
Chapter 11
Distances and Group Actions

11.1 General Principles

In this chapter we discuss metric comparisons between deformable objects and their
relation to the registration methods that we have studied in the previous chapters.
We start with a general discussion on the interplay between distances on a set and
transformation groups acting on it.

11.1.1 Distance Induced by a Group Action

Transformation groups acting on sets can help in defining or altering distances on
these sets. We will first give a generic construction, based on a least action principle.
We will then develop the related differential point of view, when a Lie group acts on
a manifold.

A distance on a set M is a mapping d : M2 �→ [0,+∞) such that: for all
m,m ′,m ′′ ∈ M ,

D1. d(m,m ′) = 0 ⇔ m = m ′,
D2. d(m.m ′) = d(m ′,m),

D3. d(m,m ′′) ≤ d(m,m ′) + d(m ′,m ′′).

If D1 is not satisfied, but only the fact that d(m,m) = 0 for all m, one says (still
assuming D2 and D3) that d is a pseudo-distance.

IfG is a group acting on M , we will say that a distance d on M isG-equivariant if
and only if for all g ∈ G, for allm,m ′ ∈ M , d(g · m, g · m ′) = d(m,m ′). A mapping
d : M2 �→ R+ is a G-invariant distance if and only if it is a pseudo-distance such
that d(m,m ′) = 0 ⇔ ∃g ∈ G, g · m = m ′. This is equivalent to stating that d is a
distance on the coset space M/G, composed of cosets, or orbits,
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348 11 Distances and Group Actions

[m] = {g · m, g ∈ G},

with the identification d([m], [m ′]) = d(m,m ′). The next proposition shows how a
G-equivariant distance can induce a G-invariant pseudo-distance.

Proposition 11.1 Let d be equivariant under the left action of G on M. The function
d̃, defined by

d̃([m], [m ′]) = inf{d(g · m, g′ · m ′) : g, g′ ∈ G}

is a pseudo-distance on M/G.
If, in addition, the orbits [m] are closed subsets of M (in the topology associated

to d), then d̃ is a distance.

Note that, because d is G-equivariant, d̃ in the previous proposition is also given by

d̃([m], [m ′]) = inf{d(g · m,m ′) : g ∈ G}.

Proof The symmetry of d̃ is obvious, as is the fact that d̃((m], [m]) = 0 for all m.
For the triangle inequality, D3, it suffices to show that, for all g1, g′

1, g
′
2, g

′′
1 ∈ G, there

exists g2, g
′′
2 ∈ G such that

d(g2 · m, g′′
2 · m ′′) ≤ d(g1 · m, g′

1 · m ′) + d(g′
2 · m ′, g′′

1 · m ′′). (11.1)

Indeed, if this is true, the minimum of the right-hand term in g1, g
′
1, g

′
2, g

′′
1 , which

is d̃([m], [m ′]) + d̃([m ′], [m ′′]), is larger than the minimum of the left-hand term in
g2, g

′′
2 , which is d̃([m], [m ′′]).

Toprove (11.1),writed(g′
2 · m ′, g′′

1 · m ′′) = d(g′
1 · m ′, g′

1(g
′
2)

−1g′′
1 · m ′′), takeg2 =

g1 and g′′
2 = g′

1(g
′
2)

−1g′′
1 ; (11.1) is then a consequence of the triangle inequality for

d.
We now make the additional assumption that the orbits are closed and prove that

D1 is true. Takem,m ′ ∈ M such that d̃([m], [m ′]) = 0. This implies that there exists
a sequence (gn, n ≥ 0) in G such that d(gn · m,m ′) → 0 when n → ∞, so that m ′
belongs to the closure of the orbit of m. Since the latter is assumed to be closed, this
yields m ′ ∈ [m], which is equivalent to [m] = [m ′]. �

The same statement can clearly be made with G acting on the right on m, writing
m �→ m · g. We state it without proof.

Proposition 11.2 Let d be equivariant under the right action of G on M. The func-
tion d̃, defined by

d̃([m], [m ′]) = inf{d(m · g,m ′ · g′) : g, g′ ∈ G}

is a pseudo-distance on G\M.
If, in addition, the orbits [m] are closed subsets of M (in the topology associated

to d), then d̃ is a distance.

Here G\M denotes the coset space for the right action of G.
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11.1.2 Distance Altered by a Group Action

In this section, G is still a group acting on the left on M , but we consider the product
space M = G × M and project on M a distance defined on M. The result of this
analysis will be to allow a distance onM to incorporate a component that accounts
for possible group transformations partially accounting for the difference between
the compared objects.

The left action of G on M induces a right action of G onM, defined, for k ∈ G,
z = (h,m) ∈ M, by

z · k = (hk, k−1 · m).

For z = (h,m) ∈ M, we define the projection π(z) = h · m, taking values in
M . This projection is constant on the orbits z · G for a given z, i.e., for all k ∈ G,
π(z · k) = π(z).

Let dM be a distance on M. We let, for m,m ′ ∈ M

d(m,m ′) = inf{dM(z, z′) : z, z′ ∈ M,π(z) = m,π(z′) = m ′}. (11.2)

We have the following proposition:

Proposition 11.3 If dM is equivariant by the right action of G, then, the function
d defined by (11.2) is a pseudo-distance on M.

If, in addition, the orbits [z] = {z · k, k ∈ G} are closed in M in the topology
associated to dM, then d is a distance.

This is in fact a corollary of Proposition 11.2. One only has to observe that
the quotient space G\M can be identified with M via the projection π, and
that the distance in (11.2) then becomes the projection distance introduced in
Proposition 11.2.

11.1.3 Transitive Action

Induced Distance

In this section, we assume that G is a group that acts transitively on M . The action
being transitive means that for any m,m ′ in M , there exists an element z ∈ G such
that m ′ = z · m.

We fix a reference element m0 in M , and define the group G by

G = Isom0(G) = {z ∈ G, z · m0 = m0} .

This group is the isotropy group, or stabilizer, of m0 in O. We show that G can
be identified with M := G × M , which will allow us to define a distance in M by
projecting a distance on G as in Sect. 11.1.2.
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Assume that a function ρ : M → G has been defined, such that for all m ∈ M ,
m = ρ(m) · m0. This is possible, because the action is transitive (using the axiom of
choice). Define

Ψ : G × M → G
(h,m) �→ ρ(h · m)h.

Ψ is a bijection: if z ∈ G, we can compute a unique (h,m) such that z = Ψ (h,m);
this (h,m) must satisfy

z · m0 = ρ(h · m)h · m0 = ρ(h · m) · m0 = h · m,

which implies that ρ(h · m) = ρ(z · m0) and therefore h = ρ(z · m0)
−1z, which is

uniquely specified; but this also specifies m = h−1z · m0. This proves that Ψ is one-
to-one and onto and provides the identification we were looking for.

