
Chapter 1
Parametrized Plane Curves

1.1 Definitions

We start with some definitions.

Definition 1.1 A (parametrized plane) curve is a continuous mapping m : I → R
2,

where I = [a, b] is an interval.
A curve m is closed if m(a) = m(b).
A curve m is a Jordan curve if it is closed and has no self-intersection: m(x) =

m(y) only for x = y or {x, y} = {a, b}.
A curve is piecewise C1 if it has everywhere left and right derivatives, which

coincide except at a finite number of points.
The range of a curve m is the set m([a, b]). It will be denoted by Rm .

Notice that we have defined curves as functions over bounded intervals. Their
range must therefore be a compact subset of R

2 (this forbids, in particular, curves
with unbounded branches).

A Jordan curve is what we can generally accept as a definition of the outline of a
shape. An important theorem [292] states that the range of a Jordan curve partitions
the plane R

2 into two connected regions: a bounded one, which is the interior of
the curve, and an unbounded one (the exterior). The proof of this rather intuitive
theorem is quite complex (see, for example [184] for an argument using Brouwer’s
fixed point theorem).

However, requiring only continuity for curves allows for more irregularities than
what we would like to handle. This is why we will always restrict ourselves to
piecewise C1, generally Jordan, curves. We will in fact often ask for more, and
consider curves which are regular (or piecewise regular).

Definition 1.2 A C1 curve m : I �→ R
2 is a regular curve if ∂m �= 0 for all u ∈ I .

Ifm is only piecewise C1, we extend the definition by requiring that all left and right
derivatives are non-vanishing.
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2 1 Parametrized Plane Curves

Here, and in the rest of the book,wewill use either∂m or ṁ to denote the derivative
of a function u �→ m(u).

The previous definition is fundamental. It avoids, in particular, curves which are
smooth functions (C∞, for example) but with a range having geometric singularities.
Consider the following example: let

m(u) =
{

(ϕ(u), 0), u ∈ [0, 1/2]
(1,ϕ(u − 1/2)), u ∈ [1/2, 1]

with ϕ(u) = 16u2(1 − u)2, u ∈ [0, 1]. It is easy to check that m is continuously
differentiable, whereas the range of m is the corner [0, 1] × {0} ∪ {1} × [0, 1].

We will say that a curve m : [a, b] → R
2 is C p if it is p times continuously

differentiable, including all right derivatives at a and left derivatives at b up to order
p. If the curve is closed, we will implicitly require that the derivatives at a and b
coincide.More precisely, a closed curve isC p if and only ifm isC p when restricted to
the open interval (a, b), and so is the curve m̃ defined on (a, b) by m̃(u) = m(u + ε)
if u ∈ (a, b − ε] and m̃(u) = m(u + ε − b + a) if u ∈ [b − ε, b) (for some 0 < ε <

b − a).
Alternatively (and more conveniently), closed curves can be handled by consid-

ering the interval [a, b] closed onto itself after identifying a and b (which provides a
one-dimensional torus). We will denote this torus by [a, b]∗ and let a ∼ b ∈ [a, b]∗
denote a or b after the identification. For u, v ∈ [a, b]∗, we let

d∗(u, v) = min(|u − v|, (b − a) − |u − v|). (1.1)

This is a distance on [a, b]∗ (if u (or v) are equal to ab̃, the result does not depend
on which value is chosen to compute the expression).

If δ ∈ R and u ∈ [a, b]∗, we define u +∗ δ ∈ [a, b]∗ by u + δ − (u +∗ δ) = k(b −
a) for some integer k (so that we consider addition modulo b − a). A function
f : [a, b]∗ → R

d is continuous on [a, b]∗ if and only if, for all u ∈ [a, b]∗, | f (u +∗
δ) − f (u)| → 0when δ → 0, which is equivalent to f (u) = f̂ (u) for some function
f̂ continuous on [a, b] satisfying f̂ (a) = f̂ (b). One defines derivatives of functions
by

∂ f (u) = lim
δ→0

f (u +∗ δ) − f (u)

δ

when the right-hand side exists and higher derivatives are defined accordingly. With
this notation, it is easy to see that C p closed curves are functions m : [a, b]∗ → R

2

with at least p continuous derivatives.
We also use integrals along [a, b]∗ as follows: if u0, u1 ∈ [a, b] and f : [a, b] →

R
d is continuous, then
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∫ u1

u0

f (v)dv∗ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ u1

u0

f (v)dv if u0 ≤ u1

∫ b

a
f (v)dv −

∫ u0

u1

f (v)dv if u1 ≤ u0.

(1.2)

This is the integral of f along the “positively oriented arc” going from u0 to u1 in
[a, b]∗. Note that ∫ u1

u0

f (v)dv∗ �= −
∫ u0

u1

f (v)dv∗

in general. For example
∫ a
b f (v)dv∗ = 0 for all f .

The length of the positively oriented arc going from u0 to u1 is

�∗(u0, u1) =
∫ u1

u0

dv∗ :=
{

|u1 − u0| if u0 ≤ u1
(b − a) − |u1 − u0| if u1 ≤ u0.

With this notation, d∗(u0, u1) = min(�∗(u0, u1), �∗(u1, u0)).

1.2 Reparametrization Equivalence

1.2.1 Open Curves

Definition 1.3 Let m : I → R
2 be a plane curve. A change of parameter for m is a

function ψ : I ′ → I such that:
(i) I ′ is a bounded interval;
(ii) ψ is continuous, increasing (strictly) and onto.

From (ii), ψ is one-to-one and onto, hence invertible. Its inverse, ψ−1 is also
a change of parameter (the proof being left to the reader). In particular, ψ is a
homeomorphism (a continuous invertible function with a continuous inverse).

The new curve m̃ = m ◦ ψ is called a reparametrization ofm. The rangesRm and
Rm̃ coincide.

When m belongs to a specific smoothness class, the same properties will be
implicitly required for the change of parameter. For example, if m is (piecewise)
C1, ψ will also be assumed to be C1 (in addition to the previous properties). When
working with regular curves, the following assumption will be made.

Definition 1.4 If I, I ′ are bounded intervals, a regular change of parameter is a C1

function ψ : I ′ → I which is onto and satisfies ψ̇ > 0 everywhere (including left
and right limits at the bounds).
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A piecewise regular change of parameter is continuous, piecewise C1 and such
that its left and right derivatives (which coincide everywhere except at a finite number
of points) are all strictly positive.

It is easy to see that the property of two curves being related by a change of parameter
is an equivalence relation. This is called “parametric equivalence.” We will denote
the parametric equivalence class of m by [m]. A property, or a quantity, which only
depends on [m] will be called parametrization-invariant. For example, the range of
a curve is parametrization-invariant.

Note that the converse is not true. If two curves have the same range, they are not
necessarily parametrically equivalent: the range of the piecewise C1 curve defined
on I = [0, 1] by m(t) = (2t, 0), t ∈ [0, 1/2] and m(t) = (2 − 2t, 0), t ∈ [1/2, 1]
is the segment [0, 1] × 0, but this curve is not equivalent to m̃(t) = (t, 0), t ∈ [0, 1],
even though they have the same range (the first one travels back to its initial point
after reaching the end of the segment). Also, if m is a curve defined on I = [0, 1],
then m̃(t) = m(1 − t) has the same range, but is not equivalent to m, since we have
required the change of parameter to be increasing (changes of orientation are not
allowed).

Changes of parameter will always be assumed to match the class of curves that
is being considered: (piecewise) regular reparametrizations for (piecewise) regular
curves, or, when more regularity is needed, C p regular reparametrizations for C p

regular curves.

1.2.2 Closed Curves

Changes of parameters for closed curves must be slightly more general than for open
curves, because the starting point of the parametrization is not uniquely defined.
Using representations over tori,wewill say that a continuousmappingψ : [a′, b′]∗ →
[a, b]∗ is increasing if, for all u, one can write, for small enough δ,

ψ(u +∗ δ) = ψ(u) +∗ ε(δ),

where ε : (−δ0, δ0) → R can be defined for some δ0 > 0 as a (strictly) increasing
function such that ε(δ) → 0 if δ → 0. This says that ψ moves in the same direction
as u.

A change of parameter is then a continuous, increasing, one-to-one transformation
ψ from [a′, b′]∗ onto [a, b]∗ (and its inverse is then continuous too). The main dif-
ference with the open case is that such a transformation does not necessarily satisfy
ψ(a′) = a: it can start anywhere and wrap around to return to its initial point.Wewill
then say that the change of parameter is regular if it is C1 with ψ̇ > 0 everywhere,
as in the open case.

Letting c′ = ψ−1(b) (recall that a = b ∈ [a, b]∗) and taking ψ̂ : [a′, b′] → [a, b]
to be such that ψ̂(u′) = ψ(u′) if u′ �= c′ and ψ̂(u′) = b otherwise, the definition is



1.2 Reparametrization Equivalence 5

equivalent to requiring that ψ̂ is increasing over [a′, c′] and over (c′, b′], continuously
differentiable over these intervals, with left and right derivatives coinciding at c′, and
the right derivative at a′ coinciding with the left derivative at b′.

1.3 Unit Tangent and Normal

If M ⊂ R
d is an arbitrary set, we will say that a vector v ∈ R

d is tangent to M at a
point p in M if one can find points x in M that are arbitrarily close to p and such that
v is arbitrarily close to the half line R

+(x − p). This is formalized in the following
definition (see [107]):

Definition 1.5 If M ⊂ R
d , and p ∈ M , a vector v ∈ R

d is an oriented tangent to
M at p if, for any ε > 0, there exist x ∈ M and r > 0 such that |x − p| < ε and
|v − r(x − p)| < ε.

The set of oriented tangents to M at p will be denoted by T+
p M , and the set of

(unoriented) tangents by TpM , so that v ∈ TpM if either v or −v belongs to T+
p M .

Taking x = p, one sees that v = 0 always belong to T+
p M , which is therefore never

empty.
Let m : I → R

2 be a regular curve (here, I can be a closed interval or a torus).
The unit tangent at u ∈ I is the vector

Tm(u) = ṁ(u)

|ṁ(u)| .

We then have

Proposition 1.6 If m : I → R
2 is regular, and p ∈ Rm, then

TpRm = {λTm(u) : λ ∈ R,m(u) = p} .

Note that, whenm is regular the set of parameters u such thatm(u) = p is necessarily
finite. (Each such u is necessarily isolated because ṁ �= 0 and any family of isolated
points in a compact set must be finite.)

Proof Let I = [a, b] (the case of a closed curve being addressed similarly). Take
p ∈ Rm and u such that p = m(u). Fix λ ∈ R and ε > 0. One has m(u + δ) −
m(u) − δ|ṁ(u)|Tm(u) = o(δ). So, taking δ small enough so that |m(u + δ)
− m(u)| < ε and

∣∣∣∣λTm(u) − λ

δ|ṁ(u)| (m(u + δ) − m(u))

∣∣∣∣ < ε

one gets |x − p| < ε and |λTm(u) − r(x − p)| < ε with x = m(u + δ) and r =
λ/(δ|ṁ|). If u ∈ (a, b), one can ensure that r > 0 by choosing the sign of δ appro-
priately. If u = a one must take δ > 0 and r > 0 only if λ > 0. Similarly, if u = b,
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one needs λ < 0. In any case, either λTm(u) or −λTm(u) belongs to T+
p Rm , so that

λTm(u) ∈ TpRm .
Conversely, if v ∈ TpRm , there exists sequences (un) and (rn) with un ∈ I and

rn > 0 such that |m(un) − p| < 1/n and |v − rn(m(un) − p)| < 1/n. Taking a sub-
sequence if needed, one can assume that un → u ∈ I , necessarily with p = m(u).
If un = u for an infinite number of v, then |v| ≤ 1/n for these n, which implies
v = 0. Otherwise, remove these values from the sequence to ensure un �= u for all n
and use the fact that

v − rn(un − u)
m(un) − p

un − u
→ 0

with (m(un) − p)/(un − u) → ṁ(u) �= 0 to prove that rn(un − u) converges to
some λ ∈ R. We then have v = λṁu , which completes the proof. �

The unit normal is the unique vector Nm(u) which extends Tm(u) to a positively
oriented orthonormal basis of R

2: (Tm(u), Nm(u)) is orthonormal and
det[Tm(u), Nm(u)] = 1. The subscript m is generally dropped in the absence of
ambiguity.

The frame (T, N ) is parametrization-invariant in the following sense: if ϕ : I →
Ĩ is a regular change of parameter, and m = m̃ ◦ ϕ, then Tm̃(ϕ(u)) = Tm(u) and
similarly for the normal.

1.4 Embedded Curves

Letting I be either an interval or a torus, aC1 functionm : I → R
2 such that ṁ(u) �=

0 everywhere is a special case of an immersion (see DefinitionB.13), and regular
curves are also sometimes called immersed curves. Among immersed curves, one also
distinguishes embedded curveswhich are furthermore assumed to benon-intersecting
(so that closed embedded curves are regular Jordan curves). For embedded curves,
Tm(u) is (up to a sign change) the only unit element of Tm(u)M . Moreover, if m :
I �→ R

2 is an embedding, the inverse map m−1 : Rm → I , which is well defined by
assumption, is continuous: if pn ∈ Rm is a sequence that converges to p ∈ Rm , then,
for some un and u, pn = m(un) and p = m(u). Any limit v of a subsequence of un
(recall that I is compact, so that any sequence has at least a convergent subsequence,
and any limit of a subsequence belongs to I ) must satisfy, by continuity, m(v) = p,
which implies v = u. This implies that m−1(p) = u.

If two embedded curves have the same range, they can be deduced from one
another through a change of parameters, possibly after reorientation (this is not
true for regular curves). Letting m : I �→ R

2 and m ′ : I ′ �→ R
2 be two such curves,

ψ = m−1 ◦ m ′ is a homeomorphism (continuous, with a continuous inverse) between
I ′ and I . If v is any point in the case of closed curves, or v ∈ (a′, b′) for open curves,
one can apply the implicit function theorem to the identity m ′ = m ◦ ψ to prove that
ψ is differentiable with

ψ̇ ṁ ◦ ψ = ṁ ′,
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implying

ψ̇ = (ṁ ′)T ṁ ◦ ψ

|ṁ ◦ ψ|2 .

For open curves, one shows that ψ has non-zero right and left derivatives at a′ and
b′ by passing to the limit, the detailed argument being left to the reader. Because of
this, any parametrization-invariant quantity only depends on the (oriented) range of
the curve when restricted to embeddings.

