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Introduction to the Second Edition

Besides correcting some of the typos and mistakes from the first edition and
implementing a few changes to the notation to make it uniform, several significant
additions appear in the second edition. Most notable is the introduction of a dis-
cussion of optimal control theory in an infinite-dimensional framework (Appendix
D), which is then used in multiple places to enrich the presentation of diffeomorphic
matching, and a new chapter on shape datasets (Chap. 13 of the second edition).
A few other changes have been made. These are listed below, where chapters are
referred to as x/y, the first and second numbers indicating the first and second
editions, respectively.

• Chapter 1/1: The presentation of closed curves and integrals along them has
been revised. Some sections have been reordered to improve readability.

• Chapter 2/2: No significant changes.
• Chapter 3 of the first edition has been removed.
• Chapter 4/3: No major changes were made. The material on discrete surfaces

was moved to Chap. 5/4, in which a new discussion is added on consistent
discrete-to-continuous approximation.

• Chapters 6/5 and 7/6 only had minor modifications.
• Chapter 8/7: A few additional results on compositions of diffeomorphisms and

their derivatives have been included. Small modifications were made to the rest
of the chapter, which also relies more directly on results from the appendix.

• Chapter 9/8: The discussion on invariant operators and kernels has been updated
and clarified.

• Chapter 10/9: Only minor changes were made in most sections. Exceptions are
(1) curve and surface matching, in which a discussion of varifold distances was
added, and (2) frame matching, which has been rewritten with a slightly dif-
ferent action, and a more rigorous handling of the supports of the frame fields.

• Chapter 11/10: Some of the discussion now directly uses results from the
appendix on ODEs and optimal control. The proof of the existence and
uniqueness of solutions of the EPDiff equation has also been rewritten.

• Chapter 12/11 had only minor changes.
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• Chapter 13/12 on metamorphosis has been extended, with more examples,
including in particular a detailed discussion of metamorphosis applied to the
tangent representation of curves.

• Chapter 13 in the second edition is new.
• Only minor changes were made in Appendix A.
• Appendix B was extended with a discussion of differential forms and some

consequences of Stokes’s theorem.
• Appendix C has essentially the same content, even though part of the write-up

was revised.
• Appendix D now includes an introduction to optimal control theory.
• Appendices E and F were only slightly modified.

viii Introduction to the Second Edition



Introduction to the First Edition

Shape is a fascinating object of study. Understanding how a single shape can incur
a complex range of transformations, while defining the same perceptually obvious
figure, entails a rich and enticing collection of problems at the interface between
applied mathematics, statistics, and computer science. Various applications in
computer vision, object recognition, and medical imaging bring additional moti-
vation for researchers to develop adequate theoretical background and methodology
for solving these problems.

This book is an attempt at providing a description of the large range of methods
that have been invented to represent, detect, or compare shapes (or more generally,
deformable objects), together with the necessary mathematical background that they
require. While certainly being a book on applied mathematics, it is also written in a
way that will be of interest to an engineering- or computer-science-oriented reader,
including in several places concrete algorithms and applicable methods, including
experimental illustrations.

This book starts with a discussion of shape representationmethods (Chapters 1–4),
including classical aspects of the differential geometry of curves and surfaces, but
borrowing also from other fields that have positively impacted the analysis of shape in
practical applications, such as medial axes and discrete differential geometry.

The second part (Chapters 5–7) studies curve and surface evolution algorithms
and how they relate to segmentation methods that can be used to extract shapes
from images, using active contours or deformable templates. A reader with enough
background in differential geometry may start reading this book at Chapter 6 or at
Chapter 7 if the main focus of interest is on diffeomorphic registration and com-
parison methods.

In Chapters 7 and 8, basic concepts related to diffeomorphisms are introduced,
discussing in particular how using ordinary differential equations associated with
vector fields belonging to reproducing kernel Hilbert space provides a computa-
tionally convenient framework to handle them. Chapters 9 and 10 then focus on the
registration of deformable objects using diffeomorphisms; in Chapter 9, we catalog
a large collection of deformable objects and discuss matching functionals that can
be used to compare them. Chapter 10 addresses diffeomorphic matching and
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focuses in particular on methods that optimize a matching functional combined with
a regularization term that penalizes the distance of a diffeomorphism to the identity
within the group.

The next two chapters (11 and 12) discuss metric aspects of shape analysis, with
a special focus on the relation between distances and group actions. Both the global
and infinitesimal points of view are presented. The classical Kendall’s metric over
configurations of labeled points is included, as well as a short discussion of
Riemannian metrics on plane curves. Chapter 12 provides a presentation of the
theory of metamorphosis. Chapter 13 provides an introduction to the statistical
analysis of shape data.

In the appendices are provided fundamental concepts that are needed in order to
understand the rest of this book. The main items are some elements of functional
analysis (Appendix A), of differential and Riemannian geometry (Appendix B), and
of ordinary differential equations (Appendix C). Appendix D provides an intro-
duction to optimization and optimal control. Appendix E focuses on principal
component analysis and Appendix F on dynamic programming. In all cases, the
appendices do not provide a comprehensive presentation of these theories, but
simply what is needed in the particular context of this book.

Chapters 1 to 5, which are (with a few exceptions) rather elementary, provide an
introduction to applied differential geometry that is suitable for an advanced
undergraduate class. They can be combined with Chapter 6 to form a graduate-level
class on the same subject. The first six chapters are written (with a few exceptions)
in order to be accessible without using the more advanced features developed in the
appendices. Chapters 8 to 13 represent specialized, advanced graduate topics.

I would like to thank my students and collaborators, who have helped to make
the ideas that are developed in these notes reach their current state of maturation.
I would like, in particular, to express my gratitude to Alain Trouvé and Michael
Miller, whose collaboration over the last decade has been invaluable. Special thanks
also to Darryl Holm, David Mumford, and Peter Michor. This book was written
while the author was partially supported by the National Science Foundation, the
National Institute of Health, and the Office for Naval Research.
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Chapter 1
Parametrized Plane Curves

1.1 Definitions

We start with some definitions.

Definition 1.1 A (parametrized plane) curve is a continuous mapping m : I → R
2,

where I = [a, b] is an interval.
A curve m is closed if m(a) = m(b).
A curve m is a Jordan curve if it is closed and has no self-intersection: m(x) =

m(y) only for x = y or {x, y} = {a, b}.
A curve is piecewise C1 if it has everywhere left and right derivatives, which

coincide except at a finite number of points.
The range of a curve m is the set m([a, b]). It will be denoted by Rm .

Notice that we have defined curves as functions over bounded intervals. Their
range must therefore be a compact subset of R

2 (this forbids, in particular, curves
with unbounded branches).

A Jordan curve is what we can generally accept as a definition of the outline of a
shape. An important theorem [292] states that the range of a Jordan curve partitions
the plane R

2 into two connected regions: a bounded one, which is the interior of
the curve, and an unbounded one (the exterior). The proof of this rather intuitive
theorem is quite complex (see, for example [184] for an argument using Brouwer’s
fixed point theorem).

However, requiring only continuity for curves allows for more irregularities than
what we would like to handle. This is why we will always restrict ourselves to
piecewise C1, generally Jordan, curves. We will in fact often ask for more, and
consider curves which are regular (or piecewise regular).

Definition 1.2 A C1 curve m : I �→ R
2 is a regular curve if ∂m �= 0 for all u ∈ I .

Ifm is only piecewise C1, we extend the definition by requiring that all left and right
derivatives are non-vanishing.
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2 1 Parametrized Plane Curves

Here, and in the rest of the book,wewill use either∂m or ṁ to denote the derivative
of a function u �→ m(u).

The previous definition is fundamental. It avoids, in particular, curves which are
smooth functions (C∞, for example) but with a range having geometric singularities.
Consider the following example: let

m(u) =
{

(ϕ(u), 0), u ∈ [0, 1/2]
(1,ϕ(u − 1/2)), u ∈ [1/2, 1]

with ϕ(u) = 16u2(1 − u)2, u ∈ [0, 1]. It is easy to check that m is continuously
differentiable, whereas the range of m is the corner [0, 1] × {0} ∪ {1} × [0, 1].

We will say that a curve m : [a, b] → R
2 is C p if it is p times continuously

differentiable, including all right derivatives at a and left derivatives at b up to order
p. If the curve is closed, we will implicitly require that the derivatives at a and b
coincide.More precisely, a closed curve isC p if and only ifm isC p when restricted to
the open interval (a, b), and so is the curve m̃ defined on (a, b) by m̃(u) = m(u + ε)
if u ∈ (a, b − ε] and m̃(u) = m(u + ε − b + a) if u ∈ [b − ε, b) (for some 0 < ε <

b − a).
Alternatively (and more conveniently), closed curves can be handled by consid-

ering the interval [a, b] closed onto itself after identifying a and b (which provides a
one-dimensional torus). We will denote this torus by [a, b]∗ and let a ∼ b ∈ [a, b]∗
denote a or b after the identification. For u, v ∈ [a, b]∗, we let

d∗(u, v) = min(|u − v|, (b − a) − |u − v|). (1.1)

This is a distance on [a, b]∗ (if u (or v) are equal to ab̃, the result does not depend
on which value is chosen to compute the expression).

If δ ∈ R and u ∈ [a, b]∗, we define u +∗ δ ∈ [a, b]∗ by u + δ − (u +∗ δ) = k(b −
a) for some integer k (so that we consider addition modulo b − a). A function
f : [a, b]∗ → R

d is continuous on [a, b]∗ if and only if, for all u ∈ [a, b]∗, | f (u +∗
δ) − f (u)| → 0when δ → 0, which is equivalent to f (u) = f̂ (u) for some function
f̂ continuous on [a, b] satisfying f̂ (a) = f̂ (b). One defines derivatives of functions
by

∂ f (u) = lim
δ→0

f (u +∗ δ) − f (u)

δ

when the right-hand side exists and higher derivatives are defined accordingly. With
this notation, it is easy to see that C p closed curves are functions m : [a, b]∗ → R

2

with at least p continuous derivatives.
We also use integrals along [a, b]∗ as follows: if u0, u1 ∈ [a, b] and f : [a, b] →

R
d is continuous, then
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∫ u1

u0

f (v)dv∗ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ u1

u0

f (v)dv if u0 ≤ u1

∫ b

a
f (v)dv −

∫ u0

u1

f (v)dv if u1 ≤ u0.

(1.2)

This is the integral of f along the “positively oriented arc” going from u0 to u1 in
[a, b]∗. Note that ∫ u1

u0

f (v)dv∗ �= −
∫ u0

u1

f (v)dv∗

in general. For example
∫ a
b f (v)dv∗ = 0 for all f .

The length of the positively oriented arc going from u0 to u1 is

�∗(u0, u1) =
∫ u1

u0

dv∗ :=
{

|u1 − u0| if u0 ≤ u1
(b − a) − |u1 − u0| if u1 ≤ u0.

With this notation, d∗(u0, u1) = min(�∗(u0, u1), �∗(u1, u0)).

1.2 Reparametrization Equivalence

1.2.1 Open Curves

Definition 1.3 Let m : I → R
2 be a plane curve. A change of parameter for m is a

function ψ : I ′ → I such that:
(i) I ′ is a bounded interval;
(ii) ψ is continuous, increasing (strictly) and onto.

From (ii), ψ is one-to-one and onto, hence invertible. Its inverse, ψ−1 is also
a change of parameter (the proof being left to the reader). In particular, ψ is a
homeomorphism (a continuous invertible function with a continuous inverse).

The new curve m̃ = m ◦ ψ is called a reparametrization ofm. The rangesRm and
Rm̃ coincide.

When m belongs to a specific smoothness class, the same properties will be
implicitly required for the change of parameter. For example, if m is (piecewise)
C1, ψ will also be assumed to be C1 (in addition to the previous properties). When
working with regular curves, the following assumption will be made.

Definition 1.4 If I, I ′ are bounded intervals, a regular change of parameter is a C1

function ψ : I ′ → I which is onto and satisfies ψ̇ > 0 everywhere (including left
and right limits at the bounds).
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A piecewise regular change of parameter is continuous, piecewise C1 and such
that its left and right derivatives (which coincide everywhere except at a finite number
of points) are all strictly positive.

It is easy to see that the property of two curves being related by a change of parameter
is an equivalence relation. This is called “parametric equivalence.” We will denote
the parametric equivalence class of m by [m]. A property, or a quantity, which only
depends on [m] will be called parametrization-invariant. For example, the range of
a curve is parametrization-invariant.

Note that the converse is not true. If two curves have the same range, they are not
necessarily parametrically equivalent: the range of the piecewise C1 curve defined
on I = [0, 1] by m(t) = (2t, 0), t ∈ [0, 1/2] and m(t) = (2 − 2t, 0), t ∈ [1/2, 1]
is the segment [0, 1] × 0, but this curve is not equivalent to m̃(t) = (t, 0), t ∈ [0, 1],
even though they have the same range (the first one travels back to its initial point
after reaching the end of the segment). Also, if m is a curve defined on I = [0, 1],
then m̃(t) = m(1 − t) has the same range, but is not equivalent to m, since we have
required the change of parameter to be increasing (changes of orientation are not
allowed).

Changes of parameter will always be assumed to match the class of curves that
is being considered: (piecewise) regular reparametrizations for (piecewise) regular
curves, or, when more regularity is needed, C p regular reparametrizations for C p

regular curves.

1.2.2 Closed Curves

Changes of parameters for closed curves must be slightly more general than for open
curves, because the starting point of the parametrization is not uniquely defined.
Using representations over tori,wewill say that a continuousmappingψ : [a′, b′]∗ →
[a, b]∗ is increasing if, for all u, one can write, for small enough δ,

ψ(u +∗ δ) = ψ(u) +∗ ε(δ),

where ε : (−δ0, δ0) → R can be defined for some δ0 > 0 as a (strictly) increasing
function such that ε(δ) → 0 if δ → 0. This says that ψ moves in the same direction
as u.

A change of parameter is then a continuous, increasing, one-to-one transformation
ψ from [a′, b′]∗ onto [a, b]∗ (and its inverse is then continuous too). The main dif-
ference with the open case is that such a transformation does not necessarily satisfy
ψ(a′) = a: it can start anywhere and wrap around to return to its initial point.Wewill
then say that the change of parameter is regular if it is C1 with ψ̇ > 0 everywhere,
as in the open case.

Letting c′ = ψ−1(b) (recall that a = b ∈ [a, b]∗) and taking ψ̂ : [a′, b′] → [a, b]
to be such that ψ̂(u′) = ψ(u′) if u′ �= c′ and ψ̂(u′) = b otherwise, the definition is
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equivalent to requiring that ψ̂ is increasing over [a′, c′] and over (c′, b′], continuously
differentiable over these intervals, with left and right derivatives coinciding at c′, and
the right derivative at a′ coinciding with the left derivative at b′.

1.3 Unit Tangent and Normal

If M ⊂ R
d is an arbitrary set, we will say that a vector v ∈ R

d is tangent to M at a
point p in M if one can find points x in M that are arbitrarily close to p and such that
v is arbitrarily close to the half line R

+(x − p). This is formalized in the following
definition (see [107]):

Definition 1.5 If M ⊂ R
d , and p ∈ M , a vector v ∈ R

d is an oriented tangent to
M at p if, for any ε > 0, there exist x ∈ M and r > 0 such that |x − p| < ε and
|v − r(x − p)| < ε.

The set of oriented tangents to M at p will be denoted by T+
p M , and the set of

(unoriented) tangents by TpM , so that v ∈ TpM if either v or −v belongs to T+
p M .

Taking x = p, one sees that v = 0 always belong to T+
p M , which is therefore never

empty.
Let m : I → R

2 be a regular curve (here, I can be a closed interval or a torus).
The unit tangent at u ∈ I is the vector

Tm(u) = ṁ(u)

|ṁ(u)| .

We then have

Proposition 1.6 If m : I → R
2 is regular, and p ∈ Rm, then

TpRm = {λTm(u) : λ ∈ R,m(u) = p} .

Note that, whenm is regular the set of parameters u such thatm(u) = p is necessarily
finite. (Each such u is necessarily isolated because ṁ �= 0 and any family of isolated
points in a compact set must be finite.)

Proof Let I = [a, b] (the case of a closed curve being addressed similarly). Take
p ∈ Rm and u such that p = m(u). Fix λ ∈ R and ε > 0. One has m(u + δ) −
m(u) − δ|ṁ(u)|Tm(u) = o(δ). So, taking δ small enough so that |m(u + δ)
− m(u)| < ε and

∣∣∣∣λTm(u) − λ

δ|ṁ(u)| (m(u + δ) − m(u))

∣∣∣∣ < ε

one gets |x − p| < ε and |λTm(u) − r(x − p)| < ε with x = m(u + δ) and r =
λ/(δ|ṁ|). If u ∈ (a, b), one can ensure that r > 0 by choosing the sign of δ appro-
priately. If u = a one must take δ > 0 and r > 0 only if λ > 0. Similarly, if u = b,
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one needs λ < 0. In any case, either λTm(u) or −λTm(u) belongs to T+
p Rm , so that

λTm(u) ∈ TpRm .
Conversely, if v ∈ TpRm , there exists sequences (un) and (rn) with un ∈ I and

rn > 0 such that |m(un) − p| < 1/n and |v − rn(m(un) − p)| < 1/n. Taking a sub-
sequence if needed, one can assume that un → u ∈ I , necessarily with p = m(u).
If un = u for an infinite number of v, then |v| ≤ 1/n for these n, which implies
v = 0. Otherwise, remove these values from the sequence to ensure un �= u for all n
and use the fact that

v − rn(un − u)
m(un) − p

un − u
→ 0

with (m(un) − p)/(un − u) → ṁ(u) �= 0 to prove that rn(un − u) converges to
some λ ∈ R. We then have v = λṁu , which completes the proof. �

The unit normal is the unique vector Nm(u) which extends Tm(u) to a positively
oriented orthonormal basis of R

2: (Tm(u), Nm(u)) is orthonormal and
det[Tm(u), Nm(u)] = 1. The subscript m is generally dropped in the absence of
ambiguity.

The frame (T, N ) is parametrization-invariant in the following sense: if ϕ : I →
Ĩ is a regular change of parameter, and m = m̃ ◦ ϕ, then Tm̃(ϕ(u)) = Tm(u) and
similarly for the normal.

1.4 Embedded Curves

Letting I be either an interval or a torus, aC1 functionm : I → R
2 such that ṁ(u) �=

0 everywhere is a special case of an immersion (see DefinitionB.13), and regular
curves are also sometimes called immersed curves. Among immersed curves, one also
distinguishes embedded curveswhich are furthermore assumed to benon-intersecting
(so that closed embedded curves are regular Jordan curves). For embedded curves,
Tm(u) is (up to a sign change) the only unit element of Tm(u)M . Moreover, if m :
I �→ R

2 is an embedding, the inverse map m−1 : Rm → I , which is well defined by
assumption, is continuous: if pn ∈ Rm is a sequence that converges to p ∈ Rm , then,
for some un and u, pn = m(un) and p = m(u). Any limit v of a subsequence of un
(recall that I is compact, so that any sequence has at least a convergent subsequence,
and any limit of a subsequence belongs to I ) must satisfy, by continuity, m(v) = p,
which implies v = u. This implies that m−1(p) = u.

If two embedded curves have the same range, they can be deduced from one
another through a change of parameters, possibly after reorientation (this is not
true for regular curves). Letting m : I �→ R

2 and m ′ : I ′ �→ R
2 be two such curves,

ψ = m−1 ◦ m ′ is a homeomorphism (continuous, with a continuous inverse) between
I ′ and I . If v is any point in the case of closed curves, or v ∈ (a′, b′) for open curves,
one can apply the implicit function theorem to the identity m ′ = m ◦ ψ to prove that
ψ is differentiable with

ψ̇ ṁ ◦ ψ = ṁ ′,
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implying

ψ̇ = (ṁ ′)T ṁ ◦ ψ

|ṁ ◦ ψ|2 .

For open curves, one shows that ψ has non-zero right and left derivatives at a′ and
b′ by passing to the limit, the detailed argument being left to the reader. Because of
this, any parametrization-invariant quantity only depends on the (oriented) range of
the curve when restricted to embeddings.

With some abuse of terminology, wewill say that a subsetR ⊂ R
2 is an embedded

curve if there exists an embedded curve m such that R = Rm . Such a curve m is
then defined up to a change of parameter.

1.5 The Integral Along a Curve and Arc Length

Let m : [a, b] → R
2 be a parametrized curve. If σ = (a = u0 < u1 < · · · < un <

un+1 = b) is a subdivision of [a, b], one can approximate m by the polygonal line
mσ with vertices (m(u0), . . . ,m(un+1)). The length of mσ is the sum of lengths of
the segments that form it, namely

Lmσ
= length(mσ) =

n+1∑
i=1

|m(ui ) − m(ui−1)|.

One then defines the length of m as

Lm = sup
σ

Lmσ
,

where the supremum (which can be infinite) is over all possible subdivisions σ of
[a, b].

One then has the following proposition.

Proposition 1.7 If m : [a, b] → R
2 is C1, then

Lm =
∫ b

a
|ṁ(t)|dt < ∞.

Proof The fact that the integral is finite results from the derivative being bounded on
the compact interval [a, b] (because the curve is C1). If σ = (a = u0 < u1 < · · · <

un < un+1 = b) is a subdivision of [a, b], then one has

|m(ui+1) − m(ui )| =
∣∣∣∣
∫ ui+1

ui

ṁ(t)dt

∣∣∣∣ ≤
∫ ui+1

ui

|ṁ(t)|dt.



8 1 Parametrized Plane Curves

Summing over i yields the fact that Lmσ
≤ ∫ b

a |ṁ(t)|dt and taking the supremum on
the right-hand side implies the same inequality for Lm .

On the other hand, given any σ, the finite increment theorem implies that, for all
i , there exists vi ∈ (ui , ui+1) such thatm(ui+1) − m(ui ) = ṁ(vi )(ui+1 − ui ). Using
this, we see that

Lmσ
=

n∑
i=0

|ṁ(vi )|(ui+1 − ui ),

which is a Riemann sum for
∫ b
a |ṁ(t)|dt , and can therefore be made arbitrarily close

to the integral by taking fine enough subdivisions. So for any ε, one can find σ such
that ∫ b

a
|ṁ(t)|dt ≤ Lmσ

+ ε

and since the upper-bound is less than Lm + ε, we find
∫ b
a |ṁ(t)|dt ≤ Lm by letting

ε tend to 0. This completes the proof of the proposition. �
If f : I → R is a continuous function, one defines the integral of f along m by

∫
m
f dσm =

∫ b

a
f (u) |ṁ(u)| du. (1.3)

The definition is parametrization-independent: if ψ : [a′, b′] → [a, b] is a change of
parameters, then, using a change of variable,

∫ b′

a′
f (ψ(u′))|∂(m ◦ ψ)(u′)|du′ =

∫ b′

a′
f (ψ(u′))|ṁ ◦ ψ(u′)| ψ̇(u′) du′

=
∫ b

a
f (u)|ṁ(u)|du

so that ∫
m◦ψ

f ◦ ψ dσm◦ψ =
∫
m
f dσm .

The same result holds if ψ : [a′, b′]∗ → [a, b]∗ is a change of parameter between
closed curves. In that case, taking c′ such that ψ(c′) = a ∼ b and letting ψ(a′ ∼
b′) = c, we have

∫ b′

a′
f ◦ ψ(u′)du′ =

∫ c′

a′
f ◦ ψ(u′)|∂(m ◦ ψ)(u′)|du′

+
∫ b′

c′
f ◦ ψ(u′)|∂(m ◦ ψ)(u′)|du′

=
∫ b

c
f (u)|ṁ(u)|du +

∫ c

a
f (u)|ṁ(u)|du
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=
∫ b

a
f (u)|ṁ(u)|du.

These results imply that, when m is an embedding, the integral along m only
depends on the rangeRm . This allows us to define the integral of a function overRm

by ∫
Rm

f dσRm =
∫
m
f dσm,

which does not depend on how Rm is parametrized.

We now give the following important definition.

Definition 1.8 Let m : I → R
2 be a (piecewise) C1 curve, where I is either [a, b]

or [a, b]∗. A change of parameter σ : I → [0, Lm] (or [0, Lm]∗) is an arc-length
reparametrization of m if

σ̇ = |ṁ|.

One says that m is parametrized by arc length if m : [0, Lm] → R
2 satisfies

|ṁ| = 1.

If m is regular, then σ is a regular change of parameter and m ◦ σ−1 is an arc-length
reparametrization ofm. When I = [a, b], the arc-length reparametrization is unique
and given by

σm(u) =
∫ u

a
|ṁ(v)|dv. (1.4)

When I = [a, b]∗, the parametrization is unique once the starting point c = σ−1(0)
is chosen, and is given by (following (1.2))

σm,c(u) =
∫ u

c
|ṁ(v)|dv∗. (1.5)

The arc length is parametrization-invariant: if m is a curve, with arc-length
reparametrization σ, and m̃ = m ◦ ψ is another parametrization of m, then σ ◦ ψ is
an arc-length parametrization of m̃ (this is obvious, since m̃ ◦ (σ ◦ ψ)−1 = m ◦ σ−1).

When a curve is parametrized by arc length, it is customary to denote its parameter
by s instead of u, and wewill follow this convention. From our definition of integrals,
we clearly have in that case

∫
m
f dσm =

∫ Lm

0
f (s)ds

(or ds∗ in the case of closed curves).
We will also use the notion of derivative with respect to the arc length. For open

curves, this corresponds to the limit of the ratio
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g(u + ε) − g(u)

σm(u + ε) − σm(u)

as ε → 0 (for closed curves, replace + by +∗) therefore leading to the following
definition.

Definition 1.9 Let m : I → R
2 be a C1 regular curve. The operator ∂sm transforms

a C1 function g over I into the function ∂smg, which is defined over I by

∂smg(u) = ġ(u)

|ṁ(u)| . (1.6)

We will write ∂s if there is no ambiguity concerning the curve m. Note that, if m
is parametrized by arc length (so that u = s), this notation coincides with the usual
derivative with respect to s and therefore introduces no conflict.

The next proposition expresses that the derivative with respect to the arc length
is parametrization invariant.

Proposition 1.10 Let m : I → R
2 be a regular curve and ψ : I ′ → I be a change

of parameter, with m̃ = m ◦ ψ. Then, for any C1 function g defined on I ,

(∂smg) ◦ ψ = ∂sm̃ (g ◦ ψ).

Proof This derives from the definition and from the chain rule, namely

∂sm̃ (g ◦ ψ) = ∂ũ(g ◦ ψ)

|∂ũ(m ◦ ψ)| = (∂ug) ◦ ψ

|(∂um) ◦ ψ| = (∂smg) ◦ ψ

(the positive term ∂ũψ cancels in the ratio). �

Note that, with this definition, one can rewrite the definition of the unit tangent as
Tm = ∂smm.

The following proposition shows how the arc length parametrization can be used
to stitch several local parametrizations of a set to a global one forming an embedding.

Proposition 1.11 LetR ⊂ R
2 be compact and connected. Assume that there exists a

family V1, . . . , Vn of open sets inR
2, and a family mi : [ai , bi ] → R

2 of embeddings,
such that R ⊂⋃n

i=1 Vi and, for every i = 1, . . . , n, R ∩ Vi = mi ((ai , bi )). Then,
there exists a closed embedding m : [a, b]∗ → R

2 such that R = Rm.

Proof Note that, sinceR is compact (hence closed), it contains each extremitymi (ai )
or mi (bi ). Also, assume, without loss of generality, that each curve is parametrized
by arc length so that ai = 0 and bi = Li (the length of mi ). Let I (1) = [0, L1] and
m(1) = m1, and define the following iterative construction.

Given the current interval In = [0, �n] and embedding m : In → R
2 such that

Rm ⊂ R, choose an index j such that m(�n) ∈ R ∩ Vj and Rm j �⊂ Rm . Let R0
m =

m((0, �n)), the setRm without its extremities.
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Define u j ∈ (0, L j ) by m j (u j ) = m(�n). Let A j be the connected component of
m−1(R0

m ∩ Vj ) that contains u j : A j is a sub-interval of (0, L j ) taking either the form
(x j , u j ), 0 < x j < u j or (u j , y j ), u j < y j < L j . Reorienting m j if needed, assume
that R ∩ Vj = (x j , u j ).

We now consider two cases.

(i) m j ([u j , L j ]) ∩ Rm = ∅. Define �n+1 = �n + L j − u j and extendm to [0, �n+1]
by m(u) = m j (u − �n + u j ) for u > �n . Then m is an embedding and the con-
struction can continue.

(ii) m j ([u j , L j ]) ∩ Rm �= ∅. Let v j > u j be the first parameter such that m j (v j ) ∈
Rm . If m(v j ) �= m1(0), then, by construction, there exists a Vi , i �= j such that
m(v j ) ∈ Rm ∩ Vi . This implies that m j coincides with mi in m j ((u j , v j ) ∩ Vi ,
but this contradicts the fact that vi was the first point of self-intersection.
So we have m(vi ) = m1(0) and we conclude the construction with �n+1 = �n +
v j − u j , extending m to [0, �n+1] by m(u) = m j (u − �n + u j ) for u > �n .

Note that we always reach case (ii) (there are at most n steps). After case (ii) is
completed,Rm is an embedded closed curve which is necessarily equal toR, which
is connected. �

1.6 Curvature

The curvature of a C2 regular curve m : I → R
2 is a function κm : I → R, related

to the arc-length derivative of the tangent through the formula:

∂sm Tm = κmNm . (1.7)

Note that T T
m Tm = 1 implies that T T

m ∂sm Tm = 0 so that ∂sm Tm is collinear to Nm and
κm is the coefficient of collinearity. From the remark made at the end of the previous
section, one also has

κmNm = ∂2
smm, (1.8)

the second derivative of the curve with respect to its arc length. This implies that

κm = NT
m∂2

smm = det (Tm, ∂2
smm). (1.9)

Assume thatTm canbe expressed asTm(u) = (cos θm(u), sin θm(u)) (so that Nm =
(− sin θm, cos θm)) where θ is differentiable in u (we will show below that this is
always true). Then, from a direct computation, ∂sm Tm = ∂smθNm , from which we
deduce an alternative interpretation of κm :

κm(u) = ∂smθm(u), (1.10)

where θm is a C1 version of the angle between Tm and the “horizontal axis.”
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The same kind of easy computation yields

∂sm Nm = −κmTm (1.11)

and Eqs. (1.7) and (1.11) together form what are called the Frénet formulas for the
curve m.

Since it is defined as a double arc-length derivative, the curvature is parametriza-
tion invariant. Indeed, if m̃ = m ◦ ψ, then, applying Proposition1.10 twice,

∂2
sm̃ m̃ = ∂sm̃ ((∂smm) ◦ ψ) = (∂2

smm) ◦ ψ

so that κm̃ = κm ◦ ψ.
When κm(u) �= 0, one defines the radius of curvature ρm(u) = 1/|κm(u)| and the

center of curvature cm(u) = m(u) + Nm(u)/κm(u). The circle with center cm(u) and
radius ρm(u) is called the osculating circle of the curve at m(u).

We now prove the fact that a smooth version of the tangent angle θ exists as a
consequence of the following lemma.

Lemma 1.12 Let I = [a, b] or [a, b]∗ and f : I → R
2 be a C p function satis-

fying | f (u)| = 1 for all u ∈ I , with p ≥ 0. Assume that for all u ∈ I , there is
a small neighborhood Ju ⊂ I and a C p function τu : Ju → R such that f (u′) =
(cos τ (u′), sin τ (u′)) for u′ ∈ Ju. Then there exists a C p function τ : I → R such
that f = (cos τ , sin τ ).

Proof Since I is compact, we can find a finite number of u1, . . . un such that I =⋃n
i=1 Jui . The result can then be proved by induction on n. There is nothing to

prove if n = 1. Assume that n > 1 and that the result is true for n − 1. Then there
must exist a subset Ju j with j �= n such that Ju j ∩ Jun �= ∅. Assume without loss
of generality that j = n − 1. There must exist an integer k such that, for any u in
this intersection, τun (u) = τun−1(u) + 2kπ. Define J̃un−1 = Jun−1 ∪ Jun and τ̃un−1(u) =
τun−1(u)on Jun−1 and τ̃un−1(u) = τun (u) − 2kπ on Jun , so that τ̃ isC

p on J̃un−1 . Thenwe
can apply the induction hypothesis to Ju1 , . . . , Jun−2 , J̃un−1 with associated functions
τu1 , . . . , τun−2 , τ̃un−1 . �

To prove the existence of a differentiable θ(u), the lemma needs to be applied
with p = 1, f = Tm , τ = θ and τu(u′) = θ0(u) + arcsin(det(Tm(u), Tm(u′))).

1.7 Expression in Coordinates

1.7.1 Cartesian Coordinates

To provide explicit formulas for the quantities that have been defined so far, we
introduce the space coordinates (x, y) andwrite, for a curvem:m(u) = (x(u), y(u)).
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The first, second and higher derivatives of x will be denoted by ẋ, ẍ, x (3), . . . and
similarly for y. The tangent and the normal vector expressions in coordinates are

T = 1√
ẋ2 + ẏ2

(
ẋ
ẏ

)
, N = 1√

ẋ2 + ẏ2

(−ẏ
ẋ

)
.

The arc length is ds = √
ẋ + ẏ du and the curvature is

κ = ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
. (1.12)

The last formula is proved as follows. Since κN = ∂sT , we have

κ = NT∂sT .

Using T = ∂sm = ṁ/ṡ, we have

NT∂sT = ṡ−2m̈T N + ṡ−1∂
(
ṡ−1
)
ṁT N .

The last term vanishes, and the first one gives (1.12) after introducing the coordinates.

1.7.2 Polar Coordinates

Let (Oxy) be a fixed frame. A point m in the plane can be characterized by its
distance, r , to the origin, O , and by θ, the angle between the horizontal axis (Ox)
and the half-line Om. (Notice that this is different from the angle of the tangent with
the horizontal, for which we also used θ. Unfortunately, this is the standard notation
in both cases.) The relation between the Cartesian coordinates (x, y) of m and its
polar coordinates (r, θ) is (x = r cos θ, y = r sin θ). This representation is unique,
except for m = O , for which θ is undetermined.

A polar parametrization of a curve u �→ m(u) is a function u �→ (r(u), θ(u)).
Often, the parameter u coincides with the angle θ and the parametrization reduces to
a function r = f (θ). Some shapes have very simple polar coordinates, the simplest
being a circle centered at O for which the equation is r = const.

Let us compute the Euclidean curvature from such a parametrization. Let τ =
(cos θ, sin θ) and ν = (− sin θ, cos θ). We have m = rτ , and

ṁ = ṙτ + r θ̇ν ,

m̈ = (r̈ − r θ̇2)τ + (2ṙ θ̇ + r θ̈)ν.
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Therefore,

κ = det[ṁ, m̈]
|ṁ|3 = r2(θ̇)3 − rr̈ θ̇ + 2ṙ2θ̇ + rṙ θ̈

(ṙ2 + r2θ̇2)3/2
.

When the curve is defined by r = f (θ), we have θ = u, θ̇ = 1 and θ̈ = 0, so that

κ = r2 − rr̈ + 2ṙ2

(ṙ2 + r2)3/2
.

The polar representation does not have the same invariance properties as the arc
length (see the next section), but still has some interesting features. Scaling by a
factor λ simply corresponds to multiplying r by λ. Making a rotation with center O
and angle α simply means replacing θ by θ + α. However, there is no simple relation
for a translation. This is why a curve is generally expressed in polar coordinates with
respect to a curve-dependent origin, such as its center of gravity.

1.8 Euclidean Invariance

The arc length and the curvature have a fundamental invariance property. If a curve is
transformed by a rotation and translation, both quantities are invariant. The rigorous
statement of this is as follows. Let R be a planar rotation and b a vector in R

2. Define
the transformation g : R

2 → R
2 by g(p) = Rp + b. Then, ifm : I = [a, b] → R

2 is
a plane curve, one can define g · m : I → R

2 by (g · m)(u) = g(m(u)) = Rm(u) +
b. Then, the statements are:

(i) σg·m(u) = σm(u), and in particular Lg·m = Lm = L .
(ii) The curvatures κm and κg·m , reparametrized over [0, L] (as functions of the arc

length), coincide.

The proof of (i) is straightforward from the definition of σm (see Eq. (1.4)). For (ii),
use ∂2

sm (g · m) = R∂2
smm, Ng·m = RNm and (1.9).

Note that in this discussion we have taken I = [a, b], an interval, for which the
arc length reparametrization is uniquely defined by (1.4). If one wants to consider
“wrapped intervals” [a, b]∗, arc lengths should be compared with the same inverse
image of 0 (c in (1.5)).

We now state and prove the converse statement of (ii).

Theorem 1.13 (Characterization Theorem) If two C2 regular plane curves m and
m̃ have the same curvature as a function of the arc length, denoted κ : [0, L] → R,
then there exist R and b, and a change of parameter, ψ, such that m̃ = Rm ◦ ψ + b.

With our notation, the assumption means that

κ = κm ◦ σ−1
m = κm̃ ◦ σ−1

m̃

and implicitly implies that the lengths of the two curves coincide (with L).
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Proof Let m∗ and m̃∗ be m and m̃ reparametrized with arc length. We prove that

m̃∗ = Rm∗ + b

for some R and b, which implies the statement of the theorem after reparame-
trization. Equivalently, we assume without loss of generality that both m and m̃
are parametrized by arc length.

Now, let κ : [0, L] → R be an integrable function. We build all possible curves
m that are parametrized by arc length over [0, L] and have κ as curvature and prove
that they all differ by a rotation and translation. By definition, the angle θm , defined
over [0, L], must satisfy:

θ̇m = κ and ṁ = (cos θm, sin θm).

Let θ(s) = ∫ s
0 κ(u)du. The first equality implies that, for some θ0 ∈ [0, 2π), we have

θm(s) = θ(s) + θ0 for all s ∈ [0, L]. The second implies that, for some b ∈ R
2,

m(s) =
∫ s

0
(cos(θ(u) + θ0), sin(θ(u) + θ0))du + b.

Introduce the rotation R =
(
cos θ0 − sin θ0
sin θ0 cos θ0

)
. From standard trigonometric formu-

las, we have

R

(
cos θ
sin θ

)
=
(
cos(θ + θ0)
sin(θ + θ0)

)

so that, letting m̂(s) = ∫ s
0 (cos θ(u), sin θ(u))du, we have m = Rm̂ + b. Since m̂ is

uniquely defined by κ, we obtain the fact that m is uniquely defined up to a rotation
and translation. �

1.9 The Frénet Frame

If m is a C2 regular plane curve, its Frénet frame is defined by

Fm(u) = (Tm(u) Nm(u)
)
.

Considering Tm and Nm as columnvectors, Fm is a rotationmatrix satisfying FT
m Fm =

Id and det(Fm) = 1. It is a moving frame along the curve.
Equations (1.7) and (1.11), which, put together, form theFrénet formulas for plane

curves, can be summarized in matrix form as

∂sm Fm = FmSm (1.13)
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with

Sm =
(

0 −κm

κm 0

)
. (1.14)

Note that, applying ∂sm to FT
m Fm = Id, we get

(∂sm Fm)T Fm + FT
m ∂sm Fm = 0,

which states that thematrix FT
m ∂sm Fm (which is equal to Sm)must be skew-symmetric

(STm = −Sm). This implies that Eqs. (1.13) and (1.14) can be used as alternative
definitions of the curvature, via the Frénet formulas.

The advantage of this construction is that it generalizes to arbitrary dimensions
(cf. Sect. 3.1), and to more general forms of moving frames (like affine, or projective
frames). It also leads to an alternative proof of the Characterization Theorem, as
detailed below.

Proof (Alternative proof of Theorem1.13) If one applies a rotation, R, and a trans-
lation to a curve m, the Frénet frame of the new curve, m̃, is Fm̃ = RFm , and using
RT R = Id and σm = σm̃ , we have

Sm̃ = FT
m̃ ∂sm̃ Fm̃ = FT

m ∂sm Fm = Sm .

We therefore retrieve the fact that κm is invariant under rotation. The invariance
by change of parameter is again a consequence of the invariance of the arc-length
derivative.

We now prove the converse, assume that m and m̃ are such that Sm = Sm̃ =: S
with both curves parametrized by arc length (as in the first proof of Theorem1.13, it
suffices to restrict to this case).

Let Gm(s) = Fm(0)T Fm(s) and Gm̃(s) = Fm̃(0)T Fm̃(s), so that

{
Ġm = GmS

Ġm̃ = Gm̃S.

Both Gm and Gm̃ are therefore solutions of the differential equation Ġ = GS. We
have, in additionGm̃(0) = Gm(0) = Id, and the theory of differential equations states
that two functions that satisfy the same linear differential equation with the same
initial condition must coincide. Thus Gm̃ = Gm , which yields Fm̃ = RFm with R =
Fm̃(0)Fm(0)T . This implies, in particular, that Tm̃ = RTm , and, since Tm = ṁs for
curves parametrized with arc length,

m̃(s) − m̃(0) =
∫ s

0
Tm̃(u)du =

∫ s

0
RTm(u)du = Rm(s) − Rm(0)

so that m̃ = Rm + b with b = m̃(0) − Rm(0). �
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1.10 Enclosed Area and the Green (Stokes) Formula

When a closed curvem is embedded, its enclosed area can be computed with a single
integral instead of a double integral. LetΩm be the bounded connected component of
R

2 \ Rm . We assume that m is defined on I = [a, b]∗, and that the curve is oriented
so that the normal N points inward, whichmeans that for any u ∈ [a, b]∗, there exists
an ε > 0 such thatm(u) + t N (u) ∈ Ωm for 0 < t < ε. Since this is a convention that
will be used repeatedly, we state it as a definition.

Definition 1.14 A closed regular curve oriented so that the normal points inward is
said to be positively oriented.

For a circle, positive orientation corresponds to moving counter-clockwise.
We have the following proposition:

Proposition 1.15 Using the notation above, and assuming that m is positively ori-
ented, we have

Area(Ωm) =
∫

Ωm

dx dy = −1

2

∫ b

a
N (u)Tm(u) |ṁ(u)| du. (1.15)

Note that the last integral can also be written as −(1/2)
∫
m(NTm), as defined

in Sect. 1.5. We also have NTm = − det(m(s), T (s)) which provides an alternative
expression. Indeed, we have

−(1/2)
∫
m
(NTm) dσm = (1/2)

∫
m
det(m, T ) dσm

= (1/2)
∫ b

a
det(m(u), T (u))|ṁ(u)|du

so that, using T (u) = ṁ(u)/|ṁ(u)|,

Area(Ωm) = (1/2)
∫ b

a
det(m(u), ṁ(u))du. (1.16)

We will not prove Proposition1.15, but simply remark that (1.15) is a particular
case of the following important theorem.

Theorem 1.16 (Divergence theorem) If f : R
2 → R

2 is a smooth function (a vector
field), then ∫ b

a
N (u)T f (m(u)) |ṁ(u)| du = −

∫
Ωm

div f dx dy (1.17)

where, letting f (x, y) = (α(x, y),β(x, y)), one has div f = ∂1α + ∂2β.

(Here ∂i denotes the derivative with respect to the i th coordinate.)
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Equation (1.17) is called Green’s formula. To retrieve Eq. (1.15) from it, take
f (x, y) = (x, y), for which div f = 2. Note that Green’s formula is sometimes given
with a plus sign, N being chosen as the outward normal.

Formula (1.15) can also be nicely interpreted as the limit of an algebraic sum of
triangle areas. For this, consider a polygonal discretization, say m̃, ofm with vertices
p1, . . . , pN . Let O be an arbitrary point in R

2.
First consider the simple case in which the segment Opk is included in the region

Ωm̃ for all k (the polygonal curve is said to be star shaped with respect to O). In this
case, the area enclosed by the polygon is the sum of the areas of the triangles. The
area of (O, pk, pk+1) is | det(pk pk+1, Opk)|/2.1 Assuming that the discretization is
counterclockwise, which is consistent with the fact that the normal points inward,
the vectors Opk and pk pk+1 make an angle between 0 and π, which implies that their
determinant is positive. We therefore get

Area(Ωm̃) = 1

2

N∑
k=1

det[Opk, pk pk+1]. (1.18)

Since this can bewritten as 1
2

∑N
k=1 det(Opk, pk pk+1/|pk pk+1|)|pk pk+1|, this is con-

sistent with the continuous formula

1

2

∫ b

a
det(Om(u), T (u))|ṁ(u)|du.

The interesting fact is that (1.18) is still valid for polygons which are not star shaped
around the origin. In this case, the determinant may take negative values, which
provides a necessary correction because, for general polygons, some triangles can
intersect R

2 \ Ωm .
Finally, we mention a classical inequality comparing the area and the perimeter

of a simple closed curve.

Theorem 1.17 (Isoperimetric Inequality) It m is a simple closed curve with perime-
ter L and area A, then

4πA ≤ L2 (1.19)

with equality if and only if m is a circle.

1.11 The Rotation Index and Winding Number

Let m be a closed, C1, plane curve, defined on I = [a, b]. Express T : [a, b] → S1

(the unit circle) as a function t �→ (cos θ(t), sin θ(t))where θ is a continuous function
(cf. Lemma1.12).

1The general expression of the area of a triangle (A, B,C) is | det(AB, AC)|/2, half the area of
the parallelogram formed by the two vectors.
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Sincem is closed, we must have T (b) = T (a), which implies that θ(b) = θ(a) +
2rmπ, where rm is an integer called the rotation index of the curve.

The rotation index is parametrization-invariant, since it is defined in terms of T ,
which is itself parametrization-invariant. If the curve is regular and C2, then, taking
the arc length parametrization, we find, using κ = θ̇,

θ(L) − θ(0) =
∫ L

0
κ(s)ds

or

rm = 1

2π

∫ L

0
κ(s)ds.

The rotation index provides an algebraic count of the number of loops in the curve:
a loop is counted positively if it is parametrized counter-clockwise (normal inward),
and negatively otherwise. The figure “8”, for example, has a rotation index equal to
0. This also provides an alternative definition of a positively oriented curve: a simple
closed curve is positively oriented if and only if its rotation index is +1.

A similar notion is the winding number of a curve. It depends on a reference point
p0 ∈ R

2, and is based on the angle between p0m(t)/|p0m(t)| and the horizontal
axis, which is again assumed to be continuous in t . Denoting this angle by αp0(t),
the winding number of m around p0 is

wp0(m) = (αp0(b) − αp0(a))/2π.

It provides the number of times the curve loops around p0. Again, it depends on the
curve orientation.

If a curve is simple (i.e., it has no self-intersection), then it is intuitively obvious
that it can loop only once. This is the statement of the theorem of turning tangents,
which says that the rotation index of a simple closed curve is either 1 or−1. However,
proving this statement is not so easy (even in the differentiable case we consider) –
the reader may refer to [86] for a proof.

1.12 More on Curvature

There is an important relationship between positive curvature (for positively oriented
curves) and convexity. One says that a simple closed curve is convex if the bounded
region it outlines is convex (it contains all line segments between any two of its
points). Another characterization of convexity is that the curve lies on a single side
of any of its tangent lines. The relation between convexity and curvature is stated in
the next theorem.

Theorem 1.18 A positively oriented C2 curve is convex if and only if its curvature
is everywhere nonnegative.
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We only provide a partial justification of the only if part. Assume thatm is positively
oriented and that its interior, Ωm , is convex. For a fixed arc length, s and ε small
enough, we have (since m is positively oriented): m(s) + εN (s) ∈ Ωm if ε > 0 and
∈ Ω

c
m if ε < 0. Now, using a second-order expansion around s, we get

1

2
(m(s + h) + m(s − h)) = m(s) + h2

s
κ(s)N (s) + o(h2)

and this point cannot be in Ωm if h is small and κ(s) < 0.
The local extrema of the curvature are also of interest. They are called the vertices

of the curve. The four-vertex theorem, which we also state without proof, is another
classical result for plane curves [63, 212, 228].

Theorem 1.19 Every simple closed C2 curve has at least four vertices.

1.13 Discrete Curves and Curvature

1.13.1 Least-Squares Approximation

Because it involves a ratio of derivatives, the numerical computation of the curvature
is unstable (very sensitive to noise). We give here a brief account of how one can
deal with this issue.

Assume that the curve is discretized as a finite sequence of points, say
m(1), . . . ,m(N ). The usual finite-difference representation of derivatives are:

m ′(k) = (m(k + 1) − m(k − 1))/2;
m ′′(k) = m(k + 1) − 2m(k) + m(k − 1).

The simplest formula for the approximate curvature is then

κ(k) = det(m ′(k),m ′′(k))
|m ′(k)|3 .

This is however very sensitive to noise. A small variation in the position of m(k)
can have large consequences on the value of the estimated curvature. To be robust,
curvature estimation has to include some kind of smoothing. As an example of such
an approach, we describe a procedure in which one fits a curve of order 2 at each
point.

Fix an approximation scale Δ ≥ 1, where Δ is an integer. For each k, compute
three two-dimensional vectors a(k), b(k), c(k) in order to have, for −Δ ≤ l ≤ Δ:

m(k + l) � a(k)
l2

2
+ b(k)l + c(k).
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Once this is done, b(k)will be our approximation of the first derivative ofm and a(k)
our approximation of the second derivative. The curvature will then be approximated
by

κ(k) = det[b(k), a(k)]
|b(k)|3 .

We will use least-squares estimation to compute a, b, c. First, build the matrix

A =
⎛
⎜⎝
∑Δ

l=−Δ
l4

4 0
∑Δ

l=−Δ
l2

2
0

∑Δ
l=−Δ l2 0∑Δ

l=−Δ
l2

2 0 2Δ + 1

⎞
⎟⎠

which is the matrix of second moments for the “variables” l2/2, l and 1. They can
be computed in closed form as a function of Δ, since

Δ∑
l=−Δ

l2 = Δ

3
(2Δ2 + 3Δ + 1) and

Δ∑
l=−Δ

l4 = Δ

15
(6Δ4 + 15Δ3 + 10Δ2 − 1).

The second computation is, for all k:

z0(k) =
Δ∑

l=−Δ

m(k + l),

z1(k) =
Δ∑

l=−Δ

lm(k + l),

z2(k) =
Δ∑

l=−Δ

l2

2
m(k + l).

Given this, the vectors a(k), b(k), c(k) are provided by the row vectors of the matrix

A−1

⎛
⎝z2(k)z1(k)
z0(k)

⎞
⎠

where z0, z1, z2 are also written as row vectors. As shown in Fig. 1.1, this method
gives reasonable results for smooth curves. However, if the curve has sharp angles,
the method will oversmooth and underestimate the curvature.
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Fig. 1.1 Noise and curvature. The first curve on the left is an ellipse discretized over 125 points.
The second on the right is the same ellipse, with coordinates rounded to two decimal points. The
difference is almost imperceptible. However, the second row shows the result of estimating the
curvature without smoothing, on the first and the second ellipse, with a very strong noise effect.
The third (resp. fourth) row shows the result of the second-order approximation with Δ = 5 (resp.
Δ = 10). The computed curvature for the truncated curve progressively improves while that of the
original curve is minimally affected
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1.13.2 Curvature and Distance Maps

If A ⊂ R
2, one defines the distance map to A as

dA(p) = dist(p,A) = inf {|p − q|, q ∈ A} .

If A is a closed set (which we will assume in the following), then for any p ∈ R
2

there exists a q ∈ A such that dA(p) = |p − q| (i.e., the infimum is aminimum). This
is because any minimizing sequence qn such that |p − qn| → dA(p) is necessarily
bounded, and therefore has, according to the Heine–Borel theorem, a convergent
subsequence, with limit q ∈ A (because A is closed) and such that |p − q| = dA(p).

The optimal q is not always unique. For example, all points in a circle are closest
to its center. The set of points p ∈ R

2 for which there exists a unique q ∈ A such that
|p − q| = dA(p) will be denoted by UA, and we let πA : UA → A be the projection,
uniquely defined by |p − πA(p)| = dA(p).

For p ∈ R
2, we let B(p, r) = {q ∈ R

2 : |p − q| < r
}
denote the (open) disc with

center p and radius r . For q ∈ A, define

r(A, q) = sup {r : B(q, r) ⊂ UA}

and r(A) = inf {rA(q) : q ∈ A}, which is called the reach of A, and also has the
following alternative definition.

Proposition 1.20

r(A) = sup {r : dA(p) < r ⇒ p ∈ UA} . (1.20)

Proof Denote temporarily by r ′(A) the right-hand side of (1.20). Assume that
r ≤ r ′(A). If q ∈ A and p ∈ B(q, r), then dA(p) ≤ |p − q| < r so that p ∈ UA

by definition of r ′
A. Therefore, B(q, r) ⊂ UA and r ≤ r(A, q) for all q ∈ A, which

implies that r ≤ r(A). Taking the maximum in r , we get r ′(A) ≤ r(A).
Assume now that r ≤ r(A). If dA(p) < r , then p ∈ B(πA(p), r), and since

r(A) ≤ r(A,πA(p)), we have p ∈ UA. This proves that r ≤ r ′(A), and taking the
maximum in r , we get r(A) ≤ r ′(A), which concludes the proof. �

We have the following proposition.

Proposition 1.21 The distance map is 1-Lipschitz, i.e., for all p, p′ ∈ R
2, one has

|dA(p) − dA(p
′)| ≤ |p − p′| (1.21)

and the projection πA is continuous on its domain.

Proof One has, for all p, p′ ∈ R
2 and q ∈ A,

dA(p) ≤ |p − q| ≤ |p′ − q| + |p − p′|.
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Taking the inf of the right-hand side, we get dA(p) ≤ dA(p′) + |p − p′|.
By symmetry, we also have dA(p′) ≤ dA(p) + |p − p′| and (1.21) holds.

Now, take p ∈ UA and a sequence pn ∈ UA such that |pn − p| → 0. Let qn =
πA(pn), q = πA(p) and assume that there exists a subsequence of qn (that we will
still denote by qn) and ε > 0 such that |qn − q| ≥ ε. Because |p − qn| ≤ |p − pn| +
dA(pn) ≤ 2|p − pn| + dA(p), which is bounded, qn has a convergent subsequence
(still called qn), with limit q ′ ∈ A. But |p − q ′| = limn |pn − qn| = limn dA(pn) =
dA(p). Since p ∈ UA, this implies q = q ′, a contradiction to the fact that |qn − q| ≥ ε
for all n. The latter condition being impossible implies that πA is continuous. �

Proposition 1.22 Assume that dA is differentiable at p ∈ ŮA (the interior of UA).
Then, if p /∈ A,

∇dA(p) = p − πA(p)

|p − πA(p)| . (1.22)

Proof To see this, first note that, letting q = πA(p), one has pt := q + t (p − q) ∈
UA for all t ∈ [0, 1], with πA(pt ) = q. Indeed, if q ′ ∈ A, q ′ �= q, one has |p − q| <

|p − q ′| ≤ |p − pt | + |pt − q ′| = (1 − t)|p − q| + |pt − q ′|. This yields

|pt − q| = t |p − q| < |pt − q ′|

so that pt ∈ UA withq = πA(pt ). This also implies that dA(pt ) = t |p − q| and taking
the derivative with respect to t at t = 1, we get

∇dA(p)
T (p − q) = |p − q|.

However, (1.21) implies that |∇dA(p)| ≤ 1. This is only possible for ∇dA(p) given
by (1.22).

One can use the fact that the gradient of dA is prescribed in ŮA \ A whenever dA

is differentiable, in combination with Rademacher’s theorem [107], which states that
Lipschitz functions are differentiable almost everywhere, to prove that dA is actually
differentiable on the whole set ŮA \ A. Similarly, d2

A is differentiable on ŮA, with
∇(d2

A)(p) = 2(p − πA(p)). This general fact is proved below in the special case
A = Rm , where m is a C2, closed, regular curve with no self-intersection. Note that
our definitions, so far, and Propositions 1.20–1.22 are valid for arbitrary closed sets,
and in any dimension (and so is the differentiability of dA on ŮA \ A).

We now specialize to the case A = Rm , and we will write dm = dRm , Um = URm ,
etc.

Proposition 1.23 Let m be a simple closed C2 regular curve. Then, we have the
following statements.

(i) If |p − m(s)| = dm(p), then p = m(s) + t Nm(s) with |t | = dm(p) and
tκm(s) ≤ 1.

(ii) Let
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ρm = max

{
2 |(m(s̃) − m(s))T Nm(s)|

|m(s̃) − m(s)|2 : s, s̃ ∈ [0, L]∗, s �= s̃

}
. (1.23)

Then ρm < ∞ and r(Rm) ≥ 1/ρm > 0. In particular, Ům is not empty.
(iii) The distance map is differentiable on Ům.

Proof Assume thatm is parametrized by arc length over thewrapped interval [0, L]∗.
The function f : u �→ |p − m(s +∗ u)|2 has by assumption a globalminimumat u =
0. We therefore have ḟ (0) = 0 and f̈ (0) ≥ 0. Since ḟ (0) = −2(p − m(s))T Tm(s),
we get the fact that p − m(s) is normal to m, so that p = m(s) + t Nm(s) with
|t | = dm(p). We also have f̈ (0) = 2 − 2(p − m(s))T Nm(s)κm(s) = 2(1 − tκm(s))
yielding tκm(s) ≤ 1. This proves (i).

We now prove that ρm is finite. If m(sn) �= m(s̃n) are such that

cn := 2 |(m(s̃n) − m(sn))T Nm(sn)|
|m(s̃n) − m(sn)|2

tends to infinity, then, necessarily, m(s̃n) − m(sn) → 0. We can assume (taking sub-
sequences if needed) that both sn and s̃n converge, necessarily to the same limit (say
s) because m is non-intersecting. Assume that s �= 0 so that sn ∈ (0, L) for large
enough n (otherwise, just reparametrize m with another starting point). We have,
making a Taylor expansion,

m(s̃n) = m(sn) + (s̃n − sn)Tm(sn) + κ(sn)
(s̃n − sn)2

2
Nm(sn) + o((s̃n − sn)

2),

∣∣(m(s̃n) − m(sn))
T Nm(sn)

∣∣ = |κ(sn)| (s̃n − sn)2

2
+ o((s̃n − sn)

2)

and
|m(s̃n) − m(sn)|2 = (s̃n − sn)

2 + o((s̃n − sn)
2).

Thus cn → |κm(s)|, which is a contradiction, proving that ρm is finite. Note that the
same limit argument also proves that ρm ≥ ‖κm‖∞ := maxs |κm(s)|.

Now, take q ∈ R
2 with dm(q) = t < 1/ρm and assume that it has two closest

points, so that there exists s0 �= s1 such that t = |q − m(s0)| = |q − m(s1)|. Then
q = m(s0) + t0Nm(s0) = m(s1) + t1Nm(s1) with |t0| = |t1| = t . Moreover,

|m(s1) − m(s0)|2 = |t0Nm(s0) − t1Nm(s1)|2 = 2t20 − 2t1t0Nm(s0)
T Nm(s1)

= 2t |t0 − t1Nm(s0)
T Nm(s1)|

and
|(m(s1) − m(s0))

T Nm(s0)| = |t0 − t1Nm(s0)
T Nm(s1)|.
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We therefore get
2|(m(s1) − m(s0))T Nm(s0)|

|m(s1) − m(s0)|2 = 1

t
.

By definition, the right-hand side is less than or equal to ρm , which contradicts our
assumption that t < 1/ρm . Therefore, q ∈ Um . This proves that r(Rm) ≥ 1/ρm .

Conversely, take t < r(Rm). By definition, we have B(m(s), t + ε) ⊂ UA for all
s ∈ [0, L]∗ and some ε such that t + ε < r(Rm). Therefore, letting q+ = m(s) +
t Nm(s) and q− = m(s) − t Nm(s), we have |m(s̃) − q+| > t and |m(s̃) − q−| > t
for all s̃ �= s. Developing the expression |m(s̃) − m(s) ∓ t Nm(s)| − t2 yields

|m(s̃) − m(s)|2 ≥ ±2t (m(s̃) − m(s))T Nm(s)

so that
1

t
≥ 2

∣∣(m(s̃) − m(s))T Nm(s)
∣∣

|m(s̃) − m(s)|2

for all s �= s̃, i.e., t ≤ 1ρm . Taking the maximum in t implies r(Rm) ≤ 1/ρm .

We now prove (iii). Take q ∈ Ům and m(s) = πm(q). Write q = m(s) + r Nm(s)
with |r | = dm(q). Since B(q, ε) ⊂ Ům for ε small enough, we have m(s) + t N (s) ∈
Ům for t ∈ (r − ε, r + ε), andπm(m(s) + t N (s)) = m(s). From (i), we getκm(s)t ≤
1 for t ∈ (r − ε, r + ε), which implies κm(s)r < 1.

Take δ > 0 such that κm(u)t < 1 if |s − u| < δ and t ∈ (r − ε/2, r + ε/2).
Consider the mapping ϕ : (s − δ, s + δ) × (r − ε/2, r + ε/2) → R

2 defined by
ϕ(u, t) = m(u) + t N (u). Then ∂1ϕ(u, t) = (1 − tκm(u))Tm(u) and ∂2ϕ(u, t) =
Nm(u) so that det(dϕ) = 1 − tκm(u) �= 0. The inverse function theorem implies
that ϕ (possibly restricted to a smaller open neighborhood of (s, r)) is invertible
with a differentiable inverse. So, there exists a neighborhood of q in Ům such that
ϕ−1(p) = (πm(p), t (p)) is differentiablewith t (p) = ±dm(p).Making sure that this
neighborhood does not intersect m, we can ensure that the sign of t (p) is constant
so that dm is differentiable in this neighborhood and, in particular, at q. �

Consider the mapping (a local version of which was introduced in the previous
proof)

ϕm : [0, L]∗ × (−r, r) → R
2

(s, t) �→ m(s) + t Nm(s)

for some r < r(Rm). As shown in the proof of Proposition 1.23, ϕm is locally
invertible, but because it is also one-to-one, it provides a diffeomorphism from
[0, L]∗ × (−r, r) to the set

Vm(r) = {q : dm(q) < r} .

Consider now the set V+
m (r) = ϕm ([0, L]∗ × (0, r)). We can write
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Area(V+
m (r)) =

∫ L

0

∫ r

0
det dϕm(s, t) ds dt

=
∫ L

0

∫ r

0
(1 − tκm) ds dt

= Lr − r2

2

∫ L

0
κm ds.

The interesting conclusion is that the area is a second-degree polynomial in r . The
first-degree coefficient is the curve’s length and the second-degree coefficient is the
integral of the curvature, i.e., the rotation index of the curve.

The formula can be localized without difficulty by restricting V+(m) to points
s, t such that s0 < s < s1, the result being obviously

(s1 − s0)r − r2

2

∫ s1

s0

κm ds = r
∫ s1

s0

(1 − κmr/2) ds.

The “infinitesimal limit” r(1 − κm(s)r/2)ds provides the infinitesimal area of the
set of points that are within distance r to the curve and project on m(s) for some
s ∈ (s0, s1). This area is at first order given by the arc length times r , with a corrective
term involving the curvature.

This computation is a special case of a very general construction of what are
called curvature measures [106]. They can be defined for a large variety of sets, in
any dimension. We will see a two-dimensional description of them when discussing
surfaces.

Proposition1.23 needs to be modified to apply to open curves. Consider such a
curve, m : [0, L] → R

2. Then point (i) in the proposition remains true with a proper
definition of a normal vector to Rm : one says that N is a unit normal to Rm (or
simply to m) at m(s) if

⎧⎪⎨
⎪⎩

N = ±Nm(s) if s ∈ (0, L)

N = t1Nm(0) + t2Tm(0) if s = 0

N = t1Nm(L) − t2Tm(L) if s = L

with t21 + t22 = 1, t2 > 0. Denoting by Nm(s) the set of unit normals to m at m(s),
the first statement in (i) can be replaced by: p = m(s) + dm(p)N where N ∈ N (s).
The fact that κm(s)dm(p) ≤ 1 holds for s ∈ (0, L).

If one replaces the definition of ρm by

ρm = max

{
2 (m(s̃) − m(s))T N

|m(s̃) − m(s)|2 : s, s̃ ∈ [0, L]∗, s �= s̃, N ∈ Nm(s)

}
, (1.24)

then (ii) remains true. Note that (1.24) boils down to (1.23) for closed curves, where
Nm(s) = {±Nm(s)}. Finally, (iii) is true.
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The reader can try to prove these statements directly, or refer to [106], where these
statements are proved for arbitrary closed sets, with a proper definition of the set of
unit normal vectors, and without the finiteness of ρm , which does not hold in general.
(It does not hold, for example, for polygonal curves.)

1.14 Implicit Representation

1.14.1 Introduction

Implicit representations can provide simple descriptions of relatively complex shapes
and can in many cases be a good choice when designing stable shape processing
algorithms. The zero level set of a function f : R

2 → R is the set C f of all p ∈ R
2

such that f (p) = 0 (cf. Fig. 1.2). One says that f is regular if its derivative never
vanishes on C f , that is,

f (p) = 0 ⇒ ∇ f (p) �= 0. (1.25)

The setC f can have several connected components, each of them being the image of
a curve (level sets can therefore be used to represent multiple curves). Our first goal
is to show how local properties of curves can be computed directly from the function
f . We will always assume, in this chapter, that the function f tends to infinity as p
tends to infinity. This implies that the zero level sets are bounded.

The implicit function theorem implies that, in a neighborhood of any regular point
of f (such that∇ f (m) �= 0), the setC f can be locally parametrized as a regular curve,
for example by expressing one of the coordinates (x, y) as a function of the other.
This fact and Proposition1.11 implies that, if f is regular, each connected component
of C f can be parametrized as a regular curve. The existence of higher derivatives in
f implies the same regularity for the parametrization.
Fix a connected component and assume that such a parametrization has been

chosen. This results in a curve m : I → R
2 such that m(0) = m0 and f (m(u)) = 0

for u ∈ I (Rm coincides with the chosen connected component). From the chain
rule, we have:

∇ f (m)T∂um = 0.

This implies that ∇ f (m) is normal to m.
Orientation. We will say that f is positively oriented if f < 0 in the bounded
connected components of R

2 \ C f and f > 0 otherwise. If m is also positively
oriented, then ∇ f (m) points outward while the normal N to m points inward,
so that ∇ f (m) = −|∇ f (m)|N (recall that (T, N ) must have determinant 1, with
T = ṁ/|ṁ|).

Assuming positive orientation, we obtain

T = 1

|∇ f |
(− ∂2 f, ∂1 f

)
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Fig. 1.2 Implicit
representation: The first two
panels provide two views of
the graph of a function
f : R

2 �→ R intersecting the
plane z = 0. The third panel
is the corresponding level set

Assume that f is twice differentiable. From the second derivative of the equation
f (m(u)) = 0, we have

ṁT d2 f (m)ṁ + ∇ f (m)T m̈ = 0 .

(recall that the second derivative of f is a 2 by 2 matrix).
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Since ∇ f (m) = −|∇ f (m)|N and m̈T N = κ|ṁ|2, the previous equation yields
(after division by |ṁ|2),

T T d2 f (m) T − κ|∇ f (m)| = 0 .

so that

κ = T T d2 f T

|∇ f | = ∂2
1 f ∂2 f

2 − 2∂1∂2 f ∂1 f ∂2 f + ∂2
2 f ∂1 f

2

(∂1 f
2 + ∂2 f

2)3/2
.

This can also be written as (the computation being left to the reader)

κ = div
∇ f

|∇ f | . (1.26)

1.14.2 Example: Implicit Polynomials

A large variety of shapes can be obtained by restricting the function f to be a
polynomial of small degree [169], therefore involving a dependency on a small
number of parameters. A polynomial in two variables and total degree less than n is
given by the general formula

f (x, y) =
∑

p+q≤n

apq x
p yq .

The zero level set of f , C f = {z = (x, y), f (x, y) = 0}, is called an algebraic
curve. It can be a complicated object, with branches at infinity, self-intersections, or
multiple loops.

The principal part of f is the homogeneous polynomial

g(x, y) =
n∑

k=0

ak,n−k x
k yn−k .

Asufficient condition for the compactness ofC f is that g has no non-trivial zeros, i.e.,
g(x, y) = 0 ⇒ x = y = 0. Adding our usual regularity condition, f = 0 ⇒ ∇ f �=
0, ensures that C f is a union of Jordan curves.

Figure1.3 provides a few examples of zero level sets of implicit polynomials.
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Fig. 1.3 Shapes generated by implicit polynomials of degree 4. The first curve is the level set of the
polynomial f (x, y) = x4 + y4 − xy − 0.1. The other three are generated by adding a small noise
to the coefficients (including zeros) of f

1.15 Invariance for Affine and Projective Transformations

Invariance, which searches for quantities that remain unchanged under certain classes
of transformations, is a fundamental concept when dealing with shapes. So far, we
have discussed two classes of transformations: parameter change and Euclidean
motion (rotations, translations). We found in particular that Euclidean curvature was
an invariant for these two classes together. We now consider additional invariants to
complement these two.

We will start with transformation by scaling. This corresponds to replacing the
curve m by m̃ = λm where λ is a positive number. Visually, this corresponds to
viewing the shape from a location that is closer or further away. Because of the
renormalization, the unit tangent, normal and the angles θm are invariant. However,
the length and arc length are multiplied by the constant factor λ. Finally, since the
curvature is the rate of change of the angle as a function of arc length, it is divided
by the same constant, κm̃ = κm/λ.

It will also be interesting to consider invariants of affine transformations m �→
Am + b where A is a 2 by 2 invertible matrix (a general affine transformation). Arc
length and curvature are not conserved by such transformations, and there is no simple
formula to compute their newvalue. This section describes hownewquantities,which
will be called affine arc length and affine curvature, can be introduced to obtain the
same type of invariance.

However, a comprehensive study of the theory of differential invariants of curves
[224] lies beyond the scope of this book. Here, we content ourselves with the com-
putation in some particular cases. Although this repeats what we have already done
with arc length and curvature, it will be easier to start with the simple case of rotation
invariance. We know that sm and κm are invariant under translation and rotation, and
we now show how this can be obtained with a systematic approach that will in turn
be applied to more general cases.
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1.15.1 Euclidean Invariance

The generic approach to defining generalized notions of length and arc length is to
look for a function Qwhich depends only on the derivatives of a curve at a given point,
such that Q(ṁ, m̈, . . .)du provides the length of an element of the curve between u
and u + du.

An arc length is then defined by

σm(u) =
∫ u

0
Q(ṁ, m̈, . . .)dv.

The function Q will be designed to meet invariance properties. We will always
require parametrization invariance, ensuring that m = m̃ ◦ ϕ implies σm = σm̃ ◦ ϕ.
Computing the derivative of this identity yields, in terms of Q:

Q(ṁ, m̈, . . .) = ϕ̇Q( ˙̃m ◦ ϕ, ¨̃m ◦ ϕ, . . .). (1.27)

Now, for m = m̃ ◦ ϕ, we have

ṁ = ϕ̇ ˙̃m ◦ ϕ,

m̈ = ϕ̈ ˙̃m ◦ ϕ + ϕ̇2 ¨̃m ◦ ϕ,

and so on for higher derivatives.
As a consequence, if Q only depends on the first derivative, we must have

Q(ϕ̇ ˙̃m ◦ ϕ) = ϕ̇ Q( ˙̃m ◦ ϕ).

This is true in particular when, for all z1 ∈ R
2, λ1 > 0:

Q(λ1z1) = λ1Q(z1).

This is the order 1 condition for Q. It is sufficient by the discussion above, but one
can show that it is also necessary. Similarly, the order 2 condition is that, for all
z1, z2 ∈ R

2, for all λ1 > 0,λ2 ∈ R:

Q(λ1z1,λ2z1 + λ2
1z2) = λ1Q(z1, z2).

This argument can be applied to any number of derivatives. The general expression
(based on the Faà di Bruno formula) is quite heavy, and we will not need it for this
discussion, but the trick for deriving new terms is quite simple. Think in terms of
derivatives: the derivative of λk is λk+1 and the derivative of zk is λ1zk+1; then apply
the product rule. For example, the second term is the derivative of the first term, λ1z1,
and therefore:
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(λ1z1)
′ = (λ1)

′z1 + λ1(z1)
′

= λ2z1 + λ2
1z2,

which is what we found by direct computation. The constraint with three derivatives
would be

Q(λ1z1,λ2z1 + λ2
1z2,λ3z1 + 3λ2λ1z2 + λ3

1z3) = λ1Q(z1, z2, z3).

The second type of constraint which is required for Q is invariance under some
class of transformations of the plane. If A is such a transformation, and m̃ = Am,
the requirement is σm̃ = σm , or

Q(ṁ, m̈, . . .) = Q(∂(Am), ∂2(Am), . . .). (1.28)

We consider affine transformations (the results will be extended to projective
transformations at the end of this section). The equality is always true for translations
Am = m + b, since Q only depends on the derivatives of m, and therefore we can
assume that A is purely linear. Equality (1.28) therefore becomes: for all z1, z2, . . . ∈
R

2,
Q(z1, z2, . . .) = Q(Az1, Az2, . . .).

We now specialize to rotations. We will favor the lowest complexity for Q, and
therefore first study whether a solution involving only one derivative exists. In this
case, Q must satisfy: for all λ1 > 0, for all z1 ∈ R

2 and for any rotation A,

Q(Az1) = Q(z1) and Q(λ1z1) = λ1Q(z1) .

Let e1 = (1, 0) be the unit vector in the x-axis. Since one can always use a rota-
tion to transform any vector z1 into |z1|e1, the first condition implies that Q(z1) =
Q(|z1|e1), which is equal to |z1|Q(e1) from the second condition. We therefore find
that Q(z1) = c|z1| for some constant c, yielding Q(ṁ) = c|ṁ| = c

√
ẋ2 + ẏ2. We

therefore retrieve the previously defined arc length up to a multiplicative constant c.
The choice c = 1 is quite arbitrary, and corresponds to the condition that e1 provides
a unit speed: Q(e1) = 1. We will refer to this σm as the Euclidean arc length, since
we now consider other choices to obtain more invariants.

1.15.2 Scale Invariance

Let us now add scale to translation and rotation. Since it is always possible to trans-
form any vector z1 into e1 with a rotation and scaling, considering only one derivative
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is not enough anymore.2 We need at least two derivatives and therefore consider z1
and z2 with the constraints

Q(Az1, Az2) = Q(z1, z2) and Q(λ1z1,λ2z1 + λ2
1z2) = λ1Q(z1, z2) .

Similar to rotations, the first step is to use the first condition to place z1 and z2 into
a canonical position. Consider the combination of rotation and scalingwhichmaps e1
to z1. The first column of its matrix must therefore be z1, but, because combinations

of rotation and scaling have matrices of the form S =
(
a −b
b a

)
, we see that, letting

z1 = (x1, y1), the obtained matrix is

Sz1 =
(
x1 −y1
y1 x1

)
.

Now take A = S−1
z1 to obtain, from the first condition:

Q(z1, z2) = Q(e1, S
−1
z1 z2) .

A direct computation yields

S−1
z1 z2 = 1

x21 + y21

(
x1x2 + y1y2
x1y2 − x2y1

)
.

So far, we have obtained the fact that Q must be a function F of the quantities
a = (zT1 z2)/|z1|2 and b = det(z1, z2)/|z1|2.

Now consider the second condition. The transformation z1 → λ1z1 and z2 →
λ2
1z2 + λ2z1 takes a to λ1a + λ2/λ1 and b to λ1b. Thus, if Q(z1, z2) = F(a, b), we

must have
F(λ1a + λ2/λ1,λ1b) = λ1F(a, b)

for all real numbers a, b,λ2 and λ1 > 0. Given a, b we can take λ2 = −λ2
1a and

λ1 = 1/|b|, at least when b �= 0. This yields, for b �= 0:

F(a, b) = |b|F(0, sign(b)).

For b = 0, we can take the same value for λ2 to obtain F(0, 0) = λ1F(a, 0) for every
λ1 and a, which is only possible if F(a, 0) = 0 for all a. Thus, in full generality, the
function Q must take the form

2This would give Q(z1) = Q(e1) = const and Q(λ1z1) = λ1Q(z1) = Q(z1) for all λ1 > 0, yield-
ing Q = 0.
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Q(z1, z2) =
⎧⎨
⎩
c+| det(z1, z2)|/|z1|2 if det(z1, z2) > 0,
0 if det(z1, z2) = 0,
c−| det(z1, z2)|/|z1|2 if det(z1, z2) < 0,

where c0, c+, c− are positive constants. To ensure invariance by a change of orien-
tation, however, it is natural to choose c+ = c−. Taking this value equal to 1 yields

Q(z1, z2) = | det(z1, z2)|/|z1|2.

We obtain the definition of the arc length for similitudes3:

dσsim = |ẋ ÿ − ẍ ẏ|
ẋ2 + ẏ2

du . (1.29)

1.15.3 Special Affine Transformations

Wenow consider the case of area-preserving, or special affine transformations. These
are affine transformations A such that det(A) = 1. As before, we need two deriva-
tives, and the first step is again to normalize [z1, z2] using a suitably chosen matrix
A. Here, the choice is natural and simple, at least when z1 and z2 are independent:
take A to be the inverse of [z1, z2], normalized to have determinant 1, namely

A =
{√

det(z1, z2)[z1, z2]−1 if det(z1, z2) > 0,√
det(z2, z1)[z2, z1]−1 if det(z1, z2) < 0.

When det(z1, z2) > 0, this yields

Q(z1, z2) = Q(
√
det(z1, z2)e1,

√
det(z1, z2)e2)

so that Q must be a function F of
√
det(z1, z2). Applying the parametrization invari-

ance condition, we find

F(λ
3/2
1

√
det(z1, z2)) = λ1F(

√
det(z1, z2)),

which implies, taking λ1 = (det(z1, z2))−1/3, that

Q(z1, z2) = F(1)(det(z1, z2))
1/3.

The same result is true for det(z1, z2) < 0, yielding

3To complete the argument, one needs to check that the required conditions are satisfied for the
obtained Q; this is indeed the case, although we skip the computation.
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Q(z1, z2) = F̃(1)(det(z2, z1))
1/3.

with a possibly different constant F̃(1). Again, for orientation invariance, it is natural
to define the area-preserving arc length by

dσs.aff = |ẍ ẏ − ÿ ẋ |1/3du.

We have left aside the case det(z1, z2) = 0. In this case, assume that z2 = αz1.
The second condition implies, taking λ2 = −λ2

1α:

λ1Q(z1,αz1) = Q(λ1z1,λ
2
1αz1 + λ2z1) = Q(λ1z1, 0),

but we can always find an area-preserving transformation which maps λ1z1 to e1 so
that λ1Q(z1,αz1) = Q(e1, 0) is true for every λ1 > 0 only if Q(z1,αz1) = 0. This
is consistent with the formula obtained for det(z1, z2) �= 0.

Computations are also possible for the full affine group and also for the projective
group, but they require us to deal with four andmore derivatives and are quite lengthy.
They will be provided at the end of this section. The reader may refer to Sect.B.4
for a quick introduction to groups of linear transformations and their actions.

1.15.4 Generalized Curvature

In addition to arc length, new definitions of curvature can be adapted to more invari-
ance constraints. One way to understand the definition is to return to the rotation
case, and our original definition of curvature.

We have interpreted the curvature as the speed of rotation of the tangent with
respect to arc length. Consider the matrix Pm = [Tm, Nm] associated to the tangent
andnormal tom. Because (Tm, Nm) is an orthonormal system, thismatrix is a rotation,
called a moving frame [55, 104, 108, 109], along the curve. The rate of variation of
this matrix is defined by

Wm = P−1
m ∂s Pm .

In the Euclidean case, it is

Wm = ∂sθm

(
cos θm sin θm

− sin θm cos θm

)(− sin θm − cos θm
cos θm − sin θm

)
= κm(s)

(
0 −1
1 0

)
.

This illustrates the moving frame method, which provides here the Euclidean cur-
vature. It can be shown to always provide a function which is invariant under the
considered transformations and change of parametrization. More precisely, we have
the following definition. For a group G with associated arc length dσ = Qdu, we
will use the notation
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∂σ = ∂u/Q,

which generalizes the arc-length derivative defined in the Euclidean case. The fol-
lowing discussion concerns curves such that Q �= 0, which generalizes the notion of
regular curves.

Let Jk(G) be the set of vectors (z0, z1, . . . , zk) ∈ (R2)k+1 such that there exists a
curve m such that zk = ∂k

σm. That this condition induces restrictions on z1, . . . , zk
is already clear in the case of rotations, for which one must have |z1| = 1.

Definition 1.24 Let G be a group acting on R
2 (e.g., a subgroup of GL2(R)).

A G-moving frame of order k is a one-to-one function P0 : Jk(G) → G with the
following property. For all curvesm : I → R

2 with Q �= 0 onm, define Pm : I → G
by

Pm = P0(m, ∂σm, . . . , ∂k
σm).

Then, one must have Pgm = gPm for all g ∈ G.

We now consider affine transformations, with group G a subgroup of GL2(R) �

R
2 (cf. Sect.B.4.3). An element of G is represented by a pair (A, b) for a linear map

A and b ∈ R
2. We will therefore write P0 = (A0, b0), Pm = (Am, bm). We denote

by G0 the linear part of G, i.e., (A, b) ∈ G ⇒ A ∈ G0. The invariance condition in
Definition1.24 yields, for all U ∈ G0, h ∈ R

2,

A0(Uz0 + h,Uz1,Uz2, . . . ,Uzk) = U A0(z0, z1, z2, . . . , zk), (1.30)

b0(Uz0 + h,Uz1,Uz2, . . . ,Uzk) = Ub0(z0, z1, z2, . . . , zk) + h.

We have the following result, which generalizes Theorem 1.13. We here use the
same notation as in Sect.B.5.

Theorem 1.25 (Moving Frame: affine case) Let G = G0 � R
2 be a subgroup of

GL2(R) � R
2. If P0 = (A0, b0) is a G-moving frame, then, for any plane curve m

W̄m = A−1
m ∂σPm = (A−1

m ∂σAm, A−1
m ∂σbm)

is invariant under change of parametrization and under the action of G. It moreover
characterizes the curve up to the action of G: if W̄m∗ = W̄m̃∗ , where m∗ and m̃∗ are
respectively the arc-length reparametrization of m and m̃, then m̃ = gm ◦ ψ for some
g ∈ G and a change of parameter ψ.

Proof Invariance by change of parametrization relies on the fact the arc length is,
by construction, invariant and the details are left to the reader. If m̃ = Um + h, then
Pm̃ = (U Am,Ubm + h) and

W̄m̃ = A−1
m U−1(U∂σAm,U∂σbm) = P−1

m ∂σPm = W̄m,

which proves G-invariance.
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Conversely, assume that W̄m̃ = W̄m = W , and assume, without loss of generality,
that they are both parametrized by arc length. Let g = (U, h) = Pm̃(0)Pm(0)−1.
The proof that m̃ = gm for some g derives from the uniqueness theorem for ordinary
differential equations (cf. AppendixC); Pm = (Am, bm) and Pm̃ = (Am̃, bm̃) are both
solutions of the equation ∂σ(A, b) = AW , and gPm is another solution, as can easily
be checked. Since gPm(0) = Pm̃(0) by definition of g, we have

P0(m̃, ˙̃m, . . . , m̃(k)) = gP0(ṁ, . . . ,m(k)) = P0(gm,Uṁ, . . . ,Um(k)).

Because P0 is assumed to be one-to-one, we have m̃ = gm, which proves the
theorem. �

For affine groups, we select a moving frame P0 of the form P0(z0, z1, . . . , zk)
= (A0(z1, . . . , zk), z0). This implies that

W̄m =
(
A−1
m ∂σAm, A−1

m ∂σm
)
.

We will mainly focus on the first term, which we denote by

Wm = A−1
m ∂σAm .

The choice made for rotations corresponds to A0(z1) = [z1, Rz1], R being the
(π/2)-rotation. It is obviously one-to-one and satisfies the invariance requirements.
The second term in W̄m is constant, namely A−1

m ∂σm = (1, 0).
It can be shown that Wm can lead to only one, “fundamental”, scalar invariant.

All other coefficients are either constant, or can be deduced from this fundamental
invariant. This invariant will be called the curvature associated to the group.

Consider this approach applied to similitudes. Assume that the curve is
parametrized by the related arc length, σ. The frame, here, must be a similitude,
Am , and, as above, we take

Am =
(
ẋ −ẏ
ẏ ẋ

)
.

Define Wm = A−1
m ∂σAm , so that

Wm = 1

ẋ2 + ẏ2

(
ẋ ẏ

−ẏ ẋ

)(
ẍ −ÿ
ÿ ẍ

)

= 1

ẋ2 + ẏ2

(
ẍ ẋ + ÿ ẏ ẍ ẏ − ÿ ẋ

−ẍ ẏ + ÿ ẋ ẍ ẋ + ÿ ẏ

)
.

When the curve is parametrized by arc length, we have

|ẋ ẏ − ẍ ẏ|
ẋ2 + ẏ2

= 1
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along the curve. Therefore

Wm(σ) =
(

ẍ ẋ+ÿ ẏ
ẋ2+ẏ2 ∓1

±1 ẍ ẋ+ÿ ẏ
ẋ2+ẏ2

)
.

(σ being the similitude arc length). The computation exhibits a new quantity, which
is

K = ẍ ẋ + ÿ ẏ

ẋ2 + ẏ2
. (1.31)

This is the curvature for the group of similitudes: it is invariant under translation,
rotation and scaling, and characterizes curves up to similitudes.

We now consider special affine transformations (affine with determinant 1).
Assume that the curve is parametrized by the corresponding arc length, σ, i.e.,

|ẍ ẏ − ÿ ẋ |1/3 = 1.

One can choose Am =
(
ẋ ẍ
ẏ ÿ

)
, which has determinant 1. Since Am(1, 0)T = ṁ, the

term A−1
m ṁ is trivial. We have

A−1
m ∂Am =

(
ÿ −ẍ

−ẏ ẋ

)(
ẍ x (3)

ÿ y(3)

)
=
(
0 ÿx (3) − ẍ y(3)

1 −ẏx (3) + ẋ y(3)

)
.

Since ∂(ẍ ẏ − ÿ ẋ) = ẏx (3) − ẋ y(3) = 0, the only non-trivial coefficient is ÿx (3) −
ẍ y(3), which can be taken (up to a sign change) as a definition of the special affine
curvature:

K = det(m̈,m(3)). (1.32)

Again, this is expressed as a function of the affine arc length and is invariant under
the action of special affine transformations.

The local invariants with respect to rotation, similitude and the special affine
group probably reach the limits of numerical feasibility, based on the number of
derivatives they require. Going further involves even higher derivatives, and has only
theoretical interest. However, we include here, for completeness, the definition of the
affine and projective arc lengths and curvatures. This section can be safely skipped.
In discussing the projective arc lengths, we will use a few notions that are related to
Lie groups and manifolds. The reader can refer to AppendixB for more details.
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1.15.5 Affine Arc Length

We first introduce new parameters which depend on the sequence z1, . . . , zn that
describes the first derivatives. We assume that det(z1, z2) �= 0 and let

αk = αk(z1, . . . , zn) = det(zk, z2)

det(z1, z2)

and βk = βk(z1, . . . , zn) = det(z1, zk)

det(z1, z2)
.

These are defined so that
zk = αk z1 + βk z2, (1.33)

which also yields (
αk

βk

)
= [z1, z2]−1zk .

In particular, we have α1 = β2 = 1, α2 = β1 = 0.
Assuming affine invariance, we must have

Q(z1, . . . , zn) = Q([z1, z2]−1z1, . . . , [z1, z2]−1zn),

which implies that Q must be a function of the αk’s and βk’s. We see also that we
must have at least n = 3 to ensure a non-trivial solution. In fact, we need to go to
n = 4, as will be shown by the following computation.

For n = 4, the parametric invariance constraint yields: for all λ1 > 0, λ2,λ3,λ4,

Q(z̃1, z̃2, z̃3, z̃4) = λ1Q(z1, z2, z3, z4)

with z̃1 = λ1z1, z̃2 = λ2z1 + λ2
1z2, z̃3 = λ3z1 + 3λ2λ1z2 + λ3

1z3 and

z̃4 = λ4z1 + (3λ2
2 + 4λ3λ1)z2 + 6λ2

1λ2z3 + λ4
1z4.

We now make specific choices for λ1,λ2,λ3 and λ4 to progressively reduce the
functional form of Q. We will abuse the notation by keeping the letter Q to design
the function at each step. Our starting point is Q = Q(α3,β3,α4,β4).

(i) We start by taking λ1 = 1, λ2 = λ3 = 0, yielding z̃1 = z1, z̃2 = z2, z̃3 = z3
and z̃4 = z4 + λ4z1. Denote by α̃k , β̃k the αk,βk coefficients associated to the
z̃’s. For the considered variation, the only coefficient that changes is α4, which
becomes α̃4 = α4 + λ4. This implies that

Q(α3,β3,α4,β4) = Q(α3,β3,α4 + λ4,β4).
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Taking λ4 = −α4, we see that Q does not depend on α4, yielding the new
functional form Q = Q(α3,β3,β4).

(ii) Let’s now consider λ1 = 1, λ2 = λ4 = 0. In this case, z1, z2 remain unchanged,
and z3 and z4 become z̃3 = z3 + λ3z1, z̃4 = z4 + 4λ3z2. This implies α̃3 =
α3 + λ3, β̃3 = β3 and β̃4 = β4 + 4λ3. Taking λ3 = −α3 yields the new func-
tional form Q = Q(β3,β4 − 4α3).

(iii) Now, take λ1 = 1, λ2 = λ4 = 0, yielding z̃1 = z1, z̃2 = z2 + λ2z1, z̃3 = z3 +
3λ2z2 and z̃4 = z4 + 6λ2z3 + 3λ2

2z2, so that β̃3 = β3 + 3λ2, α̃3 = α3 − 3λ2
2 −

λ2β3 and β̃4 = β4 + 3λ2
2 + 6λ2β3. In particular,

β̃4 − 3α̃3 = β4 − 4α3 + 15λ2
2 + 10λ2β3.

Taking λ2 = −β3/3 yields Q = Q(β4 − 4α3 − 5β2
3/3).

(iv) Finally, takeλ2 = λ2 = λ4 = 0 yielding β̃3 = λ1β3 β̃4 = λ2
1β4 and α̃3 = λ2

1α3.
This gives

Q(λ2
1(β4 − 4α3 − 5β2

3/3)) = λ1Q(β4 − 4α3 − 5β2
3/3).

Taking λ1 = 1/
√|β4 − 4α3 − 5β3/3|, assuming this expression does not van-

ish, yields

Q(β4 − 4α3 − 5β2
3/3)

=
⎧⎨
⎩

Q(1)
√

|β4 − 4α3 − 5β2
3/3| if β4 − 4α3 − 5β2

3/3 > 0,

Q(−1)
√

|β4 − 4α3 − 5β2
3/3| if β4 − 4α3 − 5β2

3/3 < 0.

Here again, it is natural to ensure an invariance by a change of orientation and
let Q(1) = Q(−1) = 1 so that

Q(z1, z2, z3, z4) =
√

|β4 − 4α3 − 5β2
3/3|.

This provides the affine-invariant arc length.

We can take the formal derivative in (1.33), yielding

zk+1 = α′
k z1 + αk z2 + β′

k z2 + βk z3 = (α′
k + βkα3)z1 + (αk + β′

k + βkβ2)z2,

so that αk+1 = α′
k + βkα3 and βk+1 = β′

k + αk + βkβ3. This implies that higher-
order coefficients can always be expressed in terms of α3, β3 and their (formal)
derivatives, which are represented using prime exponents. In particular, using β4 =
β′
3 + α3 + β2

3 , we get

Q(z1, z2, z3, z4) =
√

|β′
3 − 3α3 − 2β2

3/3|. (1.34)
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Returning to parametrized curves, let αm,k and βm,k be the coefficients αk , βk in
which (z1, z2, . . .) are replaced by their corresponding derivatives (ṁu, m̈uu, . . .), so
that

m(k) = αm,kṁ + βm,km̈.

Wewant to express the affine arc length in termsof theEuclidean curvature.Assuming
that m is parametrized by Euclidean arc length, we have m̈ = κRṁ, where R is the
π/2 rotation. Taking one derivative yields (using R2 = −Id)

m(3) = κRm̈ + κ̇Rṁ = −κ2ṁ + (κ̇/κ)m̈.

This implies that αm,3 = −κ2 and βm,3 = κ̇/κ; thus, (1.34) implies that the affine
arc length, σ, and the Euclidean arc length are related by

dσ =
√

|∂(κ̇/κ) + 3κ2 − 2(κ̇/κ)2/3|ds.

1.15.6 Projective Arc Length

The problem is harder to address for the projective group (see Sect.B.4.3 for a
definition) because of the non-linearity of the transformations. We keep the same
notation for αk and βk as in the affine case (since the projective group includes the
affine group, we know that the function Q will have to depend on these reduced
coordinates).

Before the computation, we need to express the effects that a projective trans-
formation has on the derivative of the curve. We still let the symbol zk hold for
the kth derivative. A projective transformation applied to a point z ∈ R

2 takes the
form g : z �→ (Uz + b)/(wT z + 1) for a 2 by 2 matrix U , and vectors b, w ∈ R

2.
Let γ0 = (wT z0 + 1)−1 so that z0 is transformed as z̃0 = γ0(Uz0 + b). We need to
express the higher derivatives z̃1, z̃2, . . . as functions of the initial z1, z2, . . . and the
parameters of the transformations. Letting γk represent the kth derivative of γ0, the
rule for the derivation of a product (Leibniz’s formula) yields

z̃k = γk(Uz0 + b) +
k∑

q=1

(
k

q

)
γk−qUzq . (1.35)

This provides a group action, which will be denoted z̃ = g � z. Our goal is to find
a function Q such that Q(z1, z2, . . . , zk) = Q(z̃1, z̃2, . . . , z̃k), and which is also
invariant under the transformations induced by a change of variables. It will be
necessary to go to k = 5 for the projective group.

We first focus on projective invariance, and make an analysis equivalent to the
one that allowed us to remove z0, z1 and z2 in the affine case. More precisely, we
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show that U, b, and w can be found such that z̃0 = 0, z̃1 = e1, z̃2 = e2 and z̃3 = 0,
with e1 = (1, 0) and e2 = (0, 1).

First note that γ1 = −wT z1γ2
0 and γ2 = −wT z2γ2

0 + 2(wT z1)2γ3
0 . Take b =

−Uz0 to ensure z̃0 = 0. We have z̃1 = γ0Uz1, z̃2 = 2γ1Uz1 + γ0Uz2 and

z̃3 = 3γ2Uz1 + 3γ1Uz2 + γ0Uz3.

We therefore need

Uz1 = e1/γ0,Uz2 = e2/γ0 − (2γ1/γ
2
0)e1 = e2/γ0 + 2wT z1e1

and (after some algebra)

Uz3 = −3(γ2/γ0)Uz1 − 3(γ1/γ0)Uz2
= 3wT z2e1 + 3wT z1e2.

Using the decomposition zk = αk z1 + βk z2, we also have Uz3 = α3(e1/γ0) +
β3(e2/γ0 − (2γ1/γ2

0)e1), which yields the identification

wT z1 = β3/(3γ0) and wT z2 = (3α3 + 2β2
3)/9.

Using the definition of γ0, this can be written as

{
wT (z1 − β3/3z0) = β3/3
wT (z2 − (α3/3 + 2β3/9)z0) = (α3/3 + 2β3/9),

which uniquely defines w, under the assumption (which we make here) that
z0, (3/β3)z1, (9/(3α3 + 2β2

3))z2 forms an affine frame. Given W , we can compute
b and U . We have in particular, using the decomposition of zk :

Uzk = (αk/γ0 + 2βkβ3/(3γ0))e1 + (βk/λ)e2.

Similarly, we have

wT zk = αkβ3/(3γ0) + βk(3α3 + 2β2
3)/9.

With this choice of U, w and b, the resulting expressions of z̃3, z̃4 and z̃5 can be
obtained. This is a heavy computation for which the use of a mathematical software
is helpful; the result is that the projective invariance implies that the function Q must
be a function of the following four expressions:

A = α4 − 8

3
α3β3 − 8β3

3

9
+ 2

3
β3β4
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B = α5 − 10

3
α4β3 + 40

9
α3β

3
3 + 40β4

3

27
−

5

3
α3β4 − 20

9
β2
3β4 + 2

3
β3β5

C = −2α3 − 4β2
3

3
+ β4

D = −10

3
α3β3 − 5

3
β3β4 + β5.

Given this, it remains to carry out the reductions associated to the invariance
by change of parameter. This is done as in the affine case, progressively selecting
the coefficients λi to eliminate one of the expressions and modify the others, the
differencebeing that there is one extra constraint here associated to thefifth derivative.
Note that with five constraints, we would normally be short of one expression, but
one of the invariances is (magically) satisfied in the reduction process, which would
otherwise have required using six derivatives. We spare the reader the details, and
directly provide the final expression for Q, which is

Q =
∣∣∣∣40β

3
3

9
+ β5 − 5β3(β4 − 2α3) − 5α4

∣∣∣∣
1/3

.

As before, this can be expressed in terms of the formal derivatives of α3 and β3,
yielding

Q = [β′′
3 − 3α′

3 − 2β3β
′
3 + 2β3α3 + (4/9)β3

3

]1/3
. (1.36)

1.15.7 Affine Curvature

We can apply the moving frame method described in Sect. 1.15.4 to obtain the affine
curvature of a curve m. We assume here that m is parametrized by affine arc length,
σ. A moving frame on m is immediately provided by the matrix Am = [ṁσ, m̈σσ],
or, with our z notation, A0 = [z1, z2]. By definition of α3 and β3, the matrix Wm =
A−1
m ∂σAm is equal to

Wm =
(
0 αm,3

1 βm,3

)
.

Since the curve is parametrized by affine arc length, we have Q = 1, where Q is

given by
√

|β̇m,3 − 3αm,3 − 2β2
m,3/3|. This implies that αm,3 is a function of βm,3

and β̇m,3 along the curve; the moving frame therefore only depends on βm,3 and its
derivatives, which indicates that βm,3 is the affine curvature. Thus, when a curve is
parametrized by affine arc-length, σ, its curvature is given by
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κm(σ) = det(ṁ,m(3))

det(ṁ, m̈)
.

If the curve now has an arbitrary parametrization, the curvature is obtained by
using dσ = Qdu, where Q is given by (1.34). This yields the following expression:

κm(s) = 1

Q

det(ṁ,m(3))

det(ṁ, m̈)
− 3Q̇

Q
.

1.15.8 Projective Curvature

In the projective case, the moving frame method cannot be used exactly as described
in Sect. 1.15.4, because of the non-linearity of the transformations. The moving
frame is still associated to a one-to-one function P0(z0, . . . , zk) ∈ G = PGL2(R).
The invariance property in this case gives, with the definition of the action z �→ g � z
given in (1.35), P0(g � z) = gP0(z). For Theorem 1.25 to make sense, we must use
the differential of the left translation Lg : h �→ hg on PGL2(R), and define

W̄m = dLPm (Id)−1∂σPm,

which belongs to the Lie algebra of PGL2(R). This is the general definition of a
moving frame on a Lie group [108], and coincides with the definition that has been
given for affine groups, for which we had dLg = A when g = (A, b).

We first need to build the matrix A0. For this, using as before the notation (e1, e2)
for the canonical basis of R

2, we define a projective transformation that takes the
family ω = (0, e1, e2, 0) to the family z = (z0, z1, z2, z3), i.e., we want to determine
g such that g � ω = z (we showed that its inverse exists in Sect. 1.15.6, but we need
to compute it explicitly). Since this provides eight equations for eight dimensions,
one can expect that a unique such transformation exists; this will be our A0(z).

Assuming that this existence and uniqueness property is satisfied, such a con-
struction ensures the invariance of the moving frame under the group action. Indeed,
letting z be associated to a curve m and z̃ to m̃ = g(m) for some g ∈ PGL2(R), we
have z̃ = g � z. Since A0(z) is defined by A0(z) � ω = z, the equality A0(z̃) � ω = z̃
is achieved by A0(z̃) = gA0(z), which is the required invariance. (Indeed, because
� is a group action, we have (gA0(z)) � ω = g � (A0(z)ω) = g � z = z̃.)

We now proceed to the computation. The first step is to obtain the expression of
g � z for z = (z0, z1, z2, z3). We do this in the special case in which g is given by:

g(m) = (Um + b)/(1 + wTm),

w and b being two vectors in R
2 and U ∈ GL2(R). Define g � (z̃0, z̃1, z̃2, z̃3) =

(z0, z1, z2, z3). From (1 + wT z̃0)z0 = Uz̃0 + b, we obtain
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⎧⎪⎪⎨
⎪⎪⎩

(1 + wT z̃0)z0 = Uz̃0 + b
(1 + wT z̃0)z1 + wT z̃1z0 = Uz̃1
(1 + wT z̃0)z2 + 2wT z̃1z1 + wT z̃2z0 = Uz̃2
(1 + wT z̃0)z3 + 3wT z̃1z2 + 3wT z̃2z1 + wT z̃3z0 = Uz̃3.

(1.37)

Taking z̃ = ω, we get ⎧⎪⎪⎨
⎪⎪⎩

z0 = b
z1 + w1z0 = u1
z2 + 2w1z1 + w2z0 = u2
z3 + 3w1z2 + 3w2z1 = 0,

(1.38)

where w = (w1, w2), Ue1 = u1 and Ue2 = u2. The third equation yields

z3 = −3w2z1 − 3w1z2. (1.39)

We will assume that z1 and z2 are linearly independent, so that w = (w1, w2) is
uniquely definedby this equation, and thereforeU = [u1, u2]by themiddle equations
of (1.38). Using again the notation z3 = α3z1 + β3z2, we get

{
w1 = −β3/3
w2 = −α3/3.

This fully defines our moving frame A0(z).
Recall that the formal derivative of a quantity M that depends on z0, . . . , z3 is

given, in our notation, byM ′ =∑3
k=0(∂M/∂zk)zk+1. Since b = z0, we have b′ = z1;

from u1 = z1 + w1z0, we get

u′
1 = w1z1 + z2 + w′

1z0 ,

and from (1.39) and u2 = z2 + 2w1z1 + w2z0,

u′
2 = z3 + 2w1z2 + (2w′

1 + w2)z1 + w′
2z0

= (−2w2 + 2w′
1)z1 − w1z2 + w′

2z0.

We have w′
1 = −β′

3/3 and w′
2 = −α′

3/3, which are therefore directly computable
along the curve.

By taking the representation of a projective transformation by the triplet (U, b, w),
we have chosen a local chart on PGL2(R) which obviously contains the identity
represented by (Id, 0, 0). To be able to compute the differential of the left translation
LA(z), we need to express the product in this chart. One way to do this efficiently is
to observe that, by definition of the projective group, products in PGL2(R) can be
deduced frommatrix products in GL3(R), up to a multiplicative constant. A function
gwith coordinates (U, b, w) in the chart is identified (up tomultiplication by a scalar)
with the matrix
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(
U b
wT 1

)

and the product of g̃ = (Ũ , b̃, w̃) and ḡ = (Ū , b̄, w̄) is therefore identified with the
product of the associated matrices, which is

(
Ū b̄
w̄T 1

)(
Ũ b̃
w̃T 1

)
=
(
ŪŨ ′ + b̄w̃T Ū b̃ + b̄
w̄T Ũ + w̃T w̄T b̃ + 1

)
,

which yields the chart representation for the product

ḡg̃ =
(
(ŪŨ + b̄w̃T )/(1 + w̄T b̃),

(Ū b̃ + b̄)/(1 + w̄T b̃), (Ũ T w̄ + w̃′)/(1 + w̄T b̃)
)
.

To compute the differential of the left translation in local coordinates, it suffices
to take Ũ = Id + εH , b̃ = εβ and w̃ = εγ, and compute the first derivative of the
product with respect to ε at ε = 0. This yields

dIdL ḡ(H,β, γ) = (Ū H + b̄γT − w̄TβŪ , Ūβ − w̄Tβb̄, γ + HT w̄ − w̄Tβw̄).

We need to compute the inverse of this linear transformation, and therefore solve

⎧⎨
⎩
Ū H + b̄γT − w̄TβŪ = H̃
Ūβ − w̄Tβb̄ = β̃
γ + HT w̄ − w̄Tβw̄ = γ̃.

The second equation yields β = (Ū − b̄w̄T )−1β̃. Substituting γ in the first by its
expression in the third yields

H̃ = (Ū − b̄w̄T )H + b̄γ̃T + (w̄Tβ)b̄w̄T − w̄TβŪ

so that
H = (Ū − b̄w̄T )−1(H̃ − b̄γ̃T ) + (w̄Tβ)Id.

Finally, we have
γ = γ̃ − HT w̄ + w̄Tβw̄.

W̄ is obtained by applying these formulae to ḡ = A(z) = (U, b, w) and H̃ =
(θ1, θ2) with ⎧⎪⎪⎨

⎪⎪⎩

θ1 = u′
1 = w1z1 + z2 + w′

1z0
h′
2 = u′

2 = (2w′
1 − 2w2)z1 − w1z2 + w′

2z0
β̃ = z1
γ̃ = w′.

.
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Note that, since (A − bwT )h = Ah − wT hb, the identity z1 = u1 − w1b implies

β = (U − bwT )−1z1 = e1 .

Similarly, from u2 − w2b = z2 + 2w1z1, we get

(U − bwT )−1z2 = e2 − 2w1e1 .

We have, using b = z0 and γ̃ = w′,

H̃ − bγ̃T = (w1z1 + z2, (w′
1 − 2w2)z1 − w1z2

)
.

We therefore obtain

h1 = (U − bwT )−1(w1z1 + z2) + w1e1 = w1e1 + e2 − 2w1e1 + w1e1 = e2 ,

h2 = (U − bwT )−1((2w′
1 − 2w2)z1 − w1z2) + w1e2

= (2w′
1 − 2w2)e1 − w1(e2 − 2w1e1) + w1e2

= (2w′
1 + 2w2

1 − 2w2)e1 .

With c = w′
1 + w2

1 − w2, we have obtained W =
(
0 2c
1 0

)
. Moreover, we have

γ = w′ − HTw + w1w =
(

w′
1 − w2 + w2

1
w′

2 − 2cw1 + w1w2

)
.

Because we assume that
[
β′′
3 − 3α′

3 − 2β3β
′
3 + 2β3α3 + (4/9)β3

3

]1/3 = 1, we see
that w′

2 = −α′
3/3 can be expressed as a function of α3 and the derivatives of β3

(up to the second one), while c is equal to −(β′
3 − β2

3/3 − α3)/3. The invariant of
smallest degree can therefore be taken to be β′

3 − β2
3/3 − α3 (in fact, w′

2 − 2cw1 +
w1w2 = −c′/6). The projective curvature can therefore be taken as (assuming a
curve parametrized by projective arc length)

κm(σ) = ∂

(
det(ṁ,m(3))

det(ṁ, m̈)

)
− det(m(3), m̈)

det(ṁ, m̈)
+ 1

3

(
det(ṁ,m(3))

det(ṁ, m̈)

)2

.

The computation of the expression of the curvature for an arbitrary parametrization
is left to the reader. It involves the second derivative of the arc length, and therefore
the seventh derivative of the curve.
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1.16 Non-local Representations

1.16.1 Semi-local Invariants

The invariants that we have defined so far depend on derivatives that can be difficult
to estimate in the presence of noisy data (as seen in Fig. 1.1). Semi-local invariants
attempt to address this issue by replacing derivatives by estimates depending on
nearby, but not coincident, points. They provide new curve “signatures”, different
from the one associated to the curvature.

A general recipe for building semi-local invariants can be described as follows
[48]. For a given integer, k, one needs to provide:

1. An algorithm to select k points on the curve, relative to a single point m(u).
2. A formula to compute a signature based on the k selected points.

We introduce some notation. First, let Sm represent the selection of k points along
m. If p = m(u) is a point on m, we let Sm(p) = (p1, . . . , pk). Second, let F be the
signature function: it takes p1, . . . , pk as input and returns a real number.

We need to enforce invariance at both steps of the method. Reparametrization
invariance is implicitly enforced by the assumption that Sm only depends on p =
m(u) (and not on u). Consider now the issue of invariance with respect to a class G
of affine transformations. For A in this class, we want that:

1. The point selection process “commutes”: if Sm(p) = (p1, . . . , pk), then
SAm(Ap) = (Ap1, . . . Apk).

2. The function F is invariant: F(Ap1, . . . , Apk) = F(p1, . . . , pk).

Enforcing Point 2 becomes easy if one introduces a transformation A which
places the first points in Sm(p) in a generic position, leading to a normalization
of the function F . We clarify this operation with examples. Assume that the class
of transformations being considered are translations and rotations. Then, there is a
unique such transformation that displaces p1 on O and p2 on |p1 − p2|e1, where e1
is the unit vector of the horizontal axis. Denote this transformation by Ap1,p2 . Then,
we must have

F(p1, p2, . . . , pk) = F(Ap1,p2 p1, Ap1,p2 p2, . . . , Ap1,p2 pk)

= F(0, |p1 − p2|e1, Ap1,p2 p3, . . . , Ap1,p2 pk).

Conversely, it is clear that any function F of the form

F(p1, p2, . . . , pk) = F̃(|p1 − p2|, Ap1,p2 p3, . . . , Ap1,p2 pk)

is invariant under rotation and translation. The transformation Ap1 p2 can be made
explicit: skipping the computation, this yields ((xi , yi ) being the coordinates of pi )
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Ap1,p2 p j = 1

|p2 − p1|
(

(x2 − x1)(x j − x1) + (y2 − y1)(y j − y1)
(x2 − x1)(y j − y1) − (y2 − y1)(x j − x1)

)
.

Thus, with three selected points, the general form of F is

F(p1, p2, p3) = F̃
(
|p2 − p1|, (p2 − p1)T (p3 − p1)

|p2 − p1| ,

det(p2 − p1, p3 − p1)

|p2 − p1|
)
.

If scaling is added to the class of transformations, the same argument shows that
the only choice with three points is:

F(p1, p2, p3) = F̃

(
(p2 − p1)T (p3 − p1)

|p2 − p1|2 ,
det(p2 − p1, p3 − p1)

|p2 − p1|2
)

.

Similar computations hold for larger classes of transformations.

There are several possible choices for point selection (Step 1). One can use the arc
length (relative to the class of transformations) that we have defined in the previous
sections, and choose p1, . . . , pk symmetrically around p, with fixed relative arc
lengths σm(p1) − σm(p), . . . ,σm(pk) − σm(p). For example, letting δi = σm(pi ) −
σm(p), and if k = 2l + 1, one can take δ1 = −lε, δ2 = −(l − 1)ε, . . . , δk = lε.

However, the arc length requires using curve derivatives, and this is precisely
what we wanted to avoid. Some purely geometric constructions can be used instead.
For rotations, for example, we can choose p1 = p, and p2 and p3 to be the two
intersections of the curve m with a circle of radius ε centered at p (taking the ones
closest to p on the curves) with ε small enough. For scale and rotation, consider
again circles, but instead of fixing the radius in advance, adjust it so that |p2 − p3|
becomes smaller that 1 − ε times the radius of the circle. This is always possible,
unless the curve is a straight line.