The right action of G on M, which is (h,m) · k = (hk, k−1 · m), translates to G
via Ψ with

Ψ ((h,m) · k) = ρ(hkk−1 · m)hk = Ψ (h,m) · k

so that the right actions (of G onM and of G on G) “commute” with Ψ . Finally, the
constraint π(h,m1) = m in Proposition 11.3 becomes z · m0 = m via the identifica-
tion. All this provides a new version of Proposition 11.3 for transitive actions, given
by:

Corollary 11.4 Let dG be a distance onG which is equivariant under the right action
of the isotropy group of m0 ∈ M. Define, for all m,m ′ ∈ M,

d(m,m ′) = inf{dG(z, z′) : z · m0 = m, z′ · m0 = m ′} . (11.3)

Then d is a pseudo-distance on M.

Note that, if dG is right equivariant under the action of Isom0(G), the distance

d̃G(z, z′) = dG(z−1, (z′)−1)

is left equivariant, which yields the symmetric version of the previous corollary.

Corollary 11.5 Let dG be a distance on G which is equivariant under the left action
of the isotropy group of m0 ∈ M. Define, for all m,m ′ ∈ M,

d(m,m ′) = inf{dG(z, z′) : z · m = m0, z
′ · m ′ = m0} . (11.4)

Then d is a pseudo-distance on M.

From Propositions 11.1 and 11.2, d in Corollaries 11.4 and 11.5 is a distance as
soon as the orbits g · Isom0(G) (assuming, for example, a left action) are closed for
dG . If the left translations h �→ g · h are continuous, this is true as soon as Isom0(G)
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is closed. This last property is itself true as soon as the action g �→ g · m0 is contin-
uous, from G to M , given some topology on M .

Finally, if dG is left- or right-invariant under the action of the whole group, G, on
itself, then the distances in (11.3) and (11.4) both reduce to

d(m,m ′) = inf{dG(id, z) : z · m = m ′} .

Indeed, assume right invariance (the left-invariant case is similar): then, if z · m0 =
m and z′ · m0 = m ′, then z′z−1 · m = m ′ and dG(id, z′z−1) = dG(z, z′). Conversely,
assume that ζ · m = m ′. Since the action is transitive, we know that there exists a
z such that z · m0 = m, in which case ζz · m0 = m ′ and dG(id, ζ) = dG(z, ζz). We
summarize this in the following, in which we take G = G:

Corollary 11.6 Assume that G acts transitively on M. Let dG be a distance on G
that is left or right equivariant. Define, for all m,m ′ ∈ M,

d(m,m ′) = inf{dG(id, g) : g · m = m ′} . (11.5)

Then d is a pseudo-distance on M.

Effort Functionals

As formalized in [135], one can build a distance on M on which a group acts tran-
sitively using the notion of effort functionals. The definition we give here is slightly
more general than in [135], to take into account a possible influence of the deformed
object on the effort. We also make a connection with the previous, distance based,
formulations.

We let G be a group acting transitively on M . Assume that a cost Γ (z,m) is
assigned to a transformation m → z · m. If m and m ′ are two objects, we define
d(m,m ′) as the minimal cost (effort) required to transform m to m ′, i.e.,

d(m,m ′) = inf{Γ (z,m) : z ∈ G, z · m = m ′}. (11.6)

The proof of the following proposition is almost obvious.

Proposition 11.7 If Γ satisfies:

C1. Γ (z,m) = 0 ⇔ z = idG ,
C2. Γ (z,m) = Γ (z−1, z · m),
C3. Γ (zz′,m) ≤ Γ (z,m) + Γ (z′,m),

then d defined by (11.6) is a pseudo-distance on M.

In fact, this is equivalent to the construction of Corollary 11.5. To see this, let
G be the isotropy group of m0 for the action of G on M . We have the following
proposition.
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Proposition 11.8 If Γ satisfies C1, C2 and C3, then, for all m0 ∈ M, the function
dG defined by

dG(z, z′) = Γ (z′z−1, z · m0) (11.7)

is a distance on G which is equivariant under the right action of G. Conversely, given
such a distance dG , one builds an effort functional Γ satisfying C1, C2, C3 letting

Γ (h,m) = dG(z, h · z)

where z is any element of G with the property z · m = m0.

The proof of this proposition is straightforward and left to the reader.

11.1.4 The Riemannian Viewpoint

The previous sections have demonstrated the usefulness of building distances on a
spaceM that are equivariant to the actions of a group G. Probably the easiest way to
construct such a distance (at least when M is a differential manifold and G is a Lie
group) is to design a right-invariant Riemannian metric onM and use the associated
geodesic distance. (See AppendixB.)

Recall that a Riemannian metric onM requires, for all z ∈ M, an inner product〈· , ·〉z on the tangent space, TzM, to M at z, which depends smoothly on z. With
such a metric, one defines the energy of a differentiable path z(·) inM by

E(z(·)) =
∫ 1

0
‖∂t z‖2z(t) dt. (11.8)

The associated Riemannian distance on M is

dM(z0, z1) = inf{√E(z(·)) : z(0) = z0, z(1) = z1}. (11.9)

To obtain a right-invariant distance, it suffices to ensure that the metric has this
property. For h ∈ G, let Rh denote the right action of h on M: Rh : z �→ z · h. Let
dRh(z) : TzM → Tz·hM be its differential at z ∈ M. The right invariance of the
metric is expressed by the identity, true for all z ∈ M, A ∈ TzM and h ∈ G,

‖A‖z = ‖dRh(z) · A‖z·h . (11.10)

When M = G × M , condition (11.10) implies that it suffices to define
〈· , ·〉z at

elements z ∈ M of the form z = (id,m) with m ∈ M . The metric at a generic point
(h,m) can then be computed, by right invariance, from the metric at (h,m) · h−1 =
(id, h−1 · m). Because the metric at (id,m) can be interpreted as a way to attribute a
cost to a deformation (id, h(t) · m)withh(0) = id and small t , defining it corresponds
to an analysis of the cost of an infinitesimal perturbation of m by elements of G.
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Of course, an identical construction could be made with left actions and left-
invariant distances.

11.2 Invariant Distances Between Point Sets

11.2.1 Introduction

The purpose of this section is to present the construction provided by Kendall [166]
on distances between landmarks, taking the infinitesimal point of view that we have
just outlined. Here, configurations of landmarks are considered up to similitude
(translation, rotation, scaling). Since its introduction, this space has led to a rich
literature that specially focuses on statistical data analysis on landmark data. The
reader interested in further developments can refer to [91, 167, 266] and to the
references therein.

We only consider the two-dimensional case, which is also the simplest. For a fixed
integer N > 0 let PN denote the set of configurations of N points (z(1), . . . , z(N )) ∈
(R2)N such that z(i) �= z( j) for i �= j . We assume that the order in which the points
are listed matters, which means that we consider labeled landmarks. The set PN can
therefore be identified with an open subset of R2N .

Two configurations (z(1), . . . , z(N )) and (z̃(1), . . . , z̃(N )) will be identified if one
can be deduced from the other by the composition, say g, of a translation and a
plane similitude, i.e., z̃(k) = g · z(k) for k = 1, . . . , N . The objects of interest are
therefore equivalence classes of landmark configurations, which will be referred to
as N -shapes.

