
Chapter 3
Local Properties of Surfaces

In this chapter, we start discussing representations that can be associated with
three-dimensional shapes, where surfaces now replace curves. We begin with some
basic definitions and results on the theory of surfaces in R

3. Although some parts
are redundant with the abstract discussion of submanifolds that is provided in
AppendixB, we have chosen to give a more elementary presentation here, very close
to [86], to ensure that this important section can be read independently.

3.1 Curves in Three Dimensions

Before addressing surfaces, we extend our developments on plane curves to the three-
dimensional case. A three-dimensional parametrized curve is a function γ : [a, b] �→
R

3. It is regular if it is C1 and |γ̇| �= 0 for all t ∈ [a, b]. For regular curves, the unit
tangent is defined by T = γ̇/|γ̇| and the arc length is ds = |γ̇(t)|dt .

Assume thatγ isC2 andparametrized by arc length.One then defines the curvature
of γ at s by κ(s) = |Ṫ |. This differs from the planar case, for which a sign was
attributed to the curvature: here, the curvature is always non-negative.

One says that the γ is bi-regular if κ(s) �= 0 for all s. In this case, one uniquely
defines a unit vector N by the relation Ṫ = κN ; N is perpendicular to T because
T has unit norm. Finally, the binormal is the unique unit vector B which completes
(T, N ) into a positive orthonormal basis of1 R3: B = T × N . The frame (T, N , B)

is called the Frénet frame, and the plane passing through γ(t) and generated by T
and N is called the osculating plane.

1If h = (a, b, c) and k = (a′, b′, c′) are three-dimensional vectors, their cross product h × k is
defined by

h × k = (bc′ − cb′, a′c − ac′, ab′ − a′b).
It is orthogonal to both h and k and vanishes if and only if h and k are collinear. Moreover, for any
third vector l: (h × k)T l = det(h, k, l).
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The derivative of the normal is orthogonal to N and can therefore be written
Ṅ = aT + bB. We have NT T = 0 so that a = Ṅ T T = −NT Ṫ = −κ. The torsion
of the curve is given by −b by definition and denoted τ so that Ṅ = −κT − τ B.
Using the fact that ḂT T = −BT Ṫ = −κBT N = 0 and ḂT N = −Ṅ T B = τ , we
have Ḃ = τN , which provides the third equation of Frénet’s formulas for three-
dimensional curves: ⎧

⎨

⎩

∂sT = κN ,

∂s N = −κT − τ B,

∂s B = τN .

(3.1)

(These equations are valid for any parametrization if one defines ∂s f = ḟ /|ṁ|.)
Note that, if F is the 3 by 3 rotation matrix associated with the Frénet frame, i.e.,
F = [T, N , B], then the Frénet formulas can be written as

∂s F = FSm, (3.2)

where Sm is the skew-symmetric matrix

Sm =
⎛

⎝
0 −κ 0
κ 0 τ
0 −τ 0

⎞

⎠ .

There is a three-dimensional version of Theorem1.13. The proof, based on
Eq. (3.2), is identical to the alternative proof given in two dimensions in Sect. 1.9.

Theorem 3.1 Two C2 curves γ and γ̃ have the same curvature and torsion as func-
tions of their arc length if and only if there exist a rotation R, a vector b and a change
of parameter φ such that γ̃ = Rγ ◦ φ + b.

3.2 Regular Surfaces

Curves being represented by one parameter, one may think of surfaces as bi-
parametrized objects, i.e., functions (u, v) = m(u, v) defined on some subset of
R

2.

Definition 3.2 A C p parametrized (regular) surface is a C p map m : U �→ R
3,

where U is an open subset of R2, such that:

1. m is one-to-one and its inverse, m−1 : V = m(U ) → U is continuous (m is a
homeomorphism between U and V ), i.e., if a sequence un is such that m(un)
converges to p = m(u) ∈ V , then un converges to u.

2. For all q ∈ U , the differential dm(q) is one-to-one.

The last statement is equivalent to the fact that the 3 by 2 matrix of partial deriva-
tives [∂1m, ∂2m] has rank 2. It is a direct generalization of regularity for curves.
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We did not assume that curve parametrizations were one to one, but this assumption
provides an important simplification for surfaces. The second part of Condition 1
also prevents situations in which the boundary of some part of the surface intersects
another part (see examples).

Finally, letting S = m(U ) be the range ofm, we will often abuse the terminology
by saying that S (the geometric object) is a parametrized surface. However, for many
interesting surfaces, it is generally impossible (or simply not convenient) to find
a parametrization which satisfies the previous requirement and covers the whole
surface. This is a fundamental difference with the theory of plane curves. To be able
to handle interesting cases, we need to limit our requirement for parametrizations to
hold only within patches that together cover the surface, with additional conditions
ensuring that the surface is smooth and non-intersecting, and that the patches fit well
together.

Definition 3.3 A subset S ⊂ R
3 is a Ck regular surface if, for each p ∈ S, there

exists an open set V in R
3, with p ∈ V , and a Ck parametrization of the surface

patch V ∩ S. The local parametrizations are also called local charts.

This definition requires more than just M being covered with parametrized patches.
These patches must be obtained from intersections of S with three-dimensional open
sets. In particular, this prevents non-local self-intersection, since, along such an
intersection, the surface would contain two local patches and would not be locally
parametrizable. Figure3.3 provides an illustration of how local parametrized patches
can be combined to cover a surface.

If m : U → V ∩ S is as specified in the definition, for any p in V ∩ S, there
exist parameters (u(p), v(p)) in U such that m(u(p), v(p)) = p. The functions
p �→ u(p) and p �→ v(p) are called the local coordinates on V ∩ S.

3.2.1 Examples

Graphs of Functions

The simplest example of a parametrized surface is the graph of aC1 function f : U ⊂
R

2 → R. The parametrization is then m(u, v) = (u, v, f (u, v)). Since the inverse
of (u, v, z) on the surface is (u, v), this is a homeomorphism, and the differential is

(u, v) �→
⎛

⎝
1 0
0 1

∂1 f ∂2 f

⎞

⎠

which has rank 2.
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Fig. 3.1 Helicoid (left) and cylinder (right)

Helicoid

A parametrized surface does not have to be a graph. An example is the helicoid
(Fig. 3.1), defined over (0, a) × R by

m(u, v) = (u cos(v), u sin(v),λv)

for some a,λ > 0.

Cylinder

The cylinder, which can be defined by the set of m(u, v) = (cos u, sin u, v), for
u ∈ [0, 2π) and v ∈ (−1, 1) (Fig. 3.1), is an example of a surface which, according
to our definition, cannot be globally parametrized. This map is one-to-one and in fact
a homeomorphism, and the only reason why this is not a parametrization is that we
have required parametrizations to be defined on open sets ([0, 2π) × (−1, 1) is not
open). The cylinder is a regular surface, by considering patches for the same map m,
defined on (0, 2π) × (−1, 1) and say (−π,π) × (−1, 1).

