
Chapter 13
Analyzing Shape Datasets

We present in this chapter some “shape analysis” methods, among those that are
mainly used in practice, where the goal is to provide a low-dimensional description
and to perform statistical validations of hypotheses for datasets in which each object
is a shape. Most recent applications of this framework have taken place in medi-
cal imaging, in which the shapes are provided by anatomical regions segmented by
MRI or computer tomography scans. The analysis of the anatomy derived from such
images is called computational anatomy, with a framework introduced in [137, 138],
and has since generated a huge literature. Beside this important range of applications,
shape analysis can also be used in computed vision, or in biology, which was, for
example, the main focus of D’Arcy-Thompson’s seminal treatise [276] on Growth
and Form. We here focus on methods that derive from the analysis of diffeomor-
phisms developed in the previous chapters, leading to “morphometric” [23, 68], or
“diffeomorphometric” [197] analyses.

13.1 Reference-Based Representation

The diffeomorphic matching methods that were described in this book can be seen
to have a dual purpose. As a first goal, they provide a comparison tool between
shapes, generally based on a formal or rigorous Riemannian paradigm. They also,
by nature, provide an algorithm that aligns a target shape along a reference shape,
i.e., that estimates a diffeomorphism ϕ, such that ϕ · (reference) � (target). This
correspondence, ϕ, can be seen as a representation of the relationship between the
reference and the target in the diffeomorphism group, i.e., a parametrization of the
target relative to the reference.

In more formal terms, registration algorithms provide, given a reference m̄, a
mapping m �→ Φ(m) from a shape space to the diffeomorphism group such that
Φ(m) · m̄ � m. From a dataset (m1, . . . ,mN ) of shapes, one can then obtain a dataset
(ϕ1, . . . ,ϕN ) of diffeomorphisms, withϕk = Φ(mk). Even though diffeomorphisms
may appear as more complex objects than many shapes, this representation actually
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simplifies the analysis of the dataset. It is certainly natural to restrict this analysis to
the restriction of the diffeomorphism (or its derivative) to the reference, which (e.g.,
when dealing with landmarks) can represent a huge reduction of dimension. Image
or shape morphometry, as described, for example, in [23], determines features, or
descriptors, of shapes in the dataset based on these diffeomorphisms, using point
displacements or Jacobian matrices. These features can then be used in a statistical
learning framework to draw conclusions on properties of interest about the dataset.

When dealing with shape spaces,M , that do not involve diffeomorphisms, such as
Kendall’s space (see Sect. 11.2), other reference-based representations can be used,
the most natural, in the Riemannian case, being to use exponential charts for the
metric, such that Φ(m) = v ∈ Tm̄M with m = Expm̄(v). The statistical analysis can
then be based on the vectors v1, . . . , vN that all belong to the same vector space. This
point of view can actually be applied to the diffeomorphic representation, where one
can use exponential charts, or, equivalently, themomentum representation, associated
with right-invariantmetrics ondiffeomorphisms.Notice that theLDDMMalgorithms
described in Sect. 10.3 and later directly return such a representationwhile estimating
an optimal correspondence.

Building such representations requires selecting a proper reference shape. While
one can use any fixed shape for this purpose, it is, for many reasons, preferable to
choose m̄ close to the studied dataset. It is understandably easier to analyze dif-
feomorphisms when the deformation they define are not too severe. Also, tangent
space representations linearize the shape space, and one wants to reduce as much as
possible the metric distortions they induce. This is why one typically computes m̄ as
some kind of average of the dataset under study.

When using morphometric methods, one often estimates m̄ and computes its
optimal correspondences with the dataset in a single algorithm, which is often called
groupwise registration [26, 35, 36, 160, 180, 181, 288]. In its simplest form, when
the registration between m̄ andm minimizes a cost functionUm̄,m(ϕ), the associated
groupwise registration minimizes

∑N
k=1Um̄,mk (ϕk) with respect to m̄,ϕ1, . . . ,ϕN .

Some additional regularization constraints may also be used for the reference. For
example, if one uses the LDDMMalgorithm, one can define a groupwise registration
method for image matching via the minimization of (using the notation Sect. 10.3,
V being an admissible space)

1

2

N∑

k=1

∫ 1

0
‖vk(t)‖2V dt + 1

σ2

N∑

k=1

‖m̄ ◦ ϕvk
10 − mk‖22 (13.1)

with respect to v1, . . . , vN and m̄. When m̄ is fixed, this provides N independent
image registration problems, and when v1, . . . , vN are fixed, the optimal m̄ is given
by

m̄ = 1

N

N∑

k=1

mk ◦ ϕvk
01 det(dϕvk

01).
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Fig. 13.1 Example of template estimation. Rows 2 and 3: ten randomly generated shapes. Row 1:
hypertemplate, chosen as the first shape in the sequence. Row 4: estimated template

