
Chapter 10
Diffeomorphic Matching

10.1 Linearized Deformations

A standard way to ensure the existence of a smooth solution of a matching problem
is to add a penalty term in the matching functional. This term would complete (9.1)
to form

EI,I ′(ϕ) = ρ(ϕ) + D(ϕ · I, I ′). (10.1)

A large variety of such methods have been designed, in approximation theory, statis-
tics and signal processing for solving ill-posed problems. The simplest (and typical)
form of penalty function is

ρ(ϕ) = ‖ϕ − id‖2H
for some Hilbert (or Banach) space of functions. Some more complex functions of
ϕ − id may also be designed, related to energies of non-linear elasticity (see, among
others [13, 27, 28, 89, 123, 144, 237]). Such methods may be called “small defor-
mation” methods because they work on the deviation of u = ϕ − id, and controlling
the size or smoothness of u alone is most of the time not enough to guarantee that
ϕ is a diffeomorphism (unless u is small, as we have seen in Sect. 7.1). There is, in
general, no way of proving the existence of a solution of the minimization problem
within some group of diffeomorphisms G, unless some restrictive assumptions are
made on the objects to be matched.

Our focus here is on diffeomorphic matching. Because of this, we shall not detail
many of these methods. However, it is interesting to note that these functionals also
have a Eulerian gradient within an RKHS of vector fields with a smooth enough ker-
nel, and can therefore be minimized using (9.7). We illustrate this with the following
example, in which we skip the proper justification of the existence of derivatives.
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Consider the function ρ(ϕ) = ∫
Rd |dϕ(x) − Id|2 dx , where the matrix norm is

|A|2 = trace(AT A) =
∑

i, j

a2i j

(Hilbert–Schmidt norm). Letting u = ϕ − id, we have

(dρ(ϕ) | h ) = 2
∫

Rd

trace(duT dh)dx = −2
∫

Rd

ΔuT hdx,

where Δu is the vector formed by the Laplacian of the coordinates of u (recall that
we assume that u = 0 at infinity). This implies that (given that Δu = Δϕ)

(
∂̄ρ(ϕ)

∣
∣ h
) = −2

∫

Ω

ΔϕT h ◦ ϕdx

and

∇V
ϕ ρ(·) = −2

∫

Ω

K (·,ϕ(x))Δϕ(x)dx . (10.2)

This provides a regularized greedy image-matching algorithm, which includes a
regularization term (a similar algorithm may easily be written for point matching).

Algorithm 2 The following procedure is an Eulerian gradient descent, on V , for the
energy

EI.I ′(ϕ) =
∫

Rd

|dϕ(x) − id|2 dx + 1

σ2

∫

Rd

∣
∣I ◦ ϕ−1(x) − I ′(x)

∣
∣ dx .

Start with an initial ϕ0 = id and solve the differential equation

∂tϕ(t, y) = −2
∫

Ω

K (ϕ(t, y),ϕ(t, x))Δϕ(t, x)dx (10.3)

+ 2

σ2

∫

Ω

(J (t, x) − I ′(x))K (ϕ(t, y), x)∇ J (t, x)dx (10.4)

with J (t, ·) = I ◦ ϕ(t)−1(·).
This algorithm, which, like the previous greedy procedures, has the fundamental

feature of providing a smooth flow of diffeomorphisms to minimize the matching
functional, suffers from the same limitations as its predecessors concerning its limit
behavior, which are essentially due to the fact that the variational problem itself is
not well-posed; minimizers may not exist, and when they exist they are not neces-
sarily diffeomorphisms. In order to ensure the existence of, at least, homeomorphic
solutions, the energy must include terms that must not only prevent dϕ from being
too large, but also from being too small (or its inverse from being too large). In [90],
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the following regularization is proved to ensure the existence of homeomorphic
solutions:

δ(ϕ) =
∫

Ω

(a‖dϕ‖p + b‖Adj(dϕ)‖q + c(det dϕ)r + d(det dϕ)−s)dx (10.5)

under some assumptions on p, q, r and s, namely p, q > 3, r > 1 and
s > 2q/(q − 3).

10.2 The Monge–Kantorovitch Problem

We briefly discuss in this section the mass transfer problem, which is, under some
assumptions, a diffeomorphicmethod formatching probability densities, i.e., positive
functions on R

d with integral equal to 1. Consider such a density, ζ, and a diffeo-
morphism ϕ on Rd . If an object has density ζ, the mass included in an infinitesimal
volume dx around x is ζ(x)dx . Now, if each point x in the object is transported to
the location y = ϕ(x), the mass of a volume dy around y is the same as the mass of
the volume ϕ−1(dy) around x = ϕ−1(y), which is ζ ◦ ϕ−1(y)| det(d(ϕ−1))(y)|dy
(this provides a physical interpretation of Proposition 9.5).

Given two densities ζ and ζ ′, the optimal mass transfer problem consists in finding
a diffeomorphismϕwithminimal cost such that ζ ′ = ζ ◦ ϕ−1| det(d(ϕ−1))|. The cost
associated to ϕ in this context is related to the distance along which the transfer is
made, measured by a function ρ(x,ϕ(x)). The total cost comes after summing over
the transferred mass, yielding

E(ϕ) =
∫

Ω

ρ(x,ϕ(x))ζ(x)dx .

The mass transfer problem now is to minimize E over all ϕ’s such that ζ ′ =
ζ ◦ ϕ−1| det(d(ϕ−1))|. The problem is slightly different from the matching formula-
tions that we discuss in the other sections of this chapter, because the minimization
is associated to exact matching.

It is very interesting that this apparently very complex and highly nonlinear
problem can be reduced to linear programming, albeit infinite-dimensional. Let
us first consider a more general formulation. Instead of looking for a one-to-one
correspondence x �→ ϕ(x), one can decide that the mass in a small neighborhood
of x is dispatched over all Ω with weights y �→ q(x, y), where q(x, y) ≥ 0 and∫
Ω
q(x, y)dy = 1. We still have the constraint that the mass density arriving at y is

ζ̃(y), which gives ∫

Ω

ζ(x)q(x, y)dx = ζ̃(y).

The cost now has the simple expression (linear in q)
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E =
∫

Ω2
ρ(x, y)ζ(x)q(x, y)dxdy.

The original formulation can be retrieved by letting q(x, y)dy → δϕ(x)(y) (i.e., pass
to the limit σ = 0 with q(x, y) = exp(−|y − ϕ(x)|2/2σ2)/(2πσ2)d/2).

If we write g(x, y) = ζ(x)q(x, y), this relaxed problem is clearly equivalent to
minimizing

E(g) =
∫

Ω2
ρ(x, y)g(x, y)dxdy

subject to the constraints g(x, y) ≥ 0,
∫

g(x, y)dy = ζ(x) and
∫

g(x, y)dx = ζ̃(y).
In fact, the natural formulation of this problem uses measures instead of densities:
given two probability measures μ and μ̃ on Ω , minimize

E(ν) =
∫

Ω2
ρ(x, y)ν(dx, dy)

subject to the constraints that the marginals of ν are μ and μ̃. This provides the
Wasserstein distance between μ and μ̃, associated to the transportation cost ρ. Note
that this formulation generalizes the computation of the Wasserstein distance (9.24)
between discrete measures.

This problem is much nicer than the original one, since it is a linear programming
problem. The theory of convex optimization (that we only apply formally in this
infinite-dimensional context; see [44] for rigorous proofs) implies that it has an
equivalent dual formulation which is: maximize

F(h) =
∫

Ω

hdμ +
∫

Ω

h̃μ̃

subject to the constraint that, for all x, y ∈ Ω , h(x) + h̃(y) ≤ ρ(x, y).
The duality equivalence means that the maximum of F coincides with the min-

imum of E . The solutions are, moreover, related by duality conditions (the KKT
conditions) that imply that ν must be supported by the set

A =
{
(x, y) : h(x) + h̃(y) = ρ(x, y)

}
. (10.6)

For the dual problem, one is obviously interested in making h and h̃ as large as
possible. Given h, one should therefore choose h̃ as

h̃(y) = sup
x

(ρ(x, y) − h(x)),

so that the set in (10.6) is exactly the set of (y∗, y) where y∗ is a point that achieves
the maximum of ρ(x, y) − h(x).
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The situation is particularly interesting when ρ(x, y) = |x − y|2/2. In this
situation,

h̃(y) = y2

2
+ sup

x

(

xT y + x2

2
− h(x)

)

.

From this equation, it is natural to introduce the auxiliary functions s(x) = h(x) −
x2/2 and s̃(y) = h̃(y) − y2/2. Using these functions, the set A in (10.6) becomes

A = {(x, y) : s(x) + s̃(y) = xT y
}
,

with s̃(y) = supx (x
T y − s(x)). Because the latter is a supremum of linear functions,

we obtain the fact that s̃ is convex, and so is s by symmetry; s̃ is in fact what is called
the convex conjugate of s, denoted s̃ = s∗. Convex functions are almost everywhere
differentiable, and, in order that (x, y) ∈ A, x must maximize u �→ uT y − s(u),
which implies that y = ∇s(x). So, the conclusion is that, whenever s is the solution
of the dual problem, the solution of the primal problem is provided by y = ∇s(x).
This shows that the relaxed mass transport problem has the same solution as the
initial one, with ϕ = ∇s, s being a convex function. That ϕ is invertible is obvious
by symmetry: ϕ−1 = ∇ s̃.

This result is fundamental, since it is the basis for the construction of a numerical
procedure for the solution of the mass transport problem in this case. Introduce a
time-dependent vector field v(t, ·) and the corresponding flow of diffeomorphisms
ϕv
0t . Let h(t, ·) = det(dϕv

t0) ζ ◦ ϕv
t0. Then

det(dϕv
0t ) h(t) ◦ ϕv

0t = ζ.

The time derivative of this equation yields

∂t h + div(hv) = 0. (10.7)

We have the following theorem [34].

Theorem 10.1 Consider the following energy:

G(v) =
∫ 1

0

∫

Ω

h(t, x)|v(t, x)|2dxdt

and the variational problem: minimize G subject to the constraints h(0) =
ζ, h(1) = ζ̃ and (10.7). If v is the solution of the above problem, then ϕv

01 solves
the optimal mass transport problem.

Proof Indeed, in G, we can make the change of variables x = ϕ0t (y), which yields

G(v) =
∫ 1

0

∫

Ω

ζ(y)
∣
∣v(t,ϕv

0t (y))
∣
∣2 dydt
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=
∫

Ω

ζ(y)
∫ 1

0

∣
∣∂tϕ

v
0t

∣
∣2 dt

≥
∫

Ω

ζ(y)
∣
∣ϕv

01(y) − y
∣
∣2 dy.

So the minimum of G is always larger than the minimum of E . If ϕ solves the mass
transport problem, then one can take v(t, x) such that ϕv

0t (x) = (1 − t)x + tϕ(x),
which is a diffeomorphism [190] and achieves the minimum of G. �

We refer to [34] for a numerical algorithm that computes the optimal ϕ. Note that
ρ(x, y) = |x − y|2 is not the only transportation cost that can be used in this context,
but that others (like |x − y|, which is not strictly convex in the distance) may fail
to provide diffeomorphic solutions. Important developments on this subject can be
found in [49, 119, 296].

We now discuss methods that are both diffeomorphic and metric (i.e., they relate
to a distance). They also rely on the representation of diffeomorphisms using flows
of ordinary differential equations.

10.3 Optimizing Over Flows

We return in this section to the representation of diffeomorphisms with flows of
ordinary differential equations (ODEs) and describe how this representation can be
used for diffeomorphic registration. Instead of using a norm to evaluate the difference
between ϕ and the identity mapping, we now consider, as a regularizing term, the
distance dV that was defined in Sect. 7.2.6. More precisely, we set

ρ(ϕ) = 1

2
dV (id,ϕ)2

and henceforth restrict the matching to diffeomorphisms belonging to DiffV .
In this context, we have the following important theorem:

Theorem 10.2 Let V be a Hilbert space embedded in C p+1
0 (Ω,Rd) so that

DiffV ⊂ Diff p,∞0 . Assume that the functional U : Diff p,∞0 �→ R is bounded from
below and continuous for the (p,∞)-compact topology. Then, there exists a mini-
mizer of

E(ϕ) = 1

2
dV (id,ϕ)2 +U (ϕ) (10.8)

over DiffV .

(The (p,∞)-compact topology is defined just after Theorem 7.13.)

Proof E has an infimum Emin over DiffV , since it is bounded from below.We need to
show that this infimum is also a minimum, i.e., that it is achieved at some ϕ ∈ DiffV .
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We first use the following lemma (recall that we have denoted by X 1
V (resp. X 2

V )
the set of time-dependent vector fields onΩ with integrable (resp. square integrable)
V -norm over [0, 1]):
Lemma 10.3 Minimizing E(ϕ) = d(id,ϕ)2/2 +U (ϕ) over DiffV is equivalent to
minimizing the function

Ẽ(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01) (10.9)

over X 2
V .

Let us prove this lemma. For v ∈ X 2
V , we have, by definition of the distance

dV (id,ϕv
01)

2 ≤
∫ 1

0
‖v(t)‖2V dt,

which implies E(ϕv
01) ≤ Ẽ(v). This obviously implies that infDiffV E(ϕ) ≤ Ẽ(v),

and since this is true for all v ∈ X 2
V , we have inf E ≤ inf Ẽ . Now, assume that ϕ is

such that E(ϕ) ≤ inf E + ε/2. Then, by definition of the distance, there exists a v

such that ϕ = ϕv
01 and

∫ 1

0
‖v(t)‖2V dt ≤ dV (id,ϕ)2 + ε,

which implies that
Ẽ(v) ≤ E(ϕ) + ε/2 ≤ inf E + ε,

so that inf E ≤ inf Ẽ .
We therefore have inf E = inf Ẽ . Moreover, if there exists a v such that Ẽ(v) =

min Ẽ = inf E , then, since we know that E(ϕv
01) ≤ Ẽ , we must have E(ϕv

01) =
min E . Conversely, if E(ϕ) = min E , by Theorem 7.22, E(ϕ) = E(ϕv

01) for some
v and this v must achieve the infimum of Ẽ , which proves the lemma.

This lemma shows that it suffices to study the minimizers of Ẽ . Now, as done in
the proof of Theorem 7.22, one can find, by taking a subsequence of a minimizing
sequence, a sequence vn in X 2

V which converges weakly to some v ∈ X 2
V and Ẽ(vn)

tends to Emin . Because

lim inf
∫ 1

0

∥
∥vn(t)

∥
∥2
V dt ≥

∫ 1

0
‖v(t)‖2V dt

and because weak convergence inX 1
2 implies convergence of the flow in the (p,∞)-

compact topology (Theorem 7.13) we also have U (ϕvn

01) → U (ϕv
01), so that Ẽ(v) =

Emin and v is a minimizer. �
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The general problem of minimizing functionals such as (10.9) has been called
“large deformation diffeomorphic metric mapping”, or LDDMM. The first algo-
rithms were introduced for this purpose in the case of landmark matching [159] and
image matching [32] (these papers were preceded by theoretical developments in
[93, 278, 283]). The following sections describe these algorithms, and other that
were recently proposed.