Sphere

Consider now the example of the unit sphere (Fig. 3.2), which is denoted

S2 = {
p ∈ R

3, |p| = 1
}
.

Like the cylinder, this surface cannot be globally parametrized. The simplest choice
of local charts are the projections: (u, v) �→ (u, v,

√
1 − u2 − v2) and (u, v) �→

(u, v,−√
1 − u2 − v2), both defined for u2 + v2 < 1, the open unit disc. The

two maps cover the whole sphere, except the equator for which the third coor-
dinate is 0. One can add other projections, like (u, v) �→ (u,±√

1 − u2 − v2, v),



3.2 Regular Surfaces 77

Fig. 3.2 Sphere (left) and torus (right)

(u, v) �→ (±√
1 − u2 − v2, u, v) to cover everything, or use cylindrical-like charts

close to the equator.
Another useful coordinate system for the sphere is the (properly named) spher-

ical coordinate system: (u, v) �→ (cos u cos v, sin u cos v, sin v). These coordinates
cover the whole sphere when (u, v) varies in [0, 2π) × [−π/2,π/2] but they do
not provide a local parametrization, since this set is not open (and the map is not
one-to-one for v = −π/2 and v = π/2). Restricting to the open intervals requires
using other charts to cover the meridian u = 0, for example the same coordinates on
(−π,π) × (−π/2,π/2)which now only leave the poles uncovered. A neighborhood
of the poles can be covered by the previous projection maps.

Torus

The torus (a surface with a shape like a donut, see Fig. 3.2) can be represented as the
image of [0, 2π) × [0, 2π) under the map

m(u, v) = ((R + r cos v) cos u, (R + r cos v) sin u, r sin v),

where 0 < r < R, which is one-to-one but once again not defined on an open set.
The whole torus can be covered by considering this map restricted to open subsets
of [0, 2π) × [0, 2π). Let us check that the rank of the differential of m is always 2.
We have

dm =
⎛

⎝
−(R + r cos v) sin u −r sin v cos u
(R + r cos v) cos u −r sin v sin u

0 r cos v

⎞

⎠ .

The determinant of the first two rows is −r sin v(R + r cos v). Since r < R, it
can only vanish when sin v = 0. For the remaining two determinants, which are
r(R + r cos v) sin u cos v and r(R + r cos v) cos u cos v, to vanish together, one
needs cos v = 0. So at least one of the three two-by-two determinants does not
vanish (Fig. 3.3).
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Fig. 3.3 Examples of decompositions in local charts for the sphere and the torus. Parametrizations
are represented by grids over the surface, black inside local patches and gray outside

A Non-regular Surface

As a last example, consider the set S defined by

S = {m(u, v) : (u, v) ∈ (−1, 1) × (−π/2,π)}
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Fig. 3.4 A non-regular
surface

with

m(u, v) =

⎧
⎪⎨

⎪⎩

cos v

sin 2v

u

(see Fig. 3.4). The parametrization is defined over an open set, it is one to one and

dm =
⎛

⎜
⎝

0 − sin v

0 2 cos 2v

1 0

⎞

⎟
⎠

has rank two everywhere. S is not a parametrized surface, however, because

lim
v→−π/2

m(0, v) = m(0,π/2),

which contradicts the assumption that m−1 is continuous. The same contradiction
can be obtained for S ∩ V where V is any open subset of R3 that contains 0, so that
S is not a regular surface either.
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3.2.2 Changing Coordinates

As we have seen, several different valid parametrizations can be defined at a single
point of a surface. Like for curves, “geometric” properties or quantities should not
dependon theparametrization.Wewill define a fewof them in the following: normals,
curvature, length, area, etc.

It can be deduced from the requirements in Definition3.2 that changes of coordi-
nates are C1 homeomorphisms. To be more specific, assume that in a neighborhood
V of a point p on S, there exist two parametrizations m : U → V and m̃ : Ũ → V .
Then, because of the invertibility of the parametrization, one can go fromU to V via
m, then from V to Ũ via the inverse of m̃. The resultingmap,ϕ = m̃−1 ◦ m : U → Ũ ,
is called a change of coordinates, and is a diffeomorphism between U and Ũ (it is
C1, invertible, with a C1 inverse). This consequence of Definition3.2 can be proved
using the inverse mapping theorem.

3.2.3 Implicit Surfaces

An implicit surface is defined by an equation of the form f (p) = 0 where f : R3 →
R is a scalar function which is such that ∇ f (p) �= 0 if f (p) = 0. In this case, the
set

S = {
p ∈ R

3, f (p) = 0
}

is a regular surface. (This is a consequence of the implicit function theorem.)

3.3 Tangent Planes and Differentials

3.3.1 Tangent Planes

For a curve, we were able to define a unique unit tangent, but this is obviously no
longer possible for surfaces. Still, curves provide a simple way to define tangent
vectors to surfaces.

A curve m : I → R
3 is supported by a surface S if and only if, for all t ∈ I , one

has m(t) ∈ S. We have the following definition:

Definition 3.4 Let S be a regular surface. A vector T ∈ R
3 is tangent to S at a point

p ∈ S if and only if, for some ε > 0, there exists a C1 curve γ : (−ε, ε) → S such
that γ(0) = p and γ̇(0) = T .

Assume, in the previous definition, that ε is chosen small enough so that the
curve γ is completely inscribed in a parametrized patch of the surface S. Let m :
(u, v) �→ m(u, v) be the parametrization. Since m is one-to-one, one can express
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γ(t) = m(u(t), v(t)). The plane curve t �→ (u(t), v(t)) is the expression of γ in the
local coordinates. From the chain rule, we have

γ̇ = u̇∂1m + v̇∂2m.

Thus, γ̇ must be a linear combination of the two independent vectors ∂1m and ∂2m.
Conversely, if p = m(u0, v0), then, for any α,β ∈ R, the vector α∂1m + β∂2m is
the derivative of t �→ m(u0 + αt, v0 + βt) and is therefore tangent to S at p. This
proves the following proposition:

Proposition 3.5 Let S be a regular surface, p ∈ S and m : U → S a parametriza-
tion of S in a neighborhood of p. The set of tangent vectors to S at p is the plane
generated by ∂1m and ∂2m.

The tangent plane to S at p will be denoted TpS. Although the generating vectors
∂1m and∂2m depend on the local parametrizationm, the plane itself does not, because
we gave a parametrization-independent definition of tangent vectors.

If S is defined implicitly by f (p) = 0, the tangent plane at p is characterized by
the equation ∇ f (p)T T = 0 (recall that f must be such that ∇ f (p) �= 0 if f (p) =
0). Indeed, if γ is a curve on S, then f ◦ γ(t) = 0 for all t , and the chain rule
implies:∇ f (γ(0))T γ̇(0) = 0. This implies that TpS ⊂ (∇ f (p))⊥. Because TpS and
(∇ f (p))⊥ have the same dimension (two), they coincide.

