
Chapter 4
Computations on Triangulated Surfaces

4.1 Triangulated Surfaces

4.1.1 Definition and Notation

Triangulated surfaces provide a three-dimensional generalization of polygons in two
dimensions. Surfaces are usually stored on computers in this form, and these are the
kinds of objects that must be handled in practical applications.

In full generality, a triangulated surface is a set of vertices V = {v1, . . . , vM }
with a family of 3-tuples of indices F = { f1, . . . , fK }, where each fk takes the
form fk = ( jk1, jk2, jk3) ∈ {1, . . . , M}. One associates to fk the triangle (or face)
in the triangulation defined by Fk = (vk1, vk2, vk3), using the abbreviated notation
vkl := v jkl . The set of edges of the triangulation is the family of unordered pairs of
vertices which belong to the same face and will be denoted by E = {e1, . . . , eQ}.

The order of the vertices in each face is important and defines its orientation,
which is invariant up to a cyclic permutation of the vertices. We will only consider
regular triangulations, which are such that the intersection of two faces is either
empty or an edge. This excludes those situations in which the contact between two
faces occurs at a vertex only, or in which some vertex belongs to the interior of an
edge. The number

χ = |V| − |E | + |F |

is a topological invariant of the surface called the Euler characteristic.
For a vertex vi , we let Fi denote the set of indexes of faces that contain it, and Ei

the set of indexes of edges that contain it. We also let Vi denote the set of indexes
of vertices (distinct from vi ) that belong to one of the 3-tuples in Fi . (Vi , Ei ,Fi )

represents the neighborhood of vi in the triangulation.
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The triangulation is said to be consistent if, whenever two faces intersect, their
common edge is ordered in different directions in the two faces. A consistent
triangulation is the equivalent of an oriented surface. We only consider consistent
triangulations in the following.

4.2 Estimating the Curvatures

Given a triangulated surface, the next step is to compute differential descriptors, and
in particular discrete forms of the curvatures.We address this problem in this section,
focusing on a few important methods that have recently emerged in the literature.

4.2.1 Taylor Expansions

The unit normal to an oriented triangle (v1, v2, v3) is the vector

N = (v2 − v1) × (v3 − v1)

|(v2 − v1) × (v3 − v1)| .

Each face Fk in the triangulation therefore carries a uniquely defined normal, N f
k .We

can associate the normal to a specific point inside the face, for example its centroid
(v1 + v2 + v3)/3. (There are several possible definitions of the center of a triangle,
however, including the circumcenter, which is the center of the circumscribed cir-
cle, the incenter, which is the center of the inscribed center, or the orthocenter, the
intersection of the lines passing through the vertices and orthogonal to the opposite
edge.)

In many cases, one also wants to define normals at the vertices. This can be done
using a weighted average of the normals at the neighboring faces. If vi is a vertex,
define

N v
i =

∑
k∈Fi

wi (Fk)N
f
k

| ∑k∈Fi
wi (Fk)N

f
k | ,

where wi (Fk) gives a measure of the “importance” of face Fk relative to vertex vi .
The simplest definition is the area, area(Fk), independent in this case of the chosen
vertex. In [194], it is suggested to use the area of the part of the face which is closer
to vi than to any of the other two vertices. This is the intersection of the face Fk with
the region delimited by the following four points: vi , the two midpoints of the edges
of Fk that contain vi and the circumcenter of Fk . Notice that the circumcenter lies
outside of Fk if the triangle is obtuse, as illustrated in Fig. 4.1. Such regions form
Voronoï cells. Let Fki denote the part of face Fk which is associated to vi in this way.
One can use wi (Fk) = area(Fki ).
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Fig. 4.1 Decomposition of triangles into Voronoï cells when the circumcenter is interior to the
triangle (left) and when it is exterior (right)

Similarly, we can define a normal along an edge e to be a weighted average of the
normals to the faces that intersect at e, using, for example, the areas of the faces as
weights.

Having an estimation of the normal at each vertex allows for the approxima-
tion of the normal curvature of a curve on the surface passing through this vertex,
which yields the second fundamental form. If j ∈ Vi , the two-point path (vi , v j )

provides a discrete curve fragment passing through vi . Define the tangent vector
Ti j = (v j − vi )/|v j − vi |. Using Definition3.26, one possible approximation of the
second fundamental form at the midpoint between vi and v j in the direction Ti j
(which is also the normal curvature of the curve fragment at the midpoint) is

II i j := −T T
i j

(
N v

j − N v
i

|v j − vi |
)

= − (N v
j − N v

i )T (v j − vi )

|v j − vi |2 .

Also, using a Taylor expansion (assuming that N v is the restriction to the vertices
of a smooth function), one can prove (the justification being left to the reader) that

(N v
j + N v

i )T (v j − vi )

|v j − vi |2 = O(|v j − vi |),

and adding this expression to the previous estimate II i j yields the alternative formula
[273]

II i j := 2(N v
i )T (v j − vi )

|v j − vi |2 .

Because the matrix dN is symmetric in the tangent plane, it is described by
three parameters in any orthonormal basis. Since each computation of the discrete
second fundamental form yields one linear equation involving dN , this requires at
least three edges for its estimation, which is the minimum number provided by the
triangulation. One possible way to estimate curvatures is to select an arbitrary basis
(ai , bi ) of the tangent plane to the surface at vi , Tvi M , which is by definition the



104 4 Computations on Triangulated Surfaces

plane perpendicular to N v
i (for example, assuming that N v

i is not parallel to the x-
axis, take ai = (1, 0, 0)T × N v

i and bi = N v
i × ai ); then, compute, for each j ∈ Vi ,

the coordinates (xi j , yi j ) of the normalized orthogonal projection of Ti j onto this
basis. We have

xi j = aT
i Ti j/

√
(aT

i Ti j )
2 + (bTi Ti j )

2

and yi j = bTi Ti j/
√

(aT
i Ti j )

2 + (bTi Ti j )
2.

Then, letting dNi =
(

αi γi
γi βi

)

in this basis, we have the system of linear equations

αi x
2
i j + 2γi xi j yi j + βi y

2
i j = −II i j , j ∈ Vi .

This is an over-constrained system, for which one can compute a least-squares solu-
tion. Once dNi is computed, its trace, determinant and eigenvalues provide an esti-
mation of the mean, Gaussian and principal curvatures.

A more direct approach to estimating the curvature from the second fundamental
form has been proposed in [273]. Introduce, for continuous surfaces, the matrix
(defined at a point p in the surface)

Σp = 1

2π

∫ 2π

0
κN (Tθ)TθT

T
θ dθ,

where Tθ is the rotation (within the tangent plane) of an arbitrary reference vector T ∈
TpM by an angle θ. A direct computation of this integral (using the basis (T, Tπ/2))
shows that

Σp = 3

8
dN (p) − 1

8
det(dN (p))dN (p)−1,

the last term being the adjugatematrix of dN (p) (therefore also definedwhen dN (p)
is singular).

This implies that the eigenvalues ofΣp are λ1 = −(3κ1(p) − κ2(p))/8 and λ2 =
−(3κ2(p) − κ1(p))/8 (which can be used to compute the curvatures), and that the
eigenvectors ofΣp coincide with those of dN (p) and therefore provide the principal
directions.

Returning to the discrete case, the curvatures at vertexvi can therefore be estimated
from an approximation Σi of Σvi . Such an approximation is provided by the simple
formula

Σi = −
∑

j∈Vi

wi j IIi j Ti j T
T
i j /

∑

j∈Vi

wi j ,

where wi j = (wi (F
+
j ) + wi (F

−
j ))/2, F+

j and F−
j being the faces that contain the

edge {vi , v j }.
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4.2.2 Gauss–Bonnet and Area Minimization

In the previous section, the curvature computations were based on Taylor expansions
of formulas that apply on smooth surfaces.More recently [85], an increased focus has
been made on obtaining expressions that derive from intrinsic properties of surfaces
that can be extended to polyhedral surfaces.

