
Chapter 12
Metamorphosis

12.1 Definitions

The Riemannian version of the construction of Sect. 11.1.2 provides a metric based
on transformations in which objects can change under the action of diffeomorphisms
but also under independent variations. We shall refer to such metrics as metamor-
phoses [152, 206, 281, 282]. They will result in formulations that enable both object
registration and metric comparison.

We start with an abstract description of the construction. We consider the setting
in which deformations belong to a Lie group G with Lie algebra denoted V , acting
on a Riemannian manifold M . We assume that V is a Hilbert space with norm ‖·‖V ;
the metric on M at a given point a ∈ M is denoted

〈· , ·〉a and the corresponding
norm |·|a .

For ϕ ∈ G and a ∈ M , define

Aϕ : M → M

b �→ ϕ · b,
Ra : G → M

ϕ �→ ϕ · a,

Rϕ : G → G

ψ �→ ψϕ. (12.1)

The first two maps are the components of the action, and the third is the right trans-
lation on G. It will also be convenient, in the following, to have special notation for
derivatives of these maps evaluated at the identity, so we will write ξϕ = dRϕ(id),
ξa = dRa(id). These maps coincide with the infinitesimal actions, i.e.,

v · ϕ = ξϕv and v · a = ξav

and we will also use this notation.
If (ϕ(t), t ∈ [0, 1]) is a differentiable curve on G, we define its Eulerian velocity

v(t) (which is a curve in V ) by the relation:

∂tϕ = ξϕ(t)v(t) = v(t) · ϕ(t) . (12.2)
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374 12 Metamorphosis

Definition 12.1 A metamorphosis is a pair of curves (ϕ(t),α(t)) respectively on
G and M , with ϕ(0) = id. Its image is the curve a(t) on M defined by a(t) =
ϕ(t) · α(t). We will say that ϕ(t) is the deformation part of the metamorphosis, and
that α(t) is the residual part. When α(t) is constant, the metamorphosis is a pure
deformation.

12.2 A New Metric on M

Metamorphoses, by the evolution of their images, provide a convenient representation
of combinations of group actions and of variations on M . Let a metamorphosis
((ϕ(t),α(t)), t ∈ [0, 1]) be given and a(t) = ϕ(t) · α(t) be its image. Then, we can
write

∂t a(t) = d Aϕ(t)(α(t))∂tα(t) + dRα(t)(ϕ(t))∂tϕ

= d Aϕ(t)(α(t))∂tα(t) + dRα(t)(ϕ(t))dRϕ(t)(id)v(t).

Since Rα ◦ Rϕ = Rϕα, we get

∂t a(t) = d Aϕ(t)(α(t))∂tα(t) + dRa(t)(id)v(t). (12.3)

In particular, when t = 0:

∂t a(0) = ∂tα(0) + v(0) · a(0). (12.4)

This expression provides a decomposition of a generic element η ∈ TaM in terms
of an infinitesimal metamorphosis, represented by an element of V × TaM . Indeed,
for a ∈ M , introduce the map

Φ(a) : V × TaM → TaM

(v, ρ) �→ ρ + v · a .

Then (12.4) can be written as

∂t a(0) = Φ(a0) (∂tα(0), v(0)) .

We now introduce the Riemannian metric associated to metamorphoses.

Proposition 12.2 Assume that v �→ v · a is continuous on V .With σ2 > 0, the norm

‖η‖2a = inf

{
‖v‖2V + 1

σ2
|ρ|2a : η = Φ(a)(v, ρ)

}
(12.5)
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defines a new Riemannian metric on M. (Note that we are using double bars instead
of single ones to distinguish between the new metric on M and the initial one.)

Proof Because Φ(a) is onto (e.g., Φ(a)(0, ρ) = ρ), ‖η‖a is finite (and bounded by
|η|a/σ2). Define Va = (Φ(a))−1(0). It is a linear subspace of V × TaM and ‖η‖2a is
the norm of the linear projection of (0, η) on Va , for theHilbert structure on V × TaM
defined by

‖(v, ρ)‖2id,a = ‖v‖2V + 1

σ2
|ρ|2a .

Thus ‖·‖a = ∥∥πVa (0, η)
∥∥
id,a is associated with an inner product. Since it is a

projection on a closed subspace (Φ(a) is continuous), the infimum is attained and by
definition, cannot vanish unless η = 0. This therefore provides a new Riemannian
metric on M . �

With this metric, the energy of a curve is

E(a(t)) =
∫ 1

0
‖∂t a(t)‖2a(t) dt

= inf
v

(∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0
|∂t a(t) − v(t) · a(t)|2a(t) dt

)
, (12.6)

the infimum being over all curves t �→ v(t) on V . It can also be written

E(a(t)) = inf
v

(∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0

∣∣d Aϕ(t)(α(t)) ∂tα(t)
∣∣2
a(t) dt

)
(12.7)

with ∂tϕ = v ◦ ϕ.
The distance between two elements a0 and a1 in M can therefore be computed by

minimizing

U (v, a) =
∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0
|∂t a(t) − v(t) · a(t)|2a(t) dt (12.8)

over all curves ((v(t), a(t)), t ∈ [0, 1]) on V × M , with boundary conditions a(0) =
a0 and a(1) = a1 (no condition on v). From (12.7), this may also be seen as finding
an optimal metamorphosis, by minimizing

Ũ (ϕ,α) =
∫ 1

0

∥∥(dRϕ(t)(id))
−1∂tϕ(t)

∥∥2

V dt + 1

σ2

∫ 1

0

∣∣d Aϕ(t)(α(t))∂tα(t)
∣∣2
α(t) dt

with boundary conditions ϕ(0) = idG , α(0) = a0, ϕ(1) · α(1) = a1.
This construction can also be interpreted using a Riemannian submersion

(Sect.B.6.7). Indeed, the mapping
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π : G × M → M

(ϕ,α) �→ ϕ · α

is a submersion from G × M to M with dπ(ϕ,α)(h, ρ) = d Aϕ(α)ρ + dRα(ϕ)h.
(π is a submersion because d Aϕ(α) is invertible, with inverse d Aϕ−1(ϕ · α).) The
vertical space at (ϕ,α) is the set of all pairs (h, ρ) satisfying

ρ = −d Aϕ−1(ϕ · α)dRα(ϕ)h. (12.9)

Two pairs (ϕ,α) and (ϕ̃, α̃) belong to the same fiber if and only if ϕ · α = ϕ̃ · α̃,
or, letting ψ = ϕ−1ϕ̃, (ϕ̃, α̃) = (ϕψ,ψ−1 · α). This leads us to introduce the right
action of G on G × M defined by

(ϕ,α) · ψ = (ϕψ,ψ−1 · α) =: R̃ψ(ϕ,α),

which provides a transitive action on the fiber over a = ϕ · α. Assume that a Rie-
mannian metric ‖(h, ρ)‖(ϕ,α) is given on G × M , and that this metric is invariant
through this action, so that

d R̃ψ(ϕ,α) : (h, ρ) �→ (dRψ(ϕ)h, d Aψ−1(α)ρ)

is an isometry between T(ϕ,α)(G × M) and T(ϕ,α)·ψ(G × M). Notice that this isome-
try maps vertical spaces onto vertical spaces. Indeed, take (h, ρ) ∈ T(ϕ,α)G × M , so
that h and ρ satisfy (12.9). Then

d Aψ−1(α)ρ = −d Aψ−1(α) d Aϕ−1(ϕ · α) dRα(ϕ)h

= −d Aψ−1ϕ−1(ϕ · α) dRα(ϕ)h

= −d Aψ−1ϕ−1(ϕ · α) dRα(ϕ) dRψ−1(ϕψ) dRψ(ϕ)h

= −d A(ϕψ)−1(ϕ · α) dRψ−1α(ϕψ) dRψ(ϕ)h,

in which we have applied the chain rule to the identities Aψ−1 Aϕ−1 = Aψ−1ϕ−1 ,
Rψ−1Rψ = id and RαRψ−1 = Rψ−1α. This shows that d R̃ψ(ϕ,α)(h, ρ) belongs to
the vertical space at (ϕψ,ψ−1α).