3.3.2 Differentials

Differentials describe how measurements made on a surface vary locally. Consider a
scalar function f : S → R and take a local parametrization on S, m : U → V ∩ S.
For (u, v) ∈ U , we can define the function fm(u, v) = f (m(u, v)); this is a function
froman open subset ofR2 toR, which provides the expression of f in the local system
of coordinates: we have f (p) = fm(u(p), v(p)). We have the following definition:

Definition 3.6 Let S be a regular surface. A function f : S → R is C1 at p ∈ S if
and only if, for some local parametrization m on S around p, the function fm is C1

at m−1(p).
We say that f is C1 on S if it is C1 at all p ∈ S.

(Because changes of coordinates areC1, the definition does not depend on the choice
of local parametrization at p.)

We now want to evaluate the effect that small variations in p have on the function
f , i.e., wewant to define the derivative of f . Usually, a first-order variation of p ∈ R

3

in the direction h is represented by p + εh, with small ε. This cannot be applied to
S, since there is no reason for p + εh to belong to S if p does. It is reasonable, and
rather intuitive, to define a first-order variation of p as an element of a curve on S
containing p. This leads to:
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Definition 3.7 Let S be a regular surface and p ∈ S. A first-order variation of p in
the direction h ∈ R

3 is aC1 curve γ : (−ε, ε) → S such that γ(0) = p and γ̇(0) = h.

Note that, from this definition, first-order variations on S can only arise in directions
which are tangent to S.

Now, we can define the differential of a scalar function f defined on S as the limit
(if it exists) of the ratio ( f (γ(δ)) − f (p))/δ as δ tends to 0, γ being a first-order
variation of p. This will be denoted d f (p)h, with h = γ̇(0). Implicit in this notation
is the fact that this limit only depends on γ̇(0), which is true if f is C1 as stated in
the next proposition.

Proposition 3.8 Let f be a C1 scalar function on a regular surface S. Then, for any
p ∈ S, and h ∈ TpS, the differential of f at p in the direction h exists, and is equal
to the limit of the ratio ( f (γ(δ)) − f (p))/δ for any C1 curve γ on S with γ(0) = p
and γ̇(0) = h.

Proof What we need to prove is that the limit of the ratio exists for any γ and only
depends on h. Take a local parametrization m around p. We know that the function
f (m(u, v)) is C1, and letting γ(t) = m(u(t), v(t)), we have

lim
δ→0

f (γ(δ)) − f (p)

δ
= lim

δ→0

fm(u(δ), v(δ)) − fm(u(0), v(0))

δ
= ∂1 fmu̇(0) + ∂2 fm v̇(0).

This proves the existence of the limit. We have h = γ̇(0) = u̇(0)∂1m + v̇(0)∂2m:
since (∂1m, ∂2m) has rank 2, u̇(0) and v̇(0) are uniquely specified by h and thus the
limit above only depends on h. The notation d f (p)h is therefore valid. �

Note that the expression provided in this proof shows that d f (p)h is linear with
respect to h. In other terms, d f (p) is a linear form from TpS to R. Most of the time,
the computation of d f (p) is easy, because f can be expressed as the restriction to S
of a differentiable function which is defined on R

3. In this case, d f (p)h coincides
with the usual differential of f , but restricted to the two-dimensional plane TpS.

The proof above also provides a simple way to compute differentials in local
charts: let f : S → R be C1, p ∈ S and m be a local parametrization around p.
Then, if h = α∂1m + β∂2m, we have

d f (p)h = α∂1 fm + β∂2 fm . (3.3)

When f is a vector-valued function ( f : S → R
d ), the differential d f (p) is

defined in the same way, and is also vector-valued. It is a linear map from TpS
to Rd .

The simplest examples of differentiable maps are the coordinates: if m : U →
V ∩ S is a local chart, the function f = m−1 is such that fm(u, v) = (u, v), which
is the identity map, and therefore differentiable. In particular, the coordinates: p �→
u(p) and p �→ v(p) are scalar differentiable maps. If T = α∂1m + β∂2m, we have
du(p)T = α, dv(p)T = β and d f (p)T = (α,β).
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Consider now the example of the sphere S2. The tangent plane is easy to describe
if one uses the fact that S2 can be defined by the implicit equation |p|2 = 1. If
φ(p) = |p|2, we have ∇φ(p)T h = 2pT h so that h is tangent to S2 at p if and only
if pT h = 0 (h is perpendicular to p).

Fix a vector p0 ∈ S2 and consider the function f (p) = pT p0. Then, since f is
well-defined on R

3, we can use its restriction, which yields d f (p)h = hT p0. This
was an easy result, but for illustration purposes, let us retrieve it via local charts,
which will require a little more computation.

Consider the parametrization m(u, v) = (cos u cos v, sin u cos v, sin v). Then,

∂1m = (− sin u cos v, cos u cos v, 0) and

∂2m = (− cos u sin v,− sin u sin v, cos v).

A straightforward computation shows that both ∂1m and ∂2m are orthogonal to
m(u, v). In the chart, letting p0 = (a, b, c), the function fm is

fm(u, v) = a cos u cos v + b sin u cos v + c sin v.

Obviously, ∂1 fm = p0T∂1m and ∂2 fm = p0T∂2m, so that, if h = α∂1m + β∂2m, we
get, by Eq. (3.3),

d f (p)h = α∂1 fm + β∂2 fm = p0
T h.

3.4 Orientation and Normals

Let S be a surface and m a local parametrization on S. The vector ∂1m × ∂2m is
non-vanishing and orthogonal to both ∂1m and ∂2m. Since ∂1m and ∂2m generate
TpS at p = m(u, v), ∂1m × ∂2m is normal to the tangent plane at p.

In particular, the vector N = ∂1m × ∂2m/|∂1m × ∂2m| is a unit normal to the
tangent plane. One also says that N is normal to the surface S. Since unit normals to
a plane are defined up to a sign change, the one obtained from another parametrization
must be either N or −N . This leads to the following definition:

Definition 3.9 Two local parametrizations, m and m̃, on a regular surface S have
the same orientation at a given point at which they are both defined if

∂1m × ∂2m

|∂1m × ∂2m| = ∂1m̃ × ∂2m̃

|∂1m̃ × ∂2m̃|
and have opposite orientation otherwise.

The surface S is said to be orientable if it can be covered by local parametrizations
that have the same orientation wherever they intersect.
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Fig. 3.5 Two examples of non-orientable surfaces. On the left is the Möbius band; the surface on
the right is similar, with an odd number of twists

A surface is therefore orientable if there is a consistent (continuous) definition of
a normal all over it. Not all surfaces are orientable (Fig. 3.5). A typical example is a
twisted ring (the Möbius band).

3.5 Integration on an Orientable Surface

Let S be an orientable surface and f : S → R be a continuous function. We want
to compute the integral of f over S. We first define it within a local chart. Let
m : U → V ∩ S be a parametrized patch of the surface S. To motivate the definition,
let U be divided into small rectangular cells (neglecting boundary issues). Consider
a cell of the form (u0 − ε/2, u0 + ε/2) × (v0 − ε/2, v0 + ε/2). In this cell, we can
make a first-order expansion of m in the form

m(u, v) = m(u0, v0) + (u − u0)∂1m(u0, v0) + (v − v0)∂2m(u0, v0) + o(ε)

so that, at first order, the image of the rectangular cell by m is a parallelogram in
space, centered at p0 = m(u0, v0), namely

σ0 = {p0 + α∂1m + β∂2m,α ∈ (−ε/2, ε/2),β ∈ (−ε/2, ε/2)} .