With some abuse of terminology, wewill say that a subsetR ⊂ R
2 is an embedded

curve if there exists an embedded curve m such that R = Rm . Such a curve m is
then defined up to a change of parameter.

1.5 The Integral Along a Curve and Arc Length

Let m : [a, b] → R
2 be a parametrized curve. If σ = (a = u0 < u1 < · · · < un <

un+1 = b) is a subdivision of [a, b], one can approximate m by the polygonal line
mσ with vertices (m(u0), . . . ,m(un+1)). The length of mσ is the sum of lengths of
the segments that form it, namely

Lmσ
= length(mσ) =

n+1∑
i=1

|m(ui ) − m(ui−1)|.

One then defines the length of m as

Lm = sup
σ

Lmσ
,

where the supremum (which can be infinite) is over all possible subdivisions σ of
[a, b].

One then has the following proposition.

Proposition 1.7 If m : [a, b] → R
2 is C1, then

Lm =
∫ b

a
|ṁ(t)|dt < ∞.

Proof The fact that the integral is finite results from the derivative being bounded on
the compact interval [a, b] (because the curve is C1). If σ = (a = u0 < u1 < · · · <

un < un+1 = b) is a subdivision of [a, b], then one has

|m(ui+1) − m(ui )| =
∣∣∣∣
∫ ui+1

ui

ṁ(t)dt

∣∣∣∣ ≤
∫ ui+1

ui

|ṁ(t)|dt.
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Summing over i yields the fact that Lmσ
≤ ∫ b

a |ṁ(t)|dt and taking the supremum on
the right-hand side implies the same inequality for Lm .

On the other hand, given any σ, the finite increment theorem implies that, for all
i , there exists vi ∈ (ui , ui+1) such thatm(ui+1) − m(ui ) = ṁ(vi )(ui+1 − ui ). Using
this, we see that

Lmσ
=

n∑
i=0

|ṁ(vi )|(ui+1 − ui ),

which is a Riemann sum for
∫ b
a |ṁ(t)|dt , and can therefore be made arbitrarily close

to the integral by taking fine enough subdivisions. So for any ε, one can find σ such
that ∫ b

a
|ṁ(t)|dt ≤ Lmσ

+ ε

and since the upper-bound is less than Lm + ε, we find
∫ b
a |ṁ(t)|dt ≤ Lm by letting

ε tend to 0. This completes the proof of the proposition. �
If f : I → R is a continuous function, one defines the integral of f along m by

∫
m
f dσm =

∫ b

a
f (u) |ṁ(u)| du. (1.3)

The definition is parametrization-independent: if ψ : [a′, b′] → [a, b] is a change of
parameters, then, using a change of variable,

∫ b′

a′
f (ψ(u′))|∂(m ◦ ψ)(u′)|du′ =

∫ b′

a′
f (ψ(u′))|ṁ ◦ ψ(u′)| ψ̇(u′) du′

=
∫ b

a
f (u)|ṁ(u)|du

so that ∫
m◦ψ

f ◦ ψ dσm◦ψ =
∫
m
f dσm .

The same result holds if ψ : [a′, b′]∗ → [a, b]∗ is a change of parameter between
closed curves. In that case, taking c′ such that ψ(c′) = a ∼ b and letting ψ(a′ ∼
b′) = c, we have

∫ b′

a′
f ◦ ψ(u′)du′ =

∫ c′

a′
f ◦ ψ(u′)|∂(m ◦ ψ)(u′)|du′

+
∫ b′

c′
f ◦ ψ(u′)|∂(m ◦ ψ)(u′)|du′

=
∫ b

c
f (u)|ṁ(u)|du +

∫ c

a
f (u)|ṁ(u)|du
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=
∫ b

a
f (u)|ṁ(u)|du.

These results imply that, when m is an embedding, the integral along m only
depends on the rangeRm . This allows us to define the integral of a function overRm

by ∫
Rm

f dσRm =
∫
m
f dσm,

which does not depend on how Rm is parametrized.

We now give the following important definition.

Definition 1.8 Let m : I → R
2 be a (piecewise) C1 curve, where I is either [a, b]

or [a, b]∗. A change of parameter σ : I → [0, Lm] (or [0, Lm]∗) is an arc-length
reparametrization of m if

σ̇ = |ṁ|.

One says that m is parametrized by arc length if m : [0, Lm] → R
2 satisfies

|ṁ| = 1.

If m is regular, then σ is a regular change of parameter and m ◦ σ−1 is an arc-length
reparametrization ofm. When I = [a, b], the arc-length reparametrization is unique
and given by

σm(u) =
∫ u

a
|ṁ(v)|dv. (1.4)

When I = [a, b]∗, the parametrization is unique once the starting point c = σ−1(0)
is chosen, and is given by (following (1.2))

σm,c(u) =
∫ u

c
|ṁ(v)|dv∗. (1.5)

The arc length is parametrization-invariant: if m is a curve, with arc-length
reparametrization σ, and m̃ = m ◦ ψ is another parametrization of m, then σ ◦ ψ is
an arc-length parametrization of m̃ (this is obvious, since m̃ ◦ (σ ◦ ψ)−1 = m ◦ σ−1).

When a curve is parametrized by arc length, it is customary to denote its parameter
by s instead of u, and wewill follow this convention. From our definition of integrals,
we clearly have in that case

∫
m
f dσm =

∫ Lm

0
f (s)ds

(or ds∗ in the case of closed curves).
We will also use the notion of derivative with respect to the arc length. For open

curves, this corresponds to the limit of the ratio
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g(u + ε) − g(u)

σm(u + ε) − σm(u)

as ε → 0 (for closed curves, replace + by +∗) therefore leading to the following
definition.

Definition 1.9 Let m : I → R
2 be a C1 regular curve. The operator ∂sm transforms

a C1 function g over I into the function ∂smg, which is defined over I by

∂smg(u) = ġ(u)

|ṁ(u)| . (1.6)

We will write ∂s if there is no ambiguity concerning the curve m. Note that, if m
is parametrized by arc length (so that u = s), this notation coincides with the usual
derivative with respect to s and therefore introduces no conflict.

The next proposition expresses that the derivative with respect to the arc length
is parametrization invariant.

Proposition 1.10 Let m : I → R
2 be a regular curve and ψ : I ′ → I be a change

of parameter, with m̃ = m ◦ ψ. Then, for any C1 function g defined on I ,

(∂smg) ◦ ψ = ∂sm̃ (g ◦ ψ).

Proof This derives from the definition and from the chain rule, namely

∂sm̃ (g ◦ ψ) = ∂ũ(g ◦ ψ)

|∂ũ(m ◦ ψ)| = (∂ug) ◦ ψ

|(∂um) ◦ ψ| = (∂smg) ◦ ψ

(the positive term ∂ũψ cancels in the ratio). �

Note that, with this definition, one can rewrite the definition of the unit tangent as
Tm = ∂smm.

The following proposition shows how the arc length parametrization can be used
to stitch several local parametrizations of a set to a global one forming an embedding.

Proposition 1.11 LetR ⊂ R
2 be compact and connected. Assume that there exists a

family V1, . . . , Vn of open sets inR
2, and a family mi : [ai , bi ] → R

2 of embeddings,
such that R ⊂⋃n

i=1 Vi and, for every i = 1, . . . , n, R ∩ Vi = mi ((ai , bi )). Then,
there exists a closed embedding m : [a, b]∗ → R

2 such that R = Rm.

Proof Note that, sinceR is compact (hence closed), it contains each extremitymi (ai )
or mi (bi ). Also, assume, without loss of generality, that each curve is parametrized
by arc length so that ai = 0 and bi = Li (the length of mi ). Let I (1) = [0, L1] and
m(1) = m1, and define the following iterative construction.

Given the current interval In = [0, �n] and embedding m : In → R
2 such that

Rm ⊂ R, choose an index j such that m(�n) ∈ R ∩ Vj and Rm j �⊂ Rm . Let R0
m =

m((0, �n)), the setRm without its extremities.
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Define u j ∈ (0, L j ) by m j (u j ) = m(�n). Let A j be the connected component of
m−1(R0

m ∩ Vj ) that contains u j : A j is a sub-interval of (0, L j ) taking either the form
(x j , u j ), 0 < x j < u j or (u j , y j ), u j < y j < L j . Reorienting m j if needed, assume
that R ∩ Vj = (x j , u j ).

We now consider two cases.

(i) m j ([u j , L j ]) ∩ Rm = ∅. Define �n+1 = �n + L j − u j and extendm to [0, �n+1]
by m(u) = m j (u − �n + u j ) for u > �n . Then m is an embedding and the con-
struction can continue.

(ii) m j ([u j , L j ]) ∩ Rm �= ∅. Let v j > u j be the first parameter such that m j (v j ) ∈
Rm . If m(v j ) �= m1(0), then, by construction, there exists a Vi , i �= j such that
m(v j ) ∈ Rm ∩ Vi . This implies that m j coincides with mi in m j ((u j , v j ) ∩ Vi ,
but this contradicts the fact that vi was the first point of self-intersection.
So we have m(vi ) = m1(0) and we conclude the construction with �n+1 = �n +
v j − u j , extending m to [0, �n+1] by m(u) = m j (u − �n + u j ) for u > �n .

Note that we always reach case (ii) (there are at most n steps). After case (ii) is
completed,Rm is an embedded closed curve which is necessarily equal toR, which
is connected. �

1.6 Curvature

The curvature of a C2 regular curve m : I → R
2 is a function κm : I → R, related

to the arc-length derivative of the tangent through the formula:

∂sm Tm = κmNm . (1.7)

Note that T T
m Tm = 1 implies that T T

m ∂sm Tm = 0 so that ∂sm Tm is collinear to Nm and
κm is the coefficient of collinearity. From the remark made at the end of the previous
section, one also has

κmNm = ∂2
smm, (1.8)

the second derivative of the curve with respect to its arc length. This implies that

κm = NT
m∂2

smm = det (Tm, ∂2
smm). (1.9)

Assume thatTm canbe expressed asTm(u) = (cos θm(u), sin θm(u)) (so that Nm =
(− sin θm, cos θm)) where θ is differentiable in u (we will show below that this is
always true). Then, from a direct computation, ∂sm Tm = ∂smθNm , from which we
deduce an alternative interpretation of κm :

κm(u) = ∂smθm(u), (1.10)

where θm is a C1 version of the angle between Tm and the “horizontal axis.”
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The same kind of easy computation yields

∂sm Nm = −κmTm (1.11)

and Eqs. (1.7) and (1.11) together form what are called the Frénet formulas for the
curve m.

Since it is defined as a double arc-length derivative, the curvature is parametriza-
tion invariant. Indeed, if m̃ = m ◦ ψ, then, applying Proposition1.10 twice,

∂2
sm̃ m̃ = ∂sm̃ ((∂smm) ◦ ψ) = (∂2

smm) ◦ ψ

so that κm̃ = κm ◦ ψ.
When κm(u) �= 0, one defines the radius of curvature ρm(u) = 1/|κm(u)| and the

center of curvature cm(u) = m(u) + Nm(u)/κm(u). The circle with center cm(u) and
radius ρm(u) is called the osculating circle of the curve at m(u).

We now prove the fact that a smooth version of the tangent angle θ exists as a
consequence of the following lemma.

Lemma 1.12 Let I = [a, b] or [a, b]∗ and f : I → R
2 be a C p function satis-

fying | f (u)| = 1 for all u ∈ I , with p ≥ 0. Assume that for all u ∈ I , there is
a small neighborhood Ju ⊂ I and a C p function τu : Ju → R such that f (u′) =
(cos τ (u′), sin τ (u′)) for u′ ∈ Ju. Then there exists a C p function τ : I → R such
that f = (cos τ , sin τ ).

Proof Since I is compact, we can find a finite number of u1, . . . un such that I =⋃n
i=1 Jui . The result can then be proved by induction on n. There is nothing to

prove if n = 1. Assume that n > 1 and that the result is true for n − 1. Then there
must exist a subset Ju j with j �= n such that Ju j ∩ Jun �= ∅. Assume without loss
of generality that j = n − 1. There must exist an integer k such that, for any u in
this intersection, τun (u) = τun−1(u) + 2kπ. Define J̃un−1 = Jun−1 ∪ Jun and τ̃un−1(u) =
τun−1(u)on Jun−1 and τ̃un−1(u) = τun (u) − 2kπ on Jun , so that τ̃ isC

p on J̃un−1 . Thenwe
can apply the induction hypothesis to Ju1 , . . . , Jun−2 , J̃un−1 with associated functions
τu1 , . . . , τun−2 , τ̃un−1 . �

To prove the existence of a differentiable θ(u), the lemma needs to be applied
with p = 1, f = Tm , τ = θ and τu(u′) = θ0(u) + arcsin(det(Tm(u), Tm(u′))).

1.7 Expression in Coordinates

1.7.1 Cartesian Coordinates

To provide explicit formulas for the quantities that have been defined so far, we
introduce the space coordinates (x, y) andwrite, for a curvem:m(u) = (x(u), y(u)).
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The first, second and higher derivatives of x will be denoted by ẋ, ẍ, x (3), . . . and
similarly for y. The tangent and the normal vector expressions in coordinates are

T = 1√
ẋ2 + ẏ2

(
ẋ
ẏ

)
, N = 1√

ẋ2 + ẏ2

(−ẏ
ẋ

)
.

The arc length is ds = √
ẋ + ẏ du and the curvature is

κ = ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
. (1.12)

The last formula is proved as follows. Since κN = ∂sT , we have

κ = NT∂sT .

Using T = ∂sm = ṁ/ṡ, we have

NT∂sT = ṡ−2m̈T N + ṡ−1∂
(
ṡ−1
)
ṁT N .

The last term vanishes, and the first one gives (1.12) after introducing the coordinates.

1.7.2 Polar Coordinates

Let (Oxy) be a fixed frame. A point m in the plane can be characterized by its
distance, r , to the origin, O , and by θ, the angle between the horizontal axis (Ox)
and the half-line Om. (Notice that this is different from the angle of the tangent with
the horizontal, for which we also used θ. Unfortunately, this is the standard notation
in both cases.) The relation between the Cartesian coordinates (x, y) of m and its
polar coordinates (r, θ) is (x = r cos θ, y = r sin θ). This representation is unique,
except for m = O , for which θ is undetermined.

A polar parametrization of a curve u �→ m(u) is a function u �→ (r(u), θ(u)).
Often, the parameter u coincides with the angle θ and the parametrization reduces to
a function r = f (θ). Some shapes have very simple polar coordinates, the simplest
being a circle centered at O for which the equation is r = const.

