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Introduction to the Second Edition

Besides correcting some of the typos and mistakes from the first edition and
implementing a few changes to the notation to make it uniform, several significant
additions appear in the second edition. Most notable is the introduction of a dis-
cussion of optimal control theory in an infinite-dimensional framework (Appendix
D), which is then used in multiple places to enrich the presentation of diffeomorphic
matching, and a new chapter on shape datasets (Chap. 13 of the second edition).
A few other changes have been made. These are listed below, where chapters are
referred to as x/y, the first and second numbers indicating the first and second
editions, respectively.

Chapter 1/1: The presentation of closed curves and integrals along them has
been revised. Some sections have been reordered to improve readability.
Chapter 2/2: No significant changes.

Chapter 3 of the first edition has been removed.

Chapter 4/3: No major changes were made. The material on discrete surfaces
was moved to Chap. 5/4, in which a new discussion is added on consistent
discrete-to-continuous approximation.

e Chapters 6/5 and 7/6 only had minor modifications.

Chapter 8/7: A few additional results on compositions of diffeomorphisms and
their derivatives have been included. Small modifications were made to the rest
of the chapter, which also relies more directly on results from the appendix.
Chapter 9/8: The discussion on invariant operators and kernels has been updated
and clarified.

Chapter 10/9: Only minor changes were made in most sections. Exceptions are
(1) curve and surface matching, in which a discussion of varifold distances was
added, and (2) frame matching, which has been rewritten with a slightly dif-
ferent action, and a more rigorous handling of the supports of the frame fields.
Chapter 11/10: Some of the discussion now directly uses results from the
appendix on ODEs and optimal control. The proof of the existence and
uniqueness of solutions of the EPDiff equation has also been rewritten.
Chapter 12/11 had only minor changes.
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viii Introduction to the Second Edition

e Chapter 13/12 on metamorphosis has been extended, with more examples,
including in particular a detailed discussion of metamorphosis applied to the
tangent representation of curves.

e Chapter 13 in the second edition is new.

e Only minor changes were made in Appendix A.

e Appendix B was extended with a discussion of differential forms and some
consequences of Stokes’s theorem.

e Appendix C has essentially the same content, even though part of the write-up
was revised.

e Appendix D now includes an introduction to optimal control theory.

e Appendices E and F were only slightly modified.



Introduction to the First Edition

Shape is a fascinating object of study. Understanding how a single shape can incur
a complex range of transformations, while defining the same perceptually obvious
figure, entails a rich and enticing collection of problems at the interface between
applied mathematics, statistics, and computer science. Various applications in
computer vision, object recognition, and medical imaging bring additional moti-
vation for researchers to develop adequate theoretical background and methodology
for solving these problems.

This book is an attempt at providing a description of the large range of methods
that have been invented to represent, detect, or compare shapes (or more generally,
deformable objects), together with the necessary mathematical background that they
require. While certainly being a book on applied mathematics, it is also written in a
way that will be of interest to an engineering- or computer-science-oriented reader,
including in several places concrete algorithms and applicable methods, including
experimental illustrations.

This book starts with a discussion of shape representation methods (Chapters 1-4),
including classical aspects of the differential geometry of curves and surfaces, but
borrowing also from other fields that have positively impacted the analysis of shape in
practical applications, such as medial axes and discrete differential geometry.

The second part (Chapters 5-7) studies curve and surface evolution algorithms
and how they relate to segmentation methods that can be used to extract shapes
from images, using active contours or deformable templates. A reader with enough
background in differential geometry may start reading this book at Chapter 6 or at
Chapter 7 if the main focus of interest is on diffeomorphic registration and com-
parison methods.

In Chapters 7 and 8, basic concepts related to diffeomorphisms are introduced,
discussing in particular how using ordinary differential equations associated with
vector fields belonging to reproducing kernel Hilbert space provides a computa-
tionally convenient framework to handle them. Chapters 9 and 10 then focus on the
registration of deformable objects using diffeomorphisms; in Chapter 9, we catalog
a large collection of deformable objects and discuss matching functionals that can
be used to compare them. Chapter 10 addresses diffeomorphic matching and
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X Introduction to the First Edition

focuses in particular on methods that optimize a matching functional combined with
a regularization term that penalizes the distance of a diffeomorphism to the identity
within the group.

The next two chapters (11 and 12) discuss metric aspects of shape analysis, with
a special focus on the relation between distances and group actions. Both the global
and infinitesimal points of view are presented. The classical Kendall’s metric over
configurations of labeled points is included, as well as a short discussion of
Riemannian metrics on plane curves. Chapter 12 provides a presentation of the
theory of metamorphosis. Chapter 13 provides an introduction to the statistical
analysis of shape data.

In the appendices are provided fundamental concepts that are needed in order to
understand the rest of this book. The main items are some elements of functional
analysis (Appendix A), of differential and Riemannian geometry (Appendix B), and
of ordinary differential equations (Appendix C). Appendix D provides an intro-
duction to optimization and optimal control. Appendix E focuses on principal
component analysis and Appendix F on dynamic programming. In all cases, the
appendices do not provide a comprehensive presentation of these theories, but
simply what is needed in the particular context of this book.

Chapters 1 to 5, which are (with a few exceptions) rather elementary, provide an
introduction to applied differential geometry that is suitable for an advanced
undergraduate class. They can be combined with Chapter 6 to form a graduate-level
class on the same subject. The first six chapters are written (with a few exceptions)
in order to be accessible without using the more advanced features developed in the
appendices. Chapters 8 to 13 represent specialized, advanced graduate topics.

I would like to thank my students and collaborators, who have helped to make
the ideas that are developed in these notes reach their current state of maturation.
I would like, in particular, to express my gratitude to Alain Trouvé and Michael
Miller, whose collaboration over the last decade has been invaluable. Special thanks
also to Darryl Holm, David Mumford, and Peter Michor. This book was written
while the author was partially supported by the National Science Foundation, the
National Institute of Health, and the Office for Naval Research.
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Chapter 1 ®)
Parametrized Plane Curves Creck for

1.1 Definitions

‘We start with some definitions.

Definition 1.1 A (parametrized plane) curve is a continuous mapping m : I — R?,
where I = [a, b] is an interval.

A curve m is closed if m(a) = m(b).

A curve m is a Jordan curve if it is closed and has no self-intersection: m(x) =
m(y) only for x = y or {x, y} = {a, b}.

A curve is piecewise C! if it has everywhere left and right derivatives, which
coincide except at a finite number of points.

The range of a curve m is the set m([a, b]). It will be denoted by R,,.

Notice that we have defined curves as functions over bounded intervals. Their
range must therefore be a compact subset of R? (this forbids, in particular, curves
with unbounded branches).

A Jordan curve is what we can generally accept as a definition of the outline of a
shape. An important theorem [292] states that the range of a Jordan curve partitions
the plane R? into two connected regions: a bounded one, which is the interior of
the curve, and an unbounded one (the exterior). The proof of this rather intuitive
theorem is quite complex (see, for example [184] for an argument using Brouwer’s
fixed point theorem).

However, requiring only continuity for curves allows for more irregularities than
what we would like to handle. This is why we will always restrict ourselves to
piecewise cl, generally Jordan, curves. We will in fact often ask for more, and
consider curves which are regular (or piecewise regular).

Definition 1.2 A C' curve m : I — R? is a regular curve if Om # O forallu € 1.
If m is only piecewise C', we extend the definition by requiring that all left and right
derivatives are non-vanishing.
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2 1 Parametrized Plane Curves

Here, and in the rest of the book, we will use either Om or m to denote the derivative
of a function u + m(u).

The previous definition is fundamental. It avoids, in particular, curves which are
smooth functions (C°, for example) but with a range having geometric singularities.
Consider the following example: let

(o), 0), ue€l0,1/2]
m(u) = {(1, o —1/2)), uell/2,1]
with () = 16u?(1 — u)?, u € [0, 1]. It is easy to check that m is continuously
differentiable, whereas the range of m is the corner [0, 1] x {0} U {1} x [0, 1].

We will say that a curve m : [a, b] — R? is CP if it is p times continuously
differentiable, including all right derivatives at a and left derivatives at b up to order
p. If the curve is closed, we will implicitly require that the derivatives at a and b
coincide. More precisely, a closed curve is C? if and only if m is C” when restricted to
the open interval (a, b), and so is the curve m defined on (a, b) by m(u) = m(u + ¢)
ifu € (a,b—clandmu) =m@w +ec—b+a)ifu € [b—¢,b) (forsome0 < & <
b —a).

Alternatively (and more conveniently), closed curves can be handled by consid-
ering the interval [a, b] closed onto itself after identifying a and b (which provides a
one-dimensional torus). We will denote this torus by [a, b], and leta ~ b € [a, b],
denote a or b after the identification. For u, v € [a, b],, we let

di(u,v) = min(lu —v|, (b —a) — |u — v|). (1.1)

This is a distance on [a, b], (if u (or v) are equal to ab, the result does not depend
on which value is chosen to compute the expression).

If0 € Randu € [a, b, wedefineu +, 0 € [a, bl.byu + 6 — (u +4 ) = k(b —
a) for some integer k (so that we consider addition modulo b — a). A function
f : la, bl, — R?is continuous on [a, b], if and only if, for all u € [a, b, | f (u ++
0) — f(u)] = Owhend — 0, whichis equivalentto f (u) = f(u) for some function
f continuous on [a, b] satisfying f (a) = f (b). One defines derivatives of functions
by
f(u+*5)_f(“)

1)

Of ) = lim

when the right-hand side exists and higher derivatives are defined accordingly. With
this notation, it is easy to see that C? closed curves are functions m : [a, b], — R?
with at least p continuous derivatives.

We also use integrals along [a, b], as follows: if ug, u; € [a, b] and [ : [a, b] —
R4 is continuous, then
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/Ml f)dvifuy <u
/ul f)dv, = 0 (1.2)
uo b o

/ f)dv —/ f)dv ifu; < uyp.

This is the integral of f along the “positively oriented arc” going from ug to u; in
[a, b].. Note that

/ F)dv, # / F)dv,

in general. For example fba f)dv, =0forall f.
The length of the positively oriented arc going from uq to u; is

0. ) /"‘d luy — uol if ug < uy
«(Uo, U1) = Vy 1= .
o (b—a) — |uy —uol|if uy < uo.

With this notation, d, (ug, u;) = min(€, (ug, uy), £s(uy, ug)).

1.2 Reparametrization Equivalence

1.2.1 Open Curves

Definition 1.3 Let m : I — R? be a plane curve. A change of parameter for m is a
function 1) : I’ — I such that:
(i) I’ is a bounded interval;
(ii) 9 is continuous, increasing (strictly) and onto.

From (ii), ) is one-to-one and onto, hence invertible. Its inverse, ¥~ is also
a change of parameter (the proof being left to the reader). In particular, 1 is a
homeomorphism (a continuous invertible function with a continuous inverse).

The new curve m = m o 1) is called a reparametrization of m. The ranges R,, and
‘R coincide.

1

When m belongs to a specific smoothness class, the same properties will be
implicitly required for the change of parameter. For example, if m is (piecewise)
C', + will also be assumed to be C' (in addition to the previous properties). When
working with regular curves, the following assumption will be made.

Definition 1.4 If 7, I’ are bounded intervals, a regular change of parameter is a C 1
function 1 : I’ — I which is onto and satisfies ) > 0 everywhere (including left
and right limits at the bounds).
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A piecewise regular change of parameter is continuous, piecewise C! and such
that its left and right derivatives (which coincide everywhere except at a finite number
of points) are all strictly positive.

Itis easy to see that the property of two curves being related by a change of parameter
is an equivalence relation. This is called “parametric equivalence.” We will denote
the parametric equivalence class of m by [m]. A property, or a quantity, which only
depends on [m] will be called parametrization-invariant. For example, the range of
a curve is parametrization-invariant.

Note that the converse is not true. If two curves have the same range, they are not
necessarily parametrically equivalent: the range of the piecewise C' curve defined
on [ =[0, 1] by m(¢) = (2¢,0),¢ € [0, 1/2] and m(t) = 2 —2¢,0), t € [1/2, 1]
is the segment [0, 1] x 0, but this curve is not equivalent to m(t) = (¢, 0), ¢ € [0, 1],
even though they have the same range (the first one travels back to its initial point
after reaching the end of the segment). Also, if m is a curve defined on I = [0, 1],
then m(¢#) = m(1 — ¢) has the same range, but is not equivalent to m, since we have
required the change of parameter to be increasing (changes of orientation are not
allowed).

Changes of parameter will always be assumed to match the class of curves that
is being considered: (piecewise) regular reparametrizations for (piecewise) regular
curves, or, when more regularity is needed, C? regular reparametrizations for C”
regular curves.

1.2.2 Closed Curves

Changes of parameters for closed curves must be slightly more general than for open
curves, because the starting point of the parametrization is not uniquely defined.
Using representations over tori, we will say that a continuous mapping ¢ : [@, b'], —
[a, b], is increasing if, for all u, one can write, for small enough 6,

V(U +5 0) = 1 (u) ++ £(9),

where ¢ : (—dp, 69g) — R can be defined for some Jy > 0 as a (strictly) increasing
function such that £(§) — 0 if & — 0. This says that 1) moves in the same direction
as u.

A change of parameter is then a continuous, increasing, one-to-one transformation
1 from [a’, D], onto [a, b], (and its inverse is then continuous too). The main dif-
ference with the open case is that such a transformation does not necessarily satisfy
1(a’") = a: it can start anywhere and wrap around to return to its initial point. We will
then say that the change of parameter is regular if it is C! with >0 everywhere,
as in the open case.

Letting ¢’ = ¥~ 1(b) (recall thata = b € [a, b],) and taking ’QZJ 2 [a’, b'] — [a, b]
to be such that zﬁ(u/) =@’ if u’ # ¢’ and z/?(u/) = b otherwise, the definition is
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equivalent to requiring that z/A) isincreasing over [a’, ¢] and over (¢/, b'], continuously
differentiable over these intervals, with left and right derivatives coinciding at ¢/, and
the right derivative at a’ coinciding with the left derivative at b’.

1.3 Unit Tangent and Normal

If M C RY is an arbitrary set, we will say that a vector v € R? is tangent to M at a
point p in M if one can find points x in M that are arbitrarily close to p and such that
v is arbitrarily close to the half line R* (x — p). This is formalized in the following
definition (see [107]):

Definition 1.5 If M C RY, and p € M, a vector v € R? is an oriented tangent to
M at p if, for any € > 0, there exist x € M and r > 0 such that |[x — p| < € and
lv—rx—p)l<e.

The set of oriented tangents to M at p will be denoted by T[;F M, and the set of
(unoriented) tangents by T, M, so that v € T, M if either v or —v belongs to T, M.

Taking x = p, one sees that v = 0 always belong to le'M , which is therefore never
empty.

Letm: I — R?>bea regular curve (here, I can be a closed interval or a torus).
The unit tangent at u € [ is the vector

We then have
Proposition 1.6 Ifm : I — R? is regular, and p € R, then

Ty Ry ={A\T,(w) : A e R,m(u) = p}.

Note that, when m is regular the set of parameters u such that m () = p is necessarily
finite. (Each such u is necessarily isolated because 71 # 0 and any family of isolated
points in a compact set must be finite.)

Proof Let I = [a, b] (the case of a closed curve being addressed similarly). Take
p € R,, and u such that p = m(u). Fix A € R and € > 0. One has m(u + §) —
m(u) — 6lm(u)|T,,(u) = 0(5). So, taking J small enough so that |m(u + J)
—m(u)| < € and

A
Ol (u)]

AT, (u) — mu—+0)—mw))| <e

one gets |[x — p| <€ and |AT,,(u) —r(x — p)| <& with x =m(u +6) and r =
A/ (8|m)). If u € (a, b), one can ensure that r > 0 by choosing the sign of § appro-
priately. If u = a one must take 6 > 0 and r > 0 only if A > 0. Similarly, if u = b,
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one needs A < 0. In any case, either AT}, («) or —\T,, (1) belongs to le' R, so that
AT,(u) € TyR,,.

Conversely, if v € T,R,,, there exists sequences (u,) and (r,) with u, € I and
r, > Osuch that |m(u,) — p| < 1/nand |v — r,(m(u,) — p)| < 1/n. Taking a sub-
sequence if needed, one can assume that u, — u € I, necessarily with p = m(u).
If u, = u for an infinite number of v, then |v| < 1/n for these n, which implies
v = 0. Otherwise, remove these values from the sequence to ensure u, # u foralln

and use the fact that

U_,n(un_u)w_)()
u, —u

with (m(u,) — p)/(u, —u) — m(u) # 0 to prove that r,(u, — u) converges to
some A € R. We then have v = Am,,, which completes the proof. ]

The unit normal is the unique vector N,, (u) which extends 7, (u) to a positively
oriented orthonormal basis of RZ% (T, (u), N,y(u)) is orthonormal and
det[T,,(u), N,,(u)] = 1. The subscript m is generally dropped in the absence of
ambiguity.

The frame (7', N) is parametrization-invariant in the following sense: if p : I —
[isa regular change of parameter, and m = m o ¢, then T;(p(u)) = T,,(u) and
similarly for the normal.

1.4 Embedded Curves

Letting / be either an interval or a torus, a C! functionm : I — R? such that riz(u) #
0 everywhere is a special case of an immersion (see Definition B.13), and regular
curves are also sometimes called immersed curves. Among immersed curves, one also
distinguishes embedded curves which are furthermore assumed to be non-intersecting
(so that closed embedded curves are regular Jordan curves). For embedded curves,
T,,(u) is (up to a sign change) the only unit element of 7,,,)M. Moreover, if m :
I — R?is an embedding, the inverse map m~' : R,, — I, which is well defined by
assumption, is continuous: if p,, € R,, is a sequence that converges to p € R,,, then,
for some u, and u, p, = m(u,) and p = m(u). Any limit v of a subsequence of u,
(recall that I is compact, so that any sequence has at least a convergent subsequence,
and any limit of a subsequence belongs to /) must satisfy, by continuity, m(v) = p,
which implies v = u. This implies that m~!(p) = u.

If two embedded curves have the same range, they can be deduced from one
another through a change of parameters, possibly after reorientation (this is not
true for regular curves). Letting m : I — R? and m’ : I’ — R? be two such curves,
1) = m~" o m’ is ahomeomorphism (continuous, with a continuous inverse) between
I’ and 1. If v is any point in the case of closed curves, or v € (a’, b’) for open curves,
one can apply the implicit function theorem to the identity m’ = m o 9 to prove that
1) is differentiable with

Yoy =,
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implying
_ (m" )T m o

V= I o 9|2

For open curves, one shows that ¢ has non-zero right and left derivatives at a’ and
b’ by passing to the limit, the detailed argument being left to the reader. Because of
this, any parametrization-invariant quantity only depends on the (oriented) range of
the curve when restricted to embeddings.

With some abuse of terminology, we will say that a subset R C R? is an embedded
curve if there exists an embedded curve m such that R = R,,. Such a curve m is
then defined up to a change of parameter.

1.5 The Integral Along a Curve and Arc Length

Let m : [a, b] — R? be a parametrized curve. f c = (a =ug < u; < --- < u, <
un+1 = b) is a subdivision of [a, b], one can approximate m by the polygonal line
m, with vertices (m(ug), ..., m(u,+1)). The length of m, is the sum of lengths of
the segments that form it, namely

n+1

L,,, = length(m,) = Z |m(u;) —m(u;-1)|.

i=1
One then defines the length of m as

Lm = sup Lﬂ'l,,!
o

where the supremum (which can be infinite) is over all possible subdivisions ¢ of
[a, b].
One then has the following proposition.

Proposition 1.7 Ifm : [a, b] — R? is C', then

b
L, =/ |m(t)|dt < oo.

Proof The fact that the integral is finite results from the derivative being bounded on
the compact interval [a, b] (because the curve is CH.Ifo=@=uy<u <<
U, < uy+1 = b) is a subdivision of [a, b], then one has

Uil Uit1
/ m(t)dt 5/ |m(t)|dt.

i i

|m(uir1) —m(u;)| =
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Summing over i yields the fact that L, < fah |m(t)|dt and taking the supremum on
the right-hand side implies the same inequality for L,,.

On the other hand, given any o, the finite increment theorem implies that, for all
i, there exists v; € (u;, u;+1) such that m(u; 1) — m(u;) = m(v;)(u;; — u;). Using
this, we see that

L, = ) i) (i1 — uy),

i=0
which is a Riemann sum for fa b |m(t)|dt, and can therefore be made arbitrarily close

to the integral by taking fine enough subdivisions. So for any ¢, one can find o such
that

b
/ lm()|dt < L, +¢

and since the upper-bound is less than L,, + ¢, we find fab |m(t)|dt < L,, by letting
e tend to 0. This completes the proof of the proposition. (]

If f: I — Ris acontinuous function, one defines the integral of f along m by

b
/fdam =/ £ i) du. (13)

The definition is parametrization-independent: if ¢ : [@’, b'] — [a, b] is a change of
parameters, then, using a change of variable,

b b
| swwnomevwan = [ fwawiie vaol ) du
b
= [ st

so that
/ fovdouey = / fdoy.
mo) m

The same result holds if ¢ : [d/, b'], — [a, b], is a change of parameter between
closed curves. In that case, taking ¢’ such that ¢)(c) = a ~ b and letting ¢ (a’ ~
b") = ¢, we have

v d
[ revaran = [ rovaiom e v
+ [ s ovaniom o vyl

b c
_ / FViw)ldu + / F )i (w)ldu

a
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b
= / Jf@)lmu)ldu.
a

These results imply that, when m is an embedding, the integral along m only
depends on the range R,,. This allows us to define the integral of a function over R,

by
/ fdor, =/ fdom,
R, m

m

which does not depend on how R,, is parametrized.

We now give the following important definition.

Definition 1.8 TLetm : I — R2be a (piecewise) C I curve, where [ is either [a, b]
or [a, b].. A change of parameter ¢ : I — [0, L,,] (or [0, L,,],) is an arc-length
reparametrization of m if

o = |m]|.

One says that m is parametrized by arc length if m : [0, L,,] — R2 satisfies
m| = 1.

If m is regular, then o is a regular change of parameter and m o o~ is an arc-length

reparametrization of m. When I = [a, b], the arc-length reparametrization is unique
and given by

Om(u) = /u lm(v)|dv. (1.4)

When I = [a, b],, the parametrization is unique once the starting point ¢ = o~ (0)
is chosen, and is given by (following (1.2))

O (t) = / " @)ldv,. (15)

The arc length is parametrization-invariant: if m is a curve, with arc-length
reparametrization o, and m = m o v is another parametrization of m, then o o % is
an arc-length parametrization of /% (this is obvious, since 77 o (0 0 ) ' =m o o7 1).

When a curve is parametrized by arc length, it is customary to denote its parameter
by s instead of u#, and we will follow this convention. From our definition of integrals,
we clearly have in that case

Ly,
/ fdo, = f(s)ds
m 0

(or ds. in the case of closed curves).
We will also use the notion of derivative with respect to the arc length. For open
curves, this corresponds to the limit of the ratio



10 1 Parametrized Plane Curves

gu~+¢e) — g(u)
Um(” + 5) —Om (M)

as € — 0 (for closed curves, replace 4+ by +,) therefore leading to the following
definition.

Definition 1.9 Letm : I — R? be a C! regular curve. The operator d;, transforms
a C! function g over [ into the function d;, g, which is defined over I by
g(u)

[ (u)|

s, 9(u) = (1.6)

We will write 0 if there is no ambiguity concerning the curve m. Note that, if m
is parametrized by arc length (so that u = s), this notation coincides with the usual
derivative with respect to s and therefore introduces no conflict.

The next proposition expresses that the derivative with respect to the arc length
is parametrization invariant.

Proposition 1.10 Let m : I — R? be a regular curve and i : I' — I be a change
of parameter, with m = m o 1. Then, for any C' function g defined on I,

(05,,9) 0 b = Oy, (g 0 ).
Proof This derives from the definition and from the chain rule, namely

_ Oa(goy)  (Oug)oyp
%00 = o f@myoul ~ Y

(the positive term J;1) cancels in the ratio). ([

Note that, with this definition, one can rewrite the definition of the unit tangent as
T,, = O, m.

The following proposition shows how the arc length parametrization can be used
to stitch several local parametrizations of a set to a global one forming an embedding.

Proposition 1.11 Let R C R? be compact and connected. Assume that there exists a
family Vi, ..., V, of open sets in R?, and a family m; : [a;, b;] — R? of embeddings,
such that R C U;’:I Vi and, for everyi =1,...,n, RNV, =m;((a;, b;)). Then,
there exists a closed embedding m : [a, bl, — R? such that R = Rn.

Proof Note that, since R is compact (hence closed), it contains each extremity m; (a;)
or m;(b;). Also, assume, without loss of generality, that each curve is parametrized
by arc length so that ¢; = 0 and b; = L; (the length of m;). Let IM =10, L] and
m" = m, and define the following iterative construction.

Given the current interval I, = [0, £,] and embedding m : I, — R? such that
R C R, choose an index j such that m(¢,) € RN V; and R, ¢ Ryy. Let R(,ll =
m((0, £,)), the set R,, without its extremities.
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Define u; € (0, L;) by m;(u;) = m(¢,). Let A; be the connected component of
m~! (R?n M V;) that contains u ;: A is a sub-interval of (0, L ;) taking either the form
(xj,uj),0 <xj <ujor(uj,y;),u; <y; <Lj. Reorienting m ; if needed, assume
that R N Vj = (Xj, uj).

‘We now consider two cases.

(i) mj([uj, L;1) "R,y =¥.Define £, =€, + L; —u; andextend m to [0, £,,41]
by m(u) =m;(u — £, + u;) for u > £,. Then m is an embedding and the con-
struction can continue.

(i) mj([uj, L;j]) "R,y # 0. Letv; > u; be the first parameter such that m (v;) €
Ry If m(v;) # m(0), then, by construction, there exists a V;, i # j such that
m(v;) € R, NV;. This implies that m; coincides with m; in m ;((u;, v;) N V;,
but this contradicts the fact that v; was the first point of self-intersection.

So we have m(v;) = m(0) and we conclude the construction with £, = ¢, +
vj —uj, extending m to [0, £, | by m(u) =m;(u — £, +u;) foru > £,.

Note that we always reach case (ii) (there are at most n steps). After case (ii) is
completed, R,, is an embedded closed curve which is necessarily equal to R, which
is connected. (I

1.6 Curvature

The curvature of a C2 regular curve m : [ — R2 is a function &, : I — R, related
to the arc-length derivative of the tangent through the formula:

By, Ty = KNy (1.7)

Note that T,/ 7,, = 1 implies that 7.7 9y, T,, = 0 so that 9y, T,, is collinear to N,, and
km 1s the coefficient of collinearity. From the remark made at the end of the previous
section, one also has

Km N = 0> m (1.8)

Smo 7
the second derivative of the curve with respect to its arc length. This implies that
— NTH2 — 2
km = N, 0; m = det (T,,, O; m). (1.9)

Assume that 7,, can be expressed as T, (u) = (cos 0,,(u), sin 8,,(u)) (sothat N, =
(—sin@,,, cos6,,)) where 0 is differentiable in u (we will show below that this is
always true). Then, from a direct computation, 0, T,, = s, @ N,,, from which we
deduce an alternative interpretation of x,,:

Km (Lt) = 85,,,9111(14)7 (110)

where 6,, is a C! version of the angle between 7, and the “horizontal axis.”
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The same kind of easy computation yields

av,,,Nm = —kmTn (111)
and Eqgs. (1.7) and (1.11) together form what are called the Frénet formulas for the
curve m.

Since it is defined as a double arc-length derivative, the curvature is parametriza-
tion invariant. Indeed, if m = m o 1, then, applying Proposition 1.10 twice,

95.m = 0y, ((Dy,m) o) = (O, m) o Yp
so that k;; = K, 0 1.

When «,, () # 0, one defines the radius of curvature p,, (u) = 1/|k,,(1)| and the
center of curvature ¢,, (u) = m(u) + N,,(u) /K, (). The circle with center c,, (u) and
radius p,, (1) is called the osculating circle of the curve at m(u).

We now prove the fact that a smooth version of the tangent angle 6 exists as a
consequence of the following lemma.

Lemma 1.12 Let I = [a, b] or [a,bl, and f : I — R? be a CP function satis-
fing |fw)| =1 for all u € I, with p > 0. Assume that for all u € I, there is
a small neighborhood J, C I and a C? function 7, : J, — R such that f(u') =
(cos7(u'), sinT(u')) for u' € J,. Then there exists a CP function 7 : I — R such
that f = (cos T, sinT).

Proof Since I is compact, we can find a finite number of uy, ...u, such that I =
U‘_, Ju;- The result can then be proved by induction on n. There is nothing to
prove if n = 1. Assume that n > 1 and that the result is true for n — 1. Then there
must exist a subset J,; with j # n such that J,, N J,, # @. Assume without loss
of generality that j = n — 1. There must exist an integer k such that, for any u in
this intersection, 7, (u) = 7, , (#) + 2km. Define J:,H =Jy, Uy, and7,, (1) =
Tu,,w)ond,,  and7, () =T, (u) —2kmonlJ,, sothat7isC” on qu .Then we
can apply the induction hypothesis to J,, ..., Ju, ,, qu with associated functions
Tuys -« s Ty s Tuy_y- O

To prove the existence of a differentiable 6(u), the lemma needs to be applied
withp=1, f =T,, 7 =0 and 7,(u') = Oy(u) + arcsin(det(7,,(u), T,,(u"))).
1.7 Expression in Coordinates

1.7.1 Cartesian Coordinates

To provide explicit formulas for the quantities that have been defined so far, we
introduce the space coordinates (x, y) and write, foracurve m: m(u) = (x(u), y(u)).
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The first, second and higher derivatives of x will be denoted by %, ¥, x®, ... and
similarly for y. The tangent and the normal vector expressions in coordinates are

1 X 1 —y
IT'=—\|.), N=—— .-
/)'62 +)')2 y /X-Z + )')2 X
The arc length is ds = /X 4+ y du and the curvature is

5 — yi

The last formula is proved as follows. Since kN = 0;T, we have
k= NTo,T.
Using T = O;m = n/s, we have
N'OT =35 ' N+357'0(s7")m"N.

The last term vanishes, and the first one gives (1.12) after introducing the coordinates.

1.7.2 Polar Coordinates

Let (Oxy) be a fixed frame. A point m in the plane can be characterized by its
distance, r, to the origin, O, and by 0, the angle between the horizontal axis (Ox)
and the half-line Om. (Notice that this is different from the angle of the tangent with
the horizontal, for which we also used 6. Unfortunately, this is the standard notation
in both cases.) The relation between the Cartesian coordinates (x, y) of m and its
polar coordinates (r, #) is (x = r cos 8, y = r sin ). This representation is unique,
except for m = O, for which 6 is undetermined.

A polar parametrization of a curve u +— m(u) is a function u — (r(u), 6(u)).
Often, the parameter u coincides with the angle 6 and the parametrization reduces to
a function r = f(6). Some shapes have very simple polar coordinates, the simplest
being a circle centered at O for which the equation is » = const.

Let us compute the Euclidean curvature from such a parametrization. Let 7 =
(cos @, sinf) and v = (—sin 0, cos ). We have m = r7, and

m=r71+rlv,

i = F — rf®T + 20 + ro)u.



14 1 Parametrized Plane Curves

Therefore, ) ) ) .
det[m, m]  r2(0)3 — ritd + 2720 + ri6
K= = ;
Im|3 (72 + r202)3/2

When the curve is defined by r = f(6), we have 6 = u, 6 =1andf = 0, so that

_ 2 — r¥ + 272
- (,;2 +r2)3/2 :

The polar representation does not have the same invariance properties as the arc
length (see the next section), but still has some interesting features. Scaling by a
factor A simply corresponds to multiplying » by A. Making a rotation with center O
and angle « simply means replacing 6 by 6 + «. However, there is no simple relation
for a translation. This is why a curve is generally expressed in polar coordinates with
respect to a curve-dependent origin, such as its center of gravity.

1.8 Euclidean Invariance

The arc length and the curvature have a fundamental invariance property. If a curve is
transformed by a rotation and translation, both quantities are invariant. The rigorous
statement of this is as follows. Let R be a planar rotation and b a vector in R?. Define
the transformation g : R? — R%by g(p) = Rp + b.Then,ifm : I = [a, b] — R?is
a plane curve, one can defineg-m : I — R? by (g - m)(u) = g(m(u)) = Rm(u) +
b. Then, the statements are:

(i) ogm(u) = 0, (u), and in particular Ly, = L, = L.
(ii) The curvatures r,, and k., reparametrized over [0, L] (as functions of the arc
length), coincide.

The proof of (i) is straightforward from the definition of o, (see Eq. (1.4)). For (ii),
use 97 (g -m) = RO} m, Ny = RN,, and (1.9).

Note that in this discussion we have taken I = [a, b], an interval, for which the
arc length reparametrization is uniquely defined by (1.4). If one wants to consider
“wrapped intervals” [a, b],, arc lengths should be compared with the same inverse
image of 0 (c in (1.5)).

We now state and prove the converse statement of (ii).

Theorem 1.13 (Characterization Theorem) If two C? regular plane curves m and
m have the same curvature as a function of the arc length, denoted v, : [0, L] — R,
then there exist R and b, and a change of parameter, 1, such that m = Rm o ) + b.

With our notation, the assumption means that

fﬁ:/@moarzlzm,;loargl

and implicitly implies that the lengths of the two curves coincide (with L).
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Proof Let m* and m* be m and m reparametrized with arc length. We prove that
m* = Rm* +b

for some R and b, which implies the statement of the theorem after reparame-
trization. Equivalently, we assume without loss of generality that both m and m
are parametrized by arc length.

Now, let « : [0, L] — R be an integrable function. We build all possible curves
m that are parametrized by arc length over [0, L] and have x as curvature and prove
that they all differ by a rotation and translation. By definition, the angle 6,,, defined
over [0, L], must satisfy:

0,, = kand m = (cos 8,,, sinf,,).

Letf(s) = f0° k(u)du. The first equality implies that, for some 6y € [0, 27), we have
0,,(s) = 6(s) + 6 for all s € [0, L]. The second implies that, for some b € R?,

m@%:f%mﬂﬂ@+&ﬁﬁﬂﬂ@+ﬂ@ﬂu+b
0

cos By — sin b,
sinfy cos by

R (€08 0\ _ (cos(f+ 0p)
sin@ ] = \sin(0 + 6p)
so that, letting m(s) = f(; (cos 0(u), sinO(u))du, we have m = Rm + b. Since m is

uniquely defined by «, we obtain the fact that m is uniquely defined up to a rotation
and translation. O

Introduce the rotation R = < ) From standard trigonometric formu-

las, we have

1.9 The Frénet Frame

If m is a C? regular plane curve, its Frénet frame is defined by

Considering T, and N,, as column vectors, F,, is arotation matrix satisfying F n{ F, =
Id and det(F,,) = 1. It is a moving frame along the curve.

Equations (1.7) and (1.11), which, put together, form the Frénet formulas for plane
curves, can be summarized in matrix form as

0, Fyu = Fy S (1.13)
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0 —Kn
S, = (K/m 0 ) (1.14)

to FI'F,, = Id, we get

with

Note that, applying 0

(asm Fm)TFm + anasm Fm = 0,

which states that the matrix F nf 0y, Fin (Which is equal to S,,,) must be skew-symmetric
(S,Z; = —S,;). This implies that Eqs.(1.13) and (1.14) can be used as alternative
definitions of the curvature, via the Frénet formulas.

The advantage of this construction is that it generalizes to arbitrary dimensions
(cf. Sect.3.1), and to more general forms of moving frames (like affine, or projective
frames). It also leads to an alternative proof of the Characterization Theorem, as
detailed below.

Proof (Alternative proof of Theorem 1.13) If one applies a rotation, R, and a trans-
lation to a curve m, the Frénet frame of the new curve, 1, is F;; = RF,,, and using
RTR =1d and 0,, = 0,3, we have

Si = Fyg;as,;,Frh = F,Z;as,,,Fm = Sp.

We therefore retrieve the fact that k,, is invariant under rotation. The invariance
by change of parameter is again a consequence of the invariance of the arc-length
derivative.

We now prove the converse, assume that m and m are such that S, = S;; =: S
with both curves parametrized by arc length (as in the first proof of Theorem 1.13, it
suffices to restrict to this case).

Let G, (s) = F,,(0)T F,,(s) and G (s) = F(0)” Fj(s), so that

Gm=G,S

Gin=Gis.

Both G,, and G are therefore solutions of the differential equation G = GS. We
have, in addition G; (0) = G,,(0) = Id, and the theory of differential equations states
that two functions that satisfy the same linear differential equation with the same
initial condition must coincide. Thus G; = G,,, which yields F;; = RF,, with R =
F;#(0)F,,(0)7. This implies, in particular, that Tz = RT,,, and, since T, = s, for
curves parametrized with arc length,

s

m(s) —m(0) = '/X Ti(w)du = / RT,,(u)du = Rm(s) — Rm(0)
0 0

so that m = Rm + b with b = m(0) — Rm(0). O
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1.10 Enclosed Area and the Green (Stokes) Formula

When a closed curve m is embedded, its enclosed area can be computed with a single
integral instead of a double integral. Let £2,, be the bounded connected component of
R? \ R,,. We assume that m is defined on I = [a, b],, and that the curve is oriented
so that the normal N points inward, which means that for any u € [a, b]., there exists
ane > Osuchthatm(u) +tN(u) € §2,, forO < ¢ < €. Since this is a convention that
will be used repeatedly, we state it as a definition.

Definition 1.14 A closed regular curve oriented so that the normal points inward is
said to be positively oriented.

For a circle, positive orientation corresponds to moving counter-clockwise.
We have the following proposition:

Proposition 1.15 Using the notation above, and assuming that m is positively ori-
ented, we have

b
Area($2,,) =/ dxdy = —%/ N@) " m@) |m@)|du. (1.15)

2

Note that the last integral can also be written as —(1/2) f; L (N Tm), as defined
in Sect. 1.5. We also have NTm = — det(m(s), T (s)) which provides an alternative
expression. Indeed, we have

—(1/2)/(NTm)dam = (1/2)/ det(m, T)do,,
= (1/2) /b det(m(u), T (u))|m(u)|du
so that, using T () = ri(u) /| (u)],
Area(£2,,) = (1/2) / bdet(m(u),n'z(u))du. (1.16)

We will not prove Proposition 1.15, but simply remark that (1.15) is a particular
case of the following important theorem.

Theorem 1.16 (Divergence theorem) If f : R? — R? is a smooth function (a vector
field), then

b
/ N@)T f(mw)) ()| du = —/ div f dx dy (1.17)
a 2

where, letting f(x,y) = (a(x, y), B(x, y)), one has div f = Jya + 0»0.

(Here 0; denotes the derivative with respect to the ith coordinate.)
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Equation (1.17) is called Green’s formula. To retrieve Eq.(1.15) from it, take
f(x,y) = (x,y),for whichdiv f = 2. Note that Green’s formula is sometimes given
with a plus sign, N being chosen as the outward normal.

Formula (1.15) can also be nicely interpreted as the limit of an algebraic sum of
triangle areas. For this, consider a polygonal discretization, say nz, of m with vertices
Pis ..., pn. Let O be an arbitrary point in R2.

First consider the simple case in which the segment O py, is included in the region
£2;; for all k (the polygonal curve is said to be star shaped with respect to O). In this
case, the area enclosed by the polygon is the sum of the areas of the triangles. The
area of (O, px, pry1) is | det(pipis1, Opi)|/2." Assuming that the discretization is
counterclockwise, which is consistent with the fact that the normal points inward,
the vectors Opy and py pr+1 make an angle between 0 and 7, which implies that their
determinant is positive. We therefore get

N

1
Area(2;) = 5 ) detlOpy. pipisa]. (1.18)
2 k=1
Since this can be written as % 11<V:1 det(Opx, piPi+1/| Pk Pk+11) | Pr Pr+1], this is con-
sistent with the continuous formula

b
%/ det(Omu), T (w))|m(u)|du.

The interesting fact is that (1.18) is still valid for polygons which are not star shaped
around the origin. In this case, the determinant may take negative values, which
provides a necessary correction because, for general polygons, some triangles can
intersect R? \ £2,,.

Finally, we mention a classical inequality comparing the area and the perimeter
of a simple closed curve.

Theorem 1.17 (Isoperimetric Inequality) It m is a simple closed curve with perime-

ter L and area A, then
4rA < L? (1.19)

with equality if and only if m is a circle.

1.11 The Rotation Index and Winding Number

Let m be a closed, C!, plane curve, defined on I = [a, b]. Express T : [a, b] — st
(the unitcircle) as a function ¢t > (cos 8(t), sin O(¢)) where 0 is a continuous function
(cf. Lemma1.12).

IThe general expression of the area of a triangle (A, B, C) is | det(AB, AC)|/2, half the area of
the parallelogram formed by the two vectors.
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Since m is closed, we must have T'(b) = T (a), which implies that 8(b) = 0(a) +
2r,, 7, where r,, is an integer called the rotation index of the curve.

The rotation index is parametrization-invariant, since it is defined in terms of T,
which is itself parametrization-invariant. If the curve is regular and C?, then, taking
the arc length parametrization, we find, using k = é,

L
0(L) — 0(0) = / Kk(s)ds
0

or
L

rm = 7 ; k(s)ds.

The rotation index provides an algebraic count of the number of loops in the curve:
a loop is counted positively if it is parametrized counter-clockwise (normal inward),
and negatively otherwise. The figure “8”, for example, has a rotation index equal to
0. This also provides an alternative definition of a positively oriented curve: a simple
closed curve is positively oriented if and only if its rotation index is +1.

A similar notion is the winding number of a curve. It depends on a reference point
po € R?, and is based on the angle between pom(t)/|pom(t)| and the horizontal
axis, which is again assumed to be continuous in . Denoting this angle by «, (¢),
the winding number of m around py is

W, () = (01, (b) — vy, (@) /2.

It provides the number of times the curve loops around py. Again, it depends on the
curve orientation.

If a curve is simple (i.e., it has no self-intersection), then it is intuitively obvious
that it can loop only once. This is the statement of the theorem of turning tangents,
which says that the rotation index of a simple closed curve is either I or —1. However,
proving this statement is not so easy (even in the differentiable case we consider) —
the reader may refer to [86] for a proof.

1.12 More on Curvature

There is an important relationship between positive curvature (for positively oriented
curves) and convexity. One says that a simple closed curve is convex if the bounded
region it outlines is convex (it contains all line segments between any two of its
points). Another characterization of convexity is that the curve lies on a single side
of any of its tangent lines. The relation between convexity and curvature is stated in
the next theorem.

Theorem 1.18 A positively oriented C? curve is convex if and only if its curvature
is everywhere nonnegative.
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We only provide a partial justification of the only if part. Assume that m is positively
oriented and that its interior, £2,,, is convex. For a fixed arc length, s and ¢ small
enough, we have (since m is positively oriented): m(s) + N (s) € £2,, if ¢ > 0 and
€ 5;1 if ¢ < 0. Now, using a second-order expansion around s, we get

2
%(M(S +h) +m(s —h)) =m(s) + h?H(S)N(S) +o(h?)

and this point cannot be in £2,, if 4 is small and k(s) < 0.

The local extrema of the curvature are also of interest. They are called the vertices
of the curve. The four-vertex theorem, which we also state without proof, is another
classical result for plane curves [63, 212, 228].

Theorem 1.19 Every simple closed C? curve has at least four vertices.

1.13 Discrete Curves and Curvature

1.13.1 Least-Squares Approximation

Because it involves a ratio of derivatives, the numerical computation of the curvature
is unstable (very sensitive to noise). We give here a brief account of how one can
deal with this issue.

Assume that the curve is discretized as a finite sequence of points, say
m(1l), ..., m(N). The usual finite-difference representation of derivatives are:

m' k) = (mk+1) —mk —1))/2;
m’ (k) =mk +1) = 2mk) +m(k —1).

The simplest formula for the approximate curvature is then

_det(m'(k), m" (k)
a Im’ (k)2

k(k)

This is however very sensitive to noise. A small variation in the position of m (k)
can have large consequences on the value of the estimated curvature. To be robust,
curvature estimation has to include some kind of smoothing. As an example of such
an approach, we describe a procedure in which one fits a curve of order 2 at each
point.

Fix an approximation scale A > 1, where A is an integer. For each k, compute
three two-dimensional vectors a(k), b(k), c(k) in order to have, for —A <[ < A:

2
ik + 1) ~ a(k)% + bR + c(k).
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Once this is done, b(k) will be our approximation of the first derivative of m and a (k)
our approximation of the second derivative. The curvature will then be approximated

by
det[b(k), a(k)]

R = R

We will use least-squares estimation to compute a, b, c. First, build the matrix

21_7A 7 0 Zl_fA 2
A= 0 ZlA=7A 0
Zl_—A 5 0 2A+1

which is the matrix of second moments for the “variables” /2/2, [ and 1. They can
be computed in closed form as a function of A, since

- A 4 A
Y P=ZQA+3A+ and Y I*=— (64" +154° +104% — ).
I=—A 3 I=—A 15

The second computation is, for all k:

A

200 =Y mk+1),

I=—A

A
ak) = Y Imk+1),
I=—A
A 12
ak) =) Smk+D).

I=—A

Given this, the vectors a(k), b(k), c(k) are provided by the row vectors of the matrix

22(k)
A7 21k
zo(k)

where zo, z1, 22 are also written as row vectors. As shown in Fig. 1.1, this method
gives reasonable results for smooth curves. However, if the curve has sharp angles,
the method will oversmooth and underestimate the curvature.
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Fig. 1.1 Noise and curvature. The first curve on the left is an ellipse discretized over 125 points.
The second on the right is the same ellipse, with coordinates rounded to two decimal points. The
difference is almost imperceptible. However, the second row shows the result of estimating the
curvature without smoothing, on the first and the second ellipse, with a very strong noise effect.
The third (resp. fourth) row shows the result of the second-order approximation with A = 5 (resp.
A = 10). The computed curvature for the truncated curve progressively improves while that of the
original curve is minimally affected
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1.13.2 Curvature and Distance Maps

If A C R?, one defines the distance map to A as
da(p) = dist(p, A) =inf {|[p —ql,q € A}.

If A is a closed set (which we will assume in the following), then for any p € R?
thereexistsag € A suchthatd,(p) = |p — ¢q| (i.e., the infimum is a minimum). This
is because any minimizing sequence g, such that |p — g,,| — da(p) is necessarily
bounded, and therefore has, according to the Heine—Borel theorem, a convergent
subsequence, with limit g € A (because A is closed) and such that |p — g| = d4(p).

The optimal ¢ is not always unique. For example, all points in a circle are closest
to its center. The set of points p € R? for which there exists a unique ¢ € A such that
|p — q| = da(p) will be denoted by U4, and we let w4 : U4 — A be the projection,
uniquely defined by |p — ma(p)| = da(p).

For p € R?, welet B(p, r) = {q eR?:|p—q| < r} denote the (open) disc with
center p and radius r. For g € A, define

r(A,q) =sup{r: B(q,r) CUs}

and r(A) = inf {ra(q) : g € A}, which is called the reach of A, and also has the
following alternative definition.

Proposition 1.20
r(A) =sup{r :da(p) <r = p € Ua}. (1.20)

Proof Denote temporarily by r’(A) the right-hand side of (1.20). Assume that
r<r'(A). If g € A and p € B(q,r), then da(p) <|p —¢q| <r so that p € Uy
by definition of rg. Therefore, B(q,r) C U, and r <r(A, g) for all g € A, which
implies that » < r(A). Taking the maximum in r, we get r'(A) < r(A).

Assume now that r <r(A). If da(p) <r, then p € B(ma(p),r), and since
r(A) <r(A, wa(p)), we have p € Uy. This proves that r < r’(A), and taking the
maximum in r, we get r (A) < r’(A), which concludes the proof. [l

We have the following proposition.

Proposition 1.21 The distance map is 1-Lipschitz, i.e., for all p, p’ € R?, one has

lda(p) —da(p)l < |Ip =P/l (1.21)
and the projection T 4 is continuous on its domain.

Proof One has, for all p, p’ e R and g € A,

da(p) <lp—ql=<Ip' —ql+Ip—pI
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Taking the inf of the right-hand side, we get ds(p) <da(p))+|p— Pl
By symmetry, we also have d, (p") < da(p) + |p — p’| and (1.21) holds.

Now, take p € U, and a sequence p, € U, such that |p, — p| = 0. Let ¢, =
ma(pn), ¢ = m4(p) and assume that there exists a subsequence of g, (that we will
still denote by g, ) and € > O such that |g, — g| > €. Because |p — g,| < |p — pn| +
da(pn) <2|p — pnl + da(p), which is bounded, g, has a convergent subsequence
(still called g,), with limit ¢’ € A. But |p — ¢'| = lim,, |p, — qu| = lim,, da(p,) =
da(p).Since p € Uy, thisimplies g = ¢’, acontradiction to the fact that |g, — g| > ¢
for all n. The latter condition being impossible implies that 74 is continuous. (]

Proposition 1.22 Assume that d, is differentiable at p € Uy (the interior of Uy).
Then, if p ¢ A,
p—7ma(p)

vd = .
AP =

(1.22)

Proof To see this, first note that, letting g = w4 (p), one has p; :==q +t(p — q) €
Uy forall ¢ € [0, 1], with w4 (p;) = q. Indeed, if ¢’ € A, ¢’ # g, onehas |p — ¢q| <
lp—4q'l <lp—pl+1p—q'l =10 —=0lp—ql+ Ip — q'|. This yields

lpe—ql=tlp—ql <|p:— ¢l

sothat p, € Uy withg = w4 (p;). This alsoimplies thatd s (p;) = t|p — q| and taking
the derivative with respect to 7 at ¢ = 1, we get

vda(p)' (p—q)=1p —ql.

However, (1.21) implies that |[Vd(p)| < 1. This is only possible for Vd, (p) given
by (1.22).

One can use the fact that the gradient of d4 is prescribed in Uy \ A whenever d4
is differentiable, in combination with Rademacher’s theorem [107], which states that
Lipschitz functions are differentiable almost everywhere, to prove that d is actually
differentiable on the whole set Z/O{A \ A. Similarly, df\ is differentiable on Zle, with
V(di)(p) = 2(p — m4(p)). This general fact is proved below in the special case
A =R,,, where m is a C?, closed, regular curve with no self-intersection. Note that
our definitions, so far, and Propositions 1.20-1.22 are valid for arbitrary closed sets,
and in any dimension (and so is the differentiability of d4 on Uy \ A).

We now specialize to the case A = R,,, and we will write d,, = dg,,, Un = UR,,,
etc.

Proposition 1.23 Let m be a simple closed C? regular curve. Then, we have the
following statements.

(i) If |p—m(s)| =dn(p), then p=m(s)+tN,(s) with |t|=d,(p) and
th,(s) < 1.
(ii) Let
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21(m () — m) Np()| | )
m@) —me)P 'S’SE[O’L]*’S#S}' (22

Pm = max {

Then p,, < 0o and r(Ry) = 1/p, > 0. In particular, Lo{m is not empty.
(iii) The distance map is differentiable on U,,.

Proof Assume that m is parametrized by arc length over the wrapped interval [0, L],.
The function f : u > |p — m(s + u)|> has by assumption a global minimum at u =
0. We therefore have f(O) =0and f'(O) > 0. Since f(O) = 2(p —m(s)) T, (s),
we get the fact that p — m(s) is normal to m, so that p = m(s) + tN,,(s) with
|t| = d,,(p). We also have f(O) =2-2(p —m) " Nu($)kpm(s) = 2(1 =tk (s))
yielding ¢k, (s) < 1. This proves (i).

We now prove that p,, is finite. If m(s,) # m(s,) are such that

C, = 2 |(m(§n) - m(sn))TNm(Sn)|
" Im(s,) — m(5n)|2

tends to infinity, then, necessarily, m(s,) — m(s,) — 0. We can assume (taking sub-
sequences if needed) that both s, and §,, converge, necessarily to the same limit (say
s) because m is non-intersecting. Assume that s % 0 so that s, € (0, L) for large
enough n (otherwise, just reparametrize m with another starting point). We have,
making a Taylor expansion,

~ ~ (En - Sn)2 ~ 2
m(s,) = m(sy) + (8 — $,) T (s0) + H(Sn)TNm(sn) +o(($p — $1)°),

(5 — Sn)2
2

’(m(gn) - m(sn))TNm(sn)‘ = |K/(Sn)| + 0((§n - Sn)z)

and
Im@S,) — m(s,) 1> = Gy — $)* + 0(Gn — s2)7).

Thus ¢, — |k, (s)|, which is a contradiction, proving that p,, is finite. Note that the
same limit argument also proves that p,;, > ||k |loeo 1= Max; |k, (s)].

Now, take ¢ € R? with d,,(¢) =t < 1/p,, and assume that it has two closest
points, so that there exists sy 7 s; such that r = |¢g — m(s9)| = |g — m(s1)|. Then
q = m(sg) + toNy (s9) = m(sy) + t; Ny, (s1) with |tg| = |#;| = t. Moreover,

Im(s1) — m(s0)|* = [toNu(50) — 61 Ny (s1)|* = 263 — 21120 N, (50)” Ny (s1)
=2t |ty — 11 Ny (50)" Ny (s1)

and
[(m(s1) — m(50))" N (s0)| = lto — t1 N (50)" N (s1).
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We therefore get
2|(m(s1) — m(so)" Nu(s0)| _ 1
Im(s1) — m(so)|? t

By definition, the right-hand side is less than or equal to p,,, which contradicts our
assumption that ¢t < 1/p,,. Therefore, g € U,,. This proves that r(R,,) > 1/p.

Conversely, take ¢ < r(R,,;). By definition, we have B(m(s), t + ) C U, for all
s € [0, L], and some ¢ such that t 4+ ¢ < r(R,,). Therefore, letting g, = m(s) +
tN,,(s) and g_ = m(s) — tN,,(s), we have |m(s) — g4| >t and |m(5) —qg_| >t
for all § # 5. Developing the expression [n(5) — m(s) F t N, (s)| — * yields

Im(@3) — m(s)|* = £2t(m(3) — m(s))" Ny (s)
so that

2|m(5) — m(s) T N (s)|

Im(5) —m(s)|?

1

- >

P
forall s # §,i.e.,t < 1p,,. Taking the maximum in ¢ implies 7 (R,,) < 1/p-

We now prove (iii). Take g € Z/o{m and m(s) = m,(q). Write ¢ = m(s) + rN,,(s)
with |r| = d,,(q). Since B(q, €) C Lolm for € small enough, we have m(s) +tN(s) €
U, fort € (r —e,r+e¢),andm,(m(s) + tN(s)) = m(s). From (i), we get k,, (s)t <
1fort € (r — e, r + ¢), which implies x,,(s)r < 1.

Take 6 > 0 such that x,,(u)t <1 if |s—u| < and t € (r —e/2,r +¢/2).
Consider the mapping ¢ : (s — 8,5 + ) x (r —e/2,r +¢/2) — R? defined by
p(u,t) =m(u) + tN(u). Then 01p(u,t) = (1 —tk, ()T, (u) and Orp(u,t) =
N, (u) so that det(dyp) = 1 — tk,;(u) # 0. The inverse function theorem implies
that ¢ (possibly restricted to a smaller open neighborhood of (s, )) is invertible
with a differentiable inverse. So, there exists a neighborhood of ¢ in Z/{m such that
o N (p) = (mu(p), t(p)) is differentiable with ¢ (p) = +d,, (p). Making sure that this
neighborhood does not intersect m, we can ensure that the sign of #(p) is constant
so that d,, is differentiable in this neighborhood and, in particular, at g. (]

Consider the mapping (a local version of which was introduced in the previous

proof)
Om: [0,Ll x (=r,r) > R?

(s.0) > m(s) +1Nu(s)
for some r < r(R,,). As shown in the proof of Proposition 1.23, ¢, is locally
invertible, but because it is also one-to-one, it provides a diffeomorphism from
[0, L]« x (—r, r) to the set
Viu(r) = {CI dm(q) <r}.

Consider now the set V.7 (r) = vy, ([0, L] x (0, r)). We can write
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L r
Area(V,F(r)) =/ / detd, (s, t)ds dt
o Jo

L r
= / / (1 —tky)dsdt
0 0

s2 L
=Lr——/ Ky ds.
2 Jo

The interesting conclusion is that the area is a second-degree polynomial in r. The
first-degree coefficient is the curve’s length and the second-degree coefficient is the
integral of the curvature, i.e., the rotation index of the curve.

The formula can be localized without difficulty by restricting V*(m) to points
s, t such that 59 < s < s1, the result being obviously

2 51 N
(s1 — so)r — r_/ Ky ds = r[ (1 — kpr/2)ds.
2 S0 S0

The “infinitesimal limit” (1 — &, (s)r/2)ds provides the infinitesimal area of the
set of points that are within distance r to the curve and project on m(s) for some
s € (S0, s1). This area is at first order given by the arc length times r, with a corrective
term involving the curvature.

This computation is a special case of a very general construction of what are
called curvature measures [106]. They can be defined for a large variety of sets, in
any dimension. We will see a two-dimensional description of them when discussing
surfaces.

Proposition 1.23 needs to be modified to apply to open curves. Consider such a
curve, m : [0, L] — R2. Then point (i) in the proposition remains true with a proper
definition of a normal vector to R,,: one says that N is a unit normal to R, (or
simply to m) at m(s) if

N = =£N,(s) ifs € (0, L)
N =tN,,(0) + 67,00 ifs=0
N =tN,(L)—tT,(L) ifs=1L

with 12 + 13 = 1, 1, > 0. Denoting by N,,(s) the set of unit normals to m at m(s),
the first statement in (i) can be replaced by: p = m(s) + d,,(p) N where N € N (s).
The fact that x,,(s)d,,(p) < 1 holds for s € (0, L).

If one replaces the definition of p,, by

- T
2((:;(&)) _"’:1((?))|2N 15,5 €0, L1, s #5,N € Nm(s)} . (1.24)

Pm = max{

then (ii) remains true. Note that (1.24) boils down to (1.23) for closed curves, where
N, (s) = {£N,,(s)}. Finally, (iii) is true.
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The reader can try to prove these statements directly, or refer to [106], where these
statements are proved for arbitrary closed sets, with a proper definition of the set of
unit normal vectors, and without the finiteness of p,,, which does not hold in general.
(It does not hold, for example, for polygonal curves.)

1.14 Implicit Representation

1.14.1 Introduction

Implicit representations can provide simple descriptions of relatively complex shapes
and can in many cases be a good choice when designing stable shape processing
algorithms. The zero level set of a function f : R? — R is the set C rofall p e R?
such that f(p) = 0 (cf. Fig. 1.2). One says that f is regular if its derivative never
vanishes on Cy, that is,

f(p)=0=Vf(p) #0. (1.25)

The set C s can have several connected components, each of them being the image of
a curve (level sets can therefore be used to represent multiple curves). Our first goal
is to show how local properties of curves can be computed directly from the function
f. We will always assume, in this chapter, that the function f tends to infinity as p
tends to infinity. This implies that the zero level sets are bounded.

The implicit function theorem implies that, in a neighborhood of any regular point
of f (suchthatV f(m) # 0), the set C s can be locally parametrized as aregular curve,
for example by expressing one of the coordinates (x, y) as a function of the other.
This fact and Proposition 1.11 implies that, if f is regular, each connected component
of C can be parametrized as a regular curve. The existence of higher derivatives in
f implies the same regularity for the parametrization.

Fix a connected component and assume that such a parametrization has been
chosen. This results in a curve m : I — R? such that m(0) = mg and f(m(u)) =0
for u € I (R,, coincides with the chosen connected component). From the chain
rule, we have:

vV f(m)ro,m = 0.

This implies that V f (m) is normal to m.
Orientation. We will say that f is positively oriented if f <0 in the bounded
connected components of R*\ C r and f > 0 otherwise. If m is also positively
oriented, then V f(m) points outward while the normal N to m points inward,
so that V f(m) = —|V f(m)|N (recall that (T, N) must have determinant 1, with
T =m/|ml).

Assuming positive orientation, we obtain

1
T=g7(-af00)
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Fig. 1.2 Implicit
representation: The first two
panels provide two views of
the graph of a function

f : R? — Rintersecting the
plane z = 0. The third panel
is the corresponding level set

Assume that f is twice differentiable. From the second derivative of the equation
f(m(u)) =0, we have

mTd*f (mym +V f(m)m=0.

(recall that the second derivative of f is a 2 by 2 matrix).
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Since V f(m) = —|V f(m)|N and #” N = x|m|?, the previous equation yields
(after division by |r1|?),

TTd*f(m)T — k|V f(m)| =0.

so that
CTTAT O fOrf —2010:f 01 fOuf + O3S 81f
I O f> + O f2)32

This can also be written as (the computation being left to the reader)

(1.26)

1.14.2 Example: Implicit Polynomials

A large variety of shapes can be obtained by restricting the function f to be a
polynomial of small degree [169], therefore involving a dependency on a small
number of parameters. A polynomial in two variables and total degree less than # is
given by the general formula

(x y) = Z apqxp

ptq=n

The zero level set of f, Cr = {z = (x,y), f(x,y) =0}, is called an algebraic
curve. It can be a complicated object, with branches at infinity, self-intersections, or
multiple loops.

The principal part of f is the homogeneous polynomial

n
g0, y) =Y ap,ax y"

A sufficient condition for the compactness of C s is that g has no non-trivial zeros, i.e.,
g(x,y) =0 = x =y = 0. Adding our usual regularity condition, f =0 = V f #
0, ensures that C is a union of Jordan curves.

Figure 1.3 provides a few examples of zero level sets of implicit polynomials.
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AR,

Fig. 1.3 Shapes generated by implicit polynomials of degree 4. The first curve is the level set of the
polynomial f (x, y) = x* + y* — xy — 0.1. The other three are generated by adding a small noise
to the coefficients (including zeros) of f

1.15 Invariance for Affine and Projective Transformations

Invariance, which searches for quantities that remain unchanged under certain classes
of transformations, is a fundamental concept when dealing with shapes. So far, we
have discussed two classes of transformations: parameter change and Euclidean
motion (rotations, translations). We found in particular that Euclidean curvature was
an invariant for these two classes together. We now consider additional invariants to
complement these two.

We will start with transformation by scaling. This corresponds to replacing the
curve m by m = Am where ) is a positive number. Visually, this corresponds to
viewing the shape from a location that is closer or further away. Because of the
renormalization, the unit tangent, normal and the angles 6,, are invariant. However,
the length and arc length are multiplied by the constant factor A. Finally, since the
curvature is the rate of change of the angle as a function of arc length, it is divided
by the same constant, K;; = K, /.

It will also be interesting to consider invariants of affine transformations m —
Am + b where A is a 2 by 2 invertible matrix (a general affine transformation). Arc
length and curvature are not conserved by such transformations, and there is no simple
formula to compute their new value. This section describes how new quantities, which
will be called affine arc length and affine curvature, can be introduced to obtain the
same type of invariance.

However, a comprehensive study of the theory of differential invariants of curves
[224] lies beyond the scope of this book. Here, we content ourselves with the com-
putation in some particular cases. Although this repeats what we have already done
with arc length and curvature, it will be easier to start with the simple case of rotation
invariance. We know that s,, and k,, are invariant under translation and rotation, and
we now show how this can be obtained with a systematic approach that will in turn
be applied to more general cases.
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1.15.1 Euclidean Invariance

The generic approach to defining generalized notions of length and arc length is to
look for a function Q which depends only on the derivatives of a curve at a given point,
such that Q (m, m, . ..)du provides the length of an element of the curve between u
and u + du.

An arc length is then defined by

O () = / QGi, i, ...)dv.
0

The function Q will be designed to meet invariance properties. We will always
require parametrization invariance, ensuring that m = m o o implies 0,, = 0;; o .
Computing the derivative of this identity yields, in terms of Q:

QUi i, ..) = pQ(mop,mop,...). (1.27)
Now, for m = m o ¢, we have
rr'z:gbﬁiogo,
ﬁi:gbn%ocp—}—gbzﬁ%ogo,

and so on for higher derivatives.
As a consequence, if Q only depends on the first derivative, we must have

Qi op) =@ Qi o).
This is true in particular when, for all z; € R2, A\ > 0:

O\iz1) = M Q(zy).

This is the order 1 condition for Q. It is sufficient by the discussion above, but one
can show that it is also necessary. Similarly, the order 2 condition is that, for all
Z21,z2 € R% forall \; > 0, \, e R:

O(Miz1, Maz1 + Az2) = M 0(z21, 22).

This argument can be applied to any number of derivatives. The general expression
(based on the Faa di Bruno formula) is quite heavy, and we will not need it for this
discussion, but the trick for deriving new terms is quite simple. Think in terms of
derivatives: the derivative of \; is A;4 and the derivative of z; is A;zx+1; then apply
the product rule. For example, the second term is the derivative of the first term, \;zy,
and therefore:
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Miz) = D'z + @)
= \zi + Az2,

which is what we found by direct computation. The constraint with three derivatives
would be

Q(\iz1, Mazi + Afz2, Mazi + 3022 + Mz3) = M 0(z1, 22, 73).

The second type of constraint which is required for Q is invariance under some
class of transformations of the plane. If A is such a transformation, and m = Am,
the requirement is o,; = oy,, Or

O, i, ...) = Q(O(Am), O*(Am), .. ). (1.28)

We consider affine transformations (the results will be extended to projective
transformations at the end of this section). The equality is always true for translations
Am = m + b, since Q only depends on the derivatives of m, and therefore we can
assume that A is purely linear. Equality (1.28) therefore becomes: for all z;, z5, ... €
R?,

0(z1,22,...) = Q(Az1, Az, .. ).

We now specialize to rotations. We will favor the lowest complexity for Q, and
therefore first study whether a solution involving only one derivative exists. In this
case, Q must satisfy: for all \; > 0, for all z; € R? and for any rotation A,

O(Az;) = O(z1) and Q(\iz1) = M Q(z1) -

Let e; = (1, 0) be the unit vector in the x-axis. Since one can always use a rota-
tion to transform any vector z; into |zq|e;, the first condition implies that Q(z;) =
0O(|z1le1), which is equal to |z;|Q(e;) from the second condition. We therefore find
that Q(z;) = c|z;| for some constant ¢, yielding Q(m) = c|m| = ¢ /X2 + y2. We
therefore retrieve the previously defined arc length up to a multiplicative constant c.
The choice ¢ = 1 is quite arbitrary, and corresponds to the condition that e; provides
a unit speed: Q(e;) = 1. We will refer to this 0, as the Euclidean arc length, since
we now consider other choices to obtain more invariants.

1.15.2 Scale Invariance

Let us now add scale to translation and rotation. Since it is always possible to trans-
form any vector z; into e; with arotation and scaling, considering only one derivative
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is not enough anymore.”> We need at least two derivatives and therefore consider z;
and z, with the constraints

Q(Az1, Azz) = Q(z1,22) and Q(\iz1, Mazi + Mz2) = M 0(z1, 22) -

Similar to rotations, the first step is to use the first condition to place z; and z, into
a canonical position. Consider the combination of rotation and scaling which maps e;
to z1. The first column of its matrix must therefore be z;, but, because combinations

a —b

of rotation and scaling have matrices of the form S = b 4 ), we see that, letting

z1 = (x1, 1), the obtained matrix is

X1 —)1
Sm = < ) .
yi X1
Now take A = Sz’l1 to obtain, from the first condition:

0z1.22) = Q(e1. 8. '22) .

A direct computation yields

sl — 1 X1X2 + Y12
0 2= 33 _ :
X{ 4+ yp \X1y2 — X2y

So far, we have obtained the fact that Q must be a function F' of the quantities
a = (z{22)/|z1* and b = det(zy, 22) /|1 |*.

Now consider the second condition. The transformation z; — A;z; and z, —
)\%Zz + Apz; takes a to Adja + A/ A1 and b to A\1b. Thus, if Q(z1, z2) = F(a, b), we
must have

F(Aa + X /A1, AMib) = M F(a, b)

for all real numbers a, b, A, and \; > 0. Given a, b we can take \, = —/\%a and
A1 = 1/]b], at least when b # 0. This yields, for b # 0:

F(a, b) = |b|F (0, sign(b)).
For b = 0, we can take the same value for ), to obtain F (0, 0) = A\ F (a, 0) for every

A1 and a, which is only possible if F(a, 0) = 0 for all a. Thus, in full generality, the
function Q must take the form

2This would give Q(z1) = Q(e) = constand Q(A\1z1) = A\1Q(z1) = Q(zy) forall A} > 0, yield-
ing O =0.
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cyldet(zy, z2)1/1z1 |2 if det(zy, z2) > 0,
Q(Z17 Zz) = 0if det(zl,@) :O,
c_|det(z1, z2)|/|z11% if det(z1, z2) < O,

where cg, ¢4, c— are positive constants. To ensure invariance by a change of orien-
tation, however, it is natural to choose c; = c_. Taking this value equal to 1 yields

021, 22) = |det(z1, 22)l/ 121 1.
We obtain the definition of the arc length for similitudes®:

[ — &3]

do_sim —
).62 + )’]2

du . (1.29)

1.15.3 Special Affine Transformations

‘We now consider the case of area-preserving, or special affine transformations. These
are affine transformations A such that det(A) = 1. As before, we need two deriva-
tives, and the first step is again to normalize [z, z»] using a suitably chosen matrix
A. Here, the choice is natural and simple, at least when z; and z, are independent:
take A to be the inverse of [z, z2], normalized to have determinant 1, namely

A= Vdet(z1, 22)[z1, 22171 if det(z1, z2) > 0,
~ | Vdet(za, z0)[z2, 2117V if det(z1, z2) < 0.

When det(z;, z2) > 0, this yields

0(z1, 22) = O(Vdet(z1, z2)er, v det(zy, z2)e)

so that Q must be a function F of v/det(z;, z2). Applying the parametrization invari-
ance condition, we find

FOY? etz 22)) = M F(/det(zy, 22)),

which implies, taking A\; = (det(zy, 72))~ 173, that

0(z1,22) = F(1)(det(z1, 22))'/°.

The same result is true for det(z;, z2) < 0, yielding

3To complete the argument, one needs to check that the required conditions are satisfied for the
obtained Q; this is indeed the case, although we skip the computation.
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0(z1, 22) = F(1)(det(z2, 1)) "/°.

with a possibly different constant 7 (1). Again, for orientation invariance, it is natural
to define the area-preserving arc length by

do* =iy — x| 3du.

We have left aside the case det(z, zo) = 0. In this case, assume that z, = az;.
The second condition implies, taking Ay = —A\ja:

MO (21, az1) = Q(zi, Mazi + Azi) = Q(\z1, 0),

but we can always find an area-preserving transformation which maps \;z; to e; so
that A\; Q(z1, azy) = Q(ey, 0) is true for every A\; > 0 only if Q(z;, az;) = 0. This
is consistent with the formula obtained for det(z;, z2) # O.

Computations are also possible for the full affine group and also for the projective
group, but they require us to deal with four and more derivatives and are quite lengthy.
They will be provided at the end of this section. The reader may refer to Sect. B.4
for a quick introduction to groups of linear transformations and their actions.

1.15.4 Generalized Curvature

In addition to arc length, new definitions of curvature can be adapted to more invari-
ance constraints. One way to understand the definition is to return to the rotation
case, and our original definition of curvature.

We have interpreted the curvature as the speed of rotation of the tangent with
respect to arc length. Consider the matrix P, = [T}, N,,] associated to the tangent
and normal to m. Because (7},,, N,,) is an orthonormal system, this matrix is a rotation,
called a moving frame [55, 104, 108, 109], along the curve. The rate of variation of
this matrix is defined by

W, = P '0,P,.

In the Euclidean case, it is
cosf,, sinf —sinf,, —cosf 0-1
W, = 056 S " "o ) = k(s .
" sem (— sin @,, cos 0, cos@, —sind,, m(s) 10
This illustrates the moving frame method, which provides here the Euclidean cur-
vature. It can be shown to always provide a function which is invariant under the
considered transformations and change of parametrization. More precisely, we have

the following definition. For a group G with associated arc length do = Qdu, we
will use the notation
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aa = 6Ll/Q7

which generalizes the arc-length derivative defined in the Euclidean case. The fol-
lowing discussion concerns curves such that Q # 0, which generalizes the notion of
regular curves.

Let J;(G) be the set of vectors (zo, 21, - . ., zx) € (R®)*¥t! such that there exists a
curve m such that z; = Q’;m. That this condition induces restrictions on zy, ..., Zk
is already clear in the case of rotations, for which one must have |z;| = 1.

Definition 1.24 Let G be a group acting on R? (e.g., a subgroup of GL,(R)).
A G-moving frame of order k is a one-to-one function Py : Jy(G) — G with the
following property. For all curves m : I — R? with Q # Oonm,define P, : I — G
by

P, = Py(m,O,m, ..., 8§m).

Then, one must have Py, = gP, forallg € G.

We now consider affine transformations, with group G a subgroup of GL,(R) x
R? (cf. Sect. B.4.3). An element of G is represented by a pair (A, b) for a linear map
A and b € R%. We will therefore write Py = (Ao, by), P = (A, by). We denote
by Gy the linear part of G, i.e., (A, b) € G = A € Gy. The invariance condition in
Definition 1.24 yields, forall U € Gg, h € R2,

Ao(Uzo+h,Uz1,Uzs,...,Uzx) = UAo(20, 21,22, - -+, Zk)> (1.30)
bo(Uzo+h,Uz1, Uz, ..., Uzk) = Ubo(z0, 21, 22, - - - » 2x) + h.

We have the following result, which generalizes Theorem 1.13. We here use the
same notation as in Sect. B.5.

Theorem 1.25 (Moving Frame: affine case) Let G = Gy x R? be a subgroup of

GL,(R) x R2. If Py = (Ao, by) is a G-moving frame, then, for any plane curve m
Wm = A;lao'Pm = (A,ZlaaAmv A,Zlagbm)

is invariant under change of parametrization and under the action of G. It moreover

characterizes the curve up to the action of G: if Wy, = Ws, where m* and m* are

respectively the arc-length reparametrization of m and m, then m = gm o 1 for some
g € G and a change of parameter ).

Proof Invariance by change of parametrization relies on the fact the arc length is,
by construction, invariant and the details are left to the reader. If m = Um + h, then
Py = (UAp, Ub,, + h) and

Wi = A U (U0, A, UBsby) = Py 0, Py = Wi,

which proves G-invariance.
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Conversely, assume that W; = W,, = W, and assume, without loss of generality,
that they are both parametrized by arc length. Let g = (U, h) = P;(0) Py, )
The proof that m = gm for some g derives from the uniqueness theorem for ordinary
differential equations (cf. Appendix C); P,, = (A, by,) and Py = (A, by) are both
solutions of the equation 0, (A, b)) = AW, and g P,, is another solution, as can easily
be checked. Since g P,,(0) = P;(0) by definition of g, we have

PG, i, ...,m®y = gPyGm, ...,m®) = Py(gm, Unn, ..., Um™).

Because P is assumed to be one-to-one, we have m = gm, which proves the

theorem. U
For affine groups, we select a moving frame Py of the form Py(zo, 21, .- -, 2k)
= (Ao(z1, ..., 2x), 20). This implies that

W, = (A,;la,Am, A,;la,m).
‘We will mainly focus on the first term, which we denote by
Wi = A;llaaAm-

The choice made for rotations corresponds to Ag(z1) = [z1, Rz1], R being the
(m/2)-rotation. It is obviously one-to-one and satisfies the invariance requirements.
The second term in W, is constant, namely A;Llagm =(1,0).

It can be shown that W,, can lead to only one, “fundamental”, scalar invariant.
All other coefficients are either constant, or can be deduced from this fundamental
invariant. This invariant will be called the curvature associated to the group.

Consider this approach applied to similitudes. Assume that the curve is
parametrized by the related arc length, . The frame, here, must be a similitude,

A,,, and, as above, we take
(i
(50

Define W,, = A,;IGUAm, so that

Wy= o ( EI)(E)
24+y2\-yx)\y X
. 1 Xx +yy iy —yx
242\ SRy P i+ iy )
When the curve is parametrized by arc length, we have
iy — ¥yl _

1
I
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along the curve. Therefore
E Al

oy Tl
Wan(o) = ( o H)

X24y?

(o being the similitude arc length). The computation exhibits a new quantity, which
is e L
XX +
K =20 (1.31)
x2 + y2
This is the curvature for the group of similitudes: it is invariant under translation,
rotation and scaling, and characterizes curves up to similitudes.

We now consider special affine transformations (affine with determinant 1).
Assume that the curve is parametrized by the corresponding arc length, o, i.e.,

5 = 3" = 1.

One can choose A,, = (;C) f}), which has determinant 1. Since A,,(1, 0)7 = 1, the

term A, ' is trivial. We have

.. . .o (3) .. (3) .o (3)
_1 _ y =X X x _ (0 yx¥ =Xy
Ay OAn = (_y- x) (y y<3)> = <1 —5x® +5Cy<3)>-
Since d(iy — $x) = yx® — xy® = 0, the only non-trivial coefficient is jx® —
#y®, which can be taken (up to a sign change) as a definition of the special affine

curvature:.
K = det(iit, m¥). (1.32)

Again, this is expressed as a function of the affine arc length and is invariant under
the action of special affine transformations.

The local invariants with respect to rotation, similitude and the special affine
group probably reach the limits of numerical feasibility, based on the number of
derivatives they require. Going further involves even higher derivatives, and has only
theoretical interest. However, we include here, for completeness, the definition of the
affine and projective arc lengths and curvatures. This section can be safely skipped.
In discussing the projective arc lengths, we will use a few notions that are related to
Lie groups and manifolds. The reader can refer to Appendix B for more details.
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1.15.5 Affine Arc Length

We first introduce new parameters which depend on the sequence z, ..., z, that
describes the first derivatives. We assume that det(z;, zo) # 0 and let

o = oz 2) = det(zx, 22)
k k(215 -5 2Zn —det(Zl,Zz)
det(z1, zx)
and = < RIS ] Zl’l = < -
Bx = Bz ) det(er. 2)
These are defined so that
Zk = o1 + Brza, (1.33)

which also yields
<g:) = [z1, 22] 'z

In particular, we have oy = 6, = 1, ap = 31 = 0.
Assuming affine invariance, we must have

01,y z0) = O(z1, 221 21, -+, (215 221 ' 20)s

which implies that Q must be a function of the ay’s and [5;’s. We see also that we
must have at least n = 3 to ensure a non-trivial solution. In fact, we need to go to
n = 4, as will be shown by the following computation.

For n = 4, the parametric invariance constraint yields: for all A} > 0, Ay, A3, A4,

0(21, 22,23, 24) = M Q(z21, 22, 23, 24)
withZ; = \jz1, 20 = Mz + /\%Zz, 73 = X271 + 3\ 20 + /\%Z3 and
24 = Mz + BN + 403022 + 602 Nz + N za.

We now make specific choices for Aj, Az, A3 and \4 to progressively reduce the
functional form of Q. We will abuse the notation by keeping the letter Q to design
the function at each step. Our starting point is Q = Q (a3, 53, a4, [4).

(1) We start by taking A\; =1, A\, = A3 =0, yielding Z; = z1, 22 =22, 3 = 23
and Z4 = 74 + A\4z1. Denote by ay, Bk the oy, By coefficients associated to the
Z’s. For the considered variation, the only coefficient that changes is vy, which
becomes &y = ay + A4. This implies that

O(as, B3, o4, Ba) = O3, B3, au + Ay, Ba).
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Taking \y = —ay, we see that Q does not depend on ay, yielding the new
functional form Q = Q(as, 53, G4).

(i) Let’snow consider \; = 1, A, = A4 = 0. In this case, z;, z, remain unchanged,
and z3 and z4 become 73 = z3 + \321, 24 = 24 + 4X322. This implies a3 =
a3 + A3, Bg = (3 and 34 = (4 + 4)3. Taking A3 = —a; yields the new func-
tional form Q = Q (03, B4 — 4a3).

(iii) Now, take \; = 1, \y = Ay = 0, yielding Z; = 21, 22 = 22+ Maz1, I3 = 23 +
3hzpand 24 = z4 + 623 + 3)\%12, sothat B3 = B3 + 33X\, a3 = a3 — 3/\% —
X235 and (s = Bs + 3)3 4 6X2/35. In particular,

ﬁ4 —3a3 =4 —4dasz + 15)\% + 10X, 35.
Taking \y = —(3/3 yields Q = Q(84 — 43 — Sﬂ_%/S).
@iv) Finally, take vy = o = Ny = Oyielding 53 = /\]ﬁ3 54 = )\%64 and a3 = /\%053.
This gives

QN (Bs — 4a3 — 53/3)) = M1 Q(Bs — 4 — 563/3).

Taking A\ = 1/4/|8s — 4a3 — 555 /3], assuming this expression does not van-
ish, yields

O(Bs — 4a3 — 503/3)
0(1)/1s — 4oy — 532/31 if s — 43 — 532/3 > O,
O(=1)/16: — 4as — SB/31if s — das — 553/3 < 0.

Here again, it is natural to ensure an invariance by a change of orientation and
let Q(1) = Q(—1) = 1 so that

(1,22, 23 28) = /18 — 4o — 583/31.

This provides the affine-invariant arc length.

We can take the formal derivative in (1.33), yielding
Zep1 = 0zt + ouzo + Brza + Bizz = (o + Bras)zi + (o + By + BiB2)z2,

so that oy = o) + Gras and SBiy1 = B + ax + 5 B3. This implies that higher-
order coefficients can always be expressed in terms of a3, 33 and their (formal)
derivatives, which are represented using prime exponents. In particular, using 3, =
B + o3 + (3, we get

(21, 22,73, 20) = /165 — 3as — 263/3]. (1.34)



42 1 Parametrized Plane Curves

Returning to parametrized curves, let o, x and (3, x be the coefficients oy, G in
which (z;, z2, . . .) are replaced by their corresponding derivatives (11, 11y, . . .), SO
that

m® = o, it + By it

We want to express the affine arc length in terms of the Euclidean curvature. Assuming
that m is parametrized by Euclidean arc length, we have m = x Rm1, where R is the
/2 rotation. Taking one derivative yields (using R?> = —Id)

m® = kRt + kRm = —k*m + (k/K).

This implies that o, 3 = —+~? and (3,3 = //k; thus, (1.34) implies that the affine
arc length, o, and the Euclidean arc length are related by

do = |0(/k) + 3k% — 2(//K)?/3|ds.

1.15.6 Projective Arc Length

The problem is harder to address for the projective group (see Sect.B.4.3 for a
definition) because of the non-linearity of the transformations. We keep the same
notation for oy and [ as in the affine case (since the projective group includes the
affine group, we know that the function Q will have to depend on these reduced
coordinates).

Before the computation, we need to express the effects that a projective trans-
formation has on the derivative of the curve. We still let the symbol z; hold for
the kth derivative. A projective transformation applied to a point z € R? takes the
form g : z — (Uz 4+ b)/(wTz + 1) for a 2 by 2 matrix U, and vectors b, w € R?.
Let 4o = (w”zo + 1)~! so that zg is transformed as 7y = vo(Uzo + b). We need to
express the higher derivatives z, Z», . . . as functions of the initial z;, z5, . . . and the
parameters of the transformations. Letting v, represent the kth derivative of ~, the
rule for the derivation of a product (Leibniz’s formula) yields

§ Ny
Z=%uWUzn+b+) o)V (1.35)
q=1

This provides a group action, which will be denoted z = g % z. Our goal is to find
a function Q such that Q(zy, 22, ...,2x) = Q(Z1, 22, ..., 2x), and which is also
invariant under the transformations induced by a change of variables. It will be
necessary to go to k = 5 for the projective group.

We first focus on projective invariance, and make an analysis equivalent to the
one that allowed us to remove zp, z; and z; in the affine case. More precisely, we
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show that U, b, and w can be found such that 70 =0, Z; = e1,Z, =e; and Z3 =0,
with e; = (1,0) and e, = (0, 1).