Its area is given by ε2|∂1m × ∂2m|, and the integral of a function f over this parallel-
ogram can legitimately be estimated by ε2 f (p0)|∂1m × ∂2m|. Summing over cells
and letting ε tend to 0 leads to the following definition:

Definition 3.10 Let f be a function defined on a regular surface S, and m : U →
V ∩ S a regular patch on S. The integral of f on V ∩ S is defined and denoted by
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∫

V∩S
f (p)dσS(p) =

∫

U
fm(u, v) |∂1m × ∂2m| du dv . (3.4)

The integral of f over the whole surface S is defined as the sum of such integrals
over non-overlapping local patches that cover S (maybe leaving out a finite number
of curves or points on S). It is denoted

∫

S
f (p) dσS(p) or

∫

S
f dσS.

This can be shown to be independent of the chosen family of patches. The nota-
tion dσS refers to the area form on S, defined on a local chart by dσS = |∂1m ×
∂2m| du dv.

Note that the area form that we have defined here is a special case of a volume form
in an arbitrary finite-dimensional manifold. For this reason, it is also often called the
volume form of S (even though it measures areas).

Another (equivalent) way to globally define the integral is to use partitions of
unity. Given a family ((Ui ,mi ), i = 1, . . . , n) of local parametrizations which cover
the surface (so that

⋃
i mi (Ui ) = S), but may overlap, one defines a partition of unity

as a family of continuous functions (ωi , i = 1, . . . , n) where each ωi is defined on
S and takes values in [0, 1], with ωi (p) = 0 if p /∈ mi (Ui ), and for all p ∈ S,

n∑

i=1

ωi (p) = 1.

Such partitions of unity always exist, and one can define

∫

S
f (p) dσS(p) =

N∑

i=1

∫

Ui

ωi (mi (u, v)) fmi (u, v)|∂1mi × ∂2mi | du dv .

Here also, the result does not depend on the local parametrizations, or on which
partition of unity is chosen.

That the right-hand side of (3.4) does not depend on the chosen parametrization
should be clear from the approximation process which led to its definition (which
was purely geometric), and can be checked directly as follows. Let m̃ : Ũ → V ∩ S
be another parametrization of the same patch. For p ∈ V ∩ S, the equation p =
m(u, v) = m̃(ũ, ṽ) provides a relation between homologous coordinates given by

⎧
⎪⎨

⎪⎩

∂1m = ∂1ũ∂1m̃ + ∂1ṽ∂2m̃

∂2m = ∂2ũ∂1m̃ + ∂2ṽ∂2m̃.
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The left-hand sides are computed at (u, v) and the right-hand sides at (ũ, ṽ). This
implies

∂1m × ∂2m = (∂1ũ∂2ṽ − ∂1ṽ∂2ũ) ∂1m̃ × ∂2m̃ .

Letting φ be the change of variables (φ(u, v) = (ũ, ṽ)), this is ∂1m × ∂2m =
(det φ)(∂1m̃ × ∂2m̃) ◦ φ. Therefore

∫

U
f (m(u, v)) |∂1m × ∂2m| du dv

=
∫

U
f (m̃ ◦ φ(u, v)) |∂1m × ∂2m| ◦ φ(u, v) | det φ(u, v)| du dv

=
∫

Ũ
f (m̃(ũ, ṽ)) |∂1m̃ × ∂2m̃| dũ d ṽ.

As an example, we compute the area of the unit sphere, which can be parametrized
(poles excepted) by m(u, v) = (cos u cos v, sin u cos v, sin v). Then

∂1m = (− sin u cos v, cos u cos v, 0),

∂2m = (− cos u sin v,− sin u sin v, cos v)

and |∂1m × ∂2m|2 = cos2 v, so that

∫

S2
dσ =

∫ 2π

0

∫ π/2

−π/2
cos v du dv = 2π[sin v]π/2

−π/2 = 4π.

3.6 Regular Surfaces with Boundary

Consider the surface S defined by x2 + y2 < 1, z = 0, which is the unit disc in the
horizontal plane. It is natural to define the boundary of S to be the circle x2 + y2 < 1,
z = 0. Such a definition cannot coincide with the topological boundary in R3, ∂S =
S̄ \ S̊, which would be the unit disc S̄ defined by x2 + y2 ≤ 1, z = 0 (because S has
an empty interior in R3). Because of this, one defines the boundary of a surface S by
∂S = S̄ \ S (and never use the topological boundary).

For a regular surface to be a “regular surface with boundary”, some additional
requirements are made to ensure that the boundary is locally a smooth curve.

Definition 3.11 Let S be a regular surface. One says that p ∈ ∂S is a regular bound-
ary point if there exists a parametrized surface m : U → R

3, where U is open in
R

2 with 0 ∈ U such that m(0, 0) = p, and, ifU+ = {(u, v) ∈ U : v > 0} andU 0 =
{(u, v) ∈ U : v = 0}, one has m(U+) = m(U ) ∩ S and m(U 0) = m(U ) ∩ ∂S.

One says that S is a regular surface with boundary if every point p ∈ ∂S is regular.

Equivalently, p ∈ ∂S is regular if there exists a regular surface S̃ such that S ⊂ S̃,
p ∈ S̃ and ∂S ∩ S̃ is a C1 regular curve on S̃.
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With this definition, the horizontal unit disc considered above is a regular surface
with boundary, and its boundary is the horizontal unit circle. If one removes the
origin from this unit disc, one still has a regular surface, but not “with boundary”
anymore, because 0, which is now in the boundary, is not a regular point. Similarly, a
triangular region, such as {x > 0, y > 0, x + y < 1, z = 0}, is not a regular surface
with boundary, because its boundary has angles.

Let S be a regular surfacewith boundary and assume that S is oriented. Let p ∈ ∂S
and m be a local parametrization such as the one defined in Definition3.11. Assume
that m : U+ → S is positively oriented (otherwise, take its composition with the
transformation (u, v) �→ (−u, v)). Then one defines the unit tangent and normal to
∂S at p by T∂S(p) = ∂1m(0, 0)/|∂1m(0, 0)| and N∂S(p) = NS(p) × T∂S(p) where
NS(p), defined by

NS(p) = ∂1m(0, 0) × ∂2m(0, 0)

|∂1m(0, 0) × ∂2m(0, 0)| ,

extends the normal to S to its boundary. We let the reader check that this definition
does not depend on the chosen parametrization m (or refer to the general argument
made in Sect.B.7.3). With this definition, N∂S is the inward pointing normal to ∂S
in the tangent plane to S.