A modification of this method has been introduced in [180] where the reference is
in the form m̄ = m0 ◦ ψv0

10 where m0 is fixed and v0 is estimated jointly with the rest
of the variables by minimizing

λ

2

∫ 1

0
‖v0(t)‖2V dt + 1

2

N∑

k=1

∫ 1

0
‖vk(t)‖2V dt + 1

σ2

N∑

k=1

‖m0 ◦ ϕv0
10 ◦ ϕvk

10 − mk‖22

for some λ > 0. This constrains the topology of the estimated reference image to
conform to that of the image m0. A similar approach has been introduced in [181]
for surface matching, in which m0 is referred to as a hypertemplate. One interesting
feature of this approach is that it can be represented as a family of branching optimal
control problems, each with its own maximum principle that can also be branched
backwards in time to compute the gradient of the objective function: one first uses
v0 as a control leading from the hypertemplate to the template, then v1, . . . , vn as
controls driving the template to the targets. An example of template estimation with
this method is provided in Fig. 13.1.

When one uses a tangent representation on a shape manifold, m̄ is often estimated
as a Fréchet mean, or Riemannian center of mass, of the collection m1, . . . ,mN .
Such a mean is defined as a minimizer of

F : m̄ �→
N∑

k=1

dM(m̄,mk)
2,
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where dM is the geodesic distance on M . It is important to point out that this
minimization problem does not always have a unique solution, i.e., that some datasets
may have more than one Fréchet mean, even though this fact is often ignored in prac-
tice (or, one considers that any Fréchet mean is a good candidate for the reference
shape). In finite dimensions, sufficient conditions for the uniqueness of such means
involve the curvature of M and Rauch’s comparison theorems. They are beyond the
scope of this book, but we refer to [4, 62, 164, 168, 229] for additional details.

The computation of the gradient of F can be based on the following lemma, which
we state without proof.

Lemma 13.1 Let M be a Riemannian manifold. For m0 ∈ M define f (m) =
dM(m0,m)2. Let Expm0

be defined in some neighborhood of 0, Ω ⊂ Tm0M, and
be a diffeomorphism onto its image. Then, for all v0 ∈ Ω , for all m ∈ Expm0

(Ω) and
h ∈ TmM,

d f (m)h = 2
〈
γ̇(1) , h

〉
m

= −2
〈 ˙̃γ(0) , h

〉
m
,

where γ(t), t ∈ [0, 1], is the geodesic joining m0 and m and γ̃(t) = γ(1 − t) is the
geodesic between m and m0.

From this, we can deduce that if the dataset is fully included in a domain Ω

that contains minimizing geodesics between any of its points (i.e., it is geodesically
convex), is such that each of these geodesics is uniquely defined, and such that, for
allm ∈ Ω , Expm is a diffeomorphism from an open neighborhood of 0 in TmM onto
Ω , then

dF(m̄) h = −2
N∑

k=1

γ̇k(0),

where γk is the geodesic between m̄ and mk , and the Fréchet mean must satisfy

N∑

k=1

γ̇k(0) = 0.

This computation leads, in particular, to gradient descent algorithms designed to
estimate the mean (see [177]).

It is also possible to define a reference shape through a stochastic shape model, in
which m̄ is deformed via random diffeomorphisms, possibly with additional noise,
to generate m1, . . . ,mN . The estimation of m̄ can then be performed using maxi-
mum likelihood. While describing in detail the associated statistical model and the
estimation algorithm would take us too far from this discussion (and we refer to
[7, 8, 173] for such details), it is important to note that minimizing (13.1) in this
case may lead (when the noise level is high enough) to biased estimates of m̄, in
the sense that, even if N tends to infinity, minimizers of (13.1) will differ from m̄
when the model is valid (which does not mean, however, that they cannot be used as
reference shapes for subsequent morphometric analyses). See in particular [81] for
a theoretical analysis of the issue.
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13.2 Principal Component Analysis

Principal component analysis (PCA) is the simplest and most widely used method of
performing dimension reduction for data analysis [92]. It is especially useful in shape
analysis, which deals with virtually infinite-dimensional objects. The reader may
refer, if needed, to the basic description of the method that is provided in AppendixE
in the appendix for Hilbert spaces. In this section we focus on the specific adaptation
of the approach to nonlinear shape spaces.

PCA is indeed a linear method, designed to be applied to vector spaces equipped
with an inner product. On shape spaces, and more generally on Riemannian man-
ifolds, a standard approach relies on a tangent-space linearization of the manifold
using exponential charts (this is often referred to as tangent PCA). More precisely,
given a dataset (m1, . . . ,mN ) and a reference element m̄ one computes normal
coordinates h1, . . . , hN ∈ Tm̄M such that mk = Expm̄(hk) for k = 1, . . . , N , and
performs PCA on the collection (h1, . . . , hN ) using the Riemannian inner prod-
uct

〈· , ·〉m̄ . The p first principal components then provide an orthonormal family
(e1, . . . , ep) spanning a subspace of Tm̄M , and the PCA representation is given by

Φ : (λ1, . . . ,λp) �→ Expm̄

( p∑

j=1

λ j e j

)

∈ M.