First note that vy = —w’z173 and 72 = —w’ 2273 +2(wTz1)?3. Take b =
—Uz to ensure 7g = 0. We have Z; = Uz, 22 = 2v1Uz; + Uz and

73 =3nUz1 + 31Uz +nUz.
We therefore need
Uzi = e1/7, Uza = 2/ — Qyi/75)er = ea/v0 + 2w z1e4
and (after some algebra)

Uzz = =3(72/70)Uz1 — 3(m/70)Uz2
= 3wT22€1 + 3wTZ1€2-

Using the decomposition z; = ayz; + (kz2, we also have Uzz = az(e1/70) +
Bs(ea/v — 2 /’73)61), which yields the identification

w'z = B3/(3) and w' z, = oz +233)/9.
Using the definition of 7y, this can be written as

{ w’(z1 — B3/320) = B3/3
w’ (2o — (a3/3 4+ 263/9)z0) = (a3/3 +233/9),

which uniquely defines w, under the assumption (which we make here) that
20, (3/B33)z1, (9/Bas + 233))z> forms an affine frame. Given W, we can compute
b and U. We have in particular, using the decomposition of z;:

Uzi = (/70 + 2683/ Byo))er + (Bi/Nea.

Similarly, we have

w’zi = o33/ B30) + Br(Bas +233) /9.

With this choice of U, w and b, the resulting expressions of z3, 74 and zZ5 can be
obtained. This is a heavy computation for which the use of a mathematical software
is helpful; the result is that the projective invariance implies that the function Q must
be a function of the following four expressions:

8 833 2
A=ay— = - —+ =
Qu 3oz3ﬂ3 9 + 35354
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10 40
B =oas5— ?044& + 30435; +

5 20, 2
506354 - 3/5354 + gﬂﬁs

4033
27

42
C=—2a3—%+ﬂ4

10 5
D= —?04353 - 35354 + fs.

Given this, it remains to carry out the reductions associated to the invariance
by change of parameter. This is done as in the affine case, progressively selecting
the coefficients ); to eliminate one of the expressions and modify the others, the
difference being that there is one extra constraint here associated to the fifth derivative.
Note that with five constraints, we would normally be short of one expression, but
one of the invariances is (magically) satisfied in the reduction process, which would
otherwise have required using six derivatives. We spare the reader the details, and
directly provide the final expression for Q, which is

1/3

4033
= [2955 4 s — 5838 — 205) — S

=7

As before, this can be expressed in terms of the formal derivatives of a3 and [,
yielding

0 = 3 — 30 — 2653, + 26305 + (4/9) 53] " . (1.36)

1.15.7 Affine Curvature

We can apply the moving frame method described in Sect. 1.15.4 to obtain the affine
curvature of a curve m. We assume here that m is parametrized by affine arc length,
0. A moving frame on m is immediately provided by the matrix A,, = [n1,, fiyq],
or, with our z notation, Ag = [z1, z2]. By definition of a3 and [33, the matrix W,, =

A 19, A, is equal to
0« 3
Wy = (5 43
<1 6111,3)

Since the curve is parametrized by affine arc length, we have Q = 1, where Q is
given by \/|qu3 —3ay,3 — 2ﬁ§1,3/3|. This implies that o, 3 is a function of G, 3

and ﬁ'm, 3 along the curve; the moving frame therefore only depends on (3, 3 and its
derivatives, which indicates that 3, 3 is the affine curvature. Thus, when a curve is
parametrized by affine arc-length, o, its curvature is given by
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det(ri, m®)

) = geton )

If the curve now has an arbitrary parametrization, the curvature is obtained by
using do = Qdu, where Q is given by (1.34). This yields the following expression:

1 detGin,m®) 30
i (8) = = ———— = ==

0 det(i,m) Q

1.15.8 Projective Curvature

In the projective case, the moving frame method cannot be used exactly as described
in Sect.1.15.4, because of the non-linearity of the transformations. The moving
frame is still associated to a one-to-one function Py(zo, ..., zx) € G = PGL,(R).
The invariance property in this case gives, with the definition of the action z > g % z
given in (1.35), Py(g x z) = gPy(z). For Theorem 1.25 to make sense, we must use
the differential of the left translation L, : 2 + hg on PGL,(R), and define

W,, = dLp,(1d)~'0, Py,

which belongs to the Lie algebra of PGL,(R). This is the general definition of a
moving frame on a Lie group [108], and coincides with the definition that has been
given for affine groups, for which we had dL,; = A when g = (A, b).

We first need to build the matrix A. For this, using as before the notation (ey, €;)
for the canonical basis of R?, we define a projective transformation that takes the
family w = (0, ey, ez, 0) to the family z = (zo, z1, 22, 23), i.e., we want to determine
g such that g x w = z (we showed that its inverse exists in Sect. 1.15.6, but we need
to compute it explicitly). Since this provides eight equations for eight dimensions,
one can expect that a unique such transformation exists; this will be our Ay(z).

Assuming that this existence and uniqueness property is satisfied, such a con-
struction ensures the invariance of the moving frame under the group action. Indeed,
letting z be associated to a curve m and z to m = g(m) for some g € PGL,(R), we
have 7 = g x z. Since Ay (z) is defined by Ag(z) * w = z, the equality Ag(Z) *w = Z
is achieved by A (Z) = gAo(z), which is the required invariance. (Indeed, because
* is a group action, we have (gAo(z)) *w = g *x (Ap(2)w) = g*xz=2Z7.)

We now proceed to the computation. The first step is to obtain the expression of
g * z for z = (20, 21, 22, 23). We do this in the special case in which g is given by:

g(m) = (Um +b)/(1 +w"m),

w and b being two vectors in R?> and U € GL,(R). Define g * (3o, 21, 22, 23) =
(20, 21, 22, 23). From (1 + wTZy)zo = UZy + b, we obtain
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(I +w'Z0)z0 =UZo +b
(1 + wTZ())m +w'zz0=U%

- - - - 1.37
a1+ wTZo)Zz + 2wTZ1Z1 + wTZZZO =U2 ( )
1+ wTZ())Z3 + 3wT5122 + 3wT2221 + wTZ3Zo =Uz;.

Taking z = w, we get
20=>b
21 +wizo = U
1.38
22 +2wiz) + wezo = U (1.38)
23 +3wiz2 + 3wz =0,
where w = (wy, wy), Ue; = u; and Ue, = u,. The third equation yields
723 = —3w7z1 — 3w 22. (1.39)

We will assume that z; and z, are linearly independent, so that w = (wy, w,) is
uniquely defined by this equation, and therefore U = [u;, u,] by the middle equations
of (1.38). Using again the notation z3 = a3z; + (3322, we get

{ w; = —/3/3

Wy = —043/3.

This fully defines our moving frame Ag(z).

Recall that the formal derivative of a quantity M that depends on z, ..., z3 is
given, in our notation, by M’ = Zizo(aM/azk)zkH. Since b = zg, wehave b’ = z;
from u; = z; + wizp, we get

Uy = wiz) + 22 + wizo,
and from (1.39) and u» = zo + 2w 21 + w220,

uy = 23 + 2w 22 + Qw) + w2)z1 + whzo
= (—2w; + 2w))z; — w122 + w)2o.

We have w; = —(;/3 and w} = —a4/3, which are therefore directly computable
along the curve.

By taking the representation of a projective transformation by the triplet (U, b, w),
we have chosen a local chart on PGL;(RR) which obviously contains the identity
represented by (Id, 0, 0). To be able to compute the differential of the left translation
L 4(¢;), we need to express the product in this chart. One way to do this efficiently is
to observe that, by definition of the projective group, products in PGL,(R) can be
deduced from matrix products in GL3(R), up to a multiplicative constant. A function
g with coordinates (U, b, w) in the chart is identified (up to multiplication by a scalar)
with the matrix
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(")

and the product of g = (U, b, W) and g = (U, b, w) is therefore identified with the
product of the associated matrices, which is

(0 E) <0 5) _ <Ul7/+l5u”)7 015+15>
wh1)\a"1) " \@"0+a" @Tb+1)"
which yields the chart representation for the product
5 = ((00 +hwT)/(1 +wh),
b +b)/0+aTh), OTd+ i)/ + a;TB)).

To compute the differe~ntial of the left translation in local coordinates, it suffices
totake U =1d + cH, b = ¢0 and w = 7, and compute the first derivative of the
product with respect to € at € = 0. This yields

dul;(H,B3,7) = (UH +by" —w"BU,UB —w’ Bb, v+ H w — w” fw).
We need to compute the inverse of this linear transformation, and therefore solve

UH+by" — 070 = H
Ug—w'pb=p
v+ H'w —w! pw = 7.

The second equation yields 3 = (U — bw”)~' /3. Substituting ~ in the first by its
expression in the third yields

H=U-bw"H +b3" + " pbw” —w’ gU

so that o o
H=U-bw") Y (H-b5")+ @ B)Id.

Finally, we have

vy=4—H'w+w!pw.
W is obtained by applying these formulae to § = A(z) = (U, b, w) and H =
(04, 6,) with

| =uy=wizi + 22+ w2
b =uh = Qw] —2wy)z) — w122 + Wh2o

S>>

2
w'.

21 T
Il
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Note that, since (A — bw")h = Ah — wT hb, the identity z; = u; — w;b implies

B=U—-bw") 'z =e.
Similarly, from u, — wyb = zp + 2w, z;, we get
U - bwT)7122 =e —2wie;r.
We have, using b = zp and 5y = w’,
H—b7" = (wiz1 + 22, (W] —2w2)z1 — wi22).

We therefore obtain

hy = U —bw") ' (wiz1 + 22) + wier = wiey + €2 — 2wie; + wie; = e,

hy = (U — bw") ' (Qw]| — 2w2)z1 — wiz2) + wies
= Qw) —2wy)e; — wi(e; — 2wiey) + wier
= Quw| + 2w} —2wy)e; .

0 2c

With ¢ = w| + w% — wy, we have obtained W = <1 0

). Moreover, we have

/ 2

wh — wy +w

y=w—-Hw+ww=( , ! 2 1 .
wh — 2cw; + wiws

Because we assume that |35 — 3a4 — 2330 + 20303 + (4/9)5;’]1/3 =1, we see

that w), = —aj/3 can be expressed as a function of 3 and the derivatives of (3;
(up to the second one), while ¢ is equal to —(3; — ﬂ% /3 — a3)/3. The invariant of
smallest degree can therefore be taken to be 3; — 6% /3 — az (in fact, wh — 2cw; +
wiwy = —c’/6). The projective curvature can therefore be taken as (assuming a
curve parametrized by projective arc length)

. .. . 2
() =0 det(m, m®) detm®,m) 1 [det@ir, m®)
Rm(0) = T - . S\ VY -
" det(rm, i) det(m, m) 3\ det(r, i)
The computation of the expression of the curvature for an arbitrary parametrization
is left to the reader. It involves the second derivative of the arc length, and therefore
the seventh derivative of the curve.
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1.16 Non-local Representations

1.16.1 Semi-local Invariants

The invariants that we have defined so far depend on derivatives that can be difficult
to estimate in the presence of noisy data (as seen in Fig. 1.1). Semi-local invariants
attempt to address this issue by replacing derivatives by estimates depending on
nearby, but not coincident, points. They provide new curve “signatures”, different
from the one associated to the curvature.

A general recipe for building semi-local invariants can be described as follows
[48]. For a given integer, k, one needs to provide:

1. An algorithm to select k points on the curve, relative to a single point m (u).
2. A formula to compute a signature based on the k selected points.

We introduce some notation. First, let S, represent the selection of k points along
m.If p = m(u) is a point on m, we let S,,,(p) = (p1, - ., pr). Second, let F be the
signature function: it takes py, ..., px as input and returns a real number.

We need to enforce invariance at both steps of the method. Reparametrization
invariance is implicitly enforced by the assumption that S, only depends on p =
m(u) (and not on u). Consider now the issue of invariance with respect to a class G
of affine transformations. For A in this class, we want that:

1. The point selection process “commutes™: if S, (p) = (pi1,..., pr), then

Sam(Ap) = (Ap1, ... Api).
2. The function F is invariant: F(Apy, ..., Apr) = F(p1,..., pr).

Enforcing Point 2 becomes easy if one introduces a transformation A which
places the first points in S,,(p) in a generic position, leading to a normalization
of the function F. We clarify this operation with examples. Assume that the class
of transformations being considered are translations and rotations. Then, there is a
unique such transformation that displaces p; on O and p; on |p; — p2le;, where e;
is the unit vector of the horizontal axis. Denote this transformation by A, ,,. Then,
we must have

F(p1,p2s i) = F(Ap p,D1s Apy py D2y - -5 Apy py Pi)
- F(Ov |p1 - p2|31, Ap|,[72p37 ey Am,pzpk)'

Conversely, it is clear that any function F of the form

F(pi, pas--os Px) = FUp1 = paly Apypy P35 -+ s Apy.pr PE)

is invariant under rotation and translation. The transformation A, ,, can be made
explicit: skipping the computation, this yields ((x;, y;) being the coordinates of p;)
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Apppj = 1 ((xz—m)(xj—X1)+(y2—y1)(yj _y1)>.

Ipr — pil \(x2 —xD)(yj —y1) — (02 — yo)(x; — x1)

Thus, with three selected points, the general form of F is

(p2— P (p3 — p1)

’

F(p1, p2, p3) = F(Im - pil,

|p2 — p1l
det(p2 — p1, p3 — Pl))
|p2 — pil

If scaling is added to the class of transformations, the same argument shows that
the only choice with three points is:

- ((p>— p)T(p3 — p1) det(pr — p1, p3 — p1)
F(p1,p2,p3) =F 5 , 5 .
|p2 — pil [p2 — pil

Similar computations hold for larger classes of transformations.

There are several possible choices for point selection (Step 1). One can use the arc
length (relative to the class of transformations) that we have defined in the previous
sections, and choose py, ..., py symmetrically around p, with fixed relative arc
lengths 0, (p1) — 0w (P), - - -, Om(pr) — om(p). For example, letting §; = 0, (p;) —
om(p), and if k = 21/ + 1, one can take §; = —le, 9 = —(I — e, ..., 6 = le.

However, the arc length requires using curve derivatives, and this is precisely
what we wanted to avoid. Some purely geometric constructions can be used instead.
For rotations, for example, we can choose p; = p, and p, and p; to be the two
intersections of the curve m with a circle of radius ¢ centered at p (taking the ones
closest to p on the curves) with € small enough. For scale and rotation, consider
again circles, but instead of fixing the radius in advance, adjust it so that |p, — ps|
becomes smaller that 1 — ¢ times the radius of the circle. This is always possible,
unless the curve is a straight line.

Considering the class of special affine transformations [48], one can choose
D1, P2, D3, pasuch that the line segments (p;, p2) and (p3, ps) are parallel to the tan-
gent at p, and the areas of the triangles (po, p1, p2) and (po, p3, p4) are respectively
given by ¢ and 2¢.

1.16.2 The Shape Context

The shape context [33] represents a shape by a collection of histograms along its
outline. Here we give a presentation of this concept in the continuum and do not
discuss discretization issues.

Let s — m(s) be a parametrized curve, defined on some interval /. For s, ¢ € I,
let v(s, t) = m(t) — m(s). Fixing ¢, the function s — v(s, t) takes values in R2.
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Consider a density kernel, i.e, a function K : R? — R? such that, for fixed x, K (x, -)
is a probability density on R?, usually symmetric around x. The typical example is

K (x, y) = exp(—|x — y|*/(20%))/Q2n0?). (1.40)

Using this kernel, let, for s € 1
776, = [ Kovv.ar.
I

The density £ (s, -) is the shape context of the curve at s and the bivariate
function f™ is the shape context of the whole curve. To discuss some invariance
properties of this representation, we assume that the curve is parametrized by arc
length (and therefore focus on translation and rotations), and that K is radial, i.e.,
K (x, y) only depends on |x — y|, which is true for (1.40).

A translation applied to the curve has no effect on v(s, t) and therefore leaves
the shape context invariant. A rotation R transforms v into Rv, and we have
F®m (s, Ry) = f™(s,y). The representation is not scale-invariant, but can be
made so with an additional normalization (e.g., by forcing the mean distance between
different points in the shape to be equal to 1, cf. [33]).

The shape context is a global representation, since it depends for any point on
the totality of the curve. To some extent, however, it shares the property of local
representations that small variations of the contour will have a small influence on the
shape context of other points, by only slightly modifying the density f (s, -).

1.16.3 Conformal Welding

Conformal welding is a complex analysis operation that provides a representation
of a curve by a diffeomorphism of the unit circle. While a rigorous description of
the method requires advanced mathematical concepts (compared to the rest of this
book), the resulting representation is interesting enough to justify the effort.

We will identify R? with C, via the usual correspondence (x, y) — x + iy, and
add to C a point at infinity that will confer the structure of a two-dimensional sphere
to it. This can be done using the mapping

Frei® 2rcosf 2rsind r*—1
(re )_(rz—i—l ’ r2~|—1’r2+1)'

This mapping can be interpreted as identifying parallel circles on the sphere with
zero-centered circles on the plane; zero is mapped to the south pole, the unit disc
is mapped to the equator, and the representation tends to the north pole as r — oo.
With this representation, the interior and the exterior of the unit disc are mapped
to hemispheres and therefore play a symmetric role. We will let C denote C U oo.
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The complex derivative of a function is defined as the limit of (f(z + h) — f(2))/h
ash — 0inC.

Two domains £2;, £2, C C are said to be conformally equivalent if there exists a
function f : £2; — £2; such that f is onto and one-to-one and the complex derivative
S/ (2) exists for all z € §24, with f'(z) # 0. Such a function has the property of
conserving angles, in the sense that the angle made by two curves passing by z
remains unchanged after a transformation by f.

The Riemann mapping theorem [249] states that any simply connected domain
(i.e., any domain within which any simple closed curve can be continuously deformed
into a point) is conformally equivalent to the unit disc. This domain may or may not
include a point at infinity and therefore may or may not be bounded. For example,
the transformation z +— 1/z maps the interior of the unit disc to its exterior and
vice-versa. This conformal transformation is obviously unique up to any conformal
mapping of the unit disc onto itself. It can be shown that the latter transformations
must belong to a three-parameter family (a sub-class of the family of Mobius trans-
formations of the plane), containing functions of the form

7P +r
rzelf +1

Z> e (1.41)

with » < 1. We let M; be the set of such transformations (which forms a three-
parameter group of diffeomorphisms of the unit disc). A transformation in M; can
be decomposed into three steps: a rotation z > ze'? followed by the transformation
z+> (z+7r)/(zr + 1), followed again by a rotation z > ze'®.

The Riemann mapping theorem can be applied to the interior and to the exterior of
any Jordan curve . Letting §2,, represent the interior, and 5: the exterior (the notation
holding for the complement of the closure of £2), and D being the open unit disc, we
therefore have two conformal transformations @_ : £2, — D and @ : 5: — D.
These two maps can be extended to the boundary of §2., i.e., the range R, of the
curve -, and the extension remains a homeomorphism. Restricting @ to R, yields
amap ¢ : R, — S (where S! is the unit circle) and similarly ¢~ : R, — S'. In
particular, the mapping ¢ = ¢~ o (¢*)~! is a homeomorphism of S! onto itself. It is
almost uniquely defined by . In fact @+ and @~ are both unique up to composition
(on the left) by a Mobius transformation, as given by (1.41), so that ¢ is unique up
to a Mobius transformation applied on the left or on the right. The indeterminacy
on the right can be removed by the following normalization; one can constrain @7,
which associates two unbounded domains, to transform the point at infinity into itself,
and be such that its differential at this point has a positive real part and a vanishing
imaginary part. Under this constraint, ¢ is unique up to the left action of Mobius
transformations.

In mathematical terms, we obtain a representation of (smooth) Jordan plane curves
by the set of diffeomorphisms of S! (denoted Diff(S')) modulo the Mobius trans-
formations (denoted PSL,(S")), writing

2D shapes ~ Diff(S')/PSL»(S").
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Fig. 1.4 Conformal disparity between the interior and exterior of four planar curves. First column:
original curves; second and third columns: two representations of the curve signature rescaled over
the unit interval, related by a Mobius transformation, illustrating the fact that these signatures are
equivalent classes of diffeomorphisms of the unit disc

0 0z 04 06 08 1 1 4 06 08 1

We now describe the two basic operations associated to this equivalence, namely
computing this representation from the curve, and retrieving the curve from the
representation. The first operation requires computing the trace of the conformal
maps of the interior and exterior of the curve. Several algorithms are available to
compute conformal maps. The plots provided in Fig. 1.4 were obtained using the
Schwarz—Christoffel toolbox developed by T. Driscoll.

The solution to the second problem (going from the representation to the curves)
is described in [260, 261] (Fig. 1.5). It is proved in [261] that, if ¢ is the mapping
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(O Iz

Fig. 1.5 Reconstruction of the curves in Fig. 1.4 from their signatures

above, and 1) = !, the corresponding shape (defined up to translation, rotation and
scaling) can be parametrized as 6 — F(6) € C, 6 € [0, 27r], where F is the solution
of the integral equation

K(F)(0) + F(0) =€,

where K (F)(0) = 0277 K@, é)F(é)dé, and the kernel K is given by
=i (0-0\ i (06 —v@)

which has limit i{/J.(G) /4¢(9) as 0 — 6. The inverse representation can then be
computed by solving, after discretization, a linear equation in F. More precisely,
assume that ((6g, px),i =0, ..., N) is a discretization of ¢ (with oy = g + 27
and Oy = 0y + 2m). Following [261], one then makes the approximation

2m -3 N ©k — 5
/ cm(‘p ‘p> F(@)dp ~ ZFk/ ctn (‘P ‘p>d¢
0 2 k=1 k-1 2

N .
_ 22 F log [ sin((¢ — wx)/2)|
k=1

sin((¢ — @r-1)/2)I

where we have set Fy = F((ipr + wk—1)/2). Similarly, letting 6 = 1 (p),

2 0 — ~ L N O 0 — é -
fo ctn <#> FOW(@)dg ~ ; e fekl ctn ( . ) df

N .
|sin((0 — 6)/2)]
=2 Fi 1 .
; 8 TSin(0 — 6e_/2)]

Letting ¢; = (7 + ¢;—1)/2 and 0, = (6; + 6,—-1)/2, one obtains a discretization
(@1, F1),1=1,..., N) of F by solving the equation
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N
Fi+iy KpFi=e%, I=1,..N
k=1

with

| sin((@1 — @x)/2) sin((0) — 1) /2)]
K = log

| sin((@1 — pr—1)/2) sin((0; — ) /2)|
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Chapter 2 ®)
The Medial Axis Geda

2.1 Introduction

The medial axis (or skeleton) of a shape is the set of centers of discs of maximal
radii inscribed in the shape. It provides a skeleton-like structure, which, when the
associated maximal radii are also stored (providing the medial axis transform [37])
uniquely encodes the shape geometry.

To be specific, represent a shape by an open connected bounded set in the plane,
denoted £2. Let B(p, r) denote the open disc of center p € R? and radius r > 0. One
says that such a disc is maximal in 2 if and only if it is included in £2, and no disc in
which it is (strictly) contained is included in £2. The skeleton of 2, denoted X (£2),
is the set of all p such that B(p, r) is maximal in £2 for some r > 0, i.e., X' (£2) is
the set of loci of the centers of maximal discs. We shall also denote by X™*(£2) the
set of pairs (p, r) such that B(p, r) is maximal. This is the medial axis transform
(MAT). We have the following proposition.

Proposition 2.1 The medial axis transform, X*(82), uniquely characterizes S2.

Proof Let
Q= U B(p,r).
(p.r)eX*(£2)
By definition of X*, we have £2 C £2 and we want to prove the reverse inclusion
(therefore proving that X*(§2) characterizes £2).
For x € 2, let
ry = dist(x, £2°) = min{d(x, y), y ¢ 2}.
One has B(x, r,) C 2. Define

G, = {y €2:B(y,ry)D B(x,rx)}.
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Let r} =sup{r, : y € G.}. By definition, there exists a sequence (y,) such that
ry, — ri,and, because £2 is bounded, we can assume (replacing y, by a subsequence
if needed) that y, — y* € £2. Obviously, y* cannot belong to 952 because this would
imply r, — 0 while r; > r, > 0 (since x € Gy). Also, because B(y,,ry,) C £2,
we have at the limit B(y*, r}) C 2, which implies B(y*, r}) C §2 because £2 is
open. Similarly, passing to the limit in the inclusion B(x, ry) C B(y,, ry,) implies
B(x,ry) C B(y*,ry).

We now show that B(y*,r}) is maximal. If B(y*, r}) is included in some
ball B(y,r) € £2, it will be a fortiori included in B(y, r,) and since B(x,r,) C
B(y*, r}), we see that y must be in G, with r, > rY, which is a contradiction.

We have therefore proved that every x € §2 belongs to a maximal disk, therefore
proving that 2 C £2.

2.2 The Structure of the Medial Axis

We assume that §2 is the interior of a piecewise smooth Jordan curve. Some structural
properties of the skeleton can be obtained under some assumptions on the regularity
of the curve [65]. The assumption is that the smooth arcs are analytic' everywhere
except at a finite number of points; for these exceptional points, it is required that
m has both left and right tangents. The simplest example of a curve satisfying this
assumption is a polygon.

For such a curve, it can be shown that all but a finite number of points in the
skeleton are such that the maximal disc B(p, r) meets the curve m at exactly two
points. Such points on the skeleton are called regular. Non-regular points separate
into three categories.

The first one is when the maximal disc, B(m, r), meets the curve in more than
two connected regions. Such points are bifurcation points of the skeleton. The sec-
ond possibility is when there is only one connected component; then, there are two
possibilities: either m is the center of an osculating circle to the curve, or there exists
a concave angle at the intersection of the curve and the maximal disc. The third
possibility is when there are two connected components, but one of them is a sub-arc
of the curve. This happens only when the curve has circular arcs.

The skeleton itself is connected, and it is composed of a finite number of smooth
curves.

2.3 The Skeleton of a Polygon

Consider a closed polygon, without self-intersections. Denote its vertices by
my,...,my,mys; = mj. Let s; denote the ith edge, represented by the open line
segment (m;, m;11), withi = 1, ..., N. A maximal disc B(m, r) within the polygon

'A function m is analytic at ¢ if it is infinitely differentiable at this point, and equal to the limit of
its infinite Taylor series.
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has to meet the boundary at at least two points. We separate the cases depending on
whether these points are on edges or vertices.

Assume that B(m, r) is tangent to s; at some point p € s;. Let T; = (m;y; —
m;)/|m;y+1, — m;| be the unit tangent to s; and N; the unit normal. We assume that
the orientation is such that N; points inward. We must have

p=m—rN;and p =m; +tT;

for some ¢ € (0, |m;4+; — m;|). Taking the dot product of both equations with 7; and
computing the difference yields

t=m—m)'T.
We therefore obtain the fact that B(m, r) is tangent to s; if and only if

m—rN; =m; + ((m —m;)" T)T;

with0 < (m —m)" T; < Imiq —my.

We can distinguish three types of maximal discs:

1. Bitangents: there exists i # j with

m=m; + ((m — mi)TY})Y} +rNi=m;+ ((m — mj)TTj)Tj +rN; and
0<m-—m)'T; <|mip1 —m;|,0 < (m—mp)"T; <|mj1 —mj|.

2. Discs that meet the boundary at exactly one edge and one vertex: there exists
i # j such that

m = m;+((m—m) T)T; +rN;,
0 < (m—m)"HT; <|mip —m;|

and |m—m;|=r.

3. Discs that meet the boundary at two vertices: there exists i # j such that |m —
mil=|m—m;|=r.

Note that a maximal ball can meet a vertex only if this vertex points inward (concave
vertex). In particular, with convex polygons, only the first case can happen.

An interesting consequence of this result is that the skeleton of a polygon is the
union of line segments and parabolic arcs. To see this, consider the equations for the
three previous cases. For bitangents, we have

r=m-—m)"N;=(m—m;)"N;

which implies
(m—m)"(N; — N;) = (m; —m)"N;.
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If N; # N;, this is the equation of a line orthogonal to N; — N;. The case N; = N
can never occur because the normals have to point to the interior of maximal balls
and therefore coincide only if 5; = s;.

For the second case, we have

m—m; = ((m —m))T;T; + |m — m;|N;,

which yields
(m —m)"N; = |m —mj|.

This is the equation of a parabola. To see why, express m as m = m; + aT; + GN;.
The previous equations yield 5 > 0 and

B = (a— (m; —m)"T)* + (B — (m; —m;)" N))*
or

2(m; —mi)' Niff = (a = (mj —m)" T;)* + ((mj — m;)" Np)*.

Finally, in the last case, the skeleton coincides with the line of points which are
equidistant from the two vertices. We have therefore proved the following fact (which
comes in addition to the properties discussed in Sect. 2.2).

Proposition 2.2 The skeleton of a polygonal curve is a union of line segments and
parabolic arcs. For a convex polygon, the skeleton only contains line segments.

2.4 Voronoi Diagrams

2.4.1 Voronoi Diagrams of Families of Closed Sets

The previous computation and the most efficient algorithms to compute skeletons
are related by the theory of Voronoi diagrams. We start with their definition:

Definition 2.3 Let Fy, ... Fy be closed subsets of R%. The associated Voronoi cells
are the sets £21, ..., 2y defined by

x € &dx, Fy) < m;nd(x, F)).
J#Ei

The union of the boundaries, U,N= , 082;, forms the Voronoi diagram associated to
Fi,..., Fy.

In the case of a polygonal curve, the skeleton is included in the Voronoi diagram
of the closed line segments that form the curve. Indeed, a maximal disc has to meet
at least two segments (sometimes at their common vertices), and is at a strictly larger
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distance from the segments it does not intersect. It therefore belongs to the boundary
of the cells. The converse is false: a point from the diagram is not necessarily in the
skeleton (some points may correspond to external disks).

There exist very efficient algorithms to compute these diagrams. We shall not
detail them here, but references can be found in [222, 233].

The notion of Voronoi diagrams for a polygon can be extended to a general curve.
The question is to find sub-arcs Fj, ..., Fy of the curve with the property that
their diagram contains the curve’s skeleton. What we have said concerning polygons
applies, except in one case: when a maximal disc meets an arc at two distinct points.
This could not happen with straight lines, and a condition ensuring that this does not
happen for a given arc is as follows [170]. Recall that a vertex of a smooth curve m
is a local extremum of the curvature.

Theorem 2.4 A sub-arc of a C? closed curve which has two points belonging to a
maximal disc necessarily contains a vertex.

Therefore, it suffices to cut the curve at vertices to be sure that the obtained arcs
cannot hold two contacts with maximal discs.

2.4.2 Voronoi Diagrams of Discretized Boundaries

The medial axis can, in some sense, also be understood as deriving from the Voronoi
diagram of the infinite family of points in the boundary of £2. The Voronoi cell
associated to a point x € 052 is the set

Vi={ye:|lx—yl<|x'—y|forallx’ € 02 \ {x}}.

(The set of points y such that x is closer to y than any other point on the boundary.)
When the boundary is smooth, V, is normal to the boundary and extends to a point
yo that belongs to the medial axis.

Consider now a finite family of points sampling the boundary, i.e., a finite subset
F C 02.Letd = max(d(x, F), x € 0§2) measure the density of F in 052. The cells
of the Voronoi diagram of {{x}, x € F} are possibly unbounded polygonal domains,
and those among their edges (boundaries) that are included in £2 will provide a
good approximation of the skeleton of £2 (see Fig.2.1). One way to understand this
is through the relationship between Voronoi diagrams and Delaunay triangulations.
A triangulation of the finite set F is a family of triangles with vertices in F covering
the convex hull of F (the smallest convex set containing F') such that the intersection
of any two triangles is either empty, or a common vertex, or a common edge to the
two triangles. Such a triangulation is a Delaunay triangulation if in addition, the
circumcenters of any triangle contain no other point in F. Because of this property,
these circumcenters, which are equidistant to three vertices, and closer to them than
to any other, form vertices of the Voronoi diagram of F. Line segments joining the
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Fig. 2.1 Comparison of medial axes computed using Voronoi diagrams with different degrees of
discretization

circumcenters of two adjacent triangles (sharing an edge) form the edges of the dia-
gram. For the same reason, assuming that d is small enough, the circumcircles can
be seen as approximations of maximal balls with three contact points in §2, and those
of them that belong to £2 therefore provide approximations of vertices of the medial
axis, the edges that connect them in the Voronoi diagram providing approximate
lines in the skeleton. Note that some of the circumcenters may fall outside of £2 (and
must therefore be excluded from the medial axis) and that the Voronoi diagram of
F contains, in addition, half-lines stemming from centers of boundary triangles and
through midpoints of segments of the boundary, which must also be excluded. There
is an extensive literature on the computation of Delaunay triangulation and Voronoi
diagrams, which constitute fundamental algorithms in computational geometry
[39, 226, 233], and numerous implementations in various softwares.

2.5 Thinning

There exist other approaches aiming at defining skeletal structures, which slightly
differ from the medial axis that we have described so far (sometimes called the Blum
medial axis, because it was introduced by Blum in [37]). Thinning algorithms, in
particular, create their own kind of skeleton which does not necessarily correspond
to centers of maximal discs. They are, however, quite efficient and generally easy to
implement. The principle is to progressively “peel off” the boundary of the region
until only a skeletal structure remains. One of the first methods, defined for discrete
binary images, is the Hilditch algorithm [147], in which a sequence of simple tests
are performed to decide whether a pixel must be removed or not from the region.
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A more formal definition of thinning, which is briefly described below, can be based
on the erosion operation in mathematical morphology [254].

Define a structuring element B to be a symmetric subset of R? (for example a
small disc centered at 0). Using B, we define a sequence of operators that apply to a
set X and create a new set:

Ep(X) ={x:x+ B C X} (erosion),
Dp(X) ={x: (x + B) N X # ¢} (dilation),
Op(X) = D o Ep(X) (opening),

Lg(X) =X\ Op(X).

Erosion is like peeling X with a knife shaped like B. Dilation spreads matter around
X, adding around each point some material once again shaped like B. Opening
is an erosion followed by a dilation, which essentially puts back what the erosion
has removed, except the small structures that have completely been removed and
cannot be recovered (since there is nothing left to spread on). The last operation, L,
precisely collects these lost structures (called linear parts), and is the basic operator
for the morphological skeleton which is defined by

S(X) = Ls(Enp(X)).

n=1

This is the union of the linear parts of X after successive erosions. Note that, for
bounded X, this union is actually finite since E, 5 (X) = @ for large enough n.

2.6 Sensitivity to Noise

One of the main issues with the medial axis transform is its lack of robustness to
noise. Figure 2.2 provides an example of how small variations at the boundary of
a shape can result in dramatic changes in the skeleton. In fact, we have seen in our
discussion of polygons that the addition of a convex vertex automatically results in
a branch of the skeleton reaching it.

Fig. 2.2 Effect of a small shape change in the boundary on the skeleton of a rectangular shape
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Because of this, many skeletonization algorithms come with a way to prune the
skeleton of spurious branches. There are two ways to do this.

e Prior smoothing of the curve. One can apply curve smoothing algorithms (which
will be described in Chap. 5). For polygons, smoothing can be done by removing
small structures or flattening vague angles. It is interesting to note that smoothing
curves does not always result in simplifying the skeleton (see [25] for a discussion).

e Pruning. Branches can be removed after the computation of the skeleton. This can
be based on several principles using the fact that skeleton branches resulting from
small incidents at the boundary can be characterized. We refer to [124] for more
details.

2.7 Recovering the Initial Curve from the MAT

Given a parametrized sub-arc of the medial axis transform, one can explicitly recon-
struct the part of the boundary 92 which is associated with it (the contact points on
052 of the maximal balls centered on the subarc). Let v be such a parametrization,
defined on (a, b) C R, with values in X*(§2), so that y(u) = (m(u), r (1)) for some
functions m and r that we will assume to be at least C2.

Without loss of generality, assume that # +— m(u) is an arc length parametrization
(Jmy| = 1). Assume also that B(m(u), r (1)) has exactly two contacts with 92 (this
is typically true on all X*(£2) except at a finite number of points). If x € 92 N
B(m(u), r(u)), then [x —m(u)| = r(u) and, foralle # 0, |x —m@u +¢)| > r(u +
€) (because B(m(u +¢), r(u +¢)) C ). Thus, letting f () = |x —m(u + €)|*> —
r(u + €)%, we have, because ¢ = 0 is a minimizer: f(0) = f(0) = 0, with

£0) = —2{(x —m(u), M)+ 2r W)

Solving this equation in x, we obtain two solutions given by

x4 () = m@u) +r ) [~F 0w +/T= 7w,
x-(u) = m) +r@) =@y = /T=Fwq@w].,

with g(u) L m(u), |q(u)| = 1. Note that |F| < 1 is a necessary condition for the
existence of two distinct solutions.

The curvature of the boundary can also be related to the medial axis via an explicit
formula. Let p, (resp. p_) be the vector —rn + /1 — 72 g (resp. —rm — +/1 — 2 q)
so that x;y = m + rpy and x_ = m + rp_. The following discussion holds for both
arcs and we temporarily drop the 4+ and — indices in the notation.

We have x = m 4 rp; p is a unit vector, and since the maximum disc is tangent
to the curve at x, p is normal to the curve. Since r is positive and p is a radial vector
for a maximal disc, p points outward from the curve at x and therefore is oriented
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in the opposite direction to the normal (assuming that the boundary is positively
oriented). Introduce the vector h = i + 7-p. We have h' p = — + 7 = 0 so that &
is orthogonal to p. Since |p| = 1, p is also orthogonal to p and there exists a number
c such that p = —ch (we have |h|> = 1 — 72> > Oso that 1 # 0). Since p = —N, we
also have

) =0 ﬁ = nﬁT

P= S'Odu o du
where « is the curvature of the considered arc of curve. Likewise, x = (ds/du)T so
that p = kx. We now use these identities to compute x: wehave X = m +r7p +rp =
(1 — cr)h. This implies

k=—c/(1 —cr),

which provides a very simple relation between ¢ and the curvature.
To be complete, it remains to compute c. From p = —c(m + rp), we get

plm = —c(l +ipTm) = —c(1 —i?).

We also have
—F=00p"m) =p"m+p"m=p"m+Kp'q,

where K is the curvature of the skeleton. Writing p” ¢ = e+/1 — 72 withe = £1, we
get the equation:
T

plm=—F—eKy1—72

which yields (reintroducing the + and — subscripts for each contact) ¢, =#/(1 —

P+ K/V1—72andc_ =7#/(1 —#%) — K/+/1 =72

2.8 Generating Curves from Medial and Skeletal
Structures

The previous section described how to retrieve a curve once its medial axis transform
has been computed. Here we want to discuss the issue of using the medial axis
transform as a modeling tool, i.e., of specifying a curve by starting from a medial
axis transform.

This is a more difficult problem, because not any combination of curves and radii
is a valid medial axis. Even when the skeleton consists of only one curve, we have
already seen conditions in the above section, like |7,| < 1 at all points in the interior
of the medial curve, that are required in the skeletal representation. We must also
ensure that the specified curve is regular on both sides of the axis, which, since x =
(1 — cr)h, must ensure that 1 — cr does not vanish along the curve. In fact, 1 — cr
must be positive. To see this, note that we have proved that 1 — cr = (1 — rx) . At
a convex point (x > 0), r must be smaller than the radius of curvature 1/« so that
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1 — rx > 0. Since points of positive curvature always exist, we see that 1 — cr must
remain positive along the curve in order to never be zero. Using the expression for ¢
found in the previous section, this provides a rather complex condition:

r¥ |K|r
- > .
1= /1—72

To ensure continuity of the reconstructed curve when boundary branches meet,
we need |[F| = 1 at terminal points of the medial axis. Also, if the medial axis has
multiple branches, the corresponding parts of the curve must have the same limits on
both sides. More conditions are needed to ensure that the contacts at these points are
smooth. This provides a rather complicated set of constraints that must be satisfied
by a generative medial axis model. This can be made feasible, however, in some
simple cases, as shown in the following examples.

1

2.1)

2.8.1 Skeletons with Linear Branches

Let us consider the situation in which each branch of the medial axis is a line segment,
i.e., K = 0. The constraints on r are then r > 0, 72 < 1 and r¥ + 72 < 1. The last
inequality comes from the fact that cr < 1 & ri* < 1 — 72, Introducing z = r2/2,
this can also be written 7 < 1. Assume that 7 = — f with f > —1. Integrating twice,
we find

z'(u)zé(O)—/ fydt

0

2(u) = 2(0) + uz(0) — / (u — 1) f(1)dr. 2.2)
0

We now analyze the other conditions in some special cases.
Shapes with a Single Linear Branch

We start with the simplest situation in which the medial axis is composed of a
single segment, say m(u) = (u,0), u € [0, 1]. Since |#| = 1 at the extremities and
the medial axis cannot cross the boundary curve, we need #(0) = 1 and 7(1) = —1.
Define

Mo(u) = /0 Fdi
Ml(u)=/u 1f(t)dr.
0

Using the identities 2(0) = r(0), 2(1) = —r(1),z(0) = r(0)?/2and z(1) = r(1)?/2,
we can solve (2.2) with respect to »(0) and (1) to obtain:
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Mo(1) + Mo(1)*/2 — M, (1)
1+ My(1)
My(1)%/2 4+ M, (1)
1+ Mo(1)

r(0) =

r(l) = Mo(1) —r(0) =

These quantities must be positive, and we will assume that f is chosen with this prop-
erty (note that the denominator is always positive since f > —1). These equations
imply that z, and therefore m, are uniquely determined by f.

Consider now the remaining constraints, which are (in terms of z) z > 0 and
7% < 2z on (0, 1). Since the latter implies the former, we can concentrate on it, and
introduce the function & (u) = 2z(u) — z(u)*>. We have h(0) = r(0)? and A(1) =
r(1)2. Moreover, .

h=2z(1-2)=2z(1+ f).

Sincel + f > 0, J vanishes for z = 0, or Mo(u) = r(0). Note that 2 (0) = 2r(0)(1 +
f) > 0and h(1) = =2r(1)(1 + f) <0so h changes signs over (0, 1).

Also, since the extrema of & only occur when z = 0 (and & = 2z at these points),
h will be positive under any condition that ensures that z > 0 when z = 0, which
reduces to 7(0)2/2 + M, (u) > 0 whenever My(u) = r(0).

There is an easy case: if f > 0, then M;(#) > 0 and the condition is satisfied.
Moreover, if f > 0,then M| (1) < My(1) sothatr(0) and (1) are positive. However,
as Fig. 2.3 shows, interesting shapes are obtained when f < 0 is allowed.

Shapes with Three Intersecting Linear Branches

Let’s now consider a slightly more complex example with one multiple point and
three linear branches. So we have three lines, £, €,, £3, starting from a single point
po- Let £; = {po + uw;, u € [0, s;]}, where w;, w,, w3 are unit vectors. Let g; be
a unit vector completing w; in a positively oriented orthonormal frame. Finally, let
rM, @ and r® be the radii along each of these lines and z) = (r?)?/2. Assume
that 70 = — fO(u/s;) for u € (0, s;), where f) > —1 as before, and is defined
over [0, 1].

We need to work out the compatibility conditions for the ») at the intersection
point, u = 0. Assume that the branches are ordered so that (w;, wy), (w,, w3) and
(w3, wy) are positively oriented. The compatibility conditions are

xP0) =x20), x?0) =x20), xP©0) =x"(0).

Identifying the norms, we see that the radii must coincide: " (0) = r®(0) =
r®(0) := ry. So, defining hy, hy, h3 by

hi = p(0) = p2 (). hs = p(0) = p(0), by = p§(0) = p2(0),

we see that the triangle (po + h1, po + ha, po + h3) has pg as circumcenter, and the
lines defining the axis are the perpendicular bisectors of its edges.
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Fig.2.3 Shapes with horizontal medial axes. The shapes (right column) are obtained with agu r?) =
—2f; f is shown in the left column

Given the above, it is easier to organize the construction by first specifying py
and the three directions %1, hy, h3. This specifies the vectors w, wy, w3: giveni €
{1, 2, 3}, denote the other two indices by j and j’ . Then

w; = (hj+hj)/|hj+hjl
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and, from the expression of p, we see that this also specifies 7 (0), with

FO0) = —z"h; = L+ hlhj = —cos(6;/2),

f

where 0; is the angle between h; and h';.
This gives, for u € [0, s;]

. A “ 9, l_
20 () = 20(0) - / £ /s0dt = —rycos % — M w/5)
0

and

2 0;
D) = % — roucos = — s,uM( d(u/si) + szM(')(u/s,
Since weneed7® (s;) = —1,wehavez (s;) = r®(1)2/2and 2P (s;) = —r D (1).

Identifying »V(1)? in the two equations above yields

0; 0; i
rd cos> = + 2rgs; cos M >(1)+S-2M( (1)
0 ) 2 0 i 770
0i i i
= rg — 2rps; cos 5 — S?M(g )(1) + S,2M1( )(1)

or
. . 2
(M5 ) + 20 (1) —2m (1))
0
+20050 (1 +M(’)(1)) (1 — cos? @) =0. (2.3)
2 2 ) T

Assuming that f) satisfies
My (1?2 + Mg (1) — M (1) > 0,

which is a condition already encountered in the previous case, this equation has a
unique solution, specifying s;. The curve is then uniquely defined by pq, k1, h», h3,
fO, @ £O with constraints on the f@’s similar to those obtained in the one-
branch case. Examples are provided in Fig.2.4.

Note that this construction does not freely specify the medial axis, but only the
orientation of its branches (since the s;’s are constrained by the rest of the parameters).
One possibility to deal with this is to relax the specification of the f!s by adding a
factor o, using

A g——0)
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Fig. 2.4 Shapes generated from a medial axis with three linear branches
This implies that M(()i) and Mfi) must be replaced by a,-Méi) and aiMl(i) in the
computation above, and Eq. (2.3), with fixed s;, becomes a second-degree equation in

a;. The consistency conditions (existence of a solution to this equation, requirement
that o; f ) > _1, etc.) are, however, harder to work out in this case.

Shapes with Generic Linear Branches

Conceptually, the above construction can be generalized to any skeleton with a ternary
tree structure and linear branches. Indeed, the derivative 7 is uniquely specified at the
extremities of any branch: itis —1 if the branch ends and — cos /2 at an intersection,
where 6 is specified by the branch geometry as above. Also, the radii at all branching
points are uniquely specified as soon as one of them is (the constraint propagates
along the tree). Of course, as before, the fact that the solution is uniquely defined does
not guarantee consistency, which become harder to specify when the medial axis gets
more complex. Finally, it is important to note that, for all the previous methods, even
if the consistency conditions are satisfied, there is still a possibility for the shape to
self-intersect non-locally (without singularity).

2.8.2 Skeletal Structures

One way to simplify the construction of a shape from a skeleton is to relax some
of the conditions that are associated with medial axes. Skeletal structures, which we
briefly describe now, have been introduced by J. Damon in [76—78] with this idea in
mind.
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There are two parts in Damon’s skeletal structure. The first one is the skeletal set
(the skeleton), which is a union of smooth open curves that meet at singular points
(branching points or end-points) with well-defined tangents at their extremities.

The second part of the skeletal structure is formed by the vectors that correspond
to rp in our previous notation, with some smoothness and consistency conditions;
referring to [76] for details, here are the most important ones. Like with the medial
axis, each point in the smooth curves of the skeletal set carries two of these vectors
(one on each side of the curve), and singular points can carry one vector (at end-
points) or more than two (at branching points). When one continuously follows one
of these vectors along a smooth branch until a branching point, it must have a limit
within the set of vectors at this point, and all vectors at this point can be obtained
by such a process. At end-points, there is a unique vector which is tangent to the
skeletal curve.

To summarize, a skeletal structure requires a skeletal set, say S, and, at each point
p in the skeletal set, a set U (p) of vectors that point to the generated curve, subject
to the previous conditions. The generated curve itself is simply

C={p+U(p),pes}.

The medial axis transform does induce a skeletal structure, but has additional prop-
erties, including the facts that, at each p, all vectors in U (p) must have the same
norm, and if p is on a smooth curve, the difference between the two vectors in U (p)
must be perpendicular to the curve. These properties are not required for skeletal
structures.

Most of the analysis done in the previous section on the regularity of the generated
curve with the medial axis transform can be carried over to skeletal structures. Along
any smooth curve in the skeletal structure, one can follow a smooth portion of the
generated curve, writing

x(u) =mu) +r(u)p(u)

and assuming an arc-length parametrization in m(u). Letting ¢ = —m” , one can
write, for some o € R,
p=—cm+ap

because p is assumed to be non-tangent to the skeletal set (except at its end-points).
This definition of ¢ generalizes the one given for the medial axis, in which we
had p = —ch = —cm + cpp. Since we have x = (1 — cr)m + (a + 7) p, we see that
cr < 11is here also a sufficient condition for the regularity of the curve.

We need to check that different pieces of curves connect smoothly at branching
points. With the medial axis, a first-order contact (same tangents) was guaranteed by
the fact that the generated curve was everywhere perpendicular to p. With skeletal
structures, we have (since p’ p = 0)

Tp=mlp+r.
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So, a sufficient condition for smooth contacts at branching points and at end-points
is that 7 4+ m” p vanishes at the extremities of the smooth curves that form S (while
this quantity vanishes everywhere with the medial axis transform).

Obviously, these conditions are much less constraining than those associated with
the medial axis transform. One can start fixing p, which defines ¢, then r such that
rc < 1, with a few end-point conditions that must be satisfied. The simplification
that is brought to curve generation, however, comes at a price, which is that a skeletal
structure is not uniquely specified by a given curve, as the medial axis transform was.
It is not a one-to-one curve representation.



Chapter 3 ®)
Local Properties of Surfaces i

In this chapter, we start discussing representations that can be associated with
three-dimensional shapes, where surfaces now replace curves. We begin with some
basic definitions and results on the theory of surfaces in R®. Although some parts
are redundant with the abstract discussion of submanifolds that is provided in
Appendix B, we have chosen to give a more elementary presentation here, very close
to [86], to ensure that this important section can be read independently.

3.1 Curves in Three Dimensions

Before addressing surfaces, we extend our developments on plane curves to the three-
dimensional case. A three-dimensional parametrized curve is a functiony : [a, b] —
R3.Ttis regular if it is C' and |¥] # O for all ¢ € [a, b]. For regular curves, the unit
tangent is defined by T = /|y| and the arc length is ds = |y(¢)|dt.

Assume that « is C? and parametrized by arc length. One then defines the curvature
of v at s by k(s) = |T|. This differs from the planar case, for which a sign was
attributed to the curvature: here, the curvature is always non-negative.

One says that the +y is bi-regular if x(s) 7~ O for all s. In this case, one uniquely
defines a unit vector N by the relation 7 = xN; N is perpendicular to T because
T has unit norm. Finally, the binormal is the unique unit vector B which completes
(T, N) into a positive orthonormal basis of' R3: B = T x N. The frame (T, N, B)
is called the Frénet frame, and the plane passing through ~(¢) and generated by T
and N is called the osculating plane.

f h = (a,b,c) and k = (a’, b, ¢’) are three-dimensional vectors, their cross product /& x k is
defined by

hxk= (b —cb,dc—ac,ab —a'b).
It is orthogonal to both 4 and k and vanishes if and only if /# and & are collinear. Moreover, for any
third vector I: (h x k)71 = det(h, k, I).
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The derivative of the normal is orthogonal to N and can therefore be written
N =aT +bB. Wehave N'T =0sothata = N'T = —NTT = —x. The torsion
of the curve is given by —b by definition and denoted 7 so that N = —xT — 7B.
Using the fact that BYT = —B"T = —xkB"N =0 and BTN = —N"B =1, we
have B = 7N, which provides the third equation of Frénet’s formulas for three-
dimensional curves:

0,T = kN,
O;N = —kT — 7B, (3.1
OB =TN.

(These equations are valid for any parametrization if one defines &, f = f/|m].)
Note that, if F is the 3 by 3 rotation matrix associated with the Frénet frame, i.e.,
F = [T, N, B], then the Frénet formulas can be written as

OsF = FSy, (3.2)

where S,, is the skew-symmetric matrix

0—-xk 0
S,.=1x 07
0—70

There is a three-dimensional version of Theorem 1.13. The proof, based on
Eq.(3.2), is identical to the alternative proof given in two dimensions in Sect. 1.9.

Theorem 3.1 Two C? curves vy and 7y have the same curvature and torsion as func-
tions of their arc length if and only if there exist a rotation R, a vector b and a change
of parameter ¢ such that ¥ = R~y o ¢ + b.

3.2 Regular Surfaces

Curves being represented by one parameter, one may think of surfaces as bi-
parametrized objects, i.e., functions (u, v) = m(u, v) defined on some subset of
R2.

Definition 3.2 A C? parametrized (regular) surface is a C” map m : U — R?,
where U is an open subset of R2, such that:

1. m is one-to-one and its inverse, m~' : V. = m(U) — U is continuous (m is a

homeomorphism between U and V), i.e., if a sequence u, is such that m(u,)
converges to p = m(u) € V, then u, converges to u.
2. Forall g € U, the differential dm(q) is one-to-one.

The last statement is equivalent to the fact that the 3 by 2 matrix of partial deriva-
tives [01m, 0,m] has rank 2. It is a direct generalization of regularity for curves.
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We did not assume that curve parametrizations were one to one, but this assumption
provides an important simplification for surfaces. The second part of Condition 1
also prevents situations in which the boundary of some part of the surface intersects
another part (see examples).

Finally, letting S = m(U) be the range of m, we will often abuse the terminology
by saying that S (the geometric object) is a parametrized surface. However, for many
interesting surfaces, it is generally impossible (or simply not convenient) to find
a parametrization which satisfies the previous requirement and covers the whole
surface. This is a fundamental difference with the theory of plane curves. To be able
to handle interesting cases, we need to limit our requirement for parametrizations to
hold only within patches that together cover the surface, with additional conditions
ensuring that the surface is smooth and non-intersecting, and that the patches fit well
together.

Definition 3.3 A subset S C R? is a C¥ regular surface if, for each p € S, there
exists an open set V in R?, with p € V, and a C* parametrization of the surface
patch V N S. The local parametrizations are also called local charts.

This definition requires more than just M being covered with parametrized patches.
These patches must be obtained from intersections of S with three-dimensional open
sets. In particular, this prevents non-local self-intersection, since, along such an
intersection, the surface would contain two local patches and would not be locally
parametrizable. Figure 3.3 provides an illustration of how local parametrized patches
can be combined to cover a surface.

If m:U — VNS is as specified in the definition, for any p in V N S, there
exist parameters (u(p), v(p)) in U such that m(u(p), v(p)) = p. The functions
p +— u(p) and p — v(p) are called the local coordinates on V N S.

3.2.1 Examples

Graphs of Functions

The simplest example of a parametrized surface is the graph of a C! function f : U C
R? — R. The parametrization is then m(u, v) = (u, v, f(u, v)). Since the inverse
of (u, v, z) on the surface is (u, v), this is a homeomorphism, and the differential is

1 0
w,v)—| 0 1
O f oo f

which has rank 2.
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Fig. 3.1 Helicoid (left) and cylinder (right)

Helicoid

A parametrized surface does not have to be a graph. An example is the helicoid
(Fig.3.1), defined over (0, @) x R by

m(u, v) = (ucos(v), usin(v), \v)

for some a, A > 0.
Cylinder

The cylinder, which can be defined by the set of m(u, v) = (cosu, sinu, v), for
u €[0,27) and v € (—1, 1) (Fig.3.1), is an example of a surface which, according
to our definition, cannot be globally parametrized. This map is one-to-one and in fact
a homeomorphism, and the only reason why this is not a parametrization is that we
have required parametrizations to be defined on open sets ([0, 27) x (—1, 1) is not
open). The cylinder is a regular surface, by considering patches for the same map m,
defined on (0, 27) x (—1, 1) and say (—m, m) x (—1, 1).

Sphere

Consider now the example of the unit sphere (Fig. 3.2), which is denoted
S?={peR’ |pl=1}.

Like the cylinder, this surface cannot be globally parametrized. The simplest choice
of local charts are the projections: (u, v) = (u, v, /1 —u? —v?) and (u, v) —
(u, v, —/1 —u? —v?2), both defined for u? + v> < 1, the open unit disc. The
two maps cover the whole sphere, except the equator for which the third coor-
dinate is 0. One can add other projections, like (u, v) > (4, £+/1 — u? — v, v),
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——

Fig. 3.2 Sphere (left) and torus (right)

(u, v) > (£+1 —u? — v2, u, v) to cover everything, or use cylindrical-like charts
close to the equator.

Another useful coordinate system for the sphere is the (properly named) spher-
ical coordinate system: (u, v) — (cos u cos v, sin u cos v, sin v). These coordinates
cover the whole sphere when (u, v) varies in [0, 27) x [—7/2, 7/2] but they do
not provide a local parametrization, since this set is not open (and the map is not
one-to-one for v = —7/2 and v = 7/2). Restricting to the open intervals requires
using other charts to cover the meridian # = 0, for example the same coordinates on
(—m, m) x (—7/2, w/2) which now only leave the poles uncovered. A neighborhood
of the poles can be covered by the previous projection maps.

Torus

The torus (a surface with a shape like a donut, see Fig. 3.2) can be represented as the
image of [0, 27) x [0, 27) under the map

m(u,v) = ((R+rcosv)cosu, (R+ rcosv)sinu, rsinv),

where 0 < r < R, which is one-to-one but once again not defined on an open set.
The whole torus can be covered by considering this map restricted to open subsets
of [0, 2m) x [0, 27). Let us check that the rank of the differential of m is always 2.

We have
—(R+rcosv)sinu —rsinvcosu

dm=| (R+rcosv)cosu —rsinvsinu
0 r COS v

The determinant of the first two rows is —rsinv(R + r cosv). Since r < R, it
can only vanish when sinv = 0. For the remaining two determinants, which are
r(R+rcosv)sinucosv and r(R + rcosv)cosucosv, to vanish together, one
needs cosv = 0. So at least one of the three two-by-two determinants does not
vanish (Fig.3.3).
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Fig. 3.3 Examples of decompositions in local charts for the sphere and the torus. Parametrizations
are represented by grids over the surface, black inside local patches and gray outside

A Non-regular Surface

As a last example, consider the set S defined by

S={m@u,v): u,v) e (-1,1) x (—n/2,m)}
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Fig. 3.4 A non-regular
surface

P T TIT TS
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with
Cos v
m(u, v) = { sin2v

u

(see Fig.3.4). The parametrization is defined over an open set, it is one to one and

0 —sinv
dm=]0 2cos2v
1 0

has rank two everywhere. S is not a parametrized surface, however, because

vV—>—T

lim/zm(O, v) =m(0, 7/2),

which contradicts the assumption that m~! is continuous. The same contradiction
can be obtained for S NV where V is any open subset of R? that contains 0, so that
S is not a regular surface either.
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3.2.2 Changing Coordinates

As we have seen, several different valid parametrizations can be defined at a single
point of a surface. Like for curves, “geometric” properties or quantities should not
depend on the parametrization. We will define a few of them in the following: normals,
curvature, length, area, etc.

It can be deduced from the requirements in Definition 3.2 that changes of coordi-
nates are C' homeomorphisms. To be more specific, assume that in a neighborhood
V of a point p on S, there exist two parametrizations m : U — V and s : U — V.
Then, because of the invertibility of the parametrization, one can go from UtoV via
m, then from V to U via the inverse of 7. The resultingmap,p =m~ om : U — U,
is called a change of coordinates, and is a diffeomorphism between U and U (it is
C!, invertible, with a C! inverse). This consequence of Definition 3.2 can be proved
using the inverse mapping theorem.

3.2.3 Implicit Surfaces

An implicit surface is defined by an equation of the form f(p) = 0 where f : R> —
R is a scalar function which is such that V f(p) # 0 if f(p) = 0. In this case, the
set

S={peR’, f(p) =0}

is a regular surface. (This is a consequence of the implicit function theorem.)

3.3 Tangent Planes and Differentials

3.3.1 Tangent Planes

For a curve, we were able to define a unique unit tangent, but this is obviously no
longer possible for surfaces. Still, curves provide a simple way to define tangent
vectors to surfaces.

A curve m : I — RR? is supported by a surface S if and only if, for all € I, one
has m(t) € S. We have the following definition:

Definition 3.4 Let S be a regular surface. A vector T € R? is tangent to S at a point
p € S if and only if, for some & > 0, there exists a C! curve 7y : (—&, €) — S such
that v(0) = p and ¥(0) =

Assume, in the previous definition, that € is chosen small enough so that the
curve 7y is completely inscribed in a parametrized patch of the surface S. Let m :
(u, v) — m(u, v) be the parametrization. Since m is one-to-one, one can express
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v(t) = m(u(t), v(t)). The plane curve t — (u(t), v(t)) is the expression of ~ in the
local coordinates. From the chain rule, we have

Y =udm + v0,m.

Thus, 4 must be a linear combination of the two independent vectors 0;m and O,m.
Conversely, if p = m(ug, vp), then, for any «, 5 € R, the vector adym + $0,m is
the derivative of t — m(ug + at, vy + fOt) and is therefore tangent to S at p. This
proves the following proposition:

Proposition 3.5 Let S be a regular surface, p € S and m : U — S a parametriza-
tion of S in a neighborhood of p. The set of tangent vectors to S at p is the plane
generated by Oym and O,m.

The tangent plane to S at p will be denoted T}, S. Although the generating vectors
0ym and &,m depend on the local parametrization m, the plane itself does not, because
we gave a parametrization-independent definition of tangent vectors.

If S is defined implicitly by f(p) = 0, the tangent plane at p is characterized by
the equation V f(p)" T = 0 (recall that f must be such that V f(p) # 0if f(p) =
0). Indeed, if v is a curve on S, then f o~(¢#) =0 for all 7, and the chain rule
implies: V £ (7(0))74(0) = 0. This implies that 7, C (V f(p))*. Because T,S and
(V f(p))* have the same dimension (two), they coincide.

3.3.2 Differentials

Differentials describe how measurements made on a surface vary locally. Consider a
scalar function f : S — R and take a local parametrizationon S, m : U — V N S.
For (u, v) € U, we can define the function f,, (u, v) = f(m(u, v)); this is a function
from an open subset of R? to IR, which provides the expression of f in the local system
of coordinates: we have f(p) = f,,(u(p), v(p)). We have the following definition:

Definition 3.6 Let S be a regular surface. A function f : § — Ris C! at p € S if
and only if, for some local parametrization m on S around p, the function f,, is C'
atm~'(p).

We say that f is C!' on Sifitis C' atall p € S.

(Because changes of coordinates are C', the definition does not depend on the choice
of local parametrization at p.)

We now want to evaluate the effect that small variations in p have on the function
f,i.e., we want to define the derivative of f. Usually, a first-order variation of p € R3
in the direction 4 is represented by p 4 ¢h, with small . This cannot be applied to
S, since there is no reason for p + €h to belong to S if p does. It is reasonable, and
rather intuitive, to define a first-order variation of p as an element of a curve on S
containing p. This leads to:
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Definition 3.7 Let S be a regular surface and p € S. A first-order variation of p in
the direction s € R3isa C! curvey : (—¢, e) — Ssuchthatv(0) = pandy(0) = h.

Note that, from this definition, first-order variations on S can only arise in directions
which are tangent to S.

Now, we can define the differential of a scalar function f defined on § as the limit
(if it exists) of the ratio (f(y(d)) — f(p))/d as § tends to 0, v being a first-order
variation of p. This will be denoted df (p)h, with h = (0). Implicit in this notation
is the fact that this limit only depends on +(0), which is true if f is C' as stated in
the next proposition.

Proposition 3.8 Let f be a C' scalar function on a regular surface S. Then, for any
p €S, and h € T,S, the differential of f at p in the direction h exists, and is equal
to the limit of the ratio (f (y(8)) — f(p))/d for any C' curve v on S with v(0) = p
and v(0) = h.

Proof What we need to prove is that the limit of the ratio exists for any - and only
depends on h. Take a local parametrization m around p. We know that the function
f(m(u,v))is C', and letting v(t) = m(u(t), v(t)), we have

SO = fp) L fn(u(d), v(d) = fu(u(0), v(0))
m 5 = l1im

|
51%0 0

= a1fmu(0) + azfmv(o)

Li
6—0

This proves the existence of the limit. We have & = 4(0) = (0)0;m + 0(0)0,m:
since (0ym, &ym) has rank 2, 1(0) and ©(0) are uniquely specified by 4 and thus the
limit above only depends on 4. The notation df (p)h is therefore valid. O

Note that the expression provided in this proof shows that df (p)h is linear with
respect to 4. In other terms, df (p) is a linear form from 7}, to R. Most of the time,
the computation of df (p) is easy, because f can be expressed as the restriction to S
of a differentiable function which is defined on R3. In this case, df (p)h coincides
with the usual differential of f, but restricted to the two-dimensional plane 7, S.

The proof above also provides a simple way to compute differentials in local
charts: let f: S — R be C!, p € S and m be a local parametrization around p.
Then, if h = adym + [0,m, we have

df(P)h = aalfm + 682]‘;71- (3.3)

When f is a vector-valued function (f : § — R?), the differential df(p) is
defined in the same way, and is also vector-valued. It is a linear map from 7,5
to R9.

The simplest examples of differentiable maps are the coordinates: if m : U —
V N § is a local chart, the function f = m~"! is such that fm(u, v) = (u, v), which
is the identity map, and therefore differentiable. In particular, the coordinates: p
u(p) and p — v(p) are scalar differentiable maps. If T = adym + 30,m, we have
du(p)T = o, dv(p)T =P anddf (p)T = (o, B).
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Consider now the example of the sphere S2. The tangent plane is easy to describe
if one uses the fact that S? can be defined by the implicit equation |p|*> = 1. If
&(p) = |p|?, we have Vo(p)Th = 2pTh so that h is tangent to S? at p if and only
if pTh = 0 (h is perpendicular to p).

Fix a vector py € S? and consider the function f(p) = p” po. Then, since f is
well-defined on R?, we can use its restriction, which yields df (p)h = h” py. This
was an easy result, but for illustration purposes, let us retrieve it via local charts,
which will require a little more computation.

Consider the parametrization m (u, v) = (cos u cos v, sin u cos v, sin v). Then,

Oym = (—sinu cos v, cosu cos v, 0) and
Oym = (— cosu sin v, — sin u sin v, cos v).

A straightforward computation shows that both d;m and 0,m are orthogonal to
m(u, v). In the chart, letting po = (a, b, ¢), the function f,, is

fm(u,v) =acosucosv+ bsinucosv+ csinv.

Obviously, 0, f,, = po’ Oym and &, f,, = po! Oam, sothat,if h = adym + BOym, we
get, by Eq.(3.3),
df (p)h = ad, fin + B0 fi = po” h.

3.4 Orientation and Normals

Let S be a surface and m a local parametrization on S. The vector Oym x 0,m is
non-vanishing and orthogonal to both 0;m and d,m. Since Oym and J,m generate
T,S at p = m(u, v), Oym x O»m is normal to the tangent plane at p.

In particular, the vector N = Oym x 0,m/|0ym x Oym| is a unit normal to the
tangent plane. One also says that N is normal to the surface S. Since unit normals to
aplane are defined up to a sign change, the one obtained from another parametrization
must be either N or —N. This leads to the following definition:

Definition 3.9 Two local parametrizations, m and 1, on a regular surface S have
the same orientation at a given point at which they are both defined if

81m X 82m 8]]’;1 X 82]’)3

|Oum X Oym| |0yt X it

and have opposite orientation otherwise.
The surface S is said to be orientable if it can be covered by local parametrizations
that have the same orientation wherever they intersect.
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Fig. 3.5 Two examples of non-orientable surfaces. On the left is the Mdbius band; the surface on
the right is similar, with an odd number of twists

A surface is therefore orientable if there is a consistent (continuous) definition of
a normal all over it. Not all surfaces are orientable (Fig.3.5). A typical example is a
twisted ring (the Mobius band).

3.5 Integration on an Orientable Surface

Let S be an orientable surface and f : S — R be a continuous function. We want
to compute the integral of f over S. We first define it within a local chart. Let
m : U — V N S be a parametrized patch of the surface S. To motivate the definition,
let U be divided into small rectangular cells (neglecting boundary issues). Consider
a cell of the form (ug — /2, up + €/2) x (v9 — €/2, vo + €/2). In this cell, we can
make a first-order expansion of m in the form

m(u, v) = m(ug, vo) + (u — ug)O1m(ug, vo) + (v — vo)0hm (ug, vo) + o(€)

so that, at first order, the image of the rectangular cell by m is a parallelogram in
space, centered at pg = m(ug, vg), namely

oo = {po + adim + BOym, a € (—¢/2,¢/2), 0 € (—e/2,¢/2)}.

Its area is given by £2|0;m x O,m|, and the integral of a function f over this parallel-
ogram can legitimately be estimated by €2 f (po)|01m x G»m|. Summing over cells
and letting ¢ tend to 0 leads to the following definition:

Definition 3.10 Let f be a function defined on a regular surface S, and m : U —
V N § aregular patch on S. The integral of f on V N S is defined and denoted by
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/ f(p)dos(p) =/ S, v)|01m x Oom|dudv. (3.4
vns U

The integral of f over the whole surface S is defined as the sum of such integrals
over non-overlapping local patches that cover S (maybe leaving out a finite number
of curves or points on ). It is denoted

/ F(p)dos(p) or / fdos.
S S

This can be shown to be independent of the chosen family of patches. The nota-
tion dog refers to the area form on S, defined on a local chart by dog = |0;m x
Oym|dudv.

Note that the area form that we have defined here is a special case of a volume form
in an arbitrary finite-dimensional manifold. For this reason, it is also often called the
volume form of S (even though it measures areas).

Another (equivalent) way to globally define the integral is to use partitions of
unity. Given a family (U;, m;),i = 1, ..., n) of local parametrizations which cover
the surface (so that |, m; (U;) = S), but may overlap, one defines a partition of unity
as a family of continuous functions (w;, i = 1, ..., n) where each w; is defined on
S and takes values in [0, 1], with w; (p) = 0if p ¢ m;(U;), and forall p € S,

Y wip)=1.
i=1

Such partitions of unity always exist, and one can define

N
/ f(pydos(p) =) f w; (m; (u, V) fn, (0, V)| Oym; x Oym;| dudv .
§ i=1 Ui

Here also, the result does not depend on the local parametrizations, or on which
partition of unity is chosen.

That the right-hand side of (3.4) does not depend on the chosen parametrization
should be clear from the approximation process which led to its definition (which
was purely geometric), and can be checked directly as follows. Leti : U — V N S
be another parametrization of the same patch. For p € V N §, the equation p =
m(u, v) = m(i, v) provides a relation between homologous coordinates given by

81"’! = Glﬁalnﬁ + 81 17621’)71

82m = 62&61173 + (9217821’;1
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The left-hand sides are computed at (u, v) and the right-hand sides at (&, v). This
implies

81m X azm = (alftazﬁ - 81178212) ({911’7’! X 321’71

Letting ¢ be the change of variables (¢(u, v) = (i, v)), this is Oym x Ohym =
(det ¢)(Oym x 0ym) o ¢. Therefore

f f(mu, v))|0im x Oym|du dv
U
= / f(mod(u,v))[0ym x Oam| o ¢(u, v) | det ¢(u, v)| du dv
U
U

As an example, we compute the area of the unit sphere, which can be parametrized
(poles excepted) by m(u, v) = (cosu cos v, sin u cos v, sin v). Then

O1m = (—sinu cos v, cosu cos v, 0),

Oym = (— cosu sin v, — sin u sin v, cos v)

2

and |Oym x 6hm|? = cos? v, so that

27 w/2 )
/ do = / / cosvdudv = 2n[sinv]”;,, = 4r.
52 0 —r/2

3.6 Regular Surfaces with Boundary

Consider the surface S defined by XX+ y2 < 1, z = 0, which is the unit disc in the
horizontal plane. It is natural to define the boundary of S to be the circle x> + y* < 1,
z = 0. Such a definition cannot coincide with the topological boundary in R?, 8S =
$\ S, which would be the unit disc S defined by x2 4+ y2 < 1, z = 0 (because S has
an empty interior in R*). Because of this, one defines the boundary of a surface S by
dS = §\ S (and never use the topological boundary).

For a regular surface to be a “regular surface with boundary”, some additional
requirements are made to ensure that the boundary is locally a smooth curve.

Definition 3.11 Let S be aregular surface. One says that p € 95 is a regular bound-
ary point if there exists a parametrized surface m : U — R?, where U is open in
R? with 0 € U such that m(0, 0) = p,and,if Ut = {(u,v) e U : v > 0} and U° =
{(u,v) e U :v=0},onehas m(U*) = m(U) NS and m(U®) = m(U) N IS.

One says that S is a regular surface with boundary if every point p € 0S5 is regular.

Equivalently, p € 95 is regular if there exists a regular surface S such that § C S,
p € Sand S N Sisa C! regular curve on S.
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With this definition, the horizontal unit disc considered above is a regular surface
with boundary, and its boundary is the horizontal unit circle. If one removes the
origin from this unit disc, one still has a regular surface, but not “with boundary”
anymore, because 0, which is now in the boundary, is not a regular point. Similarly, a
triangular region, such as {x > 0,y > 0,x 4+ y < 1, z = 0}, is not a regular surface
with boundary, because its boundary has angles.

Let S be aregular surface with boundary and assume that S is oriented. Let p € 9§
and m be a local parametrization such as the one defined in Definition 3.11. Assume
that m : Ut — S is positively oriented (otherwise, take its composition with the
transformation (u, v) + (—u, v)). Then one defines the unit tangent and normal to
98 at p by Tys(p) = 01m(0, 0)/]01m(0, 0)| and Nys(p) = Ns(p) x Tps(p) where
Ns(p), defined by
01m(0, 0) x 0,m(0, 0)
|01m (0, 0) x 9,m(0, 0)]’

Ns(p) =

extends the normal to § to its boundary. We let the reader check that this definition
does not depend on the chosen parametrization m (or refer to the general argument
made in Sect. B.7.3). With this definition, Nyg is the inward pointing normal to 0.
in the tangent plane to S.

Note that the term “boundary” is not the only difference between the terminology
used for surfaces and the one for standard topology. Here is another example.

Definition 3.12 One says that a regular surface S is a “closed surface”, or a “surface
without boundary”, if and only if S is a compact subset of R>.

With this definition, a sphere and a torus are closed surfaces. However, the horizontal
plane z = 0 is a closed subset of R? and a regular surface, but not a closed surface
according to this definition.

3.7 The First Fundamental Form

3.7.1 Definition and Properties

Let S be a regular surface. When £ and k are two tangent vectors at p € S, their dot
product in R3 will be denoted <h , k)p. It is simply the usual dot product, the sum of
products of coordinates, but gets a specific notation because it is restricted to 7}, S.
The associated quadratic form is called the first fundamental form, and denoted

) 2
I,(h) = |h],. (3.5)
This form is the key instrument for metric measurements on surfaces. Although its

definition is straightforward, one must remember that surfaces are mostly described
by local charts, and the expression of the form in such charts is not the standard
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norm anymore. Indeed, let m be a local parametrization around p, and h = ad;m +
B0ym € T,S. Then

I,(h) = o*(Oim , 81m)p +2a8(01m , (%m)p + B*0om , 82m)p
= o’E +2a83F + °G

with the notation
E = (alm, alm)p, F = (81m, 82m)p, G = (azm, 82m)p. (3.6)

E, F and G are the coefficients of the first fundamental form in the chart. They
depend on the parameters u, v.

The following proposition allows one to use convenient local charts around a
given point.

Proposition 3.13 If S is a regular surface and p € S, there exists a local
parametrization m : U — S around p such that (Oym, Oym) is orthogonal on U.

(Note that this proposition does not hold if ‘orthogonal’ is replaced with ‘orthonor-
mal’.)

3.7.2 Geodesics

The first fundamental form provides all the information required to compute lengths
of curves on S: let v be such a curve; assuming that y is contained in a parametrized
patch and letting y(t) = m(u(t), v(t)), we have

1Y% = [adym + 00m|* = i*E + 2u0F + 0*G

so that the length of the curve from its expression in local coordinates is provided by

b
length(7) =/ VI2E (u, v) + 200 F (u, v) + 02G (u, v)dt.
Similarly, one defines the energy of a curve v by
1 b .2 1 b ) .. .2
energy(y) = 2 |y|7dt = 2 (u E(u,v)+2uvF(u,v)+ v°G(u, v)) drt.

Curves of minimal energy on a surface are called minimizing geodesics, as for-
malized by the following definition.
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Definition 3.14 Given two points p and p’ on a surface M, a curve v on M achieving
the minimum energy among all piecewise C! curves on M linking p and p’ is called
a (minimizing) geodesic.

In addition to minimizing the energy, it can be shown that geodesics are curves
of minimal length between two points [86, 87]. Moreover, if we define

dy(p, p') = inf {length(7) : ~ piecewise C' on M}

then d, is a distance on M, called the geodesic distance. Therefore if  is a mini-
mizing geodesic between p and p’ then length(y) = dy (p, p').

Minimizing geodesics between two given points do not always exist, however.
Let M be, for example, the plane z = 0 with the point (0, 0, 0) removed, which is
a regular surface. Then the geodesic distance between p and —p in M is 2|p]|, but
this distance cannot be achieved because the optimal curve must be a straight line
containing 0. We however have the following theorem, which is an application of
the standard Hopf—Rinow theorem (see [86], for example).

Theorem 3.15 If M is a (topologically) closed surface, then there exists a minimiz-
ing geodesic connecting any pair of its points.

If 7 is a minimizing geodesic between p and p’, and k(¢) is for all ¢ a vector
tangent to the surface at y(¢), one can define, for small €, a one-parameter family of
curves (¢, €) such that (¢, 0) = ~(¢) and 0-7(¢, 0) = h(¢). Since -y is minimizing,
the function € — energy(7(-, €)) has a vanishing derivative at ¢ = 0. This derivative

is given by
b b
/ AThdt = —/ 57T hdt

by integration by parts. The fact that this expression vanishes for any /4 tangent to
the surface along  implies that the “acceleration” 7 is normal to the surface. By
extension, curves satisfying this property are also called geodesics. They generalize
the notion of straight lines in a plane.

Definition 3.16 A C? regular curve v on M is called a geodesic if its second deriva-
tive 7y is always normal to M.

Note that, using 9|%|* = 2474 = 0 for geodesics, one finds immediately that such
curves have “constant speed”: || = const.

Let us compute the geodesics of the unit sphere. Such geodesics must satisfy
|v(¢)| = 1 for all ¢ and, in order to be normal,

F() = A@)y (1)
for some real-valued function A. On the sphere, we can write, since 7% = 0,

0=0"% =1+ A
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which implies (because - is constant along geodesics and |y| = 1) that A is constant.
So geodesics must satisfy the equation ¥ = Ay. By making a constant time change,
we can assume that || = —\(¢) = 1, and that -y is parametrized by arc length. Since
0% = 4, we see that the curve has unit curvature and zero torsion and therefore
coincides with a portion of unit circle. The only unit circles included in the sphere
must be centered at 0, and constitute the great circles on the sphere. So we find that
geodesics on the sphere are great circles parametrized at constant speed.

Finally, we note that the first fundamental form also determines the area form
used in the computation of integrals over the surface. Indeed, one can easily check
that |0ym x dhym| = ~/EG — F? (both terms are equal to |0ym| |Om| | sin | where
0 is the angle between the two tangent vectors) so that

dos = VEG — F2dudv. (3.7)

3.7.3 The Divergence Theorem on Surfaces

A vector field on S is a function % : S — R? such that, for all p, h(p) € T,S. We
start with a simple definition of the divergence of a C' vector field.

Definition 3.17 Let & be a C! vector field on a regular surface S. The divergence of
h on S is defined by

divsh(p) = er" dh(p)er + ex" dh(p)es (3.8)

whenever ey, e; is a positively oriented orthonormal basis of 7, M (the result being
independent of the choice made for e, ;).

In this definition, dh(p) is a linear transformation between 7,5 and R3. If h is
defined on S and takes values in R? (not necessarily in 7'S), the definition remains
meaningful. We will use the notation div; (%) for the left-hand side of (3.8) in that
case. In fact, if 7 decomposes as h = hy + uN where hy is a vector field on S, we
have

divg(h) = divg(hr) + pdiv(N). (3.9

Another way of understanding the definition is by introducing the orthogonal
projection on 7, S (denoted 77, 5) and the operator

Vsh(p) = mr,s odh(p) : T,S — T},S. (3.10)

This operator is the covariant derivative on S, as described in Appendix B, and
Definition 3.17 simply says that

divsh(p) = trace(Vsh(p)). 3.11)
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Note that we have, for { € T,,S

Vsh(p)é = dh(p)¢ — ((dh(p)E)" N)N.

This definition can be made explicit in a chart. This yields the following propo-
sition (the proof, which is just a computation, is left to the reader):

Proposition 3.18 If m is a local chart on S and the C' vector field h decomposes
as h = adim + B0m in this chart, we have

divgh = 01+ 0,0 + (a01p + BO2p)/ p, (3.12)

where p = |0ym x Oym| = vV EG — F2.
We also have the nice formula, still valid in a chart, that says that

O1h x Oym + Oym x O,h = p(divgh)N. (3.13)
This result is a direct consequence of the following simple computation in linear
algebra, the proof of which is left to the reader.

Lemma 3.19 Let A be alinear operator from M, an oriented two-dimensional linear
subspace ofR3, to R3. Let n be the unit normal to M. Define, for ey, e; € M,

Paler, &) = (Aey)" (2 x n) + (Aex)" (n x ey).
Then, there exists a real number p(A) such that
daler, e2) = p(A) det(ey, ea, n),

which is also equal to p(A)|e; X ey| if e1, ex are positively oriented. Moreover, we
have
p(A) = trace((Id — nn")A), (3.14)

where (Id — nnT) A (which is A followed by the projection on M) is considered as
an operator from M to itself.

Equation (3.13) just comes by applying Lemma3.19 with M = T,M, A = dh(p),
e = 61111 and ey = 82m.

We now give the divergence theorem on a surface, which is a direct generalization
of the one we saw on R? (Theorem 1.16):

Theorem 3.20 Let S be an oriented regular surface, and h a smooth vector field on
S. Then, if X C S is a bounded subdomain of S with a regular boundary, we have

/ W' Nys doys = — / divs(h) dos,
ox P
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where the first integral is a line integral over the curve 0%, and Nyy is the inward
normal to X (normal to X and tangent to S).

The proof (which we skip) is an application of Green’s formula in R? combined with
a decomposition in local coordinates.

In addition to the divergence, one can define the gradient operator on a surface S,
which applies to scalar-valued functions.

Definition 3.21 Let f:S — R be C!. The gradient of f at p € S is denoted
Vs f(p) and defined by Vs f(p) € T, S and

VEEeT,S. (Vsf(p).€), =df(P)E. (3.15)

Note that, even if they are using the same symbol Vg, the covariant derivative intro-
duced in (3.10) and the gradient in (3.15) are similar, but different notions, since the
former applies to vector fields on S and the latter to scalar functions. Their similar-
ity (and some justification for the notation conflict) is supported by the following
observation: if f is the restriction to S of a differentiable function f defined on R3,
then (3.15) implies that Vs f is the orthogonal projection of V f (the usual gradient
in R®) on the tangent plane to S, namely

Vsf(p) =m1,sVF(p) = VF(p)— (NP VF(p)N(p). (3.16)

In a chart (u, v) — m(u, v), we have

_GOf—FOf

EOf —FO f
Vs/ = —FGc

0
Mt G R

Om. (3.17)

The usual formula, div(fh) = V fTh 4+ fdivh, extends to surfaces with
divs(fh) = Vs fTh + fdivgh (3.18)

for a scalar function f and a vector field 4 on S.
The generalization of the Laplacian on R? is the Laplace-Beltrami operator on
S. It is defined as follows:

Definition 3.22 The Laplace—Beltrami operator on a regular surface S associates to
a scalar function f on § the scalar function Ag f defined by

Asf = dist_gf. (319)

The Laplace—Beltrami operator in a chart is therefore given by the combination of
(3.17) and (3.12), which yields a formula notably more complex than the ordinary
Laplacian.

Theorem 3.20 relates surface integrals to linear integrals over the surface. Surface
integrals can also be related to three-dimensional integrals, if the surface is closed,
via the three-dimensional divergence theorem.
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Theorem 3.23 Let 2 be a bounded domain in R® and assume that S = 082 is a
regular surface. If v is a C' vector field on R?, we have

/ divvdx = —fvT(m)N(m) dos(m), (3.20)
2 s

where N (m) is the inward normal to S at m.