Considering the class of special affine transformations [48], one can choose
p1, p2, p3, p4 such that the line segments (p1, p2) and (p3, p4) are parallel to the tan-
gent at p, and the areas of the triangles (p0, p1, p2) and (p0, p3, p4) are respectively
given by ε and 2ε.

1.16.2 The Shape Context

The shape context [33] represents a shape by a collection of histograms along its
outline. Here we give a presentation of this concept in the continuum and do not
discuss discretization issues.

Let s �→ m(s) be a parametrized curve, defined on some interval I . For s, t ∈ I ,
let v(s, t) = m(t) − m(s). Fixing t , the function s �→ v(s, t) takes values in R

2.
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Consider a density kernel, i.e, a function K : R
2 → R

2 such that, for fixed x , K (x, ·)
is a probability density on R

2, usually symmetric around x . The typical example is

K (x, y) = exp(−|x − y|2/(2σ2))/(2πσ2). (1.40)

Using this kernel, let, for s ∈ I

f (m)(s, y) =
∫
I
K (y, v(s, t))dt.

The density f (m)(s, ·) is the shape context of the curve at s and the bivariate
function f (m) is the shape context of the whole curve. To discuss some invariance
properties of this representation, we assume that the curve is parametrized by arc
length (and therefore focus on translation and rotations), and that K is radial, i.e.,
K (x, y) only depends on |x − y|, which is true for (1.40).

A translation applied to the curve has no effect on v(s, t) and therefore leaves
the shape context invariant. A rotation R transforms v into Rv, and we have
f (Rm)(s, Ry) = f (m)(s, y). The representation is not scale-invariant, but can be
made sowith an additional normalization (e.g., by forcing themean distance between
different points in the shape to be equal to 1, cf. [33]).

The shape context is a global representation, since it depends for any point on
the totality of the curve. To some extent, however, it shares the property of local
representations that small variations of the contour will have a small influence on the
shape context of other points, by only slightly modifying the density f (s, ·).

1.16.3 Conformal Welding

Conformal welding is a complex analysis operation that provides a representation
of a curve by a diffeomorphism of the unit circle. While a rigorous description of
the method requires advanced mathematical concepts (compared to the rest of this
book), the resulting representation is interesting enough to justify the effort.

We will identify R
2 with C, via the usual correspondence (x, y) → x + iy, and

add to C a point at infinity that will confer the structure of a two-dimensional sphere
to it. This can be done using the mapping

F(reiθ) =
(2r cos θ

r2 + 1
,
2r sin θ

r2 + 1
,
r2 − 1

r2 + 1

)
.

This mapping can be interpreted as identifying parallel circles on the sphere with
zero-centered circles on the plane; zero is mapped to the south pole, the unit disc
is mapped to the equator, and the representation tends to the north pole as r → ∞.
With this representation, the interior and the exterior of the unit disc are mapped
to hemispheres and therefore play a symmetric role. We will let C̄ denote C ∪ ∞.
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The complex derivative of a function is defined as the limit of ( f (z + h) − f (z))/h
as h → 0 in C.

Two domains Ω1,Ω2 ⊂ C̄ are said to be conformally equivalent if there exists a
function f : Ω1 → Ω2 such that f is onto and one-to-one and the complex derivative
f ′(z) exists for all z ∈ Ω1, with f ′(z) �= 0. Such a function has the property of
conserving angles, in the sense that the angle made by two curves passing by z
remains unchanged after a transformation by f .

The Riemann mapping theorem [249] states that any simply connected domain
(i.e., any domainwithinwhich any simple closed curve can be continuously deformed
into a point) is conformally equivalent to the unit disc. This domain may or may not
include a point at infinity and therefore may or may not be bounded. For example,
the transformation z �→ 1/z maps the interior of the unit disc to its exterior and
vice-versa. This conformal transformation is obviously unique up to any conformal
mapping of the unit disc onto itself. It can be shown that the latter transformations
must belong to a three-parameter family (a sub-class of the family of Möbius trans-
formations of the plane), containing functions of the form

z �→ eiα
ziβ + r

r zeiβ + 1
(1.41)

with r < 1. We let M1 be the set of such transformations (which forms a three-
parameter group of diffeomorphisms of the unit disc). A transformation in M1 can
be decomposed into three steps: a rotation z �→ zeiβ followed by the transformation
z �→ (z + r)/(zr + 1), followed again by a rotation z �→ zeiα.

The Riemannmapping theorem can be applied to the interior and to the exterior of
any Jordan curveγ. LettingΩγ represent the interior, andΩ

c
γ the exterior (the notation

holding for the complement of the closure ofΩγ), and D being the open unit disc, we
therefore have two conformal transformations Φ− : Ωγ → D and Φ+ : Ω

c
γ → D.

These two maps can be extended to the boundary of Ωγ , i.e., the range Rγ of the
curve γ, and the extension remains a homeomorphism. Restricting Φ+ to Rγ yields
a map ϕ+ : Rγ → S1 (where S1 is the unit circle) and similarly ϕ− : Rγ → S1. In
particular, the mapping ϕ = ϕ− ◦ (ϕ+)−1 is a homeomorphism of S1 onto itself. It is
almost uniquely defined by γ. In fact Φ+ and Φ− are both unique up to composition
(on the left) by a Möbius transformation, as given by (1.41), so that ϕ is unique up
to a Möbius transformation applied on the left or on the right. The indeterminacy
on the right can be removed by the following normalization; one can constrain Φ+,
which associates two unbounded domains, to transform the point at infinity into itself,
and be such that its differential at this point has a positive real part and a vanishing
imaginary part. Under this constraint, ϕ is unique up to the left action of Möbius
transformations.

Inmathematical terms,we obtain a representation of (smooth) Jordan plane curves
by the set of diffeomorphisms of S1 (denoted Diff(S1)) modulo the Möbius trans-
formations (denoted PSL2(S1)), writing

2D shapes ∼ Diff(S1)/PSL2(S
1).
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Fig. 1.4 Conformal disparity between the interior and exterior of four planar curves. First column:
original curves; second and third columns: two representations of the curve signature rescaled over
the unit interval, related by a Möbius transformation, illustrating the fact that these signatures are
equivalent classes of diffeomorphisms of the unit disc

We now describe the two basic operations associated to this equivalence, namely
computing this representation from the curve, and retrieving the curve from the
representation. The first operation requires computing the trace of the conformal
maps of the interior and exterior of the curve. Several algorithms are available to
compute conformal maps. The plots provided in Fig. 1.4 were obtained using the
Schwarz–Christoffel toolbox developed by T. Driscoll.

The solution to the second problem (going from the representation to the curves)
is described in [260, 261] (Fig. 1.5). It is proved in [261] that, if ϕ is the mapping
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Fig. 1.5 Reconstruction of the curves in Fig. 1.4 from their signatures

above, andψ = ϕ−1, the corresponding shape (defined up to translation, rotation and
scaling) can be parametrized as θ �→ F(θ) ∈ C, θ ∈ [0, 2π], where F is the solution
of the integral equation

K (F)(θ) + F(θ) = eiθ,

where K (F)(θ) = ∫ 2π
0 K (θ, θ̃)F(θ̃)d θ̃, and the kernel K is given by

K (θ, θ̃) = i

2
ctn

(
θ − θ̃

2

)
− i

2
ψ̇(θ̃) ctn

(
ψ(θ) − ψ(θ̃)

2

)

which has limit iψ̈(θ)/4ψ̇(θ) as θ → θ̃. The inverse representation can then be
computed by solving, after discretization, a linear equation in F . More precisely,
assume that ((θk,ϕk), i = 0, . . . , N ) is a discretization of ϕ (with ϕN = ϕ0 + 2π
and θN = θ0 + 2π). Following [261], one then makes the approximation

∫ 2π

0
ctn

(
ϕ − ϕ̃

2

)
F(ϕ̃)dϕ̃ �

N∑
k=1

Fk

∫ ϕk

ϕk−1

ctn

(
ϕ − ϕ̃

2

)
dϕ̃

= 2
N∑

k=1

Fk log
| sin((ϕ − ϕk)/2)|

| sin((ϕ − ϕk−1)/2)| ,

where we have set Fk = F((ϕk + ϕk−1)/2). Similarly, letting θ = ψ(ϕ),

∫ 2π

0
ctn

(
θ − ψ(ϕ̃)

2

)
F(ϕ̃)ψ̇(ϕ̃)dϕ̃ �

N∑
k=1

Fk

∫ θk

θk−1

ctn

(
θ − θ̃

2

)
d θ̃

= 2
N∑

k=1

Fk log
| sin((θ − θk)/2)|

| sin((θ − θk−1)/2)| .

Letting ϕ̄l = (ϕl + ϕl−1)/2 and θ̄l = (θl + θl−1)/2, one obtains a discretization
((ϕ̄l, Fl), l = 1, . . . , N ) of F by solving the equation
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Fl + i
N∑

k=1

Klk Fk = eiϕ̄l , l = 1, . . . , N

with

Klk = log
| sin((ϕ̄l − ϕk)/2) sin((θ̄l − θk−1)/2)|
| sin((ϕ̄l − ϕk−1)/2) sin((θ̄l − θk)/2)|

.



Chapter 2
The Medial Axis

2.1 Introduction

The medial axis (or skeleton) of a shape is the set of centers of discs of maximal
radii inscribed in the shape. It provides a skeleton-like structure, which, when the
associated maximal radii are also stored (providing the medial axis transform [37])
uniquely encodes the shape geometry.

To be specific, represent a shape by an open connected bounded set in the plane,
denotedΩ . Let B(p, r) denote the open disc of center p ∈ R

2 and radius r > 0. One
says that such a disc is maximal in Ω if and only if it is included in Ω , and no disc in
which it is (strictly) contained is included in Ω . The skeleton of Ω , denoted Σ(Ω),
is the set of all p such that B(p, r) is maximal in Ω for some r > 0, i.e., Σ(Ω) is
the set of loci of the centers of maximal discs. We shall also denote by Σ∗(Ω) the
set of pairs (p, r) such that B(p, r) is maximal. This is the medial axis transform
(MAT). We have the following proposition.

Proposition 2.1 The medial axis transform, Σ∗(Ω), uniquely characterizes Ω .

Proof Let
Ω̃ =

⋃

(p,r)∈Σ∗(Ω)

B(p, r).

By definition of Σ∗, we have Ω̃ ⊂ Ω and we want to prove the reverse inclusion
(therefore proving that Σ∗(Ω) characterizes Ω).

For x ∈ Ω , let

rx = dist(x,Ωc) = min{d(x, y), y /∈ Ω}.

One has B(x, rx ) ⊂ Ω . Define

Gx = {
y ∈ Ω : B(y, ry) ⊃ B(x, rx )

}
.
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Let r∗
x = sup{ry : y ∈ Gx }. By definition, there exists a sequence (yn) such that

ryn → r∗
x , and, becauseΩ is bounded, we can assume (replacing yn by a subsequence

if needed) that yn → y∗ ∈ Ω . Obviously, y∗ cannot belong to ∂Ω because this would
imply ryn → 0 while r∗

x ≥ rx > 0 (since x ∈ Gx ). Also, because B(yn, ryn ) ⊂ Ω ,
we have at the limit B(y∗, r∗

x ) ⊂ Ω , which implies B(y∗, r∗
x ) ⊂ Ω because Ω is

open. Similarly, passing to the limit in the inclusion B(x, rx ) ⊂ B(yn, ryn ) implies
B(x, rx ) ⊂ B(y∗, r∗

x ).
We now show that B(y∗, r∗

x ) is maximal. If B(y∗, r∗
x ) is included in some

ball B(y, r) ∈ Ω , it will be a fortiori included in B(y, ry) and since B(x, rx ) ⊂
B(y∗, r∗

x ), we see that y must be in Gx with ry > r∗
x , which is a contradiction.

We have therefore proved that every x ∈ Ω belongs to a maximal disk, therefore
proving that Ω ⊂ Ω̃ .

2.2 The Structure of the Medial Axis

We assume thatΩ is the interior of a piecewise smooth Jordan curve. Some structural
properties of the skeleton can be obtained under some assumptions on the regularity
of the curve [65]. The assumption is that the smooth arcs are analytic1 everywhere
except at a finite number of points; for these exceptional points, it is required that
m has both left and right tangents. The simplest example of a curve satisfying this
assumption is a polygon.

For such a curve, it can be shown that all but a finite number of points in the
skeleton are such that the maximal disc B(p, r) meets the curve m at exactly two
points. Such points on the skeleton are called regular. Non-regular points separate
into three categories.

The first one is when the maximal disc, B(m, r), meets the curve in more than
two connected regions. Such points are bifurcation points of the skeleton. The sec-
ond possibility is when there is only one connected component; then, there are two
possibilities: eitherm is the center of an osculating circle to the curve, or there exists
a concave angle at the intersection of the curve and the maximal disc. The third
possibility is when there are two connected components, but one of them is a sub-arc
of the curve. This happens only when the curve has circular arcs.

The skeleton itself is connected, and it is composed of a finite number of smooth
curves.

2.3 The Skeleton of a Polygon

Consider a closed polygon, without self-intersections. Denote its vertices by
m1, . . . ,mN ,mN+1 = m1. Let si denote the i th edge, represented by the open line
segment (mi ,mi+1), with i = 1, . . . , N . Amaximal disc B(m, r)within the polygon

1A function m is analytic at t if it is infinitely differentiable at this point, and equal to the limit of
its infinite Taylor series.
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has to meet the boundary at at least two points. We separate the cases depending on
whether these points are on edges or vertices.

Assume that B(m, r) is tangent to si at some point p ∈ si . Let Ti = (mi+1 −
mi )/|mi+1 − mi | be the unit tangent to si and Ni the unit normal. We assume that
the orientation is such that Ni points inward. We must have

p = m − r Ni and p = mi + tTi

for some t ∈ (0, |mi+1 − mi |). Taking the dot product of both equations with Ti and
computing the difference yields

t = (m − mi )
T Ti .

We therefore obtain the fact that B(m, r) is tangent to si if and only if

m − r Ni = mi + ((m − mi )
T Ti )Ti

with 0 ≤ (m − mi )
T Ti ≤ |mi+1 − mi |.

We can distinguish three types of maximal discs:

1. Bitangents: there exists i 	= j with

m = mi + ((m − mi )
T Ti )Ti + r Ni = m j + ((m − m j )

T Tj )Tj + r N j and

0 ≤ (m − mi )
T Ti ≤ |mi+1 − mi |, 0 ≤ (m − m j )

T Tj ≤ |m j+1 − m j |.

2. Discs that meet the boundary at exactly one edge and one vertex: there exists
i 	= j such that

m = mi + ((m − mi )
T Ti )Ti + r Ni ,

0 ≤ ((m − mi )
T )Ti ≤ |mi+1 − mi |

and |m − m j | = r.

3. Discs that meet the boundary at two vertices: there exists i 	= j such that |m −
mi | = |m − m j | = r .

Note that a maximal ball can meet a vertex only if this vertex points inward (concave
vertex). In particular, with convex polygons, only the first case can happen.

An interesting consequence of this result is that the skeleton of a polygon is the
union of line segments and parabolic arcs. To see this, consider the equations for the
three previous cases. For bitangents, we have

r = (m − mi )
T Ni = (m − m j )

T N j

which implies
(m − mi )

T (N j − Ni ) = (m j − mi )
T N j .
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If Ni 	= N j , this is the equation of a line orthogonal to Ni − N j . The case Ni = N j

can never occur because the normals have to point to the interior of maximal balls
and therefore coincide only if si = s j .

For the second case, we have

m − mi = ((m − mi )
T )TiTi + |m − m j |Ni ,

which yields
(m − mi )

T Ni = |m − m j |.

This is the equation of a parabola. To see why, express m as m = mi + αTi + βNi .
The previous equations yield β ≥ 0 and

β2 = (α − (m j − mi )
T Ti )

2 + (β − (m j − mi )
T Ni )

2

or
2(m j − mi )

T Niβ = (α − (m j − mi )
T Ti )

2 + ((m j − mi )
T Ni )

2.

Finally, in the last case, the skeleton coincides with the line of points which are
equidistant from the two vertices.We have therefore proved the following fact (which
comes in addition to the properties discussed in Sect. 2.2).

Proposition 2.2 The skeleton of a polygonal curve is a union of line segments and
parabolic arcs. For a convex polygon, the skeleton only contains line segments.

2.4 Voronoï Diagrams

2.4.1 Voronoï Diagrams of Families of Closed Sets

The previous computation and the most efficient algorithms to compute skeletons
are related by the theory of Voronoï diagrams. We start with their definition:

Definition 2.3 Let F1, . . . FN be closed subsets of R2. The associated Voronoï cells
are the sets Ω1, . . . , ΩN defined by

x ∈ Ωi ⇔ d(x, Fi ) < min
j 	=i

d(x, Fj ).

The union of the boundaries,
⋃N

i=1 ∂Ωi , forms the Voronoï diagram associated to
F1, . . . , FN .

In the case of a polygonal curve, the skeleton is included in the Voronoï diagram
of the closed line segments that form the curve. Indeed, a maximal disc has to meet
at least two segments (sometimes at their common vertices), and is at a strictly larger
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distance from the segments it does not intersect. It therefore belongs to the boundary
of the cells. The converse is false: a point from the diagram is not necessarily in the
skeleton (some points may correspond to external disks).

There exist very efficient algorithms to compute these diagrams. We shall not
detail them here, but references can be found in [222, 233].

The notion of Voronoï diagrams for a polygon can be extended to a general curve.
The question is to find sub-arcs F1, . . . , FN of the curve with the property that
their diagram contains the curve’s skeleton. What we have said concerning polygons
applies, except in one case: when a maximal disc meets an arc at two distinct points.
This could not happen with straight lines, and a condition ensuring that this does not
happen for a given arc is as follows [170]. Recall that a vertex of a smooth curve m
is a local extremum of the curvature.

Theorem 2.4 A sub-arc of a C2 closed curve which has two points belonging to a
maximal disc necessarily contains a vertex.

Therefore, it suffices to cut the curve at vertices to be sure that the obtained arcs
cannot hold two contacts with maximal discs.

2.4.2 Voronoï Diagrams of Discretized Boundaries

The medial axis can, in some sense, also be understood as deriving from the Voronoï
diagram of the infinite family of points in the boundary of Ω . The Voronoï cell
associated to a point x ∈ ∂Ω is the set

Vx = {
y ∈ Ω : |x − y| < |x ′ − y| for all x ′ ∈ ∂Ω \ {x}} .

(The set of points y such that x is closer to y than any other point on the boundary.)
When the boundary is smooth, Vx is normal to the boundary and extends to a point
y0 that belongs to the medial axis.

Consider now a finite family of points sampling the boundary, i.e., a finite subset
F ⊂ ∂Ω . Let d = max(d(x, F), x ∈ ∂Ω)measure the density of F in ∂Ω . The cells
of the Voronoï diagram of {{x}, x ∈ F} are possibly unbounded polygonal domains,
and those among their edges (boundaries) that are included in Ω will provide a
good approximation of the skeleton of Ω (see Fig. 2.1). One way to understand this
is through the relationship between Voronoï diagrams and Delaunay triangulations.
A triangulation of the finite set F is a family of triangles with vertices in F covering
the convex hull of F (the smallest convex set containing F) such that the intersection
of any two triangles is either empty, or a common vertex, or a common edge to the
two triangles. Such a triangulation is a Delaunay triangulation if in addition, the
circumcenters of any triangle contain no other point in F . Because of this property,
these circumcenters, which are equidistant to three vertices, and closer to them than
to any other, form vertices of the Voronoï diagram of F . Line segments joining the
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Fig. 2.1 Comparison of medial axes computed using Voronoï diagrams with different degrees of
discretization

circumcenters of two adjacent triangles (sharing an edge) form the edges of the dia-
gram. For the same reason, assuming that d is small enough, the circumcircles can
be seen as approximations of maximal balls with three contact points inΩ , and those
of them that belong to Ω therefore provide approximations of vertices of the medial
axis, the edges that connect them in the Voronoï diagram providing approximate
lines in the skeleton. Note that some of the circumcenters may fall outside of Ω (and
must therefore be excluded from the medial axis) and that the Voronoï diagram of
F contains, in addition, half-lines stemming from centers of boundary triangles and
through midpoints of segments of the boundary, which must also be excluded. There
is an extensive literature on the computation of Delaunay triangulation and Voronoï
diagrams, which constitute fundamental algorithms in computational geometry
[39, 226, 233], and numerous implementations in various softwares.

2.5 Thinning

There exist other approaches aiming at defining skeletal structures, which slightly
differ from the medial axis that we have described so far (sometimes called the Blum
medial axis, because it was introduced by Blum in [37]). Thinning algorithms, in
particular, create their own kind of skeleton which does not necessarily correspond
to centers of maximal discs. They are, however, quite efficient and generally easy to
implement. The principle is to progressively “peel off” the boundary of the region
until only a skeletal structure remains. One of the first methods, defined for discrete
binary images, is the Hilditch algorithm [147], in which a sequence of simple tests
are performed to decide whether a pixel must be removed or not from the region.
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A more formal definition of thinning, which is briefly described below, can be based
on the erosion operation in mathematical morphology [254].

Define a structuring element B to be a symmetric subset of R2 (for example a
small disc centered at 0). Using B, we define a sequence of operators that apply to a
set X and create a new set:

EB(X) = {x : x + B ⊂ X} (erosion),

DB(X) = {x : (x + B) ∩ X 	= ∅} (dilation),

OB(X) = DB ◦ EB(X) (opening),

LB(X) = X \ OB(X).

Erosion is like peeling X with a knife shaped like B. Dilation spreads matter around
X , adding around each point some material once again shaped like B. Opening
is an erosion followed by a dilation, which essentially puts back what the erosion
has removed, except the small structures that have completely been removed and
cannot be recovered (since there is nothing left to spread on). The last operation, LB ,
precisely collects these lost structures (called linear parts), and is the basic operator
for the morphological skeleton which is defined by

S(X) =
∞⋃

n=1

LB(EnB(X)).

This is the union of the linear parts of X after successive erosions. Note that, for
bounded X , this union is actually finite since EnB(X) = ∅ for large enough n.

2.6 Sensitivity to Noise

One of the main issues with the medial axis transform is its lack of robustness to
noise. Figure 2.2 provides an example of how small variations at the boundary of
a shape can result in dramatic changes in the skeleton. In fact, we have seen in our
discussion of polygons that the addition of a convex vertex automatically results in
a branch of the skeleton reaching it.

Fig. 2.2 Effect of a small shape change in the boundary on the skeleton of a rectangular shape
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Because of this, many skeletonization algorithms come with a way to prune the
skeleton of spurious branches. There are two ways to do this.

• Prior smoothing of the curve. One can apply curve smoothing algorithms (which
will be described in Chap. 5). For polygons, smoothing can be done by removing
small structures or flattening vague angles. It is interesting to note that smoothing
curves does not always result in simplifying the skeleton (see [25] for a discussion).

• Pruning. Branches can be removed after the computation of the skeleton. This can
be based on several principles using the fact that skeleton branches resulting from
small incidents at the boundary can be characterized. We refer to [124] for more
details.

2.7 Recovering the Initial Curve from the MAT

Given a parametrized sub-arc of the medial axis transform, one can explicitly recon-
struct the part of the boundary ∂Ω which is associated with it (the contact points on
∂Ω of the maximal balls centered on the subarc). Let γ be such a parametrization,
defined on (a, b) ⊂ R, with values in Σ∗(Ω), so that γ(u) = (m(u), r(u)) for some
functions m and r that we will assume to be at least C2.

Without loss of generality, assume that u �→ m(u) is an arc length parametrization
(|ṁu| = 1). Assume also that B(m(u), r(u)) has exactly two contacts with ∂Ω (this
is typically true on all Σ∗(Ω) except at a finite number of points). If x ∈ ∂Ω ∩
B(m(u), r(u)), then |x − m(u)| = r(u) and, for all ε 	= 0, |x − m(u + ε)| ≥ r(u +
ε) (because B(m(u + ε), r(u + ε)) ⊂ Ω). Thus, letting f (ε) = |x − m(u + ε)|2 −
r(u + ε)2, we have, because ε = 0 is a minimizer: f (0) = ḟ (0) = 0, with

ḟ (0) = −2
〈
x − m(u) , ṁ(u)

〉 + 2r(u)ṙ(u).

Solving this equation in x , we obtain two solutions given by

x+(u) = m(u) + r(u)
[
−ṙ(u)ṁ(u) +

√
1 − ṙ(u)2q(u)

]
,

x−(u) = m(u) + r(u)
[
−ṙ(u)ṁ(u) −

√
1 − ṙ(u)2q(u)

]
,

with q(u) ⊥ ṁ(u), |q(u)| = 1. Note that |ṙ | < 1 is a necessary condition for the
existence of two distinct solutions.

The curvature of the boundary can also be related to the medial axis via an explicit
formula. Let ρ+ (resp. ρ−) be the vector−ṙ ṁ + √

1 − ṙ2 q (resp.−ṙ ṁ − √
1 − ṙ2 q)

so that x+ = m + rρ+ and x− = m + rρ−. The following discussion holds for both
arcs and we temporarily drop the + and − indices in the notation.

We have x = m + rρ; ρ is a unit vector, and since the maximum disc is tangent
to the curve at x , ρ is normal to the curve. Since r is positive and ρ is a radial vector
for a maximal disc, ρ points outward from the curve at x and therefore is oriented
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in the opposite direction to the normal (assuming that the boundary is positively
oriented). Introduce the vector h = ṁ + ṙρ. We have hT ρ = −ṙ + ṙ = 0 so that h
is orthogonal to ρ. Since |ρ| = 1, ρ̇ is also orthogonal to ρ and there exists a number
c such that ρ̇ = −ch (we have |h|2 = 1 − ṙ2 > 0 so that h 	= 0). Since ρ = −N , we
also have

ρ̇ = ∂sρ
ds

du
= κ

ds

du
T,

where κ is the curvature of the considered arc of curve. Likewise, ẋ = (ds/du)T so
that ρ̇ = κẋ . We now use these identities to compute κ: we have ẋ = ṁ + ṙρ + r ρ̇ =
(1 − cr)h. This implies

κ = −c/(1 − cr),

which provides a very simple relation between c and the curvature.
To be complete, it remains to compute c. From ρ̇ = −c(ṁ + ṙρ), we get

ρ̇T ṁ = −c(1 + ṙρT ṁ) = −c(1 − ṙ2).

We also have
−r̈ = ∂(ρT ṁ) = ρ̇T ṁ + ρT m̈ = ρ̇T ṁ + KρT q,

where K is the curvature of the skeleton. Writing ρT q = ε
√
1 − ṙ2 with ε = ±1, we

get the equation:
ρ̇T ṁ = −r̈ − εK

√
1 − ṙ2,

which yields (reintroducing the + and − subscripts for each contact) c+ = r̈/(1 −
ṙ2) + K/

√
1 − ṙ2 and c− = r̈/(1 − ṙ2) − K/

√
1 − ṙ2.

2.8 Generating Curves from Medial and Skeletal
Structures

The previous section described how to retrieve a curve once its medial axis transform
has been computed. Here we want to discuss the issue of using the medial axis
transform as a modeling tool, i.e., of specifying a curve by starting from a medial
axis transform.

This is a more difficult problem, because not any combination of curves and radii
is a valid medial axis. Even when the skeleton consists of only one curve, we have
already seen conditions in the above section, like |ṙu | < 1 at all points in the interior
of the medial curve, that are required in the skeletal representation. We must also
ensure that the specified curve is regular on both sides of the axis, which, since ẋ =
(1 − cr)h, must ensure that 1 − cr does not vanish along the curve. In fact, 1 − cr
must be positive. To see this, note that we have proved that 1 − cr = (1 − rκ)−1. At
a convex point (κ > 0), r must be smaller than the radius of curvature 1/κ so that
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1 − rκ > 0. Since points of positive curvature always exist, we see that 1 − cr must
remain positive along the curve in order to never be zero. Using the expression for c
found in the previous section, this provides a rather complex condition:

1 − rr̈

1 − ṙ2
>

|K |r√
1 − ṙ2

. (2.1)

To ensure continuity of the reconstructed curve when boundary branches meet,
we need |ṙ | = 1 at terminal points of the medial axis. Also, if the medial axis has
multiple branches, the corresponding parts of the curve must have the same limits on
both sides. More conditions are needed to ensure that the contacts at these points are
smooth. This provides a rather complicated set of constraints that must be satisfied
by a generative medial axis model. This can be made feasible, however, in some
simple cases, as shown in the following examples.

2.8.1 Skeletons with Linear Branches

Let us consider the situation inwhich each branch of themedial axis is a line segment,
i.e., K = 0. The constraints on r are then r > 0, ṙ2 < 1 and rr̈ + ṙ2 < 1. The last
inequality comes from the fact that cr < 1 ⇔ rr̈ < 1 − ṙ2. Introducing z = r2/2,
this can also be written z̈ < 1. Assume that z̈ = − f with f > −1. Integrating twice,
we find

ż(u) = ż(0) −
∫ u

0
f (t)dt

z(u) = z(0) + uż(0) −
∫ u

0
(u − t) f (t)dt. (2.2)

We now analyze the other conditions in some special cases.

Shapes with a Single Linear Branch

We start with the simplest situation in which the medial axis is composed of a
single segment, say m(u) = (u, 0), u ∈ [0, 1]. Since |ṙ | = 1 at the extremities and
the medial axis cannot cross the boundary curve, we need ṙ(0) = 1 and ṙ(1) = −1.
Define

M0(u) =
∫ u

0
f (t)dt

M1(u) =
∫ u

0
t f (t)dt.

Using the identities ż(0) = r(0), ż(1) = −r(1), z(0) = r(0)2/2 and z(1) = r(1)2/2,
we can solve (2.2) with respect to r(0) and r(1) to obtain:
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r(0) = M0(1) + M0(1)2/2 − M1(1)

1 + M0(1)

r(1) = M0(1) − r(0) = M0(1)2/2 + M1(1)

1 + M0(1)
.

These quantities must be positive, andwewill assume that f is chosenwith this prop-
erty (note that the denominator is always positive since f > −1). These equations
imply that z, and therefore m, are uniquely determined by f .

Consider now the remaining constraints, which are (in terms of z) z > 0 and
ż2 < 2z on (0, 1). Since the latter implies the former, we can concentrate on it, and
introduce the function h(u) = 2z(u) − ż(u)2. We have h(0) = r(0)2 and h(1) =
r(1)2. Moreover,

ḣ = 2ż(1 − z̈) = 2ż(1 + f ).

Since1 + f > 0, ḣ vanishes for ż = 0, orM0(u) = r(0).Note that ḣ(0) = 2r(0)(1 +
f ) > 0 and ḣ(1) = −2r(1)(1 + f ) < 0 so ḣ changes signs over (0, 1).
Also, since the extrema of h only occur when ż = 0 (and h = 2z at these points),

h will be positive under any condition that ensures that z > 0 when ż = 0, which
reduces to r(0)2/2 + M1(u) > 0 whenever M0(u) = r(0).

There is an easy case: if f > 0, then M1(u) > 0 and the condition is satisfied.
Moreover, if f > 0, thenM1(1) ≤ M0(1) so that r(0) and r(1) are positive. However,
as Fig. 2.3 shows, interesting shapes are obtained when f < 0 is allowed.

Shapes with Three Intersecting Linear Branches

Let’s now consider a slightly more complex example with one multiple point and
three linear branches. So we have three lines, �1, �2, �3, starting from a single point
p0. Let �i = {p0 + uwi , u ∈ [0, si ]}, where w1, w2, w3 are unit vectors. Let qi be
a unit vector completing wi in a positively oriented orthonormal frame. Finally, let
r (1), r (2) and r (3) be the radii along each of these lines and z(i) = (r (i))2/2. Assume
that z̈(i) = − f (i)(u/si ) for u ∈ (0, si ), where f (i) > −1 as before, and is defined
over [0, 1].

We need to work out the compatibility conditions for the r (i) at the intersection
point, u = 0. Assume that the branches are ordered so that (w1, w2), (w2, w3) and
(w3, w1) are positively oriented. The compatibility conditions are

x (1)
+ (0) = x (2)

− (0), x (2)
+ (0) = x (3)

− (0), x (3)
+ (0) = x (1)

− (0).

Identifying the norms, we see that the radii must coincide: r (1)(0) = r (2)(0) =
r (3)(0) := r0. So, defining h1, h2, h3 by

h1 = ρ(1)
+ (0) = ρ(2)

− (0), h3 = ρ(2)
+ (0) = ρ(3)

− (0), h2 = ρ(3)
+ (0) = ρ(1)

− (0),

we see that the triangle (p0 + h1, p0 + h2, p0 + h3) has p0 as circumcenter, and the
lines defining the axis are the perpendicular bisectors of its edges.
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Fig. 2.3 Shapeswith horizontalmedial axes.The shapes (right column) are obtainedwith∂2
uu(r

2) =
−2 f ; f is shown in the left column

Given the above, it is easier to organize the construction by first specifying p0
and the three directions h1, h2, h3. This specifies the vectors w1, w2, w3: given i ∈
{1, 2, 3}, denote the other two indices by j and j ′ . Then

wi = (h j + h j ′)/|h j + h j ′ |
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and, from the expression of ρ, we see that this also specifies ṙ (i)(0), with

ṙ (i)(0) = −zTi h j = − 1√
2

√
1 + hT

j h j ′ = − cos(θi/2),

where θi is the angle between h j and h′
j .

This gives, for u ∈ [0, si ]

ż(i)(u) = ż(i)(0) −
∫ u

0
f (i)(t/si )dt = −r0 cos

θi

2
− si M

(i)
0 (u/si )

and

z(i)(u) = r20
2

− r0u cos
θi

2
− siuM

(i)
0 (u/si ) + s2i M

(i)
1 (u/si ).

Sinceweneed ṙ (i)(si ) = −1,wehave z(i)(si ) = r (i)(1)2/2 and ż(i)(si ) = −r (i)(1).
Identifying r (i)(1)2 in the two equations above yields

r20 cos
2 θi

2
+ 2r0si cos

θi

2
M (i)

0 (1)+s2i M
(i)
0 (1)2

= r20 − 2r0si cos
θi

2
− s2i M

(i)
0 (1) + s2i M

(i)
1 (1)

or

(
M (i)

0 (1)2 + 2M (i)
0 (1) − 2M (i)

1 (1)
) s2i
r20

+ 2 cos
θi

2

(
1 + M (i)

0 (1)
) si
r0

−
(
1 − cos2

θi

2

)
= 0. (2.3)

Assuming that f (i) satisfies

M (i)
0 (1)2/2 + M (i)

0 (1) − M (i)
1 (1) > 0,

which is a condition already encountered in the previous case, this equation has a
unique solution, specifying si . The curve is then uniquely defined by p0, h1, h2, h3,
f (1), f (2), f (3), with constraints on the f (i)’s similar to those obtained in the one-
branch case. Examples are provided in Fig. 2.4.

Note that this construction does not freely specify the medial axis, but only the
orientation of its branches (since the si ’s are constrained by the rest of the parameters).
One possibility to deal with this is to relax the specification of the f ′

i s by adding a
factor αi , using

z̈(i) = −αi f
(i).
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Fig. 2.4 Shapes generated from a medial axis with three linear branches

This implies that M (i)
0 and M (i)

1 must be replaced by αi M
(i)
0 and αi M

(i)
1 in the

computation above, and Eq. (2.3), with fixed si , becomes a second-degree equation in
αi . The consistency conditions (existence of a solution to this equation, requirement
that αi f (i) > −1, etc.) are, however, harder to work out in this case.

Shapes with Generic Linear Branches

Conceptually, the above construction canbegeneralized to any skeletonwith a ternary
tree structure and linear branches. Indeed, the derivative ṙ is uniquely specified at the
extremities of any branch: it is−1 if the branch ends and− cos θ/2 at an intersection,
where θ is specified by the branch geometry as above. Also, the radii at all branching
points are uniquely specified as soon as one of them is (the constraint propagates
along the tree). Of course, as before, the fact that the solution is uniquely defined does
not guarantee consistency, which become harder to specify when themedial axis gets
more complex. Finally, it is important to note that, for all the previous methods, even
if the consistency conditions are satisfied, there is still a possibility for the shape to
self-intersect non-locally (without singularity).

2.8.2 Skeletal Structures

One way to simplify the construction of a shape from a skeleton is to relax some
of the conditions that are associated with medial axes. Skeletal structures, which we
briefly describe now, have been introduced by J. Damon in [76–78] with this idea in
mind.
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There are two parts in Damon’s skeletal structure. The first one is the skeletal set
(the skeleton), which is a union of smooth open curves that meet at singular points
(branching points or end-points) with well-defined tangents at their extremities.

The second part of the skeletal structure is formed by the vectors that correspond
to rρ in our previous notation, with some smoothness and consistency conditions;
referring to [76] for details, here are the most important ones. Like with the medial
axis, each point in the smooth curves of the skeletal set carries two of these vectors
(one on each side of the curve), and singular points can carry one vector (at end-
points) or more than two (at branching points). When one continuously follows one
of these vectors along a smooth branch until a branching point, it must have a limit
within the set of vectors at this point, and all vectors at this point can be obtained
by such a process. At end-points, there is a unique vector which is tangent to the
skeletal curve.

To summarize, a skeletal structure requires a skeletal set, say S, and, at each point
p in the skeletal set, a set U (p) of vectors that point to the generated curve, subject
to the previous conditions. The generated curve itself is simply

C = {p +U (p), p ∈ S} .

The medial axis transform does induce a skeletal structure, but has additional prop-
erties, including the facts that, at each p, all vectors in U (p) must have the same
norm, and if p is on a smooth curve, the difference between the two vectors inU (p)
must be perpendicular to the curve. These properties are not required for skeletal
structures.

Most of the analysis done in the previous section on the regularity of the generated
curve with the medial axis transform can be carried over to skeletal structures. Along
any smooth curve in the skeletal structure, one can follow a smooth portion of the
generated curve, writing

x(u) = m(u) + r(u)ρ(u)

and assuming an arc-length parametrization in m(u). Letting c = −ṁT ρ̇, one can
write, for some α ∈ R,

ρ̇ = −cṁ + αρ

because ρ is assumed to be non-tangent to the skeletal set (except at its end-points).
This definition of c generalizes the one given for the medial axis, in which we
had ρ̇ = −ch = −cṁ + cρ̇ρ. Since we have ẋ = (1 − cr)ṁ + (α + ṙ)ρ, we see that
cr < 1 is here also a sufficient condition for the regularity of the curve.

We need to check that different pieces of curves connect smoothly at branching
points. With the medial axis, a first-order contact (same tangents) was guaranteed by
the fact that the generated curve was everywhere perpendicular to ρ. With skeletal
structures, we have (since ρ̇T ρ = 0)

ẋ T ρ = ṁT ρ + ṙ .
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So, a sufficient condition for smooth contacts at branching points and at end-points
is that ṙ + ṁTρ vanishes at the extremities of the smooth curves that form S (while
this quantity vanishes everywhere with the medial axis transform).

Obviously, these conditions are much less constraining than those associated with
the medial axis transform. One can start fixing ρ, which defines c, then r such that
rc < 1, with a few end-point conditions that must be satisfied. The simplification
that is brought to curve generation, however, comes at a price, which is that a skeletal
structure is not uniquely specified by a given curve, as the medial axis transformwas.
It is not a one-to-one curve representation.



Chapter 3
Local Properties of Surfaces

In this chapter, we start discussing representations that can be associated with
three-dimensional shapes, where surfaces now replace curves. We begin with some
basic definitions and results on the theory of surfaces in R

3. Although some parts
are redundant with the abstract discussion of submanifolds that is provided in
AppendixB, we have chosen to give a more elementary presentation here, very close
to [86], to ensure that this important section can be read independently.

3.1 Curves in Three Dimensions

Before addressing surfaces, we extend our developments on plane curves to the three-
dimensional case. A three-dimensional parametrized curve is a function γ : [a, b] �→
R

3. It is regular if it is C1 and |γ̇| �= 0 for all t ∈ [a, b]. For regular curves, the unit
tangent is defined by T = γ̇/|γ̇| and the arc length is ds = |γ̇(t)|dt .

Assume thatγ isC2 andparametrized by arc length.One then defines the curvature
of γ at s by κ(s) = |Ṫ |. This differs from the planar case, for which a sign was
attributed to the curvature: here, the curvature is always non-negative.

One says that the γ is bi-regular if κ(s) �= 0 for all s. In this case, one uniquely
defines a unit vector N by the relation Ṫ = κN ; N is perpendicular to T because
T has unit norm. Finally, the binormal is the unique unit vector B which completes
(T, N ) into a positive orthonormal basis of1 R3: B = T × N . The frame (T, N , B)

is called the Frénet frame, and the plane passing through γ(t) and generated by T
and N is called the osculating plane.

1If h = (a, b, c) and k = (a′, b′, c′) are three-dimensional vectors, their cross product h × k is
defined by

h × k = (bc′ − cb′, a′c − ac′, ab′ − a′b).
It is orthogonal to both h and k and vanishes if and only if h and k are collinear. Moreover, for any
third vector l: (h × k)T l = det(h, k, l).
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The derivative of the normal is orthogonal to N and can therefore be written
Ṅ = aT + bB. We have NT T = 0 so that a = Ṅ T T = −NT Ṫ = −κ. The torsion
of the curve is given by −b by definition and denoted τ so that Ṅ = −κT − τ B.
Using the fact that ḂT T = −BT Ṫ = −κBT N = 0 and ḂT N = −Ṅ T B = τ , we
have Ḃ = τN , which provides the third equation of Frénet’s formulas for three-
dimensional curves: ⎧

⎨

⎩

∂sT = κN ,

∂s N = −κT − τ B,

∂s B = τN .

(3.1)

(These equations are valid for any parametrization if one defines ∂s f = ḟ /|ṁ|.)
Note that, if F is the 3 by 3 rotation matrix associated with the Frénet frame, i.e.,
F = [T, N , B], then the Frénet formulas can be written as

∂s F = FSm, (3.2)

where Sm is the skew-symmetric matrix

Sm =
⎛

⎝
0 −κ 0
κ 0 τ
0 −τ 0

⎞

⎠ .

There is a three-dimensional version of Theorem1.13. The proof, based on
Eq. (3.2), is identical to the alternative proof given in two dimensions in Sect. 1.9.

Theorem 3.1 Two C2 curves γ and γ̃ have the same curvature and torsion as func-
tions of their arc length if and only if there exist a rotation R, a vector b and a change
of parameter φ such that γ̃ = Rγ ◦ φ + b.

3.2 Regular Surfaces

Curves being represented by one parameter, one may think of surfaces as bi-
parametrized objects, i.e., functions (u, v) = m(u, v) defined on some subset of
R

2.

Definition 3.2 A C p parametrized (regular) surface is a C p map m : U �→ R
3,

where U is an open subset of R2, such that:

1. m is one-to-one and its inverse, m−1 : V = m(U ) → U is continuous (m is a
homeomorphism between U and V ), i.e., if a sequence un is such that m(un)
converges to p = m(u) ∈ V , then un converges to u.

2. For all q ∈ U , the differential dm(q) is one-to-one.

The last statement is equivalent to the fact that the 3 by 2 matrix of partial deriva-
tives [∂1m, ∂2m] has rank 2. It is a direct generalization of regularity for curves.



3.2 Regular Surfaces 75

We did not assume that curve parametrizations were one to one, but this assumption
provides an important simplification for surfaces. The second part of Condition 1
also prevents situations in which the boundary of some part of the surface intersects
another part (see examples).

Finally, letting S = m(U ) be the range ofm, we will often abuse the terminology
by saying that S (the geometric object) is a parametrized surface. However, for many
interesting surfaces, it is generally impossible (or simply not convenient) to find
a parametrization which satisfies the previous requirement and covers the whole
surface. This is a fundamental difference with the theory of plane curves. To be able
to handle interesting cases, we need to limit our requirement for parametrizations to
hold only within patches that together cover the surface, with additional conditions
ensuring that the surface is smooth and non-intersecting, and that the patches fit well
together.

Definition 3.3 A subset S ⊂ R
3 is a Ck regular surface if, for each p ∈ S, there

exists an open set V in R
3, with p ∈ V , and a Ck parametrization of the surface

patch V ∩ S. The local parametrizations are also called local charts.

This definition requires more than just M being covered with parametrized patches.
These patches must be obtained from intersections of S with three-dimensional open
sets. In particular, this prevents non-local self-intersection, since, along such an
intersection, the surface would contain two local patches and would not be locally
parametrizable. Figure3.3 provides an illustration of how local parametrized patches
can be combined to cover a surface.

If m : U → V ∩ S is as specified in the definition, for any p in V ∩ S, there
exist parameters (u(p), v(p)) in U such that m(u(p), v(p)) = p. The functions
p �→ u(p) and p �→ v(p) are called the local coordinates on V ∩ S.

3.2.1 Examples

Graphs of Functions

The simplest example of a parametrized surface is the graph of aC1 function f : U ⊂
R

2 → R. The parametrization is then m(u, v) = (u, v, f (u, v)). Since the inverse
of (u, v, z) on the surface is (u, v), this is a homeomorphism, and the differential is

(u, v) �→
⎛

⎝
1 0
0 1

∂1 f ∂2 f

⎞

⎠

which has rank 2.
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Fig. 3.1 Helicoid (left) and cylinder (right)

Helicoid

A parametrized surface does not have to be a graph. An example is the helicoid
(Fig. 3.1), defined over (0, a) × R by

m(u, v) = (u cos(v), u sin(v),λv)

for some a,λ > 0.

Cylinder

The cylinder, which can be defined by the set of m(u, v) = (cos u, sin u, v), for
u ∈ [0, 2π) and v ∈ (−1, 1) (Fig. 3.1), is an example of a surface which, according
to our definition, cannot be globally parametrized. This map is one-to-one and in fact
a homeomorphism, and the only reason why this is not a parametrization is that we
have required parametrizations to be defined on open sets ([0, 2π) × (−1, 1) is not
open). The cylinder is a regular surface, by considering patches for the same map m,
defined on (0, 2π) × (−1, 1) and say (−π,π) × (−1, 1).

Sphere

Consider now the example of the unit sphere (Fig. 3.2), which is denoted

S2 = {
p ∈ R

3, |p| = 1
}
.

Like the cylinder, this surface cannot be globally parametrized. The simplest choice
of local charts are the projections: (u, v) �→ (u, v,

√
1 − u2 − v2) and (u, v) �→

(u, v,−√
1 − u2 − v2), both defined for u2 + v2 < 1, the open unit disc. The

two maps cover the whole sphere, except the equator for which the third coor-
dinate is 0. One can add other projections, like (u, v) �→ (u,±√

1 − u2 − v2, v),
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Fig. 3.2 Sphere (left) and torus (right)

(u, v) �→ (±√
1 − u2 − v2, u, v) to cover everything, or use cylindrical-like charts

close to the equator.
Another useful coordinate system for the sphere is the (properly named) spher-

ical coordinate system: (u, v) �→ (cos u cos v, sin u cos v, sin v). These coordinates
cover the whole sphere when (u, v) varies in [0, 2π) × [−π/2,π/2] but they do
not provide a local parametrization, since this set is not open (and the map is not
one-to-one for v = −π/2 and v = π/2). Restricting to the open intervals requires
using other charts to cover the meridian u = 0, for example the same coordinates on
(−π,π) × (−π/2,π/2)which now only leave the poles uncovered. A neighborhood
of the poles can be covered by the previous projection maps.

Torus

The torus (a surface with a shape like a donut, see Fig. 3.2) can be represented as the
image of [0, 2π) × [0, 2π) under the map

m(u, v) = ((R + r cos v) cos u, (R + r cos v) sin u, r sin v),

where 0 < r < R, which is one-to-one but once again not defined on an open set.
The whole torus can be covered by considering this map restricted to open subsets
of [0, 2π) × [0, 2π). Let us check that the rank of the differential of m is always 2.
We have

dm =
⎛

⎝
−(R + r cos v) sin u −r sin v cos u
(R + r cos v) cos u −r sin v sin u

0 r cos v

⎞

⎠ .

The determinant of the first two rows is −r sin v(R + r cos v). Since r < R, it
can only vanish when sin v = 0. For the remaining two determinants, which are
r(R + r cos v) sin u cos v and r(R + r cos v) cos u cos v, to vanish together, one
needs cos v = 0. So at least one of the three two-by-two determinants does not
vanish (Fig. 3.3).
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Fig. 3.3 Examples of decompositions in local charts for the sphere and the torus. Parametrizations
are represented by grids over the surface, black inside local patches and gray outside

A Non-regular Surface

As a last example, consider the set S defined by

S = {m(u, v) : (u, v) ∈ (−1, 1) × (−π/2,π)}
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Fig. 3.4 A non-regular
surface

with

m(u, v) =

⎧
⎪⎨

⎪⎩

cos v

sin 2v

u

(see Fig. 3.4). The parametrization is defined over an open set, it is one to one and

dm =
⎛

⎜
⎝

0 − sin v

0 2 cos 2v

1 0

⎞

⎟
⎠

has rank two everywhere. S is not a parametrized surface, however, because

lim
v→−π/2

m(0, v) = m(0,π/2),

which contradicts the assumption that m−1 is continuous. The same contradiction
can be obtained for S ∩ V where V is any open subset of R3 that contains 0, so that
S is not a regular surface either.
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3.2.2 Changing Coordinates

As we have seen, several different valid parametrizations can be defined at a single
point of a surface. Like for curves, “geometric” properties or quantities should not
dependon theparametrization.Wewill define a fewof them in the following: normals,
curvature, length, area, etc.

It can be deduced from the requirements in Definition3.2 that changes of coordi-
nates are C1 homeomorphisms. To be more specific, assume that in a neighborhood
V of a point p on S, there exist two parametrizations m : U → V and m̃ : Ũ → V .
Then, because of the invertibility of the parametrization, one can go fromU to V via
m, then from V to Ũ via the inverse of m̃. The resultingmap,ϕ = m̃−1 ◦ m : U → Ũ ,
is called a change of coordinates, and is a diffeomorphism between U and Ũ (it is
C1, invertible, with a C1 inverse). This consequence of Definition3.2 can be proved
using the inverse mapping theorem.

3.2.3 Implicit Surfaces

An implicit surface is defined by an equation of the form f (p) = 0 where f : R3 →
R is a scalar function which is such that ∇ f (p) �= 0 if f (p) = 0. In this case, the
set

S = {
p ∈ R

3, f (p) = 0
}

is a regular surface. (This is a consequence of the implicit function theorem.)

3.3 Tangent Planes and Differentials

3.3.1 Tangent Planes

For a curve, we were able to define a unique unit tangent, but this is obviously no
longer possible for surfaces. Still, curves provide a simple way to define tangent
vectors to surfaces.

A curve m : I → R
3 is supported by a surface S if and only if, for all t ∈ I , one

has m(t) ∈ S. We have the following definition:

Definition 3.4 Let S be a regular surface. A vector T ∈ R
3 is tangent to S at a point

p ∈ S if and only if, for some ε > 0, there exists a C1 curve γ : (−ε, ε) → S such
that γ(0) = p and γ̇(0) = T .

Assume, in the previous definition, that ε is chosen small enough so that the
curve γ is completely inscribed in a parametrized patch of the surface S. Let m :
(u, v) �→ m(u, v) be the parametrization. Since m is one-to-one, one can express
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γ(t) = m(u(t), v(t)). The plane curve t �→ (u(t), v(t)) is the expression of γ in the
local coordinates. From the chain rule, we have

γ̇ = u̇∂1m + v̇∂2m.

Thus, γ̇ must be a linear combination of the two independent vectors ∂1m and ∂2m.
Conversely, if p = m(u0, v0), then, for any α,β ∈ R, the vector α∂1m + β∂2m is
the derivative of t �→ m(u0 + αt, v0 + βt) and is therefore tangent to S at p. This
proves the following proposition:

Proposition 3.5 Let S be a regular surface, p ∈ S and m : U → S a parametriza-
tion of S in a neighborhood of p. The set of tangent vectors to S at p is the plane
generated by ∂1m and ∂2m.

The tangent plane to S at p will be denoted TpS. Although the generating vectors
∂1m and∂2m depend on the local parametrizationm, the plane itself does not, because
we gave a parametrization-independent definition of tangent vectors.

If S is defined implicitly by f (p) = 0, the tangent plane at p is characterized by
the equation ∇ f (p)T T = 0 (recall that f must be such that ∇ f (p) �= 0 if f (p) =
0). Indeed, if γ is a curve on S, then f ◦ γ(t) = 0 for all t , and the chain rule
implies:∇ f (γ(0))T γ̇(0) = 0. This implies that TpS ⊂ (∇ f (p))⊥. Because TpS and
(∇ f (p))⊥ have the same dimension (two), they coincide.

3.3.2 Differentials

Differentials describe how measurements made on a surface vary locally. Consider a
scalar function f : S → R and take a local parametrization on S, m : U → V ∩ S.
For (u, v) ∈ U , we can define the function fm(u, v) = f (m(u, v)); this is a function
froman open subset ofR2 toR, which provides the expression of f in the local system
of coordinates: we have f (p) = fm(u(p), v(p)). We have the following definition:

Definition 3.6 Let S be a regular surface. A function f : S → R is C1 at p ∈ S if
and only if, for some local parametrization m on S around p, the function fm is C1

at m−1(p).
We say that f is C1 on S if it is C1 at all p ∈ S.

(Because changes of coordinates areC1, the definition does not depend on the choice
of local parametrization at p.)

We now want to evaluate the effect that small variations in p have on the function
f , i.e., wewant to define the derivative of f . Usually, a first-order variation of p ∈ R

3

in the direction h is represented by p + εh, with small ε. This cannot be applied to
S, since there is no reason for p + εh to belong to S if p does. It is reasonable, and
rather intuitive, to define a first-order variation of p as an element of a curve on S
containing p. This leads to:



82 3 Local Properties of Surfaces

Definition 3.7 Let S be a regular surface and p ∈ S. A first-order variation of p in
the direction h ∈ R

3 is aC1 curve γ : (−ε, ε) → S such that γ(0) = p and γ̇(0) = h.

Note that, from this definition, first-order variations on S can only arise in directions
which are tangent to S.

Now, we can define the differential of a scalar function f defined on S as the limit
(if it exists) of the ratio ( f (γ(δ)) − f (p))/δ as δ tends to 0, γ being a first-order
variation of p. This will be denoted d f (p)h, with h = γ̇(0). Implicit in this notation
is the fact that this limit only depends on γ̇(0), which is true if f is C1 as stated in
the next proposition.

Proposition 3.8 Let f be a C1 scalar function on a regular surface S. Then, for any
p ∈ S, and h ∈ TpS, the differential of f at p in the direction h exists, and is equal
to the limit of the ratio ( f (γ(δ)) − f (p))/δ for any C1 curve γ on S with γ(0) = p
and γ̇(0) = h.

Proof What we need to prove is that the limit of the ratio exists for any γ and only
depends on h. Take a local parametrization m around p. We know that the function
f (m(u, v)) is C1, and letting γ(t) = m(u(t), v(t)), we have

lim
δ→0

f (γ(δ)) − f (p)

δ
= lim

δ→0

fm(u(δ), v(δ)) − fm(u(0), v(0))

δ
= ∂1 fmu̇(0) + ∂2 fm v̇(0).

This proves the existence of the limit. We have h = γ̇(0) = u̇(0)∂1m + v̇(0)∂2m:
since (∂1m, ∂2m) has rank 2, u̇(0) and v̇(0) are uniquely specified by h and thus the
limit above only depends on h. The notation d f (p)h is therefore valid. �

Note that the expression provided in this proof shows that d f (p)h is linear with
respect to h. In other terms, d f (p) is a linear form from TpS to R. Most of the time,
the computation of d f (p) is easy, because f can be expressed as the restriction to S
of a differentiable function which is defined on R

3. In this case, d f (p)h coincides
with the usual differential of f , but restricted to the two-dimensional plane TpS.

The proof above also provides a simple way to compute differentials in local
charts: let f : S → R be C1, p ∈ S and m be a local parametrization around p.
Then, if h = α∂1m + β∂2m, we have

d f (p)h = α∂1 fm + β∂2 fm . (3.3)

When f is a vector-valued function ( f : S → R
d ), the differential d f (p) is

defined in the same way, and is also vector-valued. It is a linear map from TpS
to Rd .

The simplest examples of differentiable maps are the coordinates: if m : U →
V ∩ S is a local chart, the function f = m−1 is such that fm(u, v) = (u, v), which
is the identity map, and therefore differentiable. In particular, the coordinates: p �→
u(p) and p �→ v(p) are scalar differentiable maps. If T = α∂1m + β∂2m, we have
du(p)T = α, dv(p)T = β and d f (p)T = (α,β).
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Consider now the example of the sphere S2. The tangent plane is easy to describe
if one uses the fact that S2 can be defined by the implicit equation |p|2 = 1. If
φ(p) = |p|2, we have ∇φ(p)T h = 2pT h so that h is tangent to S2 at p if and only
if pT h = 0 (h is perpendicular to p).

Fix a vector p0 ∈ S2 and consider the function f (p) = pT p0. Then, since f is
well-defined on R

3, we can use its restriction, which yields d f (p)h = hT p0. This
was an easy result, but for illustration purposes, let us retrieve it via local charts,
which will require a little more computation.

Consider the parametrization m(u, v) = (cos u cos v, sin u cos v, sin v). Then,

∂1m = (− sin u cos v, cos u cos v, 0) and

∂2m = (− cos u sin v,− sin u sin v, cos v).

A straightforward computation shows that both ∂1m and ∂2m are orthogonal to
m(u, v). In the chart, letting p0 = (a, b, c), the function fm is

fm(u, v) = a cos u cos v + b sin u cos v + c sin v.

Obviously, ∂1 fm = p0T∂1m and ∂2 fm = p0T∂2m, so that, if h = α∂1m + β∂2m, we
get, by Eq. (3.3),

d f (p)h = α∂1 fm + β∂2 fm = p0
T h.

3.4 Orientation and Normals

Let S be a surface and m a local parametrization on S. The vector ∂1m × ∂2m is
non-vanishing and orthogonal to both ∂1m and ∂2m. Since ∂1m and ∂2m generate
TpS at p = m(u, v), ∂1m × ∂2m is normal to the tangent plane at p.

In particular, the vector N = ∂1m × ∂2m/|∂1m × ∂2m| is a unit normal to the
tangent plane. One also says that N is normal to the surface S. Since unit normals to
a plane are defined up to a sign change, the one obtained from another parametrization
must be either N or −N . This leads to the following definition:

Definition 3.9 Two local parametrizations, m and m̃, on a regular surface S have
the same orientation at a given point at which they are both defined if

∂1m × ∂2m

|∂1m × ∂2m| = ∂1m̃ × ∂2m̃

|∂1m̃ × ∂2m̃|
and have opposite orientation otherwise.

The surface S is said to be orientable if it can be covered by local parametrizations
that have the same orientation wherever they intersect.
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Fig. 3.5 Two examples of non-orientable surfaces. On the left is the Möbius band; the surface on
the right is similar, with an odd number of twists

A surface is therefore orientable if there is a consistent (continuous) definition of
a normal all over it. Not all surfaces are orientable (Fig. 3.5). A typical example is a
twisted ring (the Möbius band).

3.5 Integration on an Orientable Surface

Let S be an orientable surface and f : S → R be a continuous function. We want
to compute the integral of f over S. We first define it within a local chart. Let
m : U → V ∩ S be a parametrized patch of the surface S. To motivate the definition,
let U be divided into small rectangular cells (neglecting boundary issues). Consider
a cell of the form (u0 − ε/2, u0 + ε/2) × (v0 − ε/2, v0 + ε/2). In this cell, we can
make a first-order expansion of m in the form

m(u, v) = m(u0, v0) + (u − u0)∂1m(u0, v0) + (v − v0)∂2m(u0, v0) + o(ε)

so that, at first order, the image of the rectangular cell by m is a parallelogram in
space, centered at p0 = m(u0, v0), namely

σ0 = {p0 + α∂1m + β∂2m,α ∈ (−ε/2, ε/2),β ∈ (−ε/2, ε/2)} .

Its area is given by ε2|∂1m × ∂2m|, and the integral of a function f over this parallel-
ogram can legitimately be estimated by ε2 f (p0)|∂1m × ∂2m|. Summing over cells
and letting ε tend to 0 leads to the following definition:

Definition 3.10 Let f be a function defined on a regular surface S, and m : U →
V ∩ S a regular patch on S. The integral of f on V ∩ S is defined and denoted by
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∫

V∩S
f (p)dσS(p) =

∫

U
fm(u, v) |∂1m × ∂2m| du dv . (3.4)

The integral of f over the whole surface S is defined as the sum of such integrals
over non-overlapping local patches that cover S (maybe leaving out a finite number
of curves or points on S). It is denoted

∫

S
f (p) dσS(p) or

∫

S
f dσS.

This can be shown to be independent of the chosen family of patches. The nota-
tion dσS refers to the area form on S, defined on a local chart by dσS = |∂1m ×
∂2m| du dv.

Note that the area form that we have defined here is a special case of a volume form
in an arbitrary finite-dimensional manifold. For this reason, it is also often called the
volume form of S (even though it measures areas).

Another (equivalent) way to globally define the integral is to use partitions of
unity. Given a family ((Ui ,mi ), i = 1, . . . , n) of local parametrizations which cover
the surface (so that

⋃
i mi (Ui ) = S), but may overlap, one defines a partition of unity

as a family of continuous functions (ωi , i = 1, . . . , n) where each ωi is defined on
S and takes values in [0, 1], with ωi (p) = 0 if p /∈ mi (Ui ), and for all p ∈ S,

n∑

i=1

ωi (p) = 1.

Such partitions of unity always exist, and one can define

∫

S
f (p) dσS(p) =

N∑

i=1

∫

Ui

ωi (mi (u, v)) fmi (u, v)|∂1mi × ∂2mi | du dv .

Here also, the result does not depend on the local parametrizations, or on which
partition of unity is chosen.

That the right-hand side of (3.4) does not depend on the chosen parametrization
should be clear from the approximation process which led to its definition (which
was purely geometric), and can be checked directly as follows. Let m̃ : Ũ → V ∩ S
be another parametrization of the same patch. For p ∈ V ∩ S, the equation p =
m(u, v) = m̃(ũ, ṽ) provides a relation between homologous coordinates given by

⎧
⎪⎨

⎪⎩

∂1m = ∂1ũ∂1m̃ + ∂1ṽ∂2m̃

∂2m = ∂2ũ∂1m̃ + ∂2ṽ∂2m̃.
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The left-hand sides are computed at (u, v) and the right-hand sides at (ũ, ṽ). This
implies

∂1m × ∂2m = (∂1ũ∂2ṽ − ∂1ṽ∂2ũ) ∂1m̃ × ∂2m̃ .

Letting φ be the change of variables (φ(u, v) = (ũ, ṽ)), this is ∂1m × ∂2m =
(det φ)(∂1m̃ × ∂2m̃) ◦ φ. Therefore

∫

U
f (m(u, v)) |∂1m × ∂2m| du dv

=
∫

U
f (m̃ ◦ φ(u, v)) |∂1m × ∂2m| ◦ φ(u, v) | det φ(u, v)| du dv

=
∫

Ũ
f (m̃(ũ, ṽ)) |∂1m̃ × ∂2m̃| dũ d ṽ.

As an example, we compute the area of the unit sphere, which can be parametrized
(poles excepted) by m(u, v) = (cos u cos v, sin u cos v, sin v). Then

∂1m = (− sin u cos v, cos u cos v, 0),

∂2m = (− cos u sin v,− sin u sin v, cos v)

and |∂1m × ∂2m|2 = cos2 v, so that

∫

S2
dσ =

∫ 2π

0

∫ π/2

−π/2
cos v du dv = 2π[sin v]π/2

−π/2 = 4π.

3.6 Regular Surfaces with Boundary

Consider the surface S defined by x2 + y2 < 1, z = 0, which is the unit disc in the
horizontal plane. It is natural to define the boundary of S to be the circle x2 + y2 < 1,
z = 0. Such a definition cannot coincide with the topological boundary in R3, ∂S =
S̄ \ S̊, which would be the unit disc S̄ defined by x2 + y2 ≤ 1, z = 0 (because S has
an empty interior in R3). Because of this, one defines the boundary of a surface S by
∂S = S̄ \ S (and never use the topological boundary).

For a regular surface to be a “regular surface with boundary”, some additional
requirements are made to ensure that the boundary is locally a smooth curve.

Definition 3.11 Let S be a regular surface. One says that p ∈ ∂S is a regular bound-
ary point if there exists a parametrized surface m : U → R

3, where U is open in
R

2 with 0 ∈ U such that m(0, 0) = p, and, ifU+ = {(u, v) ∈ U : v > 0} andU 0 =
{(u, v) ∈ U : v = 0}, one has m(U+) = m(U ) ∩ S and m(U 0) = m(U ) ∩ ∂S.

One says that S is a regular surface with boundary if every point p ∈ ∂S is regular.

Equivalently, p ∈ ∂S is regular if there exists a regular surface S̃ such that S ⊂ S̃,
p ∈ S̃ and ∂S ∩ S̃ is a C1 regular curve on S̃.
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With this definition, the horizontal unit disc considered above is a regular surface
with boundary, and its boundary is the horizontal unit circle. If one removes the
origin from this unit disc, one still has a regular surface, but not “with boundary”
anymore, because 0, which is now in the boundary, is not a regular point. Similarly, a
triangular region, such as {x > 0, y > 0, x + y < 1, z = 0}, is not a regular surface
with boundary, because its boundary has angles.

Let S be a regular surfacewith boundary and assume that S is oriented. Let p ∈ ∂S
and m be a local parametrization such as the one defined in Definition3.11. Assume
that m : U+ → S is positively oriented (otherwise, take its composition with the
transformation (u, v) �→ (−u, v)). Then one defines the unit tangent and normal to
∂S at p by T∂S(p) = ∂1m(0, 0)/|∂1m(0, 0)| and N∂S(p) = NS(p) × T∂S(p) where
NS(p), defined by

NS(p) = ∂1m(0, 0) × ∂2m(0, 0)

|∂1m(0, 0) × ∂2m(0, 0)| ,

extends the normal to S to its boundary. We let the reader check that this definition
does not depend on the chosen parametrization m (or refer to the general argument
made in Sect.B.7.3). With this definition, N∂S is the inward pointing normal to ∂S
in the tangent plane to S.

Note that the term “boundary” is not the only difference between the terminology
used for surfaces and the one for standard topology. Here is another example.

Definition 3.12 One says that a regular surface S is a “closed surface”, or a “surface
without boundary”, if and only if S is a compact subset of R3.

With this definition, a sphere and a torus are closed surfaces. However, the horizontal
plane z = 0 is a closed subset of R3 and a regular surface, but not a closed surface
according to this definition.

3.7 The First Fundamental Form

3.7.1 Definition and Properties

Let S be a regular surface. When h and k are two tangent vectors at p ∈ S, their dot
product in R3 will be denoted

〈
h , k

〉

p. It is simply the usual dot product, the sum of
products of coordinates, but gets a specific notation because it is restricted to TpS.
The associated quadratic form is called the first fundamental form, and denoted

Ip(h) := |h|2p . (3.5)

This form is the key instrument for metric measurements on surfaces. Although its
definition is straightforward, one must remember that surfaces are mostly described
by local charts, and the expression of the form in such charts is not the standard
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norm anymore. Indeed, let m be a local parametrization around p, and h = α∂1m +
β∂2m ∈ TpS. Then

Ip(h) = α2
〈
∂1m , ∂1m

〉

p + 2αβ
〈
∂1m , ∂2m

〉

p + β2
〈
∂2m , ∂2m

〉

p

= α2E + 2αβF + β2G

with the notation

E = 〈
∂1m , ∂1m

〉

p, F = 〈
∂1m , ∂2m

〉

p, G = 〈
∂2m , ∂2m

〉

p. (3.6)

E, F and G are the coefficients of the first fundamental form in the chart. They
depend on the parameters u, v.

The following proposition allows one to use convenient local charts around a
given point.

Proposition 3.13 If S is a regular surface and p ∈ S, there exists a local
parametrization m : U �→ S around p such that (∂1m, ∂2m) is orthogonal on U.

(Note that this proposition does not hold if ‘orthogonal’ is replaced with ‘orthonor-
mal’.)

3.7.2 Geodesics

The first fundamental form provides all the information required to compute lengths
of curves on S: let γ be such a curve; assuming that γ is contained in a parametrized
patch and letting γ(t) = m(u(t), v(t)), we have

|γ̇|2 = |u̇∂1m + v̇∂2m|2 = u̇2E + 2u̇v̇F + v̇2G

so that the length of the curve from its expression in local coordinates is provided by

length(γ) =
∫ b

a

√
u̇2E(u, v) + 2u̇v̇F(u, v) + v̇2G(u, v)dt.

Similarly, one defines the energy of a curve γ by

energy(γ) = 1

2

∫ b

a
|γ̇|2dt = 1

2

∫ b

a

(
u̇2E(u, v) + 2u̇v̇F(u, v) + v̇2G(u, v)

)
dt.

Curves of minimal energy on a surface are called minimizing geodesics, as for-
malized by the following definition.
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Definition 3.14 Given two points p and p′ on a surfaceM , a curve γ onM achieving
the minimum energy among all piecewise C1 curves on M linking p and p′ is called
a (minimizing) geodesic.

In addition to minimizing the energy, it can be shown that geodesics are curves
of minimal length between two points [86, 87]. Moreover, if we define

dM(p, p′) = inf
{
length(γ) : γ piecewise C1 on M

}

then dM is a distance on M , called the geodesic distance. Therefore if γ is a mini-
mizing geodesic between p and p′ then length(γ) = dM(p, p′).

Minimizing geodesics between two given points do not always exist, however.
Let M be, for example, the plane z = 0 with the point (0, 0, 0) removed, which is
a regular surface. Then the geodesic distance between p and −p in M is 2|p|, but
this distance cannot be achieved because the optimal curve must be a straight line
containing 0. We however have the following theorem, which is an application of
the standard Hopf–Rinow theorem (see [86], for example).

Theorem 3.15 If M is a (topologically) closed surface, then there exists a minimiz-
ing geodesic connecting any pair of its points.

If γ is a minimizing geodesic between p and p′, and h(t) is for all t a vector
tangent to the surface at γ(t), one can define, for small ε, a one-parameter family of
curves γ̃(t, ε) such that γ̃(t, 0) = γ(t) and ∂εγ̃(t, 0) = h(t). Since γ is minimizing,
the function ε �→ energy(γ̃(·, ε)) has a vanishing derivative at ε = 0. This derivative
is given by

∫ b

a
γ̇T ḣdt = −

∫ b

a
γ̈T hdt

by integration by parts. The fact that this expression vanishes for any h tangent to
the surface along γ implies that the “acceleration” γ̈ is normal to the surface. By
extension, curves satisfying this property are also called geodesics. They generalize
the notion of straight lines in a plane.

Definition 3.16 A C2 regular curve γ on M is called a geodesic if its second deriva-
tive γ̈ is always normal to M .

Note that, using ∂|γ̇|2 = 2γ̇T γ̈ = 0 for geodesics, one finds immediately that such
curves have “constant speed”: |γ̇| = const.

Let us compute the geodesics of the unit sphere. Such geodesics must satisfy
|γ(t)| = 1 for all t and, in order to be normal,

γ̈(t) = λ(t)γ(t)

for some real-valued function λ. On the sphere, we can write, since γT γ̇ = 0,

0 = ∂tγ
T γ̇ = |γ̇|2 + λ(t)|γ|2,
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which implies (because γ̇ is constant along geodesics and |γ| = 1) that λ is constant.
So geodesics must satisfy the equation γ̈ = λγ. By making a constant time change,
we can assume that |γ̇| = −λ(t) = 1, and that γ is parametrized by arc length. Since
∂γ̈ = γ̇, we see that the curve has unit curvature and zero torsion and therefore
coincides with a portion of unit circle. The only unit circles included in the sphere
must be centered at 0, and constitute the great circles on the sphere. So we find that
geodesics on the sphere are great circles parametrized at constant speed.

Finally, we note that the first fundamental form also determines the area form
used in the computation of integrals over the surface. Indeed, one can easily check
that |∂1m × ∂2m| = √

EG − F2 (both terms are equal to |∂1m| |∂2m| | sin θ| where
θ is the angle between the two tangent vectors) so that

dσS =
√
EG − F2 du dv. (3.7)

3.7.3 The Divergence Theorem on Surfaces

A vector field on S is a function h : S → R
3 such that, for all p, h(p) ∈ TpS. We

start with a simple definition of the divergence of a C1 vector field.

Definition 3.17 Let h be a C1 vector field on a regular surface S. The divergence of
h on S is defined by

divSh(p) = e1
T dh(p)e1 + e2

T dh(p)e2 (3.8)

whenever e1, e2 is a positively oriented orthonormal basis of TpM (the result being
independent of the choice made for e1, e2).

In this definition, dh(p) is a linear transformation between TpS and R
3. If h is

defined on S and takes values in R
3 (not necessarily in T S), the definition remains

meaningful. We will use the notation div′
S(h) for the left-hand side of (3.8) in that

case. In fact, if h decomposes as h = hT + μN where hT is a vector field on S, we
have

div′
S(h) = divS(hT ) + μdiv′

S(N ). (3.9)

Another way of understanding the definition is by introducing the orthogonal
projection on TpS (denoted πTp S) and the operator

∇Sh(p) = πTp S ◦ dh(p) : TpS → TpS. (3.10)

This operator is the covariant derivative on S, as described in AppendixB, and
Definition3.17 simply says that

divSh(p) = trace(∇Sh(p)). (3.11)
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Note that we have, for ξ ∈ TpS

∇Sh(p)ξ = dh(p)ξ − ((dh(p)ξ)T N )N .

This definition can be made explicit in a chart. This yields the following propo-
sition (the proof, which is just a computation, is left to the reader):

Proposition 3.18 If m is a local chart on S and the C1 vector field h decomposes
as h = α∂1m + β∂2m in this chart, we have

divSh = ∂1α + ∂2β + (α∂1ρ + β∂2ρ)/ρ, (3.12)

where ρ = |∂1m × ∂2m| = √
EG − F2.

We also have the nice formula, still valid in a chart, that says that

∂1h × ∂2m + ∂1m × ∂2h = ρ(divSh)N . (3.13)

This result is a direct consequence of the following simple computation in linear
algebra, the proof of which is left to the reader.

Lemma 3.19 Let A be a linear operator from M, anoriented two-dimensional linear
subspace of R3, to R3. Let n be the unit normal to M. Define, for e1, e2 ∈ M,

φA(e1, e2) = (Ae1)
T (e2 × n) + (Ae2)

T (n × e1).

Then, there exists a real number ρ(A) such that

φA(e1, e2) = ρ(A) det(e1, e2, n),

which is also equal to ρ(A)|e1 × e2| if e1, e2 are positively oriented. Moreover, we
have

ρ(A) = trace((Id − nnT )A), (3.14)

where (Id − nnT )A (which is A followed by the projection on M) is considered as
an operator from M to itself.

Equation (3.13) just comes by applying Lemma3.19 with M = TpM , A = dh(p),
e1 = ∂1m and e2 = ∂2m.

We now give the divergence theorem on a surface, which is a direct generalization
of the one we saw on R

2 (Theorem1.16):

Theorem 3.20 Let S be an oriented regular surface, and h a smooth vector field on
S. Then, if Σ ⊂ S is a bounded subdomain of S with a regular boundary, we have

∫

∂Σ

hT N∂Σ dσ∂Σ = −
∫

Σ

divS(h) dσS,
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where the first integral is a line integral over the curve ∂Σ , and N∂Σ is the inward
normal to Σ (normal to ∂Σ and tangent to S).

The proof (which we skip) is an application of Green’s formula inR2 combined with
a decomposition in local coordinates.

In addition to the divergence, one can define the gradient operator on a surface S,
which applies to scalar-valued functions.

Definition 3.21 Let f : S → R be C1. The gradient of f at p ∈ S is denoted
∇S f (p) and defined by ∇S f (p) ∈ TpS and

∀ξ ∈ TpS,
〈∇S f (p) , ξ

〉

p = d f (p) ξ. (3.15)

Note that, even if they are using the same symbol ∇S , the covariant derivative intro-
duced in (3.10) and the gradient in (3.15) are similar, but different notions, since the
former applies to vector fields on S and the latter to scalar functions. Their similar-
ity (and some justification for the notation conflict) is supported by the following
observation: if f is the restriction to S of a differentiable function f̂ defined on R3,
then (3.15) implies that ∇S f is the orthogonal projection of ∇ f̂ (the usual gradient
in R3) on the tangent plane to S, namely

∇S f (p) = πTp S∇ f̂ (p) = ∇ f̂ (p) − (N (p)T∇ f̂ (p))N (p). (3.16)

In a chart (u, v) �→ m(u, v), we have

∇S f = G∂1 f − F∂2 f

EG − F2
∂1m + E∂2 f − F∂1 f

EG − F2
∂2m. (3.17)

The usual formula, div( f h) = ∇ f T h + f divh, extends to surfaces with

divS( f h) = ∇S f
T h + f divSh (3.18)

for a scalar function f and a vector field h on S.
The generalization of the Laplacian on R

2 is the Laplace–Beltrami operator on
S. It is defined as follows:

Definition 3.22 The Laplace–Beltrami operator on a regular surface S associates to
a scalar function f on S the scalar function �S f defined by

�S f = divS∇S f. (3.19)

The Laplace–Beltrami operator in a chart is therefore given by the combination of
(3.17) and (3.12), which yields a formula notably more complex than the ordinary
Laplacian.

Theorem3.20 relates surface integrals to linear integrals over the surface. Surface
integrals can also be related to three-dimensional integrals, if the surface is closed,
via the three-dimensional divergence theorem.
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Theorem 3.23 Let Ω be a bounded domain in R
3 and assume that S = ∂Ω is a

regular surface. If v is a C1 vector field on R
3, we have

∫

Ω

divv dx = −
∫

S
vT (m)N (m) dσS(m), (3.20)

where N (m) is the inward normal to S at m.

From this theorem, we can derive an expression of the volume of Ω as an integral
over its boundary, namely (taking v(x, y, z) = (x, y, z) in (3.20))

volume(Ω) = −1

3

∫

S
OmT N (m) dσS(m). (3.21)

3.8 Curvature and the Second Fundamental Form

Let S be a C2 orientable regular surface, and N be its unit normal. The function N
can be seen as a map defined on S with values in R

3 (in fact in the unit sphere S2

since |N | = 1), which is called the Gauss map. It therefore has a differential, dN .
For any p ∈ S, dN (p) is a linear map from TpS toR3. The fact that |N |2 = 1 implies
that (dN (p)h)T N (p) = 0 for all h ∈ TpS so that the range of dN (p) is orthogonal
to N (p) and therefore coincides with TpS. We can therefore consider dN (p) as an
endomorphism (a linear map from a vector space into itself)

dN (p) : TpS → TpS.

This endomorphism (also called the shape operator) is essential for describing the
curvature of the surface, which measures how the surface bends in a neighborhood
of a point p. It has the interesting property of being symmetric:

Proposition 3.24 Let S be a regular surface and p ∈ S: for any h, k ∈ TpS, we
have 〈

dN (p)h , k
〉

p = 〈
h , dN (p)k

〉

p.

Proof It suffices to show this for a basis of TpS. Let us take the one provided by
a local parametrization around p: h = ∂1m and k = ∂2m. Let Nm = N ◦ m be the
expression of N as a function of the parameters, so that

dN (p)(α∂1m + β∂2m) = α∂1Nm + β∂2Nm .

In particular, dN (p)∂1m = ∂1Nm and dN (p)∂2m = ∂2Nm , and what we need to
show is 〈

∂1Nm , ∂2m
〉

p = 〈
∂1m , ∂2Nm

〉

p.
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But, from (∂1m)T Nm = 0,weget
〈
∂1m , ∂2Nm

〉

p = (∂1m)T∂2Nm = −(∂2∂1m)T Nm .

Similarly,
〈
∂2m , ∂1Nm

〉

p
= −(∂1∂2m)T Nm . Since partial derivatives commute, the

two quantities are equal, yielding the required identity. �

Let γ be a curve on S, and assume that γ is parametrized by arc length. Let
T (γ) be the unit tangent of γ, κ(γ) its curvature and N (γ) its unit normal, such that
Ṫ (γ) = κ(γ)N (γ). The normal N (γ) does not coincide with N in general, andwe define
the normal curvature of γ by the (algebraic) normal part of Ṫ (γ) to the surface S. The
interesting point is that it only depends on γ via T (γ).

Definition 3.25 The normal curvature at p of an arc length parametrized curve γ on
a regular surface S is κ

(γ)

N (s) = (Ṫ (γ)(s))T N (γ(s)), where T (γ) = γ̇.

The fact that the normal curvature only depends on T (γ) can be proved as follows: let
γ be a curve on S such that γ̇(0) = T (γ). For all s, we have (T (γ))T N = 0 since T (γ)

is tangent to S. Computing the derivative with respect to arc length and applying the
chain rule yields

(Ṫ (γ))T N ◦ γ + (T (γ))T dN (γ)T (γ) = 0

so that
κ

(γ)

N = −(T (γ))T dN (γ)T (γ). (3.22)

One also defines the geodesic curvature of γ at s0 by the curvature (at s0) of the
projection of γ on the tangent plane to S at γ(s0), which is

γ̄(s) = γ(s) − (γ(s) − γ(s0))
T N (s0) N (s0).

Computing first and second derivatives in s and computing them at s = s0 yields
˙̄γ(s0) = γ̇(s0) and ¨̄γ(s0) = γ̈(s0) − κ

(γ)

N (s0)N (s0).

Denoting the geodesic curvature by κ(γ)
g (s0), we find (using the definition of the

(signed) curvature for plane curves in the oriented tangent plane) that

κ(γ)
g = det(γ̇, γ̈, N ) = γ̈T (N × γ̇),

where N × γ̇ is the unit normal to γ that belongs to TγM and complements γ̇ in a
positively oriented basis of the tangent plane. Writing γ̈ = (γ̈T (N × γ̇))(N × γ̇) +
(γ̈T N ), one also gets the identity

(κ(γ)
g )2 + (κ

(γ)

N )2 = (κ(γ))2,

the squared curvature of γ.
This expression in Eq. (3.22) involves another important quantity on S, its second

fundamental form.
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Definition 3.26 Let S be a regular surface and p ∈ S. The second fundamental form
at p is the quadratic form defined on TpS by

II p(h) = −〈
h , dN (p)h

〉

p.

In particular, we have the expression of the normal curvature of an arc length
parametrized curve γ:

κ
(γ)

N = II γ(γ̇).

Because dN (p) is symmetric, it can be diagonalized in an orthonormal basis
of TpS: let (e1, e2) be such a basis, with corresponding eigenvalues −κ1 and −κ2

such that κ1 ≥ κ2. The numbers κ1 and κ2 are called the principal curvatures of the
surface at p. The reason for this terminology is that any unit vector in TpS can be
written, for some θ, in the form h = cos θe1 + sin θe2 and

II p(h) = −〈
h , dN (p)h

〉 = κ1 cos
2 θ + κ2 sin

2 θ.

This implies that κ2 ≤ II p(h) ≤ κ1, the lower bound being attained for h = e2 and
the upper bound for h = e1: κ1 and κ2, respectively, are the maximum and minimum
normal curvatures of curves passing through p.

Definition 3.27 If κ1 and κ2 are the principal curvatures of a surface S at p ∈ S, one
defines the mean curvature at p by H(p) = (κ1 + κ2)/2, and the Gauss curvature
by K (p) = κ1κ2. They respectively coincide with the trace of −dN (p)/2 and the
determinant of dN (p).

From this definition, we can also write

2H = −div′
S(N ) (3.23)

and rewrite (3.9) as (for h = hT + μN )

div′
S(h) = divS(hT ) − 2μH. (3.24)

3.9 Curvature in Local Coordinates

In this section, we give the expression of the curvature in local coordinates, as func-
tions of the coefficients of the first and second fundamental forms. Recall the notation
(3.6) for the first fundamental form and a local parametrization m. We introduce a
similar notation for the second form, letting

II p(α∂1m + β∂2m) = α2e + 2αβ f + β2g

and
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e = −∂1m
T∂1N = ∂2

1m
T N , f = −∂1m

T∂2N = ∂1∂2m
T N ,

g = −∂2m
T∂2N = ∂2

2m
T N . (3.25)

Let dN =
(
a c
b d

)

in the basis (∂1m, ∂2m) (thematrix is not necessarily symmetric

since the basis is not assumed to be orthonormal). We find:

−e = ∂1m
TdN∂1m = aE + bF

− f = ∂2m
TdN∂1m = aF + bG

− f = ∂1m
TdN∂2m = cE + dF

−g = ∂2m
TdN∂2m = cF + dG

which yields, in matrix form: −
(
e f
f g

)

=
(
E F
F G

) (
a c
b d

)

. This implies that, in the

basis (∂1m, ∂2m), dN is given by the matrix

−
(
E F
F G

)−1 (
e f
f g

)

.

From this, it can be deduced that

K = eg − f 2

EG − F2

because it is just the ratio of the determinants. Also, after computation, one finds

H = eG − 2 f F + gE

2(EG − F2)
.

The principal curvatures are then given by κ = H ± √
H 2 − K .

3.10 Implicit Surfaces

Assume that a surface is defined implicitly by

S = {
p ∈ R

3, f (p) = 0
}
,

where f is a C2 function from R
3 to R with ∇ f �= 0 on S. We have already

noticed that the tangent plane to S is orthogonal to ∇ f , and therefore N (p) =
−∇ f (p)/|∇ f (p)| is a smooth unit normal to S which therefore is orientable (and
we take the orientation provided by this choice of N ).

The interesting feature in this representation is that, since f is defined on R
3,

the function N can be extended to R
3 (denote the extension by N̂ ) so that dN (p)
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is simply the restriction to TpS of d N̂ (p), In particular, the trace of dN (p) is, by
definition,

〈
e1 , dN (p)e1

〉

p + 〈
e2 , dN (p)e2

〉

p for an arbitrary orthonormal basis of

TpS. It therefore suffices to add (d N̂ N )T N to obtain the trace of d N̂ , but this added
quantity vanishes because |N̂ |2 = 1 implies that d N̂ N is perpendicular to N . Thus,
we have, for the mean curvature:

H = −trace(d N̂ )/2 = 1

2
div

∇ f

|∇ f | . (3.26)

(This is the usual divergence on R
3, not to be confused with the S-divergence in

Definition3.17.)
Let PN be the projection on N̂⊥: PN = IdR3 − N̂ N̂ T . The Gauss curvature can be

computed after diagonalizing the matrix PNd N̂ PN = d N̂ PN , which is symmetric
and coincides with dN on TpS. Using N̂ = −∇ f/|∇ f |, we get

(d N̂ PNh)T PNk = − 1

|∇ f | (d
2 f PNh)T PNk + 1

|∇ f |
(
(d2 f PNh)T N̂

) (
(PNk)

T N
)

= − 1

|∇ f | (PNh)T d2 f PNk,

which is symmetric in h and k. The matrix PNd2 f PN/|∇ f | has one vanishing
eigenvalue since PN N = 0, and the other two are the principal curvatures of S. Their
product provides the Gauss curvature.

The Delta-Function Trick

When a surface or a curve is defined implicitly, integrals over its interior can be
described in a straightforward way using the Heaviside function. Assume that S is
the set f (p) = 0 for some smooth function f , and let Ω be its interior, defined by
f < 0. Introduce the Heaviside function H0 defined onR by H0(x) = 1 if x ≥ 0 and
H0(x) = 0 otherwise. Then, clearly, for any function V on R

3, we have

∫

Ω

V (x)dx =
∫

R3
(1 − H0( f (x)))V (x)dx . (3.27)

Contour or surface integrals can be defined via a level-set representation, albeit
requiring passing to a limit. For this, we need to replace H0 by a smooth approxima-
tion denoted Hε, which must be an increasing function that tends to H0 as ε tends
to 0. A possible example is (cf. [227, 316]) Hε(x) = 0 for x < −ε, Hε(x) = 1 for
x > ε and, on [−ε, ε]:

Hε(x) = 1

2

(

1 + x

ε
+ 1

π
sin

(πx

ε

))

. (3.28)

Alternatively [58], one can take, for all x ∈ R:
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Hε(x) = 1

2

(

1 + 2

π
arctan

( x

ε

))

. (3.29)

This choice being made, let δε denote the derivative of Hε. The function δε can be
considered as a smooth approximation of the Dirac function δ0, in the sense that, for
any bounded function u on R which is continuous at t = 0, one has

lim
ε→0

∫

R

δε(t)u(t)dt = u(0). (3.30)

We leave the easy proof to the reader (simply divide the integral over domains around
0 or away from 0).

We now describe how surface integrals over implicitly defined surfaces can be
approximated using δε.

Proposition 3.28 Let f : R3 → R be a C2 function with ∇ f �= 0 if f = 0, and
such that the implicit surface S = f −1(ε) is bounded in a neighborhood of 0. Then,
if V : R3 → R is continuous, we have

lim
ε→0

∫

R3
δε ◦ f (x) V (x) |∇ f (x)| dx =

∫

S
V (m) dσS(m). (3.31)

The same proposition holds for curves, with f : R2 → R and the surface integral
replaced by the integral along the curve.

Proof Let’s consider the surface case (the case of curves is similar and simpler). We
also assume that δε is supported in [−ε, ε], like for (3.28) (the general case requiring
only minor modifications). Consider a local chart (u, v) �→ m(u, v) on S = f −1(0).
Consider the equation

f (m(u, v) + t N (u, v)) = y,

which we want to solve for t as a function of (u, v, y) in a neighborhood of some
u = u0, v = v0 and y = 0. From the implicit function theorem, this is possible,
because

∂t f (m + t N ) = ∇ f T N = −|∇ f |,

which is not zero by assumption. Using the compactness of S, we can find a finite
number of points p0 = m(u0, v0) and domains around (u0, v0, 0) ∈ R

3 over which
a function t (m(u, v), y) such that f (m + t N ) = y is well-defined and such that the
union of these domains forms an open set in R3 that contains S, and more generally
contains the set | f (p)| < y0 for y0 small enough.

Taking ε < y0, we can write

∫

Rd

δε ◦ f (x) V (x) |∇ f (x)| dx =
∫

| f |<y0

δε ◦ f (x) V (x) |∇ f (x)| dx .
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(Not assuming δε to be compactly supported would add a small error to this identity,
which is easily shown to be negligible when ε → 0.)

Wecandecompose the integral over a partition of unity,which reduces the problem
to the situation in which V is supported by one of the domains above. Working
under this assumption, we make the change of variables x(u, v, y) = m(u, v) +
t (m(u, v), y)N (u, v) in this domain and let J (u, v, t) be the associated Jacobian
determinant, so that

∫

| f |<y0

δε ◦ f (x)V (x) |∇ f (x)| dx =
∫

|y|<y0

δε(y) V (x(u, v, y)) |∇ f (x(u, v, y))| J (u, v, y) du dv dy.

Our assumptions ensure that the integral

u(y) =
∫

V (x(u, v, y)) |∇ f (x(u, v, y))| J (u, v, y) du dv

is continuous in y so that,

lim
ε→0

∫

Rd

δε ◦ f (x) V (x) |∇ f (x)| dx = u(0).

Now,
J (u, v, 0) = | det(∂1m, ∂2m, ∂3t N )| = |∂1m × ∂2m|/|∇ f (m)|

because y = f (m + t N ) implies 1 = ∂3t ∇ f T N = −∂3t |∇ f |. This implies that the
|∇ f | terms cancel in the expression of u(0), which is equal to

u(0) =
∫

V (m(u, v)) |∂1m × ∂2m| du dv =
∫

S
V dσS,

which concludes the proof. �

The theorem is particularly important for numerical computations, because it
replaces computations over a surface with computations over a grid that contains the
surface.

The left-hand side of (3.31) is often written using the symbolic notation

∫

R2
δ0 ◦ f (x) V (x) |∇ f (x)| dx .

The assumption that V is continuous is important (of course, we only need con-
tinuity near f −1(0)). Take the following simple example with curves; let f (u, v) =
u2 + v2 − 1, so that f −1(0) = S1, the unit circle and let V (u, v) = 1 if u2 + v2 ≤ 1
and 0 otherwise. Then
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Fig. 3.6 The Gauss–Bonnet
theorem in R

2 reduces to the
well-known property that the
sum of consecutive angles in
a polygon is 2π ε1

ε2

ε3

∫

S1
Vdl = 2π

but

lim
ε→0

∫

R2
δε ◦ f (x)V (x)|∇ f (x)|dx = π

(both integrals being easily computed in radial coordinates).

3.11 The Gauss–Bonnet Theorem

The average of the Gauss curvature over a domain with piecewise geodesic boundary
is provided by the Gauss–Bonnet formula [86]:

Theorem 3.29 Let S be a regular surface and A be a domain on M such that ∂A
is the union of N geodesics γ(1), . . . , γ(N ). Let εi , i = 1, . . . N be the sequence of
consecutive angles between the curves at their intersection. Then

∫

A
Kdσ = 2π −

N∑

i=1

εi . (3.32)

For example, when N = 3 (∂A is a “geodesic triangle”), we obtain the fact that
the sum of the angles of a triangle is 2π minus the integral of the Gauss curvature
over its interior. This is consistent with the sum being 2π in the plane, which has
zero Gauss curvature (Fig. 3.6).



Chapter 4
Computations on Triangulated Surfaces

4.1 Triangulated Surfaces

4.1.1 Definition and Notation

Triangulated surfaces provide a three-dimensional generalization of polygons in two
dimensions. Surfaces are usually stored on computers in this form, and these are the
kinds of objects that must be handled in practical applications.

In full generality, a triangulated surface is a set of vertices V = {v1, . . . , vM }
with a family of 3-tuples of indices F = { f1, . . . , fK }, where each fk takes the
form fk = ( jk1, jk2, jk3) ∈ {1, . . . , M}. One associates to fk the triangle (or face)
in the triangulation defined by Fk = (vk1, vk2, vk3), using the abbreviated notation
vkl := v jkl . The set of edges of the triangulation is the family of unordered pairs of
vertices which belong to the same face and will be denoted by E = {e1, . . . , eQ}.

The order of the vertices in each face is important and defines its orientation,
which is invariant up to a cyclic permutation of the vertices. We will only consider
regular triangulations, which are such that the intersection of two faces is either
empty or an edge. This excludes those situations in which the contact between two
faces occurs at a vertex only, or in which some vertex belongs to the interior of an
edge. The number

χ = |V| − |E | + |F |

is a topological invariant of the surface called the Euler characteristic.
For a vertex vi , we let Fi denote the set of indexes of faces that contain it, and Ei

the set of indexes of edges that contain it. We also let Vi denote the set of indexes
of vertices (distinct from vi ) that belong to one of the 3-tuples in Fi . (Vi , Ei ,Fi )

represents the neighborhood of vi in the triangulation.
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The triangulation is said to be consistent if, whenever two faces intersect, their
common edge is ordered in different directions in the two faces. A consistent
triangulation is the equivalent of an oriented surface. We only consider consistent
triangulations in the following.

4.2 Estimating the Curvatures

Given a triangulated surface, the next step is to compute differential descriptors, and
in particular discrete forms of the curvatures.We address this problem in this section,
focusing on a few important methods that have recently emerged in the literature.

4.2.1 Taylor Expansions

The unit normal to an oriented triangle (v1, v2, v3) is the vector

N = (v2 − v1) × (v3 − v1)

|(v2 − v1) × (v3 − v1)| .

Each face Fk in the triangulation therefore carries a uniquely defined normal, N f
k .We

can associate the normal to a specific point inside the face, for example its centroid
(v1 + v2 + v3)/3. (There are several possible definitions of the center of a triangle,
however, including the circumcenter, which is the center of the circumscribed cir-
cle, the incenter, which is the center of the inscribed center, or the orthocenter, the
intersection of the lines passing through the vertices and orthogonal to the opposite
edge.)

In many cases, one also wants to define normals at the vertices. This can be done
using a weighted average of the normals at the neighboring faces. If vi is a vertex,
define

N v
i =

∑
k∈Fi

wi (Fk)N
f
k

| ∑k∈Fi
wi (Fk)N

f
k | ,

where wi (Fk) gives a measure of the “importance” of face Fk relative to vertex vi .
The simplest definition is the area, area(Fk), independent in this case of the chosen
vertex. In [194], it is suggested to use the area of the part of the face which is closer
to vi than to any of the other two vertices. This is the intersection of the face Fk with
the region delimited by the following four points: vi , the two midpoints of the edges
of Fk that contain vi and the circumcenter of Fk . Notice that the circumcenter lies
outside of Fk if the triangle is obtuse, as illustrated in Fig. 4.1. Such regions form
Voronoï cells. Let Fki denote the part of face Fk which is associated to vi in this way.
One can use wi (Fk) = area(Fki ).



4.2 Estimating the Curvatures 103

Fig. 4.1 Decomposition of triangles into Voronoï cells when the circumcenter is interior to the
triangle (left) and when it is exterior (right)

Similarly, we can define a normal along an edge e to be a weighted average of the
normals to the faces that intersect at e, using, for example, the areas of the faces as
weights.

Having an estimation of the normal at each vertex allows for the approxima-
tion of the normal curvature of a curve on the surface passing through this vertex,
which yields the second fundamental form. If j ∈ Vi , the two-point path (vi , v j )

provides a discrete curve fragment passing through vi . Define the tangent vector
Ti j = (v j − vi )/|v j − vi |. Using Definition3.26, one possible approximation of the
second fundamental form at the midpoint between vi and v j in the direction Ti j
(which is also the normal curvature of the curve fragment at the midpoint) is

II i j := −T T
i j

(
N v

j − N v
i

|v j − vi |
)

= − (N v
j − N v

i )T (v j − vi )

|v j − vi |2 .

Also, using a Taylor expansion (assuming that N v is the restriction to the vertices
of a smooth function), one can prove (the justification being left to the reader) that

(N v
j + N v

i )T (v j − vi )

|v j − vi |2 = O(|v j − vi |),

and adding this expression to the previous estimate II i j yields the alternative formula
[273]

II i j := 2(N v
i )T (v j − vi )

|v j − vi |2 .

Because the matrix dN is symmetric in the tangent plane, it is described by
three parameters in any orthonormal basis. Since each computation of the discrete
second fundamental form yields one linear equation involving dN , this requires at
least three edges for its estimation, which is the minimum number provided by the
triangulation. One possible way to estimate curvatures is to select an arbitrary basis
(ai , bi ) of the tangent plane to the surface at vi , Tvi M , which is by definition the
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plane perpendicular to N v
i (for example, assuming that N v

i is not parallel to the x-
axis, take ai = (1, 0, 0)T × N v

i and bi = N v
i × ai ); then, compute, for each j ∈ Vi ,

the coordinates (xi j , yi j ) of the normalized orthogonal projection of Ti j onto this
basis. We have

xi j = aT
i Ti j/

√
(aT

i Ti j )
2 + (bTi Ti j )

2

and yi j = bTi Ti j/
√

(aT
i Ti j )

2 + (bTi Ti j )
2.

Then, letting dNi =
(

αi γi
γi βi

)

in this basis, we have the system of linear equations

αi x
2
i j + 2γi xi j yi j + βi y

2
i j = −II i j , j ∈ Vi .

This is an over-constrained system, for which one can compute a least-squares solu-
tion. Once dNi is computed, its trace, determinant and eigenvalues provide an esti-
mation of the mean, Gaussian and principal curvatures.

A more direct approach to estimating the curvature from the second fundamental
form has been proposed in [273]. Introduce, for continuous surfaces, the matrix
(defined at a point p in the surface)

Σp = 1

2π

∫ 2π

0
κN (Tθ)TθT

T
θ dθ,

where Tθ is the rotation (within the tangent plane) of an arbitrary reference vector T ∈
TpM by an angle θ. A direct computation of this integral (using the basis (T, Tπ/2))
shows that

Σp = 3

8
dN (p) − 1

8
det(dN (p))dN (p)−1,

the last term being the adjugatematrix of dN (p) (therefore also definedwhen dN (p)
is singular).

This implies that the eigenvalues ofΣp are λ1 = −(3κ1(p) − κ2(p))/8 and λ2 =
−(3κ2(p) − κ1(p))/8 (which can be used to compute the curvatures), and that the
eigenvectors ofΣp coincide with those of dN (p) and therefore provide the principal
directions.

Returning to the discrete case, the curvatures at vertexvi can therefore be estimated
from an approximation Σi of Σvi . Such an approximation is provided by the simple
formula

Σi = −
∑

j∈Vi

wi j IIi j Ti j T
T
i j /

∑

j∈Vi

wi j ,

where wi j = (wi (F
+
j ) + wi (F

−
j ))/2, F+

j and F−
j being the faces that contain the

edge {vi , v j }.
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4.2.2 Gauss–Bonnet and Area Minimization

In the previous section, the curvature computations were based on Taylor expansions
of formulas that apply on smooth surfaces.More recently [85], an increased focus has
been made on obtaining expressions that derive from intrinsic properties of surfaces
that can be extended to polyhedral surfaces.

The right-hand side of Eq. (3.32) in the Gauss–Bonnnet theorem can still be
defined on polyhedral surfaces. This fact is used in [194] to provide an approxi-
mation of the Gauss curvature, using, for a vertex vi in the triangulation, the region
Ai formed by the union of the Voronoï cells around vi (Fig. 4.1 ). The expression is
very simple because, in both cases in Fig. 4.1, the sum of the (one or two) exterior
angles in each part of Ai coincides with the angle of the corresponding face at vi .
For k ∈ Gi , denoting by θik the angle of the face Fk at vi , we see that the right-hand
side of (3.32) is given by 2π − ∑

k∈Fi
θik . Approximating K by a constant over Ai ,

we get the formula

Ki = 1

|Ai |
(
2π −

∑

k∈Fi

θik

)
.

The area, |Ai |, can be computed in closed form. It is the sum of the areas of the
shaded regions in Fig. 4.1, over all faces that contain vi . Let as above θik be the angle
at vi for a face Fk . Let v′

ik and v′′
ik be the other two vertices of Fk so that vi , v′

ik and
v′′
ik are ordered consistently with the orientation of Fk . Let e′

ik be the edge opposite
v′
ik in Fk and e′′

ik the edge opposite v′′
ik (we will later denote by eik the edge opposite

vi ). Finally, let θ′
ik and θ′′

ik respectively denote the angles at v′
ik and v′′

ik . Then, the
area, aik , of the shaded region in Fig. 4.1 in the acute case is given by

aik = 1

8
(|e′

ik |2 ctn(θ′
ik) + |e′′

ik |2 ctn(θ′′
ik)).

In the obtuse case, and if θik is the obtuse angle,

aik = 1

2
|e′

ik | |e′′
ik | cos θik − 1

8
(|e′

ik |2 cos θ′′
ik + |e′′

ik |2 cos θ′
ik).

Finally, still in the obtuse case, and when θik is one of the acute angles,

1

8
|ẽik |2 cos θik

where ẽik is the side opposed to the other acute vertex.
Given this, |Ai | is the sum of these areas over k ∈ Gi . When there is no obtuse

triangle around vi , the area |Ai | has another simple expression [194]. For l ∈ Ei
(edges stemming from vi ), let αil and βil be the angles at vertices opposed to el in
the triangles that intersect at el . Then
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|Ai | = 1

8

∑

l∈Ei

(ctnαil + ctn βil)|el |2.

To address the mean curvature, we first use an important interpretation of it as
a “gradient” of the surface area. Let S be a surface and h : S → R

3 be a (smooth)
vector field on S. Assume that h = 0 on the boundary of S (if S has one). Define
the surface Sε as the one obtained by displacing each p ∈ S along the vector εh(p).
Then (this will be proved in Proposition5.4)

∂ (area(Sε))|ε=0
= 2

∫

S
H(p) h(p)T N (p) dσS(p).

One can make the same construction with a discrete surface Σ by associating
to each vertex vi a small displacement εhi ∈ R

3, and computing the derivative of
the area of the obtained surface Σε. Approximating the right-hand side in the above
formula, we will then identify:

∂ (area(Σε))|ε=0
= 2

M∑

i=1

hT
i (Hi Ni )|Ai |, (4.1)

where Ai is the neighborhood attributed to vi and Hi Ni can then be interpreted as
the discretized product of the mean curvature with the normal at vi .

Given that the area of a triangle with vertices v1, v2, v3 is given by the half-norm
of the cross product (v2 − v1) × (v3 − v1), the left-hand side in (4.1) is

1

2

K∑

k=1

((h2k − h1k) × (vk3 − vk1) + (vk2 − vk1) × (hk3 − hk1))
T N f

k

= 1

2

K∑

k=1

(hk1 × (vk2 − vk3) + hk2 × (vk3 − vk1) + hk3 × (vk2 − vk1))
T N f

k ,

where hk1, hk2 and hk3 are the displacements associated with the vertices of Fk and
N f
k is the normal to Fk .
For k ∈ Fi , let eik be the oriented edge opposite vi . Using the relation (x × y)T z =

xT (y × z) and reordering the sums, we can write

d

dε
area(Σε)|ε=0 = 1

2

M∑

i=1

hT
i

⎛

⎝
∑

k∈Fi

eik × N f
k

⎞

⎠ .

This provides a definition of the discrete mean curvature at vi :

Hi Ni = 1

4|Ai |
∑

k∈Fi

eik × N f
k .
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Reordering this sum over edges and explicitly computing the cross product leads to
the equivalent expression [194]

Hi Ni = 1

4|Ai |
∑

l∈Ei

(ctnαil + ctn βil)el ,

where αil and βil are, as before, the angles at the vertices opposite to el in each of
the faces that contain el (el being oriented from vi to the other vertex).

Note that this computation provides an estimate of the normal and the mean
curvature together.

4.2.3 Curvature Measures

The Smooth Case

There is another way to interpret curvature on a surface that can be generalized to
the non-smooth case, leading to another formula for curvature approximation on
triangulated surfaces. On smooth surfaces, this is related to the volume of so-called
parallel sets. We first show that smooth surfaces have positive reach, in a discussion
that parallels the one in Sect. 1.13.2. We use the same notation as in that section,
letting, for a surface M ,

dM(p) = dist(p, M) = inf {|p − q| : q ∈ M} ,

UM be the set of points p that have a unique closest point, πM(p), on M , r(M, q) be
the supremum of the radii of balls centered at q included in UM and r(M) be their
minimum over q ∈ M (the reach of M). Propositions1.20, 1.21 and 1.22 remain true
in the present case, as does the fact that dM is differentiable on ŮM \ M . We prove a
version of Proposition1.23 for surfaces.

Proposition 4.1 Let M be a closed C2 regular surface. Then, we have the following
statements.

(i) If |p − q| = dM(p) (q ∈ M) then p = q + t NM(q) with |t | = dM(p) and
max(tκ1(q), tκ2(q)) ≤ 1, where κ1 and κ2 are the principal curvatures.

(ii) Let

ρM = max

{
2 |(q̃ − q)T NM(q)|

|q̃ − q|2 : q, q̃ ∈ M, q �= q̃

}

. (4.2)

Then ρM < ∞ and r(M) ≥ 1/ρM > 0. In particular, ŮM is not empty.
(iii) The distance map is differentiable on ŮM \ M.

Proof The proof is similar to that of Proposition1.23 andwe only highlight the differ-
ences. To prove (i), take an arc-length parametrized curve γ on M such that γ(0) = q
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and let f (t) = |p − γ(t)|2. Then, ḟ (0) = −2(p − q)T γ̇(0), which much vanish for
all γ, showing that p − q is perpendicular to TqM and therefore proportional to
NM(q), i.e., p = q + t NM(q) for some t . Taking the second derivative of f (which
must be non-negative at 0) yields f̈ (0) = 2 − 2(p − q)T γ̈(0) = 2(1 − tκ(γ)

N (0)), so
that tκ(γ)

N (0) ≤ 1. It then suffices to use the fact that κ1(q) ≤ κ
(γ)

N (0) ≤ κ2(q).
To prove that ρM is finite, take qn, q̃n such that

cn := 2 |(q̃n − qn)T NM(qn)|
|q̃n − qn|2

tends to infinity, which implies that subsequences can be taken such that qn, q̃n → q.
Take a local chart around q such that qn = m(un, vn) and q̃n = m(ũn, ṽn). Let γn be a
minimizing geodesic such that γn(0) = qn and γ(sn) = q̃n . Then the same argument
as that of Proposition1.23 can be used to prove that |q̃n − qn|2 = s2n + o(s2n ) and

|(q̃n − qn)
T NM(qn)| = |κ(γn)

N (0)|s2n + o(s2n ),

contradicting the assumption that cn → ∞. The rest of the proof of (ii) is identical
to Proposition1.23.

For (iii), one shows that, if p ∈ ŮM \ M and q = πM(p), then 1 − max(tκ1(q),

tκ2(q)) > 0with the same argument as in Proposition1.23. Take a positively oriented
chart (u, v) = m(u, v) around q and consider the mapping ϕm(u, v, t) = m(u, v) +
t NM(m(u, v)). Then, letting Nm = NM ◦ m,

∂1ϕm = ∂1m + t∂1Nm, ∂2ϕm = ∂2m + t∂2Nm, ∂3ϕm = Nm

so that

det(dϕm) = (∂1ϕm × ∂2ϕm)T∂3ϕm

= (∂1m × ∂2m)T Nm + t (∂1m × ∂2Nm + ∂1Nm × ∂2m)T Nm (4.3)

+ t2(∂1Nm × ∂2Nm)T Nm .

We have ∂1m × ∂2m = |∂1m × ∂2m| Nm . Moreover, for any linear operator A on
R

3 and any basis (u1, u2, u3) in R3, we have (the proof being left to the reader)

(u1 × u2)
T Au3 + (u2 × u3)

T Au1 + (u3 × u1)
T Au2 = det(u1, u2, u3)trace(A).

Applying this to

(∂1m × ∂2Nm + ∂1N × ∂2m)T Nm = (Nm × ∂1m)T∂2Nm + (∂2m × Nm)T∂1Nm

with ∂1Nm = dNm ∂1m, ∂2Nm = dNm ∂2m, taking A = dNm on TpM and ANm =
0, we get
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(∂1m × ∂2Nm + ∂1Nm × ∂2m)T Nm = |∂1m × ∂2m| trace(dNm)

= −2|∂1m × ∂2m| H(m),

where H is the mean curvature. Moreover, since ∂1Nm and ∂2Nm are tangent to M at
m, (∂1Nm × ∂2Nm)T Nm is the two-dimensional determinant of [dNm ∂1m, dNm ∂2m],
therefore equal to K (m)|∂1m × ∂2m|. We therefore have

det(dϕm) = (1 − 2t H(m)+t2K (m))|∂1m × ∂2m|
= (1 − tκ1(m))(1 − tκ2(m))|∂1m × ∂2m|. (4.4)

The determinant is therefore positive, and the differentiability of dM at p
can be obtained using the inverse function theorem, as done in the proof of
Proposition1.23 �

Proposition4.1 ensures that the mapping

ϕM : M × (−r, r) → R
3

(q, t) 
→ q + t NM(q)

is one-to-one for r < r(M) onto VM(r) = {p : dM(p) < r}. More generally, for
B ⊂ M , consider the sets Vr (M, B) = ϕM(B × (−r, r)) and V+

r (M, B) = ϕM(B ×
(0, r)). Using the fact that ϕm introduced in the proof of Proposition4.1 is such that
ϕm(u, v, t) = ϕM(m(u, v), t) and assuming that M is entirely covered by a local
chart, Eq. 4.4 implies that

Vol(V+
r (M, B))

=
∫ r

0

∫

m−1(B)

(1 − 2t H(m(u, v)) + t2K (m(u, v)))|∂1m × ∂2m| du dv

= rArea(B) − r2
∫

B
H dσM + r3

3

∫

B
KdσM , (4.5)

where σM is the volume measure on M . The last expression for Vol(V+
r (M, B))

remains true even when B is not completely covered by a local chart, as can easily
be proved by using partitions of unity, or covering B by a union of local charts up to
a set of measure zero.