It will be convenient to identify the plane R2 with the set of complex numbers C,
a point z = (x, y) being represented as x + iy. A plane similitude composed with a
translation can then be written in the form z �→ az + b with a, b ∈ C, a �= 0.

For Z = (z(1), . . . , z(N )) ∈ PN , we let c(Z) be the center of inertia

c(Z) = (z(1) + · · · + z(N ))/N .

We also let ‖Z‖2 =
N∑

k=1

|z(k) − c(Z)|2.

11.2.2 The Space of Planar N-Shapes

Construction of a Distance

Let ΣN be the quotient space of PN by the equivalence relation: Z ∼ Z ′ if there
exist a, b ∈ C such that Z ′ = aZ + b. We denote by [Z ] the equivalence class of Z
for this relation. We want to define a distance between two equivalence classes [Z ]
and [Z ′].
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Following Sect. 11.1.4, we define a Riemannian metric on PN which is invariant
under the action. We therefore must define, for all Z ∈ PN , a norm ‖A‖Z over all
A = (a1, . . . , aN ) ∈ C

N such that for all a, b ∈ C:

‖A‖Z = ‖a · A‖aZ+b ,

and it suffices to define such a norm for Z such that ‖Z‖ = 1 and c(Z) = 0, since
we have, for all Z ,

‖A‖Z =
∥∥∥∥

A

‖Z‖
∥∥∥∥

Z−c(Z)

‖Z‖

. (11.11)

Once the metric has been chosen, the distance D(W,Y ) is defined by

D(W,Y )2 = inf
∫ 1

0
‖∂t Z‖2Z(t) dt, (11.12)

the infimum being taken over all paths Z(·) such that Z(0) = W and Z(1) = Y .
When c(Z) = 0 and ‖Z‖ = 1, we take

‖A‖2Z =
N∑

k=1

|a(k)|2.

From (11.11) and (11.12), computing D(W,Y ) requires us to minimize, among all
paths between W and Y ,

∫ 1

0

∑N
k=1 |∂t Z (k)|2

∑N
k=1 |Z (k)(t) − c(Z(t))|2 dt.

Let z̄(t) = c(Z(t)), v(k)(t) = (Z (k)(t) − C(Z(t)))/‖Z(t)‖ and ρ(t) = ‖Z(t)‖. The
path Z(·) is uniquely characterized by (v(·), ρ(·), z̄(·)). Moreover, we have

∂t Z
(k) = ∂t z̄ + ρ∂tv + v∂tρ

so that we need to minimize

∫ 1

0

N∑

k=1

∣∣∣∣
∂t z̄

ρ
+ ∂tρ

ρ
· v(k) + ∂tv

(k)

∣∣∣∣

2

dt.

This is equal (using
∑

k v(k) = 0 and
∑

k |v(k)|2 = 1, together with the differentials
of these expressions) to
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N
∫ 1

0

(
∂t z̄

ρ

)2

dt +
∫ 1

0

(
∂tρ

ρ

)2

dt +
∫ 1

0

N∑

k=1

∣∣∂tv
(k)
∣∣2 dt . (11.13)

The end-point conditions are directly deduced from those initially given in terms of
W and Y .

The last term in (11.13), which only depends on v, can be minimized explic-
itly, under the constraints

∑
k v(k) = 0 and

∑
k |v(k)|2 = 1, which imply that v

varies on a (2N − 3)-dimensional real sphere. The geodesic distance is therefore
given by the length of great circles, which yields the expression of the minimum:
arccos(v(0)∗v(1))2, where the “∗” exponent refers to the conjugate transpose.

Using this, we have

D(W,Y )2 = inf

(

N
∫ 1

0

(
∂t z̄

ρ

)2

+
∫ 1

0

(
∂tρ

ρ

)2

dt

)

(11.14)

+ arccos

((
W − c(W )

‖W‖
)∗ (Y − c(Y )

‖Y‖
))2

,

where the first infimum is over functions t �→ (z̄(t), ρ(t)) ∈ C × [0,+∞[, such that
z̄(0) = c(W ), z̄(1) = c(Y ), ρ(0) = ‖W‖, ρ(1) = ‖Y‖.

The induced distance on ΣN is then given by

d([Y ], [W ]) = inf{D(Y, aW + b), a, b ∈ C}.

Writing a = λh with λ = |a| > 0 and |h| = 1. Then

aW + b − c(aW + b)

‖aW + b‖ = h
W − c(W )

‖W‖ .

Moreover, given h, we can take λ = ‖Y‖/‖W‖ and b = c(Y ) − λhc(W ) so that
‖Y‖ = ‖aW + b‖ and c(Y ) = c(aW + b), for which the infimum in the right-hand
side of (11.14) is zero. We therefore have

d([Y ], [W ]) = inf
h:|h|=1

(
arccos

((
W − c(W )

‖W‖
)∗ (Y − c(Y )

‖Y‖
)))

.

Finally, optimizing this over the unit vector h, we get

d([Y ], [W ]) = arccos

∣∣∣∣

(
W − c(W )

‖W‖
)∗ (Y − c(Y )

‖Y‖
)∣∣∣∣ . (11.15)

Denote by S2N−3 the set of v = (v1, . . . , vN−1) ∈ C
N−1 such that

∑
i |vi |2 = 1

(this can be identified with a real sphere of dimension 2N − 3). The complex pro-
jective space, denoted CPN−2, is defined as the space S2N−3 quotiented by the
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equivalence relation: vR v′ if and only if ∃ν ∈ C such that v′ = νv; in other words,
CPN−2 contains all sets

S1 · v = {νv, ν ∈ C, |ν| = 1}

when v varies in S2N−3. This set has the structure of an (N − 2)-dimensional com-
plex manifold, which means that it can be covered with an atlas of open sets that are
in bijection with open subsets of CN−2 (with analytic changes of coordinates). Such
an atlas is provided, for example, by the family (Ok, Ψk), k = 1, . . . , N , where Ok

is the set of all S1 · v ∈ CPN−2 with v(k) �= 0, and

Ψk(S
1 · v) = (v(1)/v(k), . . . , v(k−1)/v(k), v(k+1)/v(k), . . . , v(N−1)/v(k)) ∈ C

N−2

for all S1 · v ∈ Oi . In fact, ΣN is also an analytic complex manifold that can be
identified with CPN−2.

Let us be more explicit with this identification [166]. Associate to Z = (z(1), . . . ,

z(N )) the family (ζ(1), . . . , ζ(N−1)) defined by

ζ(k) = (kz(k+1) − (z(1) + · · · + z(k)))/
√
k2 + k.

One can verify that
∑N−1

k=1 |ζ(k)|2 = ‖Z‖2 (similar decompositions are used, for
example, for the analysis of large-dimensional systems of particles [305]). Denote by
F(Z) the element S1 · (ζ/‖Z‖) in CPN−2. One can check that F(Z) only depends
on [Z ] and that [Z ] �→ F(Z) is an isometry between ΣN and CPN−2.

