
Chapter 6
Deformable Templates

Deformable templates represent shapes as transformations of a given prototype, or
template. One of the advantages of this approach is that the template needs to be
specified only once, for a whole family of shapes. If the template is well chosen,
describing the transformation leading to a shape results in a simpler representation,
typically involving a small number of parameters. The conciseness of the description
is important for detection or tracking algorithms in which the shape is a variable,
since it reduces the number of degrees of freedom.Small-dimensional representations
are also more easily amenable to probabilistic modeling, leading, as we will see, to
interesting statistical shape models.

The methods that we describe provide a parametrized family of shapes, (m(θ),
θ ∈ Θ), where Θ is a parameter set. Most of the time, Θ will be some subset of Rd

but it can also be infinite-dimensional. We will always assume, as a convention, that
0 ∈ Θ and that m(0) represents the template.

To simplify the presentation, we will restrict to curves, therefore assuming that
m(θ) is a parametrized curve u �→ m(u, θ) defined over a fixed interval [a, b]. Other
situations can easily be transposed from this one. For example, one commonly uses
configurations of labeled points, or landmarks, withm(θ) = (m1(θ), . . . ,mN (θ)) as
a finite-dimensional descriptor of a shape. Transposition from curves to surfaces is
also easy.

6.1 Linear Representations

We start with a description of linear methods, in which

m(θ) = m(0) +
n∑

k=1

θkuk,
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170 6 Deformable Templates

where uk is a displacement applied tom(0): for example, ifm(0) is a closed curve, uk
is defined on [a, b], taking values inRd with uk(a) = uk(b). Ifm(0) is a configuration
of points, uk is a list of two-dimensional vectors.

The issue in this context is obviously how to choose the uk’s. We will provide two
examples, the first one based on a deterministic approach, and the second relying on
statistical learning.

6.1.1 Energetic Representation

The framework developed in this section characterizes an object using a “small-
deformation” model partially inspired by elasticity or mechanics. The object is
described, not by its aspect, but by how it deforms. Our presentation is inspired by
that developed in [230] for face recognition. It includes the principal warps described
in [41] as a particular case, and provides an interesting way of decomposing shape
variations in a basis that depends on the geometry of the considered shape.

For such a shapem, we will consider small variations, represented by transforma-
tions h �→ F(m, h). For example, one can take F(m, h) = m + h when this makes
sense. We assume that the small variations, h, belong to a Hilbert space H (see
AppendixA), with dot product 〈· , ·〉m , possibly depending on m.

Associate to h some deformation energy, denoted E(h). Attribute to a time-
dependent variation, t �→ h(t), the total energy:

J (h) = 1

2

∫
‖∂t h(t)‖2mdt +

∫
E(h(t))dt.

Inspired by the Hamilton principle, we consider shape trajectories that are extremals
of the Lagrangian ‖∂t h‖2m/2 − E(h), therefore characterized by

∂2
t h + ∇E(h(t)) = 0,

where ∇E is the Hilbert gradient, defined by

∂εE(h + εw)|ε=0 = 〈∇E(h) , w
〉
m
.

We make the assumption that this gradient exists. In fact, because we only analyze
small variations, we will assume that a second derivative exists at h = 0, i.e., we
assume that, for some symmetric operator Σm ,

∇E(h) = Σmh + o(‖h‖m).

Typically, we will have E ≥ 0 with E(0) = 0, which ensures that Σm is a non-
negative operator. The linearized equation for h now becomes
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∂2
t h + Σmh = 0. (6.1)

This equation has a simple solution when Σm is diagonalizable. Making this
assumption (which is always true in finite dimensions), letting ( f1, f2, . . .) be the
eigenvectors and (λ1,λ2, . . .) the corresponding eigenvalues (in decreasing order),
solutions of (6.1) take the form

h(t) =
∑

k≥1

α(k)(t) fk

with ∂2
t α

(k) + λkα
(k) = 0, so that α(k) oscillates with frequency ωk = 1/

√
λk .