Let us compute the Euclidean curvature from such a parametrization. Let τ =
(cos θ, sin θ) and ν = (− sin θ, cos θ). We have m = rτ , and

ṁ = ṙτ + r θ̇ν ,

m̈ = (r̈ − r θ̇2)τ + (2ṙ θ̇ + r θ̈)ν.
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Therefore,

κ = det[ṁ, m̈]
|ṁ|3 = r2(θ̇)3 − rr̈ θ̇ + 2ṙ2θ̇ + rṙ θ̈

(ṙ2 + r2θ̇2)3/2
.

When the curve is defined by r = f (θ), we have θ = u, θ̇ = 1 and θ̈ = 0, so that

κ = r2 − rr̈ + 2ṙ2

(ṙ2 + r2)3/2
.

The polar representation does not have the same invariance properties as the arc
length (see the next section), but still has some interesting features. Scaling by a
factor λ simply corresponds to multiplying r by λ. Making a rotation with center O
and angle α simply means replacing θ by θ + α. However, there is no simple relation
for a translation. This is why a curve is generally expressed in polar coordinates with
respect to a curve-dependent origin, such as its center of gravity.

1.8 Euclidean Invariance

The arc length and the curvature have a fundamental invariance property. If a curve is
transformed by a rotation and translation, both quantities are invariant. The rigorous
statement of this is as follows. Let R be a planar rotation and b a vector in R

2. Define
the transformation g : R

2 → R
2 by g(p) = Rp + b. Then, ifm : I = [a, b] → R

2 is
a plane curve, one can define g · m : I → R

2 by (g · m)(u) = g(m(u)) = Rm(u) +
b. Then, the statements are:

(i) σg·m(u) = σm(u), and in particular Lg·m = Lm = L .
(ii) The curvatures κm and κg·m , reparametrized over [0, L] (as functions of the arc

length), coincide.

The proof of (i) is straightforward from the definition of σm (see Eq. (1.4)). For (ii),
use ∂2

sm (g · m) = R∂2
smm, Ng·m = RNm and (1.9).

Note that in this discussion we have taken I = [a, b], an interval, for which the
arc length reparametrization is uniquely defined by (1.4). If one wants to consider
“wrapped intervals” [a, b]∗, arc lengths should be compared with the same inverse
image of 0 (c in (1.5)).

We now state and prove the converse statement of (ii).

Theorem 1.13 (Characterization Theorem) If two C2 regular plane curves m and
m̃ have the same curvature as a function of the arc length, denoted κ : [0, L] → R,
then there exist R and b, and a change of parameter, ψ, such that m̃ = Rm ◦ ψ + b.

With our notation, the assumption means that

κ = κm ◦ σ−1
m = κm̃ ◦ σ−1

m̃

and implicitly implies that the lengths of the two curves coincide (with L).
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Proof Let m∗ and m̃∗ be m and m̃ reparametrized with arc length. We prove that

m̃∗ = Rm∗ + b

for some R and b, which implies the statement of the theorem after reparame-
trization. Equivalently, we assume without loss of generality that both m and m̃
are parametrized by arc length.

Now, let κ : [0, L] → R be an integrable function. We build all possible curves
m that are parametrized by arc length over [0, L] and have κ as curvature and prove
that they all differ by a rotation and translation. By definition, the angle θm , defined
over [0, L], must satisfy:

θ̇m = κ and ṁ = (cos θm, sin θm).

Let θ(s) = ∫ s
0 κ(u)du. The first equality implies that, for some θ0 ∈ [0, 2π), we have

θm(s) = θ(s) + θ0 for all s ∈ [0, L]. The second implies that, for some b ∈ R
2,

m(s) =
∫ s

0
(cos(θ(u) + θ0), sin(θ(u) + θ0))du + b.

Introduce the rotation R =
(
cos θ0 − sin θ0
sin θ0 cos θ0

)
. From standard trigonometric formu-

las, we have

R

(
cos θ
sin θ

)
=
(
cos(θ + θ0)
sin(θ + θ0)

)

so that, letting m̂(s) = ∫ s
0 (cos θ(u), sin θ(u))du, we have m = Rm̂ + b. Since m̂ is

uniquely defined by κ, we obtain the fact that m is uniquely defined up to a rotation
and translation. �

1.9 The Frénet Frame

If m is a C2 regular plane curve, its Frénet frame is defined by

Fm(u) = (Tm(u) Nm(u)
)
.

Considering Tm and Nm as columnvectors, Fm is a rotationmatrix satisfying FT
m Fm =

Id and det(Fm) = 1. It is a moving frame along the curve.
Equations (1.7) and (1.11), which, put together, form theFrénet formulas for plane

curves, can be summarized in matrix form as

∂sm Fm = FmSm (1.13)
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with

Sm =
(

0 −κm

κm 0

)
. (1.14)

Note that, applying ∂sm to FT
m Fm = Id, we get

(∂sm Fm)T Fm + FT
m ∂sm Fm = 0,

which states that thematrix FT
m ∂sm Fm (which is equal to Sm)must be skew-symmetric

(STm = −Sm). This implies that Eqs. (1.13) and (1.14) can be used as alternative
definitions of the curvature, via the Frénet formulas.

The advantage of this construction is that it generalizes to arbitrary dimensions
(cf. Sect. 3.1), and to more general forms of moving frames (like affine, or projective
frames). It also leads to an alternative proof of the Characterization Theorem, as
detailed below.

Proof (Alternative proof of Theorem1.13) If one applies a rotation, R, and a trans-
lation to a curve m, the Frénet frame of the new curve, m̃, is Fm̃ = RFm , and using
RT R = Id and σm = σm̃ , we have

Sm̃ = FT
m̃ ∂sm̃ Fm̃ = FT

m ∂sm Fm = Sm .

We therefore retrieve the fact that κm is invariant under rotation. The invariance
by change of parameter is again a consequence of the invariance of the arc-length
derivative.

We now prove the converse, assume that m and m̃ are such that Sm = Sm̃ =: S
with both curves parametrized by arc length (as in the first proof of Theorem1.13, it
suffices to restrict to this case).

Let Gm(s) = Fm(0)T Fm(s) and Gm̃(s) = Fm̃(0)T Fm̃(s), so that

{
Ġm = GmS

Ġm̃ = Gm̃S.

Both Gm and Gm̃ are therefore solutions of the differential equation Ġ = GS. We
have, in additionGm̃(0) = Gm(0) = Id, and the theory of differential equations states
that two functions that satisfy the same linear differential equation with the same
initial condition must coincide. Thus Gm̃ = Gm , which yields Fm̃ = RFm with R =
Fm̃(0)Fm(0)T . This implies, in particular, that Tm̃ = RTm , and, since Tm = ṁs for
curves parametrized with arc length,

m̃(s) − m̃(0) =
∫ s

0
Tm̃(u)du =

∫ s

0
RTm(u)du = Rm(s) − Rm(0)

so that m̃ = Rm + b with b = m̃(0) − Rm(0). �
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1.10 Enclosed Area and the Green (Stokes) Formula

When a closed curvem is embedded, its enclosed area can be computed with a single
integral instead of a double integral. LetΩm be the bounded connected component of
R

2 \ Rm . We assume that m is defined on I = [a, b]∗, and that the curve is oriented
so that the normal N points inward, whichmeans that for any u ∈ [a, b]∗, there exists
an ε > 0 such thatm(u) + t N (u) ∈ Ωm for 0 < t < ε. Since this is a convention that
will be used repeatedly, we state it as a definition.

Definition 1.14 A closed regular curve oriented so that the normal points inward is
said to be positively oriented.

For a circle, positive orientation corresponds to moving counter-clockwise.
We have the following proposition:

Proposition 1.15 Using the notation above, and assuming that m is positively ori-
ented, we have

Area(Ωm) =
∫

Ωm

dx dy = −1

2

∫ b

a
N (u)Tm(u) |ṁ(u)| du. (1.15)

Note that the last integral can also be written as −(1/2)
∫
m(NTm), as defined

in Sect. 1.5. We also have NTm = − det(m(s), T (s)) which provides an alternative
expression. Indeed, we have

−(1/2)
∫
m
(NTm) dσm = (1/2)

∫
m
det(m, T ) dσm

= (1/2)
∫ b

a
det(m(u), T (u))|ṁ(u)|du

so that, using T (u) = ṁ(u)/|ṁ(u)|,

Area(Ωm) = (1/2)
∫ b

a
det(m(u), ṁ(u))du. (1.16)

We will not prove Proposition1.15, but simply remark that (1.15) is a particular
case of the following important theorem.

Theorem 1.16 (Divergence theorem) If f : R
2 → R

2 is a smooth function (a vector
field), then ∫ b

a
N (u)T f (m(u)) |ṁ(u)| du = −

∫
Ωm

div f dx dy (1.17)

where, letting f (x, y) = (α(x, y),β(x, y)), one has div f = ∂1α + ∂2β.

(Here ∂i denotes the derivative with respect to the i th coordinate.)
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Equation (1.17) is called Green’s formula. To retrieve Eq. (1.15) from it, take
f (x, y) = (x, y), for which div f = 2. Note that Green’s formula is sometimes given
with a plus sign, N being chosen as the outward normal.

Formula (1.15) can also be nicely interpreted as the limit of an algebraic sum of
triangle areas. For this, consider a polygonal discretization, say m̃, ofm with vertices
p1, . . . , pN . Let O be an arbitrary point in R

2.
First consider the simple case in which the segment Opk is included in the region

Ωm̃ for all k (the polygonal curve is said to be star shaped with respect to O). In this
case, the area enclosed by the polygon is the sum of the areas of the triangles. The
area of (O, pk, pk+1) is | det(pk pk+1, Opk)|/2.1 Assuming that the discretization is
counterclockwise, which is consistent with the fact that the normal points inward,
the vectors Opk and pk pk+1 make an angle between 0 and π, which implies that their
determinant is positive. We therefore get

Area(Ωm̃) = 1

2

N∑
k=1

det[Opk, pk pk+1]. (1.18)

Since this can bewritten as 1
2

∑N
k=1 det(Opk, pk pk+1/|pk pk+1|)|pk pk+1|, this is con-

sistent with the continuous formula

1

2

∫ b

a
det(Om(u), T (u))|ṁ(u)|du.

The interesting fact is that (1.18) is still valid for polygons which are not star shaped
around the origin. In this case, the determinant may take negative values, which
provides a necessary correction because, for general polygons, some triangles can
intersect R

2 \ Ωm .
Finally, we mention a classical inequality comparing the area and the perimeter

of a simple closed curve.

Theorem 1.17 (Isoperimetric Inequality) It m is a simple closed curve with perime-
ter L and area A, then

4πA ≤ L2 (1.19)

with equality if and only if m is a circle.

1.11 The Rotation Index and Winding Number

Let m be a closed, C1, plane curve, defined on I = [a, b]. Express T : [a, b] → S1

(the unit circle) as a function t �→ (cos θ(t), sin θ(t))where θ is a continuous function
(cf. Lemma1.12).

1The general expression of the area of a triangle (A, B,C) is | det(AB, AC)|/2, half the area of
the parallelogram formed by the two vectors.
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Sincem is closed, we must have T (b) = T (a), which implies that θ(b) = θ(a) +
2rmπ, where rm is an integer called the rotation index of the curve.

The rotation index is parametrization-invariant, since it is defined in terms of T ,
which is itself parametrization-invariant. If the curve is regular and C2, then, taking
the arc length parametrization, we find, using κ = θ̇,

θ(L) − θ(0) =
∫ L

0
κ(s)ds

or

rm = 1

2π

∫ L

0
κ(s)ds.

The rotation index provides an algebraic count of the number of loops in the curve:
a loop is counted positively if it is parametrized counter-clockwise (normal inward),
and negatively otherwise. The figure “8”, for example, has a rotation index equal to
0. This also provides an alternative definition of a positively oriented curve: a simple
closed curve is positively oriented if and only if its rotation index is +1.

A similar notion is the winding number of a curve. It depends on a reference point
p0 ∈ R

2, and is based on the angle between p0m(t)/|p0m(t)| and the horizontal
axis, which is again assumed to be continuous in t . Denoting this angle by αp0(t),
the winding number of m around p0 is

wp0(m) = (αp0(b) − αp0(a))/2π.

It provides the number of times the curve loops around p0. Again, it depends on the
curve orientation.

If a curve is simple (i.e., it has no self-intersection), then it is intuitively obvious
that it can loop only once. This is the statement of the theorem of turning tangents,
which says that the rotation index of a simple closed curve is either 1 or−1. However,
proving this statement is not so easy (even in the differentiable case we consider) –
the reader may refer to [86] for a proof.

1.12 More on Curvature

There is an important relationship between positive curvature (for positively oriented
curves) and convexity. One says that a simple closed curve is convex if the bounded
region it outlines is convex (it contains all line segments between any two of its
points). Another characterization of convexity is that the curve lies on a single side
of any of its tangent lines. The relation between convexity and curvature is stated in
the next theorem.

Theorem 1.18 A positively oriented C2 curve is convex if and only if its curvature
is everywhere nonnegative.
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We only provide a partial justification of the only if part. Assume thatm is positively
oriented and that its interior, Ωm , is convex. For a fixed arc length, s and ε small
enough, we have (since m is positively oriented): m(s) + εN (s) ∈ Ωm if ε > 0 and
∈ Ω

c
m if ε < 0. Now, using a second-order expansion around s, we get

1

2
(m(s + h) + m(s − h)) = m(s) + h2

s
κ(s)N (s) + o(h2)

and this point cannot be in Ωm if h is small and κ(s) < 0.
The local extrema of the curvature are also of interest. They are called the vertices

of the curve. The four-vertex theorem, which we also state without proof, is another
classical result for plane curves [63, 212, 228].

Theorem 1.19 Every simple closed C2 curve has at least four vertices.

1.13 Discrete Curves and Curvature

1.13.1 Least-Squares Approximation

Because it involves a ratio of derivatives, the numerical computation of the curvature
is unstable (very sensitive to noise). We give here a brief account of how one can
deal with this issue.

Assume that the curve is discretized as a finite sequence of points, say
m(1), . . . ,m(N ). The usual finite-difference representation of derivatives are:

m ′(k) = (m(k + 1) − m(k − 1))/2;
m ′′(k) = m(k + 1) − 2m(k) + m(k − 1).

The simplest formula for the approximate curvature is then

κ(k) = det(m ′(k),m ′′(k))
|m ′(k)|3 .

This is however very sensitive to noise. A small variation in the position of m(k)
can have large consequences on the value of the estimated curvature. To be robust,
curvature estimation has to include some kind of smoothing. As an example of such
an approach, we describe a procedure in which one fits a curve of order 2 at each
point.