The Space of Triangles

This construction, applied to the case N = 3 (which corresponds to triangles with
labeled vertices), yields a quite interesting result. For a triangle Z = (z(1), z(2), z(3)),
the previous function F(Z) can be written

F(Z) = S1.

⎛

⎝

[
z(2)−z(1)√

2
, 2z(3)−z(1)−z(2)√

6

]

√|z(2) − z(1)|2/2 + |2z(3) − z(1) − z(2)|2/6

⎞

⎠

= S1 · [v(1), v(2)].

On the set v(1) �= 0 (i.e., the set z(1) �= z(2)) we have the local chart

Z �→ v(2)/v(1) = 1√
3

(
2z(3) − z(2) − z(1)

z(2) − z(1)

)
∈ C.

If we let v(2)/v(1) = tan θ
2e

iϕ, and M(Z) = (sin θ cosϕ, sin θ sinψ, cos θ) ∈ R
3,

we obtain a correspondence between the triangles and the unit sphere S2.
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This correspondence is isometric: the distance between two triangles [Z ] and [Z̃ ],
which has been defined above by

d([Z ], [Z̃ ]) = arccos

∣∣∣∣∣

∑3
k=1 z

(k)
(
z̃(k)

)∗

‖Z‖ ‖Z̃‖

∣∣∣∣∣
,

gives, after passing to coordinates θ and ϕ, exactly the length of the great circle
between the imagesM(Z) andM(Z̃).We therefore obtain a representation of labeled
triangular shapes as points on the sphere S2, with the possibility of comparing them
using the standard metric on S2.

11.3 Parametrization-Invariant Distances Between Plane
Curves

We now describe distances between two-dimensional shapes when they are defined
as plane curves modulo changes of parameter. Such distances have been the subject
of extensive and detailed mathematical studies, [193, 201], but here we only give an
overview of the main ideas and results.

Simple parametrization-free distances can be defined directly from the ranges of
the curves. For example, it is possible to use standard norms applied to arc-length
parametrizations of the curves, like L p or Sobolev norms of the difference. With
simple closed curves, one can measure the area of the symmetric difference between
the interiors of the curves. Amore advanced notion, theHausdorff distance, is defined
by

d(m, m̃) = inf {ε > 0,m ⊂ m̃ε and m̃ ⊂ mε} ,

where mε is the set of points at a distance less than ε from m (and similarly for m̃ε).
The same distance can be used with the interiors for simple closed curves. In fact,
the Hausdorff distance is a distance between closed sets as stated in the following
proposition.

Proposition 11.9 For ε > 0 and a subset A ofRd , let Aε be the set of points x ∈ R
d

such that there exists an a ∈ A with |a − x | < ε. Let

dH (A, B) = inf {ε > 0 : A ⊂ Bε and B ⊂ Aε} .

Then dH is a distance on the set of closed subsets of Rd .

Proof Symmetry is obvious, and we leave to the reader the proof of the triangular
inequality, which is a direct consequence of the fact that (Aε)ε

′ ⊂ Aε+ε′
.

Assume that dH (A, B) = 0. Then A ⊂ Bε for all ε > 0. But
⋂

ε B
ε = B̄, the

closure of B. We therefore have

dH (A, B) = 0 ⇒ A ⊂ B̄ and B ⊂ Ā,

which implies that A = B if both sets are closed.
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One can also proceed similarly to Sect. 11.1.1. First define equivariant distances
over parametrized curves, then optimize themwith respect to changes of parameters.
Let C be a set of parametrized curves, defined as functions m : [0, 1] �→ R

2, subject
to additional properties (such as smoothness, closedness, etc.), and G a group of
changes of parameter over [0, 1] (including changes of offset for closed curves).
Consider the quotient space S = C/G for the action ϕ · m = m ◦ ϕ−1, which are
curves modulo change of parameter (one may also want to quotient out rotation,
scaling). Based on our discussion in Sect. 11.1.1, a pseudo-distance on S can be
defined from a distance on C that is equivariant by changes of parameter.

L p norms between parametrized curves are not equivariant, unless p = ∞, with

d∞(m, m̃) = sup
u

|m(u) − m̃(u)|.

The distance obtained after reduction by diffeomorphism is called the Fréchet dis-
tance, defined by

dF (m, m̃) = inf
ϕ
d∞(m ◦ ϕ, m̃).

We note that if, for some diffeomorphism ϕ, d∞(m ◦ ϕ, m̃) ≤ ε, then m ⊂ m̃ε and
m̃ ⊂ mε. So we get the relation

ε > dF (m, m̃) ⇒ ε > dH (m, m̃),

which impliesdH ≤ dF . This andProposition 11.9 prove thatdF is a distance between
curves.

We now consider equivariant distances on C based on Riemannian metrics
derived from invariant norms on the tangent space. We only give an informal dis-
cussion, ignoring the complications that arise from the infinite dimension of the
space of curves (see [199, 200] for a rigorous presentation). Tangent vectors to
C are derivatives of paths in C, which are time-dependent parametrized curves
t �→ m(t, ·). Tangent vectors therefore take the form v = ∂tm(t, ·), which are func-
tions v : [0, 1] → R

2. Since a change of parameter in a time-dependent curve induces
the same change of parameter on the time derivative, a norm on the tangent space to
C is equivariant under the action of changes of parameter, if, for any m, v,ϕ,

‖v ◦ ϕ−1‖m◦ϕ−1 = ‖v‖m . (11.16)

It is therefore sufficient to define ‖v‖m for curves parametrized by arc length, since
(11.16) then defines the metric for any parametrized curve.

We nowwant to define tangent vectors to “plane curves modulo change of param-
eters.” We know that we can modify the tangential component of the time derivative
of a time-dependent parametrized curve t �→ m(t, ·) without changing the geometry
of the evolving curve. It follows from this that tangent vectors to S at a curve m are
equivalent classes of vector fields along m that share the same normal component
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to m, and can therefore be identified with this normal component itself, i.e., a scalar
function along m. The induced metric on S is

‖a‖m := inf
{‖v‖m : vT N = a

}
.

The associated pseudo-distance on S is

d(m, m̃)2 = inf

{∫ 1

0

∥∥∂tμ
T N

∥∥2
μ(t) dt,μ(0, ·) = m,μ(1, ·) = m̃

}
. (11.17)

The fact that we only get a pseudo-distance in general is interestingly illustrated
by the following simple example. Define

‖v‖2m =
∫ Lm

0
|v(s)|2ds. (11.18)

This is the L2 norm in the arc-length parametrization. Then, as stated in the following
theorem, we have d(m, m̃) = 0.

Theorem 11.10 (Mumford–Michor) The distance defined in (11.17) with the norm
given by (11.18) vanishes between any smooth curves m and m̃.

A proof of this result can be found in [199, 200]. It relies on the observation that
one can grow thin protrusions (“teeth”) on the curve at a cost which is negligible
compared to the size of the tooth. It is an easy exercise to compute the geodesic length
of a path that starts with a horizontal segment and progressively grows an isosceles
triangle of width ε and height t (at time t) on the segment until t = 1. This length
is o(ε) (in fact, O(ε2 ln ε)). This implies that one can transform a curve into O(1/ε)
thin non-overlapping teeth at almost no cost. A repeated application of this concept
is the basic idea in the construction made in [200] to create almost-zero-length paths
between two arbitrary curves.