When working with shape spaces with a metric induced by a right-invariant Rie-
mannian metric on diffeomorphisms through a Riemannian submersion, it is easier,
and formally equivalent, to reformulate the problem in terms of Diff rather than M .
One can see, in particular, that the LDDMM registration algorithm minimizes

1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01 · m̄,mk)

for some data attachment term U , which is equivalent to minimizing

1

2
‖h‖2V +U (Expid(h) · m̄,mk),

where Expid is the Riemannian exponential on the diffeomorphism group starting at
ϕ = id. One can use the optimal h, say hk ∈ V , as a representation of mk on which
PCA can be applied, using the V inner product. Using the notation introduced in
Sect. 11.5.2, Definition 11.13, one can replace h by ρ = Lh and solve the equivalent
problem of minimizing

1

2
‖ρ‖2V ∗ +U (Exp�

id(ρ) · m̄,mk)
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with optimal solution given by ρk = Lhk . The advantage of doing so is the parsimony
of themomentum representation, as discussed in Sect. 11.5.2. PCA is then performed
on the dataset (ρ1, . . . , ρN ) using the V ∗ inner product. Once a PCA basis, say
ξ1, . . . , ξp, is computed, the representation is then

Φ : (λ1, . . . ,λp) �→ Exp�
id

( p∑

j=1

λ jρ j

)

· m̄ ∈ M.

Notice that this is a representation of the “deformed templates” (ϕvk
01 · m̄, k =

1, . . . , N ) rather than of the original data (m1, . . . ,mN ). This momentum PCA
approach has been used multiple times in applications, starting with [290], in which
it was introduced for landmark spaces. This formulation allows one to revisit the
active shape model described in Sect. 6.2, in which shapes were represented by a
decomposition in a linear basis, and develop a model based on the nonlinear repre-
sentation associated with the functionΦ above, which constrains the shape topology.
Such approaches have been proposed in order to operate shape segmentation, or to
regularize registrations in [285, 287].

Because tangent PCA is based on a linear representation of the manifold M , it
necessarily suffers from the metric distortions that any linear representation must
induce. The sum of residuals in the tangent space that is minimized by PCA may
be quite different from the sum of squared distances of the actual shapes to their
PCA representation provided by the mapping Φ. More precisely, one can formulate
the search for p principal directions in tangent PCA as looking for a p-dimensional
subspace W ⊂ Tm̄M such that

F(W ) =
p∑

k=1

min
w∈W ‖hk − w‖2m̄ (13.2)

is minimized, with Expm̄(hk) = mk . However, in terms of approximating the dataset,
one would probably be more interested in minimizing

F(W ) =
p∑

k=1

min
w∈W dM(Expm̄(w),mk)

2, (13.3)

which measures how far each shape is from its representation in the manifold. The
two criteria may be quite different when the dataset is spread out away from m̄ and
their solutions (the optimalW ) may be quite different. Obviously, the first criterion is
much easier to minimize than the second one, which represents a complex nonlinear
optimization problem (with dM usually non-explicit). One can make it slightly easier
by buildingW one dimension at a time, startingwith p = 1, inwhich one looks for the
best geodesic approximating the data, progressively adding new directions without
changing those that were found earlier. This procedure was introduced in [113] and
called geodesic principal component analysis (GPCA).Thenon-incremental problem
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requires a search within the space of all p-dimensional subspaces of TmM , i.e., its
Grassmann manifold of order p (cf. Sect.B.6.7).

Notice that one may opt for a simplified version of GPCA by replacing the
Riemannian distance in M by some “extrinsic” discrepancy measure. For exam-
ple, in the diffeomorphic framework, one can formulate the problem of finding a
p-dimensional subspace W of V ∗ that minimizes

F(W ) =
p∑

k=1

min
ρ∈W U (Exp�

id(ρ) · m̄,mk), (13.4)

in which U replaces the distance dM and would be computationally more tractable.
This problem can be rewritten in the form of finding ρ1, . . . , ρN minimizing

G(ρ1, . . . , ρN ) =
N∑

k=1

U (Exp�
id(ρk) · m̄,mk)

subject to rank(ρ1, . . . , ρN ) = p. The problem in this form is tackled in [60], inwhich
a gradient descent algorithm over p-dimensional subspaces of V ∗ is proposed.