10.4 Euler–Lagrange Equations and Gradient

10.4.1 Gradient: Direct Computation

We now detail the computation of the gradient for energies such as (10.8). As
remarked in the proof of Theorem 10.2, the variational problem which has to be
solved is conveniently expressed as a problem over X 2

V . The function which is min-
imized over this space takes the form

E(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01).

Assume that V is embedded in C p+1
0 (Ω,Rd) and that U is differentiable on

Diff p,∞0 . Then Theorem 7.12 and the chain rule implies that E is differentiable on
X 2

V with
(dE(v) | h ) = 〈v , h

〉
X 2

V (Ω)
+ (dU (ϕv

01)
∣
∣ ∂vϕ

v
01 h
)
,

where ∂vϕ
v
01 h is given in Theorem 7.12.

We now identify the gradient of E for the Hilbert structure of X 2
V . This gradient

is a function, denoted ∇V E : v �→ ∇V E(v) ∈ X 2
V , that satisfies

(dE(v) | h ) = 〈∇V E(v) , h
〉
X 2

V
=
∫ 1

0

〈∇V E(v)(t) , h(t)
〉
V dt

for all v, h in X 2
V .

Since the set V is fixed in this section, wewill drop the exponent from the notation,
and simply refer to the gradient ∇E(v). Note that this is different from the Eulerian
gradient we have dealt with before; ∇E now represents the usual gradient of a
function defined over a Hilbert space. One important thing to keep in mind is that the
gradientwe define here is an element ofX 2

V , henceforth a time-dependent vector field,
whereas the Eulerian gradient was an element of V (a vector field on Ω). Theorem
10.5 relates the two (and allows us to reuse the computations that were made in
Chap.9). For this, we need to introduce the following operation of diffeomorphisms
acting on vector fields.
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Definition 10.4 Let ϕ be a diffeomorphism of Ω and v a vector field on Ω . We
denote by Adϕv the vector field on Ω defined by

Adϕv(x) = (dϕ v) ◦ ϕ−1(x). (10.10)

Adϕ is called the adjoint representation of ϕ.

If ϕ ∈ Diff p+1,∞(Ω), then an application of Lemma 7.3 and the Leibnitz formula
implies that Adϕv ∈ C p

0 (Ω,Rd) as soon as v ∈ C p
0 (Ω,Rd) and more precisely that

Adϕ is a bounded linear operator from C p
0 (Ω,Rd) to itself. We can therefore define

its conjugate on C p
0 (Ω,Rd)∗, with Ad∗

ϕρ given by

(
Ad∗

ϕρ
∣
∣ v
) = (ρ ∣∣Adϕv

)
(10.11)

for ρ ∈ C p
0 (Ω,Rd)∗, v ∈ C p

0 (Ω,Rd). Note that Ad∗
ϕρ is, a fortiori, in V ∗, because

V is continuously embedded in C p+1
0 (Ω,Rd).

Let L : V → V ∗ denote the duality operator on V and V (r) denote the set of
vector fields v ∈ V such that Lv ∈ Cr

0(Ω,Rd)∗ (for r ≤ p + 1). Then, for v ∈ V (p),
we can define, with K = L

−1,

AdTϕv = K(Ad∗
ϕLv). (10.12)

This is well-defined, because, by construction, Ad∗
ϕLv ∈ C p

0 (Ω,Rd)∗ ⊂ V ∗. We
have in particular, for v ∈ V (p) and w ∈ V ,

〈
AdTϕv , w

〉
V

= (Ad∗
ϕLv

∣
∣w
) = (Lv

∣
∣Adϕw

)
.

Recall that the Eulerian derivative of U is defined by

(
∂̄U (ϕ)

∣
∣w
) = (dU (ϕ) | w ◦ ϕ ).

Using Theorem 7.12, we have

∂vϕ
v
01 h =

∫ 1

0
(dϕv

u1h(u)) ◦ ϕv
0u du =

∫ 1

0
(Adϕv

u1
h(u)) ◦ ϕv

01 du

so that

(
dU (ϕv

01)
∣
∣ ∂vϕ

v
01 h
) =

(
∂̄U (ϕv

01)

∣
∣
∣

∫ 1

0
(Adϕv

u1
h(u)) du

)

=
∫ 1

0

(
∂̄U (ϕv

01)
∣
∣Adϕv

u1
h(u))

)
du.

With this notation, we have the following theorem.



300 10 Diffeomorphic Matching

Theorem 10.5 Assume that V is continuously embedded inC p+1
0 (Ω,Rd)and thatU

is continuously differentiable onDiff p,∞0 . Then, theX 2
V gradient of Ũ : v �→ U (ϕv

01)

is given by the formula

∇Ũ (v)(t) = KAd∗
ϕv
t1
∂̄U (ϕv

01) = AdTϕv
t1
∇U (ϕv

01). (10.13)

This important result has the following simple consequences.

Proposition 10.6 Let U satisfy the assumptions of Theorem 10.5. If v ∈ X 2
V is a

minimizer of

Ẽ(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01), (10.14)

then, for all t
v(t) = AdTϕv

t1
v(1), (10.15)

with v(1) = −∇V
U (ϕv

01)(x). In particular, v is a continuous function of t and v(t) ∈
V (p) for all t .

Corollary 10.7 Under the same conditions on U, if v ∈ X 2
V is a minimizer of

Ẽ(v) = 1

2

∫ 1

0
‖vt‖2V dt +U (ϕv

01)

then, for all t ,
vt = AdTϕv

t0
v0, (10.16)

with v0 ∈ V (p).

Proposition 10.6 is a direct consequence of Theorem 10.5. For the corollary, we need
to use the fact that AdϕAdψ = Adϕ◦ψ , which can be checked by direct computation,
and write

vt = AdTϕv
t1
v1 = AdTϕv

t1
AdTϕv

10
v0 = (Adϕv

10
Adϕv

t1
)T v0 = AdTϕv

t0
v0.

Equations vt = AdTϕv
t0
v0 and v1 = −∇V

U (ϕv
01)(x) together are equivalent to the

Euler–Lagrange equations for Ẽ and will lead to interesting numerical procedures.
Equation (10.16) is a cornerstone of the theory. It describes a general mechanical
property called the conservation of momentum, to which we will return later.

10.4.2 Derivative Using Optimal Control

We can also apply the Pontryagin maximum principle (see AppendixD) to obtain
an alternative expression of the optimality conditions and gradient. Indeed, we can
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repeat the construction made in Sect. 7.2.2 with a slightly different notation, letting
f (ω, v) = v ◦ (id + ω), defined overC p

0 (Ω,Rd) × V .With g(ω, v) = ‖v‖2V , we are
in the framework described in Sect.D.3.1, leading to Theorem D.7, where ω repre-
sents the state and v is the control. Introducing a co-state μ, define the Hamiltonian

Hv(μ,ω) = (μ | v ◦ (id + ω) ) − ‖v‖2V /2.

Letting ξϕ : v �→ v ◦ ϕ from V to C p
0 (Ω,Rd), we obtain the fact that an optimal

solution must satisfy (with ϕ = id + ω), for some μ : [0, 1] → C p
0 (Ω,Rd)∗

⎧
⎪⎨

⎪⎩

∂tϕ(t) = v(t) ◦ ϕ(t)

(∂tμ(t) | h ) = −(μ(t) | dv(t) ◦ ϕ(t) h ), ∀h ∈ C p
0 (Ω,Rd)

Lv(t) = ξ∗
ϕ(t)μ(t)

(10.17)

with ϕ(0) = id and μ(1) = −dU (ϕ(1)). One can check that the second equation is
equivalent to

(μ(t) | h ) = (μ(0)
∣
∣ (dϕ(t))−1h

)
,

which is Corollary 10.7 expressed in terms of the co-state μ. Applying Eq. (D.12),
we obtain

d Ẽ(v)(t) = −ξ∗
ϕ(t)μ(t) + 2Lv(t), (10.18)

where ϕ and μ satisfy the first two equations of (10.17).

10.4.3 An Alternative Form Using the RKHS Structure

The conjugate of the adjoint can be put into a form explicitly involving the repro-
ducing kernel of V . Before detailing this, we introduce a notation that will be used
throughout this chapter. If ρ is a linear form on function spaces, we have been denot-
ing by (ρ | v ) the result of ρ applied to v. In the formulas that will come, we will
need to emphasize the variable on which v depends, and we will use the alternative
notation (ρ | v(x) )x to denote the same quantity. Thus,

ρ(v) = (ρ | v ) = (ρ | v(x) )x .

In particular, when v depends on two variables, the notation (ρ | v(x, y) )x will rep-
resent ρ applied to the function x �→ v(x, y) with y considered as constant.

We still assume that V is continuously embedded in C p+1
0 (Ω,Rd). Then, the

following theorem holds.

Theorem 10.8 Assume that ϕ ∈ Cq+1
0 (Ω,Rd) and ρ ∈ Cr

0(Ω,Rd)∗, with
r = min(p + 1, q). Let v = Kρ and (e1, . . . , ed) be an orthonormal basis of Rd .
Then, for y ∈ Ω , we have
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AdTϕv(y) =
d∑

i=1

(
ρ
∣
∣Adϕ(K (x, y)ei )

)
x
ei , (10.19)

where K is the reproducing kernel of V .

Proof For b ∈ R
d , we have

bTAdTϕv(y) = 〈AdTϕv , K (·, y)b〉
V

= 〈v , Adϕ(K (·, y)b)〉V
= (ρ ∣∣Adϕ(K (x, y)b)

)
x .

Theorem 10.8 is now a consequence of the decomposition

AdTϕv(y) =
d∑

i=1

eTi Ad
T
ϕv(y)ei .

�

Recall that K (·, ·) is a matrix, so that K (·, y)ei is the i th column of K (·, y), which
we can denote by K i . Equation (10.19) states that the i th coordinate of AdTϕv is(
ρ
∣
∣AdϕK i (x, y)

)
x .

Using Proposition 10.6 and Theorem 10.8, we obtain another expression of the
V -gradient of E :

Corollary 10.9 Under the hypotheses of Proposition 10.6, the V -gradient of

Ẽ(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01)

is equal to

∇V Ẽ(v)(y) = v(t, y) +
d∑

i=1

(
ρ(1)

∣
∣ dϕt1(ϕ

v
1t (x))K

i (ϕv
1t (x), y)

)
xei (10.20)

with ρ(1) = ∂̄U (ϕv
01)(x).

10.5 Conservation of Momentum

10.5.1 Interpretation

Equation (10.16) can be interpreted as a momentum conservation equation. The
justification of the termmomentum comes from the analogy of Ekin := (1/2)‖v(t)‖2V
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with the total kinetic energy at time t of a dynamical system. In fluid mechanics, this
energy is usually defined as (introducing a mass density, z)

Ekin = 1

2

∫
z(t, y)|v(t, y)|2dy,

the momentum here being ρ(t) = z(t, y)v(t, y)dy with Ekin = (1/2)(ρ | v ). In our
case, taking ρ(t) = Lv(t), we still have Ekin = (1/2)(ρ | v ), so that ρ(t) is also
interpreted as a momentum.

To interpret (10.16) as a conservation equation, we need to understand how a
change of coordinate system affects the momentum. Indeed, interpret v(t, y) as
the velocity of a particle located at coordinates y, so v = dy/dt . Now assume that
we want to use a new coordinate system, and replace y by x = ϕ(y). In the new
coordinates, the same particle moves with velocity

∂t x = dϕ(y)∂t y = dϕ(y) v(t, y) = (dϕ v(t)) ◦ ϕ−1(x)

so that the translation from the old to the new expression of the velocity is precisely
given by the adjoint operator: v(y) → ṽ(x) = Adϕv(x) if x = ϕ(y). To obtain the
correct transformation of the momentum, it suffices to notice that the energy of the
system must remain the same if we just change the coordinates, so that, if ρ and ρ̃
are the momenta before and after the change of coordinates, we must have

(ρ̃ | ṽ ) = (ρ | v )

which yields Ad∗
ϕρ̃ = ρ or ρ̃ = Ad∗

ϕ−1ρ.
Now, we return to Eq. (10.16). Here, v(t, y) is the velocity at time t of the particle

that was at x = ϕv
t0(y) at time 0. So it is the expression of the velocity in a coordinate

system that evolves with the flow, and Lv(t) is the momentum in the same system.
By the previous argument, the expression of the momentum in the fixed coordi-
nate system, taken at time t = 0, is Ad∗

ϕv
0t
Lv(t). Equation (10.16) simply states that

this expression remains constant over time, i.e., the momentum is conserved when
measured in a fixed coordinate system.

The conservation of momentum equation, described in Corollary 10.7, is a fun-
damental equation in Geometric Mechanics [149, 187], which appears in a wide
variety of contexts. It has been described in abstract form by Arnold [18, 19] in his
analysis of invariant Riemannian metrics on Lie groups. This equation also derives
from an application of the Euler–Poincaré principle, as described in [149, 150, 188].
Combined with a volume-preservation constraint, this equation is equivalent to the
Euler equation for incompressible fluids, in the case when ‖v(t)‖V = ‖v(t)‖2, the
L2 norm. Another type of norm on V (called the H 1

α norm) relates to models of
waves in shallow water, and provides the Camassa–Holm equation [50, 116, 149].
A discussion of (10.16) in the particular case of template matching is provided in
[205], and a parallel with the solitons emerging from the Camassa–Holm equation
is discussed in [151].
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10.5.2 Properties of the Momentum Conservation Equation

Combining Eq. (10.19) and the fact that ∂tϕ
v
0t = v(t,ϕv

0t ), we get, for the optimal v
(letting v0 = Kρ0)

∂tϕ(t, y) =
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1K i (ϕ(t, x),ϕ(t, y))

)
x
ei .

Letting ϕ = id + ω, we consider the equation

∂tω(t, y) =
d∑

i=1

(
ρ0
∣
∣ (Id + dω(t, x))−1K i (x + ω(t, x), y + ω(t, y))

)
xei .

(10.21)

We now consider this equation as an ODE overC p
0 (Ω,Rd) and discuss conditions on

ρ0 ensuring the existence and uniqueness of solutions. We will make the following
assumptions.

(I) V is continuously embedded in C p+1
0 (Ω,Rd) and its kernel, K , is such that all

derivatives ∂k
1∂

k
2K (y, y) are bounded over Ω for k ≤ p + 1.

(II) ρ0 ∈ Cr (Ω,Rd)∗ for some r ≤ p − 1.
(III) ρ0 is compactly supported: there exists a compact subset Q′ ⊂ R

d such that
(ρ0 | f ) = 0 for all f ∈ Cr

0(Ω,Rd) such that f (x) = 0 for all x ∈ Q′.