This discussion can also be extended to compact surfaces with boundary. Similar
to the case of curves, we need to generalize the definition of normal vectors to
boundary points. Let p ∈ ∂M and N∂M(p) ∈ TpM denote the unit normal to the
boundary at p pointing inward (toward M). Then, a vector N is normal to M at p if
it can be written in the form

N = t1N∂M(p) + t2NM(p)
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with t1 ≤ 0. We let NM(p) denote the set of unit normals at p. Then the statements
of Proposition 4.1 remain true, provided that (4.2) is replaced by

ρM = max

{
2 (q̃ − q)T N

|q̃ − q|2 : q, q̃ ∈ M, q �= q̃, N ∈ NM(q)

}

.

Equation (4.5) remains true whenever B ⊂ M . For B ⊂ ∂M , the computation must
bemodified. Represent B ⊂ ∂M as a parametrized curve γ : (0, L) → R

3 and define

ϕ(s, t1, t2) = γ(s) + t1N∂M(γ(s)) + t2NM(γ(s)).

Assume that γ is parametrized by arc length and oriented so that γ̇ × N∂M = NM .
Consider the setVr (M, B) = ϕ(B × Γr )whereΓr is the half disc {(t1, t2) : t21 + t22 <

r2, t1 ≤ 0}, so that Vr (M, B) is the set of points in R
3 that have closest point to M

in B at distance less than r . We have

det(dϕ(s, t1, t2)) = det(γ̇(s), N∂M(γ(s)), NM(γ(s)))

+t1 det(∂s N∂M , N∂M(γ(s)), NM(γ(s)))

+t2 det(∂s NM , N∂M(γ(s)), NM(γ(s)))

= 1 − t1κ
(γ)
g (s) − t2κ

(γ)

N (s).

Indeed, we have N∂M × NM = γ̇ and

det(∂s N∂M , N∂M(γ(s)), NM(γ(s))) = ∂s N
T
∂M γ̇ = −NT

∂M γ̈ = −κ(γ)
g .

Similarly
det(∂s NM , N∂M (γ(s)), NM(γ(s))) = ∂s N

T
M γ̇ = −κ

(γ)

N .

We can now compute (introducing radial coordinates)

Vol(Vr (M, B)) =
∫ L

0

∫

t21+t22<r2,t1<0
(1 − t1κ

(γ)
g (s) − t2κ

(γ)

N (s)) dθ dρ ds

=
∫ L

0

∫ r

0

∫ π/2

−π/2
(1 + ρ cos θκ(γ)

g (s) − ρ sin θκ
(γ)

N (s)) dθ dρ ds

= r length(B) + r2
∫ L

0
κ(γ)(s) ds.

Applied to r < r(M), Eq. (4.5) provides a new interpretation of the integrals of
mean and Gauss curvatures over subsets of M in terms of the volumes of the sets
V+
r (M, B) (which are often called parallel sets along the surface M). These parallel

sets may be defined for sets that are much more general than smooth surfaces and
their volumes then lead to generalized versions of the curvature. We now see how
these ideas can be applied to triangulated surfaces.
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The Discrete Case

We first generalize the definition of VB(r) to the non-smooth case, for which we will
need a generalized definition of the set of unit normals to M at a given point. This
can be done in two equivalent ways. Here M is an arbitrary closed set with positive
reach, i.e., such that r(M) > 0.

The first point of view is to let, for r < r(M),

Vr (M, B) = {p : 0 < dM(p) < r and πM(p) ∈ B} .

When M is the boundary of a compact set Ω (e.g., when M is a closed surface), we
can define

V+
r (M, B) = Vr (Ω, B),

still for B ⊂ M .
Federer [106] has proved that (4.5) can be generalized to sets of positive reach,

so that Vol(V+
B (r)) is polynomial in r , taking the form

Vol(V+
r (M, B)) = rμ0(M, B) − r2μ1(M, B) + r3

3
μ2(M, B). (4.6)

In particular, μ1(M, B) and μ2(M, B) are generalizations of the integrals of the
curvatures on B, and are called the mean and Gauss curvature measures on M . They
have the important property of being additive, satisfying in particular

μi (M ∪ M ′, B) = μi (M, B) + μi (M
′, B) − μi (M ∩ M ′, B). (4.7)

Although it already is a rich class of sets (including, for example, all convex sets),
sets of positive reach do not include non-convex polyhedrons, so the construction
cannot be immediately extended to triangulated surfaces. But formula (4.7) provides
the key for this extension. Indeed, one can define a union of sets of positive reach as
a set M that can be decomposed into

M =
⋃

j∈J

M j ,

where eachMj has positive reach and any nonempty intersection ofMj ’s has positive
reach [314]. Then, iterating (4.7) (using the inclusion-exclusion formula), we can set

μk(M, B) =
∑

I⊂J

(−1)|I |−1μk

( ⋂

j∈I
M j , B

)
, (4.8)

the left-hand side being well-defined from the hypotheses. This is a valid definition
of the right-hand side because it can be shown that the result does not depend on the
chosen decomposition of M , which is not unique. This extension now includes all
polyhedrons (and interiors of compact triangulated surfaces).
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The second point of view gives an alternative interpretation of the curvature
measures, based on the normal bundle to a set M . This requires a general defini-
tion of tangent and normal vectors to an arbitrary set M ⊂ R

3 [107]. We already
gave a general definition of tangent vectors in Definition 1.5, which defined the tan-
gent set to M at p ∈ M as the set TpM of vectors v ∈ R

d such that, for any ε > 0,
there exist x ∈ M and r > 0 such that |x − p| < ε and |v − r(x − p)| < ε.

We will later use the fact that, when M is included in the boundary of an open set
Ω , TmΩ form ∈ M contains vectors in TmM and all vectors v such thatm + εv ∈ Ω

for small ε (vectors that point to the interior of Ω). The special cases that follow will
be important when studying triangulated surfaces.

Single points:Assume thatM = {a}. It is clear from the definition that any tangent
vector to M must satisfy |v| < ε for any ε > 0 so that TaM = {0}.

End-points of curves: Let γ : [0, 1] → R
3 be a smooth regular curve, M =

γ([0, 1]) and a = γ(0). Then, any x ∈ M close to a is equal to γ(u) for u � 0,
and a tangent vector v at a must be such that v � r(γ(u) − γ(0)) with r > 0, so that
TaM is the half-line R+γ̇(0). By the same argument, if b = γ(1), TbM = R

−γ̇(1).
(Of course, the tangent space at interior points is the full line generated by the tangent
vector γ̇.)

Triangles: If M a triangle (including its interior) and a is on its boundary, then
TaM is simply the set of vectors v such that a + v points towards the interior of M .

Normals can now be derived from tangents, as stated in the next definition.

Definition 4.2 Let M ⊂ R
3. For p ∈ M , the normal vectors to M at p form the set

NpM , containing all vectors n such that nT v ≤ 0 for v ∈ TpM .
The normal bundle of M is the set NM ⊂ R

3 × R
3 defined by

NM = {
(p, n), p ∈ M, n ∈ NpM, |n| = 1

}
.

When M ⊂ ∂Ω , we can also consider

NM+ = {
(p, n), p ∈ M, n ∈ NpΩ, |n| = 1

}
.

This corresponds to normals to M pointing outward from Ω .
The normal bundle is the structure on which the new curvature measures will be

defined. Let us describe it for the previous examples. First, ifM is a smooth closed ori-
ented surface inR3,NM is simply the set {(p, N (p)), p ∈ M} ∪ {(p,−N (p)), p ∈
M}. The set NM+ only contains elements (p,−N (p)) (assuming that M is posi-
tively oriented).

If M is a closed curve, with regular parametrization s 
→ γ(s), then NM ={
(γ(s), n) : nT γ̇ = 0, |n| = 1

}
(this can be thought of as a tube centered

around γ).
If M = {a}, then (since TaM = {0}),NM = {a} × S2, where S2 is the unit two-

dimensional sphere.
WhenM is an open curve, parametrized byγ, the setNaM for a = γ(0) is the half-

sphere S2 ∩ {nT γ̇(0) ≤ 0}, while, for b = γ(1), it is NbM = S2 ∩ {nT γ̇(1) ≥ 0}.
The whole set NM can be thought of as a “sausage” around γ.
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Finally, if M is a triangle, and a is on an edge, but not at a vertex, NaM is a
half-circle, being the intersection of the unit circle orthogonal to the edge and the
half-space {nT ν ≥ 0}, where ν is normal to the edge, in the triangle plane, and
pointing towards the interior of the triangle. If a is a vertex, the set NaM is the
“spherical corner” formed by the intersection of the unit sphere and the two half-
planes {nT e ≤ 0} and {nT e′ ≤ 0}, where e and e′ are the two edges stemming from
a (oriented from a to the other vertex).

The interesting fact in the previous examples is that, in each case,NM was a 2-D
structure, i.e., it could always be parametrized by two parameters. In fact, NM is a
two-dimensional continuous surface in a space of dimension 6.

For a smooth surface, we have introduced the function ϕM(p, t) = p + t NM(p),
defined on M × (0, r0). We now want to consider it as a function ψM(p, n, t) =
p + tn defined on NM × (0, r0). For smooth oriented surfaces, this is equivalent
if the new definition of ϕ is restricted to the positive normal, i.e., NM+, since the
latter is uniquely determined by m. But we have seen cases for which the normal
was just partially specified by p, and this new definition of ϕ also applies to such
situations. From now on, we assume that M = ∂Ω is the boundary of an bounded
open subset of R3 and that (u, v) are local coordinates on NM+, so that we have
a map (u, v) ∈ U 
→ (m(u, v), n(u, v)) that locally parametrizes NM+ as a subset
R

6, U being an open subset of R2. We will let

A = {(m(u, v), n(u, v)) : (u, v) ∈ U }

denote the corresponding patch in NM+. We will assume that this map is differen-
tiable in (u, v) (which may require the exclusion of some exceptional (negligible)
sets from the integral that will be computed below. Our goal is to compute the volume
of V+

r (M, A) = ψM(A × (0, r)).
The area form on NM+ is given by g(u, v) du dv where

g(u, v)2 = (|∂1m|2 + |∂1n|2)(|∂2m|2 + |∂2n|2) − (∂1m
T∂2m + ∂1n

T∂2n)2.

(In this expression, we have used g(u, v) = √
EF − G2, using (3.7), which still

holds for two-dimensional surfaces in higher-dimensional spaces.)
One can check (we skip the proof) that the ratio Q = | det(∂1m + t∂1n1, ∂2m +

t∂2n, n)|/g(u, v) is invariant under a change of local chart onNM+, allowing us to
consider it as a function Q(m, n) defined over A. When M is a smooth surface, this
ratio can easily be computed, since we can assume that ∂1m and ∂2m correspond to
the principal directions, yielding

Q = (1 + tκ1)(1 + tκ2)
√

(1 + κ2
1)(1 + κ2

2)

.

Returning to the general case, we have, by definition of Q:
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Vol(V+
r (M, A)) =

∫

U
| det(∂1m + t∂1n, ∂2m + t∂2n, n)|dudv =

∫

A
Qdσ.

Assume that r can be chosen so that Q does not vanish for t ∈ (0, r). (That
such an r exists relates to the assumption of M having positive reach.) In this case,
det(∂1m + t∂1n, ∂2m + t∂2n, n) has constant sign, and one can expand Q in powers
of t , yielding, for some functions S0, S1, S2

∫ r

0

∫

A
Qdσ = r

∫

A
S0dσ − r2

∫

A
S1dσ + r3

3

∫

A
S2dσ.

The functions Sk therefore provide densities for “generalized” curvature measures,
defined on NM+ (instead of on M).

Recall that we assume that M ⊂ ∂Ω for some open set Ω ⊂ R
2. We can restrict

the generalized curvature measures to M , letting for B ⊂ R
3,

μk(M, B) =
∫

NM+
χB(m)Sk(m, n)dσ.

We now consider the case in which M is a triangulated surface and discuss the
expression of this integral based on the location of the set B.

Face interiors: Let B be included in the interior of a face. Since M coincides
there with a smooth surface with zero curvature, we have μ0(M, B) = Area(B),
μ1(M, B) = μ2(M, B) = 0.

Convex edges: Now let B be included in the interior of a convex (salient) edge, e.
At p ∈ B, normal vectors toΩ form the arc of the unit circle perpendicular to the edge
delimited by the two outward normals to the neighboring faces. Fix an orientation of
e and define βN (e) as the angle from the outward normal on the right to the one on
the left of e (the saliency assumption implies that this angle is non-negative.) Now,
on B, the normal bundle can be parametrized by p = u(e/|e|) + n(v), where n(v)

is the normal to p that makes an angle v with one of the face normals. Using the fact
that e and n are orthogonal, one finds d(u, v) = 1 and | det(∂um, t ṅv, n)| = t . This
implies that μ0 = μ2 = 0 and μ1 = βN (e)length(B).

Concave edges: The case of B included in a concave edge requires a little more
care because Ω does not have positive reach on B. One can however split Ω into
two parts on each side of the bisecting angle between the faces at e and apply the
formula (letting Ω1 and Ω2 be the two sections)

μk(Ω, B) = μk(Ω1, B) + μk(Ω2, B) − μk(Ω1 ∩ Ω2, B)

= ((π − βN )/2 + (π − βN (e))/2 − π)length(B)

= −βN length(B),

where βN (e) is again the absolute value of the angle between the normal to the faces
meeting at e (taken between 0 and π).
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Vertices: Let B = {v}, where v is a vertex of the triangulation. First note that,
when M has positive reach, the volume of V+

r (M, {v}) cannot be larger than that of
the ball centered at v with radius r and is therefore an O(r3). From formula (4.8),
this is also true when M is a triangulated surface. This implies that only the last
term (the Gauss curvature measure) can be non-zero. The computation of this term is
simplified if we also observe that the Gauss curvature measure does not change if we
replace (locally at the vertex) Ω by Ωc ∩ ∂Ω , which corresponds to changing the
orientation on M . This is because the function S2 is an even function of the normal.
Using this property, we get

2μ2(Ω, B) = μ2(Ω, B) + μ2(Ω ∪ Ωc, B) = μ2(R
3, B) + μ2(M, B).

Since μ2(R
3, B) = 0, it remains to compute μ2(M, B). Let F1, . . . , Fq represent the

faces containing v. We want to apply the inclusion-exclusion formula to

μ2(M, B) = μ2

( q⋃

i=1

Fi , B
)
.

For this, we need to compute the Gauss curvatures in three special cases covering
possible intersections between faces. The simplest case is μ2({v}, B). In this case,
we can parametrize the normal bundle by (m(u, u′), n(u, u′)) = (v, n(u, u′)), where
(u, u′) is a parametrization of the unit sphere, for whichwe assume that ṅu and ṅu′ are
orthogonal with unit norm. In this case, d(u, u′) = 1 and | det(t∂1n, t∂2n, n)| = t2.
This implies that S2 = 1 and μ2 = 4π (μ2 is three times the volume of the sphere).

Now, let e be a segment having v as one of its extremities. Assume without loss
of generality that e is supported by the first coordinate axis and v = 0. We can
parametrize N e at v with (u, u′) 
→ (v, n(u, u′)), where n(u, u′) parametrizes the
half-sphere that is normal to M at v. This provides μ2(e, B) = 2π.

The last case is a triangle F with vertex v. Let θ be the angle at v. Here, the
normal bundle at v is the part of the unit sphere which is contained between the
two hyperplanes normal to each edge of F incident at v, for which the volume is
2(π − θ)/3, so that μ2(F, B) = 2(π − θ).

Now, it remains to apply the inclusion-exclusion formula. This formula starts
with

∑q
i=1 μ2(Fi , B), which is 2qπ − 2

∑
i θi . Then comes the sum of the measures

associated with the intersection of two faces: this intersection is an edge for the q
pairs of adjacent faces, and just {v} for the (q

2

) − q remaining ones. This yields the
contribution 2qπ − 4

(q
2

)
π. We finally need to sum all terms for intersections of three

or more sets, which is always equal to {v}. This is

4π
∑

k≥3

(−1)k−1

(
q

k

)

= 4π

(

1 − q +
(
q

2

))

,

where we used the fact that
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∑

k≥0

(−1)k−1

(
q

k

)

= (1 − 1)q = 0.

Summing all the terms, we obtain μ2(M, B) = 4π − 2
∑q

i=1 θi so that

μ2(Ω, B) = 2π −
q∑

i=1

θi .

We have therefore obtained the curvature measures associated to an oriented
triangulated surface [71]. For any set B ∈ R

3, they are:

• The mean curvature measure:

μ1(M, B) =
∑

e∈E
εeβN (e)length(B ∩ e),

where βN is the angle between the normals to the faces at e in absolute value and
εe = 1 if the edge is convex and −1 otherwise.

• The Gauss curvature measure:

μ2(M, B) =
∑

v∈V∩B

μ2(M, v),

with
μ2(M, vi ) = 2π −

∑

k∈Fi

θv(Fk).

Using these expressions, we can make approximations of the curvature at a given
vertex by letting

μ1(M, B) � |B|Hi and μ2(M, B) � |B|Ki

for a vertex vi in the triangulation. Taking B = Ai , as defined in the previous section
(see Eq.4.1), we obtain the same approximation of the Gauss curvature as the one
obtained from the discretization of the Gauss–Bonnet theorem. The formulas for the
mean curvature differ, however.

4.2.4 Discrete Gradient and Laplace–Beltrami Operators

We conclude this section on triangulated surfaces with a computation of the discrete
equivalent of the gradient and Laplacian on surfaces.

Let S be a triangulated surface, V = {v1, . . . , vM } and F = {F1, . . . , FK } denot-
ing, respectively, the sets of vertices and faces of S. To simplify the discussion, we
will assume that the surface has no boundary, i.e., each edge belongs to exactly two
faces.



4.2 Estimating the Curvatures 117

A functionψ defined on S assigns a valueψ(vi ) to each vertex, and the gradient of
ψwill be defined as a vector indexed over faces. To compute it,wefirst focus on a face,
F = Fk for some k ∈ {1, . . . , K } that we will drop from the notation until further
notice. Let (v1, v2, v3) be the vertices of F (ordered consistentlywith the orientation),
and let e1 = v3 − v2, e2 = v1 − v3 and e3 = v2 − v1. Let c = (v1 + v2 + v3)/3 be
the center of the face.

We define the gradient of ψ on F , denoted ∇Sψ(F), as the gradient of the linear
interpolation of ψ on F , i.e.,

∇Sψ(F) = ∇F ψ̂F ,

where ψ̂F (a1v1 + a2v2 + a3v3) = a1ψ(v1) + a2ψ(v2) + a3ψ(v3) for a1 + a2 +
a3 = 1 and ∇F is the gradient on the face F considered as a regular surface.
From a computational viewpoint, u = ∇Sψ(F) is such that u = α1e1 + α2e2 and
uT (vk − vl) = ψ(vk) − ψ(vl) (k, l = 1, 2, 3), which gives

ψ(v3) − ψ(v2) = (α1e1 + α2e2)
T e1,

ψ(v1) − ψ(v3) = (α1e1 + α2e2)
T e2.

Let ψF be the column vector [ψ(v1),ψ(v2),ψ(v3)]T , M the 2 by 3 matrix

M =
(
0 −1 1
1 0 −1

)

and GF the matrix

GF =
(|e1|2 eT1 e2
eT1 e2 |e2|2

)

.

With this notation, the previous system is MψF = GFα. We therefore have

u = [e1, e2]α = [e1, e2]G−1
F MψF .

We first notice that detGF = |e1|2 |e2|2 − (eT1 e2)
2 = (|e1||e2| sin θ3)

2, where θ3 is
the angle at v3. It is therefore equal to 4a(F)2, where a(F) is the area of F . Moreover,
we can write:

G−1
F MψF = det(GF )−1

( |e2|2 −eT1 e2−eT1 e2 |e1|2
)(

0 −1 1
1 0 −1

)

ψF

= det(GF )−1

(−eT2 e1 −eT2 e2 −eT2 e3
eT1 e1 eT1 e2 eT1 e3

)

ψF , (4.9)

in which we have used the identity e3 = −e1 − e2. Introducing the vector

hψ(F) = ψ(v1)e1 + ψ(v2)e2 + ψ(v3)e3
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and the matrix

DF = e2e
T
1 − e1e

T
2 = e1e

T
3 − e3e

T
1 = e3e

T
2 − e2e3,

a little computation yields

∇Sψ(F) = DF

4a(F)2
hψ(F).

We now pass to the computation of the discrete Laplace–Beltrami operator, which
we define via the discrete analog of the property

∫

S
|∇Sψ|2dσS = −

∫

S
ψΔSψdσS

that characterizes the operator on smooth surfaceswithout boundary. For triangulated
surfaces, we will identify ΔSψ via

K∑

k=1

|∇Sψ(Fk)|2a(Fk) = −
N∑

i=1

ψ(vi )(ΔSψ)(vi )|Ai |,

where |Ai | is the area attributed to vertex vi (using, for example, Voronoï cells).
For a given face F , we can write (using the previous notation): |∇Sψ(F)|2 =

αT GFα = ψT
F M

TG−1
F MψF . Applying MT to (4.9), we get

MTG−1
F M = det(GF )−1

⎛

⎝
|e1|2 eT1 e2 e

T
1 e3

eT1 e2 |e2|2 eT2 e3
eT1 e3 e

T
2 e3 |e3|2

⎞

⎠ .

Let ΣF denote this last matrix. We can write:

K∑

k=1

ψT
Fk

ΣFkψFk

4a(Fk)
=

1

4

N∑

i=1

ψ(vi )
∑

k∈Fi

(|eik |2ψ(vi ) + eTike
′
ikψ(v′

ik) + eTike
′′
ikψ(v′′

i k))/a(Fk),

where v′
ik and v′′

ik are the other two vertices of Fk , k ∈ Fi (in addition to vi , ordered
according to the orientation) and eik, e′

ik and e
′′
ik are, respectively, the edges opposed

to vi , v
′
ik and v′′

ik in Fk . This implies that one should define

ΔSψ(vi ) = − 1

4|Ai |
∑

k∈Fi

(|eik |2ψ(vi ) + eTike
′
ikψ(v′

ik) + eTike
′′
ikψ(v′′

ik)
)
/a(Fk).
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One can rewrite this discrete Laplacian in terms of angles. Denoting as before by θ′
ik

and θ′′
ik the angles at v

′
ik and v′′

ik , one has

eTike
′
ik = − cos θ′′

ik |eik | |e′
ik | = −2 ctn θ′′

ika(Fk).

Similarly, eTike
′′
ik = −2 ctn θ′

ika(Fk) and, since the sum of the edges is 0,

|eik |2 = −eTik(e
′
ik + e′′

ik) = 2(ctn θ′
ik + ctn θ′′

ik)a(Fk).

One can therefore write

ΔSψ(vi ) = 1

2|Ai |
∑

k∈Fi

(
ctn θ′′

ik(ψ(v′
ik) − ψ(vi )) + ctn θ′

ik(ψ(v′′
ik) − ψ(vi ))

)
,

which provides a discrete definition of the Laplace–Beltrami operator on S. This
formula is sometimes called the “cotangent formula” [232].

4.3 Consistent Approximation

So far the concepts we have defined for triangulated surfaces have been directly
inspired by the corresponding notions in the theory of smooth surfaces. Here, we
provide some results evaluating how well a triangulated surface can approximate
a smooth one, and whether quantities defined on triangulated surfaces are good
estimates of the same quantities computed on the surface that is being approximated.

Because this analysis will be important for further purposes, we focus on the
approximation of integrals

∫
Σ
h(p) dσΣ(p) over a C2 regular surface Σ by sums

∑

F∈F
h(cF )a(F),

where F is the set of faces of a triangulated surface S, cF is the center of mass of
face F and a(F) its area.

To handle situations in which Σ is a surface with boundary, we also assume that
another C2 regular surface, Σ ′, is given, extending Σ so that Σ ∪ ∂Σ ⊂ Σ ′. If Σ is
a closed surface, we can takeΣ ′ = Σ . We let ϕ : Σ ′ × (−ρ, ρ) → R

3 be the normal
map, so that ϕ(p, t) = p + t NΣ ′(p), and we assume that ρ is small enough that ϕ
is a diffeomorphism onto its image, denoted by U . For q ∈ U , we let ξ(q) be the
closest point to q in Σ ′, i.e., the unique p such that ϕ(p, t) = q for some t ∈ ρ. We
note that

ξ(ϕ(p, t)) = p
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for all p, t , so that dξ ◦ ϕ∂pϕ = Id,with∂pϕ = Id + tdNΣ ′ . Fixing p and letting u1,
u2 denote principal directions at p, with principal curvatures κ1 and κ2, we therefore
have, for q = ϕ(p, t)

dξ(q)ui = ui
1 + tκi

, i = 1, 2.

Similarly, dξ ◦ ϕ∂tϕ = 0, so that dξ(q)NΣ ′(p) = 0. We assume in the following
that ρ is chosen small enough that 1 + tκi is bounded away from zero for |t | ≤ ρ
and i = 1, 2.

Let S be a triangulated surface, with the usual notation V,F , E for the sets of
vertices, faces and edges in S. We will assume that S ⊂ U . For such a surface, we
define the following constants:

• ε1(S,Σ ′) = supq∈S |ξ(q) − p|, the distance from S to Σ ′.
• ε2(S,Σ ′) = 1 − minF∈F minq∈F NS(F)T NΣ ′(ξ(q)).
• δ(S) = max(v1,v2)∈E |v1 − v2|, the maximum edge size in S.
• ε3(S,Σ) = dH (ξ(S),Σ), where dH is the Hausdorff distance

dH (A, A′) = max

(

sup
x∈A

dist(x, A′), sup
x∈A′

dist(x, A)

)

.

We will also let ε(S,Σ ′) = max(ε1, ε2, ε3, δ), and we will say that a sequence of
triangulations S(n) converge to Σ if ε(S(n), Σ) → 0.

With this notation, we have the following theorem.

Theorem 4.3 Let h be a continuous function on a compact neighborhood of U.
Then ∫

Σ

h(p) dσΣ(p) =
∑

f ∈F
h(c f )a( f ) + |S|O(ε). (4.10)

Proof Consider F ∈ F . Let v1, v2, v3 denote the vertices of f and c = (v1 + v2 +
v3)/3. Let ei j = v j − vi . We first compute

∫
ξ( f ) h(p) dσΣ ′(p), for which we can use

the local chart ψ : (x, y) 
→ ξ(v1 + xe12 + ye13), for x, y > 0, x + y < 1. Then,
letting T denote the triangle {(x, y) : x, y > 0, x + y < 1},

∫

ξ(F)

h(p) dσΣ ′(p) =
∫

T
h(ψ(x, y))|∂xψ × ∂yψ| dx dy.

Note that, using the same notation as above for principal directions and curvatures
on Σ ′ at p = ψ(x, y),

∂xψ = dξ ◦ ψ e12 = eT12u1
1 + tκ1

u1 + eT12u2
1 + tκ2

u2

∂yψ = dξ ◦ ψ e13 = eT13u1
1 + tκ1

u1 + eT13u2
1 + tκ2

u2
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so that

∂xψ × ∂yψ = eT12u1 e
T
13u2 − eT12u2 e

T
13u1

(1 + tκ1(p))(1 + tκ2(p))
NΣ ′(p)

= (e12 × e13)T NS′(p)

(1 + tκ1(p))(1 + tκ2(p))
NΣ ′(p)

= 2a(F)
NT

F NS′(p)

1 + 2t H(p) + t2K (p)
NΣ ′(p),

where H and K denote the mean and Gauss curvatures. We therefore have

∫

ξ(F)

h(p) dσΣ ′(p) = 2a(F)

∫

T

NT
f NΣ ′(ψ(x, y)) h(ψ(x, y))

1 + 2t H(ψ(x, y)) + t2K (ψ(x, y))
dx dy,

from which one immediately deduces that

∣
∣
∣
∣

∫

ξ(F)
h(p) dσΣ ′(p) − a(F)h(c)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

ξ(F)
h(p) dσΣ ′(p) − 2a(F)

∫

T
h(c) dx dy

∣
∣
∣
∣

≤ a(F)max
p∈F

∣
∣
∣
∣
∣
h(c) − NT

F NΣ ′ (ξ(p)) h(ξ(p))

1 + 2t H(ξ(p)) + t2K (ξ(p))

∣
∣
∣
∣
∣
.

Introduce the modulus of continuity of h

ωh(η) = max
x,y∈U,|x−y|<η

|h(x) − h(y)|.

One has,

∣
∣
∣
∣h(c) − NT

F NΣ ′(ξ(p)) h(ξ(p))

1 + 2t H(ξ(p)) + t2K (ξ(p))

∣
∣
∣
∣ ≤

ωh(δ + ε1) + ‖h‖∞ε2 + ‖h‖∞ε1 max|t |≤ε1,p∈Σ ′
2H(p) + t K (p)

1 + 2t H(p) + t2K (p)
,

so that ∣
∣
∣
∣

∫

ξ(F)

h(p) dσΣ ′(p) − a(F)h(c)

∣
∣
∣
∣ = a(F) O(ε).

Summing over all faces, we obtain the fact that

∫

ξ(S)

h(p) dσΣ ′(p) =
∑

F∈F
h(cF )a(F) + |S|O(ε).

It now suffices to write
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∫

ξ(S)

h(p) dσΣ ′(p) =
∫

Σ

h(p) dσΣ(p) + O(ε3)

to conclude the proof of (4.10). �

Note also that we can replace ε2 by ε′
2 = 1 − minF∈F NS(F)T NΣ ′(ξ(cF )) (or any

other point in F), because ‖dξ‖ being bounded implies |NΣ ′(ξ(q)) − NΣ ′(cF )| =
o(δ) for q ∈ F .

Almost the same proof can be applied to sums involving normal vectors, yielding,
for example

∫

Σ

h(p)T NΣ(p) dσΣ(p) =
∑

F∈F
h(cF )T NFa(F) + |S|o(ε) (4.11)

for continuous vector-valued functions h.
Note also that, if h : R3 → R is a C1 function, one has

max
F

|∇Σh(ξ(cF )) − ∇Sh(F)| = o(ε).

Indeed, we have defined ∇Sh(F) = ∇F (ĥF ), where ĥF is a linear interpolation of h
on F , but ∇F (ĥF ) = ∇Fh(cF ) + o(δ) because h is C1. Moreover, letting ∇h denote
the R3 gradient of h, we have

∇Fh(cF ) = ∇h(cF ) − (NT
F ∇h(cF ))NF

and
∇Σh(ξ(cF )) = ∇h(ξ(cF )) − (NΣ(ξ(cF ))T∇h(ξ(cF )))NΣ(ξ(cF ))

and these two quantities differ as O(ε).
One can consider other approximations of geometric quantities and their conver-

gence when triangulated surfaces approximate smooth ones with increasing accu-
racy. See, for example, [146, 211], in which an equivalence is shown between correct
approximation of normals, or metric tensors, of area and of the Laplace–Beltrami
operator.

4.4 Isocontours and Isosurfaces

To conclude this chapter, we discuss methods that compute shapes (curves or sur-
faces) from discrete image data. We will discuss approaches based on energy min-
imization in Chap. 5. Here, we focus on what is probably the simplest approach,
which is to define curves of surfaces implicitly based on interpolation of the image
values.
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Assuming that the image f is defined on a discrete grid, we will interpolate it as
a function f̂ : D ⊂ R

d → R and define a shape as the level set

Sλ = {m : f (m) = λ}

for a properly chosen threshold, λ. As we know, if the gradient of f̂ does not vanish
on Sλ, this provides a smooth curve or surface (or a union of such).

The concrete implementation of such an approach presents a few challenges,
however. We will start with a discussion of the simpler two-dimensional case, which
will help in addressing the computation of isosurfaces, which is more intricate.

4.4.1 Computing Isocontours

We consider here a two-dimensional grid, G, which is formed by points p(s, t) =
(xs, yt ), where (xs, s = 1, . . . , M) is a discretization of the horizontal axis and
(yt , t = 1, . . . , N ) a discretization of the vertical axis. We assume that a discretiza-
tion of a smooth function f is observed, via the collection

( fst = f (p(s, t)), s = 1, . . . , M, t = 1, . . . , N ).

The problem is to compute the isocontour ( f = λ) for a given λ, in the form of a
polygon or a union of polygons. Without loss of generality, we can and will assume
λ = 0 in the following discussion.

Since the exact function f is not observed, some interpolation must be done, and
we will use bilinear interpolation for this. This means that the true (unobserved) f
will be replaced by the interpolation (that we still denote by f , with some abuse
of notation) which is defined as follows. Let C(s, t) denote the cell (square) with
vertices p(s + ε1, t + ε2), εi ∈ {0, 1}, i = 1, 2. Then, for p = x, y ∈ C(s, t), let

f (p) =
1∑

ε1,ε2=0

2∏

i=1

(
εi ri (p) + (1 − εi )(1 − ri (p))

)
fs+ε1,t+ε2 , (4.12)

with r1(p) = x − xs, r2(p) = y − yt .
Obviously, the set { f = 0} is the union of its intersections with each cell in the

grid, so that we can restrict to these intersections. Within a cell, f is given by (4.12),
and the set { f = 0} is either empty, or a line segment, or one or two branches of
a hyperbola. This is because, introducing the coordinates ξ = (x − xs)/(xs+1 − xs)
and η = (y − ys)/(ys+1 − ys), we can rewrite f (p) in the cell as (up to a positive
multiplicative constant):
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f (p) = f−−(1 − ξ)(1 − η) + f+−ξ(1 − η) + f−+(1 − ξ)η + f++ξη

= ρ
((

ξ + f−+ − f−−
ρ

)(
η + f+− − f−−

ρ

) − f++ f−− − f−+ f+−
ρ2

)

if ρ := f++ − f+− − f−+ + f−− �= 0 and

f (p) = ( f+− − f−−)ξ + ( f−+ − f−−)η + f−−

if ρ = 0. In this formula, f++, f+−, f−+ and f−− are the values of f at the vertices
of the cell.

We will approximate the intersection by line segments intersecting the edges of
the cell. There can be 0, 1 or 2 such line segments, and we now discuss when these
situations occur. An important observation is that, because the bilinear interpolation
is linear when restricted to the edges of the cell, there is at most one intersection
of the set { f = 0} with each edge, and this is only possible when f takes different
signs at each of the edge end-points. When this occurs, the points on the edges at
which f = 0 can be easily computed by solving a linear equation. They will form
the vertices of the polygonal line. The following, the proof of which we skip, can be
justified directly from the quadratic expression of f in the cell.

(a) If all f++, f+−, f−+ and f−− have the same sign: there is no intersection with
the edges, and therefore no intersection with the cell.

(b) If three of the values have the same sign, the last one having the opposite sign,
there are two vertices in the cell, and one edge connecting them.

(c) If two values have the same sign on one edge and two have the opposite sign on
the opposite edge, here also, there are two vertices and one edge.

(d) If the function changes sign on all the edges, there are four vertices and two
edges. There are two subcases, letting δ = f++ f−− − f−+ f+−.

(i) If δ > 0, then one edge links the vertex on {ξ = 0} to the one on {η = 1},
and the other the vertex on {η = 0} to the one on {ξ = 1}.

(ii) If δ < 0, then one edge links the vertex on {ξ = 0} to the one on {η = 0},
and the other the vertex on {η = 1} to the one on {ξ = 1}.

Cases (a), (b) and (c) can be decided based on the signs of f only. Case (d) is
called ambiguous because it requires the exact numerical values of f . There are a
few additional exceptional cases that are left aside in this discussion. When f = 0 at
one of the vertices of the cell, this vertex is also in the polygonal line. It connects to
other vertices at opposite edges of the cell, unless one of the cell edges that contain
it is included in the polygon. There is no ambiguous situation in that case.

Case (d) with δ = 0 is more of a problem, because it corresponds to a situation
in which the interpolated surface is the intersection of two lines and therefore has
a singular point. One cannot lift this ambiguity, and one of the options (i) and (ii)
should be selected. The selection cannot be completely arbitrary because this could
create holes in the reconstructed polygons. One possible rule is to take one option
(say (i)) when ρ > 0 and the other one when ρ < 0. The combination of case (d) and
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δ = ρ = 0 implies that f = 0 at all vertices of the cell which therefore should be
in the final polygon, but there is an unsolvable ambiguity as to how they should be
connected.

There is anotherway to handle case (d), disregarding δ, based, aswe just discussed,
on the sign of ρ, yielding

(d)′ In case (d) above, take solution (i) if ρ > 0 and (ii) otherwise.

The resulting algorithm is simpler, because, in case (d), the sign of ρ can be com-
puted directly based on the signs of f on the vertices of the cell. It does not correspond
to the bilinear approximation anymore, but this approximation was somewhat arbi-
trary anyway. It does break the symmetry of the solution, in the sense that, if f is
replaced by − f , the isocontours computed using (d)′ will differ. This is illustrated
in Fig. 4.2

In addition to allowing for the segmentation of specific shapes from images, when
the interior of the shape is, say, darker than its exterior, isocontours have been used
as basic components of image processing algorithms that are contrast-invariant in
the sense of mathematical morphology. A good introduction to this and to the related
literature can be found in [53, 54].

Finally, let us note that isocontours can be easily oriented in accordance with our
convention for implicit contours, by simply ensuring that grid points with negative
values of f lie on the left of each oriented edge.

4.4.2 Computing Isosurfaces

We now pass to the case of level sets for functions defined over three dimensions,
and describe the construction of triangulated isosurfaces. Although the problem is in
principle similar to the two-dimensional case, the solution is notably more complex,
mainly because of the large number of ambiguous situations in the determination of
the boundary. There is indeed a large literature on the subject, and the reader can
refer (for example) to [39] for a recent bibliography.

The three-dimensional generalization of the algorithm that we have presented for
isocontouring is calledmarching cubes [178], and progressively builds a triangulation
by exploring every grid cell on which the function changes sign. We will use a nota-
tion similar to the previous section, and letG be a regular three-dimensional grid, with
grid coordinates p(s, t, u) = (xs, yt , zu) where s = 1, . . . , M, t = 1, . . . , N , u =
1, . . . , P . Denote by fstu = f (p(s, t, u)) the observed values of f on the grid.
Like in two dimensions, we assume that f extends to the continuum with a tri-
linear interpolation as follows: Let C(s, t, u) denote the cube (cell) with vertices
p(s + ε1, t + ε2, q + ε3), εi ∈ {0, 1}, i = 1, 2, 3. Then, for p = x, y, z ∈ C(s, t, u),
let

f (p) =
1∑

ε1,ε2,ε3=0

3∏

i=1

(εi ri (p) + (1 − εi )(1 − ri (p))) fs+ε1,t+ε2,q+ε3

with r1(p) = x − xs, r2(p) = y − yt , r3(p) = z − zu .
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Fig. 4.2 Isocontouring a checkerboard strip using exact bilinear rule (d) (first row) and sign-based
rule (d)’ (second row). Note that the solutions are different, although both are plausible isocontours
for the image. Gray levels are switched in the last two rows, without changing the solution for
rule (d) (third row) and significantly altering it for rule (d)’ (fourth row), yielding a third plausible
solution

The determination of the vertices of the triangulation is similar to the two-
dimensional case: the intersections of the level set f = 0 and the edges of the cubes
C(s, t, u) can be computed by solving a simple linear equation; on a given edge,
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Fig. 4.3 Two-component (non-ambiguous) cases for the marching cubes algorithm

such an intersection exists only if f takes different signs at the end-points, and there
can be at most one intersection. The difficulty is how to group these vertices into
faces that provide a topologically consistent triangulation.

The main contribution of the marching cubes algorithm is to provide a method in
which each cube is considered independently, yielding a reasonably simple imple-
mentation. The method works by inspection of the signs of f at the eight vertices of
the cube. Like in two dimensions, there are some easy cases. The simplest is when
all signs are the same, in which case the triangulation has no node on the cube. Other
simple configurations are when the cube vertices of positive sign do not separate the
other vertices in two or more regions and vice-versa. In this case, the triangulation
has to separate the cube into two parts. There are, up to sign and space symmetry
and up to rotation, six such cases, which are provided in Fig. 4.3.

Such triangulations can be efficiently described by labeling the vertices and the
edges of the cube, as described in Fig. 4.4. We can describe a sign configuration on
the cube by listing the vertices which have a positive sign. We can also describe each
triangulation by listing, for each triangle, the three edges it intersects. Figure 4.3
therefore describes the six triangulations
{1} : [(1, 4, 9)]
{1, 2} : [(2, 4, 9), (2, 4, 10)]
{2, 5, 6} : [(1, 2, 9), (2, 8, 9), (2, 8, 6)]
{1, 2, 5, 6} : [(2, 6, 4), (4, 6, 8)]
{2, 3, 4, 7} : [(1, 10, 6), (1, 6, 7), (1, 7, 4), (4, 7, 12)]
{1, 5, 6, 7} : [(1, 10, 11), (1, 11, 8), (8, 11, 7), (4, 1, 8)]
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Fig. 4.4 Labels for the vertices (left) and edges (right) of the cube

Fig. 4.5 Two triangulations associated to the {3, 8} sign configuration [(2, 3, 11), (1, 4, 9)] and
[(4, 9, 3), (3, 9, 11), (9, 11, 2), (1, 2, 9)]

The cases when the signs form more than two connected components on the cube
are problematic. They are ambiguous, because the way the surface crosses the cube
cannot be decided from the sign pattern alone. One needs to rely onmore information
(i.e., the actual values of f at the nodes) to decide how to triangulate the surfacewithin
the cube, in order to avoid creating topological inconsistencies.

Take, for example, the case in which the cube vertices labeled (1) and (3) have
signs distinct from the rest. Then, there are two possible ways (described in Fig. 4.5 )
in which the surface can cross the cube.

Another kind of ambiguous configuration is when two vertices in two opposite
corners are isolated from the rest. Consider, for example, the situation when vertices
1 and 7 are positive while the rest are negative. Then the surface can do two things:
either cut out the corners of the cube, or create a tunnel within the cube (see Fig. 4.6).

There have been successive attempts to improve the marching cubes algorithm
from its original version ([178], in which the discussion was incomplete) [64, 209,
215, 218, 291] and untying the ambiguous cases. In addition to the two cases
described in Figs. 4.5 and 4.6, five other ambiguous sign configurations can be listed,
arising from combinations of these two basic cases. A complete description of all
possible cases has been provided in [64], together with disambiguation rules. An
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Fig. 4.6 Two triangulations associated to the {1, 7} sign configuration [(1, 4, 9), (7, 6, 11)] and
[(1, 4, 11), (1, 11, 6), (1, 9, 6), (9, 6, 7), (9, 4, 7), (4, 11, 7)]

extensive theoretical and numerical analysis of the algorithm has been provided in
[217] to which the reader is referred for complementary information, with the listing
of all possible topologies within the cube.

If one drops the requirement to provide an accurate triangulation of zero-crossings
of the linear interpolation of f within each cube, a reasonably simple option is
available [209]. This approach has the disadvantage of breaking the sign-change
invariance (which ensures that the computed triangulation should not change if f is

Fig. 4.7 Twenty-three configurations for consistentwithin-cube triangulation based onvertex signs.
Dotted vertices correspond to positive values of the function
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replaced by − f ), but provides a very simple algorithm, still based on the signs of
f on the vertices (it can be seen as a generalization of (d)′ in our discussion of the
two-dimensional case). This results in 23 different cases (up to rotation invariance),
listed in Fig. 4.7. This had to be compared to the 15 cases initially proposed in [178],
which was invariant under sign change, but created topological errors.

An alternative to the marching cubes algorithm replaces cubic cells by tetra-
hedrons before computing the triangulation, which, when properly handled [57],
provides a simpler and more stable procedure.

Extracting surfaces as level sets of functions is important even when the original
data is not a three-dimensional image from which the region of interest is an isosur-
face. For example, when the original data is a set of unstructured points that roughly
belong to the surface (i.e., they are subject to small errors) some of the commonly
used algorithms that reconstruct the surface first reduce to the isosurface problem,
trying to infer the signed distance function to the surface, at least in a neighborhood
of the observed points. The approach used in [154] is to first approximate the tangent
plane to the surface and then build the signed distance function. A similar goal is
pursued in [11], using an approach based on computational topology.

Marching cubes (or tetrahedrons) have the drawback of providing a very large
number of triangles, sometimes with very acute angles. Simplifying meshes is also
the subject of a large literature, but this will not be addressed here (see, for example
[100]).



Chapter 5
Evolving Curves and Surfaces

In this chapter, we discuss how curve or surface evolution can be formulated using
partial differential equations, and discuss some applications in curve smoothing and
image segmentation.

5.1 Curve Evolution

We consider, in this section, curves that depend on time, which will be denoted by
t , the curve parameter being denoted by u (or s for arc length). A time-dependent
curve is a function of two variables

m : [0, 1] × [0,Δ] → R
2

(t, u) �→ m(t, u).

We therefore assume that the domain over which the curve is parametrized (the
interval [0,Δ]) is fixed. The curve at time t will be denoted mt : u �→ m(t, u). Its
length will be denoted Lt , and the arc length st : [0, 1] → [0, Lt ]. The curvature at
a point p will be κt (p); Tt (p) and Nt (p) will be the unit tangent and normals at p.
Differentiation with respect to time will be denoted ∂t . Differentiation with respect
to curve (or, later in this chapter, surface) parameters will use the same convention as
in the previous chapters, using dots or ∂ without subscript for univariate functions,
and ∂1, ∂2, . . . for multivariate functions.

We consider curves evolving according to differential equations of the kind:

∂tmt (u) = A(t, u)Tt (mt (u)) + B(t, u)Nt (mt (u)). (5.1)

In this equation, A(t, u) and B(t, u) depend on the curve at time t and are scalar
functions that depend on the parameter u. Most of the time, they will involve local
properties of the curve at u (such as the curvature).
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The decomposition of the evolution into tangent and normal terms is useful,
because each of them is associated to different properties of the evolution. The
normal term is directly related to the geometric evolution of the curve, as implied by
the following lemma:

Lemma 5.1 ([101]) Assume that m is twice continuously differentiable in space,
continuously differentiable in time, regular at all times t ∈ [0,Δ] and satisfies the
equation

∂tm = AT + BN .

Then, there exists a time-dependent change of parameter on m, denoted ψt , such that
ψ0(u) = u and m̃t (u) := mt (ψt (u)) is a solution of

∂t m̃ = B̃N

with B̃(t, u) = B(t,ψt (u)).

Proof Let u �→ ψt (u) be as in the lemma. The evolution of m̃t (u) = mt (ψt (u)) is

∂t m̃t (u) = ∂tmt (ψt (u)) + ∂tψt (u) ∂(mt (ψt (u)))

= (A(t,ψt (u)) + ∂tψt (u) |ṁt (ψt (u))|)T + B(t,ψt (u))N .

We therefore need to show that there exists a ψ such that

A(t,ψt ) + ∂tψt |ṁt(ψt )| = 0.

This results from thegeneral theoryof ordinarydifferential equations (cf.AppendixC).
For fixed u, let ξ(t) = ψt (u). This function must satisfy ξ(0) = u and the equation

∂tξ = −A(t, ξ)/|ṁt (ξ)|.

Existence and uniqueness of the solution is ensured by the fact that A and ṁ are C1.
For ṁ, this is true because m is assumed to be C2 in space, and for A, it suffices
to observe that A(t, ·) = ∂tmT

t Tt and therefore is C1 with respect to its second
variable. �

This lemma implies that the evolution of the curve is essentially captured by the
function B, where A only induces changes of parameter.

Very often, the curve variation at time t only depends on the curve at the same
time, so that there exist transformations m �→ (αm,βm) with αm,βm : [0,Δ] → R

such that
A(t, u) = αmt (u) and B(t, u) = βmt (u).

(α and β could also be made to depend on time.)
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As usual, we say that these functions are reparametrization-invariant if

βm◦ψ = βm ◦ ψ

for any change of parameter ψ (and similarly for α, although this is of less interest).
In view of Lemma 5.1, we see that if βm is reparametrization-invariant, the evolution

∂tm = αmT + βmN

can be transformed, after a change of parameter, to

∂t m̃ = βm̃ N .

We now discuss the evolution of contours and domain integrals associated to
curves evolving according to (5.1). The results are summarized in the following
theorem.

Theorem 5.2 Let V : R2 → Rbea continuously differentiable function, andassume
that m : (t.u) �→ m(t, u) satisfies (5.1), has continuous partial derivatives ∂t ṁt , and
is such that u �→ mt (u) is a C2 regular curve for all t ∈ [0, t0]. Define

F(t) =
∫
mt

V dσmt =
∫ Δ

0
V (mt (u))|ṁt(u)|du.

Then

∂t F = [V (m)(∂tm)T T ]Δ0 +
∫
mt

(∇V T Nt − κt )N
T
t ∂tmdσmt (5.2)

(the first term vanishing if the curve is closed). Here κt is the curvature of mt .
Assuming that mt is simple (and closed) for t ∈ [0, t0], and letting Ωt denote its

interior, define

G(t) =
∫

Ωt

V (x)dx .

Then

∂tG = −
∫
mt

V NT
t (∂tmt )dσmt . (5.3)

Finally, let W : R2 → R
2 be a C1 vector field, and

H(t) =
∫
mt

WT Ntdσmt ,
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where mt can be open or closed. Then

∂t H = −[det(W (mt ), ∂tmt )]Δu=0 +
∫
mt

div(W )Nt
T (∂tmt )dσmt . (5.4)

Proof First consider the line integral, F . We have ∂t |ṁt |2 = 2∂t ṁT
t ṁt and, since

this is also equal to 2 |ṁt | ∂t (|ṁt |), we can write

∂t F =
∫ Δ

0
∇V (mt )

T∂tmt |ṁt |du +
∫ Δ

0
V (mt ) ∂t ṁ

T
t Ttdu

=
∫ Δ

0
∇V (mt )

T∂tmt |ṁt |du + [V (mt ) ∂tmt
T Tt ]Δ0

−
∫ Δ

0
((∇V (mt )

T ṁt )(Tt
T∂tmt ) + V (mt ) ∂tmt

T Ṫt )du

= [V (m) ∂tmt
T Tt ]Δ0 +

∫ 1

0
(∇V (mt ) − (∇V (mt )

T Tt )Tt )
T∂tmt |ṁt |du

−
∫ 1

0
κt V (mt ) (∂tm

T
t Nt ) |ṁt | du

= [∂tmt
T Tt ]Δ0 +

∫
mt

((∇V (mt )
T Nt )Nt − κt Nt )

T∂tmtdσmt .

This proves (5.2). We now prove (5.3) and (5.4), first observing that the former is
a consequence of the latter. Indeed, introduce ϕ such that V = divϕ, taking, for
example,

2ϕ(x1, x2) =
(∫ x1

V (x ′
1, x2)dx

′
1,

∫ x2

V (x1, x
′
2)dx

′
2

)
.

Then, from the divergence theorem

G(t) = −
∫
mt

ϕT Ntdσmt

so that (5.3) is deduced from (5.4) and the fact that mt is assumed to be closed.
For (5.4), we can write

H(t) = −
∫ Δ

0
det(W (mt ), ṁt )du

so that

∂t H = −
∫ Δ

0
det(dW (mt )∂tmt , ṁt )du −

∫ Δ

0
det(W (mt ), ∂t ṁt )du
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= −
∫ Δ

0
det(dW (mt )∂tmt , ṁt )du − [det(W (mt ), ∂tmt )]Δ0

+
∫ Δ

0
det(dW (mt )ṁt , ∂tmt )du

and the conclusion comes from the identity, true for any 2 by 2 matrix A and vectors
e1, e2,

det(Ae1, e2) + det(e1, Ae2) = trace(A) det(e1, e2)

applied to A = dW (mt ), e1 = ∂tmt and e2 = ∂umt . �

Remarks

The reader who has looked ahead at AppendixB may recognize the last statement
(the derivative of H ) as a special case of Corollary B.30 (in the embedded case, but
the immersed case can also be deduced from Theorem B.29). It is interesting to note
also that not only (5.3) but also (5.2) are consequences of (5.4) (see the proof of
Theorem 5.4).

We also notice that one only needs V to be continuous for (5.3) to hold.

5.1.1 Grassfires

As a first example of (5.1), let us consider the simplest case for which A = 0 and
B = 1. This corresponds to

∂tmt = Nt , (5.5)

which (taking as usual the inward normal) means that m shrinks towards its interior
at unit speed. Such evolutions are often called grassfires because the evolving curve
would look like the boundary of a lawn around which a fire is set at time 0, with the
fire propagating inward. They are closely related to medial axes (defined in Chap.2),
because the skeleton is the location at which two separate grassfire fronts meet.

It is quite easy to study (5.5) and prove that solutions exist in small time when
starting with a smooth curve, but that singularities are developed in finite time.

First, let us assume that a solution is known, in the form m(t, u) for t ∈ [0, t0],
m(0, ·) being a simple closed curve, and m(t, ·) being regular and C2 for all t in this
interval. We first prove that the normals remain unchanged: Nt (u) = N0(u) for all
u ∈ [0,Δ]. Indeed, because |Nt | = 1 at all times, we have ∂t N T

t Nt = 0. Moreover

∂(∂tm) = Ṅt = − |ṁt | κt Tt = −κt ṁt .

This implies
0 = ∂t (ṁ

T
t Nt ) = ∂t ṁ

T
t Nt + ṁT

t ∂t Nt = ṁT
t ∂t Nt .
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Therefore, ∂t Nt = 0, since it is perpendicular to both normal and tangent; so the
normal is constant over time. Given this, the integration of the evolution equation is
straightforward and yields

mt (u) = m0(u) + t N0(u) (5.6)

and it is easy to show that this provides a solution of (5.5).
In this computation, we have used the assumption that m is smooth (in u) for

all t ∈ [0, t0]. We now check that this fails to be true in finite time, whatever the
initial curve is. Indeed, as long as the computation is valid, we have, computing the
derivative of (5.6) (assuming that the curve is initially parametrized by arc length)

ṁt (u) = (1 − tκ0(u))T0(u).

In particular, if κ0(u) > 0, then, for t = 1/κ0(u), we have ṁt = 0, and the curve is
not regular anymore (the previous discussion becomes invalid at this point). Note that
there must exist points of positive curvature on the curve, since, for simple positively
oriented curves, the integral of the curvature (the rotation index) is 2π. The curvature
for small t can be computed using

Ṫt (u) = |ṁt | κt (u)Nt (u).

But, since Nt is constant in time, so is Tt , which implies

Ṫt (u) = Ṫ0(u) = κ0(u)N0(u).

Therefore

κt (u) = κ0(u)

1 − tκ0(u)
.

This implies that the curvature tends to infinity at the point u0 of highest curvature
in the initial curve, when t tends to t0 = 1/κ0(u0).

Even after t0, we can still define a curvem using (5.6). A very detailed description
of what happens immediately after t0 in the neighborhood of u0 can be made: this is
part of the theory of singularities, and it can be shown that the curve crosses itself,
the singularity at u0 forking into two new singularities, providing a shape called a
“swallow tail” (see Fig. 5.1). There are other types of singularitywhich can be created
over time; for example, non-contiguous arcs of the original curve may meet and the
region split into two parts (see the second example in Fig. 5.1), creating two new
singularities that will evolve.

Returning to the grassfire analogy, however, it makes sense (physically) to require
that grass which is already burned does not burn again. So, in the grassfire model,
the swallow tail part, and other curve portions after self-intersection should not
be included in the evolving curve (Fig. 5.1). An important observation is that both
evolutions can be seen as solutions of the original equation (5.5). Its solutions are
therefore not uniquely defined once singularities appear.
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Fig. 5.1 Curve evolution with the grassfire equation. Left: evolution according to (5.6). Right:
same evolution after removing the burned-out parts

The location of the points of self-intersection (the first one being at u0) is inter-
esting since these points belong to the medial axis. (Note that there will be several
such points at larger times, each one starting at a local maximum of the curvature.)
Tracking them over time provides a feasible algorithm for computing the skeleton
[262–264, 274].

5.1.2 Curvature Motion

Wenow take, in (5.1), A = 0 and B = κt , the curvature ofmt . This gives the equation:

∂tmt (u) = κt (u)Nt (u). (5.7)

Note that, because κt and Nt change signs together when the orientation is changed,
this evolution does not depend on the curve’s orientation (the previous one did). The
following theorem provides a detailed description of how a curve evolves under this
equation.
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Theorem 5.3 ([118, 133]) Assume that u �→ m0(u) is a regular, C2, closed and
simple curve in R

2. Then the previous equation has a solution over an interval
[0, t0]. The curve remains simple during the evolution. It first becomes convex, then
shrinks to a point while its shape becomes circular.

We will not prove this theorem (the proof is very involved). The interested reader
can refer to [66] for a proof and more results on related evolutions. The following
simple observations can help, however, in understanding why such a result holds.

The first of these observations is that (5.7) can be interpreted as gradient descent
for the functionm �→ L(m) = length(m). Indeed, applying Theorem 5.2with V = 1
yields (for any evolving curve ε �→ μ(ε, ·) with μ(0, ·) = m)

∂εL(μ(ε, ·)) = −
∫

με

κμε

∂εμ
T Nμε

dσμε .

Taking this at ε = 0, we see that (−κN ) is the gradient of the length functional for
the metric (cf. AppendixD)

〈
h , h̃

〉
m =

∫
m
hT h̃ dσm .

This implies that the length decreases over time (curvature motion is also called
the curve-shortening flow) and we have in fact (if m satisfies (5.7))

∂t Lt = −
∫ 1

0
κ2
t |ṁt |du = −

∫
mt

κ2
t dσmt .

The variation of the enclosed area is also interesting to compute. Letting At denote
the enclosed area of mt , we can again apply Theorem 5.2 with V = 1 to obtain

∂t At = −
∫
mt

(NT
t )(κt Nt ) dσmt = −

∫
mt

κt dσmt = −2π.

The area of the curve therefore decreases at constant speed, 2π. This also shows that
the curve disappears in finite time (initial area divided by 2π).

The last interesting quantity is the isoperimetric ratio, which is given by rt =
At/L2

t . The isoperimetric inequality (1.19) states that this ratio is always smaller
than 1/(4π), and equal to this value if only if the curve is a circle. We have

∂t rt = 1

L3
t

(Lt∂t At − 2At∂t Lt )

= 2At

L3
t

(
−π

Lt

At
+

∫
mt

κ2
t dσmt

)
.

Such a quantity has been analyzed in [117], in which it is shown that
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π
L

A
≤

∫
m

κ2dσm

as soon as the curvem is convex. When this is true, this implies that the isoperimetric
ratio increases during the evolution. Since the ratio is at a maximum for circles,
this explains why the curve becomes circular (this does not explain why the curve
becomes convex, which is the most difficult part of Theorem 5.3).

This flow can be used as a tool for smoothing curves, since it asymptotically
provides a circle. However, this smoothing is combined with an asymptotic reduction
to a dot which is a somewhat unwanted behavior. One way to deal with this is to
simply let the curve evolve over a time t and rescale it to its original area. The
evolution can also be compensated in real time so that the area remains constant: it
suffices to use the equation

∂tmt = (κt − 2π/Lt )Nt . (5.8)

For such curves, the previous computations show that the area satisfies

∂t At = −
∫ 1

0
(κt − 2π/Lt ) |ṁt | du = 0

and for the length

∂t Lt = −
∫ 1

0
κt (κt − 2π/Lt ) |ṁt | du

= −
∫ 1

0
(κt − 2π/Lt )

2 |ṁt | du.

So the length of the evolving curve decreases, unless κ is constant (equal to 2π/Lt ),
in which case the considered curve is a circle. For the isoperimetric ratio, we have

∂t rt = 1

L3
t
(Lt∂t At − 2At∂t Lt )

= 2At

L3
t

∫
mt

(κt − 2π/Lt )
2dσmt .

This therefore also increases unless the curve is a circle.

5.1.3 Implicit Representation of the Curvature Motion

Equation (5.7) may look simple when expressed in terms of geometric quantities,
but it is a rather complicated partial differential equation when seen in a fixed
parametrization, since it can be rewritten as
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∂tmt = m̈t

|ṁt |2 − m̈T
t ṁt

|ṁt |4 ṁt . (5.9)

The direct numerical implementation (by finite differences) of this equation is some-
what unstable (it clearly involves divisions by very small numbers). One obtains a
much more stable algorithm if an implicit parametrization is used [227, 255, 256].

For this purpose, assume that the initial curve is the zero level set of a smooth
function f 0, so that

Rm0 = {
p ∈ R

2, f 0(p) = 0
}
.

The principle of an implicit implementation is to make f 0 evolve over time so that
its zero level set evolves according to (5.7).

Introduce a time-dependent function (t, p) �→ ft (p), with f0 = f 0. In order
for the zero level set of ft to coincide with the curve mt defined above, we need
ft (mt (u)) = 0 for all t and all u ∈ [0, 1], which implies, after differentiation:

∂t ft + ∇ ft (mt )
T∂tmt = 0.

Using∇ ft (mt ) = −|∇ ft (mt )|Nt , ∂tmt = κt Nt and formula (1.26) for the curvature,
this yields the equation

∂t ft = |∇ ft | div ∇ ft
|∇ ft | . (5.10)

This equation (which is an anisotropic diffusion) is very stable and easy to implement
(see the next section). Figure 5.2 provides some examples of evolving curves. This

Fig. 5.2 Curves evolving according to the curve-shortening flow. First row: three examples of
superimposed evolving shapes. Second row: details of the evolution of the third shape (spiral) in
the first row
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equation has also proved itself important in image processing as a way to smooth
images while preserving edges (see [9, 10, 103]).

5.1.4 More on the Implementation

We now describe a numerical implementation of Eq. (5.10). It is the simplest one,
although not the most efficient (see [255]).

Initializing the Process

The function f 0 must be initialized so that its zero level set coincides with the initial
curve m(0, ·). A simple choice is to take the signed distance function f 0(m) =
εd(m,m(0, ·)) with ε = 1 outside m(0, ·) and ε = −1 inside m(0, ·). The distance
function can be computed efficiently using the algorithm described in Sect. F.4 of
AppendixF (Fig. 5.3).

The determination of the points belonging to the interior of the initial curve can
be done using standard algorithms in computational geometry [233]. The following
algorithm is applicable when the curve is discretized finely enough so that no hole
exists in its outline and it does not meet the boundary of the image. Pixels belonging
to the curve are assumed to be labeled with 0. Let the initial number of labels be
Nlab = 1.

• Label the first column and the first row of the image as 1.
• First scan: Scan each row, labeling each pixel like its predecessor in the row, unless
this predecessor is a zero. In this case, look at the predecessor in the column: if it
has a non-zero label, use this label, otherwise, create a new label, (Nlab + 1), to
label the pixel, and add 1 to Nlab.

Fig. 5.3 Signed distance map. Left: original curve. Right: associated signed distance map
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• Second scan: The previous scan results in over-segmented regions. The last step
consists in merging labels by running a backward scan (starting from the last pixel
of the last row). Two labels are merged when they are attributed to two neighbor
pixels (not separated by a zero).

Finite-Difference Scheme

We now describe how (5.10) can be discretized. Let δt be the time step. The time-
discretized evolution algorithm is

f (n+1) = f (n) + δt
∣∣∇ f (n)

∣∣ div
(

∇ f (n)∣∣∇ f (n)
∣∣
)

.

δt is the “time” discretization step.
One needs to compute finite-difference approximations of the derivatives, involv-

ing a “space” discretization step δx . We first compute an alternative expression for

div
( ∇ f

|∇ f |
)
. Starting from

∂1

(
∂1 f√

(∂1 f )2 + (∂2 f )2

)
+ ∂2

(
∂2 f√

(∂1 f )2 + (∂2 f )2

)
,

we get

∂2
1 f√

(∂1 f )2 + (∂2 f )2
− (∂1 f )2∂2

1 f + ∂1 f ∂2 f ∂1∂2 f

((∂1 f )2 + (∂2 f )2)3/2

+ ∂2
2 f√

(∂1 f )2 + (∂2) f 2
− (∂2 f )2∂2

2 f + ∂1 f ∂2 f ∂1∂2 f

((∂1 f )2 + (∂2 f )2)3/2

= ∂2
1 f (∂2 f )2 − 2∂1 f ∂2 f ∂1∂2 f + ∂2

2 f (∂1 f )2

((∂1 f )2 + (∂2 f )2)3/2
.

To discretize the derivatives, one can use symmetric approximations:

∂1 f (i, j) = ( f (i + 1, j) − f (i − 1, j))/2

∂2 f (i, j) = ( f (i, j + 1) − f (i, j − 1))/2

∂2
1 f (i, j) = ( f (i + 1, j) − 2 f (i, j) + f (i − 1, j))

∂2
2 f (i, j) = ( f (i, j + 1) − 2 f (i, j) + f (i, j − 1))

∂1∂2 f (i, j) = ( f (i + 1, j + 1) − f (i − 1, j + 1)

− f (i + 1, j − 1) + f (i − 1, j − 1))/4.



5.2 Surface Evolution 143

5.2 Surface Evolution

Describing surfaces that evolve over time via a differential equation is not as simple
as with curves, because surfaces are, to start with, harder to describe than curves. We
can however describe the evolution of parametrized surfaces as we did with curves,
writing

∂tmt (u, v) = θ(t, u, v) + B(t, u, v)Nt (u, v) (5.11)

where θ(t, u, v) is tangent to mt at mt (u, v) (i.e. in the plane generated by ∂1mt and
∂2mt and B is a scalar function).

A slight generalization of this scheme is when another regular, oriented surface,
say Σ , is chosen to parametrize the evolving surfaces. We will assume that, for each
time t , there exists a function q �→ μt (q), defined over Σ such that the evolving
surface is St = μt (Σ) and, for all q ∈ S0, dμt (q) has rank 2 as a map from TqΣ to
R

3 (i.e., μt is an immersion).
The set St might not be a regular surface (it can have multiple points, for example)

so that the tangent planes and normal to St at μt (q)may not be defined. However, for
any q ∈ Σ , one can find a parametrized region in Σ around q (with parametrization
(u, v) = m(u, v)) which maps into a regular parametrized patch in St that has a well-
defined tangent plane and normal, that will be respectively denoted Lt,q and Nt (q).
We can therefore generalize (5.11) by considering surface evolutions of the kind

∂tμt (q) = θ(t, q) + B(t, q)Nt (q) (5.12)

with θ(t, q) ∈ Lt,q .
If m0 : (u, v) → m0(u, v) is a local chart at q, we get a local parametrization

mt (u, v) = μ(t,m0(u, v)) (5.13)

on St , with

∂tmt (u, v) = θ(t,m0(u, v)) + B(t,m0(u, v))Nt (m
0(u, v)).

If St happens to be an oriented regular surface at all times, then Lt,q = Tμt (q)St ,
and we can think of (5.12) as an equation of the form

∂t p = θ̃(t, p) + B̃(t, p)Nt (p) (5.14)

with θ̃(t, p) ∈ TpSt .
Similar to curves, the geometric evolution is only captured by B. Let us sketch a

justification of this fact. If μ evolves according to (5.12), and q �→ ϕt (q) is a global
change of variable of Σ (a C1 invertible map from Σ to Σ with a C1 inverse), then
we can consider μ̃t (q) = μt (ϕt (q)). Then
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∂t μ̃t = dμt ◦ ϕt ∂tϕt + θt ◦ ϕt + Bt ◦ ϕt Nt ◦ ϕt .

So, if
∂tϕt = −(dμ−1

t θt ) ◦ ϕt (5.15)

then μ̃t follows (5.12)with θ = 0.But (5.15) defines theflowassociated to anordinary
differential equation (cf. AppendixC) on Σ and therefore provides a change of
parameter.

We have the equivalent of Theorem 5.2:

Theorem 5.4 Let V : R3 → R be a smooth function, and assume that a time-
dependent regular surface St is defined by (5.12) where μ is C2 as a function of
two variables. Define

F(t) =
∫
St

V dσt ,

where σt = σSt is the area measure on St . For p = μt (q) ∈ St , let ξt (p) = ∂tμt (q).
Then

∂t F = −
∫

∂St

V nTt ξt +
∫
St

( − 2V Ht + ∇V T Nt
)
NT
t ξt dσt , (5.16)

where Ht is the mean curvature on St and nt is the inward normal to ∂St .
Assuming that St coincides with the boundary of an open subset Ωt ⊂ R

3, define

G(t) =
∫

Ωt

V (x)dx .

Then

∂tG = −
∫
St

V NT
t ξt dσt . (5.17)

Finally, let W : R3 → R
3 be a smooth vector field, and

L(t) =
∫
St

W T Nt dσt

(where St can be open or closed). Then

∂t L =
∫

∂St

ξTt (τt × W ) dσt +
∫
St

div(W ) NT
t ξt dσt , (5.18)

where τt is the unit tangent to ∂St , oriented so that (τ , n, N ) forms a direct orthonor-
mal basis.

Proof (“Elementary Proof”) We start with a proof which is rather lengthy, but does
not require any additional concepts than those that have been introduced so far. We
will then provide an alternative shorter proof, based on results from AppendixB.
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To analyze the variations of F , take a family ((Ui ,mi
t ), i = 1, . . . , n) of positively

oriented local parametrizations of St (the Ui ’s being independent of time), as given
by (5.13), and an adapted partition of unity (ωi , i = 1, . . . , n) on Σ . Define, for
t ≥ 0, ω̄i

t (m
i
t (u, v)) = ωi (mi

0(u, v)), to obtain a partition of unity on St and write

F(t) =
N∑
i=1

∫
Ui

ωi (mi
0(u, v))V (mi

t (u, v)) |∂1m
i
t × ∂2m

i
t | du dv. (5.19)

We now focus on the variation of one of the terms of the sum; if (U,mt ) is a local
patch on St , ω ◦ m0 a scalar function on U , define

f (t) =
∫
U

ω(m0(u, v))V (mt (u, v)) |∂1mt × ∂2mt | du dv.

Let ht = ∂tmt ; we have, ∂t V (mt (u, v)) = ∇V (mt (u, v))T ht . Also,

∂t
(|∂1mt × ∂2mt |

) = (
∂1ht × ∂2mt + ∂1mt × ∂2ht

)T
Nm
t ,

where Nm
t , the normal in the chart, is given by

Nm
t (u, v) = ∂1mt × ∂2mt

|∂1mt × ∂2mt | .

Rearranging the cross products, we get

∂t
(|∂1mt × ∂2mt |

) = (∂1ht )
T (∂2mt × Nm

t ) + (∂2ht )
T (Nm

t × ∂1mt ).

We now apply Lemma 3.19, using, as in the lemma,

ρ(A) = trace((Id − Nm
t (Nm

t )T )A)

for an operator A : TpS → R
3. This yields

∂t
(|∂1m × ∂2mt |

) = ρ(dξt ◦ mt ) |∂1mt × ∂2mt |

using the fact that ht = ξt ◦ mt is the local chart representation of ξt . We can then
write

∂t f =
∫
U

ω ◦ m0(V ◦ mt ρ(dξt ◦ mt ) + (∇V ◦ mt )
T (ξt ◦ mt )) |∂1mt × ∂2mt | du dv

=
∫
mt (U )∩St

ω̄(Vρ(dξt ) + ∇V T ξt ) dσt ,

with ω̄ ◦ m = ω ◦ m0.
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We now can apply this to all the terms in (5.19) to obtain

∂t F =
∫
S
(ρ(dξt )V + ∇V T ξt )dσt . (5.20)

We now eliminate dξt in (5.20), which will require an integration by parts via the
divergence theorem. Decompose ξt into a tangent and a normal part, namely

ξt = ξ0t + ηt Nt ,

with ηt = ξTt Nt (and therefore ξ0t (p) ∈ TpSt ), so that, by definition of ρ and
Eq. (3.24),

ρ(dξt ) = div′
St (ξt ) = divSt ξ

0
t − 2ηt Ht . (5.21)

Applying Green’s formula, letting nt be the inward normal to ∂St , we get

∫
St

Vρ(ξ0t )dσt = −
∫

∂St

V (ξ0t )
T n −

∫
St

∇V T ξ0t dσt ,

because divSt (V ξ0t ) = V divSt (ξ
0
t ) + ∇V T ξ0t . This in turn implies that

∂t F = −
∫

∂St

V (ξ0t )
T nt +

∫
St

( − 2V ηt Ht − ∇V T ξ0t + ∇V T ξt
)
dσt ,

which yields, since ∇V T ξt = ∇V T ξ0t + ηt∇V T Nt , and using ηt = ξt
T Nt ,

ξ0t
T
nt = ξt

T nt :

∂t F = −
∫

∂St

V ξTt nt +
∫
St

( − 2V Ht + ∇V T Nt
)
(NT

t ξt )dσt , (5.22)

as needed.
Using the same argument as for curves, one can show that (5.17) is a consequence

of (5.18) and of the divergence theorem. We therefore directly prove (5.18). As
above, we can decompose the integral over charts using a partition of unity. So we
introduce the variation on a single chart and consider, for a scalar function ω ◦ m0,

�(t) =
∫
U

ω ◦ m0(u, v)(W (mt (u, v))T (∂1mt × ∂2mt )) dudv

=
∫
U

ω ◦ m0(u, v)det(W (mt (u, v)), ∂1mt , ∂2mt ) dudv.
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Computing time derivatives, we get, using again ht = ∂tmt ,

∂t� =
∫
U

ω ◦ m0(dW (mt )ht )
T (∂1mt × ∂2mt ) dudv

+
∫
U

ω ◦ m0W (mt )
T (∂1ht × ∂2mt + ∂1mt × ∂2ht ) dudv.

From Lemma 3.19, we know that the normal component of ζt := ∂1ht × ∂2mt +
∂1mt × ∂2ht is, writing, with some notation abuse, ρ(dht ) = ρ(dξt ◦ mt ),

ζT
t Nt = ρ(dht )|∂1mt × ∂2mt |.

To compute the tangential component, note that

ζT
t ∂1mt = (∂1ht × ∂2mt )

T∂1mt = −∂1h
T
t Nt |∂1mt × ∂2mt |

and similarly
ζT
t ∂2mt = −∂2h

T
t Nt |∂1mt × ∂2mt |.

This implies that, for any ζ̃ ∈ TpS, we have

ζT ζ̃ = −(dht (p)ζ̃)T Nt |∂1mt × ∂2mt |.

So, if we decompose W = W 0
t + wt Nt into tangent and a normal components to St

(taking wT = WT
t Nt ), we get

WT (∂1ht × ∂2mt + ∂1mt × ∂2ht ) =
(wtρ(dht ) − (dhtW

0
t )T Nt ) |∂1mt × ∂2mt |.

This gives (taking as above ω̄t (mt ) = ω ◦ m0)

∂t� =
∫
U

ω̄t (mt (u, v)) (dW (mt )ht )
T Nt |∂1mt × ∂2mt | du dv

+
∫
U

ω̄t (mt (u, v))
(
wt (mt )ρ(dht ) − (dhtW

0
t (mt ))

T Nt
)

|∂1mt × ∂2mt | du dv.

This yields (after summing over the partition of the unity)

∂t L(t) =
∫
St

(dWξt + ρ(dξt )W − dξt W
0
t )T Ntdσt .
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Using (5.21), we get, letting again ξt = ξ0t + ηt Nt be the decomposition of ξt into
tangent and normal components,

∂t L(t) = −
∫

∂St

wtξ
T
t nt (5.23)

+
∫
St

(
(dWξt )

T Nt − 2ηt Htwt − (∇Stwt )
T ξ0t − (dξtW

0
t )T Nt

)
dσt .

We have (by definition of the gradient)

(∇Stwt )
T ξ0t = dwtξ

0
t = (dWξ0t )

T Nt + (dNtξ
0
t )

TW. (5.24)

We will also use

divSt (ηtW
0
t ) = (∇Stηt )

TW 0
t + ηtdivSt W

0
t

= (dξtW
0
t )T Nt + (dNtW

0
t )T ξt + ηtdivSt W

0
t (5.25)

and
(dNtW

0
t )T ξt = (dNtW

0
t )T ξ0t = (W 0

t )T dNtξ
0
t = WTdNtξ

0
t

to write

(dWξt )
T Nt − 2ηt Htwt − (∇Stwt )

T ξ0t − (dξ0t W
0
t )T Nt

= ηt
(
(dWNt )

T Nt + divSt W
0
t − 2Htwt

) − divSt (ηtW
0
t )

= ηt
(
(dWNt )

T Nt + ρ(dW )
) − divSt (ηtW

0
t )

= ηtdiv(W ) − divSt (ηtW
0
t ).

Using this in (5.23) and applying the divergence theorem yields

∂t L(t) = −
∫

∂St

(
(WT Nt )(ξ

T
t nt )−(WTnt )(ξ

T
t Nt )

)
dσ∂St (5.26)

+
∫
St

div(W ) ξTt Ntdσt .

It now suffices to observe that

ξTt (τt × W ) = det(τt ,W, ξt ) = (WTnt )(ξ
T
t Nt ) − (WT Nt )(ξ

T
t nt )

to retrieve (5.18). �
Proof (Alternative Proof) Equation (5.26) is exactly the statement of Corollary B.30,
which was obtained as a consequence of Stokes’s theorem (Theorem B.28), and this
yields (5.18) and (5.17), which is a consequence of (5.18) and of the divergence
theorem.
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We now deduce (5.16) from (5.18) as follows. Fix t0 and let, for each time t
in a neighborhood of t0, N̂t (p) be a vector field on R

3 that extends Nt on St ,
i.e., such that N̂t (μt (q)) = Nt (μt (q)) for all q ∈ M . One way to build such a
mapping is to introduce the function

ϕt (q, u) = μt (q) + uNt (μt (q)).

Then ϕ is C1 and such that, for any t0 and ε > 0, there exists an r0 > 0 such that
for all t ∈ (t0 − ε, t0 + ε), ϕt is a diffeomorphism from M × (−r0, r0) onto an open
subset, say Ωt of R3 (details are left to the reader). Take any smooth function ρ such
that ρ(0) = 1 and ρ(u) = 0 if |u| ≥ r0 and set N̂t (ϕt (q, u)) = ρ(u)Nt (μ(s, q)) on
(t0 − ε, t0 + ε) × M × (−r0, r0) (which defines N̂t onΩt ) and N̂t (p) = 0 if p /∈ Ωt .

Given N̂t , let Wt (p) = V (p)N̂t (p), so that, for t in a neighborhood of t0,

F(t) =
∫
St

W T
t Ntdσt .

Apply (5.18) (taking into account the fact that W depends on time) to write

∂t F =
∫

∂St

ξTt (τt × Wt )dσt +
∫
St

(∂tWt )
T Ntdσt +

∫
St

div(Wt ) N
T
t ξt dσt . (5.27)

Now ξTt (τt × Wt ) = V ξTt (τt × Nt ) = −V ξTt nt , so that the boundary terms in (5.16)
and (5.27) coincide.

We have

(∂tWt )
T Nt + div(Wt ) N

T
t ξt = V

(
(∂t N̂t )

T Nt + div(N̂t ) N
T
t ξt

) + (∇V T Nt )(N
T
t ξt )

so that we need to prove that

(∂t N̂t )
T Nt + div(N̂t ) N

T
t ξt = −2Ht N

T
t ξt ,

or, since div(N̂t ) = −2Ht + NT
t d N̂t Nt , we need to show that (∂t N̂t )

T Nt +
NT
t d N̂t Nt = 0 (all these identities being true on St ). By assumption, we have

|N̂t (μt )|2 = 1, and taking the derivative in t , we find

0 = N̂ T
t ∂t N̂t + N̂ T

t d N̂tξt = NT
t ∂t N̂t + NT

t d N̂tξt

when these terms are evaluated at μt (q), which is what we needed. �
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5.2.1 Mean Curvature Surface Flow

The equivalent of the curve-shortening flow for surfaces is gradient descent for the
area functional, the variation ofwhich being given by (5.16)withV = 1. The gradient
of the area, for the dot product

〈
h , h̃

〉
S =

∫
S
hT h̃dσS

therefore is −2HN , yielding the gradient descent evolution, called mean curvature
flow

∂t p = 2H(p)N (p). (5.28)

This is a regularizing flow for surfaces, and solutions exist in short time. However,
singularities may form in the evolving surface, even when starting with relatively
simple ones. This could not happen with the curve-shortening flow.

The mean curvature flow in implicit form has exactly the same expression as
the curve-shortening flow. Indeed, if the evolving surface is defined (at time t) by
f (t, p) = 0 (with ∇ f �= 0 on the surface and f differentiable in time), then, using
equation (3.26) and the same argument as the one we made with curves, f satisfies
the evolution equation

∂t f = |∇ f |div
( ∇ f

|∇ f |
)

. (5.29)

This gives an alternative formulation of the mean curvature flow, that has the advan-
tage of carrying over the solution beyond singularities and allowing for changes of
topology. Equation (5.29) is a diffusion that smoothes f tangentially to the surface,
since

|∇ f | div
( ∇ f

|∇ f |
)

= Δ f − 〈
N , d2 f N

〉
.

5.3 Gradient Flows

The curvature and mean curvature flows for curves and surfaces are special cases of
gradient flows that evolve curves along steepest descent directions relative to a given
objective function (the length or the area in these cases), for a given metric (the L2

metric relative to the arc length or area form).
This approach can be applied to any objective function that has a gradient relative

to a chosen dot product; considering, as we did, curves over some interval, or surfaces
parametrized over some reference surface, we can consider energies E(m) (or E(μ))
that have a gradient ∇E with respect to some metric, and implement

∂tm = −∇E(m),
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which can obviously be put into the form (5.1) or (5.12).
As an example beyond mean curvature flows, let us consider plane curves and the

energy given by the integral of the squared curvature

E(m) = 1

2

∫
m

κ2dσm, (5.30)

which is often called the bending energy of the curve. To compute the gradient, let
us introduce a small perturbation m(ε, ·) of a curve m0 depending on a parameter ε,
such that m(0, ·) = m0. We want to compute ∂εE(m(ε, ·)).

A first observation that will simplify the computation is that, because E is
parametrization-invariant, we can assume that ∂εm is oriented along the normal
to m(ε, ·). We can indeed always restrict ourselves to this case using an ε-dependent
change of variable that does not affect the value of the energy.

A second simplification will come by introducing the variation with respect to arc
length along a curve m, denoted ∂m

s defined by

∂m
s f = ḟ

|ṁ| . (5.31)

We will drop the m superscript from the notation and only write ∂s , although it is
important to remember that this operator depends on the curve that supports it.

Assuming that m depends on ε, computing the derivative in ε yields

∂ε∂s = ∂s∂ε −
(

∂εṁ

|ṁ|
)T

T ∂s .

If ∂εm = BN , this gives
∂ε∂s = ∂s∂ε + κB∂s . (5.32)

Using this identity, we get

∂ε∂sm = ∂s(BN ) + κBT = (∂s B)N

and

∂ε∂
2
s m = ∂s(∂ε∂sm) + κB∂2

s m

= −(∂s B)κT + (∂2
s B + κ2B)N .

Because
∂ε∂

2
s m = κ∂εN + (∂εκ)N

and ∂εN is perpendicular to N , we find
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∂εκ = ∂2
s B + κ2B when ∂εm = BN . (5.33)

(We find in passing that the evolution of the curvature with (5.7) is ∂tκ = ∂2
s κ + κ3.)

Combining these results and Theorem 5.2, we can easily compute the variation
of E in ε (assuming that m is closed for simplicity), yielding

∂εE =
∫
m
(∂2

s B + κ2B)κdσm −
∫
m

κ3Bdσm

=
∫
m
(κ∂2

s B + κ3B/2)dσm

=
∫
m
(∂2

s κ + κ3/2)Bdσm,

which provides the gradient of E . Minimizing E by itself leads to the uninteresting
solution of a curve blowing up to infinity; indeed, since scaling a curvem by a factor
a divides its curvature by a, we have E(am) = E(m)/a. However, minimizing E
over curves with constant length, or the related problem of minimizing

Eλ(m) = E(m) + λ length(m) (5.34)

has been widely studied, in dimension 2 or larger, and curves for which the gradient
of Eλ vanishes for some positive λ are called elasticae. We have, using the same
notation

∂εEλ =
∫
m
(∂2

s κ + κ3/2 − λκ)B dσm (5.35)

and the related gradient descent algorithm

∂tm = −(∂2
s κ + κ3/2 − λκ)N

provides a well-defined and converging evolution [97, 172].
The counterpart of (5.30) for surfaces is the Willmore energy

E(S) =
∫
S
H 2dσS, (5.36)

and the associated minimizing flow is called the Willmore flow. It is given by

∂t p = (ΔSH + 2H(H 2 − K ))N (5.37)

(see [302]).
All the flows above were defined as gradient descent for the metric given by the

L2 norm relative to the arc length or the area form. As remarked in AppendixD,
changing the metric can induce fundamental changes in the resulting algorithms.
For example, as proposed in [272], gradient flows of curves associated to Sobolev
metrics
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〈
h , h̃

〉
m =

∫
m
(Ah)T h̃dσm,

where A is a differential operator (assumed to be symmetric and positive), can create
interesting variants of the original flows. More precisely, they transform an L2 flow
that would initially take the form

∂tm = −∇L2E(m)

into the flow
∂tm = −A−1(∇L2E(m)),

where A−1 is the inverse of A and therefore a smoothing operator. This results in an
evolution that favors smooth changes.

For closed plane curves, many interesting operators can be represented in terms
of Fourier series. For a curve of length L , we can consider the normalized arc length
s̃ = s/L defined over [0, 1]. Now, a periodic function f defined over [0, 1] can be
decomposed (if smooth enough) in terms of its Fourier series

f (s̃) =
∑
k∈Z

ck( f )e
2iπks̃

with

ck( f ) =
∫ 1

0
f (u)e−2iπkudu.

Let (ak, k ∈ Z) be a double sequence of positive numbers satisfying a−k = ak .
One defines the associated operator by

A f (s̃) =
∑
k∈Z

akck( f )e
2iπks̃ .

This operator is defined over functions f such that

∑
k∈Z

a2k |ck( f )|2 < ∞.

The inverse operator is then immediately defined by

A−1 f (s̃) =
∑
k∈Z

ck(g)

ak
e2iπks̃ .

For example, the differential operator A f = −2∂2
s̃ f is such that

ck(A f ) = 4π2k2ck( f ),
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as can be easily computed by integration by parts, and is therefore associated to ak =
4π2k2. The operator A f = −∂2

s̃ f + λ f (with λ > 0) corresponds to ak = 4π2k2 +
λ, which is positive (implying that A is invertible). Computations such as these, and
the fact that Fourier coefficients and Fourier series are discretized by the fast Fourier
transform and its inverse, lead to very simple variations of a gradient flow associated
to a given objective function (see Sect. 5.4.11).

5.4 Active Contours

5.4.1 Introduction

Active contour methods let curves or surfaces evolve in order to minimize a segmen-
tation energy (i.e., an energy that measures the alignment of the contour or surface
with the boundary of a shape present in the image). They provide an important class
of curve (and surface) evolution based on specific gradient flows.

We start with a parametrization-dependent formulation (in two dimensions),
which is the original method introduced in [165]. We will assume that a function
p �→ V (p) is defined for p ∈ R

2. Typically, V is small where a contour is likely to
be present in the image (based on some measure of discontinuity within an image,
for example). The goal is to ensure that the evolving contour settles along regions
where V is small while remaining a smooth closed curve.

To a smooth parametrized curve m : [0, 1] → R
2, we associate the energy

E(m) = α

∫ 1

0
|m̈|2du + β

∫ 1

0
|ṁ|2du + γ

∫ 1

0
V (m(u))du . (5.38)

Minimizing this energy results in a compromise between smoothness constraints
(provided by the first two integrals) and the fact that m aligns with image contours,
which comes from the last integral. The minimization is made subject to constraints
at the extremities. Typical constraints are:

(i) m(0) and m(1) are fixed, together with ṁ(0) and ṁ(1); or
(ii) m(0) = m(1), ṁ(0) = ṁ(1) (closed curves).

We will assume that one of these two conditions is enforced in the following com-
putation.

5.4.2 First Variation and Gradient Descent

Given a curve m0(u), u ∈ [0, 1], we evaluate the impact on the cost function E of
a small variation ε �→ m(ε, ·). If the extremities (m(0) and m(1)) are fixed, we will
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have ∂εm(ε, 0) = ∂εm(ε, 1) = 0. The closedness condition requires ∂εm(ε, 0) =
∂εm(1, 0). Letting h = ∂εm, we have

∂εE = 2α
∫ 1

0
m̈T ḧ du + 2β

∫ 1

0
ṁT ḣ du

+ γ

∫ 1

0
∇V (m(u))T h(u) du.

Assume that m is C4 and perform two integrations by parts of the first integral and
one of the second to obtain:

∂εE = −2α[(m(3))T h]10 + 2α[m̈T ḣ]10 + 2β[ṁT h]10
+ 2α

∫ 1

0
(m(4))T h du − 2β

∫ 1

0
m̈T h du

+ γ

∫ 1

0
∇E(m)T h du. (5.39)

The boundary terms (first line) disappear for both types of boundary conditions. We
can therefore write

∂εE = ε

∫ 1

0
∇E(m)T h du (5.40)

with
∇E(m) = 2αm(4) − 2βm̈ + γ∇V (m) .

Note that, in this formula, ∇E(m) is the variational gradient, therefore a function
u �→ ∇E(m)(u), whereas ∇V (m) is the ordinary gradient (a vector). Using the L2

metric on [0, 1], we get the following gradient descent evolution:

∂tm(t, u) = −2αm(4)(t, u) + 2βm̈(t, u) − γ∇V (m(t, u)). (5.41)

5.4.3 Numerical Implementation

The discretization of (5.41) is relatively straightforward.Assume thatm is discretized
into a sequence of points (x1, y1), . . . (xn, yn), stacked into a matrix M with n rows
and two columns.

The finite-difference derivatives with respect to the parameter u are linear opera-
tions on M . For example, M ′ = D1M with (in the case of closed curves)
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D1 = 1

2δu

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0 0 −1
−1 0 1 0 · · · 0 0 0 0

...

0 0 0 0 · · · 0 −1 0 1
1 0 0 0 · · · 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

,

where δu is the discretization step. The second derivative is obtained with a tridiag-
onal matrix, with 1,−2, 1 on the diagonal (and periodic assignment of values at the
extremities), divided by (δu)2. The fourth derivative is pentadiagonal, with values
1,−4, 6,−4, 1 divided by (δu)4. Therefore, the expression

−2αm(4) + 2βm̈

is discretized in the form A · Mt , where A is a pentadiagonal matrix which depends
only on α and β.

The function V is rarely known analytically, and most often discretized on a grid
(V = Vi j , i, j = 1, . . . , N ). To compute ∇V (m), the partial derivatives of V must
be estimated at points (x, y) which are not necessarily on the grid. The bilinear
interpolation of V at a point (x, y) ∈ R

2 is

V̂ (x, y) = (1 − αx )(1 − αy)Vi j + (1−αx )αyVi j+1

+ αx (1 − αy)Vi+1 j + αxαyVi+1 j+1,

where i and j are such that iδx ≤ x < (i + 1)δx and jδx ≤ y < ( j + 1)δx , and
αx = (x − iδx)/δx , αy = (y − jδx)/δx (with a spatial discretization step δx). This
implies that

∂x V̂ = (1 − αy)(Vi+1 j − Vi j ) + αy(Vi+1 j − Vi j+1),

except along lines x = iδx at which V̂ is not differentiable. One can use central finite
difference at such points, i.e.,

∂0
1Vi j = (Vi+1 j − Vi−1 j )/(2δx).

Similar formulas can be used for derivatives with respect to the second variable. This
yields a discrete version of the gradient of V , that we will denote by ∇V (M), which
is nonlinear in M .

The direct discretization of (5.41), using a time step δt , yields

Mt+1 = (I + δt A)Mt + δt ∇V (Mt ).

This algorithm will typically converge to a local minimum of E when δt is small
enough.
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Its numerical behavior can, however, be improved by a semi-implicit scheme (the
previous scheme being called explicit), given by

(I − δt A)Mt+1 = Mt + δt ∇V (Mt ). (5.42)

This requires the computation of the inverse of (I − δt A), which can be costly, but
this operation has to be done only once, since A does not depend on M .

The discretization needs to be adaptedwhen the distance between two consecutive
points in M becomes too large. In this case, the estimation of derivatives becomes
unreliable.When this occurs, one should rediscretize the evolving curve. This creates
a new matrix M (and also requires one to recompute (I − δt A)−1 if the number of
points has changed).

5.4.4 Initialization and Other Driving Techniques

The global minimum of E is not interesting. For closed contours, it is a degenerate
curve reduced to a point, as will be shown below. So, the method must start with a
reasonable initial curve and let it evolve to the closest local minimum. This is why
active contours are often run in an interactive way, the user initializing the process
with a coarse curve around the region of interest (using a graphic interface), and the
evolution providing the final contour, hopefully a fine outline of the shape. Since, as
we will see, the active contour energy generally shrinks curves, the initial contour
has to be drawn outside the targeted shape.

The “balloon” technique [70] allows the user to only specify an initial region
within the shape, which is often easier and can sometimes be done automatically
(because the interior of a shape is often more specific than its exterior). The idea is to
complete the evolution (5.41) with an outward normal force, yielding the equation

ṁt = −2αm(4) + 2βm̈ − γ∇mV − pN , (5.43)

p being a small positive constant and N the inward normal to the contour. Once
the curve stabilizes (generally slightly outside the shape because of the effect of
the normal force), the algorithm must be continued with p = 0 to provide a correct
alignment with the shape boundary. Note that this normal force can also be obtained
using a variational approach, adding to the energy an area term

−p
∫

Ωm

dx,

where Ωm is the interior of the curve m.
Because the “gradient force”∇V (m) only carries information near points of high

gradient, some improvement can be obtained by first extending it to a vector field v

defined on the whole image, and using v instead of ∇V (m) in (5.43). This results
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in the gradient vector flow (GVF) method developed in [304], in which v is built by
solving an auxiliary variational problem: minimize

∫
Ω

(trace(dvT dv) + |∇V | |∇V − v|2)dm.

Thus, v � ∇V when |∇V | is large, and is a smooth interpolation otherwise. Extrap-
olating the driving force to the whole image in this way allows the algorithm to be
more robust to initial data. It also provides improved convergence results, allowing
in particular the contour to enter into concave regions in the shape, which is much
harder with the original formulation.

5.4.5 Evolution of the Parametrization

The active contour energy is not parametrization-independent (such methods will be
discussed in the next section). Its evolution reparametrizes the curve in some optimal
way and it is interesting to study how this is associated with the minimization of the
active contour energy. In numerical implementations, reparametrization is related to
how the density of points changes along the discretized curve.

Let σm be the (Euclidean) arc length of a curve m, so that σ̇m = |ṁu |, and
L = Lm be its length. We let ψ : [0, L] → [0, 1] be the inverse change of parameter
ψ(σm(u)) = u. We also let m̄(s) = m(ψ(s)) be the arc-length parametrization of m.
We have ṁ ◦ ψ = ˙̄m/ψ̇, which implies in turn

ψ̇ m̈ ◦ ψ = ¨̄m
ψ̇

− ψ̈

ψ̇2
˙̄m .

Since m̄ is parametrized by arc length, we have

|ṁ ◦ ψ|2 = 1

ψ̇2
, |m̈ ◦ ψ|2 = κ2

ψ̇4
+ ψ̈2

ψ̇6
,

where κ is the curvature.
We can make the change of variable u → ψ(u) in E(m), which yields

E(m) =
∫ L

0

(
α

ψ̈2

ψ̇5
+ α

κ2

ψ̇3
+ β

ψ̇
+ γV (m̄)ψ̇

)
ds. (5.44)

To separate the length-shrinking effect from the rest, we renormalize the geomet-
ric and parametric quantities. We let κ̃(s) = Lκ(Ls) (which is the curvature of m
rescaled by a factor 1/L) and χ(s) = ψ(Ls). To lighten the expression, we also let
Ṽ (s) = V (m̄(Ls)). These functions are all defined on [0, 1], and a linear change of
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variables in the previous energy yields (with χ̇(s) = Lψ̇(Ls) and χ̈(s) = L2ψ̈(Ls)),

E(m) = L2
∫ 1

0

(
α

χ̈2

χ̇5
+ α

κ̃2

χ̇3
+ β

χ̇

)
ds + γ

∫ 1

0
Ṽ χ̇ ds.

Thefirst integral is scale-independent (it only depends on the rescaled curve) and is
multiplied by L2. This therefore shows the length reduction effect of the smoothing
part of the snake energy. As L tends to 0, Ṽ becomes equal to V (m(0)) and the
limiting integral has the same value since

∫ 1
0 χ̇s = 1. It is therefore minimal when

m(0) is a point of lowest value for V , and we see that the global minimum of the
energy is a dot at the minimum of V (not a very interesting solution).

Beside the shrinking effect, it is interesting to analyze how the parametrization
is optimized for a fixed geometry (i.e., fixed L , m̃ and κ̃, which also implies that Ṽ
is fixed). Recall that 1/χ̇ is proportional to ds/du, the “speed” of the parametrized
curve. The term κ̃2/χ̇3 shows that this speed is penalized when the curvature is high.
For a discrete curve, this implies that points have a tendency to accumulate at corners.
On the other hand, the term χ̇Ṽ creates more sparsity in regions where V is large.

We now specialize to the case α = 0, for which the computation can be pushed
further. In this case, we have

E(m) =
∫ L

0

(
β

ψ̇
+ γV (m̄)ψ̇

)
ds .

We fix the geometry and optimize the parametrization, i.e., we minimize E with
respect to ψ subject to the constraints

∫ L
0 ψ̇ = 1 and ψ̇ > 0.

First we can see that E is a convex function of ψ̇, minimized over a convex set.
This implies, in particular, uniqueness of the minimum if it exists. We disregard the
positivity constraint, which, as we will see, will be automatically satisfied by the
solution. Using Lagrange multipliers, we obtain the Lagrangian

∫ L

0

(
β

ψ̇
+ γV (m̄)ψ̇

)
ds − λ

∫ L

0
ψ̇ds .

A variation of this with respect to ψ̇ yields the equation

β

ψ̇2
= γV (m̄) − λ .

The solution must therefore take the form ψ̇(s) =
√

β√
γV (m̄(s)) − λ

, for a suit-

able value of λ, which must be smaller than λ∗ = γ mins V (m̄(s)) and such that∫ L

0
ψ̇(s)ds = 1.
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Let us prove that such a λ exists, in the case when m is closed and V and m are
smooth. Consider the function

f : λ �→
∫ L

0

√
β√

γV (m̄(s)) − λ
dλ

defined on (−∞,λ∗). It is continuous, and tends to 0 as λ tends to −∞. Now, let
λ → λ∗ and take s0 such that λ∗ = γV (m̄(s0)). Since λ∗ is a minimum and we
assume that V and m̄ are smooth, the difference γV (m̄(s)) − γV (m̄(s0)) must be
an O((s − s0)2) or smaller when s is close to s0. But this implies that the integral
diverges to +∞ as λ → λ∗. Therefore, a value of λ exists with f (λ) = 1. (If m is
an open curve, the above argument is valid with the additional assumption that the
minimum of V is not attained at one of the extremities of m.)

From the computation above, we see that the optimal parametrization must satisfy

ψ̇−2 − (γ/β)V (m̄) = constant.

Consider now the following class of problems: minimize E under the constraint
ψ̇−2 − (γ/β)V (m̄) = μ for some constant μ. The previous discussion shows that the
solution of the original problem is also a solution of this constrained problem for
some value of μ (one says that the two classes of problems are equivalent). However,
considering the latter problem, we see that it boils down to the purely geometric
problem: minimize ∫ L

0
W (m̄(s))ds

withW (p) = √
β(βμ + 2γV (p))/

√
βμ + γV (p). This newvariational problemfits

into the category of geodesic active contours, which are addressed in the next section.

5.4.6 Parametrization-Invariant Methods

To obtain a parametrization-invariant formulation of (5.38), it suffices to consider it
over arc-length parametrized curves, leading to

E(m) =
∫
m
(ακ2 + β + γV (m))dσm =

∫ L

0
(ακ2(s) + β + γV (m(s)))ds . (5.45)

The first term is the elastica energy that we defined in (5.34). Combining (5.35) and
Theorem 5.2, we see that the gradient flow associated to E is

∂tm = ( − α(κ̈ + κ3/2) + (β + γV )κ − ∇V T N
)
N . (5.46)
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Geodesic Active Contours

The case α = 0 corresponds to what has been called geodesic active contours [56,
250], which correspond to minimizing

E(m) =
∫
m
W (m)dσm (5.47)

(letting W = β + γV ) with the associated evolution

∂tm = (
W (m)κ − ∇W (mT N )

)
N . (5.48)

This equation can be conveniently implemented using level sets. So, consider a
function (t, p) �→ Ft (p) such that its zero level set at fixed time t is a curve, denoted
u �→ mt (u). The equation Ft (mt (u)) = 0 is by definition valid for all t and all u.
Computing its derivative with respect to t yields

∂t Ft (mt (u)) + ∇Ft (mt (u))T∂tmt (u) = 0 .

Assume, as is the case here, that the evolution of m is prescribed, in the form

∂tmt (u) = βt (mt (u))Nt (u).

This yields, using Nt = −∇Ft/ |∇Ft |,

∂t Ft (mt (u)) = βt (mt (u)) |∇Ft (mt(u))| .

Assume that βt , which describes the speed of the normal evolution of γ, can be
extended to the whole domain Ω (it is a priori only defined on the evolving curve).
Then, we can introduce the global evolution

∂t Ft (p) = βt (p) |∇Ft (p)| .

This equation being valid for all p, it is a fortiori valid on the zero level set of f .
Therefore, if this level set did coincide with the initial curve m0, it would contain at
all times the curve mt that satisfies the evolution equation ∂tmt = βNt (implicitly
assuming that the evolution is well-defined over the considered time interval).

Returning to geodesic active contours, there is a natural extension for the function
β, namely

βt (p) = W (p) div

( ∇Ft (p)

|∇Ft (p)|
)

+ ∇W (p)T
( ∇Ft (p)

|∇Ft (p)|
)

.

This choice yields the partial differential equation:
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∂t F = W |∇Ft | div
( ∇Ft

|∇Ft |
)

+ ∇WT∇Ft .

The implementation details are similar to those provided in Sect. 5.1.4.

5.4.7 Controlled Curve Evolution

For completeness, we mention another curve evolution method for contour estima-
tion [82], which consists in using a smoothing evolution equation such as the one
introduced in Sect. 5.1.3, with an additional factor that controls the speed of the
evolution, and essentially stops it in the presence of contours.

The curve evolution equation, in this case, takes the form

∂tm = V (m)κN , (5.49)

where V is now the stopping function. This no longer derives from a variational
approach, but we can see that when V is constant, the evolution is similar to (5.10),
but that points stop moving when V is close to 0. So V retains the same interpretation
as before, as a function which vanishes near regions of high gradient in the image.

The level-set formulation of this equation is

∂t F = V (t, ·)|∇Ft |div ∇Ft

|∇Ft | .

5.4.8 Geometric Active Surfaces

The transcription of (5.45) to surfaces is

E(S) =
∫
S
(αH 2(p) + β)dσS(p) + γ

∫
S
V (p)dσS(p), (5.50)

with associated gradient flow (using (5.37) and Theorem 5.4)

∂t p = (
α(ΔSH + 2H(H 2 − K )) + 2(β + γV )H − ∇V T N

)
N

if the surface has no boundary.
The case α = 0 simplifies to (letting W = β + γV )

∂t p = (
2WH − ∇WT N

)
N

for a surface without a boundary and to

∂t p = (
2WH − ∇WT N

)
N + δ∂S(p)WnS
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if the surface has a boundary.
For closed surfaces, a level-set evolution can be derived similarly to curves, yield-

ing [250]

∂t Ft = W |∇Ft |div
( ∇Ft

|∇Ft |
)

+ ∇WT∇Ft .

5.4.9 Designing the V Function

For most applications, boundaries of shapes in images correspond to rapid variation
in image intensity, which results in large values of the image gradient. It is therefore
natural to use functions V related to the gradient, such as

V = − |∇ I |

(recall that active contours align with small V ). Designing bounded V ’s is, however,
numerically preferable, a possible choice being given by

V = 1

1 + |∇ I | /C
for some constant C .

Another option is to rely on an edge detector [52, 186], and start from a binary
image indicating edge points. Letting E denote the set of detected edges, one can
define V to be the distance map to E

V (m) = inf {d(m, e), e ∈ E}

(see AppendixF for quick implementations). Another commonly used approach is
to convolve the binary edge image with a Gaussian kernel and let

V (m) =
∑
e∈E

(1 − e−|g−m|2/2σ2
).

5.4.10 Inside/Outside Optimization

When information about the image values inside and outside a closed shape is avail-
able, it is possible to add area or volume integrals (depending on the dimension)
to the geometric formulations. This results in objective functions that, unlike their
active-contours counterparts, should be minimized globally to obtain the segmenta-
tion.
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Letting Ω denote the interior of the shape, the additional term typically takes the
form

∫
Ω

Ṽin(x)dx +
∫
D\Ωc

Ṽout(x)dx =
∫

Ω

(Ṽin(x) − Ṽout)dx +
∫
D
Ṽout(x)dx . (5.51)

Here, Ṽin and Ṽout are defined on some fixed bounded set D ⊂ R
d , the image domain,

and they take large values at points that are unlikely to belong to the interior or the
exterior of the shape, respectively.

Letting Ṽ = Ṽin − Ṽout and disregarding the last integral, which does not depend
on Ω , we end up with an expression taking the form

∫
Ω

Ṽ (x)dx .

Using Theorems 5.2 and 5.4, adding this term to a segmentation energy simply adds
the term Ṽ N to the gradient descent algorithms.

A simple example is when the image values are expected to average around a
constant, say cin over the interior, and around cout over the exterior of the shape,
leading to choosing

Ṽin(x) = λin(I (x) − cin)
2 and Ṽout(x) = λout(I (x) − cout)

2.

This assumption is made in the Chan–Vese segmentation model [58], which defines
(in two dimensions)

E(m) = μ length(m) + ν area(Ωm) (5.52)

+
∫

Ωm

(
λin(I (x) − cin)

2 − λout(I (x) − cout)
2
)
dx,

where Ωm is the interior of the shape (with an obvious generalization to surfaces
in three dimensions). This energy is a simplified version of the Mumford–Shah
functional [213], which is designed for the approximation of an observed image by a
piecewise smooth function. (Here the approximation is by a piecewise constant func-
tion, and the contour separates the image into exactly two regions.) The associated
shape evolution is

∂tm = (μκ + ν + λin(I (x) − cin)
2 − λout(I (x) − cout)

2)N (5.53)

with a level-set formulation

∂t Ft = |∇Ft |
(

μ div

( ∇Ft

|∇Ft |
)

+ ν + λin(I (x) − cin)
2 − λout(I (x) − cout)

2

)
.

(5.54)
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Instead of being seen as a function of a curve, energies such as (5.52), which can
be put in the form

E(m) =
∫
m
V (p)dσm +

∫
Ωm

Ṽ (x)dx, (5.55)

can also be considered as functions of the domain Ω , simply setting

E(Ω) =
∫

∂Ω

V (p)dσ∂Ω +
∫

Ω

Ṽ (x)dx . (5.56)

The interesting feature of this point of view is that this energy applies to domains that
are more general than the interior of a Jordan curve, allowing for multiple connected
components, for example, which can be useful when the topology of the targeted set
is not known in advance. The associated level-set evolution

∂t F = |∇F |
(
V div

( ∇F

|∇F |
)

+ ∇V T∇F + Ṽ

)
(5.57)

allows for such changes of topology, but it is also interesting to express (5.56) directly
in terms of level sets of a function.

Tomotivate the reformulation of themethod, consider a δ-function approximation
of (5.56), as described Sect. 3.10. Using the notation of that section,

E(Ω) �
∫
Rd

V (x)|∇(Hε ◦ F)(x)|dl +
∫
Rd

(1 − Hε ◦ F(x))Ṽ (x)dx (5.58)

when Ω = {F ≤ 0} (V must be continuous for this approximation to be valid). Let
Eε(F) denote the right-hand side in (5.58). Introduce the function u = 1 − Hε ◦ F
to reparametrize the problem so that

Eε(F) = Ẽ(u) =
∫
Rd

V (x)|∇u(x)|dx +
∫
Rd

u(x)Ṽ (x)dx . (5.59)

We now focus on the minimization of E(u) over all functions u taking values in
[0, 1]. Let Ω(t) denote the level set u ≥ t , for t ∈ [0, 1]. We can write

∫
Rd

u(x)Ṽ (x)dx =
∫
Rd

∫ 1

0
1t≤u(x)V (x) dt dx

=
∫ 1

0

∫
Ωt

V (x) dx dt.

We also have ∫
Rd

V (x)|∇u(x)|dx“=”
∫ 1

0

∫
∂Ωt

V (p) dσ∂Ωt dt.
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The latter expression is an application of the co-area formula. We have put the equal
sign between quotes because a rigorous application of this formula requires more
advanced mathematical concepts than those that are assumed in this discussion. For
example, the boundary ofΩt is not necessarily a smooth curve, but one can still define
a generalization of the inner integral on the left-hand side for which the identity is
valid. Disregarding these issues, we therefore have

Ẽ(u)“=”
∫ 1

0

(∫
∂Ωt

V (p) dσ∂Ωt +
∫

Ωt

V (x) dx

)
dt

=
∫ 1

0
E(Ωt ) dt.

Now, ifΩ∗ is a minimizer of E , then E(Ω∗) ≤ Ẽ(u) for all u, and, Ẽ(u∗) = E(Ω∗)
for u∗ = 1 − 1Ω∗ . Conversely, if 0 ≤ u ≤ 1 minimizes Ẽ , then Ωt is a minimizer
of E for almost all t ∈ (0, 1) [286]. Passing from E to Ẽ is actually a significant
simplification of the original problem, because Ẽ is a convex function of u (mini-
mized subject to convex constraints), allowing one to leverage the large collection
of optimization methods available for convex functions.

Returning to the Chan–Vese energy (5.52), (5.59) becomes

Ẽ(u) =
∫
Rd

|∇u(x)| dx+ (5.60)
∫
Rd

u(x)
(
ν + λin(I (x) − cin)

2 − λout(I (x) − cout)
2
)
dx .

The numbers cin and cout that characterize the image values inside and outside
the shape are not always known in advance. In such a situation, it is natural to also
minimize (5.52) with respect to cin and cout . For this to be possible, one needs to
limit the size of the integration domain for the outside integral to a fixed region, D.
When u is fixed, their optimal values are easily computed and are given by

cin =
∫
D u(x)I (x)dx∫

D u(x)dx
and cout =

∫
D(1 − u(x))I (x)dx∫

D(1 − u(x))dx
.