From this theorem, we can derive an expression of the volume of £2 as an integral
over its boundary, namely (taking v(x, y, z) = (x, y, z) in (3.20))

volume(£2) = —%/ Om” N(m)dos(m). (3.21
s

3.8 Curvature and the Second Fundamental Form

Let S be a C? orientable regular surface, and N be its unit normal. The function N
can be seen as a map defined on S with values in R? (in fact in the unit sphere S?
since |N| = 1), which is called the Gauss map. It therefore has a differential, dN.
Forany p € S,dN(p) isalinear map from 7, to R®. The fact that | N|* = 1 implies
that (dN (p)h)TN(p) =0 forall h € T,S so that the range of d N (p) is orthogonal
to N(p) and therefore coincides with T},§. We can therefore consider d N (p) as an
endomorphism (a linear map from a vector space into itself)

dN(p): T,S — T,S.

This endomorphism (also called the shape operator) is essential for describing the
curvature of the surface, which measures how the surface bends in a neighborhood
of a point p. It has the interesting property of being symmetric:

Proposition 3.24 Let S be a regular surface and p € S: for any h,k € T, S, we
have

(dN(p)h, k)p = (h , dN(p)k)p.
Proof It suffices to show this for a basis of 7,S. Let us take the one provided by
a local parametrization around p: h = Oym and k = 0,m. Let N,,, = N o m be the
expression of N as a function of the parameters, so that

dN(p)(@dym + Borym) = ad| N, + B N,y.

In particular, dN(p)0ym = O\ N,, and dN(p)0rym = O, N,,, and what we need to
show is

(ale , 82m>p = <81m , asz)p.
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But, from (9;m)" N,, = 0, we get(dym , 82Nm)p = (O1m)TO,N,, = —(0,0,m)T N,,.
Similarly, (9om , 9, Nm)p = —(0,0,m)" N,,. Since partial derivatives commute, the
two quantities are equal, yielding the required identity. (]

Let v be a curve on S, and assume that «y is parametrized by arc length. Let
T be the unit tangent of 7, k7 its curvature and N its unit normal, such that
TO = kMN . The normal N does not coincide with N in general, and we define
the normal curvature of +y by the (algebraic) normal part of 7 to the surface S. The
interesting point is that it only depends on «y via T,

Definition 3.25 The normal curvature at p of an arc length parametrized curve  on
a regular surface S is "55\7) (s) = (TD(s)TN(v(s)), where T = 5.

The fact that the normal curvature only depends on 7" can be proved as follows: let
~ be a curve on S such that 4(0) = T, For all s, we have (T")" N = 0since T
is tangent to S. Computing the derivative with respect to arc length and applying the
chain rule yields

(TOY'N oy +(TANNHTY =0

so that
Iig\;/) = —(TTdAN@H)T™. (3.22)

One also defines the geodesic curvature of y at so by the curvature (at s¢) of the
projection of v on the tangent plane to S at y(so), which is

F(s) = v(s) — (7(s) — (50))" N(s0) N(s0)-

Computing first and second derivatives in s and computing them at s = so yields
Y(s0) = ¥(so) and . o
¥(s0) = 7(s0) — Ky (S0)N (50).

Denoting the geodesic curvature by /ﬁfﬁ’) (s0), we find (using the definition of the
(signed) curvature for plane curves in the oriented tangent plane) that

K = det(y, %, N) = 57 (N x 4),
where N x + is the unit normal to +y that belongs to 7, M and complements - in a

positively oriented basis of the tangent plane. Writing 4 = (Y7 (N x ¥))(N x ) +
(3T N), one also gets the identity

(kg + () = (572,
the squared curvature of ~.

This expression in Eq. (3.22) involves another important quantity on S, its second
fundamental form.
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Definition 3.26 Let S be aregular surface and p € S. The second fundamental form
at p is the quadratic form defined on T}, S by

1 ,(h) = —(h, dN(p)h)p.

In particular, we have the expression of the normal curvature of an arc length
parametrized curve y:

KD = 11,(%).

Because d N (p) is symmetric, it can be diagonalized in an orthonormal basis
of T,,S: let (ey, e2) be such a basis, with corresponding eigenvalues —x and —k»
such that k1 > k,. The numbers «; and «, are called the principal curvatures of the
surface at p. The reason for this terminology is that any unit vector in 7}, S can be
written, for some 6, in the form & = cos fe; + sin fe, and

1,(h) = —(h, AN(p)h) = k1 cos®  + K, sin” 0.

This implies that k, < I ,(h) < &1, the lower bound being attained for 7 = e, and
the upper bound for & = e;: x| and k;, respectively, are the maximum and minimum
normal curvatures of curves passing through p.

Definition 3.27 If x; and s, are the principal curvatures of a surface S at p € S, one
defines the mean curvature at p by H(p) = (k1 + k2)/2, and the Gauss curvature
by K(p) = k1k2. They respectively coincide with the trace of —d N (p)/2 and the
determinant of d N (p).

From this definition, we can also write
2H = —divg(N) (3.23)
and rewrite (3.9) as (for h = hy + uN)

divly(h) = divg(hy) — 2uH. (3.24)

3.9 Curvature in Local Coordinates

In this section, we give the expression of the curvature in local coordinates, as func-
tions of the coefficients of the first and second fundamental forms. Recall the notation
(3.6) for the first fundamental form and a local parametrization m. We introduce a
similar notation for the second form, letting

1 ,(adym + Bdom) = o’e + 2af3f + (g

and



96 3 Local Properties of Surfaces

e = —51mT31N = 8]2mTN, f = —61mT82N = 8182mTN,
g=—0m"O,N = 05m"N. (3.25)
ac

bd
since the basis is not assumed to be orthonormal). We find:

LetdN = ( ) in the basis (0ym, d,m) (the matrix is not necessarily symmetric

—e=0m'dNOm = aE + bF
—f = 0mTdNOym = aF + bG
—f= m'dNOym = cE +dF
—g=0m"dNOm = cF +dG

fg FG)\bd
basis (0;m, ym), dN is given by the matrix

(78 (1)

From this, it can be deduced that

which yields, in matrix form: — <e f ) = (E F) (a C). This implies that, in the

_eg—f?
EG — F?

because it is just the ratio of the determinants. Also, after computation, one finds

_eG—2fF+gE
T 2(EG—F?

The principal curvatures are then givenby x = H + v H? — K.

3.10 Implicit Surfaces

Assume that a surface is defined implicitly by

S={peR’ f(p)=0},

where f is a C? function from R3 to R with Vf # 0 on S. We have already
noticed that the tangent plane to S is orthogonal to V f, and therefore N(p) =
—V£(p)/IVf(p)| is a smooth unit normal to S which therefore is orientable (and
we take the orientation provided by this choice of N).

The interesting feature in this representation is that, since f is defined on R?,
the function N can be extended to R? (denote the extension by N ) so that dN (p)
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is simply the restriction to 7,5 of dN( p), In particular, the trace of d N(p) is, by
definition, (el , dN( p)el)p + (ez , dN( p)ez>p for an arbitrary orthonormal basis of
T,S. It therefore suffices to add (d NN )T N to obtain the trace of d N, but this added

quantity vanishes because INP? =1 implies that dNN is perpendicular to N. Thus,
we have, for the mean curvature:

N 1. Vf
H = —trace(dN)/2 = —div .
2 |Vfl

(3.26)

(This is the usual divergence on R, not to be confused with the S-divergence in
Definition3.17.)

Let Py be the projection on Nt: Py = Idgs — NNT. The Gauss curvature can be
computed after diagonalizing the matrix PydN Py = dN Py, which is symmetric
and coincides with d N on T}, S. Using N = =V f/IVf|, we get

. 1 1 .
dN Pyh)T Pvk = ———(d?> f Pyh)T Pvk + ——((d* fPyR)TN) ((Pyk)TN
( ~h)" Py |Vf|(fN)N |Vf|((fN) ) ((PvE)'N)
= —L(PNh)TdePNk,
IV fl

which is symmetric in /# and k. The matrix Pyd”f Py/|V f| has one vanishing
eigenvalue since Py N = 0, and the other two are the principal curvatures of S. Their
product provides the Gauss curvature.

The Delta-Function Trick

When a surface or a curve is defined implicitly, integrals over its interior can be
described in a straightforward way using the Heaviside function. Assume that S is
the set f(p) = 0 for some smooth function f, and let £2 be its interior, defined by
f < 0. Introduce the Heaviside function Hy defined on R by Hy(x) = 1ifx > 0 and
Hy(x) = 0 otherwise. Then, clearly, for any function V on R3, we have

f V (x)dx =/ (1 — Ho(f(x)))V (x)dx. (3.27)
2 R3

Contour or surface integrals can be defined via a level-set representation, albeit
requiring passing to a limit. For this, we need to replace H, by a smooth approxima-
tion denoted H., which must be an increasing function that tends to Hy as ¢ tends
to 0. A possible example is (cf. [227, 316]) H.(x) = 0 for x < —¢, H.(x) = 1 for
x > eand,on[—¢,c]:

Hoy =+ (142 + Lan (T)). (3.28)
2 € T 5

Alternatively [58], one can take, for all x € R:
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1 2 X
H.(x) = (1 + = arctan (g)) . (3.29)

This choice being made, let J. denote the derivative of H.. The function 6. can be
considered as a smooth approximation of the Dirac function dy, in the sense that, for
any bounded function u on R which is continuous at r = 0, one has

lim/ 0 (Hu(t)dt = u(0). (3.30)
e—0 Jp

We leave the easy proof to the reader (simply divide the integral over domains around
0 or away from 0).

We now describe how surface integrals over implicitly defined surfaces can be
approximated using J..

Proposition 3.28 Let f : R3 — R be a C? function with Vf # 0 if f =0, and
such that the implicit surface S = f~'(¢) is bounded in a neighborhood of 0. Then,
if V. R3 — R is continuous, we have

lin}) deo0 f)V(x)|Vfx)dx = / V(m)dogs(m). (3.31)
eV JR3 N

The same proposition holds for curves, with f : R> — R and the surface integral
replaced by the integral along the curve.

Proof Let’s consider the surface case (the case of curves is similar and simpler). We
also assume that J. is supported in [—&, €], like for (3.28) (the general case requiring
only minor modifications). Consider a local chart (u, v) — m(u, v)on S = f~1(0).
Consider the equation

S(m(u,v) +tN(u,v)) =y,

which we want to solve for ¢ as a function of (u, v, y) in a neighborhood of some
u =ug, v=1v9 and y = 0. From the implicit function theorem, this is possible,
because

O fm+tN)=VfIN=—|Vf],

which is not zero by assumption. Using the compactness of S, we can find a finite
number of points py = m(ug, vg) and domains around (i, vy, 0) € R* over which
a function t (m(u, v), y) such that f(m 4 t N) = y is well-defined and such that the
union of these domains forms an open set in R? that contains S, and more generally
contains the set | f(p)| < yo for yo small enough.

Taking € < yy, we can write

o0 f(O) V() |V f(x)dx = / o0 f(x) V() |V f(x)ldx.

R4 [f1<y0
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(Not assuming . to be compactly supported would add a small error to this identity,
which is easily shown to be negligible when ¢ — 0.)

We can decompose the integral over a partition of unity, which reduces the problem
to the situation in which V is supported by one of the domains above. Working
under this assumption, we make the change of variables x(u, v, y) = m(u, v) +
t(m(u,v), y)N(u, v) in this domain and let J(u, v, t) be the associated Jacobian
determinant, so that

[, oerevems@ia=
/y|<y 0= Vx@u, v, NIV f(x(u, v, yDI S (u, v, y)dudvdy.
Our assumptions ensure that the integral
u(y) = / Vi(x(u,v, M) IV fx(u, v,y J(u, v, y)dudv
is continuous in y so that,
lim » 0-0 f(X) V) IV f(x)dx = u(0).

Now,
J(M, v, O) = |det(81m, 82m, 832‘N)| = |31m X 82m|/|Vf(m)|

because y = f(m + tN)implies 1 = 3¢t VfT N = —05¢|V f|. This implies that the
|V f| terms cancel in the expression of #(0), which is equal to

u(0) = f V(im(u, v)) |0ym x Oym|dudv = f Vdosg,

s
which concludes the proof. (]

The theorem is particularly important for numerical computations, because it
replaces computations over a surface with computations over a grid that contains the
surface.

The left-hand side of (3.31) is often written using the symbolic notation

/]RZ doo f(x)V(x) |V f(x)ldx.

The assumption that V is continuous is important (of course, we only need con-
tinuity near £~'(0)). Take the following simple example with curves; let f(u, v) =
u?> +v? — 1, sothat £~1(0) = S', the unit circle and let V (u, v) = 1if u® +v> < 1
and 0 otherwise. Then
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Fig. 3.6 The Gauss—Bonnet
theorem in R? reduces to the €2
well-known property that the
sum of consecutive angles in

a polygon is 27 el

€3

/ Vdl =2r
S1

lin(l]/ b0 fOVX)IVFf)ldx ==
E—> ]RZ

but
(both integrals being easily computed in radial coordinates).

3.11 The Gauss—Bonnet Theorem

The average of the Gauss curvature over a domain with piecewise geodesic boundary
is provided by the Gauss—Bonnet formula [86]:

Theorem 3.29 Let S be a regular surface and A be a domain on M such that 0 A
is the union of N geodesics ¥V, ..., v"™). Let€;,i = 1,... N be the sequence of
consecutive angles between the curves at their intersection. Then

N
/ Kdo=2m— ) & (3.32)
A

i=1

For example, when N = 3 (OA is a “geodesic triangle”), we obtain the fact that
the sum of the angles of a triangle is 27 minus the integral of the Gauss curvature
over its interior. This is consistent with the sum being 27 in the plane, which has
zero Gauss curvature (Fig.3.6).



Chapter 4 ®
Computations on Triangulated Surfaces e

4.1 Triangulated Surfaces

4.1.1 Definition and Notation

Triangulated surfaces provide a three-dimensional generalization of polygons in two
dimensions. Surfaces are usually stored on computers in this form, and these are the
kinds of objects that must be handled in practical applications.

In full generality, a triangulated surface is a set of vertices V = {vy, ..., vy}
with a family of 3-tuples of indices F = {fj, ..., fx}, where each f; takes the
form fi = (j1, ji2, jr3) € {1, ..., M}. One associates to f; the triangle (or face)
in the triangulation defined by F; = (vi1, vr2, Uk3), using the abbreviated notation
v := vj,,. The set of edges of the triangulation is the family of unordered pairs of
vertices which belong to the same face and will be denoted by £ = {ey, ..., ep}.

The order of the vertices in each face is important and defines its orientation,
which is invariant up to a cyclic permutation of the vertices. We will only consider
regular triangulations, which are such that the intersection of two faces is either
empty or an edge. This excludes those situations in which the contact between two
faces occurs at a vertex only, or in which some vertex belongs to the interior of an
edge. The number

x = WVI=IEl+|F]

is a topological invariant of the surface called the Euler characteristic.

For a vertex v;, we let F; denote the set of indexes of faces that contain it, and &;
the set of indexes of edges that contain it. We also let V; denote the set of indexes
of vertices (distinct from v;) that belong to one of the 3-tuples in F;. (V;, &, F;)
represents the neighborhood of v; in the triangulation.
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The triangulation is said to be consistent if, whenever two faces intersect, their
common edge is ordered in different directions in the two faces. A consistent
triangulation is the equivalent of an oriented surface. We only consider consistent
triangulations in the following.

4.2 Estimating the Curvatures

Given a triangulated surface, the next step is to compute differential descriptors, and
in particular discrete forms of the curvatures. We address this problem in this section,
focusing on a few important methods that have recently emerged in the literature.

4.2.1 Taylor Expansions

The unit normal to an oriented triangle (v, v,, v3) is the vector

_ (v2 —v1) X (v3 — V1)
|(va — v1) x (v3 — V)|

Each face Fj in the triangulation therefore carries a uniquely defined normal, N, ,'f . We
can associate the normal to a specific point inside the face, for example its centroid
(v1 4+ v2 + v3)/3. (There are several possible definitions of the center of a triangle,
however, including the circumcenter, which is the center of the circumscribed cir-
cle, the incenter, which is the center of the inscribed center, or the orthocenter, the
intersection of the lines passing through the vertices and orthogonal to the opposite
edge.)

In many cases, one also wants to define normals at the vertices. This can be done
using a weighted average of the normals at the neighboring faces. If v; is a vertex,
define
NV — Zkeﬁ wi(Fk)Nkf

L Y er wi(FON] |

where w; (Fy) gives a measure of the “importance” of face F; relative to vertex v;.
The simplest definition is the area, area(F}), independent in this case of the chosen
vertex. In [194], it is suggested to use the area of the part of the face which is closer
to v; than to any of the other two vertices. This is the intersection of the face F; with
the region delimited by the following four points: v;, the two midpoints of the edges
of Fj that contain v; and the circumcenter of Fj. Notice that the circumcenter lies
outside of Fj if the triangle is obtuse, as illustrated in Fig.4.1. Such regions form
Voronoi cells. Let F; denote the part of face Fj which is associated to v; in this way.
One can use w; (F;) = area(Fy;).
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Fig. 4.1 Decomposition of triangles into Voronoi cells when the circumcenter is interior to the
triangle (left) and when it is exterior (right)

Similarly, we can define a normal along an edge e to be a weighted average of the
normals to the faces that intersect at e, using, for example, the areas of the faces as
weights.

Having an estimation of the normal at each vertex allows for the approxima-
tion of the normal curvature of a curve on the surface passing through this vertex,
which yields the second fundamental form. If j € V;, the two-point path (v;, v;)
provides a discrete curve fragment passing through v;. Define the tangent vector
Ti; = (v; — v;)/|v; — v;|. Using Definition 3.26, one possible approximation of the
second fundamental form at the midpoint between v; and v; in the direction T;;
(which is also the normal curvature of the curve fragment at the midpoint) is

ij =4y

. T(N;—N,.v> __ N NDT )

lvj — vl lvj —vil?

Also, using a Taylor expansion (assuming that NV is the restriction to the vertices
of a smooth function), one can prove (the justification being left to the reader) that

(N} + N () = v0)
|2

v —v = O(Jv; — v,
J Y

and adding this expression to the previous estimate /1;; yields the alternative formula
[273]
L 2N) ) — )

11, :
lvj — vl

iy -

Because the matrix dN is symmetric in the tangent plane, it is described by
three parameters in any orthonormal basis. Since each computation of the discrete
second fundamental form yields one linear equation involving d N, this requires at
least three edges for its estimation, which is the minimum number provided by the
triangulation. One possible way to estimate curvatures is to select an arbitrary basis
(ai, b;) of the tangent plane to the surface at v;, T,, M, which is by definition the
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plane perpendicular to N (for example, assuming that N} is not parallel to the x-
axis, take @; = (1,0, 0)7 x N} and b; = N/ x a;); then, compute, for each j € V,,
the coordinates (x;;, y;;) of the normalized orthogonal projection of 7;; onto this
basis. We have

xij = al Ty [\ @ Ty)? + (b7 T2

and yi; = b7 T, /\/ ! T,,)% + B T2

Then, letting dN; = (:’ gl> in this basis, we have the system of linear equations
i l

Qix] + 2vixijyij + Biyh = —1ij, j € V.

This is an over-constrained system, for which one can compute a least-squares solu-
tion. Once d N; is computed, its trace, determinant and eigenvalues provide an esti-
mation of the mean, Gaussian and principal curvatures.

A more direct approach to estimating the curvature from the second fundamental
form has been proposed in [273]. Introduce, for continuous surfaces, the matrix
(defined at a point p in the surface)

1 2
X, = / kn(Ty) Ty T, do,
0

o
where T) is the rotation (within the tangent plane) of an arbitrary reference vector T €
T, M by an angle 6. A direct computation of this integral (using the basis (T, T ))
shows that

2y = ng(p) - % det(dN(p))dN(p)~",
the last term being the adjugate matrix of d N (p) (therefore also defined when d N (p)
is singular).

This implies that the eigenvalues of X', are \| = —(3x1(p) — x2(p))/8and \» =
—Bka(p) — k1(p))/8 (which can be used to compute the curvatures), and that the
eigenvectors of X, coincide with those of d N (p) and therefore provide the principal
directions.

Returning to the discrete case, the curvatures at vertex v; can therefore be estimated
from an approximation X; of X,,. Such an approximation is provided by the simple

formula
Ei= = wylly TyT ) Y wy,
jev JjeVi

where w;; = (w,-(Fj*) + wi(F;))/2, F;r and F; being the faces that contain the
edge {v;, v;}.
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4.2.2 Gauss—Bonnet and Area Minimization

In the previous section, the curvature computations were based on Taylor expansions
of formulas that apply on smooth surfaces. More recently [85], an increased focus has
been made on obtaining expressions that derive from intrinsic properties of surfaces
that can be extended to polyhedral surfaces.

The right-hand side of Eq.(3.32) in the Gauss—Bonnnet theorem can still be
defined on polyhedral surfaces. This fact is used in [194] to provide an approxi-
mation of the Gauss curvature, using, for a vertex v; in the triangulation, the region
A; formed by the union of the Voronoi cells around v; (Fig.4.1). The expression is
very simple because, in both cases in Fig.4.1, the sum of the (one or two) exterior
angles in each part of A; coincides with the angle of the corresponding face at v;.
For k € G;, denoting by 0;; the angle of the face F} at v;, we see that the right-hand
side of (3.32) is given by 27 — Zkef, 0;r. Approximating K by a constant over A;,

we get the formula
1
Ki = —(271’— Z Gik>.
AN &

The area, |A;|, can be computed in closed form. It is the sum of the areas of the
shaded regions in Fig. 4.1, over all faces that contain v;. Let as above 6;; be the angle
at v; for a face Fy. Let v}, and v}, be the other two vertices of F so that v;, v}, and
v, are ordered consistently with the orientation of Fy. Let ¢;, be the edge opposite
v}, in Fy and e, the edge opposite v}, (we will later denote by e;; the edge opposite
v;). Finally, let ¢, and 6, respectively denote the angles at v;, and v},. Then, the
area, a;, of the shaded region in Fig. 4.1 in the acute case is given by

ap = é(|e;k|2cm(9;k) + lef ) ctn(8)))).
In the obtuse case, and if 6;; is the obtuse angle,
1 ’ " 1 ’ 2 " "2 /
Qi = Eleik| e}, | cos Oy — §(|eik| cos 0} + |ej |~ cos 6).
Finally, still in the obtuse case, and when 6;; is one of the acute angles,
é|éz‘k|2 cos O;x

where ¢;;, is the side opposed to the other acute vertex.

Given this, |A;]| is the sum of these areas over k € G;. When there is no obtuse
triangle around v;, the area |A;| has another simple expression [194]. For [ € &;
(edges stemming from v;), let v;; and 3;; be the angles at vertices opposed to ¢; in
the triangles that intersect at ¢;. Then
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1
Al = ;“m it 4 ctn Bip) el

To address the mean curvature, we first use an important interpretation of it as
a “gradient” of the surface area. Let S be a surface and & : S — R3 be a (smooth)
vector field on S. Assume that 4 = O on the boundary of S (if S has one). Define
the surface S as the one obtained by displacing each p € S along the vector eh(p).
Then (this will be proved in Proposition 5.4)

0 (area(S.))|_, = 2/5 H(p) h(p)" N(p) das(p).

One can make the same construction with a discrete surface X' by associating
to each vertex v; a small displacement eh; € R?, and computing the derivative of
the area of the obtained surface X.. Approximating the right-hand side in the above
formula, we will then identify:

M
0 (area(X.))_, =2y hl (H;N)|A;l, A.1)

i=I

where A; is the neighborhood attributed to v; and H; N; can then be interpreted as
the discretized product of the mean curvature with the normal at v;.

Given that the area of a triangle with vertices vy, vy, v3 is given by the half-norm
of the cross product (v, — v;) X (v3 — vy), the left-hand side in (4.1) is

N =

it X (U2 — via) 4 hia X (U — v) 4 s X (02 — o) N/

N =

K
Z((th — hi) X (Vs — V1) + (Vg2 — vk1) X (g3 — hkl))TNkf
k=1
K

(
k=1

where hy1, hi, and hy3 are the displacements associated with the vertices of Fj and
Nkf is the normal to Fy.

Fork € F;,lete;; be the oriented edge opposite v;. Using the relation (x x y)Tz =
xT(y x z) and reordering the sums, we can write

M
d 1
garea(zg)‘fzo =5 Zth Z ek X N,‘f
i=1 keF;

This provides a definition of the discrete mean curvature at v;:
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Reordering this sum over edges and explicitly computing the cross product leads to
the equivalent expression [194]

1

HiN; = ——
44|

Z(Ctﬂ ay; + ctn Gi)ey,

IES,'

where «;; and 3;; are, as before, the angles at the vertices opposite to ¢; in each of
the faces that contain e¢; (e; being oriented from v; to the other vertex).

Note that this computation provides an estimate of the normal and the mean
curvature together.

4.2.3 Curvature Measures

The Smooth Case

There is another way to interpret curvature on a surface that can be generalized to
the non-smooth case, leading to another formula for curvature approximation on
triangulated surfaces. On smooth surfaces, this is related to the volume of so-called
parallel sets. We first show that smooth surfaces have positive reach, in a discussion
that parallels the one in Sect.1.13.2. We use the same notation as in that section,
letting, for a surface M,

dy(p) =dist(p, M) =inf {|p — q| : g € M},

U be the set of points p that have a unique closest point, my(p), on M, r(M, q) be
the supremum of the radii of balls centered at g included in Uy, and r (M) be their
minimum over g € M (the reach of M). Propositions 1.20, 1.21 and 1.22 remain true
in the present case, as does the fact that dy, is differentiable on Uy \ M. We prove a
version of Proposition 1.23 for surfaces.

Proposition 4.1 Let M be a closed C? regular surface. Then, we have the following
statements.

(i) If 1p—ql = du(p) (q € M) then p =q +tNy(q) with |t| = dy(p) and
max(tx1(q), tka(q)) < 1, where k| and k, are the principal curvatures.
(ii) Let
21G — )" Nu(q)! .
1§ —ql? ‘

pMzmax{ q.4 € M,q ;éé}. 4.2)

Then py < 0o andr(M) > 1/py > 0. In particular, Uy is not empty.
(iii) The distance map is differentiable on Uy \ M.

Proof The proofis similar to that of Proposition 1.23 and we only highlight the differ-
ences. To prove (i), take an arc-length parametrized curve v on M such that y(0) = ¢
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andlet f(¢) =|p — ’y(t)|2. Then, f(O) = —2(p — q)"#(0), which much vanish for
all -y, showing that p — g is perpendicular to 7, M and therefore proportional to
Nu(q),ie., p =q + tNy(q) for some ¢. Taking the second derivative of f (which
must be non-negative at 0) yields f(O) =2-2(p—q)TH(0) =2(1 — mga) (0)), so
that 5\’ (0) < 1. It then suffices to use the fact that () < £\’ (0) < ra(q).

To prove that py, is finite, take ¢,, g, such that

— 2 |(én - QH)TNM(qn”
! |Gn _‘Zn|2

tends to infinity, which implies that subsequences can be taken such that g,,, g, — q.
Take a local chart around ¢ such that g, = m(u,, v,) and g, = m(i,, v,). Lety, bea
minimizing geodesic such that v, (0) = ¢, and v(s,) = ¢,. Then the same argument
as that of Proposition 1.23 can be used to prove that |§, — ¢,|* = 52 + 0(s?) and

1Gn — @) Na(g)| = K57 0)Is2 + o(s2),

contradicting the assumption that ¢, — 00. The rest of the proof of (ii) is identical
to Proposition 1.23.

For (iii), one shows that, if p € Z/olM \ M and g = 7y (p), then 1 — max(tx;(q),
tr(q)) > 0with the same argument as in Proposition 1.23. Take a positively oriented
chart (u, v) = m(u, v) around ¢ and consider the mapping ¢, (u, v, t) = m(u, v) +
tNpy(m(u, v)). Then, letting N,, = Ny om,

a190m = alm + tc‘?le, 82(,0m = aZm + taZNm» a390m = Nm
so that

det(dgam) - (aIQOm X aZQDm)TaBQOm
= Oym x &m) Ny, +t(Oym x O3N,, + O N,, x dym)'' N, (4.3)
+ t2(01 Ny x NN,

We have 0im x 0hm = |0ym x O,m| N,,. Moreover, for any linear operator A on
R? and any basis (u;, us, u3) in R3, we have (the proof being left to the reader)

(uy X u2)T Aus + (ua x u3)T Auy + (uz x uy)T Aup = det(uy, ua, us)trace(A).
Applying this to
(Oym x H Ny + I N x 8ym)' N,y = (N x Oym)T 03N, + (8 x Nyp)T O\ N,

with O|N,, = dN,, O\m, N, = dN,, Om, taking A = dN,, on T,M and AN,, =
0, we get
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(O1m X N,y + 01N,y x Oom)T N,y = |0ym x dym|trace(dN,,)
= —2|0im x dym| H(m),

where H is the mean curvature. Moreover, since 0y N, and &, N,, are tangent to M at
m, (O\N,, x »N,,)T N, is the two-dimensional determinant of [d N,, 0;m, dN,, O,m],
therefore equal to K (m)|0ym x 0,m|. We therefore have

det(dpy) = (1 — 2t H(m)+1*K (m))|0ym x dym)|
=1 —tri(m))(1 — tka(m))|0ym x dom|. (4.4)

The determinant is therefore positive, and the differentiability of dy at p
can be obtained using the inverse function theorem, as done in the proof of
Proposition 1.23 (]

Proposition4.1 ensures that the mapping

om: Mx(—r,r)— R3
(g, qg+itNulg)

is one-to-one for r < r(M) onto Vi (r) = {p : dy(p) < r}. More generally, for
B C M, considerthesets V,.(M, B) = ¢y (B x (—r,r))and V,H(M, B) = @y (B x
(0, r)). Using the fact that ¢,, introduced in the proof of Proposition4.1 is such that
Om (U, v,t) = py(m(u, v),t) and assuming that M is entirely covered by a local
chart, Eq.4.4 implies that

Vol(VH(M, B))

=/ / (1 —2tH(m(u, v)) + t>K (m(u, v)))|1m x drm|du dv
0 Jm1(B)
3
= rArea(B) —r2/ Hdch—i—%/ Kdoy, 4.5)
B B

where o is the volume measure on M. The last expression for Vol(V.* (M, B))
remains true even when B is not completely covered by a local chart, as can easily
be proved by using partitions of unity, or covering B by a union of local charts up to
a set of measure zero.

This discussion can also be extended to compact surfaces with boundary. Similar
to the case of curves, we need to generalize the definition of normal vectors to
boundary points. Let p € M and Npy(p) € T,M denote the unit normal to the
boundary at p pointing inward (toward M). Then, a vector N is normal to M at p if
it can be written in the form

N = tiNom(p) + 2Ny (p)



110 4 Computations on Triangulated Surfaces

with #; < 0. We let N/ (p) denote the set of unit normals at p. Then the statements
of Proposition 4.1 remain true, provided that (4.2) is replaced by

2@ —-9'N

p :qvéEMVQ#é’NeNM(q) .
g —ql?

PM =max{

Equation (4.5) remains true whenever B C M. For B C OM, the computation must
be modified. Represent B C M as a parametrized curve 7y : (0, L) — R3 and define

@(s, 11, 12) = () + 11 Nopy (7(5)) + 12Ny ((5)).

Assume that y is parametrized by arc length and oriented so that ¥ X Ngy = Ny.
Considerthe set V,.(M, B) = @(B x I,) where I, isthe half disc {(¢;, ;) : t,z + t22 <
r2,t; <0}, so that V,(M, B) is the set of points in R? that have closest point to M
in B at distance less than 7. We have

det(dp(s, 11, 12)) = det(y(s), Nom (7(5)), Nu (7(5)))
+11 det(Is Noar, Nom (7(5)), Nu ((5)))
+1, det(Os Nur, Nom (7(5)), Ny (7(5)))
=1 —160(s) — k) (s).

Indeed, we have Ngy X Ny = ¥ and
det(Ds Now, Now ((5)), Nur(7())) = O: N3y = —N2yH = —r0.

Similarly
det(dy Naz, Now (7(5)), Ny (7(s))) = ;N1 = —k'7.

We can now compute (introducing radial coordinates)
L
voucv, ot 5y = [ (1= 150 (s) — 0y (5)) d dp ds
0 13 +15 <r2, 1 <0
L r /2
= / / f (14 peos O (s) — psin Oy (s)) dO dpds
0 0 —7/2

L
= rlength(B) + rZ/ £ (s) ds.
0

Applied to r < r(M), Eq. (4.5) provides a new interpretation of the integrals of
mean and Gauss curvatures over subsets of M in terms of the volumes of the sets
V(M, B) (which are often called parallel sets along the surface M). These parallel
sets may be defined for sets that are much more general than smooth surfaces and
their volumes then lead to generalized versions of the curvature. We now see how
these ideas can be applied to triangulated surfaces.
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The Discrete Case

We first generalize the definition of Vy(r) to the non-smooth case, for which we will
need a generalized definition of the set of unit normals to M at a given point. This
can be done in two equivalent ways. Here M is an arbitrary closed set with positive
reach, i.e., such that (M) > 0.

The first point of view is to let, for r < r(M),

V.(M,B) ={p:0<dy(p) <randmy(p) € B}.

When M is the boundary of a compact set §2 (e.g., when M is a closed surface), we
can define
VM, B) =V,(2, B),

still for B C M.
Federer [106] has proved that (4.5) can be generalized to sets of positive reach,
so that Vol(V; (r)) is polynomial in r, taking the form

3
Vol(V," (M, B)) = rpug(M, B) — (M, B) + %Mz(M, B). (4.6)

In particular, p;(M, B) and py(M, B) are generalizations of the integrals of the
curvatures on B, and are called the mean and Gauss curvature measures on M. They
have the important property of being additive, satisfying in particular

(M UM, B) = ji;(M, B) + p;(M', B) — u(M N\ M', B).  (4.7)

Although it already is a rich class of sets (including, for example, all convex sets),
sets of positive reach do not include non-convex polyhedrons, so the construction
cannot be immediately extended to triangulated surfaces. But formula (4.7) provides
the key for this extension. Indeed, one can define a union of sets of positive reach as
a set M that can be decomposed into

M=|JMm;

jeJ

where each M ; has positive reach and any nonempty intersection of M ;’s has positive
reach [314]. Then, iterating (4.7) (using the inclusion-exclusion formula), we can set

M, B) = (=" (Y M. B). 438)

IcJ jel

the left-hand side being well-defined from the hypotheses. This is a valid definition
of the right-hand side because it can be shown that the result does not depend on the
chosen decomposition of M, which is not unique. This extension now includes all
polyhedrons (and interiors of compact triangulated surfaces).
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The second point of view gives an alternative interpretation of the curvature
measures, based on the normal bundle to a set M. This requires a general defini-
tion of tangent and normal vectors to an arbitrary set M C R3 [107]. We already
gave a general definition of tangent vectors in Definition 1.5, which defined the tan-
gent set to M at p € M as the set T, M of vectors v € R4 such that, for any € > 0,
there exist x € M andr > O suchthat [x — p| <ecand |[v —r(x — p)| <e.

We will later use the fact that, when M is included in the boundary of an open set
$2,T,,82 form € M contains vectors in 7,, M and all vectors v such thatm + cv € 2
for small € (vectors that point to the interior of §2). The special cases that follow will
be important when studying triangulated surfaces.

Single points: Assume that M = {a}. Itis clear from the definition that any tangent
vector to M must satisfy |v| < € for any € > 0 so that T,M = {0}.

End-points of curves: Let v : [0, 1] — R3 be a smooth regular curve, M =
([0, 1]) and a = (0). Then, any x € M close to a is equal to y(u) for u >~ 0,
and a tangent vector v at a must be such that v >~ r(vy(u) — v(0)) with r > 0, so that
T, M is the half-line R*+(0). By the same argument, if b = v(1), T, M = R™5(1).
(Of course, the tangent space at interior points is the full line generated by the tangent
vector 7.)

Triangles: If M a triangle (including its interior) and a is on its boundary, then
T, M is simply the set of vectors v such that a + v points towards the interior of M.

Normals can now be derived from tangents, as stated in the next definition.

Definition 4.2 Let M C R3. For p € M, the normal vectors to M at p form the set
N, M, containing all vectors n such that n” v < 0 forv € T, M.
The normal bundle of M is the set NM C R3 x R? defined by

NM ={(p.n),peM,neN,M,|n|=1}.
When M C 052, we can also consider
NM* ={(p.n),peM,neN,2, n=1}.

This corresponds to normals to M pointing outward from 2.

The normal bundle is the structure on which the new curvature measures will be
defined. Let us describe it for the previous examples. First, if M is a smooth closed ori-
ented surface in R3, N'M is simply the set {(p, N(p)), p € M} U {(p, —=N(p)), p €
M}. The set NM™ only contains elements (p, —N(p)) (assuming that M is posi-
tively oriented).

If M is a closed curve, with regular parametrization s — ~(s), then N'M =
{(¥(),n) :n"4 =0, |n| =1} (this can be thought of as a tube centered
around 7).

If M = {a}, then (since T,M = {0}), NM = {a} x §?, where S? is the unit two-
dimensional sphere.

When M is an open curve, parametrized by -, the set A, M fora = ~y(0) is the half-
sphere S% N {n”4(0) < 0}, while, for b = (1), it is N;M = S> N {nT5(1) > 0}.
The whole set N'M can be thought of as a “sausage” around .
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Finally, if M is a triangle, and a is on an edge, but not at a vertex, N, M is a
half-circle, being the intersection of the unit circle orthogonal to the edge and the
half-space {nTv > 0}, where v is normal to the edge, in the triangle plane, and
pointing towards the interior of the triangle. If a is a vertex, the set AV, M is the
“spherical corner” formed by the intersection of the unit sphere and the two half-
planes {n”e < 0} and {n”¢’ < 0}, where e and ¢’ are the two edges stemming from
a (oriented from a to the other vertex).

The interesting fact in the previous examples is that, in each case, N'M was a 2-D
structure, i.e., it could always be parametrized by two parameters. In fact, N'M is a
two-dimensional continuous surface in a space of dimension 6.

For a smooth surface, we have introduced the function py (p, t) = p + t Ny (p),
defined on M x (0, ro). We now want to consider it as a function ¢y (p, n,t) =
p + tn defined on N’'M x (0, ry). For smooth oriented surfaces, this is equivalent
if the new definition of ¢ is restricted to the positive normal, i.e., N'M*, since the
latter is uniquely determined by m. But we have seen cases for which the normal
was just partially specified by p, and this new definition of ¢ also applies to such
situations. From now on, we assume that M = OS2 is the boundary of an bounded
open subset of R? and that (u, v) are local coordinates on A’M™*, so that we have
amap (u,v) € U — (m(u, v), n(u, v)) that locally parametrizes N'M ™ as a subset
R®, U being an open subset of R?. We will let

A={m(u,v),n(u,v)): (u,v) e U}

denote the corresponding patch in A’M ™. We will assume that this map is differen-
tiable in (u, v) (which may require the exclusion of some exceptional (negligible)
sets from the integral that will be computed below. Our goal is to compute the volume
of VI(M, A) = ¢y (A x (0,r)).

The area form on N'M T is given by g(u, v) du dv where

g(u, v)* = (|Oim|* + |01n*)(|0am|* + |0an|*) — (Oym” Dom + O1n” Dan)?.

(In this expression, we have used g(u, v) = v EF — G2, using (3.7), which still
holds for two-dimensional surfaces in higher-dimensional spaces.)

One can check (we skip the proof) that the ratio Q = | det(0ym + tOyny, Ohm +
tdhn, n)|/g(u, v) is invariant under a change of local chart on N'M ™, allowing us to
consider it as a function Q(m, n) defined over A. When M is a smooth surface, this
ratio can easily be computed, since we can assume that 9;m and 0,m correspond to
the principal directions, yielding

(A +tr)(1 + 1K)

J A+ DA+ K3)

Returning to the general case, we have, by definition of Q:

0
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Vol(VH(M, A)) = / | det(Oym + tO\n, Oom + tOhn, n)|dudv = / Qdo.
U A

Assume that » can be chosen so that Q does not vanish for ¢ € (0, r). (That
such an r exists relates to the assumption of M having positive reach.) In this case,
det(0ym + t01n, 0h,m + tOyn, n) has constant sign, and one can expand Q in powers
of ¢, yielding, for some functions Sy, S;, S»

r 3
f /Qda:r/Soda—rzfSlda—i—r—/Szda.
0 A A A 3 A

The functions S therefore provide densities for “generalized” curvature measures,
defined on NM™ (instead of on M).

Recall that we assume that M C 052 for some open set 2 C R?. We can restrict
the generalized curvature measures to M, letting for B C R3,

(M, B)=/

X(m)Sy(m,n)do.
NM+

We now consider the case in which M is a triangulated surface and discuss the
expression of this integral based on the location of the set B.

Face interiors: Let B be included in the interior of a face. Since M coincides
there with a smooth surface with zero curvature, we have po(M, B) = Area(B),
pi(M, B) = pa(M, B) = 0.

Convex edges: Now let B be included in the interior of a convex (salient) edge, e.
At p € B,normal vectors to §2 form the arc of the unit circle perpendicular to the edge
delimited by the two outward normals to the neighboring faces. Fix an orientation of
e and define [y (e) as the angle from the outward normal on the right to the one on
the left of e (the saliency assumption implies that this angle is non-negative.) Now,
on B, the normal bundle can be parametrized by p = u(e/|e|) + n(v), where n(v)
is the normal to p that makes an angle v with one of the face normals. Using the fact
that e and n are orthogonal, one finds d(u, v) = 1 and | det(9,m, tn,, n)| = t. This
implies that g = pp, = 0 and p; = Oy (e)length(B).

Concave edges: The case of B included in a concave edge requires a little more
care because £2 does not have positive reach on B. One can however split £2 into
two parts on each side of the bisecting angle between the faces at e and apply the
formula (letting £2, and £2, be the two sections)

(82, B) = (821, B) + (822, B) — i (£21 N §22, B)
= ((m = Bn)/2 + (7 — Bn(e))/2 — m)length(B)
= —(ylength(B),

where [y (e) is again the absolute value of the angle between the normal to the faces
meeting at e (taken between 0 and 7).
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Vertices: Let B = {v}, where v is a vertex of the triangulation. First note that,
when M has positive reach, the volume of V¥ (M, {v}) cannot be larger than that of
the ball centered at v with radius r and is therefore an O (r3). From formula (4.8),
this is also true when M is a triangulated surface. This implies that only the last
term (the Gauss curvature measure) can be non-zero. The computation of this term is
simplified if we also observe that the Gauss curvature measure does not change if we
replace (locally at the vertex) §2 by §£2¢ N 952, which corresponds to changing the
orientation on M. This is because the function S, is an even function of the normal.
Using this property, we get

215(2, B) = 12(82, B) + 112(2 U 2°, B) = 112(R?, B) + p2 (M, B).

Since pz(R3, B) = 0, itremains to compute p» (M, B). Let F, ..., F, represent the
faces containing v. We want to apply the inclusion-exclusion formula to

12(M, B) =u2(0 Fi, B).
i=1

For this, we need to compute the Gauss curvatures in three special cases covering
possible intersections between faces. The simplest case is p,({v}, B). In this case,
we can parametrize the normal bundle by (m (u, u’), n(u, u’)) = (v, n(u, u’)), where
(u, u') is a parametrization of the unit sphere, for which we assume that 7z, and 72, are
orthogonal with unit norm. In this case, d(u, u’) = 1 and | det(tO,n, tOn, n)| = t>.
This implies that S, = 1 and uy = 47 (u; is three times the volume of the sphere).

Now, let e be a segment having v as one of its extremities. Assume without loss
of generality that e is supported by the first coordinate axis and v = 0. We can
parametrize Ne at v with (u, ') — (v, n(u, u’)), where n(u, u’) parametrizes the
half-sphere that is normal to M at v. This provides (e, B) = 27.

The last case is a triangle F with vertex v. Let 6 be the angle at v. Here, the
normal bundle at v is the part of the unit sphere which is contained between the
two hyperplanes normal to each edge of F incident at v, for which the volume is
2(m — 0)/3, so that pp (F, B) = 2(w — 0).

Now, it remains to apply the inclusion-exclusion formula. This formula starts
with Z?:l w2 (F;, B), whichis 2¢gm — 2", 6;. Then comes the sum of the measures
associated with the intersection of two faces: this intersection is an edge for the g
pairs of adjacent faces, and just {v} for the (g) — g remaining ones. This yields the
contribution 2gm — 4(;)77. We finally need to sum all terms for intersections of three
or more sets, which is always equal to {v}. This is

eper ()=o)

where we used the fact that
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D—U“(Z) —(1-1)7=0.

k>0

Summing all the terms, we obtain px(M, B) = 47 — 2> 7, 6; so that

q
12(2.B) =21 =Y 0.

i=1

We have therefore obtained the curvature measures associated to an oriented
triangulated surface [71]. For any set B € R?, they are:

e The mean curvature measure:

(M, B) =) e.fy(elength(BNe),

ecE

where (y is the angle between the normals to the faces at e in absolute value and
€. = 1 if the edge is convex and —1 otherwise.
e The Gauss curvature measure:

(M, B)= )" (M, v),
veVNB

with
pa(M, v) =21 — ) 0u(Fi).
keF;

Using these expressions, we can make approximations of the curvature at a given
vertex by letting

ju(M, B) ~ |B|H; and y2(M, B) ~ |B|K;

for a vertex v; in the triangulation. Taking B = A;, as defined in the previous section
(see Eq.4.1), we obtain the same approximation of the Gauss curvature as the one
obtained from the discretization of the Gauss—Bonnet theorem. The formulas for the
mean curvature differ, however.

4.2.4 Discrete Gradient and Laplace—Beltrami Operators

We conclude this section on triangulated surfaces with a computation of the discrete
equivalent of the gradient and Laplacian on surfaces.

Let S be a triangulated surface, V = {v;, ..., vy} and F = {Fy, ..., Fx} denot-
ing, respectively, the sets of vertices and faces of S. To simplify the discussion, we
will assume that the surface has no boundary, i.e., each edge belongs to exactly two
faces.
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A function 1) defined on S assigns a value 1 (v;) to each vertex, and the gradient of
1) will be defined as a vector indexed over faces. To compute it, we first focus on a face,
F = Fy for some k € {1, ..., K} that we will drop from the notation until further
notice. Let (vy, va, v3) be the vertices of F' (ordered consistently with the orientation),
and let e; = v3 — v, e = v; —v3 and e3 = vy — vy. Let ¢ = (v + vy + v3)/3 be
the center of the face.

We define the gradient of ¢ on F, denoted Vg (F), as the gradient of the linear
interpolation of ¢ on F, i.e.,

Vst(F) = Vi,
where ¢ (a1v) 4 azvs + azv3) = a1 (v1) + ap(v2) + asp(vs) for ay +ax +
az; =1 and Vy is the gradient on the face F considered as a regular surface.
From a computational viewpoint, u = Vgi)(F) is such that u = aje; + aze; and

ul (v — vy) = Y — Y(vy) (k, I =1,2,3), which gives

P(3) — P(v2) = (are; + aer) ey,
Y1) — P(v3) = (arer + aer) e

Let ¢ be the column vector [¢)(v;), ¥(v2), ¥ (v3)]”, M the 2 by 3 matrix
0-1 1
M= (1 0 —1>

le1]* eles
Gr=|\r 2 -
e) e e

With this notation, the previous system is M r = G pa. We therefore have

and G r the matrix

-1
u=ler, ex]a=ler,e]Gp Mipr.
We first notice that det Gr = |e1|? |ea|> — (el €2)> = (|e1||ea| sin 63)%, where 65 is

the angle at v3. It is therefore equal to 4a(F)?, where a(F) is the area of F. Moreover,
we can write:

1 _ 1 leal? —elTez 0-1 1
GF MZ/}F - det(GF) < T |€1|2 1 O -1 ’(/}F

—e e

T T T
_ —€5 €1 —€, 6 —é,¢e3
= det(Gp)~! 2 2 2 , 4.9
(Gr) 6’1T€1 elTez elre3 Yr 4.9)

in which we have used the identity e3 = —e; — e;. Introducing the vector

hy(F) =9(vpe; + Y(va)es + P (v3)es
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and the matrix

T T T T T
Dp = eye; —ere, =eje5 —eze; = eze, — ezes,

a little computation yields

Dp
Vs(F) = 1P hy(F).

‘We now pass to the computation of the discrete Laplace—Beltrami operator, which
we define via the discrete analog of the property

/Nwwmz—/wmw@
S S

that characterizes the operator on smooth surfaces without boundary. For triangulated
surfaces, we will identify Agv) via

K N
D IVs(FPa(Fo) = =Y @) (As) ()] Ail,
k=1 i=1

where |A;| is the area attributed to vertex v; (using, for example, Voronof cells).
For a given face F, we can write (using the previous notation): |Vsy(F)|> =
o Gra = yYEMT G, M. Applying M to (4.9), we get

ler|* el es el es
MTG'M = det(Gr)™' | el e lea]* eles
elTe3 e2Te3 les|?

Let X'r denote this last matrix. We can write:

UL TRvE
~  4a(F)

1 N

7 2V Y (el i) + efel o (vj) + eireli b 0] k)) fa(Fo),

i=1 keF;

where v}, and v}, are the other two vertices of Fy, k € F; (in addition to v;, ordered
according to the orientation) and e;y, €}, and e/} are, respectively, the edges opposed
to v;, v}, and v}, in Fi. This implies that one should define

1
mwmz—ﬁﬂ}:wM%me&mww+44w%WMay

keF;
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One can rewrite this discrete Laplacian in terms of angles. Denoting as before by 6!,
and ¢, the angles at v;, and v}, one has

T
ey = — cos b lei lej| = —2ctn O a(Fy).

Similarly, e}, e/, = —2ctn 6], a(Fy) and, since the sum of the edges is 0,
lei|* = —eli (el + €]) = 2(ctn b} + ctn 0 )a(Fy).

One can therefore write

1
Agh(v;) = 204 (ctn 07, (P (v — () + ctn 0, (Y (V) — Y(v)),
WkeF

which provides a discrete definition of the Laplace—Beltrami operator on S. This
formula is sometimes called the “cotangent formula” [232].

4.3 Consistent Approximation

So far the concepts we have defined for triangulated surfaces have been directly
inspired by the corresponding notions in the theory of smooth surfaces. Here, we
provide some results evaluating how well a triangulated surface can approximate
a smooth one, and whether quantities defined on triangulated surfaces are good
estimates of the same quantities computed on the surface that is being approximated.
Because this analysis will be important for further purposes, we focus on the
approximation of integrals [ s h(p)dos(p) overaC 2 regular surface ¥ by sums

> h(cp)a(F),

FeF

where F is the set of faces of a triangulated surface S, cr is the center of mass of
face F and a(F) its area.

To handle situations in which X is a surface with boundary, we also assume that
another C? regular surface, X', is given, extending ¥ so that X U9X C X'.If ¥ is
a closed surface, we can take X’ = X. Weletp : X’ x (—p, p) — R3 be the normal
map, so that p(p,t) = p +tNx/(p), and we assume that p is small enough that ¢
is a diffeomorphism onto its image, denoted by U. For g € U, we let £(q) be the
closest point to ¢ in X, i.e., the unique p such that ¢ (p, t) = g for some t € p. We
note that

Elp(p, ) =p
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forall p, t,sothatd{ o v O, = Id, with 0, = Id + td Ny . Fixing p and letting u,
u, denote principal directions at p, with principal curvatures x; and k;, we therefore
have, for g = p(p, t)

u; .
d ;= Li=1,2.
§(@Qu Trim i

Similarly, d€ o ¢ 0, = 0, so that dé(g)Nx(p) = 0. We assume in the following
that p is chosen small enough that 1 + #k; is bounded away from zero for |t| < p
andi =1, 2.

Let S be a triangulated surface, with the usual notation V, F, £ for the sets of
vertices, faces and edges in S. We will assume that S C U. For such a surface, we
define the following constants:

1(S, X') = sup,c5 [§(q) — pl, the distance from S to X"
£2(8, £') = 1 — minper minger Ns(F)" N5 (£(q)).

0(S) = max(y, yyes |v1 — v2|, the maximum edge size in S.
e3(S, X) =dy(&(S), X), where dy is the Hausdorff distance

dy(A, A') = max (sup dist(x, A”), sup dist(x, A)) )

XeA xeA’

We will also let (S, X’) = max(ey, 3, €3, 6), and we will say that a sequence of
triangulations S converge to X if ¢(S™, X) — 0.
With this notation, we have the following theorem.

Theorem 4.3 Let h be a continuous function on a compact neighborhood of U.
Then
/ h(p)dox(p) = Z h(cp)a(f) +1S10(e). (4.10)
b5

feF

Proof Consider F € F. Let vy, v, vz denote the vertices of f and ¢ = (v; + vy +
v3)/3. Lete;; = v; — v;. We first compute ff(f) h(p)dos (p), for which we can use
the local chart ¢ : (x, y) — &£(v; 4+ xepz + yer3), for x, y > 0, x + y < 1. Then,
letting 7 denote the triangle {(x, y) : x,y > 0,x +y < 1},

/ h(p) dos: (p) = / B e, ) [0sth x Dy0] dx dy.
E(F) T

Note that, using the same notation as above for principal directions and curvatures
on X' at p = Y(x, y),

T T

eiLuUq el
Op =dEorpen = —2 1 )
* 14tk 1+try

eIT3M] e]T3u2

5y1/) = d501/1613

ui Uz
1+ try 1+1tky
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so that

€1T2u1 6{31/!2 —_ eszuz elT3u1

(1 + tr1(p))(1 + tr2(p))

_ (enxen) Ng(p)

(L4 tr1(p) (L + tha(p))
NENg(p)

1 +2tH(p) + 12K (p)

O x ay"/) = Nx/(p)

Nx (p)

= 2a(F)

Ns/(p),

where H and K denote the mean and Gauss curvatures. We therefore have

NT Ny (h(x, ) h(h(x, y))
h(p)dos (p) = 2a(F f dx dy,
/gm (p)doz(p) = 2a( )/:r1+2rH(¢(x,y))+r2K(w<x,y)> T

from which one immediately deduces that

‘f h(p)do x(p) — a(F)h(c)
&(F)

- ’/ h(p)dos: (p) - 2a(F>f h(e) dx dy'
E(F) T

T
< a(Fymax |h(c) — N N3 (&(p) h(&(p)) .
peF 1+ 2tH(E(p)) + 12K (E(p))
Introduce the modulus of continuity of &
wp(m) = max  [h(x) —h(y)|.
x,yeU,lx—y|<n
One has,
‘ he) — — NENs €@) hEp)
1+2tHE(p) + 12K EP) |~
2H(p) +tK(p)
hlloo hlloo ,
wi (8 4+ €1) + [hlloce2 + lhllocer B T 2 H) T 2K ()
so that

M(F) h(p)dos (p) —a(F)h(c)| = a(F) O(e).

Summing over all faces, we obtain the fact that

| oz = 3 hepatr) + 15106,
&(S)

FeF

It now suffices to write
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/ h(p)dos:(p) = / h(p)dos(p) + O(3)
£(0S) X

to conclude the proof of (4.10). (Il

Note also that we can replace €; by €5 = 1 — minger Ng(F)T N5 (&(cr)) (or any
other point in F), because ||d¢|| being bounded implies N5/ (£(q)) — Nx(cp)| =
0(9) forq € F.

Almost the same proof can be applied to sums involving normal vectors, yielding,
for example

/ h(p)"' Nx(p)dos(p) = ) h(cp)" Nra(F) + |S|o(e) (4.11)
z FeF

for continuous vector-valued functions /.
Note also that, if & : R? — R is a C! function, one has

max [Vsh(§(cr)) — Vsh(F)| = o(e).

Indeed, we ha\ie defined Vsh(F) = Vg (I; r), where h F is a linear interpolation of &
on F,but Vi (hr) = Vrh(cp) + o(J) because h is C'. Moreover, letting Vi denote
the R? gradient of &, we have

Vrh(cr) = Vh(cr) — (NEVh(cr))NF

and

Vsh(E(cr)) = VR(E(CF)) — (Ns(Eer) VRE(er) N (E(er))

and these two quantities differ as O(g).

One can consider other approximations of geometric quantities and their conver-
gence when triangulated surfaces approximate smooth ones with increasing accu-
racy. See, for example, [ 146, 211], in which an equivalence is shown between correct
approximation of normals, or metric tensors, of area and of the Laplace—Beltrami
operator.

4.4 Isocontours and Isosurfaces

To conclude this chapter, we discuss methods that compute shapes (curves or sur-
faces) from discrete image data. We will discuss approaches based on energy min-
imization in Chap.5. Here, we focus on what is probably the simplest approach,
which is to define curves of surfaces implicitly based on interpolation of the image
values.
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Assuming that the image f is defined on a discrete grid, we will interpolate it as
a function f : D C R?Y — R and define a shape as the level set

Sy={m: f(m) = A}

for a properly chosen threshold, A. As we know, if the gradient of f does not vanish
on S, this provides a smooth curve or surface (or a union of such).

The concrete implementation of such an approach presents a few challenges,
however. We will start with a discussion of the simpler two-dimensional case, which
will help in addressing the computation of isosurfaces, which is more intricate.

4.4.1 Computing Isocontours

We consider here a two-dimensional grid, G, which is formed by points p(s, ) =
(x5, yr), where (x;,s =1,..., M) is a discretization of the horizontal axis and
(yr,t = 1,..., N) adiscretization of the vertical axis. We assume that a discretiza-
tion of a smooth function f is observed, via the collection

(fa= f(pGs,t),s=1,...,.M,t=1,...,N).

The problem is to compute the isocontour (f = A) for a given J, in the form of a
polygon or a union of polygons. Without loss of generality, we can and will assume
A = 0 in the following discussion.

Since the exact function f is not observed, some interpolation must be done, and
we will use bilinear interpolation for this. This means that the true (unobserved) f
will be replaced by the interpolation (that we still denote by f, with some abuse
of notation) which is defined as follows. Let C(s, #) denote the cell (square) with
vertices p(s +e1,t 4+ €3),¢; € {0,1},i = 1,2. Then, for p = x,y € C(s, 1), let

1 2
foy=Y_ [TErm +a =) =rip) fire iten (4.12)

51,52:0 i=1

with ri(p) = x — x5, 2(p) =y — .

Obviously, the set { f = 0} is the union of its intersections with each cell in the
grid, so that we can restrict to these intersections. Within a cell, f is given by (4.12),
and the set { f = 0} is either empty, or a line segment, or one or two branches of
a hyperbola. This is because, introducing the coordinates & = (x — x;)/ (X541 — Xy)
and n = (y — y5)/(¥s+1 — ¥s), we can rewrite f(p) in the cell as (up to a positive
multiplicative constant):
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fp) =0 =0 =m + fr- &0 =m + f (1 = O+ fr48n
for = [ fro = fo\ fesf— = foifoe
= p((e+ )+ ) - )

ifp:=fi4 — fr-— fo4 + f-— #0and
fp)=f4- = f-)E+ (fep = f-on + f—-

if p = 0. In this formula, fy, f4_, f—4 and f__ are the values of f at the vertices
of the cell.

We will approximate the intersection by line segments intersecting the edges of
the cell. There can be 0, 1 or 2 such line segments, and we now discuss when these
situations occur. An important observation is that, because the bilinear interpolation
is linear when restricted to the edges of the cell, there is at most one intersection
of the set { f = 0} with each edge, and this is only possible when f takes different
signs at each of the edge end-points. When this occurs, the points on the edges at
which f = 0 can be easily computed by solving a linear equation. They will form
the vertices of the polygonal line. The following, the proof of which we skip, can be
justified directly from the quadratic expression of f in the cell.

(a) Ifall f14, fy—, f—+ and f__ have the same sign: there is no intersection with
the edges, and therefore no intersection with the cell.

(b) If three of the values have the same sign, the last one having the opposite sign,
there are two vertices in the cell, and one edge connecting them.

(c) If two values have the same sign on one edge and two have the opposite sign on
the opposite edge, here also, there are two vertices and one edge.

(d) If the function changes sign on all the edges, there are four vertices and two
edges. There are two subcases, letting 6 = f1 f-— — f_ fi—.

(i) If 6 > 0, then one edge links the vertex on {£ = 0} to the one on {n = 1},
and the other the vertex on {n = 0} to the one on {¢ = 1}.

(i) If § < 0, then one edge links the vertex on {£ = 0} to the one on {n = 0},
and the other the vertex on {1 = 1} to the one on {¢ = 1}.

Cases (a), (b) and (c) can be decided based on the signs of f only. Case (d) is
called ambiguous because it requires the exact numerical values of f. There are a
few additional exceptional cases that are left aside in this discussion. When f = 0 at
one of the vertices of the cell, this vertex is also in the polygonal line. It connects to
other vertices at opposite edges of the cell, unless one of the cell edges that contain
it is included in the polygon. There is no ambiguous situation in that case.

Case (d) with § = 0 is more of a problem, because it corresponds to a situation
in which the interpolated surface is the intersection of two lines and therefore has
a singular point. One cannot lift this ambiguity, and one of the options (i) and (ii)
should be selected. The selection cannot be completely arbitrary because this could
create holes in the reconstructed polygons. One possible rule is to take one option
(say (i)) when p > 0 and the other one when p < 0. The combination of case (d) and
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6 = p = 0 implies that f = 0 at all vertices of the cell which therefore should be
in the final polygon, but there is an unsolvable ambiguity as to how they should be
connected.

There is another way to handle case (d), disregarding J, based, as we just discussed,
on the sign of p, yielding

(d) In case (d) above, take solution (i) if p > 0 and (ii) otherwise.

The resulting algorithm is simpler, because, in case (d), the sign of p can be com-
puted directly based on the signs of f on the vertices of the cell. It does not correspond
to the bilinear approximation anymore, but this approximation was somewhat arbi-
trary anyway. It does break the symmetry of the solution, in the sense that, if f is
replaced by — f, the isocontours computed using (d)’ will differ. This is illustrated
in Fig.4.2

In addition to allowing for the segmentation of specific shapes from images, when
the interior of the shape is, say, darker than its exterior, isocontours have been used
as basic components of image processing algorithms that are contrast-invariant in
the sense of mathematical morphology. A good introduction to this and to the related
literature can be found in [53, 54].

Finally, let us note that isocontours can be easily oriented in accordance with our
convention for implicit contours, by simply ensuring that grid points with negative
values of f lie on the left of each oriented edge.

4.4.2 Computing Isosurfaces

We now pass to the case of level sets for functions defined over three dimensions,
and describe the construction of triangulated isosurfaces. Although the problem is in
principle similar to the two-dimensional case, the solution is notably more complex,
mainly because of the large number of ambiguous situations in the determination of
the boundary. There is indeed a large literature on the subject, and the reader can
refer (for example) to [39] for a recent bibliography.

The three-dimensional generalization of the algorithm that we have presented for
isocontouring is called marching cubes [178], and progressively builds a triangulation
by exploring every grid cell on which the function changes sign. We will use a nota-
tion similar to the previous section, and let G be a regular three-dimensional grid, with
grid coordinates p(s,t,u) = (x5, y1,2,) Where s=1,..., M,t=1,...,N,u =
I,..., P. Denote by f, = f(p(s,t,u)) the observed values of f on the grid.
Like in two dimensions, we assume that f extends to the continuum with a tri-
linear interpolation as follows: Let C(s, ¢, u) denote the cube (cell) with vertices
pls+et+e,qg+e3)e €{0,1},i =1,2,3.Then,forp =x,y,z € C(s, t, u),
let

1 3
Fo =" TlErp) + 0 =) = rip)) frsepsrergre

8],82,53:0 i=1

withri(p) =x —x;,r2(p) =y — Y1, 13(P) = 2 — 2.
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Fig. 4.2 Isocontouring a checkerboard strip using exact bilinear rule (d) (first row) and sign-based
rule (d)’ (second row). Note that the solutions are different, although both are plausible isocontours
for the image. Gray levels are switched in the last two rows, without changing the solution for
rule (d) (third row) and significantly altering it for rule (d)’ (fourth row), yielding a third plausible
solution

The determination of the vertices of the triangulation is similar to the two-
dimensional case: the intersections of the level set f = 0 and the edges of the cubes
C(s, t,u) can be computed by solving a simple linear equation; on a given edge,
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Fig. 4.3 Two-component (non-ambiguous) cases for the marching cubes algorithm

such an intersection exists only if f takes different signs at the end-points, and there
can be at most one intersection. The difficulty is how to group these vertices into
faces that provide a topologically consistent triangulation.

The main contribution of the marching cubes algorithm is to provide a method in
which each cube is considered independently, yielding a reasonably simple imple-
mentation. The method works by inspection of the signs of f at the eight vertices of
the cube. Like in two dimensions, there are some easy cases. The simplest is when
all signs are the same, in which case the triangulation has no node on the cube. Other
simple configurations are when the cube vertices of positive sign do not separate the
other vertices in two or more regions and vice-versa. In this case, the triangulation
has to separate the cube into two parts. There are, up to sign and space symmetry
and up to rotation, six such cases, which are provided in Fig.4.3.

Such triangulations can be efficiently described by labeling the vertices and the
edges of the cube, as described in Fig.4.4. We can describe a sign configuration on
the cube by listing the vertices which have a positive sign. We can also describe each
triangulation by listing, for each triangle, the three edges it intersects. Figure 4.3
therefore describes the six triangulations
{1} : [(1,4,9)]

{1,2}:1(2,4,9), (2,4,10)]
{2,5,6}:1(1,2,9),(2,8,9), (2,8,6)]
{1,2,5,6}:[(2,6,4), (4,6, 8)]
{2,3,4,7}:[(1,10,6), (1,6,7),(1,7,4), (4,7, 12)]
{1,5,6,7}:[(1,10,11), (1,11, 8), (8, 11,7), (4, 1, 8)]
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Fig. 4.4 Labels for the vertices (left) and edges (right) of the cube

« "

Fig. 4.5 Two triangulations associated to the {3, 8} sign configuration [(2, 3, 11), (1, 4, 9)] and
[4,9,3),3,9,11),(9, 11, 2), (1, 2,9)]

The cases when the signs form more than two connected components on the cube
are problematic. They are ambiguous, because the way the surface crosses the cube
cannot be decided from the sign pattern alone. One needs to rely on more information
(i.e., the actual values of f atthe nodes) to decide how to triangulate the surface within
the cube, in order to avoid creating topological inconsistencies.

Take, for example, the case in which the cube vertices labeled (1) and (3) have
signs distinct from the rest. Then, there are two possible ways (described in Fig.4.5)
in which the surface can cross the cube.

Another kind of ambiguous configuration is when two vertices in two opposite
corners are isolated from the rest. Consider, for example, the situation when vertices
1 and 7 are positive while the rest are negative. Then the surface can do two things:
either cut out the corners of the cube, or create a tunnel within the cube (see Fig. 4.6).

There have been successive attempts to improve the marching cubes algorithm
from its original version ([178], in which the discussion was incomplete) [64, 209,
215, 218, 291] and untying the ambiguous cases. In addition to the two cases
described in Figs. 4.5 and 4.6, five other ambiguous sign configurations can be listed,
arising from combinations of these two basic cases. A complete description of all
possible cases has been provided in [64], together with disambiguation rules. An
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Fig. 4.6 Two triangulations associated to the {1, 7} sign configuration [(1, 4, 9), (7, 6, 11)] and
[(1,4,11),(1,11,6),(1,9,6),(9,6,7), (9,4, 7), (4,11, 7)]

extensive theoretical and numerical analysis of the algorithm has been provided in
[217] to which the reader is referred for complementary information, with the listing
of all possible topologies within the cube.

If one drops the requirement to provide an accurate triangulation of zero-crossings
of the linear interpolation of f within each cube, a reasonably simple option is
available [209]. This approach has the disadvantage of breaking the sign-change
invariance (which ensures that the computed triangulation should not change if f is

Fig.4.7 Twenty-three configurations for consistent within-cube triangulation based on vertex signs.
Dotted vertices correspond to positive values of the function
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replaced by — f), but provides a very simple algorithm, still based on the signs of
f on the vertices (it can be seen as a generalization of (d)’ in our discussion of the
two-dimensional case). This results in 23 different cases (up to rotation invariance),
listed in Fig.4.7. This had to be compared to the 15 cases initially proposed in [178],
which was invariant under sign change, but created topological errors.

An alternative to the marching cubes algorithm replaces cubic cells by tetra-
hedrons before computing the triangulation, which, when properly handled [57],
provides a simpler and more stable procedure.

Extracting surfaces as level sets of functions is important even when the original
data is not a three-dimensional image from which the region of interest is an isosur-
face. For example, when the original data is a set of unstructured points that roughly
belong to the surface (i.e., they are subject to small errors) some of the commonly
used algorithms that reconstruct the surface first reduce to the isosurface problem,
trying to infer the signed distance function to the surface, at least in a neighborhood
of the observed points. The approach used in [154] is to first approximate the tangent
plane to the surface and then build the signed distance function. A similar goal is
pursued in [11], using an approach based on computational topology.

Marching cubes (or tetrahedrons) have the drawback of providing a very large
number of triangles, sometimes with very acute angles. Simplifying meshes is also
the subject of a large literature, but this will not be addressed here (see, for example
[100]).



Chapter 5 ®)
Evolving Curves and Surfaces i

In this chapter, we discuss how curve or surface evolution can be formulated using
partial differential equations, and discuss some applications in curve smoothing and
image segmentation.

5.1 Curve Evolution

We consider, in this section, curves that depend on time, which will be denoted by
t, the curve parameter being denoted by u (or s for arc length). A time-dependent
curve is a function of two variables

m: [0, 1] x [0, A] — R?
(t,u) — m(t, u).

We therefore assume that the domain over which the curve is parametrized (the
interval [0, A]) is fixed. The curve at time ¢t will be denoted m; : u — m(t, u). Its
length will be denoted L,, and the arc length s; : [0, 1] — [0, L,]. The curvature at
a point p will be x,(p); T;(p) and N, (p) will be the unit tangent and normals at p.
Differentiation with respect to time will be denoted 0,. Differentiation with respect
to curve (or, later in this chapter, surface) parameters will use the same convention as
in the previous chapters, using dots or d without subscript for univariate functions,
and 01, 9>, . .. for multivariate functions.

We consider curves evolving according to differential equations of the kind:

Omy(u) = A(t, u)T; (m,(w)) + B(t, u) Ny (m; (u)). (5.1

In this equation, A(z, u) and B(¢, u) depend on the curve at time ¢ and are scalar
functions that depend on the parameter #. Most of the time, they will involve local
properties of the curve at u (such as the curvature).
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The decomposition of the evolution into tangent and normal terms is useful,
because each of them is associated to different properties of the evolution. The
normal term is directly related to the geometric evolution of the curve, as implied by
the following lemma:

Lemma 5.1 ([101]) Assume that m is twice continuously differentiable in space,
continuously differentiable in time, regular at all times t € [0, A] and satisfies the
equation

Om = AT + BN.

Then, there exists a time-dependent change of parameter on m, denoted 1), such that
Yo(u) = u and m,(u) := m, (Y, (u)) is a solution of

i = BN
with B(t,u) = B(t, 1, (u)).

Proof Letu +— 1,(u) be as in the lemma. The evolution of m, (1) = m, (1, (n)) is

Oy (u) = Oym, (Y, (u)) + 0,90 (u) O(m, (Y, (u)))
= (A, Y () + O, () [, (P )NT + B(2, 1y (u))N.

We therefore need to show that there exists a ¢ such that

A, 7/11) + aﬂ/’t |mt(¢z)| =0.

This results from the general theory of ordinary differential equations (cf. Appendix C).
For fixed u, let £(¢) = ¥, (u). This function must satisfy £(0) = u and the equation

€ =—A@, ©/Imi (O]

Existence and uniqueness of the solution is ensured by the fact that A and iz are C'.
For 1, this is true because m is assumed to be C? in space, and for A, it suffices
to observe that A(t,-) = &mrTT, and therefore is C' with respect to its second
variable. O

This lemma implies that the evolution of the curve is essentially captured by the
function B, where A only induces changes of parameter.

Very often, the curve variation at time ¢ only depends on the curve at the same
time, so that there exist transformations m +— (o, B) With a,,,, G, : [0, A] — R
such that

A(t, u) = auy, (u) and B(t, u) = By, ().

(a and 3 could also be made to depend on time.)
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As usual, we say that these functions are reparametrization-invariant if

ﬁmm/; =Buov

for any change of parameter v (and similarly for «, although this is of less interest).
In view of Lemma 5.1, we see that if 3,, is reparametrization-invariant, the evolution

om = a, T + B, N
can be transformed, after a change of parameter, to
8{”‘71 = ﬂ,ﬁN.

We now discuss the evolution of contours and domain integrals associated to
curves evolving according to (5.1). The results are summarized in the following
theorem.

Theorem 5.2 LetV : R? — R beacontinuously differentiable function, and assume
thatm : (t.u) — m(t, u) satisfies (5.1), has continuous partial derivatives O,m,, and
is such that u — m, W) is a C? regular curve for all t € [0, ty]. Define

A
F(t):f Vdo,, =/ V(m, (u))|m;(u)|du.
m; 0

Then
OF =[V(im)@m)TI§ + | (VVIN, — k)NIOmda,, (5.2)

m

(the first term vanishing if the curve is closed). Here k, is the curvature of m,.
Assuming that m; is simple (and closed) for t € [0, ty], and letting $2, denote its
interior, define

G(t) = / V(x)dx.
2

Then
9,G = _/ VNI (Om)do,,. (5.3)

Finally, let W : R? > R2pea C! vector field, and

Ht) = | WI'Ndo,,,

m
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where m; can be open or closed. Then

O H = —[det(W (m,), dym,)]2, + / div(W)N,T (Om)do,,.  (5.4)

N

Proof First consider the line integral, F. We have 0, |, |*> = 20,m!'m, and, since
this is also equal to 2 |n,| 9, (|m,|), we can write

A A
8,F=/ VV(m,)Ta,m,|n'1,|du+/ V(my) i Tdu
0 0

A
= / VYV (m)" 0im,|m,\du + [V (m,) m,” T,1§
0
A
— | (V) v (T, 0my) + V(my) Oim,” T,)du
0

1
= [V<m)6fm,TT,]§+/ (VV(m) — (VV(m)" T)T)" 0,m, || du
0

1
- / KV my) @m N, vy d
0

=[0m" T18 + | (VV(m)"N,)N; — r,N)T Om,do,, .

my

This proves (5.2). We now prove (5.3) and (5.4), first observing that the former is
a consequence of the latter. Indeed, introduce ¢ such that V = divyp, taking, for
example,

X1 X2
2¢0(x1, x2) = (f V(x], x2)dx}, f V(x, xé)dxé) .

Then, from the divergence theorem

G(t) = — / ' N,do,,

t

so that (5.3) is deduced from (5.4) and the fact that m, is assumed to be closed.
For (5.4), we can write

A
H@) = —/ det(W(m;), m;)du
0
so that

A A
OH = —/ det(dW (m,)0,m;, m,)du —/ det(W(m;), O;m;)du
0 0
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A
_ / det(dW (m,)0ymy. rivy)du — [det(W (m,), dym, )T
0
A
—i—/ det(dW (m;)m,, Oym;)du
0

and the conclusion comes from the identity, true for any 2 by 2 matrix A and vectors
€r, €2,
det(Aey, e2) + det(ey, Aey) = trace(A) det(ey, )

appliedto A = dW(m,), e; = O;m, and e, = O, m;. O
Remarks

The reader who has looked ahead at Appendix B may recognize the last statement
(the derivative of H) as a special case of Corollary B.30 (in the embedded case, but
the immersed case can also be deduced from Theorem B.29). It is interesting to note
also that not only (5.3) but also (5.2) are consequences of (5.4) (see the proof of
Theorem 5.4).

We also notice that one only needs V to be continuous for (5.3) to hold.

5.1.1 Grassfires

As a first example of (5.1), let us consider the simplest case for which A = 0 and
B = 1. This corresponds to
Om; = Ny, (5.5)

which (taking as usual the inward normal) means that m shrinks towards its interior
at unit speed. Such evolutions are often called grassfires because the evolving curve
would look like the boundary of a lawn around which a fire is set at time 0, with the
fire propagating inward. They are closely related to medial axes (defined in Chap. 2),
because the skeleton is the location at which two separate grassfire fronts meet.

It is quite easy to study (5.5) and prove that solutions exist in small time when
starting with a smooth curve, but that singularities are developed in finite time.

First, let us assume that a solution is known, in the form m(z, u) for ¢ € [0, ty],
m(0, -) being a simple closed curve, and m(z, -) being regular and C? for all 7 in this
interval. We first prove that the normals remain unchanged: N;(u) = Ny(u) for all
u € [0, A]. Indeed, because |N,| = 1 at all times, we have 0, NtT N; = 0. Moreover

AOm) = N, = — |riv,| K, T, = — ki1,

This implies
0 == 8,(mtTN,) == 3,mtTN, + n"lzath == n.’llTatNt .
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Therefore, 0, N, = 0, since it is perpendicular to both normal and tangent; so the
normal is constant over time. Given this, the integration of the evolution equation is
straightforward and yields

m;(u) = mo(u) + t No(u) (5.6)

and it is easy to show that this provides a solution of (5.5).

In this computation, we have used the assumption that m is smooth (in u) for
all ¢ € [0, ty]. We now check that this fails to be true in finite time, whatever the
initial curve is. Indeed, as long as the computation is valid, we have, computing the
derivative of (5.6) (assuming that the curve is initially parametrized by arc length)

my(u) = (1 — 1Ko () To(u).

In particular, if ko(u) > 0, then, for t = 1/ko(u), we have m, = 0, and the curve is
not regular anymore (the previous discussion becomes invalid at this point). Note that
there must exist points of positive curvature on the curve, since, for simple positively
oriented curves, the integral of the curvature (the rotation index) is 2. The curvature
for small ¢ can be computed using

T, (u) = ity 15, (u) Ny ().
But, since N, is constant in time, so is 7;, which implies
T, (u) = To(u) = ko(u) No(u).

Therefore
ko (u)
k(u) = ————.
1 —tro(u)
This implies that the curvature tends to infinity at the point u( of highest curvature
in the initial curve, when ¢ tends to tp = 1/ko(up).

Even after ty, we can still define a curve m using (5.6). A very detailed description
of what happens immediately after #; in the neighborhood of u#( can be made: this is
part of the theory of singularities, and it can be shown that the curve crosses itself,
the singularity at u( forking into two new singularities, providing a shape called a
“swallow tail” (see Fig. 5.1). There are other types of singularity which can be created
over time; for example, non-contiguous arcs of the original curve may meet and the
region split into two parts (see the second example in Fig.5.1), creating two new
singularities that will evolve.

Returning to the grassfire analogy, however, it makes sense (physically) to require
that grass which is already burned does not burn again. So, in the grassfire model,
the swallow tail part, and other curve portions after self-intersection should not
be included in the evolving curve (Fig.5.1). An important observation is that both
evolutions can be seen as solutions of the original equation (5.5). Its solutions are
therefore not uniquely defined once singularities appear.
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S

Fig. 5.1 Curve evolution with the grassfire equation. Left: evolution according to (5.6). Right:
same evolution after removing the burned-out parts

The location of the points of self-intersection (the first one being at u) is inter-
esting since these points belong to the medial axis. (Note that there will be several
such points at larger times, each one starting at a local maximum of the curvature.)
Tracking them over time provides a feasible algorithm for computing the skeleton
[262-264, 274].

5.1.2 Curvature Motion

We now take,in (5.1), A = Oand B = &, the curvature of m,. This gives the equation:
Om; () = k()N (u). (3.7

Note that, because , and N, change signs together when the orientation is changed,
this evolution does not depend on the curve’s orientation (the previous one did). The
following theorem provides a detailed description of how a curve evolves under this
equation.
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Theorem 5.3 ([118, 133]) Assume that u — my(u) is a regular, C?, closed and
simple curve in R%. Then the previous equation has a solution over an interval
[0, to]. The curve remains simple during the evolution. It first becomes convex, then
shrinks to a point while its shape becomes circular.

We will not prove this theorem (the proof is very involved). The interested reader
can refer to [66] for a proof and more results on related evolutions. The following
simple observations can help, however, in understanding why such a result holds.

The first of these observations is that (5.7) can be interpreted as gradient descent
for the functionm +— L(m) = length(m). Indeed, applying Theorem 5.2 with V =1
yields (for any evolving curve € — pu(e, -) with p(0, ) = m)

D.L(u(e, ) = — f

e T a7 p&
KM O-p" N* doye.
ue

Taking this at ¢ = 0, we see that (—«N) is the gradient of the length functional for
the metric (cf. Appendix D)

(n.h) =/hTﬁdam.

This implies that the length decreases over time (curvature motion is also called
the curve-shortening flow) and we have in fact (if m satisfies (5.7))

1
oL, = —/ th|mr|du = —f m?domf.
0 m;

The variation of the enclosed area is also interesting to compute. Letting A, denote
the enclosed area of m,, we can again apply Theorem 5.2 with V = 1 to obtain

0A; = —/ (NY(k:Ny) doy, = —/ ki doy, = 2.

The area of the curve therefore decreases at constant speed, 2. This also shows that
the curve disappears in finite time (initial area divided by 27).

The last interesting quantity is the isoperimetric ratio, which is given by r, =
A,/L?. The isoperimetric inequality (1.19) states that this ratio is always smaller
than 1/(47), and equal to this value if only if the curve is a circle. We have

1
oy = F (L0, A —2A,0,L;)

t
24, L, / 5
(- d )
L,3 ( 7rAt + . K dopy,

Such a quantity has been analyzed in [117], in which it is shown that



5.1 Curve Evolution 139

< / ﬁzdom
m

as soon as the curve m is convex. When this is true, this implies that the isoperimetric
ratio increases during the evolution. Since the ratio is at a maximum for circles,
this explains why the curve becomes circular (this does not explain why the curve
becomes convex, which is the most difficult part of Theorem 5.3).

This flow can be used as a tool for smoothing curves, since it asymptotically
provides a circle. However, this smoothing is combined with an asymptotic reduction
to a dot which is a somewhat unwanted behavior. One way to deal with this is to
simply let the curve evolve over a time ¢ and rescale it to its original area. The
evolution can also be compensated in real time so that the area remains constant: it
suffices to use the equation

™

|~

8[”11 = (K/I - 27T/Lt)Nt. (5.8)

For such curves, the previous computations show that the area satisfies
1
0 A; = —/ (k; —2m/L;) |my;| du =0
0
and for the length

1
oL, = — f (s — 20/ L) iy da
0

1
- / (ks — 270/L)? iy | .
0

So the length of the evolving curve decreases, unless « is constant (equal to 27/L,),
in which case the considered curve is a circle. For the isoperimetric ratio, we have
1
Oy = F(LtazAz —2A,0,L))
t

2A, 2
= — (ke =2mw/L;)"doy,.
Li m;

This therefore also increases unless the curve is a circle.

5.1.3 Implicit Representation of the Curvature Motion

Equation (5.7) may look simple when expressed in terms of geometric quantities,
but it is a rather complicated partial differential equation when seen in a fixed
parametrization, since it can be rewritten as
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n; mtTm, .
T, T T M
m|? |h]*

8l‘mt = |
t

(5.9)

The direct numerical implementation (by finite differences) of this equation is some-
what unstable (it clearly involves divisions by very small numbers). One obtains a
much more stable algorithm if an implicit parametrization is used [227, 255, 256].
For this purpose, assume that the initial curve is the zero level set of a smooth
function f°, so that
Ruy = {p € R?, fO(p) = 0}.

The principle of an implicit implementation is to make f° evolve over time so that
its zero level set evolves according to (5.7).

Introduce a time-dependent function (¢, p) — f;(p), with fo = f°. In order
for the zero level set of f; to coincide with the curve m, defined above, we need
fi(m;(u)) = O forall # and all u € [0, 1], which implies, after differentiation:

atft + Vﬁ(m,)Ta,m, =0.

Using V f;(m;) = —|V f;(m;)|N;, O;m; = K, N, and formula (1.26) for the curvature,
this yields the equation
Vi

O fi = IV fil div—"-. 5.10
fi =1V fi A (5.10)

This equation (which is an anisotropic diffusion) is very stable and easy to implement
(see the next section). Figure 5.2 provides some examples of evolving curves. This

S %

i

Fig. 5.2 Curves evolving according to the curve-shortening flow. First row: three examples of
superimposed evolving shapes. Second row: details of the evolution of the third shape (spiral) in
the first row
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equation has also proved itself important in image processing as a way to smooth
images while preserving edges (see [9, 10, 103]).