Assumption (I) is true in particular when Ω = R
d and K is translation-invariant.

Taking Q slightly larger than Q′ in assumption (III), and choosing a C∞ function
ε such that ε = 1 on Q′ and ε = 0 on Qc, we have (ρ0 | f ) = (ρ0 | ε f ) for all
f ∈ Cr

0(Ω,Rd), from which we can deduce that, for some constant C

(ρ0 | f ) ≤ C‖ f ‖r,Q,

where
‖ f ‖r,Q = max

x∈Q max|J |≤r
|∂J f (x)|.

The following lemma provides the required properties for the well-posedness of
(10.21).

Let O = Diff p0 − id, an open subset of C p
0 (Ω,Rd).

Lemma 10.10 Let

V (ω)(y) =
d∑

i=1

(
ρ0
∣
∣ (Id + dω(t, x))−1K i (x + ω(t, x), y + ω(t, y))

)
xei .

(10.22)

Under assumptions (I), (II), (III) above, V is a differentiable mapping from
O into C p

0 (Ω,Rd) and, letting ϕ = id + ω,
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‖dV ‖op(C p
0 (Ω,Rd )) ≤ C(‖dϕ(·)−1‖∞, ‖ϕ‖p,∞) (10.23)

for some continuous function C.

Proof Step 1.We first check that the right-hand side of (10.21) is well defined. Since
we assume that V is embedded in C p+1

0 (Ω,Rd), we know that, for all 0 ≤ r, s,≤
p + 1, ∂r

1∂
s
2K

i is in C0(Ω,Rd) with respect to each of its variables. In particular,
x �→ (Id + dω(t, x))−1K i (x + ω(t, x), y + ω(t, y)) is in C p−1

0 (Ω,Rd) as soon as
ω ∈ C p

0 (Ω,Rd), so that ρ0 can be evaluated on it.
Step 2. We now prove that the right-hand side of (10.21) is in C p

0 (Ω,Rd), which
ensures that (10.21) forms an ODE in this space. Let

vϕ(y) =
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1K i (ϕ(x), y

)
x
ei

so that (10.21) can be written as ∂tω = vid+ω ◦ (id + ω). We want to show that
vϕ ∈ C p

0 (Ω,Rd)when ϕ = id + ω and ω ∈ C p
0 (Ω,Rd). It is obviously sufficient to

prove that each coordinate

v
ϕ
i (y) = (ρ0

∣
∣ dϕ(x)−1K i (ϕ(x), y)

)
x

belongs to C p
0 (Ω,R). We first justify the fact that vϕ

i is p-times differentiable, with

drvϕ
i (y) = (ρ0

∣
∣ dϕ(x)−1∂r

2K
i (ϕ(x), y)

)
x

for r ≤ p. Using a Taylor expansion, we can write (letting h(k) denote the k-tuple
(h, . . . , h))

K i (ϕ(x), y + h) =
p+1∑

k=0

1

k!∂
k
2K

i (ϕ(x), y)h(k)

+ 1

p!
∫ 1

0
(∂

p+1
2 K i (ϕ(x), y + th) − ∂

p+1
2 K i (ϕ(x), y))h(p+1)(1 − t)p dt

so that

v
ϕ
i (y + h) =

p+1∑

k=0

1

k!
(
ρ0

∣
∣
∣ dϕ(x)−1∂k2K

i (ϕ(x), y)h(k)
)

x

+ 1

p!
(
ρ0

∣
∣
∣ dϕ(x)−1

∫ 1

0
(∂

p+1
2 Ki (ϕ(x), y + th) − ∂

p+1
2 Ki (ϕ(x), y))h(p+1)(1 − t)p dt

)

x

and it suffices to prove that the remainder is an o(|h|p+1). This will be true provided
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lim
y′→y

‖∂ p+1
2 K i (·, y′) − ∂

p+1
2 K i (·, y)‖r,∞ = 0.

For k1 ≤ r , we have, using Eq. (8.8),

‖∂k1
1 ∂

p+1
2 K i (·, y′) − ∂k1

1 ∂
p+1
2 K i (·, y)‖r,∞

≤ C max
h:|h|=1

‖∂ p+1
2 K i (·, y′)(h(p+1)) − ∂

p+1
2 K i (·, y)(h(p+1))‖V

= C
∣
∣
∣∂

p+1
1 ∂

p+1
2 K ii (y′, y′) + ∂

p+1
1 ∂

p+1
2 K ii (y, y) − 2∂ p+1

1 ∂
p+1
2 K ii (y, y′)

∣
∣
∣
1/2

for some constant C , where K i j denotes the i, j entry of K . This proves the desired
result, since ∂

p+1
1 ∂

p+1
2 K is continuous. A similar argument can be made to prove

the continuity of y �→ d pv(y).
To prove that vϕ ∈ C p

0 (Ω,Rd), it suffices to show that, for all k ≤ p + 1,
‖∂k

2K
i (·, y)‖r,Q goes to 0 when y goes to infinity. (This is where we use the fact

that ρ0 has compact support.)
To reach a contradiction, assume that there exists sequences (xn), (yn)with xn ∈ Q

and yn tending to infinity or ∂Ω such that |∂k1
1 ∂k2

2 K i (xn, yn)| > ε, for some fixed ε >

0 and k1 ≤ r , k2 ≤ p + 1. Replacing (xn) by a subsequence if needed, we can assume
that xn converges to some x ∈ Q. Note that ∂k1

1 ∂k2
2 K i j (x, yn) = ∂k2

1 ∂k1
2 K ji (yn, x).

Since ∂k1
2 K j (·, x) ∈ V , we can conclude that ∂k2

1 ∂k1
2 K j (yn, x) → 0 for all j , imply-

ing that ∂k1
1 ∂k2

2 K i (x, yn) → 0 for all i , too.
Similarly, ∂k1

1 ∂k2
2 K i j (xn, yn) − ∂k1

1 ∂k2
2 K i j (x, yn) is the i th entry of ∂k2

1 ∂k1
2

K j (yn, xn) − ∂k1
2 ∂k2

1 K j (yn, x) and

sup
y

|∂k2
1 ∂k1

2 K j (y, xn) − ∂k2
1 ∂k1

2 K j (y, x)|

≤ C max
h:|h|=1

‖∂k1
2 K j (·, xn)(h(k1)) − ∂k1

2 K j (·, x)(h(k1))‖V

≤ C
∣
∣
∣∂k1

1 ∂k1
2 K j j (xn, xn) − 2∂k1

1 ∂k1
2 K j j (xn, x) + ∂k1

1 ∂k1
2 K j j (x, x)

∣
∣
∣
1/2

,

which goes to 0. This is our contradiction.
Step 3:We now study the differentiability of the mapping V : ω �→ vid+ω ◦ (id + ω)

from C p
0 (Ω,Rd) into itself. The candidate for dV (ω)η is
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(W (ω)η)(y) = −
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1dη(x)−1dϕ(x)−1K i (ϕ(x),ϕ(y))

)
x
ei

+
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1∂1K

i (ϕ(x),ϕ(y))η(x)
)
xei

+
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1∂2K

i (ϕ(x),ϕ(y))η(y)
)
xei ,

still with ϕ = id + ω. We can decompose V(ω + η)(y) − V(ω)(y) − (W (ω)η)(y)
as the sum of five terms

5∑

k=1

d∑

i=1

(
ρ0
∣
∣ Ai (x, y)

)
x

(described below), which we will study separately. For each term, we need to prove
that, for k1 ≤ r , k2 ≤ p, one has

sup
x,y

|∂k1
1 ∂k2

2 Ai
k(x, y)| = o(‖η‖p,∞).

The important point in the following discussion is that none of the estimates will
require more than p derivatives in ϕ and η, and no more than p + 1 in K .

(i) We let

Ai
1(x, y) = ((dϕ(x) + dη(x))−1 − dϕ(x)−1 + dϕ(x)−1dη(x)dϕ(x)−1)

K i (ϕ(x) + η(x),ϕ(y) + η(y)).

We first note that Inv : M �→ M−1 is infinitely differentiable on GLd(R) with

dqInv(M)(H1, . . . , Hq) = (−1)q
∑

σ∈Sq

M−1Hσ(1)M
−1 · · · M−1Hσ(q)M

−1,

where Sq is the set of permutations of {1, . . . , q}. In particular, ‖dqInv(M)‖ =
O(‖M−1‖q+1). Writing

(dϕ(x) + dη(x))−1 − dϕ(x)−1 + dϕ(x)−1dη(x)dϕ(x)−1 =
∫ 1

0
d2Inv(dϕ(x) + tdη(x))(dη(x), dη(x))(1 − t) dt,

we see that

∥
∥dk1((dϕ(x) + dη(x))−1 − dϕ(x)−1 + dϕ(x)−1dη(x)dϕ(x)−1)

∥
∥∞
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will be less than C(ϕ)‖dϕ−1‖k1+3∞ ‖η‖2k1+1,∞. Using the bound

‖∂k2
2 K i (·, y)‖2p+1,∞ ≤ C∂k2

1 ∂k2
2 K ii (y, y),

applying Lemma 7.3 and the product formula, we see that the desired conclusion
holds for Ai

1.
(ii) Let

Ai
2(x, y) = dϕ(x)−1(K i (ϕ(x) + η(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y) + η(y))

− ∂1K
i (ϕ(x),ϕ(y) + η(y))η(x)).

Writing the right-hand side in the form

dϕ(x)−1
∫ 1

0
∂2
1K

i (ϕ(x) + tη(x),ϕ(y) + η(y))(η(x), η(x))(1 − t) dt,

the same estimate on the derivative of K can be used, based on the fact that k1 + 2 ≤
p + 1.
(iii) The third term is

Ai
3(x, y) = dϕ(x)−1(K i (ϕ(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y))

− ∂2K
i (ϕ(x),ϕ(y))η(y)).

It can be handled similarly, requiring k2 + 1 ≤ p + 1 derivatives of K i in the second
variable.
(iv) These were the three main terms in the decomposition and the remaining two
are just bridging gaps. The first one is

Ai
3(x, y) = dϕ(x)−1dη(x)dϕ(x)−1

(K i (ϕ(x) + η(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y))).

Here, we note that, for some constants C and C̃ ,

sup
x

|∂k1
1 ∂k2

2 K i (x, y′) − ∂k1
1 ∂k2

2 K i (x, y)|2

≤ C
∣
∣
∣∂k2

1 ∂k2
2 (K (y′, y′) − 2K (y′, y) + K (y, y))

∣
∣
∣

≤ C̃(∂k2+1
1 ∂k2+1

2 K (y, y) + ∂k2+1
1 ∂k2+1

2 K (y′, y′))|y − y′|

(with a similar inequality when the roles of x and y are reversed) and these estimates
can be used to check that

∂k1
1 ∂k2

2 (K i (ϕ(x) + η(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y)))
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tends to 0 uniformly in x and y.
(v) The last term is

Ai
5(x, y) = dϕ(x)−1(∂1K

i (ϕ(x),ϕ(y) + η(y)) − ∂1K
i (ϕ(x),ϕ(y)))η(x)

and can be handled similarly.

Step 4. It remains to check that W (ω) maps C p
0 (Ω,Rd) to itself. This can be done

in the same way we proved that V (ω) ∈ C p
0 (Ω,Rd), using Taylor expansions and

the fact that dk(W (ω)η)(y) will involve no more than k derivatives of ω and η, and
k + 1 of K . This shows that W = dV . The bound (10.23) can also be shown using
the same techniques. We leave the final details to the reader. �

Lemma 10.10 implies that (10.21) has unique local solutions (unique solutions
over small enough time intervals). If we can prove that ‖(dϕ)−1‖∞ and ‖ϕ‖p,∞
remains bounded over solutions of the equation, inequality (10.23) will be enough
to ensure that solutions exist over arbitrary times intervals. This fact will be obtained
at the end of the next section.

10.5.3 Time Variation of the Eulerian Momentum

Assume that ϕ satisfies ∂tϕ(t) = v(t) ◦ ϕ(t) with v ∈ X p+1,1(Ω). If ρ0 ∈
C p−1(Ω,Rd)∗, we can apply the chain rule to the equation

(ρ(t) | w) = (ρ0
∣
∣Adϕ(t)−1w

) = (ρ0
∣
∣ dϕ(t)−1w ◦ ϕ(t)

)
,

in which we assume that w ∈ C p
0 (Ω,Rd). We have (with ∂t dϕ = dv ◦ ϕ dϕ)

∂tAdϕ(t)−1w = −dϕ(t)−1dv(t) ◦ ϕ(t) w ◦ ϕ(t) + dϕ(t)−1dw ◦ ϕ(t) v(t) ◦ ϕ(t)

= −Adϕ(t)−1(dv(t) w − dw v(t)).

The term in the right-hand side involves the adjoint representation of v(t), as
expressed in the following definition.

Definition 10.11 If v is a differentiable vector field on Ω , we denote by adv the
mapping that transform a differentiable vector field w into

advw = dv w − dw v. (10.24)

Observe that dv w − dw v = −[v,w], where the latter is the Lie bracket between
right-invariant vector fields over the group of diffeomorphisms. Note that adv con-
tinuously maps C p

0 (Ω,Rd) to C p−1
0 (Ω,Rd). With this notation, we therefore have,

for w ∈ C p
0 (Ω,Rd):

∂tAdϕ(t)−1w = −Adϕ(t)−1adv(t)w
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so that
∂t (ρ(t) | w) = −(ρ(t)

∣
∣ adv(t)w

)
.

This yields the equation, called EPDiff, in which we let ρ̃(t) denote the restriction
of ρ(t) to C p

0 (Ω,Rd),
∂t ρ̃(t) + ad∗

v(t)ρ(t) = 0. (10.25)

Equation (10.25) can be used to prove the following proposition.

Proposition 10.12 Let ϕ(t) = id + ω(t), where ω is a solution of (10.21). Let v0 =
Kρ0 and v(t) = AdTϕ(t)−1v0. Then ‖v(t)‖V is independent of time.

Proof Indeed, we have, for ε > 0,

1

ε
(‖v(t + ε)‖2 − ‖v(t)‖2V ) = 2

ε
(ρ(t + ε) − ρ(t) | v(t) ) + 1

ε
‖v(t + ε). − v(t)‖2V

Since v(t) ∈ V ⊂ C p
0 (Ω,Rd), (10.25) implies that the first term on the right-hand

side converges to
−2
(
ρ(t)

∣
∣ adv(t)v(t)

) = 0.

For the second term, we have

‖v(t + ε) − v(t)‖V = sup
‖w‖V ≤1

(ρ(t + ε) − ρ(t) | w)

= sup
‖w‖V ≤1

∫ ε

0

(
ρ(t + s)

∣
∣ adv(t+s)w

)
ds,

which tends to 0 with ε. �

We can now prove that (10.21) has a unique solution over arbitrary time intervals.