13.3 Time Series

13.3.1 Single Trajectory

We now assume that the dataset (m1, . . . ,mN ) is a time series, so that it describes the
evolution of a given shape captured at times, say, τ1 < · · · < τN . We here study the
regression problemof determining a function τ �→ m(τ ) ∈ M such thatm(τk) � mk .

Since geodesics are the Riemannian generalizations of straight lines in Euclidean
spaces, one generalizes the standard linear regression modelm(τ ) = m̄ + τh to such
spaces by looking for curves defined by m(τ ) = Expm̄(τh) for fixed m̄ ∈ M and
v ∈ Tm̄M , which both need to be estimated from data. Notice that, in this case,
m̄ is not an average of the considered dataset, but an “intercept”, representing the
estimated position at τ = 0. The resulting “geodesic regression” model [114] can
then be associated with the generalization of least-square estimation, minimizing

N∑

k=1

dM(Expm̄(τkh),mk)
2

with respect to m̄ and v. Notice that this problem is similar, but distinct from the
search for a geodesic principal direction, which would first choose m̄ as a Fréchet
mean, and then estimate h, with ‖h‖m̄ = 1, minimizing
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N∑

k=1

min
τ

dM(Expm̄(τh),mk)
2 .

As discussedwith PCA, the intrinsic error criterion using the Riemannian distance
seldom leads to tractable optimization algorithms, and it is often replaced with a
discrepancy measure that is more amenable to computation, minimizing

N∑

k=1

U (Expm̄(τkh),mk) .

The exponential function being associated with a second-order differential equation,
the derivative with respect to m̄ and h of each term in the sum above can be computed
using the formulas derived in Sect.C.4 for the variation of solutions of ODEs with
respect to their initial conditions. Some regularization may be added to the objec-
tive function, to control, for example, the topology of the intercept, m̄, which may
be chosen in the form m̄ = Expm̄(h0) · m0 for some fixed shape m0. Adding some
penalty on the norms of h0 and h, one can minimize

(h0, h) �→ λ0‖h0‖2m0
+ λ‖h‖2m̄ +

N∑

k=1

U (Expm̄(τkh),mk) ,

with m̄ = Expid(h0) · m0. Thismodelwas implemented in [155] on spaces of surfaces
with a metric induced by diffeomorphisms, with a similar approach developed in
[110]. Still in the diffeomorphic framework, a geodesic regression algorithm for
images has been proposed in [219], and an approach using image metamorphosis
has been proposed in [153].

Notice also that one can spare the estimation of m̄ by assuming that τ0 = 0,
considering the first observation as a baseline. This creates, however, an asymmetry
in the data, in which the noise or variation from the geodesic is neglected for the
baseline, which may sometimes be artificial [24, 242, 243].

It is not difficult to modify the previous framework to correct for the property that
geodesics evolve at constant speed by making a time reparametrization of the trajec-
tory. This corresponds to the modelm(τ ) = Expm̄( f (τ )h), where f is an increasing
function from [0, 1] to [0, 1] that also needs to be estimated. This time reparametriza-
tion can be estimated using a method akin to LDDMM, modeling f as the result of a
diffeomorphic flow [94], but simpler methods can be used, too, such as, for example,
optimizing

(m̄, h, τ̃1, . . . , τ̃N ) �→
N∑

k=1

dM(Expm̄(τ̃kh),mk)
2

subject to 0 = τ̃1 < τ̃2 < · · · < τ̃N−1 < τ̃N = 1, which corresponds to monotonic
regression with respect to time [155]. The derivative of Expm̄(τ̃h) with respect to
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τ̃ is straightforward to compute, since it is given by the speed of the geodesic, and
is readily obtained from the differential equation that is integrated to compute this
geodesic.

Aligning all shapes along a single geodesicmay sometimes be too restrictivewhen
the time series exhibits several modes of variation, and more flexible methods can be
derived.At the extreme endof this range ofmethods, one can use a piecewise geodesic
approach, which consists in estimating h1, . . . , hN−1 such that Expmk

(hk) = mk+1

with hk ∈ Tmk M . One can then define

m(τ ) = Expmk

(
τ − τk

τk+1 − τk
hk

)

for τ ∈ [τk, τk+1]. This is just the Riemannian generalization of a piecewise lin-
ear curve interpolating the observed trajectory. One can modify this formulation
by allowing for some error in the interpolation, thus taking into account possible
measurement noise in the observed mk’s, minimizing, for example,

λ0

2
‖h0‖2m̄0

+ λ

2

N−1∑

k=0

‖hk‖2m̄k
+

N∑

k=1

U (m̄k,mk),

where m̄k is defined recursively by m̄k+1 = Expm̄k
(hk), hk ∈ Tm̄k M and m̄0 is a fixed

shape. One obtains an equivalent formulation with the following time-continuous
problem of minimizing