Fix an approximation scale Δ ≥ 1, where Δ is an integer. For each k, compute
three two-dimensional vectors a(k), b(k), c(k) in order to have, for −Δ ≤ l ≤ Δ:

m(k + l) � a(k)
l2

2
+ b(k)l + c(k).
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Once this is done, b(k)will be our approximation of the first derivative ofm and a(k)
our approximation of the second derivative. The curvature will then be approximated
by

κ(k) = det[b(k), a(k)]
|b(k)|3 .

We will use least-squares estimation to compute a, b, c. First, build the matrix

A =
⎛
⎜⎝
∑Δ

l=−Δ
l4

4 0
∑Δ

l=−Δ
l2

2
0

∑Δ
l=−Δ l2 0∑Δ

l=−Δ
l2

2 0 2Δ + 1

⎞
⎟⎠

which is the matrix of second moments for the “variables” l2/2, l and 1. They can
be computed in closed form as a function of Δ, since

Δ∑
l=−Δ

l2 = Δ

3
(2Δ2 + 3Δ + 1) and

Δ∑
l=−Δ

l4 = Δ

15
(6Δ4 + 15Δ3 + 10Δ2 − 1).

The second computation is, for all k:

z0(k) =
Δ∑

l=−Δ

m(k + l),

z1(k) =
Δ∑

l=−Δ

lm(k + l),

z2(k) =
Δ∑

l=−Δ

l2

2
m(k + l).

Given this, the vectors a(k), b(k), c(k) are provided by the row vectors of the matrix

A−1

⎛
⎝z2(k)z1(k)
z0(k)

⎞
⎠

where z0, z1, z2 are also written as row vectors. As shown in Fig. 1.1, this method
gives reasonable results for smooth curves. However, if the curve has sharp angles,
the method will oversmooth and underestimate the curvature.
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Fig. 1.1 Noise and curvature. The first curve on the left is an ellipse discretized over 125 points.
The second on the right is the same ellipse, with coordinates rounded to two decimal points. The
difference is almost imperceptible. However, the second row shows the result of estimating the
curvature without smoothing, on the first and the second ellipse, with a very strong noise effect.
The third (resp. fourth) row shows the result of the second-order approximation with Δ = 5 (resp.
Δ = 10). The computed curvature for the truncated curve progressively improves while that of the
original curve is minimally affected
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1.13.2 Curvature and Distance Maps

If A ⊂ R
2, one defines the distance map to A as

dA(p) = dist(p,A) = inf {|p − q|, q ∈ A} .

If A is a closed set (which we will assume in the following), then for any p ∈ R
2

there exists a q ∈ A such that dA(p) = |p − q| (i.e., the infimum is aminimum). This
is because any minimizing sequence qn such that |p − qn| → dA(p) is necessarily
bounded, and therefore has, according to the Heine–Borel theorem, a convergent
subsequence, with limit q ∈ A (because A is closed) and such that |p − q| = dA(p).

The optimal q is not always unique. For example, all points in a circle are closest
to its center. The set of points p ∈ R

2 for which there exists a unique q ∈ A such that
|p − q| = dA(p) will be denoted by UA, and we let πA : UA → A be the projection,
uniquely defined by |p − πA(p)| = dA(p).

For p ∈ R
2, we let B(p, r) = {q ∈ R

2 : |p − q| < r
}
denote the (open) disc with

center p and radius r . For q ∈ A, define

r(A, q) = sup {r : B(q, r) ⊂ UA}

and r(A) = inf {rA(q) : q ∈ A}, which is called the reach of A, and also has the
following alternative definition.

Proposition 1.20

r(A) = sup {r : dA(p) < r ⇒ p ∈ UA} . (1.20)

Proof Denote temporarily by r ′(A) the right-hand side of (1.20). Assume that
r ≤ r ′(A). If q ∈ A and p ∈ B(q, r), then dA(p) ≤ |p − q| < r so that p ∈ UA

by definition of r ′
A. Therefore, B(q, r) ⊂ UA and r ≤ r(A, q) for all q ∈ A, which

implies that r ≤ r(A). Taking the maximum in r , we get r ′(A) ≤ r(A).
Assume now that r ≤ r(A). If dA(p) < r , then p ∈ B(πA(p), r), and since

r(A) ≤ r(A,πA(p)), we have p ∈ UA. This proves that r ≤ r ′(A), and taking the
maximum in r , we get r(A) ≤ r ′(A), which concludes the proof. �

We have the following proposition.

Proposition 1.21 The distance map is 1-Lipschitz, i.e., for all p, p′ ∈ R
2, one has

|dA(p) − dA(p
′)| ≤ |p − p′| (1.21)

and the projection πA is continuous on its domain.

Proof One has, for all p, p′ ∈ R
2 and q ∈ A,

dA(p) ≤ |p − q| ≤ |p′ − q| + |p − p′|.
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Taking the inf of the right-hand side, we get dA(p) ≤ dA(p′) + |p − p′|.
By symmetry, we also have dA(p′) ≤ dA(p) + |p − p′| and (1.21) holds.

Now, take p ∈ UA and a sequence pn ∈ UA such that |pn − p| → 0. Let qn =
πA(pn), q = πA(p) and assume that there exists a subsequence of qn (that we will
still denote by qn) and ε > 0 such that |qn − q| ≥ ε. Because |p − qn| ≤ |p − pn| +
dA(pn) ≤ 2|p − pn| + dA(p), which is bounded, qn has a convergent subsequence
(still called qn), with limit q ′ ∈ A. But |p − q ′| = limn |pn − qn| = limn dA(pn) =
dA(p). Since p ∈ UA, this implies q = q ′, a contradiction to the fact that |qn − q| ≥ ε
for all n. The latter condition being impossible implies that πA is continuous. �

Proposition 1.22 Assume that dA is differentiable at p ∈ ŮA (the interior of UA).
Then, if p /∈ A,

∇dA(p) = p − πA(p)

|p − πA(p)| . (1.22)

Proof To see this, first note that, letting q = πA(p), one has pt := q + t (p − q) ∈
UA for all t ∈ [0, 1], with πA(pt ) = q. Indeed, if q ′ ∈ A, q ′ �= q, one has |p − q| <

|p − q ′| ≤ |p − pt | + |pt − q ′| = (1 − t)|p − q| + |pt − q ′|. This yields

|pt − q| = t |p − q| < |pt − q ′|

so that pt ∈ UA withq = πA(pt ). This also implies that dA(pt ) = t |p − q| and taking
the derivative with respect to t at t = 1, we get

∇dA(p)
T (p − q) = |p − q|.

However, (1.21) implies that |∇dA(p)| ≤ 1. This is only possible for ∇dA(p) given
by (1.22).

One can use the fact that the gradient of dA is prescribed in ŮA \ A whenever dA

is differentiable, in combination with Rademacher’s theorem [107], which states that
Lipschitz functions are differentiable almost everywhere, to prove that dA is actually
differentiable on the whole set ŮA \ A. Similarly, d2

A is differentiable on ŮA, with
∇(d2

A)(p) = 2(p − πA(p)). This general fact is proved below in the special case
A = Rm , where m is a C2, closed, regular curve with no self-intersection. Note that
our definitions, so far, and Propositions 1.20–1.22 are valid for arbitrary closed sets,
and in any dimension (and so is the differentiability of dA on ŮA \ A).

We now specialize to the case A = Rm , and we will write dm = dRm , Um = URm ,
etc.

Proposition 1.23 Let m be a simple closed C2 regular curve. Then, we have the
following statements.

(i) If |p − m(s)| = dm(p), then p = m(s) + t Nm(s) with |t | = dm(p) and
tκm(s) ≤ 1.

(ii) Let
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ρm = max

{
2 |(m(s̃) − m(s))T Nm(s)|

|m(s̃) − m(s)|2 : s, s̃ ∈ [0, L]∗, s �= s̃

}
. (1.23)

Then ρm < ∞ and r(Rm) ≥ 1/ρm > 0. In particular, Ům is not empty.
(iii) The distance map is differentiable on Ům.

Proof Assume thatm is parametrized by arc length over thewrapped interval [0, L]∗.
The function f : u �→ |p − m(s +∗ u)|2 has by assumption a globalminimumat u =
0. We therefore have ḟ (0) = 0 and f̈ (0) ≥ 0. Since ḟ (0) = −2(p − m(s))T Tm(s),
we get the fact that p − m(s) is normal to m, so that p = m(s) + t Nm(s) with
|t | = dm(p). We also have f̈ (0) = 2 − 2(p − m(s))T Nm(s)κm(s) = 2(1 − tκm(s))
yielding tκm(s) ≤ 1. This proves (i).

We now prove that ρm is finite. If m(sn) �= m(s̃n) are such that

cn := 2 |(m(s̃n) − m(sn))T Nm(sn)|
|m(s̃n) − m(sn)|2

tends to infinity, then, necessarily, m(s̃n) − m(sn) → 0. We can assume (taking sub-
sequences if needed) that both sn and s̃n converge, necessarily to the same limit (say
s) because m is non-intersecting. Assume that s �= 0 so that sn ∈ (0, L) for large
enough n (otherwise, just reparametrize m with another starting point). We have,
making a Taylor expansion,

m(s̃n) = m(sn) + (s̃n − sn)Tm(sn) + κ(sn)
(s̃n − sn)2

2
Nm(sn) + o((s̃n − sn)

2),

∣∣(m(s̃n) − m(sn))
T Nm(sn)

∣∣ = |κ(sn)| (s̃n − sn)2

2
+ o((s̃n − sn)

2)

and
|m(s̃n) − m(sn)|2 = (s̃n − sn)

2 + o((s̃n − sn)
2).

Thus cn → |κm(s)|, which is a contradiction, proving that ρm is finite. Note that the
same limit argument also proves that ρm ≥ ‖κm‖∞ := maxs |κm(s)|.

Now, take q ∈ R
2 with dm(q) = t < 1/ρm and assume that it has two closest

points, so that there exists s0 �= s1 such that t = |q − m(s0)| = |q − m(s1)|. Then
q = m(s0) + t0Nm(s0) = m(s1) + t1Nm(s1) with |t0| = |t1| = t . Moreover,

|m(s1) − m(s0)|2 = |t0Nm(s0) − t1Nm(s1)|2 = 2t20 − 2t1t0Nm(s0)
T Nm(s1)

= 2t |t0 − t1Nm(s0)
T Nm(s1)|

and
|(m(s1) − m(s0))

T Nm(s0)| = |t0 − t1Nm(s0)
T Nm(s1)|.
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We therefore get
2|(m(s1) − m(s0))T Nm(s0)|

|m(s1) − m(s0)|2 = 1

t
.

By definition, the right-hand side is less than or equal to ρm , which contradicts our
assumption that t < 1/ρm . Therefore, q ∈ Um . This proves that r(Rm) ≥ 1/ρm .

Conversely, take t < r(Rm). By definition, we have B(m(s), t + ε) ⊂ UA for all
s ∈ [0, L]∗ and some ε such that t + ε < r(Rm). Therefore, letting q+ = m(s) +
t Nm(s) and q− = m(s) − t Nm(s), we have |m(s̃) − q+| > t and |m(s̃) − q−| > t
for all s̃ �= s. Developing the expression |m(s̃) − m(s) ∓ t Nm(s)| − t2 yields

|m(s̃) − m(s)|2 ≥ ±2t (m(s̃) − m(s))T Nm(s)

so that
1

t
≥ 2

∣∣(m(s̃) − m(s))T Nm(s)
∣∣

|m(s̃) − m(s)|2

for all s �= s̃, i.e., t ≤ 1ρm . Taking the maximum in t implies r(Rm) ≤ 1/ρm .

We now prove (iii). Take q ∈ Ům and m(s) = πm(q). Write q = m(s) + r Nm(s)
with |r | = dm(q). Since B(q, ε) ⊂ Ům for ε small enough, we have m(s) + t N (s) ∈
Ům for t ∈ (r − ε, r + ε), andπm(m(s) + t N (s)) = m(s). From (i), we getκm(s)t ≤
1 for t ∈ (r − ε, r + ε), which implies κm(s)r < 1.

Take δ > 0 such that κm(u)t < 1 if |s − u| < δ and t ∈ (r − ε/2, r + ε/2).
Consider the mapping ϕ : (s − δ, s + δ) × (r − ε/2, r + ε/2) → R

2 defined by
ϕ(u, t) = m(u) + t N (u). Then ∂1ϕ(u, t) = (1 − tκm(u))Tm(u) and ∂2ϕ(u, t) =
Nm(u) so that det(dϕ) = 1 − tκm(u) �= 0. The inverse function theorem implies
that ϕ (possibly restricted to a smaller open neighborhood of (s, r)) is invertible
with a differentiable inverse. So, there exists a neighborhood of q in Ům such that
ϕ−1(p) = (πm(p), t (p)) is differentiablewith t (p) = ±dm(p).Making sure that this
neighborhood does not intersect m, we can ensure that the sign of t (p) is constant
so that dm is differentiable in this neighborhood and, in particular, at q. �

Consider the mapping (a local version of which was introduced in the previous
proof)

ϕm : [0, L]∗ × (−r, r) → R
2

(s, t) �→ m(s) + t Nm(s)

for some r < r(Rm). As shown in the proof of Proposition 1.23, ϕm is locally
invertible, but because it is also one-to-one, it provides a diffeomorphism from
[0, L]∗ × (−r, r) to the set

Vm(r) = {q : dm(q) < r} .

Consider now the set V+
m (r) = ϕm ([0, L]∗ × (0, r)). We can write
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Area(V+
m (r)) =

∫ L

0

∫ r

0
det dϕm(s, t) ds dt

=
∫ L

0

∫ r

0
(1 − tκm) ds dt

= Lr − r2

2

∫ L

0
κm ds.

The interesting conclusion is that the area is a second-degree polynomial in r . The
first-degree coefficient is the curve’s length and the second-degree coefficient is the
integral of the curvature, i.e., the rotation index of the curve.

The formula can be localized without difficulty by restricting V+(m) to points
s, t such that s0 < s < s1, the result being obviously

(s1 − s0)r − r2

2

∫ s1

s0

κm ds = r
∫ s1

s0

(1 − κmr/2) ds.

The “infinitesimal limit” r(1 − κm(s)r/2)ds provides the infinitesimal area of the
set of points that are within distance r to the curve and project on m(s) for some
s ∈ (s0, s1). This area is at first order given by the arc length times r , with a corrective
term involving the curvature.