5.1.4 More on the Implementation

We now describe a numerical implementation of Eq.(5.10). It is the simplest one,
although not the most efficient (see [255]).

Initializing the Process

The function f° must be initialized so that its zero level set coincides with the initial
curve m(0, -). A simple choice is to take the signed distance function f°(m) =
ed(m,m(0, -)) with € = 1 outside m(0, -) and € = —1 inside m(0, -). The distance
function can be computed efficiently using the algorithm described in Sect.F.4 of
Appendix F (Fig.5.3).

The determination of the points belonging to the interior of the initial curve can
be done using standard algorithms in computational geometry [233]. The following
algorithm is applicable when the curve is discretized finely enough so that no hole
exists in its outline and it does not meet the boundary of the image. Pixels belonging
to the curve are assumed to be labeled with 0. Let the initial number of labels be
Nlab = 1.

e Label the first column and the first row of the image as 1.

e First scan: Scan each row, labeling each pixel like its predecessor in the row, unless
this predecessor is a zero. In this case, look at the predecessor in the column: if it
has a non-zero label, use this label, otherwise, create a new label, (Nlab + 1), to
label the pixel, and add 1 to Nlab.

Fig. 5.3 Signed distance map. Left: original curve. Right: associated signed distance map
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e Second scan: The previous scan results in over-segmented regions. The last step
consists in merging labels by running a backward scan (starting from the last pixel
of the last row). Two labels are merged when they are attributed to two neighbor
pixels (not separated by a zero).

Finite-Difference Scheme

We now describe how (5.10) can be discretized. Let 7 be the time step. The time-
discretized evolution algorithm is

(n+1) (n) (n) v “
= W4 5\ VP div | —— ] .
g oo (B
0t is the “time” discretization step.
One needs to compute finite-difference approximations of the derivatives, involv-
ing a “space” discretization step dx. We first compute an alternative expression for

div (%) Starting from

(o) o)
01 )+ (02 f)? 01 )2+ (0:f)?

we get
orf OV RS+ OO f DD f
O1f)> + (D2f)? (O1f)? + (02 )
s f () B+ f D10 f

T o (@)t @nH”
_ T f(D2f)* =201 f Do f 0102 f + 05 (01 f)?
(@ /) + @) ‘

To discretize the derivatives, one can use symmetric approximations:

Nf, =G+ )—fG—1,))/2
Kfl. ) =G j+D = fGj—1)/2
OFfG, )= (fG+1,))=2fG )+ fi—1,))
O3 fG, J)=(fG, j+1)=2fG )+ fG.j—1)
Nf, )=G+1Lj+D—fG—-1j+1D
—f+1Lj=-D+fG—-1j-1)/4
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5.2 Surface Evolution

Describing surfaces that evolve over time via a differential equation is not as simple
as with curves, because surfaces are, to start with, harder to describe than curves. We
can however describe the evolution of parametrized surfaces as we did with curves,
writing

Ormy(u,v) = 6(t,u, v) + B(t, u, v)N,(u, v) (5.11)

where 0(t, u, v) is tangent to m, at m,(u, v) (i.e. in the plane generated by 0;m, and
0,m; and B is a scalar function).

A slight generalization of this scheme is when another regular, oriented surface,
say X, is chosen to parametrize the evolving surfaces. We will assume that, for each
time ¢, there exists a function g — ,(q), defined over X' such that the evolving
surface is S; = p;(X) and, for all ¢ € So, du,;(g) has rank 2 as a map from 7, X' to
R3 (e, [ 1S an immersion).

The set S; might not be a regular surface (it can have multiple points, for example)
so that the tangent planes and normal to S; at ji,(¢) may not be defined. However, for
any g € X, one can find a parametrized region in X' around g (with parametrization
(u, v) = m(u, v)) which maps into a regular parametrized patch in S, that has a well-
defined tangent plane and normal, that will be respectively denoted L, , and N;(q).
We can therefore generalize (5.11) by considering surface evolutions of the kind

O (q) = 0(1, q) + B(t, 9)N:(q) (5.12)

with 0(t,q) € L, 4.
If m° : (u, v) = m®(u, v) is a local chart at ¢, we get a local parametrization

my(u, v) = p(t, m°(u, v)) (5.13)
on §;, with
O, (u, v) = 0(t, m*(u, v)) + B, m°u, v))N,(m°(u, v)).

If S, happens to be an oriented regular surface at all times, then L; ; = T, (¢)S:,
and we can think of (5.12) as an equation of the form

dp =0(t, p)+ B(t, p)N,(p) (5.14)

with 0(z, p) € T, S,.

Similar to curves, the geometric evolution is only captured by B. Let us sketch a
justification of this fact. If 1 evolves according to (5.12), and g — ¢, (g) is a global
change of variable of X' (a C! invertible map from X to X with a C' inverse), then
we can consider [i,(q) = 1 (¢:(q)). Then
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Oty = d iy 0 0 o1 + 0 0 01 + By o o Ny o ;.

So, if
Oipr = —(du'0,) o @, (5.15)

then fi, follows (5.12) with @ = 0. But (5.15) defines the flow associated to an ordinary
differential equation (cf. AppendixC) on X and therefore provides a change of
parameter.

We have the equivalent of Theorem 5.2:

Theorem 5.4 Let V : R3 — R be a smooth function, and assume that a time-
dependent regular surface S, is defined by (5.12) where u is C? as a function of
two variables. Define

F(t):/ Vdoy,,

where o, = o, is the area measure on S;. For p = 1,(q) € Sy, let & (p) = 0114 (q).
Then
OF = _/ vl +/ (—2VH, +VV'N,)N/¢ do,, (5.16)
08, t

where H, is the mean curvature on S; and n; is the inward normal to 0S;.
Assuming that S; coincides with the boundary of an open subset 2, C R3, define

G(t) = / V(x)dx.
2

Then
9,G = —/ V N!¢do,. (5.17)

Finally, let W : R? — R3 be a smooth vector field, and

Lt)= | WIN,do,
St

(where S; can be open or closed). Then

OL=| €' (r,xW)do, +/ div(W) N/ & do, (5.18)
oS, '

where 7, is the unit tangent to 0S,, oriented so that (7, n, N) forms a direct orthonor-
mal basis.

Proof (“Elementary Proof”) We start with a proof which is rather lengthy, but does
not require any additional concepts than those that have been introduced so far. We
will then provide an alternative shorter proof, based on results from Appendix B.
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To analyze the variations of F, take a family ((U;, mﬁ), i =1,...,n)ofpositively
oriented local parametrizations of S, (the U;’s being independent of time), as given

by (5.13), and an adapted partition of unity (W',i=1,...,n) on X. Define, for
t >0, &l (m!(u, v)) = w'(mi(u, v)), to obtain a partition of unity on S, and write

N
F(t) = Z/ W (ml (u, v))V (m' (u, v) [Oym} x dym'| du dv. (5.19)
i=1 YU

‘We now focus on the variation of one of the terms of the sum; if (U, m,) is a local
patch on S, w o mg a scalar function on U, define

f@) = / w(mo(u, v))V(m:(u, v)) |01m; x Orm;|du dv.
U

Let h, = d,m,; we have, 8,V (m,(u, v)) = VV (m,(u, v))" h,. Also,
T yrm
8,(|81m, X 82m1|) = (81}1{ x Ohym; + Oym; X 82h,) Nt s
where N/*, the normal in the chart, is given by

Nm( ) a|m, X 82111,
U,v)= ——.
! |O1m; x Oymy|

Rearranging the cross products, we get
O, (101m; x &ym,|) = (D1h)" (Bam; x N") + (:h)" (N]" x Oymy,).
We now apply Lemma 3.19, using, as in the lemma,
p(A) = trace((Id — N"(N™")T)A)
for an operator A : T,,S — R3. This yields
8,(|81m X 82mt|) = p(d& omy) |Oym; X Oymy|

using the fact that 4, = & o m; is the local chart representation of &,. We can then
write

o f = / wom®(V omy, p(d& om;) + (VV om)T (& omy)) |0ym; x dymy| du dv
U
= / @(Vp(d&) +Vv'ie)do,
My (U)NS;

with @ om = w o mP.
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We now can apply this to all the terms in (5.19) to obtain
OF = / (pd&EHV +VVTIE)do,. (5.20)
s

We now eliminate d¢&; in (5.20), which will require an integration by parts via the
divergence theorem. Decompose &, into a tangent and a normal part, namely

é‘f :§?+77th1

with 7, = TN, (and therefore £°(p) € T,S,), so that, by definition of p and
Eq.(3.24),
p(d&) = divi (&) = divg & — 2n,H,. (5.21)

Applying Green’s formula, letting , be the inward normal to JS;, we get
[ voeas = [ vy~ [ vvicas,
S, a8, S
because divs, (VEY) = Vdivs, (£°) + VVTED. This in turn implies that
O, F = —/ VEH n, +/ (—2VyH —VVTE +VVTE)do,,
s, )

which yields, since VV7¢ =VVTe 4+ VVIN,, and using 7 =¢&'N,

5{07"”[ = ftTnti
O, F = _/ Ven, +f (—2VH, +VVIN,) (N] ¢)do,, (5.22)
0Sr r

as needed.

Using the same argument as for curves, one can show that (5.17) is a consequence
of (5.18) and of the divergence theorem. We therefore directly prove (5.18). As
above, we can decompose the integral over charts using a partition of unity. So we
introduce the variation on a single chart and consider, for a scalar function w o my,

£(t) = / w omg(u, v)(W(m,(u, v))T(alm[ x Orm,)) dudv
U

= / w o mo(u, v)det(W(m,(u, v)), Oym,, ym,) dudv.
U
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Computing time derivatives, we get, using again h, = d,m,,
ol = / womo(dW (m)h)" (Oym, x drm,) dudv
U
—i—/ womoW(m)T (O1h, x dam, + Oym, x drh,) dudv.
U

From Lemma 3.19, we know that the normal component of ¢, := 01k, x Oym, +
Oym, x Oyh, is, writing, with some notation abuse, p(dh;) = p(d& o m,),

G N = p(dhy)|0im; x Bom|.
To compute the tangential component, note that
C[Talmt = (O1h; x 8th)Talmt = _alh,TNt |Ovm, x Orm;]

and similarly
CtTazm, = —azhtTN,|81mt X aszl.

This implies that, for any 5 € T,S, we have
("¢ = —@dh(P)O" Ni|dim; x Dam,|.

So, if we decompose W = W? + w, N, into tangent and a normal components to S,
(taking wr = W N,), we get

WT(81hl x Ohm, + Oym; x Oh;) =
(w,p(dh,) — (dh W) N, |0ym; x Dom|.

This gives (taking as above w;(m;) = w o my)
B0 = / 0 (my Gt v)) (@dW (m)hy)T N, |8ym, x Bymy| du dv
U

+/ Wy (my (u, U))(wt(mr)p(dht) - (dthIO(mt))TN[)
U

|Oym; x ym,|dudv.

This yields (after summing over the partition of the unity)

L) = [ (AWE& + p(d&)W —dé, W) Nydo'.
M
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Using (5.21), we get, letting again & = 5? + n;N; be the decomposition of & into
tangent and normal components,

O, L(t) = —/ w,&n, (5.23)
0S8,
+ [ (@We)! N = 2, How, = (T )€~ @ W N,)dor.

We have (by definition of the gradient)
(Vsw)' &) = dw,&) = @WE)TN, + @N,E)'W. (5.24)
We will also use

divs, (i, WD) = (V)" W 4 n,divs, W)
= @&W)T N, + (AN, W€ + n,divs, WP (5.25)

and
@NW)'& = (dNW)H'E = W) dN,& = WdN,&

to write

@W&)' N, — 2, Hyw, — (Vsw)' &) — dEWHT N,
=0 (dWN)" N, + divs, W) — 2H,w,) — divs, (n, W)
=1 (dWN)" N, + p(dW)) — divs, (n, W)
= n,div(W) — divs, (1, W)).

Using this in (5.23) and applying the divergence theorem yields

OL(t) = — /d ((WIN)(E n)—W ) (€] Np))doys, (5.26)
s,
+ f div(W) ¢/ N,do,.

It now suffices to observe that
& (m x W) =det(r, W, &) = (Whn) (& N — (WIN)(El ny)

to retrieve (5.18). O

Proof (Alternative Proof) Equation (5.26) is exactly the statement of Corollary B.30,
which was obtained as a consequence of Stokes’s theorem (Theorem B.28), and this
yields (5.18) and (5.17), which is a consequence of (5.18) and of the divergence
theorem.
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We now deduce (5.16) from (5.18) as follows. Fix fy and let, for each time ¢
in a nelghborhood of 1y, Nt(p) be a vector field on R? that extends N, on S,

e., such that N,(u[(q)) = N;(u:(gq)) for all ¢ € M. One way to build such a
mapping is to introduce the function

©i(q, u) = pi(q) + uN:(1:(q)).

Then ¢ is C! and such that, for any #, and ¢ > 0, there exists an ry > 0 such that

forallt € (t) — ¢, ty + €), @, is a diffeomorphism from M x (—ry, ry) onto an open

subset, say £2; of R? (details are left to the reader). Take any smooth function p such

that p(0) = 1 and p(u) = 0 if |u| > r( and set I\Af,(got(q u)) = p(u)N,(,u(s q)) on

(to — &, 1y + €) X M x (—rg, ro) (whlchdeﬁnes N, on £2;) and N,(p) =0if p ¢ £2,.
Given N,, let W, (p) = V(p)N,(p) so that, for ¢ in a neighborhood of ¢,

F(t) = / WIN,do,.
S
Apply (5.18) (taking into account the fact that W depends on time) to write

O, F = ¢ (r, x Wpdo, + | (0, W) Ndo, + f div(W,) N/ & do,. (5.27)
a5, S, !

Now &7 (1, x Wy) = VEI (1; x N;) = —V &I 'n,, so that the boundary terms in (5.16)
and (5.27) coincide.

We have
@ W) N, +div(W,) NJ & = V(0 N)T N, + div(N,) N/ &) + (VVTN)(N] &)
so that we need to prove that

(&,N)TN, + div(N,) NT¢, = —2H,NT¢,,

or, since div(N,) = —2H, + NJdN,N,, we need to show that (8,N,)" N, +
Nle]\A/tNt = 0 (all these identities being true on S;). By assumption, we have
|A7, (u:)|> = 1, and taking the derivative in ¢, we find

0=NIO,N, + NTdN,& = N'o,N, + NI d N,

when these terms are evaluated at 1, (q), which is what we needed. O
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5.2.1 Mean Curvature Surface Flow

The equivalent of the curve-shortening flow for surfaces is gradient descent for the
area functional, the variation of which being given by (5.16) with V. = 1. The gradient
of the area, for the dot product

(h, h),= / h"hdos
N

therefore is —2H N, yielding the gradient descent evolution, called mean curvature
flow
Oip =2H(p)N(p). (5.28)

This is a regularizing flow for surfaces, and solutions exist in short time. However,
singularities may form in the evolving surface, even when starting with relatively
simple ones. This could not happen with the curve-shortening flow.

The mean curvature flow in implicit form has exactly the same expression as
the curve-shortening flow. Indeed, if the evolving surface is defined (at time ¢) by
f(t, p) =0 (with V f # 0 on the surface and f differentiable in time), then, using
equation (3.26) and the same argument as the one we made with curves, f satisfies
the evolution equation

vVf
o, f = |V fldiv <—> (5.29)

’ IV /]
This gives an alternative formulation of the mean curvature flow, that has the advan-
tage of carrying over the solution beyond singularities and allowing for changes of
topology. Equation (5.29) is a diffusion that smoothes f tangentially to the surface,

since
Vf
[V f]

|Vf|div( ) = Af — (N, d°fN).

5.3 Gradient Flows

The curvature and mean curvature flows for curves and surfaces are special cases of
gradient flows that evolve curves along steepest descent directions relative to a given
objective function (the length or the area in these cases), for a given metric (the L?
metric relative to the arc length or area form).

This approach can be applied to any objective function that has a gradient relative
to a chosen dot product; considering, as we did, curves over some interval, or surfaces
parametrized over some reference surface, we can consider energies E (m) (or E (1))
that have a gradient V E with respect to some metric, and implement

om = —VE(m),
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which can obviously be put into the form (5.1) or (5.12).
As an example beyond mean curvature flows, let us consider plane curves and the
energy given by the integral of the squared curvature

E(m) = % / K2doy,, (5.30)

which is often called the bending energy of the curve. To compute the gradient, let
us introduce a small perturbation m (g, -) of a curve m( depending on a parameter ¢,
such that m (0, -) = my. We want to compute 0. E (m(g, -)).

A first observation that will simplify the computation is that, because E is
parametrization-invariant, we can assume that O.m is oriented along the normal
tom(e, -). We can indeed always restrict ourselves to this case using an e-dependent
change of variable that does not affect the value of the energy.

A second simplification will come by introducing the variation with respect to arc
length along a curve m, denoted 9;" defined by

orf=-L (5.31)
||
We will drop the m superscript from the notation and only write J;, although it is
important to remember that this operator depends on the curve that supports it.
Assuming that m depends on e, computing the derivative in ¢ yields

. T
0.0, = 8,0. — (85m> T8,

||

If O.m = BN, this gives
0.0, = 0,0. + kKBO;. (5.32)

Using this identity, we get
0:0;m = O;(BN) + kBT = (O;B)N
and

aeayzm = 0,(0:-0sm) + ﬁBayzm
= —(0;B)KT + (3*B + Kk*B)N.

Because
0.0’m = KO.N + (0-x)N

and O-N is perpendicular to N, we find
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O.k = 0?B + k> B when 0.m = BN. (5.33)

(We find in passing that the evolution of the curvature with (5.7) is 9,k = 83#; +x3)
Combining these results and Theorem 5.2, we can easily compute the variation
of E in € (assuming that m is closed for simplicity), yielding

0.E = /(833+/<;23)/idam —/ #°>Bdo,
- / (kO2B + K’ B/2)doy,
:/(83%4—/@3/2)3610}",

which provides the gradient of E. Minimizing E by itself leads to the uninteresting
solution of a curve blowing up to infinity; indeed, since scaling a curve m by a factor
a divides its curvature by a, we have E(am) = E(m)/a. However, minimizing E
over curves with constant length, or the related problem of minimizing

E\(m) = E(m) + length(m) (5.34)

has been widely studied, in dimension 2 or larger, and curves for which the gradient
of E) vanishes for some positive A\ are called elasticac. We have, using the same
notation

O.E\ = [ 0%k + K> /2 — M\k)Bdo,, (5.35)

and the related gradient descent algorithm
Om = —(852.% + K32 = A&)N

provides a well-defined and converging evolution [97, 172].
The counterpart of (5.30) for surfaces is the Willmore energy

E(S) = / H%doy, (5.36)
N

and the associated minimizing flow is called the Willmore flow. It is given by
dip = (AsH +2H(H* — K))N (5.37)

(see [302]).

All the flows above were defined as gradient descent for the metric given by the
L? norm relative to the arc length or the area form. As remarked in Appendix D,
changing the metric can induce fundamental changes in the resulting algorithms.
For example, as proposed in [272], gradient flows of curves associated to Sobolev
metrics
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(h, h), = / (A" hda,

where A is a differential operator (assumed to be symmetric and positive), can create
interesting variants of the original flows. More precisely, they transform an L? flow
that would initially take the form

om = —V2E(m)

into the flow
om = —A"Y (V2 E(m)),

where A~ is the inverse of A and therefore a smoothing operator. This results in an
evolution that favors smooth changes.

For closed plane curves, many interesting operators can be represented in terms
of Fourier series. For a curve of length L, we can consider the normalized arc length
§ = s/L defined over [0, 1]. Now, a periodic function f defined over [0, 1] can be
decomposed (if smooth enough) in terms of its Fourier series

F@ =) a(f)e™

keZ
with

1
(f) = / Fwe gy,
0

Let (ax, k € Z) be a double sequence of positive numbers satisfying a_; = a.
One defines the associated operator by

AfG) =) awci(fHeX ™.

keZ

This operator is defined over functions f such that

Y afle( )P < oo

keZ

The inverse operator is then immediately defined by

g k(&) simks
A f(s)_Z—ak PREL

keZ

For example, the differential operator Af = —28§2 f is such that

ck(Af) = 4m ke (f),
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as can be easily computed by integration by parts, and is therefore associated to a; =
47’k?. The operator Af = —ng + Af (with A > 0) corresponds to a; = 4m°k* +
A, which is positive (implying that A is invertible). Computations such as these, and
the fact that Fourier coefficients and Fourier series are discretized by the fast Fourier
transform and its inverse, lead to very simple variations of a gradient flow associated
to a given objective function (see Sect.5.4.11).

5.4 Active Contours

5.4.1 Introduction

Active contour methods let curves or surfaces evolve in order to minimize a segmen-
tation energy (i.e., an energy that measures the alignment of the contour or surface
with the boundary of a shape present in the image). They provide an important class
of curve (and surface) evolution based on specific gradient flows.

We start with a parametrization-dependent formulation (in two dimensions),
which is the original method introduced in [165]. We will assume that a function
p — V(p) is defined for p € R?. Typically, V is small where a contour is likely to
be present in the image (based on some measure of discontinuity within an image,
for example). The goal is to ensure that the evolving contour settles along regions
where V is small while remaining a smooth closed curve.

To a smooth parametrized curve m : [0, 1] — R?, we associate the energy

1 1 1
E(m) = af |ﬁi|2du+ﬁ/ |n'1|2du+’y/ V(mu))du . (5.38)
0 0 0

Minimizing this energy results in a compromise between smoothness constraints
(provided by the first two integrals) and the fact that m aligns with image contours,
which comes from the last integral. The minimization is made subject to constraints
at the extremities. Typical constraints are:

(1) m(0) and m(1) are fixed, together with m2(0) and m(1); or
(i) m(0) = m(1), m(0) = m(1) (closed curves).

We will assume that one of these two conditions is enforced in the following com-
putation.

5.4.2 First Variation and Gradient Descent

Given a curve my(u), u € [0, 1], we evaluate the impact on the cost function E of
a small variation € — m (e, -). If the extremities (m(0) and m (1)) are fixed, we will
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have 0.m(g,0) = d.m(e, 1) = 0. The closedness condition requires d.m (e, 0) =
0-m(1, 0). Letting h = 0.m, we have

1 1
I.E = 2a/ mTh'du+25f mThdu
0 0
1
+ ’yf VV )T hu)du.
0

Assume that m is C* and perform two integrations by parts of the first integral and
one of the second to obtain:

O-E = =2a[(m)Th1} + 2a0m” 1} + 280mT k]

1 1
+ 2af m T hdu —25/ T hdu
0 0
1
+ 7/ VEm) hdu. (5.39)
0

The boundary terms (first line) disappear for both types of boundary conditions. We
can therefore write

1
O.E = g/ VEm) hdu (5.40)
0

with
VE(m) = 2am™ — 285 +~vVV(m).

Note that, in this formula, V E(m) is the variational gradient, therefore a function
u — VE(@m)(u), whereas VV (m) is the ordinary gradient (a vector). Using the L2
metric on [0, 1], we get the following gradient descent evolution:

om(t, u) = —2am™@ (t, u) 4+ 200 (t, u) — yVV(m(t, u)). (5.41)

5.4.3 Numerical Implementation

The discretization of (5.41) is relatively straightforward. Assume thatm is discretized
into a sequence of points (xy, y1), ... (x,, ¥u), stacked into a matrix M with n rows
and two columns.

The finite-difference derivatives with respect to the parameter u are linear opera-
tions on M. For example, M’ = D; M with (in the case of closed curves)
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0100---
~1010---

(=]
o o

0000---0-1 0 1
1 000---00 —-10

where du is the discretization step. The second derivative is obtained with a tridiag-
onal matrix, with 1, —2, 1 on the diagonal (and periodic assignment of values at the
extremities), divided by (du)?. The fourth derivative is pentadiagonal, with values
1, —4,6, —4, 1 divided by (du)*. Therefore, the expression

—2am™ 4 24

is discretized in the form A - M,, where A is a pentadiagonal matrix which depends
only on « and 3.

The function V is rarely known analytically, and most often discretized on a grid
(V=V;,i,j=1,...,N). To compute VV (m), the partial derivatives of V must
be estimated at points (x, y) which are not necessarily on the grid. The bilinear
interpolation of V at a point (x, y) € R? is

V@, y) = (1 —a)(l —ay)Vij; + (I—a)ay Vi
+ ax(l - Oéy)ViJrlj + OéxayViJrlj+1’
where i and j are such that idx <x < (i + 1)éx and jox <y < (j + 1)dx, and

oy = (x —idx)/dx, ay = (y — jdx)/dx (with a spatial discretization step dx). This
implies that

OV = (1 —ay)(Vigrj — Vij) + ay(Vigrj — Vij11),

except along lines x = idx at which V is not differentiable. One can use central finite
difference at such points, i.e.,

NVij = (Vigrj — Vie1,)/(20x).
Similar formulas can be used for derivatives with respect to the second variable. This
yields a discrete version of the gradient of V, that we will denote by VV (M), which

is nonlinear in M.
The direct discretization of (5.41), using a time step dt, yields

M1 = (I + 6t AYM, + 5t VV(M,).

This algorithm will typically converge to a local minimum of E when ¢t is small
enough.
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Its numerical behavior can, however, be improved by a semi-implicit scheme (the
previous scheme being called explicit), given by

(I — 5t AYM,4, = M, + 6t VV(M,). (5.42)

This requires the computation of the inverse of (I — drA), which can be costly, but
this operation has to be done only once, since A does not depend on M.

The discretization needs to be adapted when the distance between two consecutive
points in M becomes too large. In this case, the estimation of derivatives becomes
unreliable. When this occurs, one should rediscretize the evolving curve. This creates
a new matrix M (and also requires one to recompute (I — 5t A)~! if the number of
points has changed).

5.4.4 Initialization and Other Driving Techniques

The global minimum of E is not interesting. For closed contours, it is a degenerate
curve reduced to a point, as will be shown below. So, the method must start with a
reasonable initial curve and let it evolve to the closest local minimum. This is why
active contours are often run in an interactive way, the user initializing the process
with a coarse curve around the region of interest (using a graphic interface), and the
evolution providing the final contour, hopefully a fine outline of the shape. Since, as
we will see, the active contour energy generally shrinks curves, the initial contour
has to be drawn outside the targeted shape.

The “balloon” technique [70] allows the user to only specify an initial region
within the shape, which is often easier and can sometimes be done automatically
(because the interior of a shape is often more specific than its exterior). The idea is to
complete the evolution (5.41) with an outward normal force, yielding the equation

iy = —2am™ + 26/ — 4V, V — pN, (5.43)

p being a small positive constant and N the inward normal to the contour. Once
the curve stabilizes (generally slightly outside the shape because of the effect of
the normal force), the algorithm must be continued with p = 0 to provide a correct
alignment with the shape boundary. Note that this normal force can also be obtained
using a variational approach, adding to the energy an area term

—-p f dx,
Q)Yl

where £2,, is the interior of the curve m.

Because the “gradient force” V'V (m) only carries information near points of high
gradient, some improvement can be obtained by first extending it to a vector field v
defined on the whole image, and using v instead of VV (m) in (5.43). This results
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in the gradient vector flow (GVF) method developed in [304], in which v is built by
solving an auxiliary variational problem: minimize

/ (trace(dv” dv) + |[VV||VV — v[*)dm.
Q

Thus, v >~ VV when |V V| is large, and is a smooth interpolation otherwise. Extrap-
olating the driving force to the whole image in this way allows the algorithm to be
more robust to initial data. It also provides improved convergence results, allowing
in particular the contour to enter into concave regions in the shape, which is much
harder with the original formulation.

5.4.5 Evolution of the Parametrization

The active contour energy is not parametrization-independent (such methods will be
discussed in the next section). Its evolution reparametrizes the curve in some optimal
way and it is interesting to study how this is associated with the minimization of the
active contour energy. In numerical implementations, reparametrization is related to
how the density of points changes along the discretized curve.

Let 0, be the (Euclidean) arc length of a curve m, so that &, = |m,|, and
L = L, beits length. We let ¢ : [0, L] — [0, 1] be the inverse change of parameter
Y(om(u)) = u. We also let m(s) = m(1(s)) be the arc-length parametrization of m.
We have i1 0 ) = m /w which implies in turn

wm o = ﬁ - %rﬁ .
v
Since m is parametrized by arc length, we have
: [ N
Mot = —, |mo¢|2=.—+¢.—,
P (AN

where k is the curvature.
We can make the change of variable u — v (u) in E (m), which yields

¢ B
E(m)=/0 ( Frests —i—’yV(m)w) (5.44)

To separate the length-shrinking effect from the rest, we renormalize the geomet-
ric and parametric quantities. We let £(s) = Lx(Ls) (which is the curvature of m
rescaled by a factor 1/L) and x(s) = 1(Ls). To lighten the expression, we also let
\7(s) = V(m(Ls)). These functions are all defined on [0, 1], and a linear change of
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variables in the previous energy yields (with x(s) = L?L(Ls) and x(s) = Lzlﬁ(Ls)),
1 2 ~2 1
E(m):L2/ <a>_<—5+a,?—3+§> ds—}—’y[ Vxds.
0 X X X 0

The firstintegral is scale-independent (it only depends on the rescaled curve) and is
multiplied by L. This therefore shows the length reduction effect of the smoothing
part of the snake energy. As L tends to 0, V becomes equal to V (m(0)) and the
limiting integral has the same value since fol Xs = 1. It is therefore minimal when
m(0) is a point of lowest value for V, and we see that the global minimum of the
energy is a dot at the minimum of V (not a very interesting solution).

Beside the shrinking effect, it is interesting to analyze how the parametrization
is optimized for a fixed geometry (i.e., fixed L, i and &, which also implies that V
is fixed). Recall that 1/ is proportional to ds/du, the “speed” of the parametrized
curve. The term %2 /x> shows that this speed is penalized when the curvature is high.
For a discrete curve, this implies that points have a tendency to accumulate at corners.
On the other hand, the term yV creates more sparsity in regions where V is large.

We now specialize to the case o = 0, for which the computation can be pushed
further. In this case, we have

L
E(m)=/0 (ng(m)ds.

We fix the geometry and optimize the parametrization, i.e., we minimize E with
respect to v subject to the constraints fOL w = 1land w > 0.

First we can see that E is a convex function of 1L, minimized over a convex set.
This implies, in particular, uniqueness of the minimum if it exists. We disregard the
positivity constraint, which, as we will see, will be automatically satisfied by the
solution. Using Lagrange multipliers, we obtain the Lagrangian

L3 . L,
/O (¢+WV(m)w>ds—)\/0 Jds .

A variation of this with respect to ¥ yields the equation

ﬁ:vV(nﬁ)—A.

¢2
VB

The solution must therefore take the form ql}(s) =————— for a suit-
VYV(m(s)) — A

able value of A\, which must be smaller than A\, = ~ min; V (i2(s)) and such that

L .
/ Y(s)ds = 1.
0



160 5 Evolving Curves and Surfaces

Let us prove that such a \ exists, in the case when m is closed and V and m are
smooth. Consider the function

L VB
A ——d\
fiar /0 NEGOED

defined on (—o0, \,). It is continuous, and tends to 0 as A tends to —oo. Now, let
A — )\, and take sy such that A\, = vV (m(sp)). Since A\, is a minimum and we
assume that V and m are smooth, the difference vV (m(s)) — vV (m(sy)) must be
an O((s — sp)?) or smaller when s is close to so. But this implies that the integral
diverges to 400 as A — A,. Therefore, a value of A exists with f(\) = 1. If m is
an open curve, the above argument is valid with the additional assumption that the
minimum of V is not attained at one of the extremities of m.)

From the computation above, we see that the optimal parametrization must satisfy

1/}_2 — (v/B)V (in) = constant.

Consider now the following class of problems: minimize E under the constraint
77/.1’2 — (v/B)V (m) = p for some constant . The previous discussion shows that the
solution of the original problem is also a solution of this constrained problem for
some value of i (one says that the two classes of problems are equivalent). However,
considering the latter problem, we see that it boils down to the purely geometric
problem: minimize

L
/ W(m(s))ds
0

with W (p) = /B(Bu + 2vV (p))//Bir + vV (p). This new variational problem fits
into the category of geodesic active contours, which are addressed in the next section.

5.4.6 Parametrization-Invariant Methods

To obtain a parametrization-invariant formulation of (5.38), it suffices to consider it
over arc-length parametrized curves, leading to

L
E(m) = /(Om2 + B+ Vm)doy, =f (ak*(s) + B+ 7V (m(s)))ds . (545)
m 0

The first term is the elastica energy that we defined in (5.34). Combining (5.35) and
Theorem 5.2, we see that the gradient flow associated to E is

om = (—a(i+£*/2) + (B+~V)k — VVIN)N. (5.46)
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Geodesic Active Contours

The case ov = 0 corresponds to what has been called geodesic active contours [56,
250], which correspond to minimizing

E(m) =/ W(m)do,, (5.47)

(letting W = 3 + V) with the associated evolution
Om = (W(m)x — VW (m" N))N . (5.48)

This equation can be conveniently implemented using level sets. So, consider a
function (¢, p) — F;(p) such that its zero level set at fixed time ¢ is a curve, denoted
u — m;(u). The equation F,(m,(u)) = 0 is by definition valid for all ¢ and all u.
Computing its derivative with respect to ¢ yields

alFl(mt(u)) + VF,(m,(u))Talmt(u) =0.
Assume, as is the case here, that the evolution of m is prescribed, in the form

Om; (1) = B (m, (u)) N ().

This yields, using N; = —VF,/ |VF|,
O Fi(my(u)) = B (m,(w)) |VF(m,(u))].

Assume that [;, which describes the speed of the normal evolution of -y, can be
extended to the whole domain 2 (it is a priori only defined on the evolving curve).
Then, we can introduce the global evolution

O Fi(p) =B:(p)IVF.(p)I|.

This equation being valid for all p, it is a fortiori valid on the zero level set of f.
Therefore, if this level set did coincide with the initial curve my, it would contain at
all times the curve m, that satisfies the evolution equation 0,m, = BN, (implicitly
assuming that the evolution is well-defined over the considered time interval).

Returning to geodesic active contours, there is a natural extension for the function
(3, namely

[ VE(p) ) . ( VE(p) )
(p) = W(p)div [ —2L ) 4 vw — )
Bp) = W(p) ”(WFt(pn YW WE )

This choice yields the partial differential equation:
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Fy

IVF|

O,F = W|VF,|div< )+VWTVF,.

The implementation details are similar to those provided in Sect.5.1.4.

5.4.7 Controlled Curve Evolution

For completeness, we mention another curve evolution method for contour estima-
tion [82], which consists in using a smoothing evolution equation such as the one
introduced in Sect.5.1.3, with an additional factor that controls the speed of the
evolution, and essentially stops it in the presence of contours.

The curve evolution equation, in this case, takes the form

Om = V(m)kN, (5.49)

where V is now the stopping function. This no longer derives from a variational

approach, but we can see that when V is constant, the evolution is similar to (5.10),

but that points stop moving when V is close to 0. So V retains the same interpretation

as before, as a function which vanishes near regions of high gradient in the image.
The level-set formulation of this equation is

t

. VF,
O,F = V(t,)|VF,|div .

IVF|
5.4.8 Geometric Active Surfaces
The transcription of (5.45) to surfaces is
E(S) = /(aHz(p) + B)dos(p) +7/ V(p)dos(p), (5.50)
S S

with associated gradient flow (using (5.37) and Theorem 5.4)
Op = ((AsH +2H(H* — K)) +2(B+~V)H — VV'N)N

if the surface has no boundary.
The case o = 0 simplifies to (letting W = 8 4+ vV)

op=QWH—-VW'N)N
for a surface without a boundary and to

Op=(2WH — VW' N)N + 5y5(p)Wns
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if the surface has a boundary.
For closed surfaces, a level-set evolution can be derived similarly to curves, yield-
ing [250]

a = | |d\/ ! + F,
F, = WI|VF,|di Y7Mﬂ VF..

5.4.9 Designing the V Function

For most applications, boundaries of shapes in images correspond to rapid variation
in image intensity, which results in large values of the image gradient. It is therefore
natural to use functions V related to the gradient, such as

V=—|VI|

(recall that active contours align with small V). Designing bounded V’s is, however,
numerically preferable, a possible choice being given by

1
V=—rre—
14+|VI|/C

for some constant C.

Another option is to rely on an edge detector [52, 186], and start from a binary
image indicating edge points. Letting E denote the set of detected edges, one can
define V to be the distance map to E

V(m) =inf{d(m,e),e € E}

(see Appendix F for quick implementations). Another commonly used approach is
to convolve the binary edge image with a Gaussian kernel and let

Vim) =Y (1 — eTlemmFety

ecE

5.4.10 Inside/Outside Optimization

When information about the image values inside and outside a closed shape is avail-
able, it is possible to add area or volume integrals (depending on the dimension)
to the geometric formulations. This results in objective functions that, unlike their
active-contours counterparts, should be minimized globally to obtain the segmenta-
tion.
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Letting £2 denote the interior of the shape, the additional term typically takes the
form

/ Vi ()dx + f Vs (¥)dlx = / (Vin(x) = Vpur)dlx + / Vo) . (5.51)
2 D\2¢ 2 D

Here, \7l~n and \70”, are defined on some fixed bounded set D C R?, the image domain,
and they take large values at points that are unlikely to belong to the interior or the
exterior of the shape, respectively.

Letting V = V;, — V,,, and disregarding the last integral, which does not depend
on £2, we end up with an expression taking the form

/ 1% (x)dx .
2

Using Theorems 5.2 and 5.4, adding this term to a segmentation energy simply adds
the term V N to the gradient descent algorithms.

A simple example is when the image values are expected to average around a
constant, say c;, over the interior, and around c,, over the exterior of the shape,
leading to choosing

‘N/in(x) = )\in(l(-x) - Cin)2 and Vaut(x) = )\out(l(x) - cout)z-

This assumption is made in the Chan—Vese segmentation model [58], which defines
(in two dimensions)

E(m) = plength(m) + v area($2,,) (5.52)

[ (@ = e = dau 1) = ),
£,

m

where £2,, is the interior of the shape (with an obvious generalization to surfaces
in three dimensions). This energy is a simplified version of the Mumford—Shah
functional [213], which is designed for the approximation of an observed image by a
piecewise smooth function. (Here the approximation is by a piecewise constant func-
tion, and the contour separates the image into exactly two regions.) The associated
shape evolution is

Om = (pk + v 4+ Xin(I(x) = €in)* = Ao (1 (X) = Cou)IN (5.53)

with a level-set formulation

VF,
atFt = |VFI| </.Lle (lVFt|> +v+ )\in(l(x) - Cin)2 - Aour(l(-x) - Cuut)2 .
t
(5.54)
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Instead of being seen as a function of a curve, energies such as (5.52), which can
be put in the form

E(m) :/ V(p)da,,,+/ V(x)dx, (5.55)

m

can also be considered as functions of the domain 2, simply setting

E(2) = / V(p)doya + / V(x)dx. (5.56)
082 2

The interesting feature of this point of view is that this energy applies to domains that
are more general than the interior of a Jordan curve, allowing for multiple connected
components, for example, which can be useful when the topology of the targeted set
is not known in advance. The associated level-set evolution

VF -
O F = |VF| (Vdiv <W> +VVIVF + v) (5.57)

allows for such changes of topology, but it is also interesting to express (5.56) directly
in terms of level sets of a function.

To motivate the reformulation of the method, consider a d-function approximation
of (5.56), as described Sect. 3.10. Using the notation of that section,

E(£2) :/ V(x)|V(H. o F)(x)|d] +/ (1—H.o F(x))V(x)dx  (5.58)
R4 R4

when £2 = {F < 0} (V must be continuous for this approximation to be valid). Let
E_(F) denote the right-hand side in (5.58). Introduce the functionu =1 — H. o F
to reparametrize the problem so that

E.(F) = E(u) :/ V(x)|w(x)|dx+/ u(x)V(x)dx. (5.59)
Rd R4

a

We now focus on the minimization of E (u) over all functions u taking values in
[0, 1]. Let £2(¢) denote the level set u > ¢, for t € [0, 1]. We can write

1
/u(x)V(x)dxzf / 1<y V(x)dt dx
Rd < Jo

1
:/ / V(x)dxdt.
0 ¢

1
/V(x)|Vu(x)|dx“=”// V(p)doag, dt.
Rd o Joo,

‘We also have
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The latter expression is an application of the co-area formula. We have put the equal
sign between quotes because a rigorous application of this formula requires more
advanced mathematical concepts than those that are assumed in this discussion. For
example, the boundary of £2; is not necessarily a smooth curve, but one can still define
a generalization of the inner integral on the left-hand side for which the identity is
valid. Disregarding these issues, we therefore have

1
E(u)“:”/ (/ V(p)doag,—l—/ V(x)dx> dt
0 982, 3

1
- / E(£2,)dt.
0

Now, if £2* is a minimizer of E, then E(£2*) < E(u) forall u, and, E (u*) = E(£2*)
for u* = 1 — 15+. Conversely, if 0 < u < 1 minimizes E, then £2; is a minimizer
of E for almost all ¢ € (0, 1) [286]. Passing from E to E is actually a significant
simplification of the original problem, because E is a convex function of u (mini-
mized subject to convex constraints), allowing one to leverage the large collection
of optimization methods available for convex functions.

Returning to the Chan—Vese energy (5.52), (5.59) becomes

E () =f |Vu(x)| dx+ (5.60)
Rd
/ U () (4 AT () — ) — Ao (106 — cour)?) dix.
Rd

The numbers c;, and c,,, that characterize the image values inside and outside
the shape are not always known in advance. In such a situation, it is natural to also
minimize (5.52) with respect to c;, and c,,,. For this to be possible, one needs to
limit the size of the integration domain for the outside integral to a fixed region, D.
When u is fixed, their optimal values are easily computed and are given by

Cin = M and ¢, = fD(l —u(x)) (x)dx
Jpuodx [ — u(x))dx

Minimization in F, c;, and ¢,,, can be implemented by alternating the computation
of a minimizer of (5.59) (or a few steps of the associated minimization algorithm)
with a periodic updating of ¢;, and c,,; according to these expressions. One can even
include the optimization of these constants within a complete convex optimization
problem, as detailed in [46].

5.4.11 Sobolev Active Contours

‘We now follow-up on our discussion at the end of Sect. 5.3, and describe the interest-
ing variants of the active contour algorithms introduced in [272]. Using the notation
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Fig. 5.4 Comparison between geometric and Sobolev active contours. In each row, the left image
is the initial contour for both algorithms, the center one is the result of geometric active contours
once the evolution stabilizes, and the right one is for Sobolev active contours. The first row presents
a clean image and the second a noisy one. In both cases, geometric active contours get stuck at an
unsatisfactory local minimum (especially in the noisy case), while Sobolev active contours reach a
much more accurate solution

of Sect.5.3, Sobolev active contours modify an evolution such as
om=®&V —VIN+V)N
(which corresponds to the minimization of (5.55)) and transform it into
dm = A7 ((kV — VTN + V)N), (5.61)

where A is a differential operator, or more generally an operator f +— Af such
that the kth Fourier coefficient of Af is equal to a ci(f), where a; is a positive
sequence of numbers that tend to infinity (e.g., a; = 472k?> + \) and ¢, (f) is the kth
Fourier coefficient of f. When implementing (5.61), high-order Fourier coefficients
of (kV — VTN + V)N are divided by large numbers, which results in attenuating
high-frequency motion and focusing on low frequency variations, yielding global
changes in the shape. The resulting algorithm makes the evolution less sensitive to
noise (which typically induces high-frequency motion), and also accelerates conver-
gence because large moves are easier to make. The counterpart is that small details
in the shape boundary are harder to acquire, and may require running the algorithm
over longer periods. Examples illustrating the robustness of Sobolev active contours
are provided in Fig.5.4.



Chapter 6 ®)
Deformable Templates e

Deformable templates represent shapes as transformations of a given prototype, or
template. One of the advantages of this approach is that the template needs to be
specified only once, for a whole family of shapes. If the template is well chosen,
describing the transformation leading to a shape results in a simpler representation,
typically involving a small number of parameters. The conciseness of the description
is important for detection or tracking algorithms in which the shape is a variable,
since it reduces the number of degrees of freedom. Small-dimensional representations
are also more easily amenable to probabilistic modeling, leading, as we will see, to
interesting statistical shape models.

The methods that we describe provide a parametrized family of shapes, (m(6),
0 € ©), where O is a parameter set. Most of the time, & will be some subset of R4
but it can also be infinite-dimensional. We will always assume, as a convention, that
0 € © and that m(0) represents the template.

To simplify the presentation, we will restrict to curves, therefore assuming that
m(#) is a parametrized curve u — m(u, 0) defined over a fixed interval [a, b]. Other
situations can easily be transposed from this one. For example, one commonly uses
configurations of labeled points, or landmarks, with m(0) = (m(0), ..., my(0)) as
a finite-dimensional descriptor of a shape. Transposition from curves to surfaces is
also easy.

6.1 Linear Representations

We start with a description of linear methods, in which

m(0) =m©) + Y _ Oeu,

k=1
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where 1y, is a displacement applied to m (0): for example, if m2(0) is a closed curve, uy
is defined on [a, b], taking values in R? with uy (@) = ux(b). I m(0)isa configuration
of points, uy is a list of two-dimensional vectors.

The issue in this context is obviously how to choose the u;’s. We will provide two
examples, the first one based on a deterministic approach, and the second relying on
statistical learning.

6.1.1 Energetic Representation

The framework developed in this section characterizes an object using a “small-
deformation” model partially inspired by elasticity or mechanics. The object is
described, not by its aspect, but by how it deforms. Our presentation is inspired by
that developed in [230] for face recognition. It includes the principal warps described
in [41] as a particular case, and provides an interesting way of decomposing shape
variations in a basis that depends on the geometry of the considered shape.

For such a shape m, we will consider small variations, represented by transforma-
tions h +— F(m, h). For example, one can take F (m, h) = m + h when this makes
sense. We assume that the small variations, &, belong to a Hilbert space H (see
Appendix A), with dot product (-, -),,, possibly depending on m.

Associate to h some deformation energy, denoted E(h). Attribute to a time-
dependent variation, ¢ — h(t), the total energy:

s =5 [ 10 ar + [ Enwar

Inspired by the Hamilton principle, we consider shape trajectories that are extremals
of the Lagrangian ||0;h ||%1 /2 — E(h), therefore characterized by

O’h + VE(h(1t)) =0,
where VE is the Hilbert gradient, defined by
O-E(h+ew)_, =(VE(h), w), .
We make the assumption that this gradient exists. In fact, because we only analyze
small variations, we will assume that a second derivative exists at 7 = 0, i.e., we
assume that, for some symmetric operator P,

VE(h) = Znh + o([[hlln).

Typically, we will have E > 0 with E(0) = 0, which ensures that X, is a non-
negative operator. The linearized equation for 4 now becomes
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O?h + Zuh = 0. (6.1)

This equation has a simple solution when X, is diagonalizable. Making this
assumption (which is always true in finite dimensions), letting (f1, f2, ...) be the
eigenvectors and (A, Az, . ..) the corresponding eigenvalues (in decreasing order),
solutions of (6.1) take the form

h(t)y =Y a®@) fi

k>1

with 2a® + M\ a® =0, so that a® oscillates with frequency wy = 1/4/Ax.

The w,s form what was called a modal representation in [253]. These vibration
modes can be used to describe and compare shapes (so that similar shapes should
have similar vibration modes). It is also possible to use this model for a template-
based representation: let m be a template, with a modal decomposition as before,
and represent small variations as

N
(al,...,aN)—>rh:F(m,Zakfk),
k=1

which has a linearized deformation energy given by >, A\ oz,%.

Consider a first example of such a construction using plane curves. Let m(-) =
m(0, -) be the prototype and £2,, its interior. Assume that m is parametrized by arc
length. A deformation of m can be represented as a vector field s — h(s)N(s),
where / is a scalar function and N the unit normal to m. The deformed template is
s > m(s) + h(s)N(s). A simple choice for E is

1 L
E(h) = - f dsh*ds,
2 Jo

for which X,,h = —0%h and Eq. (6.1) is
O?h = &h,

which is the classical wave equation in one dimension. Since this equation does not
depend on the prototype, m, it is not really interesting for our purposes, and we need
to consider energies that depend on geometric properties of m. The next simplest
choice is probably

L
E(h) =1 / P ()05 h*ds,
2 Jo

where p,, is some function defined along m, for example p,, = 1 + 2, (where £,
is the curvature along m). In this case, we get X,,h = —20;(p,,Osh). The vibration
modes are the eigenvectors of this inhomogeneous diffusion operator along the curve.
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One can obviously consider many variations of this framework. Consider, for
example, discrete shapes, represented by a finite collection of landmarks, so that a

shape is now a finite collectionm = (xy, ..., xy) witheachx; € R2. Given displace-
ments & = (hy, ..., hy), define K (x), for x € R? by

N
R ) =Y g(x = xiPa;
i=1

with g(1) = /27", where a, ..., ay € R? are chosen so that h(x;) = h;, i =
1, ..., N. Then, we can define

En(h) = f A () Palx
RZ

N
=Y afa, / g(x; — xP)g(x — x;P)dx
Q=1 R?

N
T
= Z cij(m)a; o
i,j=1

with , ,

e Al il
cij = e 22 22 dx = 77023 402
R’)

Finally, notice that, from the constraints, oo = S(m)~'h with sij(m) = g(|x; — x‘,~|2),
we have
E,(h) = 171" S(m)~'C (m)S(m)~"h1,,

where, in this expression, A is organized in an N by d matrix and 1, is the d-

dimensional vector with all coordinates equal to 1. The modal decomposition will,

in this case, be provided by eigenvalues and eigenvectors of S(m)~'C(m)S(m)~.
The principal warp representation [41] is very similar to this one, and corresponds

to
E,(h) = 151" S(m)"'h1,. (6.2)

It is also associated to some energy computed as a function of 2™, as will be clear
to the reader after the description of reproducing kernel Hilbert spaces in Chap. 8.
One can also define

Em(h)=/ trace((dh™)T dh™)dx
R?

or some other function of (dh™)Tdh™, which corresponds to elastic energies.
Closed-form computation can still be done as a function of 41, .. ., hy, and provides
a representation similar to the one introduced in [230, 253].
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6.2 Probabilistic Decompositions

6.2.1 Deformation Axes

One can build another kind of modal decomposition, based on a training set of shapes,
using principal component analysis (PCA).

We will work with parametrized curves. The following discussion can be applied,
however, with any of the shape representations described in Chap. 1, or, as considered
in [73], with finite collections of points (landmarks) placed along (or within) the
shape.

Assume that a training set is given containing N shapes that we will consider
as versions of the same object or class of objects. We shall denote its elements by
m® (), k=1,..., N, and assume they are all defined on the same interval, I. The
average is given by

1 N
) = Zm(k)(u).
k=1

A PCA (cf. Appendix E) applied to m®, k =1, ..., N, with the L? inner product
provides a finite-dimensional approximation called the active shape representation

p
m® W) = m@) + " ogie® W), (6.3)

i=I

where the principal directions e, . . ., /” provide deformation modes along which
the shape has the most variations.

This provides a new, small-dimensional curve representation, in terms of varia-
tions of the template 7. One can use it, for example, to detect shapes in an image,
which requires the estimation of p parameters, plus three parameters (in two dimen-
sions) describing the shape position in the image (rotation and translation).

One must be aware, when using this method, of the limits of the validity of the PCA
approach, which is a linear method. It is not always “meaningful” to compute linear
combinations of deformation vectors, even though, once the data is represented by
an array of numbers, such a computation is always possible and easy. The important
issue, however, is whether one can safely go back, that is, whether one can associate
a valid shape (which can be interpreted as an object of the same category as the initial
dataset) to any such linear combination. The answer, in general, is yes, provided the
coefficients in the decomposition are not too large. Large coefficients, however, lead
to large distortions, singularities, and do not model interesting shapes. Because of this,
PCA-based decompositions should be considered as first-order linear approximations
of more complex, nonlinear, variations. Plane curves, for example, can certainly be
considered as elements of some functional space, on which linear combinations are
valid, but their result does not always lead to satisfactory shapes. To take an example,
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assume that the training set only contains triangles. The PCA decomposition includes
no mechanism ensuring that the shapes remain triangular after decomposition on a
few principal components. Most often, the representation will be very poor, as far as
shape interpretation is concerned.

In fact, shape decomposition must always be, in one way or another, coupled with
some feature alignment on the dataset. In [73], this is implicit, since the approach
is based on landmarks that have been properly selected by hand. To deal with gen-
eral curves, it is important to preprocess the parametrizations to ensure that they
are consistent, in the sense that points with the same parameter have similar geo-
metric properties. The curves cannot, in particular, all be assumed to be arc-length
parametrized. One way to proceed is to assume that the parametrization is arc length
for only one curve, say m?). For the other curves, say m®, k = 1,..., N, we want
to make a change of parametrization, ¢®, such that m® (o® (s5)) = mg(s) + 6% (s)
with % as small as possible. Methods to achieve such simultaneous parametriza-
tions implement curve registration algorithms. They will be presented later in this
book.

In addition to aligning the parametrization, it is important to also ensure that
the geometries are aligned, with respect to linear transformations (such as rotations,
translations, scaling). All these operations have the effect of representing all the
shapes in the same “coordinate system”, within which linear methods will be more
likely to perform well.

Finally, we notice that this framework can be used to generate stochastic models
of shapes. We can use the expression

P
m(u) =m(u) + Z a;e (u)

i=1

and generate random curves m by using randomly generated «;’s. Based on the
statistical interpretation of PCA, the «;’s are uncorrelated, and their respective vari-
ances are the eigenvalues )\? that correspond to the eigenvector e, Simple models
generate the o;’s as independent Gaussian variables with variance A?, or uniformly

distributed on [—+/3)\;, v/3\;].

6.3 Stochastic Deformation Models

6.3.1 Generalities

The previous approaches analyzed variations directly in the shape representation. We
now discuss a point of view which first models deformations as a generic process,
before applying them to the template.

We consider here the (numerically important) situation in which the deformed
curves are polygons. Restricting ourselves to this finitely generated family will
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simplify the mathematical formulation of the theory. The template will there-
fore be represented as a list of contiguous line segments, and we will model a
deformation as a process that can act on each line segment separately. The whole
approach is a special case of Grenander’s theory of deformable templates, and we
refer to [14, 134-136, 138] for more references and information. The general prin-
ciples of deformable templates assume that an “object” can be built by assembling
elementary components (called generators), with specified composition rules. In the
case we consider here, generators are line segments and composition rules imply
that exactly two segments are joined at their extremities. One then introduces a set
of transformations (via a suitable group action) that modify the generators, under the
constraints of maintaining the composition rules. In our example, the transformation
group will consist of collections of planar similitudes.

6.3.2 Representation and Deformations of Planar Polygonal
Shapes

The formulas being much simpler when expressed using complex notation, we iden-
tify a point p = (x, y) in the plane with the complex number x + iy, that we also
denote by p. A polygonal line can either be defined by the ordered list of its vertices,
say so, ..., Sy € C or, equivalently, by one vertex sy and the sequence of vectors
Vg = Sg+1 — Sk, k =0, ..., N — 1. The latter representation has the advantage that
the sequence (v, ..., Uy_1) is a translation-invariant representation of the polygon.
A polygonal line modulo translations will therefore be denoted m = (vo, ..., Uy_1).
The polygonal line is a polygon ifitis closed, i.e., ifand only if vg + - - - + vy_; = 0.
A polygonal line with origin sy will be denoted (s, 7).

A polygonal line can be deformed by a sequence of rotations and scalings applied
separately to each edge v. In C, such a transformation is just a complex multi-
plication. Therefore, a deformation is associated with an N-tuple of non-vanishing
complex numbers z = (2o, ..., Zy—1), the action of z on 7 being

Z-mT= (Z()U(), ...,ZNflval). (64)

This defines a group action (cf. Sect.B.5) of G = (C \ {0})" on the set of polygonal
lines with N vertices.
In this group, some transformations play a particular role. Introduce the set

A={zeG,z=z(1,...,1),z€C}

(the diagonal in G). An element in A provides a single similitude applied simultane-
ously to all edges, i.e., A represents the actions of similitudes on polygons. Similarly,
the set

Ay={ze€eG,z=2z(1,...,1),z€C,|z| =1}
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represents the action of rotations.

A polygonal line modulo similitudes (resp. rotations) can be represented as an
orbit A - 7 (resp. Ag - 7). We can define the quotient groups G /A and G/ Ay, namely
the sets of orbits A - z (resp. Ag - z) for z € G (they have a group structure because
G is commutative). One obtains a well posed action of, say, G/A on polygonal lines
modulo similitudes, by defining

(A-2)-(A-m)=A-(z-7).

Given a polygon, 7, we define F(7) as the set of group elements z in G that
transform 7 into another polygon, namely

F(m)={z € G,zovo + -+ -+ zy—1vny-1 = 0}. (6.5)

Note that F () is not a subgroup of G.

‘We can use this representation to provide a stochastic model for polygonal lines. It
suffices for this to choose a template 7 and a random variable  on G and to take ¢ - 7
to obtain a random polygonal line. Because we are interested in shapes, however, we
will restrict ourselves to closed lines. Therefore, given m = (v, ..., vy—1), we will
assume that ( takes values in F (7).

We now build simple probability distributions on G and F () for a fixed .
Consider the function:

N—-1 N-1

E@ = (/2 Y la—1P+ B/l — il
k=0 k=0

The first term is large when z is far from the identity, and the second one penalizes
strong variations between consecutive z;’s. Here and in the following, we let z_; =
ZN-1.

We want to choose a probability distribution on G which is small when E is large.
A natural choice would be to take the measure with density proportional to
exp(—E(2))/ ]_[,ivz_l1 |zx| with respect to the Lebesgue measure on CM-!. This is
the “Gibbs measure”, with energy E, relative to the Haar measure, ]_[,1::11 dzi/1zk
which is the uniform measure on G. Such a choice is of interest in that it gives a very
small probability to small values of |z; |, which is consistent with the fact that the z;’s
are non-vanishing on G. Unfortunately, this model leads to intractable computations,
and we will rely on the simpler, but less accurate, model with density, f, proportional
to exp(—E(z)). This choice will greatly simplify the simulation algorithms, and in
particular, the handling of the closedness constraint.

With 7 = (vo, ..., vy_1), this constraint is expressed by Zk vezr = 0, and we
will use the conditional density for f given this identity. This conditional distribution
can be computed by using a discrete Fourier transform. Define
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1 N—-1
A —2ink
U =7 = —F— E ke N
VN
k=0

One can easily prove that E can be written

N—1
E(z) = alug — VN> + Z <a +23 <1 — cos %)) lug|?,

=1

and that the constraint becomes

=
L

T
o

. N 1 N—1 _inhk . . A
with v; = i Zk:() vre “'"~ . Notice that, because 7 is closed, we have vy = 0.

Let wg = a(ug — \/N), and, for!/ > 1, w; = \/a + 26(1 — cos %)ul, so that

N—-1
E@) =) |wl
=0

Without the constraint, the previous computation implies that the real and imaginary
parts of wy, ..., wy—; are mutually independent standard Gaussian variables: they
therefore can be easily simulated, and the value of zy, . . . z)— directly computed after
an inverse Fourier transform. Conditioning on closedness only slightly complicates
the procedure. Replacing u; by its expression as a function of wy, ..., wy_1, and
using 0y = 0, the constraint can be written in the form

N—-1
Z cqw; = 0
=0

withcog =0 (c, = \/ a+ 28 — cos %)). The following standard lemma from the
theory of Gaussian variables solves our problem.

Lemma 6.1 Let w be a standard Gaussian vector in R*N, and let V be a vector
subspace of R*N. Let ITy be the orthogonal projection on V. Then, the random
variable I1y (w) follows the conditional distribution given that w € V.

Assume that ¢ = (co, ..., cy—1) has been normalized so that ) |c,~|2 =1.To
sample closed random polygonal lines, it suffices to sample a standard Gaussian w*

in CV, and set
N—1
w=w"— E qw] | c.
=0

Some examples of random shapes simulated with this process are provided in Fig. 6.1.
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1,100 11

Q C\ C\ 1,0.01
10,10 10, 100 01,1 0.1,0.1 0.1,0.01
100, 1 100, 10 100, 100 0.01,1 0.01,0.1 0.01,0.01

OO OC

Fig. 6.1 Random deformations of a circle (with different values for o and (3)

6.4 Segmentation with Deformable Templates

Using deformable templates in shape segmentation algorithms incorporates much
stronger constraints than with active contours, which only implement the fact that
shapes can be assumed to be smooth. If one knows the kind of shapes that are to be
detected, one obviously gains in robustness and accuracy by using a segmentation
method that looks for small variations of an average shape in this category.
Detection algorithms can be associated with the models provided in Sects. 6.2
and 6.3. Let us start with Sect. 6.2 with a representation that takes the form, denoting

a=(ag,...0p):
p .
=+ § KO,

for some template 7z and vector fields K ). This information also comes with the
variance of «;, denoted )\%.

The “pose” of the shape within the image is also unknown. It is associated with
a Euclidean or affine transformation g applied to m“. The problem is then to find g
and « such that gm® is close to regions of low deformation energy within the image.

One can use a variational approach for this purpose. As described in Sect.5.4.9,
one starts with the definition of a potential V' which is small when evaluated as a
point close to contours. One can then define

n

2
E(g,a) = Z % + 6./1 V(gm®(u))du.
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The derivatives of E are
Qi :
O, E = 2; + 5/VV(gm(‘(u))T(gK’(u))du
i 1

and
O,E = /m“(u)VV(gma(u))Tdu
1

(itis a matrix). A similar computation can be made for variants of the definition of the
cost function. One can, for example add a penalty (such as |logdet(g)|) to penalize
shapes that are too small or too large. One can also replace the quadratic term in «;
by boundedness constraints, such as |o;| < ﬁAi.

If scaling to very small curves is penalized, it is plausible that, in contrast to the
case of active contours, the global minimum of E provides an acceptable solution.
However, from a practical point of view, minimizing E is a difficult problem, with
many local minima. It is therefore still necessary to start the algorithm with a good
guess of the initial curve.

Consider now the representation of Sect.6.3. We will use the same notation
as in this section, a shape being modeled by a polygon = with N edges denoted
(vo, ..., vny—1). A deformation is represented by N complex numbers z = (2o, ...,
Zn—1), With the action

Z T = (20V0, - - -» IN—1UN=1)-

We have denoted by A (resp. Ag) the set of z’s for which all z;’s coincide (resp.
coincide and have modulus 1); these subgroups of G = (C \ {0})" correspond to
plane similitudes (resp. plane rotations).

We denote by [z] and [z]( the classes of z modulo A and Ayp. Similarly, when
7 is a polygon, we denote by [7] and [7]y the classes of m modulo A and Ag. For
example,

[zl={c-z,c € A}

and
[rl={z -7,z € A}.

A template should be considered as a polygon modulo A or A (depending on
whether scale invariance is required), whereas a shape embedded in an image should
be a polygon with an origin. Let 7 denote the template, although we should use the
notation [7] or [7]y. Introduce a function V (-), defined over the image, that is large
for points that are far from image contours. The quantity that can be minimized is

0z, s0) = E(2]) + / Vdo,,

m=so+z-T
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with 5o € C and z € G. The deformation energy E is a function defined on
G/A (or equivalently a function defined on G, invariant under similitude trans-
formations), that measures the difference between z and a similitude. For example,
withz = (20, ..., zv_1), and zx = rre'%, one can take

N N
E(z]) = Z(log ry — log re-1)’ + Z arg(e"(’k_mk*‘)2 .
k=1 k=1
Here, we have defined arg z, for z # 0, as the unique 6 €] — 7, 7] such that 7 = re'?
withr > 0. We also use the convention ry = ry, 8y = 0, for the last term of the sum
(assuming we are dealing with closed curves).
If scale invariance is relaxed, a simpler choice is

N
E(lzlo) = Y lzx — 2l

k=1

Notice that for closed curves, it must be ensured that z - 7™ remains closed, which
induces the additional constraint, taking 7 = (v, ..., Uy—_1):

N—-1
Z zxvr = 0.
k=0

It is interesting to compute the continuum limit of this energy. Still using com-
plex numbers, we consider a C 1 template curve m : I — C, where [ = [0, L] is an
interval, with arc-length parametrization. For a given N, we consider the polygon
™= (vg,...,Un_1), With

(kL) <(k—1)L> L ((k—l)L)
w=m|—)-m|———— ) > —0Om|————) .
N N N N

A deformation, represented by z = (2o, . . . , Zy—1) will also be assumed to come from
a continuous curve ¢ defined on [0, 1] with z; = ((k/N). The continuum equivalent
of m +— 7 - z can then be written as a transformation of derivatives:

Osm(s) = C(s/L)Osm(s),

which leads us to define an action of non-vanishing complex-valued curves ¢ on
closed curves by

(€ -m)(s) = /0 G/ Lyinydu
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In the rotation-invariant case, the energy of the action should be given by the limit of

=

-1
2
|zk — zk—1l".

1

~
Il

Using the fact that z;, — z4—| =~ C ((k — 1)/N)/N, we have the continuum equivalent
N-1 1
N Y la—zalf > [ K.
k=1 0

This is the H' norm of the deformation generator along the curve.



Chapter 7 )
Ordinary Differential Equations e
and Groups of Diffeomorphisms

7.1 Introduction

This chapter introduces some spaces of diffeomorphisms, and describes how ordinary
differential equations provide a convenient way of generating deformations. The
discussion will rely on several results in Appendix C that the reader may want consult
at this point.

Let £2 be an open subset of R?. A “deformation” can be represented as a function
 which assigns to each point x € §2 a displaced position y = ¢(x) € §2. There are
two undesired behaviors that we would like to avoid:

e The deformation should not create holes: every point y € §2 should be the image
of some point x € £2, i.e., ¢ should be onto.

e Folds should also be prohibited: two distinct points x and x” in §2 should not target
the same point y € £2, i.e., ¢ must be one-to-one.

Thus deformations must be bijections of §2. In addition, we require some smooth-
ness for . The next definition recalls some previously introduced terminology:

Definition 7.1 A homeomorphism of 2 is a continuous bijection ¢ : 2 — £2 such
that its inverse, cp’l, is continuous.

A diffeomorphism of 2 is a continuously differentiable homeomorphism
@ : 2 — 2 such that ! is continuously differentiable.

If o is a diffeomorphism, the chain rule applied to the identity p o ¢! =id
implies that its derivative, d, is such that dp(x) is invertible for all x € £2. Con-
versely, using the inverse mapping theorem, one shows that a continuously differen-
tiable homeomorphism with an invertible derivative is a diffeomorphism. From now
on, most of the deformations we shall consider will be diffeomorphisms of some
open set 2 C RY. If ¢ and ¢’ are diffeomorphisms, then ¢ o ¢’ is a diffeomorphism,
and so is ¢! by definition. Diffeomorphisms of £2 form a group with respect to
composition of functions, denoted Diff (£2).

Throughout the rest of this book, we will write formulas that combine differen-
tiation, inversion and composition of diffeomorphisms or functions. We will always
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 183
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assume (unless specified by parentheses) that differentiation is performed first, fol-
lowed by composition and inversion. For example,

df op=(df)op #d(f o).

Similarly, 1 1 1
de™ =(dp)” #d(p).

We will be concerned with specific subgroups of Diff (£2) associated with addi-
tional smoothness requirements. Using the notation of Appendix A, we define, for a
multivariate, vector-valued function f, || |5, as the maximum of the supremum
norms of the partial derivatives of order less than or equal to p of the components

of f.

Definition 7.2 Let p > 1. We define Diff”*°(§2) as the set of diffeomorphisms of
£2, o, such that

-1 .
—1d| p,00) < 00.

max(l¢ — id|[p.cc. I
We will write Diff?-*° instead of Diff”-*°(£2) whenever 2 is clear from the context.
We show that Diff”* is a subgroup of Diff (£2). The facts that id € Diff”* and
that o € Diff”>® = ¢~ € Diff”* are obvious. Stability for composition will be
clear from Lemma 7.3, which requires some notation. For k € {1, ..., d}, denote by
Ok f the partial derivative of f with respect to the kth coordinate. For any p-tuple
J=(ki,..., kp),let

01 f =0k, .. O, [ (7.1)

(Notice that indices can be repeated in J and that the operator does not depend on
how the elements of J have been ordered.) We say that a g-tuple [ is a subtuple of
J,and write I C J,if I = (k;;, ..., k;,) with1 <i} <.-- <i; < p, and we define
the set

G(J)f ={0,f,1 CJ}. (7.2)

We first recall the product rule (or Leibnitz formula). Given any two C? scalar-
valued functions « and v defined over R?, one has

0y (uv) =Y " Opu Oy v (7.3)

1cJ

This can be shown by induction, the proof being left to the reader. Here, J \ I denotes
the indices in J that are not listed in /.

Letting |I| = q if I is a g-tuple, we have the following lemma, in which we let
2, denote the set of all partitions of {1, ..., p}.

Lemma7.3 Let g: 22 — 2 and f:2 — R be C? functions on 2, and
J:(kl,...,k,,)c{l,...,d}p.Thenfogistand,forhl,...,h,,eRd,
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d"(fog)hi,....hp) =Y d*fog@dlghy),....d"gh,)) (14)

with hy representing the family (h;, j € J).

Proof The result is true for p = 1, with d(f o g)h = df o gdgh, with 2, = {{1}}.
For p =2, we have d*(f o g)(h1, ha) =d*>f o g(dgh,,dghy) +df o gd*>q(h,
h3), which is consistent with 2, having two elements: {{1}, {2}} and {{1, 2}}. We
now prove the result by induction, assuming that it holds for all k < p, with p > 1
and proving that it holds for p + 1. Using the induction hypothesis, we have

d" N (fog)hi, ... hp hpyr)

- Z d(d fog@ghy),....,d"gh;)) hyw
{Jiseens Jk}E@,,

= Y d"fogdghy),....d"Mghy),dghpys)
{Ji,eees Jk}E.@p

k
+ Y Yo drog(dgt. . d gy, ). d g, By,
(o B}, j=1

d"lg(hy,), d"*"g(hfk))

It now suffices to observe that one can enumerate all partitions of {1, ..., p + 1}
without repetition by taking partitions in &, and either adding {p + 1} as an addi-
tional subset, or replacing one of its subset by its union with {p + 1}. (]

From this lemma directly follows:
Proposition 7.4 Let g : 2 — 2 and f : 2 — R be C? functions on §2. Then

If ogllpoo = Cp. DI fllp.c Z ldgllg.00 -+ - ldgllg;.00 (7.5)

for some fixed constant C(p, d) depending on p and on the dimension.

This proposition (or Lemma 7.3) can be used in turn to prove the following inequal-
ities involving the composition map:

Ifog—foglpe < CUdGNp—1,0)If = Fllp.oo (7.6)
and

Ifog—rfoglpe =CUdglip—1.00 1dgllp—1,00) I fllp+1.00llg = Gllp.oos  (7.7)

where C is in both cases a polynomial function of its variables. The second inequality
can be obtained, for example, by writing
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1
fog—fo§=/0 df o ((1— &g+ £3) (g — §) de

and applying the previous estimates and the Leibnitz formula to the integrand. If
f € C¥($£2), Inequality (7.7) can be improved by introducing moduli of continuity:

pdif,0) =" sup  [d?f(y)—d?f(x)].

x,yeR, |x—y|<d
Then, letting 7 (f, §) = max <, p(d? f, §) and applying Lemma 7.3, we get

Ifeg—Ffoglpeo =
CUdgllp-1.00s 114Gl p—1,0) P (f, lg = Gllo) + 1 fllp.ocllg = Gllp.oc).  (7:8)

Obviously, if / € CJ*'(£2), then i (£, llg — Glloe) =< I f I p+1,00llg — lloos s0 that
(7.8) implies (7.7).
Based on these remarks, the following corollary of Lemma 7.3 holds.

Corollary 7.5 Diff?”*°(£2) is a subgroup of Diff (£2).

In the following, we will most of the time work with diffeomorphisms that tend
to the identity at infinity, defining

Diff]" > (£2) = { € Diff"™(22) : ¢ —id € CJ (2, R} .

Here CJ (82, R?) is the space of functions v : 2 — R? whose partial derivatives up
to order p can be made arbitrarily small outside of large enough compact subsets of
§2 (see Definition A.14). It will be convenient to identify Cé’ (2, R?) with a subset
of CJ' (R, RY):

Cl@2,RY ={feC{® R): f(x) =0ifx ¢ 22}
and similarly

Diff] ™ (2) = {¢ € Diff) (R : p(x) = x if x ¢ 2}.

Theorem 7.6 Diff} "°(R2) is a subgroup of Diff”°>°(2) and the composition map
(¢, ¥) > @ o Y is continuous in both variables over Diffg’oo(.Q) X Diffg’oo(.Q).

Moreover, for a given) € Diffg‘oo(.Q), the right composition map ‘Kf Y > Yo
 is infinitely differentiable from Diffﬁ’oo(.Q) to itself for any k < p, with derivative
d‘ﬁf (Y)n = n o @ and vanishing higher derivatives, and the left composition map
%j 1Y +— o is differentiable from Diffg’oo to itselfif k < p — 1, with derivative
dEE(pyn = (dp o).
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Proof The proof that ¢ € Diff)"> implies that ¢! € Diff]"™ will be given later
as a consequence of Lemma 7.7. If ¢, ¥ € Diff)"™ (£2), then, writing ¢ 0 ¢ — id =
(¢ —id) o ¥ + ¢ — id, we see that we need to prove that (¢ — id) o ¢ € C{)’ (£2,RY
to ensure that ¢ o ¢ € Diff”*°(£2). But the latter fact is a direct consequence of
Lemma 7.3.

To prove the continuity of the composition map, fix g, ¥y € Diff”*°(§2) and
write

ot — ooy = (¢ =)ot~ (oot — ooy
Assume that max (|l — @oll p,00s 1 — Yol p,00) < . Then Lemma 7.3 implies that
10— 0) 0 Yllpoo = Clle = @oll p,cc 1Pl po0 = COHL + ) Itholl p,oo

for some constant C. The same lemma implies that (for g < p)

d?(po o) — o otho)(hy, ..., hy)
= Y (@0t —dpoore)@dihy,), ... d"ph,))

{J1seees Jk}E_@q
+ Y @dpootodihy). ... d M p(hy,)
{J1seees Jk}e%,

— d*pg 0 o (d o (hy,), ... dH e (hy,)).

This implies that

oot — oo vollpoco
= C(1L+ )7 max [ld"po 0 ¥ = d" @y 0 Yolslltol} o + Coll0]lp.co-

Because d*y is uniformly continuous on £2 (by Proposition A.15), ||(d¥pg) o ¢ —
(d*p) 0 1y |le can be made arbitrarily small by taking § small enough. This shows
that ||¢ o ¥ — g 0 Pollp,0 can be made arbitrarily small too and proves the conti-
nuity of the composition map.

The differentiability of the right composition map is a consequence of its conti-
nuity, since it is linear. For the left composition, one can write

1
<po(w+n)—s00¢—d<pos0n=/ (dpo(p+tn) —dpopm,dt
0

and the previous argument showing the continuity of the left composition can now be
applied to the integrand to prove that ||dy o (¢ + 1) — dp o ¢l )—1,0c tends to 0 with
171l , 00, Which, combined with the product rule, implies that the (p — 1, 00)-norm
of the right-hand side is an o(||n|l —1,00)- O
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We now review properties of the inversion map Inv : ¢ — !, We first relate
the derivatives of ¢! to those of ¢ under the assumption that the latter is a C?
diffeomorphism of £2. In this discussion, we will fix ¢ and define ¢ = ©~!. Recall
thatdy) h = do~" o9 h for all h € RY. Differentiating again and applying the chain
rule, we have

d*Y(hy, hy) = —dp™ opd*p(d™ o phy,de " o phy) 0t

or
d*Y(hy, hy) o = —do™'d*p(dp™ "' hy, do™ " hy).

Things rapidly get more complicated with higher derivatives. We let the reader check
that

d*Y(hy, hy h3) oo = —do'dPp(dp™ " hy, do™ " ha, dp™" h3)
+do P ode™ dpdp~ hy, dp~ ), dp~ " h3)
+do~ ' d*p(do~ d>o(de™" by, dp " hs), do™ hy)
+do~ ' d*p(do~ ' d*p(dp~" hy, dp " hs3), do™ ).

To state a general formula, we fix iy, ..., h, € R? and we introduce the following
subsets of mappings from £2 to the sets of multilinear forms from RY — R?.

Let Py denote the family of all subsets of V; = {1, ..., k}. A recursive partition
of {1, ..., k} can be represented as a tree T whose vertices are subsets of (1, ..., k)
with the additional conditions: (i) The root of T is the whole set Vi; (ii) The children
of each node form a partition of the subset associated to this node; (iii) Each non-
terminal node has at least two children; (iv) Terminal nodes are singletons. Let .
be the set of recursive partitions of V;. To each T € 9, we recursively define the
function U7 by

Ur(hy, ... k) =do~'d*o(hy, ..., hy)

if all children of the root of T are singletons and

Ur(hi, ..., h) =dyp~'d" Uy (hv,), ..., Uz, (hy,)),

where m is the number of children of V; (the root node), with associated subsets
Vi, ..., Vu,and Ty, ..., T, are the subtrees of T rooted at Vi, ..., V,,. With this
notation, we have

Lemma 7.7

dPp(dohy, ..., doh,) op = (—1)P Z (—D)'"Ur(hy, ... ), (7.9)
TeJ,

where |T| is the number of nodes in T.
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Proof We prove this by induction. For a tree with one node, we have dy) o ph =
do~" h so that dvp o pdph = dp~'dph. For p = 2, the only tree in .% has {1, 2}
as root and {1}, {2} as terminal nodes, and

d*Y(dphy,dphy) oo =—do™'d*p(h1, hy) = (1)U (hy, ).

Let us now prove the formula by induction, assuming that the formula is true for all
k € {2, ..., p} and showing that it remains true for p + 1. Taking the derivative of
the left-hand side of (7.9), we find

d@’P(dehi,....dohy) o), =d" @) deh,....,dphyi1)op

P
+ Y dPphy, ... dpji-1,d*e(hj, hyp), dphjiy, ... dphy).
j=1
Let T[Sr)l be the set of trees obtained from trees T € .7, by choosing a terminal
node {j} in T, replacing it by {j, p + 1}, adding the two singleton children, and
adding p + 1 as a new element of all the ancestors of {j}. Similarly, let ﬂp(i)l be the
set of trees obtained by adding {p + 1} as a child to some non-terminal node, and
propagating upward. Finally let %(i)] denote the trees 7” obtained from 7' € .7, by
placing {p + 1} as a sibling of the root of 7' (which is V,,), both becoming children
of the root of 7’ (which is V). These operations add two nodes to the original
trees for groups (1) and (3) (so that (—1)!7! remains unchanged), and only one node
for group (2), changing the sign of (—1)!”!. Notice that Z)(i)l, %(i)l, %@1 form a
partition of 7, 41.
We can already see that

p
> dpdypdehy,....d%p(h; hp), ... dohy)

j=1
=(=D" Y DU,k ).

7 (1)
TeT,

Now consider the derivatives in the right-hand side of (7.9). From the recursive
definition of U7, we find that

dUr(hy, ..., hp, hppr) = —do™ ' d*oUr (hy, ... hp), hpir)
+de~td" T o(Ur, (hy,), ..., Uz, (hy,), hpi1)

+ Y do'd"o(Ur (hy,). ... dUr, (hy,. hpi). ... Ur, (hy,)
j=1
=—(=D7 > D"MUr(h, . )

73
TeZ,

+ (=07 Y DUy ).

7 (2)
TeZ,}
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Putting all the terms together, we retrieve

A" @) dphy, ... dphy) o = (=P Y (=DTUr (i, ),

T€'7p+l

which proves the lemma. (]

An immediate consequence of this lemma is that, for some continuous function C,
one has [l p.co < C(Ul@ll p.oo) ld™ 1% . Using this, we can obtain the fact that
Diff} "°°(£2) is invariant by function inversion, completing the proof of Theorem 7.6.
Here is another consequence.

Proposition 7.8 If ¢ € Diff} > (2), the mapping I, : n +> (¢ +n)~ ! is differen-
tiable at ) = 0 when considered as a mapping from C{(£2, R?) to CP~1(2,RY),
with derivative dZ,(0)n = —d(¢ " Ynop™ = —(dp~'n) o 7.

Proof We first consider the case ¢ = id. Then d(id + n) = Id + dn and d*(id +
n) = d*n for k > 2. We have

(id+n'—id+n=Gd+np ' —Gd+moGd+nm ' +n=n—no(d+n~"

so that

Gd+m " —id +7llee = In =10 Gd + 1)
=l o (id+n) —nlle
< ldnllsolnllse = OUINIF o0)-

Similarly, with d((id+n)~"")=-Ad+dn) o @(d+n)~"=1d— (dndd+
dm~ o id+mn~",

ld(Gd +m ™1 —1d + dnllce = lldn o (id + 1) — dn(d +dn) s
= lln o (id +n) — nlloo < ldnlloclnlloc = O3 5)-

Using again the fact that (Id + dn)~! —id = —dn(Id + dn)~!, we can check that,
forT € ., k > 2,

Ur((d+dn) "y, ... dd +dn) ") = o(Inll} »)-
unless 7 is such that all children of the root are singletons, for which
Ur((d +dm~"hy, ..., Ad +dn)~ ) = —d*n(hy, ... hi) + OUInlE o0)-
It follows that

ld*(Gd +m ) (A1, . i) o G+ 1) +d* (ki .. ) [l = OUINI7 00)-
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The left-hand side is also equal to
la*(Gd +m) ™) (R, o b))+ d i) o () o
and
ld*n(hy, ... he) o Gd +m) ™" = d*n(hy, ... k)lloo < 1A ol nlloo-

This implies that

(G +m ™D, . b +d (R, k)l = O UM ig1,00)+
proving that dZig(0)n = —n.

To prove the result for ¢ # id, we note that (o +n)~! = ¢~ ' o (id +no =)~
The conclusion then results from the chain rule applied to

1 1

ni>id+noe s ([d+nope ™) s plod+no0e H!
respectively mapping CZ (£2, R?) to Diff?"> to Diff? "> to Diff?~">. The differ-
entiability of each map results from Theorem 7.16, the first part of the proof and the

fact that ! € Diff5 > (£2). O

Diffeomorphisms act on various structures supported by §2. Consider, for exam-
ple, a function I : £2 — R (an image) and a diffeomorphism ¢ of £2. The associated
deformation creates a new image I’ on §2 by letting I’(y) be the value of I at the
position x which has been moved to y,i.e., I'(y) = I(p~'(y))or I’ =T o o~ '. We
will be specifically interested in the inverse problem of estimating the best diffeo-
morphism from the output of its action. For example, the image matching problem
consists in finding an algorithm which, given two functions 7 and I’ on £2, is able to
recover a plausible diffeomorphism ¢ such that I’ = I o ¢!,

To be able to develop these algorithms, we will need a computational construction
of diffeomorphisms (this is not provided by Definition 7.2). In order to motivate this
general construction, we start with a direct, but limited, way of building diffeomor-
phisms, by small perturbations of the identity.

Proposition 7.9 Letu € C'(£2, RY), and assume that,

(i) u(x) and du(x) tend to 0 as x tends to infinity.
(ii) There exists a constant Cy such that lu(x)| < Cop dist(x, §2°) for all x € 2.

Then, for small enough ¢, ¢ : x — x + cu(x) is a diffeomorphism of 2.

(Of course, if £2 has no boundary, one can take C arbitrarily small.)

Proof The function ¢ is obviously continuously differentiable. Since du is contin-
uous and tends to O at infinity, it is bounded and there exists a constant C such
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that [u(x) — u(x’)| < C |x —x'|. We will take € < 1/(C + Co). This implies that
x + eu(x) takes §2 into itself. Indeed, if y € £2¢, then

[x +eulx) —y| = (1 — Coe)dist(x, 2°) > 0.

We first show that ¢ is one-to-one. If p(x) = ©(x") we have

|x—x”=£|u(x)—u(x’)|§C€’x—x’| < ’x—x’}

C+Cy
which implies x = x’ as needed.

We now show that ¢ is onto. Take y € £2 and p = dist(y, £2°). If |n| < p, then
u(y + n) is well defined and satisfies

elu(y +n)| < elu(y)| +eCn < e(Co+ C)p < p.