Minimization in F , cin and cout can be implemented by alternating the computation
of a minimizer of (5.59) (or a few steps of the associated minimization algorithm)
with a periodic updating of cin and cout according to these expressions. One can even
include the optimization of these constants within a complete convex optimization
problem, as detailed in [46].

5.4.11 Sobolev Active Contours

We now follow-up on our discussion at the end of Sect. 5.3, and describe the interest-
ing variants of the active contour algorithms introduced in [272]. Using the notation
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Fig. 5.4 Comparison between geometric and Sobolev active contours. In each row, the left image
is the initial contour for both algorithms, the center one is the result of geometric active contours
once the evolution stabilizes, and the right one is for Sobolev active contours. The first row presents
a clean image and the second a noisy one. In both cases, geometric active contours get stuck at an
unsatisfactory local minimum (especially in the noisy case), while Sobolev active contours reach a
much more accurate solution

of Sect. 5.3, Sobolev active contours modify an evolution such as

∂tm = (κV − V T N + Ṽ )N

(which corresponds to the minimization of (5.55)) and transform it into

∂tm = A−1
(
(κV − V T N + Ṽ )N

)
, (5.61)

where A is a differential operator, or more generally an operator f �→ A f such
that the kth Fourier coefficient of A f is equal to a|k|ck( f ), where ak is a positive
sequence of numbers that tend to infinity (e.g., ak = 4π2k2 + λ) and ck( f ) is the kth
Fourier coefficient of f . When implementing (5.61), high-order Fourier coefficients
of (κV − V T N + Ṽ )N are divided by large numbers, which results in attenuating
high-frequency motion and focusing on low frequency variations, yielding global
changes in the shape. The resulting algorithm makes the evolution less sensitive to
noise (which typically induces high-frequency motion), and also accelerates conver-
gence because large moves are easier to make. The counterpart is that small details
in the shape boundary are harder to acquire, and may require running the algorithm
over longer periods. Examples illustrating the robustness of Sobolev active contours
are provided in Fig. 5.4.



Chapter 6
Deformable Templates

Deformable templates represent shapes as transformations of a given prototype, or
template. One of the advantages of this approach is that the template needs to be
specified only once, for a whole family of shapes. If the template is well chosen,
describing the transformation leading to a shape results in a simpler representation,
typically involving a small number of parameters. The conciseness of the description
is important for detection or tracking algorithms in which the shape is a variable,
since it reduces the number of degrees of freedom.Small-dimensional representations
are also more easily amenable to probabilistic modeling, leading, as we will see, to
interesting statistical shape models.

The methods that we describe provide a parametrized family of shapes, (m(θ),
θ ∈ Θ), where Θ is a parameter set. Most of the time, Θ will be some subset of Rd

but it can also be infinite-dimensional. We will always assume, as a convention, that
0 ∈ Θ and that m(0) represents the template.

To simplify the presentation, we will restrict to curves, therefore assuming that
m(θ) is a parametrized curve u �→ m(u, θ) defined over a fixed interval [a, b]. Other
situations can easily be transposed from this one. For example, one commonly uses
configurations of labeled points, or landmarks, withm(θ) = (m1(θ), . . . ,mN (θ)) as
a finite-dimensional descriptor of a shape. Transposition from curves to surfaces is
also easy.

6.1 Linear Representations

We start with a description of linear methods, in which

m(θ) = m(0) +
n∑

k=1

θkuk,

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
L. Younes, Shapes and Diffeomorphisms, Applied Mathematical Sciences 171,
https://doi.org/10.1007/978-3-662-58496-5_6

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58496-5_6&domain=pdf
https://doi.org/10.1007/978-3-662-58496-5_6


170 6 Deformable Templates

where uk is a displacement applied tom(0): for example, ifm(0) is a closed curve, uk
is defined on [a, b], taking values inRd with uk(a) = uk(b). Ifm(0) is a configuration
of points, uk is a list of two-dimensional vectors.

The issue in this context is obviously how to choose the uk’s. We will provide two
examples, the first one based on a deterministic approach, and the second relying on
statistical learning.

6.1.1 Energetic Representation

The framework developed in this section characterizes an object using a “small-
deformation” model partially inspired by elasticity or mechanics. The object is
described, not by its aspect, but by how it deforms. Our presentation is inspired by
that developed in [230] for face recognition. It includes the principal warps described
in [41] as a particular case, and provides an interesting way of decomposing shape
variations in a basis that depends on the geometry of the considered shape.

For such a shapem, we will consider small variations, represented by transforma-
tions h �→ F(m, h). For example, one can take F(m, h) = m + h when this makes
sense. We assume that the small variations, h, belong to a Hilbert space H (see
AppendixA), with dot product 〈· , ·〉m , possibly depending on m.

Associate to h some deformation energy, denoted E(h). Attribute to a time-
dependent variation, t �→ h(t), the total energy:

J (h) = 1

2

∫
‖∂t h(t)‖2mdt +

∫
E(h(t))dt.

Inspired by the Hamilton principle, we consider shape trajectories that are extremals
of the Lagrangian ‖∂t h‖2m/2 − E(h), therefore characterized by

∂2
t h + ∇E(h(t)) = 0,

where ∇E is the Hilbert gradient, defined by

∂εE(h + εw)|ε=0 = 〈∇E(h) , w
〉
m
.

We make the assumption that this gradient exists. In fact, because we only analyze
small variations, we will assume that a second derivative exists at h = 0, i.e., we
assume that, for some symmetric operator Σm ,

∇E(h) = Σmh + o(‖h‖m).

Typically, we will have E ≥ 0 with E(0) = 0, which ensures that Σm is a non-
negative operator. The linearized equation for h now becomes
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∂2
t h + Σmh = 0. (6.1)

This equation has a simple solution when Σm is diagonalizable. Making this
assumption (which is always true in finite dimensions), letting ( f1, f2, . . .) be the
eigenvectors and (λ1,λ2, . . .) the corresponding eigenvalues (in decreasing order),
solutions of (6.1) take the form

h(t) =
∑

k≥1

α(k)(t) fk

with ∂2
t α

(k) + λkα
(k) = 0, so that α(k) oscillates with frequency ωk = 1/

√
λk .

The ω′
ks form what was called a modal representation in [253]. These vibration

modes can be used to describe and compare shapes (so that similar shapes should
have similar vibration modes). It is also possible to use this model for a template-
based representation: let m be a template, with a modal decomposition as before,
and represent small variations as

(α1, . . . ,αN ) → m̃ = F

(
m,

N∑

k=1

αk fk

)
,

which has a linearized deformation energy given by
∑

k λkα
2
k .

Consider a first example of such a construction using plane curves. Let m(·) =
m(0, ·) be the prototype and Ωm its interior. Assume that m is parametrized by arc
length. A deformation of m can be represented as a vector field s �→ h(s)N (s),
where h is a scalar function and N the unit normal to m. The deformed template is
s �→ m(s) + h(s)N (s). A simple choice for E is

E(h) = 1

2

∫ L

0
∂sh

2ds,

for which Σmh = −∂2
s h and Eq. (6.1) is

∂2
t h = ∂2

s h,

which is the classical wave equation in one dimension. Since this equation does not
depend on the prototype, m, it is not really interesting for our purposes, and we need
to consider energies that depend on geometric properties of m. The next simplest
choice is probably

E(h) = 1

2

∫ L

0
ρm(s)∂sh

2ds,

where ρm is some function defined along m, for example ρm = 1 + κ2
m (where κm

is the curvature along m). In this case, we get Σmh = −2∂s(ρm∂sh). The vibration
modes are the eigenvectors of this inhomogeneous diffusion operator along the curve.
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One can obviously consider many variations of this framework. Consider, for
example, discrete shapes, represented by a finite collection of landmarks, so that a
shape is now a finite collectionm = (x1, . . . , xN )with each xi ∈ R

2. Given displace-
ments h = (h1, . . . , hN ), define h(m)(x), for x ∈ R

2 by

h(m)(x) =
N∑

i=1

g(|x − xi |2)αi

with g(t) = e−t/2σ2
, where α1, . . . ,αN ∈ R

2 are chosen so that h(xi ) = hi , i =
1, . . . , N . Then, we can define

Em(h) =
∫

R2
|h(m)(x)|2dx

=
N∑

i, j=1

αT
i α j

∫

R2
g(|xi − x |2)g(|x − x j |2)dx

=
N∑

i, j=1

ci j (m)αT
i α j

with

ci j =
∫

R2
e− |xi−x |2

2σ2
− |x j−x |2

2σ2 dx = πσ2e− |xi−x j |2
4σ2 .

Finally, notice that, from the constraints, α = S(m)−1h with si j (m) = g(|xi − x j |2),
we have

Em(h) = 1Td h
T S(m)−1C(m)S(m)−1h1d ,

where, in this expression, h is organized in an N by d matrix and 1d is the d-
dimensional vector with all coordinates equal to 1. The modal decomposition will,
in this case, be provided by eigenvalues and eigenvectors of S(m)−1C(m)S(m)−1.

The principal warp representation [41] is very similar to this one, and corresponds
to

Em(h) = 1Td h
T S(m)−1h1d . (6.2)

It is also associated to some energy computed as a function of h(m), as will be clear
to the reader after the description of reproducing kernel Hilbert spaces in Chap.8.

One can also define

Em(h) =
∫

R2
trace((dh(m))T dh(m))dx

or some other function of (dh(m))T dh(m), which corresponds to elastic energies.
Closed-form computation can still be done as a function of h1, . . . , hN , and provides
a representation similar to the one introduced in [230, 253].
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6.2 Probabilistic Decompositions

6.2.1 Deformation Axes

One can build another kind ofmodal decomposition, based on a training set of shapes,
using principal component analysis (PCA).

We will work with parametrized curves. The following discussion can be applied,
however, with any of the shape representations described in Chap. 1, or, as considered
in [73], with finite collections of points (landmarks) placed along (or within) the
shape.

Assume that a training set is given containing N shapes that we will consider
as versions of the same object or class of objects. We shall denote its elements by
m(k)(·), k = 1, . . . , N , and assume they are all defined on the same interval, I . The
average is given by

m̄(u) = 1

N

N∑

k=1

m(k)(u).

A PCA (cf. AppendixE) applied to m(k), k = 1, . . . , N , with the L2 inner product
provides a finite-dimensional approximation called the active shape representation

m(k)(u) = m̄(u) +
p∑

i=1

αki e
(i)(u), (6.3)

where the principal directions e(1), . . . , e(p) provide deformation modes along which
the shape has the most variations.

This provides a new, small-dimensional curve representation, in terms of varia-
tions of the template m̄. One can use it, for example, to detect shapes in an image,
which requires the estimation of p parameters, plus three parameters (in two dimen-
sions) describing the shape position in the image (rotation and translation).

Onemust be aware,when using thismethod, of the limits of the validity of the PCA
approach, which is a linear method. It is not always “meaningful” to compute linear
combinations of deformation vectors, even though, once the data is represented by
an array of numbers, such a computation is always possible and easy. The important
issue, however, is whether one can safely go back, that is, whether one can associate
a valid shape (which can be interpreted as an object of the same category as the initial
dataset) to any such linear combination. The answer, in general, is yes, provided the
coefficients in the decomposition are not too large. Large coefficients, however, lead
to large distortions, singularities, anddonotmodel interesting shapes.Because of this,
PCA-based decompositions should be considered as first-order linear approximations
of more complex, nonlinear, variations. Plane curves, for example, can certainly be
considered as elements of some functional space, on which linear combinations are
valid, but their result does not always lead to satisfactory shapes. To take an example,
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assume that the training set only contains triangles. The PCAdecomposition includes
no mechanism ensuring that the shapes remain triangular after decomposition on a
few principal components. Most often, the representation will be very poor, as far as
shape interpretation is concerned.

In fact, shape decomposition must always be, in one way or another, coupled with
some feature alignment on the dataset. In [73], this is implicit, since the approach
is based on landmarks that have been properly selected by hand. To deal with gen-
eral curves, it is important to preprocess the parametrizations to ensure that they
are consistent, in the sense that points with the same parameter have similar geo-
metric properties. The curves cannot, in particular, all be assumed to be arc-length
parametrized. One way to proceed is to assume that the parametrization is arc length
for only one curve, say m(0). For the other curves, say m(k), k = 1, . . . , N , we want
to make a change of parametrization, ϕ(k), such thatm(k)(ϕ(k)(s)) = m0(s) + δ(k)(s)
with δ(k) as small as possible. Methods to achieve such simultaneous parametriza-
tions implement curve registration algorithms. They will be presented later in this
book.

In addition to aligning the parametrization, it is important to also ensure that
the geometries are aligned, with respect to linear transformations (such as rotations,
translations, scaling). All these operations have the effect of representing all the
shapes in the same “coordinate system”, within which linear methods will be more
likely to perform well.

Finally, we notice that this framework can be used to generate stochastic models
of shapes. We can use the expression

m(u) = m̄(u) +
p∑

i=1

αi e
(i)(u)

and generate random curves m by using randomly generated αi ’s. Based on the
statistical interpretation of PCA, the αi ’s are uncorrelated, and their respective vari-
ances are the eigenvalues λ2

i that correspond to the eigenvector e(i). Simple models
generate the αi ’s as independent Gaussian variables with variance λ2

i , or uniformly
distributed on [−√

3λi ,
√
3λi ].

6.3 Stochastic Deformation Models

6.3.1 Generalities

The previous approaches analyzed variations directly in the shape representation.We
now discuss a point of view which first models deformations as a generic process,
before applying them to the template.

We consider here the (numerically important) situation in which the deformed
curves are polygons. Restricting ourselves to this finitely generated family will
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simplify the mathematical formulation of the theory. The template will there-
fore be represented as a list of contiguous line segments, and we will model a
deformation as a process that can act on each line segment separately. The whole
approach is a special case of Grenander’s theory of deformable templates, and we
refer to [14, 134–136, 138] for more references and information. The general prin-
ciples of deformable templates assume that an “object” can be built by assembling
elementary components (called generators), with specified composition rules. In the
case we consider here, generators are line segments and composition rules imply
that exactly two segments are joined at their extremities. One then introduces a set
of transformations (via a suitable group action) that modify the generators, under the
constraints of maintaining the composition rules. In our example, the transformation
group will consist of collections of planar similitudes.

6.3.2 Representation and Deformations of Planar Polygonal
Shapes

The formulas being much simpler when expressed using complex notation, we iden-
tify a point p = (x, y) in the plane with the complex number x + iy, that we also
denote by p. A polygonal line can either be defined by the ordered list of its vertices,
say s0, . . . , sN ∈ C or, equivalently, by one vertex s0 and the sequence of vectors
vk = sk+1 − sk , k = 0, . . . , N − 1. The latter representation has the advantage that
the sequence (v0, . . . , vN−1) is a translation-invariant representation of the polygon.
A polygonal line modulo translations will therefore be denoted π = (v0, . . . , vN−1).
The polygonal line is a polygon if it is closed, i.e., if and only if v0 + · · · + vN−1 = 0.
A polygonal line with origin s0 will be denoted (s0,π).

A polygonal line can be deformed by a sequence of rotations and scalings applied
separately to each edge vk . In C, such a transformation is just a complex multi-
plication. Therefore, a deformation is associated with an N -tuple of non-vanishing
complex numbers z = (z0, . . . , zN−1), the action of z on π being

z · π = (z0v0, . . . , zN−1vN−1) . (6.4)

This defines a group action (cf. Sect.B.5) of G = (C \ {0})N on the set of polygonal
lines with N vertices.

In this group, some transformations play a particular role. Introduce the set

Δ = {z ∈ G, z = z(1, . . . , 1), z ∈ C}

(the diagonal in G). An element in Δ provides a single similitude applied simultane-
ously to all edges, i.e.,Δ represents the actions of similitudes on polygons. Similarly,
the set

Δ0 = {z ∈ G, z = z(1, . . . , 1), z ∈ C, |z| = 1}
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represents the action of rotations.
A polygonal line modulo similitudes (resp. rotations) can be represented as an

orbitΔ · π (resp.Δ0 · π). We can define the quotient groupsG/Δ andG/Δ0, namely
the sets of orbits Δ · z (resp. Δ0 · z) for z ∈ G (they have a group structure because
G is commutative). One obtains a well posed action of, say, G/Δ on polygonal lines
modulo similitudes, by defining

(Δ · z) · (Δ · π) = Δ · (z · π).

Given a polygon, π, we define F(π) as the set of group elements z in G that
transform π into another polygon, namely

F(π) = {z ∈ G, z0v0 + · · · + zN−1vN−1 = 0} . (6.5)

Note that F(π) is not a subgroup of G.
We can use this representation to provide a stochastic model for polygonal lines. It

suffices for this to choose a template π and a random variable ζ onG and to take ζ · π
to obtain a random polygonal line. Because we are interested in shapes, however, we
will restrict ourselves to closed lines. Therefore, given π = (v0, . . . , vN−1), we will
assume that ζ takes values in F(π).

We now build simple probability distributions on G and F(π) for a fixed π.
Consider the function:

E(z) = (α/2)
N−1∑

k=0

|zk − 1|2 + (β/2)
N−1∑

k=0

|zk − zk−1|2.

The first term is large when z is far from the identity, and the second one penalizes
strong variations between consecutive zi ’s. Here and in the following, we let z−1 =
zN−1.

We want to choose a probability distribution on G which is small when E is large.
A natural choice would be to take the measure with density proportional to
exp(−E(z))/

∏N−1
k=1 |zk | with respect to the Lebesgue measure on C

N−1. This is
the “Gibbs measure”, with energy E , relative to the Haar measure,

∏N−1
k=1 dzk/|zk |

which is the uniform measure on G. Such a choice is of interest in that it gives a very
small probability to small values of |zk |, which is consistent with the fact that the zk’s
are non-vanishing onG. Unfortunately, this model leads to intractable computations,
and wewill rely on the simpler, but less accurate, model with density, f , proportional
to exp(−E(z)). This choice will greatly simplify the simulation algorithms, and in
particular, the handling of the closedness constraint.

With π = (v0, . . . , vN−1), this constraint is expressed by
∑

k vk zk = 0, and we
will use the conditional density for f given this identity. This conditional distribution
can be computed by using a discrete Fourier transform. Define
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ul = ẑl = 1√
N

N−1∑

k=0

zke
−2iπ kl

N .

One can easily prove that E can be written

E(z) = α|u0 − √
N |2 +

N−1∑

l=1

(
α + 2β

(
1 − cos

2πl

N

))
|ul |2 ,

and that the constraint becomes

N−1∑

l=0

v̂lul = 0

with v̂l = 1√
N

∑N−1
k=0 vke−2iπ kl

N . Notice that, because π is closed, we have v̂0 = 0.

Let w0 = √
α(u0 − √

N ), and, for l ≥ 1, wl =
√

α + 2β(1 − cos 2πl
N )ul , so that

E(z) =
N−1∑

l=0

|wl |2.

Without the constraint, the previous computation implies that the real and imaginary
parts of w0, . . . , wN−1 are mutually independent standard Gaussian variables: they
therefore canbe easily simulated, and the value of z0, . . . zN−1 directly computed after
an inverse Fourier transform. Conditioning on closedness only slightly complicates
the procedure. Replacing ul by its expression as a function of w1, . . . , wN−1, and
using v̂0 = 0, the constraint can be written in the form

N−1∑

l=0

clwl = 0

with c0 = 0 (cp =
√

α + 2β(1 − cos 2πl
N )). The following standard lemma from the

theory of Gaussian variables solves our problem.

Lemma 6.1 Let w be a standard Gaussian vector in R
2N , and let V be a vector

subspace of R2N . Let ΠV be the orthogonal projection on V . Then, the random
variable ΠV (w) follows the conditional distribution given that w ∈ V .

Assume that c = (c0, . . . , cN−1) has been normalized so that
∑ |ci |2 = 1. To

sample closed random polygonal lines, it suffices to sample a standard Gaussian w∗
in CN , and set

w = w∗ −
(

N−1∑

l=0

clw
∗
l

)
c.

Some examples of randomshapes simulatedwith this process are provided in Fig. 6.1.
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1, 1 1, 10 1, 100

10, 1 10, 10 10, 100

100, 1 100, 10 100, 100

1,1 1,0.1 1,0.01

0.1,1 0.1,0.01

0.01,1 0.01,0.1 0.01,0.01

0.1,0.1

Fig. 6.1 Random deformations of a circle (with different values for α and β)

6.4 Segmentation with Deformable Templates

Using deformable templates in shape segmentation algorithms incorporates much
stronger constraints than with active contours, which only implement the fact that
shapes can be assumed to be smooth. If one knows the kind of shapes that are to be
detected, one obviously gains in robustness and accuracy by using a segmentation
method that looks for small variations of an average shape in this category.

Detection algorithms can be associated with the models provided in Sects. 6.2
and 6.3. Let us start with Sect. 6.2 with a representation that takes the form, denoting
α = (α1, . . . αp0):

mα = m̄ +
p0∑

i=1

αi K
(i) ,

for some template m̄ and vector fields K (i). This information also comes with the
variance of αi , denoted λ2

i .
The “pose” of the shape within the image is also unknown. It is associated with

a Euclidean or affine transformation g applied to mα. The problem is then to find g
and α such that gmα is close to regions of low deformation energy within the image.

One can use a variational approach for this purpose. As described in Sect. 5.4.9,
one starts with the definition of a potential V which is small when evaluated as a
point close to contours. One can then define

E(g,α) =
n∑

i=1

α2
i

λ2
i

+ β

∫

I
V (gmα(u))du.
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The derivatives of E are

∂αi E = 2
αi

λ2
i

+ β

∫

I
∇V (gmα(u))T (gK i (u)) du

and

∂gE =
∫

I
mα(u)∇V (gmα(u))T du

(it is a matrix). A similar computation can bemade for variants of the definition of the
cost function. One can, for example add a penalty (such as | log det(g)|) to penalize
shapes that are too small or too large. One can also replace the quadratic term in αi

by boundedness constraints, such as |αi | <
√
3λi .

If scaling to very small curves is penalized, it is plausible that, in contrast to the
case of active contours, the global minimum of E provides an acceptable solution.
However, from a practical point of view, minimizing E is a difficult problem, with
many local minima. It is therefore still necessary to start the algorithm with a good
guess of the initial curve.

Consider now the representation of Sect. 6.3. We will use the same notation
as in this section, a shape being modeled by a polygon π with N edges denoted
(v0, . . . , vN−1). A deformation is represented by N complex numbers z = (z0, . . . ,
zN−1), with the action

z · π = (z0v0, . . . , zN−1vN−1).

We have denoted by Δ (resp. Δ0) the set of z’s for which all zi ’s coincide (resp.
coincide and have modulus 1); these subgroups of G = (C \ {0})N correspond to
plane similitudes (resp. plane rotations).

We denote by [z] and [z]0 the classes of z modulo Δ and Δ0. Similarly, when
π is a polygon, we denote by [π] and [π]0 the classes of π modulo Δ and Δ0. For
example,

[z] = {c · z, c ∈ Δ}

and
[π] = {z · π, z ∈ Δ} .

A template should be considered as a polygon modulo Δ or Δ0 (depending on
whether scale invariance is required), whereas a shape embedded in an image should
be a polygon with an origin. Let π denote the template, although we should use the
notation [π] or [π]0. Introduce a function V (·), defined over the image, that is large
for points that are far from image contours. The quantity that can be minimized is

Q(z, s0) = E([z]) +
∫

m=s0+z·π
Vdσm,



180 6 Deformable Templates

with s0 ∈ C and z ∈ G. The deformation energy E is a function defined on
G/Δ (or equivalently a function defined on G, invariant under similitude trans-
formations), that measures the difference between z and a similitude. For example,
with z = (z0, . . . , zN−1), and zk = rkeiθk , one can take

E([z]) =
N∑

k=1

(log rk − log rk−1)
2 +

N∑

k=1

arg(eiθk−iθk−1)2 .

Here, we have defined arg z, for z = 0, as the unique θ ∈] − π,π] such that z = reiθ

with r > 0. We also use the convention rN = r0, θN = θ0 for the last term of the sum
(assuming we are dealing with closed curves).

If scale invariance is relaxed, a simpler choice is

E([z]0) =
N∑

k=1

|zk − zk−1|2.

Notice that for closed curves, it must be ensured that z · π remains closed, which
induces the additional constraint, taking π = (v0, . . . , vN−1):

N−1∑

k=0

zkvk = 0 .

It is interesting to compute the continuum limit of this energy. Still using com-
plex numbers, we consider a C1 template curve m : I → C, where I = [0, L] is an
interval, with arc-length parametrization. For a given N , we consider the polygon
π = (v0, . . . , vN−1), with

vk = m

(
kL

N

)
− m

(
(k − 1)L

N

)
� L

N
∂sm

(
(k − 1)L

N

)
.

Adeformation, represented by z = (z0, . . . , zN−1)will also be assumed to come from
a continuous curve ζ defined on [0, 1] with zk = ζ(k/N ). The continuum equivalent
of π �→ π · z can then be written as a transformation of derivatives:

∂sm(s) �→ ζ(s/L)∂sm(s),

which leads us to define an action of non-vanishing complex-valued curves ζ on
closed curves by

(ζ · m)(s) =
∫ s

0
ζ(u/L)ṁ(u)du .
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In the rotation-invariant case, the energy of the action should be given by the limit of

N−1∑

k=1

|zk − zk−1|2.

Using the fact that zk − zk−1 � ζ̇((k − 1)/N )/N , we have the continuum equivalent

N
N−1∑

k=1

|zk − zk−1|2 →
∫ 1

0
|ζ̇(s)|2du .

This is the H 1 norm of the deformation generator along the curve.



Chapter 7
Ordinary Differential Equations
and Groups of Diffeomorphisms

7.1 Introduction

This chapter introduces some spaces of diffeomorphisms, and describes howordinary
differential equations provide a convenient way of generating deformations. The
discussion will rely on several results in AppendixC that the reader maywant consult
at this point.

Let Ω be an open subset ofRd . A “deformation” can be represented as a function
ϕ which assigns to each point x ∈ Ω a displaced position y = ϕ(x) ∈ Ω . There are
two undesired behaviors that we would like to avoid:

• The deformation should not create holes: every point y ∈ Ω should be the image
of some point x ∈ Ω , i.e., ϕ should be onto.

• Folds should also be prohibited: two distinct points x and x ′ inΩ should not target
the same point y ∈ Ω , i.e., ϕ must be one-to-one.

Thus deformations must be bijections ofΩ . In addition, we require some smooth-
ness for ϕ. The next definition recalls some previously introduced terminology:

Definition 7.1 A homeomorphism of Ω is a continuous bijection ϕ : Ω → Ω such
that its inverse, ϕ−1, is continuous.

A diffeomorphism of Ω is a continuously differentiable homeomorphism
ϕ : Ω → Ω such that ϕ−1 is continuously differentiable.

If ϕ is a diffeomorphism, the chain rule applied to the identity ϕ ◦ ϕ−1 = id
implies that its derivative, dϕ, is such that dϕ(x) is invertible for all x ∈ Ω . Con-
versely, using the inverse mapping theorem, one shows that a continuously differen-
tiable homeomorphism with an invertible derivative is a diffeomorphism. From now
on, most of the deformations we shall consider will be diffeomorphisms of some
open setΩ ⊂ R

d . If ϕ and ϕ′ are diffeomorphisms, then ϕ ◦ ϕ′ is a diffeomorphism,
and so is ϕ−1 by definition. Diffeomorphisms of Ω form a group with respect to
composition of functions, denoted Diff(Ω).

Throughout the rest of this book, we will write formulas that combine differen-
tiation, inversion and composition of diffeomorphisms or functions. We will always
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assume (unless specified by parentheses) that differentiation is performed first, fol-
lowed by composition and inversion. For example,

d f ◦ ϕ = (d f ) ◦ ϕ �= d( f ◦ ϕ).

Similarly,
dϕ−1 = (dϕ)−1 �= d(ϕ−1).

We will be concerned with specific subgroups of Diff(Ω) associated with addi-
tional smoothness requirements. Using the notation of AppendixA, we define, for a
multivariate, vector-valued function f , ‖ f ‖p,∞ as the maximum of the supremum
norms of the partial derivatives of order less than or equal to p of the components
of f .

Definition 7.2 Let p ≥ 1. We define Diff p,∞(Ω) as the set of diffeomorphisms of
Ω , ϕ, such that

max(‖ϕ − id‖p,∞, ‖ϕ−1 − id‖p,∞) < ∞.

We will write Diff p,∞ instead of Diff p,∞(Ω) whenever Ω is clear from the context.
We show that Diff p,∞ is a subgroup of Diff(Ω). The facts that id ∈ Diff p,∞ and
that ϕ ∈ Diff p,∞ ⇒ ϕ−1 ∈ Diff p,∞ are obvious. Stability for composition will be
clear from Lemma 7.3, which requires some notation. For k ∈ {1, . . . , d}, denote by
∂k f the partial derivative of f with respect to the kth coordinate. For any p-tuple
J = (k1, . . . , kp), let

∂J f = ∂k1 . . . ∂kp f. (7.1)

(Notice that indices can be repeated in J and that the operator does not depend on
how the elements of J have been ordered.) We say that a q-tuple I is a subtuple of
J , and write I ⊂ J , if I = (ki1 , . . . , kiq ) with 1 ≤ i1 < · · · < iq ≤ p, and we define
the set

∂(J ) f = {∂I f, I ⊂ J } . (7.2)

We first recall the product rule (or Leibnitz formula). Given any two C p scalar-
valued functions u and v defined over Rd , one has

∂J (uv) =
∑

I⊂J

∂I u ∂J\Iv . (7.3)

This can be shown by induction, the proof being left to the reader. Here, J \ I denotes
the indices in J that are not listed in I .

Letting |I | = q if I is a q-tuple, we have the following lemma, in which we let
Dp denote the set of all partitions of {1, . . . , p}.
Lemma 7.3 Let g : Ω → Ω and f : Ω → R be C p functions on Ω , and
J = (k1, . . . , kp) ⊂ {1, . . . , d}p. Then f ◦ g is C p and, for h1, . . . , h p ∈ R

d ,



7.1 Introduction 185

d p( f ◦ g)(h1, . . . , h p) =
∑

{J1,...,Jk }∈D p

dk f ◦ g(d |J1|g(hJ1), . . . , d
|Jk |g(hJk )) (7.4)

with h J representing the family (h j , j ∈ J ).

Proof The result is true for p = 1, with d( f ◦ g)h = d f ◦ g dg h, with D1 = {{1}}.
For p = 2, we have d2( f ◦ g)(h1, h2) = d2 f ◦ g(dg h1, dg h2) + d f ◦ g d2g(h1,
h2), which is consistent with D2 having two elements: {{1}, {2}} and {{1, 2}}. We
now prove the result by induction, assuming that it holds for all k ≤ p, with p ≥ 1
and proving that it holds for p + 1. Using the induction hypothesis, we have

d p+1( f ◦ g)(h1, . . . , h p, h p+1)

=
∑

{J1,...,Jk }∈D p

d
(
dk f ◦ g(d |J1|g(hJ1), . . . , d

|Jk |g(hJk ))
)
h p+1

=
∑

{J1,...,Jk }∈D p

dk+1 f ◦ g(d |J1|g(hJ1), . . . , d
|Jk |g(hJk ), dg h p+1)

+
∑

{J1,...,Jk }∈D p

k∑

j=1

dk f ◦ g
(
d |J1|g(hJ1), . . . , d

|J j−1|g(hJj−1), d
|J j |+1g(hJj , h p+1),

d |J j+1|g(hJj+1), . . . , d
|Jk |g(hJk )

)

It now suffices to observe that one can enumerate all partitions of {1, . . . , p + 1}
without repetition by taking partitions in Dp and either adding {p + 1} as an addi-
tional subset, or replacing one of its subset by its union with {p + 1}. �

From this lemma directly follows:

Proposition 7.4 Let g : Ω → Ω and f : Ω → R be C p functions on Ω . Then

‖ f ◦ g‖p,∞ ≤ C(p, d)‖ f ‖p,∞
∑

q1,...,q j :
q1+···+q j=p− j

‖dg‖q1,∞ · · · ‖dg‖q j ,∞ (7.5)

for some fixed constant C(p, d) depending on p and on the dimension.

This proposition (or Lemma 7.3) can be used in turn to prove the following inequal-
ities involving the composition map:

‖ f ◦ g − f̃ ◦ g‖p,∞ ≤ C(‖dg‖p−1,∞)‖ f − f̃ ‖p,∞ (7.6)

and

‖ f ◦ g − f ◦ g̃‖p,∞ ≤ C(‖dg‖p−1,∞, ‖d g̃‖p−1,∞)‖ f ‖p+1,∞‖g − g̃‖p,∞, (7.7)

whereC is in both cases a polynomial function of its variables. The second inequality
can be obtained, for example, by writing
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f ◦ g − f ◦ g̃ =
∫ 1

0
d f ◦ (

(1 − ε)g + εg̃
)
(g − g̃) dε

and applying the previous estimates and the Leibnitz formula to the integrand. If
f ∈ C p

0 (Ω), Inequality (7.7) can be improved by introducing moduli of continuity:

μ(dq f, δ) = sup
x,y∈R,|x−y|<δ

|dq f (y) − dq f (x)|.

Then, letting μ(p)( f, δ) = maxq≤p μ(dq f, δ) and applying Lemma 7.3, we get

‖ f ◦ g − f ◦ g̃‖p,∞ ≤
C(‖dg‖p−1,∞, ‖d g̃‖p−1,∞)(μ(p)( f, ‖g − g̃‖∞) + ‖ f ‖p,∞‖g − g̃‖p,∞). (7.8)

Obviously, if f ∈ C p+1
0 (Ω), then μ(p)( f, ‖g − g̃‖∞) ≤ ‖ f ‖p+1,∞‖g − g̃‖∞, so that

(7.8) implies (7.7).
Based on these remarks, the following corollary of Lemma 7.3 holds.

Corollary 7.5 Diff p,∞(Ω) is a subgroup of Diff(Ω).

In the following, we will most of the time work with diffeomorphisms that tend
to the identity at infinity, defining

Diff p,∞0 (Ω) = {
ϕ ∈ Diff p,∞(Ω) : ϕ − id ∈ C p

0 (Ω,Rd)
}
.

Here C p
0 (Ω,Rd) is the space of functions v : Ω → R

d whose partial derivatives up
to order p can be made arbitrarily small outside of large enough compact subsets of
Ω (see Definition A.14). It will be convenient to identify C p

0 (Ω,Rd) with a subset
of C p

0 (Rd ,Rd):

C p
0 (Ω,Rd) = {

f ∈ C p
0 (Rd ,Rd) : f (x) = 0 if x /∈ Ω

}

and similarly

Diff p,∞0 (Ω) = {
ϕ ∈ Diff p,∞0 (Rd) : ϕ(x) = x if x /∈ Ω

}
.

Theorem 7.6 Diff p,∞0 (Ω) is a subgroup of Diff p,∞(Ω) and the composition map
(ϕ,ψ) → ϕ ◦ ψ is continuous in both variables over Diff p,∞0 (Ω) × Diff p,∞0 (Ω).

Moreover, for a givenψ ∈ Diff p,∞0 (Ω), the right compositionmapC R
ϕ : ψ → ψ ◦

ϕ is infinitely differentiable from Diffk,∞0 (Ω) to itself for any k ≤ p, with derivative
dC R

ϕ (ψ)η = η ◦ ϕ and vanishing higher derivatives, and the left composition map

C L
ϕ : ψ → ϕ ◦ ψ is differentiable fromDiffk,∞0 to itself if k ≤ p − 1, with derivative

dC L
ϕ (ψ)η = (dϕ ◦ ψ) η.
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Proof The proof that ϕ ∈ Diff p,∞0 implies that ϕ−1 ∈ Diff p,∞0 will be given later
as a consequence of Lemma 7.7. If ϕ,ψ ∈ Diff p,∞0 (Ω), then, writing ϕ ◦ ψ − id =
(ϕ − id) ◦ ψ + ψ − id, we see that we need to prove that (ϕ − id) ◦ ψ ∈ C p

0 (Ω,Rd)

to ensure that ϕ ◦ ψ ∈ Diff p,∞(Ω). But the latter fact is a direct consequence of
Lemma 7.3.

To prove the continuity of the composition map, fix ϕ0,ψ0 ∈ Diff p,∞(Ω) and
write

ϕ ◦ ψ − ϕ0 ◦ ψ0 = (ϕ − ϕ0) ◦ ψ + (ϕ0 ◦ ψ − ϕ0 ◦ ψ0).

Assume that max(‖ϕ − ϕ0‖p,∞, ‖ψ − ψ0‖p,∞) < δ. Then Lemma 7.3 implies that

‖(ϕ − ϕ0) ◦ ψ‖p,∞ ≤ C‖ϕ − ϕ0‖p,∞ ‖ψ‖p,∞ ≤ Cδ(1 + δ)‖ψ0‖p,∞

for some constant C . The same lemma implies that (for q ≤ p)

dq(ϕ0 ◦ ψ − ϕ0 ◦ ψ0)(h1, . . . , hq)

=
∑

{J1,...,Jk }∈Dq

(dkϕ0 ◦ ψ − dkϕ0 ◦ ψ0)(d
|J1|ψ(hJ1), . . . , d

|Jk |ψ(hJk ))

+
∑

{J1,...,Jk }∈Dq

(dkϕ0 ◦ ψ0(d
|J1|ψ(hJ1), . . . , d

|Jk |ψ(hJk ))

− dkϕ0 ◦ ψ0(d
|J1|ψ0(hJ1), . . . , d

|Jk |ψ0(hJk )).

This implies that

‖ϕ ◦ ψ − ϕ0 ◦ ψ0‖p,∞
≤ C(1 + δ)q max

k
‖dkϕ0 ◦ ψ − dkϕ0 ◦ ψ0‖∞‖ψ0‖qp,∞ + Cδ‖ϕ0‖p,∞.

Because dkϕ0 is uniformly continuous on Ω (by Proposition A.15), ‖(dkϕ0) ◦ ψ −
(dkϕ0) ◦ ψ0‖∞ can be made arbitrarily small by taking δ small enough. This shows
that ‖ϕ ◦ ψ − ϕ0 ◦ ψ0‖p,∞ can be made arbitrarily small too and proves the conti-
nuity of the composition map.

The differentiability of the right composition map is a consequence of its conti-
nuity, since it is linear. For the left composition, one can write

ϕ ◦ (ψ + η) − ϕ ◦ ψ − dϕ ◦ ϕη =
∫ 1

0
(dϕ ◦ (ϕ + tη) − dϕ ◦ ϕ)η, dt

and the previous argument showing the continuity of the left composition can now be
applied to the integrand to prove that ‖dϕ ◦ (ϕ + tη) − dϕ ◦ ϕ‖p−1,∞ tends to 0with
‖η‖p,∞, which, combined with the product rule, implies that the (p − 1,∞)-norm
of the right-hand side is an o(‖η‖p−1,∞). �
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We now review properties of the inversion map Inv : ϕ → ϕ−1. We first relate
the derivatives of ϕ−1 to those of ϕ under the assumption that the latter is a C p

diffeomorphism of Ω . In this discussion, we will fix ϕ and define ψ = ϕ−1. Recall
that dψ h = dϕ−1 ◦ ψ h for all h ∈ R

d . Differentiating again and applying the chain
rule, we have

d2ψ(h1, h2) = −dϕ−1 ◦ ψ d2ϕ(dϕ−1 ◦ ψ h1, dϕ−1 ◦ ψ h2) ◦ ψ

or
d2ψ(h1, h2) ◦ ϕ = −dϕ−1d2ϕ(dϕ−1h1, dϕ−1h2).

Things rapidly get more complicated with higher derivatives. We let the reader check
that

d3ψ(h1, h2, h3) ◦ ϕ = −dϕ−1d3ϕ(dϕ−1h1, dϕ−1h2, dϕ−1h3)

+ dϕ−1d2ϕ(dϕ−1d2ϕ(dϕ−1h1, dϕ−1h2), dϕ−1h3)

+ dϕ−1d2ϕ(dϕ−1d2ϕ(dϕ−1h1, dϕ−1h3), dϕ−1h2)

+ dϕ−1d2ϕ(dϕ−1d2ϕ(dϕ−1h2, dϕ−1h3), dϕ−1h1).

To state a general formula, we fix h1, . . . , h p ∈ R
d and we introduce the following

subsets of mappings from Ω to the sets of multilinear forms from R
d → R

d .
Let Pk denote the family of all subsets of Vk = {1, . . . , k}. A recursive partition

of {1, . . . , k} can be represented as a tree T whose vertices are subsets of (1, . . . , k)
with the additional conditions: (i) The root of T is the whole set Vk ; (ii) The children
of each node form a partition of the subset associated to this node; (iii) Each non-
terminal node has at least two children; (iv) Terminal nodes are singletons. Let Tk

be the set of recursive partitions of Vk . To each T ∈ Tk , we recursively define the
function UT by

UT (h1, . . . , hk) = dϕ−1dkϕ(h1, . . . , hk)

if all children of the root of T are singletons and

UT (h1, . . . , hk) = dϕ−1dmϕ(UT1(hV1), . . . ,UTm (hVm )),

where m is the number of children of Vk (the root node), with associated subsets
V1, …, Vm , and T1, . . . , Tm are the subtrees of T rooted at V1, . . . , Vm . With this
notation, we have

Lemma 7.7

d pψ(dϕh1, . . . , dϕh p) ◦ ϕ = (−1)p
∑

T∈T p

(−1)|T |UT (h1, . . . , h p), (7.9)

where |T | is the number of nodes in T .
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Proof We prove this by induction. For a tree with one node, we have dψ ◦ ϕ h =
dϕ−1 h so that dψ ◦ ϕdϕ h = dϕ−1dϕ h. For p = 2, the only tree in T2 has {1, 2}
as root and {1}, {2} as terminal nodes, and

d2ψ(dϕ h1, dϕ h2) ◦ ϕ = −dϕ−1d2ϕ(h1, h2) = (−1)2+|T |UT (h1, h2).

Let us now prove the formula by induction, assuming that the formula is true for all
k ∈ {2, . . . , p} and showing that it remains true for p + 1. Taking the derivative of
the left-hand side of (7.9), we find

d(d pψ(dϕ h1, . . . , dϕ h p) ◦ ϕ)h p+1 = d p+1(ψ)(dϕ h1, . . . , dϕ h p+1) ◦ ϕ

+
p∑

j=1

d pψ(dϕ h1, . . . , dϕ j j−1, d
2ϕ(h j , h p+1), dϕh j+1, . . . , dϕ h p).

Let T (1)
p+1 be the set of trees obtained from trees T ∈ Tp by choosing a terminal

node { j} in T , replacing it by { j, p + 1}, adding the two singleton children, and
adding p + 1 as a new element of all the ancestors of { j}. Similarly, let T (2)

p+1 be the
set of trees obtained by adding {p + 1} as a child to some non-terminal node, and
propagating upward. Finally let T (3)

p+1 denote the trees T
′ obtained from T ∈ Tp by

placing {p + 1} as a sibling of the root of T (which is Vp), both becoming children
of the root of T ′ (which is Vp+1). These operations add two nodes to the original
trees for groups (1) and (3) (so that (−1)|T | remains unchanged), and only one node
for group (2), changing the sign of (−1)|T |. Notice that T (1)

p+1,T
(2)
p+1,T

(3)
p+1 form a

partition of Tp+1.
We can already see that
p∑

j=1

dϕ d pψ(dϕ h1, . . . , d
2ϕ(h j , h p+1), . . . , dϕ h p)

= (−1)p
∑

T∈T (1)
p+1

(−1)|T |UT (h1, . . . , h p, h p+1).

Now consider the derivatives in the right-hand side of (7.9). From the recursive
definition of UT , we find that

dUT (h1, . . . , h p, h p+1) = −dϕ−1d2ϕ(UT (h1, . . . , h p), h p+1)

+ dϕ−1dm+1ϕ(UT1(hV1), . . . ,UTm (hVm ), h p+1)

+
m∑

j=1

dϕ−1dmϕ(UT1(hV1), . . . , dUTj (hVj , h p+1), . . . ,UTm (hVm )

= −(−1)p
∑

T∈T (3)
p+1

(−1)|T |UT (h1, . . . , h p+1)

+ (−1)p
∑

T∈T (2)
p+1

(−1)|T |−1UT (h1, . . . , h p+1).
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Putting all the terms together, we retrieve

d p+1(ψ)(dϕ h1, . . . , dϕ h p+1) ◦ ϕ = (−1)p+1
∑

T∈T p+1

(−1)|T |UT (h1, . . . , h p+1),

which proves the lemma. �

An immediate consequence of this lemma is that, for some continuous function C ,
one has ‖ϕ−1‖p,∞ ≤ C(‖ϕ‖p,∞)‖dϕ−1‖p+1

∞ . Using this, we can obtain the fact that
Diff p,∞0 (Ω) is invariant by function inversion, completing the proof of Theorem 7.6.
Here is another consequence.

Proposition 7.8 If ϕ ∈ Diff p,∞0 (Ω), the mapping Iϕ : η → (ϕ + η)−1 is differen-
tiable at η = 0 when considered as a mapping from C p

0 (Ω,Rd) to C p−1(Ω,Rd),
with derivative dIϕ(0)η = −d(ϕ−1)η ◦ ϕ−1 = −(dϕ−1η) ◦ ϕ−1.

Proof We first consider the case ϕ = id. Then d(id + η) = Id + dη and dk(id +
η) = dkη for k ≥ 2. We have

(id + η)−1 − id + η = (id + η)−1 − (id + η) ◦ (id + η)−1 + η = η − η ◦ (id + η)−1

so that

‖(id + η)−1 − id + η‖∞ = ‖η − η ◦ (id + η)−1‖∞
= ‖η ◦ (id + η) − η‖∞
≤ ‖dη‖∞‖η‖∞ = O(‖η‖21,∞).

Similarly, with d((id + η)−1) = −(Id + dη)−1 ◦ (id + η)−1 = Id − (dη(Id +
dη)−1) ◦ (id + η)−1,

‖d((id + η)−1) − Id + dη‖∞ = ‖dη ◦ (id + η) − dη(Id + dη)−1‖∞
= ‖η ◦ (id + η) − η‖∞ ≤ ‖dη‖∞‖η‖∞ = O(‖η‖22,∞).

Using again the fact that (Id + dη)−1 − id = −dη(Id + dη)−1, we can check that,
for T ∈ Tk , k ≥ 2,

UT ((Id + dη)−1h1, . . . , (Id + dη)−1hk) = o(‖η‖2k,∞),

unless T is such that all children of the root are singletons, for which

UT ((Id + dη)−1h1, . . . , (Id + dη)−1hk) = −dkη(h1, . . . , hk) + O(‖η‖2k,∞).

It follows that

‖dk((id + η)−1)(h1, . . . , hk) ◦ (id + η) + dkη(h1, . . . , hk)‖∞ = O(‖η‖2k,∞).
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The left-hand side is also equal to

‖dk((id + η)−1)(h1, . . . , hk) + dkη(h1, . . . , hk) ◦ (id + η)−1‖∞

and

‖dkη(h1, . . . , hk) ◦ (id + η)−1 − dkη(h1, . . . , hk)‖∞ ≤ ‖dk+1η‖∞‖η‖∞.

This implies that

‖dk((id + η)−1)(h1, . . . , hk) + dkη(h1, . . . , hk)‖∞ = O(‖η‖2k+1,∞),

proving that dIid(0)η = −η.
To prove the result forϕ �= id, we note that (ϕ + η)−1 = ϕ−1 ◦ (id + η ◦ ϕ−1)−1.

The conclusion then results from the chain rule applied to

η → id + η ◦ ϕ−1 → (id + η ◦ ϕ−1)−1 → ϕ−1 ◦ (id + η ◦ ϕ−1)−1

respectively mapping C p
0 (Ω,Rd) to Diff p,∞0 to Diff p−1,∞

0 to Diff p−1,∞
0 . The differ-

entiability of each map results from Theorem 7.16, the first part of the proof and the
fact that ϕ−1 ∈ Diff p,∞0 (Ω). �

Diffeomorphisms act on various structures supported by Ω . Consider, for exam-
ple, a function I : Ω → R (an image) and a diffeomorphism ϕ of Ω . The associated
deformation creates a new image I ′ on Ω by letting I ′(y) be the value of I at the
position x which has been moved to y, i.e., I ′(y) = I (ϕ−1(y)) or I ′ = I ◦ ϕ−1. We
will be specifically interested in the inverse problem of estimating the best diffeo-
morphism from the output of its action. For example, the image matching problem
consists in finding an algorithm which, given two functions I and I ′ on Ω , is able to
recover a plausible diffeomorphism ϕ such that I ′ = I ◦ ϕ−1.

To be able to develop these algorithms, we will need a computational construction
of diffeomorphisms (this is not provided by Definition 7.2). In order to motivate this
general construction, we start with a direct, but limited, way of building diffeomor-
phisms, by small perturbations of the identity.

Proposition 7.9 Let u ∈ C1(Ω,Rd), and assume that,

(i) u(x) and du(x) tend to 0 as x tends to infinity.
(ii) There exists a constant C0 such that |u(x)| < C0 dist(x,Ωc) for all x ∈ Ω .

Then, for small enough ε, ϕ : x → x + εu(x) is a diffeomorphism of Ω .

(Of course, if Ω has no boundary, one can take C0 arbitrarily small.)

Proof The function ϕ is obviously continuously differentiable. Since du is contin-
uous and tends to 0 at infinity, it is bounded and there exists a constant C such
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that
∣∣u(x) − u(x ′)

∣∣ ≤ C
∣∣x − x ′∣∣. We will take ε < 1/(C + C0). This implies that

x + εu(x) takes Ω into itself. Indeed, if y ∈ Ωc, then

|x + εu(x) − y| ≥ (1 − C0ε)dist(x,Ω
c) > 0.

We first show that ϕ is one-to-one. If ϕ(x) = ϕ(x ′) we have

∣∣x − x ′∣∣ = ε
∣∣u(x) − u(x ′)

∣∣ ≤ Cε
∣∣x − x ′∣∣ <

C

C + C0

∣∣x − x ′∣∣

which implies x = x ′ as needed.
We now show that ϕ is onto. Take y ∈ Ω and ρ = dist(y,Ωc). If |η| < ρ, then

u(y + η) is well defined and satisfies

ε|u(y + η)| ≤ ε|u(y)| + εCη ≤ ε(C0 + C)ρ < ρ.

(The conclusionobviously alsoholdswhenρ = +∞.) Therefore,ψy(η) := −εu(y +
η) maps B(0, ρ) into itself. For η, η′ ∈ B(0, ρ), we have

∣∣ψy(η) − ψy(η
′)
∣∣ ≤ εC

∣∣η − η′∣∣ .

Since εC < 1, ψy is contractive, and the fixed-point theorem (Theorem C.1) implies
that there exists an η ∈ B(0, ρ) such that ψy(η) = η. But in this case,

ϕ(y + η) = y + η + εu(y + η) = y + η − ψy(η) = y,

so that y ∈ ϕ(Ω) and ϕ is onto.
It remains to prove thatϕ−1 is continuous. Assume thatϕ(x) = y andϕ(x ′) = y′.

Then, from x − x ′ = y − y′ − ε(u(x) − u(x ′)) we get

|x − x ′| ≤ |y − y′| + Cε|x − x ′|,

so that

|x − x ′| <
1

1 − Cε
|y − y′|,

which proves the continuity of ϕ−1. �

We therefore know how to build small deformations. Of course, we cannot be
satisfiedwith this, since they correspond to a rather limited class of diffeomorphisms.
However, we can use them to generate large deformations, because diffeomorphisms
can be combined using composition.

Thus, let ε0 > 0 and u1, . . . , un, . . . be vector fields on Ω which are such that,
for ε < ε0, id + εui is a diffeomorphism of Ω . Consider

ϕn = (id + εun) ◦ · · · ◦ (id + εu1).
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We have
ϕn+1 = (id + εun) ◦ ϕn = ϕn + εun ◦ ϕn,

which can also be written as (ϕn+1 − ϕn)/ε = un ◦ ϕn . Fixing x ∈ Ω and letting
x0 = x , xn = ϕn(x), we have the relation (xn+1 − xn)/ε = un(xn). This can be
viewed as a discretization of a differential equation, of the form (introducing a con-
tinuous time variable t):

∂t x(t) = u(t, x(t)).

This motivates the rest of this chapter, which will be devoted to building diffeo-
morphisms as flows associated to ordinary differential equations (ODEs).

7.2 Flows and Groups of Diffeomorphisms

7.2.1 Definitions

We let Ω ⊂ R
d be open and denote as before by C p

0 (Ω,Rd) the Banach space of
continuously differentiable vector fields v on Ω that tend to 0 at infinity, according
to Definition A.14. Elements v ∈ C p

0 (Ω,Rd) can be considered as defined on R
d

by setting v(x) = 0 if x /∈ Ω , and therefore may also be considered as elements of
C p
0 (Rd ,Rd).
We define the set X p,1(T,Ω) = L1([0, T ],C p

0 (Ω,Rd)) of absolutely integrable
functions from [0, T ] to C p

0 (Ω,Rd). An element ofX p,1(T,Ω) is a time-dependent
vector field, (v(t, ·), t ∈ [0, 1]) such that, for each t , v(t) := v(t, ·) ∈ C p

0 (Ω,Rd)

and

‖v‖X p,1,T :=
∫ T

0
‖v(t)‖p,∞ dt < ∞. (7.10)

X p,1 is a Banach space provided one identifies time-dependent vector fields v and
v′ such that v(t, ·) = v′(t, ·) for almost all t ∈ [0, T ].

7.2.2 Variation in the Initial Condition

The results developed in AppendixC for ODEs in Banach spaces clearly apply to this
context with B = R

d and noting that C p
0 (Ω,Rd) ⊂ C p

(0)(Ω,Rd) (see the notation
in AppendixC). In particular, for v ∈ X 1,1(T,Ω), the ordinary differential equation
∂t y = v(t, y) has a unique solution over [0, T ] given any initial condition y(s) = x ,
and the associated flow, ϕv

st , defined by
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∂tϕ
v
st = v(t) ◦ ϕv

st , (7.11)

and ϕv
ss = id, is a diffeomorphism ofΩ , with derivative described in TheoremsC.15

and C.18. We repeat these results in the following theorem.

Theorem 7.10 If p ≥ 1 and
∫ T
0 ‖v(t)‖p,∞dt < ∞, then, for all s, t ∈ [0, T ], ϕv

st is
p times differentiable and for all q ≤ p

∂t d
qϕv

st = dq(v(t) ◦ ϕv
st ) (7.12)

with initial condition dqϕv
ss = Idd for q = 1 and dqϕv

ss = 0 for q > 1. In particular,
dϕv

st satisfies
∂tW (t) = dv(t,ϕv

st (x))W (t). (7.13)

Moreover, there exist constants C,C ′ (independent of v) such that

sup
s∈[0,1]

∥∥ϕv
st − id

∥∥
p,∞ ≤ C exp

(
C ′

∫ 1

0
‖v(t)‖p,∞dt

)
. (7.14)

The following theorem also controls the behavior of ϕst at infinity.

Theorem 7.11 If p ≥ 1 and
∫ t
0 ‖v(t)‖p,∞dt < ∞, then ϕv

st ∈ Diff p,∞0 (Ω).

Proof We only need to complete Theorem 7.10 by proving that ϕ(x) − x and its
derivatives vanish at infinity. We have

ϕv
st (x) − x =

∫ t

s
v(u,ϕsu(x)) du,

which implies that |ϕv
st (x) − x | ≤ (t − s)‖v‖∞. Note that ϕv

st (x) − x = 0 for x /∈
Ω , so that there is nothing to prove for these x’s.

Let

Kn =
{
x ∈ Ω : |x | ≤ n and dist(x,Ωc) ≥ 1

n

}

so that (Kn, n ≥ 1) is an increasing sequence of compact subsets of Ω and any
compact subset of Ω is included in some Kn for n large enough. Assume (to reach
a contradiction) that there exists an ε > 0 such that, for all n, there exists xn ∈
Ω \ Kn such that |ϕv

st (xn) − xn| > ε. Because ϕv
su − id is bounded, ϕv

su(xn) also
tends to infinity, for all u ∈ [s, t], so that |v(u,ϕv

su(xn))| → 0. It suffices to apply
the dominated convergence theorem to conclude that

∫ T

0
|v(u,ϕsu(xn))| du → 0,

whichprovides our contradiction.Wehave therefore shown that, for all ε > 0, one can
take n large enough so that |ϕv

st (x) − x | < ε for all x ∈ Ω \ Kn , so that ϕst − id ∈
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C0
0 (Ω,Rd). This argument can be extended to derivatives using Lemma 7.3 to prove

the proposition. The details are left to the reader �

7.2.3 Variations with Respect to the Vector Field

The previous equation can be analyzed in a more abstract form, by considering the
mapping V v : C p

0 (Ω,Rd) → C p
0 (Ω,Rd) defined by V v(t, u)(x) = v(t, x + u(x))

for v ∈ X p+1(T,Ω), or V v(t, u) = v(t) ◦ (id + u). Letting B = C p
0 (Ω,Rd) the

assumption that v ∈ X p+1(T,Ω) implies that V v ∈ L1([0, T ],C1
b(B,B)). This

statement relies on the observation that if we let (for given t and u)

R(t, h) = V v(t, u + h) − V v(t, u) − dv(t) ◦ (id + u)h

= v(t) ◦ (id + u + h) − v(t) ◦ (id + u) − dv(t) ◦ (id + u)h

then Lemma 7.3 and the product rule imply that

‖R(t, h)‖p,∞ =
∫ 1

0
(dv(t) ◦ (id + u + εh) − dv(t) ◦ (id + u)) h dε

≤ μ(p)(dv(t), ‖h‖p,∞)‖h‖p,∞
= o(‖h‖p,∞),

so that V v(t) is C1 with derivative dV v(t, u) = dv(t) ◦ (id + u), which is continu-
ous in u with respect to the (p,∞)-norm if v(t) ∈ C p+1

0 (Ω,Rd). Moreover,

∫ T

0
‖dV v(t)‖∞dt ≤

∫ T

0
‖dv(t)‖p,∞dt ≤ ‖v‖X p+1,1,T ,

proving that V v ∈ L1([0, T ],C1
b(B,B)). This shows that ∂t u = V v(t, u) has a

unique solution with uv
s (t) ∈ C p

0 (Ω,Rd), uv(s) = 0 and ϕv
st = id + uv

s (t) ∈
Diff p,∞0 (Ω). We therefore retrieve the previous result (but under a stronger assump-
tion on v).

We now apply Theorem C.17 in this framework to study the differentiability of
the flow with respect to v. The (linear) mapping v → V v is C1 from X p+1(T,Ω)

to L1([0, T ],C1
b(B,B)) with ∂vV vh = V h , so that the theorem’s assumptions are

satisfied.We therefore have the following result (see Eq. (C.13) after TheoremC.17).

Theorem 7.12 The mapping v → ϕv
st is differentiable from X p+1,1(T,Ω)

to Diff p,∞0 (Ω) and

∂vϕ
v
st h =

∫ t

s
(dϕv

ut h(u)) ◦ ϕv
sudu. (7.15)
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Note that, even though Theorem 7.11 states thatϕv
st ∈ Diff p+1,∞

0 , it is with respect to
the (p,∞) norm that this mapping is differentiable. Combined with Theorem 7.10
this result implies that, for v, ṽ ∈ X p+1,1, we have

∥∥∥ϕv
st − ϕṽ

st

∥∥∥
p,∞

=
∫ 1

0

∫ t

s
dϕ(1−ε)v+εṽ

su (ṽ − v) du dε

≤ (
1 + C exp

(
C ′ max (‖v‖X p+1,1 , ‖ṽ‖X p+1,1)

)) ‖ṽ − ṽ′‖X p+1,1 .

(7.16)

7.2.4 Weak Continuity

The previous theorem implies the continuity of v → ϕv
st in the norm topology, when

this mapping is considered fromX p+1,∞ to Diff p,∞0 . We now show that this mapping
is also weakly continuous, or, more precisely, that if vn is any bounded weakly
converging sequence in X p+1,∞, with limit v, then ϕvn

st and its first p derivatives
converge to ϕv

st uniformly over compact sets. Write, for a d-tuple J and x ∈ Ω ,

∂Jϕ
v
st (x) − ∂Jϕ

vn

st (x) =
∫ t

s

(
(∂J (v(u) ◦ ϕv

su(x)) − ∂J (v
n(u) ◦ ϕvn

su(x))
)
du.

We have

∣∣∂Jϕ
v
st (x) − ∂Jϕ

vn

st (x)
∣∣ ≤

∣∣∣∣
∫ t

s

(
∂J (v(u) ◦ ϕv

su(x)) − ∂J (v
n(u) ◦ ϕv

su(x))
)
du

∣∣∣∣
(7.17)

+
∫ t

s

∣∣∂J (v
n(u) ◦ ϕv

su(x)) − ∂J (v
n(u) ◦ ϕvn

su(x))
∣∣ du.

(7.18)

Applying Lemma 7.3, we see that the second integral is less than

C
∫ t

s
‖vn(u)‖p+1,∞

(
max|J |≤p

|∂Jϕ
v
su(x) − ∂Jϕ

vn

su(x)|
)

du

for some constantC that depends onmaxu ‖ϕv
su‖p,∞ andmaxu ‖ϕvn

su‖p,∞, both quan-
tities being controlled by ‖v‖p,∞ and supn ‖vn‖p,∞. We are therefore in position to
apply Theorem C.11 (Gronwall’s lemma) to (7.17) with

u(τ , c) = max|J |≤p

∣∣∂Jϕ
v
s s+τ − ∂Jϕ

vn

s+τ

∣∣ ,

α(τ ) = ‖vn(s + τ )‖p+1,∞ and
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cn(τ , x) =
∣∣∣∣
∫ s+τ

s

(
∂J (v(θ) ◦ ϕv

sθ) − ∂J (v
n(θ) ◦ ϕv

sθ)
)
dθ

∣∣∣∣ . (7.19)

This yields the inequality

max|J |≤p

∥∥∂Jϕ
v
st (x) − ∂Jϕ

vn

st (x)
∥∥ ≤ cn(t − s)+

C
∫ t

s
cn(θ − s)

∥∥vn(θ)
∥∥
p+1,∞ exp

(∫ t

θ

∥∥vn(θ′)
∥∥
p+1,∞ dθ′

)
dθ. (7.20)

The weak convergence of vn to v implies that

∫ s+τ

s
∂Jv

n(θ, y(θ))dθ →
∫

∂Jv(θ, y(θ))dθ

for anymeasurable function y, since the right-hand side is a continuous linear form of
v ∈ X p+1,∞. Using this and Lemma 7.3, we see that cn(τ , x) → 0 for all τ . Adding
to this the fact that cn(τ , x) is bounded uniformly in τ (again as a consequence of
Lemma 7.3), it suffices to apply the dominated convergence theorem to obtain the
fact that the left-hand side of (7.20) goes to 0 as n → ∞.

Theorem 7.10 and Eq. (C.5) imply that there exists a constant C such that, for all
n > 0, and x, y ∈ Ω

∣∣∂J (ϕ
vn

st (x) − ϕvn

st (y))
∣∣ ≤ C |x − y| .

This implies that the family ∂Jϕ
vn

st is equicontinuous and a similar argument
shows that it is bounded. Letting Q be any compact subset of Ω , Ascoli’s theorem
[306] implies that (∂Jϕ

vn

st , n ≥ 0) is relatively compact with respect to the uniform
convergence on Q. But the limit of any subsequence that converges uniformly must
be ∂Jϕ

v
st since it is already the pointwise limit of the whole sequence. This implies

that the uniform limit exists and is equal to ∂Jϕ
v
st . Thus, we have just proved the

following theorem:

Theorem 7.13 ([126]) If v ∈ X p+1,1(T,Ω) and vn is a bounded sequence in
X p+1,1(T,Ω) which weakly converges to v, then, for all s, t ∈ [0, T ], for every
compact subset Q ⊂ Ω and every tuple J such that |J | ≤ p,

lim
n→∞max

x∈Q
∣∣∂J (ϕ

vn

st (x) − ϕv
st (x))

∣∣ = 0.

Wewill say that ϕvn converges to ϕv in the (p,∞)-compact topology. This topology
is metrizable, with possible metric

d(ϕ,ψ) =
∞∑

n=0

2−n max
x∈Qn

max|J |≤p

|∂Jϕ(x) − ∂Jψ(x)|
1 + |∂Jϕ(x) − ∂Jψ(x)| ,
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where Qn is an increasing sequence of compact sets such that any compact set Q ∈ Ω

belongs to Qn for large enough n.

7.2.5 Admissible Banach Spaces

The previous results are true a fortiori for vector fields v belonging to Banach or
Hilbert spaces that are continuously embedded in C1

0(Ω,Rd). We formalize this
with the following definitions.

Definition 7.14 ABanach space V ⊂ C1
0(Ω,Rd) is admissible if it is (canonically)

embedded in C1
0(Ω,Rd), i.e., there exists a constant C such that, for all v ∈ V ,

‖v‖V ≥ C ‖v‖1,∞ . (7.21)

If V is admissible, we denote by X 1
V = L1([0, 1], V ) the set of time-dependent

vector fields (v(t), t ∈ [0, 1]) such that, for each t , v(t) ∈ V and

‖v‖X 1
V

:=
∫ 1

0
‖v(t)‖V dt < ∞.

If the interval [0, 1] is replaced by [0, T ], we will use the notation X 1
V (T ) and

‖v‖X 1
V ,T .

Definition 7.15 If V ⊂ C1
0(Ω,Rd) is admissible, denote by

DiffV = {
ϕv
01, v ∈ X 1

V

}

the set of diffeomorphisms provided by flows associated to elements v ∈ X 1
V at

time 1.

Theorem 7.16 DiffV is a subgroup of Diff1,∞0 (Ω).

Proof The inclusion is obvious from Theorem 7.11, so we focus on the subgroup
property. The identity function belongs to DiffV : it corresponds, for example, to
ϕv
01 when v = 0. If ψ = ϕv

01 and ψ′ = ϕv′
01, with v, v′ ∈ X 1

V , then ψ′ ◦ ψ = ϕw
01 with

w(t) = v(2t) for t ∈ [0, 1/2] and w(t) = v′(2t − 1) for t ∈ (1/2, 1] (the details are
left to the reader) and w belongs to X 1

V . Similarly, if ψ = ϕv
01, then ψ−1 = ψw

01 with
w(t) = −v(1 − t). Indeed, we have

ϕw
0,1−t (y) = y −

∫ 1−t

0
v(1 − s) ◦ ϕw

0s(y)ds = y +
∫ t

1
v(s) ◦ ϕw

0,1−sds,

which implies (by the uniqueness theorem) that ϕw
0,1−t (y) = ϕv

1t (y) and in particular

ϕw
01 = ϕv

10. This proves that DiffV is a subgroup of Diff1,∞0 . �
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Thus, by selecting a certain Banach space V , we can in turn specify a group of
diffeomorphisms. In particular, elements in DiffV inherit the smoothness properties
of elements of V . Theorems7.10 and 7.11 indeed imply that DiffV is a subgroup of
Diff p,∞0 as soon as V is embedded in C p

0 (Ω,Rd).
We can interpret this framework in terms of a control system, in which vector

fields in V control diffeomorphisms through the flow equation ∂tϕ(t) = v(t) ◦ ϕ(t).
The set DiffV can then be seen as the group of attainable diffeomorphisms, starting
from the identity and using control trajectories with finite cost ‖v‖X 1

V
.

7.2.6 A Distance on GV

Let V be an admissible Banach space. For ψ and ψ′ in DiffV , we let

dV (ψ,ψ′) = inf
v∈X 1

V (Ω)

{
‖v‖X 1

V
,ψ′ = ϕv

01 ◦ ψ
}

. (7.22)

We have the following theorem:

Theorem 7.17 (Trouvé) The function dV is a distance on DiffV , and (DiffV , dV )

is a complete metric space.

Recall that dV is a distance if it is symmetric, satisfies the triangle inequality
dV (ψ,ψ′) ≤ dV (ψ,ψ′′) + dV (ψ′′,ψ′) and is such that dV (ψ,ψ′) = 0 if and only
if ψ = ψ′.

Proof Note that the set over which the infimum is computed is not empty: if ψ,ψ′ ∈
DiffV , thenψ′ ◦ ψ−1 ∈ DiffV (because DiffV is a group) and therefore can be written
in the form ϕv

01 for some v ∈ X 1
V .

Let us start with the symmetry: fix ε > 0 and v such that ‖v‖X 1
V

≤ d(ψ,ψ′) + ε
and ψ′ = ϕv

01 ◦ ψ. This implies that ψ = ϕv
10 ◦ ψ′, but we know (from the proof of

Theorem 7.16) that ϕv
10 = ϕw

01 with w(t) = −v(1 − t). Because ‖w‖X 1
V

= ‖v‖X 1
V
,

we have, from the definition of dV :

dV (ψ′,ψ) ≤ ‖w‖X 1
V

≤ dV (ψ,ψ′) + ε

and since this is true for every ε, we have dV (ψ′,ψ) ≤ dV (ψ,ψ′). Inverting the roles
of ψ and ψ′ yields dV (ψ′,ψ) = dV (ψ,ψ′).

For the triangle inequality, let v and v′ be such that ‖v‖X 1
V

≤ d(ψ,ψ′′) + ε,∥∥v′∥∥
X 1

V
≤ d(ψ′′,ψ′) + ε,ψ′′ = ϕv

01 ◦ ψ andψ′ = ϕv′
01 ◦ ψ′′.We thus haveψ′ = ϕv′

01 ◦
ϕv
01 ◦ ψ and we know, still from the proof of Theorem 7.16, that ϕv

01 ◦ ϕv′
01 = ϕw

01
with w(t) = v′(2t) for t ∈ [0, 1/2] and w(t) = v(2t − 1) for t ∈ (1/2, 1]. But, in
this case, ‖w‖X 1

V
= ‖v‖X 1

V
+ ‖v′‖X 1

V
so that

d(ψ,ψ′) ≤ ‖w‖X 1
V

≤ d(ψ,ψ′′) + d(ψ′′,ψ′) + 2ε,
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which implies the triangle inequality, since this is true for every ε > 0.
We obviously have d(ψ,ψ) = 0 since ϕ0

01 = id. Assume that d(ψ,ψ′) = 0. This
implies that there exists a sequence vn such that ‖vn‖X 1

V
→ 0 and ψ′ ◦ ψ−1 = ϕvn

01.
The continuity of v → ϕv

st implies that ϕvn
01 → ϕ0

01 = id so that ψ = ψ′.
Let us now check that we do indeed have a complete metric space. Let ψn be

a Cauchy sequence for dV , so that, for any ε > 0, there exists an n0 such that, for
any n ≥ n0, dV (ϕn,ψn0) ≤ ε. Taking recursively ε = 2−n , it is possible to extract a
subsequence ψnk of ψn such that

∞∑

k=0

dV (ψnk ,ψnk+1) < ∞.

Since a Cauchy sequence converges whenever one of its subsequences does, it is
sufficient to show that ψnk has a limit.

From the definition of dV , there exists, for every k ≥ 0, an element vk in X 1
V such

that ψnk+1 = ϕvk

01 ◦ ψnk and

∥∥vk
∥∥
X 1

V
≤ dV (ψnk ,ψnk+1) + 2−k−1.

Let us define a time-dependent vector field v by v(t) = 2v0(2t) for t ∈ [0, 1/2[,
v(t) = 4v1(4t − 2) for t ∈ [1/2, 3/4[, and so on: to define the general term, introduce
the dyadic sequence of times t0 = 0 and tk+1 = tk + 2−k−1 and let

v(t) = 2k+1vk(2k+1(t − tk))

for t ∈ [tk, tk+1[. Since tk tends to 1 as t → ∞, this defines v(t) on [0, 1), and we fix
v(1) = 0. We have

‖v(t)‖X 1
V

=
∞∑

k=0

2k+1
∫ tk+1

tk

∥∥vk(2k+1(t − tk))
∥∥
V dt

=
∞∑

k=0

∫ 1

0

∥∥vk(t)
∥∥
V dt

≤ 1 +
∞∑

k=0

dV (ψnk ,ψnk+1),

so that v ∈ X 1
V . Now, consider the associated flow ϕv

0t : it is obtained by first inte-
grating 2v0(2t) between [0, 1/2), which yields ϕv

0,1/2 = ϕv0

01. Iterating this, we have

ϕv
0tk+1

= ϕvk

01 ◦ · · · ◦ ϕv0

01 ,

so that
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ψnk+1 = ϕv
0tk+1

◦ ψn0 .

Let ψ∞ = ϕv
01 ◦ ψn0 . We also have ψ∞ = ϕv

tk1 ◦ ψnk . Because ϕv
tk1 = ϕwk

01 with
wk(t) = v((t − tk)/(1 − tk))/(1 − tk), and

‖w‖X 1
V

=
∫ 1

tk

‖v(t)‖V dt,

we obtain the fact that dV (ψnk ,ψ∞) → 0, which completes the proof of
Theorem 7.17. �

7.2.7 Properties of the Distance

We first introduce the set of square integrable (in time) time-dependent vector fields:

Definition 7.18 Let V be an admissible Banach space of vector fields v : Ω → R
d .

We define X 2
V as the set of time-dependent vector fields v = (v(t), t ∈ [0, 1]) such

that, for each t , vt ∈ V and

∫ 1

0
‖v(t)‖2V dt < ∞.

We state without proof the important result (in which one identifies time-
dependent vector fields that coincide for almost all t):

Proposition 7.19 X 2
V is a Banach space with norm

‖v‖X 2
V

=
(∫ 1

0
‖vt‖2V dt

)1/2

.

Moreover, if V is a Hilbert space, then X 2
V is also a Hilbert space with

〈
v , w

〉
X 2

V
=

∫ 1

0

〈
vt , wt

〉
V dt.

Because
(∫ 1

0 ‖v(t)‖V dt
)2 ≤ ∫ 1

0 ‖v(t)‖2V dt , we have X 2
V ⊂ X 1

V and if v ∈ X 2
V ,

‖v‖X 1
V

≤ ‖v‖X 2
V
. The computation of dV can be reduced to a minimization over X 2

V
by the following theorem.

Theorem 7.20 If V is admissible and ψ,ψ′ ∈ GV , we have

dV (ψ,ψ′) = inf
v∈X 2

V

{
‖v‖X 2

V
,ψ′ = ϕv

01 ◦ ψ
}

. (7.23)
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Proof Let δV (ψ,ψ′) be given by the right-hand side of (7.23) and dV be given by
(7.22). Because dV is the infimum over a larger set than δV , and minimizes a quantity
which is always smaller, we have dV (ψ,ψ′) ≤ δV (ψ,ψ′) and we just need to prove
the reverse inequality. For this, consider v ∈ X 1

V such that ψ′ = ϕv
01 ◦ ψ. It suffices

to prove that, for any ε > 0, there exists a w ∈ X 2
V such that ψ′ = ϕw

01 ◦ ψ and
‖w‖X 2

V
≤ ‖v‖X 1

V
+ ε. Let α be an absolutely continuous increasing function from

[0, 1] onto [0, 1], which implies α(0) = 0 and α(1) = 1, and

α(t) =
∫ t

0
α̇(s) dt

for all t ∈ [0, 1]. Applying the change of variable formula ([246], sect. 26), we have

ϕv
0α(t)(x) = x +

∫ α(t)

0
v(u,ϕ0u(x)) du

= x +
∫ t

0
α̇(s) v(α(s),ϕ0α(s)(x)) ds,

so that the flow generated by w = α̇(s)v(α(s)) is ϕv
0α(t), which coincides with ϕv

01
at t = 1. We have

‖w‖X 1
V

=
∫ 1

0
α̇(s) ‖v(α(s))‖V ds =

∫ 1

0
‖v(t)‖V dt = ‖v‖X 1

V
,

so that this time change does not affect the minimization in (7.22). However, we
have, denoting by β(t) the inverse of α(t),

‖w‖2X 2
V

=
∫ 1

0
α̇(s)2 ‖v(α(s))‖2V ds =

∫ 1

0
α̇ ◦ β(s) ‖v(s)‖2V ds,

so that this transformation can be used to reduce ‖v‖X 2
V
. Define, for some η > 0, α̇ ◦

β(t) = c/(η + ‖v(t)‖V ), which yields β̇(t) = (η + ‖v(t)‖V )/c and c = η + ‖v‖X 1
V
.

This gives

‖w‖2X 2
V

= c
∫ 1

0

‖v(t)‖2V
η + ‖v(t)‖V dt ≤ c ‖v‖X 1

V
= (‖v‖X 1

V
+ η) ‖v‖X 1

V
.

Bychoosing η small enough,we can always arrange that ‖w‖X 2
V

≤ ‖v‖X 1
V

+ ε, which
is what we wanted to prove. �

A consequence of this result is the following fact.

Corollary 7.21 If the infimum in (7.23) is attained at some v ∈ X 2
V , then t →

‖v(t)‖V is constant.

Proof Indeed, let v achieve the minimum in (7.23): we have
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dV (ψ,ψ′) = ‖v‖X 2
V

≥ ‖v‖X 1
V
,

but ‖v‖X 1
V

≥ dV (ψ,ψ′) by definition. Thus, we must have ‖v‖X 2
V

= ‖v‖X 1
V
. This

corresponds to the equality case in Schwartz’s inequality, which can only be achieved
by (almost everywhere) constant functions. �

Corollary 7.21 is usefully completed by the following theorem:

Theorem 7.22 If V is Hilbert and admissible, and ψ,ψ′ ∈ DiffV , there exists a
v ∈ X 2

V such that
dV (ψ,ψ′) = ‖v‖X 2

V

and ψ′ = ϕv
01 ◦ ψ.

Proof By Proposition 7.19, X 2
V is a Hilbert space. Let us fix a minimizing sequence

for dV (ψ,ψ′), i.e., a sequence vn ∈ X 2
V such that ‖vn‖X 2

V
→ dV (ψ,ψ′) and ψ′ =

ϕvn

01 ◦ ψ. This implies that (‖vn‖X 2
V
) is bounded and by Theorem A.20, one can

extract a subsequence of vn (which we still denote by vn) that weakly converges to
some v ∈ X 2

V , such that

‖v‖X 2
V

≤ lim inf
∥∥vn

∥∥
X 2

V
= dV (ψ,ψ′).

We now apply Theorem 7.13 (using the fact that weak convergence in X 2
V implies

weak convergence in the bigger spaceX 1,1(Ω)) and obtain the fact thatϕvn converges
to ϕv so that ψ′ = ϕv

01 ◦ ψ remains true: this proves Theorem 7.22. �

Remark 7.23 This theorem is true for spaces V that are more general than Hilbert
spaces, such as reflexive Banach spaces, for which L2([0, 1], V ) = L2([0, 1], V ∗)∗,
which allows one to apply the same compactness argument (thanks to the Banach–
Alaoglu theorem). We refer to [83] for more details on L p spaces of vector-valued
functions. We will, however, primarily work with admissible Hilbert spaces in the
rest of the book.



Chapter 8
Building Admissible Spaces

In the previous chapter we defined a family of admissible spaces V that induce groups
of diffeomorphisms using flows associated to ordinary differential equations.Wenow
show how such spaces can be explicitly constructed, focusing on Hilbert spaces.
This construction is fundamental, because it is intimately related to computational
methods.Wewill in particular introduce the notion of reproducing kernels associated
to an admissible space,whichwill provide ourmain computational tool.We introduce
this in the next section.

8.1 Reproducing Kernel Hilbert Spaces

8.1.1 The Scalar Case

Although we build diffeomorphisms from Hilbert spaces of vector fields, it will be
easier to introduce reproducing kernel Hilbert spaces for scalar-valued functions,
which has its own interest anyway [15, 16, 20, 96, 299].

Let Ω ⊂ R
d . Consider a Hilbert space V included in L2(Ω,R). We assume

that elements of V are smooth enough, and require the inclusion and the canonical
embedding of V in C0(Ω,R). For example, it suffices (from Morrey’s theorem, see
TheoremA.16) that V ⊂ Hm(Ω,R) with m > d/2. (Here the inclusion is assumed
to be continuous, and Hm is the Sobolev space of functions with square integrable
derivatives up to order m.) This assumption implies that there exists a constant C
such that, for all v ∈ V ,

‖v‖∞ ≤ C ‖v‖V .

We make another assumption on V .

Assumption 8.1 We assume that a relation of the kind
∑N

i=1 αiv(xi ) = 0 cannot
be true for every v ∈ V unless α1 = · · · = αN = 0, (x1, . . . , xN ) being an arbitrary
family of distinct points in Ω .
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This is true, for example, if V contains functions supported on arbitrary compact
sets.

Each x in Ω specifies a linear form δx defined by (δx | v ) = v(x) for x ∈ V . We
have

|(δx | v )| ≤ ‖v‖∞ ≤ C ‖v‖V
so that δx ∈ V ∗. Let K denote the inverse duality operator of V , associated with
Riesz’s theorem (TheoremA.12), so that, for every v ∈ V ,

v(x) = (δx | v ) = 〈Kδx , v
〉
V
. (8.1)

Since it belongs to V , Kδx is a continuous function y �→ (Kδx )(y). This defines a
function of two variables, denoted K : Ω × Ω → R, by K (y, x) = (Kδx )(y), i.e.,
K (·, x) = Kδx .

This function K has several interesting properties. First, applying Eq. (8.1) to
v = K (·, y) yields

K (x, y) = 〈K (·, x) , K (·, y)〉V .

Since the last term is symmetric, we have K (x, y) = K (y, x), and because of the
obtained identity, K is called the reproducing kernel of V .

A second property is the fact that K is positive definite, in the sense that, for any
family x1, . . . , xN ∈ V and any sequence α1, . . . ,αN in R, the double sum

N∑

i, j=1

αiα j K (xi , x j )

is non-negative, and vanishes if and only if all αi equal 0. Indeed, by the reproducing

property, this sum may be written
∥
∥
∥
∑N

i=1 αi K (·, xi )
∥
∥
∥
2

V
and this is non-negative. If

it vanishes, then
∑N

i=1 αi K (·, xi ) = 0, which implies, by Eq. (8.1), that, for every
v ∈ V , one has

∑N
i=1 αiv(xi ) = 0, and our assumption on V implies thatα1 = · · · =

αN = 0.

Scalar Spline Interpolation

As a first (and important) example of application of kernels, we discuss the following
interpolation problem [299].

(SV )Fix a family of distinct points x1, . . . , xN inΩ .Find a function v ∈ V ofminimal
norm satisfying the constraints v(xi ) = λi , where λ1, . . . ,λN ∈ R are prescribed
values.

To solve this problem, define V0 to be the set of v’s for which the constraints
vanish:

V0 = {v ∈ V : v(xi ) = 0, i = 1, . . . , N } .

Using the kernel K , we may write
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V0 = {v ∈ V : 〈K (., xi ) , v
〉
V = 0, i = 1, . . . , N

}

so that
V0 = span {K (., x1), . . . , K (., xN )}⊥ ,

the orthogonal being takenwith respect to the V inner product.We have the following
first result.

Lemma 8.1 If there exists a solution v̂ of problem SV , then v̂ ∈ V⊥
0 =

span {K (·, x1), . . . , K (·, xN )}. Moreover, if v̂ ∈ V⊥
0 is a solution of SV⊥

0
, then it is a

solution of SV .

Proof Let v̂ be a solution of SV , and let v∗ be its orthogonal projection on
span {K (·, x1), . . . , K (·, xN )}. From the properties of orthogonal projections, we
have v̂ − v∗ ∈ V0, which implies, by the definition of V0, that v̂(xi ) = v∗(xi ) for
i = 1, . . . , N . But, since ‖v∗‖V ≤ ∥∥v̂∥∥

V
(by the variational characterization of the

projection), and
∥
∥v̂
∥
∥
V ≤ ‖v∗‖V by assumption, both norms are equal, which is only

possible when v̂ = v∗. Therefore, v̂ ∈ V⊥
0 and the proof of the first assertion is com-

plete.
Now, if v̂ is a solution of SV⊥

0
and v is any function in V which satisfies the

constraints, then v − v̂ ∈ V0 and ‖v‖2V = ∥∥v̂∥∥2V + ∥∥v − v̂
∥
∥2
V ≥ ∥∥v̂∥∥2V , which shows

that v̂ is a solution of SV . �
This lemma allows us to restrict the search for a solution of SV to the set of

linear combinations of K (·, x1), . . . , K (·, xN ), which places us in a convenient finite-
dimensional situation. We look for v̂ in the form

v̂(x) =
N∑

i=1

αi K (x, xi )

and we introduce the N × N matrix S with coefficients si j = K (xi , x j ). The whole
problem may now be reformulated as a function of the vector α = (α1, . . . ,αN )T

(a column vector) and of the matrix S. Indeed, by the reproducing property of K , we
have

∥
∥v̂
∥
∥2
V =

N∑

i=1

αiα j K (xi , x j ) = αT Sα (8.2)

and each constraint may be written as λi = v(xi ) =∑N
j=1 α j K (xi , x j ), so that, let-

ting λ = (λ1, . . . ,λN )T , the whole system of constraints may be expressed as
Sα = λ.

Our hypotheses imply that S is invertible; indeed, if Sα = 0, then αT Sα = 0
which, by Eq. (8.2) and the positive definiteness of K , is only possible when α = 0
(we assume that the xi ’s are distinct). Therefore, there is only one v̂ in V⊥

0 which sat-
isfies the constraints, and it corresponds to α = S−1λ. These results are summarized
in the next theorem.
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Theorem 8.2 Problem SV has a unique solution in V , given by

v̂(x) =
N∑

i=1

K (x, xi )αi

with ⎛

⎜
⎝

α1
...

αN

⎞

⎟
⎠ =

⎛

⎜
⎝

K (x1, x1) . . . K (x1, xN )
...

...
...

K (xN , x1) . . . K (xN , xN )

⎞

⎟
⎠

−1⎛

⎜
⎝

λ1
...

λN

⎞

⎟
⎠ .

Another important variant of the same problem comeswhen the “hard” constraints
v(xi ) = λi are replaced by “soft” constraints, in the form of a penalty function added
to the minimized norm. This may be expressed as the minimization of a function of
the form

E(v) = ‖v‖2V + C
N∑

i=1

ϕ(|v(xi ) − yi |)

for some increasing, convex function on [0,+∞) and C > 0. Since the second term
of E does not depend on the projection of v on V0, Lemma8.1 remains valid, again
reducing the problem to finding v of the form

v(x) =
N∑

i=1

K (x, xi )αi

for which

E(v) =
N∑

i, j=1

αiα j K (xi , x j ) + C
N∑

i=1

ϕ

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1

K (xi , x j )α j − λi

∣
∣
∣
∣
∣
∣

⎞

⎠ .

Assume, to simplify, that ϕ is differentiable and ϕ̇(0) = 0. We have, letting
ψ(x) = sign(x)ϕ̇(x),

∂α j E = 2
N∑

i=1

αi K (xi , x j ) + C
N∑

i=1

K (xi , x j )ψ

(∣
∣
∣
∣
∣

N∑

l=1

K (xi , xl)αl − λi

∣
∣
∣
∣
∣

)

.

Assuming, still, that the xi are distinct, we can apply S−1 to the system ∂α j E =
0, j = 1, . . . , N , which characterizes the minimum, yielding

2αi + Cψ

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1

K (xi , x j )α j − λi

∣
∣
∣
∣
∣
∣

⎞

⎠ = 0. (8.3)
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One can use convex optimization methods to minimize E [40, 221]. The particular
case ofϕ(x) = x2 ismuch simpler to solve, since in this caseψ(x) = 2x andEq. (8.3)
becomes

2αi + 2C

⎛

⎝
N∑

j=1

K (xi , x j )α j − λi

⎞

⎠ = 0.

The solution of this equation is α = (S + Id/C)−1λ, yielding a result very similar
to Theorem8.2:

Theorem 8.3 The unique minimum over V of

‖v‖2V + C
N∑

i=1

|v(xi ) − λi |2

is attained at

v̂(x) =
N∑

i=1

K (x, xi )αi

with ⎛

⎜
⎝

α1
...

αN

⎞

⎟
⎠ = (S + Id/C)−1

⎛

⎜
⎝

λ1
...

λN

⎞

⎟
⎠

and

S =
⎛

⎜
⎝

K (x1, x1) . . . K (x1, xN )
...

...
...

K (xN , x1) . . . K (xN , xN )

⎞

⎟
⎠ .

To conclude this section, we prove that V is the Hilbert space generated by the
kernel functions. Recall that the Hilbert space generated by a family of vectors is the
closure of the vector space formed by all finite linear combinations of these vectors.

Theorem 8.4 If V ⊂ L2(Ω,R) is an RKHS with kernel K , then

V = Hilb {K (·, x), x ∈ Ω} .

Proof Let v ∈ V and
W = Hilb {K (·, x), x ∈ Ω} .

We have W ⊂ V since the latter is a Hilbert space containing all K (·, x). Let w be
the orthogonal projection of v on W . Then, for all x ∈ Ω , w(x) = 〈w , K (·, x)〉V =
〈
v , K (·, x)〉V = v(x) by definition of the kernel and of the orthogonal projection.
This proves that v = w ∈ W and therefore W = V . �
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8.1.2 The Vector Case

In the previous section, elements of V were functions from Ω ⊂ R
d to R. When

working with deformations, which is our goal here, functions of interest describe
displacements of points in Ω and therefore must be vector-valued. This leads us to
address the problem of spline approximation for vector fields in Ω , which, as will
be seen, is handled quite similarly to the scalar case.

So, in this section, V is a Hilbert space, canonically embedded in L2(Ω,Rk) and
in C0(Ω,Rk). We will mostly be interested in the case k = d, i.e., V contains vector
fields on Ω . In this case, the assumption is obviously true if V is admissible. Fixing
x ∈ Ω , the evaluation function v �→ v(x) is a continuous linear map from V to R

k .
This implies that, for any a ∈ R

k , the function v �→ aT v(x) is a continuous linear
functional on V . We will denote this linear form by aδx , so that

(aδx | v ) = aT v(x). (8.4)

Let, as before, K denote the inverse duality operator of V , so that, for any v ∈ V

〈
K(aδx ) , v

〉
V = aT v(x). (8.5)

The map a �→ K(aδx ) is linear from R
k to V . (This is because a �→ aT v(x) is

linear and because of the uniqueness of the Riesz representation.) Therefore, for
y ∈ Ω , the map a �→ K(aδx )(y) is linear from R

k to R
k . This implies that there

exists a function taking values in the set of k by k matrices, that we will denote by
(y, x) �→ K (y, x), such that, for a ∈ R

k , x, y ∈ Ω , K(aδx )(y) = K (y, x)a.
The kernel K here being matrix-valued, the reproducing property is

〈
K (·, x)a , K (·, y)b〉V = aT K (x, y)b.

From the symmetry of the first term, we obtain the fact that, for all a, b ∈ R
k ,

aT K (x, y)b = bT K (y, x)a, which implies that K (y, x) = K (x, y)T .
To ensure the positivity of K , we make an assumption similar to the scalar case:

Assumption 8.2 If x1, . . . , xN ∈ Ω and α1, . . . ,αN ∈ R
k are such that, for all v ∈

V , αT
1 v(x1) + · · · + αT

N v(xN ) = 0, then α1 = · · · = αN = 0.

Under this assumption, it is easy to prove that, for all α1, . . . ,αN ∈ R
k ,

N∑

i, j=1

αT
i K (xi , x j )α j ≥ 0,

with equality if and only if all αi vanish.
The generalization of Theorem8.4 is straightforward.
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Theorem 8.5 If V ⊂ L2(Ω,Rk) is an RKHS with kernel K , then

V = Hilb
{
K (·, x)a, x ∈ Ω, a ∈ R

k
}
.

Vector Spline Interpolation

The interpolation problem in the vector case is

(SV ) Given x1, . . . , xN in Ω , λ1, . . . ,λN in R
k , find v in V , with minimum norm,

such that v(xi ) = λi .
As before, we let

V0 = {v ∈ V : v(xi ) = 0, i = 1, . . . , N } .

Then, Lemma8.1 remains valid (we omit the proof, which duplicates the scalar case):

Lemma 8.6 If there exists a solution v̂ of problem SV , then v̂ ∈ V⊥
0 . Moreover, if

v̂ ∈ V⊥
0 is a solution of SV⊥

0
, then it is a solution of SV .

The characterization of V⊥
0 is similar to the scalar case:

Lemma 8.7

V⊥
0 =

{

v =
N∑

i=1

K (., xi )αi ,α1, . . . ,αN ∈ R
k

}

.

Proof It is clear that w ∈ V0 if and only if, for any α1, . . . ,αN , one has

N∑

i=1

αT
i w(xi ) = 0.

Thus w ∈ V0 if and only if
〈
v , w

〉
V = 0 for all v of the form v =∑N

i=1 K (·, xi )αi .
Thus

V0 =
{

v =
N∑

i=1

K (·, xi )αi ,α1, . . . ,αN ∈ R
k

}⊥

and since
{
v =∑N

i=1 K (·, xi )αi ,α1, . . . ,αN ∈ R
k
}

is finite-dimensional, hence

closed, one has

V⊥
0 =

{

v =
N∑

i=1

K (·, xi )αi ,α1, . . . ,αN ∈ R
k

}

.

�
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When v =∑N
j=1 K (·, x j )α j ∈ V⊥

0 , the constraint v(xi ) = λi yields

N∑

j=1

K (xi , x j )α j = λi .

Since we also have, in this case,

‖v‖2V =
N∑

i, j=1

αT
i K (xi , x j )α j ,

the whole problem can be rewritten quite concisely with matrices, introducing the
notation

S = S(x1, . . . , xN ) =
⎛

⎜
⎝

K (x1, x1) . . . K (x1, xN )
...

...
...

K (xN , x1) . . . K (xN , xN )

⎞

⎟
⎠ , (8.6)

which is now a block matrix of size Nk × Nk,

α =
⎛

⎜
⎝

α1
...

αN

⎞

⎟
⎠ , λ =

⎛

⎜
⎝

λ1
...

λN

⎞

⎟
⎠ ,

each αi , λi being k-dimensional column vectors. The whole set of constraints now
becomes Sα = λ and ‖v‖2V = αT Sα. Thus, replacing numbers by blocks, the prob-
lem has exactly the same structure as in the scalar case, and we can repeat the results
we have obtained.

Theorem 8.8 (Interpolating splines)Problem (SV ) has a unique solution in V , given
by

v̂(x) =
N∑

i=1

K (x, xi )αi

with
⎛

⎜
⎝

α1
...

αN

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

K (x1, x1) . . . K (x1, xN )
...

...
...

K (xN , x1)
... K (xN , xN )

⎞

⎟
⎟
⎠

−1⎛

⎜
⎝

λ1
...

λN

⎞

⎟
⎠ .

Theorem 8.9 (Smoothing splines) The minimum over V of

‖v‖2V + C
N∑

i=1

|v(xi ) − λi |2
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is attained at

v̂(x) =
N∑

i=1

K (x, xi )αi

with ⎛

⎜
⎝

α1
...

αN

⎞

⎟
⎠ = (S + Id/C)−1

⎛

⎜
⎝

λ1
...

λN

⎞

⎟
⎠

and S = S(x1, . . . , xN ) given by Eq. (8.6).

8.1.3 Derivatives of the Kernel

If the RKHS V is continuously embedded in C p(Ω,Rk), then, for any y ∈ Ω , the
function x �→ K (x, y) is in C p(Ω,Mk(R)) (because K (·, y)b ∈ V for all b ∈ R

k)
and so is y �→ K (x, y) by symmetry. This proves that, for any r ≤ b, both ∂r

1K and
∂r
2K are well defined. We now go further and prove that all derivatives ∂

q
1∂r

2K exist
for q, r ≤ p.

By assumption, the linear form b1δ(r)
y (a1, . . . , ar ) : v �→ bT1 d

rv(y)(a1, . . . , ar ) is
continuous on V for r ≤ p, for any y ∈ Ω , b1 ∈ R

k and a1, . . . , ar ∈ R
d . (Recall

that drv(y) is a multilinear map from (Rd)r to R
k). Taking v = K (·, x)b2 we can

write

bT1 ∂r
1(K (y, x)b2)(a1, . . . , ar ) = 〈K (·, x)b2 , K(b1δ

(r)
y (a1, . . . , ar ))

〉
V

= bT2 K(b1δ
(r)
y (a1, . . . , ar ))(x).

This allows us to identify K(b1δ(r)
y (a1, . . . , ar )), noticing that

bT1 ∂r
1(K (y, x)b2)(a1, . . . , ar ) = ∂r

1(b
T
1 K (y, x)b2)(a1, . . . , ar )

= bT2 ∂r
2(K (x, y)b1)(a1, . . . , ar ),

which yields

K(b1δ
(r)
y (a1, . . . , ar ))(x) = ∂r

2(K (x, y)b1)(a1, . . . , ar ),

proving that the right-hand side belongs to V and is therefore p times differentiable
in x . We summarize this in the following proposition.

Proposition 8.10 If V is aHilbert space continuously embedded inC p(Ω,Rk), then
its reproducing kernel K is such that ∂q

1∂r
2K exists for all q, r ≤ p. More precisely,

for all b ∈ R
k and a1, . . . , ar ∈ R

d , the vector field
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∂r
2(K (·, y)b)(a1, . . . , ar ) : x �→ ∂r

2(K (x, y)b)(a1, . . . , ar )

belongs to V and satisfies

dr (bT v)(y)(a1, . . . , ar ) =
〈
∂r
2(K (·, y)b)(a1, . . . , ar ) , v

〉

V
(8.7)

for all v ∈ V .

Applying (8.7) to v = ∂r ′
2 (K (·, y′)b′)(a′

1, . . . , a
′
r ′) we get the identity

〈
∂r
2(K (·, y)b)(a1, . . . , ar ) , ∂r ′

2 (K (·, y′)b′)(a′
1, . . . , a

′
r ′)
〉

V

= ∂r
1∂

r ′
2 (bT K (y, y′)b′)(a1, . . . , ar , a′

1, . . . , a
′
r ′) (8.8)

for r, r ′ ≤ p.
In the following, it will be convenient to use the notation

∂r
2K (·, y)(b, a1, . . . , ar ) = ∂r

2(K (·, y)b)(a1, . . . , ar ). (8.9)

8.2 Building V from Operators

One way to define a Hilbert space V of smooth functions or vector fields is to use
inner products associated to operators. For example, consider the spaces Hm(Rd ,R),
that can be equipped with the norm

‖u‖2m,2 =
∑

|α|≤m

‖∂αu‖22 ,

whereα = (α1, . . . ,αd) is amulti-index, |α| = α1 + · · · + αd and∂α = ∂α1
x1 . . . ∂αd

xd .
If u is a smooth (C∞) and compactly supported function, the partial derivatives can
be integrated by parts to write

‖u‖2m,2 = 〈Au , u
〉
2

with
Au =

∑

|α|≤m

(−1)−|α|∂2αu.

By construction, one has, for any pair of smooth compactly supported functions,

〈
Au , v

〉
2 = 〈u , v

〉
m,2 = 〈u , Av

〉
2,
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which expresses the fact that A is a symmetric operator. From this identity, it appears
that A coincides with the duality operatorL on Hm(Ω,R) (modulo the identification
of the function Au with the linear form

Au dx : v �→
∫

(Au) vdx,

i.e., modulo the identification of L2 with its dual).
Obviously, one can build an infinity of operators that provide a Hilbert structure

equivalent to the Hm inner product, i.e., such that

c0
〈
u , v

〉
m,2 ≤ (Au | v )2 ≤ c1

〈
u , v

〉
m,2

for some positive constants c0 and c1. Any operator of the form

Au =
∑

|α|≤m

(−1)−|α|ρα∂2αu

with positive ρα’s will work. Actually, most of these coefficients can vanish and still
provide an equivalent norm. This can be shown by considering the operator in the
Fourier domain.

Indeed, by PropositionA.22, the Fourier transform of Au is F(Au)(ξ) =
PA(ξ)û(ξ) with

PA(ξ) =
∑

|α|≤m

ρα(2π)|α|ξ2α

and ξ2α = ξ2α1
1 . . . ξ2αd

d .
Using the isometry property of the Fourier transform, one has

〈
Au , u

〉
2 = 〈PAû , û

〉
2

and we see that, as soon as there exist two constants 0 < c0 < c1 such that

c0 ≤ PA(ξ)
∑

|α|≤m(2π)|α|ξ2α
≤ c1,

the norm associated to A will be equivalent to the Hm norm. It is not hard to show, in
addition, that this happens if and only if the constant coefficient ρ0 and the leading
coefficients ρα with max j α j = m are all positive. For example, the polynomial

PA(ξ) = 1 + a(2π)m
d∑

j=1

ξ2mj

corresponds to the operator
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Au = u + (−1)ma
d∑

j=1

∂2m
x j
u

with norm

‖u‖2A = ‖u‖22 + a
d∑

j=1

‖∂m
x j
u‖2,

which is equivalent to the Hm norm. Another equivalent norm is provided by taking

PA(ξ) = (1 + 2πa|ξ|2)m , (8.10)

which corresponds to the operator A = (Id − aΔ)m , where Δ is the Laplacian. This
operator has important invariance properties.

More generally, we will say that V is a Hilbert space associated to an operator A
if A can be defined on a domain D(A) ⊂ V , with D(A) dense in V and

〈
Au , v

〉
2 = 〈u , v

〉
V

foru, v ∈ D(A). In such a case, A coincideswith the restrictionof the duality operator
of V to D(A).

It is also interesting to consider the situation in which one starts from the operator
A and its domain D(A) to build the associated Hilbert space. This is called the
Friedrichs extension of an operator [315]. Since the construction is not restricted to
subspaces of L2(Ω,R), wemake the following presentation with an arbitrary Hilbert
space H .

To start, we need a subspace D, included in H and dense in this space, and
an operator (i.e., a linear functional), L : D → H . Our typical application will be
with D = C∞

c (Ω,Rd) (the set of C∞ functions with compact support in Ω) and
H = L2(Ω,Rd). In such a case, L may be chosen as a differential operator of any
degree, since derivatives of C∞ functions with compact support obviously belong to
L2. However, L will be assumed to satisfy an additional monotonicity constraint:

Assumption 8.3 Theoperator L is assumed to be symmetric and stronglymonotonic
on D, which means that there exists a constant c > 0 such that, for all u ∈ D,

〈
u , Lu

〉
H ≥ c

〈
u , u

〉
H (8.11)

and for all u, v ∈ D 〈
u , Lv

〉
H = 〈Lu , v

〉
H . (8.12)

An example of strongly monotonic operator onC∞
c (Ω,R) is given by Lu = −Δu +

λu, whereΔ is the Laplacian:Δu =∑k
i=1 ∂2

xi u. Indeed, in this case, and when u has
compact support, an integration by parts yields
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−
∫

Ω

Δu(x)u(x)dx =
k∑

i=1

∫

Ω

(
∂xi u

)2
dx ≥ 0,

so that
〈
u , Lu

〉
H ≥ λ

〈
u , u

〉
H .

Returning to the general case, the operator L induces an inner product on D,
defined by 〈

u , v
〉
L = 〈u , Lv

〉
H .

Assumption8.3 ensures the symmetry of this product and its positive definiteness.But
D is not complete with respect to ‖·‖L , so we need to enlarge it (and simultaneously
extend L) to obtain a Hilbert space. Note that there always exists an extension of a
pre-Hilbertian structure (such as the one we have on D) to an abstract Hilbert space.
The following result states that this extension is actually a subspace embedded in H .

Theorem 8.11 (Friedrichs extension) The inner product

〈· , ·〉L : D × D → R

can be extended to an inner product

〈· , ·〉V : V × V → R

where V is a dense subspace of H with respect to ‖ · ‖H , and such that D is a dense
subspace of V with respect to ‖ · ‖V . The operator L can also be extended to the
duality operator of V , L : V → V ∗. The extensions have the properties that:

• (V, ‖ · ‖V ) is continuously embedded in (H, ‖ · ‖H ).
• If u, v ∈ D,

〈
u , v

〉
V = 〈Lu , v

〉
H = (Lu | v ).

• V is a Hilbert space with respect to
〈· , ·〉

V
.

The fact that L is an extension of L comes modulo the identification H = H∗.
Indeed, we have V ⊂ H = H∗ ⊂ V ∗ (by the “duality paradox”), so that L , defined
on D ⊂ V , can be seen as an operator with values in H∗.

Definition 8.12 The restriction of the operator L defined in Theorem8.11 to the
space

VL = {u ∈ V : Lu ∈ H∗ = H
}

is called the Friedrichs extension of L .

(Notice that, because V is densely embedded in H , H∗ is in turn densely embedded
in V ∗, by TheoremA.13.) In the following, we will stop using a distinct notation for
L and L, and use the same letter (L) for the Friedrichs extension.

We will not prove Theorem8.11, but the interested reader may refer to [315]. The
Friedrichs extension has other interesting properties:
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Theorem 8.13 The operator L : VL → H is bijective and self-adjoint, i.e.,〈
Lu , v

〉
H = 〈u , Lv

〉
H for all u, v ∈ VL.

Its inverse, K = L
−1 : H → H is continuous and self-adjoint.

If the embedding V ⊂ H is compact, then K : H → H is a compact operator.

Note that if V is any Hilbert space continuously embedded and dense in H , then,
letting L denote the duality operator L : V → V ∗, we have by definition (Lu | v ) =〈
u , v

〉
V
for u, v ∈ V . One can define VL as the set of u ∈ V such that Lu ∈ H , i.e.,

such that (Lu | v ) = 〈u , v
〉
V ≤ C‖v‖H for some constant C and all v ∈ V . Then

the statement of Theorem8.13 is also true.
In the following, we will mostly be interested in embeddings stronger than the L2

embedding implied by the monotony assumption. It is important that such embed-
dings are conserved by the extension whenever they are true in the initial space D.
This is stated in the next proposition.

Proposition 8.14 Let D, V and H be as in Theorem8.11, and B be a Banach space
such that D ⊂ B ⊂ H and B is canonically embedded in H (there exists a c1 > 0
such that ‖u‖B ≥ c1 ‖u‖H ). Assume that there exists a constant c2 such that, for all

u ∈ D,
√〈

Lu , u
〉
H ≥ c2 ‖u‖B. Then V ⊂ B and ‖u‖V ≥ c2 ‖u‖B for all u ∈ V .

In particular, if B is compactly embedded in H, then K = L
−1 : H → H is a

compact operator.

Proof Let u ∈ V . Since D is dense in V , there exists a sequence un ∈ D such that
‖un − u‖V → 0. Thus un is a Cauchy sequence in V and, by our assumption, it is
also a Cauchy sequence in B, so that there exists a u′ ∈ B such that

∥
∥un − u′∥∥

B
tends to 0. But since V and B are both embedded in H , we have ‖un − u‖H → 0
and

∥
∥un − u′∥∥

H → 0, which implies that u = u′. Thus u belongs to B, and since
‖un‖V and ‖un‖B respectively converge to ‖u‖V and ‖u‖B , passing to the limit in
the inequality ‖un‖V ≥ c2 ‖un‖B completes the proof of Proposition8.14. �

WhenΩ is bounded, one can use the fact that C0(Ω,Rk) is compactly embedded
in L2(Ω,Rk) to derive the following consequence of Theorem8.13. This theorem
indeed implies that K is a compact, self-adjoint operator. Such operators have the
important property of admitting an orthonormal sequence of eigenvectors: more
precisely, there exists a decreasing sequence, (ρn), of positive numbers, which is
either finite or tends to 0, and an orthonormal sequence ϕn in L2(Ω,Rk), such that,
for u ∈ L2(Ω,Rk),

Ku =
∞∑

n=1

ρn
〈
u , ϕn

〉
L2ϕn.

This directly characterizes VL as the set

VL =
{

u ∈ L2(Ω,Rk) :
∞∑

n=1

〈
u , ϕn

〉2
L2

ρ2n
< ∞

}
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and for u ∈ VL, we have

Lu =
∞∑

n=1

ρ−1
n

〈
u , ϕn

〉
L2ϕn,

so that, for u, v ∈ VL

〈
u , v

〉
V = 〈Lu , v

〉
L2 =

∞∑

n=1

ρ−1
n

〈
u , ϕn

〉
L2

〈
u , ϕn

〉
L2 .

This indicates that V should be given by

V =
{

u ∈ L2(Ω,Rk) :
∞∑

n=1

ρ−1
n

〈
u , ϕn

〉2
L2 < ∞

}

.

This is indeed the case, because VL is dense in this set: if u ∈ V , then uN =∑N
n=1

〈
u , ϕn

〉
ϕn belongs to VL and ‖uN − u‖V → 0. We summarize what we have

just obtained in the following theorem.

Theorem 8.15 Assume that Ω is bounded, D = C∞
c (Ω,Rk), H = L2(Ω,Rk) and

L : D → H is symmetric and satisfies

〈
Lu , u

〉
L2 ≥ c ‖u‖2∞

for some constant c > 0. Then the space V associated to L via Theorem8.11 is
continuously embedded in C0(Ω,Rk) and there exists an orthonormal basis, (ϕn),
in L2(Ω,Rk) and a decreasing sequence of positive numbers, (ρn), which tends to
0 such that

V =
{

u ∈ L2(Ω,Rk) :
∞∑

n=1

ρ−1
n

〈
u , ϕn

〉2
L2 < ∞

}

.

Moreover,

Lu =
∞∑

n=1

ρ−1
n

〈
u , ϕn

〉
L2ϕn

whenever
∞∑

n=1

(〈
u , ϕn

〉
L2

ρn

)2

< ∞.
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8.3 Invariance of the Inner Product

We now discuss admissible Hilbert spaces that share the important property of being
invariant under Euclidean transformations. This property is especially important in
shape recognition. This analysis will also lead to explicit constructions of operators
and kernels. We consider here the situation Ω = R

d and k = d.

8.3.1 Invariance: The Operator Side

To motivate the invariance requirements, let us return to the interpolation problem
for vector fields. Let x1, . . . , xN ∈ Ω and vectors v1, . . . , vN be given, and h be the
optimal interpolation, i.e., the function in V withminimal norm satisfying h(xi ) = vi
for i = 1, . . . , N . Given a rotation R and a vector b ∈ R

d , this problem can be
modified in (at least) three ways, leading to three possible invariance conditions.

I1. Point transformation: if each xi is replaced by Rxi + b, then the new optimal
function h̃ should be such that h̃(Rx + b) = h(x) and ‖h̃‖V = ‖h‖V .

I2. Vector transformation: if each vi is replaced by Rvi , then h̃ should be such that
h̃(x) = Rh(x) and ‖h̃‖V = ‖h‖V .

I3. Point and vector transformation: if each xi is replaced by Rxi + b and each vi
by Rvi , then h̃(Rx + b) = Rh(x) and ‖h̃‖V = ‖h‖V .