λ0

2
‖h0‖2m̄0

+ λ

2

∫ 1

0
‖γ̇(t)‖2γ(t) +

N∑

k=1

U (γ(τk),mk) (13.5)

subject to γ(0) = Expm̄0
(h0). Indeed, the solution γ must be a minimizing geodesic

between m̄k := γ(τk) and m̄k+1, with constant speed, which directly leads to a piece-
wise geodesic solution. In the LDDMM framework, this equivalent formulation
reduces to minimizing

λ0

2
‖v0‖2V + λ

2

∫ 1

0
‖v(t)‖2V dt +

N∑

k=1

U (ϕv
0τk ◦ Expid(v0) · m̄0,mk)

with respect to v0 ∈ V and t �→ v(t) ∈ L2([0, 1], V ) (see [196, 197, 204]).
Piecewise geodesic interpolation is continuous in time, but not differentiable, and

will certainly be too sensitive to noise, even when using inexact interpolation. Time
differentiability of the solution can be obtained by controlling the second derivative
of γ instead of the first derivative in (13.5), leading to a Riemannian generalization
of interpolating splines. As discussed in Sect.B.6.4, curve acceleration in Rieman-
nian manifolds involves the covariant derivative, and a formulation of the Rieman-
nian spline problem can be obtained by replacing γ̇(t) by ∇γ̇(t)γ̇(t) in (13.5) [220].
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The analysis of the new variational problem becomes more involved when
studied intrinsically on the manifold, and here we restrict to situations in which
one can work in a local chart, and take advantage of the Hamiltonian formulation
of geodesics described in Sect.B.6.6. Using the notation of this section we let S(m)

be the representation of the metric in the chart, so that ‖h‖2m = hT S(m)h, with the
notation abuse of using h in order to represent a vector in TmM and its expression in
a chart. Letting H(m, a) = aT S(m)−1a/2, with a ∈ TmM∗, the geodesic equations
in Hamiltonian form are

⎧
⎨

⎩

∂tm = S(m)−1a

∂t a + 1

2
∂m(aT S(m)−1a) = 0.

Moreover, given a curve γ on M (not necessarily a geodesic), one has, letting a(t) =
S(γ(t))γ̇(t),

∇γ̇ γ̇ = S(γ)−1

(

∂t a + 1

2
∂γ(a

T S(γ)−1a)

)

.

One can then reformulate the Riemannian spline problem as an optimal control
problem, with state (γ, a) and control u, minimizing

λ0

2
‖h0‖2m̄0

+ λ

2

∫ 1

0
u(t)T S(γ(t))−1u(t) dt +

N∑

k=1

U (γ(τk),mk)

subject to the state equation

⎧
⎨

⎩

∂tγ = S(γ)−1a

∂t a + 1

2
∂γ(a

T S(γ)−1a) = u

with initial conditionγ(0) = Expm̄0
(h0) and free condition fora(0).One can consider

higher-order Riemannian splines by iterating covariant derivatives (see, e.g., [122,
182]). This approach to the spline problem was introduced for shape spaces with a
Riemannian metric induced by diffeomorphisms in [284], with further developments
in [265]. In this case, one can take advantage of the right-invariance of the metric in
the group to reformulate the problem as minimizing

λ0

2
‖v0‖2V + λ

2

∫ 1

0
‖u(t)‖2 dt +

N∑

k=1

U (ϕv
0τk ◦ Expid(v0) · m̄0,mk)

subject to {
∂tγ = (Kρ) · γ

∂tρ + ad∗
Kρρ = u
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Fig. 13.2 Time series with four surfaces: left to right: t = 1, 2, 3, 4

Fig. 13.3 Piecewise geodesic interpolation of sequence in Fig. 13.2 with seven time points (left to
right and top to bottom): t = 1, 1.5, 2, 2.5, 3, 3.5, 4

Fig. 13.4 Spline interpolation of sequence in Fig. 13.2 with seven time points (left to right and top
to bottom): t = 1, 1.5, 2, 2.5, 3, 3.5, 4

with ρ, u ∈ V ∗, K the inverse duality operator of V , and where the second equation
in the system is the EPDiff equation. Notice that the norm on u in the integral is left
unspecified, and there is much flexibility in choosing it, because u now belongs to a
fixed space, V ∗. One can take, in particular, any metric on a space W ∗ that is con-
tinuously embedded in V ∗ (so that V is embedded in W ), bringing more regularity
constraints to the control u. This includes, in particular, the L2 norm, which signif-
icantly simplifies the implementation of the problem. Figures 13.2, 13.3, 13.4, 13.5
and 13.6 compares the interpolation schemes on a sequence of four target surfaces.
The piecewise geodesic and splinemethods interpolate the target almost exactly, with
some small differences at intermediate points. The geodesic interpolation is more
regular, but makes large errors interpolating the sequence. The difference between
the methods is especially apparent when plotting the volumes of the interpolated
surfaces over time (Fig. 13.6).
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Fig. 13.5 Geodesic interpolation of sequence in Fig. 13.2 with seven time points (left to right and
top to bottom): t = 1, 1.5, 2, 2.5, 3, 3.5, 4