Note that the term “boundary” is not the only difference between the terminology
used for surfaces and the one for standard topology. Here is another example.

Definition 3.12 One says that a regular surface S is a “closed surface”, or a “surface
without boundary”, if and only if S is a compact subset of R3.

With this definition, a sphere and a torus are closed surfaces. However, the horizontal
plane z = 0 is a closed subset of R3 and a regular surface, but not a closed surface
according to this definition.

3.7 The First Fundamental Form

3.7.1 Definition and Properties

Let S be a regular surface. When h and k are two tangent vectors at p ∈ S, their dot
product in R3 will be denoted

〈
h , k

〉

p. It is simply the usual dot product, the sum of
products of coordinates, but gets a specific notation because it is restricted to TpS.
The associated quadratic form is called the first fundamental form, and denoted

Ip(h) := |h|2p . (3.5)

This form is the key instrument for metric measurements on surfaces. Although its
definition is straightforward, one must remember that surfaces are mostly described
by local charts, and the expression of the form in such charts is not the standard
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norm anymore. Indeed, let m be a local parametrization around p, and h = α∂1m +
β∂2m ∈ TpS. Then

Ip(h) = α2
〈
∂1m , ∂1m

〉

p + 2αβ
〈
∂1m , ∂2m

〉

p + β2
〈
∂2m , ∂2m

〉

p

= α2E + 2αβF + β2G

with the notation

E = 〈
∂1m , ∂1m

〉

p, F = 〈
∂1m , ∂2m

〉

p, G = 〈
∂2m , ∂2m

〉

p. (3.6)

E, F and G are the coefficients of the first fundamental form in the chart. They
depend on the parameters u, v.

The following proposition allows one to use convenient local charts around a
given point.

Proposition 3.13 If S is a regular surface and p ∈ S, there exists a local
parametrization m : U �→ S around p such that (∂1m, ∂2m) is orthogonal on U.

(Note that this proposition does not hold if ‘orthogonal’ is replaced with ‘orthonor-
mal’.)

3.7.2 Geodesics

The first fundamental form provides all the information required to compute lengths
of curves on S: let γ be such a curve; assuming that γ is contained in a parametrized
patch and letting γ(t) = m(u(t), v(t)), we have

|γ̇|2 = |u̇∂1m + v̇∂2m|2 = u̇2E + 2u̇v̇F + v̇2G

so that the length of the curve from its expression in local coordinates is provided by

length(γ) =
∫ b

a

√
u̇2E(u, v) + 2u̇v̇F(u, v) + v̇2G(u, v)dt.

Similarly, one defines the energy of a curve γ by

energy(γ) = 1

2

∫ b

a
|γ̇|2dt = 1

2

∫ b

a

(
u̇2E(u, v) + 2u̇v̇F(u, v) + v̇2G(u, v)

)
dt.

Curves of minimal energy on a surface are called minimizing geodesics, as for-
malized by the following definition.
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Definition 3.14 Given two points p and p′ on a surfaceM , a curve γ onM achieving
the minimum energy among all piecewise C1 curves on M linking p and p′ is called
a (minimizing) geodesic.

In addition to minimizing the energy, it can be shown that geodesics are curves
of minimal length between two points [86, 87]. Moreover, if we define

dM(p, p′) = inf
{
length(γ) : γ piecewise C1 on M

}

then dM is a distance on M , called the geodesic distance. Therefore if γ is a mini-
mizing geodesic between p and p′ then length(γ) = dM(p, p′).

Minimizing geodesics between two given points do not always exist, however.
Let M be, for example, the plane z = 0 with the point (0, 0, 0) removed, which is
a regular surface. Then the geodesic distance between p and −p in M is 2|p|, but
this distance cannot be achieved because the optimal curve must be a straight line
containing 0. We however have the following theorem, which is an application of
the standard Hopf–Rinow theorem (see [86], for example).

Theorem 3.15 If M is a (topologically) closed surface, then there exists a minimiz-
ing geodesic connecting any pair of its points.

If γ is a minimizing geodesic between p and p′, and h(t) is for all t a vector
tangent to the surface at γ(t), one can define, for small ε, a one-parameter family of
curves γ̃(t, ε) such that γ̃(t, 0) = γ(t) and ∂εγ̃(t, 0) = h(t). Since γ is minimizing,
the function ε �→ energy(γ̃(·, ε)) has a vanishing derivative at ε = 0. This derivative
is given by

∫ b

a
γ̇T ḣdt = −

∫ b

a
γ̈T hdt

by integration by parts. The fact that this expression vanishes for any h tangent to
the surface along γ implies that the “acceleration” γ̈ is normal to the surface. By
extension, curves satisfying this property are also called geodesics. They generalize
the notion of straight lines in a plane.

Definition 3.16 A C2 regular curve γ on M is called a geodesic if its second deriva-
tive γ̈ is always normal to M .

Note that, using ∂|γ̇|2 = 2γ̇T γ̈ = 0 for geodesics, one finds immediately that such
curves have “constant speed”: |γ̇| = const.

Let us compute the geodesics of the unit sphere. Such geodesics must satisfy
|γ(t)| = 1 for all t and, in order to be normal,

γ̈(t) = λ(t)γ(t)

for some real-valued function λ. On the sphere, we can write, since γT γ̇ = 0,

0 = ∂tγ
T γ̇ = |γ̇|2 + λ(t)|γ|2,
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which implies (because γ̇ is constant along geodesics and |γ| = 1) that λ is constant.
So geodesics must satisfy the equation γ̈ = λγ. By making a constant time change,
we can assume that |γ̇| = −λ(t) = 1, and that γ is parametrized by arc length. Since
∂γ̈ = γ̇, we see that the curve has unit curvature and zero torsion and therefore
coincides with a portion of unit circle. The only unit circles included in the sphere
must be centered at 0, and constitute the great circles on the sphere. So we find that
geodesics on the sphere are great circles parametrized at constant speed.

Finally, we note that the first fundamental form also determines the area form
used in the computation of integrals over the surface. Indeed, one can easily check
that |∂1m × ∂2m| = √

EG − F2 (both terms are equal to |∂1m| |∂2m| | sin θ| where
θ is the angle between the two tangent vectors) so that

dσS =
√
EG − F2 du dv. (3.7)

3.7.3 The Divergence Theorem on Surfaces

A vector field on S is a function h : S → R
3 such that, for all p, h(p) ∈ TpS. We

start with a simple definition of the divergence of a C1 vector field.

Definition 3.17 Let h be a C1 vector field on a regular surface S. The divergence of
h on S is defined by

divSh(p) = e1
T dh(p)e1 + e2

T dh(p)e2 (3.8)

whenever e1, e2 is a positively oriented orthonormal basis of TpM (the result being
independent of the choice made for e1, e2).