Theorem 10.13 Under the hypotheses of Lemma 10.10, Eq. (10.21) has solutions
over all times, uniquely specified by its initial conditions.

Proof As already mentioned, Lemma 10.10 implies that solutions exist over small
time intervals. Inequality (10.23) implies that these solutions can be extended as
long as ‖dϕ(t)−1‖∞ and ‖ϕ(t)‖p,∞ remain finite. However, both these quantities
are controlled by

∫ t
0 ‖v(t)‖V dt . For the latter, this is a consequence of (C.6). For

dϕ(t)−1, we can note that

∂t (dϕ(t)−1) = −dϕ(t)−1dv(t) ◦ ϕ(t)

and use Gronwall’s lemma to ensure that

‖dϕ(t)−1‖∞ ≤ exp

(

C
∫ 1

0
‖v(s)‖V ds

)

for some constant C . �
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10.5.4 Explicit Expression

The assumption that ρ0 ∈ C p−1
0 (Ω,Rd)∗ “essentially” expresses the fact that the

evaluation of (ρ0 | w)will involve no more than p − 1 derivatives ofw. This implies
that the evaluation of the right-hand side of (10.21)will involve derivatives up to order
p in ϕ = id + ω. In numerical implementations, it is often preferable to track the
evolution of these derivatives over time, rather than approximate them using, e.g.,
finite differences. It often happens, for example, that the evaluation ofρ0 only requires
the evaluation of ϕ and its derivatives over a submanifold of lower dimension, and
tracking their values on a dense grid becomes counter-productive.

The evolution of the derivatives of ϕ can easily be computed by differentiating
(10.21) with respect to the y variable. This is summarized in the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ(t, y) =
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1K i (ϕ(t, x),ϕ(t, y))

)
xei

∂t dϕ(t, y)a =
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1∂2K

i (ϕ(t, x),ϕ(t, y))(dϕ(t, y)a)
)
xei

...

∂t d
pϕ(t, y)(a1, . . . , ap)

=
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1∂

p
2 K

i (ϕ(t, x),ϕ(t, y))(a1, . . . , ap)
)
xei .

(10.26)

It should be clear from this system that, if the computation of (ρ0 | w) only
requires the evaluation of w and its derivatives on some subset of Rd , then ϕ and its
derivatives only need to be tracked for y belonging to the same subset.

10.5.5 The Hamiltonian Form of EPDiff

We now provide an alternative form of (10.26), using the optimal control formulation
discussed in Sect. 10.4.2, in which we introduced the co-state

(μ(t) | w) = (ρ0
∣
∣ dϕ(t)−1w

) = (ρ(t)
∣
∣w ◦ ϕ(t)−1

)
. (10.27)

LetM(t) = (dϕ(t))−1 so that∂t M = −M (∂t dϕ) M . The second equationof (10.26)
then becomes
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∂t M(t, y)a = −
d∑

i=1

(
ρ0
∣
∣M(t, x)∂2K

i (ϕ(t, x),ϕ(t, y))a
)
x
M(t, y)ei .

This implies that, for any w ∈ V

(
∂tμ(t)

∣
∣
∣w
)

= −
(
ρ0

∣
∣
∣ ∂t M w

)

=
d∑

i=1

(
ρ0
∣
∣ (ρ0

∣
∣M(t, x)∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
x M(t, y)ei

)
y

= −
d∑

i=1

(
μ(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y
.

We therefore have the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tϕ(t, y) =
d∑

i=1

(
μ(t)

∣
∣ K i (ϕ(t, x),ϕ(t, y))

)
xei

(
∂tμ(t)

∣
∣
∣w
)

= −
d∑

i=1

(
μ(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y
.

(10.28)

Note that this system is an alternative expression of the first two equations of
(10.17). When (ρ0 | w) does not depend on the derivatives of w (more precisely,
ρ0 ∈ C0

0 (Ω,Rd)∗), this provides an ordinary differential equation in the variables
(ϕ,μ) (of the form (d/dt)(ϕ,μ) = F(ϕ,μ)). The initial conditions are ϕ0 = id and
μ0 = ρ0.

10.5.6 The Case of Measure Momenta

An interesting feature of (10.28) is that it can easily be reduced to a smaller number
of dimensions when ρ0 takes specific forms. As a typical example, we perform the
computation in the case

ρ0 =
N∑

k=1

zk(0, ·)γk, (10.29)

where γk is an arbitrary measure on Ω and zk(0) a vector field. (We recall the
notation (zγ | w) = ∫ z(x)Tw(x) γ(dx).) Most of the Eulerian differentials that we
have computed in Chap.9 have been reduced to this form. From the definition of
μ(t), we have μ(t) =∑N

k=1 zk(t, .)γk (where zk(t, x) = dϕ0t (x)−T zk(0, x)). The
first equation in (10.28) is
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∂tϕ(t, y) =
d∑

i=1

N∑

k=1

∫

Ω

zk(t, x)
T K i (ϕ(t, x),ϕ(t, y))eidγk(x).

For a matrix A with i th column vector Ai , and a vector z, zT Ai is the i th coordinate
of AT z. Applying this to the previous equation yields

∂tϕ(t, y) =
N∑

k=1

∫

Ω

K (ϕ(t, y),ϕ(t, x))zk(t, x)dγk(x), (10.30)

where we have used the fact that K (ϕ(t, x),ϕ(t, y))T = K (ϕ(t, y),ϕ(t, x)). The
second equation in (10.28) becomes

(
∂tμ(t)

∣
∣
∣w
)

= −
d∑

i=1

(
μ(t)

∣
∣
∣
(
μ(t)

∣
∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)

x
ei
)

y

= −
N∑

k,l=1

∫

Ω

∫

Ω

d∑

i=1

zTl (t, x)∂2K
i (ϕ(t, x), ϕ(t, y))w(y) zk(t, y)

T ei dγl (x)dγk(y)

= −
N∑

k=1

∫

Ω

⎛

⎝
∫

Ω

N∑

l=1

d∑

i=1

zik(t, y)zl (t, x)
T ∂2K

i (ϕ(t, x), ϕ(t, y))dγl (x)

⎞

⎠w(y)dγk(y),

where zik is the i th coordinate of zk . From the expression of μ(t), we also have

∂tμ =
N∑

k=1

(∂t zk)γk .

Letting K i j denote the entries of K , we can identify ∂t zk as

∂t zk(t, y) =

−
∫

Ω

N∑

l=1

d∑

i, j=1

zik(t, y)z
j
l (t, x)∇2K

i j (ϕ(t, x),ϕ(t, y))dγl(x)

= −
∫

Ω

N∑

l=1

d∑

i, j=1

zil (t, y)z
j
k (t, x)∇1K

i j (ϕ(t, y),ϕ(t, x))dγl(x). (10.31)

This equation is somewhat simpler when K is a scalar kernel, in which case
K i j (x, y) = Γ (x, y) if i = j and 0 otherwise, where Γ takes real values. We get, in
this case
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∂t zk(t, y) = −
N∑

l=1

∫

Ω

∇2Γ (ϕ(t, x),ϕ(t, y))zk(t, y)
T zl(t, x)dγl(x)

= −
N∑

l=1

∫

Ω

∇1Γ (ϕ(t, y),ϕ(t, x))zk(t, y)
T zl(t, x)dγl(x).

In all cases, we see that the evolution of μ can be completely described using the
evolution of z1, . . . , zN . In the particular case when the zk’s are constant vectors
(which corresponds to most of the point-matching problems), this provides a finite-
dimensional system on the μ part.

10.6 Optimization Strategies for Flow-Based Matching

We have formulated flow-based matching as an optimization problem over time-
dependent vector fields. We discuss here other possible optimization strategies that
take advantage of the different formulations that we obtained for the EPDiff equation.
They will correspond to taking different control variables with respect to which the
minimization is performed, and we will in each case provide the expression of the
gradient of E with respect to a suitablemetric.Optimization can then be performed by
gradient descent, conjugate gradient or higher-order optimization algorithms when
feasible (see AppendixD or [221]).

After discussing the general formulation of each of these strategies, we will pro-
vide the specific expression of the gradients for point-matching problems, in the
following form: minimize

E(ϕ) = 1

2
dV (id,ϕ)2 + F(ϕ(x1), . . . ,ϕ(xN )) (10.32)

with respect to ϕ, where x1, . . . , xN are fixed points in Ω . These problems are
important because, in addition to the labeled and unlabeled point matching problems
we have discussed, other problems, such as curve and surfacematching, end up being
discretized in this form (we will discuss algorithms for image matching in the next
section). The following discussion describes (and often extends) several algorithms
that have been proposed in the literature, in [32, 159, 203, 204, 289, 309] among
other references.

10.6.1 Gradient Descent in X 2
V

The original problem having been expressed in this form, Corollary 10.9 directly
provides the expression of the gradient of E considered as a function defined over
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X 2
V , with respect to the metric in this space. Using t �→ v(t, ·) as an optimization

variable has some disadvantages, however. The most obvious is that it results in
solving a huge dimensional problem (over a d + 1-dimensional variable) even if the
original objects are, say, collections of N landmarks in R

d .
When the matching functional U is only a function of the deformation of a fixed

object, i.e.,
U (ϕ) = F(ϕ · I ),

then some simplifications can be made. To go further, we will need to compute
derivatives in the object space, and henceforth assume that I is an open subset of
a Banach space I . We assume that Diff p+1

0 acts on I and that the mapping ΦI :
ϕ �→ ϕ · I is differentiable on Diff p+1

0 for all I ∈ I, so that an infinitesimal action
is defined by (see Sect.B.5.3)

h · I = dΦI (id) h ∈ I

for h ∈ C p+1
0 (Ω,Rd). We assume as usual that V is continuously embedded in

C p+1
0 (Ω,Rd) so that v · I is well defined for v ∈ V and dΦI (id) restricted to V is

also bounded with respect to ‖ · ‖V .
Let v ∈ X 2

V . If ∂tϕ = v ◦ ϕ, let J (t) = ϕ(t) · I be the deforming object. Then
∂t J (t) = v(t) · J (t). With this in mind, we can write, when Ẽ is given by (10.14)

min
v(t,·)

Ẽ(v) = min
J (t,·),J (0)=I

(

min
v: ∂t J=v(t)·J (t)

Ẽ(v)

)

.

The iterated minimization first minimizes with respect to v for fixed object trajecto-
ries, then optimizes over the object trajectories.

When J (t, ·) is given, the inner minimization is

min
v: ∂t J=v(t)·J (t)

Ẽ(v) = min
v: ∂t J=v(t)·J (t)

(
1

2

∫ 1

0
‖v(t)‖2V dt + F(J (1))

)

= 1

2

∫ 1

0

(

inf
w: ∂t J=w·J (t)

‖w‖2V
)

dt + F(J (1)) (10.33)

since the constraints apply separately to each v(t). This expression only depends on
the trajectory J (t). One can therefore try to compute its gradient with respect to this
object trajectory and run a minimization algorithm accordingly. One difficulty with
this approach is that, given an object trajectory J (t), there may exist no w ∈ V such
that ∂t J = w · J (t) (which results in the minimum in the integral being infinite), so
that the possibility of expressing the trajectory as evolving according to a flow is a
constraint of the problem. This may be intractable in the general case, but always
satisfied for point-matching problems as long as the points remain distinct. We will
discuss this in the next section.
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However, what (10.33) tells us is that, if a time-dependent vector field ṽ(t, ·) is
given, one always reduces the value of Ẽ(ṽ) by replacing ṽ(t, ·) by

v(t, ·) = argmin
w:w·J (t)=ṽ·J (t)

‖w‖2V (10.34)

with J (t) = ϕṽ
0t · I . Introduce the space

NJ = Null(dΦJ (id)) = {u ∈ V : u · J = 0}

and its perpendicular VJ = N⊥
J = {u ∈ V : 〈u , ũ

〉
V

= 0 for all ũ ∈ NJ
}
. Then we

have the following lemma.

Lemma 10.14 Let I ∈ I and ṽ ∈ V . Then, the minimizer of ‖w‖2V over all V ∈ V
such that w · J = ṽ · J is given by πVJ (ṽ), the orthogonal projection of ṽ on VJ .

Proof Let v = πVJ (ṽ). We want to prove that v is a minimizer of ‖ · ‖2V over the set
of all w ∈ V such that w = ṽ + u with u ∈ NJ . For such a w, we have

πVJ (w) = v + πVJ (u) = v

and ‖w‖2V ≥ ‖πVJ (w)‖2V . Moreover, from the characteristic properties of an orthog-
onal projection, we have ṽ − v ∈ V⊥

J = NJ , the inequality holding because NJ is
closed (because it is the null set of a bounded linear map). �

The numerical computation of this orthogonal projection is not always easy, but
when it is, it generally has a formwhich ismore specific than ageneric time-dependent
vector field, and provides an improved gradient descent algorithm in X 2

V as follows.
Assume that, at time τ in the algorithm, the current vector field vτ in theminimization
of E is such that vτ (t) ∈ VJ τ (t) at all times t . Then define a vector field at the next
step τ + δτ by

ṽτ+δτ (t, y) = vτ (t, y) − δτ

⎛

⎝v(t, y) +
d∑

i=1

(
ρ(1)

∣
∣
∣ dϕt1(ϕ

v
1t (x))K

i (ϕv
1t (x), y)

)

x
ei

⎞

⎠ ,

which corresponds to one step of gradient descent, as specified in (10.20), then
compute J (t) = ϕṽτ+δτ

0t · I and define

vτ+δτ (t) = πVJ (t) (ṽ
τ+δτ )

at all times t .

Application to Point Matching

Consider the point-matching energy. In this case, letting

U (ϕ) = F(ϕ(x1), . . . ,ϕ(xN )),
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we have

ρ(1) = ∂̄U (ϕv
01) =

N∑

i=1

∂i F(ϕv
01(x))δϕv

01(xk ).

We therefore have, by Corollary 10.9, with Ũ (x) = U (ϕv
01),

∇V Ũ (v)(t, y) =
d∑

i=1

(
ρ(1)

∣
∣ dϕv

t1(ϕ
v
1t (x))K (ϕv

1t (x), y)ei
)
xei

=
d∑

i=1

N∑

q=1

(
∂q F(ϕv

01(x))
T dϕv

t1(ϕ
v
0t (xq))K (ϕv

0t (xq), y)ei
)
ei

=
N∑

q=1

K (y,ϕv
0t (xq))dϕv

t1(ϕ
v
0t (xq))

T∂q F(ϕv
01(xq)),

so that

∇V Ẽ(v)(t, y) = v(t, y) +
N∑

q=1

K (y,ϕv
0t (xq))dϕv

t1(ϕ
v
0t (xq))

T∂q F(ϕv
01(xq)).

(10.35)
So, a basic gradient descent algorithm in X 2

V would implement the evolution
(letting τ denote the algorithm time)

∂τv
τ (t, y) = −γ

⎛

⎝vτ (t, y) +
N∑

q=1

K (y,ϕvτ

0t (xq))dϕvτ

t1 (ϕ
vτ

0t (xq))
T∂q F(ϕvτ

01(xq))

⎞

⎠ .