The ω′
ks form what was called a modal representation in [253]. These vibration

modes can be used to describe and compare shapes (so that similar shapes should
have similar vibration modes). It is also possible to use this model for a template-
based representation: let m be a template, with a modal decomposition as before,
and represent small variations as

(α1, . . . ,αN ) → m̃ = F

(
m,

N∑

k=1

αk fk

)
,

which has a linearized deformation energy given by
∑

k λkα
2
k .

Consider a first example of such a construction using plane curves. Let m(·) =
m(0, ·) be the prototype and Ωm its interior. Assume that m is parametrized by arc
length. A deformation of m can be represented as a vector field s �→ h(s)N (s),
where h is a scalar function and N the unit normal to m. The deformed template is
s �→ m(s) + h(s)N (s). A simple choice for E is

E(h) = 1

2

∫ L

0
∂sh

2ds,

for which Σmh = −∂2
s h and Eq. (6.1) is

∂2
t h = ∂2

s h,

which is the classical wave equation in one dimension. Since this equation does not
depend on the prototype, m, it is not really interesting for our purposes, and we need
to consider energies that depend on geometric properties of m. The next simplest
choice is probably

E(h) = 1

2

∫ L

0
ρm(s)∂sh

2ds,

where ρm is some function defined along m, for example ρm = 1 + κ2
m (where κm

is the curvature along m). In this case, we get Σmh = −2∂s(ρm∂sh). The vibration
modes are the eigenvectors of this inhomogeneous diffusion operator along the curve.
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One can obviously consider many variations of this framework. Consider, for
example, discrete shapes, represented by a finite collection of landmarks, so that a
shape is now a finite collectionm = (x1, . . . , xN )with each xi ∈ R

2. Given displace-
ments h = (h1, . . . , hN ), define h(m)(x), for x ∈ R

2 by

h(m)(x) =
N∑

i=1

g(|x − xi |2)αi

with g(t) = e−t/2σ2
, where α1, . . . ,αN ∈ R

2 are chosen so that h(xi ) = hi , i =
1, . . . , N . Then, we can define

Em(h) =
∫

R2
|h(m)(x)|2dx

=
N∑

i, j=1

αT
i α j

∫

R2
g(|xi − x |2)g(|x − x j |2)dx

=
N∑

i, j=1

ci j (m)αT
i α j

with

ci j =
∫

R2
e− |xi−x |2

2σ2
− |x j−x |2

2σ2 dx = πσ2e− |xi−x j |2
4σ2 .

Finally, notice that, from the constraints, α = S(m)−1h with si j (m) = g(|xi − x j |2),
we have

Em(h) = 1Td h
T S(m)−1C(m)S(m)−1h1d ,

where, in this expression, h is organized in an N by d matrix and 1d is the d-
dimensional vector with all coordinates equal to 1. The modal decomposition will,
in this case, be provided by eigenvalues and eigenvectors of S(m)−1C(m)S(m)−1.

The principal warp representation [41] is very similar to this one, and corresponds
to

Em(h) = 1Td h
T S(m)−1h1d . (6.2)

It is also associated to some energy computed as a function of h(m), as will be clear
to the reader after the description of reproducing kernel Hilbert spaces in Chap.8.

One can also define

Em(h) =
∫

R2
trace((dh(m))T dh(m))dx

or some other function of (dh(m))T dh(m), which corresponds to elastic energies.
Closed-form computation can still be done as a function of h1, . . . , hN , and provides
a representation similar to the one introduced in [230, 253].
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6.2 Probabilistic Decompositions

6.2.1 Deformation Axes

One can build another kind ofmodal decomposition, based on a training set of shapes,
using principal component analysis (PCA).

We will work with parametrized curves. The following discussion can be applied,
however, with any of the shape representations described in Chap. 1, or, as considered
in [73], with finite collections of points (landmarks) placed along (or within) the
shape.

Assume that a training set is given containing N shapes that we will consider
as versions of the same object or class of objects. We shall denote its elements by
m(k)(·), k = 1, . . . , N , and assume they are all defined on the same interval, I . The
average is given by

m̄(u) = 1

N

N∑

k=1

m(k)(u).