The right-hand side of Eq. (3.32) in the Gauss–Bonnnet theorem can still be
defined on polyhedral surfaces. This fact is used in [194] to provide an approxi-
mation of the Gauss curvature, using, for a vertex vi in the triangulation, the region
Ai formed by the union of the Voronoï cells around vi (Fig. 4.1 ). The expression is
very simple because, in both cases in Fig. 4.1, the sum of the (one or two) exterior
angles in each part of Ai coincides with the angle of the corresponding face at vi .
For k ∈ Gi , denoting by θik the angle of the face Fk at vi , we see that the right-hand
side of (3.32) is given by 2π − ∑

k∈Fi
θik . Approximating K by a constant over Ai ,

we get the formula

Ki = 1

|Ai |
(
2π −

∑

k∈Fi

θik

)
.

The area, |Ai |, can be computed in closed form. It is the sum of the areas of the
shaded regions in Fig. 4.1, over all faces that contain vi . Let as above θik be the angle
at vi for a face Fk . Let v′

ik and v′′
ik be the other two vertices of Fk so that vi , v′

ik and
v′′
ik are ordered consistently with the orientation of Fk . Let e′

ik be the edge opposite
v′
ik in Fk and e′′

ik the edge opposite v′′
ik (we will later denote by eik the edge opposite

vi ). Finally, let θ′
ik and θ′′

ik respectively denote the angles at v′
ik and v′′

ik . Then, the
area, aik , of the shaded region in Fig. 4.1 in the acute case is given by

aik = 1

8
(|e′

ik |2 ctn(θ′
ik) + |e′′

ik |2 ctn(θ′′
ik)).

In the obtuse case, and if θik is the obtuse angle,

aik = 1

2
|e′

ik | |e′′
ik | cos θik − 1

8
(|e′

ik |2 cos θ′′
ik + |e′′

ik |2 cos θ′
ik).

Finally, still in the obtuse case, and when θik is one of the acute angles,

1

8
|ẽik |2 cos θik

where ẽik is the side opposed to the other acute vertex.
Given this, |Ai | is the sum of these areas over k ∈ Gi . When there is no obtuse

triangle around vi , the area |Ai | has another simple expression [194]. For l ∈ Ei
(edges stemming from vi ), let αil and βil be the angles at vertices opposed to el in
the triangles that intersect at el . Then
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|Ai | = 1

8

∑

l∈Ei

(ctnαil + ctn βil)|el |2.

To address the mean curvature, we first use an important interpretation of it as
a “gradient” of the surface area. Let S be a surface and h : S → R

3 be a (smooth)
vector field on S. Assume that h = 0 on the boundary of S (if S has one). Define
the surface Sε as the one obtained by displacing each p ∈ S along the vector εh(p).
Then (this will be proved in Proposition5.4)

∂ (area(Sε))|ε=0
= 2

∫

S
H(p) h(p)T N (p) dσS(p).

One can make the same construction with a discrete surface Σ by associating
to each vertex vi a small displacement εhi ∈ R

3, and computing the derivative of
the area of the obtained surface Σε. Approximating the right-hand side in the above
formula, we will then identify:

∂ (area(Σε))|ε=0
= 2

M∑

i=1

hT
i (Hi Ni )|Ai |, (4.1)

where Ai is the neighborhood attributed to vi and Hi Ni can then be interpreted as
the discretized product of the mean curvature with the normal at vi .

Given that the area of a triangle with vertices v1, v2, v3 is given by the half-norm
of the cross product (v2 − v1) × (v3 − v1), the left-hand side in (4.1) is

1

2

K∑

k=1

((h2k − h1k) × (vk3 − vk1) + (vk2 − vk1) × (hk3 − hk1))
T N f

k

= 1

2

K∑

k=1

(hk1 × (vk2 − vk3) + hk2 × (vk3 − vk1) + hk3 × (vk2 − vk1))
T N f

k ,

where hk1, hk2 and hk3 are the displacements associated with the vertices of Fk and
N f
k is the normal to Fk .
For k ∈ Fi , let eik be the oriented edge opposite vi . Using the relation (x × y)T z =

xT (y × z) and reordering the sums, we can write

d

dε
area(Σε)|ε=0 = 1

2

M∑

i=1

hT
i

⎛

⎝
∑

k∈Fi

eik × N f
k

⎞

⎠ .

This provides a definition of the discrete mean curvature at vi :

Hi Ni = 1

4|Ai |
∑

k∈Fi

eik × N f
k .
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Reordering this sum over edges and explicitly computing the cross product leads to
the equivalent expression [194]

Hi Ni = 1

4|Ai |
∑

l∈Ei

(ctnαil + ctn βil)el ,

where αil and βil are, as before, the angles at the vertices opposite to el in each of
the faces that contain el (el being oriented from vi to the other vertex).

Note that this computation provides an estimate of the normal and the mean
curvature together.

4.2.3 Curvature Measures

The Smooth Case

There is another way to interpret curvature on a surface that can be generalized to
the non-smooth case, leading to another formula for curvature approximation on
triangulated surfaces. On smooth surfaces, this is related to the volume of so-called
parallel sets. We first show that smooth surfaces have positive reach, in a discussion
that parallels the one in Sect. 1.13.2. We use the same notation as in that section,
letting, for a surface M ,

dM(p) = dist(p, M) = inf {|p − q| : q ∈ M} ,

UM be the set of points p that have a unique closest point, πM(p), on M , r(M, q) be
the supremum of the radii of balls centered at q included in UM and r(M) be their
minimum over q ∈ M (the reach of M). Propositions1.20, 1.21 and 1.22 remain true
in the present case, as does the fact that dM is differentiable on ŮM \ M . We prove a
version of Proposition1.23 for surfaces.

Proposition 4.1 Let M be a closed C2 regular surface. Then, we have the following
statements.

(i) If |p − q| = dM(p) (q ∈ M) then p = q + t NM(q) with |t | = dM(p) and
max(tκ1(q), tκ2(q)) ≤ 1, where κ1 and κ2 are the principal curvatures.

(ii) Let

ρM = max

{
2 |(q̃ − q)T NM(q)|

|q̃ − q|2 : q, q̃ ∈ M, q �= q̃

}

. (4.2)

Then ρM < ∞ and r(M) ≥ 1/ρM > 0. In particular, ŮM is not empty.
(iii) The distance map is differentiable on ŮM \ M.

Proof The proof is similar to that of Proposition1.23 andwe only highlight the differ-
ences. To prove (i), take an arc-length parametrized curve γ on M such that γ(0) = q
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and let f (t) = |p − γ(t)|2. Then, ḟ (0) = −2(p − q)T γ̇(0), which much vanish for
all γ, showing that p − q is perpendicular to TqM and therefore proportional to
NM(q), i.e., p = q + t NM(q) for some t . Taking the second derivative of f (which
must be non-negative at 0) yields f̈ (0) = 2 − 2(p − q)T γ̈(0) = 2(1 − tκ(γ)

N (0)), so
that tκ(γ)

N (0) ≤ 1. It then suffices to use the fact that κ1(q) ≤ κ
(γ)

N (0) ≤ κ2(q).
To prove that ρM is finite, take qn, q̃n such that

cn := 2 |(q̃n − qn)T NM(qn)|
|q̃n − qn|2

tends to infinity, which implies that subsequences can be taken such that qn, q̃n → q.
Take a local chart around q such that qn = m(un, vn) and q̃n = m(ũn, ṽn). Let γn be a
minimizing geodesic such that γn(0) = qn and γ(sn) = q̃n . Then the same argument
as that of Proposition1.23 can be used to prove that |q̃n − qn|2 = s2n + o(s2n ) and

|(q̃n − qn)
T NM(qn)| = |κ(γn)

N (0)|s2n + o(s2n ),

contradicting the assumption that cn → ∞. The rest of the proof of (ii) is identical
to Proposition1.23.