Obviously, cases I1 to I3 implicitly require that V is closed under the transforma-
tion h(·) �→ h(R−1((·) − b)), h(·) �→ Rh(·) and h(·) �→ Rh(R−1((·) − b)) respec-
tively. All three invariance conditions extend the transformation applied to the input
of the problem to the whole space. For our purposes, the most relevant condition
is I3 because it corresponds to the invariance we need when considering velocities
(or displacements): if v = ∂t x , then Rv = ∂t (Rx + b), which leads to the transfor-
mations in case I3. The invariance in I1 and I2 and their consequences provides some
interesting insights into the construction of kernels, which is why we consider them
here too.

Notice that vector transformations do not involve translations. There are two
reasons for this: in the caseswe are interested in, vi is either considered as a difference
between two points in Rd (xi and its target), or as a velocity (∂t xi ), and both are not
affected by translations.Moreover, the spaces V we are considering typically contain
functions that vanish at infinity, so that V is not closed under the transformation
h �→ h + b.

In all three cases, we have a transformation that we will denote by h �→ (R, b) � h
(the case I1, I2 or I3 associated with this notation will always be clear from the
context). Notice that the transformation h → (R, b) � h is, in all cases, an action of
the Euclidean group (translations and rotations) on functions defined on Ω . We will
also denote by (R, b) � (x, v) the associated transformation on points and vectors
(with x = (x1, . . . , xN ), v = (v1, . . . , vN ), N being arbitrary).
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In the following, we will assume that V is a Hilbert space continuously embedded
and dense in L2(Rd ,Rd). We start with the following proposition.

Proposition 8.16 Assume that V is an RKHS such that, for any pair (x, v), the
optimal interpolation associated to (R, b) � (x, b) is (R, b) � h, where h is the
optimal interpolation associated to (x, b), and that ‖h‖V = ‖(R, b) � h‖V . Then
h �→ (R, b) � h is an isometry from V onto itself, i.e., for all h ∈ V , (R, b) � h ∈ V
and ‖(R, b) � h‖V = ‖h‖V .
Proof Let h ∈ V . For n > 0, let xn form a grid of step length 2−n discretizing the
cube [−2n, 2n]d . Let vn

i = h(xni ) and let hn be the optimal interpolant associated
with (xn, vn). Let h̃n = (R, b) � hn , which belongs to V by assumption.

Let V n be the set of functions in V that satisfy the constraints (xn, vn). Then
hn = πV n (h), the orthonormal projection of h on V n . Because hm ∈ V n for allm ≥ n,
we have

‖hm‖2V = ‖hm − hn‖2V + ‖hn‖2V .

Also, because h ∈ V n for all n, the same identity is true with h in place of hm , so that
‖hn‖V is a bounded increasing sequence, therefore converging to a limit. Moreover,
we have

‖hm − hn‖2V = ∣∣‖hm‖2V − ‖hn‖2V
∣
∣ ,

which proves that hm is Cauchy, and therefore has a limit h′. Because V is admissible,
we know that

|hn(x) − hn(y)| ≤ C‖h‖V |x − y|

for some constant C (and we have used the fact that ‖hn‖V ≤ ‖h‖V ). Because hn

coincides with h on the sets xn , this implies that hn(x) → h(x) for all n, therefore
implying that h = h′. Using the same argument, h̃n is Cauchy in V and its limit in V
must also be its pointwise limit, which is (R, b) � h (which therefore must belong to
V ). It then suffices to take the limit of the identity ‖hn‖V = ‖(R, b) � hn‖V , which
is true for all n by assumption, to show that the transformation is an isometry. �

We now study the consequences of the invariance conditions. Introducing the
operator L such that (Lu | v ) = 〈u , v

〉
V , the isometry property implies that

(L((R, b) � u) | (R, b) � v ) = (Lu | v )

for all u, v ∈ V , or, denoting by (R, b) � L the operator such that

(
((R, b) � L)u

∣
∣
∣ v
)

=
(
L((R, b) � u)

∣
∣
∣ (R, b) � v

)
,

that (R, b) � L = L.
We let, as above, VL denote the space of v ∈ V such that Lv ∈ L2(Rd ,Rd). We

first note that the � action maps VL onto itself. Indeed, if u ∈ VL, then, for all v ∈ V



222 8 Building Admissible Spaces

(L((R, b) � u) | v ) = (Lu ∣∣ (R, b)−1 � v
) ≤ ‖Lu‖2 ‖(R, b)−1 � v‖2 = ‖Lu‖2‖v‖2

(using a change of variable in the last identity). This implies that L((R, b) � u) ∈
L2(Rd ,Rd), so that (R, b) � u ∈ VL.

Let us start with case I2, which does not involve translation and is simpler to
analyze. In this case, the requirement is that v ∈ V ⇒ Rv ∈ V for all rotations R,
and that ‖Rv‖V = ‖v‖V . Let (e1, . . . , ed) denote the canonical basis of Rd and let

W = {vT e1 : v ∈ V
}

be the set of scalar-valued functions provided by the first coordinate of elements of v.
Because of rotation invariance, we clearly haveW = {vT u : v ∈ V

}
for any u ∈ R

d ,
u �= 0. We have the following lemma.

Lemma 8.17 Under invariance condition I2, and if d ≥ 3, one has

V = {v = w1e1 + · · · + wded : w1, . . . , wd ∈ W } .

Moreover, with the above decomposition, we have

‖v‖2V = ‖w1e1‖2V + · · · + ‖wded‖2V . (8.13)

The result is true for d = 2 if the invariance condition is extended to include all
R ∈ Od(R) (rotations and symmetries).

Proof Let Ṽ = We1 + · · · + Wed . If v ∈ V , we have v = (vT e1)e1 + · · ·
+ (vT ed)ed and we have seen that vT ei ∈ W for all i . This shows that V ⊂ Ṽ .

To prove the converse, it suffices to show that we1 ∈ V for all w ∈ W , because
rotation invariance immediately implies that wei ∈ V for all i = 1, . . . , d. So take
w ∈ W and v ∈ V such that vT e1 = w. Let vi = vT ei (so that v1 = w).

Let S = {−1, 1}d−1 and S+ be the set of ε ∈ S such that ε1 · · · εd−1 = 1. For every
ε ∈ S+, the linear transformation that maps (e1, . . . , ed) to (e1, ε1e2, . . . , εd−1ed) is
a rotation, which implies that

vε := v1e1 + ε1v2e2 + · · · + εd−1vded ∈ V

and so is
v̂ :=

∑

ε∈S+
vε = |S+|v1e1 +

∑

ε∈S+
(ε1v2e2 + · · · + εd−1vded).

The number of ε ∈ S+ such that εi = 1 is the number of subsets with even cardinality
in {2, . . . , d − 1}, namely

a+ =
∑

0≤k≤(d−2)/2

(
d − 2

2k

)

.
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Similarly, the number of ε ∈ S+ such that εi = −1 is

a− =
∑

0≤k≤(d−3)/2

(
d − 2

2k + 1

)

.

When d > 2, these numbers are equal, because

a+ − a− =
d−2∑

k=1

(−1)k
(
d − 2

k

)

= 0.

Notice also that |S+| = a+ + a− = 2d−2. This implies that v̂ = 2d−2v1e1. Since v̂

belongs to V , so does v1e1, which completes our proof that Ṽ = V for the case
d > 2.

If d = 2 one has S = {−1, 1}, S+ = {1} andwe cannot reach the same conclusion.
If invariance by symmetry is added, however, then we can sum over S instead of S+
in the definition of v̂, which gives v̂ = 2v1e1 and proves the result in this case.

To prove the statement about ‖v‖2V , it suffices to show that
〈
wi ei , w j e j

〉
V = 0

for i �= j . But for d > 2, there exists a rotation that maps ei to itself and e j to −e j
and the invariance of the inner product implies

〈
wi ei , w j e j

〉
V

= −〈wi ei , w j e j
〉
V
,

which must therefore vanish. For d = 2, one can take the symmetry (e1, e2) �→
(e1,−e2). �

The space W is a Hilbert space of scalar functions, with norm ‖w‖W = ‖we1‖V .
As such, it also has a duality operator, LW , such that

(
LWw

∣
∣w′ ) = 〈w , w′〉

W .
Lemma8.17 and Eq. (8.13) imply that the operator L = LV associated with V oper-
ates coordinate-wise as Lv = (LWv1, . . . ,LWvd). It is easy to check that this prop-
erty (or the conclusion of Lemma8.17) implies that I2 is true.

We now pass to I1 and I3, and focus first on translation invariance, which, in
both cases (taking R = Id), requires that, for all h ∈ V and v ∈ R

d , the vector field
h̃ : x �→ h(x − b) belongs to V and has the same norm as h. To handle this problem,
we first introduce the Fourier transform of the operator L.

Following Sect.A.10, denote the Fourier transform of a square integrable vec-
tor field u either by û or F (u), and recall that F is an isometry of L2(Rd ,Cd)

(L2 functions defined on R
d taking values C

d ). For this discussion, we denote
L2(Rd ,Rd) by H . We have, by assumption, V ⊂ H = L2(Rd ,Rd) ⊂ L2(Rd ,Cd)

with V dense in H . For L2 functions u and v with values in Cd , we will define

〈〈u , v〉〉2 =
∫

Rd

uT v̄ dx

(so that 〈〈v , u〉〉2 = 〈〈u , v〉〉2). Recall that the isometric property of the Fourier trans-
form states that

〈〈û , v̂〉〉2 = 〈〈u , v〉〉2
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for all square integrable functions u and v.
Let V̂ = F (V ) and, for ϕ ∈ V̂ , let ‖ϕ‖V̂ = ‖F−1ϕ‖V . Then V̂ is a Hilbert space

isometric to V via the Fourier transform, dense in Ĥ = F (H), where Ĥ is the space

of functions ϕ ∈ L2(Rd ,C) such that ϕ(−ξ) = ϕ̄(ξ) almost surely. Denote by L̂ its
duality operator and let

V
L̂

=
{
ϕ ∈ V̂ : L̂ϕ ∈ Ĥ

}
.

Then, it is easy to show (and left to the reader) that V
L̂

= V̂L = F (VL) and L̂ϕ =
F (LF−1(ϕ)

)
for ϕ ∈ V

L̂
. In addition, the following lemma holds.

Lemma 8.18 Assume that translations act as isometries on V and that for all
ξ ∈ R

d , there exists a family of continuous functions ψ1, . . . ,ψd ∈ V̂L such that
ψ1(ξ), . . . ,ψd(ξ) are linearly independent.

Then L̂ has a matrix multiplier: there exists a function f : Rd → Md(C) such
that for all ξ ∈ R

d , f (ξ) is a positive definite Hermitian matrix and for all ϕ ∈ V̂L

and ξ ∈ R
d , (L̂ϕ)(ξ) = f (ξ)ϕ(ξ). Moreover, there exists a constant c > 0 such that

ξT f (ξ)ξ ≥ c |ξ|2

for almost all ξ ∈ R
d

Conversely, if L̂ has a matrix multiplier, it is translation-invariant.

Proof The Fourier transform of (Id, b) � u is γbû where γb : ξ �→ e−2ιπξT b. Since VL

in closed under the action of translations, V̂L is also closed under the transformations
ϕ �→ γbϕ and (

L̂(γbϕ)

∣
∣
∣ γbψ

)
=
(
L̂ϕ

∣
∣
∣ψ
)

for all ϕ,ψ ∈ V̂L and b ∈ R
d . Consider the space M of functions m such that (i) for

all ϕ ∈ V̂L, both mϕ and m̄ϕ are in V̂L and (ii) for all ϕ,ψ ∈ V̂L,

(
L̂(mϕ)

∣
∣
∣ψ
)

=
(
L̂ϕ

∣
∣
∣ m̄ψ

)

holds. (Note that the left-hand side is also equal to
(
L̂ψ

∣
∣
∣mϕ

)
.) This space contains

all γb’s (because γ̄b = γ−1
b = γ−b), and therefore also their linear combinations.

Moreover, since (
L̂ϕ

∣
∣
∣ m̄ψ

)
≤ ‖L̂ϕ‖2‖ψ‖2‖m‖∞,

the mapm �→
(
L̂ϕ

∣
∣
∣ m̄ψ

)
is continuous with respect to the supremum norm, so that

the considered space contains all limits in the supremumnorm of linear combinations
of γ′

bs with real coefficients, which is the space of all bounded continuous functions
from R

d to C that satisfy m(−ξ) = m̄(ξ). This statement can be extended to all
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boundedmeasurable functions onRd : indeed, ifm is such a function, Lusin’s theorem
[249] implies that, for every ε > 0, there exists a continuous bounded function mε

such that ‖mε‖∞ ≤ ‖m‖∞ and the set Nε = {ξ : m(ξ) �= mε(ξ)} has measure less
than ε. Replacing mε by x �→ (mε(x) + m̄ε(−x))/2 if needed, we can also assume
that mε(−x) = m̄ε(x). Then the identities

(
L̂ψ

∣
∣
∣mεϕ

)
=
(
L̂ϕ

∣
∣
∣ m̄εψ

)

can be taken to the limit ε → 0 yielding the same identity for m, based on the fact
that (

L̂ϕ
∣
∣
∣ (m̄ − m̄ε)ψ

)
=
∫

Nε

(m̄ − m̄ε)(L̂ϕ)T ψ̄ dξ → 0

using the dominated convergence theorem.
Take now ξ ∈ R

d and a family of continuous functions ψ1, . . . ,ψd ∈ V̂L such
that (ψ1(ξ), . . . ,ψd(ξ)) is linearly independent. By continuity, linear independence
will remain true in a neighborhood of ξ, say, for |η − ξ| < δ, and for such η (and
small enough δ) the conjugate basis χ1(η), . . . ,χd(η) such that

d∑

i=1

ψi (η)χi (η)T = IdRd

is well defined and continuous. Because ψ̄i (−ξ) = ψi (ξ) for all i , χ1(η), . . . ,χd(η)

are also well defined for |ξ + η| < δ, with χ̄i (−η) = χi (η). Finally, let ω be a con-
tinuous, bounded function such that ω(η) = 1 if |ξ − η| < δ/2 or |ξ + η| < δ/2
and ω(η) = 0 if |ξ − η| > δ and |ξ + η| > δ. Since we can replace ω by η �→
(ω(η) + ω(−η))/2, we can also assume that ω is even. Define, for i = 1, . . . , d,
χ̃i (η) = ω(η)χi (η) if |η − ξ| < δ or |η + ξ| < δ and χ̃i (η) = 0 otherwise.

If ϕ ∈ V̂L is bounded, one has ωL̂ϕ = L̂(ωϕ) because ω ∈ M and

L̂(ωϕ) =
d∑

i=1

L̂(χ̃T
i ϕψi ) =

d∑

i=1

χ̃T
i ϕL̂(ψi )

because χ̃T
i ϕ ∈ M . So letting

f =
d∑

i=1

L̂(ψi )χ
T
i ,

we find L̂ϕ = f ϕ in an open neighborhood of ξ. Since the same construction can
be made near every ξ, one can piece together a function f defined on R

d such that
L̂ϕ = f ϕ for all bounded ϕ ∈ V̂L. The extension from bounded to arbitrary ϕ can
be done by truncation: if ρN = 1|ϕ|>N , then L̂(ρNϕ) = f (ρNϕ) = ρN f ϕ because
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ρNϕ ∈ M . In addition,ρN ∈ M , so thatL(ρNϕ) = ρNLϕ. SoρNLϕ = ρN f ϕ, which
implies that Lϕ = f ϕ by letting N go to infinity.

Since L is symmetric and real, we have

∫

Rd

(L̂ϕ)T ψ̄ dξ =
∫

Rd

(L̂ψ)T ϕ̄ dξ ∈ R

for all ϕ,ψ ∈ V̂L . This implies

∫

Rd

ψ̄T f ϕ dξ =
∫

Rd

ϕ̄T f ψ dξ =
∫

Rd

ψ̄T f̄ Tϕ dξ.

So, replacing f by ( f + f̄ T )/2 if necessary, we can assume that f is Hermitian,
with moreover ∫

Rd

ψ̄T f ψ dξ ≥ c‖ψ‖22

for all ψ ∈ V̂L and a fixed c > 0. This implies that, for all ψ ∈ V̂L, one has ψ̄T f ψ ≥
c|ψ|2 a.e. Indeed, letting A be any set over which ψ̄T f ψ < c|ψ|2, one has 1Aψ ∈ V̂L,
which implies ∫

A
ψ̄T f ψ dξ ≥ c

∫

A
|ψ|2 dξ,

which is only possible if A has measure 0. Our hypothesis on the existence of linearly
independent continuous functions in V̂L at any ξ implies that f (ξ) ≥ c IdRd for almost
all ξ.

The last statement of the lemma is obvious from f (ξ)(γb(ξ)ϕ(ξ)) =
γb(ξ) f (ξ)ϕ(ξ). �

We now assume that the conclusion of the lemma holds, and that L̂ is given by
a Hermitian matrix multiplier f ≥ c IdRd , which, as just seen, ensures translation
invariance. This assumption will allow us to focus only on rotation from now on. As
we will see, an interesting special case is when the entries of f are polynomials in
ξ, which corresponds, from standard properties of the Fourier transform, to L being
a multi-dimensional differential operator.

To consider rotation invariance, we will write, for short, R � h = (R, 0) � h for a
rotation matrix R. We compute F (R � h) as a function of ĥ. We have, in case I1:

F (R � h) (ξ) =
∫

Rd

e−2ιπξT x R � h(x) dx

=
∫

Rd

e−2ιπξT x h(R−1x) dx

=
∫

Rd

e−2ιπξT (Ry) h(y) dy

= ĥ ◦ R−1(ξ),
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where we have used the fact that det R = 1 in the change of variables. In case I3, the
same computation gives F (R � h) = Rĥ ◦ R−1.

We can therefore write, in case I1:

(L(R � h) | R � h ) =
(
f ĥ ◦ R−1

∣
∣
∣ ĥ ◦ R−1

)

=
(
( f ◦ R)ĥ

∣
∣
∣ ĥ
)

and in case I3

(L(R � h) | R � h ) =
(
f Rĥ ◦ R−1

∣
∣
∣ Rĥ ◦ R−1

)

=
(
RT ( f ◦ R)Rĥ

∣
∣
∣ ĥ
)
,

in which we have used the facts that det R = 1, RT = R−1. So the invariance condi-
tions boil down, in case I1, to f (Rξ) = f (ξ) and in case I3, to RT f (Rξ)R = f (ξ),
for all ξ and all rotation matrices R.

We now investigate the consequences of these conditions. In case I1, using the
fact that one can always find a rotation that maps ξ to |ξ|e1, one sees that f must only
depend on |ξ| ( f is radial). Note that we assume that L transforms real vector fields
into real ones. The Fourier transform u of a real-valued function is characterized by
the property u(−x) = u(x). In order that u(−x) = u(x) ⇒ ( f u)(−x) = f u(x), we
need f̄ (−x) = f (x). If f is radial, then f (−x) = f (x), which implies that f is a
real matrix.

Case I3 requires a little more work and is summarized in the next lemma.

Lemma 8.19 Assume that a function f defined on R
d and taking values in the set

of Hermitian matrices satisfies

f (Rξ) = R f (ξ)RT

for all ξ ∈ R
d and all rotation matrices R if d ≥ 3, and for all orthogonal matrices

R if d = 2. Then there exist two real-valued functions λ and μ, defined over [0,+∞)

such that μ(0) = 0, and

f (ξ) = λ(|ξ|)IdRd + μ(|ξ|)ξξ
T

|ξ|2 . (8.14)

Proof We will use the following linear algebra result. Let M be a d × d Hermi-
tian matrix satisfying RT MR = M for all rotation matrices M . Then M = λId for
some real number λ. Indeed, let a be an eigenvector of M , satisfying Ma = λa and
|a| = 1 (with λ necessarily real because M is Hermitian). Then, for every rotation
matrix R, MRa = RMa = λRa, so that Ra is also an eigenvector of M . Choosing
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rotations R1 = IdRd , R2, . . . , Rd such that R1a, . . . , Rda is a basis of Cd , we obtain
M = λIdRd .1

Taking ξ = 0, the identity RT f (0)R = f (0) for all R therefore implies that
f (0) = λ0IdRd for some λ0 ∈ R. Let us now fix ξ0 �= 0. For any rotation R that
leaves ξ0 invariant, we have

f (ξ0) = RT f (Rξ0)R = RT f (ξ0)R

This yields the fact that, for any R such that Rξ0 = ξ0, we have RT f (ξ0)R = f (ξ0).
We now separate the cases d = 2 and d > 2, starting with the latter, and show that

in this case one has f (ξ0)ξ0 = αξ0 for some α ∈ R. Indeed, assume that f (ξ0)ξ0 =
αξ0 + βv, with |v| = 1, v ⊥ ξ0 and β �= 0. Since d ≥ 3, one can find a third unit
vector, w, such that (ξ0/|ξ0|, v, w) is an orthonormal family, and one can form a
rotation R such that Rξ0 = ξ0, Rv = w and Rw = −v (leaving invariant any vector
perpendicular to ξ0, v and w). For this rotation, we have RT f (ξ0)Rξ0 = αξ0 + βw

and this can be equal to αξ0 + βv if and only if β = 0.
So, ξ0 is an eigenvector of f (ξ0), which implies that f (ξ0)maps the space ξ⊥

0 into
itself (because it is Hermitian). But the fact that RT f (ξ0)R = f (ξ0) for any rotation
R of ξ⊥

0 implies that f (ξ0) restricted to ξ⊥
0 is a homothety, i.e., that there exists a

λ(ξ0) such that f (ξ0)η = λ(ξ0)η if η ⊥ ξ0.
The orthogonal projection of a vector a ∈ C

d on the line generated by ξ0 is

Pξ0a = ξT0 a

|ξ0|2 ξ0 = ξ0ξ
T
0

|ξ0|2 a

so that, for a ∈ C
d , and letting f (ξ0)ξ0 = α(ξ0)ξ0

f (ξ0) = α(ξ0)
ξ0ξ

T
0

|ξ0|2 + λ(ξ0)

(

Id − ξ0ξ
T
0

|ξ0|2
)

= μ(ξ0)
ξ0ξ

T
0

|ξ0|2 + λ(ξ0)Id

(taking μ = α − λ). Now, for any rotation R

μ(Rξ0)
Rξ0(Rξ0)

T

|ξ0|2 + λ(Rξ0)Id = f (Rξ0) =R f (ξ0)R
T

= μ(ξ0)
Rξ0(Rξ0)

T

|ξ0|2 + λ(ξ0)Id

so thatμ(Rξ0) = μ(ξ0) and λ(Rξ0) = λ(ξ0). This implies that λ andμmust be radial
functions and proves (8.14).

Finally, since we know that f (0) = λId, we must have μ(0) = 0.
Let us now consider the case d = 2. Let ξ̃0 be obtained from ξ0 by a rotation of

π/2. Consider the rotation RT
0 = (ξ, ξ̃)/|ξ|. Then, R0 maps ξ0 to e1 = (1, 0)T and

1This standard result is in fact true for any matrix M (not only Hermitian) in dimension d > 2, and
also in dimension 2 if one adds symmetries to rotations.
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letting g(t) = f (te1), we obtain

f (ξ) = (ξ, ξ̃)
g(|ξ|)
|ξ|2 (ξ, ξ̃)T

and this matrix clearly satisfies f (Rξ) = R f (ξ)RT . If g is diagonal, then letting μ̃
and λ̃ denote its entries, we find

f (ξ0) = μ̃(|ξ0|)ξ0ξ
T
0

|ξ0|2 + λ̃(|ξ0|) ξ̃0ξ̃
T
0

|ξ0|2 = (μ̃(|ξ0|) − λ̃(|ξ0|))ξ0ξ
T
0

|ξ0|2 + λ̃(|ξ0|)|Id,

which takes the same form as the one obtained with d ≥ 3. The off-diagonal coeffi-
cients of g can be non-zero, however, unless one assumes the additional constraint
that the norm is also invariant under symmetry. In this case, we can also use−ξ̃0/|ξ0|
to complete ξ0 and get

f (ξ) = (ξ0,−ξ̃0)
g(|ξ0|)
|ξ0|2 (ξ0,−ξ̃0)

T

which, combined with the previous constraint, is only possible when g is
diagonal. �

To ensure that f (ξ) ≥ c Id for all ξ, we need its eigenvalues (which are λ(|ξ|)
and λ(|ξ|) + μ(|ξ|)) to be larger than c. We obtain the condition that λ ≥ c +
max(−μ, 0). We summarize all this in the following theorem.

Theorem 8.20 Let L be such that L̂ is a multiplier with L̂ϕ = f ϕ and f ≥ c Id.
Then L is rotation-invariant (rotation/symmetry-invariant for d = 2) if and only if
f takes the form

f (ξ) = μ(|ξ|)ξξ
T

|ξ|2 + λ(|ξ|)Id

for some functions λ and μ such that μ(0) = 0 and λ ≥ c + max(−μ, 0).

Diagonal Operators

Consider the case μ ≡ 0 in Theorem8.20. Let L0 be the scalar operator such that
L̂0ϕ = λϕ. Then Lh is obtained by applying L0 to each coordinate of h, i.e., it takes
the form

Lh = (L0h1, . . . ,L0hd).

Note that diagonal operators in this form are those that satisfy both I1 and I3.
These simple, diagonal, operators are those that are most commonly used in

practice. If one wants, in addition, L0 to be a differential operator, then λ(|ξ|) must
be a polynomial in the coefficients of ξ, which is only possible if this function takes
the form

λ(|ξ|) =
p∑

q=0

λq |ξ|2q .
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To prove this statement, just notice that if λ(|ξ|) = P(ξ1, . . . , ξd), where P is a
polynomial, then λ(t) = P(t, 0, . . . , 0) is a univariate polynomial and the fact that
P(−t, 0, . . . , 0) = P(t, 0, . . . , 0) implies that coefficients of odd degree vanish.

Applying the inverse Fourier transform, the corresponding operator is
L0u =∑p

q=0 λq(−1)qΔqu. For example, if λ(|ξ|) = (α + |ξ|2)2, we get L0 =
(αIdd − Δ)2.

General Operators

Let us consider an example of a valid differential operatorwithμ �= 0, takingμ(|ξ|) =
α|ξ|2 and λ as above. This yields the operator

Lklu = −α∂k∂lu + δkl

p∑

q=0

(−1)qλqΔ
qu

so that

Lh = −α∇(divh) +
p∑

q=0

(−1)qλqΔ
qh.

Similarly, taking μ(ξ) = α|ξ|2λ(ξ) yields the operator

Lh =
p∑

q=0

(−1)qλqΔ
q(h − ∇(divh)).

8.3.2 Invariance: The Kernel Side

Let us focus on case I3 in this discussion, and assume that L̂ is associated with a
multiplier f ≥ c Id. Then the kernel operator K = L

−1 is such that K̂ is associated
with the multiplier g = f −1 in the Fourier domain. Note that we needK(aT δx ) to be
well-defined. The kth component of aT δx being akδx , we can writeF

(
(aT δx )

)
(ξ) =

a exp(−iξT x) so that

F (K(aT δx )
)
(ξ) = g(ξ)a exp(−iξT x).

A sufficient condition for this to have a continuous inverse Fourier transform is that
|g| is integrable (taking any matrix norm). Assuming this, we have

(K(aT δx )(y)) = K (y, x)a = g̃(y − x)a,

where g̃ is the inverse Fourier transform of g.
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When f (ξ) = λ(|ξ|)Id + μ(|ξ|)ξξT /|ξ|2, we can check that

f −1(ξ) = 1

λ(|ξ|)
(

Id − ξξT

|ξ|2
)

+ 1

λ(|ξ|) + μ(|ξ|)
(

ξξT

|ξ|2
)

.

LetA : L2(Rd ,Rd) → L2(Rd ,Rd) denote the operator such that Â is associatedwith
the matrix multiplier ξξT /|ξ|2. Let also κ1 and κ2 be the inverse Fourier transforms
of λ−1 and (λ + μ)−1. Then

Ku = κ1 ∗ (u − Au) + κ2 ∗ Au = κ1u − A((κ1 − κ2) ∗ u),

where ∗ denotes convolution (we used the fact that operators that are multiples of
the identity in the Fourier domain commute with any operator associated to a matrix
multiplier, such asA). For smooth enough u, the vector field v = Au can be computed
by solving Δv = −∇divu, which is also equivalent to

v = ∇div(G ∗ u),

where G is the Green’s function of the Laplacian operator defined by (see [102])

G(x) =

⎧
⎪⎨

⎪⎩

− 1

2π
log |x | (n = 2)

cn
|x |n−2

(n ≥ 3)
(8.15)

with cn = Γ (1 + n/2)/(πn/2n(n − 1)).
Note that the inverse Fourier transform of a radial function (i.e., a function ρ(ξ)

that only depends on |ξ|) is also radial. To see this, we can write

ρ̃(x) =
∫

Rd

ρ(|ξ|)eiξT xdξ

=
∫ ∞

0
ρ(t)td−1

∫

Sd−1
eiη

T txds(η)

=
∫ ∞

0
ρ(t)td−1

∫

Sd−1
eiη1t |x |ds(η),

where Sd−1 is the unit sphere in R
d ; the first change of variable was ξ = tη and the

last identity comes from the fact that the integral is invariant under rotation of x ,
so that we could take x parallel to the first coordinate axis. The last integral can in
turn be expressed in terms of the Bessel function Jd/2 [223], yielding an expression
which will not be detailed (or used) here. This implies that κ1 and κ2 above are radial
kernels.

We can therefore describe the kernels associated with spaces V that satisfy I3 as
those taking the form
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K = (κ1 − Aκ1) + Aκ2,

where κ1 and κ2 are radial kernels with bounded Fourier transform (recall the
constraints λ ≥ c and λ + μ ≥ c). As remarked in [195] (in which the theory of
translation and rotation-invariant kernels is discussed extensively), this expression
decomposes K into divergence-free and curl-free parts (in 3D). Indeed, because
A is a gradient, one has curlA = 0, so that Aκ2 is curl-free and curl K = curl κ1.
Moreover, one has

div(Au) = Δ div(G ∗ u) = divΔ(G ∗ u) = div u,

so that κ1 − Aκ1 is divergence-free and div K = div κ2.

Examples of Radial Kernels

The following proposition provides a nice dimension-independent characterization
of scalar radial kernels [251].

Proposition 8.21 The scalar kernel K (x, y) = γ(|x − y|) is positive definite for all
dimensions d if and only there exists a positive measure μ on (0,+∞) such that

γ(t) =
∫ +∞

0
e−t2udμ(u).

This includes, in particular, the case of all functions of the form

γ(t) =
∫ +∞

0
e−t2u f (u)du (8.16)

for a positive function f . Note that if a function γ provides a positive kernel in
dimension d, it trivially provides a positive kernel in dimension d ′ ≤ d, but not
necessarily for d ′ > d unless it takes the form given in Proposition8.21.

Translation-invariant kernels (not necessarily radial) of the kind K (x, y) =
Γ (x − y) can be characterized in a similar way, by Bochner’s theorem [246].

Proposition 8.22 The kernel χ(x, y) = Γ (x − y) is positive definite if and only if
there exists a positive, symmetric measure μ on R

d such that

Γ (x) =
∫

Rd

e−2ιπ xT udμ(u).

Letting μ be a Dirac measure (μ = δσ−2 ) in Eq. (8.16) yields γ(t) = e− t2

σ2 . The
associated kernel

K (x, y) = e− |x−y|2
σ2 Idd

is the Gaussian kernel on R
d and is one of the most commonly used for spline

smoothing.
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We can also use Proposition8.21 with f (u) = e−u . This provides the Cauchy
kernel

K (x, y) = 1

1 + |x − y|2 Id.

Other choices can be made: if f is the indicator function of the interval [0, 1],
then

γ(t) =
∫ 1

0
e−t2udu = 1 − e−t2

t2

with the corresponding kernel. If one takes f (u) = exp(−u2/2), then

γ(t) =
∫ ∞

0
e−u2/2−ut2du

= et
4/2
∫ ∞

0
e−(u+t2)2/2du

=
√

π

2
et

4/2erfc(t2),

where erfc(q) is the probability that a standard Gaussian distribution is larger than
q in absolute value,

erfc(q) = 2√
π

∫ ∞

q
e−u2/2du.

(This function is widely tabulated and directly available in most computational soft-
wares.)

We now consider scalar kernels that correspond to differential operators that are
polynomial in the Laplacian. Using the inverse Fourier form, they correspond to
kernels given by K (x, y) = Γ (x − y) with

Γ (z) =
∫

Rd

eiz
T ξ

P(|ξ|2)dξ

for some polynomial P such that P(t) > 0 for t ≥ 0. Of particular interest is the
case P(t) = (1 + t)k for some positive integer k, which corresponds to the operator
(Id − Δ)k , because the associated kernel can be explicitly computed, at least in odd
dimensions, which we now assume. Note that 1/P(|ξ|2) must be integrable, which
in this particular case means k ≥ (d + 1)/2.

To compute Γ , we can assume (by rotation invariance) that z is on the positive
side of the first coordinate axis, i.e., z = (|z|, 0, . . . , 0). Write ξ = (t, η), with t ∈ R

and η ∈ R
d−1 so that

Γ (z) =
∫ +∞

−∞
eit |z|

∫

Rd−1
(1 + t2 + |η|2)−kdηdt.
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Making the change of variable η = √
1 + t2ζ (so that dη = (1 + t2)(d−1)/2dζ)

expresses Γ (z) as the product of two integrals,

Γ (z) =
∫ +∞

−∞
eit |z|

(1 + t2)k−(d−1)/2
dt
∫

Rd−1
(1 + |ζ|2)−kdζ.

The second integral is a constant cd(k), which can be explicitly computed, but we
will not need the exact value here; for most applications, it suffices to know the
expression of the kernel up to a multiplicative constant (and translation-invariant
kernels are often normalized so that K (x, x) = 1). The first integral is related to the
Basset function (or modified Bessel function of the third kind, see [223]), which we
will denote by K ν(t), via the formula

∫ +∞

−∞
eit |z|

(1 + t2)k−(d−1)/2
dt ∝ t k−dK k−d(t).

It is known analytically for odd values of d, and can be evaluated numerically when
d is even. In the odd case, using for example the method of residues [249], one shows
the following lemma, which we give without proof.

Lemma 8.23 If c ≥ 1, we have

∫ +∞

−∞
eit |z|

(1 + t2)c+1
dt = πe−|z|

4cc!
c∑

l=0

a(c, l)|z|l (8.17)

with a(c, l) = 2l(2c − l) . . . (c + 1 − l)/ l!.
Ignoring the constants, this yields the kernel (letting c = k − (d + 1)/2, and nor-
malizing Kc so that Kc(x, x) = 1)

Kc(x, y) = e−|x−y|
c∑

l=0

b(c, l)|x − y|l ,

with b(c, l) = a(c.l)/a(c, 0). For c = 0, K0(x, y) = exp(−|x − y|) is called the
Laplacian or Abel’s kernel. From Lemma8.23, we get

K1(x, y) = (1 + |x − y|) exp(−|x − y|)
K2(x, y) = (1 + |x − y| + |x − y|2/3) exp(−|x − y|)
K3(x, y) = (1 + |x − y| + 2|x − y|2/15 + |x − y|3/15) exp(−|x − y|)
K4(x, y) = (1 + |x − y| + 3|x − y|2/7 + 2|x − y|3/21 + |x − y|4/105)

exp(−|x − y|).

The resulting family are often called Matérn kernels. Note that K1 is differentiable
(with respect to each variable), and K2 is twice differentiable. More generally Kc
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has c derivatives, still with respect to each variable. As always, the kernel can be
scaled, replacing x and y by x/σ and y/σ. For a given c, this corresponds (up to a
multiplicative constant) to the operator

Lc = (Id − σΔ)c+(d+1)/2.

The previous collection of kernels can be extended by the following series of
combination rules. It is indeed obvious that the addition of two kernels is a kernel, as
is the multiplication of a kernel by a positive number. A kernel can also be scaled by
a positive factor: K (x, y) → K (x/a, y/a). The composition of two kernels is also
a kernel, i.e.,

(K1 ∗ K2)(x, y) =
∫

K1(x, z)K2(z, y)dz.

Also, the direct multiplication of two kernels is a kernel (i.e., (K1K2)(x, y) :=
K1(x, y)K2(x, y)). So, for example, in dimensions 1 or 3, the kernel defined by
K (x, y) = γ(|x − y|2) with

γ(t) = (1 + √
t)e−√

t−t/2

is a valid kernel, since it is the direct multiplication of the Gaussian kernel and a
Matérn kernel.

8.4 Mercer’s Theorem

The interest of the discussion above lies in the fact that it makes it possible to define
the Hilbert space V from a positive definite kernel. We gave a description of kernels
using Fourier transforms, but another way to achieve this (in particular when Ω is
bounded) is by using Mercer’s theorem [246], which we cite without proof.

Theorem 8.24 Let K : Ω × Ω → R be a continuous, positive definite kernel, such
that ∫

Ω×Ω

K (x, y)2dxdy < ∞.

Then, there exists an orthonormal sequence of functions in L2(Ω,R), ϕ1,ϕ2, . . .

and a decreasing sequence (ρn) which tends to 0 as n tends to ∞ such that

K (x, y) =
∞∑

n=1

ρnϕn(x)ϕn(y).

Note that a kernel satisfying the conditions ofMercer’s theoremcannot be translation-
invariant overΩ = R

d because
∫
K (x, y)2dy would be independent of x (and there-

fore not integrable) in that case.
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Let the conditions of Mercer’s theorem be true, and define the Hilbert space V by

V =
{

v ∈ L2(Ω,R) :
∞∑

n=1

ρ−1
n

〈
v , ϕn

〉2
L2 < ∞

}

.

Define, for v,w ∈ V :

〈
v , w

〉
V =

∞∑

n=1

ρ−1
n

〈
v , ϕn

〉
L2

〈
w , ϕn

〉
L2

.

Notice that, for v ∈ V , the series

v(x) =
∞∑

n=1

〈
v , ϕn

〉
L2ϕn(x)

is pointwise convergent, since

(
m∑

n=p

〈
v , ϕn

〉
L2ϕn(x)

)2

≤
m∑

n=p

ρ−1
n

〈
v , ϕn

〉2
L2

m∑

n=p

ρn(ϕn(x))
2

and both terms in the upper bound can be made arbitrarily small (recall that∑
n ρnϕn(x)2 = K (x, x) < ∞). Similarly,

v(x) − v(y) =
∞∑

n=1

〈
v , ϕn

〉
L2(ϕn(x) − ϕn(y))

so that

(v(x) − v(y))2 ≤
∞∑

n=1

ρ−1
n

〈
v , ϕn

〉2
L2

∞∑

n=1

ρn(ϕn(x) − ϕn(y))
2

= ‖v‖2V (K (x, x) − 2K (x, y) + K (y, y))

and v is continuous. Then,

〈
ϕm , K (., x)

〉
L2 =

∞∑

n=1

ρnϕn(x)
〈
ϕm , ϕn

〉
L2 = ρmϕm(x)

so that ∞∑

n=1

ρ−1
n

〈
ϕn , K (·, x)〉2L2 =

∞∑

n=1

ρnϕn(x)
2 = K (x, x) < ∞,
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which implies K (·, x) ∈ V and a similar computation shows that

〈
K (·, x) , K (·, y)〉V = K (x, y),

so that K is reproducing.
Finally, if v ∈ V ,

〈
v , K (·, x)〉V =

∞∑

n=1

ρ−1
n

〈
v , ϕn

〉
L2

〈
ϕn , K (·, c)〉L2

=
∞∑

n=1

〈
v , ϕn

〉
L2ϕn(x) = v(x),

so that K (·, x) is the Riesz representation of the evaluation functional on V .

8.5 Thin-Plate Interpolation

Thin-plate theory corresponds to the situation in which the operator L is some power
of the Laplacian. As a tool for shape analysis, it was originally introduced in [42].
Consider the following bilinear form:

〈
f , g

〉
L

=
∫

R2
Δ f Δgdx =

∫

R2
f Δ2gdx, (8.18)

which corresponds to the operator L = Δ2.
We need to define it on a somewhat unusual Hilbert space. We consider the Beppo

Levi spaceH1 of all functions inRd with square integrable second derivatives, which
have a bounded gradient at infinity. In this space, ‖ f ‖L = 0 is equivalent to the fact
that f is affine, i.e., f (x) = aT x + b, for some a ∈ R

d and b ∈ R. The Hilbert space
we consider is the spaceH of equivalent classes of functions modulo the addition of
affine functions, namely

[ f ] = {g : g(x) = f (x) + aT x + b, a ∈ R
d , b ∈ R

}

for f ∈ H1. Obviously, the norm associated to (8.18) is constant over the set [ f ],
and ‖ f ‖L = 0 if and only if [ f ] = [0]. One can then define

〈[ f ] , [g]〉H = 〈 f , g
〉
L

without ambiguity.
This space also has a kernel, although the analysis has to be different from

what we have done previously, since the evaluation functional is not defined on
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H (where functions are only known up to the addition of an affine term). However,
the following is true [192]. Let U (r) = (1/8π)r2 log r if the dimension, d, is 2, and
U (r) = (1/16π)r3 for d = 3. Then, for all u ∈ H1, there exist au ∈ R

d and bu ∈ R

such that

u(x) =
∫

Rd

U (|x − y|)Δ2u(y)dy + aT
u x + bu .

We will denote by U (·, x) the function y �→ U (|x − y|).
The spline interpolation problem must also be addressed in a different way in

this context. Fix, as in Sect. 8.1.1, landmarks x1, . . . , xN and scalar constraints
(c1, . . . , cN ). Again, the constraint h(xi ) = ci has no meaning in H, but the con-
straint

〈
U (· − xi ) , h

〉
H = ci does, and means that there exist ah and bh such that

h(xi ) + aT
h xi + bh = ci ,

i.e., h satisfies the constraints up to an affine term. The corresponding interpolation
problem is: minimize ‖h‖L under the constraint that there exist a, b such that h(xi ) +
aT xi + b = ci , i = 1, . . . , N .

Define, as before, Si j = U (|xi − x j |). The function h that is optimal under these
constraints must therefore take the form

h(x) =
N∑

i=1

αiU (|x − xi |) + aT x + b.

Replacing h by its expression in terms of the α’s, a and b yields the finite-
dimensional problem: minimize

αT Sα

under the constraint Sα + Qγ = c with γ = (a1, . . . , ad , b)T (with size
(d + 1) × 1) and Q, with size N × (d + 1) given by (letting xi = (x1i , . . . , x

d
i )):

Q =
⎛

⎜
⎝

x11 · · · xd1 1
...

...
...

x1N · · · xdN 1

⎞

⎟
⎠ .

The optimal (α, γ) can be computed by identifying the gradient to 0. One obtains

γ̂ = (QT S−1Q
)−1

QT S−1c

and α̂ = S−1(c − Qγ̂).
The inexact matching problem simply consists in minimizing

‖h‖2
L

+ λ

N∑

i=1

(h(xi ) + aT xi + b − ci )
2
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with respect to h and a, b. It can be reduced to minimizing

αT Sα + λ(Sα + aT xi + b − c)T (Sα + aT xi + b − c) ,

and the solution is provided by the same formulas, simply replacing S by Sλ =
S + (1/λ)Id.

When the function h and the ci take d-dimensional values (e.g., correspond to
displacements), the above computation has to be applied to each coordinate, which
simply corresponds to using a diagonal operator, each component equal toΔ2, in the
definition of the dot product. This is equivalent to using the diagonal scalar kernel
associated to U .

8.6 Asymptotically Affine Kernels

We return to vector fields, and discuss how affine components can be combined with
any kernel, beyond the thin-plate spline approach of the previous section.We assume
here thatΩ = R

d . We would like to consider spaces V that contain vector fields with
an affine behavior at infinity. Note that the spaces V that we have considered so far,
either by completion of C∞ compactly supported functions or using kernels defined
by Fourier transforms, only contain functions that vanish at infinity. We recall the
definition of a function that vanishes at infinity:

Definition 8.25 A function f : Ω → R
d is said to vanish at infinity if and only

if, for all ε > 0, there exists an A > 0 such that | f (x)| < ε whenever x ∈ Ω and
|x | > A.

Here, we let V be a Hilbert space of vector fields that vanish at infinity and define

Vaff = {w : ∃w0 ∈ V, A ∈ Md(R) and b ∈ R
d with w(x) = w0(x) + Ax + b

}
.

We have the following important fact:

Proposition 8.26 If V is a Hilbert space of continuous vector fields that vanish at
infinity, then the decomposition w(x) = w0(x) + Ax + b for w ∈ Vaff is unique.

Proof Using differences, it suffices to prove this for w = 0, and so, if w0, A and b
are such that, for all x , w0(x) + Ax + b = 0, then, for any fixed x �= 0 and t > 0,
w0(t x) + t Ax + b = 0 so that Ax = −(w0(t x) + b)/t . Letting t tend to infinity,
we get Ax = 0 for all x , so that A = 0. Now, for all x , we get b = −w0(x), which
implies b = 0 (since w0 vanishes at infinity), and therefore also w0 = 0. �

So we can speak of the affine part (Aw, bw) of an element w ∈ Vaff . Letting also
qw(x) = w(x) − Awx − bw, we can extend the inner product in V to define

〈
w , w̃

〉
Vaff

= 〈qw , qw̃

〉
V + 〈Aw , Aw̃

〉+ 〈bw , bw̃

〉
,
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where
〈
A , Ã

〉
is some inner product between matrices (e.g., trace(AT Ã)) and

〈
b , b̃

〉

some inner product between vectors (e.g., bT b̃). With this product Vaff is obviously
a Hilbert space. We want to compute its kernel, Kaff , as a function of the kernel K of
V (assuming that V is reproducing). Given x ∈ R

d and a ∈ R
d , we need to express

aTw(x) in the form
〈
Kaff (·, x)a , w

〉
Vaff

. Using the decomposition, we have

aTw(x) = aT qw(x) + aT Awx + aT bw

= 〈
K (·, x)a , qw

〉
V + 〈(axT )� , Aw

〉+ 〈a� , bw

〉

where, for a matrix M , we define M� by the identity
〈
M� , A

〉 = trace(MT A) for all
A and for a vector z, z� is such that

〈
z� , b

〉 = zT b for all b. From the definition of
the extended inner product, we can define and compute

Kaff (y, x)a = K (y, x)a + (axT )�y + a�.

In particular, when
〈
A , Ã

〉 = λ trace(AT Ã) and
〈
b , b̃

〉 = μbT b̃, we get

Kaff (y, x)a = K (y, x)a + axT y + a = (K (x, y) + (xT y/λ + 1/μ)Idd)a.

This provides an immediate extension of spline interpolation of vector fields which
includes affine transformations, by just replacing K by Kaff . For example, exact
interpolation with constraints v(xi ) = ci is obtained by letting

v(x) =
N∑

i=1

Kaff (xi , x j )α j ,

the vectors α j being obtained by solving the system

N∑

j=1

(K (xi , x j )α j + (xTi x j/λ + 1/μ)α j ) = ci , for i = 1, . . . , N . (8.19)

The case λ = μ → 0 is particularly interesting, since this corresponds to relaxing
the penalty on the affine displacement, and we obtain in this way an affine invariance
similar to thin plates. More precisely, we have:

Proposition 8.27 Let vλ, Aλ and bλ be the solutions of (8.19) when μ = λ. Then
vλ converges to v∗, the unique solution of the affine invariant interpolation problem:
minimize ‖v‖2V under the constraint that there exist A and b with v(xi ) = ci − Axi −
b for i = 1, . . . , N.

Proof Indeed, vλ, Aλ and bλ are the unique solutions of the problem: minimize, with
respect to v, A, b,

‖v‖2V + λ(‖A‖2 + ‖b‖2)
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under the constraints v(xi ) = ci − Axi − b for i = 1, . . . , N . Because ‖vλ‖V is
always smaller that the norm of the optimal v for the problem without affine compo-
nent, we know that it is bounded. Thus, to prove that vλ converges to v∗, it suffices
to prove that any weakly convergent subsequence of vλ has v∗ as a limit. So take
such a sequence, vλn , and let v0 be its weak limit. Because v �→ v(x) is a continuous
linear form, we have vλn (xi ) → v0(xi ) for all i .

Consider the linear transformation F : Rd2+d → R
Nd that maps (A, b) to (Axi +

b, i = 1, . . . , N ). Because Aλxi + bλ + vλ(xi ) = ci , we know that (ci − vλ(xi ), i =
1, . . . N ) ∈ Range(F), so that, passing to the limit in λn , we get the fact that (ci −
v0(xi ), i = 1, . . . N ) ∈ Range(F), which means that v0 satisfies the condition of the
limit problem. Moreover, for any λ, we have

‖v∗‖2V + λ(‖A∗‖2 + ‖b∗‖2) ≥ ‖vλ‖2V + λ(‖Aλ‖2 + ‖bλ‖2) ≥ ‖vλ‖2V .

Since the liminf of the last term is larger than ‖v0‖2V , and the limit of the left-hand
side is ‖v∗‖2V , we can conclude that v0 = v∗ since v∗ is the unique solution of the
limit problem. �



Chapter 9
Deformable Objects and Matching
Functionals

9.1 General Principles

In the previous two chapters, we introduced and studied basic tools related to
deformations and their mathematical representation using diffeomorphisms. In this
chapter, we start investigating relations between deformations and the objects they
affect, which we will call deformable objects, and discuss the variations of match-
ing functionals, which are cost functions that measure the quality of the registration
between two deformable objects.

LetΩ be an open subset ofRd andG a group of diffeomorphisms onΩ . Consider
a set I of structures of interest, on which G has an action: for every I in I and every
ϕ ∈ G, the result of the action of ϕ on I is denoted ϕ · I and is a new element of I.
This requires (see Sect.B.5) that id · I = I and ϕ · (ψ · I ) = (ϕ ◦ ψ) · I . Elements
of I will be referred to as deformable objects.

A matching functional is based on a function D : I × I → [0,+∞) such that
D(I, I ′) measures the discrepancy between the two objects I and I ′, and is defined
over G by

EI,I ′(ϕ) = D(ϕ · I, I ′). (9.1)

So EI,I ′(ϕ) measures the difference between the target object I ′ and the deformed
one ϕ · I . Because it is mapped onto the target by the deformation, the object I will
often be referred to as the template (and ϕ · I as the deformed template).

Even if our discussion of matching principles and algorithms is rather extensive,
and occupies a large portion of this book, the size of the literature, and our choice
of privileging methods that implement diffeomorphic matching prevents us from
providing an exhaustive account of the registration methods that have been proposed
over the last few decades. The interested reader can refer to a few starting points in
order to complement the presentation that is made here, including [12, 13, 22, 27,
28, 41, 42, 111, 125, 240, 244, 275], and textbooks such as [132, 139, 208, 214].
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9.2 Differentiation with Respect to Diffeomorphisms

Wewill review, startingwith the next section, a series ofmatching functionals that are
adapted to different types of deformable objects (landmarks, images, curves, etc.).
We will also compute the derivative of each of them with respect to the diffeomor-
phism ϕ.

We also introduce a special form of differential which is adapted to variational
problems over diffeomorphisms. This shape, or Eulerian differential, as we will call
it, is a standard tool in shape optimization [80], and we will interpret it later on as a
gradient for a specific Riemannian metric over diffeomorphisms.

Recall that we have defined Diff p,∞ = Diff p,∞(Ω) to be the set of diffeomor-
phisms ψ such that

max(‖ψ − id‖p,∞, ‖ψ−1 − id‖p,∞) < ∞.

We have also defined Diff p,∞0 as the subgroup of Diff p,∞ whose elements converge
to the identity at infinity.

Definition 9.1 A function ϕ �→ U (ϕ) is (p,∞)-compliant if it is defined for all ϕ
in Diff p,∞0 .

A (p,∞)-compliant U is locally (p,∞)-Lipschitz if, for all ϕ ∈ Diff p,∞0 , there
exist positive numbers ε(ϕ) and C(ϕ) such that

|U (ψ) −U (ψ̃)| ≤ C(ϕ)‖ψ − ψ̃‖p,∞

whenever ψ and ψ̃ are diffeomorphisms such that

max(‖ψ − ϕ‖p,∞, ‖ψ̃ − ϕ‖p,∞) < ε(ϕ).

Note that a (p,∞)-compliant (resp. locally Lipschitz)U is (q,∞)-compliant (resp.
locally Lipschitz) for any q larger than p.

Because Diff p,∞0 is an open subset of id + C p
0 (�,Rd), both Gâteaux and Fréchet

derivatives are well defined for functions defined on this set (see Sect.C.1). In the
following, whenever we speak of a derivative (without a qualifier), this will always
mean in the strong (Fréchet) sense. A function U is C1 on Diff p,∞0 if and only if
U is Fréchet differentiable and dU (ψ) is continuous in ψ, which is equivalent (by
Proposition C.5) toU beingGâteaux differentiable and dU (ψ) continuous inψ. Note
also that U being C1 implies that U is (p,∞)-Lipschitz.

Using the group structure of Diff p,∞0 , we can define another type of differential
using the infinitesimal action of vector fields. If V is an admissible vector space and
v ∈ V , we will denote by ϕv

0t the flow associated to the equation

∂t y = v(y).
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Note that this is the same notation as the flow associated to a differential equation
∂t y = v(t, y), where v is now a time-dependent vector field. This is not a conflict of
notation if one agrees to identify vector fields, v, in V and the associated constant
time-dependent vector field defined by ṽ(t, ·) = v for all t .

Definition 9.2 Let V be an admissible Hilbert space continuously embedded in
C p
0 (Ω,Rd) (so that DiffV ⊂ Diff p,∞0 ). We say that a (p,∞)-compliant function U

over diffeomorphisms has an Eulerian differential in V at ψ if there exists a linear
form ∂̄U (ψ) ∈ V ∗ such that, for all v ∈ V ,

(
∂̄U (ψ)

∣∣ v
) = ∂εU (ϕv

0ε ◦ ψ)|ε=0 . (9.2)

If the Eulerian differential exists, the V -Eulerian gradient of U at ψ, denoted

∇V
U (ϕ) ∈ V , is defined by

〈∇V
U (ϕ) , v

〉
V

= (
∂̄U (ϕ)

∣∣ v
)
. (9.3)

In this case, ∇V
U (ϕ) = K∂̄U (ϕ), where K is the kernel operator of V .

The following proposition indicates when Eq. (9.2) remains valid with time-
dependent vector fields v.

Proposition 9.3 Let V be an admissible Hilbert space continuously embedded in
C p+1
0 (Ω,Rd). Let V and U satisfy the hypotheses of Definition 9.2. If U is (p,∞)-

locally Lipschitz and has a V -Eulerian differential at ψ and if v(t, ·) is a time-
dependent vector field such that

lim
ε→∞

1

ε

∫ ε

0
‖v(t, ·) − v(0, ·)‖V dt = 0, (9.4)

then (
∂̄U (ψ)

∣∣ v(0, ·) ) = ∂εU (ϕv
0ε ◦ ψ)|ε=0 . (9.5)

Proof Letting v0 = v(0, ·), we need to prove that

1

ε
(U (ϕv

0ε ◦ ψ) −U (ϕv0
0ε ◦ ψ)) → 0

as ε → 0. From Proposition 7.4, we know that if ψ,ϕ, ϕ̃ are in Diff p,∞0 , there exists
a constant Cp(ψ) such that

‖ϕ ◦ ψ − ϕ̃ ◦ ψ‖p,∞ ≤ Cp(ψ)‖ϕ − ϕ̃‖p,∞.

Now, since U is Lipschitz, we have, for small enough ε,
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|U (ϕv
0ε ◦ ψ) −U (ϕv0

0ε ◦ ψ)| ≤ C(ψ)‖ϕv
0ε ◦ ψ − ϕ̃v

0ε ◦ ψ‖p,∞
≤ C(ψ)Cp(ψ)‖ϕv

0ε − ϕv0
0ε‖p,∞

≤ C(ψ)Cp(ψ)C̃(v0)

∫ ε

0
‖v(t, ·) − v0‖V dt,

where C̃(v0) depends on ‖v0‖p+1,∞ and can be derived from Eq. (7.16), Noting
that ‖v‖X p+1,1,ε ≤ ε(C ′′ + ‖v0‖p+1,∞) for small enough ε, this proves the
proposition. �

Note also that, if U is C1, then the chain rule implies that

(
∂̄U (ϕ)

∣∣ v
) = (dU (ϕ) | v ◦ ϕ ). (9.6)

To the Eulerian gradient of U , we associate a “gradient descent” process (that
we will formally interpret as a Riemannian gradient descent for a suitable metric in
Sect. 11.4.3) which generates a time-dependent element of G by setting

∂tϕ(t, x) = −∇V
U (ϕ(t))(ϕ(t, x)). (9.7)

As long as
∫ t
0

∥∥∥∇V
U (ϕ(s))

∥∥∥
V
ds is finite, this generates a time-dependent element

of DiffV . This therefore provides an evolution within the group of diffeomorphisms,
an important property. Assuming that Proposition 9.3 applies at time t (e.g., if U is
C1), we can write

∂tU (ϕ(t)) = 〈∇V
U (ϕ(t)) , ∂tϕ

〉
V = −

∥∥∥∇V
U (ϕ(t))

∥∥∥
2

V
,

so that U (ϕ(t)) decreases with time.

9.3 Relation with Matching Functionals

As pointed out in the introduction, matching functionals take the form

U (ϕ) = UI (ϕ) = Z(ϕ · I ), (9.8)

where I is a fixed deformable object for some function Z (e.g., Z(I ) = D(I, I1) for
a fixed I1). Using the group action property, we have

UI (ψ) = Uϕ·I (ψ ◦ ϕ−1).

Using this property and the fact that the mapping ψ ◦ ϕ−1 is smooth (infinitely
differentiable) from Diff p,∞0 onto itself, we find that if UI is Gâteau or Fréchet
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differentiable at ψ = id for any I ∈ I, then it is differentiable at all ψ ∈ Diff p,∞0 ,
and

(dUI (ϕ) | h ) = (
dUϕ·I (id)

∣∣ h ◦ ϕ−1
)
.

A similar statement holds for the Eulerian differential, with

(
∂̄UI (ψ)

∣
∣ v

) = (
∂̄Uψ·I (id)

∣
∣ v

)
.

Notice that when U is differentiable at ψ = id, then ∂̄U (id) = dU (id). Finally, if
we assume that I is itself a Banach space (or an open subset of a Banach space), that
Z is differentiable and that the action RI : ϕ �→ ϕ · I is also differentiable, we have,
using the chain rule

(dUI (ϕ) | v ) = (dZ(ϕ · I ) | dRI (ϕ)v )

or dUI (ϕ) = dRI (ϕ)∗dZ(ϕ · I ). At ϕ = id, dRI (id)v is the infinitesimal action of
v on I , which we denote by v · I , so that

(dUI (id) | v ) = (dZ(I ) | v · I )

and (
∂̄UI (ψ)

∣∣ v
) = (dZ(ψ · I ) | v · (ψ · I ) ).

We now present a series of matching problems, involving different types of
deformable objects. In each case, we will introduce adapted matching function-
als and compute their differentials. As just remarked, derivatives with respect to the
diffeomorphisms can all be derived from that of the function Z , on which we will,
whenever possible, focus the computations.

9.4 Labeled Point Matching

The simplest way to represent a visual structure is with configurations of labeled
points, or landmarks attached to the structure. Anatomical shapes or images are
typical examples of structures onwhich landmarks can be easily defined; this includes
specific locations in faces (corners of the eyes, tip of the nose, etc.), fingertips for
hands, apex of the heart, etc. Manyman-made objects, like cars or other vehicles, can
be landmarked too. Finally, landmarks can represent the centers of simple objects,
like cells in biological images.

In the labeled point-matching problem, objects are ordered collections of N points
x1, . . . , xN ∈ Ω , where N is fixed. Diffeomorphisms act on such objects by:

ϕ · (x1, . . . , xN ) = (ϕ(x1), . . . ,ϕ(xN )). (9.9)



248 9 Deformable Objects and Matching Functionals

The landmark-matching problem is not to find correspondences between two objects,
say I = (x1, . . . , xN ) and I ′ = (x ′

1, . . . , x
′
N ), sincewe know that xi and x ′

i are homol-
ogous, but to extrapolate these correspondences to the rest of the space.

Here we can take I = (Rd)N , or, if one restricts to distinct landmarks, the open
subset

I = {
(x1, . . . , xN ) ∈ (Rd)N , xi = x j if i = j

}
.

For I = (x1, . . . , xN ), the action ϕ �→ ϕ · I is C1 on Diff p,∞0 for any p ≥ 0 (it is
the restriction of a linear map, with |ϕ · I |2 ≤ √

N‖ϕ‖∞). The simplest matching
functional that we can consider for this purpose is associated with

Z(I ) = |I − I ′|2 =
N∑

k=1

|xk − x ′
k |2

with (dZ(I ) | h ) = 2(I − I ′)T h (considering I , I ′ and h as dN -dimensional column
vectors). We have

UI (ϕ) = EI,I ′(ϕ) = |I ′ − ϕ · I |2 =
N∑

i=1

∣
∣x ′

i − ϕ(xi )
∣
∣2 , (9.10)

(dUI (ϕ) | v ) = 2
N∑

i=1

(ϕ(xi ) − x ′
i )

T v(xi ). (9.11)

This can be written as

dUI (ϕ) = 2
N∑

i=1

(ϕ(xi ) − x ′
i )δxi .

From (9.6), we have

(
∂̄UI (ϕ)

∣∣∣ h
)

= 2
N∑

i=1

(ϕ(xi ) − x ′
i )

T h ◦ ϕ(xi ) (9.12)

or

∂̄UI (ϕ) = 2
N∑

i=1

(ϕ(xi ) − x ′
i )δϕ(xi ),

and (9.3) gives

∇V
UI (ϕ) = 2

N∑

i=1

K (·,ϕ(xi ))(ϕ(xi ) − x ′
i ). (9.13)

The gradient descent algorithm (9.7) takes a very simple form:



9.4 Labeled Point Matching 249

∂tϕ(t, x) = −2
N∑

i=1

K (ϕ(t, x),ϕ(t, xi ))(ϕ(t, xi ) − x ′
i ). (9.14)

This system can be solved in two steps: let yi (t) = ϕ(t, xi ). Applying (9.14) at
x = x j yields

∂t y j = −2
N∑

i=1

K (y j , yi )(yi − x ′
i ).

This is a differential system in y1, . . . , yN . The first step is to solve it with initial
conditions y j (0) = x j . Once this is done, the extrapolated value of ϕ(t, x) for a
general x is the solution of the differential equation

∂t y = −2
N∑

i=1

K (y, yi )(yi − x ′
i )

initialized at y(0) = x . Figure9.1 gives an example obtained by running this pro-
cedure, providing an illustration of the impact of the choice of the kernel for the
solution. The last panel in Fig. 9.1 also shows the limitations of this algorithm, in the
sense that it is trying to move the points in the direction of their targets at each step,
while a more indirect path can sometimes be found generating less distortion (these
results should be compared to Fig. 10.1 in Chapter 10).

9.5 Image Matching

Images, or more generally multivariate functions, are also important and widely used
instances of deformable objects. They correspond to functions I defined on Ω with
values in R. Diffeomorphisms act on them by:

(ϕ · I )(x) = I (ϕ−1(x))

for x ∈ Ω . Fixing two such functions I and I ′, the simplest matching functional
which can be considered is the squared L2 norm of the difference Z(I ) = ‖I − I ′‖22,
yielding

UI (ϕ) = EI,I ′(ϕ) =
∫

Ω

∣∣I ◦ ϕ−1(x) − I ′(x)
∣∣2 dx . (9.15)

We will need the derivative of the mapping Inv : ϕ �→ ϕ−1. Considering Inv as a
mapping from Diff p+1,∞

0 to Diff p,∞0 , it is given by (see Proposition 7.8)

dInv(ϕ)h = − (
dϕ ◦ ϕ−1

)−1
h ◦ ϕ−1 = −d(ϕ−1)h ◦ ϕ−1. (9.16)
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Fig. 9.1 Greedy landmark matching. Implementation of the gradient descent algorithm in (9.14),
starting with ϕ = id, for the correspondences depicted in the upper-left image (diamonds moving
to circles). The following three images provide the result after numerical convergence for Gaussian
kernels K (x, y) = exp(−|x − y|2/2σ2)Id withσ = 1, 2, 4 in grid units. Largerσ induce increasing
smoothness in the final solution, and deformations affecting a larger part of the space. As seen in
the figure for σ = 4, the evolution can result in huge deformations

Similarly Inv is Ck from Diff p+k,∞
0 to Diff p0 .

We now compute the derivative ofUI under the assumption that I ′ is square inte-
grable, I is compactly supported (on some set QI ) and continuously differentiable.
One can relax the differentiability assumption on I (considering, for example, piece-
wise smooth images), but the analysis is much more difficult, and we refer the reader
to results in [293–295] for more details. Define

ŨI (ϕ) =
∫

Ω

∣
∣I ◦ ϕ(x) − I ′(x)

∣
∣2 dx
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so thatUI = ŨI ◦ Inv. Fixing ϕ ∈ Diff p+1
0 , h ∈ C p+1

0 (Ω,Rd) and letting ϕε = ϕ +
εh for |ε| ≤ 1, we have

∂εŨI (ϕε) = 2
∫

Ω

(I ◦ ϕε(x) − I ′(x))∇ I ◦ ϕε(x)
T h(x) dx .

The integrand in the right-hand side is dominated by the integrable upper bound
(‖I‖∞ + |I ′(x)|)‖∇ I‖∞ ‖h‖∞1Q̃(x), where Q̃ is any compact set that contains
ϕ−1

ε (QI ) for |ε| ≤ 1, which justifies the derivation. Taking ε = 0, we obtain the
directional derivative of ŨI , which is

(
dŨI (ϕ)

∣
∣∣ h

)
= 2

∫

Ω

(I ◦ ϕ(x) − I ′(x))∇ I ◦ ϕ(x)T h(x) dx .

Our hypotheses on I imply that dŨI (ϕ) is continuous in ϕ ∈ Diff p,∞0 for any p ≥ 0.
Fixing ϕ and assuming ‖ϕ′ − ϕ‖∞ ≤ 1, we have

∣∣∣
(
dŨI (ϕ) − dŨI (ϕ

′)
∣∣∣ h

)∣∣∣

≤ 2
∫

Ω

(I ◦ ϕ(x) − I ◦ ϕ′(x))∇ I ◦ ϕ′(x)T h(x) dx

+ 2
∫

Ω

(I ◦ ϕ(x) − I ′(x))(∇ I ◦ ϕ(x) − ∇ I ◦ ϕ′(x))T h(x) dx

≤ 2|Q̃| ‖I ◦ ϕ − I ◦ ϕ′‖∞‖∇ I‖∞‖h‖∞

+ 2
√

|Q̃|‖I ◦ ϕ − I ′‖2‖∇ I ◦ ϕ − ∇ I ◦ ϕ′‖∞‖h‖∞,

where Q̃ is a compact set containing all (ϕ′)−1(QI ) for ‖ϕ′ − ϕ‖∞ ≤ 1. The facts
that I and ∇ I are uniformly continuous on QI imply that ‖I ◦ ϕ − I ◦ ϕ′‖∞ and
‖∇ I ◦ ϕ − ∇ I ◦ ϕ′‖∞ tend to 0 as ‖ϕ − ϕ′‖∞ tends to 0. (We have denoted by |Q̃|
the Lebesgue measure of the set Q̃.)

As a composition of C1 functions, we find that UI is C1 on Diff p+1,∞
0 for any

p ≥ 0, with (applying the chain rule)

(dUI (ϕ) | h ) =
− 2

∫

Ω

(I ◦ ϕ−1(x) − I ′(x))∇ I ◦ ϕ−1(x)T d(ϕ−1)h ◦ ϕ−1(x) dx . (9.17)

Notice that ∇(I ◦ ϕ−1)T = (∇ I T ◦ ϕ−1)d(ϕ−1), so that

(dUI (ϕ) | h ) = −2
∫

Ω

(I ◦ ϕ−1(x) − I ′(x))∇(I ◦ ϕ−1)(x)T h ◦ ϕ−1(x) dx

and we retrieve the formula

(dUI (ϕ) | h ) = (
dUϕ·I (id)

∣∣ h ◦ ϕ−1
)
.
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The Eulerian derivative is given by

(
∂̄UI (ϕ)

∣∣ v
) = (dUI (id) | v ◦ ϕ )

= −2
∫

Ω

(I ◦ ϕ−1(x) − I ′(x))∇(I ◦ ϕ−1)(x)T v(x) dx .

We introduce a notation that will be used throughout this chapter and that gen-
eralizes the one given for point measures in Eq. (8.4). If μ is a measure on Ω and
z : Ω → R

d a μ-measurable function, the vector measure (zμ) is the linear form
over vector fields on Ω defined by

(zμ | h ) =
∫

Ω

zT hdμ. (9.18)

With this notation we can write

∂̄UI (ϕ) = −2
(
(I ◦ ϕ−1 − I ′)∇(I ◦ ϕ−1)

)
dx . (9.19)

Notice also that, making a change of variable in (9.17), we have

dUI (ϕ) = −2
(
det(dϕ) (I − I ′ ◦ ϕ) dϕ−T∇ I

)
dx . (9.20)

To compute the Eulerian gradient ofUI , we need to apply the kernel operator,K,
to ∂̄UI (ϕ), which requires the following lemma.

Lemma 9.4 If V is a reproducing kernel Hilbert space (RKHS) of vector fields on
Ω with kernel operatorK and kernel K , μ is a measure on Ω and z a μ-measurable
function from Ω to Rd , then, for all x ∈ Ω ,

K(zμ)(x) =
∫

Ω

K (x, y)z(y)dμ(y).

Proof From the definition of the kernel, we have, for any a ∈ R
d :

aT
K(zμ)(x) = (aδx |K(zμ) )

= (zμ |K(aδx ) )

= (zμ | K (., x)a )

=
∫

Ω

zT (y)K (y, x)adμ(y)

= aT
∫

Ω

K (x, y)z(y)dμ(y),

which proves Lemma 9.4. �
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The expression of the Eulerian gradient of UI is now given by Lemma 9.4:

∇V
UI (ϕ) = −2

∫

Ω

(I ◦ ϕ−1(y) − I ′(y))K (., y)∇(I ◦ ϕ−1)(y)dy. (9.21)

This provides the following “greedy” image-matching algorithm [67, 278].

Algorithm 9.5 Greedy image matching Start with ϕ(0) = id and solve the evolu-
tion equation

∂tϕ(t, y) = 2
∫

Ω

(J (t, x) − I ′(x))K (ϕ(t, y), x)∇ J (t, x)dx (9.22)

with I (t, ·) = I ◦ (ϕ(t))−1.

This algorithm can also be written uniquely in terms of the evolving image, J , using
∂t J ◦ ϕ + (J ◦ ϕ)T∂tϕ = 0. This yields

∂t J (t, y) = −2
∫

Ω

K (y, x)(J (t, x) − I ′(x))∇ J (t, x)T∇ I (t, y)dx .

In contrast to what we did in the landmark case, this algorithm should not be run
indefinitely (or until numerical convergence). The fundamental difference is that, in
the landmark case, there is an infinity of solutions to the diffeomorphic interpolation
problem, and the greedy algorithm would generally run until it finds one of them
and then stabilize. In the case of images, it is perfectly possible (and even typical)
that there is no solution to the matching problem, i.e., no diffeomorphism ϕ such
that I ◦ ϕ−1 = I ′. In that case, Algorithm 9.5 will run indefinitely, creating huge
deformations while trying to solve an impossible problem.

To decide when the evolution should be stopped, an interesting suggestion has
been made in [278]. Define

v(t, x) = 2
∫

Ω

(J (t, x) − I ′(x))K (y, x)∇ J (t, x)dx

so that (9.22) reduces to ∂tϕ = v(t) ◦ ϕ. As we know from Chap.7, the smoothness
of ϕ at time t can be controlled by

∫ t

0
‖v(s)‖2V ds,

the norm being explicitly given by

‖v(s)‖2V
= 2

∫

Ω×Ω

K (y, x)(J (s, x) − I ′(x))(J (s, y) − I ′(y))∇ J (s, x)T∇ J (s, y)dxdy.
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Fig. 9.2 Greedy image matching. Output of Algorithm 9.5 when estimating a deformation of the
first image to match the second one. The third image is the obtained deformation of the first one
and the last provides the deformation applied to a grid

Define, for some parameter λ,

E(t) = 1

t

∫ t

0
‖v(s)‖2V ds + λ

∫

Ω

(J (t, y) − I ′(y))2dy.

Then, the stopping time proposed in [278] for Algorithm 9.5 is the first t at which
E(t) stops decreasing. Some experimental results using this algorithm and stopping
rule are provided in Fig. 9.2.

There are many other possible choices for a matching criterion, least squares
being, as we wrote, the simplest one. Among other possibilities, comparison criteria
involving histograms provide an interesting option, because they allow for contrast-
invariant comparisons.

Given a pair of images, I , I ′, associate to each x ∈ Ω and image valuesλ andλ′ the
local histogram Hx (λ,λ′), which counts the frequency of simultaneous occurrence
of values λ in I and λ′ in I ′ at the same location in a small window around x . One
computationally feasible way to define it is to use the kernel estimator
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HI,I ′(x,λ,λ′) =
∫

Ω

f (|I (y) − λ|) f (∣∣I ′(y) − λ′∣∣)g(x, y)dy

in which f is a positive function such that
∫
R
f (t)dt = 1 and f vanishes when t is

far from 0, and g ≥ 0 is such that for all x ,
∫
Ω

g(x, y)dy = 1 and g(x, y) vanishes
when y is far from x .

For each x , HI,I ′(x, ·, ·) is a bi-dimensional probability function, and there exist
several ways of measuring the degree of dependence between its components. The
simplest one, which is probably sufficient for most applications, is the correlation
ratio, given by

CI,I ′(x) = 1 −
∫
R2 λλ′HI,I ′(x,λ,λ′)dλdλ′

√∫
R2 λ2HI,I ′(x,λ,λ′)dλdλ′ ∫

R2(λ′)2HI,I ′(x,λ,λ′)dλdλ′
.

It is then possible to define the matching function by

UI (ϕ) =
∫

Ω

CI◦ϕ−1,I ′(x)dx .

The differential ofUI with respect to ϕ can be obtained after a lengthy (but elemen-
tary) computation. Some details can be found in [145]. A slightly simpler option is
to use criteria based on the global histogram, which is defined by

HI,I ′(λ,λ′) =
∫

Ω

f (|I (y) − λ|) f (∣∣I ′(y) − λ′∣∣)dy,

and the matching criterion is simply UI (ϕ) = CI◦ϕ−1,I ′ or, as introduced in
[185, 298], the mutual information computed from the joint histogram.

9.6 Measure Matching

The running assumption in Sect. 9.4was that the point sets (x1, . . . , xN )were labeled,
so that, when comparing two of them, the correspondences were known and the
problem was to extrapolate them to the whole space.

In some applications, correspondences are not given and need to be inferred as
part of the matching problem. One way to handle this is to include them as new
unknowns (in addition to the unknown diffeomorphism), add extra terms to the
energy that measures the quality of correspondences, and minimize the whole thing.
Such an approach is taken, for example, in [240, 241].

Another point of view is to start with a representation of the point set that does not
depend on how the points are ordered. A natural mathematical representation of a
subset ofRd is by the uniform measure on this set, at least when this is well-defined.
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For a very general class of sets, this corresponds to the Hausdorff measure for the
appropriate dimension [107], which, for finite sets, simply provides the sum of Dirac
measures at each point, i.e., x = (x1, . . . , xN ) is represented by

μx =
N∑

i=1

δxi .

For us, this raises the issue of comparing measures using diffeomorphisms, which
will be referred to as the measure-matching problem.

In line with all other matching problems we are considering in this chapter, spe-
cifying the measure-matching problem requires, first, defining the action of diffeo-
morphisms on the considered objects, and second, using a good comparison criterion
between two objects.

Let us start with the action of diffeomorphisms. The only fact we need here
concerning measures is that they are linear forms acting on functions on R

d via

(μ | f ) =
∫

Rd

f dμ.

In particular, if μx is as above, then

(μx | f ) =
N∑

i=1

f (xi ).

If ϕ is a diffeomorphism of Ω and μ a measure, we define a new measure
ϕ · μ by

(ϕ · μ | f ) = (μ | f ◦ ϕ ).

It is straightforward to check that this provides a group action. If μ = μx , we have

(ϕ · μx | f ) =
N∑

i=1

f ◦ ϕ(xi ) = (
μϕ(x)

∣∣ f
)
,

so that the transformation of the measure associated to a point set x is the measure
associated to the transformed point set, which is reasonable.

When μ has a density with respect to Lebesgue measure, say μ = zdx , this action
can be translated to a resulting transformation over densities as follows.

Proposition 9.6 If μ = z dx, where z is a positive, Lebesgue integrable function on
Ω ⊂ R

d , and ϕ is a diffeomorphism of Ω , then

ϕ · μ = det(d(ϕ−1)) z ◦ ϕ−1 dx . (9.23)
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The proposition is an immediate consequence of the definition of ϕ · μ and of the
change of variable formula (details are left to the reader). Note that the action of
diffeomorphisms does not change the total mass of a positive measure, that is (ϕ ·
μ)(Ω) = μ(Ω) if ϕ is a diffeomorphism of Ω .

Now that we have defined the action, we need to choose a function D(μ,μ′)
to compare two measures μ and μ′. Many such functions exist, especially when
measures are normalized to have a unit mass, since this allows for the use of
many comparison criteria defined in probability or information theory (such as
the Kullback–Leibler divergence [75]). A very general example is the Wasserstein
distance [238, 301], which is associated to a positive, symmetric, cost function
ρ : Ω × Ω → [0,+∞) and defined by

dρ(μ,μ′) = inf
ν

∫

Ω2
ρ(x, y)ν(dx, dy), (9.24)

where theminimization is over all ν with the first marginal given byμ, and the second
one by μ′. If μ and μ′ are uniform measures on discrete point sets, i.e.,

μ = 1

N

N∑

k=1

δxk , μ′ = 1

M

M∑

k=1

δx ′
k
,

then computing the Wasserstein distance reduces to minimizing

N∑

k=1

M∑

l=1

ρ(xk, x
′
l )ν(xk, x

′
l )

subject to the constraints

M∑

l=1

ν(xk, x
′
l ) = 1/N and

N∑

k=1

ν(xk, x
′
l ) = 1/M.

This linear assignment problem is solved by finite-dimensional linear programming.
If this is combined with diffeomorphic interpolation, i.e., if one tries to compute a
diffeomorphism ϕ minimizing dρ(ϕ · x, x ′), this results in a formulation that mixes
discrete and continuous optimization problems, similar to the methods introduced in
[240]. TheWasserstein distance is also closely related to the mass transport problem,
which can also be used to estimate diffeomorphisms, and will be discussed in the
next chapter. For the moment, we focus on matching functionals associated with
measures, and start with the case in which the compared measures are differentiable
with respect to Lebesgue measure, i.e., with the problem of matching densities.



258 9 Deformable Objects and Matching Functionals

9.6.1 Matching Densities

Since densities are scalar-valued functions, we can use standard norms to design
matching functionals for them. As an example, we can take the simplest case of
the L2 norm, as we did with images. The difference with the image case is that the
action is different, and has the interesting feature of involving the derivative of the
diffeomorphism, via the Jacobian determinant.

So, let us consider the action ϕ � ζ given by

ϕ � ζ = det(d(ϕ−1)) z ◦ ϕ−1

and use the matching functional

Uζ(ϕ) = Eζ,ζ ′(ϕ) =
∫

Ω

(ϕ � ζ − ζ ′)2dx .

Since we will need it for the differentiation of the Jacobian, we recall the following
standard result on the derivative of the determinant.

Proposition 9.7 Let F(A) = det(A) be defined over Mn(R), the space of all n by
n matrices. Then, for any A, H ∈ Mn(R),

dF(A)H = trace(Adj(A)H), (9.25)

where Adj(A) is the adjugate matrix of A, i.e., the matrix with (i, j) entry given
by the determinant of A with the j th row and ith column removed, multiplied by
(−1)i+ j . (When A is invertible Adj(A) = det(A) A−1.)

For A = Id, we have
dF(Id)H = trace(H). (9.26)

Proof To prove this proposition, start with A = Id and use the facts that, if δi j is the
matrix with 1 as the (i, j) entry and 0 everywhere else, then det(Id + εδi j ) = 1 + ε
if i = j and 1 otherwise, which directly gives (9.26). Then, prove the result for an
invertible A using

det(A + εH) = det(A) det(Id + εA−1H)

and the fact that, when A is invertible, det(A)A−1 = Adj(A). This also implies
the result for a general (not necessarily invertible) A because the determinant is
a polynomial in the entries of a matrix, and so are its partial derivatives, and the
coefficients of these polynomials are fully determined by the values taken on the
dense set of invertible matrices. �

We have

Uζ(ϕ) =
∫

Ω

(
det(d(ϕ−1)) ζ ◦ ϕ−1 − ζ ′)2 dx .
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Under the assumptions that ζ is C1 and compactly supported and that ζ ′ is square
integrable, one can prove that Eζ,ζ ′ is C1 when defined over Diff p+2,∞

0 with p ≥ 0
(the details are left to the reader). To compute the derivative at any given ϕ, it will
be convenient to use the trick described at the end of Sect. 9.2, starting with the
computation of the differential at the identity and deducing from it the differential at
any ϕ by replacing ζ by ϕ · ζ.

Ifϕ(ε, ·) is a diffeomorphism that depends on a parameter ε, such thatϕ(0, ·) = id
and ∂εϕ(0, ·) = h ∈ C p+2

0 (Ω,Rd), then, at ε = 0, ∂εζ ◦ ϕ(ε, ·)−1 = −∇ζT h and
∂ε det(d(ϕ(ε, ·)−1)) = −trace(dh) = −div h. This implies that

∂ε

(
ζ ◦ ϕ(ε, ·)−1 det(d(ϕ(ε, ·))−1)

) = −∇ζT h − ζ div h = −div(ζh)

at ε = 0 and

∂εUζ(ϕε)|ε=0 = −2
∫

Ω

(ζ − ζ ′)div(ζh) dx .

So this gives
(
dUζ(id)

∣∣ h
) = −2

∫

Ω

(ζ − ζ ′)div(ζh) dx

and
(
dUζ(ϕ)

∣∣ h
) = −2

∫

Ω

(ϕ � ζ − ζ ′)(div((ϕ � ζ)h) dx . (9.27)

We can use the divergence theorem to obtain an alternative expression (using the fact
that h vanishes on ∂Ω or at infinity), yielding

(
dUζ(ϕ)

∣∣ h
) = 2

∫

Ω

∇(ϕ � ζ − ζ ′)(ϕ � ζ)hdx (9.28)

or
dUζ(ϕ) = 2(ϕ � ζ)∇(ϕ � ζ − ζ ′)dx . (9.29)

One can appreciate the symmetry of this expression compared with the one obtained
with images in (9.19).

9.6.2 Dual RKHS Norms on Measures

One of the limitations of functional norms, such as the L2 norm, is that they do not
apply to singular objects such as the Dirac measures that motivated our study of the
measure-matching problem. It is certainly possible to smooth out singular objects
and transform them into densities that can be compared using the previous matching
functional. For example, given a density function ρ (a Gaussian, for example) and a
point set (x1, . . . , xN ), one can compute a density
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ζx (y) =
N∑

k=1

ρ
( y − xk

σ

)
, (9.30)

where σ is a positive scale parameter (this is a standard kernel density estimator).
One can then compare two point sets, say x and x ′, by comparing the associated ζx
and ζx ′ using the previous method.

The representation in (9.30) is somewhat imperfect, in the sense that, for the natu-
ral actions we have defined, we have in general ϕ � ζx = ζϕ·x : the density associated
to a deformed point set is not the deformed density. If the goal is to compare two
point sets, it makes more sense to use ζϕ·x instead of ϕ · ζx as a density resulting
from the deformation, and to rather use the cost function

Ux (ϕ) = Ex,x ′(ϕ) =
∫

Rd

(ζϕ·x − ζx ′)2dy, (9.31)

which can be written, if x = (x1, . . . , xN ) and x ′ = (x ′
1, . . . , x

′
M), and introducing

the function

ξ(z, z′) =
∫

Rd

ρ
( y − z

σ

)
ρ
( y − z′

σ

)
dy, (9.32)

as

Ux (ϕ) =
N∑

k,l=1

ξ(ϕ(xk),ϕ(xl))

− 2
N∑

k=1

M∑

l=1

ξ(ϕ(xk), x
′
l ) +

M∑

k,l=1

ξ(x ′
k, x

′
l ). (9.33)

Before computing the variations of this energy, we make the preliminary remark
that the obtained expression is a particular case of what comes from a representation
of measures as linear forms over RKHSs of scalar functions. Indeed, since measures
are linear forms on functions, we can evaluate their dual norm, given by

‖μ‖ = sup {(μ | f ) : ‖ f ‖ = 1} . (9.34)

Following [128], assume that the function norm in (9.34) is that of an RKHS. More
precisely, let W be an RKHS of real-valued functions, so that we have an operator
KW : W ∗ → W with KW δx := ξ(·, x) and with the identity (μ | f ) = 〈

KWμ , f
〉
W

for μ ∈ W ∗, f ∈ W . With this choice, (9.34) becomes

‖μ‖W ∗ = sup {(μ | f ) : ‖ f ‖W = 1}
= sup

{〈
KWμ , f

〉
W : ‖ f ‖W = 1

}

= ‖KWμ‖W .
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This implies that
‖μ‖2W ∗ = 〈

KWμ , KWμ
〉
W = (μ |KWμ ).

If μ is a measure, this expression is very simple and is given by

‖μ‖2W ∗ =
∫

ξ(x, y)dμ(x)dμ(y).

This is becauseKWμ(x) = (δx |KWμ ) = (μ |KW δx ) = ∫
ξ(y, x)dμ(y). Sowe can

take
Uμ(ϕ) = Eμ,μ′(ϕ) = ‖ϕ · μ − μ′‖2W ∗ . (9.35)

Expanding the norm, we get

Uμ(ϕ) = 〈
ϕ · μ , ϕ · μ

〉
W ∗ − 2

〈
ϕ · μ , μ′〉

W ∗ + 〈
μ′ , μ′〉

W ∗

= (ϕ · μ | ξ(ϕ · μ) ) − 2
(
ϕ · μ

∣∣ ξμ′ ) + (
μ′ ∣∣ ξμ′ )

=
∫

ξ(ϕ(x),ϕ(y))dμ(x)dμ(y) − 2
∫

ξ(ϕ(x), y)dμ(x)dμ′(y)

+
∫

ξ(x, y)dμ′(x)dμ′(u).

We retrieve (9.33) when μ and μ′ are sums of Dirac measures and ξ is chosen as in
(9.32), but the RKHS formulation is more general.

Assume that μ is bounded and that ξ is continuously differentiable and bounded,
with bounded derivatives. Then (leaving the proof to the reader)UI is C1 on Diff p,∞0
for any p ≥ 0 with derivative

(
∂Uμ(ϕ)

∣∣ h
) = 2

∫
∇1ξ(ϕ(x),ϕ(y))T h(x)dμ(x)dμ(y)

−2
∫

∇1ξ(ϕ(x), z)T h(x)dμ(x)dμ′(z).

In particular,

dUμ(id) = ∂̄Uμ(id) = 2

(∫
∇1ξ(·, y)dμ(y) −

∫
∇1ξ(·, z)dμ′(z)

)
μ. (9.36)

To obtain the Eulerian differential at a generic ϕ, it suffices to replace μ by ϕ · μ,
which yields:

Proposition 9.8 The Eulerian derivative and gradient of (9.35) are

∂̄Uμ(ϕ) = 2

(∫
∇1ξ(·,ϕ(y))dμ(y) −

∫
∇1ξ(·, z)dμ′(z)

)
(ϕ · μ) (9.37)
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and

∇V
Uμ(ϕ)(·) = 2

∫
K (·,ϕ(x))

(∫
∇1ξ(ϕ(x),ϕ(y))dμ(y) − ∇1ξ(ϕ(x), z)dμ′(z)

)
dμ(x). (9.38)

The derivative of the expression in (9.33) can be directly deduced from this expres-
sion. This leads to the following unlabeled point-matching evolution for point sets
x = (x1, . . . , xN ) and x ′ = (x ′

1, . . . , x
′
M):

∂tϕ(z) = −2
N∑

i=1

K (ϕ(z),ϕ(xi ))

⎛

⎝
N∑

j=1

∇1ξ(ϕ(xi ),ϕ(x j )) −
M∑

h=1

∇1ξ(ϕ(xi ), x
′
h)

⎞

⎠ . (9.39)

As discussed in the case of labeled point sets, this equation may be solved in two
stages: letting zi (t) = ϕ(t, xi ), first solve the system

∂t zq = −2
N∑

i=1

K (zq , zi )

⎛

⎝
N∑

j=1

∇1ξ(zi , z j ) −
M∑

h=1

∇1ξ(zi , x
′
h)

⎞

⎠ .

Once this is done, the trajectory of an arbitrary point z(t) = ϕt (z0) is

∂t z = −2
N∑

i=1

K (z, zi )

⎛

⎝
N∑

j=1

∇1ξ(zi , z j ) −
M∑

h=1

∇1ξ(zi , x
′
h)

⎞

⎠ .

9.7 Matching Curves and Surfaces

Curves in two dimensions and surfaces in three dimensions are probably the most
natural representations of shapes, and their comparison using matching functionals
is a fundamental issue. In this section, we discuss a series of representations that can
be seen as extensions of measure-matching methods. (This is not the unique way to
compare such objects, and we will see a fewmore methods in the following chapters,
especially for curves.)

Note that we are looking here for correspondences between points in the curves
and surfaces that derive from global diffeomorphisms of the ambient space. The
curve- (or surface-) matching problems are often studied in the literature as attempts
to find diffeomorphic correspondences between points along the curve (or surface)
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only. Even if such restricted diffeomorphisms can generally be extended to diffeo-
morphisms of the whole space, the two approaches generally lead to very different
algorithms. The search for correspondences within the structures is often imple-
mented as a search for correspondences between parametrizations. This is easier for
curves (looking, for example, for correspondences of the arc-length parametriza-
tions), than for surfaces, which may not be topologically equivalent in the first place
(a sphere cannot be matched to a torus); when matching topologically equivalent
surfaces, special parametrizations, like conformal maps [72, 269] can be used. In
this framework, once parametrizations are fixed, one can look for diffeomorphisms
in parameter space that optimally align somewell-chosen, preferably intrinsic, repre-
sentation. In the case of curves, one can choose the representation s �→ κγ(s), where
κγ is the curvature of a curve γ, with the curve rescaled to have length 1 to fix the
interval over which this representation is defined. One can then use image-matching
functionals to compare them, i.e., find ϕ (a diffeomorphism of the unit interval) such
that ϕ · κγ � κγ′ .

But, as we wrote, the main focus in this chapter is the definition of matching
functionals for deformable objects in R

d , and we now address this problem for
curves and surfaces.

9.7.1 Curve Matching with Measures

We can arguably make a parallel between point sets and curves in that labeled point
sets correspond to parametrized curves and unlabeled point sets to curves mod-
ulo parametrization. In this regard we have a direct generalization of the labeled
point-matching functional to parametrized curves (assumed to be defined over the
same interval, say [0, 1]), simply given by

Eγ,γ′(ϕ) =
∫ 1

0
|ϕ(γ(u)) − γ′(u)|2du.

But being given two consistent parametrizations of the curves (to allow for direct
comparisons as done above) almost never happens in practice. Interesting formu-
lations of the curve matching problem should therefore consider curves modulo
parametrization, so that the natural analogy is with unlabeled point sets. The coun-
terpart of a uniform measure over a finite set of points is the uniform measure on the
curve, defined by, if γ, parametrized over an interval [a, b], is C1 and regular

(
μγ

∣∣ f
) =

∫

γ

f dσγ =
∫ b

a
f (γ(u)) |γ̇(u)| du.

This is clearly a parametrization-independent representation. Now, if ϕ is a diffeo-
morphism, we have, by definition of the action of diffeomorphisms on measures
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(
ϕ · μγ

∣∣ f
) =

∫

γ

f ◦ ϕ dσγ =
∫ b

a
f (ϕ(γ(u))) |γ̇(u)| du.

However, we have

(
μϕ·γ

∣∣ f
) =

∫

ϕ(γ)

f dσϕ(γ) =
∫ b

a
f (ϕ(γ(u))) |dϕ(γ(u))γ̇(u)| du.

So, in contrast to point sets, for which we had ϕ · μx = μϕ(x), the image of the
measure associated to a curve is not the measure associated to the image of a curve.
When the initial goal is to compare curves, and not measures, it is more natural to
use the second definition, μϕ·γ , rather than the first one. Using the notation of the
previous section, and introducing a target curve γ′ defined on [a′, b′], we can set

Eγ,γ′(ϕ) = ‖μϕ·γ − μγ′ ‖2W ∗ (9.40)

= 〈
μϕ·γ , μϕ·γ

〉
W ∗ − 2

〈
μϕ·γ , μγ′

〉
W ∗ + 〈

μγ′ , μγ′
〉
W ∗

= (
μϕ·γ

∣
∣ ξ(μϕ·γ)

) − 2
(
μϕ·γ

∣
∣ ξμγ′

) + (
μγ′

∣
∣ ξμγ′

)

=
∫ b

a

∫ b

a
ξ(ϕ(γ(u)),ϕ(γ(v))) |dϕ(γ(u))γ̇(u)| |dϕ(γ(v))γ̇(v)| dudv

− 2
∫ b

a

∫ b′

a′
ξ(ϕ(γ(u)), γ′(v)) |dϕ(γ(u))γ̇(u)| |γ̇′(v)| dudv

+
∫ b′

a′

∫ b′

a′
ξ(γ′(u), γ′(v)) |γ̇′(u)| |γ̇′(v)| dudv.

If ξ is C1, then Eγ,γ′ is C1 on Diff p+1,∞
0 for any p ≥ 0. To explicitly compute the

derivative, take ϕ(ε, ·) such that ϕ(0, ·) = id and ∂εϕ(0, ·) = h, so that

∂εE(ϕ(ε, ·)) = 2∂ε

〈
μϕ(ε,·)·γ − μγ′ , μγ − μγ′

〉
W ∗ = 2∂ε

〈
μϕ(ε,·)·γ , μγ − μγ′

〉
W ∗ ,

the derivatives being computed at ε = 0. Introduce

Ẽ(ϕ) = 〈
μϕ·γ , μγ − μγ′

〉
W ∗

and let, for a given curve γ̃,

Z γ̃(·) =
∫

γ̃

ξ(·, p)dσγ̃(p). (9.41)

Let also ζ = Zγ − Zγ′
and, for further use, ζϕ = Zϕ·γ − Zγ′

. With this notation, we
have

Ẽ(ϕ) =
∫

ϕ(γ)

ζ(p)dσϕ(γ)(p)

and we can use Theorem 5.2 to derive, letting p0 and p1 be the extremities of γ,
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∂ε Ẽ(ϕ(ε, ·))|ε=0 = ζ(p1)h(p1)
T T γ(p1) − ζ(p0)h(p0)

T T γ(p0)

+
∫

γ

(∇ζT N γ − ζκγ
)
hT N γdl.

Replacing γ by ϕ · γ, this provides the expression of the Eulerian derivative of E
at ϕ, namely

1

2
∂̄Eγ,γ′(ϕ) = ζϕT γ(δp1−δp0)

+ (
(∇ζϕ)T Nϕ·γ − ζϕκϕ·γ)Nϕ·γμϕ·γ . (9.42)

The Eulerian gradient on V therefore is

1

2
∇̄Eγ,γ′(ϕ) = K (·, p1)ζϕ(p1)T

γ(p1) − K (·, p0)ζϕ(p0)T
γ(p0)

+
∫

ϕ·γ

(
∇ζϕ(p)T Nϕ·γ(p) − ζϕ(p)κϕ·γ(p)

)
K (·, p)Nϕ·γ(p)dσϕ·γ(p). (9.43)

To write this expression, we have implicitly assumed that γ is C2. In fact, we
can give an alternative expression for the Eulerian gradient that does not require
this assumption, by directly computing the variation of Ẽ(ϕ(ε, ·)) without applying
Theorem 5.2. This yields, using the fact that, if z is a function of a parameter ε, then
∂ε|z| = (żT z)/|z|,

∂ε|dϕ(ε, ·)(γ)γ̇||ε=0 = (T γ)T dh(γ)γ̇ = (T γ)T dh(γ)T γ |γ̇|

and ∂ε Ẽ(ϕ(ε, ·)) =
∫

γ

(∇ζT h + ζ(T γ)T dhT γ
)
dσγ .

The term involving dh can be written in terms of V -dot products of h with derivatives
of the kernel, K , since (we use the notation introduced in Sect. 8.1.3, Eq. (8.9))

aT dh(x)b = 〈
h , ∂2K (·, x)(a, b)

〉
V . (9.44)

This gives

∂ε Ẽ(ϕ(ε, ·)) =
∫

γ

(〈
K (·, p)∇ζ(p) , h

〉
V

+ 〈
ζ(p)∂2K (·, p)(T γ(p), T γ(p)) , h

〉
V

)
dσγ(p)

and a new expression of the Eulerian gradient
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1

2
∇V

Eγ,γ′(ϕ) =
∫

ϕ·γ

(
K (·, p)∇ζϕ(p)

+ ζϕ(p)∂2K (., p)(T ϕ·γ(p), T ϕ·γ(p))
)
dσγ(p). (9.45)

To be complete, let us consider the variation of a discrete form of Eγ,γ′(ϕ). If a
curve γ is discretized with points x0, . . . , xN (with xN = x0 if the curve is closed),
one can define the discrete measure, still denoted μγ

(
μγ

∣∣ f
) =

N∑

i=1

f (ci )|τi |

with ci = (xi + xi−1)/2 and τi = xi − xi−1. Use a similar expression for themeasure
associated to a discretization of ϕ · γ, with cϕ

i = (ϕ(xi ) + ϕ(xi−1))/2 and τ
ϕ
i =

ϕ(xi ) − ϕ(xi−1). Finally, let γ′ be discretized in x ′
1, . . . , x

′
M , and define

Eγ,γ′(ϕ) =
N∑

i, j=1

ξ(cϕ
i , cϕ

j )|τϕ
i | |τϕ

j | (9.46)

− 2
N∑

i=1

N∑

j=1

ξ(cϕ
i , c′

j )|τϕ
i | |τ ′

j | +
M∑

i, j=1

ξ(c′
i , c

′
j )|τ ′

i | |τ ′
j |

in which we identify indices 1 and N + 1 or M + 1 (assuming closed curves). Note
that this functional depends on ϕ · x and x ′. The computation of the differential
proceeds as above. Define, for a point set x̃ = (x̃1, . . . , x̃Q)

Z x̃ (·) =
Q∑

j=1

ξ(·, c̃ j )|τ̃ j |,

and ζ = Zx − Zx ′
, ζϕ = Zϕ·x − Zx ′

. We then obtain

1

2
dEγ,γ′(id) =

N∑

i=1

(∇ζ(ci )|τi | + ∇ζ(ci+1)|τi+1|)δxi

− 2
N∑

i=1

(
ζ(ci+1)

τi+1

|τi+1| − ζ(ci )
τi

|τi |
)
δxi .

The Eulerian differential at ϕ = id is obtained by replacing ζ, ci , τi by ζϕ, cϕ
i , τ

ϕ
i

and the Eulerian gradient by applying the V -kernel to it.



9.7 Matching Curves and Surfaces 267

9.7.2 Curve Matching with Vector Measures

Instead of describing a curve with a measure, which is a linear form on functions,
it is possible to represent it by a vector measure, which is a linear form on vector
fields. Given a parametrized curve γ : [a, b] → R

d , we define a vector measure νγ ,
which associates to each vector field f on Rd a number

(
νγ

∣∣ f
)
given by

(
νγ

∣∣ f
) =

∫ b

a
γ̇(u)T f ◦ γ(u)du,

i.e., νγ = T γμγ where T γ is the unit tangent to γ and μγ is the line measure along
γ, as defined in the previous section. This definition is invariant under a change of
parametrization, but depends on the orientation of γ. If ϕ is a diffeomorphism, we
then have

νϕ·γ( f ) =
∫ b

a
(dϕ(γ(u))γ̇(u))T f ◦ ϕ(γ(u))du.

As done with scalar measures, we can use a dual norm for the comparison of two
vector measures. Such a norm is defined by

‖ν‖W ∗ = sup {(ν | f ) : ‖ f ‖W = 1} ,

where W is now an RKHS of vector fields, and we still have ‖ν‖2W ∗ = (ν |KWν ).
Still letting ξ denote the kernel of W (which is now matrix-valued), we have

‖νγ‖2W ∗ =
∫ b

a

∫ b

a
γ̇(u)T ξ(γ(u), γ(v))γ̇(v)dudv

and

‖νϕ·γ‖2W ∗ =
∫ b

a

∫ b

a
γ̇(u)T dϕ(γ(u))T ξ(ϕ(γ(u)),ϕ(γ(v)))dϕ(γ(v))γ̇(v)dudv.

Define Eγ,γ′(ϕ) = ‖νϕ·γ − νγ′ ‖2W ∗ . We follow the same pattern as in the previous
section and define

Ẽ(ϕ) = 〈
νϕ·γ , νγ − νγ′

〉
W ∗ ,

which (introducing ϕ(ε, ·) with ϕ(0, ·) = id and ∂εϕ(0, ·) = h) is such that
∂εE(ϕ(ε, ·)) = 2∂ε Ẽ(ϕ(ε, ·)) at ε = 0. Define

Z γ̃(·) =
∫

γ̃

ξ(·, p)N γ̃(p)dp,

and ζ = Zγ − Zγ′
, ζϕ = Zϕ·γ − Zγ′

, so that (using (T ϕ·γ)T T γ′ = (Nϕ·γ)T N γ′
)
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Ẽ(ϕ) =
∫

ϕ·γ
ζT Nϕ·γdσϕ·γ .

We can use Theorem 5.2, Eq. (5.4), to find

∂εE(ϕ(ε, ·)) = −[det(ζ, h)]Δ0 +
∫

γ

div(ζ)(N γ)T hdl.

This yields in turn (replacing γ by ϕ · γ, and letting p0 and p1 be the extremities of
γ)

1

2
∂̄Eγ,γ′(ϕ) = −(Rπ/2ζ

ϕ)(δϕ(p1) − δϕ(p0)) + div(ζϕ)νϕ·γ, (9.47)

where Rπ/2 is a 90o rotation. This final expression is remarkably simple, especially
for closed curves, for which the first term cancels. A discrete version of the matching
functional can also be defined, namely, using the notation of the previous section:

Eγ,γ′(ϕ) =
N∑

i, j=1

ξ(cϕ
i , cϕ

j )(τ
ϕ
i )T τ

ϕ
j

−2
N∑

i=1

N∑

j=1

ξ(cϕ
i , c′

j )(τ
ϕ
i )T τ ′

j +
M∑

i, j=1

ξ(c′
i , c

′
j )(τ

′
i )

T τ ′
j .

We leave the computation of the associated Eulerian differential (which is a slight
variation of the one we made with measures) to the reader.

9.7.3 Surface Matching

We now extend to surfaces the matching functionals that we just studied for curves.
The construction is formally very similar. If S is a surface in R3, one can compute a
measure μS and a vector measure νS defined by

(μS | f ) =
∫

S
f (x)dσS(x) for a scalar f (9.48)

and

(νS | f ) =
∫

S
f (x)T N (x)dσS(x) for a vector field f, (9.49)

where dσS is the volume measure on S and N is the unit normal (S being assumed
to be oriented in the definition of νS).

We state without proof the following result:
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Proposition 9.9 If S is a surface and ϕ a diffeomorphism of R3 that preserves the
orientation (i.e., with positive Jacobian), we have

(
μϕ(S)

∣∣ f
) =

∫

S
f ◦ ϕ(x)|dϕ(x)−T N | det(dϕ(x))dσS(x)

for a scalar f and for a vector-valued f ,

(
νϕ(S)

∣∣ f
) =

∫

S
f ◦ ϕ(x)T dϕ(x)−T N det(dϕ(x))dσS(x).

If e1(x), e2(x) is a basis of the tangent plane to S at x, we have

dϕ(x)−T N det(dϕ(x)) = (dϕ(x)e1 × dϕ(x)e2)/|e1 × e2|. (9.50)

The last formula implies in particular that if S is parametrized by
(u, v) �→ m(u, v), then (since N = (∂1m × ∂2m)/|∂1m × ∂2m| and dσS = |∂1m ×
∂2m| dudv)

(νS | f ) =
∫

f (x)T (∂1m × ∂2m)dudv

=
∫

det(∂1m, ∂2m, f )dudv

and
(
νϕ(S)

∣∣ f
) =

∫
det(dϕ∂1m, dϕ∂2m, f ◦ ϕ)dudv.

IfW is an RKHS of scalar functions or vector fields, we can compare two surfaces
by using the norm of the difference of their associated measures on W ∗. So define
(in the scalar measure case)

ES,S′(ϕ) = ‖μϕ·S − μS′ ‖2W ∗ (9.51)

and the associated
Ẽ(ϕ) = 〈

μϕ·S , μS − μS′
〉
W ∗

so that, for ϕ(ε, ·) such that ϕ(0, ·) = id and ∂εϕ(0, ·) = h

∂εEγ,γ′(ϕ(ε, ·)) = 2∂ε Ẽ(ϕ(ε, ·)).

To a given surface S̃, associate the function

Z S̃(·) =
∫

S̃
ξ(·, p)dσS̃(p)
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and ζ = Z S − Z S′
, ζϕ = Zϕ·S − Z S′

. Since

Ẽ(ϕ) =
∫

ϕ·S
ζ(p)dσϕ·S(p),

Theorem 5.4 yields

∂ε Ẽ(ϕ(ε, ·)) = −
∫

∂S
ζ (nS)T hdσ∂S

+
∫

S

( − 2ζHS + ∇ζT N S
)
(NS)T hdσS

where HS is the mean curvature on S. This implies

1

2
∂̄ES,S′(ϕ) = −ζϕnϕ·Sμϕ·∂S + ( − 2ζϕHϕ·S + (∇ζϕ)T Nϕ·S)νϕ·S. (9.52)

If we now use vector measures, so that

ES,S′(ϕ) = ‖νϕ·S − νS′ ‖2W ∗ (9.53)

and
Ẽ(ϕ) = 〈

νϕ·S , νS − νS′
〉
W ∗ ,

we need to define

Z S̃(·) =
∫

S̃
ξ(·, p)N S̃dσS̃(p)

and ζ = Z S − Z S′
, ζϕ = Zϕ·S − Z S′

, so that

Ẽ(ϕ) =
∫

ϕ·S
ζT Nϕ·S dσϕ·S.

Variations derive again from Theorem 5.4, yielding

∂ε Ẽ = −
∫

∂S
((ζT N S)(hT nS) − (ζT nS)(hT N S)) dσ∂S

+
∫

S
div(ζ)(NS)T h dσS.
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We therefore have

1

2
∂̄ES,S′(ϕ) = −(

(ζϕ)T Nϕ·S nϕ·S − (ζϕ)T nϕ·S Nϕ·S)μϕ·∂S

+ div(ζϕ)νϕ·S. (9.54)

Again the expression is remarkably simple for surfaces without boundary.
Consider now the discrete case and let S be a triangulated surface [289]. Let

x1, . . . , xN be the vertices of S and f1, . . . , fQ be the faces (triangles) which are
ordered triples of vertices fi = (xi1, xi2, xi3). Let ci be the center of fi , Ni its oriented
unit normal and ai its area. Define the discrete versions of the previous measures by

(μS | h ) =
Q∑

i=1

h(ci )ai , for a scalar h (9.55)

and

(νS | h ) =
Q∑

i=1

(h(ci )
T Ni )ai , for a vector field h. (9.56)

The previous formulae can be written as

(μS | h ) =
K∑

i=1

h
( xi1 + xi2 + xi3

3

)
|(xi2 − xi1) × (xi3 − xi1)|

and

(νS | h ) =
K∑

i=1

h
( xi1 + xi2 + xi3

3

)T

(xi2 − xi1) × (xi3 − xi1),

where the last formula requires that the vertices or the triangles are ordered consis-
tently with the orientation (see Sect. 4.2). The transformed surfaces are now repre-
sented by the same expressions with xik replaced byϕ(xik). If, given two triangulated
surfaces, one defines ES,S′(ϕ) = ‖μϕ·S − μS′ ‖2W ∗ , then (leaving the computation to
the reader)

1

2
∂̄ES,S′(id) =

N∑

k=1

( ∑

i :xk∈ fi

(∇ζ(ci )
ai
3

− ζ(ci )eik × Ni )
)
δxk ,

where eik is the edge opposite xk in fi (oriented so that (xk, eik) is positively ordered),
and ζ = Z S − Z S′

, with

Z S̃(·) =
K̃∑

i=1

ξ(·, c̃i )ãi
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for a triangulated surface S̃. The Eulerian differential at ϕ is obtained by replacing
all xk’s by ϕ(xk).

For the vector-measure form, ES,S′(ϕ) = ‖νϕ·S − νS′ ‖2W ∗ , we get

1

2
∂̄ES,S′(id) =

N∑

k=1

( ∑

i :xk∈ fi

(dζ(ci )Ni )
ai
3

− eik × ζ(ci )
)
δxk

still with ζ = Z S − Z S′
, but with

Z S̃(·) =
K̃∑

i=1

ξ(·, c̃i )Niai .

9.7.4 Induced Actions and Currents

We have designed the action of diffeomorphisms on measures by (ϕ · μ | h ) =
(μ | h ◦ ϕ ). Recall that we have the usual action of diffeomorphisms on functions
defined by ϕ · h = h ◦ ϕ−1, so that we can write (ϕ · μ | h ) = (

μ
∣∣ϕ−1 · h )

. In the
case of curves, we have seen that this action on the induced measure did not corre-
spond to the image of the curve by a diffeomorphism, in the sense that μϕ·γ = ϕ · μγ .
Here, we discuss whether the transformations μγ → μϕ·γ or νγ → νϕ·γ (and the
equivalent transformations for surfaces) can be described by a similar operation, e.g.,
whether one can write (ϕ · μ | h ) = (

μ
∣∣ϕ−1 � h

)
where � would represent another

action of diffeomorphisms on functions (or on vector fields for vector measures).
For μγ , the answer is negative. We have, letting T (γ(u)) be the unit tangent

to γ,

(
μϕ·γ

∣∣ h
) =

∫ b

a
h(ϕ(γ(u)))|dϕ(γ(u))γ̇(u)|du

=
∫ b

a
h(ϕ(γ(u)))|dϕ(γ(u))T (u)||γ̇(u)|du,

so that
(
μϕ·γ

∣∣ h
) = (

μγ

∣∣ h ◦ ϕ|dϕ T |), with some abuse of notation in the last
formula, since T is only defined along γ. The important fact here is that the function
h is transformed according to a rule which depends not only on the diffeomorphism
ϕ, but also on the curve γ, and therefore the result cannot be put in the form ϕ−1 � h.