Fig. 13.6 Evolution of the volumes of the interpolated surfaces in Fig. 13.2. The first leg of the
trajectory (from time 0 to 1) is the adjustment of the baseline starting with the volume of the
“hypertemplate”. The dots that follow are the volumes of the target surfaces. The time interpolation
step is δt = 0.1. From left to right: piecewise geodesic, spline and geodesic

13.3.2 Multiple Trajectories

We now consider the situation in which several time series are observed, and start
with the problem of computing an average trajectory from them. Assume, to begin
with, that one observes full trajectories in the form of functions mk : [0, 1] → M
(assuming that the time interval has been rescaled to [0, 1]), for k = 1, . . . , n. The
goal is to compute an average trajectory m̄.

The simplest and most direct approach is to apply one of the averaging methods
that were discussed in Sect. 13.1 to each time coordinate separately. For example,
one can define m̄(τ ) as a Fréchet mean, minimizing

n∑

k=1

dM(m̄(τ ),mk(τ ))2

for each τ . This requires however that the observed trajectories are correctly aligned
with each other, whichmay be valid in some contexts (e.g., for cardiac motion, which
can be parametrized using well defined epochs in the cardiac cycle) but not always.
In the general case, averaging has to be combined with some time realignment.
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As a possible approach, let us consider this problem within the metamorphosis
framework that was discussed in the previous chapter, which can be used to place
a Riemannian metric on the space of trajectories, with respect to which Fréchet
means can be computed while allowing for changes of parametrization. So, consider
a metamorphosis metric in which the acting group is the space of diffeomorphisms
ofΩ = [0, 1] acting on curves via g · m = m ◦ g−1 (reparametrization). Consider an
RKHS H on functions defined over [0, 1] that vanish at 0 and at 1. We can associate
a metamorphosis to the function

F(ξ,m, z) = ‖ξ‖2H + 1

σ2
‖z‖22

defined for ξ ∈ H ,m ∈ Ck(Ω, M) and z a vector field alongm (so that z(τ ) ∈ Tm(τ )

for all τ ∈ Ω), with

‖z‖22 =
∫ 1

0
‖z(τ )‖2m(τ ) dτ .

The squared distance between m̄ and mk itself can be computed by minimizing

∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫ 1

0
‖z(t, ·)‖22 dt

subject to m(0, ·) = m̄, m(1, ·) = mk and ∂tm + ξ∂τm = z. We use here the con-
vention of denoting by t ∈ [0, 1] the (numerical) metamorphosis time and τ ∈ Ω

(=[0, 1]) the “real” time associated with observed trajectories. Defining g as the
flow of the equation ∂tg(t, τ ) = ξ(t, g(t, τ )), and letting α(t, τ ) = m(t, g(t, τ )),
this objective function can be rewritten as

∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫ 1

0

∫

Ω

‖∂tα(t, τ )‖2α(t,τ )∂τg dτ dt,

which, after a change of variable in time, takes the form

∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫

Ω

(
1

cg(τ )

∫ 1

0
‖∂t α̃(t, τ )‖2α̃(t,τ ) dt

)

dτ ,

where

cg(τ ) =
∫ 1

0
∂τg

−1 dt

and α̃(t, τ ) = α(λ(t, τ ), τ ) for some invertible time change λ(·, τ ) from [0,1] onto
itself. (See the computation following Eq. (12.28).) This has to beminimized in ξ and
α (or α̃) with the constraints α(0) = m̄ and α(1) = mk ◦ g(1), ∂tg = ξ ◦ g. Using
the fact that α̃(·, τ ) minimizes the geodesic energy on M between m̄ and mk ◦ g(1),
we finally find that computing the distance can be done by minimizing
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∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫

Ω

dM(m̄(τ ),mk(g(1, τ )))2

cg(τ )
dτ

with respect to ξ. A Fréchet mean betweenm1, . . . ,mn for the metamorphosis metric
should therefore minimize, with respect to m̄ and ξ1, . . . , ξn ,

n∑

k=1

∫ 1

0
‖ξk(t, ·)‖2H dt + 1

σ2

n∑

k=1

∫

Ω

dM(m̄(τ ),mk(gk(1, τ )))2

cgk (τ )
dτ

with ∂tgk(t, τ ) = ξk(t, gk(t, τ )). One can use an alternating minimization scheme
to solve this problem since, with fixed m̄, ξ1, . . . , ξn are solutions of independent
“ordinary” metamorphosis problems on M , and for fixed ξ1, . . . , ξn , the average
m̄(τ ) can be obtained, for each τ , as a weighted Fréchet average minimizing

n∑

k=1

dM(m̄(τ ),mk(gk(1, τ )))2/cgk (τ ).