(The conclusion obviously also holds when p = +o00.) Therefore, ¥, (1)) := —eu(y +
1) maps B(0, p) into itself. For n, n" € B(0, p), we have

|1;Z]y(77) - 7/})*(77,)| <eC |T} — T]" .

Since eC < 1, 9, is contractive, and the fixed-point theorem (Theorem C.1) implies
that there exists an 7 € B(0, p) such that v/, () = 1. But in this case,

eOy+m=y+nteuy+mn =y+n—10n) =y,
so that y € ¢(£2) and ¢ is onto.
It remains to prove that ¢! is continuous. Assume that ©(x) = y and p(x') = y'.
Then, fromx — x' =y — ¥y — e(u(x) — u(x’)) we get

Ix —x'| < |y — Y|+ Celx — x|,

so that

lx — x| < ly =yl

1
1-Ce
which proves the continuity of ¢! (I

We therefore know how to build small deformations. Of course, we cannot be
satisfied with this, since they correspond to a rather limited class of diffeomorphisms.
However, we can use them to generate large deformations, because diffeomorphisms
can be combined using composition.

Thus, let ¢g > 0 and uy, ..., u,, ... be vector fields on £2 which are such that,
for € < g9, id + €u; is a diffeomorphism of £2. Consider

©n = (1d+€un)oo(1d+5u1)
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We have
Cn+1 = (id + euy) o Pn = n + €Uy © Py,

which can also be written as (@,4+1 — ¢n)/€ = U, o @,. Fixing x € §2 and letting
X0 = X, X, = py(x), we have the relation (x,4+; — x,)/¢ = u,(x,). This can be
viewed as a discretization of a differential equation, of the form (introducing a con-
tinuous time variable 7):

Orx(t) = u(t, x(1)).

This motivates the rest of this chapter, which will be devoted to building diffeo-
morphisms as flows associated to ordinary differential equations (ODEs).

7.2 Flows and Groups of Diffeomorphisms

7.2.1 Definitions

We let 2 C R? be open and denote as before by C}'(£2, RY) the Banach space of
continuously differentiable vector fields v on £2 that tend to O at infinity, according
to Definition A.14. Elements v € C} (£22, R?) can be considered as defined on RY
by setting v(x) = 0 if x ¢ £2, and therefore may also be considered as elements of
CJ(RY, RY).

We define the set X7 (T, £2) = L' ([0, T, Cé’(.Q, R?)) of absolutely integrable
functions from [0, 7] to CJ (2, RY). An element of X7'!(T, ) is a time-dependent
vector field, (v(t, -), ¢ € [0, 1]) such that, for each 1, v(t) := v(t, -) € CJ(2,R?)
and

T
vl 2 7 1=/ vl p 00 dt < 0. (7.10)
0

XP!is a Banach space provided one identifies time-dependent vector fields v and
v’ such that v(¢, -) = v'(¢, -) for almost all r € [0, T].

7.2.2 Variation in the Initial Condition

The results developed in Appendix C for ODEs in Banach spaces clearly apply to this
context with B = R and noting that C§(£2, RY) C C{ (£2, R?) (see the notation
in Appendix C). In particular, for v € X'!(T, £2), the ordinary differential equation
0,y = v(t, y) has a unique solution over [0, T'] given any initial condition y(s) = x,

and the associated flow, ¢}, defined by
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Dy, = v() oy, (7.11)

and o}, = id, is a diffeomorphism of §2, with derivative described in Theorems C.15
and C.18. We repeat these results in the following theorem.

Theorem 7.10 Ifp > 1 and fOT lv@)l p,codt < 00, then, forall s, t € [0, T], @}, is
p times differentiable and for all ¢ < p

A dpg = d?(v(t) o ¢y,) (7.12)

with initial condition d9 ¢}, = 1d, for g = 1 and di¢?; = 0 for q > 1. In particular,
d?, satisfies
O W (t) = du(t, oy, (x))W(2). (7.13)

Moreover, there exist constants C, C' (independent of v) such that

1
sup | ¢! — id||p’oo < Cexp (c/ ||v(z)||,,,oodt> . (7.14)
s€[0,1] 0

The following theorem also controls the behavior of ¢y, at infinity.
Theorem 7.11 If p > 1 and fot V()| p.codt < 00, then Y, € Diff5 > (£2).

Proof We only need to complete Theorem 7.10 by proving that p(x) — x and its
derivatives vanish at infinity. We have

@gt(x) - X :/ v (U, Psu(x)) du,

which implies that ¢}, (x) — x| < (t — 5)||v||c. Note that ¢}, (x) —x = 0 for x ¢
£2, so that there is nothing to prove for these x’s.
Let

1
K, = {x € £ :|x|] < n and dist(x, 2°) > —}
n

so that (}C,, m > 1) is an increasing sequence of compact subsets of 2 and any
compact subset of £2 is included in some /C, for n large enough. Assume (to reach
a contradiction) that there exists an £ > 0 such that, for all n, there exists x, €
£2\ K, such that |¢}, (x,) — x,| > €. Because ¢}, —id is bounded, ¢?,(x,) also
tends to infinity, for all u € [s, ¢], so that |v(u, p?,(x,))| — 0. It suffices to apply
the dominated convergence theorem to conclude that

T
/ [v(u, Qs (x.)) du — 0,
0

which provides our contradiction. We have therefore shown that, foralle > 0, one can
take n large enough so that |}, (x) — x| < e forall x € §2 \ K, so that ¢, —id €
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Cg (£2, RY). This argument can be extended to derivatives using Lemma 7.3 to prove
the proposition. The details are left to the reader O

7.2.3 Variations with Respect to the Vector Field

The previous equation can be analyzed in a more abstract form, by considering the
mapping ¥ : CJ (2, R?) — Cl (22, R?) defined by ¥V (¢, u)(x) = v(t, x + u(x))
for v € XPYNT, 2), or V(t,u) = v(t) o (id + u). Letting B = C} (2, R?) the
assumption that v € XP*!(T, 2) implies that ¥ € L'([0, T], C}(B, B)). This
statement relies on the observation that if we let (for given ¢ and u)

R(t, h) =V (t,u+h) — V't u) —dv(t) o (id + u)h
=v(t)o (id+u+h) —v{t)o(d+u) — dvt) o (id + u)h

then Lemma 7.3 and the product rule imply that

1
IR, By = / (dv(t) o (id 4 u + eh) — dv(t) o (id + u)) h de
0

< pP(dv(@), 1]l p.o) 1] p.oo
= O(thp,oo)»

so that ' (¢) is C! with derivative d¥? (¢, u) = dv(¢t) o (id + u), which is continu-
ous in u with respect to the (p, co)-norm if v(¢) € Cg“ (2, R%). Moreover,

T T
/ ld7* (1) lloodt < / ldv()llp,ccdt < [Vl xr+117,
0 0

proving that #* e L' ([0, T1], Cg(B, B)). This shows that ,u = #"(t,u) has a
unique solution with u’(z) € CJ(2,R?), u’(s) =0 and ¢!, =id+u’(t) €
Diff} > (£2). We therefore retrieve the previous result (but under a stronger assump-
tion on v).

We now apply Theorem C.17 in this framework to study the differentiability of
the flow with respect to v. The (linear) mapping v — #V is C' from X?+(T, Q)
to L'([0, T], C} (B, B)) with 8,7 h = ¥, so that the theorem’s assumptions are
satisfied. We therefore have the following result (see Eq. (C.13) after Theorem C.17).

Theorem 7.12 The mapping v+ ¢V, is differentiable from XP+11(T, $2)
to Diff"™ (£2) and

t
Dpgih =/ (dpy,h(u)) o wy,du. (7.15)
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Note that, even though Theorem 7.11 states that ¢?, € Diff{ 12 jtis with respect to
the (p, oo) norm that this mapping is differentiable. Combined with Theorem 7.10
this result implies that, for v, v € X P+L1 we have

1 t
‘ = / / dpl= (G — vy dude
p,o0 0 Js

< (1+ Cexp (C'max ([[v]lxrer, [0l xp1))) 10— 0 [l xpera.
(7.16)

v v
Pst — Pst

7.2.4 Weak Continuity

The previous theorem implies the continuity of v = ¢}, in the norm topology, when
this mapping is considered from X'7*1:> to Diff}">. We now show that this mapping
is also weakly continuous, or, more precisely, that if v” is any bounded weakly
converging sequence in XPT1*° with limit v, then (!, and its first p derivatives
converge to ¢y, uniformly over compact sets. Write, for a d-tuple J and x € £2,

dypb (x) — 95 (x) = / (0 (0@) 0 2, (x)) — 85 (V" (u) 0 7, (x))) du.
‘We have

0,00 (x) — 800 (x)| <

/ (0 (W) 0 ¥, (x)) — 0y (V" () 0 ¥, (x))) du
‘ (7.17)

+ / 10, (0" (1) 0 2, (1)) — By (0" () 0 9. (x))| dc.
(7.18)

Applying Lemma 7.3, we see that the second integral is less than
! n
Cf V" @)l p41,00 (lr;leg; 105, (x) — awi’u(xﬂ) du

for some constant C that depends on max,, ||¢y, || p,o0 and max,, || cpg; Il p, 0, bOth quan-
tities being controlled by ||v||, « and sup, |[v"] ;. We are therefore in position to
apply Theorem C.11 (Gronwall’s lemma) to (7.17) with

’

M(T, C) = max \8]¢§s+7 - 814,0§+7_
J1=p

a(7) = [[v"(s + 7l p11,00 and
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(7, x) =

s+T
f (95 ((0) 0 ©Y) — By (V" () 0 %)) de‘ ) (7.19)

This yields the inequality

max 2,5, () = Brpy ()| < "0 = )

c/ "G —s) |v"(®) ||p+1’o<> exp </H [v" (&) ||p+1’oo d@’) do.  (7.20)

The weak convergence of v" to v implies that

S+T
[ o;v" (0, y(0))do — /311)(9, y(0))do

for any measurable function y, since the right-hand side is a continuous linear form of
v e xptheo, Using this and Lemma 7.3, we see that ¢" (7, x) — 0 for all 7. Adding
to this the fact that ¢" (7, x) is bounded uniformly in 7 (again as a consequence of
Lemma 7.3), it suffices to apply the dominated convergence theorem to obtain the
fact that the left-hand side of (7.20) goes to 0 as n — oo.

Theorem 7.10 and Eq. (C.5) imply that there exists a constant C such that, for all
n>0,andx,y € £

|0 (02 () — @Y (] < Clx = yl.

This implies that the family 9;¢" is equicontinuous and a similar argument
shows that it is bounded. Letting Q be any compact subset of §2, Ascoli’s theorem
[306] implies that (9,47, n > 0) is relatively compact with respect to the uniform
convergence on Q. But the limit of any subsequence that converges uniformly must
be 0;¢?, since it is already the pointwise limit of the whole sequence. This implies
that the uniform limit exists and is equal to 9;¢?,. Thus, we have just proved the
following theorem:

Theorem 7.13 ([126]) If v € XP*LU(T, 2) and V" is a bounded sequence in
XPLiT ) which weakly converges to v, then, for all s,t € [0, T], for every
compact subset Q C 2 and every tuple J such that |J| < p,

lim r){leaé( |51(80;): (x) — @Et(x))| =0.

n—o0

We will say that " converges to ¢’ in the (p, 0o)-compact topology. This topology
is metrizable, with possible metric

Sy 10,0(x) — 0,9(x))|
d(p, V) = 27" 7
e =0 ’I‘I;aQ)"( ‘rﬂg 14+ 1050(x) — 059 (x)|
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where Q, is an increasing sequence of compact sets such that any compactset Q € £2
belongs to Q, for large enough n.

7.2.5 Admissible Banach Spaces

The previous results are true a fortiori for vector fields v belonging to Banach or
Hilbert spaces that are continuously embedded in C}(£2, R?). We formalize this
with the following definitions.

Definition 7.14 A Banach space V C Cé (£2, R?) is admissible if it is (canonically)
embedded in Cé (£2, ]Rd), i.e., there exists a constant C such that, forall v € V,

lvlly = Cllvll oo - (7.21)

If V is admissible, we denote by X, = L'([0, 1], V) the set of time-dependent
vector fields (v(¢), ¢t € [0, 1]) such that, for each ¢, v(¢) € V and

!
lvollx; 12/ lv@®lly dr < oo.
0

If the interval [0, 1] is replaced by [0, T'], we will use the notation X‘I,(T) and
”U”X“,,T

Definition 7.15 If V C Cé (£2, R%) is admissible, denote by
Diffy = {¢f;. v € Ay}

the set of diffeomorphisms provided by flows associated to elements v € X‘l, at
time 1.

Theorem 7.16 Diffy is a subgroup ofDiff(l)’OO(.Q).

Proof The inclusion is obvious from Theorem 7.11, so we focus on the subgroup
property. The identity function belongs to Diffy: it corresponds, for example, to
©b, when v = 0.If ¢ = ), and ¢’ = ¢}, with v, v’ € X}, then ¢/’ 0 ¥ = ol with
w(t) = v(2r) forr € [0, 1/2] and w(#) = v/ (2t — 1) fort € (1/2, 1] (the details are
left to the reader) and w belongs to Xy, Similarly, if ¢ = ¢}, then 1p~' = 1§} with
w(t) = —v(1 —t). Indeed, we have

t

1-t
o1 () =y — / v(l —5) o (y)ds =y +/ v(s) 0 @1 ds,
0 1

which implies (by the uniqueness theorem) that ¢, (y) = ¢7,(y) and in particular
P01 = ¢o- This proves that Diffy is a subgroup of Diff (l)’°°. O
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Thus, by selecting a certain Banach space V, we can in turn specify a group of
diffeomorphisms. In particular, elements in Diffy inherit the smoothness properties
of elements of V. Theorems7.10 and 7.11 indeed imply that Diffy is a subgroup of
Diff}"™ as soon as V is embedded in C} (2, RY).

We can interpret this framework in terms of a control system, in which vector
fields in V control diffeomorphisms through the flow equation 0;p(¢) = v(¢) o (¢).
The set Diffy can then be seen as the group of attainable diffeomorphisms, starting
from the identity and using control trajectories with finite cost || v|| X}

7.2.6 A Distance on Gy
Let V be an admissible Banach space. For ¢ and ¢’ in Diffy, we let
dy@ )= inf il o' =g ov). (7.22)
veEXL(2)

We have the following theorem:

Theorem 7.17 (Trouvé) The function dy is a distance on Difty, and (Diffy, dy)
is a complete metric space.

Recall that dy is a distance if it is symmetric, satisfies the triangle inequality
dy (W, ) < dy (@, ") +dy (", 1) and is such that dy (), ') = 0 if and only
ifp =4,

Proof Note that the set over which the infimum is computed is not empty: if 1, ¢’ €
Diffy, then’ o ¢~! € Diffy (because Diffy is a group) and therefore can be written
in the form ¢}, for some v € X}

Let us start with the symmetry: fix € > 0 and v such that IIUIIX& <dW,Y)+e
and ¢’ = §, o 1. This implies that ¢ = ¢}, o ¢/, but we know (from the proof of
Theorem 7.16) that ¢}, = g with w(?) = —v(1 — t). Because ||w||X‘1/ = ||v||X‘1/,
we have, from the definition of dy :

dv (W', ) < lwllxy < dv(@,9) +e

and since this is true for every €, we have dy (¢, ¥) < dy (¢, ¢'). Inverting the roles
of ¢ and ¥ yields dy (¢', 1) = dv (¢, ¥").

For the triangle inequality, let v and v’ be such that |v]| x) =d@, Y + ¢,
|| v’||XV, <d@W", Y +e " =@ opandy) = cpg] o ¢". We thus have )’ = cpg/l o
©g; © ¢ and we know, still from the proof of Theorem 7.16, that (g, o <p8/] = ¥
with w() = v/(2¢) for ¢t € [0, 1/2] and w(¢) = v(2t — 1) for t € (1/2, 1]. But, in
this case, [[wllx; = llvllxy + ||v/||X‘} so that

d@W, V) < Nwllxy <d@, ") +d@", ¢) + 2,
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which implies the triangle inequality, since this is true for every € > 0.

We obviously have d (v, 1) = 0 since @81 = id. Assume that d (¢, ¢") = 0. This
implies that there exists a sequence v, such that |[v,||x; — 0 and Yot = g
The continuity of v — ¢V, implies that ¢g; — 5, = id so that ¢ = ¢/

Let us now check that we do indeed have a complete metric space. Let ¢" be
a Cauchy sequence for dy, so that, for any € > 0, there exists an n such that, for
any n > ng, dy (¢", 9"°) < e. Taking recursively € = 27", it is possible to extract a
subsequence ™ of 1" such that

Do dv(@ ) < o,
k=0

Since a Cauchy sequence converges whenever one of its subsequences does, it is
sufficient to show that ¢)"** has a limit.
From the definition of dy, there exists, for every k > 0, an element vk in X& such

that ¢+ = <p3k1 o 9™ and

[0 ]y = dy @ gmey 42747,

Let us define a time-dependent vector field v by v(¢) = 209(2¢) for ¢ € [0, 1 /21,
v(t) = 4v' (4t — 2)fort € [1/2, 3/4[, and so on: to define the general term, introduce
the dyadic sequence of times o = 0 and t 1| = #; + 27*~! and let

U(t) — 2k+lvk(2k+l(f _ tk))

fort € [t, ty41[. Since #; tends to 1 as + — 00, this defines v(¢) on [0, 1), and we fix
v(1) = 0. We have

oy, =32 [ @ = ] as
k=0 Tk

S|
=3 [ Il
k=070

< L4y dy @, g,

k=0

so that v € X;}. Now, consider the associated flow ¢, : it is obtained by first inte-
grating 2v°(2¢) between [0, 1/2), which yields o1 = gag(;. Iterating this, we have

v ok V0
Poys = Po1 © "2 Por >

so that
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P = (pgtm o).

Let 9> = g, o ¢"0. We also have ™ = ¢ | o 9", Because ¢} | = <p10”1k with
wh(r) = v((r = 1)/(1 = 1))/(1 = 1), and

1
lwll 2 =/ vy dt,
I

we obtain the fact that dy(¥"™,¥>°) — 0, which completes the proof of
Theorem 7.17. O

7.2.7 Properties of the Distance
We first introduce the set of square integrable (in time) time-dependent vector fields:

Definition 7.18 Let V be an admissible Banach space of vector fields v : 2 — R?.
We define Xé as the set of time-dependent vector fields v = (v(¢), ¢ € [0, 1]) such
that, for each ¢, v; € V and

1
/ lv)|3 dt < .
0

We state without proof the important result (in which one identifies time-
dependent vector fields that coincide for almost all ¢):

Proposition 7.19 X& is a Banach space with norm

1 1/2
2
||v||X5=</ ||vf||vdr) .
0

Moreover, if V is a Hilbert space, then X‘% is also a Hilbert space with

1
<v, w)w =/ (v,, w,)vdt.
0

2
Because (fol )l dt) < [N Iv@)113 dt, we have X2 € X}, and if v € A2,

lvll 1 < vl x2- The computation of dy can be reduced to a minimization over X ‘%
by the following theorem.

Theorem 7.20 IfV is admissible and 1, € Gy, we have

dy (@, ) = inf { vl .0 = by o). (7.23)
veXy
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Proof Let dy (1, 1) be given by the right-hand side of (7.23) and dy be given by
(7.22). Because dy is the infimum over a larger set than dy, and minimizes a quantity
which is always smaller, we have dy (1, ¢') < dy (1, ¥) and we just need to prove
the reverse inequality. For this, consider v € X} such that ¢/ = ¢, o ¢. It suffices
to prove that, for any € > 0, there exists a w € X‘% such that ¢’ = @} o1 and
lwl| x2 < lvll x) te Let a be an absolutely continuous increasing function from
[0, 1] onto [0, 1], which implies a(0) = 0 and (1) = 1, and

a(t):/ a(s)dt
0

forall ¢ € [0, 1]. Applying the change of variable formula ([246], sect. 26), we have

a(t)
Pla (X) = X +/0 v(u, pou(x)) du
=x +/ a(s) v(a(s), Poas) (X)) ds,
0

so that the flow generated by w = &(s)v(a(s)) is gpgam, which coincides with ¢,
atr = 1. We have

1 1
fullag = [ 6 1o@Gnly ds = [ 1@l dr = ol
0 0

so that this time change does not affect the minimization in (7.22). However, we
have, denoting by (3(¢) the inverse of a(t),

1 1
Il = [ 662 to@entds = [ a0 86 IvoIR ds
0 0

so that this transformation can be used to reduce ||v|| x2- Define, for somen > 0, & o

B(t) = ¢/ + Ilv(®)lly), which yields 5() = (n + [v(®)lly)/cand c =1+ [[v] x;.-
This gives

lwii, = C/l Mdl =clvllxy = dlvllxy +m vl -
v o n+lv®lly ' Y !

By choosing 7 small enough, we can always arrange that [|w|| x2 < [[v]lx; + €, which
is what we wanted to prove. (I

A consequence of this result is the following fact.

Corollary 7.21 If the infimum in (7.23) is attained at some v € X3, then t >
lv@®lly is constant.

Proof Indeed, let v achieve the minimum in (7.23): we have
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dy (W, ) = llvllxz = llvllag

but ||v||X¢ > dy (1,1’ by definition. Thus, we must have ||v||X3 = [lvllx;- This
corresponds to the equality case in Schwartz’s inequality, which can only be achieved
by (almost everywhere) constant functions. (]

Corollary 7.21 is usefully completed by the following theorem:

Theorem 7.22 If V is Hilbert and admissible, and 1,1’ € Diffy, there exists a
v € X2 such that

dy @, ) = vz

and ' = g, o .

Proof By Proposition 7.19, X‘% is a Hilbert space. Let us fix a minimizing sequence
for dy (¢, 9), i.e., a sequence V" € X\% such that [[v"[|x2 — dv (¥, ') and ¢ =
<p8'; o . This implies that (||v"|] X&) is bounded and by Theorem A.20, one can
extract a subsequence of v" (which we still denote by v") that weakly converges to
some v € X‘%, such that

vl < liminf | v" ||X5 = dy (¢, ).

We now apply Theorem 7.13 (using the fact that weak convergence in X implies
weak convergence in the bigger space X! (£2)) and obtain the fact that 0" converges
to ¢V so that ¢y’ = ¢}, o ¢ remains true: this proves Theorem 7.22. (I

Remark 7.23 This theorem is true for spaces V that are more general than Hilbert
spaces, such as reflexive Banach spaces, for which L?([0, 1], V) = L2([0, 1], V*)*,
which allows one to apply the same compactness argument (thanks to the Banach—
Alaoglu theorem). We refer to [83] for more details on L” spaces of vector-valued
functions. We will, however, primarily work with admissible Hilbert spaces in the
rest of the book.



Chapter 8 ®)
Building Admissible Spaces e

In the previous chapter we defined a family of admissible spaces V that induce groups
of diffeomorphisms using flows associated to ordinary differential equations. We now
show how such spaces can be explicitly constructed, focusing on Hilbert spaces.
This construction is fundamental, because it is intimately related to computational
methods. We will in particular introduce the notion of reproducing kernels associated
to an admissible space, which will provide our main computational tool. We introduce
this in the next section.

8.1 Reproducing Kernel Hilbert Spaces

8.1.1 The Scalar Case

Although we build diffeomorphisms from Hilbert spaces of vector fields, it will be
easier to introduce reproducing kernel Hilbert spaces for scalar-valued functions,
which has its own interest anyway [15, 16, 20, 96, 299].

Let 2 c R?. Consider a Hilbert space V included in L%(£2,R). We assume
that elements of V are smooth enough, and require the inclusion and the canonical
embedding of V in C%(£2, R). For example, it suffices (from Morrey’s theorem, see
Theorem A.16) that V C H™(§2, R) with m > d /2. (Here the inclusion is assumed
to be continuous, and H™ is the Sobolev space of functions with square integrable
derivatives up to order m.) This assumption implies that there exists a constant C
such that, forallv € V,

[vlleo = Cllvlly -

We make another assumption on V.

Assumption 8.1 We assume that a relation of the kind ZlN: L @iv(x;) = 0 cannot
be true for every v € V unless a; = --- = ay =0, (x1, ..., xy) being an arbitrary
family of distinct points in £2.
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This is true, for example, if V contains functions supported on arbitrary compact
sets.
Each x in £2 specifies a linear form J, defined by (§, |v) = v(x) forx € V. We
have
[0 V)] = vl = Clivlly
so that §, € V*. Let K denote the inverse duality operator of V, associated with
Riesz’s theorem (Theorem A.12), so that, for every v € V,

v(x) = (6 |v) = Kby, v),. (8.1)

Since it belongs to V, KJ, is a continuous function y — (Kd,)(y). This defines a
function of two variables, denoted K : 2 x 2 — R, by K(y, x) = (Kd,)(y), i.e.,
K (-, x) =Ko,.
This function K has several interesting properties. First, applying Eq.(8.1) to
v = K(-,y) yields
K(x,y) =(K(.x), K(. ),

Since the last term is symmetric, we have K (x, y) = K(y, x), and because of the
obtained identity, K is called the reproducing kernel of V.

A second property is the fact that K is positive definite, in the sense that, for any
family xq, ..., xy € V and any sequence a, ..., ay in R, the double sum

N
Z OéiOéjK(anj)

ij=1

is non-negative, and vanishes if and only if all o; equal 0. Indeed, by the reproducing

2
and this is non-negative. If
v

property, this sum may be written H Z[N: i K (-, xq)
it vanishes, then vazl a; K (-, x;) = 0, which implies, by Eq.(8.1), that, for every
v € V,onehas ZlN:l a;v(x;) = 0, and our assumption on V implies thatay = - - - =
ay = 0.

Scalar Spline Interpolation

As afirst (and important) example of application of kernels, we discuss the following
interpolation problem [299].

(Sv) Fix afamily of distinct points x, . . . , xy in 2. Find a functionv € V of minimal
norm satisfying the constraints v(x;) = \;, where A, ..., Ay € R are prescribed
values.

To solve this problem, define Vj to be the set of v’s for which the constraints
vanish:
Vo={fveV :vx)=0,i=1,...,N}.

Using the kernel K, we may write
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Vo={veV:(K(x), v),=0i=1.. N}

so that
Vo =span{K (., x1), ..., K(,xy)}*,

the orthogonal being taken with respect to the V inner product. We have the following
first result.

Lemma 8.1 If there exists a solution O of problem Sy, then b€ Vi =
span{K (-, x1), ..., K(-, xy)}. Moreover, if 0 € VOl is a solution OfSVOL, thenitis a
solution of Sy .

Proof Let 0 be a solution of Sy, and let v* be its orthogonal projection on

span {K (-, x1), ..., K(-, xy)}. From the properties of orthogonal projections, we
have © — v* € Vj, which implies, by the definition of Vj, that v(x;) = v*(x;) for
i=1,...,N.But since [|v*]y < HﬁHV (by the variational characterization of the

projection), and H 0 H v = llv*lly by assumption, both norms are equal, which is only
possible when 9 = v*. Therefore, € V;- and the proof of the first assertion is com-
plete.

Now, if 0 is a solution of SVOJ. and v is any function in V which satisfies the

constraints, then v — v € Vj and ||U||%/ = Hf)”é + ”v — f)”%, > ”ﬁ] f/, which shows

that v is a solution of Sy.

This lemma allows us to restrict the search for a solution of Sy to the set of
linear combinations of K (-, x1), ..., K (-, xn), which places us in a convenient finite-
dimensional situation. We look for ¢ in the form

N
D) =Y oK (x, x)
i=1

and we introduce the N x N matrix S with coefficients s;; = K (x;, x;). The whole
problem may now be reformulated as a function of the vector a« = (ay, ..., ay)’
(a column vector) and of the matrix S. Indeed, by the reproducing property of K, we
have

N
H’A’H?/ZZO‘W/'K(X[,XJ): ol Sa (8.2)

i=1

and each constraint may be written as \; = v(x;) = Z?’zl oK (x;, x;), so that, let-
ting A= (\f,..., A\y)7, the whole system of constraints may be expressed as
Sa =\

Our hypotheses imply that S is invertible; indeed, if Sa = 0, then o’ Sa =0
which, by Eq. (8.2) and the positive definiteness of K, is only possible when oo = 0
(we assume that the x;’s are distinct). Therefore, there is only one v in VOL which sat-
isfies the constraints, and it corresponds to o = § ~1\. These results are summarized
in the next theorem.



208 8 Building Admissible Spaces

Theorem 8.2 Problem Sy has a unique solution in 'V, given by
N
D) =) K(x, x)ai
i=1

with
-1

g K(x1,x1) ... K(xi,xn) Al

ay K(xy,x1) ... K(xn, xy) AN

Another important variant of the same problem comes when the “hard” constraints
v(x;) = A; are replaced by “soft” constraints, in the form of a penalty function added
to the minimized norm. This may be expressed as the minimization of a function of
the form

N
E@) = vlly + €Y ollv@) =y

i=1

for some increasing, convex function on [0, +00) and C > 0. Since the second term
of E does not depend on the projection of v on Vj;, Lemma 8.1 remains valid, again
reducing the problem to finding v of the form

N
() =Y K(x,x)a
i=1

for which
N N N
E(U)Z ZaiajK(xi,xj)+CZ<p ZK(xi,xj)ozj—)\i
ij=1 i=1 j=l1

Assume, to simplify, that ¢ is differentiable and ¢(0) = 0. We have, letting
P(x) = sign(x)p(x),

Assuming, still, that the x; are distinct, we can apply S~! to the system 0o, E =
0,j =1,..., N, which characterizes the minimum, yielding

N N
00, E =2 0iK(xi,x)) +C ) K(xiyx))y (
i=1 i=1

N
D K x)or — A
=1

N
2a; + Cy [ DK, xpa; — Ai| | =0. (8.3)
j=1
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One can use convex optimization methods to minimize E [40, 221]. The particular
caseof p(x) = x?%is much simpler to solve, since in this case )(x) = 2x and Eq. (8.3)
becomes

N
20; +2C | D K(xi,xj)a; — A | =0.
j=1

The solution of this equation is « = (S + Id/C)~! ), yielding a result very similar
to Theorem 8.2:

Theorem 8.3 The unique minimum over V of

N
Il +C Y o) = Al

i=1
is attained at

N
(x) = Z K(x, xi)a;
i=1

with
(03] >\l

=(S+1d/C0)7!
anN >\N
and
Ky, x) ... K(x1,xn)
g — . ) .

Ky, x1) ... K(xy,xy)

To conclude this section, we prove that V is the Hilbert space generated by the
kernel functions. Recall that the Hilbert space generated by a family of vectors is the
closure of the vector space formed by all finite linear combinations of these vectors.

Theorem 8.4 IfV C L*(£2, R) is an RKHS with kernel K, then
V = Hilb {K (-, x), x € 2} .

Proof Letv € V and
W =Hilb{K (-, x), x € £2}.

We have W C V since the latter is a Hilbert space containing all K (-, x). Let w be
the orthogonal projection of v on W. Then, for all x € 2, w(x) = (w, K(, x))v =
<v , K(-, x))v = v(x) by definition of the kernel and of the orthogonal projection.
This proves that v = w € W and therefore W = V. ]
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8.1.2 The Vector Case

In the previous section, elements of V were functions from £2 C R? to R. When
working with deformations, which is our goal here, functions of interest describe
displacements of points in £2 and therefore must be vector-valued. This leads us to
address the problem of spline approximation for vector fields in £2, which, as will
be seen, is handled quite similarly to the scalar case.

So, in this section, V is a Hilbert space, canonically embedded in L?(£2,RF) and
in C%(£2, R¥). We will mostly be interested in the case k = d, i.e., V contains vector
fields on £2. In this case, the assumption is obviously true if V' is admissible. Fixing
x € 2, the evaluation function v — v(x) is a continuous linear map from V to R*.
This implies that, for any a € RF, the function v — a’ v(x) is a continuous linear
functional on V. We will denote this linear form by ad,, so that

(ady |v) =aTv(x). (8.4)
Let, as before, K denote the inverse duality operator of V, so that, for any v € V
(K@d,), v), = a’ v(x). (8.5)

The map a — K(ad,) is linear from R* to V. (This is because a — a’ v(x) is
linear and because of the uniqueness of the Riesz representation.) Therefore, for
y € 2, the map a — K(aé,)(y) is linear from R* to R¥. This implies that there
exists a function taking values in the set of k by k matrices, that we will denote by
(v, x) = K (v, x), such that, fora € R*, x, y € 2, K(aé,)(y) = K(y, x)a.

The kernel K here being matrix-valued, the reproducing property is

(K(.x)a, K(-,y)b), = a’ K(x,y)b.
From the symmetry of the first term, we obtain the fact that, for all a,b € RF,

a” K(x,y)b = b" K(y, x)a, which implies that K (y,x) = K(x, y)T.
To ensure the positivity of K, we make an assumption similar to the scalar case:

Assumption 8.2 Ifxi,...,xy € 2 and oy, ..., ay € R¥ are such that, for all v €
V, al v+ + aﬁ v(xy) =0,thena; =--- = ay =0.
Under this assumption, it is easy to prove that, for all oy, ..., ay € R,

N
Z ol K(x;,x;)a; >0,

i,j=1

with equality if and only if all «; vanish.
The generalization of Theorem 8.4 is straightforward.
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Theorem 8.5 IfV C L%(£2, R¥) is an RKHS with kernel K, then

V =Hilb{K (-, x)a,x € 2,a € R'}.

Vector Spline Interpolation
The interpolation problem in the vector case is

(Sy) Given x1,...,xy in 2, A, ..., Ay in Rk,ﬁnd v in V, with minimum norm,
such that v(x;) = \;.
As before, we let

Vo={veV:vx)=0,i=1,...,N}.

Then, Lemma 8.1 remains valid (we omit the proof, which duplicates the scalar case):

Lemma 8.6 If there exists a solution v of problem Sy, then ¥ € VOJ‘. Moreover, if
b € V4" is a solution ofSVOL, then it is a solution of Sy.

The characterization of V" is similar to the scalar case:

Lemma 8.7

N
V0l= v=2K(.,x,~)ai,a1,...,aN e R} .

i=1

Proof 1Ttis clear that w € Vj if and only if, for any «, ..., ay, one has
N
Z a,-T w(x;) = 0.
i=1

Thus w € V; if and only if (v , w)v = 0 for all v of the form v = ZlN:l K, x)a;.
Thus

N 1
Vo = {v:ZK(o,xi)a,-,oq,...,aN GR"}

i=1

. N . . . .
and since v = Zi:l K(,x)a;,ar,...,ay € Rk} is finite-dimensional, hence
closed, one has

N
VOJ‘: {U:ZK(',X[)O[[,OQ,...,CEN ERk}.

i=1
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When v = Zj.v:l K(,xj)a; € VOL, the constraint v(x;) = A; yields

N
Z K(xi, xj)aj = N.

j=1
Since we also have, in this case,

N

2 T
lvlly = E o; K(xi,xj)aj,
ij=1

the whole problem can be rewritten quite concisely with matrices, introducing the

notation
K(x1,x1) ... K(x1,xn)

S=8Sx1,...,xy) = : : : , (8.6)
K(xy,x1) ... K(xn, xn)

which is now a block matrix of size Nk x Nk,

each «;, \; being k-dimensional column vectors. The whole set of constraints now
becomes Saw = Aand ||v ||%, = o' Sa.Thus, replacing numbers by blocks, the prob-
lem has exactly the same structure as in the scalar case, and we can repeat the results
we have obtained.

Theorem 8.8 (Interpolating splines) Problem (Sy ) has a unique solutionin 'V, given

by
N
() = ) K(x,xi)a;
i=1
with »
a K(xi,x1) ... K(x1,xn) A\
ay K(@nox) & Koy, xy) Aw

Theorem 8.9 (Smoothing splines) The minimum over V of

N
Il +C Y o) = Ml

i=1
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is attained at

N
v(x) = Z K(x, xi)a;
i=1

with
(631 Al

=(S+Id/0)7!

an AN

and S = S(xy, ..., xy) given by Eq. (8.6).

8.1.3 Derivatives of the Kernel

If the RKHS V is continuously embedded in C?(£2, R¥), then, for any y € £2, the
function x > K (x, y) is in C?(£2, My (R)) (because K (-, y)b € V for all b € R¥)
and sois y — K (x, y) by symmetry. This proves that, for any r < b, both 9{ K and
95K are well defined. We now go further and prove that all derivatives 97 9, K exist
forg,r < p.

By assumption, the linear form blé;’)(al, s @) v bldv(y)a, ..., ap) s
continuous on V for r < p,forany y € §2, b; € RFf and ay, ..., a, € R?. (Recall
that d"v(y) is a multilinear map from (R?)" to R¥). Taking v = K (-, x)b, we can
write

b{ O (K (y, )b (@, ..., a;) = (K(, x)by, K(b16 (ar, ..., a))),
= szK(bl(S)(,r)(al» ca))(X).

This allows us to identify K(blévﬁ,") (ai, ..., a;)), noticing that

bl O{ (K (y, x)bx)(ay, ..., a,) = & (b] K(y,x)b)(ai, ..., a)
= bl O5(K (x, y)b)(ar, - .., a),

which yields
K516 (@i, ..., a))(x) = 85(K (x, y)bi)(ar, ..., a,),

proving that the right-hand side belongs to V and is therefore p times differentiable
in x. We summarize this in the following proposition.

Proposition 8.10 IfV isa Hilbert space continuously embedded in C? (2, R¥), then
its reproducing kernel K is such that 8105 K exists for all ¢, r < p. More precisely,
forallb e Rfand ay, ..., a, € RY the vector field
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AK(C, b)) (ar,...,a) x> O5(K(x,y)b)(ai, ..., a,)

belongs to V and satisfies
&G, ... a) = <35(1<(-, Vh)(ar,....a), v>V 8.7)

forallveV.

Applying (8.7) to v = 95 (K (-, y)b')(a], ..., a.) we get the identity

<65(K(., VbY@, ... a), &K YW@, ..., a;/)>v
=205 ('K (y,y)b')ai,....a,d|,....d.) (8.8)

”

forr,r’ < p.
In the following, it will be convenient to use the notation

KK, y)b,a,....a)=05K(, y)b)(ai,...,a). (8.9)

8.2 Building V from Operators

One way to define a Hilbert space V of smooth functions or vector fields is to use
inner products associated to operators. For example, consider the spaces H" (R?, R),
that can be equipped with the norm

2 2
Il =" 10aul3,

lal<m

wherea = (o, ..., ag) isamulti-index, |a] = @y + - -+ + agand 9, = 0! .. 8;’;’

If u is a smooth (C*°) and compactly supported function, the partial derivatives can
be integrated by parts to write

”M”il,z = (AM ’ u)z

with
Au= Y " (=D)d5u.

lal<m

By construction, one has, for any pair of smooth compactly supported functions,

(Au, U>2 = <u, U)m,z = (“’ Av)z’
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which expresses the fact that A is a symmetric operator. From this identity, it appears
that A coincides with the duality operator . on H” (£2, R) (modulo the identification
of the function Au with the linear form

Audx : v+ /(Au) vdx,

i.e., modulo the identification of L? with its dual).
Obviously, one can build an infinity of operators that provide a Hilbert structure
equivalent to the H™ inner product, i.e., such that

CQ(M y v)m,2 =< (AM |U)2 = C[(M ’ v>m,2

for some positive constants ¢y and ¢;. Any operator of the form

Au = Z (_1)_|a’|pa82au

la|<m

with positive p,’s will work. Actually, most of these coefficients can vanish and still
provide an equivalent norm. This can be shown by considering the operator in the
Fourier domain.
Indeed, by PropositionA.22, the Fourier transform of Au is F(Au)(€) =
Py (©i(§) with
PA() = Y pa2m)lg

o) <m

and £20 = £ ... &3
Using the isometry property of the Fourier transform, one has

(Au , u>2 = <PA12 , 12)2

and we see that, as soon as there exist two constants 0 < ¢g < ¢ such that

P46
©= 5 o emmes =

the norm associated to A will be equivalent to the H™ norm. It is not hard to show, in
addition, that this happens if and only if the constant coefficient py and the leading
coefficients p, with max; «; = m are all positive. For example, the polynomial

d

Py = 1+a@m™ ) &

j=1

corresponds to the operator
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d
Au=u+(—1)"a Z@i;”u
j=1

with norm

d
2 2 2
leelly = Null3 +a ) 105 ul?,
j=t

which is equivalent to the H™ norm. Another equivalent norm is provided by taking
P4(&) = (1 +2mal¢*)" (8.10)

which corresponds to the operator A = (Id — aA)™, where A is the Laplacian. This
operator has important invariance properties.

More generally, we will say that V is a Hilbert space associated to an operator A
if A can be defined on a domain D(A) C V, with D(A) dense in V and

(Au, v), =(u, v),

foru, v € D(A).Insuchacase, A coincides with the restriction of the duality operator
of Vto D(A).

It is also interesting to consider the situation in which one starts from the operator
A and its domain D(A) to build the associated Hilbert space. This is called the
Friedrichs extension of an operator [315]. Since the construction is not restricted to
subspaces of L?(£2, R), we make the following presentation with an arbitrary Hilbert
space H.

To start, we need a subspace D, included in H and dense in this space, and
an operator (i.e., a linear functional), L : D — H. Our typical application will be
with D = C°($2, R?) (the set of C* functions with compact support in £2) and
H = L*(£2,RY). In such a case, L may be chosen as a differential operator of any
degree, since derivatives of C* functions with compact support obviously belong to
L?. However, L will be assumed to satisfy an additional monotonicity constraint:

Assumption 8.3 The operator L is assumed to be symmetric and strongly monotonic
on D, which means that there exists a constant ¢ > 0 such that, for all u € D,

(u, Lu), > clu, u), (8.11)
and forallu,v € D

(., Lv), =(Lu, v),. (8.12)
An example of strongly monotonic operator on C°(£2, R) is givenby Lu = —Au +

Au, where A is the Laplacian: Au = Zle 8)%’ u. Indeed, in this case, and when u has
compact support, an integration by parts yields
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k
_/ Au(x)u(x)dx = Z/ (&Ciu)2 dx >0,
2 i=1 7%

so that (u, Lu), > Nu, u),,.
Returning to the general case, the operator L induces an inner product on D,
defined by

<"" U)L = (”* Lv)H'

Assumption 8.3 ensures the symmetry of this product and its positive definiteness. But
D is not complete with respect to ||-||;, so we need to enlarge it (and simultaneously
extend L) to obtain a Hilbert space. Note that there always exists an extension of a
pre-Hilbertian structure (such as the one we have on D) to an abstract Hilbert space.
The following result states that this extension is actually a subspace embedded in H.

Theorem 8.11 (Friedrichs extension) The inner product
(.:),:DxD—->R

can be extended to an inner product
(-,-)V:VXV—>R

where V is a dense subspace of H with respect to || - || g, and such that D is a dense
subspace of V with respect to || - ||y. The operator L can also be extended to the
duality operator of V, 1. : V. — V*. The extensions have the properties that:

e (V.| - llv) is continuously embedded in (H, || - || ).
e Ifu,ve D,(u, v)v =<Lu, v)H = (Lu |v).

e V is a Hilbert space with respect to ( , ~>V.
The fact that I is an extension of L comes modulo the identification H = H*.
Indeed, we have V. C H = H* C V* (by the “duality paradox”), so that L, defined
on D C V, can be seen as an operator with values in H*.

Definition 8.12 The restriction of the operator L. defined in Theorem8.11 to the
space
Vi={ueV:LueH" =H]

is called the Friedrichs extension of L.

(Notice that, because V is densely embedded in H, H* is in turn densely embedded
in V*, by Theorem A.13.) In the following, we will stop using a distinct notation for
L and L., and use the same letter (IL) for the Friedrichs extension.

We will not prove Theorem 8.11, but the interested reader may refer to [315]. The
Friedrichs extension has other interesting properties:
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Theorem 8.13 The operator 1L :Vy, — H is bijective and self-adjoint, i.e.,
<]Lu , v)H = (u , ]Lv)Hforall u,v e V.

Its inverse, K = ™' : H — H is continuous and self-adjoint.

If the embedding V C H is compact, then K : H — H is a compact operator.

Note that if V is any Hilbert space continuously embedded and dense in H, then,
letting L. denote the duality operator L. : V — V*, we have by definition (Lu |v) =
<u , v)v for u, v € V. One can define Vi, asthe setof u € V suchthatLu € H,i.e.,
such that (Lu |v) = (u, v), < C|lv|lx for some constant C and all v € V. Then
the statement of Theorem 8.13 is also true.

In the following, we will mostly be interested in embeddings stronger than the L2
embedding implied by the monotony assumption. It is important that such embed-
dings are conserved by the extension whenever they are true in the initial space D.
This is stated in the next proposition.

Proposition 8.14 Ler D, V and H be as in Theorem8.11, and B be a Banach space
such that D C B C H and B is canonically embedded in H (there exists a c; > 0
such that ||u|lz > c1 ||ullz). Assume that there exists a constant c, such that, for all

ueb, 1/(]Lu, u)H > ¢ |lullg. Then V. C B and ||ully = ¢ ||lullg forallu € V.

In particular, if B is compactly embedded in H, then K =1L"': H - H is a
compact operator.

Proof Letu € V. Since D is dense in V, there exists a sequence u, € D such that
llu, — ully — 0. Thus u, is a Cauchy sequence in V and, by our assumption, it is
also a Cauchy sequence in B, so that there exists a u’ € B such that ||un - u’” B
tends to 0. But since V and B are both embedded in H, we have |u,, —ullz — 0
and Hun — u/HH — 0, which implies that u = u’. Thus u belongs to B, and since
llu,lly and ||u,|| g respectively converge to |||y and ||u| g, passing to the limit in
the inequality ||lu, ||y = c2 ||u,|l g completes the proof of Proposition 8.14. O

When £2 is bounded, one can use the fact that C°(£2, R¥) is compactly embedded
in L2(£2, R¥) to derive the following consequence of Theorem 8.13. This theorem
indeed implies that K is a compact, self-adjoint operator. Such operators have the
important property of admitting an orthonormal sequence of eigenvectors: more
precisely, there exists a decreasing sequence, (p,), of positive numbers, which is
either finite or tends to 0, and an orthonormal sequence ¢, in L2%(£2, R¥), such that,
foru € L*(£2,RY),

Ku = an > ©n LzSDn

This directly characterizes Vi, as the set

Vo ={ueLl*(Q,R: Z m“ <oo}
~
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and for u € Vi, we have

]LM—an (p,, L250n7

so that, for u, v € V|,

< ) Lu v Lo = an Qan L2 ) ()On)LZ

This indicates that V should be given by

oo
V=1uelL*R2,RY: Zp;l(u, gon)iz < oo}.

n=1

This is indeed the case, because V7, is dense in this set: if u € V, then uy =
Z,Ilv:l (u , <p,l><p,, belongs to Vy, and ||uy — u|ly — 0. We summarize what we have
just obtained in the following theorem.

Theorem 8.15 Assume that §2 is bounded, D = C°(S2, RY, H = L*(£2, R") and
L : D — H is symmetric and satisfies

(Lae, u),, > cllulll,

for some constant ¢ > 0. Then the space V associated to 1L via Theorem8.11 is
continuously embedded in C°(£2, R¥) and there exists an orthonormal basis, (¢,),
in L*(2, R¥) and a decreasing sequence of positive numbers, (p,), which tends to
0 such that

oo
V= {u e LX2.RY Y o u. valrs < oo} :

n=1
Moreover,

Lu = an > ©n LzSDn

n=1

whenever
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8.3 Invariance of the Inner Product

‘We now discuss admissible Hilbert spaces that share the important property of being
invariant under Euclidean transformations. This property is especially important in
shape recognition. This analysis will also lead to explicit constructions of operators
and kernels. We consider here the situation £2 = R? and k = d.

8.3.1 Invariance: The Operator Side

To motivate the invariance requirements, let us return to the interpolation problem
for vector fields. Let xy, ..., xy € £2 and vectors vy, ..., vy be given, and & be the
optimal interpolation, i.e., the function in V with minimal norm satisfying i (x;) = v;
fori =1,..., N. Given a rotation R and a vector b € R, this problem can be
modified in (at least) three ways, leading to three possible invariance conditions.

I1. Point transformation: if each x; is replaced by Rx; + b, then the new optimal
function / should be such that A(Rx + b) = h(x) and |||y = ||&]lv.

I2. Vector transformation: if each v; is replaced by Rv;, then h should be such that
h(x) = Rh(x) and [|h|ly = [|2llv.

I3. Point and vector transformation: if each x; is replaced by Rx; + b and each v;
by Rv;, then A(Rx + b) = Rh(x) and |||y = ||Ally.

Obviously, cases I1 to I3 implicitly require that V is closed under the transforma-
tion 2(-) = h(R™'((-) = b)), h(-) = RA(-) and h(-) — Rh(R'((-) — b)) respec-
tively. All three invariance conditions extend the transformation applied to the input
of the problem to the whole space. For our purposes, the most relevant condition
is I3 because it corresponds to the invariance we need when considering velocities
(or displacements): if v = 0, x, then Rv = 0;(Rx + b), which leads to the transfor-
mations in case I3. The invariance in I1 and 12 and their consequences provides some
interesting insights into the construction of kernels, which is why we consider them
here too.

Notice that vector transformations do not involve translations. There are two
reasons for this: in the cases we are interested in, v; is either considered as a difference
between two points in RY (x; and its target), or as a velocity (J,x;), and both are not
affected by translations. Moreover, the spaces V we are considering typically contain
functions that vanish at infinity, so that V is not closed under the transformation
ht— h+b.

In all three cases, we have a transformation that we will denote by 4 — (R, b) x h
(the case I1, I2 or I3 associated with this notation will always be clear from the
context). Notice that the transformation 7 — (R, b) x h is, in all cases, an action of
the Euclidean group (translations and rotations) on functions defined on £2. We will
also denote by (R, b) x (x, v) the associated transformation on points and vectors
(with x = (xq,...,xn5), v = (v1, ..., vy), N being arbitrary).
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In the following, we will assume that V is a Hilbert space continuously embedded
and dense in L?(R?, R?). We start with the following proposition.

Proposition 8.16 Assume that V is an RKHS such that, for any pair (x, v), the
optimal interpolation associated to (R, b) x (x,b) is (R,b) xh, where h is the
optimal interpolation associated to (x,b), and that |h|yv = ||(R, b) x h||y. Then
h+— (R, b) x h is an isometry from V onto itself, i.e., forallh € V, (R,b) xh € V
and ||(R, b) * hlly = ||klly.

Proof Let h € V. For n > 0, let x" form a grid of step length 27" discretizing the
cube [—2",2"]¢. Let v = h(x]") and let A" be the optimal interpolant associated
with (x", v"). Let = (R, b) » h"*, which belongs to V by assumption.

Let V" be the set of functions in V that satisfy the constraints (x”, v"). Then
h" = myn(h), the orthonormal projection of # on V". Because " € V" forallm > n,
we have

1R 15 = A" = R I3 + A" 13-

Also, because h € V" for all n, the same identity is true with 4 in place of 4™, so that

||h"||v is a bounded increasing sequence, therefore converging to a limit. Moreover,
we have

2 2 2

1™ — B = (A" = 11

)

which proves that 2" is Cauchy, and therefore has a limit 2’. Because V is admissible,
we know that
|n" (x) — A" ()| < Cllhlly |x — ]

for some constant C (and we have used the fact that ||A" ||y < ||k]ly). Because A"
coincides with / on the sets x”, this implies that 2" (x) — h(x) for all n, therefore
implying that 41 = h’. Using the same argument, 4" is Cauchy in V and its limit in V
must also be its pointwise limit, which is (R, b) x h (which therefore must belong to
V). It then suffices to take the limit of the identity ||A" |y = |[(R, b) » h"|ly, which
is true for all n by assumption, to show that the transformation is an isometry. [

We now study the consequences of the invariance conditions. Introducing the
operator L such that (Lu |v) = (u , v)v, the isometry property implies that

(L((R,b) xu) | (R,b)xv) = (Lu |v)

for all u, v € V, or, denoting by (R, b) x L the operator such that

(((R, b) * L)u

v) - (L((R, b) % 1)

(R,b)*v),

that (R, b) xL =1L.
We let, as above, Vi, denote the space of v € V such that Lv € L?>(R?, R?). We
first note that the x action maps Vp, onto itself. Indeed, if u € V., then, forallv € V
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(LR, b) xu) [v) = (Lu | (R, b)Y % v) < ILaellz2 II(R, b)~" % vl = [Lae]2 w2

(using a change of variable in the last identity). This implies that L((R, b) x u) €
LR, RY), so that (R, b) xu € VL.

Let us start with case 12, which does not involve translation and is simpler to
analyze. In this case, the requirement is that v € V = Rv € V for all rotations R,
and that ||Rv|y = ||v|v. Let (ey, ..., e;) denote the canonical basis of R? and let

W:{vTelzveV}

be the set of scalar-valued functions provided by the first coordinate of elements of v.
Because of rotation invariance, we clearly have W = {v"u : v € V} forany u € RY,
u # 0. We have the following lemma.

Lemma 8.17 Under invariance condition 12, and if d > 3, one has
V={v=we + - 4+wyeqg: wq,...,wg € W}.
Moreover, with the above decomposition, we have
Iy = llwiedly + -+ + llwaeally- (8.13)

The result is true for d = 2 if the invariance condition is extended to include all
R € 04(R) (rotations and symmetries).

Proof Let V= We, +---+Wey. If veV, we have v= wle))e +---
+ (vTe,)e, and we have seen that v'e; € W for all i. This shows that V C V.

To prove the converse, it suffices to show that we; € V for all w € W, because
rotation invariance immediately implies that we; € V foralli =1, ..., d. So take
w e Wandv eV such that ve; = w. Let v; = v7e; (so that v; = w).

LetS ={—1,1}4 'and ST bethe setof ¢ € Ssuchthate; - --e4_; = 1. For every
€ € ST, the linear transformation that maps (e, ..., e;) to (e, €1ea, ..., €4_1€4) is
a rotation, which implies that

v i=vie; +€vper + -+ €4_1Vgeq €V
and so is
b= Z Ve = |ST|vier + Z(t‘lvzez + -4 €g-1vg€q).

eeSt eeSt

The number of € € S such thate; = 1 is the number of subsets with even cardinality

in{2,...,d — 1}, namely
d-—2
o= ¥ (2k )

0<k=<(d—2)/2
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Similarly, the number of € € ST such that ¢; = —1 is

o= X (3

0<k<(d—3)/2
When d > 2, these numbers are equal, because

d-2

ay—a_ = Z(—l)"(d ; 2) =0.
k=1

Notice also that |S*| = a, + a_ = 2972, This implies that 9 = 2¢72v,e;. Since
belongs to V, so does vje;, which completes our proof that V =V for the case
d>2.

Ifd =2onehas S = {—1, 1}, §* = {1} and we cannot reach the same conclusion.
If invariance by symmetry is added, however, then we can sum over S instead of S+
in the definition of ¥, which gives 0 = 2v;e; and proves the result in this case.

To prove the statement about [[v]|5,, it suffices to show that (wie; , wje;), =0
fori # j. But for d > 2, there exists a rotation that maps ¢; to itself and e; to —e¢;

and the invariance of the inner product implies (wie,- , wjej)v = —(w,-ei , wjej)v,
which must therefore vanish. For d = 2, one can take the symmetry (e;, ;) >
(e1, —e2). 0

The space W is a Hilbert space of scalar functions, with norm ||w|w = ||we;]v.

As such, it also has a duality operator, Ly, such that (Lyw |w') = (w, w/>W.
Lemma8.17 and Eq. (8.13) imply that the operator . = Ly associated with V oper-
ates coordinate-wise as Lv = (Lwywvy, ..., Lyvy). Itis easy to check that this prop-
erty (or the conclusion of Lemma 8.17) implies that 12 is true.

We now pass to I1 and I3, and focus first on translation invariance, which, in
both cases (taking R = Id), requires that, forall 2 € V and v € R4, the vector field
h:x> h(x — b) belongs to V and has the same norm as 4. To handle this problem,
we first introduce the Fourier transform of the operator L.

Following Sect. A.10, denote the Fourier transform of a square integrable vec-
tor field u either by @ or F (u), and recall that F is an isometry of L?>(R?, C%)
(L? functions defined on R? taking values C?). For this discussion, we denote
L*(R4,RY) by H. We have, by assumption, V C H = L>(R¢, R?) ¢ L*(R4, C?)
with V dense in H. For L? functions u and v with values in C?, we will define

(u, v), =/ ulvdx
Rt’

(sothat (v, u)), = {u, v)),). Recall that the isometric property of the Fourier trans-
form states that

(i, 0y = (u, vl
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for all square integrable functions u and v.
LetV = F (V) and, for ¢ € V, let lelly = ||.7-" Yo|ly. Then V is a Hilbert space

isometric to V via the Fourier transform, dense in H=F (H), where H is the space
of functions ¢ € L2(R?, C) such that ¢(—&) = @(£) almost surely. Denote by L its
duality operator and let

Viz{goe\}:]lcpel:l}.

Then, it is easy to show (and left to the reader) that V; = XA/]L = F (Vp) and 1190 =
F (LF~(¢)) for ¢ € V; . In addition, the following lemma holds.

Lemma 8.18 Assume that translations act as isometries on V and that for all
& € RY, there exists a family of continuous functions 1, ..., 0, € Vv such that
V1), ..., we(&) are linearly independent.

Then ]L has a matrix multiplier: there exists a function f : RY — My(C) such
that for all € € R4, f (&) is a positive definite Hermitian matrix and for all p € 153
and € € RY, (1190) &) = f(&)p(&). Moreover, there exists a constant ¢ > 0 such that

M FEOE > clg)?

for almost all ¢ € R?
Conversely, if L has a matrix multiplier, it is translation-invariant.

Proof The Fourier transform of (Id, b) % u is y,u where 7, : £ — e~ 27" Since \%9
in closed under the action of translations, V7, is also closed under the transformations
% > Y and

(IL(W’MP) ‘%%b) = (ILSD W)

forall p, ¥ € Vi andb € RY. Consider the space M of functions m such that (i) for
all p € V]L, both my and m are in VL and (ii) for all p, ¥ € V]L,

(Eonor [v) = (Lo |iv)

holds. (Note that the left-hand side is also equal to (ﬁﬂb ‘ m<p) .) This space contains

all v;,’s (because 7, =1y, = ~v—p), and therefore also their linear combinations.
Moreover, since

(Lo |70) = MLellvlalmil,

the map m +— (]Lap ‘ I’)_’l’L/)) is continuous with respect to the supremum norm, so that
the considered space contains all limits in the supremum norm of linear combinations
of ;s with real coefficients, which is the space of all bounded continuous functions
from R? to C that satisfy m(—¢) = m(€). This statement can be extended to all
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bounded measurable functions on R?: indeed, if m is such a function, Lusin’s theorem
[249] implies that, for every € > 0, there exists a continuous bounded function m.
such that ||m.]lcc < |[m|lco and the set N. = {£ : m(§) % m-(£)} has measure less

than €. Replacing m. by x — (m.(x) 4+ m.(—x))/2 if needed, we can also assume
that m.(—x) = m.(x). Then the identities

(B [mee) = (L |1ev)

can be taken to the limit ¢ — 0 yielding the same identity for m, based on the fact
that

(Lo | 6 — i) = /N (7 — i) (L) TP dE — 0

using the dominated convergence theorem.

Take now & € R? and a family of continuous functions 1, ..., ¥, € VL such
that (¢ (&), ..., 1¥4(&)) is linearly independent. By continuity, linear independence
will remain true in a neighborhood of &, say, for |n — £| < 4, and for such 7 (and
small enough §) the conjugate basis x1(n), ..., x4(n) such that

d
> wim)xi ()" = Tdgs
i=1

is well defined and continuous. Because 1[_1,-(—5) = (&) forall i, x1(n), ..., xa(®)
are also well defined for |£ 4+ 7| < §, with x;(—n) = x;(n). Finally, let w be a con-
tinuous, bounded function such that w(n) =1 if | —n| <d/2 or |E+ 1| < /2
and w(n) =0 if | —n| > § and | + n| > J. Since we can replace w by n —
(wm) +w(—mn))/2, we can also assume that w is even. Define, fori = 1,...,d,
i) = wm)xi () if [ — €] < §or I + €| < 6 and ¥; () = O otherwise.

Ifpe VL is bounded, one has wﬁ‘mp = ]L(w@) because w € M and
d d
Liwp) = > L& 0w =D & el
i=1 i=1
because X! ¢ € M. So letting

d

f=Y L,
i=1

we find i(p = f in an open neighborhood of £. Since the same construction can
be made near every &, one can piece together a function f defined on R? such that
Le = fo for all bounded ¢ € V1. The extension from bounded to arbitrary ¢ can
be done by truncation: if py = 1;,>, then f[,(pNga) = f(pny) = pn fp because
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pn € M.Inaddition, py € M,sothatL(pny) = pnLLp.So pyIL = py fp, which
implies that Ly = f by letting N go to infinity.
Since L is symmetric and real, we have

/ (L) de = / (L) 3 de R

R4 R4

for all o, 1 € V. This implies
/&Tfsodng @wadézf I FT o de.
Re R¢ Re

So, replacing f by (f + fT)/2 if necessary, we can assume that f is Hermitian,
with moreover

[ 5" pode = v

forall ¢ € Vi and a fixed ¢ > 0. This implies that, for all ¢ € V1, one has o7 f (=
c|1|? a.e. Indeed, letting A be any set over which b7 f1) < c[1|?, one has 141 € V.,
which implies

[ vz [ e

which s only possible if A has measure 0. Our hypothesis on the existence of linearly
independent continuous functions in V1, at any £ implies that f(£) > ¢ Idg« foralmost
all €.

The last statement of the lemma is obvious from f(&)(7,(€)p(£)) =
W(E) fE)p(©). O

We now assume that the conclusion of the lemma holds, and that L is given by
a Hermitian matrix multiplier f > c Idre, which, as just seen, ensures translation
invariance. This assumption will allow us to focus only on rotation from now on. As
we will see, an interesting special case is when the entries of f are polynomials in
&, which corresponds, from standard properties of the Fourier transform, to IL being
a multi-dimensional differential operator.

To consider rotation invariance, we will write, for short, R x h = (R, 0) » h for a
rotation matrix R. We compute F (R  h) as a function of h. We have, in case I1:

F(Rxh) (&) = // e 2T R oy h(x)dx
:/ g’szrxh(R’Ix) dx
]Rd

= [ e )y
Rd

=hoR7'(6),
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where we have used the fact that det R = 1 in the change of variables. In case I3, the

same computation gives F (R x h) = RhoR™".
We can therefore write, in case I11:

(L(R%h) |R%h) = (fﬁoR“

ﬁoR4)
_ ((foR)fz ’h)
and in case I3
(L(R%h) |R*h) = (le;oR’l ‘RﬁoR*I)
— (RT(foR)Rﬁ ‘h)

in which we have used the facts that det R = 1, RT = R~!. So the invariance condi-
tions boil down, in case I1, to f(RE) = f(€) and in case I3, to R” f(RE)R = f(§),
for all £ and all rotation matrices R.

We now investigate the consequences of these conditions. In case I1, using the
fact that one can always find a rotation that maps £ to |£|e;, one sees that f must only
depend on |£| (f is radial). Note that we assume that L transforms real vector fields
into real ones. The Fourier transform u of a real-valued function is characterized by
the property u(—x) = u(x). Inorder that u(—x) = u(x) = (fu)(—x) = fu(x), we
need f(—x) = f(x).If f isradial, then f(—x) = f(x), which implies that f is a
real matrix.

Case I3 requires a little more work and is summarized in the next lemma.

Lemma 8.19 Assume that a function f defined on R? and taking values in the set
of Hermitian matrices satisfies

f(RO = Rf(OR"

for all ¢ € RY and all rotation matrices R if d > 3, and for all orthogonal matrices
R ifd = 2. Then there exist two real-valued functions A and p, defined over [0, +00)
such that ;1(0) = 0, and

e’
€12

Proof We will use the following linear algebra result. Let M be a d x d Hermi-
tian matrix satisfying RT M R = M for all rotation matrices M. Then M = \Id for
some real number \. Indeed, let a be an eigenvector of M, satisfying Ma = Aa and
la] = 1 (with X necessarily real because M is Hermitian). Then, for every rotation
matrix R, MRa = RMa = ARa, so that Ra is also an eigenvector of M. Choosing

F(©) = A(€DIdge + p(1€D (8.14)
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rotations R, = Idge, R, ..., Ry such that Rya, ..., Rya is a basis of C¢, we obtain
M = Ndpa.!

Taking & = 0, the identity R” f(0)R = f(0) for all R therefore implies that
f(0) = Noldge for some Ay € R. Let us now fix & # 0. For any rotation R that
leaves & invariant, we have

f(&) =R f(RE)R = RT f(&)R

This yields the fact that, for any R such that R¢y = &, we have RT £(&)R = f(&).

We now separate the cases d = 2 and d > 2, starting with the latter, and show that
in this case one has f(£y)&y = a&p for some a € R. Indeed, assume that f(£y)& =
a&y + B, with |[v] =1, v L & and 3 # 0. Since d > 3, one can find a third unit
vector, w, such that (&,/|&|, v, w) is an orthonormal family, and one can form a
rotation R such that Ry = &, Rv = w and Rw = —v (leaving invariant any vector
perpendicular to &, v and w). For this rotation, we have R” f(&)R&y = a&y + fw
and this can be equal to a&y + Sv if and only if 3 = 0.

So, & is an eigenvector of f (&), which implies that f (£y) maps the space &;- into
itself (because it is Hermitian). But the fact that RT f(£y)R = f (&) for any rotation
R of E(J)- implies that f (&) restricted to fé‘ is a homothety, i.e., that there exists a
A(&) such that £ (€o)n = AEo)n if n L &.

The orthogonal projection of a vector a € C? on the line generated by & is

&a &o&l
Pia=—"&=—=a
TR TN

so that, for ¢ € C¢, and letting f (&) = a(&0)éo

L&l
10l?

oo
1012

&8l
10l?

f (o) = a(é) + A(6o) (Id - ) = 1u(6o) + A(p)Id

(taking © = a — ). Now, for any rotation R

R&(RENT
% +ARE = f(RE) =RF(€)RT
R&(RE)T

€0l

so that (R&y) = (&) and A(REy) = A(&p). This implies that A and p must be radial
functions and proves (8.14).

Finally, since we know that f(0) = Ald, we must have ;(0) = 0.

Let us now consider the case d = 2. Let éo be obtained from & by a rotation of
/2. Consider the rotation R} = (£, £)/|¢|. Then, Ry maps & to e; = (1,0)” and

u(REp)

= (o) + A(&o)Id

IThis standard result is in fact true for any matrix M (not only Hermitian) in dimension d > 2, and
also in dimension 2 if one adds symmetries to rotations.
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letting g(¢) = f(te1), we obtain

£© =€ "'(g'fz')

& o7

and this matrix clearly satisfies f(R§) = Rf (&)RT . If g is diagonal, then letting i
and )\ denote its entries, we find

s €y s
€0l €02 €0l

which takes the same form as the one obtained with d > 3. The off-diagonal coeffi-
cients of g can be non-zero, however, unless one assumes the additional constraint
that the norm is also invariant under symmetry. In this case, we can also use —§~0 /1ol
to complete &, and get

f (&) = fl&l) + (& = (fi(1&]) — A(I&l) + A(|&D1d,

= 9U&D >
£ = (&0, —E) =22 (G0, —€0)T
€0l
which, combined with the previous constraint, is only possible when g is
diagonal. ([l

To ensure that f(£) > c1d for all &, we need its eigenvalues (which are A(|£])
and A(J€]) + p(|€])) to be larger than ¢. We obtain the condition that A > ¢ +
max(—gu, 0). We summarize all this in the following theorem.

Theorem 8.20 Let L be such that L is a multiplier with IALgo =fyand f>cld
Then L is rotation-invariant (rotation/symmetry-invariant for d = 2) if and only if
f takes the form

er
I35

for some functions A and p such that 11(0) = 0 and A > ¢ + max(—p, 0).

F©) = p€D) == + A(ENId

Diagonal Operators

Consider the case © = 0 in Theorem 8.20. Let Ly be the scalar operator such that
fLogp = Ap. Then Lk is obtained by applying L to each coordinate of #, i.e., it takes
the form

Lh = (Lohy, ..., Lohg).

Note that diagonal operators in this form are those that satisfy both I1 and I3.

These simple, diagonal, operators are those that are most commonly used in
practice. If one wants, in addition, Ly to be a differential operator, then \(|¢]) must
be a polynomial in the coefficients of £, which is only possible if this function takes
the form

14
AED =D AlgP.

q=0
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To prove this statement, just notice that if A\(|¢]) = P(&,...,&;), where P is a
polynomial, then A\(t) = P(z,0, ..., 0) is a univariate polynomial and the fact that
P(—1,0,...,0) = P(t,0,...,0) implies that coefficients of odd degree vanish.

Applying the inverse Fourier transform, the corresponding operator is
Lou = Y/ _g Ag(=1)? A%u. For example, if A(I€]) = (a + [£*)%, we get Lo =
(addy — A).

General Operators

Letus consider an example of a valid differential operator with 1 # 0, taking p(|€]) =
a|€]? and X as above. This yields the operator

P
Lyu = —adOiu + 6y Z(—l)quAqu
qg=0
so that

p
Lh = —aV(divh) + Y (=1)7\, A%h.
q=0

Similarly, taking 1£(€) = a|€]* () yields the operator
P

Lh = Z(—l)quAq(h — V(divh)).
qg=0

8.3.2 Invariance: The Kernel Side

Let us focus on case I3 in this discussion, and assume that i is asspciated with a
multiplier f > cId. Then the kernel operator K = L.~! is such that K is associated
with the multiplier g = f~! in the Fourier domain. Note that we need K(a” d,) to be
well-defined. The kth component of a” §, being a;6,, we can write F ((aTéx)) © =
aexp(—i&Tx) so that

F (K@@' 6,) (&) = g(©aexp(—i& x).

A sufficient condition for this to have a continuous inverse Fourier transform is that
|g| is integrable (taking any matrix norm). Assuming this, we have

K@ 5)() = K(y, x)a = §(y — x)a,

where g is the inverse Fourier transform of g.
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When f(€) = M(IEDI + p(1EDEET /I€I7, we can check that

. =;< _g) ;<§>
7O =30 7 er ) Xaeh + waep \ler)

LetA : L2(RY, RY) — L2(R?, RY) denote the operator such that A is associated with
the matrix multiplier ££7 /|€|%. Let also x; and &, be the inverse Fourier transforms
of A" and (A + p)~'. Then

Ku = k1% (u — Au) + ko * Au = kju — A((k1 — k) * 1),

where * denotes convolution (we used the fact that operators that are multiples of
the identity in the Fourier domain commute with any operator associated to a matrix
multiplier, such as A). For smooth enough u, the vector field v = Au can be computed
by solving Av = —Vdivu, which is also equivalent to

v = Vdiv(G * u),

where G is the Green’s function of the Laplacian operator defined by (see [102])

—Llog|x| (n=2)
Gy =1 8.15)

|x|:*2 (n>3)

with ¢, = I'(1 +n/2)/(x"?*n(n — 1)).
Note that the inverse Fourier transform of a radial function (i.e., a function p(§)
that only depends on |£]) is also radial. To see this, we can write

) = fR (e de

[e'e] o
— / p(t)tdfl/ eln txds(n)
0 gd—1

o .
:f p()rd~! // 1e”"”"'ds(n),
0 5=

where S9! is the unit sphere in R?; the first change of variable was ¢ = 7 and the
last identity comes from the fact that the integral is invariant under rotation of x,
so that we could take x parallel to the first coordinate axis. The last integral can in
turn be expressed in terms of the Bessel function Jg/, [223], yielding an expression
which will not be detailed (or used) here. This implies that x; and x; above are radial
kernels.

We can therefore describe the kernels associated with spaces V that satisfy I3 as
those taking the form
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K = (k1 — Ary) + Ar,,

where k; and k, are radial kernels with bounded Fourier transform (recall the
constraints A > ¢ and A + p > ¢). As remarked in [195] (in which the theory of
translation and rotation-invariant kernels is discussed extensively), this expression
decomposes K into divergence-free and curl-free parts (in 3D). Indeed, because
A is a gradient, one has curlA = 0, so that Ak, is curl-free and curl K = curl ;.
Moreover, one has

div(Au) = Adiv(G *u) = div A(G x u) = divu,

so that k; — Ak is divergence-free and div K = div x,.
Examples of Radial Kernels

The following proposition provides a nice dimension-independent characterization
of scalar radial kernels [251].

Proposition 8.21 The scalar kernel K (x, y) = v(|x — y|) is positive definite for all
dimensions d if and only there exists a positive measure (. on (0, +00) such that

+00 5
V(1) = / e dp(u).
0

This includes, in particular, the case of all functions of the form

+00
y(t) = / e~ £ (w)du (8.16)
0

for a positive function f. Note that if a function  provides a positive kernel in
dimension d, it trivially provides a positive kernel in dimension d’ < d, but not
necessarily for d’ > d unless it takes the form given in Proposition 8.21.

Translation-invariant kernels (not necessarily radial) of the kind K(x,y) =
I'(x — y) can be characterized in a similar way, by Bochner’s theorem [246].

Proposition 8.22 The kernel x(x,y) = I'(x — y) is positive definite if and only if
there exists a positive, symmetric measure j. on R? such that

I(x) = / e 2T ().
R4

,2
Letting x4 be a Dirac measure (1 = d,-2) in Eq.(8.16) yields v(t) = ¢~ 2. The
associated kernel

=yl

K(x,y)=e < Idg

is the Gaussian kernel on R? and is one of the most commonly used for spline
smoothing.
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We can also use Proposition8.21 with f(u) = e™. This provides the Cauchy
kernel 1

Kx,y)=——Id
R B P

Other choices can be made: if f is the indicator function of the interval [0, 1],
then

l—e"

1
) = 7t2ud =
() /O e u "

with the corresponding kernel. If one takes f (1) = exp(—u?/2), then

o0
(1) =/ et gy
0
/2 /oo — 41272
=e e du
0

NG

= Yo 2erfe(r?
7 ¢ @),

where erfc(g) is the probability that a standard Gaussian distribution is larger than
g in absolute value,

erfc( —i ” —w/2g
q) = NG e u.
q

(This function is widely tabulated and directly available in most computational soft-
wares.)

We now consider scalar kernels that correspond to differential operators that are
polynomial in the Laplacian. Using the inverse Fourier form, they correspond to
kernels given by K (x, y) = I'(x — y) with

eizT& J
F@_Am«mf

for some polynomial P such that P(t) > O for t > 0. Of particular interest is the
case P(t) = (1 + t)* for some positive integer k, which corresponds to the operator
(Id — A)*, because the associated kernel can be explicitly computed, at least in odd
dimensions, which we now assume. Note that 1/P(|£|?) must be integrable, which
in this particular case means k > (d + 1)/2.

To compute I, we can assume (by rotation invariance) that z is on the positive
side of the first coordinate axis, i.e., z = (|z|, 0, ..., 0). Write ¢ = (¢, ), withr € R
and ) € RY~! 5o that

+00 )
I'(z) :f e”‘Z'/ (412 + || *dndz.
— Rd-1

oo
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Making the change of variable 1 = /1 + 12( (so that dn = (1 4 t*){@=D/24¢)
expresses I"(z) as the product of two integrals,

+00 eit\zl i
F(Z)Ilw Wdt/%(wrl(l ) hdg.

The second integral is a constant c,(k), which can be explicitly computed, but we
will not need the exact value here; for most applications, it suffices to know the
expression of the kernel up to a multiplicative constant (and translation-invariant
kernels are often normalized so that K (x, x) = 1). The first integral is related to the
Basset function (or modified Bessel function of the third kind, see [223]), which we
will denote by K, (¢), via the formula

400 eillz\ e
[w mdt Xt K _,().

It is known analytically for odd values of d, and can be evaluated numerically when
d is even. In the odd case, using for example the method of residues [249], one shows
the following lemma, which we give without proof.

Lemma 8.23 [fc > 1, we have

c

+00 eit\zl ﬂ.e—\zl
dr = Dz 8.17
/_oo (1 4 12)e+1 4ec! ;“(6 kel .17

witha(c,l) =2'Qc—1)...(c+1-=10/I.

Ignoring the constants, this yields the kernel (letting ¢ = k — (d + 1)/2, and nor-
malizing K, so that K .(x, x) = 1)

Ke(x,y) = e "b(e, Dix =yl
=0

with b(c,l) = a(c.l)/a(c,0). For ¢ =0, Ko(x,y) =exp(—|x — y|) is called the
Laplacian or Abel’s kernel. From Lemma 8.23, we get

Ki(x,y) = (14 |x — y]) exp(—|x — y)

Kx(x,y) = (L +|x — y| + |x — yI*/3) exp(—|x — y|)

K3(x,y) = (14 |x — y| +2lx — y*/15+ [x — y[/15) exp(—|x — y|)

Ki(x,y) = (14 |x = y| +3lx — y*/7 +2lx — y[/21 + |x — y|*/105)
exp(—|x — y|).

The resulting family are often called Matérn kernels. Note that K is differentiable
(with respect to each variable), and K, is twice differentiable. More generally K,
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has ¢ derivatives, still with respect to each variable. As always, the kernel can be
scaled, replacing x and y by x/o and y/o. For a given c, this corresponds (up to a
multiplicative constant) to the operator

L. = (Id — g A)T@+D2,

The previous collection of kernels can be extended by the following series of
combination rules. It is indeed obvious that the addition of two kernels is a kernel, as
is the multiplication of a kernel by a positive number. A kernel can also be scaled by
a positive factor: K (x, y) — K(x/a, y/a). The composition of two kernels is also
a kernel, i.e.,

(Ki* Kp)(x,y) =/K1(x,z)Kz(z,y)dZ-

Also, the direct multiplication of two kernels is a kernel (i.e., (K1K»)(x,y) :=
Ki(x, y)K>(x, y)). So, for example, in dimensions 1 or 3, the kernel defined by
K(x,y) =~(Ix — y|*) with

V(1) = (1 + Ve V=2

is a valid kernel, since it is the direct multiplication of the Gaussian kernel and a
Matérn kernel.

8.4 Mercer’s Theorem

The interest of the discussion above lies in the fact that it makes it possible to define
the Hilbert space V from a positive definite kernel. We gave a description of kernels
using Fourier transforms, but another way to achieve this (in particular when 2 is
bounded) is by using Mercer’s theorem [246], which we cite without proof.

Theorem 8.24 Let K : 2 x 2 — R be a continuous, positive definite kernel, such
that

/ K (x, y)*dxdy < oo.
2x82

Then, there exists an orthonormal sequence of functions in L*(2,R), 1y P2y e
and a decreasing sequence (p,) which tends to 0 as n tends to oo such that

K, y) =Y pnen(X)pn().

n=1

Note that a kernel satisfying the conditions of Mercer’s theorem cannot be translation-
invariant over £2 = R? because [ K(x, y)?dy would be independent of x (and there-
fore not integrable) in that case.
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Let the conditions of Mercer’s theorem be true, and define the Hilbert space V by

n=1

o0
V= {U e LAR2.R): Y p v, galys < 00

Define, forv, w € V:

Z L (R I (T

Notice that, for v € V, the series

[e¢]

v(x) =Y (v, Pu)on(x)

n=1

is pointwise convergent, since

<Z< Pn Lz@n (x)> Z @n)iz an (on (x))°

n=p n=p n=p

and both terms in the upper bound can be made arbitrarily small (recall that
Zn pn‘pn(x)z = K(x,x) < 00). Similarly,

(o]

() = v(3) = Y[V, Pu) (Pa(x) = 0ua())

n=I1

so that

W) — v = Yoo Gals D onln(®) — ou ()’

n=1 n=1

= [vll} (K (x,x) —2K(x,y) + K (3, )

and v is continuous. Then,

(Som , K(., x))Lz = anwn(x)“pm ) SOn)Lz = PmPm(x)

n=1
so that
oo oo
_ 2
Y oo Mens KC o)) =Y pupn(x)” = K(x, %) < o0,

n=1 n=1
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which implies K (-, x) € V and a similar computation shows that
(KC,x), KC. ), = K(x, ),
so that K is reproducing.
Finally, if v € V,

<U K(, X) an (Pan <)Onvl(( C)>

Z V., @u)an(X) = v(x),

so that K (-, x) is the Riesz representation of the evaluation functional on V.

8.5 Thin-Plate Interpolation

Thin-plate theory corresponds to the situation in which the operator LL is some power
of the Laplacian. As a tool for shape analysis, it was originally introduced in [42].
Consider the following bilinear form:

(f. 9)L=/ Af Agdx =/ fAgdx, (8.18)
]Rz RZ

which corresponds to the operator L. = A2,

We need to define it on a somewhat unusual Hilbert space. We consider the Beppo
Levi space H; of all functions in R? with square integrable second derivatives, which
have a bounded gradient at infinity. In this space, || f || = 0 is equivalent to the fact
that f is affine, i.e., f(x) = a’x + b, forsome a € R? and b € R. The Hilbert space
we consider is the space H of equivalent classes of functions modulo the addition of
affine functions, namely

[f1={g:9(x)= f(x)+a"x+b,a eR? b eR}

for f € H;. Obviously, the norm associated to (8.18) is constant over the set [ f],
and || f|lL = 0 if and only if [ /] = [0]. One can then define

without ambiguity.
This space also has a kernel, although the analysis has to be different from
what we have done previously, since the evaluation functional is not defined on
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‘H (where functions are only known up to the addition of an affine term). However,
the following is true [192]. Let U (r) = (1/87r)r2 log r if the dimension, d, is 2, and
U(r) = (1/16m)r3 for d = 3. Then, for all u € H,, there exist a, € R¢ and b, € R
such that

ulx) = / U(lx — y|)A2u(y)dy +auTx + b,.
Rd

We will denote by U (-, x) the function y — U (|]x — y|).

The spline interpolation problem must also be addressed in a different way in
this context. Fix, as in Sect.8.1.1, landmarks x;, ..., xy and scalar constraints
(c1, ..., cn). Again, the constraint i (x;) = ¢; has no meaning in H, but the con-
straint (U (—x), h)H = ¢; does, and means that there exist a;, and b;, such that

h(x;) +aj xi + by = ci,

i.e., h satisfies the constraints up to an affine term. The corresponding interpolation
problem is: minimize | 4|z, under the constraint that there exist a, b such that 2 (x;) +
a’x;+b=c;,i=1,...,N.

Define, as before, S;; = U(|x; — x;|). The function 4 that is optimal under these
constraints must therefore take the form

N
h(x) =Y aU(lx —xi) +a"x +b.

i=1

Replacing & by its expression in terms of the «’s, a and b yields the finite-
dimensional problem: minimize

al'Sa
under the constraint Sa+ Qy=c with = (ay,...,aq,b)T (with size
(d+1) x 1)and Q, with size N x (d + 1) given by (letting x; = (xl.l, ey xf)):
xioexf
Q = :
xp x4 1

The optimal («, ) can be computed by identifying the gradient to 0. One obtains
N 1L _
y=("s7'0) 0'se

and & = S~'(c — 0A).

The inexact matching problem simply consists in minimizing

N
RIE 4+ XY (h(x) +a”xi + b —¢;)’
i=1
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with respect to & and a, b. It can be reduced to minimizing
T T T T
a' Sa+ A Sa+a xi+b—c¢) (Sa+a x;+b—2c),

and the solution is provided by the same formulas, simply replacing S by S) =
S+ (1/M)1d.

When the function # and the ¢; take d-dimensional values (e.g., correspond to
displacements), the above computation has to be applied to each coordinate, which
simply corresponds to using a diagonal operator, each component equal to A2, in the
definition of the dot product. This is equivalent to using the diagonal scalar kernel
associated to U.

8.6 Asymptotically Affine Kernels

We return to vector fields, and discuss how affine components can be combined with
any kernel, beyond the thin-plate spline approach of the previous section. We assume
here that 2 = R?. We would like to consider spaces V that contain vector fields with
an affine behavior at infinity. Note that the spaces V that we have considered so far,
either by completion of C* compactly supported functions or using kernels defined
by Fourier transforms, only contain functions that vanish at infinity. We recall the
definition of a function that vanishes at infinity:

Definition 8.25 A function f : 2 — R is said to vanish at infinity if and only
if, for all € > 0, there exists an A > 0 such that | f(x)| < & whenever x € §2 and
x| > A.