A PCA (cf. AppendixE) applied to m(k), k = 1, . . . , N , with the L2 inner product
provides a finite-dimensional approximation called the active shape representation

m(k)(u) = m̄(u) +
p∑

i=1

αki e
(i)(u), (6.3)

where the principal directions e(1), . . . , e(p) provide deformation modes along which
the shape has the most variations.

This provides a new, small-dimensional curve representation, in terms of varia-
tions of the template m̄. One can use it, for example, to detect shapes in an image,
which requires the estimation of p parameters, plus three parameters (in two dimen-
sions) describing the shape position in the image (rotation and translation).

Onemust be aware,when using thismethod, of the limits of the validity of the PCA
approach, which is a linear method. It is not always “meaningful” to compute linear
combinations of deformation vectors, even though, once the data is represented by
an array of numbers, such a computation is always possible and easy. The important
issue, however, is whether one can safely go back, that is, whether one can associate
a valid shape (which can be interpreted as an object of the same category as the initial
dataset) to any such linear combination. The answer, in general, is yes, provided the
coefficients in the decomposition are not too large. Large coefficients, however, lead
to large distortions, singularities, anddonotmodel interesting shapes.Because of this,
PCA-based decompositions should be considered as first-order linear approximations
of more complex, nonlinear, variations. Plane curves, for example, can certainly be
considered as elements of some functional space, on which linear combinations are
valid, but their result does not always lead to satisfactory shapes. To take an example,
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assume that the training set only contains triangles. The PCAdecomposition includes
no mechanism ensuring that the shapes remain triangular after decomposition on a
few principal components. Most often, the representation will be very poor, as far as
shape interpretation is concerned.

In fact, shape decomposition must always be, in one way or another, coupled with
some feature alignment on the dataset. In [73], this is implicit, since the approach
is based on landmarks that have been properly selected by hand. To deal with gen-
eral curves, it is important to preprocess the parametrizations to ensure that they
are consistent, in the sense that points with the same parameter have similar geo-
metric properties. The curves cannot, in particular, all be assumed to be arc-length
parametrized. One way to proceed is to assume that the parametrization is arc length
for only one curve, say m(0). For the other curves, say m(k), k = 1, . . . , N , we want
to make a change of parametrization, ϕ(k), such thatm(k)(ϕ(k)(s)) = m0(s) + δ(k)(s)
with δ(k) as small as possible. Methods to achieve such simultaneous parametriza-
tions implement curve registration algorithms. They will be presented later in this
book.

In addition to aligning the parametrization, it is important to also ensure that
the geometries are aligned, with respect to linear transformations (such as rotations,
translations, scaling). All these operations have the effect of representing all the
shapes in the same “coordinate system”, within which linear methods will be more
likely to perform well.

Finally, we notice that this framework can be used to generate stochastic models
of shapes. We can use the expression

m(u) = m̄(u) +
p∑

i=1

αi e
(i)(u)

and generate random curves m by using randomly generated αi ’s. Based on the
statistical interpretation of PCA, the αi ’s are uncorrelated, and their respective vari-
ances are the eigenvalues λ2

i that correspond to the eigenvector e(i). Simple models
generate the αi ’s as independent Gaussian variables with variance λ2

i , or uniformly
distributed on [−√

3λi ,
√
3λi ].

6.3 Stochastic Deformation Models

6.3.1 Generalities

The previous approaches analyzed variations directly in the shape representation.We
now discuss a point of view which first models deformations as a generic process,
before applying them to the template.

We consider here the (numerically important) situation in which the deformed
curves are polygons. Restricting ourselves to this finitely generated family will
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simplify the mathematical formulation of the theory. The template will there-
fore be represented as a list of contiguous line segments, and we will model a
deformation as a process that can act on each line segment separately. The whole
approach is a special case of Grenander’s theory of deformable templates, and we
refer to [14, 134–136, 138] for more references and information. The general prin-
ciples of deformable templates assume that an “object” can be built by assembling
elementary components (called generators), with specified composition rules. In the
case we consider here, generators are line segments and composition rules imply
that exactly two segments are joined at their extremities. One then introduces a set
of transformations (via a suitable group action) that modify the generators, under the
constraints of maintaining the composition rules. In our example, the transformation
group will consist of collections of planar similitudes.