Some modifications to this formulation are still needed in the case of shape
spaces acted upon by diffeomorphisms, because the geodesic distance in this case
is generally not computable exactly, but must be approximated through algo-
rithms such as LDDMM. For example, on spaces of surfaces, one can replace
dM(m̄(τ ),mk(gk(1, τ )))2 by the minimizer of

∫ 1

0
‖vτ

k ‖2V dt + D(ϕ
vτ
k
01 · m̄,mk ◦ gk(1, τ ))

for some discrepancy measure D, such as those described in Sect. 9.7.3. The mini-
mization then needs to be done with respect to ξ1, . . . , ξn , v1, . . . , vn and m̄. When
ξ1, . . . , ξn is fixed, this is the same problem as the one considered in (13.1) and below,
and can be solved separately for each τ .

With fixed m̄, v1, . . . , vn the problem splits into n independent problems, each of
them requiring the minimization of a function taking the form

∫ 1

0
‖ξk‖2H dt +

∫

Ω

Φk(τ ,mk ◦ gk(1, τ ))

cgk (τ )
dτ ,

with

Φ(τ , m̃) =
∫ 1

0
‖vτ

k ‖2V dt + D(ϕ
vτ
k
01 · m̄, m̃).

The gradient of this objective function with respect to ξk can be obtained using
the formulas developed in Sect.C.5 for the differentiation of solutions of ordi-
nary differential equations (we skip the details). One can obtain a simpler method
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by disregarding the weights cg that come from the metamorphosis metric, and just
minimize

n∑

k=1

∫ 1

0
‖ξk‖2H dt +

n∑

k=1

∫ 1

0

∫

Ω

‖vτ
k ‖2V dτ dt +

n∑

k=1

∫

Ω

D(ϕ
vτ
k
01 · m̄,mk ◦ gk(1, τ )) dτ ,

leading to a formulation similar to that developed in [95].
When dealing with sparse observations, i.e., when the kth trajectory is observed

at a small number of time points τk,1, . . . , τk, jk , one can simply replace integrals over
Ω by discrete sums, so that the last two terms in the previous expression become

n∑

k=1

jk∑

i=1

∫ 1

0
‖vi

k‖2V dt +
n∑

k=1

jk∑

i=1

D(ϕ
vik
01 · m̄,mk ◦ gik).

Some regularization must then also be added to this objective function to ensure that
m̄ is smooth as a function of τ . One can, for example, ensure that τ �→ m̄(τ ) is a
geodesic on M , or a Riemannian spline as described in the previous section.

13.3.3 Reference-Centered Representations of Time Series

We now focus on methods that place the observed trajectories in a single coordinate
system, allowing for the use of a statistical methods designed for linear spaces. This
was not done in the previous discussion, which addressed the computation of an
average curve.

We first point out that the reference-based representation discussed in Sect. 13.1
is still an option here, in the sense that, given a reference m̄0 ∈ M , one can still
consider a representation of a family of curves m1(·), . . . ,mn(·) as v1(·), . . . , vn(·),
where v1, . . . , vn are curves in Tm̄0M such that mk(τ ) = Expm̄0

(vk(τ )) for all τ .
This approach, or its registration counterpart in which one computes a collection of
diffeomorphisms ϕτ

k for k = 1, . . . , n such that ϕτ
k · m̄0 = mk , is probably the most

commonly used in applications.
However, when using this approach, it is difficult to untangle the part of vk(·)

that describes the evolution within the trajectory from that describing the translation
from the reference to that trajectory. Because of this, several methods have been
designed that move trajectories as a whole rather than each point individually. More
precisely, assume that each trajectory, mk , has a representation with respect to its
own reference, or baseline, m̄k in the form

mk(τ ) = Expm̄k
(vk(τ )),

with vk(τ ) ∈ Tm̄k M for all τ . (If one uses, for example, geodesic regression, then
vk(τ ) = τvk(1).) Given a global reference, m̄0, one builds a reference-centered rep-
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resentation by “translating” eachvk(τ ) from Tm̄k M to Tm̄0M . Notice that, inEuclidean
spaces, this operation is trivial, because vk(τ ) = mk(τ ) − m̄k and its translation is
just itself!

In Riemannian manifolds, the natural operation for translating tangent vectors is
parallel transport, which is described in Sect.B.6.5. This operation must be done
along a curve in M connecting the original basis point of the vector that needs to be
translated to its target, and the result depends on the chosen curve. When no such
curve is specified, it is also natural to choose a minimizing geodesic.