(10.36)

The two-step algorithm defined in the previous section is especially efficient with
point sets. When x = (x1, . . . , xN ), v · x = (v(x1), . . . , v(xN ), the projection on

Vx = {v : v · x = 0}⊥ = {v : v(x1) = · · · = v(xN ) = 0}⊥

is given by spline interpolation with the kernel, as described in Theorem 8.8, i.e.,

Vx =
{

v =
N∑

k=1

K (., xk)ak, a1, . . . , aN ∈ R
d

}

. (10.37)

More precisely, define xv
i (t) = ϕv

0t (xi ). We assume that, at time τ , we have a
time-dependent vector field vτ which takes the form

vτ (t, y) =
N∑

i=1

K (y, xvτ

i (t))ατ
i (t). (10.38)
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Using (10.36), we define

ṽ(t, y) = vτ − δτ
(
vτ (t, y) +

N∑

q=1

K (y,ϕvτ

0t (xq))dϕvτ

t1 (ϕ
vτ

0t (xq))
T∂q F(ϕvτ

01(xq))
)
.

The values of ṽ(t, ·) are in fact only needed at the points x ṽ
i (t) = ϕṽ

0t (xi ). These
points are obtained by solving the differential equation

∂t x = vτ (t, x) − δτ

(

vτ (t, x) +
N∑

i=1

K (xvτ

i (t), x)dϕvτ

t1 (x
vτ

i (t))T Fi (x
vτ

(1))

)

(10.39)

with x(0) = xi . Solving this equation provides both x ṽ
i (t) and ṽ(x ṽ

i (t)) for t ∈ [0, 1].
Once this is done, define vτ+δτ (t, ·) to be the solution of the approximation prob-

lem infw ‖w‖V with w(x ṽ
i (t)) = v(x ṽ

i (t)), which will therefore take the form

vτ+δτ (t, y) =
N∑

i=1

K (y, xvτ+δτ

i (t))ατ+δτ
i (t).

Solving (10.39) requires evaluating the expression of vτ , which can be done
exactly using (10.38). It also requires computing the expression of dϕvτ

t1 (x
vτ

i (t)),
which can be obtained from the expression

∂t dϕv
t1 ◦ ϕ1t = ∂t (dϕ1t )

−1 = −(dϕ1t )
−1(∂t (dϕ1t ))(dϕ1t )

−1,

which yields:
∂t dϕv

t1(x
v
i (t)) = −dϕv

t1(x
v
i (t))dv(t, xv

i (t)).

Thus, dϕv
t1(x

v
i (t)) is a solution of ∂t M = −Mdv(xv

i (t)) with initial condition
M = Id. The matrix dv(t, xv

i (t)) can be computed explicitly as a function of the
point trajectories xv

j (t), j = 1, . . . , N , using the explicit expression (10.38). This
algorithm was introduced in [31].

10.6.2 Gradient in the Hamiltonian Form

Aswe have seen, one can use the optimal control formalismwith the Pontryagin prin-
ciple to compute the gradient of Ẽ in v. Given v ∈ X 2

V , this gradient can be computed
by solving (10.28) with boundary conditions ϕ(0) = id and μ(1) = −dU (ϕ(1))
(which can be achieved by solving the first equation in (10.28) from t = 0 to t = 1,
then the second one backward in time, from t = 1 to t = 0) and, using (10.18), letting

∇ Ẽ(v)(t) = K(d Ẽ(v)(t)) = −Kξ∗
ϕ(t)μ(t) + v(t).
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This equation (or the maximum principle) implies that the optimal v must be such
that v(t) = Kξ∗

ϕ(t)μ(t) for some μ ∈ C p−1
0 (Ω,Rd)∗ and there is therefore no loss of

generality in restricting the optimization problem to v’s taking this form. With this
constraint, we have

‖v(t)‖2V = 〈Kξ∗
ϕ(t)μ(t) , Kξ∗

ϕ(t)μ(t)
〉
V

= (μ(t)
∣
∣ ξϕ(t)Kξ∗

ϕ(t)μ(t)
)
.

Let Kϕ = ξϕKξ∗
ϕ so that ‖v(t)‖2V = (μ(t)

∣
∣Kϕ(t)μ(t)

)
. One has

aT (Kϕμ)(y) = aT (Kξ∗
ϕμ)(ϕ(y))

= 〈K (·,ϕ(y))a , Kξ∗
ϕμ
〉
V

= (μ | K (ϕ(x),ϕ(y))a )x

so that

(Kϕμ)(y) =
d∑

i=1

(μ | K (ϕ(x),ϕ(y))ei )xei .

With this notation, the state equation ∂tϕ = v ◦ ϕ becomes ∂tϕ = Kϕμ and the
original optimal control problem is reformulated as minimizing

E(ϕ,μ) = 1

2

∫ 1

0

(
μ(t)

∣
∣Kϕ(t)μ(t)

)
dt +U (ϕ01)

subject to ∂tϕ = Kϕμ.
Expressing the problem in this form slightly changes the expression of the differ-

ential. The computation of the gradient (and its justification) based on a co-state α
and the Hamiltonian

Hμ(α,ϕ) = (α ∣∣Kϕμ
)− 1

2

(
μ
∣
∣Kϕμ

)

are obtained using the same methods as in Sect. 10.4.2, so we skip the details. Let
ϕμ be the solution of ∂tϕ = Kϕμ with ϕ(0) = id. Then, with Ẽ(μ) = E(ϕμ,μ), we
have

d Ẽ(μ) = Kϕα − Kϕμ,

where ϕ and α are given by the system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ = Kϕμ

(
∂tα(t)

∣
∣
∣w
)

= −
d∑

i=1

(
α(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
x
ei
)
y

−
d∑

i=1

(
μ(t)

∣
∣ (α(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y

+ 2
d∑

i=1

(
μ(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y

(10.40)

with ϕ(0) = id and α(1) = −dU (ϕ(1)). Unsurprisingly, this system boils down to
(10.28) when d Ẽ(μ) = 0, i.e., when α = μ.

The gradient of Ẽ expressed with respect to the inner product

〈
μ , μ̃

〉
ϕ

= (μ ∣∣ Kϕμ
)
.

(this choice will be justified in Sect. 11.4 as the dual Riemannian metric on the
diffeomorphism group) is

∇ Ẽ(μ) = α − μ,

a remarkably simple expression.
Consider now the case in whichU (ϕ) = F(ϕ · I ) where I is a fixed object. With

the notation and assumptions made in Sect. 10.6.1, we found in Lemma 10.14 that
there was no loss of generality in restricting the minimization to v(t) ∈ VJ (t) at all
times. This often entails additional constraints on the momentum ρ(t) = Lv(t), or
on μ(t) = ξ∗

ϕ(t)−1ρ(t), that can be leveraged to reduce the dimension of the control
variable. For example, we have seen that for point sets (in which we let J = x) Vx

was given by (10.37), so that ρ(t) must take the form

ρ(t) =
N∑

k=1

zk(t)δxk (t)

for some z1(t), . . . , zN (t) ∈ R
d , from which we can deduce (using xk(t) = ϕ(t,

xk(0))) that μ(t) must take the form

μ(t) =
N∑

k=1

zk(t)δxk (0).

One can then use z1, . . . , zN as a new control, as described below.
Another interesting special case iswhenμ(t) can be expressed as a vectormeasure,

because, as discussed in Sect. 10.5.6, one can then assume that
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μ(t) =
N∑

k=1

zk(t, ·)γk,

where γ1, . . . , γN are fixed measures. One can then use the vector fields z1, . . . , zN
to parametrize the problem. This leads to a simplification when the measures have a
sparse support. They are, for example, Dirac measures for point matching. We now
review this case in more detail.

Application to Point Matching

When U (ϕ) = F(ϕ(x1), . . . ,ϕ(xN )), we have

(dU (ϕ) | h ) =
N∑

k=1

∂k F(ϕ(x1), . . . ,ϕ(xN ))T h(xk)

so that

μ(1) = −
N∑

k=1

∂k F(ϕ(x1), . . . ,ϕ(xN ))δxk

is a vector measure. We can therefore look for a solution in the form

μ(t) =
N∑

k=1

zk(t)δxk

at all times, for some coefficients z1, . . . , zN .
In order to obtain α in (10.40) given a current μ, it suffices to solve the first

equation only for the values of yk(t) = ϕ(t, xk), k = 1, . . . , N , which requires us to
solve the system

∂t yk =
N∑

l=1

K (yk, yl)ξl .

One then sets

α(1) = −
N∑

k=1

∂k F(y1(1), . . . , yN (1))δxk

and solves the second equation backward in time, knowing that the solution will take
the form

α(t) =
N∑

k=1

ηk(t)δxk

with ηk(1) = −∂k F(y1(1), . . . , yn(1)) and
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∂tηk =
N∑

l=1

d∑

i, j=1

ηi
l z

j
k∇1K

i j (yk, yl) +
N∑

l=1

d∑

i, j=1

zilη
j
k∇1K

i j (yk, yl)

− 2
N∑

l=1

d∑

i, j=1

zil z
j
k∇1K

i j (yk, yl).

Given this, we have

∇ Ẽ(μ) =
N∑

k=1

(ηk − zk)δxk .

10.6.3 Gradient in the Initial Momentum

We now use the fact that Eq. (10.16) implies that the optimal v(t) is uniquely con-
strained by its value at t = 0 for formulating the variations of the objective function
in terms of these initial conditions. We therefore optimize with respect to v0, or
equivalently with respect to μ0 = ρ0. This requires finding ρ0 such that

1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕ(1))

is minimal under the constraints ∂tϕ(t) = v(t) ◦ ϕ(t), with

v(t) =
d∑

i=1

(
ρ0
∣
∣ dϕ(t)K (i)(x, y)

)
x
ei .

Proposition 10.12 helps us to simplify this expression, since it implies that∫ 1
0 ‖v(t)‖2dt = (ρ0 |Kρ0 ) and the minimization problem therefore is to find ρ0
such that

E(ρ0) = 1

2
(ρ0 |Kρ0 ) +U (ϕ(1))

isminimal,where (ϕ,μ) is a solution of system (10.28)with initial conditionsϕ(0) =
id and μ(0) = ρ0. Writing (10.28) as

∂t

(
ϕ
μ

)

=
(
V1(ϕ,μ)

V2(ϕ,μ)

)

= V (ϕ,μ)

and applying Proposition D.12, we have

dE(ρ0) = Kρ0 − pμ(0),
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where the pair
(

pϕ(t)
pμ(t)

)
satisfies pϕ(1) = −dU (ϕ(1)), pμ(0) = 0 and

{
∂t pϕ = −∂1V

∗
1 pϕ − ∂1V

∗
2 pμ,

∂t pμ = −∂2V
∗
1 pϕ − ∂2V

∗
2 pμ.

(10.41)

The gradient of E with respect to the metric on V ∗ is then given by ∇E(ρ0) =
ρ0 − K

−1 pμ.
The practical application of these formulas requires us tomake explicit the expres-

sions of ∂iV
∗
j for i, j = 1, 2. Returning to (10.28), we have

(
∂1V

∗
1 pϕ

∣
∣ h
) =

d∑

i=1

(
pϕ

∣
∣ (μ

∣
∣ ∂1K

i (ϕ(x),ϕ(y))h(x)
)
xei
)
y

+
d∑

i=1

(
pϕ

∣
∣ (μ

∣
∣ ∂2K

i (ϕ(x),ϕ(y))h(y)
)
xei
)
y
,

(
∂2V

∗
1 pϕ

∣
∣ η
) =

d∑

i=1

(
pϕ

∣
∣
(
η
∣
∣ K i (ϕ(x),ϕ(y))

)
xei
)
y
,

(
∂1V

∗
2 pμ

∣
∣ h
) = −

d∑

i=1

(
μ
∣
∣ (μ

∣
∣ ∂1∂2K

i (ϕ(x),ϕ(y))(h(x), pμ(y))
)
xei
)
y

−
d∑

i=1

(
μ
∣
∣ (μ

∣
∣ ∂2

2K
i (ϕ(x),ϕ(y))(h(y), pμ(y))

)
xei
)
y
, and

(
∂2V

∗
2 pμ

∣
∣ η
) = −

d∑

i=1

(
η
∣
∣ (μ

∣
∣ ∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
xei
)
y

−
d∑

i=1

(
μ
∣
∣ (η

∣
∣ ∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
xei
)
y
.

Forming explicit expressions of ∂iV
∗
j requires isolating h or η from the right-hand

sides. To do this, we will need to change the order in which linear forms are applied
to the x and y coordinates. This issue is addressed in the following lemma.

Lemma 10.15 Assume that μ ∈ Cr (Ω,Rd)∗ and ν ∈ Cr ′
(Ω,Rd)∗. Let g : Ω ×

Ω → R be a function such that ∂k
1∂

k ′
2 g ∈ C0(Ω × Ω,R) for all k ≤ r and k ′ ≤ r .

Then, for all a, b ∈ R
d , (μ | g(x, ·)a )x ∈ Cr ′

(Ω,Rd) and (ν | g(·, y)b )y ∈
Cr (Ω,R), with

(
μ
∣
∣ (ν | g(x, y)b )ya

)
x

= (ν ∣∣ (μ | g(x, y)a )xb
)
y . (10.42)
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Proof Let f (y) = (μ | g(x, y)a )x . Using Taylor’s formula, we can write

g(x, y + h) =
r ′
∑

k=0

1

k!∂
k
2g(x, y)h(k)+

1

(r ′ − 1)!
∫ 1

0
(∂r ′

2 g(x, y + th) − ∂r ′
2 g(x, y))h(r ′

)(1 − t)r
′−1 dt

so that

f (y + h) =
r ′
∑

k=0

1

k!
(
μ
∣
∣ ∂k

2g(x, y)h(k)a
)

+ 1

(r ′ − 1)!
(
μ
∣
∣
∣

∫ 1

0
(∂r ′

2 g(x, y + th) − ∂r ′
2 g(x, y))h(r ′))(1 − t)r

′−1a dt
)
.

The last term (call it R) is such that

|R| ≤ ‖μ‖r,∞,∗|h|r ′ |a|
r ′! max

t∈[0,1] ‖∂
r ′
2 g(·, y + th) − ∂r ′

2 g(·, y)‖r,∞.