6.3.2 Representation and Deformations of Planar Polygonal
Shapes

The formulas being much simpler when expressed using complex notation, we iden-
tify a point p = (x, y) in the plane with the complex number x + iy, that we also
denote by p. A polygonal line can either be defined by the ordered list of its vertices,
say s0, . . . , sN ∈ C or, equivalently, by one vertex s0 and the sequence of vectors
vk = sk+1 − sk , k = 0, . . . , N − 1. The latter representation has the advantage that
the sequence (v0, . . . , vN−1) is a translation-invariant representation of the polygon.
A polygonal line modulo translations will therefore be denoted π = (v0, . . . , vN−1).
The polygonal line is a polygon if it is closed, i.e., if and only if v0 + · · · + vN−1 = 0.
A polygonal line with origin s0 will be denoted (s0,π).

A polygonal line can be deformed by a sequence of rotations and scalings applied
separately to each edge vk . In C, such a transformation is just a complex multi-
plication. Therefore, a deformation is associated with an N -tuple of non-vanishing
complex numbers z = (z0, . . . , zN−1), the action of z on π being

z · π = (z0v0, . . . , zN−1vN−1) . (6.4)

This defines a group action (cf. Sect.B.5) of G = (C \ {0})N on the set of polygonal
lines with N vertices.

In this group, some transformations play a particular role. Introduce the set

Δ = {z ∈ G, z = z(1, . . . , 1), z ∈ C}

(the diagonal in G). An element in Δ provides a single similitude applied simultane-
ously to all edges, i.e.,Δ represents the actions of similitudes on polygons. Similarly,
the set

Δ0 = {z ∈ G, z = z(1, . . . , 1), z ∈ C, |z| = 1}
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represents the action of rotations.
A polygonal line modulo similitudes (resp. rotations) can be represented as an

orbitΔ · π (resp.Δ0 · π). We can define the quotient groupsG/Δ andG/Δ0, namely
the sets of orbits Δ · z (resp. Δ0 · z) for z ∈ G (they have a group structure because
G is commutative). One obtains a well posed action of, say, G/Δ on polygonal lines
modulo similitudes, by defining

(Δ · z) · (Δ · π) = Δ · (z · π).

Given a polygon, π, we define F(π) as the set of group elements z in G that
transform π into another polygon, namely

F(π) = {z ∈ G, z0v0 + · · · + zN−1vN−1 = 0} . (6.5)

Note that F(π) is not a subgroup of G.
We can use this representation to provide a stochastic model for polygonal lines. It

suffices for this to choose a template π and a random variable ζ onG and to take ζ · π
to obtain a random polygonal line. Because we are interested in shapes, however, we
will restrict ourselves to closed lines. Therefore, given π = (v0, . . . , vN−1), we will
assume that ζ takes values in F(π).

We now build simple probability distributions on G and F(π) for a fixed π.
Consider the function:

E(z) = (α/2)
N−1∑

k=0

|zk − 1|2 + (β/2)
N−1∑

k=0

|zk − zk−1|2.

The first term is large when z is far from the identity, and the second one penalizes
strong variations between consecutive zi ’s. Here and in the following, we let z−1 =
zN−1.

We want to choose a probability distribution on G which is small when E is large.
A natural choice would be to take the measure with density proportional to
exp(−E(z))/

∏N−1
k=1 |zk | with respect to the Lebesgue measure on C

N−1. This is
the “Gibbs measure”, with energy E , relative to the Haar measure,

∏N−1
k=1 dzk/|zk |

which is the uniform measure on G. Such a choice is of interest in that it gives a very
small probability to small values of |zk |, which is consistent with the fact that the zk’s
are non-vanishing onG. Unfortunately, this model leads to intractable computations,
and wewill rely on the simpler, but less accurate, model with density, f , proportional
to exp(−E(z)). This choice will greatly simplify the simulation algorithms, and in
particular, the handling of the closedness constraint.