In this definition, dh(p) is a linear transformation between TpS and R
3. If h is

defined on S and takes values in R
3 (not necessarily in T S), the definition remains

meaningful. We will use the notation div′
S(h) for the left-hand side of (3.8) in that

case. In fact, if h decomposes as h = hT + μN where hT is a vector field on S, we
have

div′
S(h) = divS(hT ) + μdiv′

S(N ). (3.9)

Another way of understanding the definition is by introducing the orthogonal
projection on TpS (denoted πTp S) and the operator

∇Sh(p) = πTp S ◦ dh(p) : TpS → TpS. (3.10)

This operator is the covariant derivative on S, as described in AppendixB, and
Definition3.17 simply says that

divSh(p) = trace(∇Sh(p)). (3.11)
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Note that we have, for ξ ∈ TpS

∇Sh(p)ξ = dh(p)ξ − ((dh(p)ξ)T N )N .

This definition can be made explicit in a chart. This yields the following propo-
sition (the proof, which is just a computation, is left to the reader):

Proposition 3.18 If m is a local chart on S and the C1 vector field h decomposes
as h = α∂1m + β∂2m in this chart, we have

divSh = ∂1α + ∂2β + (α∂1ρ + β∂2ρ)/ρ, (3.12)

where ρ = |∂1m × ∂2m| = √
EG − F2.

We also have the nice formula, still valid in a chart, that says that

∂1h × ∂2m + ∂1m × ∂2h = ρ(divSh)N . (3.13)

This result is a direct consequence of the following simple computation in linear
algebra, the proof of which is left to the reader.

Lemma 3.19 Let A be a linear operator from M, anoriented two-dimensional linear
subspace of R3, to R3. Let n be the unit normal to M. Define, for e1, e2 ∈ M,

φA(e1, e2) = (Ae1)
T (e2 × n) + (Ae2)

T (n × e1).

Then, there exists a real number ρ(A) such that

φA(e1, e2) = ρ(A) det(e1, e2, n),

which is also equal to ρ(A)|e1 × e2| if e1, e2 are positively oriented. Moreover, we
have

ρ(A) = trace((Id − nnT )A), (3.14)

where (Id − nnT )A (which is A followed by the projection on M) is considered as
an operator from M to itself.

Equation (3.13) just comes by applying Lemma3.19 with M = TpM , A = dh(p),
e1 = ∂1m and e2 = ∂2m.

We now give the divergence theorem on a surface, which is a direct generalization
of the one we saw on R

2 (Theorem1.16):

Theorem 3.20 Let S be an oriented regular surface, and h a smooth vector field on
S. Then, if Σ ⊂ S is a bounded subdomain of S with a regular boundary, we have

∫

∂Σ

hT N∂Σ dσ∂Σ = −
∫

Σ

divS(h) dσS,
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where the first integral is a line integral over the curve ∂Σ , and N∂Σ is the inward
normal to Σ (normal to ∂Σ and tangent to S).

The proof (which we skip) is an application of Green’s formula inR2 combined with
a decomposition in local coordinates.

In addition to the divergence, one can define the gradient operator on a surface S,
which applies to scalar-valued functions.

Definition 3.21 Let f : S → R be C1. The gradient of f at p ∈ S is denoted
∇S f (p) and defined by ∇S f (p) ∈ TpS and

∀ξ ∈ TpS,
〈∇S f (p) , ξ

〉

p = d f (p) ξ. (3.15)

Note that, even if they are using the same symbol ∇S , the covariant derivative intro-
duced in (3.10) and the gradient in (3.15) are similar, but different notions, since the
former applies to vector fields on S and the latter to scalar functions. Their similar-
ity (and some justification for the notation conflict) is supported by the following
observation: if f is the restriction to S of a differentiable function f̂ defined on R3,
then (3.15) implies that ∇S f is the orthogonal projection of ∇ f̂ (the usual gradient
in R3) on the tangent plane to S, namely

∇S f (p) = πTp S∇ f̂ (p) = ∇ f̂ (p) − (N (p)T∇ f̂ (p))N (p). (3.16)

In a chart (u, v) �→ m(u, v), we have

∇S f = G∂1 f − F∂2 f

EG − F2
∂1m + E∂2 f − F∂1 f

EG − F2
∂2m. (3.17)

The usual formula, div( f h) = ∇ f T h + f divh, extends to surfaces with

divS( f h) = ∇S f
T h + f divSh (3.18)

for a scalar function f and a vector field h on S.
The generalization of the Laplacian on R

2 is the Laplace–Beltrami operator on
S. It is defined as follows:

Definition 3.22 The Laplace–Beltrami operator on a regular surface S associates to
a scalar function f on S the scalar function �S f defined by

�S f = divS∇S f. (3.19)

The Laplace–Beltrami operator in a chart is therefore given by the combination of
(3.17) and (3.12), which yields a formula notably more complex than the ordinary
Laplacian.

Theorem3.20 relates surface integrals to linear integrals over the surface. Surface
integrals can also be related to three-dimensional integrals, if the surface is closed,
via the three-dimensional divergence theorem.
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Theorem 3.23 Let Ω be a bounded domain in R
3 and assume that S = ∂Ω is a

regular surface. If v is a C1 vector field on R
3, we have

∫

Ω

divv dx = −
∫

S
vT (m)N (m) dσS(m), (3.20)

where N (m) is the inward normal to S at m.

From this theorem, we can derive an expression of the volume of Ω as an integral
over its boundary, namely (taking v(x, y, z) = (x, y, z) in (3.20))

volume(Ω) = −1

3

∫

S
OmT N (m) dσS(m). (3.21)

3.8 Curvature and the Second Fundamental Form

Let S be a C2 orientable regular surface, and N be its unit normal. The function N
can be seen as a map defined on S with values in R

3 (in fact in the unit sphere S2

since |N | = 1), which is called the Gauss map. It therefore has a differential, dN .
For any p ∈ S, dN (p) is a linear map from TpS toR3. The fact that |N |2 = 1 implies
that (dN (p)h)T N (p) = 0 for all h ∈ TpS so that the range of dN (p) is orthogonal
to N (p) and therefore coincides with TpS. We can therefore consider dN (p) as an
endomorphism (a linear map from a vector space into itself)

dN (p) : TpS → TpS.

This endomorphism (also called the shape operator) is essential for describing the
curvature of the surface, which measures how the surface bends in a neighborhood
of a point p. It has the interesting property of being symmetric:

Proposition 3.24 Let S be a regular surface and p ∈ S: for any h, k ∈ TpS, we
have 〈

dN (p)h , k
〉

p = 〈
h , dN (p)k

〉

p.

Proof It suffices to show this for a basis of TpS. Let us take the one provided by
a local parametrization around p: h = ∂1m and k = ∂2m. Let Nm = N ◦ m be the
expression of N as a function of the parameters, so that

dN (p)(α∂1m + β∂2m) = α∂1Nm + β∂2Nm .

In particular, dN (p)∂1m = ∂1Nm and dN (p)∂2m = ∂2Nm , and what we need to
show is 〈

∂1Nm , ∂2m
〉

p = 〈
∂1m , ∂2Nm

〉

p.
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But, from (∂1m)T Nm = 0,weget
〈
∂1m , ∂2Nm

〉

p = (∂1m)T∂2Nm = −(∂2∂1m)T Nm .