Because d R̃ψ is an isometry that maps vertical spaces to vertical spaces, it also
maps horizontal spaces to horizontal spaces. These spaces being isometric shows
that π is a Riemannian submersion, provided that the norm on M is defined by

‖η‖a = min
{‖(h, ρ)‖(ϕ,α) : (h, ρ) ∈ TϕG × TαM, d Aϕ(α)ρ + dRα(ϕ)h = η

}

and this definition does not depend on (ϕ,α) such that ϕ · α = a. One can, in par-
ticular, take (ϕ,α) = (id, a), yielding

‖η‖a = min
{‖(v, ρ)‖(id,a) : (v, ρ) ∈ V × TaM, ρ + v · a = η

}
.
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The construction leading to (12.5) simply corresponds to the special case

‖(v, ρ)‖2(id,a) = ‖v‖2v + 1

σ2
|ρ|2a

(which specifies ‖(h, ρ)‖(ϕ,α) everywhere because right translations are isometries).
There is no particular reason for restricting to this special case beside it leading
to simpler formulas, and the discussion that follows can easily be extended to the
general case of a right-invariant metric on G × M .

12.3 Euler–Lagrange Equations

We provide below optimality conditions in a Lagrangian setting that include meta-
morphosis in the case when M is a vector space. When M is a general Riemannian
manifold, the optimality conditions were worked out in [282] and are expressed as
follows (we refer to this reference for a proof of the statement)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t a − v · a = z

∇∂t a z + ∇†
z X

v = 0

v = 1

σ2
Kξ∗

av.

(12.10)

Here, ∇ is the covariant derivative on M and ∇∂t a = D/Dt is the evaluation of this
derivative along the curve t �→ a(t) ∈ M (recall that z(t) ∈ Ta(t)M); Xv is the vector
field a �→ v · a on M , and ∇†

z is defined by

〈
Z , ∇Z ′ Z ′′〉 = −〈∇†

Z Z
′′ , Z ′〉,

where
〈
X , Y

〉
is the function a �→ 〈

X (a) , Y (a)
〉
a for vector fields X,Y on M .

Finally, K is, as usual, the inverse duality operator on V .
We now assume that M is a vector space and consider a generalized version of

(12.8) minimizing

U (v, a) =
∫ 1

0
F

(
v(t), a(t), ∂t a − v(t) · a(t)

)
dt (12.11)

for some function F . Let
z(t) = ∂t a − v(t) · a(t). (12.12)

We will denote by ∂vF , ∂a F and ∂z F the partial differentials of F with respect
to each of its variables. Computing the variation with respect to v, we get, for all
t �→ h(t) ∈ V ,
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∫ 1

0

(
∂vF

∣∣∣ h(t)
)
dt −

∫ 1

0

(
∂z F

∣∣∣ h(t) · a(t)
)
dt = 0.

Denoting by Qa∂z F the linear form

(
Qa∂z F

∣∣∣ h̃
)

:=
(
∂z F

∣∣∣ h̃ · a
)
,

we obtain the optimality equation for v

∂vF − Qa(t)∂z F = 0. (12.13)

If we now make the variation with respect to a, the result is, for every
t �→ α(t) ∈ M ,

∫ 1

0

(
∂a F

∣∣∣α(t)
)
dt +

∫ 1

0

(
∂z F

∣∣∣ ∂tα − v(t) · α(t)
)
dt = 0.

Integrating by parts and using the notation

(
Q̃v∂z F

∣∣∣ α̃
)

:=
(
∂z F

∣∣∣ v · α̃
)
,

we obtain the optimality equation

− ∂t∂z F − Q̃v∂z F + ∂a F = 0. (12.14)

Equations (12.12)–(12.14) provide the Euler–Lagrange equations for metamor-
phosis. They also provide the differentials of the energy with respect to v and a and
can be used to design minimization algorithms.

12.4 Application to Labeled Point Sets

We consider here diffeomorphisms acting on collections of points

a = (y(1), . . . , y(N )),

with y(k) ∈ R
d . We therefore have M = (Rd)N (note that we are not assuming here

that points are distinct). We consider the function [51, 189]

F(v, a, z) = ‖v‖2V + 1

σ2

N∑

k=1

|z(k)|2,
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where V is an admissible RKHS of vector fields. (Note that F does not depend on
a.) Here, because ϕ · a = (ϕ(y(1)), . . . ,ϕ(y(N ))), we have

v · a = (v(y(1)), . . . , v(y(N ))),

so that z(k) = ∂t y(k) − v(y(k)). We can therefore write

U (v, a) =
∫ 1

0
‖v(t)‖2V dt + 1

σ2

N∑

k=1

∫ 1

0

∣∣∂t y
(k) − v(t, y(k)(t))

∣∣2 dt.

Wehave∂vF = 2Lv (whereL is the duality operator ofV ) and∂z F = (2/σ2)(z(1),

. . . , z(N )). Moreover,

(
Qa∂z F

∣∣∣ h
)

= 2

σ2

N∑

k=1

(z(k))T h(y(k)),

so that the first Euler–Lagrange equation is

Lv − 1

σ2

N∑

k=1

z(k)δy(k) = 0.

sFor the second equation, we write

(
Q̃v∂z F

∣∣∣α
)

= 2

σ2

N∑

k=1

(z(k))T dv(y(k))αk,

yielding
−∂t z

(k) − dv(y(k))T z(k) = 0.

This provides the system of Euler–Lagrange equations for labeled point-set meta-
morphosis: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lv = 1

σ2

N∑

k=1

z(k)δy(k) ,

∂t z
(k) + dv(y(k))T z(k) = 0,

∂t y
(k) − v(y(k)) = z(k).

(12.15)

Note that, introducing the reproducing kernel of V , the first equation is equivalent to

v(t, x) =
N∑

k=1

K (x, y(k)(t))z(k)(t).
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This implies that minimizing E is equivalent to minimizing

Ẽ(a, z) =
N∑

k,l=1

∫ 1

0
z(k)(t)T K (y(k)(t), y(l)(t))z(l)(t)dt

+ 1

σ2

N∑

k=1

∫ 1

0

∣∣∣∣∣
∂t y

(k)(t) −
n∑

l=1

K (y(k)(t), y(l)(t))z(l)(t)

∣∣∣∣∣

2

dt.

The vectors z(1), . . . , z(N ) can be computed explicitly given the trajectories y(1), . . . ,

y(N ), namely
z = (S(y) + λI )−1∂t y.

This provides an expression of the energy in terms of y(1), . . . , y(N ) that can be
minimized directly, as proposed in [51]. Most of the methods developed for point
sets in Chap.10 can in fact be adapted to this new framework. Figure 12.1 provides
examples of deformations computed with this method.

12.5 Application to Images

12.5.1 Formal Analysis

Let M be a set of square integrable and differentiable functions a : Rd → R. We let
G = DiffV act on M by ga = a ◦ g−1. We use the L2 norm as the initial metric on
M , and we start with a formal discussion. Since we assume that a is differentiable,
we can write v · a = −∇aT v. We then define

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖22,

which, here again, does not depend on a.
Equation (12.12) is z(t) = ∂t a(t) + ∇a(t)T v(t). We have

(
Qa∂z F

∣∣∣ h
)

= − 2

σ2

∫

Rd

z∇aT hdx,

so that (12.13) is Lv = −z∇adx . Also,

(
Q̃v∂z F

∣∣∣α
)

= − 2

σ2

∫

Rd

zvT∇adx,

so that, using the divergence theorem, Q̃v∂z F = div(zv) and (12.14) is
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Fig. 12.1 Point-set matching using metamorphosis, with the same input as in Figs. 9.1 and 10.1,
using Gaussian kernels K (x, y)=exp(−|x − y|2/2σ2) with σ = 1, 2, 4 in grid units

−∂t z − div(zv) = 0.

So the optimality equations for image metamorphosis are

⎧
⎪⎪⎨

⎪⎪⎩

∂t a + ∇aT v = z,

∂t z + div(zv) = 0,

Lv = − 1

σ2
(z∇a)dx .

