model discussed in the last section (repre-
sented by the parametrization x = m(s, t, u)), we can assume that molecules travel
more easily along fibers, and with most difficulty across layers. So the direction of
∂1m is the direction of largest variance, and ∂1m × ∂2m of smallest variance, so
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that the frame Rm = ( f1, f2, f3) associated to the parametrization is such that f1 is
an eigenvector of S for the largest eigenvalue, and f3 for the smallest eigenvalue,
which implies that f2 is an eigenvector for the intermediate eigenvalue. According
to our discussion in the last section, a diffeomorphism ϕ should transform S so that
the frame RS formed by the eigenbasis of S transforms according to the action of
diffeomorphisms on frames, namely, Rϕ·S = ϕ · RS defined in (9.63).

So, if we express the decomposition of S in the form

S = λ1 f1 f
T
1 + λ2 f2 f

T
2 + λ3 f3 f

T
3

with λ1 ≥ λ2 ≥ λ3, we should take

ϕ · S = λ̃1 f̃1 f̃
T
1 + λ̃2 f̃2 f̃

T
2 + λ̃3 f̃3 f̃

T
3 (9.67)

with ( f̃1, f̃2, f̃3) = ϕ · ( f1, f2, f3) and λ̃i = λi ◦ ϕ−1, i = 1, 2, 3. The action on
eigenvalues expresses that intrinsic tissue properties have not been affected by the
deformation. If there are reasons to believe that variations in volume should affect
the intensity of water diffusion, using the action of diffeomorphisms on densities
may be a better option, namely λ̃i = det d(ϕ−1)λi ◦ ϕ−1.

The actionwith λ̃i = λi ◦ ϕ−1 is identical to the eigenvector-based tensor reorien-
tation discussed in [6]. One of the important (and required) features or the construc-
tion is that, although the eigen-decomposition of S is not unique (when two or three
eigenvalues coincide) the transformation S �→ ϕ · S is defined without ambiguity.
This will be justified below.

The following computations require that λ1,λ2,λ3 are C1 and vanish outside
a compact set, and that RS is smooth in a small neighborhood of this compact set.
They are sketchily justified here, as they strongly resemble the computations that have
been done before. It will be convenient to introduce the three-dimensional rotation
US(ϕ) = ((ϕ · RS) ◦ ϕ) RT

S , so that

ϕ · S = (US(ϕ)SUS(ϕ)T ) ◦ ϕ−1.

Taking ϕ = id + h, we have US(ϕ) − S = ωS(h) + o(‖h‖1,∞), where

ωS(h) = π f ⊥
1
dh f1 f

T
1 − ((π f ⊥

3
dhT f3) × f1) f

T
2

+ ( f3 × (π f ⊥
1
dh f1)) f

T
2 − (π f ⊥

3
dhT f3) f

T
3

is a skew-symmetric matrix.With this notation, we can write

ϕ · S − S = ωS(h)S − SωS(h) − dS h + o(‖h‖1,∞).
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(Here dS h is the matrix with coefficients (∇Si j )T h.) Letting

ES,S′(ϕ) =
∫

Ω

trace((ϕ · S − S′)2)dx,

we then get

(
dES,S′(id)

∣∣ h
) = 2

∫

Ω

trace
(
(S − S′)(ωS(h)S − SωS(h) − dS h)

)
dx,

with, as usual, for ψ ∈ Diff2,∞0 ,
(
dES,S′(ψ)

∣∣ h
) = (

dEψ·S,S′(id)
∣∣ h ◦ ψ−1

)
and(

∂̄ES,S′(ψ)
∣∣ v

) = (
dEψ·S,S′(id)

∣∣ v
)
.

Here again, the derivatives of h that are involved in ωS(h) can be integrated by
parts using the divergence theorem. Let us sketch this computation at ψ = id, which
leads to a vector measure form for the differential. We focus on the term

(η | h ) :=
∫

Ω

trace((S − S′)(ωS(h)S − SωS(h)))dx =
∫

Ω

trace(AωS(h))dx,

where A = S(S − S′) − (S − S′)S = SS′ − S′S, and want to express η as a vector
measure. We have (using the fact that A is skew symmetric and that ( f1, f2, f3) is
orthonormal)

−trace(AωS(h)) = (ωS(h) f1)
T A f1 + (ωS(h) f2)

T A f2 + (ωS(h) f3)
T A f3

= (π f ⊥
1
dh f1)

T A f1 − ((π f ⊥
3
dhT f3) × f1)

T A f2

+ ( f3 × (π f ⊥
1
dh f1))

T A f2 − (π f ⊥
3
dhT f3)

T A f3

= (dh f1)
T u1S,S′ − (dhT f3)

T u3S,S′ ,

with

u1S,S′ = π f ⊥
1
(A f1 + (A f2 × f3))

and u3S,S′ = π f ⊥
3
(A f3 + ( f1 × A f2)).