For (iii), one shows that, if p ∈ ŮM \ M and q = πM(p), then 1 − max(tκ1(q),

tκ2(q)) > 0with the same argument as in Proposition1.23. Take a positively oriented
chart (u, v) = m(u, v) around q and consider the mapping ϕm(u, v, t) = m(u, v) +
t NM(m(u, v)). Then, letting Nm = NM ◦ m,

∂1ϕm = ∂1m + t∂1Nm, ∂2ϕm = ∂2m + t∂2Nm, ∂3ϕm = Nm

so that

det(dϕm) = (∂1ϕm × ∂2ϕm)T∂3ϕm

= (∂1m × ∂2m)T Nm + t (∂1m × ∂2Nm + ∂1Nm × ∂2m)T Nm (4.3)

+ t2(∂1Nm × ∂2Nm)T Nm .

We have ∂1m × ∂2m = |∂1m × ∂2m| Nm . Moreover, for any linear operator A on
R

3 and any basis (u1, u2, u3) in R3, we have (the proof being left to the reader)

(u1 × u2)
T Au3 + (u2 × u3)

T Au1 + (u3 × u1)
T Au2 = det(u1, u2, u3)trace(A).

Applying this to

(∂1m × ∂2Nm + ∂1N × ∂2m)T Nm = (Nm × ∂1m)T∂2Nm + (∂2m × Nm)T∂1Nm

with ∂1Nm = dNm ∂1m, ∂2Nm = dNm ∂2m, taking A = dNm on TpM and ANm =
0, we get
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(∂1m × ∂2Nm + ∂1Nm × ∂2m)T Nm = |∂1m × ∂2m| trace(dNm)

= −2|∂1m × ∂2m| H(m),

where H is the mean curvature. Moreover, since ∂1Nm and ∂2Nm are tangent to M at
m, (∂1Nm × ∂2Nm)T Nm is the two-dimensional determinant of [dNm ∂1m, dNm ∂2m],
therefore equal to K (m)|∂1m × ∂2m|. We therefore have

det(dϕm) = (1 − 2t H(m)+t2K (m))|∂1m × ∂2m|
= (1 − tκ1(m))(1 − tκ2(m))|∂1m × ∂2m|. (4.4)

The determinant is therefore positive, and the differentiability of dM at p
can be obtained using the inverse function theorem, as done in the proof of
Proposition1.23 �

Proposition4.1 ensures that the mapping

ϕM : M × (−r, r) → R
3

(q, t) 
→ q + t NM(q)

is one-to-one for r < r(M) onto VM(r) = {p : dM(p) < r}. More generally, for
B ⊂ M , consider the sets Vr (M, B) = ϕM(B × (−r, r)) and V+

r (M, B) = ϕM(B ×
(0, r)). Using the fact that ϕm introduced in the proof of Proposition4.1 is such that
ϕm(u, v, t) = ϕM(m(u, v), t) and assuming that M is entirely covered by a local
chart, Eq. 4.4 implies that

Vol(V+
r (M, B))

=
∫ r

0

∫

m−1(B)

(1 − 2t H(m(u, v)) + t2K (m(u, v)))|∂1m × ∂2m| du dv

= rArea(B) − r2
∫

B
H dσM + r3

3

∫

B
KdσM , (4.5)

where σM is the volume measure on M . The last expression for Vol(V+
r (M, B))

remains true even when B is not completely covered by a local chart, as can easily
be proved by using partitions of unity, or covering B by a union of local charts up to
a set of measure zero.

This discussion can also be extended to compact surfaces with boundary. Similar
to the case of curves, we need to generalize the definition of normal vectors to
boundary points. Let p ∈ ∂M and N∂M(p) ∈ TpM denote the unit normal to the
boundary at p pointing inward (toward M). Then, a vector N is normal to M at p if
it can be written in the form

N = t1N∂M(p) + t2NM(p)
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with t1 ≤ 0. We let NM(p) denote the set of unit normals at p. Then the statements
of Proposition 4.1 remain true, provided that (4.2) is replaced by

ρM = max

{
2 (q̃ − q)T N

|q̃ − q|2 : q, q̃ ∈ M, q �= q̃, N ∈ NM(q)

}

.

Equation (4.5) remains true whenever B ⊂ M . For B ⊂ ∂M , the computation must
bemodified. Represent B ⊂ ∂M as a parametrized curve γ : (0, L) → R

3 and define

ϕ(s, t1, t2) = γ(s) + t1N∂M(γ(s)) + t2NM(γ(s)).

Assume that γ is parametrized by arc length and oriented so that γ̇ × N∂M = NM .
Consider the setVr (M, B) = ϕ(B × Γr )whereΓr is the half disc {(t1, t2) : t21 + t22 <

r2, t1 ≤ 0}, so that Vr (M, B) is the set of points in R
3 that have closest point to M

in B at distance less than r . We have

det(dϕ(s, t1, t2)) = det(γ̇(s), N∂M(γ(s)), NM(γ(s)))

+t1 det(∂s N∂M , N∂M(γ(s)), NM(γ(s)))

+t2 det(∂s NM , N∂M(γ(s)), NM(γ(s)))

= 1 − t1κ
(γ)
g (s) − t2κ

(γ)

N (s).

Indeed, we have N∂M × NM = γ̇ and

det(∂s N∂M , N∂M(γ(s)), NM(γ(s))) = ∂s N
T
∂M γ̇ = −NT

∂M γ̈ = −κ(γ)
g .

Similarly
det(∂s NM , N∂M (γ(s)), NM(γ(s))) = ∂s N

T
M γ̇ = −κ

(γ)

N .

We can now compute (introducing radial coordinates)

Vol(Vr (M, B)) =
∫ L

0

∫

t21+t22<r2,t1<0
(1 − t1κ

(γ)
g (s) − t2κ

(γ)

N (s)) dθ dρ ds

=
∫ L

0

∫ r

0

∫ π/2

−π/2
(1 + ρ cos θκ(γ)

g (s) − ρ sin θκ
(γ)

N (s)) dθ dρ ds

= r length(B) + r2
∫ L

0
κ(γ)(s) ds.

Applied to r < r(M), Eq. (4.5) provides a new interpretation of the integrals of
mean and Gauss curvatures over subsets of M in terms of the volumes of the sets
V+
r (M, B) (which are often called parallel sets along the surface M). These parallel

sets may be defined for sets that are much more general than smooth surfaces and
their volumes then lead to generalized versions of the curvature. We now see how
these ideas can be applied to triangulated surfaces.
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The Discrete Case

We first generalize the definition of VB(r) to the non-smooth case, for which we will
need a generalized definition of the set of unit normals to M at a given point. This
can be done in two equivalent ways. Here M is an arbitrary closed set with positive
reach, i.e., such that r(M) > 0.

The first point of view is to let, for r < r(M),

Vr (M, B) = {p : 0 < dM(p) < r and πM(p) ∈ B} .

When M is the boundary of a compact set Ω (e.g., when M is a closed surface), we
can define

V+
r (M, B) = Vr (Ω, B),

still for B ⊂ M .
Federer [106] has proved that (4.5) can be generalized to sets of positive reach,

so that Vol(V+
B (r)) is polynomial in r , taking the form

Vol(V+
r (M, B)) = rμ0(M, B) − r2μ1(M, B) + r3

3
μ2(M, B). (4.6)

In particular, μ1(M, B) and μ2(M, B) are generalizations of the integrals of the
curvatures on B, and are called the mean and Gauss curvature measures on M . They
have the important property of being additive, satisfying in particular

μi (M ∪ M ′, B) = μi (M, B) + μi (M
′, B) − μi (M ∩ M ′, B). (4.7)

Although it already is a rich class of sets (including, for example, all convex sets),
sets of positive reach do not include non-convex polyhedrons, so the construction
cannot be immediately extended to triangulated surfaces. But formula (4.7) provides
the key for this extension. Indeed, one can define a union of sets of positive reach as
a set M that can be decomposed into

M =
⋃

j∈J

M j ,

where eachMj has positive reach and any nonempty intersection ofMj ’s has positive
reach [314]. Then, iterating (4.7) (using the inclusion-exclusion formula), we can set

μk(M, B) =
∑

I⊂J

(−1)|I |−1μk

( ⋂

j∈I
M j , B

)
, (4.8)

the left-hand side being well-defined from the hypotheses. This is a valid definition
of the right-hand side because it can be shown that the result does not depend on the
chosen decomposition of M , which is not unique. This extension now includes all
polyhedrons (and interiors of compact triangulated surfaces).
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The second point of view gives an alternative interpretation of the curvature
measures, based on the normal bundle to a set M . This requires a general defini-
tion of tangent and normal vectors to an arbitrary set M ⊂ R

3 [107]. We already
gave a general definition of tangent vectors in Definition 1.5, which defined the tan-
gent set to M at p ∈ M as the set TpM of vectors v ∈ R

d such that, for any ε > 0,
there exist x ∈ M and r > 0 such that |x − p| < ε and |v − r(x − p)| < ε.