The situation is different for vector measures. Indeed, we have

νϕ·γ(h) =
∫ b

a
(dϕ(γ(u))γ̇(u))T h ◦ ϕ(γ(u))du

= (
νγ

∣∣ dϕT h ◦ ϕ
)
.
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So, if we define ϕ � h = d(ϕ−1)T h ◦ ϕ−1, we have
(
νϕ·γ

∣∣ h
) = (

νγ

∣∣ϕ−1 � h
)
. The

transformation (ϕ, h) �→ ϕ � h is a valid action of diffeomorphisms on vector fields,
since id � h = h and ϕ � (ψ � h) = (ϕ ◦ ψ) � h, as can easily be checked.

The same analysis can be made for surfaces; scalar measures do not transform
in accordance to an action, but vector measures do. Let us check this last point by
considering the formula in a local chart, where

(
νϕ(S)

∣∣ h
) =

∫
det(dϕ∂1m, dϕ∂2m, h ◦ ϕ)dudv

=
∫

det(dϕ) det(∂1m, ∂2m, (dϕ)−1h ◦ ϕ)dudv

= (
νS

∣∣ det(dϕ)(dϕ)−1h ◦ ϕ
)
.

So, we need here to define

ϕ � h = det(d(ϕ−1))(dϕ−1)−1h ◦ ϕ−1 = (dϕ h/ det(dϕ)) ◦ ϕ−1.

Here again, a direct computation shows that this is an action.
We have just proved that vector measures are transformed by a diffeomorphism ϕ

according to a rule (ϕ · μ | h ) = (
μ

∣∣ϕ−1 � h
)
, the action � being apparently differ-

ent for curves and surfaces. In fact, all these actions (including the scalar one) can be
placed within a single framework if one replaces vector fields by differential forms
and measures by currents [126, 127, 289].

The reader may refer to Sects.B.7.1 and B.7.2 for basic definitions of linear and
differential forms, in which the space of differential k-forms on R

d is denoted Ωk ,
or Ωd

k . We can consider spaces of smooth differential k-forms, and in particular,
reproducing kernel Hilbert spaces of such forms: a space W ⊂ Ωk is an RKHS if,
for every x ∈ R

d and e1, . . . , ek ∈ R
d , the evaluation function

(e1, . . . , ek)δx : q �→ (q(x) | e1, . . . , ek )

belongs to W ∗. Introduce the duality operator, so that KW ((e1, . . . , ek)δx ) ∈ W .
Introduce, for x, y ∈ R

d , the 2k-linear form ξ(x, y) defined by

(ξ(x, y) | e1, . . . , ek; f1, . . . , fk ) = (KW ((e1, . . . , ek)δx )(y) | f1, . . . , fk ).

Notice that this form is skew-symmetric with respect to its first k and its last k
variables and that

〈
ξx (e1, . . . , ek) , ξy( f1, . . . , fk)

〉
W = (ξ(x, y) | e1, . . . , ek; f1, . . . , fk ),

so that ξ may be called the reproducing kernel ofW . Similar to vector fields, kernels
for differential k-forms can be derived from scalar kernels by letting
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(ξ(x, y) | e1, . . . , ek; f1, . . . , fk ) =
ξ(x, y)

〈
e1 × · · · × ek , f1 × · · · × fk

〉
Λd−k

,

(9.57)

where the dot product on the space of k-linear forms, Λk , is the product of coeffi-
cients of the forms over a basis formed by all cross products of subsets of k elements
of an orthonormal basis of Rd , as described in Sect.B.7.1.

Elements of the dual space, W ∗, to W are therefore linear forms over differential
k-forms, and are special instances of k-currents [107, 210] (k-currents are bounded
differential forms over C∞ differential k-forms with compact support, which is less
restrictive than being bounded on W ). Important examples of currents are those
associated to submanifolds of Rd , and are defined as follows. Let M be an oriented
k-dimensional submanifold of Rd . To a differential k-form q, associate the quantity

(ηM | q ) =
∫

M
(q(x) | e1(x), . . . , ek(x) ), dσM(x)

where e1, . . . , ek is, for all x , a positively oriented orthonormal basis of the tangent
space to M at x (by Eq. (B.16), the result does not depend on the chosen basis).

If W is an RKHS of differential k-forms, ηM belongs to W ∗ and we can compute
the dual norm of ηM , which is

‖ηM‖2W ∗ =
∫

M

∫

M
(ξ(x, y) | e1(x), . . . , ek(x); e1(y), . . . , ek(y) )dσM(x)dσM(y)

or, for a scalar kernel defined by (9.57),

‖ηM‖2W ∗ =
∫

M

∫

M
ξ(x, y)

〈
e1(x) × · · · × ek(x) , e1(y) × · · · × ek(y)

〉
Λd−k

dσM(x)dσM(y).

The expressions of ηM and its norm in a local chart of M are quite simple. Indeed,
if (u1, . . . , uk) is the parametrization in the chart and (∂1m, . . . , ∂km) the associated
tangent vectors (assumed to be positively oriented), we have, for a k-form q (using
(B.16))

(q | ∂1m, . . . , ∂km ) = (q | e1, . . . , ek ) det(∂1m, . . . , ∂km)

which immediately yields

(q | ∂1m, . . . , ∂km )du1 . . . duk = (q | e1, . . . , ek )dσM .

We therefore have, in the chart,

(ηM | q ) =
∫

(q | ∂1m, . . . , ∂km )du1 . . . duk
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and similar formulas for the norm.
Now consider the action of diffeomorphisms. If M becomes ϕ(M), the formula

in the chart yields

(
ηϕ(M)

∣∣ q
) =

∫
(q ◦ ϕ | dϕ∂1m, . . . , dϕ∂km )du1 . . . duk

so that
(
ηϕ(M)

∣∣ q
) = (ηM | q̃ ) with

(q̃(x) | f1, . . . , fk ) = (q(ϕ(x)) | dϕ f1, . . . , dϕ fk ).

As we did with vector measures, we can introduce the left action on k-forms (also
called the push-forward of the k-form):

(ϕ � q | f1, . . . , fk ) = (
q ◦ ϕ−1

∣∣ d(ϕ−1) f1, . . . , d(ϕ−1) fk
)

and the resulting action on p-currents

(ϕ · η | q ) = (
η

∣∣ϕ−1 � q
)
, (9.58)

so that we can write ηϕ(M) = ϕ · ηM .
This is reminiscent of what we have obtained for measures, and for vector mea-

sures with curves and surfaces. We now check that these examples are particular
cases of the previous discussion.

Measures are linear forms on functions, which are also differential 0-forms. The
definition (ϕ · μ | f ) = (μ | f ◦ ϕ ) is exactly the same as in (9.58).

Consider now the case of curves, which are 1D submanifolds, so that k = 1. If γ
is a curve, and T is its unit tangent, we have

(
ηγ

∣∣ q
) =

∫

γ

(q(γ) | T )dσγ =
∫ b

a
(q(γ(u)) | γ̇(u) )du.

To a vector field h on R
d , we can associate the differential 1-form qh defined by

(qh(x) | v ) = h(x)T v. In fact all differential 1-forms can be expressed as qh for
some vector field h. Using this identification and noting that

(
νγ

∣∣ h
) = (

ηγ

∣∣ qh
)
,

we can see that the vector measure for curve matching is a special case of the currents
that we have considered here.

For surfaces in three dimensions, we need to take k = 2, and if S is a surface, we
have

(ηS | q ) =
∫

S
(q(x) | e1(x), e2(x) )dσS(x).

Again, a vector field f on R
3 induces a 2-form q f , defined by

(
q f

∣∣ v1, v2
) =

det( f, v1, v2) = f T (v1 × v2), and every 2-form can be obtained this way. Using the
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fact that, if (e1, e2) is a positively oriented basis of the tangent space to the surface,
then e1 × e2 = N , we retrieve (νS | f ) = (

ηS

∣∣ q f
)
.

9.7.5 Varifolds

A differential k-form ω onRd uniquely defines a function on the product spaceRd ×
G̃r(d, k), the product space ofRd with the set of all oriented k-dimensional subspaces
of Rd (called the oriented Grassmannian, on which a manifold structure similar to
the one discussed in Sect.B.6.7 for the Grassmannmanifold can be defined). One can
indeed assign to any pair (x,α) in that set the scalar Fq(x,α) = (q(x) | e1, . . . , ek )

where e1, . . . , ek is any positively oriented orthonormal basis ofα, and the value does
not depend on the chosen basis. Given an oriented k-dimensional submanifold ofRd ,
one can define the linear form on continuous functions F defined on Rd × G̃r(d, k),
given by

(ρ̃M | F ) =
∫

M
F(p, TpM)dσM ,

where TpM is considered with its orientation. The current ηM defined in the previous
section is such that (ηM | q ) = (

ρ̃M

∣∣ Fq
)
.

When one wants to disregard orientation, which may be convenient, and some-
times necessary in practice, it is natural to replace G̃r(d, k) by Gr(d, k) (the Grass-
mannian) and define the same linear form (that we now call ρM ) on functions defined
onRd × Gr(d, k). The linear form ρM is a special case of a varifold, where varifolds
are defined as (Radon) measures on R

d × Gr(d, k).
From this point, and following [61], one can make a construction analogous to

the one just described for measures on Rd . Given a reproducing kernel Hilbert space
W of functions defined on R

d × Gr(d, k), define the square distance between two
k-dimensional submanifolds of Rd by

D(M, M ′) = ‖ρM − ρM ′ ‖2W ∗ .

For the approach to be practical, one needs to have explicit kernels onRd × Gr(d, k).
Referring to [61] for a complete discussion, we note here that a class of such kernels
can be designed based on the following observations.

(i) The function defined for α,β ∈ G̃r(d, k) by

ξ̃(α,β) = 〈
e1(x) × · · · × ek(x) , f1(y) × · · · × fk(y)

〉
Λd−k

,

where (e1, . . . , ek) and ( f1, . . . , fk) are positively oriented orthonormal bases
of α̃ and β̃, is a positive definite kernel. Hence, the function defined for α,β ∈
Gr(d, k)
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ξ(α,β) = 〈
e1(x) × · · · × ek(x) , f1(y) × · · · × fk(y)

〉2
Λd−k

,

where (e1, . . . , ek) and ( f1, . . . , fk) are orthonormal bases of α and β, is also
definite positive. More generally, if ξ̃ is positive definite on G̃r(d, k), then
ξ = f (ξ̃) is definite positive onGr(d, k) for any even analytic function f whose
derivatives at 0 are all non-negative, and at least one of them positive. These
statements simply use the fact that products of positive kernels remain positive.

(ii) If η is a positive kernel on differential p-forms, then ξ̃ defined by

ξ̃(x,α; y,β) = (η(x, y) | e1, . . . , ek; f1, . . . , fk )

is a positive kernel on R
d × G̃r(d, k).

(iii) If ξ(1) is a reproducing kernel on Rd and ξ(2) a reproducing kernel on Gr(d, k),
then ξ defined by

ξ(x,α; y,β) = ξ(1)(x, y)ξ(2)(α,β)

is a reproducing kernel on R
d × Gr(d, k).

Applying this to surfaces, for example, and using the discussion at the end of the
previous section, we find that taking

〈
ρS , ρS̃

〉
W ∗ =

∫

S

∫

S̃
ξ(x, x̃)

(
1 + a

(
N (x)T Ñ (x̃)

)2
)
dσS̃(x̃)dσS(x),

where ξ is a reproducing kernel on R
d , provides an RKHS dual inner-product on

varifolds. The discretization of such a norm is similar to those detailed for scalar and
vector measures and is left to the reader.

9.8 Matching Vector Fields

We now study vector fields as deformable objects. They correspond, for example, to
velocity fields (that can be observed for weather data), or to gradient fields that can
be computed for images. Orientation fields (that can be represented by unit vector
fields) are also interesting. They can correspond, for example, to fiber orientations
in tissues observed in medical images.

We want to compare two vector fields f and f ′, i.e., two functions from R
d to

R
d . To simplify, we restrict ourselves to E f, f ′(ϕ) being the L2 norm between ϕ · f

and f ′, and focus our discussion on the definition of the action of diffeomorphisms
on vector fields.

The simplest choice is to use the same action as in image matching and take
ϕ · f = f ◦ ϕ−1, where f is a vector field on R

d . It is, however, natural (and more
consistent with applications) to combine the displacement of the points at which f
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is evaluated with a reorientation of f , also induced by the transformation. Several
choices can be made for such an action and all may be of interest depending on the
context.

For example, we can interpret a vector field as a velocity field, assuming that
each point in Ω moves on to a trajectory x(t) and that f (x) = ẋ(t), say at time
t = 0. If we make the transformation x �→ x ′ = ϕ(x), and let f ′ be the transformed
vector field, such that ẋ ′(0) = f ′(x ′), we get: ẋ ′(0) = dϕ(x)ẋ(0) = f ′ ◦ ϕ(x) so
that f ′ = (dϕ f ) ◦ ϕ−1. The transformation f �→ (dϕ f ) ◦ ϕ−1 is an important Lie
group operation, called the adjoint representation (Adϕ f ). This is anecdotal here,
but we will use it again later as a fundamental tool. So, our first action is

ϕ ∗ f = (dϕ f ) ◦ ϕ−1.

To define a second action, we now consider vector fields that are obtained as
gradients of a function I : f = ∇ I . If I becomes ϕ · I = I ◦ ϕ−1, then f becomes
d(ϕ−1)T∇ I ◦ ϕ−1. This defines a new action

ϕ � f = d(ϕ−1)T f ◦ ϕ−1 = (dϕ−T f ) ◦ ϕ−1.

This action can be applied to any vector field, not only gradients, but one can check
that the set of vector fields f such that curl f = 0 is left invariant by this action.

Sometimes, it is important that the norms of the vector fields at each point remain
invariant under the transformation,whendealing, for example,with orientationfields.
This can be achieved in both cases by normalizing the result, and we define the
following normalized actions:

ϕ ∗̄ f =
(

| f | dϕ f

|dϕ f |
)

◦ ϕ−1

ϕ �̄ f =
(

| f | dϕ−T f

|dϕ−T f |
)

◦ ϕ−1

(taking, in both cases, the right-hand side equal to 0 if | f | = 0).
We now evaluate the differential of E f, f ′(ϕ) = ‖ϕ · f − f ′‖22, where ϕ · f is one

of the actions above. We will make the computation below under the assumption
that f is C1 and compactly supported. For the ∗ action, we can observe that, for
ϕ = id + h,

ϕ ∗ f − f = dh f ◦ (id + h)−1 + f ◦ (id + h)−1 − f,

so that

ϕ ∗ f − f − dh f + d f h = dh( f ◦ (id + h)−1 − f ) + f ◦ (id + h)−1

− f ◦ (id − h) + f ◦ (id − h) − f + d f h.



9.8 Matching Vector Fields 279

Using the fact that ‖(id + h)−1 − id‖∞ = ‖h‖∞,

‖(id + h)−1 − (id − h)‖∞ = ‖h ◦ (id + h) − h‖∞ ≤ ‖h‖21,∞
and letting

ω(1)
f (ε) = sup

x∈Rd

sup
|δ|<ε

| f (x + δ) − f (x) − d f (x)δ|

we find that

‖ϕ ∗ f − f − dh f + d f h‖∞ ≤ ‖ f ‖∞‖h‖21,∞ + ‖ f ‖1,∞‖h‖21,∞ + ω(1)
f (‖h‖∞).

Noting that ω(1)
f (ε) = o(ε), we find that

‖ϕ ∗ f − f − dh f + d f h‖∞ = o(‖h‖1,∞). (9.59)

Using this estimate, it is now easy to show that E f, f ′ : Diff1,∞0 → R is differen-
tiable at ϕ = id with derivative

(
dE f, f ′(id)

∣∣ h
) = 2

〈
dh f − d f h , f − f ′〉

2

= 2
∫

Ω

(dh f − d f h)T ( f − f ′)dx .

For f �→ ϕ ∗ f to map compactly supported C1 vector fields into vector fields
with the same property, we need to take twice-differentiable diffeomorphisms, i.e.,
ϕ ∈ Diff2,∞0 . Over this group, we find that E f, f ′ is differentiable everywhere, with(
dE f, f ′(ψ)

∣∣ h
) = (

dEψ∗ f, f ′(id)
∣∣ h ◦ ψ−1

)
.

The Eulerian derivative is then given by

(
∂̄E f, f ′(ψ)

∣∣ v
) = (

dEψ∗ f, f ′(id)
∣∣ v

)

= 2
〈
dv (ψ ∗ f ) − d(ψ ∗ f ) v , ψ ∗ f − f ′〉

2.

This expression can be combined with (9.44) to obtain the Eulerian gradient of U ,
namely

∇V
E f, f ′(ψ) =
2

∫

Ω

(
∂2K (., x)(ψ ∗ f − f ′,ψ ∗ f ) − K (., x)d(ψ ∗ f )T (ψ ∗ f − f ′)

)
dx .

The Eulerian differential can be rewritten in another form to avoid the intervention
of the differential of h. The following lemma is a consequence of the divergence
theorem.

Lemma 9.10 If Ω is a bounded open domain of Rd and v,w, h are smooth vector
fields on R

d , then
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∫

Ω

vT dhw dx =
∫

∂Ω

(vT h)(wT N )dσ∂Ω

−
∫

Ω

(
wT dvT h + (divw)(vT h)

)
dx . (9.60)

Equation (9.60) can be rewritten as

〈
dh w , v

〉
2 = (

(wT N )vσ∂Ω

∣
∣ h

) − 〈
dv w + (divw) v , h

〉
2. (9.61)

Proof To prove this, introduce the coordinates h1, . . . , hd for h and v1, . . . , vd for
v so that

vT dhw =
d∑

i=1

vi (∇hi )Tw.

Now, use the fact that

div(vT h w) = div
( d∑

i=1

vi hiw
)

=
d∑

i=1

(
vi (∇hi )Tw + hi (∇vi )Tw + hiv

idivw
)

= vT dhw + hT dvw + (hT v)divw

and the divergence theorem to obtain the result. �

Using this lemma with Ω large enough so that f vanishes on ∂Ω , we find

(
dE f, f ′(id)

∣∣ h
) = −2

〈
(d f − d f ′) f + div f ( f − f ′) + d f T ( f − f ′) , h

〉
2,

which directly provides a new version of the Eulerian derivative at an arbitrary ϕ,
with the corresponding new expression of the Eulerian gradient:

∇V
E f, f ′(ϕ) = −2

∫

Ω

K (·, x)
(
d(ϕ ∗ f − f ′)(ϕ ∗ f )

+ div(ϕ ∗ f )(ϕ ∗ f − f ′) + d(ϕ ∗ f )T (ϕ ∗ f − f ′)
)
dx .

Let us now consider the normalized version of this action. We will make the
computation under a few additional assumptions on f , namely, that f is compactly
supported and f/| f | can be replaced by a smooth unit vector field that can be extended
to an open set that contains the support of f .More precisely, wewill assume that there
exists a scalar function ρ, continuously differentiable and supported by a compact
set Q, and a vector field u such that |u(x)| = 1 for all x in an open set Ω containing
Q, u is continuously differentiable on Ω and f (x) = ρ(x)u(x). With this notation,
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we have
ϕ ∗̄ f = ρ ◦ ϕ−1 ϕ ∗ u

|ϕ ∗ u| .

Note that, for z = 0, the derivative of z/|z| is

h �→ h/|z| − zzT h/|z|3 = 1

|z|πz⊥(h),

where πz⊥ is the orthogonal projection on the space of vectors perpendicular to z.
Considerϕ = id + h for some h ∈ Diff1,∞0 . Let δ = dist(Q,Ωc) and assume that

‖h‖∞ = ‖ϕ−1 − id‖∞ < δ/2.

From (9.59), we have, letting Ω ′ be the set of x ∈ R
d such that dist(x, Q) < δ,

sup
x∈Ω ′

|(ϕ ∗ u)(x) − u(x) − dh(x)u(x) + du(x)h(x)| = o(‖h‖1,∞),

from which we deduce

sup
x∈Ω ′

∣∣∣∣
(ϕ ∗ u)(x)

|(ϕ ∗ u)(x)| − u(x) − πu⊥ (dh(x)u(x) − du(x)h(x))

∣∣∣∣ = o(‖h‖1,∞).

Since ‖ρ ◦ ϕ−1 − ρ − ∇ρT h‖∞ = o(‖h‖∞), we obtain the fact that E f, f ′ is differ-
entiable at ϕ = id with

(
dE f, f ′(id)

∣
∣ h

) = 2
(−∇ρT h u + ρ πu⊥(dh u − du h)

∣
∣ f − f ′ )

= −2
(∇ρT h u

∣∣ f − f ′ ) − 2
(
ρ (dh u − du h)

∣∣πu⊥( f ′)
)
.

Assuming now that ψ ∈ Diff2,∞0 , we obtain the fact that E f, f ′ is differentiable at ψ,
with (

dE f, f ′(ψ)
∣∣ h

) = (
dEψ∗̄ f, f ′(id)

∣∣ h ◦ ψ−1
)
.

The Eulerian derivative is

(
∂̄E f, f ′(ψ)

∣∣ v
) = (

dEψ∗̄ f, f ′(id)
∣∣ v

)
.

Finally, we note that after integration by parts, we can write

dE f, f ′(id) = 2
( − uT ( f − f ′)∇ρ + ρ duT (πu⊥( f ′))
+d(πu⊥( f ′)) f + div( f )πu⊥( f ′)

)
dx .

The computations for ϕ � f = (dϕ−T f ) ◦ ϕ−1 and its normalized version are
very similar. One only needs to note that (9.59) is now replaced by
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‖ϕ � f − f + dhT f + d f h‖∞ = o(‖h‖1,∞). (9.62)

As a consequence, the formulas for the differentials of the � and �̄ can be deduced
from the ∗ and ∗̄ actions by replacing (dh f − d f f ) by (−dhT f − d f h).

For the unnormalized action, this yields

(
dE f, f ′(id)

∣
∣ h

) = −2
〈
dh( f − f ′) , f

〉
2 − 2

〈
d f T ( f − f ′) , h

〉
2

= 2
〈
(d f − d f T )( f − f ′) + div( f − f ′) f , h

〉
2

and ∂̄E f, f ′(ϕ) is obtained by replacing f byϕ � f . To obtain the differential of E f, f ′

for the normalized � action, we get

(
dE f, f ′(id)

∣∣ h
) = −2

(∇ρT h u
∣∣ f − f ′ ) + 2

(
ρ (dhT u + du h)

∣∣πu⊥( f ′)
)
,

where f = ρ u as above, which can also be written as

dE f, f ′(id) = 2
( − uT ( f − f ′)∇ρ + (ρduT − d f )(πu⊥( f ′)) − div(πu⊥( f ′)) f

)
dx .

As an example of application of vector field matching, let us consider contrast-
invariant image registration [90]. If I : Ω → R is an image, a change of contrast is a
transformation I �→ q ◦ I , where q is a scalar diffeomorphism of the image intensity
range. The level sets Iλ = {x, I (x) ≤ λ} are simply relabeled by a change of contrast,
and one obtains a contrast-invariant representation of the image by considering the
normals to these level sets, i.e., the vector field

f = ∇ I/|∇ I |

with the convention that f = 0 when ∇ I = 0. Two images represented in this way
can now be compared using vector field matching. Since we are using normalized
gradients, the natural action is (ϕ, f ) �→ ϕ �̄ f . For our results to hold, some reg-
ularization needs to be applied, replacing f by ρ f̃ where ρ = 1 and f̃ = f when
| f | = 1, f̃ is a unit vector field that smoothly extends f over a neighborhood of the
domain over which | f | = 1, ρ is smooth and vanishes outside this neighborhood.

9.9 Matching Fields of Frames

We now extend vector field deformation models to define an action of diffeomor-
phisms onfields of positively oriented orthogonalmatrices, or frames.Wewill restrict
ourselves to dimension 3, so that the deformable objects considered in this section
are mappings x �→ R(x), with, for all x ∈ Ω , R(x) ∈ SO3(R) (the group of rotation
matrices).

The ∗ and � actions we have just defined on vector fields have the nice property
of conserving the Euclidean dot product when combined, that is
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(ϕ ∗ f )T (ϕ � g) = ( f T g) ◦ ϕ−1.

Since ∗̄ and �̄ also conserve the norm, we find that (ϕ ∗̄ f,ϕ �̄ g) is orthonormal as
soon as ( f, g) is.

We now define an action of diffeomorphisms on fields on frames.Writing R(x) =
( f1(x), f2(x), f3(x)), we let

ϕ · R = (ϕ ∗̄ f1, (ϕ �̄ f3) × (ϕ ∗̄ f1),ϕ �̄ f3). (9.63)

That this defines an action is a straightforward consequence of ∗̄ and �̄ being actions.
The action can be interpreted as follows. Given a local chart in R

3, which is
a diffeomorphic change of coordinates x = m(s, t, u), one uniquely specifies a
positively oriented frame Rm = ( f1, f2, f3) by f1 = ∂1m/|∂1m| and f3 = (∂1m ×
∂2m)/|∂1m × ∂2m|. Then, the action we have just defined is such that ϕ · R is the
frame associated to the change of coordinates ϕ ◦ m, i.e.,

Rϕ◦m ◦ ϕ = ϕ · Rm .

The transformationm → Rm has in turn the following interpretation, which is rel-
evant for somemedical imagingmodalities. Let the change of coordinates be adapted
to the following stratified description of a tissue. Curves s �→ m(s, t, u) correspond
to tissue fibers, and surfaces (s, t) �→ m(s, t, u) describe a layered organization. The
cardiac muscle, for example, exhibits this kind of structure. Then f1 in Rm represents
the fiber orientation, and f3 the normal to the layers; ϕ · Rm then corresponds to the
tissue to which the deformation ϕ has been applied.

Frame fields are typically observed over some object-dependent subregion of the
observation domain. To account for this, we assume thatwe are dealingwithweighted
fields of frames, taking the form A = ρ R, where the weight ρ vanishes outside a
compact set and R is smooth over a neighborhood of this compact set. We will then
consider the action

ϕ · A = (ρ ◦ ϕ−1)ϕ · R.

The computations of the previous sections can now be applied to each column of A.
In particular, letting ϕ = id + h, we have ϕ · A = A + (w1, w2, w3) + o(‖h‖1,∞)

with, writing R = ( f1, f2, f3),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w1 = − (∇ρT h) f1 + ρπ f ⊥
1
(dh f1 − d f1h),

w3 = − (∇ρT h) f3 − ρπ f ⊥
3
(dhT f3 + d f3h),

w2 = − (∇ρT h) f2 − ρ
(
π f ⊥

3
(dhT f3 + d f3h)

)
× f1

+ ρ f3 ×
(
π f ⊥

1
(dh f1 − d f1h)

)
.

Noticing that, for any vector u ∈ R
3,
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(
π f ⊥

3
u
)

× f1 = (
(uT f1) f1 + (uT f2) f2

) × f1 = −(uT f2) f3

and similarly f3 ×
(
π f ⊥

1
u
)

= −(uT f2) f1, we can simplify the expression of w2,

yielding ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w1 = − (∇ρT h) f1 + ρπ f ⊥
1
(dh f1 − d f1h),

w2 = − (∇ρT h) f2 + ρ((dhT f3 + d f3h)T f2) f3

− ρ((dh f1 − d f1h)T f2) f1,

w3 = − (∇ρT h) f3 − ρπ f ⊥
3
(dhT f3 + d f3h).

(9.64)

Consider the matching functional

EA,A′(ϕ) =
∫

R3
|ϕ · A − A′|2 dx

with |A|2 = trace(AT A). If A = ρ R and A′ = ρ′ R′, then

|A − A′|2 = 3ρ2 − 2ρρ′trace(RT R′) + 3ρ′2

= 3(ρ − ρ′)2 + 2ρρ′trace(Id − RT R′).

Introducing the rotation angle, θ, from R to R′, defined by

trace(RT R′) = 1 + 2 cos θ, (9.65)

we get
|A − A′|2 = 3(ρ − ρ′)2 + 4ρρ′(1 − cos θ).

Obviously, if A = (u1, u2, u3) and A′ = ρ(u′
1, u

′
2, u

′
3), we also have

|A − A′|2 = |u1 − u′
1|2 + |u2 − u′

2|2 + |u3 − u′
3|2.

Using this, one gets the expression of the differential of EA,A′ at ϕ = id,

(
dEA,A′(id)

∣∣ h
) = 2

∫

R2
trace(WT (A − A′)) dx,

where W = (w1, w2, w3) is given by (9.64). In particular,

trace(WT (A − A′)) = −∇ρT h
(
3ρ − ρ′trace(RT R′)

)

+ ρρ′(dh f1 − d f1h)T
(
−π f ⊥

1
( f ′

1) + ( f T1 f ′
2) f2

)

− ρρ′(dhT f3 + d f3h)T
(
−π f ⊥

3
( f ′

3) + ( f T3 f ′
2) f2

)
.
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Letting

u1A,A′ = ρρ′
(
−π f ⊥

1
( f ′

1) + ( f T1 f ′
2) f2

)

u3A,A′ = ρρ′
(
−π f ⊥

3
( f ′

3) + ( f T3 f ′
2) f2

)

and using Lemma 9.10 to eliminate dh, we find

dEA,A′(id) = 2
(

− (
3ρ − ρ′trace(RT R′)

) ∇ρ − du1A,A′ f1 − div( f1)u
1
A,A′

− d f T1 u1A,A′ + div(u3A,A′) f3
)
dx .

(9.66)

9.10 Matching Tensors

The last class of deformable objects we will consider in this chapter are fields of
matrices (or tensor fields). For general matrices, we can use the actions we have
defined on vector fields, and apply them to each column of M , where M is a field of
matrices. The differential of matching functionals is then computed as done in the
previous two sections.

One sometimes needs to consider subclasses of tensors, and therefore define an
action that leaves this subclass invariant.Hereweconsider symmetricmatrices,which
have especially been studied in diffusion tensor imaging (DTI) [6]. The previous
actions applied to each column do not work, because they would break the symmetry.
A simple choice to address this is to make the diffeomorphism also act on the right,
in transpose form, defining, for a field x �→ S(x) of symmetric matrices

ϕ ∗ S = (dϕSdϕT ) ◦ ϕ−1

ϕ � S = (dϕ−T Sdϕ−1) ◦ ϕ−1.

We leave to the reader the computation of the differentials of objective functions
derived from these actions.

These actions are not necessarilywell adapted toDTI data, though, forwhich alter-
native optionsmaybe considered.DTI produces, at each point x in space, a symmetric
positive definite matrix S(x) that measures the diffusion of water molecules in the
imaged tissue. Roughly speaking, the tensor S(x) is such that if a water molecule is
at s at time t , the probability of being at x + dx at time t + dt is centered Gaussian
with variance dt2dxT S(x)dx .

If we return to the structured tissue model discussed in the last section (repre-
sented by the parametrization x = m(s, t, u)), we can assume that molecules travel
more easily along fibers, and with most difficulty across layers. So the direction of
∂1m is the direction of largest variance, and ∂1m × ∂2m of smallest variance, so



286 9 Deformable Objects and Matching Functionals

that the frame Rm = ( f1, f2, f3) associated to the parametrization is such that f1 is
an eigenvector of S for the largest eigenvalue, and f3 for the smallest eigenvalue,
which implies that f2 is an eigenvector for the intermediate eigenvalue. According
to our discussion in the last section, a diffeomorphism ϕ should transform S so that
the frame RS formed by the eigenbasis of S transforms according to the action of
diffeomorphisms on frames, namely, Rϕ·S = ϕ · RS defined in (9.63).

So, if we express the decomposition of S in the form

S = λ1 f1 f
T
1 + λ2 f2 f

T
2 + λ3 f3 f

T
3

with λ1 ≥ λ2 ≥ λ3, we should take

ϕ · S = λ̃1 f̃1 f̃
T
1 + λ̃2 f̃2 f̃

T
2 + λ̃3 f̃3 f̃

T
3 (9.67)

with ( f̃1, f̃2, f̃3) = ϕ · ( f1, f2, f3) and λ̃i = λi ◦ ϕ−1, i = 1, 2, 3. The action on
eigenvalues expresses that intrinsic tissue properties have not been affected by the
deformation. If there are reasons to believe that variations in volume should affect
the intensity of water diffusion, using the action of diffeomorphisms on densities
may be a better option, namely λ̃i = det d(ϕ−1)λi ◦ ϕ−1.

The actionwith λ̃i = λi ◦ ϕ−1 is identical to the eigenvector-based tensor reorien-
tation discussed in [6]. One of the important (and required) features or the construc-
tion is that, although the eigen-decomposition of S is not unique (when two or three
eigenvalues coincide) the transformation S �→ ϕ · S is defined without ambiguity.
This will be justified below.

The following computations require that λ1,λ2,λ3 are C1 and vanish outside
a compact set, and that RS is smooth in a small neighborhood of this compact set.
They are sketchily justified here, as they strongly resemble the computations that have
been done before. It will be convenient to introduce the three-dimensional rotation
US(ϕ) = ((ϕ · RS) ◦ ϕ) RT

S , so that

ϕ · S = (US(ϕ)SUS(ϕ)T ) ◦ ϕ−1.

Taking ϕ = id + h, we have US(ϕ) − S = ωS(h) + o(‖h‖1,∞), where

ωS(h) = π f ⊥
1
dh f1 f

T
1 − ((π f ⊥

3
dhT f3) × f1) f

T
2

+ ( f3 × (π f ⊥
1
dh f1)) f

T
2 − (π f ⊥

3
dhT f3) f

T
3

is a skew-symmetric matrix.With this notation, we can write

ϕ · S − S = ωS(h)S − SωS(h) − dS h + o(‖h‖1,∞).
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(Here dS h is the matrix with coefficients (∇Si j )T h.) Letting

ES,S′(ϕ) =
∫

Ω

trace((ϕ · S − S′)2)dx,

we then get

(
dES,S′(id)

∣∣ h
) = 2

∫

Ω

trace
(
(S − S′)(ωS(h)S − SωS(h) − dS h)

)
dx,

with, as usual, for ψ ∈ Diff2,∞0 ,
(
dES,S′(ψ)

∣∣ h
) = (

dEψ·S,S′(id)
∣∣ h ◦ ψ−1

)
and(

∂̄ES,S′(ψ)
∣∣ v

) = (
dEψ·S,S′(id)

∣∣ v
)
.

Here again, the derivatives of h that are involved in ωS(h) can be integrated by
parts using the divergence theorem. Let us sketch this computation at ψ = id, which
leads to a vector measure form for the differential. We focus on the term

(η | h ) :=
∫

Ω

trace((S − S′)(ωS(h)S − SωS(h)))dx =
∫

Ω

trace(AωS(h))dx,

where A = S(S − S′) − (S − S′)S = SS′ − S′S, and want to express η as a vector
measure. We have (using the fact that A is skew symmetric and that ( f1, f2, f3) is
orthonormal)

−trace(AωS(h)) = (ωS(h) f1)
T A f1 + (ωS(h) f2)

T A f2 + (ωS(h) f3)
T A f3

= (π f ⊥
1
dh f1)

T A f1 − ((π f ⊥
3
dhT f3) × f1)

T A f2

+ ( f3 × (π f ⊥
1
dh f1))

T A f2 − (π f ⊥
3
dhT f3)

T A f3

= (dh f1)
T u1S,S′ − (dhT f3)

T u3S,S′ ,

with

u1S,S′ = π f ⊥
1
(A f1 + (A f2 × f3))

and u3S,S′ = π f ⊥
3
(A f3 + ( f1 × A f2)).

It now remains to use Lemma 9.10 to identify η as

η = (
du1S,S′ f1 + div( f1)u

1
S,S′ − d f3u

3
S,S′ − div(u3S,S′) f3

)
dx .

To write the final expression of dES,S′(id), define (S − S′) � dS to be the vector

(S − S′) � dS =
3∑

i, j=1

(Si j − (S′)i j )∇Si j ,
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so that we have

dES,S′(id) = 2
(
du1S,S′ f1 + div( f1)u

1
S,S′ − d f3u

3
S,S′

− div(u3S,S′) f3 − (S − S′) � dS
)
dx . (9.68)

We now generalize this action to arbitrary dimensions, in a way that will provide
a new interpretation of the three-dimensional case. Decompose a field of d by d
symmetric matrices S in Rd in the form

S(x) =
d∑

k=1

λk(x) fk(x) fk(x)
T

with λ1 ≥ · · · ≥ λd and ( f1, . . . , fd) orthonormal. The matrices fk f Tk represent the
orthogonal projections on the one-dimensional space R fk and, letting

Wk = span( f1, . . . , fk),

and noting that the projection on Wk , πWk is equal to f1 f T1 + · · · + fk f Tk , we can
obviously write

S(x) =
d∑

k=1

λk(x)(πWk (x) − πWk−1(x)),

where we have set W0 = {0}.
Define the action S �→ ϕ · S by

ϕ · S =
(

d∑

k=1

λk
(
πdϕ(Wk ) − πdϕ(Wk−1)

)
)

◦ ϕ−1.

In three dimensions, because

(dϕ f2)
T f̃3 ◦ ϕ = ( f T2 f3)/|dϕ−T f3| = 0,

we see that dϕ f2 ∈ span( f̃1 ◦ ϕ, f̃2 ◦ ϕ). Since f̃1 ◦ ϕ is proportional to dϕ f1, we
can conclude that

dϕ span( f1, f2) = span( f̃1 ◦ ϕ, f̃2 ◦ ϕ).

This proves that the action we have just defined coincides with the one we have
considered for the case d = 3.

Returning to the general d-dimensional case, the definition we just gave does not
depend on the choice made for the basis f1, . . . , fd . Indeed, if we let μ1 > · · · > μq

denote the distinct eigenvalues of S, andΛ1, . . . , Λq the corresponding eigenspaces,
then, regrouping together the terms with identical eigenvalues in the decomposition
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of S and ϕ · S, and letting

Γk = Λ1 + · · · + Λk, Γ0 = {0},

we clearly have

S(x) =
q∑

k=1

μk(x)(πΓk (x) − πΓk−1(x))

and

ϕ · S =
(

q∑

k=1

μk
(
πdϕ(Γk ) − πdϕ(Γk−1)

)
)

◦ ϕ−1.

Since the decomposition of S in terms of its eigenspaces is uniquely defined, we
obtain the fact that the definition of ϕ · S is non-ambiguous.

9.11 Pros and Cons of Greedy Algorithms

We have studied in this chapter a series of deformable objects, by defining the rel-
evant action(s) that diffeomorphisms have on them and computing the variations of
associated matching functionals.

This computation can be used, as we did with landmarks and images, to design
“greedy” registration algorithms, which implement gradient descent to progressively
minimize the functionals within the group of diffeomorphisms. These algorithms
have the advantage of providing relatively simple implementations, and of requiring
a relatively limited computation time.

Most of the time, however, this minimization is an ill-posed problem. Minimizers
may fail to exist, for example. This has required, for image matching, the implemen-
tation of a suitable stopping rule that prevents the algorithm from running indefinitely.
Even when a minimizer exists, it is generally not unique (see the example we gave
with landmarks). Greedy algorithms provide theminimizer corresponding to the path
of steepest descent from where they have been initialized (usually the identity). This
solution does not have to be the “best one”, and we will see that other methods can
find much smoother solutions when large deformations are involved.

To design potentially well-posed problems, the matching functionals need to be
combined with regularization terms that measure the smoothness of the registration.
This will be discussed in detail in the next chapter.



Chapter 10
Diffeomorphic Matching

10.1 Linearized Deformations

A standard way to ensure the existence of a smooth solution of a matching problem
is to add a penalty term in the matching functional. This term would complete (9.1)
to form

EI,I ′(ϕ) = ρ(ϕ) + D(ϕ · I, I ′). (10.1)

A large variety of such methods have been designed, in approximation theory, statis-
tics and signal processing for solving ill-posed problems. The simplest (and typical)
form of penalty function is

ρ(ϕ) = ‖ϕ − id‖2H
for some Hilbert (or Banach) space of functions. Some more complex functions of
ϕ − id may also be designed, related to energies of non-linear elasticity (see, among
others [13, 27, 28, 89, 123, 144, 237]). Such methods may be called “small defor-
mation” methods because they work on the deviation of u = ϕ − id, and controlling
the size or smoothness of u alone is most of the time not enough to guarantee that
ϕ is a diffeomorphism (unless u is small, as we have seen in Sect. 7.1). There is, in
general, no way of proving the existence of a solution of the minimization problem
within some group of diffeomorphisms G, unless some restrictive assumptions are
made on the objects to be matched.

Our focus here is on diffeomorphic matching. Because of this, we shall not detail
many of these methods. However, it is interesting to note that these functionals also
have a Eulerian gradient within an RKHS of vector fields with a smooth enough ker-
nel, and can therefore be minimized using (9.7). We illustrate this with the following
example, in which we skip the proper justification of the existence of derivatives.
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Consider the function ρ(ϕ) = ∫
Rd |dϕ(x) − Id|2 dx , where the matrix norm is

|A|2 = trace(AT A) =
∑

i, j

a2i j

(Hilbert–Schmidt norm). Letting u = ϕ − id, we have

(dρ(ϕ) | h ) = 2
∫

Rd

trace(duT dh)dx = −2
∫

Rd

ΔuT hdx,

where Δu is the vector formed by the Laplacian of the coordinates of u (recall that
we assume that u = 0 at infinity). This implies that (given that Δu = Δϕ)

(
∂̄ρ(ϕ)

∣
∣ h
) = −2

∫

Ω

ΔϕT h ◦ ϕdx

and

∇V
ϕ ρ(·) = −2

∫

Ω

K (·,ϕ(x))Δϕ(x)dx . (10.2)

This provides a regularized greedy image-matching algorithm, which includes a
regularization term (a similar algorithm may easily be written for point matching).

Algorithm 2 The following procedure is an Eulerian gradient descent, on V , for the
energy

EI.I ′(ϕ) =
∫

Rd

|dϕ(x) − id|2 dx + 1

σ2

∫

Rd

∣
∣I ◦ ϕ−1(x) − I ′(x)

∣
∣ dx .

Start with an initial ϕ0 = id and solve the differential equation

∂tϕ(t, y) = −2
∫

Ω

K (ϕ(t, y),ϕ(t, x))Δϕ(t, x)dx (10.3)

+ 2

σ2

∫

Ω

(J (t, x) − I ′(x))K (ϕ(t, y), x)∇ J (t, x)dx (10.4)

with J (t, ·) = I ◦ ϕ(t)−1(·).
This algorithm, which, like the previous greedy procedures, has the fundamental

feature of providing a smooth flow of diffeomorphisms to minimize the matching
functional, suffers from the same limitations as its predecessors concerning its limit
behavior, which are essentially due to the fact that the variational problem itself is
not well-posed; minimizers may not exist, and when they exist they are not neces-
sarily diffeomorphisms. In order to ensure the existence of, at least, homeomorphic
solutions, the energy must include terms that must not only prevent dϕ from being
too large, but also from being too small (or its inverse from being too large). In [90],
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the following regularization is proved to ensure the existence of homeomorphic
solutions:

δ(ϕ) =
∫

Ω

(a‖dϕ‖p + b‖Adj(dϕ)‖q + c(det dϕ)r + d(det dϕ)−s)dx (10.5)

under some assumptions on p, q, r and s, namely p, q > 3, r > 1 and
s > 2q/(q − 3).

10.2 The Monge–Kantorovitch Problem

We briefly discuss in this section the mass transfer problem, which is, under some
assumptions, a diffeomorphicmethod formatching probability densities, i.e., positive
functions on R

d with integral equal to 1. Consider such a density, ζ, and a diffeo-
morphism ϕ on Rd . If an object has density ζ, the mass included in an infinitesimal
volume dx around x is ζ(x)dx . Now, if each point x in the object is transported to
the location y = ϕ(x), the mass of a volume dy around y is the same as the mass of
the volume ϕ−1(dy) around x = ϕ−1(y), which is ζ ◦ ϕ−1(y)| det(d(ϕ−1))(y)|dy
(this provides a physical interpretation of Proposition 9.5).

Given two densities ζ and ζ ′, the optimal mass transfer problem consists in finding
a diffeomorphismϕwithminimal cost such that ζ ′ = ζ ◦ ϕ−1| det(d(ϕ−1))|. The cost
associated to ϕ in this context is related to the distance along which the transfer is
made, measured by a function ρ(x,ϕ(x)). The total cost comes after summing over
the transferred mass, yielding

E(ϕ) =
∫

Ω

ρ(x,ϕ(x))ζ(x)dx .

The mass transfer problem now is to minimize E over all ϕ’s such that ζ ′ =
ζ ◦ ϕ−1| det(d(ϕ−1))|. The problem is slightly different from the matching formula-
tions that we discuss in the other sections of this chapter, because the minimization
is associated to exact matching.

It is very interesting that this apparently very complex and highly nonlinear
problem can be reduced to linear programming, albeit infinite-dimensional. Let
us first consider a more general formulation. Instead of looking for a one-to-one
correspondence x �→ ϕ(x), one can decide that the mass in a small neighborhood
of x is dispatched over all Ω with weights y �→ q(x, y), where q(x, y) ≥ 0 and∫
Ω
q(x, y)dy = 1. We still have the constraint that the mass density arriving at y is

ζ̃(y), which gives ∫

Ω

ζ(x)q(x, y)dx = ζ̃(y).

The cost now has the simple expression (linear in q)
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E =
∫

Ω2
ρ(x, y)ζ(x)q(x, y)dxdy.

The original formulation can be retrieved by letting q(x, y)dy → δϕ(x)(y) (i.e., pass
to the limit σ = 0 with q(x, y) = exp(−|y − ϕ(x)|2/2σ2)/(2πσ2)d/2).

If we write g(x, y) = ζ(x)q(x, y), this relaxed problem is clearly equivalent to
minimizing

E(g) =
∫

Ω2
ρ(x, y)g(x, y)dxdy

subject to the constraints g(x, y) ≥ 0,
∫

g(x, y)dy = ζ(x) and
∫

g(x, y)dx = ζ̃(y).
In fact, the natural formulation of this problem uses measures instead of densities:
given two probability measures μ and μ̃ on Ω , minimize

E(ν) =
∫

Ω2
ρ(x, y)ν(dx, dy)

subject to the constraints that the marginals of ν are μ and μ̃. This provides the
Wasserstein distance between μ and μ̃, associated to the transportation cost ρ. Note
that this formulation generalizes the computation of the Wasserstein distance (9.24)
between discrete measures.

This problem is much nicer than the original one, since it is a linear programming
problem. The theory of convex optimization (that we only apply formally in this
infinite-dimensional context; see [44] for rigorous proofs) implies that it has an
equivalent dual formulation which is: maximize

F(h) =
∫

Ω

hdμ +
∫

Ω

h̃μ̃

subject to the constraint that, for all x, y ∈ Ω , h(x) + h̃(y) ≤ ρ(x, y).
The duality equivalence means that the maximum of F coincides with the min-

imum of E . The solutions are, moreover, related by duality conditions (the KKT
conditions) that imply that ν must be supported by the set

A =
{
(x, y) : h(x) + h̃(y) = ρ(x, y)

}
. (10.6)

For the dual problem, one is obviously interested in making h and h̃ as large as
possible. Given h, one should therefore choose h̃ as

h̃(y) = sup
x

(ρ(x, y) − h(x)),

so that the set in (10.6) is exactly the set of (y∗, y) where y∗ is a point that achieves
the maximum of ρ(x, y) − h(x).
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The situation is particularly interesting when ρ(x, y) = |x − y|2/2. In this
situation,

h̃(y) = y2

2
+ sup

x

(

xT y + x2

2
− h(x)

)

.

From this equation, it is natural to introduce the auxiliary functions s(x) = h(x) −
x2/2 and s̃(y) = h̃(y) − y2/2. Using these functions, the set A in (10.6) becomes

A = {(x, y) : s(x) + s̃(y) = xT y
}
,

with s̃(y) = supx (x
T y − s(x)). Because the latter is a supremum of linear functions,

we obtain the fact that s̃ is convex, and so is s by symmetry; s̃ is in fact what is called
the convex conjugate of s, denoted s̃ = s∗. Convex functions are almost everywhere
differentiable, and, in order that (x, y) ∈ A, x must maximize u �→ uT y − s(u),
which implies that y = ∇s(x). So, the conclusion is that, whenever s is the solution
of the dual problem, the solution of the primal problem is provided by y = ∇s(x).
This shows that the relaxed mass transport problem has the same solution as the
initial one, with ϕ = ∇s, s being a convex function. That ϕ is invertible is obvious
by symmetry: ϕ−1 = ∇ s̃.

This result is fundamental, since it is the basis for the construction of a numerical
procedure for the solution of the mass transport problem in this case. Introduce a
time-dependent vector field v(t, ·) and the corresponding flow of diffeomorphisms
ϕv
0t . Let h(t, ·) = det(dϕv

t0) ζ ◦ ϕv
t0. Then

det(dϕv
0t ) h(t) ◦ ϕv

0t = ζ.

The time derivative of this equation yields

∂t h + div(hv) = 0. (10.7)

We have the following theorem [34].

Theorem 10.1 Consider the following energy:

G(v) =
∫ 1

0

∫

Ω

h(t, x)|v(t, x)|2dxdt

and the variational problem: minimize G subject to the constraints h(0) =
ζ, h(1) = ζ̃ and (10.7). If v is the solution of the above problem, then ϕv

01 solves
the optimal mass transport problem.

Proof Indeed, in G, we can make the change of variables x = ϕ0t (y), which yields

G(v) =
∫ 1

0

∫

Ω

ζ(y)
∣
∣v(t,ϕv

0t (y))
∣
∣2 dydt
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=
∫

Ω

ζ(y)
∫ 1

0

∣
∣∂tϕ

v
0t

∣
∣2 dt

≥
∫

Ω

ζ(y)
∣
∣ϕv

01(y) − y
∣
∣2 dy.

So the minimum of G is always larger than the minimum of E . If ϕ solves the mass
transport problem, then one can take v(t, x) such that ϕv

0t (x) = (1 − t)x + tϕ(x),
which is a diffeomorphism [190] and achieves the minimum of G. �

We refer to [34] for a numerical algorithm that computes the optimal ϕ. Note that
ρ(x, y) = |x − y|2 is not the only transportation cost that can be used in this context,
but that others (like |x − y|, which is not strictly convex in the distance) may fail
to provide diffeomorphic solutions. Important developments on this subject can be
found in [49, 119, 296].

We now discuss methods that are both diffeomorphic and metric (i.e., they relate
to a distance). They also rely on the representation of diffeomorphisms using flows
of ordinary differential equations.

10.3 Optimizing Over Flows

We return in this section to the representation of diffeomorphisms with flows of
ordinary differential equations (ODEs) and describe how this representation can be
used for diffeomorphic registration. Instead of using a norm to evaluate the difference
between ϕ and the identity mapping, we now consider, as a regularizing term, the
distance dV that was defined in Sect. 7.2.6. More precisely, we set

ρ(ϕ) = 1

2
dV (id,ϕ)2

and henceforth restrict the matching to diffeomorphisms belonging to DiffV .
In this context, we have the following important theorem:

Theorem 10.2 Let V be a Hilbert space embedded in C p+1
0 (Ω,Rd) so that

DiffV ⊂ Diff p,∞0 . Assume that the functional U : Diff p,∞0 �→ R is bounded from
below and continuous for the (p,∞)-compact topology. Then, there exists a mini-
mizer of

E(ϕ) = 1

2
dV (id,ϕ)2 +U (ϕ) (10.8)

over DiffV .

(The (p,∞)-compact topology is defined just after Theorem 7.13.)

Proof E has an infimum Emin over DiffV , since it is bounded from below.We need to
show that this infimum is also a minimum, i.e., that it is achieved at some ϕ ∈ DiffV .
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We first use the following lemma (recall that we have denoted by X 1
V (resp. X 2

V )
the set of time-dependent vector fields onΩ with integrable (resp. square integrable)
V -norm over [0, 1]):
Lemma 10.3 Minimizing E(ϕ) = d(id,ϕ)2/2 +U (ϕ) over DiffV is equivalent to
minimizing the function

Ẽ(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01) (10.9)

over X 2
V .

Let us prove this lemma. For v ∈ X 2
V , we have, by definition of the distance

dV (id,ϕv
01)

2 ≤
∫ 1

0
‖v(t)‖2V dt,

which implies E(ϕv
01) ≤ Ẽ(v). This obviously implies that infDiffV E(ϕ) ≤ Ẽ(v),

and since this is true for all v ∈ X 2
V , we have inf E ≤ inf Ẽ . Now, assume that ϕ is

such that E(ϕ) ≤ inf E + ε/2. Then, by definition of the distance, there exists a v

such that ϕ = ϕv
01 and

∫ 1

0
‖v(t)‖2V dt ≤ dV (id,ϕ)2 + ε,

which implies that
Ẽ(v) ≤ E(ϕ) + ε/2 ≤ inf E + ε,

so that inf E ≤ inf Ẽ .
We therefore have inf E = inf Ẽ . Moreover, if there exists a v such that Ẽ(v) =

min Ẽ = inf E , then, since we know that E(ϕv
01) ≤ Ẽ , we must have E(ϕv

01) =
min E . Conversely, if E(ϕ) = min E , by Theorem 7.22, E(ϕ) = E(ϕv

01) for some
v and this v must achieve the infimum of Ẽ , which proves the lemma.

This lemma shows that it suffices to study the minimizers of Ẽ . Now, as done in
the proof of Theorem 7.22, one can find, by taking a subsequence of a minimizing
sequence, a sequence vn in X 2

V which converges weakly to some v ∈ X 2
V and Ẽ(vn)

tends to Emin . Because

lim inf
∫ 1

0

∥
∥vn(t)

∥
∥2
V dt ≥

∫ 1

0
‖v(t)‖2V dt

and because weak convergence inX 1
2 implies convergence of the flow in the (p,∞)-

compact topology (Theorem 7.13) we also have U (ϕvn

01) → U (ϕv
01), so that Ẽ(v) =

Emin and v is a minimizer. �
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The general problem of minimizing functionals such as (10.9) has been called
“large deformation diffeomorphic metric mapping”, or LDDMM. The first algo-
rithms were introduced for this purpose in the case of landmark matching [159] and
image matching [32] (these papers were preceded by theoretical developments in
[93, 278, 283]). The following sections describe these algorithms, and other that
were recently proposed.

10.4 Euler–Lagrange Equations and Gradient

10.4.1 Gradient: Direct Computation

We now detail the computation of the gradient for energies such as (10.8). As
remarked in the proof of Theorem 10.2, the variational problem which has to be
solved is conveniently expressed as a problem over X 2

V . The function which is min-
imized over this space takes the form

E(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01).

Assume that V is embedded in C p+1
0 (Ω,Rd) and that U is differentiable on

Diff p,∞0 . Then Theorem 7.12 and the chain rule implies that E is differentiable on
X 2

V with
(dE(v) | h ) = 〈v , h

〉
X 2

V (Ω)
+ (dU (ϕv

01)
∣
∣ ∂vϕ

v
01 h
)
,

where ∂vϕ
v
01 h is given in Theorem 7.12.

We now identify the gradient of E for the Hilbert structure of X 2
V . This gradient

is a function, denoted ∇V E : v �→ ∇V E(v) ∈ X 2
V , that satisfies

(dE(v) | h ) = 〈∇V E(v) , h
〉
X 2

V
=
∫ 1

0

〈∇V E(v)(t) , h(t)
〉
V dt

for all v, h in X 2
V .

Since the set V is fixed in this section, wewill drop the exponent from the notation,
and simply refer to the gradient ∇E(v). Note that this is different from the Eulerian
gradient we have dealt with before; ∇E now represents the usual gradient of a
function defined over a Hilbert space. One important thing to keep in mind is that the
gradientwe define here is an element ofX 2

V , henceforth a time-dependent vector field,
whereas the Eulerian gradient was an element of V (a vector field on Ω). Theorem
10.5 relates the two (and allows us to reuse the computations that were made in
Chap.9). For this, we need to introduce the following operation of diffeomorphisms
acting on vector fields.
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Definition 10.4 Let ϕ be a diffeomorphism of Ω and v a vector field on Ω . We
denote by Adϕv the vector field on Ω defined by

Adϕv(x) = (dϕ v) ◦ ϕ−1(x). (10.10)

Adϕ is called the adjoint representation of ϕ.

If ϕ ∈ Diff p+1,∞(Ω), then an application of Lemma 7.3 and the Leibnitz formula
implies that Adϕv ∈ C p

0 (Ω,Rd) as soon as v ∈ C p
0 (Ω,Rd) and more precisely that

Adϕ is a bounded linear operator from C p
0 (Ω,Rd) to itself. We can therefore define

its conjugate on C p
0 (Ω,Rd)∗, with Ad∗

ϕρ given by

(
Ad∗

ϕρ
∣
∣ v
) = (ρ ∣∣Adϕv

)
(10.11)

for ρ ∈ C p
0 (Ω,Rd)∗, v ∈ C p

0 (Ω,Rd). Note that Ad∗
ϕρ is, a fortiori, in V ∗, because

V is continuously embedded in C p+1
0 (Ω,Rd).

Let L : V → V ∗ denote the duality operator on V and V (r) denote the set of
vector fields v ∈ V such that Lv ∈ Cr

0(Ω,Rd)∗ (for r ≤ p + 1). Then, for v ∈ V (p),
we can define, with K = L

−1,

AdTϕv = K(Ad∗
ϕLv). (10.12)

This is well-defined, because, by construction, Ad∗
ϕLv ∈ C p

0 (Ω,Rd)∗ ⊂ V ∗. We
have in particular, for v ∈ V (p) and w ∈ V ,

〈
AdTϕv , w

〉
V

= (Ad∗
ϕLv

∣
∣w
) = (Lv

∣
∣Adϕw

)
.

Recall that the Eulerian derivative of U is defined by

(
∂̄U (ϕ)

∣
∣w
) = (dU (ϕ) | w ◦ ϕ ).

Using Theorem 7.12, we have

∂vϕ
v
01 h =

∫ 1

0
(dϕv

u1h(u)) ◦ ϕv
0u du =

∫ 1

0
(Adϕv

u1
h(u)) ◦ ϕv

01 du

so that

(
dU (ϕv

01)
∣
∣ ∂vϕ

v
01 h
) =

(
∂̄U (ϕv

01)

∣
∣
∣

∫ 1

0
(Adϕv

u1
h(u)) du

)

=
∫ 1

0

(
∂̄U (ϕv

01)
∣
∣Adϕv

u1
h(u))

)
du.

With this notation, we have the following theorem.
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Theorem 10.5 Assume that V is continuously embedded inC p+1
0 (Ω,Rd)and thatU

is continuously differentiable onDiff p,∞0 . Then, theX 2
V gradient of Ũ : v �→ U (ϕv

01)

is given by the formula

∇Ũ (v)(t) = KAd∗
ϕv
t1
∂̄U (ϕv

01) = AdTϕv
t1
∇U (ϕv

01). (10.13)

This important result has the following simple consequences.

Proposition 10.6 Let U satisfy the assumptions of Theorem 10.5. If v ∈ X 2
V is a

minimizer of

Ẽ(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01), (10.14)

then, for all t
v(t) = AdTϕv

t1
v(1), (10.15)

with v(1) = −∇V
U (ϕv

01)(x). In particular, v is a continuous function of t and v(t) ∈
V (p) for all t .

Corollary 10.7 Under the same conditions on U, if v ∈ X 2
V is a minimizer of

Ẽ(v) = 1

2

∫ 1

0
‖vt‖2V dt +U (ϕv

01)

then, for all t ,
vt = AdTϕv

t0
v0, (10.16)

with v0 ∈ V (p).

Proposition 10.6 is a direct consequence of Theorem 10.5. For the corollary, we need
to use the fact that AdϕAdψ = Adϕ◦ψ , which can be checked by direct computation,
and write

vt = AdTϕv
t1
v1 = AdTϕv

t1
AdTϕv

10
v0 = (Adϕv

10
Adϕv

t1
)T v0 = AdTϕv

t0
v0.

Equations vt = AdTϕv
t0
v0 and v1 = −∇V

U (ϕv
01)(x) together are equivalent to the

Euler–Lagrange equations for Ẽ and will lead to interesting numerical procedures.
Equation (10.16) is a cornerstone of the theory. It describes a general mechanical
property called the conservation of momentum, to which we will return later.

10.4.2 Derivative Using Optimal Control

We can also apply the Pontryagin maximum principle (see AppendixD) to obtain
an alternative expression of the optimality conditions and gradient. Indeed, we can
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repeat the construction made in Sect. 7.2.2 with a slightly different notation, letting
f (ω, v) = v ◦ (id + ω), defined overC p

0 (Ω,Rd) × V .With g(ω, v) = ‖v‖2V , we are
in the framework described in Sect.D.3.1, leading to Theorem D.7, where ω repre-
sents the state and v is the control. Introducing a co-state μ, define the Hamiltonian

Hv(μ,ω) = (μ | v ◦ (id + ω) ) − ‖v‖2V /2.

Letting ξϕ : v �→ v ◦ ϕ from V to C p
0 (Ω,Rd), we obtain the fact that an optimal

solution must satisfy (with ϕ = id + ω), for some μ : [0, 1] → C p
0 (Ω,Rd)∗

⎧
⎪⎨

⎪⎩

∂tϕ(t) = v(t) ◦ ϕ(t)

(∂tμ(t) | h ) = −(μ(t) | dv(t) ◦ ϕ(t) h ), ∀h ∈ C p
0 (Ω,Rd)

Lv(t) = ξ∗
ϕ(t)μ(t)

(10.17)

with ϕ(0) = id and μ(1) = −dU (ϕ(1)). One can check that the second equation is
equivalent to

(μ(t) | h ) = (μ(0)
∣
∣ (dϕ(t))−1h

)
,

which is Corollary 10.7 expressed in terms of the co-state μ. Applying Eq. (D.12),
we obtain

d Ẽ(v)(t) = −ξ∗
ϕ(t)μ(t) + 2Lv(t), (10.18)

where ϕ and μ satisfy the first two equations of (10.17).

10.4.3 An Alternative Form Using the RKHS Structure

The conjugate of the adjoint can be put into a form explicitly involving the repro-
ducing kernel of V . Before detailing this, we introduce a notation that will be used
throughout this chapter. If ρ is a linear form on function spaces, we have been denot-
ing by (ρ | v ) the result of ρ applied to v. In the formulas that will come, we will
need to emphasize the variable on which v depends, and we will use the alternative
notation (ρ | v(x) )x to denote the same quantity. Thus,

ρ(v) = (ρ | v ) = (ρ | v(x) )x .

In particular, when v depends on two variables, the notation (ρ | v(x, y) )x will rep-
resent ρ applied to the function x �→ v(x, y) with y considered as constant.

We still assume that V is continuously embedded in C p+1
0 (Ω,Rd). Then, the

following theorem holds.

Theorem 10.8 Assume that ϕ ∈ Cq+1
0 (Ω,Rd) and ρ ∈ Cr

0(Ω,Rd)∗, with
r = min(p + 1, q). Let v = Kρ and (e1, . . . , ed) be an orthonormal basis of Rd .
Then, for y ∈ Ω , we have
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AdTϕv(y) =
d∑

i=1

(
ρ
∣
∣Adϕ(K (x, y)ei )

)
x
ei , (10.19)

where K is the reproducing kernel of V .

Proof For b ∈ R
d , we have

bTAdTϕv(y) = 〈AdTϕv , K (·, y)b〉
V

= 〈v , Adϕ(K (·, y)b)〉V
= (ρ ∣∣Adϕ(K (x, y)b)

)
x .

Theorem 10.8 is now a consequence of the decomposition

AdTϕv(y) =
d∑

i=1

eTi Ad
T
ϕv(y)ei .

�

Recall that K (·, ·) is a matrix, so that K (·, y)ei is the i th column of K (·, y), which
we can denote by K i . Equation (10.19) states that the i th coordinate of AdTϕv is(
ρ
∣
∣AdϕK i (x, y)

)
x .

Using Proposition 10.6 and Theorem 10.8, we obtain another expression of the
V -gradient of E :

Corollary 10.9 Under the hypotheses of Proposition 10.6, the V -gradient of

Ẽ(v) = 1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01)

is equal to

∇V Ẽ(v)(y) = v(t, y) +
d∑

i=1

(
ρ(1)

∣
∣ dϕt1(ϕ

v
1t (x))K

i (ϕv
1t (x), y)

)
xei (10.20)

with ρ(1) = ∂̄U (ϕv
01)(x).

10.5 Conservation of Momentum

10.5.1 Interpretation

Equation (10.16) can be interpreted as a momentum conservation equation. The
justification of the termmomentum comes from the analogy of Ekin := (1/2)‖v(t)‖2V
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with the total kinetic energy at time t of a dynamical system. In fluid mechanics, this
energy is usually defined as (introducing a mass density, z)

Ekin = 1

2

∫
z(t, y)|v(t, y)|2dy,

the momentum here being ρ(t) = z(t, y)v(t, y)dy with Ekin = (1/2)(ρ | v ). In our
case, taking ρ(t) = Lv(t), we still have Ekin = (1/2)(ρ | v ), so that ρ(t) is also
interpreted as a momentum.

To interpret (10.16) as a conservation equation, we need to understand how a
change of coordinate system affects the momentum. Indeed, interpret v(t, y) as
the velocity of a particle located at coordinates y, so v = dy/dt . Now assume that
we want to use a new coordinate system, and replace y by x = ϕ(y). In the new
coordinates, the same particle moves with velocity

∂t x = dϕ(y)∂t y = dϕ(y) v(t, y) = (dϕ v(t)) ◦ ϕ−1(x)

so that the translation from the old to the new expression of the velocity is precisely
given by the adjoint operator: v(y) → ṽ(x) = Adϕv(x) if x = ϕ(y). To obtain the
correct transformation of the momentum, it suffices to notice that the energy of the
system must remain the same if we just change the coordinates, so that, if ρ and ρ̃
are the momenta before and after the change of coordinates, we must have

(ρ̃ | ṽ ) = (ρ | v )

which yields Ad∗
ϕρ̃ = ρ or ρ̃ = Ad∗

ϕ−1ρ.
Now, we return to Eq. (10.16). Here, v(t, y) is the velocity at time t of the particle

that was at x = ϕv
t0(y) at time 0. So it is the expression of the velocity in a coordinate

system that evolves with the flow, and Lv(t) is the momentum in the same system.
By the previous argument, the expression of the momentum in the fixed coordi-
nate system, taken at time t = 0, is Ad∗

ϕv
0t
Lv(t). Equation (10.16) simply states that

this expression remains constant over time, i.e., the momentum is conserved when
measured in a fixed coordinate system.

The conservation of momentum equation, described in Corollary 10.7, is a fun-
damental equation in Geometric Mechanics [149, 187], which appears in a wide
variety of contexts. It has been described in abstract form by Arnold [18, 19] in his
analysis of invariant Riemannian metrics on Lie groups. This equation also derives
from an application of the Euler–Poincaré principle, as described in [149, 150, 188].
Combined with a volume-preservation constraint, this equation is equivalent to the
Euler equation for incompressible fluids, in the case when ‖v(t)‖V = ‖v(t)‖2, the
L2 norm. Another type of norm on V (called the H 1

α norm) relates to models of
waves in shallow water, and provides the Camassa–Holm equation [50, 116, 149].
A discussion of (10.16) in the particular case of template matching is provided in
[205], and a parallel with the solitons emerging from the Camassa–Holm equation
is discussed in [151].
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10.5.2 Properties of the Momentum Conservation Equation

Combining Eq. (10.19) and the fact that ∂tϕ
v
0t = v(t,ϕv

0t ), we get, for the optimal v
(letting v0 = Kρ0)

∂tϕ(t, y) =
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1K i (ϕ(t, x),ϕ(t, y))

)
x
ei .

Letting ϕ = id + ω, we consider the equation

∂tω(t, y) =
d∑

i=1

(
ρ0
∣
∣ (Id + dω(t, x))−1K i (x + ω(t, x), y + ω(t, y))

)
xei .

(10.21)

We now consider this equation as an ODE overC p
0 (Ω,Rd) and discuss conditions on

ρ0 ensuring the existence and uniqueness of solutions. We will make the following
assumptions.

(I) V is continuously embedded in C p+1
0 (Ω,Rd) and its kernel, K , is such that all

derivatives ∂k
1∂

k
2K (y, y) are bounded over Ω for k ≤ p + 1.

(II) ρ0 ∈ Cr (Ω,Rd)∗ for some r ≤ p − 1.
(III) ρ0 is compactly supported: there exists a compact subset Q′ ⊂ R

d such that
(ρ0 | f ) = 0 for all f ∈ Cr

0(Ω,Rd) such that f (x) = 0 for all x ∈ Q′.

Assumption (I) is true in particular when Ω = R
d and K is translation-invariant.

Taking Q slightly larger than Q′ in assumption (III), and choosing a C∞ function
ε such that ε = 1 on Q′ and ε = 0 on Qc, we have (ρ0 | f ) = (ρ0 | ε f ) for all
f ∈ Cr

0(Ω,Rd), from which we can deduce that, for some constant C

(ρ0 | f ) ≤ C‖ f ‖r,Q,

where
‖ f ‖r,Q = max

x∈Q max|J |≤r
|∂J f (x)|.

The following lemma provides the required properties for the well-posedness of
(10.21).

Let O = Diff p0 − id, an open subset of C p
0 (Ω,Rd).

Lemma 10.10 Let

V (ω)(y) =
d∑

i=1

(
ρ0
∣
∣ (Id + dω(t, x))−1K i (x + ω(t, x), y + ω(t, y))

)
xei .

(10.22)

Under assumptions (I), (II), (III) above, V is a differentiable mapping from
O into C p

0 (Ω,Rd) and, letting ϕ = id + ω,
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‖dV ‖op(C p
0 (Ω,Rd )) ≤ C(‖dϕ(·)−1‖∞, ‖ϕ‖p,∞) (10.23)

for some continuous function C.

Proof Step 1.We first check that the right-hand side of (10.21) is well defined. Since
we assume that V is embedded in C p+1

0 (Ω,Rd), we know that, for all 0 ≤ r, s,≤
p + 1, ∂r

1∂
s
2K

i is in C0(Ω,Rd) with respect to each of its variables. In particular,
x �→ (Id + dω(t, x))−1K i (x + ω(t, x), y + ω(t, y)) is in C p−1

0 (Ω,Rd) as soon as
ω ∈ C p

0 (Ω,Rd), so that ρ0 can be evaluated on it.
Step 2. We now prove that the right-hand side of (10.21) is in C p

0 (Ω,Rd), which
ensures that (10.21) forms an ODE in this space. Let

vϕ(y) =
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1K i (ϕ(x), y

)
x
ei

so that (10.21) can be written as ∂tω = vid+ω ◦ (id + ω). We want to show that
vϕ ∈ C p

0 (Ω,Rd)when ϕ = id + ω and ω ∈ C p
0 (Ω,Rd). It is obviously sufficient to

prove that each coordinate

v
ϕ
i (y) = (ρ0

∣
∣ dϕ(x)−1K i (ϕ(x), y)

)
x

belongs to C p
0 (Ω,R). We first justify the fact that vϕ

i is p-times differentiable, with

drvϕ
i (y) = (ρ0

∣
∣ dϕ(x)−1∂r

2K
i (ϕ(x), y)

)
x

for r ≤ p. Using a Taylor expansion, we can write (letting h(k) denote the k-tuple
(h, . . . , h))

K i (ϕ(x), y + h) =
p+1∑

k=0

1

k!∂
k
2K

i (ϕ(x), y)h(k)

+ 1

p!
∫ 1

0
(∂

p+1
2 K i (ϕ(x), y + th) − ∂

p+1
2 K i (ϕ(x), y))h(p+1)(1 − t)p dt

so that

v
ϕ
i (y + h) =

p+1∑

k=0

1

k!
(
ρ0

∣
∣
∣ dϕ(x)−1∂k2K

i (ϕ(x), y)h(k)
)

x

+ 1

p!
(
ρ0

∣
∣
∣ dϕ(x)−1

∫ 1

0
(∂

p+1
2 Ki (ϕ(x), y + th) − ∂

p+1
2 Ki (ϕ(x), y))h(p+1)(1 − t)p dt

)

x

and it suffices to prove that the remainder is an o(|h|p+1). This will be true provided
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lim
y′→y

‖∂ p+1
2 K i (·, y′) − ∂

p+1
2 K i (·, y)‖r,∞ = 0.

For k1 ≤ r , we have, using Eq. (8.8),

‖∂k1
1 ∂

p+1
2 K i (·, y′) − ∂k1

1 ∂
p+1
2 K i (·, y)‖r,∞

≤ C max
h:|h|=1

‖∂ p+1
2 K i (·, y′)(h(p+1)) − ∂

p+1
2 K i (·, y)(h(p+1))‖V

= C
∣
∣
∣∂

p+1
1 ∂

p+1
2 K ii (y′, y′) + ∂

p+1
1 ∂

p+1
2 K ii (y, y) − 2∂ p+1

1 ∂
p+1
2 K ii (y, y′)

∣
∣
∣
1/2

for some constant C , where K i j denotes the i, j entry of K . This proves the desired
result, since ∂

p+1
1 ∂

p+1
2 K is continuous. A similar argument can be made to prove

the continuity of y �→ d pv(y).
To prove that vϕ ∈ C p

0 (Ω,Rd), it suffices to show that, for all k ≤ p + 1,
‖∂k

2K
i (·, y)‖r,Q goes to 0 when y goes to infinity. (This is where we use the fact

that ρ0 has compact support.)
To reach a contradiction, assume that there exists sequences (xn), (yn)with xn ∈ Q

and yn tending to infinity or ∂Ω such that |∂k1
1 ∂k2

2 K i (xn, yn)| > ε, for some fixed ε >

0 and k1 ≤ r , k2 ≤ p + 1. Replacing (xn) by a subsequence if needed, we can assume
that xn converges to some x ∈ Q. Note that ∂k1

1 ∂k2
2 K i j (x, yn) = ∂k2

1 ∂k1
2 K ji (yn, x).

Since ∂k1
2 K j (·, x) ∈ V , we can conclude that ∂k2

1 ∂k1
2 K j (yn, x) → 0 for all j , imply-

ing that ∂k1
1 ∂k2

2 K i (x, yn) → 0 for all i , too.
Similarly, ∂k1

1 ∂k2
2 K i j (xn, yn) − ∂k1

1 ∂k2
2 K i j (x, yn) is the i th entry of ∂k2

1 ∂k1
2

K j (yn, xn) − ∂k1
2 ∂k2

1 K j (yn, x) and

sup
y

|∂k2
1 ∂k1

2 K j (y, xn) − ∂k2
1 ∂k1

2 K j (y, x)|

≤ C max
h:|h|=1

‖∂k1
2 K j (·, xn)(h(k1)) − ∂k1

2 K j (·, x)(h(k1))‖V

≤ C
∣
∣
∣∂k1

1 ∂k1
2 K j j (xn, xn) − 2∂k1

1 ∂k1
2 K j j (xn, x) + ∂k1

1 ∂k1
2 K j j (x, x)

∣
∣
∣
1/2

,

which goes to 0. This is our contradiction.
Step 3:We now study the differentiability of the mapping V : ω �→ vid+ω ◦ (id + ω)

from C p
0 (Ω,Rd) into itself. The candidate for dV (ω)η is
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(W (ω)η)(y) = −
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1dη(x)−1dϕ(x)−1K i (ϕ(x),ϕ(y))

)
x
ei

+
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1∂1K

i (ϕ(x),ϕ(y))η(x)
)
xei

+
d∑

i=1

(
ρ0
∣
∣ dϕ(x)−1∂2K

i (ϕ(x),ϕ(y))η(y)
)
xei ,

still with ϕ = id + ω. We can decompose V(ω + η)(y) − V(ω)(y) − (W (ω)η)(y)
as the sum of five terms

5∑

k=1

d∑

i=1

(
ρ0
∣
∣ Ai (x, y)

)
x

(described below), which we will study separately. For each term, we need to prove
that, for k1 ≤ r , k2 ≤ p, one has

sup
x,y

|∂k1
1 ∂k2

2 Ai
k(x, y)| = o(‖η‖p,∞).

The important point in the following discussion is that none of the estimates will
require more than p derivatives in ϕ and η, and no more than p + 1 in K .

(i) We let

Ai
1(x, y) = ((dϕ(x) + dη(x))−1 − dϕ(x)−1 + dϕ(x)−1dη(x)dϕ(x)−1)

K i (ϕ(x) + η(x),ϕ(y) + η(y)).

We first note that Inv : M �→ M−1 is infinitely differentiable on GLd(R) with

dqInv(M)(H1, . . . , Hq) = (−1)q
∑

σ∈Sq

M−1Hσ(1)M
−1 · · · M−1Hσ(q)M

−1,

where Sq is the set of permutations of {1, . . . , q}. In particular, ‖dqInv(M)‖ =
O(‖M−1‖q+1). Writing

(dϕ(x) + dη(x))−1 − dϕ(x)−1 + dϕ(x)−1dη(x)dϕ(x)−1 =
∫ 1

0
d2Inv(dϕ(x) + tdη(x))(dη(x), dη(x))(1 − t) dt,

we see that

∥
∥dk1((dϕ(x) + dη(x))−1 − dϕ(x)−1 + dϕ(x)−1dη(x)dϕ(x)−1)

∥
∥∞
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will be less than C(ϕ)‖dϕ−1‖k1+3∞ ‖η‖2k1+1,∞. Using the bound

‖∂k2
2 K i (·, y)‖2p+1,∞ ≤ C∂k2

1 ∂k2
2 K ii (y, y),

applying Lemma 7.3 and the product formula, we see that the desired conclusion
holds for Ai

1.
(ii) Let

Ai
2(x, y) = dϕ(x)−1(K i (ϕ(x) + η(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y) + η(y))

− ∂1K
i (ϕ(x),ϕ(y) + η(y))η(x)).

Writing the right-hand side in the form

dϕ(x)−1
∫ 1

0
∂2
1K

i (ϕ(x) + tη(x),ϕ(y) + η(y))(η(x), η(x))(1 − t) dt,

the same estimate on the derivative of K can be used, based on the fact that k1 + 2 ≤
p + 1.
(iii) The third term is

Ai
3(x, y) = dϕ(x)−1(K i (ϕ(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y))

− ∂2K
i (ϕ(x),ϕ(y))η(y)).

It can be handled similarly, requiring k2 + 1 ≤ p + 1 derivatives of K i in the second
variable.
(iv) These were the three main terms in the decomposition and the remaining two
are just bridging gaps. The first one is

Ai
3(x, y) = dϕ(x)−1dη(x)dϕ(x)−1

(K i (ϕ(x) + η(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y))).

Here, we note that, for some constants C and C̃ ,

sup
x

|∂k1
1 ∂k2

2 K i (x, y′) − ∂k1
1 ∂k2

2 K i (x, y)|2

≤ C
∣
∣
∣∂k2

1 ∂k2
2 (K (y′, y′) − 2K (y′, y) + K (y, y))

∣
∣
∣

≤ C̃(∂k2+1
1 ∂k2+1

2 K (y, y) + ∂k2+1
1 ∂k2+1

2 K (y′, y′))|y − y′|

(with a similar inequality when the roles of x and y are reversed) and these estimates
can be used to check that

∂k1
1 ∂k2

2 (K i (ϕ(x) + η(x),ϕ(y) + η(y)) − K i (ϕ(x),ϕ(y)))
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tends to 0 uniformly in x and y.
(v) The last term is

Ai
5(x, y) = dϕ(x)−1(∂1K

i (ϕ(x),ϕ(y) + η(y)) − ∂1K
i (ϕ(x),ϕ(y)))η(x)

and can be handled similarly.

Step 4. It remains to check that W (ω) maps C p
0 (Ω,Rd) to itself. This can be done

in the same way we proved that V (ω) ∈ C p
0 (Ω,Rd), using Taylor expansions and

the fact that dk(W (ω)η)(y) will involve no more than k derivatives of ω and η, and
k + 1 of K . This shows that W = dV . The bound (10.23) can also be shown using
the same techniques. We leave the final details to the reader. �

Lemma 10.10 implies that (10.21) has unique local solutions (unique solutions
over small enough time intervals). If we can prove that ‖(dϕ)−1‖∞ and ‖ϕ‖p,∞
remains bounded over solutions of the equation, inequality (10.23) will be enough
to ensure that solutions exist over arbitrary times intervals. This fact will be obtained
at the end of the next section.

10.5.3 Time Variation of the Eulerian Momentum

Assume that ϕ satisfies ∂tϕ(t) = v(t) ◦ ϕ(t) with v ∈ X p+1,1(Ω). If ρ0 ∈
C p−1(Ω,Rd)∗, we can apply the chain rule to the equation

(ρ(t) | w) = (ρ0
∣
∣Adϕ(t)−1w

) = (ρ0
∣
∣ dϕ(t)−1w ◦ ϕ(t)

)
,

in which we assume that w ∈ C p
0 (Ω,Rd). We have (with ∂t dϕ = dv ◦ ϕ dϕ)

∂tAdϕ(t)−1w = −dϕ(t)−1dv(t) ◦ ϕ(t) w ◦ ϕ(t) + dϕ(t)−1dw ◦ ϕ(t) v(t) ◦ ϕ(t)

= −Adϕ(t)−1(dv(t) w − dw v(t)).

The term in the right-hand side involves the adjoint representation of v(t), as
expressed in the following definition.

Definition 10.11 If v is a differentiable vector field on Ω , we denote by adv the
mapping that transform a differentiable vector field w into

advw = dv w − dw v. (10.24)

Observe that dv w − dw v = −[v,w], where the latter is the Lie bracket between
right-invariant vector fields over the group of diffeomorphisms. Note that adv con-
tinuously maps C p

0 (Ω,Rd) to C p−1
0 (Ω,Rd). With this notation, we therefore have,

for w ∈ C p
0 (Ω,Rd):

∂tAdϕ(t)−1w = −Adϕ(t)−1adv(t)w
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so that
∂t (ρ(t) | w) = −(ρ(t)

∣
∣ adv(t)w

)
.

This yields the equation, called EPDiff, in which we let ρ̃(t) denote the restriction
of ρ(t) to C p

0 (Ω,Rd),
∂t ρ̃(t) + ad∗

v(t)ρ(t) = 0. (10.25)

Equation (10.25) can be used to prove the following proposition.

Proposition 10.12 Let ϕ(t) = id + ω(t), where ω is a solution of (10.21). Let v0 =
Kρ0 and v(t) = AdTϕ(t)−1v0. Then ‖v(t)‖V is independent of time.

Proof Indeed, we have, for ε > 0,

1

ε
(‖v(t + ε)‖2 − ‖v(t)‖2V ) = 2

ε
(ρ(t + ε) − ρ(t) | v(t) ) + 1

ε
‖v(t + ε). − v(t)‖2V

Since v(t) ∈ V ⊂ C p
0 (Ω,Rd), (10.25) implies that the first term on the right-hand

side converges to
−2
(
ρ(t)

∣
∣ adv(t)v(t)

) = 0.

For the second term, we have

‖v(t + ε) − v(t)‖V = sup
‖w‖V ≤1

(ρ(t + ε) − ρ(t) | w)

= sup
‖w‖V ≤1

∫ ε

0

(
ρ(t + s)

∣
∣ adv(t+s)w

)
ds,

which tends to 0 with ε. �

We can now prove that (10.21) has a unique solution over arbitrary time intervals.

Theorem 10.13 Under the hypotheses of Lemma 10.10, Eq. (10.21) has solutions
over all times, uniquely specified by its initial conditions.

Proof As already mentioned, Lemma 10.10 implies that solutions exist over small
time intervals. Inequality (10.23) implies that these solutions can be extended as
long as ‖dϕ(t)−1‖∞ and ‖ϕ(t)‖p,∞ remain finite. However, both these quantities
are controlled by

∫ t
0 ‖v(t)‖V dt . For the latter, this is a consequence of (C.6). For

dϕ(t)−1, we can note that

∂t (dϕ(t)−1) = −dϕ(t)−1dv(t) ◦ ϕ(t)

and use Gronwall’s lemma to ensure that

‖dϕ(t)−1‖∞ ≤ exp

(

C
∫ 1

0
‖v(s)‖V ds

)

for some constant C . �



10.5 Conservation of Momentum 311

10.5.4 Explicit Expression

The assumption that ρ0 ∈ C p−1
0 (Ω,Rd)∗ “essentially” expresses the fact that the

evaluation of (ρ0 | w)will involve no more than p − 1 derivatives ofw. This implies
that the evaluation of the right-hand side of (10.21)will involve derivatives up to order
p in ϕ = id + ω. In numerical implementations, it is often preferable to track the
evolution of these derivatives over time, rather than approximate them using, e.g.,
finite differences. It often happens, for example, that the evaluation ofρ0 only requires
the evaluation of ϕ and its derivatives over a submanifold of lower dimension, and
tracking their values on a dense grid becomes counter-productive.

The evolution of the derivatives of ϕ can easily be computed by differentiating
(10.21) with respect to the y variable. This is summarized in the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ(t, y) =
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1K i (ϕ(t, x),ϕ(t, y))

)
xei

∂t dϕ(t, y)a =
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1∂2K

i (ϕ(t, x),ϕ(t, y))(dϕ(t, y)a)
)
xei

...

∂t d
pϕ(t, y)(a1, . . . , ap)

=
d∑

i=1

(
ρ0
∣
∣ (dϕ(t, x))−1∂

p
2 K

i (ϕ(t, x),ϕ(t, y))(a1, . . . , ap)
)
xei .

(10.26)

It should be clear from this system that, if the computation of (ρ0 | w) only
requires the evaluation of w and its derivatives on some subset of Rd , then ϕ and its
derivatives only need to be tracked for y belonging to the same subset.

10.5.5 The Hamiltonian Form of EPDiff

We now provide an alternative form of (10.26), using the optimal control formulation
discussed in Sect. 10.4.2, in which we introduced the co-state

(μ(t) | w) = (ρ0
∣
∣ dϕ(t)−1w

) = (ρ(t)
∣
∣w ◦ ϕ(t)−1

)
. (10.27)

LetM(t) = (dϕ(t))−1 so that∂t M = −M (∂t dϕ) M . The second equationof (10.26)
then becomes
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∂t M(t, y)a = −
d∑

i=1

(
ρ0
∣
∣M(t, x)∂2K

i (ϕ(t, x),ϕ(t, y))a
)
x
M(t, y)ei .

This implies that, for any w ∈ V

(
∂tμ(t)

∣
∣
∣w
)

= −
(
ρ0

∣
∣
∣ ∂t M w

)

=
d∑

i=1

(
ρ0
∣
∣ (ρ0

∣
∣M(t, x)∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
x M(t, y)ei

)
y

= −
d∑

i=1

(
μ(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y
.

We therefore have the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tϕ(t, y) =
d∑

i=1

(
μ(t)

∣
∣ K i (ϕ(t, x),ϕ(t, y))

)
xei

(
∂tμ(t)

∣
∣
∣w
)

= −
d∑

i=1

(
μ(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y
.

(10.28)

Note that this system is an alternative expression of the first two equations of
(10.17). When (ρ0 | w) does not depend on the derivatives of w (more precisely,
ρ0 ∈ C0

0 (Ω,Rd)∗), this provides an ordinary differential equation in the variables
(ϕ,μ) (of the form (d/dt)(ϕ,μ) = F(ϕ,μ)). The initial conditions are ϕ0 = id and
μ0 = ρ0.

10.5.6 The Case of Measure Momenta

An interesting feature of (10.28) is that it can easily be reduced to a smaller number
of dimensions when ρ0 takes specific forms. As a typical example, we perform the
computation in the case

ρ0 =
N∑

k=1

zk(0, ·)γk, (10.29)

where γk is an arbitrary measure on Ω and zk(0) a vector field. (We recall the
notation (zγ | w) = ∫ z(x)Tw(x) γ(dx).) Most of the Eulerian differentials that we
have computed in Chap.9 have been reduced to this form. From the definition of
μ(t), we have μ(t) =∑N

k=1 zk(t, .)γk (where zk(t, x) = dϕ0t (x)−T zk(0, x)). The
first equation in (10.28) is
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∂tϕ(t, y) =
d∑

i=1

N∑

k=1

∫

Ω

zk(t, x)
T K i (ϕ(t, x),ϕ(t, y))eidγk(x).

For a matrix A with i th column vector Ai , and a vector z, zT Ai is the i th coordinate
of AT z. Applying this to the previous equation yields

∂tϕ(t, y) =
N∑

k=1

∫

Ω

K (ϕ(t, y),ϕ(t, x))zk(t, x)dγk(x), (10.30)

where we have used the fact that K (ϕ(t, x),ϕ(t, y))T = K (ϕ(t, y),ϕ(t, x)). The
second equation in (10.28) becomes

(
∂tμ(t)

∣
∣
∣w
)

= −
d∑

i=1

(
μ(t)

∣
∣
∣
(
μ(t)

∣
∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)

x
ei
)

y

= −
N∑

k,l=1

∫

Ω

∫

Ω

d∑

i=1

zTl (t, x)∂2K
i (ϕ(t, x), ϕ(t, y))w(y) zk(t, y)

T ei dγl (x)dγk(y)

= −
N∑

k=1

∫

Ω

⎛

⎝
∫

Ω

N∑

l=1

d∑

i=1

zik(t, y)zl (t, x)
T ∂2K

i (ϕ(t, x), ϕ(t, y))dγl (x)

⎞

⎠w(y)dγk(y),

where zik is the i th coordinate of zk . From the expression of μ(t), we also have

∂tμ =
N∑

k=1

(∂t zk)γk .

Letting K i j denote the entries of K , we can identify ∂t zk as

∂t zk(t, y) =

−
∫

Ω

N∑

l=1

d∑

i, j=1

zik(t, y)z
j
l (t, x)∇2K

i j (ϕ(t, x),ϕ(t, y))dγl(x)

= −
∫

Ω

N∑

l=1

d∑

i, j=1

zil (t, y)z
j
k (t, x)∇1K

i j (ϕ(t, y),ϕ(t, x))dγl(x). (10.31)

This equation is somewhat simpler when K is a scalar kernel, in which case
K i j (x, y) = Γ (x, y) if i = j and 0 otherwise, where Γ takes real values. We get, in
this case
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∂t zk(t, y) = −
N∑

l=1

∫

Ω

∇2Γ (ϕ(t, x),ϕ(t, y))zk(t, y)
T zl(t, x)dγl(x)

= −
N∑

l=1

∫

Ω

∇1Γ (ϕ(t, y),ϕ(t, x))zk(t, y)
T zl(t, x)dγl(x).

In all cases, we see that the evolution of μ can be completely described using the
evolution of z1, . . . , zN . In the particular case when the zk’s are constant vectors
(which corresponds to most of the point-matching problems), this provides a finite-
dimensional system on the μ part.

10.6 Optimization Strategies for Flow-Based Matching

We have formulated flow-based matching as an optimization problem over time-
dependent vector fields. We discuss here other possible optimization strategies that
take advantage of the different formulations that we obtained for the EPDiff equation.
They will correspond to taking different control variables with respect to which the
minimization is performed, and we will in each case provide the expression of the
gradient of E with respect to a suitablemetric.Optimization can then be performed by
gradient descent, conjugate gradient or higher-order optimization algorithms when
feasible (see AppendixD or [221]).

After discussing the general formulation of each of these strategies, we will pro-
vide the specific expression of the gradients for point-matching problems, in the
following form: minimize

E(ϕ) = 1

2
dV (id,ϕ)2 + F(ϕ(x1), . . . ,ϕ(xN )) (10.32)

with respect to ϕ, where x1, . . . , xN are fixed points in Ω . These problems are
important because, in addition to the labeled and unlabeled point matching problems
we have discussed, other problems, such as curve and surfacematching, end up being
discretized in this form (we will discuss algorithms for image matching in the next
section). The following discussion describes (and often extends) several algorithms
that have been proposed in the literature, in [32, 159, 203, 204, 289, 309] among
other references.

10.6.1 Gradient Descent in X 2
V

The original problem having been expressed in this form, Corollary 10.9 directly
provides the expression of the gradient of E considered as a function defined over
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X 2
V , with respect to the metric in this space. Using t �→ v(t, ·) as an optimization

variable has some disadvantages, however. The most obvious is that it results in
solving a huge dimensional problem (over a d + 1-dimensional variable) even if the
original objects are, say, collections of N landmarks in R

d .
When the matching functional U is only a function of the deformation of a fixed

object, i.e.,
U (ϕ) = F(ϕ · I ),

then some simplifications can be made. To go further, we will need to compute
derivatives in the object space, and henceforth assume that I is an open subset of
a Banach space I . We assume that Diff p+1

0 acts on I and that the mapping ΦI :
ϕ �→ ϕ · I is differentiable on Diff p+1

0 for all I ∈ I, so that an infinitesimal action
is defined by (see Sect.B.5.3)

h · I = dΦI (id) h ∈ I

for h ∈ C p+1
0 (Ω,Rd). We assume as usual that V is continuously embedded in

C p+1
0 (Ω,Rd) so that v · I is well defined for v ∈ V and dΦI (id) restricted to V is

also bounded with respect to ‖ · ‖V .
Let v ∈ X 2

V . If ∂tϕ = v ◦ ϕ, let J (t) = ϕ(t) · I be the deforming object. Then
∂t J (t) = v(t) · J (t). With this in mind, we can write, when Ẽ is given by (10.14)

min
v(t,·)

Ẽ(v) = min
J (t,·),J (0)=I

(

min
v: ∂t J=v(t)·J (t)

Ẽ(v)

)

.

The iterated minimization first minimizes with respect to v for fixed object trajecto-
ries, then optimizes over the object trajectories.

When J (t, ·) is given, the inner minimization is

min
v: ∂t J=v(t)·J (t)

Ẽ(v) = min
v: ∂t J=v(t)·J (t)

(
1

2

∫ 1

0
‖v(t)‖2V dt + F(J (1))

)

= 1

2

∫ 1

0

(

inf
w: ∂t J=w·J (t)

‖w‖2V
)

dt + F(J (1)) (10.33)

since the constraints apply separately to each v(t). This expression only depends on
the trajectory J (t). One can therefore try to compute its gradient with respect to this
object trajectory and run a minimization algorithm accordingly. One difficulty with
this approach is that, given an object trajectory J (t), there may exist no w ∈ V such
that ∂t J = w · J (t) (which results in the minimum in the integral being infinite), so
that the possibility of expressing the trajectory as evolving according to a flow is a
constraint of the problem. This may be intractable in the general case, but always
satisfied for point-matching problems as long as the points remain distinct. We will
discuss this in the next section.
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However, what (10.33) tells us is that, if a time-dependent vector field ṽ(t, ·) is
given, one always reduces the value of Ẽ(ṽ) by replacing ṽ(t, ·) by

v(t, ·) = argmin
w:w·J (t)=ṽ·J (t)

‖w‖2V (10.34)

with J (t) = ϕṽ
0t · I . Introduce the space

NJ = Null(dΦJ (id)) = {u ∈ V : u · J = 0}

and its perpendicular VJ = N⊥
J = {u ∈ V : 〈u , ũ

〉
V

= 0 for all ũ ∈ NJ
}
. Then we

have the following lemma.

Lemma 10.14 Let I ∈ I and ṽ ∈ V . Then, the minimizer of ‖w‖2V over all V ∈ V
such that w · J = ṽ · J is given by πVJ (ṽ), the orthogonal projection of ṽ on VJ .

Proof Let v = πVJ (ṽ). We want to prove that v is a minimizer of ‖ · ‖2V over the set
of all w ∈ V such that w = ṽ + u with u ∈ NJ . For such a w, we have

πVJ (w) = v + πVJ (u) = v

and ‖w‖2V ≥ ‖πVJ (w)‖2V . Moreover, from the characteristic properties of an orthog-
onal projection, we have ṽ − v ∈ V⊥

J = NJ , the inequality holding because NJ is
closed (because it is the null set of a bounded linear map). �

The numerical computation of this orthogonal projection is not always easy, but
when it is, it generally has a formwhich ismore specific than ageneric time-dependent
vector field, and provides an improved gradient descent algorithm in X 2

V as follows.
Assume that, at time τ in the algorithm, the current vector field vτ in theminimization
of E is such that vτ (t) ∈ VJ τ (t) at all times t . Then define a vector field at the next
step τ + δτ by

ṽτ+δτ (t, y) = vτ (t, y) − δτ

⎛

⎝v(t, y) +
d∑

i=1

(
ρ(1)

∣
∣
∣ dϕt1(ϕ

v
1t (x))K

i (ϕv
1t (x), y)

)

x
ei

⎞

⎠ ,

which corresponds to one step of gradient descent, as specified in (10.20), then
compute J (t) = ϕṽτ+δτ

0t · I and define

vτ+δτ (t) = πVJ (t) (ṽ
τ+δτ )

at all times t .

Application to Point Matching

Consider the point-matching energy. In this case, letting

U (ϕ) = F(ϕ(x1), . . . ,ϕ(xN )),
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we have

ρ(1) = ∂̄U (ϕv
01) =

N∑

i=1

∂i F(ϕv
01(x))δϕv

01(xk ).

We therefore have, by Corollary 10.9, with Ũ (x) = U (ϕv
01),

∇V Ũ (v)(t, y) =
d∑

i=1

(
ρ(1)

∣
∣ dϕv

t1(ϕ
v
1t (x))K (ϕv

1t (x), y)ei
)
xei

=
d∑

i=1

N∑

q=1

(
∂q F(ϕv

01(x))
T dϕv

t1(ϕ
v
0t (xq))K (ϕv

0t (xq), y)ei
)
ei

=
N∑

q=1

K (y,ϕv
0t (xq))dϕv

t1(ϕ
v
0t (xq))

T∂q F(ϕv
01(xq)),

so that

∇V Ẽ(v)(t, y) = v(t, y) +
N∑

q=1

K (y,ϕv
0t (xq))dϕv

t1(ϕ
v
0t (xq))

T∂q F(ϕv
01(xq)).

(10.35)
So, a basic gradient descent algorithm in X 2

V would implement the evolution
(letting τ denote the algorithm time)

∂τv
τ (t, y) = −γ

⎛

⎝vτ (t, y) +
N∑

q=1

K (y,ϕvτ

0t (xq))dϕvτ

t1 (ϕ
vτ

0t (xq))
T∂q F(ϕvτ

01(xq))

⎞

⎠ .

(10.36)

The two-step algorithm defined in the previous section is especially efficient with
point sets. When x = (x1, . . . , xN ), v · x = (v(x1), . . . , v(xN ), the projection on

Vx = {v : v · x = 0}⊥ = {v : v(x1) = · · · = v(xN ) = 0}⊥

is given by spline interpolation with the kernel, as described in Theorem 8.8, i.e.,

Vx =
{

v =
N∑

k=1

K (., xk)ak, a1, . . . , aN ∈ R
d

}

. (10.37)

More precisely, define xv
i (t) = ϕv

0t (xi ). We assume that, at time τ , we have a
time-dependent vector field vτ which takes the form

vτ (t, y) =
N∑

i=1

K (y, xvτ

i (t))ατ
i (t). (10.38)
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Using (10.36), we define

ṽ(t, y) = vτ − δτ
(
vτ (t, y) +

N∑

q=1

K (y,ϕvτ

0t (xq))dϕvτ

t1 (ϕ
vτ

0t (xq))
T∂q F(ϕvτ

01(xq))
)
.

The values of ṽ(t, ·) are in fact only needed at the points x ṽ
i (t) = ϕṽ

0t (xi ). These
points are obtained by solving the differential equation

∂t x = vτ (t, x) − δτ

(

vτ (t, x) +
N∑

i=1

K (xvτ

i (t), x)dϕvτ

t1 (x
vτ

i (t))T Fi (x
vτ

(1))

)

(10.39)

with x(0) = xi . Solving this equation provides both x ṽ
i (t) and ṽ(x ṽ

i (t)) for t ∈ [0, 1].
Once this is done, define vτ+δτ (t, ·) to be the solution of the approximation prob-

lem infw ‖w‖V with w(x ṽ
i (t)) = v(x ṽ

i (t)), which will therefore take the form

vτ+δτ (t, y) =
N∑

i=1

K (y, xvτ+δτ

i (t))ατ+δτ
i (t).

Solving (10.39) requires evaluating the expression of vτ , which can be done
exactly using (10.38). It also requires computing the expression of dϕvτ

t1 (x
vτ

i (t)),
which can be obtained from the expression

∂t dϕv
t1 ◦ ϕ1t = ∂t (dϕ1t )

−1 = −(dϕ1t )
−1(∂t (dϕ1t ))(dϕ1t )

−1,

which yields:
∂t dϕv

t1(x
v
i (t)) = −dϕv

t1(x
v
i (t))dv(t, xv

i (t)).

Thus, dϕv
t1(x

v
i (t)) is a solution of ∂t M = −Mdv(xv

i (t)) with initial condition
M = Id. The matrix dv(t, xv

i (t)) can be computed explicitly as a function of the
point trajectories xv

j (t), j = 1, . . . , N , using the explicit expression (10.38). This
algorithm was introduced in [31].

10.6.2 Gradient in the Hamiltonian Form

Aswe have seen, one can use the optimal control formalismwith the Pontryagin prin-
ciple to compute the gradient of Ẽ in v. Given v ∈ X 2

V , this gradient can be computed
by solving (10.28) with boundary conditions ϕ(0) = id and μ(1) = −dU (ϕ(1))
(which can be achieved by solving the first equation in (10.28) from t = 0 to t = 1,
then the second one backward in time, from t = 1 to t = 0) and, using (10.18), letting

∇ Ẽ(v)(t) = K(d Ẽ(v)(t)) = −Kξ∗
ϕ(t)μ(t) + v(t).
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This equation (or the maximum principle) implies that the optimal v must be such
that v(t) = Kξ∗

ϕ(t)μ(t) for some μ ∈ C p−1
0 (Ω,Rd)∗ and there is therefore no loss of

generality in restricting the optimization problem to v’s taking this form. With this
constraint, we have

‖v(t)‖2V = 〈Kξ∗
ϕ(t)μ(t) , Kξ∗

ϕ(t)μ(t)
〉
V

= (μ(t)
∣
∣ ξϕ(t)Kξ∗

ϕ(t)μ(t)
)
.

Let Kϕ = ξϕKξ∗
ϕ so that ‖v(t)‖2V = (μ(t)

∣
∣Kϕ(t)μ(t)

)
. One has

aT (Kϕμ)(y) = aT (Kξ∗
ϕμ)(ϕ(y))

= 〈K (·,ϕ(y))a , Kξ∗
ϕμ
〉
V

= (μ | K (ϕ(x),ϕ(y))a )x

so that

(Kϕμ)(y) =
d∑

i=1

(μ | K (ϕ(x),ϕ(y))ei )xei .

With this notation, the state equation ∂tϕ = v ◦ ϕ becomes ∂tϕ = Kϕμ and the
original optimal control problem is reformulated as minimizing

E(ϕ,μ) = 1

2

∫ 1

0

(
μ(t)

∣
∣Kϕ(t)μ(t)

)
dt +U (ϕ01)

subject to ∂tϕ = Kϕμ.
Expressing the problem in this form slightly changes the expression of the differ-

ential. The computation of the gradient (and its justification) based on a co-state α
and the Hamiltonian

Hμ(α,ϕ) = (α ∣∣Kϕμ
)− 1

2

(
μ
∣
∣Kϕμ

)

are obtained using the same methods as in Sect. 10.4.2, so we skip the details. Let
ϕμ be the solution of ∂tϕ = Kϕμ with ϕ(0) = id. Then, with Ẽ(μ) = E(ϕμ,μ), we
have

d Ẽ(μ) = Kϕα − Kϕμ,

where ϕ and α are given by the system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ = Kϕμ

(
∂tα(t)

∣
∣
∣w
)

= −
d∑

i=1

(
α(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
x
ei
)
y

−
d∑

i=1

(
μ(t)

∣
∣ (α(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y

+ 2
d∑

i=1

(
μ(t)

∣
∣ (μ(t)

∣
∣ ∂2K

i (ϕ(t, x),ϕ(t, y))w(y)
)
xei
)
y

(10.40)

with ϕ(0) = id and α(1) = −dU (ϕ(1)). Unsurprisingly, this system boils down to
(10.28) when d Ẽ(μ) = 0, i.e., when α = μ.

The gradient of Ẽ expressed with respect to the inner product

〈
μ , μ̃

〉
ϕ

= (μ ∣∣ Kϕμ
)
.

(this choice will be justified in Sect. 11.4 as the dual Riemannian metric on the
diffeomorphism group) is

∇ Ẽ(μ) = α − μ,

a remarkably simple expression.
Consider now the case in whichU (ϕ) = F(ϕ · I ) where I is a fixed object. With

the notation and assumptions made in Sect. 10.6.1, we found in Lemma 10.14 that
there was no loss of generality in restricting the minimization to v(t) ∈ VJ (t) at all
times. This often entails additional constraints on the momentum ρ(t) = Lv(t), or
on μ(t) = ξ∗

ϕ(t)−1ρ(t), that can be leveraged to reduce the dimension of the control
variable. For example, we have seen that for point sets (in which we let J = x) Vx

was given by (10.37), so that ρ(t) must take the form

ρ(t) =
N∑

k=1

zk(t)δxk (t)

for some z1(t), . . . , zN (t) ∈ R
d , from which we can deduce (using xk(t) = ϕ(t,

xk(0))) that μ(t) must take the form

μ(t) =
N∑

k=1

zk(t)δxk (0).

One can then use z1, . . . , zN as a new control, as described below.
Another interesting special case iswhenμ(t) can be expressed as a vectormeasure,

because, as discussed in Sect. 10.5.6, one can then assume that
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μ(t) =
N∑

k=1

zk(t, ·)γk,

where γ1, . . . , γN are fixed measures. One can then use the vector fields z1, . . . , zN
to parametrize the problem. This leads to a simplification when the measures have a
sparse support. They are, for example, Dirac measures for point matching. We now
review this case in more detail.

Application to Point Matching

When U (ϕ) = F(ϕ(x1), . . . ,ϕ(xN )), we have

(dU (ϕ) | h ) =
N∑

k=1

∂k F(ϕ(x1), . . . ,ϕ(xN ))T h(xk)

so that

μ(1) = −
N∑

k=1

∂k F(ϕ(x1), . . . ,ϕ(xN ))δxk

is a vector measure. We can therefore look for a solution in the form

μ(t) =
N∑

k=1

zk(t)δxk

at all times, for some coefficients z1, . . . , zN .
In order to obtain α in (10.40) given a current μ, it suffices to solve the first

equation only for the values of yk(t) = ϕ(t, xk), k = 1, . . . , N , which requires us to
solve the system

∂t yk =
N∑

l=1

K (yk, yl)ξl .

One then sets

α(1) = −
N∑

k=1

∂k F(y1(1), . . . , yN (1))δxk

and solves the second equation backward in time, knowing that the solution will take
the form

α(t) =
N∑

k=1

ηk(t)δxk

with ηk(1) = −∂k F(y1(1), . . . , yn(1)) and
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∂tηk =
N∑

l=1

d∑

i, j=1

ηi
l z

j
k∇1K

i j (yk, yl) +
N∑

l=1

d∑

i, j=1

zilη
j
k∇1K

i j (yk, yl)

− 2
N∑

l=1

d∑

i, j=1

zil z
j
k∇1K

i j (yk, yl).

Given this, we have

∇ Ẽ(μ) =
N∑

k=1

(ηk − zk)δxk .

10.6.3 Gradient in the Initial Momentum

We now use the fact that Eq. (10.16) implies that the optimal v(t) is uniquely con-
strained by its value at t = 0 for formulating the variations of the objective function
in terms of these initial conditions. We therefore optimize with respect to v0, or
equivalently with respect to μ0 = ρ0. This requires finding ρ0 such that

1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕ(1))

is minimal under the constraints ∂tϕ(t) = v(t) ◦ ϕ(t), with

v(t) =
d∑

i=1

(
ρ0
∣
∣ dϕ(t)K (i)(x, y)

)
x
ei .

Proposition 10.12 helps us to simplify this expression, since it implies that∫ 1
0 ‖v(t)‖2dt = (ρ0 |Kρ0 ) and the minimization problem therefore is to find ρ0
such that

E(ρ0) = 1

2
(ρ0 |Kρ0 ) +U (ϕ(1))

isminimal,where (ϕ,μ) is a solution of system (10.28)with initial conditionsϕ(0) =
id and μ(0) = ρ0. Writing (10.28) as

∂t

(
ϕ
μ

)

=
(
V1(ϕ,μ)

V2(ϕ,μ)

)

= V (ϕ,μ)

and applying Proposition D.12, we have

dE(ρ0) = Kρ0 − pμ(0),
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where the pair
(

pϕ(t)
pμ(t)

)
satisfies pϕ(1) = −dU (ϕ(1)), pμ(0) = 0 and

{
∂t pϕ = −∂1V

∗
1 pϕ − ∂1V

∗
2 pμ,

∂t pμ = −∂2V
∗
1 pϕ − ∂2V

∗
2 pμ.

(10.41)

The gradient of E with respect to the metric on V ∗ is then given by ∇E(ρ0) =
ρ0 − K

−1 pμ.
The practical application of these formulas requires us tomake explicit the expres-

sions of ∂iV
∗
j for i, j = 1, 2. Returning to (10.28), we have

(
∂1V

∗
1 pϕ

∣
∣ h
) =

d∑

i=1

(
pϕ

∣
∣ (μ

∣
∣ ∂1K

i (ϕ(x),ϕ(y))h(x)
)
xei
)
y

+
d∑

i=1

(
pϕ

∣
∣ (μ

∣
∣ ∂2K

i (ϕ(x),ϕ(y))h(y)
)
xei
)
y
,

(
∂2V

∗
1 pϕ

∣
∣ η
) =

d∑

i=1

(
pϕ

∣
∣
(
η
∣
∣ K i (ϕ(x),ϕ(y))

)
xei
)
y
,

(
∂1V

∗
2 pμ

∣
∣ h
) = −

d∑

i=1

(
μ
∣
∣ (μ

∣
∣ ∂1∂2K

i (ϕ(x),ϕ(y))(h(x), pμ(y))
)
xei
)
y

−
d∑

i=1

(
μ
∣
∣ (μ

∣
∣ ∂2

2K
i (ϕ(x),ϕ(y))(h(y), pμ(y))

)
xei
)
y
, and

(
∂2V

∗
2 pμ

∣
∣ η
) = −

d∑

i=1

(
η
∣
∣ (μ

∣
∣ ∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
xei
)
y

−
d∑

i=1

(
μ
∣
∣ (η

∣
∣ ∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
xei
)
y
.

Forming explicit expressions of ∂iV
∗
j requires isolating h or η from the right-hand

sides. To do this, we will need to change the order in which linear forms are applied
to the x and y coordinates. This issue is addressed in the following lemma.

Lemma 10.15 Assume that μ ∈ Cr (Ω,Rd)∗ and ν ∈ Cr ′
(Ω,Rd)∗. Let g : Ω ×

Ω → R be a function such that ∂k
1∂

k ′
2 g ∈ C0(Ω × Ω,R) for all k ≤ r and k ′ ≤ r .