It now remains to use Lemma 9.10 to identify η as

η = (
du1S,S′ f1 + div( f1)u

1
S,S′ − d f3u

3
S,S′ − div(u3S,S′) f3

)
dx .

To write the final expression of dES,S′(id), define (S − S′) � dS to be the vector

(S − S′) � dS =
3∑

i, j=1

(Si j − (S′)i j )∇Si j ,
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so that we have

dES,S′(id) = 2
(
du1S,S′ f1 + div( f1)u

1
S,S′ − d f3u

3
S,S′

− div(u3S,S′) f3 − (S − S′) � dS
)
dx . (9.68)

We now generalize this action to arbitrary dimensions, in a way that will provide
a new interpretation of the three-dimensional case. Decompose a field of d by d
symmetric matrices S in Rd in the form

S(x) =
d∑

k=1

λk(x) fk(x) fk(x)
T

with λ1 ≥ · · · ≥ λd and ( f1, . . . , fd) orthonormal. The matrices fk f Tk represent the
orthogonal projections on the one-dimensional space R fk and, letting

Wk = span( f1, . . . , fk),

and noting that the projection on Wk , πWk is equal to f1 f T1 + · · · + fk f Tk , we can
obviously write

S(x) =
d∑

k=1

λk(x)(πWk (x) − πWk−1(x)),

where we have set W0 = {0}.
Define the action S �→ ϕ · S by

ϕ · S =
(

d∑

k=1

λk
(
πdϕ(Wk ) − πdϕ(Wk−1)

)
)

◦ ϕ−1.

In three dimensions, because

(dϕ f2)
T f̃3 ◦ ϕ = ( f T2 f3)/|dϕ−T f3| = 0,

we see that dϕ f2 ∈ span( f̃1 ◦ ϕ, f̃2 ◦ ϕ). Since f̃1 ◦ ϕ is proportional to dϕ f1, we
can conclude that

dϕ span( f1, f2) = span( f̃1 ◦ ϕ, f̃2 ◦ ϕ).

This proves that the action we have just defined coincides with the one we have
considered for the case d = 3.

Returning to the general d-dimensional case, the definition we just gave does not
depend on the choice made for the basis f1, . . . , fd . Indeed, if we let μ1 > · · · > μq

denote the distinct eigenvalues of S, andΛ1, . . . , Λq the corresponding eigenspaces,
then, regrouping together the terms with identical eigenvalues in the decomposition
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of S and ϕ · S, and letting

Γk = Λ1 + · · · + Λk, Γ0 = {0},

we clearly have

S(x) =
q∑

k=1

μk(x)(πΓk (x) − πΓk−1(x))

and

ϕ · S =
(

q∑

k=1

μk
(
πdϕ(Γk ) − πdϕ(Γk−1)

)
)

◦ ϕ−1.

Since the decomposition of S in terms of its eigenspaces is uniquely defined, we
obtain the fact that the definition of ϕ · S is non-ambiguous.

9.11 Pros and Cons of Greedy Algorithms

We have studied in this chapter a series of deformable objects, by defining the rel-
evant action(s) that diffeomorphisms have on them and computing the variations of
associated matching functionals.

This computation can be used, as we did with landmarks and images, to design
“greedy” registration algorithms, which implement gradient descent to progressively
minimize the functionals within the group of diffeomorphisms. These algorithms
have the advantage of providing relatively simple implementations, and of requiring
a relatively limited computation time.

Most of the time, however, this minimization is an ill-posed problem. Minimizers
may fail to exist, for example. This has required, for image matching, the implemen-
tation of a suitable stopping rule that prevents the algorithm from running indefinitely.
Even when a minimizer exists, it is generally not unique (see the example we gave
with landmarks). Greedy algorithms provide theminimizer corresponding to the path
of steepest descent from where they have been initialized (usually the identity). This
solution does not have to be the “best one”, and we will see that other methods can
find much smoother solutions when large deformations are involved.

To design potentially well-posed problems, the matching functionals need to be
combined with regularization terms that measure the smoothness of the registration.
This will be discussed in detail in the next chapter.
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