(12.16)

Figures 12.2, 12.3 and 12.4 provide examples of images matched using the asso-
ciated energy. In these examples, the first and last images are given as input and two
interpolated images are provided. The numerical scheme is described in Sect. 12.5.4.
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Fig. 12.2 Image metamorphosis. Estimation of a geodesic between a disc and a square. First row:
image evolution in time. Second row: evolution of the diffeomorphism

Fig. 12.3 Creation of new patterns with image metamorphosis. Geodesic between an empty image
and a disc. First row: image evolution in time. Second row: evolution of the diffeomorphism

12.5.2 Some Rigorous Results

In this section, we provide a more rigorous treatment of image metamorphosis. We
will extend the L2 case considered above to Sobolev spaces, assuming that images
(a or α) belong to a Hilbert space H , with norm equivalent to the Hr (Rd) norm for
some integer r ≥ 0, with notation for the Hr norm

‖u‖2r,2 =
∑

|k|≤r

‖∂ku‖22,

where k denotes a d-dimensional multi-index (k1, . . . , kd), |k| = k1 + · · · + kd ,

∂ku = ∂k1
1 . . . ∂kd

d u
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Fig. 12.4 Gray-level image metamorphosis. Geodesic between two gray-level face images. First
row: image evolution in time. Second row: evolution of the diffeomorphism

and ‖ · ‖2 is the L2 norm. We will consider metamorphoses with cost

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖2H

and provide a few results describing their properties. The proofs of these results
being somewhat technical, we will skip them, referring the reader to [245] for more
details.

We first reformulate the problem to make sure that it is also well defined
for functions a that are not differentiable. We can write the advection equation
∂t a + ∇aT v = z as ∂tα = z ◦ ϕ with α = a ◦ ϕ and ∂tϕ = v ◦ ϕ. We can there-
fore consider the minimization of

∫ 1

0
‖v‖2V dt + 1

σ2

∫ 1

0
‖z(t)‖2H dt (12.17)

subject to the constraints ∂tϕ = v ◦ ϕ, ∂tα = z ◦ ϕ, ϕ(0) = id, α(0) = a0 and
α(1) = a1 ◦ ϕ(1).

We then have the following theorem.

Theorem 12.3 Assume r ≥ 0 and p ≥ max(1, r). Then the image metamorphosis
problem has at least one solution.

The validity of the optimality conditions requires slightlymore restrictive assump-
tions on the boundary conditions a0 and a1.We letKV : V ∗ → V andKH : H∗ → H
be the duality operators of the Hilbert spaces V and H and define ξϕv = v ◦ ϕ and
ξ̃ϕα = α ◦ ϕ. Then, the following result holds.
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Theorem 12.4 Assume that both a0 and a1 belong to Hr+1(Rd). Then, if (v, z,ϕ,α)

is anoptimal solutionof themetamorphosis problem, there existρϕ(·) ∈ C p
0 (Rd ,Rd)∗

and ρα ∈ H∗ such that the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ = v ◦ ϕ

∂tα = z ◦ ϕ

∂tρϕ = −∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
) − ∂ϕ(ρα | z ◦ ϕ )

∂tρα = 0

v = KV ξ∗
ϕρϕ

z = σ2
KH ξ̃∗

ϕρα

(12.18)

is satisfied, with boundary conditions α(0) = a0, α(1) = a1 ◦ ϕ(1) and

(
ρϕ(1)

∣∣ δϕ
) + (

ρα

∣∣∇a1 ◦ ϕ(1)T δϕ
) = 0

for all δϕ ∈ C p
0 (Rd ,Rd).

Moreover, the boundary condition propagates, so that

(
ρϕ(t)

∣∣ δϕ
) + (

ρα

∣∣∇a(t) ◦ ϕ(t)T δϕ
) = 0 (12.19)

for all t ∈ [0, 1].
(Equation (12.19) is in fact the horizontality condition associated with geodesics
obtained through the Riemannian submersion.)

Finally, the following theorem provides sufficient conditions for the existence of
solutions of (12.18) with given initial conditions.

Theorem 12.5 Assume that p ≥ 1 + d/2 and p ≥ r + 1. Then system (12.18) has
a unique solution over any bounded interval as soon as ρϕ,0 ∈ C p−2

0 (Rd ,Rd)∗ and
ρα ∈ Hr−1(Rd)∗.

Note that, with metamorphosis, the boundary condition requires that
(
ρϕ,0

∣∣w
) =(

ρα

∣∣∇aT
0 w

)
. Assuming that a0 ∈ H 1(Rd) (which is restrictive only for r = 0),

we see that ρα ∈ Hr−1(Rd)∗ implies that ρϕ,0 ∈ Cr−1
0 (Rd ,Rd)∗ ⊂ C p−2

0 (Rd ,Rd)∗,
since p ≥ r + 1, so that the regularity condition for ρϕ,0 is automatically satisfied.

12.5.3 Remarks on the Optimality Conditions

System (12.18) corresponds to Pontryagin’s maximum principle for (12.17) con-
sidered as an optimal control problem with state (ϕ,α), control (v, z) and co-state
(ρϕ, ρα). We first check that, under additional differentiability assumptions on the
images, they are equivalent to those found in (12.16) in the L2 case.
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When H = L2(Rd), system (12.18) gives z = σ2ξ̃∗
ϕρα with ρα ∈ (L2(Rd))∗ =

L2(Rd) (meaning that we identify ραdx with ρα). We therefore have
∂t (z | ã ◦ ϕ ) = 0 for any ã ∈ R

2. When z is differentiable, this leads, after differen-
tiating and applying the divergence theorem, to

∂t z + div(zv) = 0.

We have already seen that, when a is differentiable, the equation ∂tα = z ◦ ϕ implies
that ∂t a + ∇aT v = z.

Equation (12.19) applied to δϕ = w ◦ ϕ(t) gives
(
ρϕ(t)

∣∣ w ◦ ϕ(t)
) =

−(
ρα

∣∣ (∇a(t)Tw) ◦ ϕ(t)
)
, or

ξ∗
ϕ(t)ρϕ(t) = −(ξ̃∗

ϕ(t)ρα)∇a(t) = − 1

σ2
z(t)∇a(t).

This yields LV v(t) = −z(t)∇a(t)/σ2 at all times (or −(z(t)∇a(t))dx/σ2 if we
relax the identification between L2 and its dual), and we retrieve the last equation in
(12.16).

We now return to the general case. The second and last equations in (12.18) imply
that ∂tα = σ2ξ̃ϕKH ξ̃∗

ϕρα, yielding

α(t) = α(0) + σ2

(∫ t

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

)
ρα.

From the boundary conditions, we therefore get

ρα =
(∫ 1

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

)−1

(a1 ◦ ϕ(1) − a0).

We therefore have

α(t) = a0 +
(∫ t

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

) (∫ 1

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

)−1

(a1 ◦ ϕ(1) − a0),

which provides a “closed-form” expression of the template part of themetamorphosis
given the diffeomorphism part. When H = L2(R), for which KH = Id, we have
ξ∗
ϕρ = ρ ◦ ϕ−1 | det(d(ϕ−1))|, so that

ξϕξ∗
ϕρ = ρ | det(d(ϕ−1))| ◦ ϕ = ρ | det(dϕ)|−1.

It follows that

α(t) = a0 +
( ∫ t

0 | det(dϕ(s))|−1 ds
∫ 1
0 | det(dϕ(s))|−1 ds

)

(a1 ◦ ϕ(1) − a0),
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or

a(t) ◦ ϕ(t) =
(∫ 1

t | det(dϕ(s))|−1 ds
∫ 1
0 | det(dϕ(s))|−1 ds

)

a0 +
(∫ t

0 | det(dϕ(s))|−1 ds
∫ 1
0 | det(dϕ(s))|−1 ds

)

a1 ◦ ϕ(1),

which describes how metamorphosis interpolates between the two images it com-
pares.