Let, therefore, γk be a geodesic such that γk(1) = m̄k and γk(0) = m̄0. The rep-
resentation of the trajectory mk in Tm̄M is then given by wk(·) such that wk(τ ) is
the parallel transport of vk(τ ) along γk . After applying this to all curves, we indeed
end up with a description of the dataset given by w1, . . . , wn , which are all curves
in Tm̄0M . Parallel transport was introduced for the analysis of manifold data in [163,
176] and for groups of diffeomorphisms and the associated shape spaces in [309],
followed by [235, 303, 312].

Using this construction, one therefore represents each trajectory in the form

mk(τ ) = Expγk (1)(Tγk ,0,1wk(τ )),

where Tγ,0,τ denotes the parallel transport along γ from time 0 to τ . One can also
use an alternative approach, proposed in [94] (to which we refer for more details),
in which the construction is done in the reverse order. In addition to w1, . . . , wn in
Tm̄M , this approach also requires an average curve m̄(·) with m̄(0) = m̄0, and the
observed trajectories are represented in the form

mk(τ ) = Expm̄(τ )(Tm̄,0,τ (wk(τ ))) .

We conclude this chapter with a description of the parallel transport equations
in the diffeomorphism groups and their image via Riemannian submersions. Let, as
usual, V be an admissible Hilbert space, and consider the right-invariant metric on
Diff defined by ‖δϕ‖ϕ = ‖δϕ ◦ ϕ−1‖V . One can check (after a lengthy application
of Eq. (B.9)) that the Levi-Civita connection on this space is given by

∇XY (ϕ) =
(
1

2
(K ad∗

vLw + K ad∗
wLv − advw) + Xw

)

◦ ϕ,

where v(ϕ) = X (ϕ) ◦ ϕ−1 and w(ϕ) = Y (ϕ) ◦ ϕ−1 are functions defined on Diff
and taking values in V , and advw = dv w − dw v. In particular, if ϕ depends on
time with ∂tϕ = v ◦ ϕ and Y (t) = w(t) ◦ ϕ(t) is a vector field along this curve, then

DY

Dt
=

(
1

2
(K ad∗

vLw + K ad∗
wLv − advw) + ∂tw

)

◦ ϕ

and parallel transport is equivalent to
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∂tw + 1

2
(K ad∗

vLw + K ad∗
wLv − advw) = 0.

Taking v = w, one retrieves the geodesic equation (EPDiff) given by ∂tv +
K ad∗

vLv = 0.
Now consider a shape space M on which Diff acts, such that π(ϕ) = ϕ · m0

is a Riemannian submersion (for a fixed m0 ∈ M). The vertical space at ϕ is the
space Vm ◦ ϕ, where Vm = {v : v · m = 0}, and the horizontal space is Hm ◦ ϕ with
Hm = V⊥

m . The horizontal lift of ξ ∈ TmM is the unique vector vξ ∈ Hm such that
vξ · m = ξ (cf. Sect. 11.5).

If m(·) is a curve on M and η0 ∈ Tm(0)M , its parallel transport η(·) along m is
characterized by

(

∂tv
η + 1

2
(K ad∗

vξLvη + K ad∗
vηLvξ − advξvη)

)

· m(t) = 0

at all times, with ξ = ∂tm (this results from Eq. (B.15)). Assume, to simplify the
discussion, that M is an open subset of a Banach space Q (otherwise, consider the
following computation as valid in a local chart). Writing vη · m = η, we have ∂tη =
(∂tv

η) · m + d Avη (m)ξ, where we have denoted by Aw the mapping m �→ w · m.
Using this, we obtain the parallel transport equation along m

∂tη − d Avη (m)ξ +
(
1

2
(K ad∗

vξLvη + K ad∗
vηLvξ − advξvη)

)

· m(t) = 0 . (13.6)

On shape spaces of point sets, i.e., m = (x1, . . . , xN ), the infinitesimal action is
just v · m = (v(x1), . . . , v(xn)) and the horizontal lift is such that

Lvξ =
N∑

k=1

α
ξ
kδxk ,

where (α
ξ
1, . . . ,α

ξ
N ) are obtained by solving the equations

∑N
j=1 K (xk, xi )α

ξ
j = ξk .

Moreover, we have

d Avη ξ =
N∑

k=1

(∂1K (xk, xi )ξk)α
η
j .

This makes all terms in (13.6) explicit.
The situation is not as simple on spaces of images, in which ϕ · m = m ◦ ϕ−1

and v · m = −∇mT v. One has, in this case, d Avη ξ = −∇ξT v, which is simple, but
the horizontal lift of ξ consists of minimizing ‖v‖2V subject to ξ = −∇mT v. While
this problem has a unique minimizer, the characterization of this minimizer using
Lagrange multipliers requires finding a Banach space W such that h �→ −∇mT h,
from V to W , is bounded and has closed range (see Theorem D.4). This problem is,
to our knowledge, still open in the general case.
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