Here, we let V be a Hilbert space of vector fields that vanish at infinity and define
Var = {w cJwygeV,Ae My;MR)and b € R? with w(x) = wo(x) + Ax + b} .

We have the following important fact:

Proposition 8.26 If V is a Hilbert space of continuous vector fields that vanish at
infinity, then the decomposition w(x) = wo(x) + Ax + b for w € Vg is unique.

Proof Using differences, it suffices to prove this for w = 0, and so, if wy, A and b
are such that, for all x, wo(x) + Ax + b = 0, then, for any fixed x # 0 and ¢ > 0,
wo(tx) +tAx + b =0 so that Ax = —(wo(tx) + b)/t. Letting ¢ tend to infinity,
we get Ax = 0 for all x, so that A = 0. Now, for all x, we get b = —wy(x), which
implies b = 0 (since wy vanishes at infinity), and therefore also wy = 0. (]

So we can speak of the affine part (A,,, b,) of an element w € V4. Letting also
qw(x) = w(x) — Ayx — by, we can extend the inner product in V to define

(w, w)vaﬁ = (qu . ‘1"3)\/ +(Aw, Ag)+ (bw . ba),
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where (A, A)is some inner product between matrices (e.g., trace(AT A)) and (b, 5)

some inner product between vectors (e.g., b7 b). With this product Vg is obviously
a Hilbert space. We want to compute its kernel, K, as a function of the kernel K of
V (assuming that V is reproducing). Given x € R? and a € R?, we need to express
aTw(x) in the form <K,,ﬁ-(~, x)a, w)vaﬂ. Using the decomposition, we have

aTw(x) = aqu(x) +a"Ayx +a"b,
=(K(.x)a, qu), +{@ax")*, Ay)+(a*, by)

where, for a matrix M, we define M* by the identity (M*, A) = trace(M” A) for all
A and for a vector z, z% is such that <zn , b) = zTb for all b. From the definition of
the extended inner product, we can define and compute

Ky (y,x)a = K(y,x)a + (axT)ﬁy +a".
In particular, when (A , A) = Atrace(AT A) and (b, 5) = ubTb, we get

Ky(y,x)a=K(y,x)a+ax"y+a= (K, y)+ & y/A+1/wldya.

This provides an immediate extension of spline interpolation of vector fields which
includes affine transformations, by just replacing K by K,r. For example, exact
interpolation with constraints v(x;) = ¢; is obtained by letting

N
v(x) = Z Kq/f(x,', .Xj)aja

i=1
the vectors «r; being obtained by solving the system

N
Z(K(xi,xj)aj + (xiij/A—l— I/waj) =¢;, fori=1,...,N. (8.19)

J=1

The case A = p — 0 is particularly interesting, since this corresponds to relaxing
the penalty on the affine displacement, and we obtain in this way an affine invariance
similar to thin plates. More precisely, we have:

Proposition 8.27 Letr v), A" and b be the solutions of (8.19) when (1 = \. Then
v converges to v*, the unique solution of the affine invariant interpolation problem:
minimize ||v ||%/ under the constraint that there exist A and b withv(x;) = ¢; — Ax; —

bfori =1,...,N.

Proof Indeed, v*, A* and b* are the unique solutions of the problem: minimize, with
respectto v, A, b,
oIy + AAI + 1151)
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under the constraints v(x;) =¢; — Ax; —b for i =1, ..., N. Because ||v}|y is
always smaller that the norm of the optimal v for the problem without affine compo-
nent, we know that it is bounded. Thus, to prove that R converges to v*, it suffices
to prove that any weakly convergent subsequence of v* has v* as a limit. So take
such a sequence, v™, and let v° be its weak limit. Because v — v(x) is a continuous
linear form, we have v (x;) — v°(x;) for all i.

Consider the linear transformation F : R¥+¢ — RN that maps (A, b) to (Ax; +
b,i =1,...,N).Because A*x; + b* + v*(x;) = ¢;, we know that (¢; — v*(x;),i =
1,...N) € Range(F), so that, passing to the limit in \,, we get the fact that (¢; —
v’(x;),i = 1,...N) € Range(F), which means that v° satisfies the condition of the
limit problem. Moreover, for any ), we have

0¥ 15 + ALA* 1P+ 15*1%) = M5 4+ AAAM + 16217 = 110715
Since the liminf of the last term is larger than [|v°]|?, and the limit of the left-hand

side is ||v*||?, we can conclude that v° = v* since v* is the unique solution of the
limit problem. U



Chapter 9 ®)
Deformable Objects and Matching oo
Functionals

9.1 General Principles

In the previous two chapters, we introduced and studied basic tools related to
deformations and their mathematical representation using diffeomorphisms. In this
chapter, we start investigating relations between deformations and the objects they
affect, which we will call deformable objects, and discuss the variations of match-
ing functionals, which are cost functions that measure the quality of the registration
between two deformable objects.

Let £2 be an open subset of R? and G a group of diffeomorphisms on £2. Consider
a set Z of structures of interest, on which G has an action: for every [ in Z and every
i € G, the result of the action of ¢ on [ is denoted ¢ - I and is a new element of 7.
This requires (see Sect.B.5) thatid-I =T and ¢ - (¢ - I) = (p o) - I. Elements
of Z will be referred to as deformable objects.

A matching functional is based on a function D : 7 x Z — [0, +00) such that
D(I, I') measures the discrepancy between the two objects I and I’, and is defined
over G by

Eip(p)=D(p-1LI). ©.1)

So E; 1/(¢) measures the difference between the farget object I’ and the deformed
one ¢ - I. Because it is mapped onto the target by the deformation, the object I will
often be referred to as the template (and ¢ - I as the deformed template).

Even if our discussion of matching principles and algorithms is rather extensive,
and occupies a large portion of this book, the size of the literature, and our choice
of privileging methods that implement diffeomorphic matching prevents us from
providing an exhaustive account of the registration methods that have been proposed
over the last few decades. The interested reader can refer to a few starting points in
order to complement the presentation that is made here, including [12, 13, 22, 27,
28, 41, 42, 111, 125, 240, 244, 275], and textbooks such as [132, 139, 208, 214].
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9.2 Differentiation with Respect to Diffeomorphisms

We will review, starting with the next section, a series of matching functionals that are
adapted to different types of deformable objects (landmarks, images, curves, etc.).
We will also compute the derivative of each of them with respect to the diffeomor-
phism ¢.

We also introduce a special form of differential which is adapted to variational
problems over diffeomorphisms. This shape, or Eulerian differential, as we will call
it, is a standard tool in shape optimization [80], and we will interpret it later on as a
gradient for a specific Riemannian metric over diffeomorphisms.

Recall that we have defined Diff”*° = Diff”*°(£2) to be the set of diffeomor-
phisms v such that

max([|¢) — id|| .00, 107" — id|lp,0c) < 00

We have also defined Diff}) "* as the subgroup of Diff?”*>® whose elements converge
to the identity at infinity.

Definition 9.1 A function ¢ — U (y) is (p, 00)-compliant if it is defined for all ¢
in Diff{">.

A (p, 0o)-compliant U is locally (p, oo)-Lipschitz if, for all ¢ € Diff)"™, there
exist positive numbers () and C (¢) such that

U@W) = U@ < C@I = Pllp.oo
whenever v and zZ are diffeomorphisms such that

max (Y — @l p.oos 10 — @l po) < ().

Note that a (p, 0o)-compliant (resp. locally Lipschitz) U is (g, oo)-compliant (resp.
locally Lipschitz) for any ¢ larger than p.

Because Diff)"™ is an open subset of id + C} (€2, R?), both Gateaux and Fréchet
derivatives are well defined for functions defined on this set (see Sect.C.1). In the
following, whenever we speak of a derivative (without a qualifier), this will always
mean in the strong (Fréchet) sense. A function U is C! on Diff5"> if and only if
U is Fréchet differentiable and dU () is continuous in ¢, which is equivalent (by
Proposition C.5) to U being Gateaux differentiable and d U (v)) continuous in . Note
also that U being C! implies that U is (p, oo)-Lipschitz.

Using the group structure of Diff} " we can define another type of differential
using the infinitesimal action of vector fields. If V is an admissible vector space and
v € V, we will denote by ¢y, the flow associated to the equation

Oy = v(y).
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Note that this is the same notation as the flow associated to a differential equation
0,y = v(t, y), where v is now a time-dependent vector field. This is not a conflict of
notation if one agrees to identify vector fields, v, in V and the associated constant
time-dependent vector field defined by v(z, -) = v for all 7.

Definition 9.2 Let V be an admissible Hilbert space continuously embedded in
Cl (82, RY) (so that Diffy C Diff}"™). We say that a (p, 0o)-compliant function U
over diffeomorphisms has an Eulerian differential in V' at ¢/ if there exists a linear
form U (¥) € V* such that, forallv e V,

(U @) |v) = 0:-U(pf. 0 ¥)_,- 9.2)

If the Eulerian differential exists, the V-Eulerian gradient of U at ), denoted
V' U(g) € V, is defined by

(V'U@), v), = (0Up) |v). (9.3)

In this case, VVU (p) = KoU (¢), where K is the kernel operator of V.

The following proposition indicates when Eq.(9.2) remains valid with time-
dependent vector fields v.

Proposition 9.3 Let V be an admissible Hilbert space continuously embedded in
CgH(Q, RY). Let V and U satisfy the hypotheses of Definition 9.2. If U is (p, 00)-
locally Lipschitz and has a V-Eulerian differential at v and if v(t,-) is a time-
dependent vector field such that

lim é ) lv(z, ) —v(0, )|lydt =0, 94
£—>00 0

then B
OU@) |v(0,)) = DU (5. 0¥y 9.5

Proof Letting vy = v(0, ), we need to prove that

1
g(U(sDSE o1h) = U(pg o)) = 0

as € — 0. From Proposition 7.4, we know that if ¢, p, ¢ are in Diffé7 "% there exists
a constant C (1)) such that

||</7 ot — 415 0¢||p,oo = Cp(¢)||‘p - @l'p,oo'

Now, since U is Lipschitz, we have, for small enough ¢,
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U (. 09p) — Uit o )| < Cp)llgt. 09 — @ 0 Yl poo
< CWC,WDIes. — Poll p.oo

=< C(@/J)Cp(l/f)é(vo)/o lv(, -) — wollvdt,

where C (vo) depends on ||voll p4+1,00 and can be derived from Eq.(7.16), Noting
that [[vflxri1 e <e(C” 4 llvollp+1,00) for small enough e, this proves the

€

proposition. (]
Note also that, if U is C', then the chain rule implies that

(OU(p) [v) = @U(p) lvop). 9.6)

To the Eulerian gradient of U, we associate a “gradient descent” process (that

we will formally interpret as a Riemannian gradient descent for a suitable metric in
Sect. 11.4.3) which generates a time-dependent element of G by setting

=V

It x) = =V U(p®)(p(t, x)). 9.7

As long as fot HﬁvU (e(s)) H ds is finite, this generates a time-dependent element
14

of Diffy. This therefore provides an evolution within the group of diffeomorphisms,

an important property. Assuming that Proposition 9.3 applies at time ¢ (e.g., if U is
Ch), we can write

U = [T UG, ), =~ [T U] .

so that U (p(t)) decreases with time.

9.3 Relation with Matching Functionals

As pointed out in the introduction, matching functionals take the form

Ulp) =Uilp) = Z(p - D), (9-8)

where [ is a fixed deformable object for some function Z (e.g., Z(I) = D(I, I;) for
a fixed I;). Using the group action property, we have

Ui() = Uy (o).

Using this property and the fact that the mapping v o ¢! is smooth (infinitely
differentiable) from Diff)"™ onto itself, we find that if U; is Gateau or Fréchet
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differentiable at ¢ = id for any I € Z, then it is differentiable at all 1) € Diff} "
and

@U;(p) 1h) = (dUu(Gd) |hop™").

A similar statement holds for the Eulerian differential, with
(OU; (@) |v) = (0Uy.1(d) |v).

Notice that when U is differentiable at ¢) = id, then U (id) = dU (id). Finally, if
we assume that 7 is itself a Banach space (or an open subset of a Banach space), that
Z is differentiable and that the action R; : ¢ + ¢ - [ is also differentiable, we have,
using the chain rule

dUr(p) |v) = (dZ(p- 1) |[dRi(p)v)

ordU;(p) =dR;(p)*'dZ(p - I). At ¢ = id, dR;(id)v is the infinitesimal action of
v on I, which we denote by v - 1, so that

dU;(d) |v) = (dZU) |v-T)

and

OU @) |v)=@Z®W 1) |v- @ -D)).

We now present a series of matching problems, involving different types of
deformable objects. In each case, we will introduce adapted matching function-
als and compute their differentials. As just remarked, derivatives with respect to the
diffeomorphisms can all be derived from that of the function Z, on which we will,
whenever possible, focus the computations.

9.4 Labeled Point Matching

The simplest way to represent a visual structure is with configurations of labeled
points, or landmarks attached to the structure. Anatomical shapes or images are
typical examples of structures on which landmarks can be easily defined; this includes
specific locations in faces (corners of the eyes, tip of the nose, etc.), fingertips for
hands, apex of the heart, etc. Many man-made objects, like cars or other vehicles, can
be landmarked too. Finally, landmarks can represent the centers of simple objects,
like cells in biological images.

In the labeled point-matching problem, objects are ordered collections of N points
X1, ...,Xy € 82, where N is fixed. Diffeomorphisms act on such objects by:

@ (e xn) = (@), - (). 9.9)
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The landmark-matching problem is not to find correspondences between two objects,
say I = (x1,...,xy)and I’ = (x{, ..., x})), since we know that x; and x/ are homol-
ogous, but to extrapolate these correspondences to the rest of the space.
Here we can take Z = (R?)", or, if one restricts to distinct landmarks, the open
subset
IT={(x,....xn) € RHON  x; £x;ifi # j}.

For I = (x1,...,xy), the action ¢ — ¢ - I is C' on Diffg’00 for any p > 0 (it is

the restriction of a linear map, with | - I > <N l©lloo)- The simplest matching
functional that we can consider for this purpose is associated with

N
Z) =1 =T =" | —x
k=1

with (dZ(1) |h) = 2(I — I')T h (considering I, I’ and & as d N-dimensional column
vectors). We have

N
Ui@) = Erp(@) = II'— ¢ 1P =Y |xl — o). 9.10)
N i=1
@U(@) 1) =2 (p(xi) = x) v(xi). ©.11)
i=1
This can be written as
N
dUL(p) =2 (p(x:) — X))y,
i=1
From (9.6), we have
_ N
(0U1@) [1) =23 () = 3T h o o) ©9.12)
i=1
or
~ N
OUL(9) =2 ) (9(x) = X)8px;
i=1
and (9.3) gives
N
VUIp) =2 K o) (o) — x)). 9.13)

i=1

The gradient descent algorithm (9.7) takes a very simple form:
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N
Opt, x) = —2) " K(ip(t, x), p(t, x)) (2, x1) = x)). (9.14)

i=1

This system can be solved in two steps: let y; (t) = ¢(z, x;). Applying (9.14) at
x = x; yields

N
0y;=—2Y K, y)(i — x)).

i=1

This is a differential system in yy, ..., yy. The first step is to solve it with initial
conditions y;(0) = x;. Once this is done, the extrapolated value of (¢, x) for a
general x is the solution of the differential equation

N
Oy =-2 Ky, y)(i —x)

i=1

initialized at y(0) = x. Figure9.1 gives an example obtained by running this pro-
cedure, providing an illustration of the impact of the choice of the kernel for the
solution. The last panel in Fig. 9.1 also shows the limitations of this algorithm, in the
sense that it is trying to move the points in the direction of their targets at each step,
while a more indirect path can sometimes be found generating less distortion (these
results should be compared to Fig. 10.1 in Chapter 10).

9.5 Image Matching

Images, or more generally multivariate functions, are also important and widely used
instances of deformable objects. They correspond to functions / defined on §2 with
values in R. Diffeomorphisms act on them by:

(p-D(x) =I(""'(x)

for x € 2. Fixing two such functions I and I’, the simplest matching functional
which can be considered is the squared L? norm of the difference Z(1) = || — I’ ||§,
yielding

Ui() =E1,1f(¢)=/ [Top™ @) = I'w)|” dx. (9.15)
ko)

We will need the derivative of the mapping Inv : ¢ — ¢~!. Considering Inv as a
mapping from Diff? "> to Diff/"™, it is given by (see Proposition 7.8)

dinv(p)h = — (dpop™ ) hop ™ = —d(p Hhop™. (9.16)
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G

Fig. 9.1 Greedy landmark matching. Implementation of the gradient descent algorithm in (9.14),
starting with ¢ = id, for the correspondences depicted in the upper-left image (diamonds moving
to circles). The following three images provide the result after numerical convergence for Gaussian
kernels K (x, y) = exp(—|x — y 12 / 20H)Idwithe = 1,2, 41in grid units. Larger o induce increasing
smoothness in the final solution, and deformations affecting a larger part of the space. As seen in
the figure for 0 = 4, the evolution can result in huge deformations

Similarly Inv is C* from Diff2 ™ to Diff?.

We now compute the derivative of U; under the assumption that /' is square inte-
grable, I is compactly supported (on some set ;) and continuously differentiable.
One can relax the differentiability assumption on / (considering, for example, piece-
wise smooth images), but the analysis is much more difficult, and we refer the reader
to results in [293-295] for more details. Define

Ur(p) = /Q 1 0p(0) — I'(x)| dx
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so that U; = U; o Inv. Fixing ¢ € Diff?*', h € C/™' (2, RY) and letting ¢, = ¢ +
eh for || < 1, we have

0.0, () = 2 / (I o (x) = I'()VI 0 .(0)Th(x) dox.
2

The integrand in the right-hand side is dominated by the integrable upper bound
(M llso + 1I'ODIVI o ||h||oolé(x), where Q is any compact set that contains
©-1(Q)) for |e| < 1, which justifies the derivation. Taking £ = 0, we obtain the
directional derivative of U, which is

(dﬁ,(@ )h) - 2/9(1 0 o(x) — I'(X)V1I 0 () h(x) dx.

Our hypotheses on I imply that dU; () is continuous in ¢ € Diff})"* forany p > 0.
Fixing ¢ and assuming |l¢" — ¢l < 1, we have

|(a010) = als o [1))]
< 2[ (Iopx)—1o0¢ (x)VI oy (x) h(x)dx
2

+ 2[ (Iop(x)—T'(xX)(VIopx)—VIog(x) h(x)dx
2
<2011 09 —10¢ ool VIoolllloo

+2y/101Il1 0 o = I'll2IV1 0 ¢ = VI 0 ¢/ [[asltl| oo

where Q is a compact set containing all (¢’)~1(Q;) for ||’ — ¢|le < 1. The facts
that / and V1 are uniformly continuous on Q; imply that ||/ o ¢ — I o /[« and
IVIop—VIoy|stendto0as |[¢ — ¢l tends to 0. (We have denoted by | Q|
the Lebesgue measure of the set 0)

As a composition of C! functions, we find that U; is C! on Diffé’“’C>O for any
p > 0, with (applying the chain rule)

@dUr(p) | h) =

— 2/ Top 'x)=I'x)VIop ') d@ Hhop ' (x)dx. (9.17)
2
Notice that V(I o o) = (VIT o ¢ 1d(¢™"), so that
@Ur(p) | h) = —2f o™ ' (x) = I'x)VUT oo H(x) ho ™ (x)dx
2

and we retrieve the formula

@U;(p) 1h) = (dUu(Gd) |hop™").
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The Eulerian derivative is given by
(OU1(p) |v) = @U;(id) [v o)

= —2/ (Top ' (x) = I'(x)VU o o) (x) v(x)dx.
2

We introduce a notation that will be used throughout this chapter and that gen-
eralizes the one given for point measures in Eq.(8.4). If i is a measure on £2 and
7 : 2 — R? a pu-measurable function, the vector measure (zy) is the linear form
over vector fields on £2 defined by

(zi | h) = /QzThdu. (9.18)
With this notation we can write
() = —2(T o™ =TIV 0™ "))dx. (9.19)
Notice also that, making a change of variable in (9.17), we have
dU;(p) = —Z(det(dgo) I =1 op) dgo_TVI)dx. (9.20)

To compute the Eulerian gradient of U, we need to apply the kernel operator, K,
to OU; (¢), which requires the following lemma.

Lemma 9.4 IfV is a reproducing kernel Hilbert space (RKHS) of vector fields on
§2 with kernel operator K and kernel K, pu is a measure on 2 and z a u-measurable
function from §2 to R4, then, forall x € £2,

K(zp)(x) = / K (e, )20 dp(y).
2

Proof From the definition of the kernel, we have, for any a € RY:

a"K(zp)(x) = (ad, | K(zp))
= (zp | K(aéy))
= (zu | K(,x)a)

:/QZT(y)K(y,x)ad,U(y)
:aT[QK(x,y)z(y)du(y),

which proves Lemma 9.4. ]
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The expression of the Eulerian gradient of U; is now given by Lemma 9.4:

VU (p) = =2 /Q Top ') = T'ONK(, VU o H(ymdy.  (9.21)

This provides the following “greedy” image-matching algorithm [67, 278].

Algorithm 9.5 Greedy image matching Start with ¢(0) = id and solve the evolu-
tion equation

Orp(t,y) = 2/ (J(@t,x) = I'(x)K(p(t, y), x)VJ(t, x)dx (9.22)
2

with I(z,-) = I o (p(t))"".

This algorithm can also be written uniquely in terms of the evolving image, J, using
0,J o o+ (J o )T 8,0 = 0. This yields

o J(t,y) = —2/ K@, x)(J(t,x)—I'(x))VJ(, x)TVI(t, y)dx.
Q

In contrast to what we did in the landmark case, this algorithm should not be run
indefinitely (or until numerical convergence). The fundamental difference is that, in
the landmark case, there is an infinity of solutions to the diffeomorphic interpolation
problem, and the greedy algorithm would generally run until it finds one of them
and then stabilize. In the case of images, it is perfectly possible (and even typical)
that there is no solution to the matching problem, i.e., no diffeomorphism ¢ such
that 7 o p~! = I'. In that case, Algorithm 9.5 will run indefinitely, creating huge
deformations while trying to solve an impossible problem.

To decide when the evolution should be stopped, an interesting suggestion has
been made in [278]. Define

v(t,x) = 2] (J(t,x) = I'(x))K(y, x)VJ(t, x)dx
Q

so that (9.22) reduces to 0,0 = v(t) o ¢. As we know from Chap. 7, the smoothness
of  at time ¢ can be controlled by

t
/ o)1 ds,
0

the norm being explicitly given by

o)1

= 2/ Ky, x)(J(s,x) = ') (s, y) = I'(¥)VI (s, ) VI (s, y)dxdy.
2x82
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Fig. 9.2 Greedy image matching. Output of Algorithm 9.5 when estimating a deformation of the
first image to match the second one. The third image is the obtained deformation of the first one
and the last provides the deformation applied to a grid

Define, for some parameter A,

1 t
E() = ;/0 IIU(S)||2vdS+>\/Q(J(t,y)—1'(y))2dy-

Then, the stopping time proposed in [278] for Algorithm 9.5 is the first # at which
E () stops decreasing. Some experimental results using this algorithm and stopping
rule are provided in Fig.9.2.

There are many other possible choices for a matching criterion, least squares
being, as we wrote, the simplest one. Among other possibilities, comparison criteria
involving histograms provide an interesting option, because they allow for contrast-
invariant comparisons.

Given apair of images, I, I, associate toeach x € £2 and image values A and X’ the
local histogram H, (A, \'), which counts the frequency of simultaneous occurrence
of values A in 7 and X in I’ at the same location in a small window around x. One
computationally feasible way to define it is to use the kernel estimator
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Hip (6, 0 N) = f FATO) = ADF(IG) = X g, y)dy
2

in which f is a positive function such that fR f(t)dt = 1 and f vanishes when 7 is
far from 0, and g > 0 is such that for all x, fQ g(x, y)dy = 1 and g(x, y) vanishes
when y is far from x.

For each x, H; y/(x, -, -) is a bi-dimensional probability function, and there exist
several ways of measuring the degree of dependence between its components. The
simplest one, which is probably sufficient for most applications, is the correlation
ratio, given by

S AN Hy p(x, A, N)d AN
e N2 HLpGe A N)AMN [ V)2 Hp (e, A, N)dAdN

Crrx)=1-

It is then possible to define the matching function by

UI((P):/QCIoga",I’(x)dx'

The differential of U; with respect to ( can be obtained after a lengthy (but elemen-
tary) computation. Some details can be found in [145]. A slightly simpler option is
to use criteria based on the global histogram, which is defined by

Hip O N) = /g FATO) = DS — Ny,

and the matching criterion is simply U;(¢) = Cjop-1,p oOr, as introduced in
[185, 298], the mutual information computed from the joint histogram.

9.6 Measure Matching

The running assumption in Sect. 9.4 was that the point sets (x1, . . ., x) were labeled,
so that, when comparing two of them, the correspondences were known and the
problem was to extrapolate them to the whole space.

In some applications, correspondences are not given and need to be inferred as
part of the matching problem. One way to handle this is to include them as new
unknowns (in addition to the unknown diffeomorphism), add extra terms to the
energy that measures the quality of correspondences, and minimize the whole thing.
Such an approach is taken, for example, in [240, 241].

Another point of view is to start with a representation of the point set that does not
depend on how the points are ordered. A natural mathematical representation of a
subset of RY is by the uniform measure on this set, at least when this is well-defined.
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For a very general class of sets, this corresponds to the Hausdorff measure for the
appropriate dimension [107], which, for finite sets, simply provides the sum of Dirac
measures at each point, i.e., x = (xy, ..., xy) is represented by

N

For us, this raises the issue of comparing measures using diffeomorphisms, which
will be referred to as the measure-matching problem.

In line with all other matching problems we are considering in this chapter, spe-
cifying the measure-matching problem requires, first, defining the action of diffeo-
morphisms on the considered objects, and second, using a good comparison criterion
between two objects.

Let us start with the action of diffeomorphisms. The only fact we need here
concerning measures is that they are linear forms acting on functions on R? via

(ulf)=/Rdfdu-

In particular, if p, is as above, then

N
(e 1 f) =) flxi).
i=1

If ¢ is a diffeomorphism of §2 and p a measure, we define a new measure
¢ - pby
(-plf)=@lfop).

It is straightforward to check that this provides a group action. If © = p,, we have

N
@ a1 £) =D fFopl) = (ow | f)-

i=1

so that the transformation of the measure associated to a point set x is the measure
associated to the transformed point set, which is reasonable.

When p has a density with respect to Lebesgue measure, say p = zdx, this action
can be translated to a resulting transformation over densities as follows.

Proposition 9.6 If u = zdx, where z is a positive, Lebesgue integrable function on
Q2 C RY, and ¢ is a diffeomorphism of 2, then

- p=det(d(p ") z0p dx. (9.23)



9.6 Measure Matching 257

The proposition is an immediate consequence of the definition of ¢ - i1 and of the
change of variable formula (details are left to the reader). Note that the action of
diffeomorphisms does not change the total mass of a positive measure, that is (y -
) (82) = p(82) if ¢ is a diffeomorphism of £2.

Now that we have defined the action, we need to choose a function D(u, p')
to compare two measures 4 and p/. Many such functions exist, especially when
measures are normalized to have a unit mass, since this allows for the use of
many comparison criteria defined in probability or information theory (such as
the Kullback—Leibler divergence [75]). A very general example is the Wasserstein
distance [238, 301], which is associated to a positive, symmetric, cost function
p: 2 x 2 — [0, 400) and defined by

dy(p, ') = inf /92 p(x, y)v(dx, dy), (9.24)

where the minimization is over all v with the first marginal given by p, and the second
one by p'. If 1 and 1/ are uniform measures on discrete point sets, i.e.,

N

Z Xy M = Z(Sxk

k=1

/J,:

z|~

then computing the Wasserstein distance reduces to minimizing

N M
DO p X (e x))

k=1 I=1
subject to the constraints

M

N
Z v(x, x)) = 1/N and Z v(xe,x) = 1/M.

=1 k=1

This linear assignment problem is solved by finite-dimensional linear programming.
If this is combined with diffeomorphic interpolation, i.e., if one tries to compute a
diffeomorphism ¢ minimizing d,(¢ - x, x”), this results in a formulation that mixes
discrete and continuous optimization problems, similar to the methods introduced in
[240]. The Wasserstein distance is also closely related to the mass transport problem,
which can also be used to estimate diffeomorphisms, and will be discussed in the
next chapter. For the moment, we focus on matching functionals associated with
measures, and start with the case in which the compared measures are differentiable
with respect to Lebesgue measure, i.e., with the problem of matching densities.
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9.6.1 Matching Densities

Since densities are scalar-valued functions, we can use standard norms to design
matching functionals for them. As an example, we can take the simplest case of
the L? norm, as we did with images. The difference with the image case is that the
action is different, and has the interesting feature of involving the derivative of the
diffeomorphism, via the Jacobian determinant.

So, let us consider the action ¢ x ¢ given by

ox ¢ =detd(p ")) zop™!

and use the matching functional
Ueto) = Ece @) = [ (pg = ¢
Q

Since we will need it for the differentiation of the Jacobian, we recall the following
standard result on the derivative of the determinant.

Proposition 9.7 Let F(A) = det(A) be defined over M, (R), the space of all n by
n matrices. Then, for any A, H € M, (R),

dF(A)H = trace(Adj(A)H), (9.25)

where Adj(A) is the adjugate matrix of A, i.e., the matrix with (i, j) entry given
by the determinant of A with the jth row and ith column removed, multiplied by
(—=1)*]. (When A is invertible Adj(A) = det(A) A™".)

For A = Id, we have
dF(Id)H = trace(H). (9.26)

Proof To prove this proposition, start with A = Id and use the facts that, if ¢;; is the
matrix with 1 as the (i, j) entry and O everywhere else, then det(Id + €6;;) = 1 +¢
if i = j and 1 otherwise, which directly gives (9.26). Then, prove the result for an
invertible A using

det(A + eH) = det(A) det(Id + eA~'H)

and the fact that, when A is invertible, det(A)A~! = Adj(A). This also implies
the result for a general (not necessarily invertible) A because the determinant is
a polynomial in the entries of a matrix, and so are its partial derivatives, and the
coefficients of these polynomials are fully determined by the values taken on the
dense set of invertible matrices. ]

‘We have
Ucly) = /Q (det(d(p™) C oo™ — ') dx.
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Under the assumptions that ¢ is C' and compactly supported and that ¢’ is square
integrable, one can prove that E¢ ¢ is C ! when defined over Difngrz’ij with p > 0
(the details are left to the reader). To compute the derivative at any given ¢, it will
be convenient to use the trick described at the end of Sect.9.2, starting with the
computation of the differential at the identity and deducing from it the differential at
any ¢ by replacing ¢ by ¢ - C.

Ifp(e, -)isa diffeomorghism that depends on a parameter ¢, such that ¢ (0, -) = id
and 9.(0, ) = h € CJ*(2,RY), then, at ¢ = 0, d-C o (e, )~ = —=V(¢Th and
0. det(d(p(e, -)~")) = —trace(dh) = —div h. This implies that

- (Cople, ) det(d(p(e, N™) = =V¢Th — divh = —div(Ch)

ate = 0 and

U (o), = 2 /Q (¢ = )div(Ch) dx.

So this gives

(dUc(Gd) |h) = =2 /9 (¢ — CHdiv(Ch) dx

and

(dUc(p) |h) = -2 /Q (p* ¢ = )(div((p * Oh) dx. (9.27)

We can use the divergence theorem to obtain an alternative expression (using the fact
that /2 vanishes on 052 or at infinity), yielding

(@Uete) [ ) =2 [ Vi # ¢ =)o Ohds 9.28)

or
dUc () = 2(p x OV (p* ¢ — (dx. (9:29)

One can appreciate the symmetry of this expression compared with the one obtained
with images in (9.19).

9.6.2 Dual RKHS Norms on Measures

One of the limitations of functional norms, such as the L? norm, is that they do not
apply to singular objects such as the Dirac measures that motivated our study of the
measure-matching problem. It is certainly possible to smooth out singular objects
and transform them into densities that can be compared using the previous matching
functional. For example, given a density function p (a Gaussian, for example) and a
point set (xq, ..., xy), one can compute a density
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N
G =Y n(* _O_X"), (9.30)
k=1

where o is a positive scale parameter (this is a standard kernel density estimator).
One can then compare two point sets, say x and x’, by comparing the associated (,
and (, using the previous method.

The representation in (9.30) is somewhat imperfect, in the sense that, for the natu-
ral actions we have defined, we have in general ¢ x (x # (,..: the density associated
to a deformed point set is not the deformed density. If the goal is to compare two
point sets, it makes more sense to use (., instead of ¢ - (, as a density resulting
from the deformation, and to rather use the cost function

U9 = Ee(9) = [ (Gos = Gy ©.31)
R
which can be written, if x = (x,...,xy) and x’ = (x{, ..., x},), and introducing
the function )
’ y—z y—z
£z, 7) = / p( )p( )dy, (9.32)
R4 g g

as

N
Ui(p) = Y E(p(x),p(0)

k=1

N M M
—2) > L) )+ Y S x). (9.33)

k=1 I=1 k=1

Before computing the variations of this energy, we make the preliminary remark
that the obtained expression is a particular case of what comes from a representation
of measures as linear forms over RKHSs of scalar functions. Indeed, since measures
are linear forms on functions, we can evaluate their dual norm, given by

el = sup {(u [ f) = ILF I =1} (9-34)

Following [128], assume that the function norm in (9.34) is that of an RKHS. More
precisely, let W be an RKHS of real-valued functions, so that we have an operator
Ky : W* — W with Ky 4, := £(-, x) and with the identity (1 | f) = (KWLL, f)W
for p € W*, f € W. With this choice, (9.34) becomes

lpliws = sup{(u | £): I fllw =1}
= sup {(Kwp. f)y, : I1fllw =1}
= (| Ky pll w-
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This implies that
Iellye = (Kwpe, Kwp)y = (1 | Kwp).

If 1 is a measure, this expression is very simple and is given by
el = / G, Y)dp()dp(y).
Thisisbecause Ky pu(x) = (0x | Kyp) = (1 | Kyd,) = ff(y,x)du(y).Sowecan

take
U (@) = Epp(9) = - — 1. (9.35)

Expanding the norm, we get

Un(p) = (- iy @ i)y —2(0 - 10 1)y + (15 1)y
=(p-pl&p-m)—=2(p-p &)+ (W | ')

= /f(w(x),w(y))du(x)du(y) —2f£(<p(x),y)du(x)du’(y)
+/§(x,y)du’(x)du’(u).

We retrieve (9.33) when p and g/ are sums of Dirac measures and £ is chosen as in
(9.32), but the RKHS formulation is more general.

Assume that p is bounded and that ¢ is continuously differentiable and bounded,
with bounded derivatives. Then (leaving the proof to the reader) U; is C' on Diff}"™
for any p > 0 with derivative

(OUL(p) [ 1) =2 / ViE(p(x), () h(x)dpx)dp(y)
-2 / ViE(p(x), )" h(x)dp)dp (2).
In particular,
dU,(id) = 0U,,(id) = 2 ( f ViEC, du(y) — f V1§(~,z)du’(z)> p. (9.36)

To obtain the Eulerian differential at a generic ¢, it suffices to replace p by ¢ - ,
which yields:

Proposition 9.8 The Eulerian derivative and gradient of (9.35) are

B, () =2< / ViEC. o dpuly) — / vlfo,z)d;/(z)) (-1 (937)
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and
VUL () =2 / K (., p(x))
(/ Vi€(p(x), o())duly) — an(w(x),z)du’(z)) du(x). (9.38)

The derivative of the expression in (9.33) can be directly deduced from this expres-
sion. This leads to the following unlabeled point-matching evolution for point sets
x=(x,...,xy)and x" = (x], ..., X))

N
Dp(x) = =2 K ((2), p(x:))

i=1

N M
D Vil o)) = Y Vik(pxi), xp) | (9.39)

j=1 h=1

As discussed in the case of labeled point sets, this equation may be solved in two
stages: letting z; () = (¢, x;), first solve the system

N N M
dizy =—22K(zq,zi) ZV&(Zi,Zj)—ZVlf(Zi,XZ)
i—1 =1 h=1

Once this is done, the trajectory of an arbitrary point z(¢) = ¢, (z0) is

N N M
Oz=-2) K(zz) | D Vit zj)) — Y Vi, x})

i=1 j=1 h=1

9.7 Matching Curves and Surfaces

Curves in two dimensions and surfaces in three dimensions are probably the most
natural representations of shapes, and their comparison using matching functionals
is a fundamental issue. In this section, we discuss a series of representations that can
be seen as extensions of measure-matching methods. (This is not the unique way to
compare such objects, and we will see a few more methods in the following chapters,
especially for curves.)

Note that we are looking here for correspondences between points in the curves
and surfaces that derive from global diffeomorphisms of the ambient space. The
curve- (or surface-) matching problems are often studied in the literature as attempts
to find diffeomorphic correspondences between points along the curve (or surface)
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only. Even if such restricted diffeomorphisms can generally be extended to diffeo-
morphisms of the whole space, the two approaches generally lead to very different
algorithms. The search for correspondences within the structures is often imple-
mented as a search for correspondences between parametrizations. This is easier for
curves (looking, for example, for correspondences of the arc-length parametriza-
tions), than for surfaces, which may not be topologically equivalent in the first place
(a sphere cannot be matched to a torus); when matching topologically equivalent
surfaces, special parametrizations, like conformal maps [72, 269] can be used. In
this framework, once parametrizations are fixed, one can look for diffeomorphisms
in parameter space that optimally align some well-chosen, preferably intrinsic, repre-
sentation. In the case of curves, one can choose the representation s +— «-(s), where
k.~ is the curvature of a curve 7, with the curve rescaled to have length 1 to fix the
interval over which this representation is defined. One can then use image-matching
functionals to compare them, i.e., find ¢ (a diffeomorphism of the unit interval) such
that ¢ - Ky > K.

But, as we wrote, the main focus in this chapter is the definition of matching
functionals for deformable objects in R4, and we now address this problem for
curves and surfaces.

9.7.1 Curve Matching with Measures

We can arguably make a parallel between point sets and curves in that labeled point
sets correspond to parametrized curves and unlabeled point sets to curves mod-
ulo parametrization. In this regard we have a direct generalization of the labeled
point-matching functional to parametrized curves (assumed to be defined over the
same interval, say [0, 1]), simply given by

1
Evo(p) = /0 (Y (W)) — 7 ()P,

But being given two consistent parametrizations of the curves (to allow for direct
comparisons as done above) almost never happens in practice. Interesting formu-
lations of the curve matching problem should therefore consider curves modulo
parametrization, so that the natural analogy is with unlabeled point sets. The coun-
terpart of a uniform measure over a finite set of points is the uniform measure on the
curve, defined by, if -y, parametrized over an interval [a, b], is C' and regular

b
(1 | ) = f fdoy = / FOr@) 1) da.
Yy a

This is clearly a parametrization-independent representation. Now, if ¢ is a diffeo-
morphism, we have, by definition of the action of diffeomorphisms on measures
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b
(o py | f) :/fmpd% Z/ Je(y) 1Y) du.
Y a

However, we have

(e 1) = |

Py

b
)fd%m =f Jle(y@)) lde(y(u)yw)| du.

So, in contrast to point sets, for which we had ¢ - 1y = i,(r), the image of the
measure associated to a curve is not the measure associated to the image of a curve.
When the initial goal is to compare curves, and not measures, it is more natural to
use the second definition, .., rather than the first one. Using the notation of the
previous section, and introducing a target curve +' defined on [a@’, b'], we can set

E (@) = gy — pioy e (9.40)
= (kg :“so-“/>W* — 2pp - ﬂ"f’)W* +{py Nv’)w*
= (o [ §G1a)) = 2(ppy [ €1y ) + (1 [ €p1y)

b rb
=/ / Ee(y)), (v () lde(y @)y ()] 1dp(y(v))Y(v)| dudv

P
—2/ / E((ym)), 7' () ldp(y@)F@)| 1y (v)] dudv

+ /a,b/ /a | £ ), ' () 1Y )] 15 ()| dudv.
If£isCl, then E, . is C' on Diff{)”'l’Oo for any p > 0. To explicitly compute the
derivative, take (g, -) such that (0, -) = id and 0-¢(0, -) = h, so that
O-E(p(e, ) = 20:{pg(cory = by Ly = Hoy )y = 20:{ e,y o 11y = fy )y
the derivatives being computed at € = 0. Introduce
E@) = (Hon + Hy = By )y

and let, for a given curve 7,
AIOE f £C. p)dos(p). (9.41)
%l

Letalso( = Z7 — 77" and, for further use, ¥ =27Z%7 — 77 . With this notation, we
have

E(p) = C(p)dopey (p)
()

and we can use Theorem 5.2 to derive, letting pp and p; be the extremities of ~,



9.7 Matching Curves and Surfaces 265

0-E(p(2, =0 = C(ph(p)" T (p1) — C(po)h(po) T7 (po)
+ / (V¢"NT = ¢w7)R" NYdl.
Replacing v by ¢ - 7, this provides the expression of the Eulerian derivative of E
at ©, namely
12 "
zaEv,v’ (p) = CYT’Y (5[71 _6[70)
+ ((VCHTN?T — (PRPTVNP T g, (9.42)

The Eulerian gradient on V therefore is

1 ,
EVE%"/’(SQ) =K, p)CP(p)T7(p1) — K (-, po)¢P(po) T (po)

+ / (VC‘”(p)TN 71(p) — C'*’(p)m‘”'”(p))l( ¢, pIN?(p)do,~(p). (9.43)
ey

To write this expression, we have implicitly assumed that v is C?. In fact, we
can give an alternative expression for the Eulerian gradient that does not require
this assumption, by directly computing the variation of E (¢(g, -)) without applying
Theorem 5.2. This yields, using the fact that, if z is a function of a parameter ¢, then
Ozl = (" 2)/ Iz,

d-1dp(e, YN Hje=0 = (T dh(y)y = (T") dh()T"|¥|

and 9.E(p(e, 1) = / (V¢ + (™) dhT")do,.

!

The term involving dh can be written in terms of V-dot products of & with derivatives
of the kernel, K, since (we use the notation introduced in Sect.8.1.3, Eq.(8.9))

a’dh(x)b = (h, &K (-, x)(a,b)),. (9.44)

This gives

O-E(p(. ) = / ((K(-, pIVC(p), h),

¥
)i

+(CPDK G T (P). T (P, ), ) dos (p)

and a new expression of the Eulerian gradient
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1

9V E () = / (ke Ve
wy

+ P (PK (., pITT (p), T (p)) ) dory(p). (9.45)
To be complete, let us consider the variation of a discrete form of E, . (¢). If a

curve 7 is discretized with points xo, ..., xy (with xy = xo if the curve is closed),
one can define the discrete measure, still denoted i,

N
)= felml
i=1

with¢; = (x; + x;—1)/2and 7; = x; — x;_1. Use a similar expression for the measure
associated to a discretization of ¢ -, with ¢/ = (o(x;) + ¢(x;1))/2 and 77° =
@(x;) — @(x;_1). Finally, let 7 be discretized in x1, ..., x},, and define

E\y(p) = Z &t NN 177 (9.46)

111

—2ZZ£<c,,c>|rV||r|+Zf(c,, AlEANEA

i=1 j=I1 i,j=1

in which we identify indices 1 and N 4 1 or M + 1 (assuming closed curves). Note
that this functional depends on ¢ - x and x’. The computation of the differential
proceeds as above. Define, for a point set X = (X1, ..., Xp)

(¢
Z5) =Y L EnlFl,

j=1

and ¢ = Z* — Z¥, (¥ = Z¥* — Z*'. We then obtain

1
EdEW/ (id) = Z(VC(C;)IWI + VC(CivDITi1 D0y,
i=1

N
—2 ) (¢l
i=1

— (e )M)

|l+|

The Eulerian differential at ¢ # id is obtained by replacing ¢, ¢;, 7 by ¢?, ¢/, 77

and the Eulerian gradient by applying the V-kernel to it.
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9.7.2 Curve Matching with Vector Measures

Instead of describing a curve with a measure, which is a linear form on functions,
it is possible to represent it by a vector measure, which is a linear form on vector
fields. Given a parametrized curve v : [a, b] — R4, we define a vector measure Uy,
which associates to each vector field f on R? a number (Vv | f ) given by

b
0 1) = [ 3@ £ oraan.

i.e., vy, = T, where T7 is the unit tangent to v and ., is the line measure along
v, as defined in the previous section. This definition is invariant under a change of
parametrization, but depends on the orientation of . If ¢ is a diffeomorphism, we
then have

b
Vor (f) =/ de(y) )" f o p(y(w)du.

As done with scalar measures, we can use a dual norm for the comparison of two
vector measures. Such a norm is defined by

Ivllws =sup{@ | f):IIfllw=1},

where W is now an RKHS of vector fields, and we still have ||v|%,. = (v | Kyv).
Still letting ¢ denote the kernel of W (which is now matrix-valued), we have

b b
il = [ [ 4w 0w, @i wauds
and
b b
IIV¢.~,|I%V»«=f f )" dp(y)T E(p(v(w)), p((v))dp(y(v)F(v)dudv.

Define E., . (¢) = ||V, — Uy ||3. We follow the same pattern as in the previous
section and define

E~(§0) = (Vgafy » Uy — V"‘,/>W*7
which (introducing (e, ) with ¢(0,-) =id and 0-¢(0,-) = h) is such that
0-E(p(e,-)) =20-E(p(e, -)) ate = 0. Define
20 = [ &N prap.
5

and ( = Z7 — ZV, (¥ = Z¥7 — Z7, so that (using (T¢")TT7 = (N¥")TN7)
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E(p) = / ¢("NYdo,..
@y

We can use Theorem 5.2, Eq. (5.4), to find
O-E(p(e, ) = —[det(¢, W] + / div(Q)(N")" hdl.
v

This yields in turn (replacing v by ¢ - 7, and letting po and p; be the extremities of
7)

12 .
50E,7(9) = =(Rep () Gatpy = Sotp) + VW O4T)

where Ry/» is a 90° rotation. This final expression is remarkably simple, especially
for closed curves, for which the first term cancels. A discrete version of the matching
functional can also be defined, namely, using the notation of the previous section:

N
Eyy(p) =Y &l e rf

ij=1
N N M

=2 N el HEDTT A+ D e, DT
i=1 j=1 ij=1

We leave the computation of the associated Eulerian differential (which is a slight
variation of the one we made with measures) to the reader.

9.7.3 Surface Matching

We now extend to surfaces the matching functionals that we just studied for curves.
The construction is formally very similar. If S is a surface in R3, one can compute a
measure g and a vector measure vs defined by

(s 1 f)= / f(x)dos(x) for a scalar f (9.48)
s

and
ws|f)= / f(x)TN(x)dOS(x) for a vector field f, (9.49)
s

where doyg is the volume measure on S and N is the unit normal (S being assumed
to be oriented in the definition of vy).
We state without proof the following result:
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Proposition 9.9 If S is a surface and ¢ a diffeomorphism of R3 that preserves the
orientation (i.e., with positive Jacobian), we have

(o) | f) = / f o) |dp(x) " N| det(dp(x))dos(x)
S

for a scalar f and for a vector-valued f,

(Vees) | f) Z/fOSD(X)Td<P(X)7TN det(dp(x))dos(x).
s

If ei(x), ex(x) is a basis of the tangent plane to S at x, we have
dp(x)™"N det(dp(x)) = (dp(x)er x dp(x)er)/ler X eal. (9.50)
The last formula implies in particular that if S is parametrized by

(u, v) — m(u, v), then (since N = (0ym x dhym)/|0ym x dym|and dog = |0ym x
O,m| dudv)

wslf)= /f(x)T(alm x Oym)dudv

— / det(@ym, Dym, F)dudv

and
(Vw(s) |f) = /det(dg&@lm,dgo@zm,fogp)dudv.

If W is an RKHS of scalar functions or vector fields, we can compare two surfaces
by using the norm of the difference of their associated measures on W*. So define
(in the scalar measure case)

Ess(p) = llptgs — pis 15y 9.51)

and the associated 3
E(p) = (pgs» p1s — 115 )y

so that, for ¢ (e, -) such that (0, ) = id and 9:¢(0, -) = h
O.E, (p(e, ) = 20-E(p(e, -)).

To a given surface S, associate the function

75() = fgé(up)das(l’)
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and ¢ = Z5 — 75, (¥ = 7¥5 — 7% Since
B = [ cwdo.sip.
[N
Theorem 5.4 yields
0.E(e. ) =~ [ o) hdo,
a8
+ / (—2¢H® + V(' NS) (N®) hdos
s
where H is the mean curvature on S. This implies
Iz o o — :
EaES,S, (@) = =S s + (— 2CPHS + (VCOI N5 u,.s. (9.52)
If we now use vector measures, so that

Es.5(0) = Vps — Vs I3 (9.53)

and ~
E(p) = (Vps. vs — sy

we need to define

z5¢) = f £C. p)N3dos(p)
S
and ¢ = Z5 — 75, (% = 295 — 7%, so that
E((p) :f CTN/’D'SdO'W.S.
S

Variations derive again from Theorem 5.4, yielding

0. = — / (" NS 1) — (Tn®)(hT N)) dos
oS

+ / div(O)(NHThdos.
N
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We therefore have

%éEs,Sf (@) = — (NS n?S — () n?S N?5) s
+div((P)vps.  (9.54)

Again the expression is remarkably simple for surfaces without boundary.
Consider now the discrete case and let S be a triangulated surface [289]. Let
X1, ..., xy be the vertices of S and fi, ..., fo be the faces (triangles) which are
ordered triples of vertices f; = (x;1, Xi2, X;3). Letc; be the center of f;, N; its oriented
unit normal and g; its area. Define the discrete versions of the previous measures by

0
(us |h) = Z h(ci)a;, for ascalar h (9.55)
i=1
and
0
(vs |h) = Z(h(ci)TNi)ai, for a vector field A. (9.56)

i=1

The previous formulae can be written as

K Xi1 +xip +x
il i2 i3
(us [h) = Zh(f)l(m —xi1) X (X3 — xi1)|

i=1
and

K
Xi1 + xi2 + xi3\ T
(s 1h) = Y h(—5—2) (2 — i) x (i3 = ).
i=1

where the last formula requires that the vertices or the triangles are ordered consis-
tently with the orientation (see Sect.4.2). The transformed surfaces are now repre-
sented by the same expressions with x;; replaced by (x;;). If, given two triangulated
surfaces, one defines Eg g (¢) = |[ptp.s — ps ||%v*’ then (leaving the computation to
the reader)

4

S0Es s = Y0 (X (V¢S ~ e x N

k=1 ixief;

where e, is the edge opposite x; in f; (oriented so that (xi, e;;) is positively ordered),
and ¢ = Z5 — Z%, with

K
Z5¢) =) &G, éa

i=1
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for a triangulated surface S. The Eulerian differential at ¢ is obtained by replacing
all x;’s by p(xz).

For the vector-measure form, Eg s (¢) = ||Vp.s — Vs II%V*, we get
1- N @
30Ess W0 =3 (Zf (@C(eIN) T = e x C(c0) )3,
= Xk ETi

still with ¢ = Z5 — Z¥', but with

) K
Z5() =) &G, &)Niay.

i=1

9.7.4 Induced Actions and Currents

We have designed the action of diffeomorphisms on measures by (¢ - pu |h) =
(p | h o ). Recall that we have the usual action of diffeomorphisms on functions
defined by ¢ - h = h o ™", so that we can write (¢ - p1 |h) = (1 |~ - h). In the
case of curves, we have seen that this action on the induced measure did not corre-
spond to the image of the curve by a diffeomorphism, in the sense that fi.,., # ¢ - 1.
Here, we discuss whether the transformations p, — fi,., Or v, — v,., (and the
equivalent transformations for surfaces) can be described by a similar operation, e.g.,
whether one can write (¢ - p | h) = (u | o x h) where * would represent another
action of diffeomorphisms on functions (or on vector fields for vector measures).

For ., the answer is negative. We have, letting 7 (y(x)) be the unit tangent
to 7,

b
(Hon | 1) = / h(e(y@))|dp(y () (u)|du
b
2/ h(e(y)lde(y@)T )|y (w)|du,
so that (pyy |h) = (1 |ho@ldeT|), with some abuse of notation in the last

formula, since T is only defined along «. The important fact here is that the function

h is transformed according to a rule which depends not only on the diffeomorphism

¢, but also on the curve -, and therefore the result cannot be put in the form ¢! * A.
The situation is different for vector measures. Indeed, we have

b
Vo, () = / (do (1)) h o oy (w))du

= (1/7, |d<pTh o <p).
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So, if we define p x h = d(¢~")"h o o=, we have (v, |h) = (v, |~ «h). The
transformation (¢, h) +— @ % h is a valid action of diffeomorphisms on vector fields,
sinceid x i = h and p * (» x h) = (p o ¢)) % h, as can easily be checked.

The same analysis can be made for surfaces; scalar measures do not transform
in accordance to an action, but vector measures do. Let us check this last point by
considering the formula in a local chart, where

(Ves) | 1) = /det(dcp ovm, dyp Ohm, h o p)dudv

= / det(dp) det(dym, dam, (d)~'h o @)dudv
= (vs |det(dp)(dp) 'ho ).
So, we need here to define

@xh=det(d(@ ")) Thop™ = (dph/det(dp)) o .

Here again, a direct computation shows that this is an action.

We have just proved that vector measures are transformed by a diffeomorphism ¢
accordingtoarule (p-p |h) = (u | o ' xh ) the action » being apparently differ-
ent for curves and surfaces. In fact, all these actions (including the scalar one) can be
placed within a single framework if one replaces vector fields by differential forms
and measures by currents [126, 127, 289].

The reader may refer to Sects. B.7.1 and B.7.2 for basic definitions of linear and
differential forms, in which the space of differential k-forms on R4 is denoted 2,
or Q,f. We can consider spaces of smooth differential k-forms, and in particular,
reproducing kernel Hilbert spaces of such forms: a space W C £2; is an RKHS if,

forevery x € R? and ey, ..., ¢, € R?, the evaluation function
(e1,...,e)0, 1 q— (q(x) |er,...,ex)
belongs to W*. Introduce the duality operator, so that Ky ((eq, ..., ex)d,) € W.

Introduce, for x, y € RY, the 2k-linear form £(x, y) defined by

Ex, ) ler,.oves fisoo fi) = Kwler, ..., er)6) O | fis -y fo)-

Notice that this form is skew-symmetric with respect to its first k and its last k
variables and that

(Eclers.ove) & (fia s f)y = € y) ler, .. oe fio.s fio),

so that £ may be called the reproducing kernel of W. Similar to vector fields, kernels
for differential k-forms can be derived from scalar kernels by letting
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(f(x,y) |€],...,€k;f],...,fk)=

g(x,y)<el X oo Xep, f1 X ka)AH,
(9.57)

where the dot product on the space of k-linear forms, Ay, is the product of coeffi-
cients of the forms over a basis formed by all cross products of subsets of k elements
of an orthonormal basis of R?, as described in Sect.B.7.1.

Elements of the dual space, W*, to W are therefore linear forms over differential
k-forms, and are special instances of k-currents [107, 210] (k-currents are bounded
differential forms over C* differential k-forms with compact support, which is less
restrictive than being bounded on W). Important examples of currents are those
associated to submanifolds of R¢, and are defined as follows. Let M be an oriented
k-dimensional submanifold of R¢. To a differential k-form ¢, associate the quantity

(m 1g) = /M(q(X) lei(x), ..., ex(x)), doy(x)

where ey, ..., e is, for all x, a positively oriented orthonormal basis of the tangent
space to M at x (by Eq. (B.16), the result does not depend on the chosen basis).

If W is an RKHS of differential k-forms, 7,, belongs to W* and we can compute
the dual norm of 7,,, which is

1 13- =/ / Ex,y) lerx),...,ex(x);e1(y), ..., ex(y))doy(x)doy(y)
MJIM

or, for a scalar kernel defined by (9.57),

[ / / Er, fer () x - xep(x), e (y) x -+ x e(y),
MJIM
doy (x)dom(y).

The expressions of 7, and its norm in a local chart of M are quite simple. Indeed,
if (uy, ..., ug) is the parametrization in the chart and (0;m, . .., Oym) the associated
tangent vectors (assumed to be positively oriented), we have, for a k-form ¢ (using
(B.16))

(g |Om,...,0m)=1(q |ei,...,e)det(Oym,...,Oxm)
which immediately yields

(g |Om,...,0m)duy...duy = (q |ey,...,ex)doy.

We therefore have, in the chart,

(Mm |Q)=/(CI |Oym, ..., 0wm)du; ...duy
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and similar formulas for the norm.
Now consider the action of diffeomorphisms. If M becomes ¢ (M), the formula
in the chart yields

() ’q):/(qo(p |dpOim, ..., dpdym)duy ... duyg

so that (nuy | q) = (qu 1G) with
@) | fi, -5 fi) = (@) [defi,....defi).

As we did with vector measures, we can introduce the left action on k-forms (also
called the push-forward of the k-form):

(exq | fioooon fi)=(qgoe |d ™) fi.....d™ " fi)

and the resulting action on p-currents

! *q), (9.58)

-nlg)=nle"
so that we can write o) = ¢ - u.-

This is reminiscent of what we have obtained for measures, and for vector mea-
sures with curves and surfaces. We now check that these examples are particular
cases of the previous discussion.

Measures are linear forms on functions, which are also differential O-forms. The
definition (¢ - 1 | f) = (i | f o ) is exactly the same as in (9.58).

Consider now the case of curves, which are 1D submanifolds, so that k = 1. If ~
is a curve, and 7 is its unit tangent, we have

b
(ny |q) = / (q(y) | T)do,, = / (@(yw) |5(u))du.
ol a

To a vector field & on RY, we can associate the differential 1-form qp, defined by
(gn(x) |v) = h(x)Tv. In fact all differential 1-forms can be expressed as g;, for
some vector field /2. Using this identification and noting that (v, |h) = (1, | qx).
we can see that the vector measure for curve matching is a special case of the currents
that we have considered here.

For surfaces in three dimensions, we need to take k = 2, and if S is a surface, we
have

(s 1q) =/S(q(x) le1(x), ex(x))dos(x).

Again, a vector field f on R3 induces a 2-form qy, defined by (q f |v1, vz) =
det(f, vi, v2) = fT(v; x v2), and every 2-form can be obtained this way. Using the
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fact that, if (eq, e») is a positively oriented basis of the tangent space to the surface,
then e; X e = N, we retrieve (vg | f) = (775 |qf).

9.7.5 Varifolds

A differential k-form w on R? uniquely defines a function on the product space R? x
Gr(d, k), the product space of RY with the set of all oriented k-dimensional subspaces
of R? (called the oriented Grassmannian, on which a manifold structure similar to
the one discussed in Sect. B.6.7 for the Grassmann manifold can be defined). One can
indeed assign to any pair (x, «) in that set the scalar F, (x, o) = (q(x) |ey, ..., ex)
where ey, .. ., e is any positively oriented orthonormal basis of «, and the value does
not depend on the chosen basis. Given an oriented k-dimensional submanifold of R4,
one can define the linear form on continuous functions F defined on R¢ x G/r(d k),
given by

(Pm | F) =f F(p, TyM)doy,
M

where T\, M is considered with its orientation. The current 7)), defined in the previous
section is such that (1, |q) = (ﬁM | F, )

When one wants to disregard orientation, which may be convenient, and some-
times necessary in practice, it is natural to replace Gr(d, k) by Gr(d, k) (the Grass-
mannian) and define the same linear form (that we now call p,,) on functions defined
onRY x Gr(d, k). The linear form py; is a special case of a varifold, where varifolds
are defined as (Radon) measures on RY x Gr(d, k).

From this point, and following [61], one can make a construction analogous to
the one just described for measures on R?. Given a reproducing kernel Hilbert space
W of functions defined on R? x Gr(d, k), define the square distance between two
k-dimensional submanifolds of R¢ by

DM, M"Y = llpy — pur I3y

For the approach to be practical, one needs to have explicit kernels on R? x Gr(d, k).
Referring to [61] for a complete discussion, we note here that a class of such kernels
can be designed based on the following observations.

(i) The function defined for «, 3 € (Tr(d , k) by
(e, B) = [e1(x) x -+ x e (), fily) X -+ X i), s
where (elg ...,er)and (f1, ..., fi) are positively oriented orthonormal bases

of & and 3, is a positive definite kernel. Hence, the function defined for o, 5 €
Gr(d, k)
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£ B) = [er(0) x -+ x ex(x) . i) x - x i), -

where (eq, ..., er) and (fi, ..., fi) are orthonormal bases of o and (3, is also

definite positive. More generally, if £ is positive definite on Gr(d, k), then

E=f (f ) is definite positive on Gr(d, k) for any even analytic function f whose

derivatives at O are all non-negative, and at least one of them positive. These

statements simply use the fact that products of positive kernels remain positive.
(i1) If n is a positive kernel on differential p-forms, then 5 defined by

Ex, a9, 0) = 0, y) e e fiseons fi)

is a positive kernel on RY x Gr(d, k).
(iii) If £ is a reproducing kernel on R¢ and ¢ a reproducing kernel on Gr(d, k),
then ¢ defined by

Ex, a5y, B) = £V (x, EP(a, B

is a reproducing kernel on R? x Gr(d, k).

Applying this to surfaces, for example, and using the discussion at the end of the
previous section, we find that taking

- 2
(o5 s p3ly. = /S /S £(x, 5) (1+a(N(x)TNoz)) )dagmdas(x),

where ¢ is a reproducing kernel on R¢, provides an RKHS dual inner-product on
varifolds. The discretization of such a norm is similar to those detailed for scalar and
vector measures and is left to the reader.

9.8 Matching Vector Fields

We now study vector fields as deformable objects. They correspond, for example, to
velocity fields (that can be observed for weather data), or to gradient fields that can
be computed for images. Orientation fields (that can be represented by unit vector
fields) are also interesting. They can correspond, for example, to fiber orientations
in tissues observed in medical images.

We want to compare two vector fields f and f’, i.e., two functions from R? to
R?. To simplify, we restrict ourselves to E 1,77 () being the L? norm between ¢ - f
and f’, and focus our discussion on the definition of the action of diffeomorphisms
on vector fields.

The simplest choice is to use the same action as in image matching and take
¢- f = foe !, where f is a vector field on R?. It is, however, natural (and more
consistent with applications) to combine the displacement of the points at which f
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is evaluated with a reorientation of f, also induced by the transformation. Several
choices can be made for such an action and all may be of interest depending on the
context.

For example, we can interpret a vector field as a velocity field, assuming that
each point in £2 moves on to a trajectory x(¢) and that f(x) = x(¢), say at time
t = 0. If we make the transformation x — x’ = ¢(x), and let f’ be the transformed
vector field, such that x'(0) = f'(x’), we get: x'(0) = dp(x)x(0) = f' o p(x) so
that f' = (dy f) o ¢~ '. The transformation f > (dy f) o ¢! is an important Lie
group operation, called the adjoint representation (Ad,, f). This is anecdotal here,
but we will use it again later as a fundamental tool. So, our first action is

pxf=(dpflop.

To define a second action, we now consider vector fields that are obtained as
gradients of a function I: f = VI.If I becomes ¢ -1 =1 o ™!, then f becomes
d(@™"TVI o ¢!, This defines a new action

pxf=de ) fop ' =(de T oy

This action can be applied to any vector field, not only gradients, but one can check
that the set of vector fields f such that curl f = 0 is left invariant by this action.

Sometimes, it is important that the norms of the vector fields at each point remain
invariant under the transformation, when dealing, for example, with orientation fields.
This can be achieved in both cases by normalizing the result, and we define the
following normalized actions:

—_ d‘Pf)Q 1
<P*f—<|f|—|d(pf| ®

P d‘P_Tf>O —1
poxf= <|f|—|d<p—Tf| @

(taking, in both cases, the right-hand side equal to O if | f| = 0).

We now evaluate the differential of Ef, (¢) = ll¢ - f — f' ||§, where ¢ - f isone
of the actions above. We will make the computation below under the assumption
that f is C' and compactly supported. For the * action, we can observe that, for
p=1id + A,

oxf—f=dhfo(ld+h) "+ fold+hn~"—f
so that

oxf—f—dhf+dfh=dh(foGd+h) "= f)+ fo(d+h)"
— fo@ld—h)+ fo(id—h)— f+dfh.
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Using the fact that [|(id + /)" — id||sc = /1]l

IGd + )~ = (id = D)lloo = llh 0 (id + h) — hlloo < [IB]7

and letting
W (e) = sup sup | f(x +0) — f(x) — df (x)5]

xeRd |0]<e

we find that
o= f = f —dh f+df hlloo < Il Fllooll2l1} s + ILf oo 1211 o + @3 (12]]0)-
Noting that w;l)(s) = o(¢), we find that

Il f—f—dhf+dfhlle=o(lhl1c)- (9-59)

Using this estimate, it is now easy to show that Ef, s : Diffy™ — R is differen-
tiable at ¢ = id with derivative

(dE;pGd) | k) =2(dh f —df b, f— f),
= Zf (dh f—df W' (f — fdx.
2

For f + % f to map compactly supported C' vector fields into vector fields
with the same property, we need to take twice-differentiable diffeomorphisms, i.e.,
pe Diff(z)‘oo. Over this group, we find that E /- is differentiable everywhere, with

(dEy ;@) [ 1) = (dEysp.p(id) [hog™t).
The Eulerian derivative is then given by

(OEfp@) [v) = (dEypus s (d) |v)
=2dv (W f)—dW* fHv, = f— f),.

This expression can be combined with (9.44) to obtain the Eulerian gradient of U,
namely

V' Es ) =

2/9 (DK ()W % f— f1oibx ) — K(ox)d(@hx )T W x f — 1) dx.

The Eulerian differential can be rewritten in another form to avoid the intervention
of the differential of /. The following lemma is a consequence of the divergence
theorem.

Lemma 9.10 If 2 is a bounded open domain of R¢ and v, w, h are smooth vector
fields on R4, then
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/dehwdx=/ WTh) (W N)doye
2 082

—/ (wdv"h + (divw)(v" h))dx. (9.60)
2

Equation (9.60) can be rewritten as

(dh w, v)2 = ((wTN)vaa_Q | h) - (dv w~+ (divw) v, h)z' (9.61)
Proof To prove this, introduce the coordinates Al ..., h? for hand v!, ..., v for
v so that .,

v dhw = Z v (VAH T w.

i=l
Now, use the fact that
d
divw hw) = div( 3 vl‘hiw)
i=1
d
- Z (W' (VEY w + K (Vo) w + hyv' div w)
i=1

= vldhw + hTdvw + (KT v)divw

and the divergence theorem to obtain the result. (I

Using this lemma with £2 large enough so that f vanishes on 052, we find
(dEspGd) |h) = =2(df —df') f +div £ (f = f)+df " (f = £)), h),,

which directly provides a new version of the Eulerian derivative at an arbitrary ¢,
with the corresponding new expression of the Eulerian gradient:

VB =2 [ Ken(des £ = £ )
+divex )@ [ = f)+dlpx HTpx f = f))dx.

Let us now consider the normalized version of this action. We will make the
computation under a few additional assumptions on f, namely, that f is compactly
supported and f/| f| can be replaced by a smooth unit vector field that can be extended
to an open set that contains the support of /. More precisely, we will assume that there
exists a scalar function p, continuously differentiable and supported by a compact
set O, and a vector field u such that |u(x)| = 1 for all x in an open set £2 containing
0, u is continuously differentiable on £2 and f(x) = p(x)u(x). With this notation,
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we have
_] pxu

lo s ul’

pxf=poyp
Note that, for z # 0, the derivative of z/|z] is

1
hi> h/lz| — 22" /)2’ = Pkl

where 7,1 is the orthogonal projection on the space of vectors perpendicular to z.
Consider ¢ = id 4+ h forsome h € Diff(l)’oo. Letd = dist(Q, £2¢) and assume that

hlleo = llp™" —idlleo < 8/2.
From (9.59), we have, letting £2’ be the set of x € R? such that dist(x, Q) < 4,

sup [(p s u)(x) —u(x) — dh(x)u(x) +du(x)h(x)] = o(llhll10),

from which we deduce

(@ *u)(x)

sup —u(x) — m (dh(x)u(x) — du(x)h(x))| = o(||1]l1,00)-
re' | (@ u)(x)]

Since [[po ™! — p— Vp'hll = o(||h]lx), we obtain the fact that E ;s is differ-
entiable at ¢ = id with

(dEfpGd) |h) =2(=Vp hu+pm,(dhu—duh) | f—f)
==2(Vp'hu | f— f') = 2(p(dhu—duh) |m.(f)).
Assuming now that ¢ € Diff3™, we obtain the fact that E . ;- is differentiable at 1),
" (@E3 s ) [ 1) = (@Byay i) [ o).
The Eulerian derivative is
(OE7p () |v) = (dEyssp(d) [v).

Finally, we note that after integration by parts, we can write

dE;p(id) =2(—u" (f — fHYVp+ pdu” (m,o(f")
+d (T, (f) f + div(f)me (f))dx.

The computations for ¢ * f = (dp~" f) 0o ¢! and its normalized version are
very similar. One only needs to note that (9.59) is now replaced by
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lp* f = f+dh" f+df hllo = o(l]]1.00)- (9.62)

As a consequence, the formulas for the differentials of the » and x can be deduced
from the * and ¥ actions by replacing (dh f — df f) by (—=dh” f —df h).
For the unnormalized action, this yields

(dE;pGd) |h) = =2(dh(f — f). f), = 2df"(f = £)). h),
=2(df —df")(f — f)+div(f — f)f . h),

and OF 1.7 (¢) is obtained by replacing f by ¢ * f. To obtain the differential of E s, ¢/
for the normalized » action, we get

(dE;p(d) |h) = =2(Vp hu | f — f')+2(p@h" u+duh) |7, (f)),
where f = pu as above, which can also be written as
dEjp(id) =2(—u" (f = fHYVp+ (pdu" — df)(m, (f') — div(m,. (f) f)dx

As an example of application of vector field matching, let us consider contrast-
invariant image registration [90]. If / : £2 — R is an image, a change of contrast is a
transformation I — ¢q o I, where ¢ is a scalar diffeomorphism of the image intensity
range. The level sets I, = {x, I (x) < A} are simply relabeled by a change of contrast,
and one obtains a contrast-invariant representation of the image by considering the
normals to these level sets, i.e., the vector field

f=VI/IVI|

with the convention that f = 0 when VI = 0. Two images represented in this way
can now be compared using vector field matching. Since we are using normalized
gradients, the natural action is (¢, f) — @ f. For our results to hold, some reg-
ularization needs to be applied, replacing f by p f where p = 1 and f = f when
| f| = 1, f is a unit vector field that smoothly extends f over a neighborhood of the
domain over which | f| = 1, p is smooth and vanishes outside this neighborhood.

9.9 Matching Fields of Frames

We now extend vector field deformation models to define an action of diffeomor-
phisms on fields of positively oriented orthogonal matrices, or frames. We will restrict
ourselves to dimension 3, so that the deformable objects considered in this section
are mappings x — R(x), with, forall x € £2, R(x) € SO3(R) (the group of rotation
matrices).

The * and % actions we have just defined on vector fields have the nice property
of conserving the Euclidean dot product when combined, that is
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(ex NTexg)=(fTgrop™.

Since * and * also conserve the norm, we find that (¢ * f, ¢ x g) is orthonormal as
soon as (f, g) is.
We now define an action of diffeomorphisms on fields on frames. Writing R(x) =

(fi(x), L(x), f3(x)), we let
@ R=(p* fi. (¢ f3) X (p* f1), o * f3). (9.63)

That this defines an action is a straightforward consequence of * and x being actions.

The action can be interpreted as follows. Given a local chart in R3, which is
a diffeomorphic change of coordinates x = m(s, t, u), one uniquely specifies a
positively oriented frame R,, = (fi, f2, f3) by fi = 0iym/|0im| and f5 = (Oym X
Oym)/|01m x 0,m]|. Then, the action we have just defined is such that ¢ - R is the
frame associated to the change of coordinates ¢ o m, i.e.,

Ryom 00 = - Ry.

The transformation m — R,, has in turn the following interpretation, which is rel-
evant for some medical imaging modalities. Let the change of coordinates be adapted
to the following stratified description of a tissue. Curves s +— m(s, t, u) correspond
to tissue fibers, and surfaces (s, ) +— m(s, t, u) describe a layered organization. The
cardiac muscle, for example, exhibits this kind of structure. Then f} in R,, represents
the fiber orientation, and f3 the normal to the layers; ¢ - R, then corresponds to the
tissue to which the deformation ¢ has been applied.

Frame fields are typically observed over some object-dependent subregion of the
observation domain. To account for this, we assume that we are dealing with weighted
fields of frames, taking the form A = p R, where the weight p vanishes outside a
compact set and R is smooth over a neighborhood of this compact set. We will then
consider the action

p-A=(poyp Hp-R.

The computations of the previous sections can now be applied to each column of A.
In particular, letting ¢ = id 4+ &, we have ¢ - A = A + (w1, wa, w3) + o(||2]l1.00)
with, writing R = (f1, /2. f3),

wi =— (Vo' h) fi + pr s (dhfi — dfih),
wy =— (Vp'h) fs = prpu(dh” f5 + dfsh),

wy == (Vo' fo = p (mye (@h” fy+dfsl) x fi

+pfs x (g dnfy — dfi))

Noticing that, for any vector u € R?,
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— T T _ T
<7Tf3iu> x fi= (W' ffi+w L)) x fi=-w'f)fs

and similarly f3 x (w_f#u) = —u" f>) fi, we can simplify the expression of w,,
yielding
wi = — (Vp'h) fi + prpi(dhfi — dfih),

wy = — (Vo' h) fo + p((dh” f5 +dfsh)T ) f3
— p((dhfi —dfil)" f>) f1,
w3 =~ (Vo' h) fs = p i (dh” f5 + dfsh).

(9.64)

Consider the matching functional
Ennto)= [ lo-d = AP dx
R

with |A|> = trace(AT A).If A = pR and A’ = p' R', then

|A — A2 = 3p> — 2pp'trace(RTR') + 3p'”
=3(p— p)* +2pp'trace(Id — RTR').

Introducing the rotation angle, 8, from R to R’, defined by
trace(RTR) = 1 + 2 cos 6, (9.65)

we get
A — A1 =3(p—p)?+4pp'(1 —cosh).

Obviously, if A = (uy, uz, uz) and A" = p(u}, u}, uy), we also have
2 2 2 2
A — A" = |uy —u}|” + lup — ub|” + Juz — uj|”.

Using this, one gets the expression of the differential of E4 4 at ¢ = id,
(dEaa(d) |h) = 2/ trace(W' (A — A")) dx,
]RZ

where W = (w1, w», w) is given by (9.64). In particular,
trace(W' (A — A")) = —Vp"h (3p — ptrace(R" R"))
+ppl@hfi = dfil)" (=7 (D + T 1) 12)
— @ fs+ AT (=7 () + T D ).
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Letting

whw = o0 (=7 D+ T 1D 1)
wha = o (=7 () + 1)

and using Lemma 9.10 to eliminate dh, we find

dE4 4 (id) = 2( — (3p — p'trace(R"R")) Vp — duL,A,fl - div(fl)uL’A,

—dfiuy 4+ diV(“i,A/)fs)dx-
(9.66)

9.10 Matching Tensors

The last class of deformable objects we will consider in this chapter are fields of
matrices (or tensor fields). For general matrices, we can use the actions we have
defined on vector fields, and apply them to each column of M, where M is a field of
matrices. The differential of matching functionals is then computed as done in the
previous two sections.

One sometimes needs to consider subclasses of tensors, and therefore define an
action that leaves this subclass invariant. Here we consider symmetric matrices, which
have especially been studied in diffusion tensor imaging (DTI) [6]. The previous
actions applied to each column do not work, because they would break the symmetry.
A simple choice to address this is to make the diffeomorphism also act on the right,
in transpose form, defining, for a field x +— S(x) of symmetric matrices

@*S = (dpSdp") o™
xS = (dw_TSdap_l) o (p_l.

We leave to the reader the computation of the differentials of objective functions
derived from these actions.

These actions are not necessarily well adapted to DTI data, though, for which alter-
native options may be considered. DTI produces, at each point x in space, a symmetric
positive definite matrix S(x) that measures the diffusion of water molecules in the
imaged tissue. Roughly speaking, the tensor S(x) is such that if a water molecule is
at s at time ¢, the probability of being at x + dx at time ¢ + d is centered Gaussian
with variance dt?dx” S(x)dx.

If we return to the structured tissue model discussed in the last section (repre-
sented by the parametrization x = m(s, t, u)), we can assume that molecules travel
more easily along fibers, and with most difficulty across layers. So the direction of
Oym is the direction of largest variance, and dym x O,m of smallest variance, so
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that the frame R,, = (fi, f2, f3) associated to the parametrization is such that f; is
an eigenvector of S for the largest eigenvalue, and f3 for the smallest eigenvalue,
which implies that f, is an eigenvector for the intermediate eigenvalue. According
to our discussion in the last section, a diffeomorphism ¢ should transform § so that
the frame Ry formed by the eigenbasis of S transforms according to the action of
diffeomorphisms on frames, namely, R,.s = ¢ - Ry defined in (9.63).

So, if we express the decomposition of S in the form

S=MAF bl 64

with \; > A\, > A3, we should take
o-S=MAF+ bl + A (9.67)

with (1, fo, f3) =@ (fi, fo. f3) and \; = \; oo™, i = 1,2, 3. The action on
eigenvalues expresses that intrinsic tissue properties have not been affected by the
deformation. If there are reasons to believe that variations in volume should affect
the intensity of water diffusion, using the action of diffeomorphisms on densities
may be a better option, namely \; = detd (=" )\; o o~

The action with \; = \; o ¢~ !isidentical to the eigenvector-based tensor reorien-
tation discussed in [6]. One of the important (and required) features or the construc-
tion is that, although the eigen-decomposition of S is not unique (when two or three
eigenvalues coincide) the transformation S + ¢ - § is defined without ambiguity.
This will be justified below.

The following computations require that \j, A, A3 are C' and vanish outside
a compact set, and that Ry is smooth in a small neighborhood of this compact set.
They are sketchily justified here, as they strongly resemble the computations that have
been done before. It will be convenient to introduce the three-dimensional rotation
Us(¢) = ((¢ - Rs) o ¢) RY, so that

p-S=Us(@)SUs(p) ) op™".
Taking ¢ = id 4 h, we have Ug(p) — § = ws(h) + o(||1]l1.00), Where

ws(h) = wpdhfy fT = ((wprdh” f3) x ) f)
+ (fs X (wpedhfi)) £} = (wyedh” f3)

is a skew-symmetric matrix. With this notation, we can write

- S=S=wsh)S — Sws(h) —dSh+o(||h|1,c0)-
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(Here d S h is the matrix with coefficients (VSY)Th.) Letting
Eostp) = [ mace((o- = )7
we then get
(dEs.s(id) |h) =2 /9 trace((S — §')(ws(h)S — Sws(h) — dS h)) dx,

with, as usual, for ¢ € Diffy™, (dEs s (¥) |h) = (dEy.55(id) |h o) and
(0Es,s () |v) = (dEy.s.5(@d) |v).

Here again, the derivatives of 4 that are involved in wg(%) can be integrated by
parts using the divergence theorem. Let us sketch this computation at 1) = id, which
leads to a vector measure form for the differential. We focus on the term

(nlh):= / trace((S — S") (ws(h)S — Sws(h)))dx = / trace(Aws(h))dx,
2 2

where A = S(S—8') — (§— 8)5 =SS — §'S, and want to express 7 as a vector
measure. We have (using the fact that A is skew symmetric and that (fi, f2, f3) is
orthonormal)

—trace(Aws(h)) = (ws(h) [T Afi + (ws(h) )" Afo + (ws(h) )T Af
= (mdhfi)" Afi — (ryedh” f3) x f)TAf2
+ (fs x (mprdhfi)  Afy — (mprdh” f3)T Afs
= (dhf) ug g — @h" f) u3 g,

with

u§ g =7 (Afi + (Afs X f3))
and u} ¢ = 7 (Afs + (fi x Af).

It now remains to use Lemma 9.10 to identify 7 as

n = (dul g fi +div(foul g — dfsuy g — div(ud ¢) f3)dx.

To write the final expression of d Es ¢ (id), define (S — S") © d S to be the vector

3
(S—ShodS= (sV—(H)Vs’,

ij=1
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so that we have

dEs, g (id) = 2(dug g fi + div(fug g — dfsus
— diV(u?’S,)]% —(§—=5)0odS)dx. (9.68)
We now generalize this action to arbitrary dimensions, in a way that will provide

a new interpretation of the three-dimensional case. Decompose a field of d by d
symmetric matrices S in R? in the form

d
S) = Ne(@) fi (@) fi (o)

k=1

with Ay > .-+ > Ay and (fi, ..., fy) orthonormal. The matrices f; fkT represent the
orthogonal projections on the one-dimensional space R f; and, letting

Wi = span(f1, ..., fr),

and noting that the projection on Wy, my, is equal to fi f +---+ fi fl, we can
obviously write

d
S() =Y M@ Tw ) — Tww)-
k=1

where we have set Wy = {0}.
Define the action S — ¢ - S by

d
p-S§S= (Z Ak (de(Wk) - de(Wkl))) °© (p_l

k=1

In three dimensions, because
dof)" fsoo=(ff f)/lde™" f31 =0,

we see that dp f> € span(f] o P, fz o ). Since fl o ( is proportional to d¢p f|, we
can conclude that

dy span(fi, f>) = span(fi o ¢, f> 0 ).

This proves that the action we have just defined coincides with the one we have
considered for the case d = 3.

Returning to the general d-dimensional case, the definition we just gave does not
depend on the choice made for the basis fi, ..., fs. Indeed, if welet g > --- > p,
denote the distinct eigenvalues of S, and Ay, ..., A, the corresponding eigenspaces,
then, regrouping together the terms with identical eigenvalues in the decomposition
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of S and ¢ - S, and letting
Ii=A1+---+ A, Io={0},

we clearly have

q
S(x) = Zuk(x)(ﬁn.(x) = T ()
k=1

and

q
p-§= (Z M (”dw(l"k) - deULO)) ° 9071'

k=1

Since the decomposition of S in terms of its eigenspaces is uniquely defined, we
obtain the fact that the definition of ¢ - S is non-ambiguous.

9.11 Pros and Cons of Greedy Algorithms

We have studied in this chapter a series of deformable objects, by defining the rel-
evant action(s) that diffeomorphisms have on them and computing the variations of
associated matching functionals.

This computation can be used, as we did with landmarks and images, to design
“greedy” registration algorithms, which implement gradient descent to progressively
minimize the functionals within the group of diffeomorphisms. These algorithms
have the advantage of providing relatively simple implementations, and of requiring
a relatively limited computation time.

Most of the time, however, this minimization is an ill-posed problem. Minimizers
may fail to exist, for example. This has required, for image matching, the implemen-
tation of a suitable stopping rule that prevents the algorithm from running indefinitely.
Even when a minimizer exists, it is generally not unique (see the example we gave
with landmarks). Greedy algorithms provide the minimizer corresponding to the path
of steepest descent from where they have been initialized (usually the identity). This
solution does not have to be the “best one”, and we will see that other methods can
find much smoother solutions when large deformations are involved.

To design potentially well-posed problems, the matching functionals need to be
combined with regularization terms that measure the smoothness of the registration.
This will be discussed in detail in the next chapter.



Chapter 10 ®)
Diffeomorphic Matching i

10.1 Linearized Deformations

A standard way to ensure the existence of a smooth solution of a matching problem
is to add a penalty term in the matching functional. This term would complete (9.1)
to form

Epp(p) =p(p) +D(p- L 1. (10.1)

A large variety of such methods have been designed, in approximation theory, statis-
tics and signal processing for solving ill-posed problems. The simplest (and typical)
form of penalty function is

p() = lp —idl%

for some Hilbert (or Banach) space of functions. Some more complex functions of
o — id may also be designed, related to energies of non-linear elasticity (see, among
others [13, 27, 28, 89, 123, 144, 237]). Such methods may be called “small defor-
mation” methods because they work on the deviation of u = ¢ — id, and controlling
the size or smoothness of u alone is most of the time not enough to guarantee that
 is a diffeomorphism (unless u is small, as we have seen in Sect.7.1). There is, in
general, no way of proving the existence of a solution of the minimization problem
within some group of diffeomorphisms G, unless some restrictive assumptions are
made on the objects to be matched.