The uniform continuity of ∂k
1∂

r ′
2 g for k ≤ r implies that R = o(|h|r ′

) so that f ∈
Cr ′

(Ω,R). Similarly, letting f ′(x) = (μ | g(x, y)b )y , one has f ′ ∈ Cr (Ω,R).
The computation also shows that, for some constant C ,

max(
(
μ
∣
∣ (ν | g(x, y)b )ya

)
x
,
(
ν
∣
∣ (μ | g(x, y)a )xb

)
y)

≤ C‖μ‖r,∞,∗‖ν‖r ′,∞,∗‖g‖r,r ′,∞

with
‖g‖r,r ′,∞ = max

k≤r,k ′≤r ′ ‖∂k
1∂

k ′
2 g‖∞,

so that both sides of (10.42) are continuous in gwith respect to this norm.To conclude,
it suffices to notice that (10.42) is true when g takes the form

g(x, y) =
n∑

k=1

ck fk(x) f
′
k(y)

and that these functions form a dense set for ‖g‖r,r ′,∞, so that the identity extends
by continuity. �

Let us use this lemma to identify the first term in
(
∂1V

∗
1 pϕ

∣
∣ h
)
as a linear form

acting on h. Write, letting ∂i,k denote the derivative with respect to the kth coordinate
of the i th variable,
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d∑

i=1

(
pϕ

∣
∣
(
μ
∣
∣ ∂1K

i (ϕ(x),ϕ(y))h(x)
)
x
ei
)
y

=
d∑

i, j,k=1

(
pϕ

∣
∣ (μ

∣
∣ ∂1,k K

i j (ϕ(x),ϕ(y))hk(x)e j
)
xei
)
y

=
d∑

i, j,k=1

(
μ
∣
∣
∣
(
pϕ

∣
∣ ∂1,k K

i j (ϕ(x),ϕ(y))hk(x)ei
)
ye j
)

x

=
d∑

i, j,k=1

(
μ
∣
∣
∣
(
pϕ

∣
∣ ∂2,k K

ji (ϕ(y),ϕ(x))ei
)
yh

k(x)e j
)

x

=
d∑

j,k=1

(
μ
∣
∣
∣
(
pϕ

∣
∣ ∂2,k K

j (ϕ(y),ϕ(x))
)
y
hk(x)e j

)

x

= (μ |U1h ),

where U1(x) is the matrix with coefficients

U j,q
1 (x) = (pϕ

∣
∣ ∂2,q K

j (ϕ(y),ϕ(x))
)
y .

Write
(
U T

1 μ
∣
∣ h
) = (μ |U1h ), a notation generalizing the one introduced for vector

measures. After a similar computation for the second term of
(
∂1V

∗
1 pϕ

∣
∣ h
)
(which

does not require Lemma 10.15), we get

∂1V
∗
1 pϕ = U T

1 μ + U T
2 pϕ

with
U j,q

2 (x) = (μ ∣∣ ∂2,q K
j (ϕ(y),ϕ(x))

)
y .

Consider now ∂2V
∗
1 pϕ, writing

(
∂2V

∗
1 pϕ

∣
∣ η
) =

d∑

i, j=1

(
η
∣
∣
∣
(
pϕ

∣
∣ K i j (ϕ(x),ϕ(y))ei

)
y
e j
)

x

=
d∑

j=1

(
η
∣
∣
∣
(
pϕ

∣
∣ K j (ϕ(y),ϕ(x))

)
ye j
)

x
,

so that

∂2V
∗
1 pϕ(x) =

d∑

j=1

(
pϕ

∣
∣ K j (ϕ(y),ϕ(x))

)
ye j .

With similar computations for V2, and skipping the details, we find
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∂1V
∗
2 pμ = −U T

3 μ − U T
4 μ

where

U jq
3 (x) = (μ ∣∣ ∂2,q(∂1K

j (ϕ(y),ϕ(x))pμ(y))
)
y, and

U jq
4 (x) = (μ ∣∣ ∂2,q(∂2K

j (ϕ(y),ϕ(x))pμ(x))
)
y .

Finally,

∂2V
∗
2 pμ(x) = −

d∑

i=1

(
μ
∣
∣ ∂2K

i (ϕ(y),ϕ(x))pμ(x)
)
yei

−
d∑

i=1

(
μ
∣
∣ ∂1K

i (ϕ(y),ϕ(x))pμ(y)
)
yei .

Let us take the special case of vector measures, assuming that μ(t) =∑N
k=1 zk(t, ·)γk . We will look for pϕ in the form

pϕ(t) =
N∑

k=1

αk(t, ·)γk,

pμ being a function defined over the support of μ.
With these assumptions, we have

• ∂1V
∗
1 pϕ =

N∑

k=1

ζ1,1k γk with

ζ1,1k (x) =
N∑

l=1

d∑

i, j=1

(
γl

∣
∣
∣αi

l (y)z
j
k (x)∇1K

i j (ϕ(x),ϕ(y))
)

y

+
N∑

l=1

d∑

i, j=1

(
γl

∣
∣
∣ zil (y)α

j
k (x)∇1K

i j (ϕ(x),ϕ(y))
)

y
.

• ∂2V
∗
1 pϕ(x) =

N∑

k=1

(γk | K (ϕ(x),ϕ(y))αk(y) )y .

• ∂1V
∗
2 pμ =

N∑

k=1

ζ2,1k γk with
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ζ2,1k (x) = −
d∑

i, j=1

N∑

l=1

(
γl

∣
∣
∣ zil (y)z

j
k (x)∂1∂2K

i j (ϕ(x),ϕ(y))pμ(y)
)

y

−
d∑

i, j=1

N∑

l=1

(
γl

∣
∣
∣ zil (y)z

j
k (x)∂

2
1K

i j (ϕ(x),ϕ(y))pμ(x)
)

y
.

• ∂2V
∗
2 pμ(x) = −

d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂1K

i (ϕ(x),ϕ(y))pμ(x)
)
y

−
d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
y
.

System (10.41) can now be simplified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tαk = ζ1,1k + ζ2,1k

∂t pμ =
N∑

k=1

(γk | K (ϕ(x),ϕ(y))αk(y) )y

−
d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂1K

i (ϕ(x),ϕ(y))pμ(x)
)
y

−
d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
y .

(10.43)

Application to Point Matching

We now apply this approach to point-matching problems. Since ρ0 takes the form

ρ0 =
N∑

k=1

a0,kδx0,k

we are in the vector measure case with γk = δx0,k . The densities zk and αk for μ
and pϕ can therefore be considered as vectors in R

d , and pμ being defined on the
support ofμ is also a collection of vectors pμ,k = pμ(xk). Given this, we can therefore
immediately rewrite

• ∂1V
∗
1 pϕ =

N∑

k=1

ζ1,1k δx0,k with

ζ1,1k =
N∑

l=1

d∑

i, j=1

(
αi
l∇1K

i j (xk, xl)z
j
k + zil∇1K

i j (xk, xl)α
j
k

)
.
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• ∂2V
∗
1 pϕ(x0,k) =

N∑

l=1

K (xk, xl)αl .

• ∂1V
∗
2 pμ =

N∑

k=1

ζ2,1k δx0,k with

ζ2,1k = −
d∑

i, j=1

N∑

l=1

zil z
j
k (∂1∂2K

i j (xk, xl) pμ,l + ∂2
1K

i j (xk, xl) pμ,k).

• ∂2V
∗
2 pμ(xk) = −

d∑

i=1

N∑

l=1

zil (∂1K
i (xk, xl)pμ,k + ∂2K

i (xk, xl)pμ,l).

This algorithm is illustrated in Fig. 10.1. In the same figure, we also provide (for
comparison purposes) the results provided by spline interpolation, which computes
ϕ(x) = x + v(x), where v is computed (using Theorem 8.9) in order to minimize

‖v‖2V + C
N∑

i=1

|v(xi ) − (yi − xi )|2 .

Although this is a widely spread registration method [42], Fig. 10.1 shows that it is
far from being diffeomorphic for large deformations.

10.6.4 Shooting

The optimality conditions for our problem are μ(1) = −dU (ϕ(1)) with μ(t) given
by (10.28). The shooting approach in optimal control consists in finding an initial
momentum ρ0 = μ(0) such that these conditions are satisfied. Root finding methods,
such as Newton’s algorithm, can be used for this purpose. At a given step of Newton’s
algorithm, one modifies the current value of ρ0, by letting ρ0 → ρ0 + η such that,
letting F(ρ0) := μ(1) + dU (ϕ(1)), one has

F(ρ0) + dF(ρ0)η = 0.

One therefore needs to solve this linear equation in order to update the current ρ0.
One has

dF(ρ0) = Wμμ(1) + Wϕμ(1)
∗d2U (ϕ(1)),

where

W =
(
Wϕϕ Wϕμ

Wμϕ Wμμ

)
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Fig. 10.1 Metric point matching. The first two rows provide results obtained with gradient descent
in the initialmomentum for pointmatching,with the same input as in Fig. 9.1, usingGaussian kernels
K (x, y) = exp(−|x − y|2/2σ2) with σ = 1, 2, 4 in grid units. The impact of the diffeomorphic
regularization on the quality of the result is particularly obvious in the last experiment. The last row
provides the output of Gaussian spline registration with the same kernels, exhibiting singularities
and ambiguities in the registration
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is (using the notation of the previous section) the differential of the solution of the
equation

∂t

(
ϕ
μ

)

= V (ϕ,μ),

with respect to its initial condition, i.e., the solution of

∂tW = dV (ϕ,μ)W

with initial condition W (0) = Id.
Because one needs to compute the solution of this differential equation at every

step of the algorithm, then solve for a linear system, the shooting method is feasible
only for problems that canbediscretized into a relatively small number of dimensions.
One can use it, for example, in point matching problems with no more than a few
hundred landmarks (see [290] for an application to labeled point matching), in which
case the algorithm can be very efficient. Another issue is that root finding algorithms
are not guaranteed to converge. Usually, a good initial solution must be found, using,
for example, a few preliminary steps of gradient descent.

10.6.5 Gradient in the Deformable Object

Finally, we consider the option of using the time derivative of the deformable object
as a control variable, using the fact that, by (10.33), the objective function can be
reduced to

E(J ) =
∫ 1

0
L(∂t J (t), J (t))dt + F(J (1))

with L(η, J ) = minw: η=w·J (t) ‖w‖2V . This formulation is limited, in that L(η, J ) is
not always defined for all (η, J ), resulting in constraints in the minimization that
are not always easy to handle. Even if well-defined, the computation of L may
be numerically demanding. To illustrate this, consider the image-matching case, in
which v · J = −∇ J T v. An obvious constraint is that, in order for

∇ J Tw = −η

to have at least one solution, the variation η must be supported by the set ∇ J �= 0.
To compute this solution when it exists, one can write, for x ∈ Ω ,

∇ J (x)Tw(x) = 〈K (·, x)∇ J (x) , w
〉
V ,

and it is possible to look for a solution in the form
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w(y) =
∫

Ω

λ(x)K (y, x)∇ J (x)dx,

where λ(x) can be interpreted as a continuous family of Lagrange multipliers. This
results in a linear equation in λ, namely

∫

Ω

λ(x)K (y, x)∇ J (y)T∇ J (x))dx = −η(y),

which is numerically challenging.
For point sets, however, the approach is feasible [159] because L can be made

explicit. Given a point-set trajectory x(t) = (x (1)(t), . . . , x (N )(t)), let S(x(t)) denote
the block matrix with (i, j) block given by K (x (i)(t), x ( j)(t)). The constraints are
xt = S(x(t))ξ(t) so that ξ(t) = S(x(t))−1 ẋt and the minimization reduces to

E(x) = 1

2

∫ 1

0
ẋ(t)T S(x(t))−1 ẋ(t)dt +U (x(1)).

Minimizing this function with respect to x by gradient descent is possible, and has
been described in [158, 159] for labeled landmark matching. The basic compu-
tation is as follows: if spq,r = ∂r spq , we can write (using the fact that ∂r (S−1) =
−S−1(∂r S)S−1)

(dE(x) | h ) =
∫ 1

0
ẋ(t)T S(x(t))−1ḣ(t)dt

−
∫ 1

0

∑

p,q,r

ξ(p)(t)ξq)(t)spq,r (x(t))h
(r)(t)dt + ∇U (x(1))T h(1).

After an integration by parts in the first integral, we obtain

dE(x) = −∂t
(
S(x(t))−1 ẋ

)− z(t) + (S(x(1))−1 ẋ(1) + ∇U (x(1))
)
δ1(t),

where zr (t) =∑p,q ξp(t)ξq(t)spq,r (x(t)) and δ1 is the Dirac measure at t = 1.
This singular part can be dealt with by computing the gradient in a Hilbert space

in which the evaluation function x(·) �→ x(1) is continuous. This method has been
suggested, in particular, in [129, 161]. Let H be the space of all trajectories x : t �→
x(t) = (x (1)(t), . . . , x (N )(t)), with fixed starting point x(0), free end-point x(1) and
square integrable time derivative. This is a space of the form x(0) + H where H
is the Hilbert space of time-dependent functions t �→ h(t), considered as column
vectors of size Nk, with h(0) = 0 and

〈
h , h̃

〉
H =

∫ 1

0
ḣT ˙̃hdt + h(1)T h̃(1).
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To compute the gradient for this inner product, we need to write (dE(x) | h ) in the
form

〈∇H E(x) , h
〉
H . We will make the assumption that

∫ 1

0

∣
∣S(x(t))−1 ẋ(t)

∣
∣2 dt < ∞,

which implies that

∫ 1

0
ẋ(t)T S(x(t))−1ḣ(t)dt ≤

√∫ 1

0

∣
∣S(x(t))−1 ẋ(t)

∣
∣2 dt

∫ 1

0

∣
∣ḣ(t)

∣
∣2 dt

is continuous in h. Similarly, the linear form ξ �→ ∇U (x(1))T h(1) is continuous
since

∇U (x(1))T h(1) ≤ |∇U (x(1))| |h(1)| .

Finally, h �→ ∫ 1
0 z(t)T ḣdt is continuous provided that we assume that

η(t) =
∫ t

0
z(s)dt

is square integrable over [0, 1], since this yields
∫ 1

0
z(t)T h(t)dt = η(1)h(1) −

∫ 1

0
η(t)ḣ(t)dt,

which is continuous in h with respect to the H norm.
Thus, under these assumptions, h �→ (dE(x) | h ) is continuous over H , and the

Riesz representation theorem implies that ∇H E(x) exists as an element of H . We
now proceed to its computation. Letting

μ(t) =
∫ t

0
S(x(s))−1ḣ(s)ds

and a = ∇U (x(1)), the problem is to find ζ ∈ H such that, for all h ∈ H ,

〈
ζ , h

〉
H =

∫ 1

0
μ̇T ḣdt +

∫ 1

0
z(t)T h(t)dt + aT ξ(1).

This expression can also be written

∫ 1

0

(
ζ̇ + ζ(1)

)T
ḣdt =

∫ 1

0
(μ̇ + η(1) − η(t) + a)T ḣdt.

This suggests selecting ζ such that ζ(0) = 0 and
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ζ̇ + ζ(1) = μ̇ + η(1) − η(t) + a,

which implies

ζ(t) + tζ(1) = μ(t) −
∫ t

0
η(s)ds + t (η(1) + a).