Similarly,
〈
∂2m , ∂1Nm

〉

p
= −(∂1∂2m)T Nm . Since partial derivatives commute, the

two quantities are equal, yielding the required identity. �

Let γ be a curve on S, and assume that γ is parametrized by arc length. Let
T (γ) be the unit tangent of γ, κ(γ) its curvature and N (γ) its unit normal, such that
Ṫ (γ) = κ(γ)N (γ). The normal N (γ) does not coincide with N in general, andwe define
the normal curvature of γ by the (algebraic) normal part of Ṫ (γ) to the surface S. The
interesting point is that it only depends on γ via T (γ).

Definition 3.25 The normal curvature at p of an arc length parametrized curve γ on
a regular surface S is κ

(γ)

N (s) = (Ṫ (γ)(s))T N (γ(s)), where T (γ) = γ̇.

The fact that the normal curvature only depends on T (γ) can be proved as follows: let
γ be a curve on S such that γ̇(0) = T (γ). For all s, we have (T (γ))T N = 0 since T (γ)

is tangent to S. Computing the derivative with respect to arc length and applying the
chain rule yields

(Ṫ (γ))T N ◦ γ + (T (γ))T dN (γ)T (γ) = 0

so that
κ

(γ)

N = −(T (γ))T dN (γ)T (γ). (3.22)

One also defines the geodesic curvature of γ at s0 by the curvature (at s0) of the
projection of γ on the tangent plane to S at γ(s0), which is

γ̄(s) = γ(s) − (γ(s) − γ(s0))
T N (s0) N (s0).

Computing first and second derivatives in s and computing them at s = s0 yields
˙̄γ(s0) = γ̇(s0) and ¨̄γ(s0) = γ̈(s0) − κ

(γ)

N (s0)N (s0).

Denoting the geodesic curvature by κ(γ)
g (s0), we find (using the definition of the

(signed) curvature for plane curves in the oriented tangent plane) that

κ(γ)
g = det(γ̇, γ̈, N ) = γ̈T (N × γ̇),

where N × γ̇ is the unit normal to γ that belongs to TγM and complements γ̇ in a
positively oriented basis of the tangent plane. Writing γ̈ = (γ̈T (N × γ̇))(N × γ̇) +
(γ̈T N ), one also gets the identity

(κ(γ)
g )2 + (κ

(γ)

N )2 = (κ(γ))2,

the squared curvature of γ.
This expression in Eq. (3.22) involves another important quantity on S, its second

fundamental form.
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Definition 3.26 Let S be a regular surface and p ∈ S. The second fundamental form
at p is the quadratic form defined on TpS by

II p(h) = −〈
h , dN (p)h

〉

p.

In particular, we have the expression of the normal curvature of an arc length
parametrized curve γ:

κ
(γ)

N = II γ(γ̇).

Because dN (p) is symmetric, it can be diagonalized in an orthonormal basis
of TpS: let (e1, e2) be such a basis, with corresponding eigenvalues −κ1 and −κ2

such that κ1 ≥ κ2. The numbers κ1 and κ2 are called the principal curvatures of the
surface at p. The reason for this terminology is that any unit vector in TpS can be
written, for some θ, in the form h = cos θe1 + sin θe2 and

II p(h) = −〈
h , dN (p)h

〉 = κ1 cos
2 θ + κ2 sin

2 θ.

This implies that κ2 ≤ II p(h) ≤ κ1, the lower bound being attained for h = e2 and
the upper bound for h = e1: κ1 and κ2, respectively, are the maximum and minimum
normal curvatures of curves passing through p.

Definition 3.27 If κ1 and κ2 are the principal curvatures of a surface S at p ∈ S, one
defines the mean curvature at p by H(p) = (κ1 + κ2)/2, and the Gauss curvature
by K (p) = κ1κ2. They respectively coincide with the trace of −dN (p)/2 and the
determinant of dN (p).

From this definition, we can also write

2H = −div′
S(N ) (3.23)

and rewrite (3.9) as (for h = hT + μN )

div′
S(h) = divS(hT ) − 2μH. (3.24)

3.9 Curvature in Local Coordinates

In this section, we give the expression of the curvature in local coordinates, as func-
tions of the coefficients of the first and second fundamental forms. Recall the notation
(3.6) for the first fundamental form and a local parametrization m. We introduce a
similar notation for the second form, letting

II p(α∂1m + β∂2m) = α2e + 2αβ f + β2g

and
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e = −∂1m
T∂1N = ∂2

1m
T N , f = −∂1m

T∂2N = ∂1∂2m
T N ,

g = −∂2m
T∂2N = ∂2

2m
T N . (3.25)

Let dN =
(
a c
b d

)

in the basis (∂1m, ∂2m) (thematrix is not necessarily symmetric

since the basis is not assumed to be orthonormal). We find:

−e = ∂1m
TdN∂1m = aE + bF

− f = ∂2m
TdN∂1m = aF + bG

− f = ∂1m
TdN∂2m = cE + dF

−g = ∂2m
TdN∂2m = cF + dG

which yields, in matrix form: −
(
e f
f g

)

=
(
E F
F G

) (
a c
b d

)

. This implies that, in the

basis (∂1m, ∂2m), dN is given by the matrix

−
(
E F
F G

)−1 (
e f
f g

)

.

From this, it can be deduced that

K = eg − f 2

EG − F2

because it is just the ratio of the determinants. Also, after computation, one finds

H = eG − 2 f F + gE

2(EG − F2)
.

The principal curvatures are then given by κ = H ± √
H 2 − K .

3.10 Implicit Surfaces

Assume that a surface is defined implicitly by

S = {
p ∈ R

3, f (p) = 0
}
,

where f is a C2 function from R
3 to R with ∇ f �= 0 on S. We have already

noticed that the tangent plane to S is orthogonal to ∇ f , and therefore N (p) =
−∇ f (p)/|∇ f (p)| is a smooth unit normal to S which therefore is orientable (and
we take the orientation provided by this choice of N ).

The interesting feature in this representation is that, since f is defined on R
3,

the function N can be extended to R
3 (denote the extension by N̂ ) so that dN (p)



3.10 Implicit Surfaces 97

is simply the restriction to TpS of d N̂ (p), In particular, the trace of dN (p) is, by
definition,

〈
e1 , dN (p)e1

〉

p + 〈
e2 , dN (p)e2

〉

p for an arbitrary orthonormal basis of

TpS. It therefore suffices to add (d N̂ N )T N to obtain the trace of d N̂ , but this added
quantity vanishes because |N̂ |2 = 1 implies that d N̂ N is perpendicular to N . Thus,
we have, for the mean curvature:

H = −trace(d N̂ )/2 = 1

2
div

∇ f

|∇ f | . (3.26)

(This is the usual divergence on R
3, not to be confused with the S-divergence in

Definition3.17.)
Let PN be the projection on N̂⊥: PN = IdR3 − N̂ N̂ T . The Gauss curvature can be

computed after diagonalizing the matrix PNd N̂ PN = d N̂ PN , which is symmetric
and coincides with dN on TpS. Using N̂ = −∇ f/|∇ f |, we get

(d N̂ PNh)T PNk = − 1

|∇ f | (d
2 f PNh)T PNk + 1

|∇ f |
(
(d2 f PNh)T N̂

) (
(PNk)

T N
)

= − 1

|∇ f | (PNh)T d2 f PNk,

which is symmetric in h and k. The matrix PNd2 f PN/|∇ f | has one vanishing
eigenvalue since PN N = 0, and the other two are the principal curvatures of S. Their
product provides the Gauss curvature.