When r > d/2 + 1, (12.18) for Hr metamorphoses has some interesting singular
solutions [152, 245]. In this case, H is a reproducing kernel Hilbert space, and we
will use KH to denote its kernel. We look for solutions of (12.18) in which ρϕ and
ρα take the form

ρϕ(t) =
N∑

k=1

βk(t)δx (0)
k

, (12.20)

ρα =
N∑

k=1

γkδx (0)
k

, (12.21)

where x (0) = {x (0)
k }Nk=1 is a collection of points inR

d ,β(t) = {βk(t)}Nk=1 is a collection
of time-dependent vectors in R

d , and γ = {γk}Nk=1 is a time-independent collection
of scalars.

Introduce the trajectories xk(t) := ϕ(t, x (0)
k ). Using this notation, we have

(
ξ∗
ϕ(t)ρϕ(t)

∣∣w
) = (

ρϕ(t)
∣∣w ◦ ϕ(t)

) =
N∑

k=1

βk(t)
Tw(xk(t)),

so that

ξ∗
ϕ(t)ρϕ(t) =

N∑

k=1

βk(t)δxk (t)

and (12.18) implies that

v(t, ·) =
N∑

k=1

KV (·, xk(t))βk(t).

Similarly, one gets

z(t, ·) = σ2
N∑

k=1

KH (·, xk(t))γk .
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The third equation in (12.18) gives, for w ∈ C p
0 (Rd ,Rd),

N∑

k=1

∂tβk(t)
Tw(x (0)

k ) =

−
N∑

k=1

βk(t)
T (dv(xk(t))w(x (0)

k )) −
N∑

k=1

γk∇z(xk(t))
Tw(x (0)

k )

from which we get

∂tβk(t) = −dv(xk(t))
Tβk(t) − γk∇z(xk(t)).

Using the expansions of v and z and the fact that ∂t xk = v(t, xk), we obtain the fact
that (12.20) and (12.21) provide solutions of (12.18) as soon as x , α and z satisfy
the coupled dynamical system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t xk(t) =
N∑

l=1

KV (xk(t), xl(t))βl(t)

∂tαk(t) =
N∑

l=1

KH (xk(t), xl(t))γl

∂tβk(t) = −
N∑

l=1

∇1KV (xk(t), xl(t))βl(t)
Tβk(t)

− 1

σ2

N∑

l=1

∇1KH (xk(t), xl(t))γkγ�.

(12.22)

Finally, we note that Eq. (12.19) applied to ρϕ and ρα is

N∑

k=1

βk(t)
T δϕ(xk) = −

N∑

k=1

γk∇α(t, x (0)
k )T dϕ(t, x (0)

k )−1δϕ(xk)

for all δϕ, yielding

βk(t) = −γkdϕ(t, x (0)
k )−T∇α(x (0)

k ) = −γk∇a(t, xk(t)).

These special solutions have been used in [245] to provide approximations of solu-
tions for metamorphoses between smooth images.
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12.5.4 Discretization of Image Metamorphosis in the L2 Case

The images in Figs. 12.2 and 12.3 have been obtained after minimization of a dis-
cretized version of the image metamorphosis energy,

E(a, v) =
∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0
‖∂t a(t) + ∇a(t)T v(t)‖22dt.

The second integrand must be discretized with care. It represents the total deriva-
tive of a along the flow. Stable results can be obtained using the following scheme.

Introduce the auxiliary variable w = L
1/2v, so that v = K

1/2w where K = L
−1

(the numerical implementation can in fact explicitly specify K̃ = K
1/2 and useK =

K̃
2). The following discretized energy has been used in the experiments of Figs. 12.2

and 12.3:

E =
T∑

t=1

∑

x∈Ω̃

|w(x)|2 + λδt−2
T∑

t=1

∑

x∈Ω̃

∣∣a(t + 1, x + δt (K1/2w)(t, x)) − a(t, x)
∣∣2 ,

where x and t now are discrete variables, Ω̃ a discrete grid on Ω and δt the time dis-
cretization step (the space discretization is 1). The optimization algorithm alternates
a few steps of nonlinear conjugate gradient in v, and a few steps of linear conjugate
gradient in a [120, 121].

12.6 Applications to Densities

If one denotes Hr (Rd)∗ by H−r (Rd) for r ≥ 0, one can consider the action of Diff p0
on these spaces defined by

(ϕ · a | f ) = (a | f ◦ ϕ ),

which is well defined on H−r (Rd) for r ≤ p. For r = 0, in particular, this action
boils down to the usual action on densities ϕ · a = a ◦ ϕ−1 | det(d(ϕ−1))|. Starting
with this special case, for which the infinitesimal action is v · a = −div(av), we can
consider the metamorphosis problem associated here again with

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖22,

with z(t) = ∂t a(t) + div(a(t)v(t)). The counterpart of system (12.16) is (details
being left to the reader)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t a + div(av) = z,

∂t z + ∇zT v = 0,

Lv = 1

σ2
(a∇z)dx .

(12.23)

More generally, letting H = Hr (Rd), we can define metamorphoses in H∗ using

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖2H∗ .

We can also consider the metamorphosis problem in optimal control form as in
(12.17), minimizing ∫ 1

0
‖v‖2V dt + 1

σ2

∫ 1

0
‖z(t)‖2H∗ dt (12.24)

subject to the constraints ∂tϕ = v ◦ ϕ, ∂tα = z ◦ ϕ | det dϕ|, ϕ(0) = id, α(0) = a0
and α(1) = a1 ◦ ϕ(1)| det dϕ(1)|. Defining, in this case ξ̃ϕz = z ◦ ϕ| det dϕ|, the
optimality conditions (12.18) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ = v ◦ ϕ

∂tα = z ◦ ϕ | det dϕ|
∂tρϕ = −∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
) − ∂ϕ(ρα | z ◦ ϕ | det dϕ| )

∂tρα = 0

v = KV ξ∗
ϕρϕ

z = σ2
KH ξ̃∗

ϕρα

(12.25)

with boundary conditionsα(0) = a0,α(1) = a1 ◦ ϕ(1)| det dϕ(1)| and horizontality
condition (

ξ∗
ϕρϕ

∣∣w
) +

(
ξ̃∗
ϕρα

∣∣∣ div(aw)
)

= 0

for all w ∈ C p
0 (Rd ,Rd).

12.7 Application to Curves

12.7.1 Metamorphosis on Unit Tangents

We now consider the issue of comparing plane curves based on the orientation of
their tangents [171, 307, 313]. If m is a plane curve parametrized by arc length, and
L is it length, we define the normalized tangent Tm by
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Tm : [0, 1] → R
d

s �→ ∂sm(Ls).

The function Tm characterizes m up to translation and scaling, and the pair (L , Tm)

characterizes m up to translation. In the following discussion, functions will depend
on time t ∈ [0, 1] and normalized arc length s, also in [0, 1]. For clarity, we will let
Ω = [0, 1] for the arc length, i.e., write t ∈ [0, 1], s ∈ Ω . We will consider deriva-
tives of functions h of (t, s) ∈ [0, 1] × Ω , and we will use the notation ḣ or ∂t h for
derivatives with respect to the time variable, t , and dh for derivatives with respect to
the space variable, s.

We consider the group of diffeomorphisms Diff of Ω , which acts on the set M
of measurable functions a : Ω → Sd−1 (the unit sphere in R

d ) by ϕ · a = a ◦ ϕ−1.
Choosing an RKHS V of vector fields on Ω satisfying v(0) = v(1) = 0, we can
consider the metamorphosis problem associated with

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖22. (12.26)

If V is embedded in C1
0(Ω,R), the discussion made in the previous sections applies,

with the slight difference that one must take “z ∈ TaM” (we will not try here to
rigorously construct the shape space as a manifold), which means that z(s) ⊥ a(s)
at all times. If, in particular, the boundary conditions a0 and a1 are differentiable,
then Eq. (12.10) applies, and leads to the system, for a metamorphosis a(t, s)

⎧
⎪⎪⎨

⎪⎪⎩

∂t a + vda = z,

∂tζ + d(vζ) = 0,

v = − 1

σ2
KV (daT z)

in which ζ(, s) : Ω → R is the normal coordinate of z(t, s), defined by z(t, s) =
ζ(t, s)a⊥(t, s), where a⊥ is a rotated by π/2.