With π = (v0, . . . , vN−1), this constraint is expressed by
∑

k vk zk = 0, and we
will use the conditional density for f given this identity. This conditional distribution
can be computed by using a discrete Fourier transform. Define
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ul = ẑl = 1√
N

N−1∑

k=0

zke
−2iπ kl

N .

One can easily prove that E can be written

E(z) = α|u0 − √
N |2 +

N−1∑

l=1

(
α + 2β

(
1 − cos

2πl

N

))
|ul |2 ,

and that the constraint becomes

N−1∑

l=0

v̂lul = 0

with v̂l = 1√
N

∑N−1
k=0 vke−2iπ kl

N . Notice that, because π is closed, we have v̂0 = 0.

Let w0 = √
α(u0 − √

N ), and, for l ≥ 1, wl =
√

α + 2β(1 − cos 2πl
N )ul , so that

E(z) =
N−1∑

l=0

|wl |2.

Without the constraint, the previous computation implies that the real and imaginary
parts of w0, . . . , wN−1 are mutually independent standard Gaussian variables: they
therefore canbe easily simulated, and the value of z0, . . . zN−1 directly computed after
an inverse Fourier transform. Conditioning on closedness only slightly complicates
the procedure. Replacing ul by its expression as a function of w1, . . . , wN−1, and
using v̂0 = 0, the constraint can be written in the form

N−1∑

l=0

clwl = 0

with c0 = 0 (cp =
√

α + 2β(1 − cos 2πl
N )). The following standard lemma from the

theory of Gaussian variables solves our problem.

Lemma 6.1 Let w be a standard Gaussian vector in R
2N , and let V be a vector

subspace of R2N . Let ΠV be the orthogonal projection on V . Then, the random
variable ΠV (w) follows the conditional distribution given that w ∈ V .

Assume that c = (c0, . . . , cN−1) has been normalized so that
∑ |ci |2 = 1. To

sample closed random polygonal lines, it suffices to sample a standard Gaussian w∗
in CN , and set

w = w∗ −
(

N−1∑

l=0

clw
∗
l

)
c.

Some examples of randomshapes simulatedwith this process are provided in Fig. 6.1.
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1, 1 1, 10 1, 100

10, 1 10, 10 10, 100

100, 1 100, 10 100, 100

1,1 1,0.1 1,0.01

0.1,1 0.1,0.01

0.01,1 0.01,0.1 0.01,0.01

0.1,0.1

Fig. 6.1 Random deformations of a circle (with different values for α and β)

6.4 Segmentation with Deformable Templates

Using deformable templates in shape segmentation algorithms incorporates much
stronger constraints than with active contours, which only implement the fact that
shapes can be assumed to be smooth. If one knows the kind of shapes that are to be
detected, one obviously gains in robustness and accuracy by using a segmentation
method that looks for small variations of an average shape in this category.

Detection algorithms can be associated with the models provided in Sects. 6.2
and 6.3. Let us start with Sect. 6.2 with a representation that takes the form, denoting
α = (α1, . . . αp0):

mα = m̄ +
p0∑

i=1

αi K
(i) ,

for some template m̄ and vector fields K (i). This information also comes with the
variance of αi , denoted λ2

i .
The “pose” of the shape within the image is also unknown. It is associated with

a Euclidean or affine transformation g applied to mα. The problem is then to find g
and α such that gmα is close to regions of low deformation energy within the image.

One can use a variational approach for this purpose. As described in Sect. 5.4.9,
one starts with the definition of a potential V which is small when evaluated as a
point close to contours. One can then define

E(g,α) =
n∑

i=1

α2
i

λ2
i

+ β

∫

I
V (gmα(u))du.
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The derivatives of E are

∂αi E = 2
αi

λ2
i

+ β

∫

I
∇V (gmα(u))T (gK i (u)) du

and

∂gE =
∫

I
mα(u)∇V (gmα(u))T du

(it is a matrix). A similar computation can bemade for variants of the definition of the
cost function. One can, for example add a penalty (such as | log det(g)|) to penalize
shapes that are too small or too large. One can also replace the quadratic term in αi

by boundedness constraints, such as |αi | <
√
3λi .