At t = 1, this yields

2ζ(1) = μ(1) −
∫ 1

0
η(s)ds + η(1) + a

and we finally obtain

ζ(t) = μ(t) −
∫ t

0
η(s)ds + t

2

(∫ 1

0
η(s)ds − μ(1) + η(1) + a

)

.

We summarize this in an algorithm, in which τ is again the computation time.

Algorithm 3 (Gradient descent algorithm for landmark matching) Start with initial
landmark trajectories x(t, τ ) = (x (1)(t, τ ), . . . , x (N )(t, τ )).

Solve

∂τ x(t, τ ) = −γ
(
μ(t, τ ) −

∫ t

0
η(s, τ )ds

+ t

2

( ∫ 1

0
η(s, τ )ds − μ(1, τ ) + η(1, τ ) + a(τ )

))

with a(τ ) = ∇U (x(1, τ )), μ(t, τ ) = ∫ t
0 ξ(s, τ )ds, η(t, τ ) = ∫ t

0 z(s, τ )dt and

ξ(t, τ ) = S(x(t, τ ))−1 ẋ(t, τ )

z(q)(t, τ ) =
∑

p,r

ξ(p)(t, τ )ξ(r)(t, τ )spq,r (x(t, τ )).

10.6.6 Image Matching

We now take an infinite-dimensional example to illustrate some of the previously
discussedmethods and focus on the image-matching problem.We therefore consider

U (ϕ) = λ

2

∫

Ω

(I ◦ ϕ−1 − Ĩ )2dx,
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where I, Ĩ are functions Ω → R, I being differentiable. The Eulerian differential of
U is given by (9.21):

∂̄U (ϕ) = −λ(I ◦ ϕ−1 − I ′)∇(I ◦ ϕ−1)dx .

So, according to (10.19), and letting Ũ (v) = U (ϕv
01),

∇Ũ (v)(t, y) =
d∑

i=1

(
∂̄U (ϕv

01)
∣
∣ dϕv

t1(ϕ
v
1t (.))K (y,ϕv

1t (.))ei
)
ei

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))

∇(I ◦ ϕv
10)(x)

T dϕv
t1(ϕ

v
1t (x))K (y,ϕv

1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))

∇ I ◦ ϕv
10(x)

T dϕv
10(x)dϕv

t1(ϕ
v
1t (x))K (y,ϕv

1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))

∇ I ◦ ϕv
10(x)

T dϕv
t0(ϕ

v
1t (x))K (y,ϕv

1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))∇(I ◦ ϕv
t0)(ϕ

v
1t (x))

T K (y,ϕv
1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))eTi K (ϕv
1t (x), y)∇(I ◦ ϕv

t0)(ϕ
v
1t (x))dx

= −λ

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))K (ϕv
1t (x), y)∇(I ◦ ϕv

t0)(ϕ
v
1t (x))dx .

This provides the expression of the V -gradient of Ẽ for image matching, namely

(∇V E(v))(t, y) = v(t, y) (10.44)

− λ

∫

Ω

(I ◦ ϕv
10(x) − Ĩ (x))K (ϕv

1t (x), y)∇(I ◦ ϕv
t0)(ϕ

v
1t (x))dx .

Using a change of variable in the integral, the gradient may also be written as

(∇V E)(t, y) = v(t, y) (10.45)

− λ

∫

Ω

(I ◦ ϕv
t0(x) − Ĩ ◦ ϕv

t1(x))K (x, y)∇(I ◦ ϕv
t0)(x) det(dϕv

t1(x))dx,

the associated gradient descent algorithm having been proposed in [32].
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Let us now consider an optimization with respect to the initial ρ0. First notice that,
by (9.20), μ(1) = λ det(dϕ(1))(I − I ′ ◦ ϕ(1))dϕ(1)−T∇ I dx is a vector measure.
Also, we have

(ρ0 | w) = (μ(1) | dϕ(1)w )

= λ
(
dx
∣
∣ det(dϕ(1))(I − I ′ ◦ ϕ(1))∇ I Tw

)
,

which shows that one can assume that ρ0 = z0dx for some vector-valued function
z0 (with z0 = det(dϕ(1))(I − I ′ ◦ ϕ(1))∇ I for an optimal control).

We now make explicit the computation of the differential of the energy with
respect to ρ0. We have μ(t) = z(t, ·)dx , with z(0) = z0 and

⎧
⎪⎪⎨

⎪⎪⎩

∂tϕ(t, y) =
∫

Rd

K (ϕ(t, y),ϕ(t, x))z(t, x)dx

∂t z(t, y) = −
∫

Rd

zi (t, y)z j (t, x)∇1K
i j (ϕ(t, y),ϕ(t, x))dx .

(10.46)

The differential dE(ρ0) = Kρ0 − pμ(0) is computed by solving, using α(1) =
λ det(dϕ(1))(I − I ′ ◦ ϕ(1))dϕ(1)−T∇ I and pμ(1) = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tα =ζ1,1 + ζ2,1

∂t pμ =
∫

Rd

K (ϕ(x),ϕ(y))α(y)dy

−
d∑

i=1

∫

Rd

zi (y)∂1K
i (ϕ(x),ϕ(y))pμ(x)dy

−
d∑

i=1

∫

Rd

zi (y)∂2K
i (ϕ(x),ϕ(y))pμ(y)dy,

(10.47)

in which

ζ1,1(x) =
d∑

i, j=1

∫

Rd

(αi (y)z j (x) + zi (y)α j (x))∇1K
i j (ϕ(x),ϕ(y))dy

and

ζ2,1(x) = −
d∑

i, j=1

∫

Rd

zi (y)z j (x)∂1∂2K
i j (ϕ(x),ϕ(y))pμ(y)dy

−
d∑

i, j=1

∫

Rd

zil (y)z
j
k (x)∂

2
1K

i j (ϕ(x),ϕ(y))pμ(x)dy.
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Fig. 10.2 Metric imagematching. Output ofAlgorithm 4when estimating a deformation of the first
image to match the second one (compare to Fig. 9.2). The third image is the obtained deformation
of the first one and the last provides the deformation applied to a grid

We summarize the computation of the gradient of the image-matching functional
with respect to z0 such that ρ0 = z0dx :

Algorithm 4

1. Solve (10.46) with initial conditions ϕ(0) = id and z(0) = z0 and compute
dU (ϕ(1)) = −λ(I − I ′ ◦ ϕ(1)) det(dϕ(1))dϕ(1)−T∇ I .

2. Solve, backwards in time, until time t = 0 the system (10.47) with boundary
conditions α(1) = −dU (ϕ(1)) and pμ(1) = 0.

3. Set ∇E(z0) = 2z0 − K
−1 pμ(0).

The gradient is computed with the metric
〈
z , z′〉 = ∫

Rd z(y)TKz(y)dy. Results
obtained with this algorithm are presented in Fig. 10.2.

One can also use the fact that z0 = f0∇ I for a scalar-valued f0. Since we have

(
dE(z0)

∣
∣
∣ h0
)

=
∫

Ω

(Kz0 − pμ(0))
T h0dy,



10.6 Optimization Strategies for Flow-Based Matching 337

we can write, with Ẽ( f0) = E( f0∇ I ):

(
d Ẽ( f0)

∣
∣
∣ u0
)

=
∫

Ω

(K( f0∇ I ) − pμ(0))
T∇ I u0dy,

which leads to replacing the last step in Algorithm 4 by

∇E( f0) = −∇ I T (K( f0∇ I ) − pμ(0)),

which corresponds to using the L2 metric in f0 for gradient descent. However, a
more natural metric, in this case, is the one induced by the kernel, i.e.,

〈
f , f ′〉

I =
∫

Ω

∫

Ω

K( f ∇ I )(y)( f ′(y)∇ I (y)dy =
∫

Ω

KI (x, y) f (x) f
′(y)dxdy

with KI (x, y) = ∇ I (x)T K (x, y)∇ I (y). With this metric, z0 is updated with

∇E( f0) = z0 − K
−1
I ∇ I T pμ(0).

Although this metric is more satisfactory from a theoretical viewpoint, the inversion
of KI might be difficult, numerically.

10.6.7 Pros and Cons of the Optimization Strategies

In the previous sections we have reviewed several possible choices of control vari-
ableswith respect towhich the optimization of thematching energy canbe performed.
For all but the shootingmethod, this results in specific expressions of the gradient that
can then be used in optimization procedures such as those discussed in AppendixD.

All these procedures have been implemented in the literature to solve a
diffeomorphic-matching problem in at least one specific context, but no extensive
study has ever been made to compare them. Even if the outcome of such a study is
likely to be that the best method depends on the specific application, one can still
provide a few general facts that can help a user decide which one to use.

When feasible (that is, when the linear system it involves at each step can be
efficiently computed and solved), the shooting method is probably the most efficient.
If the initialization is not too far from the solution, convergence can be achieved in
a very small number of iterations. One cannot guarantee, however, that the method
will converge starting from any initial point, and shooting needs to be combined with
some gradient-based procedure in order to find a good starting position.

Since they optimize with respect to the same variable, the most natural procedure
to combine with shooting is optimization with respect to the initial momentum. Even
when shooting is not feasible (e.g., for large-scale problems), this specific choice of
control variable is important, because it makes sure that the final solution satisfies the
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EPDiff equation, which guarantees the consistency of the momentum representation,
which will be discussed in Sect. 11.5.2. The limitation is that, with large and complex
deformations, the sensitivity of the solution to small changes in the control variable
can be large, which may result in an unstable optimization procedure.

The other methods, which optimize with respect to time-dependent quantities,
are generally more able to compute very large deformations. Beside the obvious
additional burden in computer memory that they require, one must be aware that the
discrete solution can sometimes be far from satisfying the EPDiff equation unless
the time discretization is fine enough (which may be impossible to achieve within
a feasible implementation for large-scale problems). Therefore, these methods do
not constitute the best choice if obtaining a reliable momentum representation is
important. Among the three time-dependent control variables that we have studied
(velocity,momentumanddeformable object), onemayhave a slight preference for the
representation using the time-dependentmomenta, even if the computation it involves
is slightly more complex than the others. There are at least two reasons for this.
First, the momenta are generally more parsimonious in the space variables, because
they incorporate normality constraints to transformations that leave the deformable
objects invariant. Second, because the forward and backward equations solved at each
iteration immediately provide a gradient with respect to the correct metric, so that the
implementation does not have to include the solution of a possibly large-dimensional
linear system which is required by other representations.

10.7 Numerical Aspects

10.7.1 Discretization

The implementation of the diffeomorphic matching algorithms that were just dis-
cussed requires a proper discretization of the different variables that are involved.
The discretization in time of optimal control problems is discussed in Sect.D.4. This
discussion directly applies here and we refer the reader to the relevant pages in the
chapter for more details. If the deformed objects are already discrete (e.g., points
sets), this suffices in order to design a numerical implementation.

When the deformed objects are continuous, some discrete approximation must
obviously be made. One interesting feature of the problems that we have discussed
is that they all derive from the general formulation (10.8), but can be reduced, using
Sect. 10.6.2, to a situation in which the state and controls are finite dimensional after
discretization. Typically, starting from (10.8), the discretization implies that only the
end-point cost function is modified, replacing U (ϕ) = F(ϕ · I0) by an approxima-
tion taking the form U (n)(ϕ) = F (n)(ϕ, I (n)

0 ). For example, when matching curves,
one may replace the objective function F(ϕ · I0) = ‖μϕ·I0 − μI ′ ‖2W ∗ in (9.40) by the
discrete approximation in (9.46), in which the curves I0 and I ′ are approximated by
point sets. Similar approximations can be made for the other types of cost functions
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discussed for curves and surfaces. In such cases, the following proposition can be
applied to compare solutions of the original problem with their discrete approxima-
tions.

Proposition 10.16 Assume that V is continuously embedded inC p+1
0 (Rd ,Rd). Con-

sider a family of optimal control problems minimizing

E (n)(v) = 1

2

∫ 1

0
‖v‖2V dt +U (n)(ϕv

01), (10.48)

with U (n) continuous for the (p,∞)-compact topology. Let U be continuous with
respect to the same topology and assume that, for some p > 0, the following uniform
convergence is true: for all A > 0 and ε > 0, there exists an n0 such that, for all n ≥
n0, for allϕ ∈ Diff p,∞0 such thatmax(‖ϕ‖p,∞, ‖ϕ−1‖p,∞) < A, one has |U (n)(ϕ) −
U (ϕ)| < ε.

Then, given a sequence v(n) of minimizers of (10.48), one can extract a subse-
quence v(nk ) that weakly converges to v in X 2

V , with v minimizing

E(w) = 1

2

∫ 1

0
‖w‖2V dt +U (ϕw

01). (10.49)

Proof Let w be a minimizer of (10.49). Our assumptions implying that U (n)(ϕw
01)

converges to U (ϕw
01) (so that their difference is bounded), we see that E (n)(w) ≤

E(w) + C for some constant C , so that, letting v(n) be a minimizer of E (n), we have
‖v(n)‖2X 2

V
≤ 2E (n)(v(n)) ≤ 2E(w) + 2C . From this we find that v(n) is a bounded

sequence in X 2
V , so that, replacing it with a subsequence if needed, we can assume

that it weakly converges to some v ∈ X 2
V . Applying Theorem 7.13, we find that ϕv(n)

01
converges to ϕv in the (p,∞)-compact topology. Moreover, Theorem 7.10 implies
that the sequences (‖ϕv(n)

01 ‖p,∞, ‖ϕv(n)

10 ‖p,∞) are bounded. Applying the uniform con-
vergence ofU (n) toU on bounded sets and the continuity ofU , we see thatU (n)(ϕv(n)

01 )

converges to U (ϕv
01) as n tends to infinity. Since, in addition

‖v‖X 2
V

≤ lim inf ‖v(n)‖X 2
V

we obtain the fact that E(v) ≤ lim inf E (n)(v(n)). We also have

E (n)(v(n)) ≤ E (n)(w) = E(w) +U (ϕw
01) −U (n)(ϕw

01) → E(w),

so that E(v) = E(w) and v is also a minimizer of (10.49). �

Curves and Surfaces. We can apply this theorem to curve and surface matching
according to the following discussion, in which we focus on surface matching using
currents, but which can, with very little modification, be applied to curves, and to
measure or varifoldmatching terms. LetΣ and Σ̃ be regular surfaces and S(n), S̃(n) be
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sequences of triangulated surfaces that converge to them as defined before Theorem
4.3. Let (fixing an RKHS W with kernel ξ)

U (ϕ) = ‖νϕ·Σ − νΣ̃‖2W ∗ ,

using the vector measures defined in Eq. (9.49), and

U (n)(ϕ) = ‖νϕ·S(n) − νS̃(n)‖2W ∗ ,

using the discrete version as in (9.56). Then, Theorem 4.3, slightly modified to
account for double integrals, can be used to check that the assumptions of Proposition
10.16 are satisfied.