However, the resultingmetric takes an interesting form if one considers theHilbert
space V of functions v : [0, 1] → R such that v(0) = v(1) = 0 and

‖v‖2V =
∫

Ω

(dv)2 ds. (12.27)

Notice that thisHilbert space is not embedded inC1
0 (Ω,R) (oneneedsSobolev spaces

of order larger d/2 + 1 = 3/2 for this, i.e., one would need a second derivative in
the norm). Functions v ∈ V are continuous and satisfy a Hölder condition of order
q for any q < 1/2, but are not necessarily Lipschitz continuous. While the general
frameworkwe have considered so far does not apply to this situation, one can directly
formulate the metamorphosis problem in terms of time-dependent diffeomorphisms,
(t, s) �→ ϕ(t, s), of Ω , letting v = ϕ̇ ◦ ϕ−1 so that
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dv = dϕ̇ ◦ ϕ−1

dϕ ◦ ϕ−1
,

which yields, after a change of variables

∫

Ω

(dv)2 ds =
∫

Ω

dϕ̇2

dϕ
ds.

Writing the second term in template form, i.e., letting z = α̇ ◦ ϕ−1 and mak-
ing another change of variable, the metamorphosis objective function in this case
becomes

Uσ(ϕ,α) =
∫ 1

0

∫

Ω

(dϕ̇)2

dϕ
ds dt + 1

σ2

∫ 1

0

∫

Ω

|α̇|2dϕ ds dt, (12.28)

which needs to beminimized over all trajectories t �→ ϕ(t) and t �→ α(t), such thatϕ
is at all times an increasing diffeomorphism of Ω and α a function from Ω → Sd−1,
with boundary conditions α(0) = a0 and α(1) = a1 ◦ ϕ(1). We point out (this will
be useful later) that this energy can be minimized explicitly with respect to α when
theϕ trajectory is fixed. Indeed, first notice that in order to minimize the second term
in U , it suffices to minimize separately the integrals

∫ 1

0
|α̇(t, s)|2dϕ(t, s)dt (12.29)

for fixed s. Considering such an integral, we write α(t, s) = α̃(λ(t, s), s), where

λ(t, s) :=
∫ t
0 dϕ(t, s)−1 dt

∫ 1
0 dϕ(t, s)−1 dt

is an increasing function satisfying λ(0, s) = 0 and λ(1, s) = 1. We have α̇ =
λ̇ ˙̃α(λ, s) and

∫ 1

0
|α̇(t, s)|2dϕ(t, s)dt = 1

c(s)

∫ 1

0
| ˙̃α(λ(t, s), s)|2λ̇(t, s) dt= 1

c(s)

∫ 1

0
| ˙̃α(t, s)|2 dt

with

c(s) =
∫ 1

0
dϕ(t, s)−1 dt.

This integralmust beminimized subject to α̃(0, s) = a0(s), α̃(1, s) = a1 ◦ ϕ1(s) and
|α̃(t, s)| = 1 for all t , and the solution is given by the circular arc between α̃(0, s)
and α̃(1, s), which can be expressed as
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α̃(t, s) = sin((1 − t)ω(s))

sinω(s)
a0(s) + sin(tω(s))

sinω(s)
a1 ◦ ϕ1(s),

where
ω(s) = arccos(a0(s)

T a1 ◦ ϕ1(s)).

The optimal α is therefore given by

α(t, s) = sin((1 − λ−1(t, s))ω(s))

sinω(s)
a0(s) + sin(λ−1(t, s)ω(s))

sinω(s)
a1 ◦ ϕ1(s),

(12.30)
where λ−1(t, s) is defined by λ(λ−1(t, s), s) = t . The optimal cost in (12.29) is
then ω(s)2/c(s). We note that, because ω(s) ∈ [0,π], the coefficients in (12.30) are
non-negative. Moreover, α(t, s) is at all times in the plane generated by a0(s) and
α1 = a1 ◦ ϕ1(s).

We now fix ϕ1 and study optimal metamorphoses with ϕ(1, ·) = ϕ1. Introduce
the vector a⊥

0 perpendicular to a0 in the plane generated by a0 and α1, defined by

α1 = cosω a0 + sinωa⊥
0 .

(This is well defined if ω ∈ (0,π) and we choose a⊥
0 arbitrarily otherwise.) Without

loss of generality, we can search for optimal metamorphoses taking the form

α(t, s) = cos τ (t, s)a0(s) + sin τ (t, s)a⊥
0 (s) .

Letting ξ(t, s) = (cos τ (t, s), sin τ (t, s)) ∈ S1, we can write Uσ(ϕ,α) = Ũσ(ϕ, ξ),
where

Ũσ(ϕ, ξ) =
∫ 1

0

∫

Ω

(dϕ̇)2

dϕ
ds dt + 1

σ2

∫ 1

0

∫

Ω

|ξ̇|2dϕ ds dt. (12.31)

This function nowhas to beminimized subject toϕ(0, ·) = id,ϕ(1, ·) = ϕ1, ξ(0, ·) =
(1, 0) and ξ(1, ·) = (cosω, sinω), with ω = arccos(aT

0 a1 ◦ ϕ(1, ·)). In other terms,
we have reduced the Sd−1-valued metamorphosis problem to an S1-valued problem,
or, equivalently, our metric on d-dimensional curves to a two-dimensional case.

We now make a second reduction that will simplify the problem. Because ξ(t, s)
is differentiable in time, one can define uniquely a differentiable function τ (t, s)
such that ξ(0, s) = (1, 0) and ξ(t, s) = (cos τ (t, s), sin τ (t, s)) at all times. Define
q(t, s) by

q(t, s) = √
dϕ(t, s) (cos η(t, s), sin η(t, s)) ,

with 2ση(t, s) = τ (t, s). Then, a straightforward computation yields

4|q̇(t, s)|2 = dϕ̇2

dϕ
+ 1

σ2
|ξ̇(t, s)|2,
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so that

Ũσ(ϕ, ξ) = 4
∫ 1

0
‖q̇(t, ·)‖22 dt. (12.32)

We also note that

‖q(t, ·)‖22 =
∫

Ω

dϕ(t, s) ds = 1,

so that q(t, ·) is a curve on the unit sphere of L2(Ω,R2). This implies that its energy,∫ 1
0 ‖q̇(t, ·)‖22 dt , cannot be larger than that of the minimizing geodesic on this unit
sphere, which is the shortest great circle connecting the functions q0 = (1, 0) (which
is constant) and q1 = √

dϕ1 (cos (η(1, ·)) , sin (η(1, ·)). Letting

ρ = arccos
〈
q0 , q1

〉
2 = arcos

∫

Ω

√
dϕ1 cos

(
ω(s)

2σ

)
ds,

this geodesic is given by

γ(t, s) = sin((1 − t)ρ)

sin ρ
q0(s) + sin(tρ)

sin ρ
q1(s) (12.33)

with energy equal to ρ2. We therefore find that

Ũσ(ϕ, ξ) ≥ 4 arcos2
∫

Ω

√
dϕ1(s) cos

(
ω(s)

2σ

)
ds . (12.34)

This provides a lower-bound for the metamorphosis energy. To prove that this
lower-bound is achieved, one needs to show that the trajectory γ in (12.33) can be
derived from a valid trajectory (ψ(·, ·),μ(·, ·)) that connects (id, 0) to (ϕ1, ξ1).