Then, for all a, b ∈ R
d , (μ | g(x, ·)a )x ∈ Cr ′

(Ω,Rd) and (ν | g(·, y)b )y ∈
Cr (Ω,R), with

(
μ
∣
∣ (ν | g(x, y)b )ya

)
x

= (ν ∣∣ (μ | g(x, y)a )xb
)
y . (10.42)
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Proof Let f (y) = (μ | g(x, y)a )x . Using Taylor’s formula, we can write

g(x, y + h) =
r ′
∑

k=0

1

k!∂
k
2g(x, y)h(k)+

1

(r ′ − 1)!
∫ 1

0
(∂r ′

2 g(x, y + th) − ∂r ′
2 g(x, y))h(r ′

)(1 − t)r
′−1 dt

so that

f (y + h) =
r ′
∑

k=0

1

k!
(
μ
∣
∣ ∂k

2g(x, y)h(k)a
)

+ 1

(r ′ − 1)!
(
μ
∣
∣
∣

∫ 1

0
(∂r ′

2 g(x, y + th) − ∂r ′
2 g(x, y))h(r ′))(1 − t)r

′−1a dt
)
.

The last term (call it R) is such that

|R| ≤ ‖μ‖r,∞,∗|h|r ′ |a|
r ′! max

t∈[0,1] ‖∂
r ′
2 g(·, y + th) − ∂r ′

2 g(·, y)‖r,∞.

The uniform continuity of ∂k
1∂

r ′
2 g for k ≤ r implies that R = o(|h|r ′

) so that f ∈
Cr ′

(Ω,R). Similarly, letting f ′(x) = (μ | g(x, y)b )y , one has f ′ ∈ Cr (Ω,R).
The computation also shows that, for some constant C ,

max(
(
μ
∣
∣ (ν | g(x, y)b )ya

)
x
,
(
ν
∣
∣ (μ | g(x, y)a )xb

)
y)

≤ C‖μ‖r,∞,∗‖ν‖r ′,∞,∗‖g‖r,r ′,∞

with
‖g‖r,r ′,∞ = max

k≤r,k ′≤r ′ ‖∂k
1∂

k ′
2 g‖∞,

so that both sides of (10.42) are continuous in gwith respect to this norm.To conclude,
it suffices to notice that (10.42) is true when g takes the form

g(x, y) =
n∑

k=1

ck fk(x) f
′
k(y)

and that these functions form a dense set for ‖g‖r,r ′,∞, so that the identity extends
by continuity. �

Let us use this lemma to identify the first term in
(
∂1V

∗
1 pϕ

∣
∣ h
)
as a linear form

acting on h. Write, letting ∂i,k denote the derivative with respect to the kth coordinate
of the i th variable,
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d∑

i=1

(
pϕ

∣
∣
(
μ
∣
∣ ∂1K

i (ϕ(x),ϕ(y))h(x)
)
x
ei
)
y

=
d∑

i, j,k=1

(
pϕ

∣
∣ (μ

∣
∣ ∂1,k K

i j (ϕ(x),ϕ(y))hk(x)e j
)
xei
)
y

=
d∑

i, j,k=1

(
μ
∣
∣
∣
(
pϕ

∣
∣ ∂1,k K

i j (ϕ(x),ϕ(y))hk(x)ei
)
ye j
)

x

=
d∑

i, j,k=1

(
μ
∣
∣
∣
(
pϕ

∣
∣ ∂2,k K

ji (ϕ(y),ϕ(x))ei
)
yh

k(x)e j
)

x

=
d∑

j,k=1

(
μ
∣
∣
∣
(
pϕ

∣
∣ ∂2,k K

j (ϕ(y),ϕ(x))
)
y
hk(x)e j

)

x

= (μ |U1h ),

where U1(x) is the matrix with coefficients

U j,q
1 (x) = (pϕ

∣
∣ ∂2,q K

j (ϕ(y),ϕ(x))
)
y .

Write
(
U T

1 μ
∣
∣ h
) = (μ |U1h ), a notation generalizing the one introduced for vector

measures. After a similar computation for the second term of
(
∂1V

∗
1 pϕ

∣
∣ h
)
(which

does not require Lemma 10.15), we get

∂1V
∗
1 pϕ = U T

1 μ + U T
2 pϕ

with
U j,q

2 (x) = (μ ∣∣ ∂2,q K
j (ϕ(y),ϕ(x))

)
y .

Consider now ∂2V
∗
1 pϕ, writing

(
∂2V

∗
1 pϕ

∣
∣ η
) =

d∑

i, j=1

(
η
∣
∣
∣
(
pϕ

∣
∣ K i j (ϕ(x),ϕ(y))ei

)
y
e j
)

x

=
d∑

j=1

(
η
∣
∣
∣
(
pϕ

∣
∣ K j (ϕ(y),ϕ(x))

)
ye j
)

x
,

so that

∂2V
∗
1 pϕ(x) =

d∑

j=1

(
pϕ

∣
∣ K j (ϕ(y),ϕ(x))

)
ye j .

With similar computations for V2, and skipping the details, we find
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∂1V
∗
2 pμ = −U T

3 μ − U T
4 μ

where

U jq
3 (x) = (μ ∣∣ ∂2,q(∂1K

j (ϕ(y),ϕ(x))pμ(y))
)
y, and

U jq
4 (x) = (μ ∣∣ ∂2,q(∂2K

j (ϕ(y),ϕ(x))pμ(x))
)
y .

Finally,

∂2V
∗
2 pμ(x) = −

d∑

i=1

(
μ
∣
∣ ∂2K

i (ϕ(y),ϕ(x))pμ(x)
)
yei

−
d∑

i=1

(
μ
∣
∣ ∂1K

i (ϕ(y),ϕ(x))pμ(y)
)
yei .

Let us take the special case of vector measures, assuming that μ(t) =∑N
k=1 zk(t, ·)γk . We will look for pϕ in the form

pϕ(t) =
N∑

k=1

αk(t, ·)γk,

pμ being a function defined over the support of μ.
With these assumptions, we have

• ∂1V
∗
1 pϕ =

N∑

k=1

ζ1,1k γk with

ζ1,1k (x) =
N∑

l=1

d∑

i, j=1

(
γl

∣
∣
∣αi

l (y)z
j
k (x)∇1K

i j (ϕ(x),ϕ(y))
)

y

+
N∑

l=1

d∑

i, j=1

(
γl

∣
∣
∣ zil (y)α

j
k (x)∇1K

i j (ϕ(x),ϕ(y))
)

y
.

• ∂2V
∗
1 pϕ(x) =

N∑

k=1

(γk | K (ϕ(x),ϕ(y))αk(y) )y .

• ∂1V
∗
2 pμ =

N∑

k=1

ζ2,1k γk with
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ζ2,1k (x) = −
d∑

i, j=1

N∑

l=1

(
γl

∣
∣
∣ zil (y)z

j
k (x)∂1∂2K

i j (ϕ(x),ϕ(y))pμ(y)
)

y

−
d∑

i, j=1

N∑

l=1

(
γl

∣
∣
∣ zil (y)z

j
k (x)∂

2
1K

i j (ϕ(x),ϕ(y))pμ(x)
)

y
.

• ∂2V
∗
2 pμ(x) = −

d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂1K

i (ϕ(x),ϕ(y))pμ(x)
)
y

−
d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
y
.

System (10.41) can now be simplified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tαk = ζ1,1k + ζ2,1k

∂t pμ =
N∑

k=1

(γk | K (ϕ(x),ϕ(y))αk(y) )y

−
d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂1K

i (ϕ(x),ϕ(y))pμ(x)
)
y

−
d∑

i=1

N∑

k=1

(
γk
∣
∣ zik(y)∂2K

i (ϕ(x),ϕ(y))pμ(y)
)
y .

(10.43)

Application to Point Matching

We now apply this approach to point-matching problems. Since ρ0 takes the form

ρ0 =
N∑

k=1

a0,kδx0,k

we are in the vector measure case with γk = δx0,k . The densities zk and αk for μ
and pϕ can therefore be considered as vectors in R

d , and pμ being defined on the
support ofμ is also a collection of vectors pμ,k = pμ(xk). Given this, we can therefore
immediately rewrite

• ∂1V
∗
1 pϕ =

N∑

k=1

ζ1,1k δx0,k with

ζ1,1k =
N∑

l=1

d∑

i, j=1

(
αi
l∇1K

i j (xk, xl)z
j
k + zil∇1K

i j (xk, xl)α
j
k

)
.
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• ∂2V
∗
1 pϕ(x0,k) =

N∑

l=1

K (xk, xl)αl .

• ∂1V
∗
2 pμ =

N∑

k=1

ζ2,1k δx0,k with

ζ2,1k = −
d∑

i, j=1

N∑

l=1

zil z
j
k (∂1∂2K

i j (xk, xl) pμ,l + ∂2
1K

i j (xk, xl) pμ,k).

• ∂2V
∗
2 pμ(xk) = −

d∑

i=1

N∑

l=1

zil (∂1K
i (xk, xl)pμ,k + ∂2K

i (xk, xl)pμ,l).

This algorithm is illustrated in Fig. 10.1. In the same figure, we also provide (for
comparison purposes) the results provided by spline interpolation, which computes
ϕ(x) = x + v(x), where v is computed (using Theorem 8.9) in order to minimize

‖v‖2V + C
N∑

i=1

|v(xi ) − (yi − xi )|2 .

Although this is a widely spread registration method [42], Fig. 10.1 shows that it is
far from being diffeomorphic for large deformations.

10.6.4 Shooting

The optimality conditions for our problem are μ(1) = −dU (ϕ(1)) with μ(t) given
by (10.28). The shooting approach in optimal control consists in finding an initial
momentum ρ0 = μ(0) such that these conditions are satisfied. Root finding methods,
such as Newton’s algorithm, can be used for this purpose. At a given step of Newton’s
algorithm, one modifies the current value of ρ0, by letting ρ0 → ρ0 + η such that,
letting F(ρ0) := μ(1) + dU (ϕ(1)), one has

F(ρ0) + dF(ρ0)η = 0.

One therefore needs to solve this linear equation in order to update the current ρ0.
One has

dF(ρ0) = Wμμ(1) + Wϕμ(1)
∗d2U (ϕ(1)),

where

W =
(
Wϕϕ Wϕμ

Wμϕ Wμμ

)
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Fig. 10.1 Metric point matching. The first two rows provide results obtained with gradient descent
in the initialmomentum for pointmatching,with the same input as in Fig. 9.1, usingGaussian kernels
K (x, y) = exp(−|x − y|2/2σ2) with σ = 1, 2, 4 in grid units. The impact of the diffeomorphic
regularization on the quality of the result is particularly obvious in the last experiment. The last row
provides the output of Gaussian spline registration with the same kernels, exhibiting singularities
and ambiguities in the registration
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is (using the notation of the previous section) the differential of the solution of the
equation

∂t

(
ϕ
μ

)

= V (ϕ,μ),

with respect to its initial condition, i.e., the solution of

∂tW = dV (ϕ,μ)W

with initial condition W (0) = Id.
Because one needs to compute the solution of this differential equation at every

step of the algorithm, then solve for a linear system, the shooting method is feasible
only for problems that canbediscretized into a relatively small number of dimensions.
One can use it, for example, in point matching problems with no more than a few
hundred landmarks (see [290] for an application to labeled point matching), in which
case the algorithm can be very efficient. Another issue is that root finding algorithms
are not guaranteed to converge. Usually, a good initial solution must be found, using,
for example, a few preliminary steps of gradient descent.

10.6.5 Gradient in the Deformable Object

Finally, we consider the option of using the time derivative of the deformable object
as a control variable, using the fact that, by (10.33), the objective function can be
reduced to

E(J ) =
∫ 1

0
L(∂t J (t), J (t))dt + F(J (1))

with L(η, J ) = minw: η=w·J (t) ‖w‖2V . This formulation is limited, in that L(η, J ) is
not always defined for all (η, J ), resulting in constraints in the minimization that
are not always easy to handle. Even if well-defined, the computation of L may
be numerically demanding. To illustrate this, consider the image-matching case, in
which v · J = −∇ J T v. An obvious constraint is that, in order for

∇ J Tw = −η

to have at least one solution, the variation η must be supported by the set ∇ J �= 0.
To compute this solution when it exists, one can write, for x ∈ Ω ,

∇ J (x)Tw(x) = 〈K (·, x)∇ J (x) , w
〉
V ,

and it is possible to look for a solution in the form
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w(y) =
∫

Ω

λ(x)K (y, x)∇ J (x)dx,

where λ(x) can be interpreted as a continuous family of Lagrange multipliers. This
results in a linear equation in λ, namely

∫

Ω

λ(x)K (y, x)∇ J (y)T∇ J (x))dx = −η(y),

which is numerically challenging.
For point sets, however, the approach is feasible [159] because L can be made

explicit. Given a point-set trajectory x(t) = (x (1)(t), . . . , x (N )(t)), let S(x(t)) denote
the block matrix with (i, j) block given by K (x (i)(t), x ( j)(t)). The constraints are
xt = S(x(t))ξ(t) so that ξ(t) = S(x(t))−1 ẋt and the minimization reduces to

E(x) = 1

2

∫ 1

0
ẋ(t)T S(x(t))−1 ẋ(t)dt +U (x(1)).

Minimizing this function with respect to x by gradient descent is possible, and has
been described in [158, 159] for labeled landmark matching. The basic compu-
tation is as follows: if spq,r = ∂r spq , we can write (using the fact that ∂r (S−1) =
−S−1(∂r S)S−1)

(dE(x) | h ) =
∫ 1

0
ẋ(t)T S(x(t))−1ḣ(t)dt

−
∫ 1

0

∑

p,q,r

ξ(p)(t)ξq)(t)spq,r (x(t))h
(r)(t)dt + ∇U (x(1))T h(1).

After an integration by parts in the first integral, we obtain

dE(x) = −∂t
(
S(x(t))−1 ẋ

)− z(t) + (S(x(1))−1 ẋ(1) + ∇U (x(1))
)
δ1(t),

where zr (t) =∑p,q ξp(t)ξq(t)spq,r (x(t)) and δ1 is the Dirac measure at t = 1.
This singular part can be dealt with by computing the gradient in a Hilbert space

in which the evaluation function x(·) �→ x(1) is continuous. This method has been
suggested, in particular, in [129, 161]. Let H be the space of all trajectories x : t �→
x(t) = (x (1)(t), . . . , x (N )(t)), with fixed starting point x(0), free end-point x(1) and
square integrable time derivative. This is a space of the form x(0) + H where H
is the Hilbert space of time-dependent functions t �→ h(t), considered as column
vectors of size Nk, with h(0) = 0 and

〈
h , h̃

〉
H =

∫ 1

0
ḣT ˙̃hdt + h(1)T h̃(1).
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To compute the gradient for this inner product, we need to write (dE(x) | h ) in the
form

〈∇H E(x) , h
〉
H . We will make the assumption that

∫ 1

0

∣
∣S(x(t))−1 ẋ(t)

∣
∣2 dt < ∞,

which implies that

∫ 1

0
ẋ(t)T S(x(t))−1ḣ(t)dt ≤

√∫ 1

0

∣
∣S(x(t))−1 ẋ(t)

∣
∣2 dt

∫ 1

0

∣
∣ḣ(t)

∣
∣2 dt

is continuous in h. Similarly, the linear form ξ �→ ∇U (x(1))T h(1) is continuous
since

∇U (x(1))T h(1) ≤ |∇U (x(1))| |h(1)| .

Finally, h �→ ∫ 1
0 z(t)T ḣdt is continuous provided that we assume that

η(t) =
∫ t

0
z(s)dt

is square integrable over [0, 1], since this yields
∫ 1

0
z(t)T h(t)dt = η(1)h(1) −

∫ 1

0
η(t)ḣ(t)dt,

which is continuous in h with respect to the H norm.
Thus, under these assumptions, h �→ (dE(x) | h ) is continuous over H , and the

Riesz representation theorem implies that ∇H E(x) exists as an element of H . We
now proceed to its computation. Letting

μ(t) =
∫ t

0
S(x(s))−1ḣ(s)ds

and a = ∇U (x(1)), the problem is to find ζ ∈ H such that, for all h ∈ H ,

〈
ζ , h

〉
H =

∫ 1

0
μ̇T ḣdt +

∫ 1

0
z(t)T h(t)dt + aT ξ(1).

This expression can also be written

∫ 1

0

(
ζ̇ + ζ(1)

)T
ḣdt =

∫ 1

0
(μ̇ + η(1) − η(t) + a)T ḣdt.

This suggests selecting ζ such that ζ(0) = 0 and
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ζ̇ + ζ(1) = μ̇ + η(1) − η(t) + a,

which implies

ζ(t) + tζ(1) = μ(t) −
∫ t

0
η(s)ds + t (η(1) + a).

At t = 1, this yields

2ζ(1) = μ(1) −
∫ 1

0
η(s)ds + η(1) + a

and we finally obtain

ζ(t) = μ(t) −
∫ t

0
η(s)ds + t

2

(∫ 1

0
η(s)ds − μ(1) + η(1) + a

)

.

We summarize this in an algorithm, in which τ is again the computation time.

Algorithm 3 (Gradient descent algorithm for landmark matching) Start with initial
landmark trajectories x(t, τ ) = (x (1)(t, τ ), . . . , x (N )(t, τ )).

Solve

∂τ x(t, τ ) = −γ
(
μ(t, τ ) −

∫ t

0
η(s, τ )ds

+ t

2

( ∫ 1

0
η(s, τ )ds − μ(1, τ ) + η(1, τ ) + a(τ )

))

with a(τ ) = ∇U (x(1, τ )), μ(t, τ ) = ∫ t
0 ξ(s, τ )ds, η(t, τ ) = ∫ t

0 z(s, τ )dt and

ξ(t, τ ) = S(x(t, τ ))−1 ẋ(t, τ )

z(q)(t, τ ) =
∑

p,r

ξ(p)(t, τ )ξ(r)(t, τ )spq,r (x(t, τ )).

10.6.6 Image Matching

We now take an infinite-dimensional example to illustrate some of the previously
discussedmethods and focus on the image-matching problem.We therefore consider

U (ϕ) = λ

2

∫

Ω

(I ◦ ϕ−1 − Ĩ )2dx,
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where I, Ĩ are functions Ω → R, I being differentiable. The Eulerian differential of
U is given by (9.21):

∂̄U (ϕ) = −λ(I ◦ ϕ−1 − I ′)∇(I ◦ ϕ−1)dx .

So, according to (10.19), and letting Ũ (v) = U (ϕv
01),

∇Ũ (v)(t, y) =
d∑

i=1

(
∂̄U (ϕv

01)
∣
∣ dϕv

t1(ϕ
v
1t (.))K (y,ϕv

1t (.))ei
)
ei

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))

∇(I ◦ ϕv
10)(x)

T dϕv
t1(ϕ

v
1t (x))K (y,ϕv

1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))

∇ I ◦ ϕv
10(x)

T dϕv
10(x)dϕv

t1(ϕ
v
1t (x))K (y,ϕv

1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))

∇ I ◦ ϕv
10(x)

T dϕv
t0(ϕ

v
1t (x))K (y,ϕv

1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))∇(I ◦ ϕv
t0)(ϕ

v
1t (x))

T K (y,ϕv
1t (x))ei dx

= −λ

d∑

i=1

ei

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))eTi K (ϕv
1t (x), y)∇(I ◦ ϕv

t0)(ϕ
v
1t (x))dx

= −λ

∫

Ω
(I ◦ ϕv

10(x) − Ĩ (x))K (ϕv
1t (x), y)∇(I ◦ ϕv

t0)(ϕ
v
1t (x))dx .

This provides the expression of the V -gradient of Ẽ for image matching, namely

(∇V E(v))(t, y) = v(t, y) (10.44)

− λ

∫

Ω

(I ◦ ϕv
10(x) − Ĩ (x))K (ϕv

1t (x), y)∇(I ◦ ϕv
t0)(ϕ

v
1t (x))dx .

Using a change of variable in the integral, the gradient may also be written as

(∇V E)(t, y) = v(t, y) (10.45)

− λ

∫

Ω

(I ◦ ϕv
t0(x) − Ĩ ◦ ϕv

t1(x))K (x, y)∇(I ◦ ϕv
t0)(x) det(dϕv

t1(x))dx,

the associated gradient descent algorithm having been proposed in [32].
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Let us now consider an optimization with respect to the initial ρ0. First notice that,
by (9.20), μ(1) = λ det(dϕ(1))(I − I ′ ◦ ϕ(1))dϕ(1)−T∇ I dx is a vector measure.
Also, we have

(ρ0 | w) = (μ(1) | dϕ(1)w )

= λ
(
dx
∣
∣ det(dϕ(1))(I − I ′ ◦ ϕ(1))∇ I Tw

)
,

which shows that one can assume that ρ0 = z0dx for some vector-valued function
z0 (with z0 = det(dϕ(1))(I − I ′ ◦ ϕ(1))∇ I for an optimal control).

We now make explicit the computation of the differential of the energy with
respect to ρ0. We have μ(t) = z(t, ·)dx , with z(0) = z0 and

⎧
⎪⎪⎨

⎪⎪⎩

∂tϕ(t, y) =
∫

Rd

K (ϕ(t, y),ϕ(t, x))z(t, x)dx

∂t z(t, y) = −
∫

Rd

zi (t, y)z j (t, x)∇1K
i j (ϕ(t, y),ϕ(t, x))dx .

(10.46)

The differential dE(ρ0) = Kρ0 − pμ(0) is computed by solving, using α(1) =
λ det(dϕ(1))(I − I ′ ◦ ϕ(1))dϕ(1)−T∇ I and pμ(1) = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tα =ζ1,1 + ζ2,1

∂t pμ =
∫

Rd

K (ϕ(x),ϕ(y))α(y)dy

−
d∑

i=1

∫

Rd

zi (y)∂1K
i (ϕ(x),ϕ(y))pμ(x)dy

−
d∑

i=1

∫

Rd

zi (y)∂2K
i (ϕ(x),ϕ(y))pμ(y)dy,

(10.47)

in which

ζ1,1(x) =
d∑

i, j=1

∫

Rd

(αi (y)z j (x) + zi (y)α j (x))∇1K
i j (ϕ(x),ϕ(y))dy

and

ζ2,1(x) = −
d∑

i, j=1

∫

Rd

zi (y)z j (x)∂1∂2K
i j (ϕ(x),ϕ(y))pμ(y)dy

−
d∑

i, j=1

∫

Rd

zil (y)z
j
k (x)∂

2
1K

i j (ϕ(x),ϕ(y))pμ(x)dy.
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Fig. 10.2 Metric imagematching. Output ofAlgorithm 4when estimating a deformation of the first
image to match the second one (compare to Fig. 9.2). The third image is the obtained deformation
of the first one and the last provides the deformation applied to a grid

We summarize the computation of the gradient of the image-matching functional
with respect to z0 such that ρ0 = z0dx :

Algorithm 4

1. Solve (10.46) with initial conditions ϕ(0) = id and z(0) = z0 and compute
dU (ϕ(1)) = −λ(I − I ′ ◦ ϕ(1)) det(dϕ(1))dϕ(1)−T∇ I .

2. Solve, backwards in time, until time t = 0 the system (10.47) with boundary
conditions α(1) = −dU (ϕ(1)) and pμ(1) = 0.

3. Set ∇E(z0) = 2z0 − K
−1 pμ(0).

The gradient is computed with the metric
〈
z , z′〉 = ∫

Rd z(y)TKz(y)dy. Results
obtained with this algorithm are presented in Fig. 10.2.

One can also use the fact that z0 = f0∇ I for a scalar-valued f0. Since we have

(
dE(z0)

∣
∣
∣ h0
)

=
∫

Ω

(Kz0 − pμ(0))
T h0dy,
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we can write, with Ẽ( f0) = E( f0∇ I ):

(
d Ẽ( f0)

∣
∣
∣ u0
)

=
∫

Ω

(K( f0∇ I ) − pμ(0))
T∇ I u0dy,

which leads to replacing the last step in Algorithm 4 by

∇E( f0) = −∇ I T (K( f0∇ I ) − pμ(0)),

which corresponds to using the L2 metric in f0 for gradient descent. However, a
more natural metric, in this case, is the one induced by the kernel, i.e.,

〈
f , f ′〉

I =
∫

Ω

∫

Ω

K( f ∇ I )(y)( f ′(y)∇ I (y)dy =
∫

Ω

KI (x, y) f (x) f
′(y)dxdy

with KI (x, y) = ∇ I (x)T K (x, y)∇ I (y). With this metric, z0 is updated with

∇E( f0) = z0 − K
−1
I ∇ I T pμ(0).

Although this metric is more satisfactory from a theoretical viewpoint, the inversion
of KI might be difficult, numerically.

10.6.7 Pros and Cons of the Optimization Strategies

In the previous sections we have reviewed several possible choices of control vari-
ableswith respect towhich the optimization of thematching energy canbe performed.
For all but the shootingmethod, this results in specific expressions of the gradient that
can then be used in optimization procedures such as those discussed in AppendixD.

All these procedures have been implemented in the literature to solve a
diffeomorphic-matching problem in at least one specific context, but no extensive
study has ever been made to compare them. Even if the outcome of such a study is
likely to be that the best method depends on the specific application, one can still
provide a few general facts that can help a user decide which one to use.

When feasible (that is, when the linear system it involves at each step can be
efficiently computed and solved), the shooting method is probably the most efficient.
If the initialization is not too far from the solution, convergence can be achieved in
a very small number of iterations. One cannot guarantee, however, that the method
will converge starting from any initial point, and shooting needs to be combined with
some gradient-based procedure in order to find a good starting position.

Since they optimize with respect to the same variable, the most natural procedure
to combine with shooting is optimization with respect to the initial momentum. Even
when shooting is not feasible (e.g., for large-scale problems), this specific choice of
control variable is important, because it makes sure that the final solution satisfies the
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EPDiff equation, which guarantees the consistency of the momentum representation,
which will be discussed in Sect. 11.5.2. The limitation is that, with large and complex
deformations, the sensitivity of the solution to small changes in the control variable
can be large, which may result in an unstable optimization procedure.

The other methods, which optimize with respect to time-dependent quantities,
are generally more able to compute very large deformations. Beside the obvious
additional burden in computer memory that they require, one must be aware that the
discrete solution can sometimes be far from satisfying the EPDiff equation unless
the time discretization is fine enough (which may be impossible to achieve within
a feasible implementation for large-scale problems). Therefore, these methods do
not constitute the best choice if obtaining a reliable momentum representation is
important. Among the three time-dependent control variables that we have studied
(velocity,momentumanddeformable object), onemayhave a slight preference for the
representation using the time-dependentmomenta, even if the computation it involves
is slightly more complex than the others. There are at least two reasons for this.
First, the momenta are generally more parsimonious in the space variables, because
they incorporate normality constraints to transformations that leave the deformable
objects invariant. Second, because the forward and backward equations solved at each
iteration immediately provide a gradient with respect to the correct metric, so that the
implementation does not have to include the solution of a possibly large-dimensional
linear system which is required by other representations.

10.7 Numerical Aspects

10.7.1 Discretization

The implementation of the diffeomorphic matching algorithms that were just dis-
cussed requires a proper discretization of the different variables that are involved.
The discretization in time of optimal control problems is discussed in Sect.D.4. This
discussion directly applies here and we refer the reader to the relevant pages in the
chapter for more details. If the deformed objects are already discrete (e.g., points
sets), this suffices in order to design a numerical implementation.

When the deformed objects are continuous, some discrete approximation must
obviously be made. One interesting feature of the problems that we have discussed
is that they all derive from the general formulation (10.8), but can be reduced, using
Sect. 10.6.2, to a situation in which the state and controls are finite dimensional after
discretization. Typically, starting from (10.8), the discretization implies that only the
end-point cost function is modified, replacing U (ϕ) = F(ϕ · I0) by an approxima-
tion taking the form U (n)(ϕ) = F (n)(ϕ, I (n)

0 ). For example, when matching curves,
one may replace the objective function F(ϕ · I0) = ‖μϕ·I0 − μI ′ ‖2W ∗ in (9.40) by the
discrete approximation in (9.46), in which the curves I0 and I ′ are approximated by
point sets. Similar approximations can be made for the other types of cost functions
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discussed for curves and surfaces. In such cases, the following proposition can be
applied to compare solutions of the original problem with their discrete approxima-
tions.

Proposition 10.16 Assume that V is continuously embedded inC p+1
0 (Rd ,Rd). Con-

sider a family of optimal control problems minimizing

E (n)(v) = 1

2

∫ 1

0
‖v‖2V dt +U (n)(ϕv

01), (10.48)

with U (n) continuous for the (p,∞)-compact topology. Let U be continuous with
respect to the same topology and assume that, for some p > 0, the following uniform
convergence is true: for all A > 0 and ε > 0, there exists an n0 such that, for all n ≥
n0, for allϕ ∈ Diff p,∞0 such thatmax(‖ϕ‖p,∞, ‖ϕ−1‖p,∞) < A, one has |U (n)(ϕ) −
U (ϕ)| < ε.

Then, given a sequence v(n) of minimizers of (10.48), one can extract a subse-
quence v(nk ) that weakly converges to v in X 2

V , with v minimizing

E(w) = 1

2

∫ 1

0
‖w‖2V dt +U (ϕw

01). (10.49)

Proof Let w be a minimizer of (10.49). Our assumptions implying that U (n)(ϕw
01)

converges to U (ϕw
01) (so that their difference is bounded), we see that E (n)(w) ≤

E(w) + C for some constant C , so that, letting v(n) be a minimizer of E (n), we have
‖v(n)‖2X 2

V
≤ 2E (n)(v(n)) ≤ 2E(w) + 2C . From this we find that v(n) is a bounded

sequence in X 2
V , so that, replacing it with a subsequence if needed, we can assume

that it weakly converges to some v ∈ X 2
V . Applying Theorem 7.13, we find that ϕv(n)

01
converges to ϕv in the (p,∞)-compact topology. Moreover, Theorem 7.10 implies
that the sequences (‖ϕv(n)

01 ‖p,∞, ‖ϕv(n)

10 ‖p,∞) are bounded. Applying the uniform con-
vergence ofU (n) toU on bounded sets and the continuity ofU , we see thatU (n)(ϕv(n)

01 )

converges to U (ϕv
01) as n tends to infinity. Since, in addition

‖v‖X 2
V

≤ lim inf ‖v(n)‖X 2
V

we obtain the fact that E(v) ≤ lim inf E (n)(v(n)). We also have

E (n)(v(n)) ≤ E (n)(w) = E(w) +U (ϕw
01) −U (n)(ϕw

01) → E(w),

so that E(v) = E(w) and v is also a minimizer of (10.49). �

Curves and Surfaces. We can apply this theorem to curve and surface matching
according to the following discussion, in which we focus on surface matching using
currents, but which can, with very little modification, be applied to curves, and to
measure or varifoldmatching terms. LetΣ and Σ̃ be regular surfaces and S(n), S̃(n) be
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sequences of triangulated surfaces that converge to them as defined before Theorem
4.3. Let (fixing an RKHS W with kernel ξ)

U (ϕ) = ‖νϕ·Σ − νΣ̃‖2W ∗ ,

using the vector measures defined in Eq. (9.49), and

U (n)(ϕ) = ‖νϕ·S(n) − νS̃(n)‖2W ∗ ,

using the discrete version as in (9.56). Then, Theorem 4.3, slightly modified to
account for double integrals, can be used to check that the assumptions of Proposition
10.16 are satisfied.

Images. The imagematching problem can be discretized using finite grids, assuming
that the considered images are supported by the interval [0, 1]d . Consider the cost
function

U (ϕ) = ‖I ◦ ϕ−1 − Ĩ‖22,

in which we assume, to simplify, that I and Ĩ are compactly supported (say, on
K = [−M, M]d ) and bounded. We first start with a discretization that can be applied
to general L2 functions. Let Gn = {−M + 2−n+1kM, k = 0, . . . , 2n}d provide a dis-
crete grid on K and associate to each point z ∈ Gn its Voronoï cell, Γn(z), provided
by the set of points in K that are closer to x than to any other point in the grid (i.e.,
Γn(z) is the intersection of K and the cube of size 2−n centered at x). Define

I (n)(x) =
∑

z∈Gn

Ī (n)(z)1Γn(z)(x),

where

Ī (n)(z) = 1

|Γn(z)|
∫

Γn(z)
I (x) dx

is the average value of I over Γn(z).
Define Ĩ (n) similarly and consider the approximation of U given by U (n)(ϕ) =

‖I (n) ◦ ϕ−1 − Ĩ (n)‖22. Then U (n) and U satisfy the hypotheses of Proposition 10.16.
Indeed, assume that max(‖ϕ‖1,∞, ‖ϕ−1‖1,∞) < A. We have

|U (n)(ϕ) −U (ϕ)| ≤ 2‖I ◦ ϕ−1 − I (n) ◦ ϕ−1‖22 + 2‖ Ĩ − Ĩ (n)‖22
≤ 2C(A)‖I − I (n)‖22 + 2‖ Ĩ − Ĩ (n)‖22,

where the second inequality is obtained after a change of variable in the first L2 norm
and C(A) is an upper bound for the Jacobian determinant of ϕ depending only on A.
As a consequence, Proposition 10.12 will be true as soon as one shows that I (n) and
Ĩ (n) converge in L2 to I and Ĩ respectively (and will also be true for any sequence
of approximations of I and Ĩ that satisfies this property). The L2 convergence is
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true in our case because I (n) is the orthogonal projection of I on the space Wn of L2

functions that are constant on each setΓn(z), z ∈ Gn . This implies that I (n) converges
in L2 to the projection of I on W∞ =⋃n≥1 Wn (see Proposition A.11), but one has
W∞ = L2, because any function J orthogonal to this space would have its integral
vanish on any dyadic cube, which is only possible for J = 0.

Note that, with this approximation, one can write

‖I (n) ◦ ϕ−1 − Ĩ‖22 =
∑

z∈Gn

I (z)2|ϕ(Γn(z))| +
∑

z∈Gn

Ĩ (z)2|Γn(z)|

− 2
∑

z,z′∈Gn

I (z) Ĩ (z′)|ϕ(Γn(z)) ∩ Γn(z
′)|,

where |A| denotes the volume of A ⊂ R
d . To make this expression computable, one

needs to approximate the sets ϕ(Γn(z)), where the simplest approximation is to take
the polyhedron formed by the image of the vertices of Γn(z) by ϕ (which will retain
the same topology as the original cube is n is large enough). The verification that
this approximation is valid (in the sense of Proposition 10.16) is left to the reader.

However, even with this approximation, the numerical problem is still highly
computational, since it becomes a point set problem over Gn , which is typically
a huge set. Most current implementations use a simpler scheme, in which I (n) is
interpolated between the values (I (z), z ∈ Gn), who are therefore assumed to be
well defined, and the cost function is simply approximated by

U (n)(ϕ) =
∑

z∈Gn

(I (ϕ−1(z)) − Ĩ (z))2|Γn(z)|.

Here again, we leave to the reader to check that this provides a valid approximation
in the sense of Proposition 10.16 as soon as, say, I and Ĩ are continuous and one
uses a linear interpolation scheme, as described below.

Using this approximation (for a fixed n that we will remove from the notation),
we now work the implementation in more detail, starting with the computation of
the gradient in (10.45). Assume that time is discretized at tk = kh for h = 1/Q and
that vk(·) = v(tk, ·) is discretized over a regular grid G.

It will be convenient to introduce the momentum and express vk in the form

vk(y) =
∑

z∈G
K (y, z)ρk(z). (10.50)

We can consider (ρk(z), z ∈ G) as new control variables, noting that (10.45) directly
provides the gradient of the energy in V ∗, namely

(∇V ∗
E)(t, y) = 2ρ(t) − 2 det(dϕv

t1)(I ◦ ϕv
t0 − Ĩ ◦ ϕv

t1)∇(I ◦ ϕv
t0)dx .
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From this expression, we see that we can interpret the family (ρk(z), z ∈ G) as
discretizing a measure, namely

ρk =
∑

z∈G
ρk(z)δz .

Given this, the gradient in V ∗ can be discretized as

ξk(z) = 2ρk(z) − 2 det(dϕv
tk1(z))(I ◦ ϕv

tk0(z) − Ĩ ◦ ϕv
tk1(z))∇(I ◦ ϕv

tk0(z))δz,

which can be used to update ρk(z).
The last requirement in order to obtain a fully discrete procedure is to select

interpolation schemes for the computation of the diffeomorphisms ϕv and for the
compositions of I and I ′ with them. Interpolation algorithms (linear, or cubic, for
example) are standard procedures that are included inmany software packages [234].
In mathematical representation, they are linear operators that take a discrete signal f
on a grid G (i.e., f ∈ R

G) and return a function, that we will denote byR f , defined
everywhere. By linearity, we must have

(R f )(z) =
∑

z∈G
rz(x) f (z)

for some “interpolants” rz(·), z ∈ G. In the approximation of the data attachment
term, one can then replace I byR(I|G ), the interpolation of the restriction of I to G.

Linear interpolation, for example, corresponds, in one dimension, to rz(x) =
1 − 2n|z − x | if |z − x | < 2−n and 0 otherwise. In dimension d, one takes

rz(x) =
d∏

i=1

(1 − 2n|zi − xi |)

if maxi (|zi − xi |) < 2−n and 0 otherwise (where z = (z1, . . . , zd) and x =
(x1, . . . , xd)).

Given an interpolation operatorR, one can replace, say, I ◦ ϕtk0(z) in the expres-
sion of the gradient by

(RI )(ϕtk0(z)) =
∑

z′∈G
rz′(ϕtk0(z))I (z

′).

For computational purposes, it is also convenient to replace the definition of vk in
(10.50) by an interpolated form

vk(x) =
∑

z∈G
rz(x)

∑

i∈G
K (z, z′)ρk(z′) (10.51)
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because the inner sum can be computed very efficiently using Fourier transforms
(see the next section).

To complete the discretization, introduce

ψlk = (id − hvl) ◦ · · · ◦ (id − hvk−1),

where an empty product of compositions is equal to the identity, so that ψlk is an
approximation of ϕtk tl . Define the cost function, which is explicitly computable as a
function of ρ0, . . . , ρQ−1:

E(ρ) =
Q−1∑

k=0

∑

z,z′∈G
K (z, z′)ρk(z)T ρk(z

′) +
∑

z∈G
((RI )(ψ0Q(z)) − Ĩ (z))2.

If we make a variation ρ �→ ρ + εδρ, then v �→ v + εδv with (using the interpolated
expression of v)

δvk(y) =
∑

z∈G
rz(y)

∑

z′∈G
K (z, z′)δρk(z′)

and letting δψlk = ∂εψlk , we have, by direct computation

δψlk = −h
k−1∑

q=l

dψlq ◦ ψqk δvq ◦ ψq+1k .

Using this, we can compute the variation of the E , yielding

(∂εE | δρ ) = 2
Q−1∑

k=0

∑

z,z′,∈G
K (z, z′) ρk(z

′)T δρk(z)

− 2h
Q−1∑

k=0

∑

z,z′,y∈G
K (z, z′) rz(ψk+1 Q(y)) ((RI )(ψ0Q(y)) − Ĩ (y))

∇(RI )(ψ0Q(y))T (dψ0k ◦ ψk Q(y) δρk(z
′))

This provides the expression of the gradient of the discretized E in V ∗, namely

(∇V ∗
E(ρ))k(z) = 2ρk(z)

− 2h
∑

z′∈G
rz(ψk+1 Q(z′))((RI )(ψ0Q(z′)) − Ĩ (z′))∇(RI ◦ ψ0k)(ψkQ(z′)).
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10.7.2 Kernel-Related Numerics

Most of the previously discussed methods included repeated computations of linear
combination of the kernel. A basic such step is to compute, given points y1, . . . , yM ,
x1, . . . , xN and vectors (or scalars) α1, . . . ,αN , the sums

N∑

k=1

K (y j , xk)αk, j = 1, . . . , M.

Such sums are involved when deriving velocities from momenta, for example, or
when evaluating dual RKHS norms in curve or surface matching.

Computing these sums explicitly requires NM evaluations of the kernel (and this
probably several times per iteration of an optimization algorithm). When N or M are
reasonably small (say, less than 1,000), such a direct evaluation is not a problem. But
for large-scale methods, such as triangulated surface matching, where the surface
may have tens of thousands of nodes, or image matching, where a three-dimensional
grid typically has millions of nodes, this becomes unfeasible (the feasibility limit
has however been pushed further by recent efficient implementations on GPUs [59,
157, 247]).

If x = y is supported by a regular grid G, and K is translation invariant,
i.e., K (x, y) = Γ (x − y), then, letting xk = hk where k is a multi-index (k =
(k1, . . . , kd)) and h the discretization step, we see that

∑

k∈G
Γ (h(k − l))αl

is a convolution that can be implemented with O(N log N ) operations, using fast
Fourier transforms (with N = |G|). The same conclusion holds if K takes the form
K (x, y) = A(x)TΓ (x − y)A(y) for some matrix A (which can be used to censor
the kernel at the boundary of a domain), since the resulting operation is

A(xk)
T

(
∑

k∈G
Γ (h(k − l))(A(xl)αl)

)

,

which can still be implemented in O(N log N ) operations.
The situation is less favorable when x and y are not regularly spaced. In such

cases, feasibility must come with some approximation.
Still assuming a translation-invariant kernel K (x, y) = Γ (x − y), we can asso-

ciate to a grid G in Rd the interpolated kernel

KG(x, y) =
∑

j, j ′∈G
rz(x)Γ (h(z − z′))rz′(y),
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where the rz’s are interpolants adapted to the grid. This approximation provides a
non-negative kernel, with null space equal to the space of functions with vanishing
interpolation on G. With such a kernel, we have

N∑

k=1

K (y j , xk)αk =
∑

z∈G
rz(y j )

∑

z′∈G
Γ (h(z − z′))

N∑

k=1

rz′(xk)αk .

The computation of this expression therefore requires using the following sequence
of operations:

1. Compute, for all z′ ∈ G, the quantity

az′ =
N∑

k=1

rz′(xk)αk .

Because, for each xk , only a fixed number of rz′(xk) are non-vanishing, this
requires an O(N ) number of operations.

2. Compute, for all z ∈ G,
bz =

∑

z′∈G
Γ (h(z − z′))az′ ,

which is a convolution requiring O(|G| log |G|) operations.
3. Compute, for all j = 1, . . . , M , the interpolation

∑

z∈G
rz(y j )bz,

which requires O(M) operations.

So the resulting cost is O(M + N + |G| log |G|), which must be compared to the
original O(MN ), the comparison being favorable essentially when MN is larger
than the number of nodes in the grid, |G|. This formulation (which has been proposed
in [156]) has the advantage that the resulting algorithm is quite simple, and that the
resulting KG remains a non-negative kernel, which is important.

Another class of methods, called “fast multipole”, computes sums such as

N∑

k=1

K (y, xk)αk

by taking advantage of the fact that K (y, x) varies slowly as x varies in a region
which is far away from y. By grouping the xk’s in clusters, assigning centers to
these clusters and approximating the kernel using asymptotic expansions valid at
a large enough distance from the clusters, fast multipole methods can organize the
computation of the sums with a resulting cost of order M + N when M sums over
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N terms are computed. Even if it is smaller than a constant times (M + N ), the
total number of operations increases (via the size of the constant) with the required
accuracy. The interested reader may refer to [30, 140] for more details.

Another important operation involving the kernel is the inversion of the system
of equations (say, with a scalar kernel)

N∑

k=1

K (xk, xl)αl = uk, k = 1, . . . , N . (10.52)

This is the spline interpolation problem, but it is also part of several of the algorithms
that we have discussed, including for example the projection steps that have been
introduced to obtain a gradient in the correct metric.

Such a problem is governed by an uncertainty principle [258] between accuracy
of the approximation, which is given by the distance between a smooth function
x �→ u(x) and its interpolation

x �→
N∑

k=1

K (x, xl)αl ,

where α1, . . . ,αN are given by (10.52) with uk = u(xk), and the stability of the
system (10.52) measured by the condition number (the ratio of the largest to the
smallest eigenvalue) of the matrix S(x) = (K (xi , x j ), i, j = 1, . . . , N ), evaluated
as a function of the smallest distance between two distinct xk’s (S(x) is singular if
two xk’s coincide).

When K (x, y) = Γ (x − y), the trade-off is measured by how fast ξ �→ Γ̂ (ξ) (the
Fourier transform of Γ ) decreases at infinity. One extreme is given by the Gaussian
kernel, for which Γ̂ decreases like e−c|ξ|2 , which is highly accurate and highly unsta-
ble.On the other side of the range areLaplacian kernels,which decrease polynomially
in the Fourier domain. In this dilemma, one possible rule is to prefer accuracy for
small values of N , therefore using a kernel like the Gaussian, and go for stability for
large-scale problems (using a Laplacian kernel with high enough degree).

For the numerical inversion of system (10.52), iterativemethods, such as conjugate
gradient, should be used (especially for large N ). Methods using preconditioned
conjugate gradient have been introduced, for example, in [105, 141] and the interested
reader may refer to these references for more details.



Chapter 11
Distances and Group Actions

11.1 General Principles

In this chapter we discuss metric comparisons between deformable objects and their
relation to the registration methods that we have studied in the previous chapters.
We start with a general discussion on the interplay between distances on a set and
transformation groups acting on it.

11.1.1 Distance Induced by a Group Action

Transformation groups acting on sets can help in defining or altering distances on
these sets. We will first give a generic construction, based on a least action principle.
We will then develop the related differential point of view, when a Lie group acts on
a manifold.

A distance on a set M is a mapping d : M2 �→ [0,+∞) such that: for all
m,m ′,m ′′ ∈ M ,

D1. d(m,m ′) = 0 ⇔ m = m ′,
D2. d(m.m ′) = d(m ′,m),

D3. d(m,m ′′) ≤ d(m,m ′) + d(m ′,m ′′).

If D1 is not satisfied, but only the fact that d(m,m) = 0 for all m, one says (still
assuming D2 and D3) that d is a pseudo-distance.

IfG is a group acting on M , we will say that a distance d on M isG-equivariant if
and only if for all g ∈ G, for allm,m ′ ∈ M , d(g · m, g · m ′) = d(m,m ′). A mapping
d : M2 �→ R+ is a G-invariant distance if and only if it is a pseudo-distance such
that d(m,m ′) = 0 ⇔ ∃g ∈ G, g · m = m ′. This is equivalent to stating that d is a
distance on the coset space M/G, composed of cosets, or orbits,
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[m] = {g · m, g ∈ G},

with the identification d([m], [m ′]) = d(m,m ′). The next proposition shows how a
G-equivariant distance can induce a G-invariant pseudo-distance.

Proposition 11.1 Let d be equivariant under the left action of G on M. The function
d̃, defined by

d̃([m], [m ′]) = inf{d(g · m, g′ · m ′) : g, g′ ∈ G}

is a pseudo-distance on M/G.
If, in addition, the orbits [m] are closed subsets of M (in the topology associated

to d), then d̃ is a distance.

Note that, because d is G-equivariant, d̃ in the previous proposition is also given by

d̃([m], [m ′]) = inf{d(g · m,m ′) : g ∈ G}.

Proof The symmetry of d̃ is obvious, as is the fact that d̃((m], [m]) = 0 for all m.
For the triangle inequality, D3, it suffices to show that, for all g1, g′

1, g
′
2, g

′′
1 ∈ G, there

exists g2, g
′′
2 ∈ G such that

d(g2 · m, g′′
2 · m ′′) ≤ d(g1 · m, g′

1 · m ′) + d(g′
2 · m ′, g′′

1 · m ′′). (11.1)

Indeed, if this is true, the minimum of the right-hand term in g1, g
′
1, g

′
2, g

′′
1 , which

is d̃([m], [m ′]) + d̃([m ′], [m ′′]), is larger than the minimum of the left-hand term in
g2, g

′′
2 , which is d̃([m], [m ′′]).

Toprove (11.1),writed(g′
2 · m ′, g′′

1 · m ′′) = d(g′
1 · m ′, g′

1(g
′
2)

−1g′′
1 · m ′′), takeg2 =

g1 and g′′
2 = g′

1(g
′
2)

−1g′′
1 ; (11.1) is then a consequence of the triangle inequality for

d.
We now make the additional assumption that the orbits are closed and prove that

D1 is true. Takem,m ′ ∈ M such that d̃([m], [m ′]) = 0. This implies that there exists
a sequence (gn, n ≥ 0) in G such that d(gn · m,m ′) → 0 when n → ∞, so that m ′
belongs to the closure of the orbit of m. Since the latter is assumed to be closed, this
yields m ′ ∈ [m], which is equivalent to [m] = [m ′]. �

The same statement can clearly be made with G acting on the right on m, writing
m �→ m · g. We state it without proof.

Proposition 11.2 Let d be equivariant under the right action of G on M. The func-
tion d̃, defined by

d̃([m], [m ′]) = inf{d(m · g,m ′ · g′) : g, g′ ∈ G}

is a pseudo-distance on G\M.
If, in addition, the orbits [m] are closed subsets of M (in the topology associated

to d), then d̃ is a distance.

Here G\M denotes the coset space for the right action of G.
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11.1.2 Distance Altered by a Group Action

In this section, G is still a group acting on the left on M , but we consider the product
space M = G × M and project on M a distance defined on M. The result of this
analysis will be to allow a distance onM to incorporate a component that accounts
for possible group transformations partially accounting for the difference between
the compared objects.

The left action of G on M induces a right action of G onM, defined, for k ∈ G,
z = (h,m) ∈ M, by

z · k = (hk, k−1 · m).

For z = (h,m) ∈ M, we define the projection π(z) = h · m, taking values in
M . This projection is constant on the orbits z · G for a given z, i.e., for all k ∈ G,
π(z · k) = π(z).

Let dM be a distance on M. We let, for m,m ′ ∈ M

d(m,m ′) = inf{dM(z, z′) : z, z′ ∈ M,π(z) = m,π(z′) = m ′}. (11.2)

We have the following proposition:

Proposition 11.3 If dM is equivariant by the right action of G, then, the function
d defined by (11.2) is a pseudo-distance on M.

If, in addition, the orbits [z] = {z · k, k ∈ G} are closed in M in the topology
associated to dM, then d is a distance.

This is in fact a corollary of Proposition 11.2. One only has to observe that
the quotient space G\M can be identified with M via the projection π, and
that the distance in (11.2) then becomes the projection distance introduced in
Proposition 11.2.

11.1.3 Transitive Action

Induced Distance

In this section, we assume that G is a group that acts transitively on M . The action
being transitive means that for any m,m ′ in M , there exists an element z ∈ G such
that m ′ = z · m.

We fix a reference element m0 in M , and define the group G by

G = Isom0(G) = {z ∈ G, z · m0 = m0} .

This group is the isotropy group, or stabilizer, of m0 in O. We show that G can
be identified with M := G × M , which will allow us to define a distance in M by
projecting a distance on G as in Sect. 11.1.2.
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Assume that a function ρ : M → G has been defined, such that for all m ∈ M ,
m = ρ(m) · m0. This is possible, because the action is transitive (using the axiom of
choice). Define

Ψ : G × M → G
(h,m) �→ ρ(h · m)h.

Ψ is a bijection: if z ∈ G, we can compute a unique (h,m) such that z = Ψ (h,m);
this (h,m) must satisfy

z · m0 = ρ(h · m)h · m0 = ρ(h · m) · m0 = h · m,

which implies that ρ(h · m) = ρ(z · m0) and therefore h = ρ(z · m0)
−1z, which is

uniquely specified; but this also specifies m = h−1z · m0. This proves that Ψ is one-
to-one and onto and provides the identification we were looking for.

The right action of G on M, which is (h,m) · k = (hk, k−1 · m), translates to G
via Ψ with

Ψ ((h,m) · k) = ρ(hkk−1 · m)hk = Ψ (h,m) · k

so that the right actions (of G onM and of G on G) “commute” with Ψ . Finally, the
constraint π(h,m1) = m in Proposition 11.3 becomes z · m0 = m via the identifica-
tion. All this provides a new version of Proposition 11.3 for transitive actions, given
by:

Corollary 11.4 Let dG be a distance onG which is equivariant under the right action
of the isotropy group of m0 ∈ M. Define, for all m,m ′ ∈ M,

d(m,m ′) = inf{dG(z, z′) : z · m0 = m, z′ · m0 = m ′} . (11.3)

Then d is a pseudo-distance on M.

Note that, if dG is right equivariant under the action of Isom0(G), the distance

d̃G(z, z′) = dG(z−1, (z′)−1)

is left equivariant, which yields the symmetric version of the previous corollary.

Corollary 11.5 Let dG be a distance on G which is equivariant under the left action
of the isotropy group of m0 ∈ M. Define, for all m,m ′ ∈ M,

d(m,m ′) = inf{dG(z, z′) : z · m = m0, z
′ · m ′ = m0} . (11.4)

Then d is a pseudo-distance on M.

From Propositions 11.1 and 11.2, d in Corollaries 11.4 and 11.5 is a distance as
soon as the orbits g · Isom0(G) (assuming, for example, a left action) are closed for
dG . If the left translations h �→ g · h are continuous, this is true as soon as Isom0(G)
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is closed. This last property is itself true as soon as the action g �→ g · m0 is contin-
uous, from G to M , given some topology on M .

Finally, if dG is left- or right-invariant under the action of the whole group, G, on
itself, then the distances in (11.3) and (11.4) both reduce to

d(m,m ′) = inf{dG(id, z) : z · m = m ′} .

Indeed, assume right invariance (the left-invariant case is similar): then, if z · m0 =
m and z′ · m0 = m ′, then z′z−1 · m = m ′ and dG(id, z′z−1) = dG(z, z′). Conversely,
assume that ζ · m = m ′. Since the action is transitive, we know that there exists a
z such that z · m0 = m, in which case ζz · m0 = m ′ and dG(id, ζ) = dG(z, ζz). We
summarize this in the following, in which we take G = G:

Corollary 11.6 Assume that G acts transitively on M. Let dG be a distance on G
that is left or right equivariant. Define, for all m,m ′ ∈ M,

d(m,m ′) = inf{dG(id, g) : g · m = m ′} . (11.5)

Then d is a pseudo-distance on M.

Effort Functionals

As formalized in [135], one can build a distance on M on which a group acts tran-
sitively using the notion of effort functionals. The definition we give here is slightly
more general than in [135], to take into account a possible influence of the deformed
object on the effort. We also make a connection with the previous, distance based,
formulations.

We let G be a group acting transitively on M . Assume that a cost Γ (z,m) is
assigned to a transformation m → z · m. If m and m ′ are two objects, we define
d(m,m ′) as the minimal cost (effort) required to transform m to m ′, i.e.,

d(m,m ′) = inf{Γ (z,m) : z ∈ G, z · m = m ′}. (11.6)

The proof of the following proposition is almost obvious.

Proposition 11.7 If Γ satisfies:

C1. Γ (z,m) = 0 ⇔ z = idG ,
C2. Γ (z,m) = Γ (z−1, z · m),
C3. Γ (zz′,m) ≤ Γ (z,m) + Γ (z′,m),

then d defined by (11.6) is a pseudo-distance on M.

In fact, this is equivalent to the construction of Corollary 11.5. To see this, let
G be the isotropy group of m0 for the action of G on M . We have the following
proposition.
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Proposition 11.8 If Γ satisfies C1, C2 and C3, then, for all m0 ∈ M, the function
dG defined by

dG(z, z′) = Γ (z′z−1, z · m0) (11.7)

is a distance on G which is equivariant under the right action of G. Conversely, given
such a distance dG , one builds an effort functional Γ satisfying C1, C2, C3 letting

Γ (h,m) = dG(z, h · z)

where z is any element of G with the property z · m = m0.

The proof of this proposition is straightforward and left to the reader.

11.1.4 The Riemannian Viewpoint

The previous sections have demonstrated the usefulness of building distances on a
spaceM that are equivariant to the actions of a group G. Probably the easiest way to
construct such a distance (at least when M is a differential manifold and G is a Lie
group) is to design a right-invariant Riemannian metric onM and use the associated
geodesic distance. (See AppendixB.)

Recall that a Riemannian metric onM requires, for all z ∈ M, an inner product〈· , ·〉z on the tangent space, TzM, to M at z, which depends smoothly on z. With
such a metric, one defines the energy of a differentiable path z(·) inM by

E(z(·)) =
∫ 1

0
‖∂t z‖2z(t) dt. (11.8)

The associated Riemannian distance on M is

dM(z0, z1) = inf{√E(z(·)) : z(0) = z0, z(1) = z1}. (11.9)

To obtain a right-invariant distance, it suffices to ensure that the metric has this
property. For h ∈ G, let Rh denote the right action of h on M: Rh : z �→ z · h. Let
dRh(z) : TzM → Tz·hM be its differential at z ∈ M. The right invariance of the
metric is expressed by the identity, true for all z ∈ M, A ∈ TzM and h ∈ G,

‖A‖z = ‖dRh(z) · A‖z·h . (11.10)

When M = G × M , condition (11.10) implies that it suffices to define
〈· , ·〉z at

elements z ∈ M of the form z = (id,m) with m ∈ M . The metric at a generic point
(h,m) can then be computed, by right invariance, from the metric at (h,m) · h−1 =
(id, h−1 · m). Because the metric at (id,m) can be interpreted as a way to attribute a
cost to a deformation (id, h(t) · m)withh(0) = id and small t , defining it corresponds
to an analysis of the cost of an infinitesimal perturbation of m by elements of G.
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Of course, an identical construction could be made with left actions and left-
invariant distances.

11.2 Invariant Distances Between Point Sets

11.2.1 Introduction

The purpose of this section is to present the construction provided by Kendall [166]
on distances between landmarks, taking the infinitesimal point of view that we have
just outlined. Here, configurations of landmarks are considered up to similitude
(translation, rotation, scaling). Since its introduction, this space has led to a rich
literature that specially focuses on statistical data analysis on landmark data. The
reader interested in further developments can refer to [91, 167, 266] and to the
references therein.

We only consider the two-dimensional case, which is also the simplest. For a fixed
integer N > 0 let PN denote the set of configurations of N points (z(1), . . . , z(N )) ∈
(R2)N such that z(i) �= z( j) for i �= j . We assume that the order in which the points
are listed matters, which means that we consider labeled landmarks. The set PN can
therefore be identified with an open subset of R2N .

Two configurations (z(1), . . . , z(N )) and (z̃(1), . . . , z̃(N )) will be identified if one
can be deduced from the other by the composition, say g, of a translation and a
plane similitude, i.e., z̃(k) = g · z(k) for k = 1, . . . , N . The objects of interest are
therefore equivalence classes of landmark configurations, which will be referred to
as N -shapes.

It will be convenient to identify the plane R2 with the set of complex numbers C,
a point z = (x, y) being represented as x + iy. A plane similitude composed with a
translation can then be written in the form z �→ az + b with a, b ∈ C, a �= 0.

For Z = (z(1), . . . , z(N )) ∈ PN , we let c(Z) be the center of inertia

c(Z) = (z(1) + · · · + z(N ))/N .

We also let ‖Z‖2 =
N∑

k=1

|z(k) − c(Z)|2.

11.2.2 The Space of Planar N-Shapes

Construction of a Distance

Let ΣN be the quotient space of PN by the equivalence relation: Z ∼ Z ′ if there
exist a, b ∈ C such that Z ′ = aZ + b. We denote by [Z ] the equivalence class of Z
for this relation. We want to define a distance between two equivalence classes [Z ]
and [Z ′].
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Following Sect. 11.1.4, we define a Riemannian metric on PN which is invariant
under the action. We therefore must define, for all Z ∈ PN , a norm ‖A‖Z over all
A = (a1, . . . , aN ) ∈ C

N such that for all a, b ∈ C:

‖A‖Z = ‖a · A‖aZ+b ,

and it suffices to define such a norm for Z such that ‖Z‖ = 1 and c(Z) = 0, since
we have, for all Z ,

‖A‖Z =
∥∥∥∥

A

‖Z‖
∥∥∥∥

Z−c(Z)

‖Z‖

. (11.11)

Once the metric has been chosen, the distance D(W,Y ) is defined by

D(W,Y )2 = inf
∫ 1

0
‖∂t Z‖2Z(t) dt, (11.12)

the infimum being taken over all paths Z(·) such that Z(0) = W and Z(1) = Y .
When c(Z) = 0 and ‖Z‖ = 1, we take

‖A‖2Z =
N∑

k=1

|a(k)|2.

From (11.11) and (11.12), computing D(W,Y ) requires us to minimize, among all
paths between W and Y ,

∫ 1

0

∑N
k=1 |∂t Z (k)|2

∑N
k=1 |Z (k)(t) − c(Z(t))|2 dt.

Let z̄(t) = c(Z(t)), v(k)(t) = (Z (k)(t) − C(Z(t)))/‖Z(t)‖ and ρ(t) = ‖Z(t)‖. The
path Z(·) is uniquely characterized by (v(·), ρ(·), z̄(·)). Moreover, we have

∂t Z
(k) = ∂t z̄ + ρ∂tv + v∂tρ

so that we need to minimize

∫ 1

0

N∑

k=1

∣∣∣∣
∂t z̄

ρ
+ ∂tρ

ρ
· v(k) + ∂tv

(k)

∣∣∣∣

2

dt.

This is equal (using
∑

k v(k) = 0 and
∑

k |v(k)|2 = 1, together with the differentials
of these expressions) to
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N
∫ 1

0

(
∂t z̄

ρ

)2

dt +
∫ 1

0

(
∂tρ

ρ

)2

dt +
∫ 1

0

N∑

k=1

∣∣∂tv
(k)
∣∣2 dt . (11.13)

The end-point conditions are directly deduced from those initially given in terms of
W and Y .

The last term in (11.13), which only depends on v, can be minimized explic-
itly, under the constraints

∑
k v(k) = 0 and

∑
k |v(k)|2 = 1, which imply that v

varies on a (2N − 3)-dimensional real sphere. The geodesic distance is therefore
given by the length of great circles, which yields the expression of the minimum:
arccos(v(0)∗v(1))2, where the “∗” exponent refers to the conjugate transpose.

Using this, we have

D(W,Y )2 = inf

(

N
∫ 1

0

(
∂t z̄

ρ

)2

+
∫ 1

0

(
∂tρ

ρ

)2

dt

)

(11.14)

+ arccos

((
W − c(W )

‖W‖
)∗ (Y − c(Y )

‖Y‖
))2

,

where the first infimum is over functions t �→ (z̄(t), ρ(t)) ∈ C × [0,+∞[, such that
z̄(0) = c(W ), z̄(1) = c(Y ), ρ(0) = ‖W‖, ρ(1) = ‖Y‖.

The induced distance on ΣN is then given by

d([Y ], [W ]) = inf{D(Y, aW + b), a, b ∈ C}.

Writing a = λh with λ = |a| > 0 and |h| = 1. Then

aW + b − c(aW + b)

‖aW + b‖ = h
W − c(W )

‖W‖ .

Moreover, given h, we can take λ = ‖Y‖/‖W‖ and b = c(Y ) − λhc(W ) so that
‖Y‖ = ‖aW + b‖ and c(Y ) = c(aW + b), for which the infimum in the right-hand
side of (11.14) is zero. We therefore have

d([Y ], [W ]) = inf
h:|h|=1

(
arccos

((
W − c(W )

‖W‖
)∗ (Y − c(Y )

‖Y‖
)))

.

Finally, optimizing this over the unit vector h, we get

d([Y ], [W ]) = arccos

∣∣∣∣

(
W − c(W )

‖W‖
)∗ (Y − c(Y )

‖Y‖
)∣∣∣∣ . (11.15)

Denote by S2N−3 the set of v = (v1, . . . , vN−1) ∈ C
N−1 such that

∑
i |vi |2 = 1

(this can be identified with a real sphere of dimension 2N − 3). The complex pro-
jective space, denoted CPN−2, is defined as the space S2N−3 quotiented by the
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equivalence relation: vR v′ if and only if ∃ν ∈ C such that v′ = νv; in other words,
CPN−2 contains all sets

S1 · v = {νv, ν ∈ C, |ν| = 1}

when v varies in S2N−3. This set has the structure of an (N − 2)-dimensional com-
plex manifold, which means that it can be covered with an atlas of open sets that are
in bijection with open subsets of CN−2 (with analytic changes of coordinates). Such
an atlas is provided, for example, by the family (Ok, Ψk), k = 1, . . . , N , where Ok

is the set of all S1 · v ∈ CPN−2 with v(k) �= 0, and

Ψk(S
1 · v) = (v(1)/v(k), . . . , v(k−1)/v(k), v(k+1)/v(k), . . . , v(N−1)/v(k)) ∈ C

N−2

for all S1 · v ∈ Oi . In fact, ΣN is also an analytic complex manifold that can be
identified with CPN−2.

Let us be more explicit with this identification [166]. Associate to Z = (z(1), . . . ,

z(N )) the family (ζ(1), . . . , ζ(N−1)) defined by

ζ(k) = (kz(k+1) − (z(1) + · · · + z(k)))/
√
k2 + k.

One can verify that
∑N−1

k=1 |ζ(k)|2 = ‖Z‖2 (similar decompositions are used, for
example, for the analysis of large-dimensional systems of particles [305]). Denote by
F(Z) the element S1 · (ζ/‖Z‖) in CPN−2. One can check that F(Z) only depends
on [Z ] and that [Z ] �→ F(Z) is an isometry between ΣN and CPN−2.

The Space of Triangles

This construction, applied to the case N = 3 (which corresponds to triangles with
labeled vertices), yields a quite interesting result. For a triangle Z = (z(1), z(2), z(3)),
the previous function F(Z) can be written

F(Z) = S1.

⎛

⎝

[
z(2)−z(1)√

2
, 2z(3)−z(1)−z(2)√

6

]

√|z(2) − z(1)|2/2 + |2z(3) − z(1) − z(2)|2/6

⎞

⎠

= S1 · [v(1), v(2)].

On the set v(1) �= 0 (i.e., the set z(1) �= z(2)) we have the local chart

Z �→ v(2)/v(1) = 1√
3

(
2z(3) − z(2) − z(1)

z(2) − z(1)

)
∈ C.

If we let v(2)/v(1) = tan θ
2e

iϕ, and M(Z) = (sin θ cosϕ, sin θ sinψ, cos θ) ∈ R
3,

we obtain a correspondence between the triangles and the unit sphere S2.
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This correspondence is isometric: the distance between two triangles [Z ] and [Z̃ ],
which has been defined above by

d([Z ], [Z̃ ]) = arccos

∣∣∣∣∣

∑3
k=1 z

(k)
(
z̃(k)

)∗

‖Z‖ ‖Z̃‖

∣∣∣∣∣
,

gives, after passing to coordinates θ and ϕ, exactly the length of the great circle
between the imagesM(Z) andM(Z̃).We therefore obtain a representation of labeled
triangular shapes as points on the sphere S2, with the possibility of comparing them
using the standard metric on S2.

11.3 Parametrization-Invariant Distances Between Plane
Curves

We now describe distances between two-dimensional shapes when they are defined
as plane curves modulo changes of parameter. Such distances have been the subject
of extensive and detailed mathematical studies, [193, 201], but here we only give an
overview of the main ideas and results.

Simple parametrization-free distances can be defined directly from the ranges of
the curves. For example, it is possible to use standard norms applied to arc-length
parametrizations of the curves, like L p or Sobolev norms of the difference. With
simple closed curves, one can measure the area of the symmetric difference between
the interiors of the curves. Amore advanced notion, theHausdorff distance, is defined
by

d(m, m̃) = inf {ε > 0,m ⊂ m̃ε and m̃ ⊂ mε} ,

where mε is the set of points at a distance less than ε from m (and similarly for m̃ε).
The same distance can be used with the interiors for simple closed curves. In fact,
the Hausdorff distance is a distance between closed sets as stated in the following
proposition.

Proposition 11.9 For ε > 0 and a subset A ofRd , let Aε be the set of points x ∈ R
d

such that there exists an a ∈ A with |a − x | < ε. Let

dH (A, B) = inf {ε > 0 : A ⊂ Bε and B ⊂ Aε} .

Then dH is a distance on the set of closed subsets of Rd .

Proof Symmetry is obvious, and we leave to the reader the proof of the triangular
inequality, which is a direct consequence of the fact that (Aε)ε

′ ⊂ Aε+ε′
.

Assume that dH (A, B) = 0. Then A ⊂ Bε for all ε > 0. But
⋂

ε B
ε = B̄, the

closure of B. We therefore have

dH (A, B) = 0 ⇒ A ⊂ B̄ and B ⊂ Ā,

which implies that A = B if both sets are closed.
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One can also proceed similarly to Sect. 11.1.1. First define equivariant distances
over parametrized curves, then optimize themwith respect to changes of parameters.
Let C be a set of parametrized curves, defined as functions m : [0, 1] �→ R

2, subject
to additional properties (such as smoothness, closedness, etc.), and G a group of
changes of parameter over [0, 1] (including changes of offset for closed curves).
Consider the quotient space S = C/G for the action ϕ · m = m ◦ ϕ−1, which are
curves modulo change of parameter (one may also want to quotient out rotation,
scaling). Based on our discussion in Sect. 11.1.1, a pseudo-distance on S can be
defined from a distance on C that is equivariant by changes of parameter.

L p norms between parametrized curves are not equivariant, unless p = ∞, with

d∞(m, m̃) = sup
u

|m(u) − m̃(u)|.

The distance obtained after reduction by diffeomorphism is called the Fréchet dis-
tance, defined by

dF (m, m̃) = inf
ϕ
d∞(m ◦ ϕ, m̃).

We note that if, for some diffeomorphism ϕ, d∞(m ◦ ϕ, m̃) ≤ ε, then m ⊂ m̃ε and
m̃ ⊂ mε. So we get the relation

ε > dF (m, m̃) ⇒ ε > dH (m, m̃),

which impliesdH ≤ dF . This andProposition 11.9 prove thatdF is a distance between
curves.

We now consider equivariant distances on C based on Riemannian metrics
derived from invariant norms on the tangent space. We only give an informal dis-
cussion, ignoring the complications that arise from the infinite dimension of the
space of curves (see [199, 200] for a rigorous presentation). Tangent vectors to
C are derivatives of paths in C, which are time-dependent parametrized curves
t �→ m(t, ·). Tangent vectors therefore take the form v = ∂tm(t, ·), which are func-
tions v : [0, 1] → R

2. Since a change of parameter in a time-dependent curve induces
the same change of parameter on the time derivative, a norm on the tangent space to
C is equivariant under the action of changes of parameter, if, for any m, v,ϕ,

‖v ◦ ϕ−1‖m◦ϕ−1 = ‖v‖m . (11.16)

It is therefore sufficient to define ‖v‖m for curves parametrized by arc length, since
(11.16) then defines the metric for any parametrized curve.

We nowwant to define tangent vectors to “plane curves modulo change of param-
eters.” We know that we can modify the tangential component of the time derivative
of a time-dependent parametrized curve t �→ m(t, ·) without changing the geometry
of the evolving curve. It follows from this that tangent vectors to S at a curve m are
equivalent classes of vector fields along m that share the same normal component
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to m, and can therefore be identified with this normal component itself, i.e., a scalar
function along m. The induced metric on S is

‖a‖m := inf
{‖v‖m : vT N = a

}
.

The associated pseudo-distance on S is

d(m, m̃)2 = inf

{∫ 1

0

∥∥∂tμ
T N

∥∥2
μ(t) dt,μ(0, ·) = m,μ(1, ·) = m̃

}
. (11.17)

The fact that we only get a pseudo-distance in general is interestingly illustrated
by the following simple example. Define

‖v‖2m =
∫ Lm

0
|v(s)|2ds. (11.18)

This is the L2 norm in the arc-length parametrization. Then, as stated in the following
theorem, we have d(m, m̃) = 0.

Theorem 11.10 (Mumford–Michor) The distance defined in (11.17) with the norm
given by (11.18) vanishes between any smooth curves m and m̃.

A proof of this result can be found in [199, 200]. It relies on the observation that
one can grow thin protrusions (“teeth”) on the curve at a cost which is negligible
compared to the size of the tooth. It is an easy exercise to compute the geodesic length
of a path that starts with a horizontal segment and progressively grows an isosceles
triangle of width ε and height t (at time t) on the segment until t = 1. This length
is o(ε) (in fact, O(ε2 ln ε)). This implies that one can transform a curve into O(1/ε)
thin non-overlapping teeth at almost no cost. A repeated application of this concept
is the basic idea in the construction made in [200] to create almost-zero-length paths
between two arbitrary curves.

To prevent the distance from vanishing, one needs to penalize the curve length
more than (11.18) does. For example, the distance associated with the metric

‖v‖2m = Lm

∫ Lm

0
|v(s)|2ds, (11.19)

introduced in [193, 259], does not give a degenerate distance on S. The resulting
distance is the area swept by the path relating the compared curves [259].

Another way to control degeneracy is to penalize high-curvature points, using for
example

‖v‖2m =
∫ Lm

0
(1 + aκm(s)2)|v(s)|2ds. (11.20)
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This metric has been studied in [200], where it is shown (among other results) that
the distance between distinct curves is positive. Finally, one can add derivatives of
v (with respect to arc length) in the definition of the metric; this provides Sobolev
metrics [193, 201] that we have already described for curve evolution.

11.4 Invariant Metrics on Diffeomorphisms

We discuss here the construction of a right-invariant distance between diffeomor-
phisms. We will see, in particular, that it coincides with the direct construction made
in Chap.7.

Here also, we only make an informal (non-rigorous) discussion. We consider a
group G of diffeomorphisms of Ω , and define (to fix our ideas) the tangent space to
G at ϕ ∈ G by the set of u : Ω → R

d such that id + t u ◦ ϕ−1 ∈ G for small enough
t . Since the group product onG is the composition,ϕψ = ϕ ◦ ψ, the right translation
Rϕ : ψ �→ ψ ◦ ϕ is linear, and therefore “equal” to its differential: for u ∈ TψG,

dRϕ(ψ)u = u ◦ ϕ.

A metric on G is right-invariant if, for all ϕ,ψ ∈ G and for all u ∈ TψG,

‖dRϕ(ψ)u‖ψ◦ϕ = ‖u‖ψ,

which yields, taking ϕ = ψ−1:

‖u‖ψ = ‖u ◦ ψ−1‖id.

This implies that the energy of a path (t �→ ϕ(t, ·)) in G must be defined by

E(ϕ(·)) =
∫ 1

0

∥∥(∂tϕ)(t,ϕ−1(t, ·))∥∥2id dt.

If we let
v(t, x) = (∂tϕ)(t,ϕ−1(t, x)),

the energy can be written

E(ϕ) =
∫ 1

0
‖v(t, ·)‖2id dt

with the identity
∂tϕ(t, x) = v(t,ϕ(t, x)).
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This implies that ϕ is the flow associated to the velocity field v(t, ·). We therefore
retrieve the construction given in Chap.7, with ‖·‖id = ‖·‖V . Thus, V in Chap.7 has
a role similar to that of the tangent space to G at id here. Because of this, we let
V = TidG and ‖·‖id = ‖·‖V in the remaining discussion to homogenize the notation.

Assume that V is admissible, according to Definition 7.14. The right-invariant
distance on G is

d(ϕ0,ϕ1) = inf

√∫ 1

0
‖v(t, ·)‖2V dt, (11.21)

where the minimum is taken over all v such that, for all x ∈ Ω , the solution of the
ordinary differential equation

∂t y = v(t, y)

with initial conditions y(0) = ϕ0(x) is such that y(1) = ϕ1(x), consistently with
Sect. 7.2.6.

We point out, however, that if G is, say, Diff p,∞0 , which has its own structure
of infinite-dimensional differential manifold, then V is a proper subspace of TidG,
resulting in a “sub-Riemannian” metric.

11.4.1 The Geodesic Equation

The geodesic equation on G is equivalent to the Euler–Lagrange equation associated
to the variational problem (11.21). This is similar to what we have computed in
Sect. 10.4, except that here we have a fixed end-point condition. Onemay address this
with a method called the Euler–Poincaré reduction [150, 188], and the presentation
we make here is related to it. The energy

E(v) = 1

2

∫ 1

0
‖v(t)‖2V dt

is minimized over all v such that ϕv
01 = ϕ1 (without loss of generality, because the

distance is right invariant, we can assume that ϕ0 = id).
Applying Theorem D.8 with

Hv(ϕ, p) = (p | v ◦ ϕ ) − ρ

2
‖v‖2V

we obtain the fact that, if a trajectory is not “elusive,” there exists ρ ∈ {0, 1} and a
co-state p(·) taking values in C p

0 (Rd ,Rd)∗ such that

⎧
⎪⎨

⎪⎩

∂tϕ = v ◦ ϕ

(∂t p | h ) + (p | dv ◦ ϕ h ) = 0

ρv = ξ∗
ϕ p,



362 11 Distances and Group Actions

where ξϕ : v �→ v ◦ ϕ. The first two equations do not depend on whether ρ = 0 or 1
(i.e., whether the geodesic is normal or abnormal), and are identical to themomentum
conservation equation (10.17) and EPDiff studied in the previous chapter. When
ρ = 1, the third equation describes v, and provides the same necessary conditions
for optimality as those found for the diffeomorphic problem in that chapter.Abnormal
solutions are such that ξ∗

ϕ p = 0 along the trajectory.
Note that the solutions of “soft registration” problems, minimizing

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01)

for a differentiable function U , always provides normal geodesics.

11.4.2 A Simple Example

An explicit computation of the geodesic distance is generally impossible, but here is
an exception, in one dimension. Take Ω = [0, 1] and

‖u‖2id =
∫ 1

0
|∂xu|2 dx .

Note that this norm is not admissible, because it cannot be used to control the supre-
mum norm of ∂xu. The associated energy of a path of diffeomorphisms ϕ(t, ·) is

U (ϕ(·)) =
∫ 1

0

∫ 1

0

∣∣∂x
(
ϕt ◦ ϕ−1(t, ·))∣∣2 dxdt.

This gives, after expanding the derivative and making the change of variables x =
ϕ(t, y):

U (ϕ(·)) =
∫ 1

0

∫ 1

0
|∂t∂xϕ|2 |∂xϕ|−1 dydt.

Define q(t, y) = √
∂xϕ(t, y). We have

U (ϕ(·)) = 4
∫ 1

0

∫ 1

0
|∂t q|2 dydt,

which yields

U (ϕ(·)) = 4
∫ 1

0
‖∂t q(t, ·)‖22 dt.

If the problemwere tominimize this energyunder the constraintsq(0, ·) = √
∂xϕ(0, ·)

and q(1, ·) = √
∂xϕ(1, ·), the solution q would be given by the line segment

q(t, x) = tq(1, x) + (1 − t)q(0, x).
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There is, however, an additional constraint that comes from the fact that q(t, ·) must
provide a homeomorphism of [0, 1] for all t , which implies ϕ(t, 1) = 1, or, in terms
of q

‖q(t, ·)‖22 =
∫ 1

0
q(t, x)2dx = 1.

We therefore need to minimize the length of the path q under the constraint that
it remains on a Hilbert (L2) sphere. Similar to the finite-dimensional case, geodesics
on Hilbert spheres are great circles. This implies that the optimal q is given by

q(t, ·) = 1

sinα
(sin(α(1 − t))q0 + sin(αt)q1)

with α = arccos
〈
q0 , q1

〉
2. The length of the geodesic is precisely given by α, which

provides a closed-form expression of the distance on G [231]

d(ϕ, ϕ̃) = 2 arccos
∫ 1

0

√
∂xϕ∂x ϕ̃dx .

11.4.3 Gradient Descent

Assume that a function ϕ �→ U (ϕ) is defined over diffeomorphisms. Take C1 h and
ε0 small enough so that ϕ + εh is a diffeomorphism if |ε| ≤ ε0, and assume that the
Gâteaux derivative ∂εU (ϕ + εh) exists at ε = 0, denoting it, as in Sect. 9.2, by

∂εU (ϕ + εh) =
(
dU (ϕ)

∣∣∣ h
)
.

If a right-invariant metric is given, in the form

〈
h , h′〉

ϕ
= 〈

h ◦ ϕ−1 , h′ ◦ ϕ−1
〉
V

as above, the gradient of U at ϕ is computed by identifying

(
dU (ϕ)

∣∣∣ h
)

= 〈∇U (ϕ) , h
〉
ϕ

= 〈∇U (ϕ) ◦ ϕ−1 , h ◦ ϕ−1
〉
V

= (
L(∇U (ϕ) ◦ ϕ−1)

∣∣ h ◦ ϕ−1 ),

where L = K
−1 is the duality operator on V . Since (with the notation of Sect. 9.2)

(
dU (ϕ)

∣∣∣ h
)

= (
∂̄U (ϕ)

∣∣ h ◦ ϕ−1 ),
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we see that, using ∇V
U = K∂̄U ,

∇U (ϕ) = ∇V
U (ϕ) ◦ ϕ

and the evolution equation introduced in (9.7) is nothing but a Riemannian gradient
descent for U for the considered metric.

11.4.4 Diffeomorphic Active Contours

As a new example of an application of this formalism, we provide a Riemannian
version of the active contours algorithm discussed in Sect. 5.4. Let, for a curve m,

E(m) =
∫

m
F(p)dσm +

∫

Ωm

F̃(x)dx . (11.22)

We can, fixing a template curve m0, define the functional

U (ϕ) = E(ϕ(m0)).

Letting m = ϕ(m0), a straightforward computation gives

(
∂̄U (ϕ)

∣∣ v
) = −

∫

m
(κF − FT N + F̃)vT Ndσm,

from which we deduce

∇U (ϕ)(x) = −
∫

m
(κF − FT N + F̃)K (ϕ(x), ·)Ndσm .

This defines the continuous time gradient descent algorithm,

∂tϕ(t, x) =
∫

m(t)
(κF − FT N + F̃)K (ϕ(t, x), ·)Ndσm(t)

with m(t) = ϕ(t, ·) ◦ m0.
This algorithm also be expressed as an evolution equation in terms of m(t) only,

yielding the diffeomorphic active contours evolution equation [21, 310]

∂tm(t, u) =
∫

m(t)
(κF − FT N + F̃)K (m(t, u), ·)Ndσm(t). (11.23)

A similar discussion can be made for surfaces instead of curves.
Examples of segmentations using this equation are provided in Fig. 11.1.
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Fig. 11.1 Diffeomorphic active contours (compare with Fig. 5.4). On each row, the left image is
the initial contour, and the right one is the solution obtained with diffeomorphic active contours.
The first row presents a clean image and the second a noisy one

11.5 Group Actions and Riemannian Submersion

11.5.1 Riemannian Submersion

We temporarily switch to general (but finite-dimensional) Lie groups before returning
to diffeomorphisms. Let G be a Lie group acting transitively (and smoothly) on a
manifold, M . Fixing a reference element m0 ∈ M , Corollary 11.5 and Eq. (11.4)
show how a distance that is left-equivariant under the action of G = Isom0(G) can be
projected to a pseudo-distance onM .We now provide the infinitesimal version of this
result, which involves the notion of Riemannian submersion discussed in Sect.B.6.7.

Define, as done in Sect. 11.1.3,

π : G → M

g �→ g · m0 .
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This map is onto because the action is transitive and one can show [142] that it is a
submersion, i.e., that dπ(g) has full rank (the dimension of M) for g ∈ G.

For this submersion, the fiber over m ∈ M is the set π−1(m) = {g ∈ G : g ·
m0 = m}. Fix g ∈ π−1(m). Another group element g̃ belongs to π−1(m) if and only
if g−1g̃ ∈ G, so that π−1(m) = gG is a coset. Furthermore [142], the mapping

[π] : G/G → M

[g] �→ π(g)

is an isomorphism.
Assume that G is equipped with a Riemannian metric that is right-invariant for

the action of G, so that, for any g ∈ G, h ∈ G and w ∈ TgG,

‖w‖g = ‖dRh(g)w‖gh .

In other terms dRh(g) is an isometry between TgG and TghG (or Rh is a Riemannian
isometry). Then one can build a Riemannianmetric onM such that π is a Riemannian
submersion. Indeed, if g, g̃ ∈ π−1(m), then there exists an h ∈ G such that g̃ =
gh so that Tg̃G = dRhTgG. Moreover, π(g′h) = π(g′) for all g′ ∈ G implies that
dπ(gh)dRh(g) = dπ(g). This shows that Vgh = dRh(g)Vg, where

Vg = {
w ∈ TgG : dπ(g)w = 0

}

is the vertical space at g. LettingHg = V⊥
g be the horizontal space at g, this and the

fact that dRh(g) is an isometry implies that dRh(g)Hg = Hgh , so that the restriction
of dRh(g) to the horizontal space provides an isometry between these spaces. This
allows us to define, for any m ∈ M and tangent vector ξ ∈ TmM :

‖ξ‖m = ‖w‖g

for any g ∈ π−1(m), wherew is uniquely defined by dπ(g)w = ξ andw ∈ Hg . Using
the minimizing property of the orthogonal projection, an equivalent definition is that

‖ξ‖m = min
{‖w‖g : w ∈ TgG, dπ(g)w = ξ

}
. (11.24)

This is the infinitesimal counterpart of Eq.11.3.
Using the Lie group structure, this construction can also be analyzed solely on

the group’s Lie algebra, g = TidG. Notice that, if π(g) = m and g̃(t) is a curve on G
such that g̃(0) = g and ∂t g̃(0) = w, then, taking derivatives at t = 0,

dπ(g)w = ∂t (g̃(t) · m0) = ∂t (g̃(t)g−1) · m = v · m,

where v = dRg−1(g)w and v · m refers to the infinitesimal action (cf. Sect.B.5.3).
From this, we deduce that, letting
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Vm = {v ∈ g : v · m = 0} ,

one has Vg = dRg(id)Vm . Moreover, we can rewrite (11.24) as

‖ξ‖m = min
{‖dRg(id)v‖g : v ∈ g, v · m = ξ

}
, (11.25)

for any g ∈ π−1(m), with g = TidG. The mapping v �→ ‖dRg(id)v‖g provides a
Euclidean norm on g that does not depend on which g is chosen in π−1(m), therefore
only depending on m. Denoting this by ‖ · ‖m , dRg(id) is, by construction, an isom-
etry from g to TgG that maps Vm onto Vg , and therefore maps Hm onto Hg , where
Hm is the space perpendicular to Vm with respect to the dot product associated with
‖ · ‖m (which we shall denote by V⊥m

m ). For ξ ∈ TmM , there is therefore a unique
vector, vξ ∈ Hm , such that vξ · m = ξ and (11.24) and (11.25) simply become

‖ξ‖m = ‖vξ‖id = min {‖v‖m : v ∈ g, v · m = ξ} . (11.26)

Under the stronger assumption that the metric on G is right-invariant, so that Rh

is a Riemannian isometry for all h ∈ G, we have ‖dRg(id)v‖ = ‖v‖id for all g ∈ G
and v ∈ g, so that ‖v‖m = ‖v‖id for all m ∈ M and one has:

‖ξ‖m = min {‖v‖id : v · m = ξ} . (11.27)

One also defines horizontal linear forms, or horizontal covectors, which are linear
forms z ∈ TidG∗ such that (z | v ) = 0 for all v ∈ Vm .

If ξ ∈ TmM , we have defined vξ as the vector in TidG that minimizes ‖v‖id among
all v such that v · m = ξ, i.e., the orthogonal projection on Hm of any v

ξ
0 such that

v
ξ
0 · m = ξ. This leads to the following definitions, in which we let vξ = hm(ξ).

Definition 11.11 LetG be a Lie group acting transitively on amanifoldM . Ifm ∈ M
and ξ ∈ TmM , the horizontal lift of ξ is the vector hm(ξ) ∈ Hm = V⊥m

m such that
hm(ξ) · m = ξ.

If v ∈ TidG, we call πHm (v) the horizontal part of v at m and v − πHm (v) its
vertical part at m, where πHm is the orthogonal projection for ‖ · ‖m , so that

πHm (v) = hm(v · m). (11.28)

The projection on M of the Riemannian metric on G is defined by

〈
ξ , η

〉
m = 〈

hm(ξ) , hm(η)
〉
id. (11.29)

In the full right-invariant case, geodesics for the projected metric are immediately
deduced from those on G, as stated in the following proposition.

Proposition 11.12 Assume that themetric onG is right-invariant. Then the geodesic
on M starting at m in the direction ξ is deduced from horizontal geodesics on G by
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Expm(tξ) = Expid(thm(ξ)) · m. (11.30)

Proof This is a direct consequence of Proposition B.27. Let μ∗(t) = Expm(tξ) and
μ̂(t) be its horizontal lift starting at some g ∈ π−1(m). Then μ̂g−1 is also a geodesic
on G and necessarily takes the form given in (11.30). �

11.5.2 The Momentum Representation

Wenowapply these general results to groups of diffeomorphisms.While our previous
discussionwas limited tofinite dimensions, someof the concepts introduced there can
be generalized to the infinite-dimensional case. As before, we let V be aHilbert space
of vector fields continuously embedded in C p

0 (Rd ,Rd). To simplify the definition of
derivatives, we assume that the shape spaceM is an open subset of a Banach space Q,
and that the mapping A : ϕ �→ ϕ · m is differentiable from Diff p0 × M to Q. Note
that this imposes some restrictions on M and Q. For example, if M is the space
of Cq embeddings from the unit circle to R

2, then one needs q ≤ p for the action
ϕ · q = ϕ ◦ q to take values in M , and q ≤ p − 1 to ensure its differentiability.

We will consider the action of DiffV , the group of attainable diffeomorphisms
(Definition 7.15), on M . One of our basic assumptions in finite dimensions was
the transitivity of the action, which will not hold in general. We will however fix
a reference shape m̄, and define the space of attainable shapes as the orbit MV =
DiffV · m̄ of m̄ through the action of DiffV . For m ∈ MV , we define

Qm = {v · m : v ∈ V } ⊂ Q

and the norm
‖ξ‖m = min{‖v‖V : ξ = v · m}

for ξ ∈ Qm .
Notice that the infinitesimal action v · m = ∂1A(id,m)v is a bounded linear map

from C p
0 (Rd ,Rd) to Q, and so is its restriction to V for (V, ‖ · ‖m), the Hilbert space

topology. This implies that the space

Vm = {v ∈ V : v · m = 0}

is closed in V , and we still denote V⊥
m by Hm . In particular, we have

‖ξ‖m = ‖vξ‖V ,

where vξ = πHm (v), for any vector field v satisfying v · m = ξ. This implies that the
mapping v �→ v · m is an isometry between Hm and Qm , which incidentally proves
that the latter is a Hilbert space. Given this, we can define the variational problem of
minimizing
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∫ 1

0
‖∂tm(t)‖2m(t) dt

subject to m(0) = m0 and m(1) = m1, m0,m1 ∈ MV and see that this problem is
equivalent to minimizing ∫ 1

0
‖v(t)‖2V dt

subject tom(0) = 0,m(1) = m1 and ∂tm = v · m. It is also equivalent tominimizing
the same energy subject to the constraint ϕv

01 · m0 = m1.
In finite dimensions, we showed that, if the acting group G is equipped with a

right-invariant Riemannian metric and M with the associated projected metric, then
solutions of this problem (which are geodesics inM) can be identified with geodesics
in G that start horizontally. So, fixing m0 ∈ M , the representation w �→ Expid(w) ·
m0 provided a local chart of M around m0 when defined over a neighborhood of 0
in Hm0 .

With diffeomorphisms, we know that we can find elusive, abnormal and normal
geodesics, with only the latter associated with an equation that can be solved given
initial conditions (m0, w). We therefore restrict the “local chart” representation to
only those solutions, and express it in terms of co-tangent vectors instead of tangent
vectors, which is equivalent in theory, but, as wewill see, is muchmore parsimonious
in practice.

As we have seen, this geodesic equation is characterized by momentum conser-
vation, namely

Lv(t) = Adϕ(t)−1(Lv(0))

with ∂tϕ = v ◦ ϕ and L is the duality operator of V . Given m ∈ MV , we define the
space of horizontal momenta at m simply by LHm ⊂ V ∗.

Definition 11.13 Let Dm be the subset of LHm consisting of initial momenta for
which the conditions of Theorem 10.13 on the existence of solutions of the geodesic
equation hold. The momentum representation of a deformable template m̄ is the map

Exp�

m̄ : Dm → DiffV · m̄
ρ �→ Expm̄(Kρ) · m̄ (11.31)

which associates to a horizontal momentum ρ the position at time 1 of the geodesic
initialized at (m̄, (Kρ) · m̄) in M .

In finite dimensions, we have proved that horizontality is preserved along
geodesics. We retrieve this fact directly in this infinite-dimensional case, as a conse-
quence of the conservation of momentum.

Proposition 11.14 Let m̄ be a deformable object and ρ0 ∈ Dm̄. Let (ρ(t),ϕ(t))
be the evolving momentum and diffeomorphism provided by EPDiff initialized with
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ρ(0) = ρ0. Let m(t) = ϕ(t) · m̄ be the evolution of the deformable object. Then, at
all times t, ρ(t) ∈ LHm(t).

Proof We will prove that if w ∈ Vm and ϕ a diffeomorphism, then Adϕw ∈ Vϕ·m .
Before proving this fact,we verify that it implies the proposition,which requires us

to check that (w ∈ Vm(t)) ⇒ ((ρ(t) | w) = 0). From the conservation of momentum
we have

(ρ(t) | w) = (
ρ0

∣∣Adϕ(t)−1w
)

and Adϕ(t)−1w ∈ Vm̄ if w ∈ Vm(t), which implies that (ρ(t) | w) = 0.
We nowprove our claim. Letψ(ε) be such that ∂εψ(0) = w, and ∂ε(ψ · m)(0) = 0

at ε = 0. By definition, Adϕw = ∂ε(ϕ ◦ ψ ◦ ϕ−1)(0). But we have

∂ε(ϕ ◦ ψ ◦ ϕ−1) · (ϕ · m) = d Aϕ(ψ · m) ∂ε(ψ · m) = 0,

which implies that Adϕw ∈ Vϕ·m . (Here, Aϕ denotes the action Aϕ : m �→ ϕ · m.)�

We now describe horizontal momenta in a few special cases. First assume that
deformable objects are point sets, so that

M = {
(x1, . . . , xN ) ∈ (Rd)N , xi �= x j for i �= j

}

and Q = (Rd)N .
If m = (x1, . . . , xN ), we have

Vm = {v ∈ V : v(x1) = · · · = v(xN ) = 0} .

Letting e1, . . . , ed be the canonical basis of Rd , Vm is therefore defined as the set of
v’s such that

(
e jδxk

∣∣ v
) = 0 for all j = 1, . . . , d and k = 1, . . . N . So Vm = W⊥,

whereW is the vector space generated by the d × N vector fields K (·, xk)e j . Because
W is finite-dimensional, it is closed and Hm = V⊥

m = (W⊥)⊥ = W . Switching to
momenta, we obtain the fact that, for point sets m = (x1, . . . , xN )

LHm =
{

N∑

k=1

zkδxk , z1, . . . , zN ∈ R
d

}

.

In particular, we see that the momentum representation is parametrized by the
Nd-dimensional set (z1, . . . , zN ) and therefore has the same dimension as the con-
sidered objects. Finally, we note that, in this finite-dimensional shape space, one has
MV = M and ‖ · ‖m provides a Riemannian metric on this space.

The description of Vm is still valid when m is a general parametrized subset of
R

d : m : u �→ m(u) = xu ∈ R
d , defined for u in a, so far, arbitrary set U . Then

Vm = {v ∈ V : v(xu) = 0, u ∈ U } (11.32)
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and we still have Vm = W⊥, where W is the vector space generated by the vector
fields K (·, xu)e j , j = 1, . . . , d, u ∈ U . The difference, now, is that W is not finite-
dimensional if m is infinite, and not necessarily a closed subspace of V , so that

Hm = (W⊥)⊥ = W̄ ,

the closure of W in V . Turning to the momenta, this says that

LHm =
{

n∑

k=1

zkδxuk , n ≥ 0, z1, . . . , zn ∈ Rd , u1, . . . , un ∈ U

}

,

where the closure is now in V ∗.
This argument applies to parametrized curves and surfaces, butmust be adapted for

geometric objects, that is, curves and surfaces seen modulo a change of parametriza-
tion. In this case, deformable objects are equivalent classes of parametrized mani-
folds. One way to address this is to use infinite-dimensional local charts that describe
the equivalence classes in a neighborhood of a given objectm. We will not detail this
rigorously here, but the interested reader can refer to [201] for such a construction
with plane curves.

Intuitively, however, the resulting description of Vm is clear. In contrast to the
parametrized case, for which vector fields in Vm were not allowed to move any point
in m, it is now possible to do so, provided the motion happens within m, i.e., the
vector fields are tangent to m. This leads to the following set:

Vm = {v ∈ V : v(x) is tangent to m for all x ∈ m} .

Since v(x) being tangent to m is equivalent to NT v(x) = 0 for all N normal to m
at x , we see that Vm = W⊥, where W is the vector space generated by vector fields
K (·, x)N , with x ∈ m and N normal to m at x . Again, this implies that Hm = W̄
and that

LHm =
{

n∑

k=1

zkδxk , n ≥ 0, x1, . . . , xn ∈ m, z1, . . . , zn ∈ Nxkm

}

,

where Nxm is the set of vectors that are normal to m at x .
Now, consider the example of smooth scalar functions (or images):m : Rd → R.

In this case, the action being ϕ · m = m ◦ ϕ−1, the set Vm is

Vm = {
v ∈ V : ∇mT v = 0

}
,

which directly implies that Vm = W⊥, where W is the vector space generated by
K (·, x)∇m(x) for x ∈ R

d . Horizontal momenta therefore span the set
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LHm =
{

n∑

k=1

∇m(xk)δxk , n ≥ 0, x1, . . . , xn ∈ Rd

}

.

We conclude with the action of diffeomorphisms on measures, for which:

(ϕ · m | f ) = (m | f ◦ ϕ ),

so that v ∈ Vm if and only if
(
m

∣∣∇ f T v
) = 0 for all smooth f . So Vm = W⊥, where

W = {
K(∇ f m), f ∈ C1(Ω,R)

}

so that
LHm = {∇ f m, f ∈ C1(Ω,R)

}
.

We point out that the horizontal spaces may bemuch larger than one would expect
by formally extending the case of point sets. For example, if V is a Gaussian RKHS
and m is a set with non-empty interior, then Vm = {0} in (11.32) and Hm = V ! This
is because Gaussian RKHSs only contain analytic functions [207, 268]. For the same
reason, ifm is a curve that contain a line segment, all vector fields in Vm must vanish
on the whole line containing the segment.

This behavior cannot happen when V is a space containing all compactly-
supported smooth functions, such as Sobolev spaces. In this case, if m is a closed
subset of Rd , then any smooth vector field with support in R

d \ m must belong to
Vm and any ρ ∈ LHm must therefore vanish on such functions, which shows that ρ
(as a generalized function) is supported by m.

However, even in such contexts, an explicit description of horizontal momenta is
generally beyond reach, and one generally restrict the momentum representation to
more “manageable” subsets of Hm , using, for example, measure momenta supported
by m, as considered in Sect. 10.5.6. As we have seen, such measure momenta cover
most of the cases of interest for diffeomorphic matching with a differentiable end-
point cost, even when using Gaussian kernels.

Themomentumrepresentationprovides a diffeomorphic versionof thedeformable
template approach described for polygons in Sect. 6.3. As we have seen, it can be
applied to a wide class of deformable objects. Applications to datasets of three-
dimensional medical images can be found in [143, 236, 290, 300].



Chapter 12
Metamorphosis

12.1 Definitions

The Riemannian version of the construction of Sect. 11.1.2 provides a metric based
on transformations in which objects can change under the action of diffeomorphisms
but also under independent variations. We shall refer to such metrics as metamor-
phoses [152, 206, 281, 282]. They will result in formulations that enable both object
registration and metric comparison.

We start with an abstract description of the construction. We consider the setting
in which deformations belong to a Lie group G with Lie algebra denoted V , acting
on a Riemannian manifold M . We assume that V is a Hilbert space with norm ‖·‖V ;
the metric on M at a given point a ∈ M is denoted

〈· , ·〉a and the corresponding
norm |·|a .

For ϕ ∈ G and a ∈ M , define

Aϕ : M → M

b �→ ϕ · b,
Ra : G → M

ϕ �→ ϕ · a,

Rϕ : G → G

ψ �→ ψϕ. (12.1)

The first two maps are the components of the action, and the third is the right trans-
lation on G. It will also be convenient, in the following, to have special notation for
derivatives of these maps evaluated at the identity, so we will write ξϕ = dRϕ(id),
ξa = dRa(id). These maps coincide with the infinitesimal actions, i.e.,

v · ϕ = ξϕv and v · a = ξav

and we will also use this notation.
If (ϕ(t), t ∈ [0, 1]) is a differentiable curve on G, we define its Eulerian velocity

v(t) (which is a curve in V ) by the relation:

∂tϕ = ξϕ(t)v(t) = v(t) · ϕ(t) . (12.2)
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Definition 12.1 A metamorphosis is a pair of curves (ϕ(t),α(t)) respectively on
G and M , with ϕ(0) = id. Its image is the curve a(t) on M defined by a(t) =
ϕ(t) · α(t). We will say that ϕ(t) is the deformation part of the metamorphosis, and
that α(t) is the residual part. When α(t) is constant, the metamorphosis is a pure
deformation.

12.2 A New Metric on M

Metamorphoses, by the evolution of their images, provide a convenient representation
of combinations of group actions and of variations on M . Let a metamorphosis
((ϕ(t),α(t)), t ∈ [0, 1]) be given and a(t) = ϕ(t) · α(t) be its image. Then, we can
write

∂t a(t) = d Aϕ(t)(α(t))∂tα(t) + dRα(t)(ϕ(t))∂tϕ

= d Aϕ(t)(α(t))∂tα(t) + dRα(t)(ϕ(t))dRϕ(t)(id)v(t).

Since Rα ◦ Rϕ = Rϕα, we get

∂t a(t) = d Aϕ(t)(α(t))∂tα(t) + dRa(t)(id)v(t). (12.3)

In particular, when t = 0:

∂t a(0) = ∂tα(0) + v(0) · a(0). (12.4)

This expression provides a decomposition of a generic element η ∈ TaM in terms
of an infinitesimal metamorphosis, represented by an element of V × TaM . Indeed,
for a ∈ M , introduce the map

Φ(a) : V × TaM → TaM

(v, ρ) �→ ρ + v · a .

Then (12.4) can be written as

∂t a(0) = Φ(a0) (∂tα(0), v(0)) .

We now introduce the Riemannian metric associated to metamorphoses.

Proposition 12.2 Assume that v �→ v · a is continuous on V .With σ2 > 0, the norm

‖η‖2a = inf

{
‖v‖2V + 1

σ2
|ρ|2a : η = Φ(a)(v, ρ)

}
(12.5)
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defines a new Riemannian metric on M. (Note that we are using double bars instead
of single ones to distinguish between the new metric on M and the initial one.)

Proof Because Φ(a) is onto (e.g., Φ(a)(0, ρ) = ρ), ‖η‖a is finite (and bounded by
|η|a/σ2). Define Va = (Φ(a))−1(0). It is a linear subspace of V × TaM and ‖η‖2a is
the norm of the linear projection of (0, η) on Va , for theHilbert structure on V × TaM
defined by

‖(v, ρ)‖2id,a = ‖v‖2V + 1

σ2
|ρ|2a .

Thus ‖·‖a = ∥∥πVa (0, η)
∥∥
id,a is associated with an inner product. Since it is a

projection on a closed subspace (Φ(a) is continuous), the infimum is attained and by
definition, cannot vanish unless η = 0. This therefore provides a new Riemannian
metric on M . �

With this metric, the energy of a curve is

E(a(t)) =
∫ 1

0
‖∂t a(t)‖2a(t) dt

= inf
v

(∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0
|∂t a(t) − v(t) · a(t)|2a(t) dt

)
, (12.6)

the infimum being over all curves t �→ v(t) on V . It can also be written

E(a(t)) = inf
v

(∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0

∣∣d Aϕ(t)(α(t)) ∂tα(t)
∣∣2
a(t) dt

)
(12.7)

with ∂tϕ = v ◦ ϕ.
The distance between two elements a0 and a1 in M can therefore be computed by

minimizing

U (v, a) =
∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0
|∂t a(t) − v(t) · a(t)|2a(t) dt (12.8)

over all curves ((v(t), a(t)), t ∈ [0, 1]) on V × M , with boundary conditions a(0) =
a0 and a(1) = a1 (no condition on v). From (12.7), this may also be seen as finding
an optimal metamorphosis, by minimizing

Ũ (ϕ,α) =
∫ 1

0

∥∥(dRϕ(t)(id))
−1∂tϕ(t)

∥∥2

V dt + 1

σ2

∫ 1

0

∣∣d Aϕ(t)(α(t))∂tα(t)
∣∣2
α(t) dt

with boundary conditions ϕ(0) = idG , α(0) = a0, ϕ(1) · α(1) = a1.
This construction can also be interpreted using a Riemannian submersion

(Sect.B.6.7). Indeed, the mapping
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π : G × M → M

(ϕ,α) �→ ϕ · α

is a submersion from G × M to M with dπ(ϕ,α)(h, ρ) = d Aϕ(α)ρ + dRα(ϕ)h.
(π is a submersion because d Aϕ(α) is invertible, with inverse d Aϕ−1(ϕ · α).) The
vertical space at (ϕ,α) is the set of all pairs (h, ρ) satisfying

ρ = −d Aϕ−1(ϕ · α)dRα(ϕ)h. (12.9)

Two pairs (ϕ,α) and (ϕ̃, α̃) belong to the same fiber if and only if ϕ · α = ϕ̃ · α̃,
or, letting ψ = ϕ−1ϕ̃, (ϕ̃, α̃) = (ϕψ,ψ−1 · α). This leads us to introduce the right
action of G on G × M defined by

(ϕ,α) · ψ = (ϕψ,ψ−1 · α) =: R̃ψ(ϕ,α),

which provides a transitive action on the fiber over a = ϕ · α. Assume that a Rie-
mannian metric ‖(h, ρ)‖(ϕ,α) is given on G × M , and that this metric is invariant
through this action, so that

d R̃ψ(ϕ,α) : (h, ρ) �→ (dRψ(ϕ)h, d Aψ−1(α)ρ)

is an isometry between T(ϕ,α)(G × M) and T(ϕ,α)·ψ(G × M). Notice that this isome-
try maps vertical spaces onto vertical spaces. Indeed, take (h, ρ) ∈ T(ϕ,α)G × M , so
that h and ρ satisfy (12.9). Then

d Aψ−1(α)ρ = −d Aψ−1(α) d Aϕ−1(ϕ · α) dRα(ϕ)h

= −d Aψ−1ϕ−1(ϕ · α) dRα(ϕ)h

= −d Aψ−1ϕ−1(ϕ · α) dRα(ϕ) dRψ−1(ϕψ) dRψ(ϕ)h

= −d A(ϕψ)−1(ϕ · α) dRψ−1α(ϕψ) dRψ(ϕ)h,

in which we have applied the chain rule to the identities Aψ−1 Aϕ−1 = Aψ−1ϕ−1 ,
Rψ−1Rψ = id and RαRψ−1 = Rψ−1α. This shows that d R̃ψ(ϕ,α)(h, ρ) belongs to
the vertical space at (ϕψ,ψ−1α).

Because d R̃ψ is an isometry that maps vertical spaces to vertical spaces, it also
maps horizontal spaces to horizontal spaces. These spaces being isometric shows
that π is a Riemannian submersion, provided that the norm on M is defined by

‖η‖a = min
{‖(h, ρ)‖(ϕ,α) : (h, ρ) ∈ TϕG × TαM, d Aϕ(α)ρ + dRα(ϕ)h = η

}

and this definition does not depend on (ϕ,α) such that ϕ · α = a. One can, in par-
ticular, take (ϕ,α) = (id, a), yielding

‖η‖a = min
{‖(v, ρ)‖(id,a) : (v, ρ) ∈ V × TaM, ρ + v · a = η

}
.
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The construction leading to (12.5) simply corresponds to the special case

‖(v, ρ)‖2(id,a) = ‖v‖2v + 1

σ2
|ρ|2a

(which specifies ‖(h, ρ)‖(ϕ,α) everywhere because right translations are isometries).
There is no particular reason for restricting to this special case beside it leading
to simpler formulas, and the discussion that follows can easily be extended to the
general case of a right-invariant metric on G × M .

12.3 Euler–Lagrange Equations

We provide below optimality conditions in a Lagrangian setting that include meta-
morphosis in the case when M is a vector space. When M is a general Riemannian
manifold, the optimality conditions were worked out in [282] and are expressed as
follows (we refer to this reference for a proof of the statement)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t a − v · a = z

∇∂t a z + ∇†
z X

v = 0

v = 1

σ2
Kξ∗

av.

(12.10)

Here, ∇ is the covariant derivative on M and ∇∂t a = D/Dt is the evaluation of this
derivative along the curve t �→ a(t) ∈ M (recall that z(t) ∈ Ta(t)M); Xv is the vector
field a �→ v · a on M , and ∇†

z is defined by

〈
Z , ∇Z ′ Z ′′〉 = −〈∇†

Z Z
′′ , Z ′〉,

where
〈
X , Y

〉
is the function a �→ 〈

X (a) , Y (a)
〉
a for vector fields X,Y on M .

Finally, K is, as usual, the inverse duality operator on V .
We now assume that M is a vector space and consider a generalized version of

(12.8) minimizing

U (v, a) =
∫ 1

0
F

(
v(t), a(t), ∂t a − v(t) · a(t)

)
dt (12.11)

for some function F . Let
z(t) = ∂t a − v(t) · a(t). (12.12)

We will denote by ∂vF , ∂a F and ∂z F the partial differentials of F with respect
to each of its variables. Computing the variation with respect to v, we get, for all
t �→ h(t) ∈ V ,
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∫ 1

0

(
∂vF

∣∣∣ h(t)
)
dt −

∫ 1

0

(
∂z F

∣∣∣ h(t) · a(t)
)
dt = 0.

Denoting by Qa∂z F the linear form

(
Qa∂z F

∣∣∣ h̃
)

:=
(
∂z F

∣∣∣ h̃ · a
)
,

we obtain the optimality equation for v

∂vF − Qa(t)∂z F = 0. (12.13)

If we now make the variation with respect to a, the result is, for every
t �→ α(t) ∈ M ,

∫ 1

0

(
∂a F

∣∣∣α(t)
)
dt +

∫ 1

0

(
∂z F

∣∣∣ ∂tα − v(t) · α(t)
)
dt = 0.

Integrating by parts and using the notation

(
Q̃v∂z F

∣∣∣ α̃
)

:=
(
∂z F

∣∣∣ v · α̃
)
,

we obtain the optimality equation

− ∂t∂z F − Q̃v∂z F + ∂a F = 0. (12.14)

Equations (12.12)–(12.14) provide the Euler–Lagrange equations for metamor-
phosis. They also provide the differentials of the energy with respect to v and a and
can be used to design minimization algorithms.

12.4 Application to Labeled Point Sets

We consider here diffeomorphisms acting on collections of points

a = (y(1), . . . , y(N )),

with y(k) ∈ R
d . We therefore have M = (Rd)N (note that we are not assuming here

that points are distinct). We consider the function [51, 189]

F(v, a, z) = ‖v‖2V + 1

σ2

N∑

k=1

|z(k)|2,
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where V is an admissible RKHS of vector fields. (Note that F does not depend on
a.) Here, because ϕ · a = (ϕ(y(1)), . . . ,ϕ(y(N ))), we have

v · a = (v(y(1)), . . . , v(y(N ))),

so that z(k) = ∂t y(k) − v(y(k)). We can therefore write

U (v, a) =
∫ 1

0
‖v(t)‖2V dt + 1

σ2

N∑

k=1

∫ 1

0

∣∣∂t y
(k) − v(t, y(k)(t))

∣∣2 dt.