We will later use the fact that, when M is included in the boundary of an open set
Ω , TmΩ form ∈ M contains vectors in TmM and all vectors v such thatm + εv ∈ Ω

for small ε (vectors that point to the interior of Ω). The special cases that follow will
be important when studying triangulated surfaces.

Single points:Assume thatM = {a}. It is clear from the definition that any tangent
vector to M must satisfy |v| < ε for any ε > 0 so that TaM = {0}.

End-points of curves: Let γ : [0, 1] → R
3 be a smooth regular curve, M =

γ([0, 1]) and a = γ(0). Then, any x ∈ M close to a is equal to γ(u) for u � 0,
and a tangent vector v at a must be such that v � r(γ(u) − γ(0)) with r > 0, so that
TaM is the half-line R+γ̇(0). By the same argument, if b = γ(1), TbM = R

−γ̇(1).
(Of course, the tangent space at interior points is the full line generated by the tangent
vector γ̇.)

Triangles: If M a triangle (including its interior) and a is on its boundary, then
TaM is simply the set of vectors v such that a + v points towards the interior of M .

Normals can now be derived from tangents, as stated in the next definition.

Definition 4.2 Let M ⊂ R
3. For p ∈ M , the normal vectors to M at p form the set

NpM , containing all vectors n such that nT v ≤ 0 for v ∈ TpM .
The normal bundle of M is the set NM ⊂ R

3 × R
3 defined by

NM = {
(p, n), p ∈ M, n ∈ NpM, |n| = 1

}
.

When M ⊂ ∂Ω , we can also consider

NM+ = {
(p, n), p ∈ M, n ∈ NpΩ, |n| = 1

}
.

This corresponds to normals to M pointing outward from Ω .
The normal bundle is the structure on which the new curvature measures will be

defined. Let us describe it for the previous examples. First, ifM is a smooth closed ori-
ented surface inR3,NM is simply the set {(p, N (p)), p ∈ M} ∪ {(p,−N (p)), p ∈
M}. The set NM+ only contains elements (p,−N (p)) (assuming that M is posi-
tively oriented).

If M is a closed curve, with regular parametrization s 
→ γ(s), then NM ={
(γ(s), n) : nT γ̇ = 0, |n| = 1

}
(this can be thought of as a tube centered

around γ).
If M = {a}, then (since TaM = {0}),NM = {a} × S2, where S2 is the unit two-

dimensional sphere.
WhenM is an open curve, parametrized byγ, the setNaM for a = γ(0) is the half-

sphere S2 ∩ {nT γ̇(0) ≤ 0}, while, for b = γ(1), it is NbM = S2 ∩ {nT γ̇(1) ≥ 0}.
The whole set NM can be thought of as a “sausage” around γ.
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Finally, if M is a triangle, and a is on an edge, but not at a vertex, NaM is a
half-circle, being the intersection of the unit circle orthogonal to the edge and the
half-space {nT ν ≥ 0}, where ν is normal to the edge, in the triangle plane, and
pointing towards the interior of the triangle. If a is a vertex, the set NaM is the
“spherical corner” formed by the intersection of the unit sphere and the two half-
planes {nT e ≤ 0} and {nT e′ ≤ 0}, where e and e′ are the two edges stemming from
a (oriented from a to the other vertex).

The interesting fact in the previous examples is that, in each case,NM was a 2-D
structure, i.e., it could always be parametrized by two parameters. In fact, NM is a
two-dimensional continuous surface in a space of dimension 6.

For a smooth surface, we have introduced the function ϕM(p, t) = p + t NM(p),
defined on M × (0, r0). We now want to consider it as a function ψM(p, n, t) =
p + tn defined on NM × (0, r0). For smooth oriented surfaces, this is equivalent
if the new definition of ϕ is restricted to the positive normal, i.e., NM+, since the
latter is uniquely determined by m. But we have seen cases for which the normal
was just partially specified by p, and this new definition of ϕ also applies to such
situations. From now on, we assume that M = ∂Ω is the boundary of an bounded
open subset of R3 and that (u, v) are local coordinates on NM+, so that we have
a map (u, v) ∈ U 
→ (m(u, v), n(u, v)) that locally parametrizes NM+ as a subset
R

6, U being an open subset of R2. We will let

A = {(m(u, v), n(u, v)) : (u, v) ∈ U }

denote the corresponding patch in NM+. We will assume that this map is differen-
tiable in (u, v) (which may require the exclusion of some exceptional (negligible)
sets from the integral that will be computed below. Our goal is to compute the volume
of V+

r (M, A) = ψM(A × (0, r)).
The area form on NM+ is given by g(u, v) du dv where

g(u, v)2 = (|∂1m|2 + |∂1n|2)(|∂2m|2 + |∂2n|2) − (∂1m
T∂2m + ∂1n

T∂2n)2.

(In this expression, we have used g(u, v) = √
EF − G2, using (3.7), which still

holds for two-dimensional surfaces in higher-dimensional spaces.)
One can check (we skip the proof) that the ratio Q = | det(∂1m + t∂1n1, ∂2m +

t∂2n, n)|/g(u, v) is invariant under a change of local chart onNM+, allowing us to
consider it as a function Q(m, n) defined over A. When M is a smooth surface, this
ratio can easily be computed, since we can assume that ∂1m and ∂2m correspond to
the principal directions, yielding

Q = (1 + tκ1)(1 + tκ2)
√

(1 + κ2
1)(1 + κ2

2)

.

Returning to the general case, we have, by definition of Q:
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Vol(V+
r (M, A)) =

∫

U
| det(∂1m + t∂1n, ∂2m + t∂2n, n)|dudv =

∫

A
Qdσ.

Assume that r can be chosen so that Q does not vanish for t ∈ (0, r). (That
such an r exists relates to the assumption of M having positive reach.) In this case,
det(∂1m + t∂1n, ∂2m + t∂2n, n) has constant sign, and one can expand Q in powers
of t , yielding, for some functions S0, S1, S2

∫ r

0

∫

A
Qdσ = r

∫

A
S0dσ − r2

∫

A
S1dσ + r3

3

∫

A
S2dσ.

The functions Sk therefore provide densities for “generalized” curvature measures,
defined on NM+ (instead of on M).

Recall that we assume that M ⊂ ∂Ω for some open set Ω ⊂ R
2. We can restrict

the generalized curvature measures to M , letting for B ⊂ R
3,

μk(M, B) =
∫

NM+
χB(m)Sk(m, n)dσ.

We now consider the case in which M is a triangulated surface and discuss the
expression of this integral based on the location of the set B.

Face interiors: Let B be included in the interior of a face. Since M coincides
there with a smooth surface with zero curvature, we have μ0(M, B) = Area(B),
μ1(M, B) = μ2(M, B) = 0.

Convex edges: Now let B be included in the interior of a convex (salient) edge, e.
At p ∈ B, normal vectors toΩ form the arc of the unit circle perpendicular to the edge
delimited by the two outward normals to the neighboring faces. Fix an orientation of
e and define βN (e) as the angle from the outward normal on the right to the one on
the left of e (the saliency assumption implies that this angle is non-negative.) Now,
on B, the normal bundle can be parametrized by p = u(e/|e|) + n(v), where n(v)

is the normal to p that makes an angle v with one of the face normals. Using the fact
that e and n are orthogonal, one finds d(u, v) = 1 and | det(∂um, t ṅv, n)| = t . This
implies that μ0 = μ2 = 0 and μ1 = βN (e)length(B).