We are therefore looking for representations of γ in the form

γ(t, s) = √
dψ(t, s) (cos η̃(t, s), sin η̃(t, s))

with η̃(0, s) = 0, which uniquely defines η̃(t, s) by continuity in t . Notice that we
automatically have dψ(0, ·) = 1 and dψ(1, ·) = dϕ1 by definition of q0 and q1. For
t ∈ (0, 1), we have

dψ(t, s) = |γ(t, s)|2,

so that ψ(t, ·) is non-decreasing and satisfies ψ(t, 0) = 0, ψ(t, 1) = 1. The function
s �→ dψ(t, s) is positive if and only if q(t, s) does not vanish, which requires

sin2((1 − t)ρ) + sin2(tρ)dϕ(1)

+2 sin((1 − t)ρ) sin(tρ)
√
dϕ1 cos

( ω

2σ

)
> 0. (12.35)
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A sufficient condition for this to hold for all t is that the cosine term is strictly larger
than −1, which is equivalent to

ω

2σ
�≡ π (mod 2π). (12.36)

Since ω ∈ [0,π], this condition will be automatically satisfied if 2σ > 1.
Because γ(1) = q1, the other end-point must satisfy

η̃(1, s) = ω(s)/2σ + 2k(s)π, (12.37)

where k is an integer-valued function. The right-hand side of (12.33) is a linear
combination of q0 and q1 with positive coefficients, which implies that the time-
continuous angular representation of q(t) starting at 0 cannot deviate by more than
π from its initial value, i.e.,

− π ≤ η̃(1, s) ≤ π, (12.38)

and we also have
0 ≤ ω(s) ≤ π. (12.39)

We now (and, unless otherwise specified, for the rest of the discussion) make the
assumption that 2σ ≥ 1.Under this assumption, η̃(1, ·) = ω/2σ satisfies both (12.37)
and (12.38). Since it is clear that only onevalue of η̃(1, s) can satisfy the twoequations
together, we find that, for all s ∈ Ω , one has η̃(1, s) = ω(s)/σ, and the curve γ is
associated with a trajectory (ψ,β) between (id, 0) and (ϕ1, ξ1).

We have therefore proved that γ in (12.33) provides a valid improved solution to
the original (ϕ,α) as soon as (12.36) is satisfied, which is true as soon as 2σ > 1.

If σ = 1/2, then (12.36) may not hold for the curve in (12.33). However, the
minimum of Uσ(ϕ,α) with given ϕ(1) = ϕ1 is still given by the geodesic energy
of this curve. To see this, it suffices to consider a small variation ã0 of a0 such that
ãT
0 a1 ◦ ϕ1 > −1, so that (12.36) is satisfied with ã0 instead of a0, and the minimum
energy when starting from ã0 is the geodesic energy of the associated great circle.
One can then use the fact that U is a geodesic energy for a Riemannian metric
on Diff × M , and combine this with the triangular inequality for the sequence of
geodesics going from (id, a0) to (id, ã0) then to (ϕ(1), a1). Indeed, the energy of
the sequence is larger than the minimal energy between (id, a0) and (ϕ(1), a1),
but arbitrarily close to the energy of the minimal geodesic between (id, ã0) then to
(ϕ(1), a1), itself arbitrarily close to the lower bound in (12.34).

We summarize this discussion in the following theorem.

Theorem 12.6 Assume that2σ ≥ 1, and letϕ1 : Ω → Ω satisfyϕ1(0) = 0,ϕ1(1) =
1 and ∂sϕ1 > 0. Then
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inf {Uσ(ϕ,α) : ϕ(1) = ϕ1,α(0) = a0,α(1) = a1 ◦ ϕ1}
= 4 arccos2

∫

Ω

√
dϕ1 cos

(
arccos(a0(s)T a1 ◦ ϕ1(s))

2σ

)
ds. (12.40)

Moreover, if 2σ > 1, the minimum is achieved and can be deduced from a geodesic
curve γ on the unit sphere of L2(R).

This induces a distance on M, given by

dσ(a0, a1) = 2 inf
ϕ1

(
arccos

∫

Ω

√
dϕ1 cos

(
arccos(a0(s)

T a1 ◦ ϕ1(s))/2σ
)
ds

)
,

(12.41)

minimized over all strictly increasing diffeomorphisms of Ω .

This theorem is essentially proved in the discussion that precedes it, in which we
have left a few loose ends, mostly regarding measurability and dealing with sets of
measure 0, that can be tied up without too much effort by an interested reader.

In the two-dimensional case, one can represent functions α : Ω → S1 in the form
(cos θ, sin θ) for some angle function θ, which is only defined up to the addition of
a multiple of 2π. Given such a representation, one can then consider the transform

G : (ϕ, θ) �→ q = √
dϕ(cos θ/2σ, sin θ/2σ)

that defines a mapping from Diff × L2(Ω,R) to the unit sphere of L2(Ω,R2).
Adding a time dependency, we find, using this transform, that

∫ 1

0

∫

Ω

(dϕ̇)2

dϕ
ds dt + 1

σ2

∫ 1

0

∫

Ω

|ξ̇|2dϕ ds dt = 4
∫ 1

0
‖q̇‖2 dt,

so thatminimizers on the left can be associatedwith geodesics on the unit sphere. One
can then compute the metamorphosis distance by minimizing the lengths of great
circles between, say, G(id, θ0) and G(ϕ1, θ1 ◦ ϕ1), for a given ϕ1, and optimizing
over all angle representations θ0, θ1 of a0, a1 that satisfy the constraint

−2σπ ≤ θ1 ◦ ϕ1 − θ0 ≤ 2σπ

because (12.38) still needs to hold for any time-continuous angle representation
of q. This provides the same distance dσ as the one obtained in Theorem 12.6.
Notice, however, that this construction is special to the two-dimensional case. In
dimension d > 2, our reduction to a unit sphere geodesic depended on the end-
points a0 and a1, and could not be deduced from a direct transformation applied to
the curves themselves, such as G. The only exception is the case σ = 1/2, for which
G is equivalent to (ϕ,α) �→ √

dϕα. This transform, called the “square root velocity
transform”, is clearly applicable to arbitrary dimensions. It has been extensively
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studied in the literature, and we refer to [267] and references within for additional
details and applications.

Returning to the two-dimensional case, alternative expressions of the distance
can be derived for simple values of σ given angle representations θ0 and θ1 for a0
and a1. Indeed, the cosine in (12.41) is given by cos(θ1 ◦ ϕ1 − θ0) if σ = 1/2, by
| cos((θ1 ◦ ϕ1 − θ0)/2)| if σ = 1, and by

max(| cos((θ1 ◦ ϕ1 − θ0)/4)|, | sin((θ1 ◦ ϕ1 − θ0)/4)|)

if σ = 2.
The case σ = 1 for plane curves was first investigated in [307, 313]. It has inter-

esting additional features, and we will see that it coincides with a geodesic distance
that we have discussed previously in this chapter [311]. The optimization of ϕ1

(which is still needed to compute the distance) can be done efficiently by dynamic
programming, and the reader is referred to [279, 308] for more details.

To conclude this section, we notice that the metamorphosis metric is invariant
under the action of rotations, so that one can optimize for a rotation parameter in all
cases considered above. The rotation-invariant version of the distance between plane
curves for σ = 1, for example, is

d1,rot(a0, a1) = 2 inf
ϕ1,c

(
arccos

∫

Ω

√
dϕ1

∣∣∣∣cos
(

θ1 ◦ ϕ1(s) − θ0(s) − c

2

)∣∣∣∣ ds
)

,

(12.42)

where c is a scalar. In higher dimensions, one needs to optimize (12.41) with a0
replaced by Ra0 when R varies over all rotations of the d-dimensional space.