This computation is a special case of a very general construction of what are
called curvature measures [106]. They can be defined for a large variety of sets, in
any dimension. We will see a two-dimensional description of them when discussing
surfaces.

Proposition1.23 needs to be modified to apply to open curves. Consider such a
curve, m : [0, L] → R

2. Then point (i) in the proposition remains true with a proper
definition of a normal vector to Rm : one says that N is a unit normal to Rm (or
simply to m) at m(s) if

⎧⎪⎨
⎪⎩

N = ±Nm(s) if s ∈ (0, L)

N = t1Nm(0) + t2Tm(0) if s = 0

N = t1Nm(L) − t2Tm(L) if s = L

with t21 + t22 = 1, t2 > 0. Denoting by Nm(s) the set of unit normals to m at m(s),
the first statement in (i) can be replaced by: p = m(s) + dm(p)N where N ∈ N (s).
The fact that κm(s)dm(p) ≤ 1 holds for s ∈ (0, L).

If one replaces the definition of ρm by

ρm = max

{
2 (m(s̃) − m(s))T N

|m(s̃) − m(s)|2 : s, s̃ ∈ [0, L]∗, s �= s̃, N ∈ Nm(s)

}
, (1.24)

then (ii) remains true. Note that (1.24) boils down to (1.23) for closed curves, where
Nm(s) = {±Nm(s)}. Finally, (iii) is true.
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The reader can try to prove these statements directly, or refer to [106], where these
statements are proved for arbitrary closed sets, with a proper definition of the set of
unit normal vectors, and without the finiteness of ρm , which does not hold in general.
(It does not hold, for example, for polygonal curves.)

1.14 Implicit Representation

1.14.1 Introduction

Implicit representations can provide simple descriptions of relatively complex shapes
and can in many cases be a good choice when designing stable shape processing
algorithms. The zero level set of a function f : R

2 → R is the set C f of all p ∈ R
2

such that f (p) = 0 (cf. Fig. 1.2). One says that f is regular if its derivative never
vanishes on C f , that is,

f (p) = 0 ⇒ ∇ f (p) �= 0. (1.25)

The setC f can have several connected components, each of them being the image of
a curve (level sets can therefore be used to represent multiple curves). Our first goal
is to show how local properties of curves can be computed directly from the function
f . We will always assume, in this chapter, that the function f tends to infinity as p
tends to infinity. This implies that the zero level sets are bounded.

The implicit function theorem implies that, in a neighborhood of any regular point
of f (such that∇ f (m) �= 0), the setC f can be locally parametrized as a regular curve,
for example by expressing one of the coordinates (x, y) as a function of the other.
This fact and Proposition1.11 implies that, if f is regular, each connected component
of C f can be parametrized as a regular curve. The existence of higher derivatives in
f implies the same regularity for the parametrization.
Fix a connected component and assume that such a parametrization has been

chosen. This results in a curve m : I → R
2 such that m(0) = m0 and f (m(u)) = 0

for u ∈ I (Rm coincides with the chosen connected component). From the chain
rule, we have:

∇ f (m)T∂um = 0.

This implies that ∇ f (m) is normal to m.
Orientation. We will say that f is positively oriented if f < 0 in the bounded
connected components of R

2 \ C f and f > 0 otherwise. If m is also positively
oriented, then ∇ f (m) points outward while the normal N to m points inward,
so that ∇ f (m) = −|∇ f (m)|N (recall that (T, N ) must have determinant 1, with
T = ṁ/|ṁ|).

Assuming positive orientation, we obtain

T = 1

|∇ f |
(− ∂2 f, ∂1 f

)
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Fig. 1.2 Implicit
representation: The first two
panels provide two views of
the graph of a function
f : R

2 �→ R intersecting the
plane z = 0. The third panel
is the corresponding level set

Assume that f is twice differentiable. From the second derivative of the equation
f (m(u)) = 0, we have

ṁT d2 f (m)ṁ + ∇ f (m)T m̈ = 0 .

(recall that the second derivative of f is a 2 by 2 matrix).
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Since ∇ f (m) = −|∇ f (m)|N and m̈T N = κ|ṁ|2, the previous equation yields
(after division by |ṁ|2),

T T d2 f (m) T − κ|∇ f (m)| = 0 .

so that

κ = T T d2 f T

|∇ f | = ∂2
1 f ∂2 f

2 − 2∂1∂2 f ∂1 f ∂2 f + ∂2
2 f ∂1 f

2

(∂1 f
2 + ∂2 f

2)3/2
.

This can also be written as (the computation being left to the reader)

κ = div
∇ f

|∇ f | . (1.26)

1.14.2 Example: Implicit Polynomials

A large variety of shapes can be obtained by restricting the function f to be a
polynomial of small degree [169], therefore involving a dependency on a small
number of parameters. A polynomial in two variables and total degree less than n is
given by the general formula

f (x, y) =
∑

p+q≤n

apq x
p yq .

The zero level set of f , C f = {z = (x, y), f (x, y) = 0}, is called an algebraic
curve. It can be a complicated object, with branches at infinity, self-intersections, or
multiple loops.

The principal part of f is the homogeneous polynomial

g(x, y) =
n∑

k=0

ak,n−k x
k yn−k .

Asufficient condition for the compactness ofC f is that g has no non-trivial zeros, i.e.,
g(x, y) = 0 ⇒ x = y = 0. Adding our usual regularity condition, f = 0 ⇒ ∇ f �=
0, ensures that C f is a union of Jordan curves.

Figure1.3 provides a few examples of zero level sets of implicit polynomials.
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Fig. 1.3 Shapes generated by implicit polynomials of degree 4. The first curve is the level set of the
polynomial f (x, y) = x4 + y4 − xy − 0.1. The other three are generated by adding a small noise
to the coefficients (including zeros) of f

1.15 Invariance for Affine and Projective Transformations

Invariance, which searches for quantities that remain unchanged under certain classes
of transformations, is a fundamental concept when dealing with shapes. So far, we
have discussed two classes of transformations: parameter change and Euclidean
motion (rotations, translations). We found in particular that Euclidean curvature was
an invariant for these two classes together. We now consider additional invariants to
complement these two.

We will start with transformation by scaling. This corresponds to replacing the
curve m by m̃ = λm where λ is a positive number. Visually, this corresponds to
viewing the shape from a location that is closer or further away. Because of the
renormalization, the unit tangent, normal and the angles θm are invariant. However,
the length and arc length are multiplied by the constant factor λ. Finally, since the
curvature is the rate of change of the angle as a function of arc length, it is divided
by the same constant, κm̃ = κm/λ.

It will also be interesting to consider invariants of affine transformations m �→
Am + b where A is a 2 by 2 invertible matrix (a general affine transformation). Arc
length and curvature are not conserved by such transformations, and there is no simple
formula to compute their newvalue. This section describes hownewquantities,which
will be called affine arc length and affine curvature, can be introduced to obtain the
same type of invariance.

However, a comprehensive study of the theory of differential invariants of curves
[224] lies beyond the scope of this book. Here, we content ourselves with the com-
putation in some particular cases. Although this repeats what we have already done
with arc length and curvature, it will be easier to start with the simple case of rotation
invariance. We know that sm and κm are invariant under translation and rotation, and
we now show how this can be obtained with a systematic approach that will in turn
be applied to more general cases.
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1.15.1 Euclidean Invariance

The generic approach to defining generalized notions of length and arc length is to
look for a function Qwhich depends only on the derivatives of a curve at a given point,
such that Q(ṁ, m̈, . . .)du provides the length of an element of the curve between u
and u + du.

An arc length is then defined by

σm(u) =
∫ u

0
Q(ṁ, m̈, . . .)dv.

The function Q will be designed to meet invariance properties. We will always
require parametrization invariance, ensuring that m = m̃ ◦ ϕ implies σm = σm̃ ◦ ϕ.
Computing the derivative of this identity yields, in terms of Q:

Q(ṁ, m̈, . . .) = ϕ̇Q( ˙̃m ◦ ϕ, ¨̃m ◦ ϕ, . . .). (1.27)

Now, for m = m̃ ◦ ϕ, we have

ṁ = ϕ̇ ˙̃m ◦ ϕ,

m̈ = ϕ̈ ˙̃m ◦ ϕ + ϕ̇2 ¨̃m ◦ ϕ,

and so on for higher derivatives.
As a consequence, if Q only depends on the first derivative, we must have

Q(ϕ̇ ˙̃m ◦ ϕ) = ϕ̇ Q( ˙̃m ◦ ϕ).

This is true in particular when, for all z1 ∈ R
2, λ1 > 0:

Q(λ1z1) = λ1Q(z1).

This is the order 1 condition for Q. It is sufficient by the discussion above, but one
can show that it is also necessary. Similarly, the order 2 condition is that, for all
z1, z2 ∈ R

2, for all λ1 > 0,λ2 ∈ R:

Q(λ1z1,λ2z1 + λ2
1z2) = λ1Q(z1, z2).

This argument can be applied to any number of derivatives. The general expression
(based on the Faà di Bruno formula) is quite heavy, and we will not need it for this
discussion, but the trick for deriving new terms is quite simple. Think in terms of
derivatives: the derivative of λk is λk+1 and the derivative of zk is λ1zk+1; then apply
the product rule. For example, the second term is the derivative of the first term, λ1z1,
and therefore:
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(λ1z1)
′ = (λ1)

′z1 + λ1(z1)
′

= λ2z1 + λ2
1z2,

which is what we found by direct computation. The constraint with three derivatives
would be

Q(λ1z1,λ2z1 + λ2
1z2,λ3z1 + 3λ2λ1z2 + λ3

1z3) = λ1Q(z1, z2, z3).

The second type of constraint which is required for Q is invariance under some
class of transformations of the plane. If A is such a transformation, and m̃ = Am,
the requirement is σm̃ = σm , or

Q(ṁ, m̈, . . .) = Q(∂(Am), ∂2(Am), . . .). (1.28)

We consider affine transformations (the results will be extended to projective
transformations at the end of this section). The equality is always true for translations
Am = m + b, since Q only depends on the derivatives of m, and therefore we can
assume that A is purely linear. Equality (1.28) therefore becomes: for all z1, z2, . . . ∈
R

2,
Q(z1, z2, . . .) = Q(Az1, Az2, . . .).

We now specialize to rotations. We will favor the lowest complexity for Q, and
therefore first study whether a solution involving only one derivative exists. In this
case, Q must satisfy: for all λ1 > 0, for all z1 ∈ R

2 and for any rotation A,

Q(Az1) = Q(z1) and Q(λ1z1) = λ1Q(z1) .

Let e1 = (1, 0) be the unit vector in the x-axis. Since one can always use a rota-
tion to transform any vector z1 into |z1|e1, the first condition implies that Q(z1) =
Q(|z1|e1), which is equal to |z1|Q(e1) from the second condition. We therefore find
that Q(z1) = c|z1| for some constant c, yielding Q(ṁ) = c|ṁ| = c

√
ẋ2 + ẏ2. We

therefore retrieve the previously defined arc length up to a multiplicative constant c.
The choice c = 1 is quite arbitrary, and corresponds to the condition that e1 provides
a unit speed: Q(e1) = 1. We will refer to this σm as the Euclidean arc length, since
we now consider other choices to obtain more invariants.

1.15.2 Scale Invariance

Let us now add scale to translation and rotation. Since it is always possible to trans-
form any vector z1 into e1 with a rotation and scaling, considering only one derivative
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is not enough anymore.2 We need at least two derivatives and therefore consider z1
and z2 with the constraints

Q(Az1, Az2) = Q(z1, z2) and Q(λ1z1,λ2z1 + λ2
1z2) = λ1Q(z1, z2) .

Similar to rotations, the first step is to use the first condition to place z1 and z2 into
a canonical position. Consider the combination of rotation and scalingwhichmaps e1
to z1. The first column of its matrix must therefore be z1, but, because combinations

of rotation and scaling have matrices of the form S =
(
a −b
b a

)
, we see that, letting

z1 = (x1, y1), the obtained matrix is

Sz1 =
(
x1 −y1
y1 x1

)
.

Now take A = S−1
z1 to obtain, from the first condition:

Q(z1, z2) = Q(e1, S
−1
z1 z2) .

A direct computation yields

S−1
z1 z2 = 1

x21 + y21

(
x1x2 + y1y2
x1y2 − x2y1

)
.

So far, we have obtained the fact that Q must be a function F of the quantities
a = (zT1 z2)/|z1|2 and b = det(z1, z2)/|z1|2.

Now consider the second condition. The transformation z1 → λ1z1 and z2 →
λ2
1z2 + λ2z1 takes a to λ1a + λ2/λ1 and b to λ1b. Thus, if Q(z1, z2) = F(a, b), we

must have
F(λ1a + λ2/λ1,λ1b) = λ1F(a, b)

for all real numbers a, b,λ2 and λ1 > 0. Given a, b we can take λ2 = −λ2
1a and

λ1 = 1/|b|, at least when b �= 0. This yields, for b �= 0:

F(a, b) = |b|F(0, sign(b)).

For b = 0, we can take the same value for λ2 to obtain F(0, 0) = λ1F(a, 0) for every
λ1 and a, which is only possible if F(a, 0) = 0 for all a. Thus, in full generality, the
function Q must take the form

2This would give Q(z1) = Q(e1) = const and Q(λ1z1) = λ1Q(z1) = Q(z1) for all λ1 > 0, yield-
ing Q = 0.
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Q(z1, z2) =
⎧⎨
⎩
c+| det(z1, z2)|/|z1|2 if det(z1, z2) > 0,
0 if det(z1, z2) = 0,
c−| det(z1, z2)|/|z1|2 if det(z1, z2) < 0,

where c0, c+, c− are positive constants. To ensure invariance by a change of orien-
tation, however, it is natural to choose c+ = c−. Taking this value equal to 1 yields

Q(z1, z2) = | det(z1, z2)|/|z1|2.

We obtain the definition of the arc length for similitudes3:

dσsim = |ẋ ÿ − ẍ ẏ|
ẋ2 + ẏ2

du . (1.29)

1.15.3 Special Affine Transformations

Wenow consider the case of area-preserving, or special affine transformations. These
are affine transformations A such that det(A) = 1. As before, we need two deriva-
tives, and the first step is again to normalize [z1, z2] using a suitably chosen matrix
A. Here, the choice is natural and simple, at least when z1 and z2 are independent:
take A to be the inverse of [z1, z2], normalized to have determinant 1, namely

A =
{√

det(z1, z2)[z1, z2]−1 if det(z1, z2) > 0,√
det(z2, z1)[z2, z1]−1 if det(z1, z2) < 0.