Concave edges: The case of B included in a concave edge requires a little more
care because Ω does not have positive reach on B. One can however split Ω into
two parts on each side of the bisecting angle between the faces at e and apply the
formula (letting Ω1 and Ω2 be the two sections)

μk(Ω, B) = μk(Ω1, B) + μk(Ω2, B) − μk(Ω1 ∩ Ω2, B)

= ((π − βN )/2 + (π − βN (e))/2 − π)length(B)

= −βN length(B),

where βN (e) is again the absolute value of the angle between the normal to the faces
meeting at e (taken between 0 and π).
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Vertices: Let B = {v}, where v is a vertex of the triangulation. First note that,
when M has positive reach, the volume of V+

r (M, {v}) cannot be larger than that of
the ball centered at v with radius r and is therefore an O(r3). From formula (4.8),
this is also true when M is a triangulated surface. This implies that only the last
term (the Gauss curvature measure) can be non-zero. The computation of this term is
simplified if we also observe that the Gauss curvature measure does not change if we
replace (locally at the vertex) Ω by Ωc ∩ ∂Ω , which corresponds to changing the
orientation on M . This is because the function S2 is an even function of the normal.
Using this property, we get

2μ2(Ω, B) = μ2(Ω, B) + μ2(Ω ∪ Ωc, B) = μ2(R
3, B) + μ2(M, B).

Since μ2(R
3, B) = 0, it remains to compute μ2(M, B). Let F1, . . . , Fq represent the

faces containing v. We want to apply the inclusion-exclusion formula to

μ2(M, B) = μ2

( q⋃

i=1

Fi , B
)
.

For this, we need to compute the Gauss curvatures in three special cases covering
possible intersections between faces. The simplest case is μ2({v}, B). In this case,
we can parametrize the normal bundle by (m(u, u′), n(u, u′)) = (v, n(u, u′)), where
(u, u′) is a parametrization of the unit sphere, for whichwe assume that ṅu and ṅu′ are
orthogonal with unit norm. In this case, d(u, u′) = 1 and | det(t∂1n, t∂2n, n)| = t2.
This implies that S2 = 1 and μ2 = 4π (μ2 is three times the volume of the sphere).

Now, let e be a segment having v as one of its extremities. Assume without loss
of generality that e is supported by the first coordinate axis and v = 0. We can
parametrize N e at v with (u, u′) 
→ (v, n(u, u′)), where n(u, u′) parametrizes the
half-sphere that is normal to M at v. This provides μ2(e, B) = 2π.

The last case is a triangle F with vertex v. Let θ be the angle at v. Here, the
normal bundle at v is the part of the unit sphere which is contained between the
two hyperplanes normal to each edge of F incident at v, for which the volume is
2(π − θ)/3, so that μ2(F, B) = 2(π − θ).

Now, it remains to apply the inclusion-exclusion formula. This formula starts
with

∑q
i=1 μ2(Fi , B), which is 2qπ − 2

∑
i θi . Then comes the sum of the measures

associated with the intersection of two faces: this intersection is an edge for the q
pairs of adjacent faces, and just {v} for the (q

2

) − q remaining ones. This yields the
contribution 2qπ − 4

(q
2

)
π. We finally need to sum all terms for intersections of three

or more sets, which is always equal to {v}. This is

4π
∑

k≥3

(−1)k−1

(
q

k

)

= 4π

(

1 − q +
(
q

2

))

,

where we used the fact that
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∑

k≥0

(−1)k−1

(
q

k

)

= (1 − 1)q = 0.

Summing all the terms, we obtain μ2(M, B) = 4π − 2
∑q

i=1 θi so that

μ2(Ω, B) = 2π −
q∑

i=1

θi .

We have therefore obtained the curvature measures associated to an oriented
triangulated surface [71]. For any set B ∈ R

3, they are:

• The mean curvature measure:

μ1(M, B) =
∑

e∈E
εeβN (e)length(B ∩ e),

where βN is the angle between the normals to the faces at e in absolute value and
εe = 1 if the edge is convex and −1 otherwise.

• The Gauss curvature measure:

μ2(M, B) =
∑

v∈V∩B

μ2(M, v),

with
μ2(M, vi ) = 2π −

∑

k∈Fi

θv(Fk).

Using these expressions, we can make approximations of the curvature at a given
vertex by letting

μ1(M, B) � |B|Hi and μ2(M, B) � |B|Ki

for a vertex vi in the triangulation. Taking B = Ai , as defined in the previous section
(see Eq.4.1), we obtain the same approximation of the Gauss curvature as the one
obtained from the discretization of the Gauss–Bonnet theorem. The formulas for the
mean curvature differ, however.

4.2.4 Discrete Gradient and Laplace–Beltrami Operators

We conclude this section on triangulated surfaces with a computation of the discrete
equivalent of the gradient and Laplacian on surfaces.

Let S be a triangulated surface, V = {v1, . . . , vM } and F = {F1, . . . , FK } denot-
ing, respectively, the sets of vertices and faces of S. To simplify the discussion, we
will assume that the surface has no boundary, i.e., each edge belongs to exactly two
faces.
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A functionψ defined on S assigns a valueψ(vi ) to each vertex, and the gradient of
ψwill be defined as a vector indexed over faces. To compute it,wefirst focus on a face,
F = Fk for some k ∈ {1, . . . , K } that we will drop from the notation until further
notice. Let (v1, v2, v3) be the vertices of F (ordered consistentlywith the orientation),
and let e1 = v3 − v2, e2 = v1 − v3 and e3 = v2 − v1. Let c = (v1 + v2 + v3)/3 be
the center of the face.

We define the gradient of ψ on F , denoted ∇Sψ(F), as the gradient of the linear
interpolation of ψ on F , i.e.,

∇Sψ(F) = ∇F ψ̂F ,

where ψ̂F (a1v1 + a2v2 + a3v3) = a1ψ(v1) + a2ψ(v2) + a3ψ(v3) for a1 + a2 +
a3 = 1 and ∇F is the gradient on the face F considered as a regular surface.
From a computational viewpoint, u = ∇Sψ(F) is such that u = α1e1 + α2e2 and
uT (vk − vl) = ψ(vk) − ψ(vl) (k, l = 1, 2, 3), which gives

ψ(v3) − ψ(v2) = (α1e1 + α2e2)
T e1,

ψ(v1) − ψ(v3) = (α1e1 + α2e2)
T e2.

Let ψF be the column vector [ψ(v1),ψ(v2),ψ(v3)]T , M the 2 by 3 matrix

M =
(
0 −1 1
1 0 −1

)

and GF the matrix

GF =
(|e1|2 eT1 e2
eT1 e2 |e2|2

)

.

With this notation, the previous system is MψF = GFα. We therefore have

u = [e1, e2]α = [e1, e2]G−1
F MψF .

We first notice that detGF = |e1|2 |e2|2 − (eT1 e2)
2 = (|e1||e2| sin θ3)

2, where θ3 is
the angle at v3. It is therefore equal to 4a(F)2, where a(F) is the area of F . Moreover,
we can write:

G−1
F MψF = det(GF )−1

( |e2|2 −eT1 e2−eT1 e2 |e1|2
)(

0 −1 1
1 0 −1

)

ψF

= det(GF )−1

(−eT2 e1 −eT2 e2 −eT2 e3
eT1 e1 eT1 e2 eT1 e3

)

ψF , (4.9)

in which we have used the identity e3 = −e1 − e2. Introducing the vector

hψ(F) = ψ(v1)e1 + ψ(v2)e2 + ψ(v3)e3
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and the matrix

DF = e2e
T
1 − e1e

T
2 = e1e

T
3 − e3e

T
1 = e3e

T
2 − e2e3,

a little computation yields

∇Sψ(F) = DF

4a(F)2
hψ(F).