12.7.2 One-Dimensional Case

In one dimension, the previous representation reduces to functions a : Ω → {−1, 1},
which does not leave much room to define time-continuous metamorphoses, and the
previous approach cannot be extended to this case. One can however bypass this
limitation by considering such functions as flat 2D functions, simply replacing the
scalar-valued function a by (a, 0). This defines a very special family of piecewise
linear curves, to which the previous distance can nonetheless be applied. In this
setting, given the functions a0 and a1 ◦ ϕ1, one has ω(s) = π if a1 ◦ ϕ1(s) �= a0(s)
and 0 otherwise. One therefore gets

dσ(a0, a1) = 2 inf
ϕ1

(
arccos

∫

Ω

√
dϕ1

(
1a0(s)=a1◦ϕ1(s)

+ cos
( π

2σ

)
1a0(s)�=a1◦ϕ1(s)

)
ds

)
. (12.43)
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Notice that this compares functions modulo reparametrization, i.e., a0 and a0 ◦ ϕ
are considered as identical for any increasing diffeomorphism of Ω . If this creates
too much invariance, one can use the representation G for the curves (a, 0) without
optimizing for reparametrization, which provides the distance

δσ(a0, a1) = 2arccos
∫

Ω

√
da0(s)da1(s)

(
1a0(s)=a1(s)

+ cos
( π

2σ

)
1a0(s)�=a1(s)

)
ds . (12.44)

12.7.3 The Smooth Case

In this discussion,weplaced few regularity conditions on the functionsa ∈ M beyond
their measurability. The resulting class of curves includes, in particular, polygo-
nal curves, for which a is piecewise constant. If one wants to restrict to spaces
of smooth curves, then some modifications must be made. In particular, the inte-
grals in (12.29) cannot be minimized independently for each s, because we need
to ensure that the solution that one obtains is a continuous value of s. The optimal
solution is however still given by (12.30) with, this time, ω being a continuous lift
of s �→ arccos(a0(s)T a1 ◦ ϕ1(s)). One can therefore still reduce the d-dimensional
setting to a two-dimensional one.

Taking the same definition for q, we find that the metamorphosis energy is no
larger than four times the geodesic energy of q in the unit sphere of L2(Ω,R2).
When proving that the lower-bound is achieved, one finds that the function k(s) in
(12.37) must be continuous, hence constant. Here, we can use the fact that one can
take ω(0) ∈ [0,π] and use the same argument as in the non-smooth case for s = 0,
yielding k(0) = 0 and therefore k(s) = 0 for all s since k is constant. However, and
regardless of the value of σ, one cannot ensure that (12.35) is satisfied unless the
compared curves are close enough (so that their angles are at distance less than 2σπ
after registration). When computed between curves that are too far apart, curves in
M deduced from geodesics on the sphere will typically develop singularities (and
therefore step out of M if this space is restricted to smooth curves).

The smooth case has also been studied in [29], in which a different transform is
proposed, leading to a representation of plane curves in a three-dimensional space.
More recently, [174] made a study of the smooth case for planar curves with an
approach similar to the one we develop here. As pointed out in this reference, when
correcting the distance for rotation invariance (similarly to (12.42)), the constant
indetermination 2πk in (12.37) has no impact and one does not need the assumption
that 2σ ≥ 1 in that case.
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12.7.4 Existence of Optimal Metamorphoses

To complete the computation of the optimal metamorphosis, one must still optimize
(12.40)with respect to thefinal diffeomorphismϕ1. The resulting variational problem
is a special case of those studied in [280], which considered the maximization of
functionals taking the form

F(ϕ) =
∫

Ω

√
dϕ f (s,ϕ(s)) ds

over the setHom+ of all strictly increasing functionsϕ : Ω → Ω satisfyingϕ(0) = 0
and ϕ(1) = 1, where f is a function defined on Ω2. Following the notation there,
we let

Δ f = sup
ψ∈Hom+

∫

Ω

√
dψ f (ψ(s), s) ds

and define the diagonal band

Ωc = {
(s, s ′) ∈ [0, 1]2 | |s − s ′| ≤ c

}
.

We give without proof the following result, which is a consequence of Theorem 3.1
in [280].

Theorem 12.7 Assume that f ≥ 0 is continuous on Ω̄2 except on a set G that can
be decomposed as a union of a finite number of horizontal or vertical segments.
Assume also that, for some c, with

c >

√

1 −
(

Δ f

‖ f ‖∞

)2

,

there does not exist any non-empty open vertical or horizontal segment (a, b) such
that (a, b) ⊂ Ωc and fl vanishes on (a, b), where

fl(x) = lim
δ→0

inf
|y−x |<δ,y /∈G

f (y)

is the lower semi-continuous relaxation of f .
Then there exists a ϕ∗ ∈ Hom+ such that F(ϕ∗) = max{F(ϕ),ϕ ∈ Hom+}.

Moreover, if ϕ is a maximizer of F, one has, for all s ∈ Ω , (ϕ(s), s) ∈ Ωc.

Intuitively, f vanishing over vertical or horizontal segments allows for either very
small or very large values of dϕ at very little cost, resulting in optimal solutions that
may have stationary regions or jumps. In (12.41) (with σ = 1/2), this happens when
the tangents of the compared curves are perpendicular. When σ = 1, this happens
when θ1 and θ0 are oriented in opposite directions, i.e., their difference is equal to
an odd multiple of π. For σ > 1, however, the cosine in (12.41) never vanishes.
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Fig. 12.5 Two sets of examples of optimal metamorphoses between curves with σ = 0.5 (left), 1
(center) and 2 (right). Note that, in the first row, the geodesics with σ = 0.5 and σ = 1 grow the
missing finger out of the second finger, while that with σ = 2 grows a new thumb. In each image,
the geodesic is computed between the outer curve and the inner curve. Scaling is for visualization
only (the computation is scale-invariant)

There is no loss of generality in assuming that f ≥ 0 in this discussion because
if f < 0 on some rectangle, it is easy to check that any trajectory (s,ϕ(s)) that
enters this rectangle can be improved if it is replaced by a trajectory that moves
almost horizontally and/or almost vertically within the rectangle, with the new cost
converging to 0 over this region. This can be used to show that there is no change in
the minimizer if one replaces f by 0 within the rectangle.

One can efficiently maximize F by approximating f by a piecewise constant
function taking the form

f (s, s̃) =
n∑

k=1

fk1Rk ,

where R1, . . . , Rn is a family of rectangles that partition the unit square and with
fk ≥ 0, k = 1, . . . , n. One can then show that the minimization can be performed
over piecewise linear functions ϕ, which are furthermore linear whenever they cross
the interior of a rectangle. The search for the optimal ϕ can then be organized as a
dynamic program, and run very efficiently (see [279, 280] for details). Thismethod is
used in the experiments presented in Fig. 12.6 in which the optimal correspondence
is drawn over an image representing the function max( fσ, 0), where
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Fig. 12.6 Optimal correspondences estimated with the three metamorphoses in Fig. 12.5. Back-
ground images represent the function max( fσ, 0) in (12.45), the zeros being indicated in black. The
solution attempts to move across higher values of the function, cutting through zeros along vertical
or horizontal lines if needed. Each panel corresponds to the same panel in Fig. 12.5

fσ(s, s̃) = cos

(
arccos cos(θ0(s) − θ1(s̃))

2σ

)
. (12.45)

Of course, if the compared curves are polygonal, fσ is already piecewise constant.

12.7.5 The Case of Closed Curves

The previous developments assumed that curves were defined over open intervals,
and therefore apply mostly to open curves. Closed curves are defined over T 1 =
[0, 1]∗ (using the notation of Sect. 1.2.2), which is the open unit interval where the
extremities are identified. The boundary condition on V , whichwas v(0) = v(1) = 0
for functions defined over Ω , now only requires v(0) = v(1), offering a new degree
of freedom, associated with a change of offset, or initial point of the parametrization,
represented by the operation s �→ s +∗ δ from T 1 to itself (where +∗ represents the
translation along T 1, still using the notation introduced in Sect. 1.2.2). We restrict
our discussion to the 2D case, in which we assume that the compared curves a0 and
a1 have angle representations θ0 and θ1.

One can check easily that the distance in Theorem 12.6 is equivariant through
this transformation, so that one can define a distance among closed curves that is
invariant under rotations and changes of offset by (taking, for example, σ = 1)
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d̄1,rot(a0, a1)

= 2 inf
ϕ,c,δ

arccos
∫

T 1

√
∂sϕ(s) |cos((θ0(x + δ) − θ1 ◦ ϕ(x) − c)/2)| dx . (12.46)

Notice that, even when the resulting distance is still attained at a geodesic (or
optimal metamorphosis) on the space of functions a : T 1 → S1, the correspond-
ing curves at intermediate times, however, are not necessarily closed, because the
associated closedness condition requires

∫

T 1
a(s) ds = 0,

which is not enforced in this approach. Optimal trajectories are therefore not con-
strained to consist only of closed curves, and would typically become open for
t ∈ (0, 1), even though they start and end with closed curves. This method has been
applied to obtain the geodesics shown in Fig. 12.5, to which an extra step has been
added in order to close the intermediate curves for nicer visualization. This “closing”
operation simply consisted in replacinga by ã = (a − λ)/|a − λ|, whereλ ∈ R

2 was
adjusted so that

∫
Ω
ã ds = 0.