Images. The imagematching problem can be discretized using finite grids, assuming
that the considered images are supported by the interval [0, 1]d . Consider the cost
function

U (ϕ) = ‖I ◦ ϕ−1 − Ĩ‖22,

in which we assume, to simplify, that I and Ĩ are compactly supported (say, on
K = [−M, M]d ) and bounded. We first start with a discretization that can be applied
to general L2 functions. Let Gn = {−M + 2−n+1kM, k = 0, . . . , 2n}d provide a dis-
crete grid on K and associate to each point z ∈ Gn its Voronoï cell, Γn(z), provided
by the set of points in K that are closer to x than to any other point in the grid (i.e.,
Γn(z) is the intersection of K and the cube of size 2−n centered at x). Define

I (n)(x) =
∑

z∈Gn

Ī (n)(z)1Γn(z)(x),

where

Ī (n)(z) = 1

|Γn(z)|
∫

Γn(z)
I (x) dx

is the average value of I over Γn(z).
Define Ĩ (n) similarly and consider the approximation of U given by U (n)(ϕ) =

‖I (n) ◦ ϕ−1 − Ĩ (n)‖22. Then U (n) and U satisfy the hypotheses of Proposition 10.16.
Indeed, assume that max(‖ϕ‖1,∞, ‖ϕ−1‖1,∞) < A. We have

|U (n)(ϕ) −U (ϕ)| ≤ 2‖I ◦ ϕ−1 − I (n) ◦ ϕ−1‖22 + 2‖ Ĩ − Ĩ (n)‖22
≤ 2C(A)‖I − I (n)‖22 + 2‖ Ĩ − Ĩ (n)‖22,

where the second inequality is obtained after a change of variable in the first L2 norm
and C(A) is an upper bound for the Jacobian determinant of ϕ depending only on A.
As a consequence, Proposition 10.12 will be true as soon as one shows that I (n) and
Ĩ (n) converge in L2 to I and Ĩ respectively (and will also be true for any sequence
of approximations of I and Ĩ that satisfies this property). The L2 convergence is
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true in our case because I (n) is the orthogonal projection of I on the space Wn of L2

functions that are constant on each setΓn(z), z ∈ Gn . This implies that I (n) converges
in L2 to the projection of I on W∞ =⋃n≥1 Wn (see Proposition A.11), but one has
W∞ = L2, because any function J orthogonal to this space would have its integral
vanish on any dyadic cube, which is only possible for J = 0.

Note that, with this approximation, one can write

‖I (n) ◦ ϕ−1 − Ĩ‖22 =
∑

z∈Gn

I (z)2|ϕ(Γn(z))| +
∑

z∈Gn

Ĩ (z)2|Γn(z)|

− 2
∑

z,z′∈Gn

I (z) Ĩ (z′)|ϕ(Γn(z)) ∩ Γn(z
′)|,

where |A| denotes the volume of A ⊂ R
d . To make this expression computable, one

needs to approximate the sets ϕ(Γn(z)), where the simplest approximation is to take
the polyhedron formed by the image of the vertices of Γn(z) by ϕ (which will retain
the same topology as the original cube is n is large enough). The verification that
this approximation is valid (in the sense of Proposition 10.16) is left to the reader.

However, even with this approximation, the numerical problem is still highly
computational, since it becomes a point set problem over Gn , which is typically
a huge set. Most current implementations use a simpler scheme, in which I (n) is
interpolated between the values (I (z), z ∈ Gn), who are therefore assumed to be
well defined, and the cost function is simply approximated by

U (n)(ϕ) =
∑

z∈Gn

(I (ϕ−1(z)) − Ĩ (z))2|Γn(z)|.

Here again, we leave to the reader to check that this provides a valid approximation
in the sense of Proposition 10.16 as soon as, say, I and Ĩ are continuous and one
uses a linear interpolation scheme, as described below.

Using this approximation (for a fixed n that we will remove from the notation),
we now work the implementation in more detail, starting with the computation of
the gradient in (10.45). Assume that time is discretized at tk = kh for h = 1/Q and
that vk(·) = v(tk, ·) is discretized over a regular grid G.

It will be convenient to introduce the momentum and express vk in the form

vk(y) =
∑

z∈G
K (y, z)ρk(z). (10.50)

We can consider (ρk(z), z ∈ G) as new control variables, noting that (10.45) directly
provides the gradient of the energy in V ∗, namely

(∇V ∗
E)(t, y) = 2ρ(t) − 2 det(dϕv

t1)(I ◦ ϕv
t0 − Ĩ ◦ ϕv

t1)∇(I ◦ ϕv
t0)dx .
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From this expression, we see that we can interpret the family (ρk(z), z ∈ G) as
discretizing a measure, namely

ρk =
∑

z∈G
ρk(z)δz .

Given this, the gradient in V ∗ can be discretized as

ξk(z) = 2ρk(z) − 2 det(dϕv
tk1(z))(I ◦ ϕv

tk0(z) − Ĩ ◦ ϕv
tk1(z))∇(I ◦ ϕv

tk0(z))δz,

which can be used to update ρk(z).
The last requirement in order to obtain a fully discrete procedure is to select

interpolation schemes for the computation of the diffeomorphisms ϕv and for the
compositions of I and I ′ with them. Interpolation algorithms (linear, or cubic, for
example) are standard procedures that are included inmany software packages [234].
In mathematical representation, they are linear operators that take a discrete signal f
on a grid G (i.e., f ∈ R

G) and return a function, that we will denote byR f , defined
everywhere. By linearity, we must have

(R f )(z) =
∑

z∈G
rz(x) f (z)

for some “interpolants” rz(·), z ∈ G. In the approximation of the data attachment
term, one can then replace I byR(I|G ), the interpolation of the restriction of I to G.

Linear interpolation, for example, corresponds, in one dimension, to rz(x) =
1 − 2n|z − x | if |z − x | < 2−n and 0 otherwise. In dimension d, one takes

rz(x) =
d∏

i=1

(1 − 2n|zi − xi |)

if maxi (|zi − xi |) < 2−n and 0 otherwise (where z = (z1, . . . , zd) and x =
(x1, . . . , xd)).

Given an interpolation operatorR, one can replace, say, I ◦ ϕtk0(z) in the expres-
sion of the gradient by

(RI )(ϕtk0(z)) =
∑

z′∈G
rz′(ϕtk0(z))I (z

′).

For computational purposes, it is also convenient to replace the definition of vk in
(10.50) by an interpolated form

vk(x) =
∑

z∈G
rz(x)

∑

i∈G
K (z, z′)ρk(z′) (10.51)
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because the inner sum can be computed very efficiently using Fourier transforms
(see the next section).

To complete the discretization, introduce

ψlk = (id − hvl) ◦ · · · ◦ (id − hvk−1),

where an empty product of compositions is equal to the identity, so that ψlk is an
approximation of ϕtk tl . Define the cost function, which is explicitly computable as a
function of ρ0, . . . , ρQ−1:

E(ρ) =
Q−1∑

k=0

∑

z,z′∈G
K (z, z′)ρk(z)T ρk(z

′) +
∑

z∈G
((RI )(ψ0Q(z)) − Ĩ (z))2.

If we make a variation ρ �→ ρ + εδρ, then v �→ v + εδv with (using the interpolated
expression of v)

δvk(y) =
∑

z∈G
rz(y)

∑

z′∈G
K (z, z′)δρk(z′)

and letting δψlk = ∂εψlk , we have, by direct computation

δψlk = −h
k−1∑

q=l

dψlq ◦ ψqk δvq ◦ ψq+1k .

Using this, we can compute the variation of the E , yielding

(∂εE | δρ ) = 2
Q−1∑

k=0

∑

z,z′,∈G
K (z, z′) ρk(z

′)T δρk(z)

− 2h
Q−1∑

k=0

∑

z,z′,y∈G
K (z, z′) rz(ψk+1 Q(y)) ((RI )(ψ0Q(y)) − Ĩ (y))

∇(RI )(ψ0Q(y))T (dψ0k ◦ ψk Q(y) δρk(z
′))

This provides the expression of the gradient of the discretized E in V ∗, namely

(∇V ∗
E(ρ))k(z) = 2ρk(z)

− 2h
∑

z′∈G
rz(ψk+1 Q(z′))((RI )(ψ0Q(z′)) − Ĩ (z′))∇(RI ◦ ψ0k)(ψkQ(z′)).
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10.7.2 Kernel-Related Numerics

Most of the previously discussed methods included repeated computations of linear
combination of the kernel. A basic such step is to compute, given points y1, . . . , yM ,
x1, . . . , xN and vectors (or scalars) α1, . . . ,αN , the sums

N∑

k=1

K (y j , xk)αk, j = 1, . . . , M.

Such sums are involved when deriving velocities from momenta, for example, or
when evaluating dual RKHS norms in curve or surface matching.

Computing these sums explicitly requires NM evaluations of the kernel (and this
probably several times per iteration of an optimization algorithm). When N or M are
reasonably small (say, less than 1,000), such a direct evaluation is not a problem. But
for large-scale methods, such as triangulated surface matching, where the surface
may have tens of thousands of nodes, or image matching, where a three-dimensional
grid typically has millions of nodes, this becomes unfeasible (the feasibility limit
has however been pushed further by recent efficient implementations on GPUs [59,
157, 247]).

If x = y is supported by a regular grid G, and K is translation invariant,
i.e., K (x, y) = Γ (x − y), then, letting xk = hk where k is a multi-index (k =
(k1, . . . , kd)) and h the discretization step, we see that

∑

k∈G
Γ (h(k − l))αl

is a convolution that can be implemented with O(N log N ) operations, using fast
Fourier transforms (with N = |G|). The same conclusion holds if K takes the form
K (x, y) = A(x)TΓ (x − y)A(y) for some matrix A (which can be used to censor
the kernel at the boundary of a domain), since the resulting operation is

A(xk)
T

(
∑

k∈G
Γ (h(k − l))(A(xl)αl)

)

,

which can still be implemented in O(N log N ) operations.
The situation is less favorable when x and y are not regularly spaced. In such

cases, feasibility must come with some approximation.
Still assuming a translation-invariant kernel K (x, y) = Γ (x − y), we can asso-

ciate to a grid G in Rd the interpolated kernel

KG(x, y) =
∑

j, j ′∈G
rz(x)Γ (h(z − z′))rz′(y),
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where the rz’s are interpolants adapted to the grid. This approximation provides a
non-negative kernel, with null space equal to the space of functions with vanishing
interpolation on G. With such a kernel, we have

N∑

k=1

K (y j , xk)αk =
∑

z∈G
rz(y j )

∑

z′∈G
Γ (h(z − z′))

N∑

k=1

rz′(xk)αk .

The computation of this expression therefore requires using the following sequence
of operations:

1. Compute, for all z′ ∈ G, the quantity

az′ =
N∑

k=1

rz′(xk)αk .

Because, for each xk , only a fixed number of rz′(xk) are non-vanishing, this
requires an O(N ) number of operations.

2. Compute, for all z ∈ G,
bz =

∑

z′∈G
Γ (h(z − z′))az′ ,

which is a convolution requiring O(|G| log |G|) operations.
3. Compute, for all j = 1, . . . , M , the interpolation

∑

z∈G
rz(y j )bz,

which requires O(M) operations.

So the resulting cost is O(M + N + |G| log |G|), which must be compared to the
original O(MN ), the comparison being favorable essentially when MN is larger
than the number of nodes in the grid, |G|. This formulation (which has been proposed
in [156]) has the advantage that the resulting algorithm is quite simple, and that the
resulting KG remains a non-negative kernel, which is important.

Another class of methods, called “fast multipole”, computes sums such as

N∑

k=1

K (y, xk)αk

by taking advantage of the fact that K (y, x) varies slowly as x varies in a region
which is far away from y. By grouping the xk’s in clusters, assigning centers to
these clusters and approximating the kernel using asymptotic expansions valid at
a large enough distance from the clusters, fast multipole methods can organize the
computation of the sums with a resulting cost of order M + N when M sums over
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N terms are computed. Even if it is smaller than a constant times (M + N ), the
total number of operations increases (via the size of the constant) with the required
accuracy. The interested reader may refer to [30, 140] for more details.

Another important operation involving the kernel is the inversion of the system
of equations (say, with a scalar kernel)

N∑

k=1

K (xk, xl)αl = uk, k = 1, . . . , N . (10.52)

This is the spline interpolation problem, but it is also part of several of the algorithms
that we have discussed, including for example the projection steps that have been
introduced to obtain a gradient in the correct metric.

Such a problem is governed by an uncertainty principle [258] between accuracy
of the approximation, which is given by the distance between a smooth function
x �→ u(x) and its interpolation

x �→
N∑

k=1

K (x, xl)αl ,

where α1, . . . ,αN are given by (10.52) with uk = u(xk), and the stability of the
system (10.52) measured by the condition number (the ratio of the largest to the
smallest eigenvalue) of the matrix S(x) = (K (xi , x j ), i, j = 1, . . . , N ), evaluated
as a function of the smallest distance between two distinct xk’s (S(x) is singular if
two xk’s coincide).

When K (x, y) = Γ (x − y), the trade-off is measured by how fast ξ �→ Γ̂ (ξ) (the
Fourier transform of Γ ) decreases at infinity. One extreme is given by the Gaussian
kernel, for which Γ̂ decreases like e−c|ξ|2 , which is highly accurate and highly unsta-
ble.On the other side of the range areLaplacian kernels,which decrease polynomially
in the Fourier domain. In this dilemma, one possible rule is to prefer accuracy for
small values of N , therefore using a kernel like the Gaussian, and go for stability for
large-scale problems (using a Laplacian kernel with high enough degree).

For the numerical inversion of system (10.52), iterativemethods, such as conjugate
gradient, should be used (especially for large N ). Methods using preconditioned
conjugate gradient have been introduced, for example, in [105, 141] and the interested
reader may refer to these references for more details.


	10 Diffeomorphic Matching 
	10.1 Linearized Deformations
	10.2 The Monge–Kantorovitch Problem
	10.3 Optimizing Over Flows
	10.4 Euler–Lagrange Equations and Gradient
	10.4.1 Gradient: Direct Computation
	10.4.2 Derivative Using Optimal Control
	10.4.3 An Alternative Form Using the RKHS Structure

	10.5 Conservation of Momentum
	10.5.1 Interpretation
	10.5.2 Properties of the Momentum Conservation Equation
	10.5.3 Time Variation of the Eulerian Momentum
	10.5.4 Explicit Expression
	10.5.5 The Hamiltonian Form of EPDiff
	10.5.6 The Case of Measure Momenta

	10.6 Optimization Strategies for Flow-Based Matching
	10.6.1 Gradient Descent in mathcalX2V
	10.6.2 Gradient in the Hamiltonian Form
	10.6.3 Gradient in the Initial Momentum
	10.6.4 Shooting
	10.6.5 Gradient in the Deformable Object
	10.6.6 Image Matching
	10.6.7 Pros and Cons of the Optimization Strategies

	10.7 Numerical Aspects
	10.7.1 Discretization
	10.7.2 Kernel-Related Numerics