To prevent the distance from vanishing, one needs to penalize the curve length
more than (11.18) does. For example, the distance associated with the metric

‖v‖2m = Lm

∫ Lm

0
|v(s)|2ds, (11.19)

introduced in [193, 259], does not give a degenerate distance on S. The resulting
distance is the area swept by the path relating the compared curves [259].

Another way to control degeneracy is to penalize high-curvature points, using for
example

‖v‖2m =
∫ Lm

0
(1 + aκm(s)2)|v(s)|2ds. (11.20)
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This metric has been studied in [200], where it is shown (among other results) that
the distance between distinct curves is positive. Finally, one can add derivatives of
v (with respect to arc length) in the definition of the metric; this provides Sobolev
metrics [193, 201] that we have already described for curve evolution.

11.4 Invariant Metrics on Diffeomorphisms

We discuss here the construction of a right-invariant distance between diffeomor-
phisms. We will see, in particular, that it coincides with the direct construction made
in Chap.7.

Here also, we only make an informal (non-rigorous) discussion. We consider a
group G of diffeomorphisms of Ω , and define (to fix our ideas) the tangent space to
G at ϕ ∈ G by the set of u : Ω → R

d such that id + t u ◦ ϕ−1 ∈ G for small enough
t . Since the group product onG is the composition,ϕψ = ϕ ◦ ψ, the right translation
Rϕ : ψ �→ ψ ◦ ϕ is linear, and therefore “equal” to its differential: for u ∈ TψG,

dRϕ(ψ)u = u ◦ ϕ.

A metric on G is right-invariant if, for all ϕ,ψ ∈ G and for all u ∈ TψG,

‖dRϕ(ψ)u‖ψ◦ϕ = ‖u‖ψ,

which yields, taking ϕ = ψ−1:

‖u‖ψ = ‖u ◦ ψ−1‖id.

This implies that the energy of a path (t �→ ϕ(t, ·)) in G must be defined by

E(ϕ(·)) =
∫ 1

0

∥∥(∂tϕ)(t,ϕ−1(t, ·))∥∥2id dt.

If we let
v(t, x) = (∂tϕ)(t,ϕ−1(t, x)),

the energy can be written

E(ϕ) =
∫ 1

0
‖v(t, ·)‖2id dt

with the identity
∂tϕ(t, x) = v(t,ϕ(t, x)).
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This implies that ϕ is the flow associated to the velocity field v(t, ·). We therefore
retrieve the construction given in Chap.7, with ‖·‖id = ‖·‖V . Thus, V in Chap.7 has
a role similar to that of the tangent space to G at id here. Because of this, we let
V = TidG and ‖·‖id = ‖·‖V in the remaining discussion to homogenize the notation.

Assume that V is admissible, according to Definition 7.14. The right-invariant
distance on G is

d(ϕ0,ϕ1) = inf

√∫ 1

0
‖v(t, ·)‖2V dt, (11.21)

where the minimum is taken over all v such that, for all x ∈ Ω , the solution of the
ordinary differential equation

∂t y = v(t, y)

with initial conditions y(0) = ϕ0(x) is such that y(1) = ϕ1(x), consistently with
Sect. 7.2.6.

We point out, however, that if G is, say, Diff p,∞0 , which has its own structure
of infinite-dimensional differential manifold, then V is a proper subspace of TidG,
resulting in a “sub-Riemannian” metric.

11.4.1 The Geodesic Equation

The geodesic equation on G is equivalent to the Euler–Lagrange equation associated
to the variational problem (11.21). This is similar to what we have computed in
Sect. 10.4, except that here we have a fixed end-point condition. Onemay address this
with a method called the Euler–Poincaré reduction [150, 188], and the presentation
we make here is related to it. The energy

E(v) = 1

2

∫ 1

0
‖v(t)‖2V dt

is minimized over all v such that ϕv
01 = ϕ1 (without loss of generality, because the

distance is right invariant, we can assume that ϕ0 = id).
Applying Theorem D.8 with

Hv(ϕ, p) = (p | v ◦ ϕ ) − ρ

2
‖v‖2V

we obtain the fact that, if a trajectory is not “elusive,” there exists ρ ∈ {0, 1} and a
co-state p(·) taking values in C p

0 (Rd ,Rd)∗ such that

⎧
⎪⎨

⎪⎩

∂tϕ = v ◦ ϕ

(∂t p | h ) + (p | dv ◦ ϕ h ) = 0

ρv = ξ∗
ϕ p,
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where ξϕ : v �→ v ◦ ϕ. The first two equations do not depend on whether ρ = 0 or 1
(i.e., whether the geodesic is normal or abnormal), and are identical to themomentum
conservation equation (10.17) and EPDiff studied in the previous chapter. When
ρ = 1, the third equation describes v, and provides the same necessary conditions
for optimality as those found for the diffeomorphic problem in that chapter.Abnormal
solutions are such that ξ∗

ϕ p = 0 along the trajectory.
Note that the solutions of “soft registration” problems, minimizing

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01)

for a differentiable function U , always provides normal geodesics.

11.4.2 A Simple Example

An explicit computation of the geodesic distance is generally impossible, but here is
an exception, in one dimension. Take Ω = [0, 1] and

‖u‖2id =
∫ 1

0
|∂xu|2 dx .

Note that this norm is not admissible, because it cannot be used to control the supre-
mum norm of ∂xu. The associated energy of a path of diffeomorphisms ϕ(t, ·) is

U (ϕ(·)) =
∫ 1

0

∫ 1

0

∣∣∂x
(
ϕt ◦ ϕ−1(t, ·))∣∣2 dxdt.

This gives, after expanding the derivative and making the change of variables x =
ϕ(t, y):

U (ϕ(·)) =
∫ 1

0

∫ 1

0
|∂t∂xϕ|2 |∂xϕ|−1 dydt.

Define q(t, y) = √
∂xϕ(t, y). We have

U (ϕ(·)) = 4
∫ 1

0

∫ 1

0
|∂t q|2 dydt,

which yields

U (ϕ(·)) = 4
∫ 1

0
‖∂t q(t, ·)‖22 dt.

If the problemwere tominimize this energyunder the constraintsq(0, ·) = √
∂xϕ(0, ·)

and q(1, ·) = √
∂xϕ(1, ·), the solution q would be given by the line segment

q(t, x) = tq(1, x) + (1 − t)q(0, x).
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There is, however, an additional constraint that comes from the fact that q(t, ·) must
provide a homeomorphism of [0, 1] for all t , which implies ϕ(t, 1) = 1, or, in terms
of q

‖q(t, ·)‖22 =
∫ 1

0
q(t, x)2dx = 1.