When det(z1, z2) > 0, this yields

Q(z1, z2) = Q(
√
det(z1, z2)e1,

√
det(z1, z2)e2)

so that Q must be a function F of
√
det(z1, z2). Applying the parametrization invari-

ance condition, we find

F(λ
3/2
1

√
det(z1, z2)) = λ1F(

√
det(z1, z2)),

which implies, taking λ1 = (det(z1, z2))−1/3, that

Q(z1, z2) = F(1)(det(z1, z2))
1/3.

The same result is true for det(z1, z2) < 0, yielding

3To complete the argument, one needs to check that the required conditions are satisfied for the
obtained Q; this is indeed the case, although we skip the computation.
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Q(z1, z2) = F̃(1)(det(z2, z1))
1/3.

with a possibly different constant F̃(1). Again, for orientation invariance, it is natural
to define the area-preserving arc length by

dσs.aff = |ẍ ẏ − ÿ ẋ |1/3du.

We have left aside the case det(z1, z2) = 0. In this case, assume that z2 = αz1.
The second condition implies, taking λ2 = −λ2

1α:

λ1Q(z1,αz1) = Q(λ1z1,λ
2
1αz1 + λ2z1) = Q(λ1z1, 0),

but we can always find an area-preserving transformation which maps λ1z1 to e1 so
that λ1Q(z1,αz1) = Q(e1, 0) is true for every λ1 > 0 only if Q(z1,αz1) = 0. This
is consistent with the formula obtained for det(z1, z2) �= 0.

Computations are also possible for the full affine group and also for the projective
group, but they require us to deal with four andmore derivatives and are quite lengthy.
They will be provided at the end of this section. The reader may refer to Sect.B.4
for a quick introduction to groups of linear transformations and their actions.

1.15.4 Generalized Curvature

In addition to arc length, new definitions of curvature can be adapted to more invari-
ance constraints. One way to understand the definition is to return to the rotation
case, and our original definition of curvature.

We have interpreted the curvature as the speed of rotation of the tangent with
respect to arc length. Consider the matrix Pm = [Tm, Nm] associated to the tangent
andnormal tom. Because (Tm, Nm) is an orthonormal system, thismatrix is a rotation,
called a moving frame [55, 104, 108, 109], along the curve. The rate of variation of
this matrix is defined by

Wm = P−1
m ∂s Pm .

In the Euclidean case, it is

Wm = ∂sθm

(
cos θm sin θm

− sin θm cos θm

)(− sin θm − cos θm
cos θm − sin θm

)
= κm(s)

(
0 −1
1 0

)
.

This illustrates the moving frame method, which provides here the Euclidean cur-
vature. It can be shown to always provide a function which is invariant under the
considered transformations and change of parametrization. More precisely, we have
the following definition. For a group G with associated arc length dσ = Qdu, we
will use the notation
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∂σ = ∂u/Q,

which generalizes the arc-length derivative defined in the Euclidean case. The fol-
lowing discussion concerns curves such that Q �= 0, which generalizes the notion of
regular curves.

Let Jk(G) be the set of vectors (z0, z1, . . . , zk) ∈ (R2)k+1 such that there exists a
curve m such that zk = ∂k

σm. That this condition induces restrictions on z1, . . . , zk
is already clear in the case of rotations, for which one must have |z1| = 1.

Definition 1.24 Let G be a group acting on R
2 (e.g., a subgroup of GL2(R)).

A G-moving frame of order k is a one-to-one function P0 : Jk(G) → G with the
following property. For all curvesm : I → R

2 with Q �= 0 onm, define Pm : I → G
by

Pm = P0(m, ∂σm, . . . , ∂k
σm).

Then, one must have Pgm = gPm for all g ∈ G.

We now consider affine transformations, with group G a subgroup of GL2(R) �

R
2 (cf. Sect.B.4.3). An element of G is represented by a pair (A, b) for a linear map

A and b ∈ R
2. We will therefore write P0 = (A0, b0), Pm = (Am, bm). We denote

by G0 the linear part of G, i.e., (A, b) ∈ G ⇒ A ∈ G0. The invariance condition in
Definition1.24 yields, for all U ∈ G0, h ∈ R

2,

A0(Uz0 + h,Uz1,Uz2, . . . ,Uzk) = U A0(z0, z1, z2, . . . , zk), (1.30)

b0(Uz0 + h,Uz1,Uz2, . . . ,Uzk) = Ub0(z0, z1, z2, . . . , zk) + h.

We have the following result, which generalizes Theorem 1.13. We here use the
same notation as in Sect.B.5.

Theorem 1.25 (Moving Frame: affine case) Let G = G0 � R
2 be a subgroup of

GL2(R) � R
2. If P0 = (A0, b0) is a G-moving frame, then, for any plane curve m

W̄m = A−1
m ∂σPm = (A−1

m ∂σAm, A−1
m ∂σbm)

is invariant under change of parametrization and under the action of G. It moreover
characterizes the curve up to the action of G: if W̄m∗ = W̄m̃∗ , where m∗ and m̃∗ are
respectively the arc-length reparametrization of m and m̃, then m̃ = gm ◦ ψ for some
g ∈ G and a change of parameter ψ.

Proof Invariance by change of parametrization relies on the fact the arc length is,
by construction, invariant and the details are left to the reader. If m̃ = Um + h, then
Pm̃ = (U Am,Ubm + h) and

W̄m̃ = A−1
m U−1(U∂σAm,U∂σbm) = P−1

m ∂σPm = W̄m,

which proves G-invariance.
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Conversely, assume that W̄m̃ = W̄m = W , and assume, without loss of generality,
that they are both parametrized by arc length. Let g = (U, h) = Pm̃(0)Pm(0)−1.
The proof that m̃ = gm for some g derives from the uniqueness theorem for ordinary
differential equations (cf. AppendixC); Pm = (Am, bm) and Pm̃ = (Am̃, bm̃) are both
solutions of the equation ∂σ(A, b) = AW , and gPm is another solution, as can easily
be checked. Since gPm(0) = Pm̃(0) by definition of g, we have

P0(m̃, ˙̃m, . . . , m̃(k)) = gP0(ṁ, . . . ,m(k)) = P0(gm,Uṁ, . . . ,Um(k)).

Because P0 is assumed to be one-to-one, we have m̃ = gm, which proves the
theorem. �

For affine groups, we select a moving frame P0 of the form P0(z0, z1, . . . , zk)
= (A0(z1, . . . , zk), z0). This implies that

W̄m =
(
A−1
m ∂σAm, A−1

m ∂σm
)
.

We will mainly focus on the first term, which we denote by

Wm = A−1
m ∂σAm .

The choice made for rotations corresponds to A0(z1) = [z1, Rz1], R being the
(π/2)-rotation. It is obviously one-to-one and satisfies the invariance requirements.
The second term in W̄m is constant, namely A−1

m ∂σm = (1, 0).
It can be shown that Wm can lead to only one, “fundamental”, scalar invariant.

All other coefficients are either constant, or can be deduced from this fundamental
invariant. This invariant will be called the curvature associated to the group.

Consider this approach applied to similitudes. Assume that the curve is
parametrized by the related arc length, σ. The frame, here, must be a similitude,
Am , and, as above, we take

Am =
(
ẋ −ẏ
ẏ ẋ

)
.

Define Wm = A−1
m ∂σAm , so that

Wm = 1

ẋ2 + ẏ2

(
ẋ ẏ

−ẏ ẋ

)(
ẍ −ÿ
ÿ ẍ

)

= 1

ẋ2 + ẏ2

(
ẍ ẋ + ÿ ẏ ẍ ẏ − ÿ ẋ

−ẍ ẏ + ÿ ẋ ẍ ẋ + ÿ ẏ

)
.

When the curve is parametrized by arc length, we have

|ẋ ẏ − ẍ ẏ|
ẋ2 + ẏ2

= 1
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along the curve. Therefore

Wm(σ) =
(

ẍ ẋ+ÿ ẏ
ẋ2+ẏ2 ∓1

±1 ẍ ẋ+ÿ ẏ
ẋ2+ẏ2

)
.

(σ being the similitude arc length). The computation exhibits a new quantity, which
is

K = ẍ ẋ + ÿ ẏ

ẋ2 + ẏ2
. (1.31)

This is the curvature for the group of similitudes: it is invariant under translation,
rotation and scaling, and characterizes curves up to similitudes.

We now consider special affine transformations (affine with determinant 1).
Assume that the curve is parametrized by the corresponding arc length, σ, i.e.,

|ẍ ẏ − ÿ ẋ |1/3 = 1.

One can choose Am =
(
ẋ ẍ
ẏ ÿ

)
, which has determinant 1. Since Am(1, 0)T = ṁ, the

term A−1
m ṁ is trivial. We have

A−1
m ∂Am =

(
ÿ −ẍ

−ẏ ẋ

)(
ẍ x (3)

ÿ y(3)

)
=
(
0 ÿx (3) − ẍ y(3)

1 −ẏx (3) + ẋ y(3)

)
.

Since ∂(ẍ ẏ − ÿ ẋ) = ẏx (3) − ẋ y(3) = 0, the only non-trivial coefficient is ÿx (3) −
ẍ y(3), which can be taken (up to a sign change) as a definition of the special affine
curvature:

K = det(m̈,m(3)). (1.32)

Again, this is expressed as a function of the affine arc length and is invariant under
the action of special affine transformations.

The local invariants with respect to rotation, similitude and the special affine
group probably reach the limits of numerical feasibility, based on the number of
derivatives they require. Going further involves even higher derivatives, and has only
theoretical interest. However, we include here, for completeness, the definition of the
affine and projective arc lengths and curvatures. This section can be safely skipped.
In discussing the projective arc lengths, we will use a few notions that are related to
Lie groups and manifolds. The reader can refer to AppendixB for more details.
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1.15.5 Affine Arc Length

We first introduce new parameters which depend on the sequence z1, . . . , zn that
describes the first derivatives. We assume that det(z1, z2) �= 0 and let

αk = αk(z1, . . . , zn) = det(zk, z2)

det(z1, z2)

and βk = βk(z1, . . . , zn) = det(z1, zk)

det(z1, z2)
.

These are defined so that
zk = αk z1 + βk z2, (1.33)

which also yields (
αk

βk

)
= [z1, z2]−1zk .

In particular, we have α1 = β2 = 1, α2 = β1 = 0.
Assuming affine invariance, we must have

Q(z1, . . . , zn) = Q([z1, z2]−1z1, . . . , [z1, z2]−1zn),

which implies that Q must be a function of the αk’s and βk’s. We see also that we
must have at least n = 3 to ensure a non-trivial solution. In fact, we need to go to
n = 4, as will be shown by the following computation.

For n = 4, the parametric invariance constraint yields: for all λ1 > 0, λ2,λ3,λ4,

Q(z̃1, z̃2, z̃3, z̃4) = λ1Q(z1, z2, z3, z4)

with z̃1 = λ1z1, z̃2 = λ2z1 + λ2
1z2, z̃3 = λ3z1 + 3λ2λ1z2 + λ3

1z3 and

z̃4 = λ4z1 + (3λ2
2 + 4λ3λ1)z2 + 6λ2

1λ2z3 + λ4
1z4.

We now make specific choices for λ1,λ2,λ3 and λ4 to progressively reduce the
functional form of Q. We will abuse the notation by keeping the letter Q to design
the function at each step. Our starting point is Q = Q(α3,β3,α4,β4).

(i) We start by taking λ1 = 1, λ2 = λ3 = 0, yielding z̃1 = z1, z̃2 = z2, z̃3 = z3
and z̃4 = z4 + λ4z1. Denote by α̃k , β̃k the αk,βk coefficients associated to the
z̃’s. For the considered variation, the only coefficient that changes is α4, which
becomes α̃4 = α4 + λ4. This implies that

Q(α3,β3,α4,β4) = Q(α3,β3,α4 + λ4,β4).
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Taking λ4 = −α4, we see that Q does not depend on α4, yielding the new
functional form Q = Q(α3,β3,β4).

(ii) Let’s now consider λ1 = 1, λ2 = λ4 = 0. In this case, z1, z2 remain unchanged,
and z3 and z4 become z̃3 = z3 + λ3z1, z̃4 = z4 + 4λ3z2. This implies α̃3 =
α3 + λ3, β̃3 = β3 and β̃4 = β4 + 4λ3. Taking λ3 = −α3 yields the new func-
tional form Q = Q(β3,β4 − 4α3).

(iii) Now, take λ1 = 1, λ2 = λ4 = 0, yielding z̃1 = z1, z̃2 = z2 + λ2z1, z̃3 = z3 +
3λ2z2 and z̃4 = z4 + 6λ2z3 + 3λ2

2z2, so that β̃3 = β3 + 3λ2, α̃3 = α3 − 3λ2
2 −

λ2β3 and β̃4 = β4 + 3λ2
2 + 6λ2β3. In particular,

β̃4 − 3α̃3 = β4 − 4α3 + 15λ2
2 + 10λ2β3.

Taking λ2 = −β3/3 yields Q = Q(β4 − 4α3 − 5β2
3/3).

(iv) Finally, takeλ2 = λ2 = λ4 = 0 yielding β̃3 = λ1β3 β̃4 = λ2
1β4 and α̃3 = λ2

1α3.
This gives

Q(λ2
1(β4 − 4α3 − 5β2

3/3)) = λ1Q(β4 − 4α3 − 5β2
3/3).

Taking λ1 = 1/
√|β4 − 4α3 − 5β3/3|, assuming this expression does not van-

ish, yields

Q(β4 − 4α3 − 5β2
3/3)

=
⎧⎨
⎩

Q(1)
√

|β4 − 4α3 − 5β2
3/3| if β4 − 4α3 − 5β2

3/3 > 0,

Q(−1)
√

|β4 − 4α3 − 5β2
3/3| if β4 − 4α3 − 5β2

3/3 < 0.

Here again, it is natural to ensure an invariance by a change of orientation and
let Q(1) = Q(−1) = 1 so that

Q(z1, z2, z3, z4) =
√

|β4 − 4α3 − 5β2
3/3|.

This provides the affine-invariant arc length.

We can take the formal derivative in (1.33), yielding

zk+1 = α′
k z1 + αk z2 + β′

k z2 + βk z3 = (α′
k + βkα3)z1 + (αk + β′

k + βkβ2)z2,

so that αk+1 = α′
k + βkα3 and βk+1 = β′

k + αk + βkβ3. This implies that higher-
order coefficients can always be expressed in terms of α3, β3 and their (formal)
derivatives, which are represented using prime exponents. In particular, using β4 =
β′
3 + α3 + β2

3 , we get

Q(z1, z2, z3, z4) =
√

|β′
3 − 3α3 − 2β2

3/3|. (1.34)
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Returning to parametrized curves, let αm,k and βm,k be the coefficients αk , βk in
which (z1, z2, . . .) are replaced by their corresponding derivatives (ṁu, m̈uu, . . .), so
that

m(k) = αm,kṁ + βm,km̈.