The Delta-Function Trick

When a surface or a curve is defined implicitly, integrals over its interior can be
described in a straightforward way using the Heaviside function. Assume that S is
the set f (p) = 0 for some smooth function f , and let Ω be its interior, defined by
f < 0. Introduce the Heaviside function H0 defined onR by H0(x) = 1 if x ≥ 0 and
H0(x) = 0 otherwise. Then, clearly, for any function V on R

3, we have

∫

Ω

V (x)dx =
∫

R3
(1 − H0( f (x)))V (x)dx . (3.27)

Contour or surface integrals can be defined via a level-set representation, albeit
requiring passing to a limit. For this, we need to replace H0 by a smooth approxima-
tion denoted Hε, which must be an increasing function that tends to H0 as ε tends
to 0. A possible example is (cf. [227, 316]) Hε(x) = 0 for x < −ε, Hε(x) = 1 for
x > ε and, on [−ε, ε]:

Hε(x) = 1

2

(

1 + x

ε
+ 1

π
sin

(πx

ε

))

. (3.28)

Alternatively [58], one can take, for all x ∈ R:
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Hε(x) = 1

2

(

1 + 2

π
arctan

( x

ε

))

. (3.29)

This choice being made, let δε denote the derivative of Hε. The function δε can be
considered as a smooth approximation of the Dirac function δ0, in the sense that, for
any bounded function u on R which is continuous at t = 0, one has

lim
ε→0

∫

R

δε(t)u(t)dt = u(0). (3.30)

We leave the easy proof to the reader (simply divide the integral over domains around
0 or away from 0).

We now describe how surface integrals over implicitly defined surfaces can be
approximated using δε.

Proposition 3.28 Let f : R3 → R be a C2 function with ∇ f �= 0 if f = 0, and
such that the implicit surface S = f −1(ε) is bounded in a neighborhood of 0. Then,
if V : R3 → R is continuous, we have

lim
ε→0

∫

R3
δε ◦ f (x) V (x) |∇ f (x)| dx =

∫

S
V (m) dσS(m). (3.31)

The same proposition holds for curves, with f : R2 → R and the surface integral
replaced by the integral along the curve.

Proof Let’s consider the surface case (the case of curves is similar and simpler). We
also assume that δε is supported in [−ε, ε], like for (3.28) (the general case requiring
only minor modifications). Consider a local chart (u, v) �→ m(u, v) on S = f −1(0).
Consider the equation

f (m(u, v) + t N (u, v)) = y,

which we want to solve for t as a function of (u, v, y) in a neighborhood of some
u = u0, v = v0 and y = 0. From the implicit function theorem, this is possible,
because

∂t f (m + t N ) = ∇ f T N = −|∇ f |,

which is not zero by assumption. Using the compactness of S, we can find a finite
number of points p0 = m(u0, v0) and domains around (u0, v0, 0) ∈ R

3 over which
a function t (m(u, v), y) such that f (m + t N ) = y is well-defined and such that the
union of these domains forms an open set in R3 that contains S, and more generally
contains the set | f (p)| < y0 for y0 small enough.

Taking ε < y0, we can write

∫

Rd

δε ◦ f (x) V (x) |∇ f (x)| dx =
∫

| f |<y0

δε ◦ f (x) V (x) |∇ f (x)| dx .
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(Not assuming δε to be compactly supported would add a small error to this identity,
which is easily shown to be negligible when ε → 0.)

Wecandecompose the integral over a partition of unity,which reduces the problem
to the situation in which V is supported by one of the domains above. Working
under this assumption, we make the change of variables x(u, v, y) = m(u, v) +
t (m(u, v), y)N (u, v) in this domain and let J (u, v, t) be the associated Jacobian
determinant, so that

∫

| f |<y0

δε ◦ f (x)V (x) |∇ f (x)| dx =
∫

|y|<y0

δε(y) V (x(u, v, y)) |∇ f (x(u, v, y))| J (u, v, y) du dv dy.

Our assumptions ensure that the integral

u(y) =
∫

V (x(u, v, y)) |∇ f (x(u, v, y))| J (u, v, y) du dv

is continuous in y so that,

lim
ε→0

∫

Rd

δε ◦ f (x) V (x) |∇ f (x)| dx = u(0).

Now,
J (u, v, 0) = | det(∂1m, ∂2m, ∂3t N )| = |∂1m × ∂2m|/|∇ f (m)|

because y = f (m + t N ) implies 1 = ∂3t ∇ f T N = −∂3t |∇ f |. This implies that the
|∇ f | terms cancel in the expression of u(0), which is equal to

u(0) =
∫

V (m(u, v)) |∂1m × ∂2m| du dv =
∫

S
V dσS,

which concludes the proof. �

The theorem is particularly important for numerical computations, because it
replaces computations over a surface with computations over a grid that contains the
surface.

The left-hand side of (3.31) is often written using the symbolic notation

∫

R2
δ0 ◦ f (x) V (x) |∇ f (x)| dx .

The assumption that V is continuous is important (of course, we only need con-
tinuity near f −1(0)). Take the following simple example with curves; let f (u, v) =
u2 + v2 − 1, so that f −1(0) = S1, the unit circle and let V (u, v) = 1 if u2 + v2 ≤ 1
and 0 otherwise. Then
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Fig. 3.6 The Gauss–Bonnet
theorem in R

2 reduces to the
well-known property that the
sum of consecutive angles in
a polygon is 2π ε1

ε2

ε3

∫

S1
Vdl = 2π

but

lim
ε→0

∫

R2
δε ◦ f (x)V (x)|∇ f (x)|dx = π

(both integrals being easily computed in radial coordinates).

3.11 The Gauss–Bonnet Theorem

The average of the Gauss curvature over a domain with piecewise geodesic boundary
is provided by the Gauss–Bonnet formula [86]:

Theorem 3.29 Let S be a regular surface and A be a domain on M such that ∂A
is the union of N geodesics γ(1), . . . , γ(N ). Let εi , i = 1, . . . N be the sequence of
consecutive angles between the curves at their intersection. Then

∫

A
Kdσ = 2π −

N∑

i=1

εi . (3.32)

For example, when N = 3 (∂A is a “geodesic triangle”), we obtain the fact that
the sum of the angles of a triangle is 2π minus the integral of the Gauss curvature
over its interior. This is consistent with the sum being 2π in the plane, which has
zero Gauss curvature (Fig. 3.6).
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