We therefore need to minimize the length of the path q under the constraint that
it remains on a Hilbert (L2) sphere. Similar to the finite-dimensional case, geodesics
on Hilbert spheres are great circles. This implies that the optimal q is given by

q(t, ·) = 1

sinα
(sin(α(1 − t))q0 + sin(αt)q1)

with α = arccos
〈
q0 , q1

〉
2. The length of the geodesic is precisely given by α, which

provides a closed-form expression of the distance on G [231]

d(ϕ, ϕ̃) = 2 arccos
∫ 1

0

√
∂xϕ∂x ϕ̃dx .

11.4.3 Gradient Descent

Assume that a function ϕ �→ U (ϕ) is defined over diffeomorphisms. Take C1 h and
ε0 small enough so that ϕ + εh is a diffeomorphism if |ε| ≤ ε0, and assume that the
Gâteaux derivative ∂εU (ϕ + εh) exists at ε = 0, denoting it, as in Sect. 9.2, by

∂εU (ϕ + εh) =
(
dU (ϕ)

∣∣∣ h
)
.

If a right-invariant metric is given, in the form

〈
h , h′〉

ϕ
= 〈

h ◦ ϕ−1 , h′ ◦ ϕ−1
〉
V

as above, the gradient of U at ϕ is computed by identifying

(
dU (ϕ)

∣∣∣ h
)

= 〈∇U (ϕ) , h
〉
ϕ

= 〈∇U (ϕ) ◦ ϕ−1 , h ◦ ϕ−1
〉
V

= (
L(∇U (ϕ) ◦ ϕ−1)

∣∣ h ◦ ϕ−1 ),

where L = K
−1 is the duality operator on V . Since (with the notation of Sect. 9.2)

(
dU (ϕ)

∣∣∣ h
)

= (
∂̄U (ϕ)

∣∣ h ◦ ϕ−1 ),
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we see that, using ∇V
U = K∂̄U ,

∇U (ϕ) = ∇V
U (ϕ) ◦ ϕ

and the evolution equation introduced in (9.7) is nothing but a Riemannian gradient
descent for U for the considered metric.

11.4.4 Diffeomorphic Active Contours

As a new example of an application of this formalism, we provide a Riemannian
version of the active contours algorithm discussed in Sect. 5.4. Let, for a curve m,

E(m) =
∫

m
F(p)dσm +

∫

Ωm

F̃(x)dx . (11.22)

We can, fixing a template curve m0, define the functional

U (ϕ) = E(ϕ(m0)).

Letting m = ϕ(m0), a straightforward computation gives

(
∂̄U (ϕ)

∣∣ v
) = −

∫

m
(κF − FT N + F̃)vT Ndσm,

from which we deduce

∇U (ϕ)(x) = −
∫

m
(κF − FT N + F̃)K (ϕ(x), ·)Ndσm .

This defines the continuous time gradient descent algorithm,

∂tϕ(t, x) =
∫

m(t)
(κF − FT N + F̃)K (ϕ(t, x), ·)Ndσm(t)

with m(t) = ϕ(t, ·) ◦ m0.
This algorithm also be expressed as an evolution equation in terms of m(t) only,

yielding the diffeomorphic active contours evolution equation [21, 310]

∂tm(t, u) =
∫

m(t)
(κF − FT N + F̃)K (m(t, u), ·)Ndσm(t). (11.23)

A similar discussion can be made for surfaces instead of curves.
Examples of segmentations using this equation are provided in Fig. 11.1.
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Fig. 11.1 Diffeomorphic active contours (compare with Fig. 5.4). On each row, the left image is
the initial contour, and the right one is the solution obtained with diffeomorphic active contours.
The first row presents a clean image and the second a noisy one

11.5 Group Actions and Riemannian Submersion

11.5.1 Riemannian Submersion

We temporarily switch to general (but finite-dimensional) Lie groups before returning
to diffeomorphisms. Let G be a Lie group acting transitively (and smoothly) on a
manifold, M . Fixing a reference element m0 ∈ M , Corollary 11.5 and Eq. (11.4)
show how a distance that is left-equivariant under the action of G = Isom0(G) can be
projected to a pseudo-distance onM .We now provide the infinitesimal version of this
result, which involves the notion of Riemannian submersion discussed in Sect.B.6.7.

Define, as done in Sect. 11.1.3,

π : G → M

g �→ g · m0 .
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This map is onto because the action is transitive and one can show [142] that it is a
submersion, i.e., that dπ(g) has full rank (the dimension of M) for g ∈ G.

For this submersion, the fiber over m ∈ M is the set π−1(m) = {g ∈ G : g ·
m0 = m}. Fix g ∈ π−1(m). Another group element g̃ belongs to π−1(m) if and only
if g−1g̃ ∈ G, so that π−1(m) = gG is a coset. Furthermore [142], the mapping

[π] : G/G → M

[g] �→ π(g)

is an isomorphism.
Assume that G is equipped with a Riemannian metric that is right-invariant for

the action of G, so that, for any g ∈ G, h ∈ G and w ∈ TgG,

‖w‖g = ‖dRh(g)w‖gh .

In other terms dRh(g) is an isometry between TgG and TghG (or Rh is a Riemannian
isometry). Then one can build a Riemannianmetric onM such that π is a Riemannian
submersion. Indeed, if g, g̃ ∈ π−1(m), then there exists an h ∈ G such that g̃ =
gh so that Tg̃G = dRhTgG. Moreover, π(g′h) = π(g′) for all g′ ∈ G implies that
dπ(gh)dRh(g) = dπ(g). This shows that Vgh = dRh(g)Vg, where

Vg = {
w ∈ TgG : dπ(g)w = 0

}

is the vertical space at g. LettingHg = V⊥
g be the horizontal space at g, this and the

fact that dRh(g) is an isometry implies that dRh(g)Hg = Hgh , so that the restriction
of dRh(g) to the horizontal space provides an isometry between these spaces. This
allows us to define, for any m ∈ M and tangent vector ξ ∈ TmM :

‖ξ‖m = ‖w‖g

for any g ∈ π−1(m), wherew is uniquely defined by dπ(g)w = ξ andw ∈ Hg . Using
the minimizing property of the orthogonal projection, an equivalent definition is that

‖ξ‖m = min
{‖w‖g : w ∈ TgG, dπ(g)w = ξ

}
. (11.24)

This is the infinitesimal counterpart of Eq.11.3.
Using the Lie group structure, this construction can also be analyzed solely on

the group’s Lie algebra, g = TidG. Notice that, if π(g) = m and g̃(t) is a curve on G
such that g̃(0) = g and ∂t g̃(0) = w, then, taking derivatives at t = 0,

dπ(g)w = ∂t (g̃(t) · m0) = ∂t (g̃(t)g−1) · m = v · m,

where v = dRg−1(g)w and v · m refers to the infinitesimal action (cf. Sect.B.5.3).
From this, we deduce that, letting
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Vm = {v ∈ g : v · m = 0} ,

one has Vg = dRg(id)Vm . Moreover, we can rewrite (11.24) as

‖ξ‖m = min
{‖dRg(id)v‖g : v ∈ g, v · m = ξ

}
, (11.25)

for any g ∈ π−1(m), with g = TidG. The mapping v �→ ‖dRg(id)v‖g provides a
Euclidean norm on g that does not depend on which g is chosen in π−1(m), therefore
only depending on m. Denoting this by ‖ · ‖m , dRg(id) is, by construction, an isom-
etry from g to TgG that maps Vm onto Vg , and therefore maps Hm onto Hg , where
Hm is the space perpendicular to Vm with respect to the dot product associated with
‖ · ‖m (which we shall denote by V⊥m

m ). For ξ ∈ TmM , there is therefore a unique
vector, vξ ∈ Hm , such that vξ · m = ξ and (11.24) and (11.25) simply become