Wewant to express the affine arc length in termsof theEuclidean curvature.Assuming
that m is parametrized by Euclidean arc length, we have m̈ = κRṁ, where R is the
π/2 rotation. Taking one derivative yields (using R2 = −Id)

m(3) = κRm̈ + κ̇Rṁ = −κ2ṁ + (κ̇/κ)m̈.

This implies that αm,3 = −κ2 and βm,3 = κ̇/κ; thus, (1.34) implies that the affine
arc length, σ, and the Euclidean arc length are related by

dσ =
√

|∂(κ̇/κ) + 3κ2 − 2(κ̇/κ)2/3|ds.

1.15.6 Projective Arc Length

The problem is harder to address for the projective group (see Sect.B.4.3 for a
definition) because of the non-linearity of the transformations. We keep the same
notation for αk and βk as in the affine case (since the projective group includes the
affine group, we know that the function Q will have to depend on these reduced
coordinates).

Before the computation, we need to express the effects that a projective trans-
formation has on the derivative of the curve. We still let the symbol zk hold for
the kth derivative. A projective transformation applied to a point z ∈ R

2 takes the
form g : z �→ (Uz + b)/(wT z + 1) for a 2 by 2 matrix U , and vectors b, w ∈ R

2.
Let γ0 = (wT z0 + 1)−1 so that z0 is transformed as z̃0 = γ0(Uz0 + b). We need to
express the higher derivatives z̃1, z̃2, . . . as functions of the initial z1, z2, . . . and the
parameters of the transformations. Letting γk represent the kth derivative of γ0, the
rule for the derivation of a product (Leibniz’s formula) yields

z̃k = γk(Uz0 + b) +
k∑

q=1

(
k

q

)
γk−qUzq . (1.35)

This provides a group action, which will be denoted z̃ = g � z. Our goal is to find
a function Q such that Q(z1, z2, . . . , zk) = Q(z̃1, z̃2, . . . , z̃k), and which is also
invariant under the transformations induced by a change of variables. It will be
necessary to go to k = 5 for the projective group.

We first focus on projective invariance, and make an analysis equivalent to the
one that allowed us to remove z0, z1 and z2 in the affine case. More precisely, we
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show that U, b, and w can be found such that z̃0 = 0, z̃1 = e1, z̃2 = e2 and z̃3 = 0,
with e1 = (1, 0) and e2 = (0, 1).

First note that γ1 = −wT z1γ2
0 and γ2 = −wT z2γ2

0 + 2(wT z1)2γ3
0 . Take b =

−Uz0 to ensure z̃0 = 0. We have z̃1 = γ0Uz1, z̃2 = 2γ1Uz1 + γ0Uz2 and

z̃3 = 3γ2Uz1 + 3γ1Uz2 + γ0Uz3.

We therefore need

Uz1 = e1/γ0,Uz2 = e2/γ0 − (2γ1/γ
2
0)e1 = e2/γ0 + 2wT z1e1

and (after some algebra)

Uz3 = −3(γ2/γ0)Uz1 − 3(γ1/γ0)Uz2
= 3wT z2e1 + 3wT z1e2.

Using the decomposition zk = αk z1 + βk z2, we also have Uz3 = α3(e1/γ0) +
β3(e2/γ0 − (2γ1/γ2

0)e1), which yields the identification

wT z1 = β3/(3γ0) and wT z2 = (3α3 + 2β2
3)/9.

Using the definition of γ0, this can be written as

{
wT (z1 − β3/3z0) = β3/3
wT (z2 − (α3/3 + 2β3/9)z0) = (α3/3 + 2β3/9),

which uniquely defines w, under the assumption (which we make here) that
z0, (3/β3)z1, (9/(3α3 + 2β2

3))z2 forms an affine frame. Given W , we can compute
b and U . We have in particular, using the decomposition of zk :

Uzk = (αk/γ0 + 2βkβ3/(3γ0))e1 + (βk/λ)e2.

Similarly, we have

wT zk = αkβ3/(3γ0) + βk(3α3 + 2β2
3)/9.

With this choice of U, w and b, the resulting expressions of z̃3, z̃4 and z̃5 can be
obtained. This is a heavy computation for which the use of a mathematical software
is helpful; the result is that the projective invariance implies that the function Q must
be a function of the following four expressions:

A = α4 − 8

3
α3β3 − 8β3

3

9
+ 2

3
β3β4
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B = α5 − 10

3
α4β3 + 40

9
α3β

3
3 + 40β4

3

27
−

5

3
α3β4 − 20

9
β2
3β4 + 2

3
β3β5

C = −2α3 − 4β2
3

3
+ β4

D = −10

3
α3β3 − 5

3
β3β4 + β5.

Given this, it remains to carry out the reductions associated to the invariance
by change of parameter. This is done as in the affine case, progressively selecting
the coefficients λi to eliminate one of the expressions and modify the others, the
differencebeing that there is one extra constraint here associated to thefifth derivative.
Note that with five constraints, we would normally be short of one expression, but
one of the invariances is (magically) satisfied in the reduction process, which would
otherwise have required using six derivatives. We spare the reader the details, and
directly provide the final expression for Q, which is

Q =
∣∣∣∣40β

3
3

9
+ β5 − 5β3(β4 − 2α3) − 5α4

∣∣∣∣
1/3

.

As before, this can be expressed in terms of the formal derivatives of α3 and β3,
yielding

Q = [β′′
3 − 3α′

3 − 2β3β
′
3 + 2β3α3 + (4/9)β3

3

]1/3
. (1.36)

1.15.7 Affine Curvature

We can apply the moving frame method described in Sect. 1.15.4 to obtain the affine
curvature of a curve m. We assume here that m is parametrized by affine arc length,
σ. A moving frame on m is immediately provided by the matrix Am = [ṁσ, m̈σσ],
or, with our z notation, A0 = [z1, z2]. By definition of α3 and β3, the matrix Wm =
A−1
m ∂σAm is equal to

Wm =
(
0 αm,3

1 βm,3

)
.

Since the curve is parametrized by affine arc length, we have Q = 1, where Q is

given by
√

|β̇m,3 − 3αm,3 − 2β2
m,3/3|. This implies that αm,3 is a function of βm,3

and β̇m,3 along the curve; the moving frame therefore only depends on βm,3 and its
derivatives, which indicates that βm,3 is the affine curvature. Thus, when a curve is
parametrized by affine arc-length, σ, its curvature is given by
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κm(σ) = det(ṁ,m(3))

det(ṁ, m̈)
.

If the curve now has an arbitrary parametrization, the curvature is obtained by
using dσ = Qdu, where Q is given by (1.34). This yields the following expression:

κm(s) = 1

Q

det(ṁ,m(3))

det(ṁ, m̈)
− 3Q̇

Q
.

1.15.8 Projective Curvature

In the projective case, the moving frame method cannot be used exactly as described
in Sect. 1.15.4, because of the non-linearity of the transformations. The moving
frame is still associated to a one-to-one function P0(z0, . . . , zk) ∈ G = PGL2(R).
The invariance property in this case gives, with the definition of the action z �→ g � z
given in (1.35), P0(g � z) = gP0(z). For Theorem 1.25 to make sense, we must use
the differential of the left translation Lg : h �→ hg on PGL2(R), and define

W̄m = dLPm (Id)−1∂σPm,

which belongs to the Lie algebra of PGL2(R). This is the general definition of a
moving frame on a Lie group [108], and coincides with the definition that has been
given for affine groups, for which we had dLg = A when g = (A, b).

We first need to build the matrix A0. For this, using as before the notation (e1, e2)
for the canonical basis of R

2, we define a projective transformation that takes the
family ω = (0, e1, e2, 0) to the family z = (z0, z1, z2, z3), i.e., we want to determine
g such that g � ω = z (we showed that its inverse exists in Sect. 1.15.6, but we need
to compute it explicitly). Since this provides eight equations for eight dimensions,
one can expect that a unique such transformation exists; this will be our A0(z).

Assuming that this existence and uniqueness property is satisfied, such a con-
struction ensures the invariance of the moving frame under the group action. Indeed,
letting z be associated to a curve m and z̃ to m̃ = g(m) for some g ∈ PGL2(R), we
have z̃ = g � z. Since A0(z) is defined by A0(z) � ω = z, the equality A0(z̃) � ω = z̃
is achieved by A0(z̃) = gA0(z), which is the required invariance. (Indeed, because
� is a group action, we have (gA0(z)) � ω = g � (A0(z)ω) = g � z = z̃.)

We now proceed to the computation. The first step is to obtain the expression of
g � z for z = (z0, z1, z2, z3). We do this in the special case in which g is given by:

g(m) = (Um + b)/(1 + wTm),

w and b being two vectors in R
2 and U ∈ GL2(R). Define g � (z̃0, z̃1, z̃2, z̃3) =

(z0, z1, z2, z3). From (1 + wT z̃0)z0 = Uz̃0 + b, we obtain
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⎧⎪⎪⎨
⎪⎪⎩

(1 + wT z̃0)z0 = Uz̃0 + b
(1 + wT z̃0)z1 + wT z̃1z0 = Uz̃1
(1 + wT z̃0)z2 + 2wT z̃1z1 + wT z̃2z0 = Uz̃2
(1 + wT z̃0)z3 + 3wT z̃1z2 + 3wT z̃2z1 + wT z̃3z0 = Uz̃3.

(1.37)

Taking z̃ = ω, we get ⎧⎪⎪⎨
⎪⎪⎩

z0 = b
z1 + w1z0 = u1
z2 + 2w1z1 + w2z0 = u2
z3 + 3w1z2 + 3w2z1 = 0,

(1.38)

where w = (w1, w2), Ue1 = u1 and Ue2 = u2. The third equation yields

z3 = −3w2z1 − 3w1z2. (1.39)

We will assume that z1 and z2 are linearly independent, so that w = (w1, w2) is
uniquely definedby this equation, and thereforeU = [u1, u2]by themiddle equations
of (1.38). Using again the notation z3 = α3z1 + β3z2, we get

{
w1 = −β3/3
w2 = −α3/3.

This fully defines our moving frame A0(z).
Recall that the formal derivative of a quantity M that depends on z0, . . . , z3 is

given, in our notation, byM ′ =∑3
k=0(∂M/∂zk)zk+1. Since b = z0, we have b′ = z1;

from u1 = z1 + w1z0, we get

u′
1 = w1z1 + z2 + w′

1z0 ,

and from (1.39) and u2 = z2 + 2w1z1 + w2z0,

u′
2 = z3 + 2w1z2 + (2w′

1 + w2)z1 + w′
2z0

= (−2w2 + 2w′
1)z1 − w1z2 + w′

2z0.

We have w′
1 = −β′

3/3 and w′
2 = −α′

3/3, which are therefore directly computable
along the curve.

By taking the representation of a projective transformation by the triplet (U, b, w),
we have chosen a local chart on PGL2(R) which obviously contains the identity
represented by (Id, 0, 0). To be able to compute the differential of the left translation
LA(z), we need to express the product in this chart. One way to do this efficiently is
to observe that, by definition of the projective group, products in PGL2(R) can be
deduced frommatrix products in GL3(R), up to a multiplicative constant. A function
gwith coordinates (U, b, w) in the chart is identified (up tomultiplication by a scalar)
with the matrix
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(
U b
wT 1

)

and the product of g̃ = (Ũ , b̃, w̃) and ḡ = (Ū , b̄, w̄) is therefore identified with the
product of the associated matrices, which is

(
Ū b̄
w̄T 1

)(
Ũ b̃
w̃T 1

)
=
(
ŪŨ ′ + b̄w̃T Ū b̃ + b̄
w̄T Ũ + w̃T w̄T b̃ + 1

)
,

which yields the chart representation for the product

ḡg̃ =
(
(ŪŨ + b̄w̃T )/(1 + w̄T b̃),

(Ū b̃ + b̄)/(1 + w̄T b̃), (Ũ T w̄ + w̃′)/(1 + w̄T b̃)
)
.

To compute the differential of the left translation in local coordinates, it suffices
to take Ũ = Id + εH , b̃ = εβ and w̃ = εγ, and compute the first derivative of the
product with respect to ε at ε = 0. This yields

dIdL ḡ(H,β, γ) = (Ū H + b̄γT − w̄TβŪ , Ūβ − w̄Tβb̄, γ + HT w̄ − w̄Tβw̄).

We need to compute the inverse of this linear transformation, and therefore solve

⎧⎨
⎩
Ū H + b̄γT − w̄TβŪ = H̃
Ūβ − w̄Tβb̄ = β̃
γ + HT w̄ − w̄Tβw̄ = γ̃.

The second equation yields β = (Ū − b̄w̄T )−1β̃. Substituting γ in the first by its
expression in the third yields

H̃ = (Ū − b̄w̄T )H + b̄γ̃T + (w̄Tβ)b̄w̄T − w̄TβŪ

so that
H = (Ū − b̄w̄T )−1(H̃ − b̄γ̃T ) + (w̄Tβ)Id.

Finally, we have
γ = γ̃ − HT w̄ + w̄Tβw̄.

W̄ is obtained by applying these formulae to ḡ = A(z) = (U, b, w) and H̃ =
(θ1, θ2) with ⎧⎪⎪⎨

⎪⎪⎩

θ1 = u′
1 = w1z1 + z2 + w′

1z0
h′
2 = u′

2 = (2w′
1 − 2w2)z1 − w1z2 + w′

2z0
β̃ = z1
γ̃ = w′.

.
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Note that, since (A − bwT )h = Ah − wT hb, the identity z1 = u1 − w1b implies

β = (U − bwT )−1z1 = e1 .

Similarly, from u2 − w2b = z2 + 2w1z1, we get

(U − bwT )−1z2 = e2 − 2w1e1 .

We have, using b = z0 and γ̃ = w′,

H̃ − bγ̃T = (w1z1 + z2, (w′
1 − 2w2)z1 − w1z2

)
.

We therefore obtain

h1 = (U − bwT )−1(w1z1 + z2) + w1e1 = w1e1 + e2 − 2w1e1 + w1e1 = e2 ,

h2 = (U − bwT )−1((2w′
1 − 2w2)z1 − w1z2) + w1e2

= (2w′
1 − 2w2)e1 − w1(e2 − 2w1e1) + w1e2

= (2w′
1 + 2w2

1 − 2w2)e1 .