To correctly define a geodesic distance on spaces of closed curves, one needs to
consider the metric induced on the space Mc of functions a : T 1 → S1 such that∫
T 1 a ds = 0. This space, however, is not invariant under a change of parameters, so
that this induced metric is not associated with a metamorphosis. The expression of
this constraint in terms of the q function is simple in the case σ = 1/2, for which
q = √

dϕ α = √
dϕ a ◦ ϕ so that, after a change of variable,

∫

T 1
a ds =

∫

T 1
|q(u)| q(u) du .

Even in this case, there exists no closed form for the geodesic energy with fixed final
reparametrization, but efficient algorithms have been designed to minimize

4
∫ 1

0
‖q̇(t, ·)‖22 dt

subject to the constraints that ‖q‖22 = 1,
∫
T 1 |q| q du = 0, q(0) = q0 and q(1) = q1

(see, for example, [161]).
The metric on closed curves also has a nice interpretation in the case σ = 1. In

this case, let f and g denote the two coordinates of the representation q = G(ϕ, θ)
multiplied by

√
2, i.e., f = √

2dϕ cos θ
2 and g = √

2dϕ sin θ
2 , whereα = a ◦ ϕ−1 =

(cos θ, sin θ). The closedness constraint, which is

∫

Ω

cos θ ◦ ϕ−1 ds =
∫

Ω

sin θ ◦ ϕ−1 ds = 0,
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becomes ∫

Ω

dϕ cos θ ds =
∫

Ω

dϕ sin θ ds = 0

after a change of variables.Writing cos θ = cos2 θ
2 − sin2 θ

2 and sin θ = 2 cos θ
2 sin

θ
2 ,

this is equivalent to
‖ f ‖22 − ‖g‖22 = 〈

f , g
〉
2 = 0.

Because ‖ f ‖22 + ‖g‖22 = 2
∫
Ω
dϕ = 2, we find that the constraint is equivalent to

‖ f ‖22 = ‖g‖22 = 1 and
〈
f , g

〉
2 = 0, i.e., to ( f, g) forming an orthonormal 2-frame

in L2(Ω), and we have

U1(ϕ,α) = 2
∫ 1

0

(‖∂t f ‖2 + ‖∂tg‖2) ds,

where the left-hand side is two times the geodesic energy of the path ( f, g) in
the Stiefel manifold St(∞, 2) (see Sect.B.6.7). Repeating the arguments made in
Sects. 12.7.1 or 12.7.3 in this setting shows that the optimal metamorphosis with
fixed ϕ1 is obtained from the shortest length geodesic in St(∞, 2) connecting the

frames (
√
2 cos θδ

0
2 ,

√
2 sin θδ

0
2 ) and

(
ε
√
2∂sϕ1 cos

θ1 ◦ ϕ1

2
, ε

√
2∂sϕ1 sin

θ1 ◦ ϕ1

2

)
,

where θ0 and θ1 are angle representations of a0 and a1 and the optimization is made
over all possible measurable functions ε : Ω → {−1, 1}, and all possible offsets δ,
with the notation θδ

0(s) = θ0(s +∗ δ). (The optimization over ε results from optimiz-
ing over all possible angle representations of the two curves.) There is, however, no
closed form expression for the geodesic distance on the Stiefel manifold (although
equations for geodesics have been described in [99]), and no simple algorithm to
solve this optimization problem. Notice that, if one restricts to smooth curves, the
search for an optimal ε is only over constant functions ε = ±1 and optimal geodesics
can be obtained using a root-finding algorithm over initial conditions of geodesics
in St(∞, 2).

The rotation-invariant version of the distance also provides an interesting repre-
sentation, because a rotation acting on curves simply induces a rotation of the frame
( f, g), and the space of such frames modulo rotation is now the Grassmann manifold
Gr(∞, 2) of two-dimensional subspaces of L2(R). The same analysis carries on, the
only difference being that one uses now the geodesic distance on the Grassmannian.
This geodesic distance can be computed in quasi closed form [216], and is given by√
arccos2λ + arccos2μ, where λ and μ are the singular values of the matrix

(〈
f0 , f1

〉
2

〈
f0 , g1

〉
2〈

g0 , f1
〉
2

〈
g0 , g1

〉
2

)

,
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( f0, g0), ( f1, g1) being orthogonal bases of the two spaces that are compared. This
closed form, however, does not lead to a simple version of the distance when one
optimizes over changes of sign in ( f1, g1). More analysis of this framework (in the
smooth case), including explicit computations of the geodesic equation and of the
scalar curvature, can be found in [311].

12.7.6 Alternative Interpretation (σ = 1)

Returning to the case of open curves, we consider the space of curves
m : Ω → R

2, not necessarily parametrized by arc-length. Recall the notation ∂s f =
d f/|dm| for the derivativewith respect to the arc length.Consider the parametrization-
invariant Sobolev metric on curves given by

‖ξ‖2m = 1

L(m)

∫

Ω

|∂sξ|2 ds = 1

L(m)

∫

Ω

|dξ|2
|dm| du,

where L(m) = ∫
Ω

|dm(u′)| du′ is the length of the curve m.
Consider a trajectory (t, u) �→ m(t, u). Let �(t) = L(m(t)) and letϕ(t, u) denote

the normalized arc-length parametrization along this curve so that

ϕ(t, u) = 1

�(t)

∫ u

0
|dm(t, u′)| du′.

Let α(t, u) = ∂sm(t, u) be the unit tangent. We want to obtain an alternative expres-
sion for ∫ 1

0
‖ṁ(t)‖2m(t) dt =

∫ 1

0

∫

Ω

|dṁ|2
|dm| du dt

in terms of ϕ and α. We first notice that

α̇ = ∂t

(
dm

|dm|
)

=
((

ṁ

|dm|
)T

α⊥
)

α⊥,

where α⊥ is the unit normal, obtained by rotating α by π/2. Moreover,

dϕ̇ = ∂t

( |dm|
�

)
= 1

�
(dṁ)Tα − |dm|

�2
�̇

with

�̇ =
∫

Ω

(dṁ)Tα du.



404 12 Metamorphosis

A little computation yields

∫

Ω

(dϕ̇)2

dϕ
du = 1

�

∫

Ω

((dṁ)Tα)2

|dm| du − �̇2

�2
.

Given this, we can write

dṁ = (
(dṁ)Tα

)
α + (

(dṁ)Tα⊥)
α⊥

and

‖ṁ(t)‖2m(t) = �̇2

�2
+

∫

Ω

(dϕ̇)2

dϕ
du +

∫

Ω

|α̇|2dϕ du.

The last two terms integrated over time provide the functionU1 obtained in (12.28)
with σ = 1. This expression of the metric treats the pair (ϕ,α) and the curve length
independently, and the geodesic length can be optimized separately for � and (ϕ,α),
yielding a geodesic distance given by

d(m0,m1)
2 =

(
log

L(m1)

L(m0)

)2

+ 4 arcos2
∫

Ω

√
dϕ0 dϕ1

∣∣∣∣cos
(

θ1 ◦ ϕ1 − θ0 ◦ ϕ0

2

)∣∣∣∣ du,

where ϕ0,ϕ1 are the arc-length reparametrizations of m0, m1 and θ0, θ1 are their
angle representations expressed as functions of the arc lengths. Furthermore, the
transformation m �→ m/L(m) provides a Riemannian submersion onto the space
of curves with length 1 (or the space of curves modulo scaling), and the resulting
projected distance is exactly the one obtained via the metamorphosis approach.
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