If scaling to very small curves is penalized, it is plausible that, in contrast to the
case of active contours, the global minimum of E provides an acceptable solution.
However, from a practical point of view, minimizing E is a difficult problem, with
many local minima. It is therefore still necessary to start the algorithm with a good
guess of the initial curve.

Consider now the representation of Sect. 6.3. We will use the same notation
as in this section, a shape being modeled by a polygon π with N edges denoted
(v0, . . . , vN−1). A deformation is represented by N complex numbers z = (z0, . . . ,
zN−1), with the action

z · π = (z0v0, . . . , zN−1vN−1).

We have denoted by Δ (resp. Δ0) the set of z’s for which all zi ’s coincide (resp.
coincide and have modulus 1); these subgroups of G = (C \ {0})N correspond to
plane similitudes (resp. plane rotations).

We denote by [z] and [z]0 the classes of z modulo Δ and Δ0. Similarly, when
π is a polygon, we denote by [π] and [π]0 the classes of π modulo Δ and Δ0. For
example,

[z] = {c · z, c ∈ Δ}

and
[π] = {z · π, z ∈ Δ} .

A template should be considered as a polygon modulo Δ or Δ0 (depending on
whether scale invariance is required), whereas a shape embedded in an image should
be a polygon with an origin. Let π denote the template, although we should use the
notation [π] or [π]0. Introduce a function V (·), defined over the image, that is large
for points that are far from image contours. The quantity that can be minimized is

Q(z, s0) = E([z]) +
∫

m=s0+z·π
Vdσm,
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with s0 ∈ C and z ∈ G. The deformation energy E is a function defined on
G/Δ (or equivalently a function defined on G, invariant under similitude trans-
formations), that measures the difference between z and a similitude. For example,
with z = (z0, . . . , zN−1), and zk = rkeiθk , one can take

E([z]) =
N∑

k=1

(log rk − log rk−1)
2 +

N∑

k=1

arg(eiθk−iθk−1)2 .

Here, we have defined arg z, for z = 0, as the unique θ ∈] − π,π] such that z = reiθ

with r > 0. We also use the convention rN = r0, θN = θ0 for the last term of the sum
(assuming we are dealing with closed curves).

If scale invariance is relaxed, a simpler choice is

E([z]0) =
N∑

k=1

|zk − zk−1|2.

Notice that for closed curves, it must be ensured that z · π remains closed, which
induces the additional constraint, taking π = (v0, . . . , vN−1):

N−1∑

k=0

zkvk = 0 .

It is interesting to compute the continuum limit of this energy. Still using com-
plex numbers, we consider a C1 template curve m : I → C, where I = [0, L] is an
interval, with arc-length parametrization. For a given N , we consider the polygon
π = (v0, . . . , vN−1), with

vk = m

(
kL

N

)
− m

(
(k − 1)L

N

)
� L

N
∂sm

(
(k − 1)L

N

)
.

Adeformation, represented by z = (z0, . . . , zN−1)will also be assumed to come from
a continuous curve ζ defined on [0, 1] with zk = ζ(k/N ). The continuum equivalent
of π �→ π · z can then be written as a transformation of derivatives:

∂sm(s) �→ ζ(s/L)∂sm(s),

which leads us to define an action of non-vanishing complex-valued curves ζ on
closed curves by

(ζ · m)(s) =
∫ s

0
ζ(u/L)ṁ(u)du .
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In the rotation-invariant case, the energy of the action should be given by the limit of

N−1∑

k=1

|zk − zk−1|2.

Using the fact that zk − zk−1 � ζ̇((k − 1)/N )/N , we have the continuum equivalent

N
N−1∑

k=1

|zk − zk−1|2 →
∫ 1

0
|ζ̇(s)|2du .

This is the H 1 norm of the deformation generator along the curve.
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