‖ξ‖m = ‖vξ‖id = min {‖v‖m : v ∈ g, v · m = ξ} . (11.26)

Under the stronger assumption that the metric on G is right-invariant, so that Rh

is a Riemannian isometry for all h ∈ G, we have ‖dRg(id)v‖ = ‖v‖id for all g ∈ G
and v ∈ g, so that ‖v‖m = ‖v‖id for all m ∈ M and one has:

‖ξ‖m = min {‖v‖id : v · m = ξ} . (11.27)

One also defines horizontal linear forms, or horizontal covectors, which are linear
forms z ∈ TidG∗ such that (z | v ) = 0 for all v ∈ Vm .

If ξ ∈ TmM , we have defined vξ as the vector in TidG that minimizes ‖v‖id among
all v such that v · m = ξ, i.e., the orthogonal projection on Hm of any v

ξ
0 such that

v
ξ
0 · m = ξ. This leads to the following definitions, in which we let vξ = hm(ξ).

Definition 11.11 LetG be a Lie group acting transitively on amanifoldM . Ifm ∈ M
and ξ ∈ TmM , the horizontal lift of ξ is the vector hm(ξ) ∈ Hm = V⊥m

m such that
hm(ξ) · m = ξ.

If v ∈ TidG, we call πHm (v) the horizontal part of v at m and v − πHm (v) its
vertical part at m, where πHm is the orthogonal projection for ‖ · ‖m , so that

πHm (v) = hm(v · m). (11.28)

The projection on M of the Riemannian metric on G is defined by

〈
ξ , η

〉
m = 〈

hm(ξ) , hm(η)
〉
id. (11.29)

In the full right-invariant case, geodesics for the projected metric are immediately
deduced from those on G, as stated in the following proposition.

Proposition 11.12 Assume that themetric onG is right-invariant. Then the geodesic
on M starting at m in the direction ξ is deduced from horizontal geodesics on G by
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Expm(tξ) = Expid(thm(ξ)) · m. (11.30)

Proof This is a direct consequence of Proposition B.27. Let μ∗(t) = Expm(tξ) and
μ̂(t) be its horizontal lift starting at some g ∈ π−1(m). Then μ̂g−1 is also a geodesic
on G and necessarily takes the form given in (11.30). �

11.5.2 The Momentum Representation

Wenowapply these general results to groups of diffeomorphisms.While our previous
discussionwas limited tofinite dimensions, someof the concepts introduced there can
be generalized to the infinite-dimensional case. As before, we let V be aHilbert space
of vector fields continuously embedded in C p

0 (Rd ,Rd). To simplify the definition of
derivatives, we assume that the shape spaceM is an open subset of a Banach space Q,
and that the mapping A : ϕ �→ ϕ · m is differentiable from Diff p0 × M to Q. Note
that this imposes some restrictions on M and Q. For example, if M is the space
of Cq embeddings from the unit circle to R

2, then one needs q ≤ p for the action
ϕ · q = ϕ ◦ q to take values in M , and q ≤ p − 1 to ensure its differentiability.

We will consider the action of DiffV , the group of attainable diffeomorphisms
(Definition 7.15), on M . One of our basic assumptions in finite dimensions was
the transitivity of the action, which will not hold in general. We will however fix
a reference shape m̄, and define the space of attainable shapes as the orbit MV =
DiffV · m̄ of m̄ through the action of DiffV . For m ∈ MV , we define

Qm = {v · m : v ∈ V } ⊂ Q

and the norm
‖ξ‖m = min{‖v‖V : ξ = v · m}

for ξ ∈ Qm .
Notice that the infinitesimal action v · m = ∂1A(id,m)v is a bounded linear map

from C p
0 (Rd ,Rd) to Q, and so is its restriction to V for (V, ‖ · ‖m), the Hilbert space

topology. This implies that the space

Vm = {v ∈ V : v · m = 0}

is closed in V , and we still denote V⊥
m by Hm . In particular, we have

‖ξ‖m = ‖vξ‖V ,

where vξ = πHm (v), for any vector field v satisfying v · m = ξ. This implies that the
mapping v �→ v · m is an isometry between Hm and Qm , which incidentally proves
that the latter is a Hilbert space. Given this, we can define the variational problem of
minimizing
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∫ 1

0
‖∂tm(t)‖2m(t) dt

subject to m(0) = m0 and m(1) = m1, m0,m1 ∈ MV and see that this problem is
equivalent to minimizing ∫ 1

0
‖v(t)‖2V dt

subject tom(0) = 0,m(1) = m1 and ∂tm = v · m. It is also equivalent tominimizing
the same energy subject to the constraint ϕv

01 · m0 = m1.
In finite dimensions, we showed that, if the acting group G is equipped with a

right-invariant Riemannian metric and M with the associated projected metric, then
solutions of this problem (which are geodesics inM) can be identified with geodesics
in G that start horizontally. So, fixing m0 ∈ M , the representation w �→ Expid(w) ·
m0 provided a local chart of M around m0 when defined over a neighborhood of 0
in Hm0 .

With diffeomorphisms, we know that we can find elusive, abnormal and normal
geodesics, with only the latter associated with an equation that can be solved given
initial conditions (m0, w). We therefore restrict the “local chart” representation to
only those solutions, and express it in terms of co-tangent vectors instead of tangent
vectors, which is equivalent in theory, but, as wewill see, is muchmore parsimonious
in practice.

As we have seen, this geodesic equation is characterized by momentum conser-
vation, namely

Lv(t) = Adϕ(t)−1(Lv(0))

with ∂tϕ = v ◦ ϕ and L is the duality operator of V . Given m ∈ MV , we define the
space of horizontal momenta at m simply by LHm ⊂ V ∗.

Definition 11.13 Let Dm be the subset of LHm consisting of initial momenta for
which the conditions of Theorem 10.13 on the existence of solutions of the geodesic
equation hold. The momentum representation of a deformable template m̄ is the map

Exp�

m̄ : Dm → DiffV · m̄
ρ �→ Expm̄(Kρ) · m̄ (11.31)

which associates to a horizontal momentum ρ the position at time 1 of the geodesic
initialized at (m̄, (Kρ) · m̄) in M .

In finite dimensions, we have proved that horizontality is preserved along
geodesics. We retrieve this fact directly in this infinite-dimensional case, as a conse-
quence of the conservation of momentum.