Our focus here is on diffeomorphic matching. Because of this, we shall not detail
many of these methods. However, it is interesting to note that these functionals also
have a Eulerian gradient within an RKHS of vector fields with a smooth enough ker-
nel, and can therefore be minimized using (9.7). We illustrate this with the following
example, in which we skip the proper justification of the existence of derivatives.

© Springer-Verlag GmbH Germany, part of Springer Nature 2019 291
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Consider the function p(y) = fRd ldp(x) — IdI2 dx, where the matrix norm is

|A]> = trace(AT A) = Zafj
iJ

(Hilbert—Schmidt norm). Letting u = ¢ — id, we have
dp(p) |h) = 2/ trace(du’ dh)dx = —2f AuT hdx,
R4 R4

where Au is the vector formed by the Laplacian of the coordinates of u (recall that
we assume that u = 0 at infinity). This implies that (given that Au = Ay)

(5/)(90) |h) = —2/ ApTh o pdx
2

and
Vop() =2 /Q K (- p(x) Ap(x)dx. (102)

This provides a regularized greedy image-matching algorithm, which includes a
regularization term (a similar algorithm may easily be written for point matching).

Algorithm 2 The following procedure is an Eulerian gradient descent, on V, for the
energy

. 1 ) ,
Erp(p) = |d<p(x)—1d|2dx+—2/ ‘Iocp 1(x)—[(x)’dx.
R4 g R4
Start with an initial ¢y = id and solve the differential equation

Orp(t, y) = —2/ K (p(t, y), o(t, x))Ap(t, x)dx (10.3)
ko)

+ %/ (J(t,x) ="K (p(t,y), x)VI(t, x)dx  (10.4)
2

with J(¢,) = I o o(t)71(-).

This algorithm, which, like the previous greedy procedures, has the fundamental
feature of providing a smooth flow of diffeomorphisms to minimize the matching
functional, suffers from the same limitations as its predecessors concerning its limit
behavior, which are essentially due to the fact that the variational problem itself is
not well-posed; minimizers may not exist, and when they exist they are not neces-
sarily diffeomorphisms. In order to ensure the existence of, at least, homeomorphic
solutions, the energy must include terms that must not only prevent d¢ from being
too large, but also from being too small (or its inverse from being too large). In [90],
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the following regularization is proved to ensure the existence of homeomorphic
solutions:

0(p) = / (alldell” + bI|Adj(dp)||? + c(detdp)” 4+ d(detdp)*)dx  (10.5)
Q

under some assumptions on p,q,r and s, namely p,qg >3, r>1 and
s >2q/(q —3).

10.2 The Monge-Kantorovitch Problem

We briefly discuss in this section the mass transfer problem, which is, under some
assumptions, a diffeomorphic method for matching probability densities, i.e., positive
functions on R? with integral equal to 1. Consider such a density, ¢, and a diffeo-
morphism ¢ on R?. If an object has density ¢, the mass included in an infinitesimal
volume dx around x is (x)dx. Now, if each point x in the object is transported to
the location y = ((x), the mass of a volume dy around y is the same as the mass of
the volume ¢~ !(dy) around x = ¢~ '(y), which is ¢ o o' (y)| det(d (") (y)|dy
(this provides a physical interpretation of Proposition 9.5).

Given two densities ¢ and (', the optimal mass transfer problem consists in finding
a diffeomorphism ¢ with minimal cost such that ' = ¢ o ¢~!| det(d(~"))|. The cost
associated to ¢ in this context is related to the distance along which the transfer is
made, measured by a function p(x, ¢(x)). The total cost comes after summing over
the transferred mass, yielding

E(p) = /Qp(x, ©(x))C(x)dx.

The mass transfer problem now is to minimize E over all ¢’s such that (' =
C o o' det(d(p™"))|. The problem is slightly different from the matching formula-
tions that we discuss in the other sections of this chapter, because the minimization
is associated to exact matching.

It is very interesting that this apparently very complex and highly nonlinear
problem can be reduced to linear programming, albeit infinite-dimensional. Let
us first consider a more general formulation. Instead of looking for a one-to-one
correspondence x — ¢(x), one can decide that the mass in a small neighborhood
of x is dispatched over all £2 with weights y — ¢(x, y), where ¢g(x, y) > 0 and
Jo a(x, y)dy = 1. We still have the constraint that the mass density arriving at y is

C(y), which gives
| < yix =i,

The cost now has the simple expression (linear in g)
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E= /QZ p(x, )C(x)q(x, y)dxdy.

The original formulation can be retrieved by letting g (x, y)dy — () () (i.e., pass
to the limit o = 0 with g(x, y) = exp(—|y — (p(x)|2/202)/(27n72)d/2).

If we write g(x, y) = ((x)g(x, y), this relaxed problem is clearly equivalent to
minimizing

E(g) = / p(x, y)g(x, y)dxdy
_Qz

subject to the constraints g(x, y) > 0, [ g(x, y)dy = ((x) and [ g(x, y)dx = {(y).
In fact, the natural formulation of this problem uses measures instead of densities:
given two probability measures p and fi on §2, minimize

E() =/Qz p(x, y)v(dx, dy)

subject to the constraints that the marginals of v are p and fi. This provides the
Wasserstein distance between p and i, associated to the transportation cost p. Note
that this formulation generalizes the computation of the Wasserstein distance (9.24)
between discrete measures.

This problem is much nicer than the original one, since it is a linear programming
problem. The theory of convex optimization (that we only apply formally in this
infinite-dimensional context; see [44] for rigorous proofs) implies that it has an
equivalent dual formulation which is: maximize

F(h):/ hdu+/ hji
2 2

subject to the constraint that, for all x, y € £2, h(x) + fl(y) < p(x, y).

The duality equivalence means that the maximum of F coincides with the min-
imum of E. The solutions are, moreover, related by duality conditions (the KKT
conditions) that imply that v must be supported by the set

A=y hw +he) = p, ) (10.6)

For the dual problem, one is obviously interested in making /# and h as large as
possible. Given &, one should therefore choose & as

h(y) = sup(p(x, y) — h(x)),

so that the set in (10.6) is exactly the set of (y*, y) where y* is a point that achieves
the maximum of p(x, y) — h(x).
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The situation is particularly interesting when p(x,y) = |x — y|?/2. In this

situation,
2

2
h(y) = y? + sup (xTy + % — h(x)) .

From this equatiop, it is natural to introduce the auxiliary functions s(x) = h(x) —
x?/2 and §(y) = h(y) — y*/2. Using these functions, the set A in (10.6) becomes

A= {0 y) 1500 +350) =2y},

with §(y) = sup, (xTy — s(x)). Because the latter is a supremum of linear functions,
we obtain the fact that § is convex, and so is s by symmetry; § is in fact what is called
the convex conjugate of s, denoted s = s*. Convex functions are almost everywhere
differentiable, and, in order that (x, y) € A, x must maximize u — u?y — s(u),
which implies that y = Vs(x). So, the conclusion is that, whenever s is the solution
of the dual problem, the solution of the primal problem is provided by y = Vs (x).
This shows that the relaxed mass transport problem has the same solution as the
initial one, with ¢ = Vs, s being a convex function. That ¢ is invertible is obvious
by symmetry: ¢! = V5.

This result is fundamental, since it is the basis for the construction of a numerical
procedure for the solution of the mass transport problem in this case. Introduce a
time-dependent vector field v(z, -) and the corresponding flow of diffeomorphisms
g, Let h(t, -) = det(dpyy) € o ¢y,. Then

det(dyg,) h(t) o gy, = C.
The time derivative of this equation yields
O;h + div(hv) = 0. (10.7)

We have the following theorem [34].

Theorem 10.1 Consider the following energy:

1
G(v):/ /h(t,x)|v(t,x)|2dxdt
0 2

and the variational problem: minimize G subject to the constraints h(0) =
¢ h(1) = and (10.7). If v is the solution of the above problem, then g, solves
the optimal mass transport problem.

Proof Indeed, in G, we can make the change of variables x = g, (y), which yields

1
Gv) = /O /Q o) o, @, o dydi
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1
=/aw/ﬁwm%r
2 0
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So the minimum of G is always larger than the minimum of E. If ¢ solves the mass
transport problem, then one can take v(z, x) such that g, (x) = (1 —1)x + tp(x),
which is a diffeomorphism [190] and achieves the minimum of G. O

We refer to [34] for a numerical algorithm that computes the optimal ¢. Note that
p(x,y) = |x — y|?is not the only transportation cost that can be used in this context,
but that others (like |x — y|, which is not strictly convex in the distance) may fail
to provide diffeomorphic solutions. Important developments on this subject can be
found in [49, 119, 296].

We now discuss methods that are both diffeomorphic and metric (i.e., they relate
to a distance). They also rely on the representation of diffeomorphisms using flows
of ordinary differential equations.

10.3 Optimizing Over Flows

We return in this section to the representation of diffeomorphisms with flows of
ordinary differential equations (ODEs) and describe how this representation can be
used for diffeomorphic registration. Instead of using a norm to evaluate the difference
between ¢ and the identity mapping, we now consider, as a regularizing term, the
distance dy that was defined in Sect.7.2.6. More precisely, we set

1. 5
p(p) = zdv(ld, ®)

and henceforth restrict the matching to diffeomorphisms belonging to Diff .
In this context, we have the following important theorem:

Theorem 10.2 Let V be a Hilbert space embedded in Cé’H(Q,Rd) so that
Diffy C Diffy™. Assume that the functional U : Diff"> + R is bounded from
below and continuous for the (p, 0c0)-compact topology. Then, there exists a mini-
mizer of

1
M@=5m®wf+ww (10.8)

over Diffy.
(The (p, co)-compact topology is defined just after Theorem 7.13.)

Proof E hasaninfimum E,,;, over Diffy, since it is bounded from below. We need to
show that this infimum is also a minimum, i.e., that it is achieved at some ¢ € Diffy.
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We first use the following lemma (recall that we have denoted by X}, (resp. X7)
the set of time-dependent vector fields on £2 with integrable (resp. square integrable)
V-norm over [0, 1]):

Lemma 10.3 Minimizing E (p) = d(id, ¢)?/2 + U () over Diffy is equivalent to
minimizing the function

- 1 r!
Ew =3 fo @) I3 di + UGgly) (10.9)

2
over Xj.

Let us prove this lemma. For v € X‘%, we have, by definition of the distance

1
dy (id, py))> 5/ lv@)13 dt,
0

which implies E(y},) < E(v). This obviously implies that infpyr, E () < E(v),
and since this is true for all v € X&, we have inf £ < inf E. Now, assume that ¢ is
such that E(¢) < inf E + €/2. Then, by definition of the distance, there exists a v
such that ¢ = ¢f, and

1
/ @2 d < dy (id, 9)* + <,
0

which implies that _
E() < E(p)+¢&/2 <infE +e¢,

so that inf £ < inf E.

We therefore have inf E = inf E. Moreover, if there exists a v such that E(v) =
min E = inf E, then, since we know that E(p},) < E, we must have E(p},) =
min E. Conversely, if E(p) = min E, by Theorem 7.22, E(p) = E(pg,) for some
v and this v must achieve the infimum of E , which proves the lemma.

This lemma shows that it suffices to study the minimizers of E. Now, as done in
the proof of Theorem 7.22, one can find, by taking a subsequence of a minimizing
sequence, a sequence v" in X‘% which converges weakly to some v € X& and E(v")
tends to E,,;,. Because

1 1
liminf/ ||u"(r)||zvdtz/ @Iy dr
0 0

and because weak convergence in X, implies convergence of the flow in the (p, 00)-
compact topology (Theorem 7.13) we also have U(@gi) — Ul(yg;), so that E@) =
E,.;, and v is a minimizer. O



298 10 Diffeomorphic Matching

The general problem of minimizing functionals such as (10.9) has been called
“large deformation diffeomorphic metric mapping”, or LDDMM. The first algo-
rithms were introduced for this purpose in the case of landmark matching [159] and
image matching [32] (these papers were preceded by theoretical developments in
[93, 278, 283]). The following sections describe these algorithms, and other that
were recently proposed.

10.4 Euler-Lagrange Equations and Gradient

10.4.1 Gradient: Direct Computation

We now detail the computation of the gradient for energies such as (10.8). As
remarked in the proof of Theorem 10.2, the variational problem which has to be
solved is conveniently expressed as a problem over X&. The function which is min-
imized over this space takes the form

1 1
E0) =5 [ Il i+ U,

Assume that V is embedded in C(‘f +1(.Q, R%) and that U is differentiable on
Diff} " Then Theorem 7.12 and the chain rule implies that E is differentiable on
X2 with

(dE®) |h) = (v, h)Xm) + (dU (gl | Ouply 1),

where 0, h is given in Theorem 7.12.
We now identify the gradient of E for the Hilbert structure of X‘%. This gradient
is a function, denoted VVE : v > VYV E(v) € X2, that satisfies

1
(dE() |h)=(VE(@), h)X3 =/0 (VYE@)(1), h@)),dt

forall v, & in X‘%.

Since the set V is fixed in this section, we will drop the exponent from the notation,
and simply refer to the gradient V E (v). Note that this is different from the Eulerian
gradient we have dealt with before; VE now represents the usual gradient of a
function defined over a Hilbert space. One important thing to keep in mind is that the
gradient we define here is an element of & 2 henceforth a time-dependent vector field,
whereas the Eulerian gradient was an element of V (a vector field on §2). Theorem
10.5 relates the two (and allows us to reuse the computations that were made in
Chap.9). For this, we need to introduce the following operation of diffeomorphisms
acting on vector fields.
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Definition 10.4 Let ¢ be a diffeomorphism of §2 and v a vector field on £2. We
denote by Ad,v the vector field on §2 defined by

Ad,v(x) = (dpv) o~ ' (x). (10.10)
Ad,, is called the adjoint representation of ¢.

If € Diff?t1:°°(£2), then an application of Lemma 7.3 and the Leibnitz formula
implies that Ad,v € Cé’ (2, R% assoonas v € Cé’ (£2, R4 and more precisely that
Ad,, is a bounded linear operator from C(’; (2, RY) to itself. We can therefore define
its conjugate on CJ (£2, R?)*, with Ad7p given by

(Adip |v) = (p | Adyv) (10.11)

for p € CJ (2, RY)*, v € CJ (22, R?). Note that Ad};p is, a fortiori, in V*, because
V is continuously embedded in C/ 2, RY).

Let L : V — V* denote the duality operator on V and V) denote the set of
vector fields v € V such that Lv € C4(£2, RY)* (forr < p + 1). Then, forv € V),
we can define, with K = L,

Adlv = K(Ad}Lw). (10.12)

This is well-defined, because, by construction, Ad:JLv € C(’; (2, RH* C V*. We
have in particular, for v € VP andw eV,

(Adgv, w)v = (AdZ]Lv | w) = (Lv |Ad¥,w).
Recall that the Eulerian derivative of U is defined by

(OU(p) |w) = [@U(p) |w o).

Using Theorem 7.12, we have
1 1
Ovpor h = / (dyy h(u)) o g, du = / (Adyy h(u)) o @g du
0 0
so that
~ 1
(@) |octi ) = (30 | [ adz bt a)
0
1
= / (OU () | Adyy h(w))) du.
0

With this notation, we have the following theorem.
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Theorem 10.5 AssumethatV is continuously embedded in Cé’ + (2, RY) and that U
is continuously differentiable on Diff) "°_ Then, the X‘% gradient of U : v — U (pg)
is given by the formula

VU (v)(1) = KAdZ, OU (¢5)) = AdL, VU (5). (10.13)

This important result has the following simple consequences.

Proposition 10.6 Ler U satisfy the assumptions of Theorem 10.5. If v € X‘% isa
minimizer of

. 1 !
o) =3 [ olRar+ UG, (10.14)
0
then, for all t
v(t) = Ad;lvl v(l), (10.15)
withv(l) = v’ U (g, (x). In particular, v is a continuous function of t and v(t) €

V@ forall t.

Corollary 10.7 Under the same conditions on U, if v € X7 is a minimizer of

- 1 !
E() = 5/ v I3 dt + Uply)
0

then, for all t,
v, = Ad;rovo, (10.16)

with vy € VP,

Proposition 10.6 is a direct consequence of Theorem 10.5. For the corollary, we need
to use the fact that Ad,Ady, = Ad.y, which can be checked by direct computation,
and write

—AqT o AT T _ , ATy — AdT
v = Ad%u] v = Ad%u] Ad% vy = (AdwmAd%]) vy = Ad%uo vg.

Equations v, = AdZ;uo vo and v; = _vv U (pg,)(x) together are equivalent to the

Euler-Lagrange equations for E and will lead to interesting numerical procedures.
Equation (10.16) is a cornerstone of the theory. It describes a general mechanical
property called the conservation of momentum, to which we will return later.

10.4.2 Derivative Using Optimal Control

We can also apply the Pontryagin maximum principle (see Appendix D) to obtain
an alternative expression of the optimality conditions and gradient. Indeed, we can
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repeat the construction made in Sect.7.2.2 with a slightly different notation, letting
fw,v) = vo (id + w),defined over C} (£2, RY) x V. With g(w, v) = [|v]|3, we are
in the framework described in Sect. D.3.1, leading to Theorem D.7, where w repre-
sents the state and v is the control. Introducing a co-state y, define the Hamiltonian

Hy(p, w) = (1 | vo (id+w)) — [lv]|}/2.

Letting £, : v > v o from V to C'(£2, RY), we obtain the fact that an optimal
solution must satisfy (with ¢ = id + w), for some p : [0, 1] — Cé’(.Q, R)*

Orp(t) = v(t) o (1)
Oru(t) 1h) = —(u(®) |dv(t) o p(t) h), Yh e Cy(2,RY) (10.17)
Lo(t) = &, u(t)

with ¢(0) = id and (1) = —dU (p(1)). One can check that the second equation is
equivalent to

(u() 1h) = (u0) | (de@®)'h),

which is Corollary 10.7 expressed in terms of the co-state p. Applying Eq.(D.12),
we obtain ~
dEW)(t) = =&, u(t) + 2Lv (1), (10.18)

where ¢ and p satisfy the first two equations of (10.17).

10.4.3 An Alternative Form Using the RKHS Structure

The conjugate of the adjoint can be put into a form explicitly involving the repro-
ducing kernel of V. Before detailing this, we introduce a notation that will be used
throughout this chapter. If p is a linear form on function spaces, we have been denot-
ing by (p | v) the result of p applied to v. In the formulas that will come, we will
need to emphasize the variable on which v depends, and we will use the alternative
notation (p | v(x)), to denote the same quantity. Thus,

p() = (p|v) = (pv(x)),.

In particular, when v depends on two variables, the notation (p | v(x, y)), will rep-
resent p applied to the function x — v(x, y) with y considered as constant.

We still assume that V is continuously embedded in C(‘f H(.Q, R?). Then, the
following theorem holds.

Theorem 10.8 Assume that ¢ € CgH(Q,Rd) and p e Cj(£2, RY*, with
r=min(p + 1, q). Let v=Kp and (ey, ..., eq) be an orthonormal basis of R
Then, for y € §2, we have
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d
Adlv(y) = Z (p | Ad (K (x, y)e))) e, (10.19)

i=1
where K is the reproducing kernel of V.

Proof For b € R?, we have

A = (. )
= <v » Ady (K (-, y)b))v
= (p | Adp(K (x, y)b))..

Theorem 10.8 is now a consequence of the decomposition

d
Adlv(y) = Ze}Adgv(y)e,».

i=1
(]

Recall that K (-, -) is a matrix, so that K (-, y)e; is the ith column of K (-, y), which
we can denote by K. Equation (10.19) states that the ith coordinate of Adgv is

(b |Ad K (x,y)),-
Using Proposition 10.6 and Theorem 10.8, we obtain another expression of the
V-gradient of E:

Corollary 10.9 Under the hypotheses of Proposition 10.6, the V -gradient of

- 1 r!
Ew) = 5/0 @) 2t + Ugly)

is equal to
d
VYE@)(y) = v(t.y) + D (p(1) |dipn (0}, ) K' (},(x). y)) & (10.20)

i=l1

with p(1) = U (9} (x).

10.5 Conservation of Momentum

10.5.1 Interpretation

Equation (10.16) can be interpreted as a momentum conservation equation. The
justification of the term momentum comes from the analogy of Eyi, := (1/2)|v(¢) ||%,
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with the total kinetic energy at time ¢ of a dynamical system. In fluid mechanics, this
energy is usually defined as (introducing a mass density, z)

1
Ein =7 / 2, Vot y)Pdy.

the momentum here being p(t) = z(¢, y)v(¢, y)dy with Ey, = (1/2)(p |v). In our
case, taking p(tr) = Lv(t), we still have Ey, = (1/2)(p |v), so that p(¢) is also
interpreted as a momentum.

To interpret (10.16) as a conservation equation, we need to understand how a
change of coordinate system affects the momentum. Indeed, interpret v(¢, y) as
the velocity of a particle located at coordinates y, so v = dy/dt. Now assume that
we want to use a new coordinate system, and replace y by x = ¢(y). In the new
coordinates, the same particle moves with velocity

Ox = dp(y)dy = dp(y) v(t, y) = (dpv(t)) o o~ (x)

so that the translation from the old to the new expression of the velocity is precisely
given by the adjoint operator: v(y) — v(x) = Ad,v(x) if x = ©(y). To obtain the
correct transformation of the momentum, it suffices to notice that the energy of the
system must remain the same if we just change the coordinates, so that, if p and p
are the momenta before and after the change of coordinates, we must have

(p1o)=(plv)

which yields Ad},p = por p = Ad’;,l p.

Now, we return to Eq. (10.16). Here, v(¢, y) is the velocity at time ¢ of the particle
that was at x = ¢y, (y) attime 0. So it is the expression of the velocity in a coordinate
system that evolves with the flow, and Lv(#) is the momentum in the same system.
By the previous argument, the expression of the momentum in the fixed coordi-
nate system, taken at time ¢ = 0, is AdZS,LU(t)' Equation (10.16) simply states that
this expression remains constant over time, i.e., the momentum is conserved when
measured in a fixed coordinate system.

The conservation of momentum equation, described in Corollary 10.7, is a fun-
damental equation in Geometric Mechanics [149, 187], which appears in a wide
variety of contexts. It has been described in abstract form by Arnold [18, 19] in his
analysis of invariant Riemannian metrics on Lie groups. This equation also derives
from an application of the Euler—Poincaré principle, as described in [149, 150, 188].
Combined with a volume-preservation constraint, this equation is equivalent to the
Euler equation for incompressible fluids, in the case when |[v(¢)[|y = ||v(¢)]|2, the
L? norm. Another type of norm on V (called the H! norm) relates to models of
waves in shallow water, and provides the Camassa—Holm equation [50, 116, 149].
A discussion of (10.16) in the particular case of template matching is provided in
[205], and a parallel with the solitons emerging from the Camassa—Holm equation
is discussed in [151].
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10.5.2 Properties of the Momentum Conservation Equation

Combining Eq. (10.19) and the fact that 0,5, = v(z, ¢g,), we get, for the optimal v
(letting Vo = Kp())

U

At y) =Y (po | et x) ™ K (p(t. ). 0(t. y))) e:.

i=1

Letting ¢ = id 4+ w, we consider the equation

QU

dw(t,y) =Y (po | (Ad +dw(t, x)) ™' K' (x + w(t, x), y + w(t, y))) e;-
i=1
(10.21)
We now consider this equation as an ODE over Cé7 (2, R?) and discuss conditions on
po ensuring the existence and uniqueness of solutions. We will make the following
assumptions.

(I V is continuously embedded in C(’; + (82, R?) and its kernel, K, is such that all
derivatives OYO5 K (v, y) are bounded over §2 fork < p + 1.
(II) po € C" (2, RY)* for somer < p — 1.
(IIT) po is compactly supported: there exists a compact subset Q' C R such that
(po | f)=0forall f e Cy(s2, R9) such that f(x)=0forallx € Q.

Assumption (I) is true in particular when £2 = R? and K is translation-invariant.

Taking Q slightly larger than Q' in assumption (III), and choosing a C* function
e such that e =1 on Q' and € =0 on Q¢, we have (py | f) = (po | ef) for all
feCy(s2, R%), from which we can deduce that, for some constant C

(o 1 ) =Clifllro,

where
f = max max |0 f(x)]|.
” “r,Q xe0 |J\<r| J ( )|

The following lemma provides the required properties for the well-posedness of
(10.21).
Let O = Diff} — id, an open subset of C} (£2, RY).

Lemma 10.10 Let

U

V@) () =Y (po |Md+dw(t, )"K' (x +w(t, x). y +w(t. ) e:.
i=1

(10.22)

Under assumptions (I), (Il), (Ill) above, ¥V is a differentiable mapping from
O into Cg([?, R%) and, letting p = id + w,
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1Y Nopcp 2. ray < CUALE ™ oo 191l p.00) (10.23)
for some continuous function C.

Proof Step 1. We first check that the right-hand side of (10.21) is well defined. Since
we assume that V is embedded in Cé’H(Q, R%), we know that, for all 0 < r, s, <
p+1,0[05K " is in Cy(£2, RY) with respect to each of its variables. In particular,
x> (Id+dw(t, x)) ' Ki(x + w(t, x), y +w(t, y)) is in Cgil(.Q, R?) as soon as
w e Cé’ (£2,R9), so that po can be evaluated on it.

Step 2. We now prove that the right-hand side of (10.21) is in C}(£2, RY), which

ensures that (10.21) forms an ODE in this space. Let

U

v () =Y (po |dp(0) K (p(x), y) e

i=I

so that (10.21) can be written as J,w = v o (id 4+ w). We want to show that
v? € CY($2,RY) when p = id + wand w € C} (§2, R?). It is obviously sufficient to
prove that each coordinate

v7 () = (po |de(@) 'K (p(x), y)),
belongs to CJ' (2, R). We first justify the fact that v} is p-times differentiable, with
d"vf (y) = (po |de(x) 'K (p(x). y)),

for r < p. Using a Taylor expansion, we can write (letting 2*) denote the k-tuple
(h, ..., h)

p+1
Ko@),y +h) =Y —0K (o), y)h®
k=0

1
+ % / OV K (p(x), y + thy — T K (p(x), y)R PV (1 — 1) di
- JO

so that

p+1
o 1 :
v i =Y (e [de T K o yn® )

1 1 . .
+ (o] der™ [ @ K o,y o) = 08 K (o T (1 - 007 )

X

and it suffices to prove that the remainder is an o(]4|”*"). This will be true provided
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lim 95K, ) = O K G W) loe = 0.

For k; < r, we have, using Eq. (8.8),

10705 KT (0 y) = O LT K (W)l
= C max 107 KT (-, y) (R PHD) — 9P KT (L y) (R |y

.. .. .. 1/2
=C aiv-&-laéz-!-lK”(y/’ y/) + 8{7-&-16524—1[(”())’ y) _ 28{7+16§+1K”(y, y/)

for some constant C, where K/ denotes the i, j entry of K. This proves the desired
result, since 9! +18§ 1K is continuous. A similar argument can be made to prove
the continuity of y > d”v(y).

To prove that v?¥ € C(‘f (2, R, it suffices to show that, for all k < p+1,
||3’2‘ K'(-,¥)|l,.0 goes to 0 when y goes to infinity. (This is where we use the fact
that py has compact support.)

To reach a contradiction, assume that there exists sequences (x,,), (y,) withx, € Q
and y, tending to infinity or 2 such that |(’)lf‘ 8’52 K (x,, ya)| > ¢, for some fixed e >
Oandk; <r,k, < p + 1.Replacing (x,) by a subsequence if needed, we can assume
that x,, converges to some x € Q. Note that 811(‘8]2(21{’7 (x, ) = 811(235‘ K7 (Y, x).
Since 6’2(‘ K/ (-,x) € V, we can conclude that 3{‘285‘ K/ (y,, x) = Oforall j, imply-
ing that 8{”8’2‘2K"(x, y,) — 0 for all i, too.

Similarly, }'0y K" (x,, ya) — O{'05 K (x, y,) is the ith entry of 885
K (i xn) = 05" 97K (. %) and

sup |00 K7 (v, x,) — 9705 K (y, x)|
y
= € max 195 K¢ x) () = 95 KT ¢ o)l
g - . 1/2
< C MO KT (xp, x,) — 20N O KT (x, x) + AP ON K (x, x)|
which goes to 0. This is our contradiction.

Step 3: We now study the differentiability of the mapping ¥ : w > v4** o (id + w)
from C(f (2, R?) into itself. The candidate for d¥ (w)n is
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d
W @) ==Y (po |de) " dnx) " dex) ™ K (p(x), o(y)) e

(o |dp(x)™' 1K (0(x), (»IN(x)) e

+
g

d
+ 3 (oo |dp) " RK (p(x). o)) e
i=1
still with ¢ = id + w. We can decompose V(w + 1) (y) — V(w)(y) — (# (w)n)(y)

as the sum of five terms s
> (o [ATp),
k=1 i=1

(described below), which we will study separately. For each term, we need to prove
that, for k; <r, kp < p, one has

sup |9} 952 AL (x, )| = o([17l] p.00)-
X,y

The important point in the following discussion is that none of the estimates will
require more than p derivatives in ¢ and 7, and no more than p + 1 in K.

(i) We let

Al(x,y) = (dpx) + dn(x) ™" —dp() ™" +do(x) tdn(x)de(x) ™)
K'(p(x) + 1(x), p(y) + 7).

We first note that Inv : M +— M~ is infinitely differentiable on GL,(R) with

dInv(M)(Hy, ..., H)) = (—1) Z M~'H,qyM™" .- M~ H,( M~
e,
where &, is the set of permutations of {1,...,g}. In particular, ||d9Inv(M)|| =

O(|M~"||7+1). Writing
(dp(x) +dn(x) ™" —dpx) ™ +de)dn(x)dex) ™! =
1
f d*Inv(dp(x) + tdn(x))(dn(x), dn(x))(1 — t)dt,
0
we see that

|d“ ((do(x) + dnx) ™" — dp(x) ™" + do) ™ dn(x)dex) ™|
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will be less than C () [|de™ " 15573 I91l7 . o- Using the bound
102 K (91100 < COPORK (v, ),

applying Lemma 7.3 and the product formula, we see that the desired conclusion
holds for Aiy
(ii) Let

Ab(x, ) = dp(x) (K (p(x) +n(x), o(») + 1) — K' ((x), p(3) + 1(»))

— O K (p(x), p(y) + n(NX)).

Writing the right-hand side in the form

1
do(x)™! /0 K (p(x) + tn(x), () + n(YN (M), n(x) (1 — 1) dt,

the same estimate on the derivative of K can be used, based on the fact that k; + 2 <
p+1
(iii) The third term is

Aj(x, y) = dp() (K (), () +1(») = K (0(x), ()
— K (p(x), p(MN)).-

It can be handled similarly, requiring k> + 1 < p + 1 derivatives of K’ in the second
variable.

(iv) These were the three main terms in the decomposition and the remaining two
are just bridging gaps. The first one is

AL(x,y) = dp(x) ' dn(x)dp(x)™!
(K (p(x) + n(x), (») + 1) — K (0(x), o).

Here, we note that, for some constants C and C s
sup |0y O K (x, y') — Oy O K (x, y)I?
< C 9P (K(y,y) —2K(Y,y) + K(y,y)
< C@OPMET K (y, y) + TR K (Y, Y )y — V]

(with a similar inequality when the roles of x and y are reversed) and these estimates
can be used to check that

A0k (K (p(x) + n(x), () + n(») — K ((x), ()
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tends to O uniformly in x and y.
(v) The last term is

AL(x,y) = do(x) T OIK (p(x), () + () — A1 K (9(x), o(3)))N(x)

and can be handled similarly.

Step 4. Tt remains to check that % (w) maps Cé’ (82, R?) to itself. This can be done
in the same way we proved that ¥ (w) € C}'(£2, R?), using Taylor expansions and
the fact that d*(# (w)n)(y) will involve no more than k derivatives of w and 7, and
k + 1 of K. This shows that #" = d#. The bound (10.23) can also be shown using
the same techniques. We leave the final details to the reader. ([

Lemma 10.10 implies that (10.21) has unique local solutions (unique solutions
over small enough time intervals). If we can prove that ||(d¢)"||s and ||| .00
remains bounded over solutions of the equation, inequality (10.23) will be enough
to ensure that solutions exist over arbitrary times intervals. This fact will be obtained
at the end of the next section.

10.5.3 Time Variation of the Eulerian Momentum

Assume that ¢ satisfies 0,0(t) = v(t) o (¢) with v e XPTLI(Q). If py e
CP~1(£22, R%)*, we can apply the chain rule to the equation

(p(@®) |w) = (po | Adyiy1w) = (po |de@®)'w o p(1)),
in which we assume that w € C} (£2, RY). We have (with 9,d¢ = dv o o d)

O Ay 1w = —do() " dv(t) o p(t) w o (1) + dp(t) ' dw o (1) V(1) 0 P(1)
= —Ad -1 (dv(®) w — dwv(2)).

The term in the right-hand side involves the adjoint representation of v(t), as
expressed in the following definition.

Definition 10.11 If v is a differentiable vector field on §2, we denote by ad, the
mapping that transform a differentiable vector field w into

adyw =dvw —dwv. (10.24)

Observe that dvw — dw v = —[v, w], where the latter is the Lie bracket between
right-invariant vector fields over the group of diffeomorphisms. Note that ad, con-
tinuously maps CJ'(£2, RY) to CJ/ ~1(£2, RY). With this notation, we therefore have,
for w € CJ (82, RY):

&Ad,\o(,)q w = —Ad,p(,)fladv(,)w
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so that
Di(p() w) = =(p(t) |adyyw).

This yields the equation, called EPDiff, in which we let p(¢) denote the restriction
of p(t) to CJ (2, RY),
0ip(t) + ady ) p(t) = 0. (10.25)

Equation (10.25) can be used to prove the following proposition.

Proposition 10.12 Let o(t) = id 4+ w(t), where w is a solution of (10.21). Let vy =
Kpo and v(t) = AdT _ vo. Then ||v(t)||y is independent of time.

()™

Proof Indeed, we have, for ¢ > 0,

1 2 2 2 1 2
ZUv@+ " = v ly) = (ot + &) = p@) [v(@®) + v +2). —vly

Since v(t) € V C C{; (£2, R%), (10.25) implies that the first term on the right-hand
side converges to
—2(p() |adyyv(0)) = 0.

For the second term, we have

v +e) —v@®llv = sup (pr +¢) —p(t) |w)

lwllv<1
= sup / (p(t +5) |adv(,_,_s)w)ds,
lwlv=tJo
which tends to O with e. O

‘We can now prove that (10.21) has a unique solution over arbitrary time intervals.

Theorem 10.13 Under the hypotheses of Lemma 10.10, Eq.(10.21) has solutions
over all times, uniquely specified by its initial conditions.

Proof As already mentioned, Lemma 10.10 implies that solutions exist over small
time intervals. Inequality (10.23) implies that these solutions can be extended as
long as ||do(t) ™" ||e and lo(®) |l p,o0c Temain finite. However, both these quantities
are controlled by fO’ lv(®)|lv dt. For the latter, this is a consequence of (C.6). For
do(t)~!, we can note that

Bidp(®)™") = —dp®) ' dv(t) o p(1)
and use Gronwall’s lemma to ensure that

1
lde(t) oo < exp (C /0 ||U(S)||vd5>

for some constant C. |
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10.5.4 Explicit Expression

The assumption that py € C} _l(.Q, R?)* “essentially” expresses the fact that the
evaluation of (pg | w) will involve no more than p — 1 derivatives of w. This implies
that the evaluation of the right-hand side of (10.21) will involve derivatives up to order
p in p = id 4+ w. In numerical implementations, it is often preferable to track the
evolution of these derivatives over time, rather than approximate them using, e.g.,
finite differences. It often happens, for example, that the evaluation of py only requires
the evaluation of ¢ and its derivatives over a submanifold of lower dimension, and
tracking their values on a dense grid becomes counter-productive.

The evolution of the derivatives of ( can easily be computed by differentiating
(10.21) with respect to the y variable. This is summarized in the system

U

Orp(t,y) =Y (po | (dep(t, ) K (p(t, %), (2, y)) ) e
i=1
d .
Ode(t, y)a =Y (po | (de(t, ) 0K (p(t, x), @(t, 1)) (dp(t, y)a)) ei

i=1

0 dPp(t, y)a, ..., ap)
d
= (po | ot x)) 'R K (p(t, x), o(t, ) @i, ..., ap)) ei.

i=1

(10.26)

It should be clear from this system that, if the computation of (py | w) only
requires the evaluation of w and its derivatives on some subset of R?, then ¢ and its
derivatives only need to be tracked for y belonging to the same subset.

10.5.5 The Hamiltonian Form of EPDiff

‘We now provide an alternative form of (10.26), using the optimal control formulation
discussed in Sect. 10.4.2, in which we introduced the co-state

(@ lw) = (po |de®)'w) = (pt) |wop®)™"). (10.27)

Let M(t) = (dp(t)) "' sothat ), M = —M (0,d) M. The second equation of (10.26)
then becomes
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d

OM(t.y)a == (po | M(t. x)K (p(t, x). p(t, y))a) M(t, y)ei.
i=1

This implies that, for any w € V

(&M(I) ‘ w) = _<PO ‘ oM w)

Y (oo [ (po [ M@ 00K (p(1, %), 01, Y)W () M, Wer),

i=1
d

=Y (@) [ (0@ [0:K" (o1, %), 2, y)w(p)) ei) -

i=1

v

We therefore have the system

d
Aot y) = (1) | K (p(t. ). 0(t. 1)) e
i=1
d

(0@ |w) = = D7 (1) | (1) | 92K (00,0, 2t 3Dw») 1)

i=1
(10.28)

Note that this system is an alternative expression of the first two equations of
(10.17). When (po | w) does not depend on the derivatives of w (more precisely,
po € CJ(£2, R%)*), this provides an ordinary differential equation in the variables
(¢, ) (of the form (d/dt) (¢, u) = F (g, p)). The initial conditions are ¢y = id and

Ho = po.

10.5.6 The Case of Measure Momenta

An interesting feature of (10.28) is that it can easily be reduced to a smaller number
of dimensions when py takes specific forms. As a typical example, we perform the
computation in the case

N
po=»_ 20, ). (10.29)

where ~y; is an arbitrary measure on §2 and z;(0) a vector field. (We recall the
notation (zy |w) = f z2(x)Tw(x) y(dx).) Most of the Eulerian differentials that we
have computed in Chap.9 have been reduced to this form. From the definition of
[u(t), we have pu(t) = 33 zi(t, )y (where z(t, x) = dipo, (x) "7 24(0, x)). The
first equation in (10.28) is
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d N
Dt y) =YY" / 2 (t, ) K (o1, %), (1, y))eid i (x).
i=1 k=1"%

For a matrix A with ith column vector A, and a vector z, z7 A’ is the ith coordinate
of ATz. Applying this to the previous equation yields

N
00(1,9) = Y- [ K(e(t. ). 000000, 0, (10.30)
k=1

where we have used the fact that K (o(z, x), (¢, )T = K(p(t, ), ¢(t, x)). The
second equation in (10.28) becomes

(o) | w)

= —ié (H(I) ‘ (#(t) ‘ MK (o, x), (1, y))w(y))xel- )y

N d
== 3 [ [ S €00k 0. ot )z ) edn )
k=175 7522

N N d
- Zf (/ DD g ) K (et x), e, y))dw(x)) w(y)du (),
k=1 2 2

I=1i=1
where z;{ is the ith coordinate of z;. From the expression of p(¢), we also have
N
O ="y Dz %
k=1
Letting K/ denote the entries of K, we can identify 9z, as

a{Zk(l, y) =

N d
_/ S5 d 2l (6 VK (o, 1), (8, YD)
2

=1 i j=1

N d
=- /Q SN N OVIKT (o2, ). o, x)dy(x). (1031)

=1 i, j=1

This equation is somewhat simpler when K is a scalar kernel, in which case

K (x,y) = I'(x, y)ifi = j and O otherwise, where I" takes real values. We get, in
this case
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N
Ozk(t,y) == f Vol (p(t, ), @(t, y)zx(t, y) 2 (t, x)dy (x)
1=1Y%

N
— =3 [ it o a ) a0
=1

In all cases, we see that the evolution of ;1 can be completely described using the
evolution of zj, ..., zy. In the particular case when the z;’s are constant vectors
(which corresponds to most of the point-matching problems), this provides a finite-
dimensional system on the y part.

10.6 Optimization Strategies for Flow-Based Matching

We have formulated flow-based matching as an optimization problem over time-
dependent vector fields. We discuss here other possible optimization strategies that
take advantage of the different formulations that we obtained for the EPDiff equation.
They will correspond to taking different control variables with respect to which the
minimization is performed, and we will in each case provide the expression of the
gradient of E with respect to a suitable metric. Optimization can then be performed by
gradient descent, conjugate gradient or higher-order optimization algorithms when
feasible (see Appendix D or [221]).

After discussing the general formulation of each of these strategies, we will pro-
vide the specific expression of the gradients for point-matching problems, in the
following form: minimize

1
E(p) = 7dy(id, ©)* + F(p(x1), .., p(xn)) (10.32)

with respect to ¢, where xj,...,xy are fixed points in 2. These problems are
important because, in addition to the labeled and unlabeled point matching problems
we have discussed, other problems, such as curve and surface matching, end up being
discretized in this form (we will discuss algorithms for image matching in the next
section). The following discussion describes (and often extends) several algorithms
that have been proposed in the literature, in [32, 159, 203, 204, 289, 309] among
other references.

10.6.1 Gradient Descentin X‘Z,

The original problem having been expressed in this form, Corollary 10.9 directly
provides the expression of the gradient of E considered as a function defined over
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X‘%, with respect to the metric in this space. Using ¢ +— v(¢, -) as an optimization
variable has some disadvantages, however. The most obvious is that it results in
solving a huge dimensional problem (over a d + 1-dimensional variable) even if the
original objects are, say, collections of N landmarks in R?.
When the matching functional U is only a function of the deformation of a fixed
object, i.e.,
Ulp)=F(p- D),

then some simplifications can be made. To go further, we will need to compute
derivatives in the object space, and henceforth assume that Z is an open subset of
a Banach space I. We assume that Diffg+l acts on Z and that the mapping @, :
¢+ - 1 is differentiable on Diff} 1 for all I € Z, so that an infinitesimal action
is defined by (see Sect. B.5.3)

h-1=do;d)h el

for h € Cé’ +I(Q, R?). We assume as usual that V is continuously embedded in
Cg“(.Q, R?) so that v - I is well defined for v € V and d®; (id) restricted to V is
also bounded with respectto || - ||y.

Letv e X‘%. If O;p =vo,let J(t) = @(t) - I be the deforming object. Then
0, J (t) = v(¢) - J(¢). With this in mind, we can write, when E is given by (10.14)

min E(v) = min ( min E(v)).
u(t,) J(t,), JO)=T \v:8,J=v(t)-J(t)

The iterated minimization first minimizes with respect to v for fixed object trajecto-
ries, then optimizes over the object trajectories.
When J (¢, -) is given, the inner minimization is

- 1 !
min  E(v)=  min <—/ lv@)|1% dt + F(J(l)))
v: 9 J=v(1)-J (1) v:9J=v(0)-J() \ 2 Jo

1
=1/ < inf ||w||2V> dt + F(J(1)) (10.33)
0

2 w: &, J=w-J (1)

since the constraints apply separately to each v(¢). This expression only depends on
the trajectory J (). One can therefore try to compute its gradient with respect to this
object trajectory and run a minimization algorithm accordingly. One difficulty with
this approach is that, given an object trajectory J(¢), there may exist no w € V such
that 0;J = w - J(¢) (which results in the minimum in the integral being infinite), so
that the possibility of expressing the trajectory as evolving according to a flow is a
constraint of the problem. This may be intractable in the general case, but always
satisfied for point-matching problems as long as the points remain distinct. We will
discuss this in the next section.
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However, what (10.33) tells us is tha~t, if a time-dependent vector field v(z, -) is
given, one always reduces the value of E (V) by replacing v(¢, -) by

v(t,) = argmin [w]?} (10.34)
w:w-J()=0v-J(t)

with J(t) = gag, - 1. Introduce the space
Ny =Nulld®,;3Gd)) ={ueV :u-J =0}

and its perpendicular V; = Ny ={u € V : (u, i), = Oforall i € N;}. Then we
have the following lemma.

Lemma 10.14 Let I € 7 and v € V. Then, the minimizer 0f||w||%, overallV eV
such thatw - J = v - J is given by my, (), the orthogonal projection of v on V.

Proof Letv = my, (0). We want to prove that v is a minimizer of || - ||%, over the set
of all w € V such that w = v + u with u € N,. For such a w, we have

Ty, (W) = v + 7y, (u) = v

and ||w|? > Iy, (w) ||%,. Moreover, from the characteristic properties of an orthog-
onal projection, we have o — v € Vi = Ny, the inequality holding because N is
closed (because it is the null set of a bounded linear map). t

The numerical computation of this orthogonal projection is not always easy, but
when itis, it generally has a form which is more specific than a generic time-dependent
vector field, and provides an improved gradient descent algorithm in X‘% as follows.
Assume that, at time 7 in the algorithm, the current vector field v” in the minimization
of E is such that v"(¢) € V,(, at all times ¢. Then define a vector field at the next
step 7 + 07 by

d
L) = v, y) - o7 (v(z, 0+ 32 (o) |den (@, DK (6, @), y))xei) ,
i=1

which corresponds to one step of gradient descent, as specified in (10.20), then

compute J(t) = 508?57 - I and define

5 ~T+0
UT+ T([) — 7TVJ(”(UT-"- T)

at all times 7.
Application to Point Matching

Consider the point-matching energy. In this case, letting

U(p) = F(p(x1), ..., p(xn)),
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we have

N
p(1) = QU (h) = Y i F (5, (0))0,x0-

i=1

We therefore have, by Corollary 10.9, with U x) =U(ypg),

M=~

VYT ), y) =) (p(1) [de} (0}, K (9}, (x), Yer ) e

i=1

I
M&
M=

(04 F (01 ) dip}y (06, () K (0, (xg), ¥)ei)ei
1

I
—_

q

K (v, @b, (x)dply (08, xg )T 0, F (05, (x)),

Il
M=

Q
Il

so that

N
VYE@)(t, y) = v(t,y) + Y K(3, 0b, (c))d}y (08, (xq)) 0y F (05, (x,)).
q=1
(10.35)
So, a basic gradient descent algorithm in X‘% would implement the evolution

(letting 7 denote the algorithm time)

N
DT (1, y) = =y [ V(3 + D KOs b (5 )]y (0 ()T Oy F (05 ()

g=1

(10.36)

The two-step algorithm defined in the previous section is especially efficient with
point sets. When x = (xq, ..., xy), v -x = (v(x1), ..., v(xy), the projection on

Vi={v:iv-x=0={w:v@) = =v(y) =0}"
is given by spline interpolation with the kernel, as described in Theorem 8.8, i.e.,
N
Ve = :U=ZK(.,xk)ak,a1,...,aN eRd}. (10.37)
k=1

More precisely, define x(t) = ¢, (x;). We assume that, at time 7, we have a
time-dependent vector field v™ which takes the form

N
VTt y) =Y K. x (0)a] (1) (10.38)

i=1
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Using (10.36), we define

N
B, y) =0T = 67(VT () + Y K, gt eI}y (b (5)) T 0y F (05 (x)).-

q=1

The values of v(z, -) are in fact only needed at the points xf 1) = gogt (x;). These
points are obtained by solving the differential equation

N

dx = v7(t,x) — 07 (vf(t, X+ Y K6 @), 0dgl (7 0) Fi(x¥ (1)

i=1

(10.39)

with x(0) = x;. Solving this equation provides both x () and o (x? (¢)) for t € [0, 1].

Once this is done, define VT (¢, ) to be the solution of the approximation prob-
lem inf,, [|w|ly with w(x}(t)) = v(x/(¢)), which will therefore take the form

N
UT+5T(Z,’ y) — Z K(y, xivr+m- (t))a,'T-HST(t)'
i=1

Solving (10.39) requires evaluating the expression of v”, which can be done
exactly using (10.38). It also requires computing the expression of d(p;’; (x} (1)),
which can be obtained from the expression

d,dply oo = 0i(dp1) " = —(dp1) O, dp1)dpr)

which yields:
O dpyy (x} (1) = —d}y (x{ (0)dv(z, x{ (1)).

Thus, df,(x](¢)) is a solution of O;M = —Mdv(x](t)) with initial condition
M = 1d. The matrix dv(t, x/(t)) can be computed explicitly as a function of the
point trajectories x}? (), j=1,..., N, using the explicit expression (10.38). This
algorithm was introduced in [31].

10.6.2 Gradient in the Hamiltonian Form

As we have seen, one can use the optimal control formalism with the Pontryagin prin-
ciple to compute the gradient of Einv.Givenv € X2, this gradient can be computed
by solving (10.28) with boundary conditions ¢(0) = id and u(1) = —dU (¢(1))
(which can be achieved by solving the first equation in (10.28) fromt =0to ¢ = 1,
then the second one backward in time, from¢ = 1to¢ = 0) and, using (10.18), letting

VE@)(1) = KW@E@©)(1) = ~K&u(t) + ().
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This equation (or the maximum principle) implies that the optimal v must be such
that v(t) = Kg;mu(t) for some p € Cé’fl (82, R%)* and there is therefore no loss of
generality in restricting the optimization problem to v’s taking this form. With this
constraint, we have

||U(t)||%/ = (Kf:(r)ﬂ(f)y Kf:;(z)/ﬁ(f))v = (M(f) ‘fw(t)KfZ(;)M(f))~

Let K, = £,K& so that vl = (u(t) | Kep(r)). One has

a’ Ko (y) = a" (KE ) (p(y))
= (K(, p(y)a, Kep),
= (1 | K(p(x), p(y)a),

so that

d
Kom) () =D (1 | K (p(x), p(0))e; ) cei.

i=1

With this notation, the state equation 0, = v o ¢ becomes 0, = K, and the
original optimal control problem is reformulated as minimizing

1 1
E(p, p) = z/o. (1) | Kp@ypu(®) ) dt + U(gpor)

subject to Jyp = K p.

Expressing the problem in this form slightly changes the expression of the differ-
ential. The computation of the gradient (and its justification) based on a co-state
and the Hamiltonian

1
Hy(a, @) = (a [Kop) — 7 (n | Kop)
are obtained using the same methods as in Sect. 10.4.2, so we skip the details. Let
" be the solution of 0, = K, u with ¢(0) = id. Then, with E(u) = E(¢*, 1), we
have

dE(pn) = Koo — Ko pa,

where ¢ and « are given by the system
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Orp =Kpp

d
(900 [w) = = 3" () [ (50) [ K (00, ). (0, D0 i)

i=1
d
=2 (@ [(a@) | 02K (ot 0), 0t W) e),

i=1

QU

Z (@) | (1) [ 2K (e, x), o(t, yIw(y)) &)

(10.40)

with ¢(0) = id and a(1) = —dU (¢(1)). Unsurprisingly, this system boils down to
(10.28) when d E(p1) = 0, i.e., when o = pu.
The gradient of E expressed with respect to the inner product

(i 1), = (n | Kops)-

(this choice will be justified in Sect.11.4 as the dual Riemannian metric on the
diffeomorphism group) is ~
VE(u) =a—p,

a remarkably simple expression.

Consider now the case in which U (p) = F(p - I) where I is a fixed object. With
the notation and assumptions made in Sect. 10.6.1, we found in Lemma 10.14 that
there was no loss of generality in restricting the minimization to v(¢) € V() at all
times. This often entails additional constraints on the momentum p(¢) = Lv(¢), or
on u(t) = :;(t),, p(t), that can be leveraged to reduce the dimension of the control
variable. For example, we have seen that for point sets (in which we let J = x) V,
was given by (10.37), so that p(#) must take the form

N
pt) = Z () 0xr)

k=1

for some z1(7), ..., zn(¢) € R, from which we can deduce (using x; (1) = (¢,
x;(0))) that (¢) must take the form

N
u(t) = Z 2k ()05, (0)-

k=1

One can then use z;, ..., zy as a new control, as described below.
Another interesting special case is when pi(¢) can be expressed as a vector measure,
because, as discussed in Sect. 10.5.6, one can then assume that
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N
w6y =Yz,

k=1

where 71, ..., vy are fixed measures. One can then use the vector fields zy, ..., zy
to parametrize the problem. This leads to a simplification when the measures have a
sparse support. They are, for example, Dirac measures for point matching. We now
review this case in more detail.

Application to Point Matching
When U (¢) = F(¢(x1), ..., p(xn)), we have

N
@U(p) 1h) =Y KF(p(x1), ..., o) h(xe)
k=1

so that

N
p(1) ==Y F(p(x1), .., p(xN))by

k=1

is a vector measure. We can therefore look for a solution in the form

N
) =Y zt)dy,

k=1
at all times, for some coefficients z;, ..., zZy.
In order to obtain « in (10.40) given a current p, it suffices to solve the first
equation only for the values of y; (t) = (¢, x¢),k = 1, ..., N, which requires us to

solve the system

N
Oye =Y Kk )&
=1

One then sets

N
a(l) ==Y AFo), ..., yw(D)dy

k=1

and solves the second equation backward in time, knowing that the solution will take
the form

N
al) =Y m(t)d,

k=1

with ne(1) = = F (1), ..., ya(1)) and
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N d

N d
e = Y Mz ViK o y) + D Y A ViKY (e, )
I=1 ij=1 I=1 i j=1

N o d
— 22 Z 22 ViKY (3, o).

I=1 i, j=1
Given this, we have

N
VE(M) = Z(Uk — Zk) 0, -
k=1

10.6.3 Gradient in the Initial Momentum

We now use the fact that Eq.(10.16) implies that the optimal v(¢) is uniquely con-
strained by its value at ¢+ = 0 for formulating the variations of the objective function
in terms of these initial conditions. We therefore optimize with respect to vy, or
equivalently with respect to o = po. This requires finding py such that

1 1
3 / o)l dt + U(p(1)
0

is minimal under the constraints 0, (t) = v(t) o p(t), with

d
v(t) = Z (po ’ng(t)K(i)(x, y) )xei.
i=1

Proposition 10.12 helps us to simplify this expression, since it implies that
fol lv@)|*dt = (po | Kpp) and the minimization problem therefore is to find pg
such that

1
E(po) = 5(po [ Kpo) + U(p(1))

is minimal, where (¢, 1) is a solution of system (10.28) with initial conditions ¢ (0) =
id and p(0) = po. Writing (10.28) as

@ Y, u))
a = = /7 5
' (u) (7/2(% 1) (P 1)
and applying Proposition D.12, we have

dE(po) = Kpg — p,(0),
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where the pair (ﬁ:g;) satisfies p (1) = —dU (¢(1)), p,(0) = 0 and

{@m B (10.41)

atp,u = _827/1* Py — 82%* Pu-

The gradient of E with respect to the metric on V* is then given by VE(py) =

PO — K_l Pu-
The practical application of these formulas requires us to make explicit the expres-
sions of 9; ”I/J* for i, j = 1, 2. Returning to (10.28), we have

d

@77 Py [h) =D (Po | (1 1K (p(), (DA ) &)

i=1

d
+ 2 (P [ (1| 02K (000, 0DR(D) ) i)
i=1

U

@297 pe |n) =) (po | (0 | K (0(0). 00 i)

i=1

M&

(0175 pu | h) = (1 | (1 | 0102K" (), o (), pu(¥))) i),

i=1

'M&

(1 | (1 | BK (), R, pu()), i)+ and

i=1

U

@275 pu [n) == (0 | (1 | 2K (0@). 003 &),
i=1
d .
=D (1 | (0 [ 2K @), 0N Pa() 1)

i=1

Forming explicit expressions of 0; 7" requires isolating 4 or 7 from the right-hand
sides. To do this, we will need to change the order in which linear forms are applied
to the x and y coordinates. This issue is addressed in the following lemma.

Lemma 10.15 Assume that p € C"(S2, RY* and v € C" (2, R)*. Let g: 82 x
2 — R be a function such that 8{‘8;‘/9 € Co(2 x 2,R) forallk <r and k' <r.
Then, for all a,beR? (u|g(x,)a), € Cc’'(R2,RY and (v |g(, »b), €
C"(82,R), with

(0] @ g, b)ya) = |@lgx, ya )Xb)y. (10.42)
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Proof Let f(y) = (1 | g(x, y)a),. Using Taylor’s formula, we can write

-

1
g0y +h) =) =090 hY+
k=0

—1), f (85 g(x, y +th) — 35 gx, y)h" YA — )"~ dt

so that

A
fO+h =Y (1 [2290e, hPa)

k=0

M 1), (u] / (@3 gCx, y +1h) = 5 g(x, y)h)(1 = 1) adr).

The last term (call it R) is such that

,
ll42llr,00,% 2" |al

IR| <
r’ tGIOII

X 1105 gC,y +th) — 35 gC, Y10

The uniform continuity of 8{‘85/9 for k < r implies that R = o(|h|") so that f €
C"(£2,R). Similarly, letting f'(x) = (1 | g(x, y)b),, one has e C'(£2,R).
The computation also shows that, for some constant C,

max((u | v [gCe, Mb)ya) (v | 1gCx, va),b) )
< C”M”r,oo,*”l/”r’,oo,*“g”r,r’,oo

with
k ok’
”g”r,r’,oo - ki’?}%}ir, ”61 82 g”oo»

so that both sides of (10.42) are continuous in g with respect to this norm. To conclude,
it suffices to notice that (10.42) is true when g takes the form

n

9G.y) =Y cfi(®) fL)

k=1

and that these functions form a dense set for ||g||,,., SO that the identity extends
by continuity. O

Let us use this lemma to identify the first term in (0, %{* p,, | h) as a linear form
acting on h. Write, letting 0; ; denote the derivative with respect to the kth coordinate
of the ith variable,
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™=~

(Pe | (1| 0K (o), (DA(X)) 1),

(Po | (1 [ 014K (0(), GNRE (e ) i),
1

(1] (P 1014 K T o0, oA 0001 7).

1

N b & I
~ R o a =
Il Il Il

(M ‘(Pw | 02k K7 (0(p), W(x))ei)yhk(x)€j>x

1

(] (0
jk=1

=(u|%h),

YO, () i e )

where %, (x) is the matrix with coefficients
U3 = (py | 004K (9(3), 0(x))).

Write (% U | h ) (p | 24k ), anotation generalizing the one introduced for vector
measures. After a similar computation for the second term of (61 Py | h) (which
does not require Lemma 10.15), we get

NI po=U 1+ % p,

with ' '
U (x) = (1| 024 K7 (0(9), 0(x))) -

Consider now 0, #}* p,,, writing

(29 py | 1) = Z( ‘ Pe !Kij(w(X),w(y))ei)),ej)x

d
i,j=1
d

Z( | (ps | K70, ), e,) :

j=1

so that
d

DRI P =D (Py | KT (00, 0(x)) ¢

Jj=1

With similar computations for %5, and skipping the details, we find
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T T
NI pp= Uy p— U b
where

% (x) = (1 | 92,4 (D1 KT (), () pu(1))),» and
U (x) = (1 | 02,4 (DK (9(3), 0 () pu(x))) .

Finally,

U

015" pu(x) = =Y (1 | K (), () pu(x)) e

i=1

(1 [01K (), () Pu(D)) e

d
=1

1

Let us take the special case of vector measures, assuming that wu(f) =
Z,’:]:] 2k (t, -) k. We will look for p,, in the form

N
Pe(t) =Y axlt, u,

k=1

p,. being a function defined over the support of .
With these assumptions, we have

N
e 01" p, = ZC/}’I'Vk with
k=1

d

N
=23 (n | OVIKI @), p() )

=1 i,j=1
N
+ Z <’Yl

I=1i,j=1

y

d

4l VKT (6(), 9 () )

y

N
o DI pe(x) =) (% | K(p(x), o) (),
k=1

N
e 01/ pu= ng’lfyk with
k=1
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N
2l (x) =

Y |2 (z] ()21 K 7 (p(x), (1)) P ()
y

1

i (71

11=1

||M*“

~

i,j=1

M&

GOHOR KT (@), o0 Pu) ) -

ij

=

d
o BV P == (% |ZMAK (px), e pu(x)),
i=1 k=1
d . .
=20k [ %MK (2(0), o)) -

i=1 k

=

System (10.41) can now be simplified as
6r04k = /:’1 +</3’1

N
Oipp =Y (n 1K), o0ow (),

k=1
(10.43)

M&

Y (w |7 MK (), o) Pu()),

1 1

=~

i

N

Z (| 2K (0(x), (N Pu(D)) -

1 k

N

'M&

1

Application to Point Matching

We now apply this approach to point-matching problems. Since py takes the form

N
po = E ao,k0xy,
k=1

we are in the vector measure case with 7; = d,,,. The densities z; and oy for p
and p,, can therefore be considered as vectors in R4, and P, being defined on the
support of 14 is also a collection of vectors p, x = p,(xx). Given this, we can therefore
immediately rewrite

N
o NV po= G 0, with
k=1

d

N
(=30 (ViKY (2] + ViKY (e, xa)

=1 i j=1
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N
o L po(xox) = Z K (x¢, x))oy.
=1

N
© 0V pu=Y_ G'ldy, with
k=1

d N
== 30 > 22 (010K (1) pus + K (., x1) p).
i,j=11=1

d N
o LV puxi) ==Y Y (DK (i, x) puk + K (i, x0) ).
i=1 I=1
This algorithm is illustrated in Fig. 10.1. In the same figure, we also provide (for
comparison purposes) the results provided by spline interpolation, which computes
p(x) = x + v(x), where v is computed (using Theorem 8.9) in order to minimize

N
I} +C D ) — (i —x)

i=l

Although this is a widely spread registration method [42], Fig. 10.1 shows that it is
far from being diffeomorphic for large deformations.

10.6.4 Shooting

The optimality conditions for our problem are p(1) = —dU (¢(1)) with u(t) given
by (10.28). The shooting approach in optimal control consists in finding an initial
momentum py = 1+(0) such that these conditions are satisfied. Root finding methods,
such as Newton’s algorithm, can be used for this purpose. At a given step of Newton’s
algorithm, one modifies the current value of py, by letting po — po + 1 such that,
letting F(pg) := (1) + dU (¢(1)), one has

F(po) + dF(po)n = 0.

One therefore needs to solve this linear equation in order to update the current py.
One has
dF (po) = Wyu(1) + Wy (*d*U (p(1)),

where

We, W,
W = pp @H)
( He WML
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Ge
U’\.’

o1
[TTT]

1T

IHENEE]

Fig. 10.1 Metric point matching. The first two rows provide results obtained with gradient descent
in the initial momentum for point matching, with the same input as in Fig. 9.1, using Gaussian kernels
K (x,y) = exp(—|x — y|?/20?%) with o = 1,2, 4 in grid units. The impact of the diffeomorphic
regularization on the quality of the result is particularly obvious in the last experiment. The last row
provides the output of Gaussian spline registration with the same kernels, exhibiting singularities
and ambiguities in the registration
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is (using the notation of the previous section) the differential of the solution of the

equation
2 <<p> =7V (p, W,
I

with respect to its initial condition, i.e., the solution of
oW =d¥ (p, )W

with initial condition W (0) = Id.

Because one needs to compute the solution of this differential equation at every
step of the algorithm, then solve for a linear system, the shooting method is feasible
only for problems that can be discretized into a relatively small number of dimensions.
One can use it, for example, in point matching problems with no more than a few
hundred landmarks (see [290] for an application to labeled point matching), in which
case the algorithm can be very efficient. Another issue is that root finding algorithms
are not guaranteed to converge. Usually, a good initial solution must be found, using,
for example, a few preliminary steps of gradient descent.

10.6.5 Gradient in the Deformable Object

Finally, we consider the option of using the time derivative of the deformable object
as a control variable, using the fact that, by (10.33), the objective function can be
reduced to

1
E(J)=f L@ @), J@)dt + FI(1)
0

with L(n, J) = Miny, y=w.s () ||w||%/. This formulation is limited, in that L(n, J) is
not always defined for all (), J), resulting in constraints in the minimization that
are not always easy to handle. Even if well-defined, the computation of L may
be numerically demanding. To illustrate this, consider the image-matching case, in
which v - J = —VJTv. An obvious constraint is that, in order for

VIiTw = —n

to have at least one solution, the variation n must be supported by the set VJ # 0.
To compute this solution when it exists, one can write, for x € 2,

VI wx) = (K(x)VI(x), w),.

and it is possible to look for a solution in the form
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w(y) = f AWK (3, )V (1)dx,
2

where A(x) can be interpreted as a continuous family of Lagrange multipliers. This
results in a linear equation in A\, namely

/ AWK (3, VI VI @)dx = —n(y),
2

which is numerically challenging.

For point sets, however, the approach is feasible [159] because L can be made
explicit. Given a point-set trajectory x (1) = (xV(¢), ..., x™ (1)), let S(x(¢)) denote
the block matrix with (i, j) block given by K (x(¢), x/)(¢)). The constraints are
X, = S(x()E() so that £(t) = S(x(¢))~'x, and the minimization reduces to

1
E(x) = %/0 (0TS ()" k(t)dt + U(x(1)).

Minimizing this function with respect to x by gradient descent is possible, and has
been described in [158, 159] for labeled landmark matching. The basic compu-
tation is as follows: if s, , = 0,54, We can write (using the fact that 9,(S™H =
-5710,8)81H

1
(dE(x) | h) =/ (O Sx() " h(r)dt
0

1
- / D EPWED ()8 pgr (xR (1)dt + VU (x(1)T (D).
0

p.q,r

After an integration by parts in the first integral, we obtain
dE(x) = =0, (S(x())™'%) — 2(t) + (S 1) ™'x(1) + VU (x(1))) 61 (1),

where z, (1) = ZM &, (1) ()Spq,-(x (1)) and 4y is the Dirac measure at t = 1.

This singular part can be dealt with by computing the gradient in a Hilbert space
in which the evaluation function x(-) +— x(1) is continuous. This method has been
suggested, in particular, in [129, 161]. Let H be the space of all trajectories x : ¢ +—
x@®) = xV@), ..., xM()), with fixed starting point x (0), free end-point x (1) and
square integrable time derivative. This is a space of the form x(0) + H where H
is the Hilbert space of time-dependent functions ¢ +— h(¢), considered as column
vectors of size Nk, with 2(0) = 0 and

1 .
(n.n), =/ h"hdt + h(1)"h(1).
0
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To compute the gradient for this inner product, we need to write (d E(x) | &) in the
form <VH E(x), h) " We will make the assumption that

1
/ |SCe(e) 20| di < o,
0

which implies that

1 1 1
/ic(t)TS(x(t))_lh(t)dtf\// |S(x(r))—1x(t)\2dt/ )| di
0 0 0

is continuous in 4. Similarly, the linear form & — VU (x(1))T k(1) is continuous
since

VU (1) h(1) < [VUEAD[AD)].
Finally, h — /01 z(t)Tfld t is continuous provided that we assume that
t
n() = / z(s)dt
0
is square integrable over [0, 1], since this yields
1 1 )
| =0 nods =nevna) - [ nwicar,
0 0

which is continuous in & with respect to the H norm.

Thus, under these assumptions, & — (d E(x) | h) is continuous over H, and the
Riesz representation theorem implies that V¥ E(x) exists as an element of H. We
now proceed to its computation. Letting

() = / S () h(s)ds
0

and a = VU (x(1)), the problem is to find ( € H such that, forallh € H,

1 1
. h)H=/ ,:LThderf ) h@)dt + a” &(1).
0 0

This expression can also be written

1 1
fo(é+C(1))Tizdt=/o (i +n(1) = n(t) + a)T hdt.

This suggests selecting ¢ such that ((0) = 0 and
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¢+ M) = f+n) = @) +a,
which implies
t
() +1¢(1) = (1) — / n(s)ds +1(n(l) +a).
0

Att = 1, this yields

1
2<<1>=u<1>—/ n(s)ds + (1) +a
0

and we finally obtain

t 1
C(1) = p(®) — /0 n(s)ds + % (/0 n(s)ds — p(1) +n(1) + a) .

We summarize this in an algorithm, in which 7 is again the computation time.

Algorithm 3 (Gradient descent algorithm for landmark matching) Start with initial
landmark trajectories x(t, 7) = (xV(z, 7), ..., xM @, 7).
Solve

0,507 = = (e~ [ s s
0

¢ 1
n 5(]() n(s, T)ds — p(l, 7) + (1, 7) +a(7)>)

witha(r) = VU (x(1, 7)), u(t, 7) = [y &(s, T)ds, n(t, 7) = [, z(s, T)dt and

&, ) = S(x(t, 7)) k@, 7)
2,1 =) P TE W, T)5pgr (x(E, 7).

p.r

10.6.6 Image Matching

We now take an infinite-dimensional example to illustrate some of the previously
discussed methods and focus on the image-matching problem. We therefore consider

Ulp) = %fg(!ow — I)%dx,
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where I, [ are functions 2 — R, I being differentiable. The Eulerian differential of
U is given by (9.21):

AU(p) = -AT oo~ — IV o )dx.
So, according to (10.19), and letting U (v) = U(eg,)s
~ d =
VO@)(t.y) =Y (0Uh)) |del (0}, (DK (3. o}, (De; )e;
i=1
d ~
_ —/\Ze,-/ (I 0 p¥y(x) — F(x))
i-1 /%
V(I 0 pYo) ()T def) (0}, (IK (v, o} (0))eidx
d
- —/\Zei/ (I 0 p¥y(x) — 1(x))
i-1 /%
VI o @Yy(0) T dply(0)diply (08, () K (3. ¢}, (x))erdx
d
- —/\Zei/ (o ¥y (x) — F(x))
i-1 /%
VI oo dely (e, () K (v, @Y, (x))eidx

d

=AY e /Qu 0 @l() — IV 0 o) (8, )T K (v, o8, (1)ejdx
i=1
d ~

= _/\Zei /Q(I o plo(x) — I(X))eiTK(Wlf,(x), WV o p) (], (x))dx
i=1

= —A/Q(I 0 @i (x) = TN K (], (x), VU 0 @) (o], (¥)dx.

This provides the expression of the V-gradient of E for image matching, namely

(VVE@)(t, y) = v(t, ) (10.44)
- A/ (I 0 @5 (x) = T K (£}, (x), )V 0 i) (], (x))dx.
Q
Using a change of variable in the integral, the gradient may also be written as

(VYE)(1, y) = v(t,y) (10.45)

- A/ (1 0 ply(x) — T 0 @} (XK (x, Y)V(I 0 @ly) (x) det(d g}y (x))dx,
2

the associated gradient descent algorithm having been proposed in [32].
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Let us now consider an optimization with respect to the initial py. First notice that,
by (9.20), (1) = X det(dp(1)(I — I’ o (1))dp(1)~T VI dx is a vector measure.
Also, we have

(po lw) = (u(1) [de(l)w)
= Adx |detdp()(I — I' o p(1)VI"w),

which shows that one can assume that py = zodx for some vector-valued function
zo (With zg = det(de(1))(I — I’ o (1)) VI for an optimal control).

We now make explicit the computation of the differential of the energy with
respect to py. We have u(t) = z(¢, -)dx, with z(0) = zp and

Orp(t, y) = / K(p(t,y), o(t, x))z(t, x)dx
R (10.46)

Bzl y) = — /R 0P @ OVIKY ), o0, )

The differential d E(po) = K po — p,(0) is computed by solving, using a(1) =
Adet(do(1)( = I' o p(1))dp(1)~TVI and pu(1) =0,

3,04 =<~l,1 + CZ,]

0:pu =/ K (o(x), o(y)a(y)dy
]Rd

d
-2 /Rd 2 (MK (p(x). (1)) pu(x)dy (10.47)
i=1

d

=3 [ 00K o0, Dm0y,
i=1

in which

d
SOEDY fR (@ () @)+ 00 VK (o). 9())dy
i,j=1
and

d
Glw=-Y fR 0D 000K (o), $(0N) Py

ij=1

d
-y /R AWK @), o) Py,

i,j=1
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Fig.10.2 Metric image matching. Output of Algorithm 4 when estimating a deformation of the first
image to match the second one (compare to Fig.9.2). The third image is the obtained deformation
of the first one and the last provides the deformation applied to a grid

We summarize the computation of the gradient of the image-matching functional
with respect to zg such that py = zodx:

Algorithm 4

1. Solve (10.46) with initial conditions ¢(0) = id and z(0) = zp and compute
dU(e(1)) = =A(I = I' o (1)) det(dp(1)d(1)"TVI.

2. Solve, backwards in time, until time ¢ = O the system (10.47) with boundary
conditions a(1) = —dU (¢(1)) and p,(1) = 0.

3. Set VE(z0) = 220 — K~ ' p,(0).

The gradient is computed with the metric <z, z’) = fRd z(y)TKz(y)dy. Results
obtained with this algorithm are presented in Fig. 10.2.
One can also use the fact that zo = fy VI for a scalar-valued f;. Since we have

(£ o) = fg (Kzo — p,(0) hody.
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we can write, with E(fo) = E(foVI):

(aEs)

w) = [ VD = p, 0V 1uody,
Q
which leads to replacing the last step in Algorithm 4 by

VE(fo) = =VIT(K(foVI) — p.(0)),

which corresponds to using the L? metric in f; for gradient descent. However, a
more natural metric, in this case, is the one induced by the kernel, i.e.,

(f. f), = /Q /Q K(fVD)(f (VI()dy = /Q K1 ) f () f ()dxdy

with K;(x, y) = VI(x)T K (x, y)VI(y). With this metric, z¢ is updated with
VE(fo) = z0 = K;'VI" p,(0).

Although this metric is more satisfactory from a theoretical viewpoint, the inversion
of K; might be difficult, numerically.

10.6.7 Pros and Cons of the Optimization Strategies

In the previous sections we have reviewed several possible choices of control vari-
ables with respect to which the optimization of the matching energy can be performed.
For all but the shooting method, this results in specific expressions of the gradient that
can then be used in optimization procedures such as those discussed in Appendix D.

All these procedures have been implemented in the literature to solve a
diffeomorphic-matching problem in at least one specific context, but no extensive
study has ever been made to compare them. Even if the outcome of such a study is
likely to be that the best method depends on the specific application, one can still
provide a few general facts that can help a user decide which one to use.

When feasible (that is, when the linear system it involves at each step can be
efficiently computed and solved), the shooting method is probably the most efficient.
If the initialization is not too far from the solution, convergence can be achieved in
a very small number of iterations. One cannot guarantee, however, that the method
will converge starting from any initial point, and shooting needs to be combined with
some gradient-based procedure in order to find a good starting position.

Since they optimize with respect to the same variable, the most natural procedure
to combine with shooting is optimization with respect to the initial momentum. Even
when shooting is not feasible (e.g., for large-scale problems), this specific choice of
control variable is important, because it makes sure that the final solution satisfies the
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EPDiff equation, which guarantees the consistency of the momentum representation,
which will be discussed in Sect. 11.5.2. The limitation is that, with large and complex
deformations, the sensitivity of the solution to small changes in the control variable
can be large, which may result in an unstable optimization procedure.

The other methods, which optimize with respect to time-dependent quantities,
are generally more able to compute very large deformations. Beside the obvious
additional burden in computer memory that they require, one must be aware that the
discrete solution can sometimes be far from satisfying the EPDiff equation unless
the time discretization is fine enough (which may be impossible to achieve within
a feasible implementation for large-scale problems). Therefore, these methods do
not constitute the best choice if obtaining a reliable momentum representation is
important. Among the three time-dependent control variables that we have studied
(velocity, momentum and deformable object), one may have a slight preference for the
representation using the time-dependent momenta, even if the computation it involves
is slightly more complex than the others. There are at least two reasons for this.
First, the momenta are generally more parsimonious in the space variables, because
they incorporate normality constraints to transformations that leave the deformable
objects invariant. Second, because the forward and backward equations solved at each
iteration immediately provide a gradient with respect to the correct metric, so that the
implementation does not have to include the solution of a possibly large-dimensional
linear system which is required by other representations.

10.7 Numerical Aspects

10.7.1 Discretization

The implementation of the diffeomorphic matching algorithms that were just dis-
cussed requires a proper discretization of the different variables that are involved.
The discretization in time of optimal control problems is discussed in Sect. D.4. This
discussion directly applies here and we refer the reader to the relevant pages in the
chapter for more details. If the deformed objects are already discrete (e.g., points
sets), this suffices in order to design a numerical implementation.

When the deformed objects are continuous, some discrete approximation must
obviously be made. One interesting feature of the problems that we have discussed
is that they all derive from the general formulation (10.8), but can be reduced, using
Sect. 10.6.2, to a situation in which the state and controls are finite dimensional after
discretization. Typically, starting from (10.8), the discretization implies that only the
end-point cost function is modified, replacing U (¢) = F(y - Ip) by an approxima-
tion taking the form U™ (p) = F® (¢, 1."). For example, when matching curves,
one may replace the objective function F (¢ - Ip) = ||pp.1, — pir ||%V* in (9.40) by the
discrete approximation in (9.46), in which the curves I and I’ are approximated by
point sets. Similar approximations can be made for the other types of cost functions
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discussed for curves and surfaces. In such cases, the following proposition can be
applied to compare solutions of the original problem with their discrete approxima-
tions.

Proposition 10.16 Assume that V is continuously embedded in Cg + (R?, RY). Con-
sider a family of optimal control problems minimizing

1 1
E™(v) = Ef lvll? dt + U™ (o3)), (10.48)
0

with U™ continuous for the (p, 00)-compact topology. Let U be continuous with
respect to the same topology and assume that, for some p > 0, the following uniform
convergence is true: for all A > 0 and € > 0, there exists an nq such that, for alln >
no, forall p € Diffg’oo such that max([|¢l p,c0s lo~! lp,00) < A, one has U™ () —
Up)l <e

Then, given a sequence v™ of minimizers of (10.48), one can extract a subse-
quence v that weakly converges to v in X2, with v minimizing

1 1
E(w) = 5/0 lwll? di + UGet). (10.49)

Proof Let w be a minimizer of (10.49). Our assumptions implying that U™ (¢y))
converges to U(pg;) (so that their difference is bounded), we see that E M (w) <
E(w) + C for some constant C, so that, letting v™ be a minimizer of E™, we have
||v(”)||i(3 <2E™ (™) < 2E(w) 4+ 2C. From this we find that v™ is a bounded

sequence in X'2, so that, replacing it with a subsequence if needed, we can assume

that it weakly converges to some v € X‘%. Applying Theorem 7.13, we find that gpg(ln)

converges to ¢’ in the (p, co)-compact topology. Moreover, Theorem 7.10 implies
that the sequences (”905(1”) lp,o0s |l cp'l’é) ' | p,00) are bounded. Applying the uniform con-

vergence of U™ to U on bounded sets and the continuity of U, we see that U (¢},")
converges to U (pg;) as n tends to infinity. Since, in addition

[ollxz < liminf [[v® ] 42
we obtain the fact that E (v) < liminf E® (v™). We also have
E®@") < E™(w) = Ew) + Ulgg) — U™ () — E(w),

so that E(v) = E(w) and v is also a minimizer of (10.49). O

Curves and Surfaces. We can apply this theorem to curve and surface matching
according to the following discussion, in which we focus on surface matching using
currents, but which can, with very little modification, be applied to curves, and to
measure or varifold matching terms. Let X and X be regular surfaces and S™, ™ be
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sequences of triangulated surfaces that converge to them as defined before Theorem
4.3. Let (fixing an RKHS W with kernel )

U(p) = lvpx — villy.
using the vector measures defined in Eq. (9.49), and
U™ () = Vg5 = Vg I+

using the discrete version as in (9.56). Then, Theorem 4.3, slightly modified to
account for double integrals, can be used to check that the assumptions of Proposition
10.16 are satisfied.

Images. The image matching problem can be discretized using finite grids, assuming
that the considered images are supported by the interval [0, 1]¢. Consider the cost
function

Up) = 1o " = 1],

in which we assume, to simplify, that / and I are compactly supported (say, on
K = [-M, M]¢) and bounded. We first start with a discretization that can be applied
to general L? functions. Let G, = {—M + 27" kM, k=0, ...,2"¢ provide a dis-
crete grid on K and associate to each point z € G, its Voronoi cell, I},(z), provided
by the set of points in K that are closer to x than to any other point in the grid (i.e.,
I, (z) is the intersection of XC and the cube of size 27" centered at x). Define

1) =Y 1™ (@)1,

7€G,

where
I_(Vl) (z) =

I(x)dx
|55 Jr,e

is the average value of I over I,(2).
Define /™ similarly and consider the approximation of U given by U™ (p) =
1™ o p~! — I™|3. Then U™ and U satisfy the hypotheses of Proposition 10.16.
Indeed, assume that max(||¢||1,c0, ||<,0’1 Il1,00) < A. We have

UM () —U)| <210 — 1™ o™ 3+ 20T = T™3
<2C(AT — 1713+ 21 — T™3,

where the second inequality is obtained after a change of variable in the first L? norm
and C(A) is an upper bound for the Jacobian determinant of ¢ depending only on A.
As a consequence, Proposition 10.12 will be true as soon as one shows that /™ and
1™ converge in L2 to I and I respectively (and will also be true for any sequence
of approximations of / and I that satisfies this property). The L? convergence is
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true in our case because 1 is the orthogonal projection of I on the space W, of L>
functions that are constant on each set I',(z), z € G,. This implies that I converges
in L? to the projection of I on We, = |,-.; W, (see Proposition A.11), but one has
Wao = L?, because any function J orthogonal to this space would have its integral
vanish on any dyadic cube, which is only possible for J = 0.

Note that, with this approximation, one can write

H® oo™ =113 =Y 1@ (@) + Y 1)
2€G, 2€G,

—2 Y 1@I@)eTh@) N LE),

2,2/€Gy

where |A| denotes the volume of A C R?. To make this expression computable, one
needs to approximate the sets (77,(z)), where the simplest approximation is to take
the polyhedron formed by the image of the vertices of I;,(z) by ¢ (which will retain
the same topology as the original cube is n is large enough). The verification that
this approximation is valid (in the sense of Proposition 10.16) is left to the reader.

However, even with this approximation, the numerical problem is still highly
computational, since it becomes a point set problem over G,, which is typically
a huge set. Most current implementations use a simpler scheme, in which 7™ is
interpolated between the values (/(z),z € G,), who are therefore assumed to be
well defined, and the cost function is simply approximated by

U™ () =Y (e () — 1)L

2€G,

Here again, we leave to the reader to check that this provides a valid approximation
in the sense of Proposition 10.16 as soon as, say, I and I are continuous and one
uses a linear interpolation scheme, as described below.

Using this approximation (for a fixed n that we will remove from the notation),
we now work the implementation in more detail, starting with the computation of
the gradient in (10.45). Assume that time is discretized at ty = kh for h = 1/Q and
that v (-) = v(#, -) is discretized over a regular grid G.

It will be convenient to introduce the momentum and express vy in the form

u () =Y Ky, D). (10.50)
7€G

We can consider (px(z), z € G) as new control variables, noting that (10.45) directly
provides the gradient of the energy in V*, namely

(VY E)t,y) =2p(t) — 2det(dy;))U o p;y — Io w1V o wy)dx.
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From this expression, we see that we can interpret the family (p(z),z € G) as
discretizing a measure, namely

Pk = Z oe(2)0,.
z€G

Given this, the gradient in V* can be discretized as

& (2) = 2pi(2) — 2det(de) ()T 0 @} (z) — T 0} 1 (2))V I 0 o} (2))0:

which can be used to update py (z).

The last requirement in order to obtain a fully discrete procedure is to select
interpolation schemes for the computation of the diffeomorphisms " and for the
compositions of / and I’ with them. Interpolation algorithms (linear, or cubic, for
example) are standard procedures that are included in many software packages [234].
In mathematical representation, they are linear operators that take a discrete signal f
onagridG (ie., f € Rg) and return a function, that we will denote by R f, defined
everywhere. By linearity, we must have

(RHG) =Y r:(0)fR)
z€G

for some “interpolants” r,(-), z € G. In the approximation of the data attachment
term, one can then replace I by R(I,), the interpolation of the restriction of / to G.