With c = w′
1 + w2

1 − w2, we have obtained W =
(
0 2c
1 0

)
. Moreover, we have

γ = w′ − HTw + w1w =
(

w′
1 − w2 + w2

1
w′

2 − 2cw1 + w1w2

)
.

Because we assume that
[
β′′
3 − 3α′

3 − 2β3β
′
3 + 2β3α3 + (4/9)β3

3

]1/3 = 1, we see
that w′

2 = −α′
3/3 can be expressed as a function of α3 and the derivatives of β3

(up to the second one), while c is equal to −(β′
3 − β2

3/3 − α3)/3. The invariant of
smallest degree can therefore be taken to be β′

3 − β2
3/3 − α3 (in fact, w′

2 − 2cw1 +
w1w2 = −c′/6). The projective curvature can therefore be taken as (assuming a
curve parametrized by projective arc length)

κm(σ) = ∂

(
det(ṁ,m(3))

det(ṁ, m̈)

)
− det(m(3), m̈)

det(ṁ, m̈)
+ 1

3

(
det(ṁ,m(3))

det(ṁ, m̈)

)2

.

The computation of the expression of the curvature for an arbitrary parametrization
is left to the reader. It involves the second derivative of the arc length, and therefore
the seventh derivative of the curve.
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1.16 Non-local Representations

1.16.1 Semi-local Invariants

The invariants that we have defined so far depend on derivatives that can be difficult
to estimate in the presence of noisy data (as seen in Fig. 1.1). Semi-local invariants
attempt to address this issue by replacing derivatives by estimates depending on
nearby, but not coincident, points. They provide new curve “signatures”, different
from the one associated to the curvature.

A general recipe for building semi-local invariants can be described as follows
[48]. For a given integer, k, one needs to provide:

1. An algorithm to select k points on the curve, relative to a single point m(u).
2. A formula to compute a signature based on the k selected points.

We introduce some notation. First, let Sm represent the selection of k points along
m. If p = m(u) is a point on m, we let Sm(p) = (p1, . . . , pk). Second, let F be the
signature function: it takes p1, . . . , pk as input and returns a real number.

We need to enforce invariance at both steps of the method. Reparametrization
invariance is implicitly enforced by the assumption that Sm only depends on p =
m(u) (and not on u). Consider now the issue of invariance with respect to a class G
of affine transformations. For A in this class, we want that:

1. The point selection process “commutes”: if Sm(p) = (p1, . . . , pk), then
SAm(Ap) = (Ap1, . . . Apk).

2. The function F is invariant: F(Ap1, . . . , Apk) = F(p1, . . . , pk).

Enforcing Point 2 becomes easy if one introduces a transformation A which
places the first points in Sm(p) in a generic position, leading to a normalization
of the function F . We clarify this operation with examples. Assume that the class
of transformations being considered are translations and rotations. Then, there is a
unique such transformation that displaces p1 on O and p2 on |p1 − p2|e1, where e1
is the unit vector of the horizontal axis. Denote this transformation by Ap1,p2 . Then,
we must have

F(p1, p2, . . . , pk) = F(Ap1,p2 p1, Ap1,p2 p2, . . . , Ap1,p2 pk)

= F(0, |p1 − p2|e1, Ap1,p2 p3, . . . , Ap1,p2 pk).

Conversely, it is clear that any function F of the form

F(p1, p2, . . . , pk) = F̃(|p1 − p2|, Ap1,p2 p3, . . . , Ap1,p2 pk)

is invariant under rotation and translation. The transformation Ap1 p2 can be made
explicit: skipping the computation, this yields ((xi , yi ) being the coordinates of pi )
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Ap1,p2 p j = 1

|p2 − p1|
(

(x2 − x1)(x j − x1) + (y2 − y1)(y j − y1)
(x2 − x1)(y j − y1) − (y2 − y1)(x j − x1)

)
.

Thus, with three selected points, the general form of F is

F(p1, p2, p3) = F̃
(
|p2 − p1|, (p2 − p1)T (p3 − p1)

|p2 − p1| ,

det(p2 − p1, p3 − p1)

|p2 − p1|
)
.

If scaling is added to the class of transformations, the same argument shows that
the only choice with three points is:

F(p1, p2, p3) = F̃

(
(p2 − p1)T (p3 − p1)

|p2 − p1|2 ,
det(p2 − p1, p3 − p1)

|p2 − p1|2
)

.

Similar computations hold for larger classes of transformations.

There are several possible choices for point selection (Step 1). One can use the arc
length (relative to the class of transformations) that we have defined in the previous
sections, and choose p1, . . . , pk symmetrically around p, with fixed relative arc
lengths σm(p1) − σm(p), . . . ,σm(pk) − σm(p). For example, letting δi = σm(pi ) −
σm(p), and if k = 2l + 1, one can take δ1 = −lε, δ2 = −(l − 1)ε, . . . , δk = lε.

However, the arc length requires using curve derivatives, and this is precisely
what we wanted to avoid. Some purely geometric constructions can be used instead.
For rotations, for example, we can choose p1 = p, and p2 and p3 to be the two
intersections of the curve m with a circle of radius ε centered at p (taking the ones
closest to p on the curves) with ε small enough. For scale and rotation, consider
again circles, but instead of fixing the radius in advance, adjust it so that |p2 − p3|
becomes smaller that 1 − ε times the radius of the circle. This is always possible,
unless the curve is a straight line.

Considering the class of special affine transformations [48], one can choose
p1, p2, p3, p4 such that the line segments (p1, p2) and (p3, p4) are parallel to the tan-
gent at p, and the areas of the triangles (p0, p1, p2) and (p0, p3, p4) are respectively
given by ε and 2ε.

1.16.2 The Shape Context

The shape context [33] represents a shape by a collection of histograms along its
outline. Here we give a presentation of this concept in the continuum and do not
discuss discretization issues.

Let s �→ m(s) be a parametrized curve, defined on some interval I . For s, t ∈ I ,
let v(s, t) = m(t) − m(s). Fixing t , the function s �→ v(s, t) takes values in R

2.
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Consider a density kernel, i.e, a function K : R
2 → R

2 such that, for fixed x , K (x, ·)
is a probability density on R

2, usually symmetric around x . The typical example is

K (x, y) = exp(−|x − y|2/(2σ2))/(2πσ2). (1.40)

Using this kernel, let, for s ∈ I

f (m)(s, y) =
∫
I
K (y, v(s, t))dt.

The density f (m)(s, ·) is the shape context of the curve at s and the bivariate
function f (m) is the shape context of the whole curve. To discuss some invariance
properties of this representation, we assume that the curve is parametrized by arc
length (and therefore focus on translation and rotations), and that K is radial, i.e.,
K (x, y) only depends on |x − y|, which is true for (1.40).

A translation applied to the curve has no effect on v(s, t) and therefore leaves
the shape context invariant. A rotation R transforms v into Rv, and we have
f (Rm)(s, Ry) = f (m)(s, y). The representation is not scale-invariant, but can be
made sowith an additional normalization (e.g., by forcing themean distance between
different points in the shape to be equal to 1, cf. [33]).

The shape context is a global representation, since it depends for any point on
the totality of the curve. To some extent, however, it shares the property of local
representations that small variations of the contour will have a small influence on the
shape context of other points, by only slightly modifying the density f (s, ·).

1.16.3 Conformal Welding

Conformal welding is a complex analysis operation that provides a representation
of a curve by a diffeomorphism of the unit circle. While a rigorous description of
the method requires advanced mathematical concepts (compared to the rest of this
book), the resulting representation is interesting enough to justify the effort.

We will identify R
2 with C, via the usual correspondence (x, y) → x + iy, and

add to C a point at infinity that will confer the structure of a two-dimensional sphere
to it. This can be done using the mapping

F(reiθ) =
(2r cos θ

r2 + 1
,
2r sin θ

r2 + 1
,
r2 − 1

r2 + 1

)
.

This mapping can be interpreted as identifying parallel circles on the sphere with
zero-centered circles on the plane; zero is mapped to the south pole, the unit disc
is mapped to the equator, and the representation tends to the north pole as r → ∞.
With this representation, the interior and the exterior of the unit disc are mapped
to hemispheres and therefore play a symmetric role. We will let C̄ denote C ∪ ∞.
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The complex derivative of a function is defined as the limit of ( f (z + h) − f (z))/h
as h → 0 in C.

Two domains Ω1,Ω2 ⊂ C̄ are said to be conformally equivalent if there exists a
function f : Ω1 → Ω2 such that f is onto and one-to-one and the complex derivative
f ′(z) exists for all z ∈ Ω1, with f ′(z) �= 0. Such a function has the property of
conserving angles, in the sense that the angle made by two curves passing by z
remains unchanged after a transformation by f .

The Riemann mapping theorem [249] states that any simply connected domain
(i.e., any domainwithinwhich any simple closed curve can be continuously deformed
into a point) is conformally equivalent to the unit disc. This domain may or may not
include a point at infinity and therefore may or may not be bounded. For example,
the transformation z �→ 1/z maps the interior of the unit disc to its exterior and
vice-versa. This conformal transformation is obviously unique up to any conformal
mapping of the unit disc onto itself. It can be shown that the latter transformations
must belong to a three-parameter family (a sub-class of the family of Möbius trans-
formations of the plane), containing functions of the form

z �→ eiα
ziβ + r

r zeiβ + 1
(1.41)

with r < 1. We let M1 be the set of such transformations (which forms a three-
parameter group of diffeomorphisms of the unit disc). A transformation in M1 can
be decomposed into three steps: a rotation z �→ zeiβ followed by the transformation
z �→ (z + r)/(zr + 1), followed again by a rotation z �→ zeiα.

The Riemannmapping theorem can be applied to the interior and to the exterior of
any Jordan curveγ. LettingΩγ represent the interior, andΩ

c
γ the exterior (the notation

holding for the complement of the closure ofΩγ), and D being the open unit disc, we
therefore have two conformal transformations Φ− : Ωγ → D and Φ+ : Ω

c
γ → D.

These two maps can be extended to the boundary of Ωγ , i.e., the range Rγ of the
curve γ, and the extension remains a homeomorphism. Restricting Φ+ to Rγ yields
a map ϕ+ : Rγ → S1 (where S1 is the unit circle) and similarly ϕ− : Rγ → S1. In
particular, the mapping ϕ = ϕ− ◦ (ϕ+)−1 is a homeomorphism of S1 onto itself. It is
almost uniquely defined by γ. In fact Φ+ and Φ− are both unique up to composition
(on the left) by a Möbius transformation, as given by (1.41), so that ϕ is unique up
to a Möbius transformation applied on the left or on the right. The indeterminacy
on the right can be removed by the following normalization; one can constrain Φ+,
which associates two unbounded domains, to transform the point at infinity into itself,
and be such that its differential at this point has a positive real part and a vanishing
imaginary part. Under this constraint, ϕ is unique up to the left action of Möbius
transformations.

Inmathematical terms,we obtain a representation of (smooth) Jordan plane curves
by the set of diffeomorphisms of S1 (denoted Diff(S1)) modulo the Möbius trans-
formations (denoted PSL2(S1)), writing

2D shapes ∼ Diff(S1)/PSL2(S
1).
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Fig. 1.4 Conformal disparity between the interior and exterior of four planar curves. First column:
original curves; second and third columns: two representations of the curve signature rescaled over
the unit interval, related by a Möbius transformation, illustrating the fact that these signatures are
equivalent classes of diffeomorphisms of the unit disc

We now describe the two basic operations associated to this equivalence, namely
computing this representation from the curve, and retrieving the curve from the
representation. The first operation requires computing the trace of the conformal
maps of the interior and exterior of the curve. Several algorithms are available to
compute conformal maps. The plots provided in Fig. 1.4 were obtained using the
Schwarz–Christoffel toolbox developed by T. Driscoll.

The solution to the second problem (going from the representation to the curves)
is described in [260, 261] (Fig. 1.5). It is proved in [261] that, if ϕ is the mapping
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Fig. 1.5 Reconstruction of the curves in Fig. 1.4 from their signatures

above, andψ = ϕ−1, the corresponding shape (defined up to translation, rotation and
scaling) can be parametrized as θ �→ F(θ) ∈ C, θ ∈ [0, 2π], where F is the solution
of the integral equation

K (F)(θ) + F(θ) = eiθ,

where K (F)(θ) = ∫ 2π
0 K (θ, θ̃)F(θ̃)d θ̃, and the kernel K is given by

K (θ, θ̃) = i

2
ctn

(
θ − θ̃

2

)
− i

2
ψ̇(θ̃) ctn

(
ψ(θ) − ψ(θ̃)

2

)

which has limit iψ̈(θ)/4ψ̇(θ) as θ → θ̃. The inverse representation can then be
computed by solving, after discretization, a linear equation in F . More precisely,
assume that ((θk,ϕk), i = 0, . . . , N ) is a discretization of ϕ (with ϕN = ϕ0 + 2π
and θN = θ0 + 2π). Following [261], one then makes the approximation

∫ 2π

0
ctn

(
ϕ − ϕ̃

2

)
F(ϕ̃)dϕ̃ �

N∑
k=1

Fk

∫ ϕk

ϕk−1

ctn

(
ϕ − ϕ̃

2

)
dϕ̃

= 2
N∑

k=1

Fk log
| sin((ϕ − ϕk)/2)|

| sin((ϕ − ϕk−1)/2)| ,

where we have set Fk = F((ϕk + ϕk−1)/2). Similarly, letting θ = ψ(ϕ),

∫ 2π

0
ctn

(
θ − ψ(ϕ̃)

2

)
F(ϕ̃)ψ̇(ϕ̃)dϕ̃ �

N∑
k=1

Fk

∫ θk

θk−1

ctn

(
θ − θ̃

2

)
d θ̃

= 2
N∑

k=1

Fk log
| sin((θ − θk)/2)|

| sin((θ − θk−1)/2)| .

Letting ϕ̄l = (ϕl + ϕl−1)/2 and θ̄l = (θl + θl−1)/2, one obtains a discretization
((ϕ̄l, Fl), l = 1, . . . , N ) of F by solving the equation
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Fl + i
N∑

k=1

Klk Fk = eiϕ̄l , l = 1, . . . , N

with

Klk = log
| sin((ϕ̄l − ϕk)/2) sin((θ̄l − θk−1)/2)|
| sin((ϕ̄l − ϕk−1)/2) sin((θ̄l − θk)/2)|

.
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