We now pass to the computation of the discrete Laplace–Beltrami operator, which
we define via the discrete analog of the property

∫

S
|∇Sψ|2dσS = −

∫

S
ψΔSψdσS

that characterizes the operator on smooth surfaceswithout boundary. For triangulated
surfaces, we will identify ΔSψ via

K∑

k=1

|∇Sψ(Fk)|2a(Fk) = −
N∑

i=1

ψ(vi )(ΔSψ)(vi )|Ai |,

where |Ai | is the area attributed to vertex vi (using, for example, Voronoï cells).
For a given face F , we can write (using the previous notation): |∇Sψ(F)|2 =

αT GFα = ψT
F M

TG−1
F MψF . Applying MT to (4.9), we get

MTG−1
F M = det(GF )−1

⎛

⎝
|e1|2 eT1 e2 e

T
1 e3

eT1 e2 |e2|2 eT2 e3
eT1 e3 e

T
2 e3 |e3|2

⎞

⎠ .

Let ΣF denote this last matrix. We can write:

K∑

k=1

ψT
Fk

ΣFkψFk

4a(Fk)
=

1

4

N∑

i=1

ψ(vi )
∑

k∈Fi

(|eik |2ψ(vi ) + eTike
′
ikψ(v′

ik) + eTike
′′
ikψ(v′′

i k))/a(Fk),

where v′
ik and v′′

ik are the other two vertices of Fk , k ∈ Fi (in addition to vi , ordered
according to the orientation) and eik, e′

ik and e
′′
ik are, respectively, the edges opposed

to vi , v
′
ik and v′′

ik in Fk . This implies that one should define

ΔSψ(vi ) = − 1

4|Ai |
∑

k∈Fi

(|eik |2ψ(vi ) + eTike
′
ikψ(v′

ik) + eTike
′′
ikψ(v′′

ik)
)
/a(Fk).
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One can rewrite this discrete Laplacian in terms of angles. Denoting as before by θ′
ik

and θ′′
ik the angles at v

′
ik and v′′

ik , one has

eTike
′
ik = − cos θ′′

ik |eik | |e′
ik | = −2 ctn θ′′

ika(Fk).

Similarly, eTike
′′
ik = −2 ctn θ′

ika(Fk) and, since the sum of the edges is 0,

|eik |2 = −eTik(e
′
ik + e′′

ik) = 2(ctn θ′
ik + ctn θ′′

ik)a(Fk).

One can therefore write

ΔSψ(vi ) = 1

2|Ai |
∑

k∈Fi

(
ctn θ′′

ik(ψ(v′
ik) − ψ(vi )) + ctn θ′

ik(ψ(v′′
ik) − ψ(vi ))

)
,

which provides a discrete definition of the Laplace–Beltrami operator on S. This
formula is sometimes called the “cotangent formula” [232].

4.3 Consistent Approximation

So far the concepts we have defined for triangulated surfaces have been directly
inspired by the corresponding notions in the theory of smooth surfaces. Here, we
provide some results evaluating how well a triangulated surface can approximate
a smooth one, and whether quantities defined on triangulated surfaces are good
estimates of the same quantities computed on the surface that is being approximated.

Because this analysis will be important for further purposes, we focus on the
approximation of integrals

∫
Σ
h(p) dσΣ(p) over a C2 regular surface Σ by sums

∑

F∈F
h(cF )a(F),

where F is the set of faces of a triangulated surface S, cF is the center of mass of
face F and a(F) its area.

To handle situations in which Σ is a surface with boundary, we also assume that
another C2 regular surface, Σ ′, is given, extending Σ so that Σ ∪ ∂Σ ⊂ Σ ′. If Σ is
a closed surface, we can takeΣ ′ = Σ . We let ϕ : Σ ′ × (−ρ, ρ) → R

3 be the normal
map, so that ϕ(p, t) = p + t NΣ ′(p), and we assume that ρ is small enough that ϕ
is a diffeomorphism onto its image, denoted by U . For q ∈ U , we let ξ(q) be the
closest point to q in Σ ′, i.e., the unique p such that ϕ(p, t) = q for some t ∈ ρ. We
note that

ξ(ϕ(p, t)) = p
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for all p, t , so that dξ ◦ ϕ∂pϕ = Id,with∂pϕ = Id + tdNΣ ′ . Fixing p and letting u1,
u2 denote principal directions at p, with principal curvatures κ1 and κ2, we therefore
have, for q = ϕ(p, t)

dξ(q)ui = ui
1 + tκi

, i = 1, 2.

Similarly, dξ ◦ ϕ∂tϕ = 0, so that dξ(q)NΣ ′(p) = 0. We assume in the following
that ρ is chosen small enough that 1 + tκi is bounded away from zero for |t | ≤ ρ
and i = 1, 2.

Let S be a triangulated surface, with the usual notation V,F , E for the sets of
vertices, faces and edges in S. We will assume that S ⊂ U . For such a surface, we
define the following constants:

• ε1(S,Σ ′) = supq∈S |ξ(q) − p|, the distance from S to Σ ′.
• ε2(S,Σ ′) = 1 − minF∈F minq∈F NS(F)T NΣ ′(ξ(q)).
• δ(S) = max(v1,v2)∈E |v1 − v2|, the maximum edge size in S.
• ε3(S,Σ) = dH (ξ(S),Σ), where dH is the Hausdorff distance

dH (A, A′) = max

(

sup
x∈A

dist(x, A′), sup
x∈A′

dist(x, A)

)

.

We will also let ε(S,Σ ′) = max(ε1, ε2, ε3, δ), and we will say that a sequence of
triangulations S(n) converge to Σ if ε(S(n), Σ) → 0.

With this notation, we have the following theorem.

Theorem 4.3 Let h be a continuous function on a compact neighborhood of U.
Then ∫

Σ

h(p) dσΣ(p) =
∑

f ∈F
h(c f )a( f ) + |S|O(ε). (4.10)

Proof Consider F ∈ F . Let v1, v2, v3 denote the vertices of f and c = (v1 + v2 +
v3)/3. Let ei j = v j − vi . We first compute

∫
ξ( f ) h(p) dσΣ ′(p), for which we can use

the local chart ψ : (x, y) 
→ ξ(v1 + xe12 + ye13), for x, y > 0, x + y < 1. Then,
letting T denote the triangle {(x, y) : x, y > 0, x + y < 1},

∫

ξ(F)

h(p) dσΣ ′(p) =
∫

T
h(ψ(x, y))|∂xψ × ∂yψ| dx dy.

Note that, using the same notation as above for principal directions and curvatures
on Σ ′ at p = ψ(x, y),

∂xψ = dξ ◦ ψ e12 = eT12u1
1 + tκ1

u1 + eT12u2
1 + tκ2

u2

∂yψ = dξ ◦ ψ e13 = eT13u1
1 + tκ1

u1 + eT13u2
1 + tκ2

u2
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so that

∂xψ × ∂yψ = eT12u1 e
T
13u2 − eT12u2 e

T
13u1

(1 + tκ1(p))(1 + tκ2(p))
NΣ ′(p)

= (e12 × e13)T NS′(p)

(1 + tκ1(p))(1 + tκ2(p))
NΣ ′(p)

= 2a(F)
NT

F NS′(p)

1 + 2t H(p) + t2K (p)
NΣ ′(p),

where H and K denote the mean and Gauss curvatures. We therefore have

∫

ξ(F)

h(p) dσΣ ′(p) = 2a(F)

∫

T

NT
f NΣ ′(ψ(x, y)) h(ψ(x, y))

1 + 2t H(ψ(x, y)) + t2K (ψ(x, y))
dx dy,

from which one immediately deduces that

∣
∣
∣
∣

∫

ξ(F)
h(p) dσΣ ′(p) − a(F)h(c)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

ξ(F)
h(p) dσΣ ′(p) − 2a(F)

∫

T
h(c) dx dy

∣
∣
∣
∣

≤ a(F)max
p∈F

∣
∣
∣
∣
∣
h(c) − NT

F NΣ ′ (ξ(p)) h(ξ(p))

1 + 2t H(ξ(p)) + t2K (ξ(p))

∣
∣
∣
∣
∣
.

Introduce the modulus of continuity of h

ωh(η) = max
x,y∈U,|x−y|<η

|h(x) − h(y)|.