Linear interpolation, for example, corresponds, in one dimension, to r,(x) =
1 —2"z — x| if |z — x| < 27" and O otherwise. In dimension d, one takes

d
re(0) = [ = 2"z — xiD)

i=1

if max;(Jz; — x;]) <27 and O otherwise (where z = (z1,...,2¢) and x =

(X1, ..., Xq)).
Given an interpolation operator R, one can replace, say, I o ¢;,0(z) in the expres-
sion of the gradient by

(RI(40(2) = Y r2(pro@) 1 (2).
7’eg

For computational purposes, it is also convenient to replace the definition of vy in
(10.50) by an interpolated form

v(x) =Y r(x) Y Kz (@) (10.51)
[4% ieG
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because the inner sum can be computed very efficiently using Fourier transforms
(see the next section).
To complete the discretization, introduce

i = (id — hvy) o -+ o (id — hvg_y),

where an empty product of compositions is equal to the identity, so that 1y is an
approximation of ¢, ;. Define the cost function, which is explicitly computable as a
function of py, ..., po-1:

0-1
E =YY K@ m@)+ Y (RDEog) — 1(2).

k=0 z,z/€G 434

If we make a variation p — p + €6p, then v — v 4 edv with (using the interpolated
expression of v)

Sue(y) =Y r:(») Y Kz 2)op(@)
z€G 7eG

and letting dvy, = O, we have, by direct computation

k—1

O = —h Z dig 0 Ygk 0V 0 Ygpik.

q=l
Using this, we can compute the variation of the E, yielding

0-1
(0-E | 6p) = ZZ Z K(z,2) pi(@) 5pi(2)
k=0 z,7/,€G
0-1 N
—2h Z Z K(z,2) r:($is1 () (RD oo () — 1(¥))

k=0 z,7/,yeG
V(R oo () (dbor 0 Y o (v) pi(2))

This provides the expression of the gradient of the discretized E in V*, namely

(VY E()i(2) = 2p(2)
=21 Y (W1 0 DR (W0 () = T(E@NV(RI 0 o) (W (2)).-

7’eG
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10.7.2 Kernel-Related Numerics

Most of the previously discussed methods included repeated computations of linear
combination of the kernel. A basic such step is to compute, given points yy, ..., Yy,
X1, ..., xy and vectors (or scalars) aq, ..., ay, the sums

N
ZK(yjaxk)Oék, j=1,...,M.
k=1

Such sums are involved when deriving velocities from momenta, for example, or
when evaluating dual RKHS norms in curve or surface matching.

Computing these sums explicitly requires N M evaluations of the kernel (and this
probably several times per iteration of an optimization algorithm). When N or M are
reasonably small (say, less than 1,000), such a direct evaluation is not a problem. But
for large-scale methods, such as triangulated surface matching, where the surface
may have tens of thousands of nodes, or image matching, where a three-dimensional
grid typically has millions of nodes, this becomes unfeasible (the feasibility limit
has however been pushed further by recent efficient implementations on GPUs [59,
157, 247)).

If x =y is supported by a regular grid G, and K is translation invariant,
ie.,, K(x,y) =TI (x —y), then, letting x; = hk where k is a multi-index (k =
(k1, ..., kq)) and h the discretization step, we see that

Z TChk — D)oy

keg

is a convolution that can be implemented with O (N log N) operations, using fast
Fourier transforms (with N = |G|). The same conclusion holds if K takes the form
K(x,y) = Ax)TI'(x — y)A(y) for some matrix A (which can be used to censor
the kernel at the boundary of a domain), since the resulting operation is

A" (Z I (h(k — l))(A(xz)Oéz)) :

keg

which can still be implemented in O (N log N) operations.

The situation is less favorable when x and y are not regularly spaced. In such
cases, feasibility must come with some approximation.

Still assuming a translation-invariant kernel K (x, y) = I"(x — y), we can asso-
ciate to a grid G in R? the interpolated kernel

Kg(x,y) = Y r()(h(z = 2)ra(y),

Jj.j'€g
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where the r,’s are interpolants adapted to the grid. This approximation provides a
non-negative kernel, with null space equal to the space of functions with vanishing
interpolation on G. With such a kernel, we have

N N
D KOG xa =Y r(y)) Y Tz —2)) ) ra(x)ou.

k=1 z€G 7eg k=1

The computation of this expression therefore requires using the following sequence
of operations:

1. Compute, for all 7’ € G, the quantity

N

ay = Z”z/(xk)ak-

k=1

Because, for each x;, only a fixed number of r,(x;) are non-vanishing, this
requires an O (N) number of operations.
2. Compute, forall z € G,
b.=Y I'(h(z—2)ay,
7eG

which is a convolution requiring O (|G| log |G|) operations.
3. Compute, for all j =1, ..., M, the interpolation

> r(ypb:,

zeG

which requires O (M) operations.

So the resulting cost is O(M + N + |G| log|G|), which must be compared to the
original O (M N), the comparison being favorable essentially when M N is larger
than the number of nodes in the grid, |G|. This formulation (which has been proposed
in [156]) has the advantage that the resulting algorithm is quite simple, and that the
resulting K¢ remains a non-negative kernel, which is important.

Another class of methods, called “fast multipole”, computes sums such as

N
D Ky, xoau

k=1

by taking advantage of the fact that K (y, x) varies slowly as x varies in a region
which is far away from y. By grouping the x;’s in clusters, assigning centers to
these clusters and approximating the kernel using asymptotic expansions valid at
a large enough distance from the clusters, fast multipole methods can organize the
computation of the sums with a resulting cost of order M + N when M sums over
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N terms are computed. Even if it is smaller than a constant times (M + N), the
total number of operations increases (via the size of the constant) with the required
accuracy. The interested reader may refer to [30, 140] for more details.

Another important operation involving the kernel is the inversion of the system
of equations (say, with a scalar kernel)

N
ZK(xk,xl)Ozl:uk, k=1,...,N. (10.52)
k=1

This is the spline interpolation problem, but it is also part of several of the algorithms
that we have discussed, including for example the projection steps that have been
introduced to obtain a gradient in the correct metric.

Such a problem is governed by an uncertainty principle [258] between accuracy
of the approximation, which is given by the distance between a smooth function
x — u(x) and its interpolation

N
x> Y K(x,x)a,
k=1

where «a, ..., ay are given by (10.52) with u; = u(x;), and the stability of the
system (10.52) measured by the condition number (the ratio of the largest to the
smallest eigenvalue) of the matrix S(x) = (K (x;, x;),i,j =1,..., N), evaluated
as a function of the smallest distance between two distinct x;’s (S(x) is singular if
two x;’s coincide).

When K (x, y) = I'(x — y), the trade-off is measured by how fast £ — r (&) (the
Fourier transform of I") decreases at infinity. One extreme is given by the Gaussian
kernel, for which I decreases like e/, which is highly accurate and highly unsta-
ble. On the other side of the range are Laplacian kernels, which decrease polynomially
in the Fourier domain. In this dilemma, one possible rule is to prefer accuracy for
small values of N, therefore using a kernel like the Gaussian, and go for stability for
large-scale problems (using a Laplacian kernel with high enough degree).

For the numerical inversion of system (10.52), iterative methods, such as conjugate
gradient, should be used (especially for large N). Methods using preconditioned
conjugate gradient have been introduced, for example, in [105, 141] and the interested
reader may refer to these references for more details.



Chapter 11 ®)
Distances and Group Actions oo

11.1 General Principles

In this chapter we discuss metric comparisons between deformable objects and their
relation to the registration methods that we have studied in the previous chapters.
We start with a general discussion on the interplay between distances on a set and
transformation groups acting on it.

11.1.1 Distance Induced by a Group Action

Transformation groups acting on sets can help in defining or altering distances on
these sets. We will first give a generic construction, based on a least action principle.
We will then develop the related differential point of view, when a Lie group acts on
a manifold.

A distance on a set M is a mapping d : M? > [0, +00) such that: for all
m,m',m" e M,

DI. dm,m)=0&m=m,
D2. dm.m') =dm’', m),
D3. dm,m") <dm,m’)+dm’,m").

If D1 is not satisfied, but only the fact that d(m, m) = 0O for all m, one says (still
assuming D2 and D3) that d is a pseudo-distance.

If G is a group acting on M, we will say that a distance d on M is G-equivariant if
and only if forall g € G,forallm,m’ € M,d(g-m, g-m') = d(m, m’). A mapping
d : M? — R, is a G-invariant distance if and only if it is a pseudo-distance such
that d(m, m') =0 < 3g € G, g-m = m'. This is equivalent to stating that d is a
distance on the coset space M /G, composed of cosets, or orbits,
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[m]={g-m,ge G},

with the identification d([m], [m']) = d(m, m’). The next proposition shows how a
G-equivariant distance can induce a G-invariant pseudo-distance.

Proposition 11.1 Let d be equivariant under the left action of G on M. The function
d, defined by _
d([m],[m']) = inf{d(g-m,g"-m") : g, g' € G}

is a pseudo-distance on M/ G.
If, in addition, the orbits [m] are closed subsets of M (in the topology associated
tod), then d is a distance.

Note that, because d is G-equivariant, d in the previous proposition is also given by
d(Im]. [m']) = inf{d(g-m,m") : g € G}.

Proof The symmetry of d is obvious, as is the fact that d ((m], [m]) = 0 for all m.
For the triangle inequality, D3, it suffices to show that, for all gy, g1, g5, ¢/ € G, there
exists ¢, g5 € G such that

d(gy-m,gy-m") <d(gr-m,g;-m')+d(gy-m', g -m"). (11.1)

Indeed, if this is true, the minimum of the right-hand term in gy, g}, 5. g7, which
isd([m], [m']) + d([m'], [m"]), is larger than the minimum of the left-hand term in
92, g3, which is d([m], [m"]).

Toprove (11.1),writed(g, - m’, g| - m") = d(g} - m', g|(g;)"'g] - m"),take g» =
g1 and g5 = g;(g5)~'g{; (11.1) is then a consequence of the triangle inequality for
d.

We now make the additional assumption that the orbits are closed and prove that
D1 is true. Take m, m’ € M such thatd([m], [m']) = 0. This implies that there exists
a sequence (g,, n > 0) in G such that d(g, - m, m’) — 0 when n — 00, so that m’
belongs to the closure of the orbit of m. Since the latter is assumed to be closed, this
yields m’ € [m], which is equivalent to [m] = [m']. O

The same statement can clearly be made with G acting on the right on m, writing
m — m - g. We state it without proof.

Proposition 11.2 Let d be equivariant under the right action of G on M. The func-
tion d, defined by

d([m), [m']) = inf{d(m - g,m’ - ¢) : g, ¢ € G}

is a pseudo-distance on G\M.
If, in addition, the orbits [m] are closed subsets of M (in the topology associated
tod), then d is a distance.

Here G\ M denotes the coset space for the right action of G.
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11.1.2 Distance Altered by a Group Action

In this section, G is still a group acting on the left on M, but we consider the product
space M = G x M and project on M a distance defined on M. The result of this
analysis will be to allow a distance on M to incorporate a component that accounts
for possible group transformations partially accounting for the difference between
the compared objects.

The left action of G on M induces a right action of G on M, defined, for k € G,
z = (h,m) e M, by

z k= (hk,k™" - m).

For z = (h, m) € M, we define the projection 7(z) = & - m, taking values in
M. This projection is constant on the orbits z - G for a given z, i.e., for all k € G,
m(z - k) = 7(2).

Let d ¢ be a distance on M. We let, form, m’ € M

dm,m") = inf{dp(z,7) : 2,2 e M, 7w(z) = m, 7(z) = m'}. (11.2)

We have the following proposition:

Proposition 11.3 If d s, is equivariant by the right action of G, then, the function
d defined by (11.2) is a pseudo-distance on M.

If, in addition, the orbits [z] = {z - k, k € G} are closed in M in the topology
associated to d 4, then d is a distance.

This is in fact a corollary of Proposition 11.2. One only has to observe that
the quotient space G\ M can be identified with M via the projection 7, and
that the distance in (11.2) then becomes the projection distance introduced in
Proposition 11.2.

11.1.3 Transitive Action

Induced Distance

In this section, we assume that G is a group that acts transitively on M. The action
being transitive means that for any m, m’ in M, there exists an element z € G such
thatm’ = z - m.

We fix a reference element m in M, and define the group G by

G =150,,(9) = {z € G,z-mo =my}.
This group is the isotropy group, or stabilizer, of my in O. We show that G can

be identified with M := G x M, which will allow us to define a distance in M by
projecting a distance on G as in Sect. 11.1.2.
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Assume that a function p : M — G has been defined, such that for all m € M,
m = p(m) - my. This is possible, because the action is transitive (using the axiom of
choice). Define

v: GxM-—>G
(h,m) +— p(h-m)h.

¥ is a bijection: if z € G, we can compute a unique (&, m) such that z = ¥ (h, m);
this (h, m) must satisfy

z-my=pth-m)h-my=pth-m)-my=nh-m,

which implies that p(h - m) = p(z - mo) and therefore h = p(z - mgo) 'z, which is
uniquely specified; but this also specifies m = h~!z - mq. This proves that ¥ is one-
to-one and onto and provides the identification we were looking for.
The right action of G on M, which is (h, m) - k = (hk, k~!.m), translates to G
via ¥ with
W ((h,m) - k) = p(hkk™" - m)hk = ¥ (h,m) - k

so that the right actions (of G on M and of G on G) “commute” with ¥ . Finally, the
constraint 7(k, m;) = m in Proposition 11.3 becomes z - my = m via the identifica-
tion. All this provides a new version of Proposition 11.3 for transitive actions, given
by:

Corollary 11.4 Let dg be a distance on G which is equivariant under the right action
of the isotropy group of mg € M. Define, for allm, m’ € M,

dm,m") =inf{dg(z,7') : z-mo=m, 7 -my=m'}. (11.3)

Then d is a pseudo-distance on M.

Note that, if dg is right equivariant under the action of Iso,,, (G), the distance
dg(z.2) = dg(z™". ()™

is left equivariant, which yields the symmetric version of the previous corollary.

Corollary 11.5 Let dg be a distance on G which is equivariant under the left action
of the isotropy group of mg € M. Define, for allm, m’ € M,

dm,m") =inf{dg(z,7') : z-m =myg, 7 -m' = my}. (11.4)

Then d is a pseudo-distance on M.

From Propositions 11.1 and 11.2, d in Corollaries 11.4 and 11.5 is a distance as
soon as the orbits ¢ - Iso,,, (G) (assuming, for example, a left action) are closed for
dg. If the left translations & — g - h are continuous, this is true as soon as Iso,, (G)
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is closed. This last property is itself true as soon as the action g — ¢ - m is contin-
uous, from G to M, given some topology on M.

Finally, if dg is left- or right-invariant under the action of the whole group, G, on
itself, then the distances in (11.3) and (11.4) both reduce to

dm,m") = inf{dg(id,z) : z-m =m'}.

Indeed, assume right invariance (the left-invariant case is similar): then, if z - my =
mandz -mo=m', thenz’z7! - m = m’ and dg(id, Zz77h = dg(z, 7'). Conversely,
assume that ¢ - m = m’. Since the action is transitive, we know that there exists a
z such that z - mg = m, in which case (z - my = m’ and dg(id, ¢) = dg(z, (z). We
summarize this in the following, in which we take G = G:

Corollary 11.6 Assume that G acts transitively on M. Let dg be a distance on G
that is left or right equivariant. Define, for allm, m’ € M,

d(m,m') =inf{dg(@id, g) : g -m =m'}. (11.5)
Then d is a pseudo-distance on M.

Effort Functionals

As formalized in [135], one can build a distance on M on which a group acts tran-
sitively using the notion of effort functionals. The definition we give here is slightly
more general than in [135], to take into account a possible influence of the deformed
object on the effort. We also make a connection with the previous, distance based,
formulations.

We let G be a group acting transitively on M. Assume that a cost I"(z, m) is
assigned to a transformation m — z -m. If m and m’ are two objects, we define
d(m, m") as the minimal cost (effort) required to transform m to m’, i.e.,

dim,m") =inf{I"'(z,m) :z€G,z-m=m'}. (11.6)

The proof of the following proposition is almost obvious.
Proposition 11.7 If I" satisfies:

Cl. I'(z,m)=0<% z=idg,
C2. I'zym)=T("'z-m),
C3. I'(zz,m)<TI(z,m)+ I (Z,m),

then d defined by (11.6) is a pseudo-distance on M.

In fact, this is equivalent to the construction of Corollary 11.5. To see this, let
G be the isotropy group of mg for the action of G on M. We have the following
proposition.
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Proposition 11.8 If I" satisfies C1, C2 and C3, then, for all mg € M, the function
dg defined by
dg(z.2) = '@z 2 mo) (117

is a distance on G which is equivariant under the right action of G. Conversely, given
such a distance dg, one builds an effort functional I" satisfying C1, C2, C3 letting

T(h,m)=dg(z, h-z)

where 7 is any element of G with the property 7 - m = my.

The proof of this proposition is straightforward and left to the reader.

11.1.4 The Riemannian Viewpoint

The previous sections have demonstrated the usefulness of building distances on a
space M that are equivariant to the actions of a group G. Probably the easiest way to
construct such a distance (at least when M is a differential manifold and G is a Lie
group) is to design a right-invariant Riemannian metric on M and use the associated
geodesic distance. (See Appendix B.)

Recall that a Riemannian metric on M requires, for all z € M, an inner product
<' , -)Z on the tangent space, T, M, to M at z, which depends smoothly on z. With
such a metric, one defines the energy of a differentiable path z(-) in M by

1
E(z(-) =/ 10:2112, dt. (11.8)
0
The associated Riemannian distance on M is

dam(zo, 21) = inf{y/ E(z(-)) : 2(0) = 20, 2(1) = z1}. (11.9)

To obtain a right-invariant distance, it suffices to ensure that the metric has this
property. For & € G, let R, denote the right action of # on M: R, : z +— z - h. Let
dRy(z) : T,M — T,;, M be its differential at z € M. The right invariance of the
metric is expressed by the identity, true forall z € M, A € T, M and h € G,

IAll; = ldRy(2) - All.p, - (11.10)

When M = G x M, condition (11.10) implies that it suffices to define < , -)Z at
elements z € M of the form z = (id, m) with m € M. The metric at a generic point
(h, m) can then be computed, by right invariance, from the metric at (k, m) - hl =
(id, =" - m). Because the metric at (id, m) can be interpreted as a way to attribute a
costto adeformation (id, 4(¢) - m) with 2(0) = id and small ¢, defining it corresponds
to an analysis of the cost of an infinitesimal perturbation of m by elements of G.
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Of course, an identical construction could be made with left actions and left-
invariant distances.

11.2 Invariant Distances Between Point Sets

11.2.1 Introduction

The purpose of this section is to present the construction provided by Kendall [166]
on distances between landmarks, taking the infinitesimal point of view that we have
just outlined. Here, configurations of landmarks are considered up to similitude
(translation, rotation, scaling). Since its introduction, this space has led to a rich
literature that specially focuses on statistical data analysis on landmark data. The
reader interested in further developments can refer to [91, 167, 266] and to the
references therein.

‘We only consider the two-dimensional case, which is also the simplest. For a fixed
integer N > 0 let Py denote the set of configurations of N points (zV, ..., z™) e
(R*)N such that z@ % zU) for i # j. We assume that the order in which the points
are listed matters, which means that we consider labeled landmarks. The set Py can
therefore be identified with an open subset of R?".

Two configurations (z(V, ..., z™) and D, ..., z™) will be identified if one
can be deduced from the other by the composition, say g, of a translation and a
plane similitude, i.e., Z® = g-z® for k = 1,..., N. The objects of interest are
therefore equivalence classes of landmark configurations, which will be referred to
as N-shapes.

It will be convenient to identify the plane R? with the set of complex numbers C,
apoint z = (x, y) being represented as x + iy. A plane similitude composed with a
translation can then be written in the form z — az + b witha, b € C,a # 0.

For Z = (zV, ..., z"™) € Py, we let ¢(Z) be the center of inertia

c(Z2) ="+ +zM/N.

N
Wealsolet [|Z])* = Y 1z% — ¢(2)%.
k=1

11.2.2 The Space of Planar N-Shapes

Construction of a Distance

Let X'y be the quotient space of Py by the equivalence relation: Z ~ Z' if there
exista, b € C such that Z’' = aZ + b. We denote by [Z] the equivalence class of Z
for this relation. We want to define a distance between two equivalence classes [Z]
and [Z'].
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Following Sect. 11.1.4, we define a Riemannian metric on Py which is invariant

under the action. We therefore must define, for all Z € Py, a norm || A||z over all
A=(ay,...,ay) € CN suchthat foralla, b € C:

IAllz = lla - Allaz4s »

and it suffices to define such a norm for Z such that ||Z| = 1 and ¢(Z) = 0, since
we have, for all Z,

. 11.11
i H 121 20 (b
Once the metric has been chosen, the distance D(W, Y) is defined by
1
D(W,Y)* = inf/ 10, Z1I5, dt. (11.12)
0

the infimum being taken over all paths Z(-) such that Z(0) = W and Z(1) =Y.
When ¢(Z) =0 and | Z| = 1, we take

1Al = Zla"‘)l

From (11.11) and (11.12), computing D(W, Y) requires us to minimize, among all
paths between W and Y,

! PN VACIE
SN N1Z0@) = e(Z(0)?

Let Z(t) = c(Z(1)), v (1) = (Z® (1) — C(Z(1)))/I1Z(1)|| and p(r) = | Z(z)|. The
path Z(-) is uniquely characterized by (v(-), p(-), z(-)). Moreover, we have

0,Z% = 0,7 + pdv + vd,p

so that we need to minimize

[x]%

k=1

9z 31/’ (k>+5v<k>

This is equal (using Y, v® =0and )", [v®|> = 1, together with the differentials
of these expressions) to
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1 0.7 2 1 3,0 2 1 N )
[ [ @ [Fwta o
0o \ P 0o \p 0 k=1

The end-point conditions are directly deduced from those initially given in terms of
WandY.

The last term in (11.13), which only depends on v, can be minimized explic-
itly, under the constraints Y, v® =0 and Y, [v®|?> = 1, which imply that v
varies on a (2N — 3)-dimensional real sphere. The geodesic distance is therefore
given by the length of great circles, which yields the expression of the minimum:
arccos(v(0)*v(1))2, where the “x” exponent refers to the conjugate transpose.

Using this, we have

1 =\ 2 1 2
D(W,Y)? = inf <N/ <%) +f (@> dt) (11.14)
0 P 0 P
((W—c(W))*(Y—c(Y)))2
-+ arccos s
W 1Yl

where the first infimum is over functions ¢ — (z(¢), p(t)) € C x [0, 400, such that

2(0) = c(W), z(1) = c(Y), p(0) = W], p(1) = [IY].
The induced distance on Xy is then given by

d([Y], [W]) =inf{D(Y,aW + b),a, b € C}.
Writing @ = A with A = |a| > O and |h| = 1. Then

aW +b —c@aW +b) _ W —c(W)
laW + b|| Wl

Moreover, given h, we can take A = ||[Y||/||W] and b = c(Y) — Ahc(W) so that
Y] = |laW + b|| and c(Y) = c(aW + b), for which the infimum in the right-hand
side of (11.14) is zero. We therefore have

| W e\ (¥ =)
d(tY], (W = h:\II11|i;1 (arccos (( W ) ( gl ))) .

Finally, optimizing this over the unit vector &, we get

(W—c(W)) (Y-mq)‘. (1L15)
Wl I

Denote by S*¥=3 the set of v = (vy, ..., vy—1) € CN~! such that 3, |v;|* = 1
(this can be identified with a real sphere of dimension 2N — 3). The complex pro-
jective space, denoted CPV~2, is defined as the space S~ quotiented by the

d([Y], [W]) = arccos
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equivalence relation: v R v’ if and only if 3v € C such that v = vv; in other words,
CPN-2 contains all sets

Slv={w,veC, |vl=1}

when v varies in 2?73, This set has the structure of an (N — 2)-dimensional com-
plex manifold, which means that it can be covered with an atlas of open sets that are
in bijection with open subsets of C¥~2 (with analytic changes of coordinates). Such
an atlas is provided, for example, by the family (O, W), k =1, ..., N, where Oy
is the setof all S' - v € CPV~2 with v® =£ 0, and

(ST v) = P u®, L o & D p® yEED 0y NV Ry e eN2

for all S'-v € O;. In fact, Xy is also an analytic complex manifold that can be
identified with CPN~2,

Let us be more explicit with this identification [166]. Associate to Z = (zV, ...,
zM) the family (¢, ..., (V=) defined by

(O = k™D = @V o+ 2O VR

One can verify that 30" |¢®|2 = ||Z||? (similar decompositions are used, for
example, for the analysis of large-dimensional systems of particles [305]). Denote by
F(Z) the element S' - (¢/||Z||) in CPY~2. One can check that F(Z) only depends
on [Z] and that [Z] + F(Z) is an isometry between Xy and CPN-2,

The Space of Triangles

This construction, applied to the case N = 3 (which corresponds to triangles with
labeled vertices), yields a quite interesting result. For a triangle Z = (z(V, z®, z®),
the previous function F'(Z) can be written

Z(Z)iz(l) 22(3),Z(1)7Z(2)
N NG

VIz® —z012/2 +12:0) — z(D — ;@12/6

=S [ v?].

F(Z)=S".

On the set vV £ 0 (i.e., the set 7 # 7)) we have the local chart

1 /20 — ;@ _
@Dy - (= > °
Z— v9 Y = ﬁ( e e C.

If we let v® /v = tan gei'*’, and M(Z) = (sinf cos ¢, sin @ sin 1, cos §) € R,
we obtain a correspondence between the triangles and the unit sphere S2.
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This correspondence is isometric: the distance between two triangles [Z] and (2],
which has been defined above by
Y2 @)

d(Z], [Z]) = arccos =
IZI1Z]]

gives, after passing to coordinates € and ¢, exactly the length of the great circle
between the images M (Z) and M (Z ). We therefore obtain a representation of labeled
triangular shapes as points on the sphere S2, with the possibility of comparing them
using the standard metric on S2.

11.3 Parametrization-Invariant Distances Between Plane
Curves

We now describe distances between two-dimensional shapes when they are defined
as plane curves modulo changes of parameter. Such distances have been the subject
of extensive and detailed mathematical studies, [193, 201], but here we only give an
overview of the main ideas and results.

Simple parametrization-free distances can be defined directly from the ranges of
the curves. For example, it is possible to use standard norms applied to arc-length
parametrizations of the curves, like L” or Sobolev norms of the difference. With
simple closed curves, one can measure the area of the symmetric difference between
the interiors of the curves. A more advanced notion, the Hausdorff distance, is defined
by

d(m,m) =inf {e¢ > 0,m C m® and m C m°},

where m°® is the set of points at a distance less than & from m (and similarly for m°).
The same distance can be used with the interiors for simple closed curves. In fact,
the Hausdorff distance is a distance between closed sets as stated in the following
proposition.

Proposition 11.9 Fore > 0 and a subset A of R?, let A® be the set of points x € R¢
such that there exists an a € A with |a — x| < e. Let

dy(A,B) =inf{e >0: A C B and B C A®}.

Then dy is a distance on the set of closed subsets of RY.

Proof Symmetry is obvious, and we leave to the reader the proof of the triangular
inequality, which is a direct consequence of the fact that (A%)° C A+,

Assume that dy (A, B) = 0. Then A C B¢ for all € > 0. But ﬂg B¢ = B, the
closure of B. We therefore have

dy(A,B)=0= A C Band B C A,

which implies that A = B if both sets are closed.
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One can also proceed similarly to Sect. 11.1.1. First define equivariant distances
over parametrized curves, then optimize them with respect to changes of parameters.
Let C be a set of parametrized curves, defined as functions m : [0, 1] > R2, subject
to additional properties (such as smoothness, closedness, etc.), and G a group of
changes of parameter over [0, 1] (including changes of offset for closed curves).
Consider the quotient space S = C/G for the action ¢ - m = m o ™!, which are
curves modulo change of parameter (one may also want to quotient out rotation,
scaling). Based on our discussion in Sect.11.1.1, a pseudo-distance on S can be
defined from a distance on C that is equivariant by changes of parameter.

L? norms between parametrized curves are not equivariant, unless p = oo, with

doo(m, m) = sup [m(u) — m(u)|.

The distance obtained after reduction by diffeomorphism is called the Fréchet dis-
tance, defined by
drp(m,m) = inf do(m o ©, m).
¢

We note that if, for some diffeomorphism ¢, do(m o @, m) < ¢, then m C m* and
m C m®. So we get the relation

e>drp(m,m) = e >dy(m,m),

whichimplies dy < dp. This and Proposition 11.9 prove that dr is a distance between
curves.

We now consider equivariant distances on C based on Riemannian metrics
derived from invariant norms on the tangent space. We only give an informal dis-
cussion, ignoring the complications that arise from the infinite dimension of the
space of curves (see [199, 200] for a rigorous presentation). Tangent vectors to
C are derivatives of paths in C, which are time-dependent parametrized curves
t — m(t, -). Tangent vectors therefore take the form v = 9,m(t, -), which are func-
tions v : [0, 1] — R2. Since a change of parameter in a time-dependent curve induces
the same change of parameter on the time derivative, a norm on the tangent space to
C is equivariant under the action of changes of parameter, if, for any m, v, ¢,

v 0 @ llmop-t = [0]lm- (11.16)

It is therefore sufficient to define ||v||,, for curves parametrized by arc length, since
(11.16) then defines the metric for any parametrized curve.

‘We now want to define tangent vectors to “plane curves modulo change of param-
eters.” We know that we can modify the tangential component of the time derivative
of a time-dependent parametrized curve t — m(¢, -) without changing the geometry
of the evolving curve. It follows from this that tangent vectors to S at a curve m are
equivalent classes of vector fields along m that share the same normal component
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to m, and can therefore be identified with this normal component itself, i.e., a scalar
function along m. The induced metric on S is

lally = inf {[[v]l, : v N = a}.

The associated pseudo-distance on S is

1
d(m,rh)zzinf{/o ||8t,uTN||i(t)dt,,u(0,-):m,u(l,.):rh}. (11.17)

The fact that we only get a pseudo-distance in general is interestingly illustrated
by the following simple example. Define

L,
vl = / lv(s)|?ds. (11.18)
0

This is the L? norm in the arc-length parametrization. Then, as stated in the following
theorem, we have d(m, m) = 0.

Theorem 11.10 (Mumford-Michor) The distance defined in (11.17) with the norm
given by (11.18) vanishes between any smooth curves m and m.

A proof of this result can be found in [199, 200]. It relies on the observation that
one can grow thin protrusions (“teeth”) on the curve at a cost which is negligible
compared to the size of the tooth. It is an easy exercise to compute the geodesic length
of a path that starts with a horizontal segment and progressively grows an isosceles
triangle of width € and height ¢ (at time ¢) on the segment until # = 1. This length
is o(e) (in fact, O(e* In¢)). This implies that one can transform a curve into O(1/¢)
thin non-overlapping teeth at almost no cost. A repeated application of this concept
is the basic idea in the construction made in [200] to create almost-zero-length paths
between two arbitrary curves.

To prevent the distance from vanishing, one needs to penalize the curve length
more than (11.18) does. For example, the distance associated with the metric

L,
]2 = Lm/ lu(s)|2ds., (11.19)
0

introduced in [193, 259], does not give a degenerate distance on S. The resulting
distance is the area swept by the path relating the compared curves [259].

Another way to control degeneracy is to penalize high-curvature points, using for
example

Ly
vl :/0 (1 + aky()?)|v(s)|*ds. (11.20)
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This metric has been studied in [200], where it is shown (among other results) that
the distance between distinct curves is positive. Finally, one can add derivatives of
v (with respect to arc length) in the definition of the metric; this provides Sobolev
metrics [193, 201] that we have already described for curve evolution.

11.4 Invariant Metrics on Diffeomorphisms

We discuss here the construction of a right-invariant distance between diffeomor-
phisms. We will see, in particular, that it coincides with the direct construction made
in Chap.7.

Here also, we only make an informal (non-rigorous) discussion. We consider a
group G of diffeomorphisms of §2, and define (to fix our ideas) the tangent space to
G atp € Gbythesetofu : 2 — R suchthatid 4+t u o ¢~! € G for small enough
t. Since the group product on G is the composition, ) = ¢ o 1, the right translation
R, : Y+ 1 o pis linear, and therefore “equal” to its differential: for u € T, G,

dR,()u =uo .

A metric on G is right-invariant if, for all ¢, ¢ € G and for all u € T;,G,
lld R, ()ullpop = llully,
which yields, taking ¢ = ™!
leelly = w0 " [la.
This implies that the energy of a path (¢ — ©(¢, -)) in G must be defined by
! 2
E(p()) = / |G, o7, 0| dr.
0

If we let
u(t, x) = Qi) (t, o~ (1, x)),

the energy can be written
1
Ep) = [ vl ar
0

with the identity
Orp(t, x) = v(t, p(t, x)).
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This implies that ¢ is the flow associated to the velocity field v(¢, -). We therefore
retrieve the construction given in Chap. 7, with ||-|l;y = ||-|ly. Thus, V in Chap.7 has
a role similar to that of the tangent space to G at id here. Because of this, we let
V =TqG and ||-|l;y = |||y in the remaining discussion to homogenize the notation.

Assume that V is admissible, according to Definition 7.14. The right-invariant

distance on G is
1
d(¢o, 1) = inf,// lo(, I dt, (11.21)
0

where the minimum is taken over all v such that, for all x € £2, the solution of the
ordinary differential equation
aty = U(t ) y )

with initial conditions y(0) = ¢p(x) is such that y(1) = ¢;(x), consistently with
Sect.7.2.6.

We point out, however, that if G is, say, Diffé7 "°which has its own structure
of infinite-dimensional differential manifold, then V is a proper subspace of TigG,
resulting in a “sub-Riemannian” metric.

11.4.1 The Geodesic Equation

The geodesic equation on G is equivalent to the Euler-Lagrange equation associated
to the variational problem (11.21). This is similar to what we have computed in
Sect. 10.4, except that here we have a fixed end-point condition. One may address this
with a method called the Euler—Poincaré reduction [150, 188], and the presentation
we make here is related to it. The energy

1 1
Ew) =3 [ oolRar
0

is minimized over all v such that ¢f; = ¢ (without loss of generality, because the
distance is right invariant, we can assume that o = id).
Applying Theorem D.8 with

Hy(p. p) = (p lvogp) — g’nvn%

we obtain the fact that, if a trajectory is not “elusive,” there exists p € {0, 1} and a
co-state p(-) taking values in Cé’ (R?, RY)* such that

Op=voy
@ip |h)+(pldvoph)=0
pv =& p,
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where £, : v — v o . The first two equations do not depend on whether p = 0 or 1
(i.e., whether the geodesic is normal or abnormal), and are identical to the momentum
conservation equation (10.17) and EPDiff studied in the previous chapter. When
p = 1, the third equation describes v, and provides the same necessary conditions
for optimality as those found for the diffeomorphic problem in that chapter. Abnormal

solutions are such that {7 p = 0 along the trajectory.
Note that the solutions of “soft registration” problems, minimizing

1
/0 @I di + Ul

for a differentiable function U, always provides normal geodesics.

11.4.2 A Simple Example

An explicit computation of the geodesic distance is generally impossible, but here is
an exception, in one dimension. Take §2 = [0, 1] and

1
2 2
||M||id=/ |Oxul”dx.
0

Note that this norm is not admissible, because it cannot be used to control the supre-
mum norm of d,u. The associated energy of a path of diffeomorphisms (¢, -) is

1 1
U(<p(~))=/0 /0 10, (1 0 07" 0, )| dxat.

This gives, after expanding the derivative and making the change of variables x =
@l y):

1 1
UGp()) = / / 10,0, 0 B0l dyr.
0 0
Define g (t, y) = /Oy o(t, y). We have

1 1
Ulp()) =4 / / 0.l dyd,
0 0

which yields
1
UG =4 [ loga. R ar
0

If the problem were to minimize this energy under the constraints ¢ (0, -) = /0, (0, )
and ¢(1, -) = /Oy p(1, -), the solution ¢ would be given by the line segment

q(t,x) =tq(l,x)+ (1 —1)g(0, x).
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There is, however, an additional constraint that comes from the fact that ¢ (¢, -) must
provide a homeomorphism of [0, 1] for all #, which implies (¢, 1) = 1, or, in terms
of g

1
It = [ axrar=1.
0
We therefore need to minimize the length of the path g under the constraint that

it remains on a Hilbert (L?) sphere. Similar to the finite-dimensional case, geodesics
on Hilbert spheres are great circles. This implies that the optimal g is given by

1
q(t,-) = (sin(a(1 — 1))qo + sin(at)q1)
sin «

with a = arccos (qo , t]1)2~ The length of the geodesic is precisely given by «, which
provides a closed-form expression of the distance on G [231]

1
d(p, ) = Zarccos/ Orp Orpdx.
0

11.4.3 Gradient Descent

Assume that a function ¢ > U (i) is defined over diffeomorphisms. Take C! / and
€o small enough so that ¢ + €h is a diffeomorphism if |¢| < £¢, and assume that the
Géteaux derivative 0.U (¢ + h) exists at € = 0, denoting it, as in Sect.9.2, by

O.U(p + ch) = (dU(<p) ‘ h)
If a right-invariant metric is given, in the form
/ —1 / -1
(hoh), ={how ™ hop™),
as above, the gradient of U at ¢ is computed by identifying

(av)|h) = (VU n),
=(VU(p)op™" hoop™'),
= (L(VU@ oo™ |hop™),

where . = K~! is the duality operator on V. Since (with the notation of Sect.9.2)

(dU(@)‘h> OU) |hop™),
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we see that, using ng = KU s
=V
VU(p) =V U(p)oy

and the evolution equation introduced in (9.7) is nothing but a Riemannian gradient
descent for U for the considered metric.

11.4.4 Diffeomorphic Active Contours

As a new example of an application of this formalism, we provide a Riemannian
version of the active contours algorithm discussed in Sect.5.4. Let, for a curve m,

E(m) =/F(p)dam+/ F(x)dx. (11.22)
m 2,

m

We can, fixing a template curve m, define the functional
U(p) = E(p(mo)).

Letting m = p(my), a straightforward computation gives
(5U(gp) | v) = — f (kF—FTN + F)UTNdO'm,
from which we deduce
VU (p)(x) = —/(mF — F'N 4+ F)K (¢(x), -)Ndo,,.
This defines the continuous time gradient descent algorithm,

dyp(t, x) = (kF — FTN + F)K (¢(t, x), )Ndo

m(t)

with m(t) = @(¢, ) o my.
This algorithm also be expressed as an evolution equation in terms of m (¢) only,
yielding the diffeomorphic active contours evolution equation [21, 310]

om(t,u)y= | (kF — FTN 4+ F)K(m(t,u), YNdo,q). (11.23)
m(t)

A similar discussion can be made for surfaces instead of curves.
Examples of segmentations using this equation are provided in Fig. 11.1.
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150 O 150
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250 250
50 100 150 200 250 300 50 100 150 200 250 300

Fig. 11.1 Diffeomorphic active contours (compare with Fig.5.4). On each row, the left image is
the initial contour, and the right one is the solution obtained with diffeomorphic active contours.
The first row presents a clean image and the second a noisy one

11.5 Group Actions and Riemannian Submersion

11.5.1 Riemannian Submersion

We temporarily switch to general (but finite-dimensional) Lie groups before returning

to diffeomorphisms. Let G be a Lie group acting transitively (and smoothly) on a

manifold, M. Fixing a reference element my € M, Corollary 11.5 and Eq.(11.4)

show how a distance that is left-equivariant under the action of G = Iso,,,(G) can be

projected to a pseudo-distance on M. We now provide the infinitesimal version of this

result, which involves the notion of Riemannian submersion discussed in Sect. B.6.7.
Define, as done in Sect. 11.1.3,

T G- M

g g-mgp.
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This map is onto because the action is transitive and one can show [142] that it is a
submersion, i.e., that dmw(g) has full rank (the dimension of M) for g € G.

For this submersion, the fiber over m € M is the set 77 '(m) ={geG:g-
mo = m}. Fix g € 7~ (m). Another group element § belongs to 7~! (m) if and only
if 971§ € G, so that 7! (m) = ¢gG is a coset. Furthermore [142], the mapping

[7]: G/G—-> M
9] = 7(g9)

is an isomorphism.
Assume that G is equipped with a Riemannian metric that is right-invariant for
the action of G, so that, forany g € G, h € G and w € T,G,

lwlly = ldRp(@wllgn-

In other terms d R, (g) is an isometry between T,G and T, G (or Ry, is a Riemannian
isometry). Then one can build a Riemannian metric on M such that 7 is a Riemannian
submersion. Indeed, if g, g € 71 (m), then there exists an & € G such that g=
gh so that T;G = dR; T,G. Moreover, 7(g'h) = 7(¢’) for all ¢’ € G implies that
dm(gh)dRy,(g) = dm(g). This shows that V;, = dR;,(g)V,, where

V, = {w e T,G :dr(g)w = 0}

is the vertical space at g. Letting H, = Vgl be the horizontal space at g, this and the
fact that d R, (g) is an isometry implies that d R, (9)’H, = Hgyp, so that the restriction
of d R;,(g) to the horizontal space provides an isometry between these spaces. This
allows us to define, for any m € M and tangent vector £ € T, M:

[Ellm = llwllg

forany g € 7! (m), where w is uniquely defined by dm(g)w = £ and w € ‘H,,. Using
the minimizing property of the orthogonal projection, an equivalent definition is that

€1l = min {Jw]l, : w € T,G, dn(g)w = &} . (11.24)

This is the infinitesimal counterpart of Eq. 11.3.

Using the Lie group structure, this construction can also be analyzed solely on
the group’s Lie algebra, g = T;4G. Notice that, if 7(g) = m and g(¢) is a curve on G
such that g(0) = g and 9,§(0) = w, then, taking derivatives at t = 0,

dr(g)w = 9,(§(t) - mo) = 0,(G)g™ ") -m =v - m,

where v = dR -1 (g)w and v - m refers to the infinitesimal action (cf. Sect.B.5.3).
From this, we deduce that, letting
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Viw={veg:v-m=0},
one has V, = dR,(id)V,,. Moreover, we can rewrite (11.24) as
€1l = min {|dR,(id)v]ly: v €g,v-m=E}, (11.25)

for any g € 7~!(m), with g = T:¢G. The mapping v — ||dR,(id)v]|, provides a
Euclidean norm on g that does not depend on which g is chosen in 7! (m), therefore
only depending on m. Denoting this by || - ||, d R4(id) is, by construction, an isom-
etry from g to T,G that maps V,, onto V,, and therefore maps H,, onto H,, where
H,, is the space perpendicular to V,, with respect to the dot product associated with
Il - Il (which we shall denote by VmL'"). For ¢ € T,,M, there is therefore a unique
vector, v¢ € H,,, such that v¢ - m = € and (11.24) and (11.25) simply become

1€l = 10*[lia = min {[[v]lm : v € g.v-m =&} (11.26)

Under the stronger assumption that the metric on G is right-invariant, so that R,

is a Riemannian isometry for all & € G, we have ||dR,(id)v|| = ||v|;q forall g € G
and v € g, so that ||v]|,, = ||v]ljq for all m € M and one has:

€lm = min{[[v]liq : v-m =&} (11.27)

One also defines horizontal linear forms, or horizontal covectors, which are linear
forms z € T;,¢G* such that (z |[v) = Oforall v € V,,.

If ¢ € T,, M, we have defined v¢ as the vector in Ty G that minimizes ||v||;s among
all v such that v - m = ¢, i.e., the orthogonal projection on H,, of any vg such that

vg -m = &. This leads to the following definitions, in which we let v¢ = h,,(€).

Definition 11.11 Let§ be a Lie group acting transitively on a manifold M. If m € M
and & € T,, M, the horizontal lift of £ is the vector h,,(¢) € H,, = lem such that

If v € T,4G, we call 73, (v) the horizontal part of v at m and v — 7y, (V) its
vertical part at m, where 7y is the orthogonal projection for || - ||,,, so that

Th, (V) = (v - m). (11.28)

The projection on M of the Riemannian metric on G is defined by

(€. n), = (hn(© . hu(),. (11.29)

In the full right-invariant case, geodesics for the projected metric are immediately
deduced from those on G, as stated in the following proposition.

Proposition 11.12 Assume that the metric on G is right-invariant. Then the geodesic
on M starting at m in the direction & is deduced from horizontal geodesics on G by
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Exp,, (t§) = Expiy(thn (£)) - m. (11.30)

Proof This is a direct consequence of Proposition B.27. Let p*(t) = Exp,, (¢£) and
[i(t) be its horizontal lift starting at some g € 7! (m). Then fig~! is also a geodesic
on G and necessarily takes the form given in (11.30). ([l

11.5.2 The Momentum Representation

We now apply these general results to groups of diffeomorphisms. While our previous
discussion was limited to finite dimensions, some of the concepts introduced there can
be generalized to the infinite-dimensional case. As before, we let V be a Hilbert space
of vector fields continuously embedded in CJ (R¢, R?). To simplify the definition of
derivatives, we assume that the shape space M is an open subset of a Banach space Q,
and that the mapping A : ¢ > ¢ - m is differentiable from Diff) x M to Q. Note
that this imposes some restrictions on M and Q. For example, if M is the space
of C? embeddings from the unit circle to R?, then one needs ¢ < p for the action
@ -q = @ oq totake values in M, and g < p — 1 to ensure its differentiability.

We will consider the action of Diffy, the group of attainable diffeomorphisms
(Definition 7.15), on M. One of our basic assumptions in finite dimensions was
the transitivity of the action, which will not hold in general. We will however fix
a reference shape m, and define the space of attainable shapes as the orbit My =
Diffy - m of m through the action of Diffy. For m € My, we define

On={v-m:veV}cQoQ

and the norm
€1l = min{|lv]ly : § = v -m}

for& € Q.

Notice that the infinitesimal action v - m = 9;.A(id, m)v is a bounded linear map
from C(')’ (R?,R?) to Q, and so is its restriction to V for (V, || - ||,»), the Hilbert space
topology. This implies that the space

Veo={veV:iv-m=0}
is closed in V, and we still denote V- by H,,. In particular, we have

1€l = N0 1lv,

where v¢ = 7y (v), for any vector field v satisfying v - m = £. This implies that the
mapping v — v - m is an isometry between H,, and Q,,, which incidentally proves
that the latter is a Hilbert space. Given this, we can define the variational problem of
minimizing
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1
/0 1Om ()12, di

subject to m(0) = mo and m (1) = m;, my, m; € My and see that this problem is
equivalent to minimizing
1
f @Il dr
0

subjecttom(0) = 0,m(1) = m; and O;m = v - m. Itis also equivalent to minimizing
the same energy subject to the constraint ¢g, - mo = m;.

In finite dimensions, we showed that, if the acting group G is equipped with a
right-invariant Riemannian metric and M with the associated projected metric, then
solutions of this problem (which are geodesics in M) can be identified with geodesics
in G that start horizontally. So, fixing mo € M, the representation w +— Exp;y(w) -
mq provided a local chart of M around m( when defined over a neighborhood of 0
in Hy,.

With diffeomorphisms, we know that we can find elusive, abnormal and normal
geodesics, with only the latter associated with an equation that can be solved given
initial conditions (mg, w). We therefore restrict the “local chart” representation to
only those solutions, and express it in terms of co-tangent vectors instead of tangent
vectors, which is equivalent in theory, but, as we will see, is much more parsimonious
in practice.

As we have seen, this geodesic equation is characterized by momentum conser-

vation, namely
Lv (l) = Ad,yj(t)—l (LU (0))

with J,0 = v o ¢ and L is the duality operator of V. Given m € My, we define the
space of horizontal momenta at m simply by LH,, C V*.

Definition 11.13 Let D,, be the subset of ILH,, consisting of initial momenta for
which the conditions of Theorem 10.13 on the existence of solutions of the geodesic
equation hold. The momentum representation of a deformable template m is the map

Exp, : D,, — Diffy -m
p+— Exp; (Kp) -m (11.31)

which associates to a horizontal momentum p the position at time 1 of the geodesic
initialized at (m, (Kp) - m) in M.

In finite dimensions, we have proved that horizontality is preserved along
geodesics. We retrieve this fact directly in this infinite-dimensional case, as a conse-
quence of the conservation of momentum.

Proposition 11.14 Let m be a deformable object and py € Dy. Let (p(t), p(t))
be the evolving momentum and diffeomorphism provided by EPDIff initialized with
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p(0) = po. Let m(t) = @(t) - m be the evolution of the deformable object. Then, at
all times t, p(t) € LH,y, ).

Proof We will prove that if w € V,, and ¢ a diffeomorphism, then Ad,w € V...

Before proving this fact, we verify that it implies the proposition, which requires us
to check that (w € V,,)) = ((p(t) |w) = 0). From the conservation of momentum
we have

(p(0) |w) = (po | Adypi1w)
and Ad,)-1w € Vi if w € V), which implies that (p(f) |w) = 0.

We now prove our claim. Let ¢ (¢) be such that 0.4 (0) = w, and 0-(¢) - m)(0) = 0
at e = 0. By definition, Ad,w = 0.(p oy o ©~1)(0). But we have

O-(potpop™) (p-m)=dA, (¥ -m)d(y-m) =0,

which implies that Ad,w € V,,.,,. (Here, A, denotes the action A, : m +— ¢ - m.)[]

We now describe horizontal momenta in a few special cases. First assume that
deformable objects are point sets, so that

M={(x,....xy) € RON, x; # x; fori # j}

and Q = (RH)N.
Ifm = (x1,...,xy), we have
Ve={veV:ivix)=---=v(y) =0}.
Letting ey, . .., e4 be the canonical basis of R4, V,, is therefore defined as the set of

v’s such that (ejéxk |v) =0foral j=1,...,dandk=1,...N.So V,, = wt,
where W is the vector space generated by thed x N vector fields K (-, x;)e;. Because
W is finite-dimensional, it is closed and H,, = an = (W1)* = W. Switching to

momenta, we obtain the fact that, for point sets m = (xy, ..., xy)
N
]LHm = Izzkéxk,zl, ..., ZN € Rd} .
k=1

In particular, we see that the momentum representation is parametrized by the
Nd-dimensional set (z1, ..., zy) and therefore has the same dimension as the con-
sidered objects. Finally, we note that, in this finite-dimensional shape space, one has
My = M and || - ||, provides a Riemannian metric on this space.

The description of V,, is still valid when m is a general parametrized subset of
R m : u > m(u) = x, € R?, defined for u in a, so far, arbitrary set U. Then

Vo={veV:vkx,) =0,ueclU} (11.32)
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and we still have V,, = W+, where W is the vector space generated by the vector
fields K (-, x,)e;, j =1,...,d, u € U. The difference, now, is that W is not finite-
dimensional if m is infinite, and not necessarily a closed subspace of V, so that

H,=WHt=Ww,

the closure of W in V. Turning to the momenta, this says that

n
LH, = ZZk(SXukvnzanl’--wzneRdvul""’uﬂeU ’
k=1

where the closure is now in V*.

This argument applies to parametrized curves and surfaces, but must be adapted for
geometric objects, that is, curves and surfaces seen modulo a change of parametriza-
tion. In this case, deformable objects are equivalent classes of parametrized mani-
folds. One way to address this is to use infinite-dimensional local charts that describe
the equivalence classes in a neighborhood of a given object m. We will not detail this
rigorously here, but the interested reader can refer to [201] for such a construction
with plane curves.

Intuitively, however, the resulting description of V,, is clear. In contrast to the
parametrized case, for which vector fields in V,,, were not allowed to move any point
in m, it is now possible to do so, provided the motion happens within m, i.e., the
vector fields are tangent to m. This leads to the following set:

Vin = {v € V : v(x) is tangent to m for all x € m}.

Since v(x) being tangent to m is equivalent to N7 v(x) = 0 for all N normal to m
at x, we see that V,, = W+, where W is the vector space generated by vector fields
K (-, x)N, with x € m and N normal to m at x. Again, this implies that H,, = w
and that

n
LH, = E 2k, n >0, %1, ..., x, €M, 21, ...,2, € Nym ¢,
k=1

where N, m is the set of vectors that are normal to m at x.
Now, consider the example of smooth scalar functions (or images): m : R — R.
In this case, the action being ¢ - m = m o cp_l, the set V,, is

Va={veV:Vvm'v=0},

which directly implies that V,, = W+, where W is the vector space generated by
K (-, x)Vm(x) for x € R?. Horizontal momenta therefore span the set
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LH, = ZVm(xk)éxk,n >0,x1,...,x, € R4,
k=1

We conclude with the action of diffeomorphisms on measures, for which:
(p-m|f)=(m]|fop),
sothatv € V,, ifand only if (m |V fTv) = 0forall smooth f.So V,, = W*, where
W ={K(Vfm), feC (2 R)

so that

LH, ={Vfm, f € CY(2,R)}.

‘We point out that the horizontal spaces may be much larger than one would expect
by formally extending the case of point sets. For example, if V is a Gaussian RKHS
and m is a set with non-empty interior, then V,, = {0} in (11.32) and H,, = V! This
is because Gaussian RKHSs only contain analytic functions [207, 268]. For the same
reason, if m is a curve that contain a line segment, all vector fields in V,, must vanish
on the whole line containing the segment.

This behavior cannot happen when V is a space containing all compactly-
supported smooth functions, such as Sobolev spaces. In this case, if m is a closed
subset of R, then any smooth vector field with support in R? \ m must belong to
V., and any p € LH,, must therefore vanish on such functions, which shows that p
(as a generalized function) is supported by m.

However, even in such contexts, an explicit description of horizontal momenta is
generally beyond reach, and one generally restrict the momentum representation to
more “manageable” subsets of H,,, using, for example, measure momenta supported
by m, as considered in Sect. 10.5.6. As we have seen, such measure momenta cover
most of the cases of interest for diffeomorphic matching with a differentiable end-
point cost, even when using Gaussian kernels.

The momentum representation provides a diffeomorphic version of the deformable
template approach described for polygons in Sect.6.3. As we have seen, it can be
applied to a wide class of deformable objects. Applications to datasets of three-
dimensional medical images can be found in [143, 236, 290, 300].
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Metamorphosis e

12.1 Definitions

The Riemannian version of the construction of Sect. 11.1.2 provides a metric based
on transformations in which objects can change under the action of diffeomorphisms
but also under independent variations. We shall refer to such metrics as metamor-
phoses [152, 206, 281, 282]. They will result in formulations that enable both object
registration and metric comparison.

We start with an abstract description of the construction. We consider the setting
in which deformations belong to a Lie group G with Lie algebra denoted V, acting
on a Riemannian manifold M. We assume that V is a Hilbert space with norm ||-||y;
the metric on M at a given point a € M is denoted ( , -)a and the corresponding
norm |-|,.

For ¢ € G and a € M, define

A, M— M R,: G—->M R,: G—>G
b ¢-b, Y p-a, U = Y. (12.1)
The first two maps are the components of the action, and the third is the right trans-
lation on G. It will also be convenient, in the following, to have special notation for

derivatives of these maps evaluated at the identity, so we will write §, = d R (id),
&, = dR,(id). These maps coincide with the infinitesimal actions, i.e.,

v-p=¢uandv-a =&
and we will also use this notation.

If (p(2),t € [0, 1]) is a differentiable curve on G, we define its Eulerian velocity
v(t) (which is a curve in V') by the relation:

Orp = Epv(t) = v(1) - (1) . (12.2)
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374 12 Metamorphosis

Definition 12.1 A metamorphosis is a pair of curves (p(t), a(t)) respectively on
G and M, with ¢(0) = id. Its image is the curve a(¢) on M defined by a(t) =
(1) - a(t). We will say that ¢(¢) is the deformation part of the metamorphosis, and
that «(?) is the residual part. When «(t) is constant, the metamorphosis is a pure
deformation.

12.2 A New Metric on M

Metamorphoses, by the evolution of their images, provide a convenient representation
of combinations of group actions and of variations on M. Let a metamorphosis
((p(t), a(t)), t € [0, 1]) be given and a(t) = @(t) - a(¢t) be its image. Then, we can
write

Ora(t) = d Ay (1) 0rot) + d Raqr (p(1)) 0y p
= d Ay ()0 a(t) + dRaiy (9(1))d Ry (id) v (7).

Since R, o R, = R, we get
Ora(t) = dAym (a(t)0ra(t) + d Ry (id)v(2). (12.3)
In particular, when r = 0:
0;a(0) = 0,a(0) + v(0) - a(0). (12.4)
This expression provides a decomposition of a generic elementn € T, M in terms
of an infinitesimal metamorphosis, represented by an element of V x T, M. Indeed,

for a € M, introduce the map

W VxT,M— T,M
w,p—p+v-a.

Then (12.4) can be written as
8ra(0) = @ (8,0:(0), v(0)) .

We now introduce the Riemannian metric associated to metamorphoses.

Proposition 12.2 Assume that v +— v - a is continuous on V. With o2 > 0, the norm

. 1 a
Inll; = lnf{llvll%/ +t ol :n =@, p)} (12.5)
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defines a new Riemannian metric on M. (Note that we are using double bars instead
of single ones to distinguish between the new metric on M and the initial one.)

Proof Because @@ is onto (e.g., ¥ (0, p) = p), |7ll, is finite (and bounded by
11]a/0?). Define V, = (®@)~1(0). It is a linear subspace of V x T, M and ||5||? is
the norm of the linear projection of (0, ) on V,, for the Hilbert structureon V x T, M
defined by

1
2 2 2
(v, Plg. = lIvlly + s lpla -
Thus ||-|l, = ||7rx4, ©,n) H .1, is associated with an inner product. Since it is a
projection on a closed subspace (@ is continuous), the infimum is attained and by

definition, cannot vanish unless 1 = 0. This therefore provides a new Riemannian
metric on M. O

With this metric, the energy of a curve is

1
E(a(t))z/o 10ra(®)l5, dt
1 1 r!
=it ([  [oaw0 - awi, ). 20
v 0 0

the infimum being over all curves ¢ — v(¢) on V. It can also be written

1 1 1
E(a(t)):inf(/ ||v(t)||%,dt+;/ }dAW(,)(a(t))('),a(t)E(l)dt) (12.7)
v 0 0

with 0,0 = v o .
The distance between two elements ay and a; in M can therefore be computed by
minimizing

1 1
U(v,a) :/0 ||v(t)||%,dt+%/0 9ya(t) — v(t) - a2, dt (12.8)

over all curves ((v(¢), a(t)),t € [0, 1]) on V x M, with boundary conditions a(0) =
ap and a(1) = a; (no condition on v). From (12.7), this may also be seen as finding
an optimal metamorphosis, by minimizing

5 1 ) 1 1
0(p. o) = / @R oG 0]} i + / A s (@)D, dr
0 0

with boundary conditions ¢(0) = idg, a(0) = ag, (1) - a(l) = aj.
This construction can also be interpreted using a Riemannian submersion
(Sect.B.6.7). Indeed, the mapping
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T GXxXM-—->M
(p, ) > -«

is a submersion from G x M to M with d7n(p, a)(h, p) = dAy(a)p + dR.(p)h.
(7 is a submersion because d A, () is invertible, with inverse dA,-1 (¢ - «v).) The
vertical space at (¢, o) is the set of all pairs (4, p) satisfying

p=—dA,1(p-a)dR,(p)h. (12.9)

Two pairs (p, ) and (@, &) belong to the same fiber if and only if - @ = ¢ - @,
or, letting ¥ = ¢~ '3, (P, &) = (v, ¥~! - a). This leads us to introduce the right
action of G on G x M defined by

(o) - = (b, ™" - @) =t Ry (i, ),

which provides a transitive action on the fiber over a = ¢ - @. Assume that a Rie-
mannian metric ||(k, p)|l(,,0) 18 given on G x M, and that this metric is invariant
through this action, so that

dRy(p, ) : (h, p) > (dRy(P)h, dAy1()p)

is an isometry between T, (G x M) and T, o)., (G x M). Notice that this isome-
try maps vertical spaces onto vertical spaces. Indeed, take (1, p) € T, )G x M, so
that & and p satisfy (12.9). Then

dAy-1(a)p = —dAy-1 () dA-1 (@ - @) dR(p)h
= —dAy-1,-1(p- ) dR.(p)h
= —dAy-1p-1(p - @) dRu () dRy-1 () ARy ()N
= —d A1 (- @) dRy-1,(pY) dRy ()h,

in which we have applied the chain rule to the identities Ay-1A, -1 = Ay-1,-1,
Ry-1Ry =id and R,Ry1 = Ry-1,. This shows that d]éw(np, a)(h, p) belongs to
the vertical space at (v, ™).

Because d Iz’w is an isometry that maps vertical spaces to vertical spaces, it also
maps horizontal spaces to horizontal spaces. These spaces being isometric shows
that 7 is a Riemannian submersion, provided that the norm on M is defined by

Inlla = min {|(h, Pl : (B, p) € T,G x ToM, dAy()p + dRo(@)h = n}

and this definition does not depend on (¢, &) such that ¢ - @ = a. One can, in par-
ticular, take (¢, @) = (id, a), yielding

Inlle = min {|(v, P)lla.a) : V. p) €V x T,M, p+v-a=n}.
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The construction leading to (12.5) simply corresponds to the special case

1
1, P IFa.ay = VN5 + ;|p|§

(which specifies || (%, p)ll(,,«) €verywhere because right translations are isometries).
There is no particular reason for restricting to this special case beside it leading
to simpler formulas, and the discussion that follows can easily be extended to the
general case of a right-invariant metric on G x M.

12.3 Euler-Lagrange Equations

We provide below optimality conditions in a Lagrangian setting that include meta-
morphosis in the case when M is a vector space. When M is a general Riemannian
manifold, the optimality conditions were worked out in [282] and are expressed as
follows (we refer to this reference for a proof of the statement)

Oa—v-a=z

. Tyv
Voaz +V, X" =0 (12.10)

v=—K¢.
) ga

Here, V is the covariant derivative on M and V5, = D/ Dt is the evaluation of this
derivative along the curve f = a(t) € M (recall that z(¢) € T, M); X" is the vector
fielda — v -a on M, and VT is defined by

(z, V2" =—(V}zZ", Z/),

where <X, Y) is the function a +— <X(a), Y(a))a for vector fields X,Y on M.
Finally, K is, as usual, the inverse duality operator on V.

We now assume that M is a vector space and consider a generalized version of
(12.8) minimizing

1
U, a) =/ F(v(0), a(t), dha — v(t) - a(0))dt (12.11)
0

for some function F. Let
z(t) = da — v(t) - a(r). (12.12)

We will denote by 0,F, 0,F and O, F the partial differentials of F with respect
to each of its variables. Computing the variation with respect to v, we get, for all
t— h(t)eV,
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/01 (avF ‘h(l‘))dt _ /01 (@F ’ h(t) 'fl(l‘))dt —o.

Denoting by Q,0, F the linear form
(Quo:F ‘ ) = (@F’ﬁ ~a>,
we obtain the optimality equation for v
OWF — Qu0. F = 0. (12.13)

If we now make the variation with respect to a, the result is, for every
t— a(t) e M,

1 O F | a(t) )dt + 1 0, F | 0,a — v(t) - a(t) )dt = 0.
0 0

Integrating by parts and using the notation

a);: GZF‘U-&),

(Qu@F

we obtain the optimality equation
—9,0.F — Q,0.F +8,F =0. (12.14)

Equations (12.12)—(12.14) provide the Euler-Lagrange equations for metamor-
phosis. They also provide the differentials of the energy with respect to v and a and
can be used to design minimization algorithms.

12.4 Application to Labeled Point Sets

We consider here diffeomorphisms acting on collections of points

az(y(l)i""y(N))’

with y® e R?. We therefore have M = (R%)" (note that we are not assuming here
that points are distinct). We consider the function [51, 189]

N

1
F(v,a,2) = [vlly + = 2P,
w.a.2) = vlly Uz; |
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where V is an admissible RKHS of vector fields. (Note that F does not depend on
a.) Here, because ¢ - a = (p(y"), ..., o(y™)), we have

(1))’ » (1\/)))7

v-a=(v(y Sy

so that z® = 9,y® — v(y®). We can therefore write

1 1 N 1 )
U(,a) = / ||v(t)||%, dt + s Z/ |6,y(k) —v(t, y<k)(t))| dt.
0 k=1 0

Wehave 0, F = 2ILv (where L is the duality operatorof V)and 0, F = (2/ o) (zV,
.., z™). Moreover,

) N
(QueF |B) = 5 3 h(y®),
k=1

so that the first Euler—Lagrange equation is

N
1
Lv — - E Z(k)5y<k) =0.
(o
k=1

sFor the second equation, we write
N
(0u0:F |a) = 5 Y ) dv(y e,
o
k=1

yielding
—0,z2% —dv(y®™HTz® = 0.

This provides the system of Euler—Lagrange equations for labeled point-set meta-
morphosis:

| X
_ (k)
]Lv—a2 E 798y,
k=1

8,20 + dv(y®)Tz® =,
8y ® — u(y®) = L®.

(12.15)

Note that, introducing the reproducing kernel of V, the first equation is equivalent to

N
vt x) =Y K@, yP )P ).

k=1
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This implies that minimizing E is equivalent to minimizing

N 1
E@z=) /O ZPOTKEO0, yP @) wdr

k=1
1 N 1 n 2
_ (k) _ (k) O] 0]
=D /O ayP ) =Y KGP @0,y )" 0| dr.
k=1 =1
The vectors zV, ..., z™) can be computed explicitly given the trajectories y", ...,
y®™ namely
2= +AD"dy.

This provides an expression of the energy in terms of y, ..., y™ that can be

minimized directly, as proposed in [51]. Most of the methods developed for point
sets in Chap. 10 can in fact be adapted to this new framework. Figure 12.1 provides
examples of deformations computed with this method.

12.5 Application to Images

12.5.1 Formal Analysis

Let M be a set of square integrable and differentiable functions a : R — R. We let
G = Diffy acton M by ga = a o g~'. We use the L? norm as the initial metric on
M, and we start with a formal discussion. Since we assume that a is differentiable,
we can write v - a = —Va’ v. We then define

1
F(v,a,z) = vl + ;nzn%,

which, here again, does not depend on a.
Equation (12.12) is z(t) = 0,a(t) + Va(t)T v(t). We have

2
(QaazF ‘ h) == | zVa"hdx,

g R4

so that (12.13) is Lv = —zVadx. Also,

(QUZ“)ZF ‘ a) = —32 zv! Vadx,

g R4

so that, using the divergence theorem, Qv@F = div(zv) and (12.14) is
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G
U\.’

Fig. 12.1 Point-set matching using metamorphosis, with the same input as in Figs.9.1 and 10.1,
using Gaussian kernels K (x, y)=exp(—|x — y|?/20?) with o = 1, 2, 4 in grid units

—0z — div(zv) = 0.

So the optimality equations for image metamorphosis are

da+VaTv=z,
diz + div(zv) =0, (12.16)

1
Lv = ——2(zVa)dx.
o
Figures 12.2, 12.3 and 12.4 provide examples of images matched using the asso-

ciated energy. In these examples, the first and last images are given as input and two
interpolated images are provided. The numerical scheme is described in Sect. 12.5.4.
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Fig. 12.2 Image metamorphosis. Estimation of a geodesic between a disc and a square. First row:

image evolution in time. Second row: evolution of the diffeomorphism

+ ky,

assuming that images

with norm equivalent to the H" (R4) norm for

with notation for the H” norm

s

ka), k|l =k +---

2
29

ka
.0 u

> l0kul

k]

k]
=

5

2
r

Ohu = 8 ..

case considered above to Sobolev spaces
[Jue]]

)

we provide a more rigorous treatment of image metamorphosis. We

will extend the L2
>0

s

Fig. 12.3 Creation of new patterns with image metamorphosis. Geodesic between an empty image
and a disc. First row: image evolution in time. Second row: evolution of the diffeomorphism

where k denotes a d-dimensional multi-index (kq, ..

(a or o) belong to a Hilbert space H

In this section

12.5.2 Some Rigorous Results
some integer r
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Fig. 12.4 Gray-level image metamorphosis. Geodesic between two gray-level face images. First
row: image evolution in time. Second row: evolution of the diffeomorphism

and || - || is the L? norm. We will consider metamorphoses with cost

2 1 2
F(,a,z) = vy + ;IIZIIH

and provide a few results describing their properties. The proofs of these results
being somewhat technical, we will skip them, referring the reader to [245] for more
details.

We first reformulate the problem to make sure that it is also well defined
for functions a that are not differentiable. We can write the advection equation
Oa+VaTv=7zas O,a=zo0¢ with a =aop and 9, = v o . We can there-
fore consider the minimization of

1 1 1
/||v||2vdz+—2/ lz(@)17 dt (12.17)
0 = Jo

subject to the constraints J,p = vo, O =7z0 @, p(0) =id, a(0) =ay and
Oé(l) =daj o 30(1)
We then have the following theorem.

Theorem 12.3 Assume r > 0 and p > max(l, r). Then the image metamorphosis
problem has at least one solution.

The validity of the optimality conditions requires slightly more restrictive assump-
tions on the boundary conditions ag and a;. WeletKy : V* — VandKy : H* - H
be the duality operators of the Hilbert spaces V and H and define {,v = v o ¢ and
g},a = « o ¢. Then, the following result holds.
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Theorem 12.4 Assume that both ay and a; belong to H"*! (RY). Then, if (v, z, p, @)
is an optimal solution of the metamorphosis problem, there exist p,(-) € C{ (R4, R¥)*
and p, € H* such that the system

dp=voyp
da=zop
O1pp, = —0u,(py VoY) —O0u(pa |70 @)
Py o(Pe Vo) —0u(pa |20 1218)
atpa =0
v = vazpw
2= 0"Ku&pa
is satisfied, with boundary conditions a(0) = ag, a(1) = a; o (1) and
(e (1) [00) + (pa | Var 0 (1) 6p) =0
forall 5p € CY(RY, RY).
Moreover, the boundary condition propagates, so that
(po(®) |50) + (pa | Va(t) o () 5p) =0 (12.19)

forallt € [0, 1].

(Equation (12.19) is in fact the horizontality condition associated with geodesics
obtained through the Riemannian submersion.)

Finally, the following theorem provides sufficient conditions for the existence of
solutions of (12.18) with given initial conditions.

Theorem 12.5 Assume that p > 1 +d/2 and p > r + 1. Then system (12.18) has
a unique solution over any bounded interval as soon as p,o € C§ _Z(Rd, RY)* and
pa € H 1R,

Note that, with metamorphosis, the boundary condition requires that (pw,o | w) =
(po | Valw). Assuming that ap € H'(R?) (which is restrictive only for r = 0),
we see that p, € H"~'(R%)* implies that p, ¢ € Cj~' (RY, RY)* ¢ C/>(RY, RY)*,
since p > r + 1, so that the regularity condition for p,, o is automatically satisfied.

12.5.3 Remarks on the Optimality Conditions

System (12.18) corresponds to Pontryagin’s maximum principle for (12.17) con-
sidered as an optimal control problem with state (¢, &), control (v, z) and co-state
(Pp» pa). We first check that, under additional differentiability assumptions on the
images, they are equivalent to those found in (12.16) in the L? case.
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When H = L>(R?), system (12.18) gives z = o> ~:;pa with p, € (L>(RY))* =
L>(RY) (meaning that we identify p,dx with p,). We therefore have
0;(z |@ o) =0forany a € R%. When z is differentiable, this leads, after differen-
tiating and applying the divergence theorem, to

0;z + div(zv) = 0.

We have already seen that, when « is differentiable, the equation d,« = z o  implies
that 9,a + Valv = z.

Equation (12.19) applied to o =wop(r) gives (p,(1) |wop()) =
—(pa | (Va@®) w) o (1)), or

- 1
Epe(t) = =Epa)Valt) = =—2()Va().

This yields Lyv(t) = —z(t)Va(t)/o? at all times (or —(z(t)Va(t))dx/o? if we
relax the identification between L? and its dual), and we retrieve the last equation in
(12.16).

We now return to the general case. The second and last equations in (12.18) imply
that 0, = 02§¢KH§:;,0“, yielding

ar) = a(0) + o’ (/0 é%(x)KHé’;(s) ds) Pa-

From the boundary conditions, we therefore get
-1

1
Pa = </0 fw(S)KHg:;(S) dS) (a1 o (1) — ap).

‘We therefore have

-1

- N . 5
a(t) =ap + (/0 Eor Ku&ls) ds) </0 Eo Ku &l dS) (a1 0 (1) — ao),

which provides a “closed-form” expression of the template part of the metamorphosis
given the diffeomorphism part. When H = L*(R), for which Ky = Id, we have

§ip=pow | det(d(p™h)], so that
§.850 = pldet(d(p™))] o = p|det(dyp)| .
It follows that

! —1
a(t) = ap + (fol | det(dp(s))|~" ds
Jo 1det(dep(s))|~" ds

) (a1 0 (1) — ao),
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or

1 -1 1 -1
a0 o(0) — (ft | det(dp(s))| ds) - (fo | det(d(s))] ds) a1 0 o(1).

[ 1 det(dep(s))| "' ds [ | det(dp(s))|~! ds

which describes how metamorphosis interpolates between the two images it com-
pares.

Whenr > d/2 + 1,(12.18) for H” metamorphoses has some interesting singular
solutions [152, 245]. In this case, H is a reproducing kernel Hilbert space, and we
will use K to denote its kernel. We look for solutions of (12.18) in which p, and
Pao take the form

N

po(t) =Y Be(0)d,, (12.20)
k=1
N

Do = Zykaxém, (12.21)
k=1

where x© = {x,io) },]CV=1 isacollection of points in RY, 3(¢) = {3 (¢)} ,I{VZI isacollection
of time-dependent vectors in RY, and v = {7}, is a time-independent collection
of scalars.

Introduce the trajectories x (¢) := (¢, x,ﬁo)). Using this notation, we have

N
(Eonpe® | w) = (pp(®) Jwo o) = Bt w(xi(t)),

k=1
so that

N
EwPo® =Y By

k=1

and (12.18) implies that

N
v(t, ) =Y Ky, x(0)Be(0).

k=1
Similarly, one gets

N
2(t,) =0 Kul, x(0)n%.

k=1
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The third equation in (12.18) gives, for w € C(')) (R4, RY),

N
Y B wx”) =

k=1

N N
=Y B0 @doee@)wc™) = Y wVa ) wix”)

k=1 k=1

from which we get
OB (t) = —dv(x (1) Be(t) — W Vz(xi(1)).

Using the expansions of v and z and the fact that d,x; = v(z, x;), we obtain the fact
that (12.20) and (12.21) provide solutions of (12.18) as soon as x, « and z satisfy
the coupled dynamical system

N
Oxi(t) =y Ky (xe(t), xi ()5 (1)
=1
N
Orou (1) =D K (1), xi(0))y
=1 (12.22)

N
OBty ==Y ViKy (), 5 (0) B (0 Bi(t)

=1

N
1
= — 2 ViKu (), a) e
I=1

Finally, we note that Eq. (12.19) applied to p, and p, is

N N
D B o) = =D wValt, x ) det, 7))
k=1 k=1

for all d¢, yielding
Bi(t) = —udeo(t, x") T Vax”) = = Val(t, xi(1)).

These special solutions have been used in [245] to provide approximations of solu-
tions for metamorphoses between smooth images.
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12.5.4 Discretization of Image Metamorphosis in the L* Case

The images in Figs. 12.2 and 12.3 have been obtained after minimization of a dis-
cretized version of the image metamorphosis energy,

1 1 1
E(a, v):/ ||v(t)||%,dt+;/ 0,a(t) + Va(®) v(t)|3dt.
0 0

The second integrand must be discretized with care. It represents the total deriva-
tive of a along the flow. Stable results can be obtained using the following scheme.

Introduce the auxiliary variable w = I1/2y, so that v = KY?w where K = L~!
(the numerical implementation can in fact explicitly specify K = K'/2 and use K =
K2). The following discretized energy has been used in the experiments of Figs. 12.2
and 12.3:

2

T T
E=Y">"lw@P+X0t72) Y " att + 1, x + 6t (K w)(t, x)) — a(t, x)
t=1

=1 xe@

Q

xXe

where x and  now are discrete variables, 2 adiscrete grid on §2 and 6t the time dis-
cretization step (the space discretization is 1). The optimization algorithm alternates
a few steps of nonlinear conjugate gradient in v, and a few steps of linear conjugate
gradient in a [120, 121].

12.6 Applications to Densities

If one denotes H' (R4)* by H~"(R¥) for r > 0, one can consider the action of Diffg
on these spaces defined by

(pralf)=(alfoyp),

which is well defined on H " (R?) for r < p. For r = 0, in particular, this action
boils down to the usual action on densities ¢ - @ = a o ™! | det(d(¢~"))|. Starting
with this special case, for which the infinitesimal action is v - a = —div(av), we can
consider the metamorphosis problem associated here again with

1
F(v,a,z) = |lvl} + ;nzn%,

with z(¢) = 0,a(t) + div(a(t)v(t)). The counterpart of system (12.16) is (details
being left to the reader)
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Oya + div(av) = z,
Oz + Vv =0, (12.23)

1
Lv = —z(aVz)dx.
o
More generally, letting H = H" (R?), we can define metamorphoses in H* using

2 1 2
F,a,2) =llvlly + = lzlly.-

We can also consider the metamorphosis problem in optimal control form as in
(12.17), minimizing

1 1 1
/||v||zvdz+—2f lz()1|%- dt (12.24)
0 9= Jo

subject to the constraints ;¢ = v o p, v = z 0 | detdyl, p(0) = id, a(0) = ag
and a(1) = a; o p(1)| detdp(1)|. Defining, in this case {,z = z o | detdy|, the
optimality conditions (12.18) become

atSD:UOQD
Oa=zo|detdy|

rpy = _ap(pga | vo 90) — 0p(pa |z 0o p|detdyl)
8tp(y =0

v = vazpw

= UZKH g:;pa

(12.25)

with boundary conditions a(0) = ag, a(1) = a; o ¢(1)| det dp(1)| and horizontality
condition

(&pp |w) + (5;pa diV(aw)) =0

forall w € CJ'(R?, RY).

12.7 Application to Curves

12.7.1 Metamorphosis on Unit Tangents

We now consider the issue of comparing plane curves based on the orientation of
their tangents [171, 307, 313]. If m is a plane curve parametrized by arc length, and
L is it length, we define the normalized tangent 7™ by
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7" : [0,1] > R?
s = O;m(Ls).

The function 7™ characterizes m up to translation and scaling, and the pair (L, T™)
characterizes m up to translation. In the following discussion, functions will depend
on time ¢ € [0, 1] and normalized arc length s, also in [0, 1]. For clarity, we will let
£2 = [0, 1] for the arc length, i.e., write ¢ € [0, 1], s € £2. We will consider deriva-
tives of functions 4 of (¢, s) € [0, 1] x £2, and we will use the notation h or Oyh for
derivatives with respect to the time variable, ¢, and dh for derivatives with respect to
the space variable, s.

We consider the group of diffeomorphisms Diff of §2, which acts on the set M
of measurable functions a : 2 — S¢~! (the unit sphere in RY) by p-a =a o ¢!
Choosing an RKHS V of vector fields on §2 satisfying v(0) = v(1) = 0, we can
consider the metamorphosis problem associated with

1
F(v,a,z) = vl + ;nzu%. (12.26)

If V is embedded in C}(£2, R), the discussion made in the previous sections applies,
with the slight difference that one must take “z € T, M” (we will not try here to
rigorously construct the shape space as a manifold), which means that z(s) L a(s)
at all times. If, in particular, the boundary conditions @y and a; are differentiable,
then Eq. (12.10) applies, and leads to the system, for a metamorphosis a(t, s)

Oia + vda = z,
0 ¢ +dw¢) =0,

1 T
V= ——2Kv(da Z)
(o)

in which ((, s) : £2 — R is the normal coordinate of z(z, s), defined by z(¢, s) =
C(t, s)a*(t, s), where at is a rotated by /2.

However, the resulting metric takes an interesting form if one considers the Hilbert
space V of functions v : [0, 1] — R such that v(0) = v(1) = 0 and

lvll% =f9(du)2ds. (12.27)

Notice that this Hilbert space is notembedded in C(} (82, R) (one needs Sobolev spaces
of order larger d/2 4+ 1 = 3/2 for this, i.e., one would need a second derivative in
the norm). Functions v € V are continuous and satisfy a Holder condition of order
q for any g < 1/2, but are not necessarily Lipschitz continuous. While the general
framework we have considered so far does not apply to this situation, one can directly
formulate the metamorphosis problem in terms of time-dependent diffeomorphisms,
(t, s) — @(t,s), of £2, letting v = ) 0 ! so that
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_dpoy!

" dpoyT

which yields, after a change of variables

dg?
/(dv)zds:/ ids.
Q o dy

Writing the second term in template form, i.e., letting z = & o ¢~ and mak-
ing another change of variable, the metamorphosis objective function in this case
becomes

1 d 2 1 1
Uy (o, a):/ / (@9) dsdt+—2/ / \&2dyds dt, (12.28)
0 Jo dy oc Jo Jo

which needs to be minimized over all trajectories t — () andt — «(t), such that ¢
is at all times an increasing diffeomorphism of £2 and « a function from £ — S¢!,
with boundary conditions a(0) = a¢ and a(1) = a; o ¢(1). We point out (this will
be useful later) that this energy can be minimized explicitly with respect to o when
the ¢ trajectory is fixed. Indeed, first notice that in order to minimize the second term
in U, it suffices to minimize separately the integrals

1

1
/ |cu(t, s)|2d<p(t, s)dt (12.29)
0
for fixed s. Considering such an integral, we write a(t, s) = a(A(t, s), s), where

‘ —1
do(t,s)™' dt
)\(I,S) = ‘/;)l—_
Jo de(t, )~V dt

is an increasing function satisfying A(0,s) =0 and A(1,s) = 1. We have & =
Aa(A, s) and

1 1 1
/|a(t,s)|2d<p(z,s)dr=L/ |&(/\(z,s),s)|2A(t,s)dt=L/ &z, s)|* dt
0 c(s) Jo c(s) Jo

with |
c(s) = / do(t, s)" dr.
0
This integral must be minimized subject to &(0, s) = ag(s), @(1l, s) = a; o ;(s) and

|a(t, s)| = 1 for all ¢, and the solution is given by the circular arc between (0, s)
and a(1, s), which can be expressed as
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at,s) = MGO(S) + Sin.(t—w(s))al 0 p1(s),
sin w(s) sinw(s)
where
w(s) = arccos(ag(s)Tay o p1(s)).

The optimal « is therefore given by

sin((1 — A7, $))w(s)) sin( A~ (7, s)w(s))
. ao(s) + . ap o pi(s),
sin w(s) sin w(s)

(12.30)
where A7!(z, s) is defined by A(A\~!(¢, 5), s) = t. The optimal cost in (12.29) is
then w(s)?2 /c(s). We note that, because w(s) € [0, 7], the coefficients in (12.30) are
non-negative. Moreover, a(t, s) is at all times in the plane generated by a(s) and
Q1 =d) o QDl(S).

We now fix ¢; and study optimal metamorphoses with ¢ (1, -) = ;. Introduce
the vector a;- perpendicular to ay in the plane generated by ag and «, defined by

a(t,s) =

) = cosw agy + sinwaol.

(This is well defined if w € (0, ) and we choose aé arbitrarily otherwise.) Without
loss of generality, we can search for optimal metamorphoses taking the form

aft, s) = cos7(t, s)ag(s) + sin 7(t, s)aol(s) .

Letting £(¢, s) = (cos 7(¢, 5), sin7(z, 5)) € S, we can write U, (p, a) = 0(,(90, 9,
where

1 N2 1
0U(<p,§)=f / @dsduriz/ f €12 dpds di. (12.31)
0 Jo dy 0= Jo Je

This function now has to be minimized subjectto (0, -) = id, (1, -) = ¢1,£(0, -) =
(1,0) and £(1, ) = (cosw, sinw), with w = arccos(aOTal o (1, -)). In other terms,
we have reduced the $?~!-valued metamorphosis problem to an S'-valued problem,
or, equivalently, our metric on d-dimensional curves to a two-dimensional case.

We now make a second reduction that will simplify the problem. Because £(¢, )
is differentiable in time, one can define uniquely a differentiable function 7 (z, s)
such that £(0, s) = (1,0) and &(z, s) = (cos (¢, s), sinT(¢, s)) at all times. Define
q(t,s) by

q(t,s) =+/de(t,s) (cos