Proposition 11.14 Let m̄ be a deformable object and ρ0 ∈ Dm̄. Let (ρ(t),ϕ(t))
be the evolving momentum and diffeomorphism provided by EPDiff initialized with
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ρ(0) = ρ0. Let m(t) = ϕ(t) · m̄ be the evolution of the deformable object. Then, at
all times t, ρ(t) ∈ LHm(t).

Proof We will prove that if w ∈ Vm and ϕ a diffeomorphism, then Adϕw ∈ Vϕ·m .
Before proving this fact,we verify that it implies the proposition,which requires us

to check that (w ∈ Vm(t)) ⇒ ((ρ(t) | w) = 0). From the conservation of momentum
we have

(ρ(t) | w) = (
ρ0

∣∣Adϕ(t)−1w
)

and Adϕ(t)−1w ∈ Vm̄ if w ∈ Vm(t), which implies that (ρ(t) | w) = 0.
We nowprove our claim. Letψ(ε) be such that ∂εψ(0) = w, and ∂ε(ψ · m)(0) = 0

at ε = 0. By definition, Adϕw = ∂ε(ϕ ◦ ψ ◦ ϕ−1)(0). But we have

∂ε(ϕ ◦ ψ ◦ ϕ−1) · (ϕ · m) = d Aϕ(ψ · m) ∂ε(ψ · m) = 0,

which implies that Adϕw ∈ Vϕ·m . (Here, Aϕ denotes the action Aϕ : m �→ ϕ · m.)�

We now describe horizontal momenta in a few special cases. First assume that
deformable objects are point sets, so that

M = {
(x1, . . . , xN ) ∈ (Rd)N , xi �= x j for i �= j

}

and Q = (Rd)N .
If m = (x1, . . . , xN ), we have

Vm = {v ∈ V : v(x1) = · · · = v(xN ) = 0} .

Letting e1, . . . , ed be the canonical basis of Rd , Vm is therefore defined as the set of
v’s such that

(
e jδxk

∣∣ v
) = 0 for all j = 1, . . . , d and k = 1, . . . N . So Vm = W⊥,

whereW is the vector space generated by the d × N vector fields K (·, xk)e j . Because
W is finite-dimensional, it is closed and Hm = V⊥

m = (W⊥)⊥ = W . Switching to
momenta, we obtain the fact that, for point sets m = (x1, . . . , xN )

LHm =
{

N∑

k=1

zkδxk , z1, . . . , zN ∈ R
d

}

.

In particular, we see that the momentum representation is parametrized by the
Nd-dimensional set (z1, . . . , zN ) and therefore has the same dimension as the con-
sidered objects. Finally, we note that, in this finite-dimensional shape space, one has
MV = M and ‖ · ‖m provides a Riemannian metric on this space.

The description of Vm is still valid when m is a general parametrized subset of
R

d : m : u �→ m(u) = xu ∈ R
d , defined for u in a, so far, arbitrary set U . Then

Vm = {v ∈ V : v(xu) = 0, u ∈ U } (11.32)
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and we still have Vm = W⊥, where W is the vector space generated by the vector
fields K (·, xu)e j , j = 1, . . . , d, u ∈ U . The difference, now, is that W is not finite-
dimensional if m is infinite, and not necessarily a closed subspace of V , so that

Hm = (W⊥)⊥ = W̄ ,

the closure of W in V . Turning to the momenta, this says that

LHm =
{

n∑

k=1

zkδxuk , n ≥ 0, z1, . . . , zn ∈ Rd , u1, . . . , un ∈ U

}

,

where the closure is now in V ∗.
This argument applies to parametrized curves and surfaces, butmust be adapted for

geometric objects, that is, curves and surfaces seen modulo a change of parametriza-
tion. In this case, deformable objects are equivalent classes of parametrized mani-
folds. One way to address this is to use infinite-dimensional local charts that describe
the equivalence classes in a neighborhood of a given objectm. We will not detail this
rigorously here, but the interested reader can refer to [201] for such a construction
with plane curves.

Intuitively, however, the resulting description of Vm is clear. In contrast to the
parametrized case, for which vector fields in Vm were not allowed to move any point
in m, it is now possible to do so, provided the motion happens within m, i.e., the
vector fields are tangent to m. This leads to the following set:

Vm = {v ∈ V : v(x) is tangent to m for all x ∈ m} .

Since v(x) being tangent to m is equivalent to NT v(x) = 0 for all N normal to m
at x , we see that Vm = W⊥, where W is the vector space generated by vector fields
K (·, x)N , with x ∈ m and N normal to m at x . Again, this implies that Hm = W̄
and that

LHm =
{

n∑

k=1

zkδxk , n ≥ 0, x1, . . . , xn ∈ m, z1, . . . , zn ∈ Nxkm

}

,

where Nxm is the set of vectors that are normal to m at x .
Now, consider the example of smooth scalar functions (or images):m : Rd → R.

In this case, the action being ϕ · m = m ◦ ϕ−1, the set Vm is

Vm = {
v ∈ V : ∇mT v = 0

}
,

which directly implies that Vm = W⊥, where W is the vector space generated by
K (·, x)∇m(x) for x ∈ R

d . Horizontal momenta therefore span the set
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LHm =
{

n∑

k=1

∇m(xk)δxk , n ≥ 0, x1, . . . , xn ∈ Rd

}

.

We conclude with the action of diffeomorphisms on measures, for which:

(ϕ · m | f ) = (m | f ◦ ϕ ),

so that v ∈ Vm if and only if
(
m

∣∣∇ f T v
) = 0 for all smooth f . So Vm = W⊥, where

W = {
K(∇ f m), f ∈ C1(Ω,R)

}

so that
LHm = {∇ f m, f ∈ C1(Ω,R)

}
.

We point out that the horizontal spaces may bemuch larger than one would expect
by formally extending the case of point sets. For example, if V is a Gaussian RKHS
and m is a set with non-empty interior, then Vm = {0} in (11.32) and Hm = V ! This
is because Gaussian RKHSs only contain analytic functions [207, 268]. For the same
reason, ifm is a curve that contain a line segment, all vector fields in Vm must vanish
on the whole line containing the segment.

This behavior cannot happen when V is a space containing all compactly-
supported smooth functions, such as Sobolev spaces. In this case, if m is a closed
subset of Rd , then any smooth vector field with support in R

d \ m must belong to
Vm and any ρ ∈ LHm must therefore vanish on such functions, which shows that ρ
(as a generalized function) is supported by m.

However, even in such contexts, an explicit description of horizontal momenta is
generally beyond reach, and one generally restrict the momentum representation to
more “manageable” subsets of Hm , using, for example, measure momenta supported
by m, as considered in Sect. 10.5.6. As we have seen, such measure momenta cover
most of the cases of interest for diffeomorphic matching with a differentiable end-
point cost, even when using Gaussian kernels.

Themomentumrepresentationprovides a diffeomorphic versionof thedeformable
template approach described for polygons in Sect. 6.3. As we have seen, it can be
applied to a wide class of deformable objects. Applications to datasets of three-
dimensional medical images can be found in [143, 236, 290, 300].
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