One has,

∣
∣
∣
∣h(c) − NT

F NΣ ′(ξ(p)) h(ξ(p))

1 + 2t H(ξ(p)) + t2K (ξ(p))

∣
∣
∣
∣ ≤

ωh(δ + ε1) + ‖h‖∞ε2 + ‖h‖∞ε1 max|t |≤ε1,p∈Σ ′
2H(p) + t K (p)

1 + 2t H(p) + t2K (p)
,

so that ∣
∣
∣
∣

∫

ξ(F)

h(p) dσΣ ′(p) − a(F)h(c)

∣
∣
∣
∣ = a(F) O(ε).

Summing over all faces, we obtain the fact that

∫

ξ(S)

h(p) dσΣ ′(p) =
∑

F∈F
h(cF )a(F) + |S|O(ε).

It now suffices to write
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∫

ξ(S)

h(p) dσΣ ′(p) =
∫

Σ

h(p) dσΣ(p) + O(ε3)

to conclude the proof of (4.10). �

Note also that we can replace ε2 by ε′
2 = 1 − minF∈F NS(F)T NΣ ′(ξ(cF )) (or any

other point in F), because ‖dξ‖ being bounded implies |NΣ ′(ξ(q)) − NΣ ′(cF )| =
o(δ) for q ∈ F .

Almost the same proof can be applied to sums involving normal vectors, yielding,
for example

∫

Σ

h(p)T NΣ(p) dσΣ(p) =
∑

F∈F
h(cF )T NFa(F) + |S|o(ε) (4.11)

for continuous vector-valued functions h.
Note also that, if h : R3 → R is a C1 function, one has

max
F

|∇Σh(ξ(cF )) − ∇Sh(F)| = o(ε).

Indeed, we have defined ∇Sh(F) = ∇F (ĥF ), where ĥF is a linear interpolation of h
on F , but ∇F (ĥF ) = ∇Fh(cF ) + o(δ) because h is C1. Moreover, letting ∇h denote
the R3 gradient of h, we have

∇Fh(cF ) = ∇h(cF ) − (NT
F ∇h(cF ))NF

and
∇Σh(ξ(cF )) = ∇h(ξ(cF )) − (NΣ(ξ(cF ))T∇h(ξ(cF )))NΣ(ξ(cF ))

and these two quantities differ as O(ε).
One can consider other approximations of geometric quantities and their conver-

gence when triangulated surfaces approximate smooth ones with increasing accu-
racy. See, for example, [146, 211], in which an equivalence is shown between correct
approximation of normals, or metric tensors, of area and of the Laplace–Beltrami
operator.

4.4 Isocontours and Isosurfaces

To conclude this chapter, we discuss methods that compute shapes (curves or sur-
faces) from discrete image data. We will discuss approaches based on energy min-
imization in Chap. 5. Here, we focus on what is probably the simplest approach,
which is to define curves of surfaces implicitly based on interpolation of the image
values.
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Assuming that the image f is defined on a discrete grid, we will interpolate it as
a function f̂ : D ⊂ R

d → R and define a shape as the level set

Sλ = {m : f (m) = λ}

for a properly chosen threshold, λ. As we know, if the gradient of f̂ does not vanish
on Sλ, this provides a smooth curve or surface (or a union of such).

The concrete implementation of such an approach presents a few challenges,
however. We will start with a discussion of the simpler two-dimensional case, which
will help in addressing the computation of isosurfaces, which is more intricate.

4.4.1 Computing Isocontours

We consider here a two-dimensional grid, G, which is formed by points p(s, t) =
(xs, yt ), where (xs, s = 1, . . . , M) is a discretization of the horizontal axis and
(yt , t = 1, . . . , N ) a discretization of the vertical axis. We assume that a discretiza-
tion of a smooth function f is observed, via the collection

( fst = f (p(s, t)), s = 1, . . . , M, t = 1, . . . , N ).

The problem is to compute the isocontour ( f = λ) for a given λ, in the form of a
polygon or a union of polygons. Without loss of generality, we can and will assume
λ = 0 in the following discussion.

Since the exact function f is not observed, some interpolation must be done, and
we will use bilinear interpolation for this. This means that the true (unobserved) f
will be replaced by the interpolation (that we still denote by f , with some abuse
of notation) which is defined as follows. Let C(s, t) denote the cell (square) with
vertices p(s + ε1, t + ε2), εi ∈ {0, 1}, i = 1, 2. Then, for p = x, y ∈ C(s, t), let

f (p) =
1∑

ε1,ε2=0

2∏

i=1

(
εi ri (p) + (1 − εi )(1 − ri (p))

)
fs+ε1,t+ε2 , (4.12)

with r1(p) = x − xs, r2(p) = y − yt .
Obviously, the set { f = 0} is the union of its intersections with each cell in the

grid, so that we can restrict to these intersections. Within a cell, f is given by (4.12),
and the set { f = 0} is either empty, or a line segment, or one or two branches of
a hyperbola. This is because, introducing the coordinates ξ = (x − xs)/(xs+1 − xs)
and η = (y − ys)/(ys+1 − ys), we can rewrite f (p) in the cell as (up to a positive
multiplicative constant):
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f (p) = f−−(1 − ξ)(1 − η) + f+−ξ(1 − η) + f−+(1 − ξ)η + f++ξη

= ρ
((

ξ + f−+ − f−−
ρ

)(
η + f+− − f−−

ρ

) − f++ f−− − f−+ f+−
ρ2

)

if ρ := f++ − f+− − f−+ + f−− �= 0 and

f (p) = ( f+− − f−−)ξ + ( f−+ − f−−)η + f−−

if ρ = 0. In this formula, f++, f+−, f−+ and f−− are the values of f at the vertices
of the cell.

We will approximate the intersection by line segments intersecting the edges of
the cell. There can be 0, 1 or 2 such line segments, and we now discuss when these
situations occur. An important observation is that, because the bilinear interpolation
is linear when restricted to the edges of the cell, there is at most one intersection
of the set { f = 0} with each edge, and this is only possible when f takes different
signs at each of the edge end-points. When this occurs, the points on the edges at
which f = 0 can be easily computed by solving a linear equation. They will form
the vertices of the polygonal line. The following, the proof of which we skip, can be
justified directly from the quadratic expression of f in the cell.

(a) If all f++, f+−, f−+ and f−− have the same sign: there is no intersection with
the edges, and therefore no intersection with the cell.

(b) If three of the values have the same sign, the last one having the opposite sign,
there are two vertices in the cell, and one edge connecting them.

(c) If two values have the same sign on one edge and two have the opposite sign on
the opposite edge, here also, there are two vertices and one edge.

(d) If the function changes sign on all the edges, there are four vertices and two
edges. There are two subcases, letting δ = f++ f−− − f−+ f+−.

(i) If δ > 0, then one edge links the vertex on {ξ = 0} to the one on {η = 1},
and the other the vertex on {η = 0} to the one on {ξ = 1}.

(ii) If δ < 0, then one edge links the vertex on {ξ = 0} to the one on {η = 0},
and the other the vertex on {η = 1} to the one on {ξ = 1}.

Cases (a), (b) and (c) can be decided based on the signs of f only. Case (d) is
called ambiguous because it requires the exact numerical values of f . There are a
few additional exceptional cases that are left aside in this discussion. When f = 0 at
one of the vertices of the cell, this vertex is also in the polygonal line. It connects to
other vertices at opposite edges of the cell, unless one of the cell edges that contain
it is included in the polygon. There is no ambiguous situation in that case.

Case (d) with δ = 0 is more of a problem, because it corresponds to a situation
in which the interpolated surface is the intersection of two lines and therefore has
a singular point. One cannot lift this ambiguity, and one of the options (i) and (ii)
should be selected. The selection cannot be completely arbitrary because this could
create holes in the reconstructed polygons. One possible rule is to take one option
(say (i)) when ρ > 0 and the other one when ρ < 0. The combination of case (d) and
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δ = ρ = 0 implies that f = 0 at all vertices of the cell which therefore should be
in the final polygon, but there is an unsolvable ambiguity as to how they should be
connected.

There is anotherway to handle case (d), disregarding δ, based, aswe just discussed,
on the sign of ρ, yielding

(d)′ In case (d) above, take solution (i) if ρ > 0 and (ii) otherwise.

The resulting algorithm is simpler, because, in case (d), the sign of ρ can be com-
puted directly based on the signs of f on the vertices of the cell. It does not correspond
to the bilinear approximation anymore, but this approximation was somewhat arbi-
trary anyway. It does break the symmetry of the solution, in the sense that, if f is
replaced by − f , the isocontours computed using (d)′ will differ. This is illustrated
in Fig. 4.2

In addition to allowing for the segmentation of specific shapes from images, when
the interior of the shape is, say, darker than its exterior, isocontours have been used
as basic components of image processing algorithms that are contrast-invariant in
the sense of mathematical morphology. A good introduction to this and to the related
literature can be found in [53, 54].

Finally, let us note that isocontours can be easily oriented in accordance with our
convention for implicit contours, by simply ensuring that grid points with negative
values of f lie on the left of each oriented edge.

4.4.2 Computing Isosurfaces

We now pass to the case of level sets for functions defined over three dimensions,
and describe the construction of triangulated isosurfaces. Although the problem is in
principle similar to the two-dimensional case, the solution is notably more complex,
mainly because of the large number of ambiguous situations in the determination of
the boundary. There is indeed a large literature on the subject, and the reader can
refer (for example) to [39] for a recent bibliography.

The three-dimensional generalization of the algorithm that we have presented for
isocontouring is calledmarching cubes [178], and progressively builds a triangulation
by exploring every grid cell on which the function changes sign. We will use a nota-
tion similar to the previous section, and letG be a regular three-dimensional grid, with
grid coordinates p(s, t, u) = (xs, yt , zu) where s = 1, . . . , M, t = 1, . . . , N , u =
1, . . . , P . Denote by fstu = f (p(s, t, u)) the observed values of f on the grid.
Like in two dimensions, we assume that f extends to the continuum with a tri-
linear interpolation as follows: Let C(s, t, u) denote the cube (cell) with vertices
p(s + ε1, t + ε2, q + ε3), εi ∈ {0, 1}, i = 1, 2, 3. Then, for p = x, y, z ∈ C(s, t, u),
let

f (p) =
1∑

ε1,ε2,ε3=0

3∏

i=1

(εi ri (p) + (1 − εi )(1 − ri (p))) fs+ε1,t+ε2,q+ε3

with r1(p) = x − xs, r2(p) = y − yt , r3(p) = z − zu .
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Fig. 4.2 Isocontouring a checkerboard strip using exact bilinear rule (d) (first row) and sign-based
rule (d)’ (second row). Note that the solutions are different, although both are plausible isocontours
for the image. Gray levels are switched in the last two rows, without changing the solution for
rule (d) (third row) and significantly altering it for rule (d)’ (fourth row), yielding a third plausible
solution

The determination of the vertices of the triangulation is similar to the two-
dimensional case: the intersections of the level set f = 0 and the edges of the cubes
C(s, t, u) can be computed by solving a simple linear equation; on a given edge,
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Fig. 4.3 Two-component (non-ambiguous) cases for the marching cubes algorithm

such an intersection exists only if f takes different signs at the end-points, and there
can be at most one intersection. The difficulty is how to group these vertices into
faces that provide a topologically consistent triangulation.

The main contribution of the marching cubes algorithm is to provide a method in
which each cube is considered independently, yielding a reasonably simple imple-
mentation. The method works by inspection of the signs of f at the eight vertices of
the cube. Like in two dimensions, there are some easy cases. The simplest is when
all signs are the same, in which case the triangulation has no node on the cube. Other
simple configurations are when the cube vertices of positive sign do not separate the
other vertices in two or more regions and vice-versa. In this case, the triangulation
has to separate the cube into two parts. There are, up to sign and space symmetry
and up to rotation, six such cases, which are provided in Fig. 4.3.

Such triangulations can be efficiently described by labeling the vertices and the
edges of the cube, as described in Fig. 4.4. We can describe a sign configuration on
the cube by listing the vertices which have a positive sign. We can also describe each
triangulation by listing, for each triangle, the three edges it intersects. Figure 4.3
therefore describes the six triangulations
{1} : [(1, 4, 9)]
{1, 2} : [(2, 4, 9), (2, 4, 10)]
{2, 5, 6} : [(1, 2, 9), (2, 8, 9), (2, 8, 6)]
{1, 2, 5, 6} : [(2, 6, 4), (4, 6, 8)]
{2, 3, 4, 7} : [(1, 10, 6), (1, 6, 7), (1, 7, 4), (4, 7, 12)]
{1, 5, 6, 7} : [(1, 10, 11), (1, 11, 8), (8, 11, 7), (4, 1, 8)]
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Fig. 4.4 Labels for the vertices (left) and edges (right) of the cube

Fig. 4.5 Two triangulations associated to the {3, 8} sign configuration [(2, 3, 11), (1, 4, 9)] and
[(4, 9, 3), (3, 9, 11), (9, 11, 2), (1, 2, 9)]

The cases when the signs form more than two connected components on the cube
are problematic. They are ambiguous, because the way the surface crosses the cube
cannot be decided from the sign pattern alone. One needs to rely onmore information
(i.e., the actual values of f at the nodes) to decide how to triangulate the surfacewithin
the cube, in order to avoid creating topological inconsistencies.

Take, for example, the case in which the cube vertices labeled (1) and (3) have
signs distinct from the rest. Then, there are two possible ways (described in Fig. 4.5 )
in which the surface can cross the cube.

Another kind of ambiguous configuration is when two vertices in two opposite
corners are isolated from the rest. Consider, for example, the situation when vertices
1 and 7 are positive while the rest are negative. Then the surface can do two things:
either cut out the corners of the cube, or create a tunnel within the cube (see Fig. 4.6).

There have been successive attempts to improve the marching cubes algorithm
from its original version ([178], in which the discussion was incomplete) [64, 209,
215, 218, 291] and untying the ambiguous cases. In addition to the two cases
described in Figs. 4.5 and 4.6, five other ambiguous sign configurations can be listed,
arising from combinations of these two basic cases. A complete description of all
possible cases has been provided in [64], together with disambiguation rules. An
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Fig. 4.6 Two triangulations associated to the {1, 7} sign configuration [(1, 4, 9), (7, 6, 11)] and
[(1, 4, 11), (1, 11, 6), (1, 9, 6), (9, 6, 7), (9, 4, 7), (4, 11, 7)]

extensive theoretical and numerical analysis of the algorithm has been provided in
[217] to which the reader is referred for complementary information, with the listing
of all possible topologies within the cube.

If one drops the requirement to provide an accurate triangulation of zero-crossings
of the linear interpolation of f within each cube, a reasonably simple option is
available [209]. This approach has the disadvantage of breaking the sign-change
invariance (which ensures that the computed triangulation should not change if f is

Fig. 4.7 Twenty-three configurations for consistentwithin-cube triangulation based onvertex signs.
Dotted vertices correspond to positive values of the function
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replaced by − f ), but provides a very simple algorithm, still based on the signs of
f on the vertices (it can be seen as a generalization of (d)′ in our discussion of the
two-dimensional case). This results in 23 different cases (up to rotation invariance),
listed in Fig. 4.7. This had to be compared to the 15 cases initially proposed in [178],
which was invariant under sign change, but created topological errors.

An alternative to the marching cubes algorithm replaces cubic cells by tetra-
hedrons before computing the triangulation, which, when properly handled [57],
provides a simpler and more stable procedure.

Extracting surfaces as level sets of functions is important even when the original
data is not a three-dimensional image from which the region of interest is an isosur-
face. For example, when the original data is a set of unstructured points that roughly
belong to the surface (i.e., they are subject to small errors) some of the commonly
used algorithms that reconstruct the surface first reduce to the isosurface problem,
trying to infer the signed distance function to the surface, at least in a neighborhood
of the observed points. The approach used in [154] is to first approximate the tangent
plane to the surface and then build the signed distance function. A similar goal is
pursued in [11], using an approach based on computational topology.

Marching cubes (or tetrahedrons) have the drawback of providing a very large
number of triangles, sometimes with very acute angles. Simplifying meshes is also
the subject of a large literature, but this will not be addressed here (see, for example
[100]).
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