Wehave∂vF = 2Lv (whereL is the duality operator ofV ) and∂z F = (2/σ2)(z(1),

. . . , z(N )). Moreover,

(
Qa∂z F

∣∣∣ h
)

= 2

σ2

N∑

k=1

(z(k))T h(y(k)),

so that the first Euler–Lagrange equation is

Lv − 1

σ2

N∑

k=1

z(k)δy(k) = 0.

sFor the second equation, we write

(
Q̃v∂z F

∣∣∣α
)

= 2

σ2

N∑

k=1

(z(k))T dv(y(k))αk,

yielding
−∂t z

(k) − dv(y(k))T z(k) = 0.

This provides the system of Euler–Lagrange equations for labeled point-set meta-
morphosis: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lv = 1

σ2

N∑

k=1

z(k)δy(k) ,

∂t z
(k) + dv(y(k))T z(k) = 0,

∂t y
(k) − v(y(k)) = z(k).

(12.15)

Note that, introducing the reproducing kernel of V , the first equation is equivalent to

v(t, x) =
N∑

k=1

K (x, y(k)(t))z(k)(t).
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This implies that minimizing E is equivalent to minimizing

Ẽ(a, z) =
N∑

k,l=1

∫ 1

0
z(k)(t)T K (y(k)(t), y(l)(t))z(l)(t)dt

+ 1

σ2

N∑

k=1

∫ 1

0

∣∣∣∣∣
∂t y

(k)(t) −
n∑

l=1

K (y(k)(t), y(l)(t))z(l)(t)

∣∣∣∣∣

2

dt.

The vectors z(1), . . . , z(N ) can be computed explicitly given the trajectories y(1), . . . ,

y(N ), namely
z = (S(y) + λI )−1∂t y.

This provides an expression of the energy in terms of y(1), . . . , y(N ) that can be
minimized directly, as proposed in [51]. Most of the methods developed for point
sets in Chap.10 can in fact be adapted to this new framework. Figure 12.1 provides
examples of deformations computed with this method.

12.5 Application to Images

12.5.1 Formal Analysis

Let M be a set of square integrable and differentiable functions a : Rd → R. We let
G = DiffV act on M by ga = a ◦ g−1. We use the L2 norm as the initial metric on
M , and we start with a formal discussion. Since we assume that a is differentiable,
we can write v · a = −∇aT v. We then define

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖22,

which, here again, does not depend on a.
Equation (12.12) is z(t) = ∂t a(t) + ∇a(t)T v(t). We have

(
Qa∂z F

∣∣∣ h
)

= − 2

σ2

∫

Rd

z∇aT hdx,

so that (12.13) is Lv = −z∇adx . Also,

(
Q̃v∂z F

∣∣∣α
)

= − 2

σ2

∫

Rd

zvT∇adx,

so that, using the divergence theorem, Q̃v∂z F = div(zv) and (12.14) is
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Fig. 12.1 Point-set matching using metamorphosis, with the same input as in Figs. 9.1 and 10.1,
using Gaussian kernels K (x, y)=exp(−|x − y|2/2σ2) with σ = 1, 2, 4 in grid units

−∂t z − div(zv) = 0.

So the optimality equations for image metamorphosis are

⎧
⎪⎪⎨

⎪⎪⎩

∂t a + ∇aT v = z,

∂t z + div(zv) = 0,

Lv = − 1

σ2
(z∇a)dx .

(12.16)

Figures 12.2, 12.3 and 12.4 provide examples of images matched using the asso-
ciated energy. In these examples, the first and last images are given as input and two
interpolated images are provided. The numerical scheme is described in Sect. 12.5.4.
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Fig. 12.2 Image metamorphosis. Estimation of a geodesic between a disc and a square. First row:
image evolution in time. Second row: evolution of the diffeomorphism

Fig. 12.3 Creation of new patterns with image metamorphosis. Geodesic between an empty image
and a disc. First row: image evolution in time. Second row: evolution of the diffeomorphism

12.5.2 Some Rigorous Results

In this section, we provide a more rigorous treatment of image metamorphosis. We
will extend the L2 case considered above to Sobolev spaces, assuming that images
(a or α) belong to a Hilbert space H , with norm equivalent to the Hr (Rd) norm for
some integer r ≥ 0, with notation for the Hr norm

‖u‖2r,2 =
∑

|k|≤r

‖∂ku‖22,

where k denotes a d-dimensional multi-index (k1, . . . , kd), |k| = k1 + · · · + kd ,

∂ku = ∂k1
1 . . . ∂kd

d u



12.5 Application to Images 383

Fig. 12.4 Gray-level image metamorphosis. Geodesic between two gray-level face images. First
row: image evolution in time. Second row: evolution of the diffeomorphism

and ‖ · ‖2 is the L2 norm. We will consider metamorphoses with cost

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖2H

and provide a few results describing their properties. The proofs of these results
being somewhat technical, we will skip them, referring the reader to [245] for more
details.

We first reformulate the problem to make sure that it is also well defined
for functions a that are not differentiable. We can write the advection equation
∂t a + ∇aT v = z as ∂tα = z ◦ ϕ with α = a ◦ ϕ and ∂tϕ = v ◦ ϕ. We can there-
fore consider the minimization of

∫ 1

0
‖v‖2V dt + 1

σ2

∫ 1

0
‖z(t)‖2H dt (12.17)

subject to the constraints ∂tϕ = v ◦ ϕ, ∂tα = z ◦ ϕ, ϕ(0) = id, α(0) = a0 and
α(1) = a1 ◦ ϕ(1).

We then have the following theorem.

Theorem 12.3 Assume r ≥ 0 and p ≥ max(1, r). Then the image metamorphosis
problem has at least one solution.

The validity of the optimality conditions requires slightlymore restrictive assump-
tions on the boundary conditions a0 and a1.We letKV : V ∗ → V andKH : H∗ → H
be the duality operators of the Hilbert spaces V and H and define ξϕv = v ◦ ϕ and
ξ̃ϕα = α ◦ ϕ. Then, the following result holds.
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Theorem 12.4 Assume that both a0 and a1 belong to Hr+1(Rd). Then, if (v, z,ϕ,α)

is anoptimal solutionof themetamorphosis problem, there existρϕ(·) ∈ C p
0 (Rd ,Rd)∗

and ρα ∈ H∗ such that the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ = v ◦ ϕ

∂tα = z ◦ ϕ

∂tρϕ = −∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
) − ∂ϕ(ρα | z ◦ ϕ )

∂tρα = 0

v = KV ξ∗
ϕρϕ

z = σ2
KH ξ̃∗

ϕρα

(12.18)

is satisfied, with boundary conditions α(0) = a0, α(1) = a1 ◦ ϕ(1) and

(
ρϕ(1)

∣∣ δϕ
) + (

ρα

∣∣∇a1 ◦ ϕ(1)T δϕ
) = 0

for all δϕ ∈ C p
0 (Rd ,Rd).

Moreover, the boundary condition propagates, so that

(
ρϕ(t)

∣∣ δϕ
) + (

ρα

∣∣∇a(t) ◦ ϕ(t)T δϕ
) = 0 (12.19)

for all t ∈ [0, 1].
(Equation (12.19) is in fact the horizontality condition associated with geodesics
obtained through the Riemannian submersion.)

Finally, the following theorem provides sufficient conditions for the existence of
solutions of (12.18) with given initial conditions.

Theorem 12.5 Assume that p ≥ 1 + d/2 and p ≥ r + 1. Then system (12.18) has
a unique solution over any bounded interval as soon as ρϕ,0 ∈ C p−2

0 (Rd ,Rd)∗ and
ρα ∈ Hr−1(Rd)∗.

Note that, with metamorphosis, the boundary condition requires that
(
ρϕ,0

∣∣w
) =(

ρα

∣∣∇aT
0 w

)
. Assuming that a0 ∈ H 1(Rd) (which is restrictive only for r = 0),

we see that ρα ∈ Hr−1(Rd)∗ implies that ρϕ,0 ∈ Cr−1
0 (Rd ,Rd)∗ ⊂ C p−2

0 (Rd ,Rd)∗,
since p ≥ r + 1, so that the regularity condition for ρϕ,0 is automatically satisfied.

12.5.3 Remarks on the Optimality Conditions

System (12.18) corresponds to Pontryagin’s maximum principle for (12.17) con-
sidered as an optimal control problem with state (ϕ,α), control (v, z) and co-state
(ρϕ, ρα). We first check that, under additional differentiability assumptions on the
images, they are equivalent to those found in (12.16) in the L2 case.
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When H = L2(Rd), system (12.18) gives z = σ2ξ̃∗
ϕρα with ρα ∈ (L2(Rd))∗ =

L2(Rd) (meaning that we identify ραdx with ρα). We therefore have
∂t (z | ã ◦ ϕ ) = 0 for any ã ∈ R

2. When z is differentiable, this leads, after differen-
tiating and applying the divergence theorem, to

∂t z + div(zv) = 0.

We have already seen that, when a is differentiable, the equation ∂tα = z ◦ ϕ implies
that ∂t a + ∇aT v = z.

Equation (12.19) applied to δϕ = w ◦ ϕ(t) gives
(
ρϕ(t)

∣∣ w ◦ ϕ(t)
) =

−(
ρα

∣∣ (∇a(t)Tw) ◦ ϕ(t)
)
, or

ξ∗
ϕ(t)ρϕ(t) = −(ξ̃∗

ϕ(t)ρα)∇a(t) = − 1

σ2
z(t)∇a(t).

This yields LV v(t) = −z(t)∇a(t)/σ2 at all times (or −(z(t)∇a(t))dx/σ2 if we
relax the identification between L2 and its dual), and we retrieve the last equation in
(12.16).

We now return to the general case. The second and last equations in (12.18) imply
that ∂tα = σ2ξ̃ϕKH ξ̃∗

ϕρα, yielding

α(t) = α(0) + σ2

(∫ t

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

)
ρα.

From the boundary conditions, we therefore get

ρα =
(∫ 1

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

)−1

(a1 ◦ ϕ(1) − a0).

We therefore have

α(t) = a0 +
(∫ t

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

) (∫ 1

0
ξ̃ϕ(s)KH ξ̃∗

ϕ(s) ds

)−1

(a1 ◦ ϕ(1) − a0),

which provides a “closed-form” expression of the template part of themetamorphosis
given the diffeomorphism part. When H = L2(R), for which KH = Id, we have
ξ∗
ϕρ = ρ ◦ ϕ−1 | det(d(ϕ−1))|, so that

ξϕξ∗
ϕρ = ρ | det(d(ϕ−1))| ◦ ϕ = ρ | det(dϕ)|−1.

It follows that

α(t) = a0 +
( ∫ t

0 | det(dϕ(s))|−1 ds
∫ 1
0 | det(dϕ(s))|−1 ds

)

(a1 ◦ ϕ(1) − a0),
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or

a(t) ◦ ϕ(t) =
(∫ 1

t | det(dϕ(s))|−1 ds
∫ 1
0 | det(dϕ(s))|−1 ds

)

a0 +
(∫ t

0 | det(dϕ(s))|−1 ds
∫ 1
0 | det(dϕ(s))|−1 ds

)

a1 ◦ ϕ(1),

which describes how metamorphosis interpolates between the two images it com-
pares.

When r > d/2 + 1, (12.18) for Hr metamorphoses has some interesting singular
solutions [152, 245]. In this case, H is a reproducing kernel Hilbert space, and we
will use KH to denote its kernel. We look for solutions of (12.18) in which ρϕ and
ρα take the form

ρϕ(t) =
N∑

k=1

βk(t)δx (0)
k

, (12.20)

ρα =
N∑

k=1

γkδx (0)
k

, (12.21)

where x (0) = {x (0)
k }Nk=1 is a collection of points inR

d ,β(t) = {βk(t)}Nk=1 is a collection
of time-dependent vectors in R

d , and γ = {γk}Nk=1 is a time-independent collection
of scalars.

Introduce the trajectories xk(t) := ϕ(t, x (0)
k ). Using this notation, we have

(
ξ∗
ϕ(t)ρϕ(t)

∣∣w
) = (

ρϕ(t)
∣∣w ◦ ϕ(t)

) =
N∑

k=1

βk(t)
Tw(xk(t)),

so that

ξ∗
ϕ(t)ρϕ(t) =

N∑

k=1

βk(t)δxk (t)

and (12.18) implies that

v(t, ·) =
N∑

k=1

KV (·, xk(t))βk(t).

Similarly, one gets

z(t, ·) = σ2
N∑

k=1

KH (·, xk(t))γk .
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The third equation in (12.18) gives, for w ∈ C p
0 (Rd ,Rd),

N∑

k=1

∂tβk(t)
Tw(x (0)

k ) =

−
N∑

k=1

βk(t)
T (dv(xk(t))w(x (0)

k )) −
N∑

k=1

γk∇z(xk(t))
Tw(x (0)

k )

from which we get

∂tβk(t) = −dv(xk(t))
Tβk(t) − γk∇z(xk(t)).

Using the expansions of v and z and the fact that ∂t xk = v(t, xk), we obtain the fact
that (12.20) and (12.21) provide solutions of (12.18) as soon as x , α and z satisfy
the coupled dynamical system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t xk(t) =
N∑

l=1

KV (xk(t), xl(t))βl(t)

∂tαk(t) =
N∑

l=1

KH (xk(t), xl(t))γl

∂tβk(t) = −
N∑

l=1

∇1KV (xk(t), xl(t))βl(t)
Tβk(t)

− 1

σ2

N∑

l=1

∇1KH (xk(t), xl(t))γkγ�.

(12.22)

Finally, we note that Eq. (12.19) applied to ρϕ and ρα is

N∑

k=1

βk(t)
T δϕ(xk) = −

N∑

k=1

γk∇α(t, x (0)
k )T dϕ(t, x (0)

k )−1δϕ(xk)

for all δϕ, yielding

βk(t) = −γkdϕ(t, x (0)
k )−T∇α(x (0)

k ) = −γk∇a(t, xk(t)).

These special solutions have been used in [245] to provide approximations of solu-
tions for metamorphoses between smooth images.
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12.5.4 Discretization of Image Metamorphosis in the L2 Case

The images in Figs. 12.2 and 12.3 have been obtained after minimization of a dis-
cretized version of the image metamorphosis energy,

E(a, v) =
∫ 1

0
‖v(t)‖2V dt + 1

σ2

∫ 1

0
‖∂t a(t) + ∇a(t)T v(t)‖22dt.

The second integrand must be discretized with care. It represents the total deriva-
tive of a along the flow. Stable results can be obtained using the following scheme.

Introduce the auxiliary variable w = L
1/2v, so that v = K

1/2w where K = L
−1

(the numerical implementation can in fact explicitly specify K̃ = K
1/2 and useK =

K̃
2). The following discretized energy has been used in the experiments of Figs. 12.2

and 12.3:

E =
T∑

t=1

∑

x∈Ω̃

|w(x)|2 + λδt−2
T∑

t=1

∑

x∈Ω̃

∣∣a(t + 1, x + δt (K1/2w)(t, x)) − a(t, x)
∣∣2 ,

where x and t now are discrete variables, Ω̃ a discrete grid on Ω and δt the time dis-
cretization step (the space discretization is 1). The optimization algorithm alternates
a few steps of nonlinear conjugate gradient in v, and a few steps of linear conjugate
gradient in a [120, 121].

12.6 Applications to Densities

If one denotes Hr (Rd)∗ by H−r (Rd) for r ≥ 0, one can consider the action of Diff p0
on these spaces defined by

(ϕ · a | f ) = (a | f ◦ ϕ ),

which is well defined on H−r (Rd) for r ≤ p. For r = 0, in particular, this action
boils down to the usual action on densities ϕ · a = a ◦ ϕ−1 | det(d(ϕ−1))|. Starting
with this special case, for which the infinitesimal action is v · a = −div(av), we can
consider the metamorphosis problem associated here again with

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖22,

with z(t) = ∂t a(t) + div(a(t)v(t)). The counterpart of system (12.16) is (details
being left to the reader)



12.6 Applications to Densities 389

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t a + div(av) = z,

∂t z + ∇zT v = 0,

Lv = 1

σ2
(a∇z)dx .

(12.23)

More generally, letting H = Hr (Rd), we can define metamorphoses in H∗ using

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖2H∗ .

We can also consider the metamorphosis problem in optimal control form as in
(12.17), minimizing ∫ 1

0
‖v‖2V dt + 1

σ2

∫ 1

0
‖z(t)‖2H∗ dt (12.24)

subject to the constraints ∂tϕ = v ◦ ϕ, ∂tα = z ◦ ϕ | det dϕ|, ϕ(0) = id, α(0) = a0
and α(1) = a1 ◦ ϕ(1)| det dϕ(1)|. Defining, in this case ξ̃ϕz = z ◦ ϕ| det dϕ|, the
optimality conditions (12.18) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϕ = v ◦ ϕ

∂tα = z ◦ ϕ | det dϕ|
∂tρϕ = −∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
) − ∂ϕ(ρα | z ◦ ϕ | det dϕ| )

∂tρα = 0

v = KV ξ∗
ϕρϕ

z = σ2
KH ξ̃∗

ϕρα

(12.25)

with boundary conditionsα(0) = a0,α(1) = a1 ◦ ϕ(1)| det dϕ(1)| and horizontality
condition (

ξ∗
ϕρϕ

∣∣w
) +

(
ξ̃∗
ϕρα

∣∣∣ div(aw)
)

= 0

for all w ∈ C p
0 (Rd ,Rd).

12.7 Application to Curves

12.7.1 Metamorphosis on Unit Tangents

We now consider the issue of comparing plane curves based on the orientation of
their tangents [171, 307, 313]. If m is a plane curve parametrized by arc length, and
L is it length, we define the normalized tangent Tm by
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Tm : [0, 1] → R
d

s �→ ∂sm(Ls).

The function Tm characterizes m up to translation and scaling, and the pair (L , Tm)

characterizes m up to translation. In the following discussion, functions will depend
on time t ∈ [0, 1] and normalized arc length s, also in [0, 1]. For clarity, we will let
Ω = [0, 1] for the arc length, i.e., write t ∈ [0, 1], s ∈ Ω . We will consider deriva-
tives of functions h of (t, s) ∈ [0, 1] × Ω , and we will use the notation ḣ or ∂t h for
derivatives with respect to the time variable, t , and dh for derivatives with respect to
the space variable, s.

We consider the group of diffeomorphisms Diff of Ω , which acts on the set M
of measurable functions a : Ω → Sd−1 (the unit sphere in R

d ) by ϕ · a = a ◦ ϕ−1.
Choosing an RKHS V of vector fields on Ω satisfying v(0) = v(1) = 0, we can
consider the metamorphosis problem associated with

F(v, a, z) = ‖v‖2V + 1

σ2
‖z‖22. (12.26)

If V is embedded in C1
0(Ω,R), the discussion made in the previous sections applies,

with the slight difference that one must take “z ∈ TaM” (we will not try here to
rigorously construct the shape space as a manifold), which means that z(s) ⊥ a(s)
at all times. If, in particular, the boundary conditions a0 and a1 are differentiable,
then Eq. (12.10) applies, and leads to the system, for a metamorphosis a(t, s)

⎧
⎪⎪⎨

⎪⎪⎩

∂t a + vda = z,

∂tζ + d(vζ) = 0,

v = − 1

σ2
KV (daT z)

in which ζ(, s) : Ω → R is the normal coordinate of z(t, s), defined by z(t, s) =
ζ(t, s)a⊥(t, s), where a⊥ is a rotated by π/2.

However, the resultingmetric takes an interesting form if one considers theHilbert
space V of functions v : [0, 1] → R such that v(0) = v(1) = 0 and

‖v‖2V =
∫

Ω

(dv)2 ds. (12.27)

Notice that thisHilbert space is not embedded inC1
0 (Ω,R) (oneneedsSobolev spaces

of order larger d/2 + 1 = 3/2 for this, i.e., one would need a second derivative in
the norm). Functions v ∈ V are continuous and satisfy a Hölder condition of order
q for any q < 1/2, but are not necessarily Lipschitz continuous. While the general
frameworkwe have considered so far does not apply to this situation, one can directly
formulate the metamorphosis problem in terms of time-dependent diffeomorphisms,
(t, s) �→ ϕ(t, s), of Ω , letting v = ϕ̇ ◦ ϕ−1 so that
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dv = dϕ̇ ◦ ϕ−1

dϕ ◦ ϕ−1
,

which yields, after a change of variables

∫

Ω

(dv)2 ds =
∫

Ω

dϕ̇2

dϕ
ds.

Writing the second term in template form, i.e., letting z = α̇ ◦ ϕ−1 and mak-
ing another change of variable, the metamorphosis objective function in this case
becomes

Uσ(ϕ,α) =
∫ 1

0

∫

Ω

(dϕ̇)2

dϕ
ds dt + 1

σ2

∫ 1

0

∫

Ω

|α̇|2dϕ ds dt, (12.28)

which needs to beminimized over all trajectories t �→ ϕ(t) and t �→ α(t), such thatϕ
is at all times an increasing diffeomorphism of Ω and α a function from Ω → Sd−1,
with boundary conditions α(0) = a0 and α(1) = a1 ◦ ϕ(1). We point out (this will
be useful later) that this energy can be minimized explicitly with respect to α when
theϕ trajectory is fixed. Indeed, first notice that in order to minimize the second term
in U , it suffices to minimize separately the integrals

∫ 1

0
|α̇(t, s)|2dϕ(t, s)dt (12.29)

for fixed s. Considering such an integral, we write α(t, s) = α̃(λ(t, s), s), where

λ(t, s) :=
∫ t
0 dϕ(t, s)−1 dt

∫ 1
0 dϕ(t, s)−1 dt

is an increasing function satisfying λ(0, s) = 0 and λ(1, s) = 1. We have α̇ =
λ̇ ˙̃α(λ, s) and

∫ 1

0
|α̇(t, s)|2dϕ(t, s)dt = 1

c(s)

∫ 1

0
| ˙̃α(λ(t, s), s)|2λ̇(t, s) dt= 1

c(s)

∫ 1

0
| ˙̃α(t, s)|2 dt

with

c(s) =
∫ 1

0
dϕ(t, s)−1 dt.

This integralmust beminimized subject to α̃(0, s) = a0(s), α̃(1, s) = a1 ◦ ϕ1(s) and
|α̃(t, s)| = 1 for all t , and the solution is given by the circular arc between α̃(0, s)
and α̃(1, s), which can be expressed as
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α̃(t, s) = sin((1 − t)ω(s))

sinω(s)
a0(s) + sin(tω(s))

sinω(s)
a1 ◦ ϕ1(s),

where
ω(s) = arccos(a0(s)

T a1 ◦ ϕ1(s)).

The optimal α is therefore given by

α(t, s) = sin((1 − λ−1(t, s))ω(s))

sinω(s)
a0(s) + sin(λ−1(t, s)ω(s))

sinω(s)
a1 ◦ ϕ1(s),

(12.30)
where λ−1(t, s) is defined by λ(λ−1(t, s), s) = t . The optimal cost in (12.29) is
then ω(s)2/c(s). We note that, because ω(s) ∈ [0,π], the coefficients in (12.30) are
non-negative. Moreover, α(t, s) is at all times in the plane generated by a0(s) and
α1 = a1 ◦ ϕ1(s).

We now fix ϕ1 and study optimal metamorphoses with ϕ(1, ·) = ϕ1. Introduce
the vector a⊥

0 perpendicular to a0 in the plane generated by a0 and α1, defined by

α1 = cosω a0 + sinωa⊥
0 .

(This is well defined if ω ∈ (0,π) and we choose a⊥
0 arbitrarily otherwise.) Without

loss of generality, we can search for optimal metamorphoses taking the form

α(t, s) = cos τ (t, s)a0(s) + sin τ (t, s)a⊥
0 (s) .

Letting ξ(t, s) = (cos τ (t, s), sin τ (t, s)) ∈ S1, we can write Uσ(ϕ,α) = Ũσ(ϕ, ξ),
where

Ũσ(ϕ, ξ) =
∫ 1

0

∫

Ω

(dϕ̇)2

dϕ
ds dt + 1

σ2

∫ 1

0

∫

Ω

|ξ̇|2dϕ ds dt. (12.31)

This function nowhas to beminimized subject toϕ(0, ·) = id,ϕ(1, ·) = ϕ1, ξ(0, ·) =
(1, 0) and ξ(1, ·) = (cosω, sinω), with ω = arccos(aT

0 a1 ◦ ϕ(1, ·)). In other terms,
we have reduced the Sd−1-valued metamorphosis problem to an S1-valued problem,
or, equivalently, our metric on d-dimensional curves to a two-dimensional case.

We now make a second reduction that will simplify the problem. Because ξ(t, s)
is differentiable in time, one can define uniquely a differentiable function τ (t, s)
such that ξ(0, s) = (1, 0) and ξ(t, s) = (cos τ (t, s), sin τ (t, s)) at all times. Define
q(t, s) by

q(t, s) = √
dϕ(t, s) (cos η(t, s), sin η(t, s)) ,

with 2ση(t, s) = τ (t, s). Then, a straightforward computation yields

4|q̇(t, s)|2 = dϕ̇2

dϕ
+ 1

σ2
|ξ̇(t, s)|2,
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so that

Ũσ(ϕ, ξ) = 4
∫ 1

0
‖q̇(t, ·)‖22 dt. (12.32)

We also note that

‖q(t, ·)‖22 =
∫

Ω

dϕ(t, s) ds = 1,

so that q(t, ·) is a curve on the unit sphere of L2(Ω,R2). This implies that its energy,∫ 1
0 ‖q̇(t, ·)‖22 dt , cannot be larger than that of the minimizing geodesic on this unit
sphere, which is the shortest great circle connecting the functions q0 = (1, 0) (which
is constant) and q1 = √

dϕ1 (cos (η(1, ·)) , sin (η(1, ·)). Letting

ρ = arccos
〈
q0 , q1

〉
2 = arcos

∫

Ω

√
dϕ1 cos

(
ω(s)

2σ

)
ds,

this geodesic is given by

γ(t, s) = sin((1 − t)ρ)

sin ρ
q0(s) + sin(tρ)

sin ρ
q1(s) (12.33)

with energy equal to ρ2. We therefore find that

Ũσ(ϕ, ξ) ≥ 4 arcos2
∫

Ω

√
dϕ1(s) cos

(
ω(s)

2σ

)
ds . (12.34)

This provides a lower-bound for the metamorphosis energy. To prove that this
lower-bound is achieved, one needs to show that the trajectory γ in (12.33) can be
derived from a valid trajectory (ψ(·, ·),μ(·, ·)) that connects (id, 0) to (ϕ1, ξ1).

We are therefore looking for representations of γ in the form

γ(t, s) = √
dψ(t, s) (cos η̃(t, s), sin η̃(t, s))

with η̃(0, s) = 0, which uniquely defines η̃(t, s) by continuity in t . Notice that we
automatically have dψ(0, ·) = 1 and dψ(1, ·) = dϕ1 by definition of q0 and q1. For
t ∈ (0, 1), we have

dψ(t, s) = |γ(t, s)|2,

so that ψ(t, ·) is non-decreasing and satisfies ψ(t, 0) = 0, ψ(t, 1) = 1. The function
s �→ dψ(t, s) is positive if and only if q(t, s) does not vanish, which requires

sin2((1 − t)ρ) + sin2(tρ)dϕ(1)

+2 sin((1 − t)ρ) sin(tρ)
√
dϕ1 cos

( ω

2σ

)
> 0. (12.35)
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A sufficient condition for this to hold for all t is that the cosine term is strictly larger
than −1, which is equivalent to

ω

2σ
�≡ π (mod 2π). (12.36)

Since ω ∈ [0,π], this condition will be automatically satisfied if 2σ > 1.
Because γ(1) = q1, the other end-point must satisfy

η̃(1, s) = ω(s)/2σ + 2k(s)π, (12.37)

where k is an integer-valued function. The right-hand side of (12.33) is a linear
combination of q0 and q1 with positive coefficients, which implies that the time-
continuous angular representation of q(t) starting at 0 cannot deviate by more than
π from its initial value, i.e.,

− π ≤ η̃(1, s) ≤ π, (12.38)

and we also have
0 ≤ ω(s) ≤ π. (12.39)

We now (and, unless otherwise specified, for the rest of the discussion) make the
assumption that 2σ ≥ 1.Under this assumption, η̃(1, ·) = ω/2σ satisfies both (12.37)
and (12.38). Since it is clear that only onevalue of η̃(1, s) can satisfy the twoequations
together, we find that, for all s ∈ Ω , one has η̃(1, s) = ω(s)/σ, and the curve γ is
associated with a trajectory (ψ,β) between (id, 0) and (ϕ1, ξ1).

We have therefore proved that γ in (12.33) provides a valid improved solution to
the original (ϕ,α) as soon as (12.36) is satisfied, which is true as soon as 2σ > 1.

If σ = 1/2, then (12.36) may not hold for the curve in (12.33). However, the
minimum of Uσ(ϕ,α) with given ϕ(1) = ϕ1 is still given by the geodesic energy
of this curve. To see this, it suffices to consider a small variation ã0 of a0 such that
ãT
0 a1 ◦ ϕ1 > −1, so that (12.36) is satisfied with ã0 instead of a0, and the minimum
energy when starting from ã0 is the geodesic energy of the associated great circle.
One can then use the fact that U is a geodesic energy for a Riemannian metric
on Diff × M , and combine this with the triangular inequality for the sequence of
geodesics going from (id, a0) to (id, ã0) then to (ϕ(1), a1). Indeed, the energy of
the sequence is larger than the minimal energy between (id, a0) and (ϕ(1), a1),
but arbitrarily close to the energy of the minimal geodesic between (id, ã0) then to
(ϕ(1), a1), itself arbitrarily close to the lower bound in (12.34).

We summarize this discussion in the following theorem.

Theorem 12.6 Assume that2σ ≥ 1, and letϕ1 : Ω → Ω satisfyϕ1(0) = 0,ϕ1(1) =
1 and ∂sϕ1 > 0. Then
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inf {Uσ(ϕ,α) : ϕ(1) = ϕ1,α(0) = a0,α(1) = a1 ◦ ϕ1}
= 4 arccos2

∫

Ω

√
dϕ1 cos

(
arccos(a0(s)T a1 ◦ ϕ1(s))

2σ

)
ds. (12.40)

Moreover, if 2σ > 1, the minimum is achieved and can be deduced from a geodesic
curve γ on the unit sphere of L2(R).

This induces a distance on M, given by

dσ(a0, a1) = 2 inf
ϕ1

(
arccos

∫

Ω

√
dϕ1 cos

(
arccos(a0(s)

T a1 ◦ ϕ1(s))/2σ
)
ds

)
,

(12.41)

minimized over all strictly increasing diffeomorphisms of Ω .

This theorem is essentially proved in the discussion that precedes it, in which we
have left a few loose ends, mostly regarding measurability and dealing with sets of
measure 0, that can be tied up without too much effort by an interested reader.

In the two-dimensional case, one can represent functions α : Ω → S1 in the form
(cos θ, sin θ) for some angle function θ, which is only defined up to the addition of
a multiple of 2π. Given such a representation, one can then consider the transform

G : (ϕ, θ) �→ q = √
dϕ(cos θ/2σ, sin θ/2σ)

that defines a mapping from Diff × L2(Ω,R) to the unit sphere of L2(Ω,R2).
Adding a time dependency, we find, using this transform, that

∫ 1

0

∫

Ω

(dϕ̇)2

dϕ
ds dt + 1

σ2

∫ 1

0

∫

Ω

|ξ̇|2dϕ ds dt = 4
∫ 1

0
‖q̇‖2 dt,

so thatminimizers on the left can be associatedwith geodesics on the unit sphere. One
can then compute the metamorphosis distance by minimizing the lengths of great
circles between, say, G(id, θ0) and G(ϕ1, θ1 ◦ ϕ1), for a given ϕ1, and optimizing
over all angle representations θ0, θ1 of a0, a1 that satisfy the constraint

−2σπ ≤ θ1 ◦ ϕ1 − θ0 ≤ 2σπ

because (12.38) still needs to hold for any time-continuous angle representation
of q. This provides the same distance dσ as the one obtained in Theorem 12.6.
Notice, however, that this construction is special to the two-dimensional case. In
dimension d > 2, our reduction to a unit sphere geodesic depended on the end-
points a0 and a1, and could not be deduced from a direct transformation applied to
the curves themselves, such as G. The only exception is the case σ = 1/2, for which
G is equivalent to (ϕ,α) �→ √

dϕα. This transform, called the “square root velocity
transform”, is clearly applicable to arbitrary dimensions. It has been extensively
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studied in the literature, and we refer to [267] and references within for additional
details and applications.

Returning to the two-dimensional case, alternative expressions of the distance
can be derived for simple values of σ given angle representations θ0 and θ1 for a0
and a1. Indeed, the cosine in (12.41) is given by cos(θ1 ◦ ϕ1 − θ0) if σ = 1/2, by
| cos((θ1 ◦ ϕ1 − θ0)/2)| if σ = 1, and by

max(| cos((θ1 ◦ ϕ1 − θ0)/4)|, | sin((θ1 ◦ ϕ1 − θ0)/4)|)

if σ = 2.
The case σ = 1 for plane curves was first investigated in [307, 313]. It has inter-

esting additional features, and we will see that it coincides with a geodesic distance
that we have discussed previously in this chapter [311]. The optimization of ϕ1

(which is still needed to compute the distance) can be done efficiently by dynamic
programming, and the reader is referred to [279, 308] for more details.

To conclude this section, we notice that the metamorphosis metric is invariant
under the action of rotations, so that one can optimize for a rotation parameter in all
cases considered above. The rotation-invariant version of the distance between plane
curves for σ = 1, for example, is

d1,rot(a0, a1) = 2 inf
ϕ1,c

(
arccos

∫

Ω

√
dϕ1

∣∣∣∣cos
(

θ1 ◦ ϕ1(s) − θ0(s) − c

2

)∣∣∣∣ ds
)

,

(12.42)

where c is a scalar. In higher dimensions, one needs to optimize (12.41) with a0
replaced by Ra0 when R varies over all rotations of the d-dimensional space.

12.7.2 One-Dimensional Case

In one dimension, the previous representation reduces to functions a : Ω → {−1, 1},
which does not leave much room to define time-continuous metamorphoses, and the
previous approach cannot be extended to this case. One can however bypass this
limitation by considering such functions as flat 2D functions, simply replacing the
scalar-valued function a by (a, 0). This defines a very special family of piecewise
linear curves, to which the previous distance can nonetheless be applied. In this
setting, given the functions a0 and a1 ◦ ϕ1, one has ω(s) = π if a1 ◦ ϕ1(s) �= a0(s)
and 0 otherwise. One therefore gets

dσ(a0, a1) = 2 inf
ϕ1

(
arccos

∫

Ω

√
dϕ1

(
1a0(s)=a1◦ϕ1(s)

+ cos
( π

2σ

)
1a0(s)�=a1◦ϕ1(s)

)
ds

)
. (12.43)
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Notice that this compares functions modulo reparametrization, i.e., a0 and a0 ◦ ϕ
are considered as identical for any increasing diffeomorphism of Ω . If this creates
too much invariance, one can use the representation G for the curves (a, 0) without
optimizing for reparametrization, which provides the distance

δσ(a0, a1) = 2arccos
∫

Ω

√
da0(s)da1(s)

(
1a0(s)=a1(s)

+ cos
( π

2σ

)
1a0(s)�=a1(s)

)
ds . (12.44)

12.7.3 The Smooth Case

In this discussion,weplaced few regularity conditions on the functionsa ∈ M beyond
their measurability. The resulting class of curves includes, in particular, polygo-
nal curves, for which a is piecewise constant. If one wants to restrict to spaces
of smooth curves, then some modifications must be made. In particular, the inte-
grals in (12.29) cannot be minimized independently for each s, because we need
to ensure that the solution that one obtains is a continuous value of s. The optimal
solution is however still given by (12.30) with, this time, ω being a continuous lift
of s �→ arccos(a0(s)T a1 ◦ ϕ1(s)). One can therefore still reduce the d-dimensional
setting to a two-dimensional one.

Taking the same definition for q, we find that the metamorphosis energy is no
larger than four times the geodesic energy of q in the unit sphere of L2(Ω,R2).
When proving that the lower-bound is achieved, one finds that the function k(s) in
(12.37) must be continuous, hence constant. Here, we can use the fact that one can
take ω(0) ∈ [0,π] and use the same argument as in the non-smooth case for s = 0,
yielding k(0) = 0 and therefore k(s) = 0 for all s since k is constant. However, and
regardless of the value of σ, one cannot ensure that (12.35) is satisfied unless the
compared curves are close enough (so that their angles are at distance less than 2σπ
after registration). When computed between curves that are too far apart, curves in
M deduced from geodesics on the sphere will typically develop singularities (and
therefore step out of M if this space is restricted to smooth curves).

The smooth case has also been studied in [29], in which a different transform is
proposed, leading to a representation of plane curves in a three-dimensional space.
More recently, [174] made a study of the smooth case for planar curves with an
approach similar to the one we develop here. As pointed out in this reference, when
correcting the distance for rotation invariance (similarly to (12.42)), the constant
indetermination 2πk in (12.37) has no impact and one does not need the assumption
that 2σ ≥ 1 in that case.
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12.7.4 Existence of Optimal Metamorphoses

To complete the computation of the optimal metamorphosis, one must still optimize
(12.40)with respect to thefinal diffeomorphismϕ1. The resulting variational problem
is a special case of those studied in [280], which considered the maximization of
functionals taking the form

F(ϕ) =
∫

Ω

√
dϕ f (s,ϕ(s)) ds

over the setHom+ of all strictly increasing functionsϕ : Ω → Ω satisfyingϕ(0) = 0
and ϕ(1) = 1, where f is a function defined on Ω2. Following the notation there,
we let

Δ f = sup
ψ∈Hom+

∫

Ω

√
dψ f (ψ(s), s) ds

and define the diagonal band

Ωc = {
(s, s ′) ∈ [0, 1]2 | |s − s ′| ≤ c

}
.

We give without proof the following result, which is a consequence of Theorem 3.1
in [280].

Theorem 12.7 Assume that f ≥ 0 is continuous on Ω̄2 except on a set G that can
be decomposed as a union of a finite number of horizontal or vertical segments.
Assume also that, for some c, with

c >

√

1 −
(

Δ f

‖ f ‖∞

)2

,

there does not exist any non-empty open vertical or horizontal segment (a, b) such
that (a, b) ⊂ Ωc and fl vanishes on (a, b), where

fl(x) = lim
δ→0

inf
|y−x |<δ,y /∈G

f (y)

is the lower semi-continuous relaxation of f .
Then there exists a ϕ∗ ∈ Hom+ such that F(ϕ∗) = max{F(ϕ),ϕ ∈ Hom+}.

Moreover, if ϕ is a maximizer of F, one has, for all s ∈ Ω , (ϕ(s), s) ∈ Ωc.

Intuitively, f vanishing over vertical or horizontal segments allows for either very
small or very large values of dϕ at very little cost, resulting in optimal solutions that
may have stationary regions or jumps. In (12.41) (with σ = 1/2), this happens when
the tangents of the compared curves are perpendicular. When σ = 1, this happens
when θ1 and θ0 are oriented in opposite directions, i.e., their difference is equal to
an odd multiple of π. For σ > 1, however, the cosine in (12.41) never vanishes.
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Fig. 12.5 Two sets of examples of optimal metamorphoses between curves with σ = 0.5 (left), 1
(center) and 2 (right). Note that, in the first row, the geodesics with σ = 0.5 and σ = 1 grow the
missing finger out of the second finger, while that with σ = 2 grows a new thumb. In each image,
the geodesic is computed between the outer curve and the inner curve. Scaling is for visualization
only (the computation is scale-invariant)

There is no loss of generality in assuming that f ≥ 0 in this discussion because
if f < 0 on some rectangle, it is easy to check that any trajectory (s,ϕ(s)) that
enters this rectangle can be improved if it is replaced by a trajectory that moves
almost horizontally and/or almost vertically within the rectangle, with the new cost
converging to 0 over this region. This can be used to show that there is no change in
the minimizer if one replaces f by 0 within the rectangle.

One can efficiently maximize F by approximating f by a piecewise constant
function taking the form

f (s, s̃) =
n∑

k=1

fk1Rk ,

where R1, . . . , Rn is a family of rectangles that partition the unit square and with
fk ≥ 0, k = 1, . . . , n. One can then show that the minimization can be performed
over piecewise linear functions ϕ, which are furthermore linear whenever they cross
the interior of a rectangle. The search for the optimal ϕ can then be organized as a
dynamic program, and run very efficiently (see [279, 280] for details). Thismethod is
used in the experiments presented in Fig. 12.6 in which the optimal correspondence
is drawn over an image representing the function max( fσ, 0), where
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Fig. 12.6 Optimal correspondences estimated with the three metamorphoses in Fig. 12.5. Back-
ground images represent the function max( fσ, 0) in (12.45), the zeros being indicated in black. The
solution attempts to move across higher values of the function, cutting through zeros along vertical
or horizontal lines if needed. Each panel corresponds to the same panel in Fig. 12.5

fσ(s, s̃) = cos

(
arccos cos(θ0(s) − θ1(s̃))

2σ

)
. (12.45)

Of course, if the compared curves are polygonal, fσ is already piecewise constant.

12.7.5 The Case of Closed Curves

The previous developments assumed that curves were defined over open intervals,
and therefore apply mostly to open curves. Closed curves are defined over T 1 =
[0, 1]∗ (using the notation of Sect. 1.2.2), which is the open unit interval where the
extremities are identified. The boundary condition on V , whichwas v(0) = v(1) = 0
for functions defined over Ω , now only requires v(0) = v(1), offering a new degree
of freedom, associated with a change of offset, or initial point of the parametrization,
represented by the operation s �→ s +∗ δ from T 1 to itself (where +∗ represents the
translation along T 1, still using the notation introduced in Sect. 1.2.2). We restrict
our discussion to the 2D case, in which we assume that the compared curves a0 and
a1 have angle representations θ0 and θ1.

One can check easily that the distance in Theorem 12.6 is equivariant through
this transformation, so that one can define a distance among closed curves that is
invariant under rotations and changes of offset by (taking, for example, σ = 1)
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d̄1,rot(a0, a1)

= 2 inf
ϕ,c,δ

arccos
∫

T 1

√
∂sϕ(s) |cos((θ0(x + δ) − θ1 ◦ ϕ(x) − c)/2)| dx . (12.46)

Notice that, even when the resulting distance is still attained at a geodesic (or
optimal metamorphosis) on the space of functions a : T 1 → S1, the correspond-
ing curves at intermediate times, however, are not necessarily closed, because the
associated closedness condition requires

∫

T 1
a(s) ds = 0,

which is not enforced in this approach. Optimal trajectories are therefore not con-
strained to consist only of closed curves, and would typically become open for
t ∈ (0, 1), even though they start and end with closed curves. This method has been
applied to obtain the geodesics shown in Fig. 12.5, to which an extra step has been
added in order to close the intermediate curves for nicer visualization. This “closing”
operation simply consisted in replacinga by ã = (a − λ)/|a − λ|, whereλ ∈ R

2 was
adjusted so that

∫
Ω
ã ds = 0.

To correctly define a geodesic distance on spaces of closed curves, one needs to
consider the metric induced on the space Mc of functions a : T 1 → S1 such that∫
T 1 a ds = 0. This space, however, is not invariant under a change of parameters, so
that this induced metric is not associated with a metamorphosis. The expression of
this constraint in terms of the q function is simple in the case σ = 1/2, for which
q = √

dϕ α = √
dϕ a ◦ ϕ so that, after a change of variable,

∫

T 1
a ds =

∫

T 1
|q(u)| q(u) du .

Even in this case, there exists no closed form for the geodesic energy with fixed final
reparametrization, but efficient algorithms have been designed to minimize

4
∫ 1

0
‖q̇(t, ·)‖22 dt

subject to the constraints that ‖q‖22 = 1,
∫
T 1 |q| q du = 0, q(0) = q0 and q(1) = q1

(see, for example, [161]).
The metric on closed curves also has a nice interpretation in the case σ = 1. In

this case, let f and g denote the two coordinates of the representation q = G(ϕ, θ)
multiplied by

√
2, i.e., f = √

2dϕ cos θ
2 and g = √

2dϕ sin θ
2 , whereα = a ◦ ϕ−1 =

(cos θ, sin θ). The closedness constraint, which is

∫

Ω

cos θ ◦ ϕ−1 ds =
∫

Ω

sin θ ◦ ϕ−1 ds = 0,
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becomes ∫

Ω

dϕ cos θ ds =
∫

Ω

dϕ sin θ ds = 0

after a change of variables.Writing cos θ = cos2 θ
2 − sin2 θ

2 and sin θ = 2 cos θ
2 sin

θ
2 ,

this is equivalent to
‖ f ‖22 − ‖g‖22 = 〈

f , g
〉
2 = 0.

Because ‖ f ‖22 + ‖g‖22 = 2
∫
Ω
dϕ = 2, we find that the constraint is equivalent to

‖ f ‖22 = ‖g‖22 = 1 and
〈
f , g

〉
2 = 0, i.e., to ( f, g) forming an orthonormal 2-frame

in L2(Ω), and we have

U1(ϕ,α) = 2
∫ 1

0

(‖∂t f ‖2 + ‖∂tg‖2) ds,

where the left-hand side is two times the geodesic energy of the path ( f, g) in
the Stiefel manifold St(∞, 2) (see Sect.B.6.7). Repeating the arguments made in
Sects. 12.7.1 or 12.7.3 in this setting shows that the optimal metamorphosis with
fixed ϕ1 is obtained from the shortest length geodesic in St(∞, 2) connecting the

frames (
√
2 cos θδ

0
2 ,

√
2 sin θδ

0
2 ) and

(
ε
√
2∂sϕ1 cos

θ1 ◦ ϕ1

2
, ε

√
2∂sϕ1 sin

θ1 ◦ ϕ1

2

)
,

where θ0 and θ1 are angle representations of a0 and a1 and the optimization is made
over all possible measurable functions ε : Ω → {−1, 1}, and all possible offsets δ,
with the notation θδ

0(s) = θ0(s +∗ δ). (The optimization over ε results from optimiz-
ing over all possible angle representations of the two curves.) There is, however, no
closed form expression for the geodesic distance on the Stiefel manifold (although
equations for geodesics have been described in [99]), and no simple algorithm to
solve this optimization problem. Notice that, if one restricts to smooth curves, the
search for an optimal ε is only over constant functions ε = ±1 and optimal geodesics
can be obtained using a root-finding algorithm over initial conditions of geodesics
in St(∞, 2).

The rotation-invariant version of the distance also provides an interesting repre-
sentation, because a rotation acting on curves simply induces a rotation of the frame
( f, g), and the space of such frames modulo rotation is now the Grassmann manifold
Gr(∞, 2) of two-dimensional subspaces of L2(R). The same analysis carries on, the
only difference being that one uses now the geodesic distance on the Grassmannian.
This geodesic distance can be computed in quasi closed form [216], and is given by√
arccos2λ + arccos2μ, where λ and μ are the singular values of the matrix

(〈
f0 , f1

〉
2

〈
f0 , g1

〉
2〈

g0 , f1
〉
2

〈
g0 , g1

〉
2

)

,
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( f0, g0), ( f1, g1) being orthogonal bases of the two spaces that are compared. This
closed form, however, does not lead to a simple version of the distance when one
optimizes over changes of sign in ( f1, g1). More analysis of this framework (in the
smooth case), including explicit computations of the geodesic equation and of the
scalar curvature, can be found in [311].

12.7.6 Alternative Interpretation (σ = 1)

Returning to the case of open curves, we consider the space of curves
m : Ω → R

2, not necessarily parametrized by arc-length. Recall the notation ∂s f =
d f/|dm| for the derivativewith respect to the arc length.Consider the parametrization-
invariant Sobolev metric on curves given by

‖ξ‖2m = 1

L(m)

∫

Ω

|∂sξ|2 ds = 1

L(m)

∫

Ω

|dξ|2
|dm| du,

where L(m) = ∫
Ω

|dm(u′)| du′ is the length of the curve m.
Consider a trajectory (t, u) �→ m(t, u). Let �(t) = L(m(t)) and letϕ(t, u) denote

the normalized arc-length parametrization along this curve so that

ϕ(t, u) = 1

�(t)

∫ u

0
|dm(t, u′)| du′.

Let α(t, u) = ∂sm(t, u) be the unit tangent. We want to obtain an alternative expres-
sion for ∫ 1

0
‖ṁ(t)‖2m(t) dt =

∫ 1

0

∫

Ω

|dṁ|2
|dm| du dt

in terms of ϕ and α. We first notice that

α̇ = ∂t

(
dm

|dm|
)

=
((

ṁ

|dm|
)T

α⊥
)

α⊥,

where α⊥ is the unit normal, obtained by rotating α by π/2. Moreover,

dϕ̇ = ∂t

( |dm|
�

)
= 1

�
(dṁ)Tα − |dm|

�2
�̇

with

�̇ =
∫

Ω

(dṁ)Tα du.
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A little computation yields

∫

Ω

(dϕ̇)2

dϕ
du = 1

�

∫

Ω

((dṁ)Tα)2

|dm| du − �̇2

�2
.

Given this, we can write

dṁ = (
(dṁ)Tα

)
α + (

(dṁ)Tα⊥)
α⊥

and

‖ṁ(t)‖2m(t) = �̇2

�2
+

∫

Ω

(dϕ̇)2

dϕ
du +

∫

Ω

|α̇|2dϕ du.

The last two terms integrated over time provide the functionU1 obtained in (12.28)
with σ = 1. This expression of the metric treats the pair (ϕ,α) and the curve length
independently, and the geodesic length can be optimized separately for � and (ϕ,α),
yielding a geodesic distance given by

d(m0,m1)
2 =

(
log

L(m1)

L(m0)

)2

+ 4 arcos2
∫

Ω

√
dϕ0 dϕ1

∣∣∣∣cos
(

θ1 ◦ ϕ1 − θ0 ◦ ϕ0

2

)∣∣∣∣ du,

where ϕ0,ϕ1 are the arc-length reparametrizations of m0, m1 and θ0, θ1 are their
angle representations expressed as functions of the arc lengths. Furthermore, the
transformation m �→ m/L(m) provides a Riemannian submersion onto the space
of curves with length 1 (or the space of curves modulo scaling), and the resulting
projected distance is exactly the one obtained via the metamorphosis approach.



Chapter 13
Analyzing Shape Datasets

We present in this chapter some “shape analysis” methods, among those that are
mainly used in practice, where the goal is to provide a low-dimensional description
and to perform statistical validations of hypotheses for datasets in which each object
is a shape. Most recent applications of this framework have taken place in medi-
cal imaging, in which the shapes are provided by anatomical regions segmented by
MRI or computer tomography scans. The analysis of the anatomy derived from such
images is called computational anatomy, with a framework introduced in [137, 138],
and has since generated a huge literature. Beside this important range of applications,
shape analysis can also be used in computed vision, or in biology, which was, for
example, the main focus of D’Arcy-Thompson’s seminal treatise [276] on Growth
and Form. We here focus on methods that derive from the analysis of diffeomor-
phisms developed in the previous chapters, leading to “morphometric” [23, 68], or
“diffeomorphometric” [197] analyses.

13.1 Reference-Based Representation

The diffeomorphic matching methods that were described in this book can be seen
to have a dual purpose. As a first goal, they provide a comparison tool between
shapes, generally based on a formal or rigorous Riemannian paradigm. They also,
by nature, provide an algorithm that aligns a target shape along a reference shape,
i.e., that estimates a diffeomorphism ϕ, such that ϕ · (reference) � (target). This
correspondence, ϕ, can be seen as a representation of the relationship between the
reference and the target in the diffeomorphism group, i.e., a parametrization of the
target relative to the reference.

In more formal terms, registration algorithms provide, given a reference m̄, a
mapping m �→ Φ(m) from a shape space to the diffeomorphism group such that
Φ(m) · m̄ � m. From a dataset (m1, . . . ,mN ) of shapes, one can then obtain a dataset
(ϕ1, . . . ,ϕN ) of diffeomorphisms, withϕk = Φ(mk). Even though diffeomorphisms
may appear as more complex objects than many shapes, this representation actually
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simplifies the analysis of the dataset. It is certainly natural to restrict this analysis to
the restriction of the diffeomorphism (or its derivative) to the reference, which (e.g.,
when dealing with landmarks) can represent a huge reduction of dimension. Image
or shape morphometry, as described, for example, in [23], determines features, or
descriptors, of shapes in the dataset based on these diffeomorphisms, using point
displacements or Jacobian matrices. These features can then be used in a statistical
learning framework to draw conclusions on properties of interest about the dataset.

When dealing with shape spaces,M , that do not involve diffeomorphisms, such as
Kendall’s space (see Sect. 11.2), other reference-based representations can be used,
the most natural, in the Riemannian case, being to use exponential charts for the
metric, such that Φ(m) = v ∈ Tm̄M with m = Expm̄(v). The statistical analysis can
then be based on the vectors v1, . . . , vN that all belong to the same vector space. This
point of view can actually be applied to the diffeomorphic representation, where one
can use exponential charts, or, equivalently, themomentum representation, associated
with right-invariantmetrics ondiffeomorphisms.Notice that theLDDMMalgorithms
described in Sect. 10.3 and later directly return such a representationwhile estimating
an optimal correspondence.

Building such representations requires selecting a proper reference shape. While
one can use any fixed shape for this purpose, it is, for many reasons, preferable to
choose m̄ close to the studied dataset. It is understandably easier to analyze dif-
feomorphisms when the deformation they define are not too severe. Also, tangent
space representations linearize the shape space, and one wants to reduce as much as
possible the metric distortions they induce. This is why one typically computes m̄ as
some kind of average of the dataset under study.

When using morphometric methods, one often estimates m̄ and computes its
optimal correspondences with the dataset in a single algorithm, which is often called
groupwise registration [26, 35, 36, 160, 180, 181, 288]. In its simplest form, when
the registration between m̄ andm minimizes a cost functionUm̄,m(ϕ), the associated
groupwise registration minimizes

∑N
k=1Um̄,mk (ϕk) with respect to m̄,ϕ1, . . . ,ϕN .

Some additional regularization constraints may also be used for the reference. For
example, if one uses the LDDMMalgorithm, one can define a groupwise registration
method for image matching via the minimization of (using the notation Sect. 10.3,
V being an admissible space)

1

2

N∑

k=1

∫ 1

0
‖vk(t)‖2V dt + 1

σ2

N∑

k=1

‖m̄ ◦ ϕvk
10 − mk‖22 (13.1)

with respect to v1, . . . , vN and m̄. When m̄ is fixed, this provides N independent
image registration problems, and when v1, . . . , vN are fixed, the optimal m̄ is given
by

m̄ = 1

N

N∑

k=1

mk ◦ ϕvk
01 det(dϕvk

01).
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Fig. 13.1 Example of template estimation. Rows 2 and 3: ten randomly generated shapes. Row 1:
hypertemplate, chosen as the first shape in the sequence. Row 4: estimated template

A modification of this method has been introduced in [180] where the reference is
in the form m̄ = m0 ◦ ψv0

10 where m0 is fixed and v0 is estimated jointly with the rest
of the variables by minimizing

λ

2

∫ 1

0
‖v0(t)‖2V dt + 1

2

N∑

k=1

∫ 1

0
‖vk(t)‖2V dt + 1

σ2

N∑

k=1

‖m0 ◦ ϕv0
10 ◦ ϕvk

10 − mk‖22

for some λ > 0. This constrains the topology of the estimated reference image to
conform to that of the image m0. A similar approach has been introduced in [181]
for surface matching, in which m0 is referred to as a hypertemplate. One interesting
feature of this approach is that it can be represented as a family of branching optimal
control problems, each with its own maximum principle that can also be branched
backwards in time to compute the gradient of the objective function: one first uses
v0 as a control leading from the hypertemplate to the template, then v1, . . . , vn as
controls driving the template to the targets. An example of template estimation with
this method is provided in Fig. 13.1.

When one uses a tangent representation on a shape manifold, m̄ is often estimated
as a Fréchet mean, or Riemannian center of mass, of the collection m1, . . . ,mN .
Such a mean is defined as a minimizer of

F : m̄ �→
N∑

k=1

dM(m̄,mk)
2,
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where dM is the geodesic distance on M . It is important to point out that this
minimization problem does not always have a unique solution, i.e., that some datasets
may have more than one Fréchet mean, even though this fact is often ignored in prac-
tice (or, one considers that any Fréchet mean is a good candidate for the reference
shape). In finite dimensions, sufficient conditions for the uniqueness of such means
involve the curvature of M and Rauch’s comparison theorems. They are beyond the
scope of this book, but we refer to [4, 62, 164, 168, 229] for additional details.

The computation of the gradient of F can be based on the following lemma, which
we state without proof.

Lemma 13.1 Let M be a Riemannian manifold. For m0 ∈ M define f (m) =
dM(m0,m)2. Let Expm0

be defined in some neighborhood of 0, Ω ⊂ Tm0M, and
be a diffeomorphism onto its image. Then, for all v0 ∈ Ω , for all m ∈ Expm0

(Ω) and
h ∈ TmM,

d f (m)h = 2
〈
γ̇(1) , h

〉
m

= −2
〈 ˙̃γ(0) , h

〉
m
,

where γ(t), t ∈ [0, 1], is the geodesic joining m0 and m and γ̃(t) = γ(1 − t) is the
geodesic between m and m0.

From this, we can deduce that if the dataset is fully included in a domain Ω

that contains minimizing geodesics between any of its points (i.e., it is geodesically
convex), is such that each of these geodesics is uniquely defined, and such that, for
allm ∈ Ω , Expm is a diffeomorphism from an open neighborhood of 0 in TmM onto
Ω , then

dF(m̄) h = −2
N∑

k=1

γ̇k(0),

where γk is the geodesic between m̄ and mk , and the Fréchet mean must satisfy

N∑

k=1

γ̇k(0) = 0.

This computation leads, in particular, to gradient descent algorithms designed to
estimate the mean (see [177]).

It is also possible to define a reference shape through a stochastic shape model, in
which m̄ is deformed via random diffeomorphisms, possibly with additional noise,
to generate m1, . . . ,mN . The estimation of m̄ can then be performed using maxi-
mum likelihood. While describing in detail the associated statistical model and the
estimation algorithm would take us too far from this discussion (and we refer to
[7, 8, 173] for such details), it is important to note that minimizing (13.1) in this
case may lead (when the noise level is high enough) to biased estimates of m̄, in
the sense that, even if N tends to infinity, minimizers of (13.1) will differ from m̄
when the model is valid (which does not mean, however, that they cannot be used as
reference shapes for subsequent morphometric analyses). See in particular [81] for
a theoretical analysis of the issue.
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13.2 Principal Component Analysis

Principal component analysis (PCA) is the simplest and most widely used method of
performing dimension reduction for data analysis [92]. It is especially useful in shape
analysis, which deals with virtually infinite-dimensional objects. The reader may
refer, if needed, to the basic description of the method that is provided in AppendixE
in the appendix for Hilbert spaces. In this section we focus on the specific adaptation
of the approach to nonlinear shape spaces.

PCA is indeed a linear method, designed to be applied to vector spaces equipped
with an inner product. On shape spaces, and more generally on Riemannian man-
ifolds, a standard approach relies on a tangent-space linearization of the manifold
using exponential charts (this is often referred to as tangent PCA). More precisely,
given a dataset (m1, . . . ,mN ) and a reference element m̄ one computes normal
coordinates h1, . . . , hN ∈ Tm̄M such that mk = Expm̄(hk) for k = 1, . . . , N , and
performs PCA on the collection (h1, . . . , hN ) using the Riemannian inner prod-
uct

〈· , ·〉m̄ . The p first principal components then provide an orthonormal family
(e1, . . . , ep) spanning a subspace of Tm̄M , and the PCA representation is given by

Φ : (λ1, . . . ,λp) �→ Expm̄

( p∑

j=1

λ j e j

)

∈ M.

When working with shape spaces with a metric induced by a right-invariant Rie-
mannian metric on diffeomorphisms through a Riemannian submersion, it is easier,
and formally equivalent, to reformulate the problem in terms of Diff rather than M .
One can see, in particular, that the LDDMM registration algorithm minimizes

1

2

∫ 1

0
‖v(t)‖2V dt +U (ϕv

01 · m̄,mk)

for some data attachment term U , which is equivalent to minimizing

1

2
‖h‖2V +U (Expid(h) · m̄,mk),

where Expid is the Riemannian exponential on the diffeomorphism group starting at
ϕ = id. One can use the optimal h, say hk ∈ V , as a representation of mk on which
PCA can be applied, using the V inner product. Using the notation introduced in
Sect. 11.5.2, Definition 11.13, one can replace h by ρ = Lh and solve the equivalent
problem of minimizing

1

2
‖ρ‖2V ∗ +U (Exp�

id(ρ) · m̄,mk)
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with optimal solution given by ρk = Lhk . The advantage of doing so is the parsimony
of themomentum representation, as discussed in Sect. 11.5.2. PCA is then performed
on the dataset (ρ1, . . . , ρN ) using the V ∗ inner product. Once a PCA basis, say
ξ1, . . . , ξp, is computed, the representation is then

Φ : (λ1, . . . ,λp) �→ Exp�
id

( p∑

j=1

λ jρ j

)

· m̄ ∈ M.

Notice that this is a representation of the “deformed templates” (ϕvk
01 · m̄, k =

1, . . . , N ) rather than of the original data (m1, . . . ,mN ). This momentum PCA
approach has been used multiple times in applications, starting with [290], in which
it was introduced for landmark spaces. This formulation allows one to revisit the
active shape model described in Sect. 6.2, in which shapes were represented by a
decomposition in a linear basis, and develop a model based on the nonlinear repre-
sentation associated with the functionΦ above, which constrains the shape topology.
Such approaches have been proposed in order to operate shape segmentation, or to
regularize registrations in [285, 287].

Because tangent PCA is based on a linear representation of the manifold M , it
necessarily suffers from the metric distortions that any linear representation must
induce. The sum of residuals in the tangent space that is minimized by PCA may
be quite different from the sum of squared distances of the actual shapes to their
PCA representation provided by the mapping Φ. More precisely, one can formulate
the search for p principal directions in tangent PCA as looking for a p-dimensional
subspace W ⊂ Tm̄M such that

F(W ) =
p∑

k=1

min
w∈W ‖hk − w‖2m̄ (13.2)

is minimized, with Expm̄(hk) = mk . However, in terms of approximating the dataset,
one would probably be more interested in minimizing

F(W ) =
p∑

k=1

min
w∈W dM(Expm̄(w),mk)

2, (13.3)

which measures how far each shape is from its representation in the manifold. The
two criteria may be quite different when the dataset is spread out away from m̄ and
their solutions (the optimalW ) may be quite different. Obviously, the first criterion is
much easier to minimize than the second one, which represents a complex nonlinear
optimization problem (with dM usually non-explicit). One can make it slightly easier
by buildingW one dimension at a time, startingwith p = 1, inwhich one looks for the
best geodesic approximating the data, progressively adding new directions without
changing those that were found earlier. This procedure was introduced in [113] and
called geodesic principal component analysis (GPCA).Thenon-incremental problem
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requires a search within the space of all p-dimensional subspaces of TmM , i.e., its
Grassmann manifold of order p (cf. Sect.B.6.7).

Notice that one may opt for a simplified version of GPCA by replacing the
Riemannian distance in M by some “extrinsic” discrepancy measure. For exam-
ple, in the diffeomorphic framework, one can formulate the problem of finding a
p-dimensional subspace W of V ∗ that minimizes

F(W ) =
p∑

k=1

min
ρ∈W U (Exp�

id(ρ) · m̄,mk), (13.4)

in which U replaces the distance dM and would be computationally more tractable.
This problem can be rewritten in the form of finding ρ1, . . . , ρN minimizing

G(ρ1, . . . , ρN ) =
N∑

k=1

U (Exp�
id(ρk) · m̄,mk)

subject to rank(ρ1, . . . , ρN ) = p. The problem in this form is tackled in [60], inwhich
a gradient descent algorithm over p-dimensional subspaces of V ∗ is proposed.

13.3 Time Series

13.3.1 Single Trajectory

We now assume that the dataset (m1, . . . ,mN ) is a time series, so that it describes the
evolution of a given shape captured at times, say, τ1 < · · · < τN . We here study the
regression problemof determining a function τ �→ m(τ ) ∈ M such thatm(τk) � mk .

Since geodesics are the Riemannian generalizations of straight lines in Euclidean
spaces, one generalizes the standard linear regression modelm(τ ) = m̄ + τh to such
spaces by looking for curves defined by m(τ ) = Expm̄(τh) for fixed m̄ ∈ M and
v ∈ Tm̄M , which both need to be estimated from data. Notice that, in this case,
m̄ is not an average of the considered dataset, but an “intercept”, representing the
estimated position at τ = 0. The resulting “geodesic regression” model [114] can
then be associated with the generalization of least-square estimation, minimizing

N∑

k=1

dM(Expm̄(τkh),mk)
2

with respect to m̄ and v. Notice that this problem is similar, but distinct from the
search for a geodesic principal direction, which would first choose m̄ as a Fréchet
mean, and then estimate h, with ‖h‖m̄ = 1, minimizing
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N∑

k=1

min
τ

dM(Expm̄(τh),mk)
2 .

As discussedwith PCA, the intrinsic error criterion using the Riemannian distance
seldom leads to tractable optimization algorithms, and it is often replaced with a
discrepancy measure that is more amenable to computation, minimizing

N∑

k=1

U (Expm̄(τkh),mk) .

The exponential function being associated with a second-order differential equation,
the derivative with respect to m̄ and h of each term in the sum above can be computed
using the formulas derived in Sect.C.4 for the variation of solutions of ODEs with
respect to their initial conditions. Some regularization may be added to the objec-
tive function, to control, for example, the topology of the intercept, m̄, which may
be chosen in the form m̄ = Expm̄(h0) · m0 for some fixed shape m0. Adding some
penalty on the norms of h0 and h, one can minimize

(h0, h) �→ λ0‖h0‖2m0
+ λ‖h‖2m̄ +

N∑

k=1

U (Expm̄(τkh),mk) ,

with m̄ = Expid(h0) · m0. Thismodelwas implemented in [155] on spaces of surfaces
with a metric induced by diffeomorphisms, with a similar approach developed in
[110]. Still in the diffeomorphic framework, a geodesic regression algorithm for
images has been proposed in [219], and an approach using image metamorphosis
has been proposed in [153].

Notice also that one can spare the estimation of m̄ by assuming that τ0 = 0,
considering the first observation as a baseline. This creates, however, an asymmetry
in the data, in which the noise or variation from the geodesic is neglected for the
baseline, which may sometimes be artificial [24, 242, 243].

It is not difficult to modify the previous framework to correct for the property that
geodesics evolve at constant speed by making a time reparametrization of the trajec-
tory. This corresponds to the modelm(τ ) = Expm̄( f (τ )h), where f is an increasing
function from [0, 1] to [0, 1] that also needs to be estimated. This time reparametriza-
tion can be estimated using a method akin to LDDMM, modeling f as the result of a
diffeomorphic flow [94], but simpler methods can be used, too, such as, for example,
optimizing

(m̄, h, τ̃1, . . . , τ̃N ) �→
N∑

k=1

dM(Expm̄(τ̃kh),mk)
2

subject to 0 = τ̃1 < τ̃2 < · · · < τ̃N−1 < τ̃N = 1, which corresponds to monotonic
regression with respect to time [155]. The derivative of Expm̄(τ̃h) with respect to
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τ̃ is straightforward to compute, since it is given by the speed of the geodesic, and
is readily obtained from the differential equation that is integrated to compute this
geodesic.

Aligning all shapes along a single geodesicmay sometimes be too restrictivewhen
the time series exhibits several modes of variation, and more flexible methods can be
derived.At the extreme endof this range ofmethods, one can use a piecewise geodesic
approach, which consists in estimating h1, . . . , hN−1 such that Expmk

(hk) = mk+1

with hk ∈ Tmk M . One can then define

m(τ ) = Expmk

(
τ − τk

τk+1 − τk
hk

)

for τ ∈ [τk, τk+1]. This is just the Riemannian generalization of a piecewise lin-
ear curve interpolating the observed trajectory. One can modify this formulation
by allowing for some error in the interpolation, thus taking into account possible
measurement noise in the observed mk’s, minimizing, for example,

λ0

2
‖h0‖2m̄0

+ λ

2

N−1∑

k=0

‖hk‖2m̄k
+

N∑

k=1

U (m̄k,mk),

where m̄k is defined recursively by m̄k+1 = Expm̄k
(hk), hk ∈ Tm̄k M and m̄0 is a fixed

shape. One obtains an equivalent formulation with the following time-continuous
problem of minimizing

λ0

2
‖h0‖2m̄0

+ λ

2

∫ 1

0
‖γ̇(t)‖2γ(t) +

N∑

k=1

U (γ(τk),mk) (13.5)

subject to γ(0) = Expm̄0
(h0). Indeed, the solution γ must be a minimizing geodesic

between m̄k := γ(τk) and m̄k+1, with constant speed, which directly leads to a piece-
wise geodesic solution. In the LDDMM framework, this equivalent formulation
reduces to minimizing

λ0

2
‖v0‖2V + λ

2

∫ 1

0
‖v(t)‖2V dt +

N∑

k=1

U (ϕv
0τk ◦ Expid(v0) · m̄0,mk)

with respect to v0 ∈ V and t �→ v(t) ∈ L2([0, 1], V ) (see [196, 197, 204]).
Piecewise geodesic interpolation is continuous in time, but not differentiable, and

will certainly be too sensitive to noise, even when using inexact interpolation. Time
differentiability of the solution can be obtained by controlling the second derivative
of γ instead of the first derivative in (13.5), leading to a Riemannian generalization
of interpolating splines. As discussed in Sect.B.6.4, curve acceleration in Rieman-
nian manifolds involves the covariant derivative, and a formulation of the Rieman-
nian spline problem can be obtained by replacing γ̇(t) by ∇γ̇(t)γ̇(t) in (13.5) [220].
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The analysis of the new variational problem becomes more involved when
studied intrinsically on the manifold, and here we restrict to situations in which
one can work in a local chart, and take advantage of the Hamiltonian formulation
of geodesics described in Sect.B.6.6. Using the notation of this section we let S(m)

be the representation of the metric in the chart, so that ‖h‖2m = hT S(m)h, with the
notation abuse of using h in order to represent a vector in TmM and its expression in
a chart. Letting H(m, a) = aT S(m)−1a/2, with a ∈ TmM∗, the geodesic equations
in Hamiltonian form are

⎧
⎨

⎩

∂tm = S(m)−1a

∂t a + 1

2
∂m(aT S(m)−1a) = 0.

Moreover, given a curve γ on M (not necessarily a geodesic), one has, letting a(t) =
S(γ(t))γ̇(t),

∇γ̇ γ̇ = S(γ)−1

(

∂t a + 1

2
∂γ(a

T S(γ)−1a)

)

.

One can then reformulate the Riemannian spline problem as an optimal control
problem, with state (γ, a) and control u, minimizing

λ0

2
‖h0‖2m̄0

+ λ

2

∫ 1

0
u(t)T S(γ(t))−1u(t) dt +

N∑

k=1

U (γ(τk),mk)

subject to the state equation

⎧
⎨

⎩

∂tγ = S(γ)−1a

∂t a + 1

2
∂γ(a

T S(γ)−1a) = u

with initial conditionγ(0) = Expm̄0
(h0) and free condition fora(0).One can consider

higher-order Riemannian splines by iterating covariant derivatives (see, e.g., [122,
182]). This approach to the spline problem was introduced for shape spaces with a
Riemannian metric induced by diffeomorphisms in [284], with further developments
in [265]. In this case, one can take advantage of the right-invariance of the metric in
the group to reformulate the problem as minimizing

λ0

2
‖v0‖2V + λ

2

∫ 1

0
‖u(t)‖2 dt +

N∑

k=1

U (ϕv
0τk ◦ Expid(v0) · m̄0,mk)

subject to {
∂tγ = (Kρ) · γ

∂tρ + ad∗
Kρρ = u
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Fig. 13.2 Time series with four surfaces: left to right: t = 1, 2, 3, 4

Fig. 13.3 Piecewise geodesic interpolation of sequence in Fig. 13.2 with seven time points (left to
right and top to bottom): t = 1, 1.5, 2, 2.5, 3, 3.5, 4

Fig. 13.4 Spline interpolation of sequence in Fig. 13.2 with seven time points (left to right and top
to bottom): t = 1, 1.5, 2, 2.5, 3, 3.5, 4

with ρ, u ∈ V ∗, K the inverse duality operator of V , and where the second equation
in the system is the EPDiff equation. Notice that the norm on u in the integral is left
unspecified, and there is much flexibility in choosing it, because u now belongs to a
fixed space, V ∗. One can take, in particular, any metric on a space W ∗ that is con-
tinuously embedded in V ∗ (so that V is embedded in W ), bringing more regularity
constraints to the control u. This includes, in particular, the L2 norm, which signif-
icantly simplifies the implementation of the problem. Figures 13.2, 13.3, 13.4, 13.5
and 13.6 compares the interpolation schemes on a sequence of four target surfaces.
The piecewise geodesic and splinemethods interpolate the target almost exactly, with
some small differences at intermediate points. The geodesic interpolation is more
regular, but makes large errors interpolating the sequence. The difference between
the methods is especially apparent when plotting the volumes of the interpolated
surfaces over time (Fig. 13.6).
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Fig. 13.5 Geodesic interpolation of sequence in Fig. 13.2 with seven time points (left to right and
top to bottom): t = 1, 1.5, 2, 2.5, 3, 3.5, 4

Fig. 13.6 Evolution of the volumes of the interpolated surfaces in Fig. 13.2. The first leg of the
trajectory (from time 0 to 1) is the adjustment of the baseline starting with the volume of the
“hypertemplate”. The dots that follow are the volumes of the target surfaces. The time interpolation
step is δt = 0.1. From left to right: piecewise geodesic, spline and geodesic

13.3.2 Multiple Trajectories

We now consider the situation in which several time series are observed, and start
with the problem of computing an average trajectory from them. Assume, to begin
with, that one observes full trajectories in the form of functions mk : [0, 1] → M
(assuming that the time interval has been rescaled to [0, 1]), for k = 1, . . . , n. The
goal is to compute an average trajectory m̄.

The simplest and most direct approach is to apply one of the averaging methods
that were discussed in Sect. 13.1 to each time coordinate separately. For example,
one can define m̄(τ ) as a Fréchet mean, minimizing

n∑

k=1

dM(m̄(τ ),mk(τ ))2

for each τ . This requires however that the observed trajectories are correctly aligned
with each other, whichmay be valid in some contexts (e.g., for cardiac motion, which
can be parametrized using well defined epochs in the cardiac cycle) but not always.
In the general case, averaging has to be combined with some time realignment.
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As a possible approach, let us consider this problem within the metamorphosis
framework that was discussed in the previous chapter, which can be used to place
a Riemannian metric on the space of trajectories, with respect to which Fréchet
means can be computed while allowing for changes of parametrization. So, consider
a metamorphosis metric in which the acting group is the space of diffeomorphisms
ofΩ = [0, 1] acting on curves via g · m = m ◦ g−1 (reparametrization). Consider an
RKHS H on functions defined over [0, 1] that vanish at 0 and at 1. We can associate
a metamorphosis to the function

F(ξ,m, z) = ‖ξ‖2H + 1

σ2
‖z‖22

defined for ξ ∈ H ,m ∈ Ck(Ω, M) and z a vector field alongm (so that z(τ ) ∈ Tm(τ )

for all τ ∈ Ω), with

‖z‖22 =
∫ 1

0
‖z(τ )‖2m(τ ) dτ .

The squared distance between m̄ and mk itself can be computed by minimizing

∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫ 1

0
‖z(t, ·)‖22 dt

subject to m(0, ·) = m̄, m(1, ·) = mk and ∂tm + ξ∂τm = z. We use here the con-
vention of denoting by t ∈ [0, 1] the (numerical) metamorphosis time and τ ∈ Ω

(=[0, 1]) the “real” time associated with observed trajectories. Defining g as the
flow of the equation ∂tg(t, τ ) = ξ(t, g(t, τ )), and letting α(t, τ ) = m(t, g(t, τ )),
this objective function can be rewritten as

∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫ 1

0

∫

Ω

‖∂tα(t, τ )‖2α(t,τ )∂τg dτ dt,

which, after a change of variable in time, takes the form

∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫

Ω

(
1

cg(τ )

∫ 1

0
‖∂t α̃(t, τ )‖2α̃(t,τ ) dt

)

dτ ,

where

cg(τ ) =
∫ 1

0
∂τg

−1 dt

and α̃(t, τ ) = α(λ(t, τ ), τ ) for some invertible time change λ(·, τ ) from [0,1] onto
itself. (See the computation following Eq. (12.28).) This has to beminimized in ξ and
α (or α̃) with the constraints α(0) = m̄ and α(1) = mk ◦ g(1), ∂tg = ξ ◦ g. Using
the fact that α̃(·, τ ) minimizes the geodesic energy on M between m̄ and mk ◦ g(1),
we finally find that computing the distance can be done by minimizing
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∫ 1

0
‖ξ(t, ·)‖2H dt + 1

σ2

∫

Ω

dM(m̄(τ ),mk(g(1, τ )))2

cg(τ )
dτ

with respect to ξ. A Fréchet mean betweenm1, . . . ,mn for the metamorphosis metric
should therefore minimize, with respect to m̄ and ξ1, . . . , ξn ,

n∑

k=1

∫ 1

0
‖ξk(t, ·)‖2H dt + 1

σ2

n∑

k=1

∫

Ω

dM(m̄(τ ),mk(gk(1, τ )))2

cgk (τ )
dτ

with ∂tgk(t, τ ) = ξk(t, gk(t, τ )). One can use an alternating minimization scheme
to solve this problem since, with fixed m̄, ξ1, . . . , ξn are solutions of independent
“ordinary” metamorphosis problems on M , and for fixed ξ1, . . . , ξn , the average
m̄(τ ) can be obtained, for each τ , as a weighted Fréchet average minimizing

n∑

k=1

dM(m̄(τ ),mk(gk(1, τ )))2/cgk (τ ).

Some modifications to this formulation are still needed in the case of shape
spaces acted upon by diffeomorphisms, because the geodesic distance in this case
is generally not computable exactly, but must be approximated through algo-
rithms such as LDDMM. For example, on spaces of surfaces, one can replace
dM(m̄(τ ),mk(gk(1, τ )))2 by the minimizer of

∫ 1

0
‖vτ

k ‖2V dt + D(ϕ
vτ
k
01 · m̄,mk ◦ gk(1, τ ))

for some discrepancy measure D, such as those described in Sect. 9.7.3. The mini-
mization then needs to be done with respect to ξ1, . . . , ξn , v1, . . . , vn and m̄. When
ξ1, . . . , ξn is fixed, this is the same problem as the one considered in (13.1) and below,
and can be solved separately for each τ .

With fixed m̄, v1, . . . , vn the problem splits into n independent problems, each of
them requiring the minimization of a function taking the form

∫ 1

0
‖ξk‖2H dt +

∫

Ω

Φk(τ ,mk ◦ gk(1, τ ))

cgk (τ )
dτ ,

with

Φ(τ , m̃) =
∫ 1

0
‖vτ

k ‖2V dt + D(ϕ
vτ
k
01 · m̄, m̃).

The gradient of this objective function with respect to ξk can be obtained using
the formulas developed in Sect.C.5 for the differentiation of solutions of ordi-
nary differential equations (we skip the details). One can obtain a simpler method
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by disregarding the weights cg that come from the metamorphosis metric, and just
minimize

n∑

k=1

∫ 1

0
‖ξk‖2H dt +

n∑

k=1

∫ 1

0

∫

Ω

‖vτ
k ‖2V dτ dt +

n∑

k=1

∫

Ω

D(ϕ
vτ
k
01 · m̄,mk ◦ gk(1, τ )) dτ ,

leading to a formulation similar to that developed in [95].
When dealing with sparse observations, i.e., when the kth trajectory is observed

at a small number of time points τk,1, . . . , τk, jk , one can simply replace integrals over
Ω by discrete sums, so that the last two terms in the previous expression become

n∑

k=1

jk∑

i=1

∫ 1

0
‖vi

k‖2V dt +
n∑

k=1

jk∑

i=1

D(ϕ
vik
01 · m̄,mk ◦ gik).

Some regularization must then also be added to this objective function to ensure that
m̄ is smooth as a function of τ . One can, for example, ensure that τ �→ m̄(τ ) is a
geodesic on M , or a Riemannian spline as described in the previous section.

13.3.3 Reference-Centered Representations of Time Series

We now focus on methods that place the observed trajectories in a single coordinate
system, allowing for the use of a statistical methods designed for linear spaces. This
was not done in the previous discussion, which addressed the computation of an
average curve.

We first point out that the reference-based representation discussed in Sect. 13.1
is still an option here, in the sense that, given a reference m̄0 ∈ M , one can still
consider a representation of a family of curves m1(·), . . . ,mn(·) as v1(·), . . . , vn(·),
where v1, . . . , vn are curves in Tm̄0M such that mk(τ ) = Expm̄0

(vk(τ )) for all τ .
This approach, or its registration counterpart in which one computes a collection of
diffeomorphisms ϕτ

k for k = 1, . . . , n such that ϕτ
k · m̄0 = mk , is probably the most

commonly used in applications.
However, when using this approach, it is difficult to untangle the part of vk(·)

that describes the evolution within the trajectory from that describing the translation
from the reference to that trajectory. Because of this, several methods have been
designed that move trajectories as a whole rather than each point individually. More
precisely, assume that each trajectory, mk , has a representation with respect to its
own reference, or baseline, m̄k in the form

mk(τ ) = Expm̄k
(vk(τ )),

with vk(τ ) ∈ Tm̄k M for all τ . (If one uses, for example, geodesic regression, then
vk(τ ) = τvk(1).) Given a global reference, m̄0, one builds a reference-centered rep-
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resentation by “translating” eachvk(τ ) from Tm̄k M to Tm̄0M . Notice that, inEuclidean
spaces, this operation is trivial, because vk(τ ) = mk(τ ) − m̄k and its translation is
just itself!

In Riemannian manifolds, the natural operation for translating tangent vectors is
parallel transport, which is described in Sect.B.6.5. This operation must be done
along a curve in M connecting the original basis point of the vector that needs to be
translated to its target, and the result depends on the chosen curve. When no such
curve is specified, it is also natural to choose a minimizing geodesic.

Let, therefore, γk be a geodesic such that γk(1) = m̄k and γk(0) = m̄0. The rep-
resentation of the trajectory mk in Tm̄M is then given by wk(·) such that wk(τ ) is
the parallel transport of vk(τ ) along γk . After applying this to all curves, we indeed
end up with a description of the dataset given by w1, . . . , wn , which are all curves
in Tm̄0M . Parallel transport was introduced for the analysis of manifold data in [163,
176] and for groups of diffeomorphisms and the associated shape spaces in [309],
followed by [235, 303, 312].

Using this construction, one therefore represents each trajectory in the form

mk(τ ) = Expγk (1)(Tγk ,0,1wk(τ )),

where Tγ,0,τ denotes the parallel transport along γ from time 0 to τ . One can also
use an alternative approach, proposed in [94] (to which we refer for more details),
in which the construction is done in the reverse order. In addition to w1, . . . , wn in
Tm̄M , this approach also requires an average curve m̄(·) with m̄(0) = m̄0, and the
observed trajectories are represented in the form

mk(τ ) = Expm̄(τ )(Tm̄,0,τ (wk(τ ))) .

We conclude this chapter with a description of the parallel transport equations
in the diffeomorphism groups and their image via Riemannian submersions. Let, as
usual, V be an admissible Hilbert space, and consider the right-invariant metric on
Diff defined by ‖δϕ‖ϕ = ‖δϕ ◦ ϕ−1‖V . One can check (after a lengthy application
of Eq. (B.9)) that the Levi-Civita connection on this space is given by

∇XY (ϕ) =
(
1

2
(K ad∗

vLw + K ad∗
wLv − advw) + Xw

)

◦ ϕ,

where v(ϕ) = X (ϕ) ◦ ϕ−1 and w(ϕ) = Y (ϕ) ◦ ϕ−1 are functions defined on Diff
and taking values in V , and advw = dv w − dw v. In particular, if ϕ depends on
time with ∂tϕ = v ◦ ϕ and Y (t) = w(t) ◦ ϕ(t) is a vector field along this curve, then

DY

Dt
=

(
1

2
(K ad∗

vLw + K ad∗
wLv − advw) + ∂tw

)

◦ ϕ

and parallel transport is equivalent to



13.3 Time Series 421

∂tw + 1

2
(K ad∗

vLw + K ad∗
wLv − advw) = 0.

Taking v = w, one retrieves the geodesic equation (EPDiff) given by ∂tv +
K ad∗

vLv = 0.
Now consider a shape space M on which Diff acts, such that π(ϕ) = ϕ · m0

is a Riemannian submersion (for a fixed m0 ∈ M). The vertical space at ϕ is the
space Vm ◦ ϕ, where Vm = {v : v · m = 0}, and the horizontal space is Hm ◦ ϕ with
Hm = V⊥

m . The horizontal lift of ξ ∈ TmM is the unique vector vξ ∈ Hm such that
vξ · m = ξ (cf. Sect. 11.5).

If m(·) is a curve on M and η0 ∈ Tm(0)M , its parallel transport η(·) along m is
characterized by

(

∂tv
η + 1

2
(K ad∗

vξLvη + K ad∗
vηLvξ − advξvη)

)

· m(t) = 0

at all times, with ξ = ∂tm (this results from Eq. (B.15)). Assume, to simplify the
discussion, that M is an open subset of a Banach space Q (otherwise, consider the
following computation as valid in a local chart). Writing vη · m = η, we have ∂tη =
(∂tv

η) · m + d Avη (m)ξ, where we have denoted by Aw the mapping m �→ w · m.
Using this, we obtain the parallel transport equation along m

∂tη − d Avη (m)ξ +
(
1

2
(K ad∗

vξLvη + K ad∗
vηLvξ − advξvη)

)

· m(t) = 0 . (13.6)

On shape spaces of point sets, i.e., m = (x1, . . . , xN ), the infinitesimal action is
just v · m = (v(x1), . . . , v(xn)) and the horizontal lift is such that

Lvξ =
N∑

k=1

α
ξ
kδxk ,

where (α
ξ
1, . . . ,α

ξ
N ) are obtained by solving the equations

∑N
j=1 K (xk, xi )α

ξ
j = ξk .

Moreover, we have

d Avη ξ =
N∑

k=1

(∂1K (xk, xi )ξk)α
η
j .

This makes all terms in (13.6) explicit.
The situation is not as simple on spaces of images, in which ϕ · m = m ◦ ϕ−1

and v · m = −∇mT v. One has, in this case, d Avη ξ = −∇ξT v, which is simple, but
the horizontal lift of ξ consists of minimizing ‖v‖2V subject to ξ = −∇mT v. While
this problem has a unique minimizer, the characterization of this minimizer using
Lagrange multipliers requires finding a Banach space W such that h �→ −∇mT h,
from V to W , is bounded and has closed range (see Theorem D.4). This problem is,
to our knowledge, still open in the general case.



Appendix A
Elements from Functional Analysis

This first chapter of the appendix includes results in functional analysis that are
needed in themain part of the book, focusingmostly onHilbert spaces, and providing
proofs when these are simple enough. Many important results of the theory are left
aside, and the reader is referred to themany treatises on the subject, including [45, 74,
246, 306] and other references listed in this chapter, for a comprehensive account.

A.1 Definitions and Notation

Definition A.1 A set H is a (real) Hilbert space if:

(i) H is a vector space on R.
(ii) H has an inner product denoted (h, h′) �→ 〈

h , h′〉
H , for h, h′ ∈ H . This inner

product is a symmetric positive definite bilinear form. The associated norm is

denoted ‖h‖H =
√〈

h , h
〉
H .

(iii) H is a complete space with respect to the topology associated to the norm.

If condition (ii) isweakened to the fact that ‖·‖H is a norm (not necessarily induced
by an inner product), one says that H is a Banach space.

Convergent sequences in the norm topology are sequences hn for which there
exists an h ∈ H such that ‖h − hn‖H → 0. Property (iii) means that if a sequence
(hn, n ≥ 0) in H is a Cauchy sequence, i.e., it collapses in the sense that, for every
positive ε there exists an n0 > 0 such that

∥∥hn − hn0
∥∥
H ≤ ε for n ≥ n0, then it

necessarily has a limit: there exists an h ∈ H such that ‖hn − h‖H → 0 as n tends
to infinity.

If H satisfies (i) and (ii), it is called a pre-Hilbert space. On pre-Hilbert spaces,
the Schwarz inequality holds:

Proposition A.2 (Schwarz inequality) If H is pre-Hilbert, and h, h′ ∈ H, then

〈
h , h′〉

H ≤ ‖h‖H ‖h′‖H .
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The first consequence of this property is:

Proposition A.3 The inner product on H is continuous in the norm topology.

Proof The inner product is a function H × H → R. Lettingϕ(h, h′) = 〈h , h′〉
H , we

have, by the Schwarz inequality, and introducing a sequence (hn) which converges
to h ∣∣ϕ(h, h′) − ϕ(hn, h

′)
∣∣ ≤ ‖h − hn‖H ‖h′‖H → 0,

which proves the continuity with respect to the first coordinate, and also with respect
to the second coordinate by symmetry. �

Working with a complete normed vector space is essential when dealing with
infinite sums of elements: if (hn) is a sequence in H , and if ‖hn+1 + · · · + hn+k‖ can
be made arbitrarily small for large n and any k > 0, then completeness implies that
the series

∑∞
n=0 hn has a limit in h. In particular, absolutely converging series in H

converge: ∑

n≥0

‖hn‖H < ∞ ⇒
∑

n≥0

hn converges. (A.1)

(In fact, (A.1) is equivalent to (iii) in normed spaces.)
We add a fourth condition to Definition A.1.

(iv) H is separable in the norm topology: there exists a countable subsetS in H such
that, for any h∈H and any ε>0, there exists an h′ ∈ S such that

∥∥h − h′∥∥
H ≤ ε.

In the following, Hilbert spaces will always be separable without further mention.
An isometry between two Hilbert spaces H and H ′ is an invertible linear map

ϕ : H → H ′ such that, for all h, h′ ∈ H ,
〈
ϕ(h) , ϕ(h′)

〉
H ′ = 〈h , h′〉

H .
A Hilbert subspace of H is a subspace H ′ of H (i.e., a non-empty subset, invariant

under linear combination) which is closed in the norm topology. Closedness implies
that H ′ is itself a Hilbert space, because Cauchy sequences in H ′ are also Cauchy
sequences in H , hence converge in H , hence in H ′ because H ′ is closed. The next
proposition shows that every finite-dimensional subspace is a Hilbert subspace.

Proposition A.4 If K is a finite-dimensional subspace of H, then K is closed in H.

Proof Let e1, . . . , ep be a basis of K . Let (hn) be a sequence in K which converges
to some h ∈ H ; we need to show that h ∈ K . We have, for some coefficients (akn),
hn =∑p

k=1 aknek and for all l = 1, . . . , p:

〈
hn , el

〉
H

=
p∑

k=1

〈
ek , el

〉
H
akn.

Let an be the vector in R
p with coordinates (akn, k = 1, . . . , p) and un ∈ R

p with
coordinates (

〈
hn , ek

〉
H , k = 1, . . . , p). Let also S be the matrix with coefficients
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skl = 〈ek , el
〉
H , so that the previous system may be written: un = San . The matrix S

is invertible: if b belongs to the null space of S, a quick computation shows that

bT Sb =
∥∥∥

p∑

i=1

biei
∥∥∥
2

H
= 0,

which is only possible when b = 0, because (e1, . . . , en) is a basis of K .We therefore
have an = S−1un . Since un converges to u with coordinates (

〈
h , ek

〉
H , k = 1, . . . , p)

(by continuity of the inner product), we obtain the fact that an converges to a = S−1u.
But this implies that

∑p
k=1 aknek →∑p

k=1 akek and, since the limit is unique,we have
h =∑p

k=1 akek ∈ K . �

A.2 First Examples

A.2.1 Finite-Dimensional Euclidean Spaces

H = R
n with

〈
h , h′〉

Rn = hT h′ =∑n
i=1 hih

′
i is the standard example of a finite-

dimensional Hilbert space.

A.2.2 The �2 Space of Real Sequences

Let H be the set of real sequences h = (h1, h2, . . .) such that
∑∞

i=1 h
2
i < ∞. Then

H is a Hilbert space, with dot product

〈
h , h′〉

2 =
∞∑

i=1

hih
′
i .

A.2.3 The L2 Space of Functions

Let k and d be two integers. Let Ω be an open subset of R
k . We define L2(Ω, R

d)

as the set of all square integrable functions h : Ω → R
d , with inner product

〈
h , h′〉

2 =
∫

Ω

h(x)h′(x)dx .

Integrals are taken with respect to the Lebesgue measure on Ω , and two functions
which coincide everywhere except on a set of null Lebesgue measure are identified.
The fact that L2(Ω, R

d) is a Hilbert space is a standard result in integration theory.
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A.3 Orthogonal Spaces and Projection

Let O be a subset of H . The orthogonal space to O is defined by

O⊥ = {h ∈ H : ∀o ∈ O,
〈
h , o

〉
H

= 0
}
.

Theorem A.5 O⊥ is a Hilbert subspace of H.

Proof Stability under linear combination is obvious, and closedness is a consequence
of the continuity of the inner product. �

When K is a subspace of H and h ∈ H , one can define the variational problem:

(PK (h)) : find k ∈ K such that ‖k − h‖H = min
{∥∥h − k ′∥∥

H : k ′ ∈ K
}
.

The following theorem is fundamental:

Theorem A.6 If K is a closed subspace of H and h ∈ H, (PK (h)) has a unique
solution, k, characterized by the conditions: k ∈ K and h − k ∈ K⊥.

Definition A.7 The solution of problem (PK (h)) in the previous theorem is called
the orthogonal projection of h on K and denoted πK (h).

Proposition A.8 πK : H → K is a linear, continuous transformation and
πK⊥ = id − πK .

Proof We prove the theorem and the proposition together. Let

d = inf
{∥∥h − k ′∥∥

H : k ′ ∈ K
}
.

If k, k ′ ∈ K , a direct computation shows that

∥∥∥∥h − k + k ′

2

∥∥∥∥

2

H

+ ∥∥k − k ′∥∥2
H

/
4 =

(
‖h − k‖2H + ∥∥h − k ′∥∥2

H

)/
2.

The fact that (k + k ′)/2 ∈ K implies
∥∥∥h − k+k ′

2

∥∥∥
2

H
≥ d, so that

∥∥k − k ′∥∥2
H

≤ 1

2

(
‖h − k‖2H + ∥∥h − k ′∥∥2

H

)
− d2 .

Now, from the definition of the infimum, one can find a sequence kn in K such that
‖kn − h‖2H ≤ d2 + 2−n for each n. The previous inequality implies that

‖kn − km‖2H ≤ (2−n + 2−m
) /

2,
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which implies that kn is a Cauchy sequence, which therefore converges to a limit
k that belongs to K (because K is closed) and is such that ‖k − h‖H = d. If the
minimum is attained for another k ′ in K , we have, by the same inequality

∥∥k − k ′∥∥2
H ≤ 1

2

(
d2 + d2

)− d2 = 0,

so that k = k ′, uniqueness is proved, hence πK is well-defined.
Let k = πK (h), k ′ ∈ K and consider the function f (t) = ∥∥h − k − tk ′∥∥2

H , which
is by construction minimal for t = 0. We have f (t) = ‖h − k‖2H −
2t
〈
h − k , k ′〉

H + t2
∥∥k ′∥∥2

H and this can be minimal at 0 only if
〈
h − k , k ′〉

H = 0.
Since this has to be true for every k ′ ∈ K , we obtain the fact that h − k ∈ K⊥.
Conversely, if k ∈ K and h − k ∈ K⊥, we have for any k ′ ∈ K

∥∥h − k ′∥∥2
H = ‖h − k‖2H + ∥∥k − k ′∥∥2

H ≥ ‖h − k‖2H ,

so that k = πK (h). This proves Theorem A.6.
We now prove Proposition A.8: let h, h′ ∈ H and α,α′ ∈ R. Let k = πK (h), k ′ =

πK (h′); we want to show that πK (αh + α′h′) = αk + α′k ′, for which it suffices to
prove (sinceαk + α′k ′ ∈ K ) thatαh + α′h′ − αk − α′k ′ ∈ K⊥. This is true because
αh + α′h′ − αk − α′k ′ = α(h − k) + α′(h′ − k ′), h − k ∈ K⊥, h′ − k ′ ∈ K⊥, and
K⊥ is a vector space. Continuity comes from

‖h‖2H = ‖h − πK (h)‖2H + ‖πK (h)‖2H ,

so that ‖πK (h)‖H ≤ ‖h‖H .
Finally, if h ∈ H and k = πK (h), then k ′ = πK⊥(h) is characterized by k ′ ∈ K⊥

and h − k ′ ∈ (K⊥)⊥. The first property is certainly true for h − k, and for the second,
we need to show that K ⊂ (K⊥)⊥, which is a direct consequence of the definition
of the orthogonal space. �

We have the interesting property:

Corollary A.9 K is a Hilbert subspace of H if and only if (K⊥)⊥ = K.

Proof The ⇐ implication is a consequence of Theorem A.5. Now assume that K
is a Hilbert subspace. The fact that K ⊂ (K⊥)⊥ is obviously true for any subset
K ⊂ H , so that it suffices to show that every element of (K⊥)⊥ belongs to K . Assume
that h ∈ (K⊥)⊥: this implies that πK⊥(h) = 0 but since πK⊥(h) = h − πK (h), this
implies that h = πK (h) ∈ K . �

If K is finite-dimensional, i.e.,

K =
{

n∑

i=1

αi fi ,α1, . . . ,αn ∈ R

}
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where f1, . . . , fn are linearly independent elements of H , then πK can be calculated
in closed form. Indeed, if h ∈ H , its orthogonal projection ĥ = πK (h) is character-
ized by ĥ ∈ K and

〈
ĥ , fi

〉
H = 〈h , fi

〉
H for h = 1, . . . , N . This implies that

ĥ =
n∑

i=1

αi fi

where α1, . . . ,αn are obtained by solving the system

n∑

j=1

〈
fi , f j

〉
Hαi = 〈 fi , h

〉
H .

A.4 Orthonormal Sequences

A sequence (e1, e2, . . .) in aHilbert space H is orthonormal if and only if
〈
ei , e j

〉
H =

1 if i = j and 0 otherwise. In such a case, ifα = (α1,α2, . . .) ∈ �2 (the space defined
is Sect.A.2.2), the series

∑∞
i=1 αi ei converges in H (its partial sums form a Cauchy

sequence) and if h is the limit, then αi = 〈h , ei
〉
H
.

Conversely, if h ∈ H , then the sequence (
〈
h , e1

〉
H ,
〈
h , e2

〉
H , . . .) belongs to �2.

Indeed, letting hn =∑n
i=1

〈
h , ei

〉
Hei , one has

〈
hn , h

〉
H =

n∑

i=1

〈
h , ei

〉2
H = ‖hn‖2H .

On the other hand, one has, by Schwarz’s inequality
〈
hn , h

〉
H ≤ ‖hn‖H ‖h‖H , which

implies that ‖hn‖H ≤ ‖h‖H : therefore

∞∑

i=1

〈
h , ei

〉2
< ∞.

Denoting by K = Hilb(e1, e2, . . .) the smallest Hilbert subspace of H containing
this sequence, one has the identity

K =
{ ∞∑

n=1

αkek : (α1,α2, . . .) ∈ l2
}

. (A.2)

The proof is left to the reader. As a consequence of this, we see that h �→
(
〈
h , e1

〉
H ,
〈
h , e2

〉
H , . . .) is an isometry between Hilb(e1, e2, . . .) and �2. Moreover,

we have, for h ∈ H
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πK (h) =
∞∑

i=1

〈
h , ei

〉
Hei

(because h − πK (h) is orthogonal to every ei ).
An orthonormal set (e1, e2, . . .) is complete in H if H = Hilb(e1, e2, . . .). In this

case, we see that H is itself isometric to �2, and an interesting point is that (in the
separable case) this fact is always true.

Theorem A.10 Every (separable) Hilbert space has a complete orthonormal
sequence.

A complete orthonormal sequence in H is also called an orthonormal basis of H .

Proof The proof relies on the important Schmidt orthonormalization procedure. Let
f1, f2, . . . be a dense sequence in H . We let e1 = fk1/

∥∥ fk1
∥∥
H
where fk1 is the first

non-vanishing element in the sequence.
Assume that, for n ≥ 1, an orthonormal sequence (e1, . . . , en) has been con-

structed with a sequence k1, . . . , kn such that ei ∈ Vi := span( f1, . . . , fki ) for each
i . First assume that fk ∈ span(e1, . . . , en) for all k > kn: then H = Vn is finite-
dimensional. Indeed, H is equal to the closure of ( f1, f2, . . .), which is included in
span(e1, . . . , en), which is closed as a finite-dimensional vector subspace of H .

Otherwise, let kn+1 be the smallest k > kn such that fkn+1 /∈ Vn . Then, we may set

en+1 = λ
(
fkn+1 − πVn ( fkn+1)

)
,

where λ is selected so that en+1 has unit norm, which is always possible.
So there are two cases: either the previous construction stops at some point, and

H is finite-dimensional and the theorem is true, or the process carries on indefinitely,
yielding an orthonormal sequence (e1, e2, . . .) and an increasing sequence of integers
(k1, k2, . . .) such that span(e1, . . . , en) = span( f1, . . . , fkn ). In this case because
Hilb(e1, e2, . . .) contains ( fn), which is dense in H , this space must be equal to H ,
which shows that the orthonormal sequence is complete. �

A.5 Nested Subspaces

Consider a sequence (Hn, n ≥ 1) of Hilbert subspaces of H such that H1 ⊂ H2 ⊂
· · · . Let H∞ =⋃∞

n=1 Hn be the smallest Hilbert space that contains all Hn . Then we
have the following result.

Proposition A.11 Let h ∈ H. With the notation above, one has

lim
n→∞ πHn (h) = πH∞(H).
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Proof Let hn = πHn (h) (including for n = ∞). Then πHn (hn+1) = hn and (h1, h2 −
h1, h3 − h2, . . .) forms an orthogonal sequence. This implies that (letting h0 = 0)

n∑

k=1

‖hk − hk−1‖2H =
∥∥∥∥∥

n∑

k=1

(hk − hk−1)

∥∥∥∥∥

2

H

= ‖hn‖2H .

Because ‖hn‖H ≤ ‖h‖H , we have
∑n

k=1 ‖hk − hk−1‖2H < ∞, and since, for m < n

‖hn − hm‖2H =
n∑

k=m+1

‖hk − hk−1‖2H

we find that (hn) is a Cauchy sequence, and therefore has a limit h′ that necessarily
belongs to H∞. Moreover, for any h̃ ∈⋃n≥1 Hn , we have h̃ ∈ Hm for large enough

m and
〈
h − hn , h̃

〉
H = 0 for n ≥ m. Passing to the limit n → ∞, we find that h − h′

is perpendicular to
⋃

n≥1 Hn , and therefore also to H∞, which shows that h′ = h∞.

A.6 The Riesz Representation Theorem

The (topological) dual space of a normed vector space H is the space containing
all bounded linear functionals ϕ : H → R. It is denoted H∗, and we will use the
notation, for ϕ ∈ H∗ and h ∈ H :

ϕ(h) = (ϕ | h ). (A.3)

Thus, parentheses indicate linear forms and angles indicate inner products. Recall
that ϕ being bounded means that, for some constant c,

(ϕ | h ) ≤ c‖h‖H

for all h ∈ H , which is also equivalent to ϕ being continuous.
H being a normed space, H∗ also has a normed space structure defined by:

‖ϕ‖H∗ = sup {(ϕ | h ) : h ∈ H, ‖h‖H = 1} .

When H is Hilbert, the function ϕh : h′ �→ 〈
h , h′〉

H belongs to H∗, and by the
Schwarz inequality ‖ϕh‖H∗ = ‖h‖H . The Riesz representation theorem states that
there exists no other bounded linear form on H .
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Theorem A.12 (Riesz) Let H be a Hilbert space. If ϕ ∈ H∗, there exists a unique
h ∈ H such that ϕ = ϕh.

Proof For uniqueness, it suffices to prove that ϕh = 0 ⇒ h = 0, which is obvious
since ϕh(h) = ‖h‖2H . To prove existence, we introduce the orthogonal of the null
space of ϕ. So, let K = {h′ ∈ H,

(
ϕ
∣∣ h′ ) = 0

}
; K is a closed linear subspace of H

(because ϕ is linear and continuous). If K⊥ = {0}, then K = (K⊥)⊥ = H and ϕ =
0 = ϕh for h = 0, which proves the theorem in this case. So, assume that K⊥ �= 0
and let h0 ∈ K⊥, h0 �= 0, which implies (ϕ | h0 ) �= 0. For all h ∈ H , we have

h − (ϕ | h )

(ϕ | h0 )
h0 ∈ K

so that (taking the inner product with h0),

〈
h0 , h

〉
H − (ϕ | h )

(ϕ | h0 )
‖h0‖2H = 0,

which is exactly ϕ = ϕαh0 with α = (ϕ | h0 )/‖h0‖2H . �

Riesz’s Theorem and the fact that ‖ϕh‖H∗ = ‖h‖H imply that the linear map
LH : h �→ ϕh is an isometry between H and H∗ (which is therefore also a Hilbert
space). We will refer to it as the duality operator of H , and generally denote its
inverse by KH = L

−1
H : H∗ → H .

A.7 Embeddings

Assume that H and H0 are two Banach spaces. An embedding of H in H0 is a
bounded, one-to-one, linear mapping from H to H0, i.e., a mapping i : H → H0

such that, for all h ∈ H ,
‖i(h)‖H0

≤ C ‖h‖H . (A.4)

The smallest C for which this is true is the operator norm of i, denoted ‖i‖op(H,H0).
If such an embedding exists, we will say that H is (continuously) embedded in H0.

One says that the embedding is compactwhen the set {i(h), ‖h‖H ≤ 1} is compact
in H0. In the separable case (to which we restrict ourselves), this means that for
any bounded sequence (hn, n > 0) in H , there exists a subsequence of (i(hn)) that
converges in H0. One says that the embedding is dense if i(H) is dense in H0.

In all the applications we will be interested in, H and H0 will be function spaces,
and we will have a set inclusion H ⊂ H0. For example H may be a set of smooth
functions and H0 a set of less smooth functions (see the examples of embeddings
below). Then, one says that H is embedded (resp. compactly embedded) in H0 if the
canonical inclusion map: i : H → H0 is continuous (resp. compact).
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If ϕ is a bounded linear form on H0, and i : H → H0 is an embedding, then one
can define the form i∗(ϕ) on H by (i∗(ϕ) | h ) = (ϕ | i(h) ), and i∗(ϕ) is bounded on
H . Indeed, we have, for all h ∈ H :

∣∣(i∗(ϕ)
∣∣ h
)∣∣ = |(ϕ | i(h) )| ≤ ‖ϕ‖H∗

0
‖i(h)‖H0

≤ ‖i‖op(H,H0)
‖ϕ‖H∗

0
‖h‖H ,

where the first inequality comes from the continuity of ϕ and the last one from
(A.4). This proves the boundedness of i∗(ϕ) as a linear form on H together with the
inequality: ∥∥i∗(ϕ)

∥∥
H∗ ≤ ‖i‖op(H,H0)

‖ϕ‖H∗
0

.

This in fact proves the first statement of the theorem:

Theorem A.13 Let i : H → H0 be a Banach space embedding. Then
i∗ : H∗

0 → H∗ is a bounded linear map.
If i is dense, then i∗ is also an embedding.
If H is a Hilbert space, and i is dense, then i∗ is dense too.

Proof Assume that i is dense. To prove that it is an embedding, it remains to show
that it is one-to-one. So, assume that i∗(ϕ) = 0. This implies that (ϕ | i(h) ) = 0 for
all h ∈ H so that ϕ vanishes on i(H), which implies that ϕ = 0 because i(H) is
dense in H0 and ϕ is continuous.

Still with i dense, we now assume that H is a Hilbert space and prove that i∗(H0) is
dense in H∗. Because H∗ is also a Hilbert space, it suffices to show that no non-zero
element of H∗ is orthogonal to i∗(H∗

0 ), which, by Theorem A.12, is equivalent to
showing that no non-zero vector h ∈ H is such that (i∗(ϕ) | h ) = 0 for all ϕ ∈ H∗

0 .
But since (i∗(ϕ) | h ) = (ϕ | i(h) ), this is only possible when i(h) = 0, which yields
h = 0 because i is one-to-one. �

A.8 Examples

A.8.1 Banach Spaces of Continuous Functions

LetΩ be an open subset of R
d . The space of continuous functions onΩ with at least

p continuous derivatives is denoted C p(Ω, R). The elements of C p(Ω, R) that are
bounded, together with their derivatives up to the pth order, form the set C p

b (Ω, R),
which is a Banach space for the norm

‖ f ‖p,∞ = max|J |≤p
‖∂J f ‖∞, (A.5)

where J = ( j1, . . . , jd) are d-tuples of non-negative integers, |J | = j1 + · · · jk and
∂J = ∂

j1
1 . . . ∂

jd
d . We obviously have, almost by definition, the fact that C p

b (Ω, R) is
embedded in Cq

b (Ω, R) as soon as p ≤ q.
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Within the set C p
b (Ω, R), we will distinguish functions that vanish at infinity

according to the following definition.

Definition A.14 LetΩ ⊂ R
d be open. A function f ∈ C p(Ω, R) tends to 0 at infin-

ity at the pth order if, for all ε > 0, there exists a compact subset K ⊂ Ω such that

max
h

sup{|h(x)|, x ∈ Ω \ K } < ε,

where h varies over the set of partial derivatives of f of order less than or equal
to p.

We let C p
0 (Ω, R) denote the subset of C p(Ω, R) containing functions that tend to

0 at infinity at the pth order. It forms a closed subset of C p
b (Ω, R) and is therefore

also Banach. If f ∈ C p
0 (Ω, R), it can be extended in a unique way to a function

f̃ ∈ C p
0 (Rd , R) such that f̃ (x) = 0 for x ∈ Ωc. It is sometimes convenient to identify

f and f̃ and therefore consider elements of C p
0 (Ω, R) as defined over all Rd . Notice

that one can also show that C p
0 (Ω, R) is the completion of the set of C p functions

with compact support included in Ω within C p
b (Ω, R).

The following simple proposition will be useful.

Proposition A.15 All functions in C0
0 (Ω, R) are uniformly continuous on Ω .

Proof Let f ∈ C0
0 (Ω, R). Fix ε > 0 and K compact in Ω such that | f (x)| < ε/2

for x ∈ Ω \ K . Let c = dist(K ,Ωc)/2, which is a positive number. Let K ′ = {x ∈
Ω, dist(x, K ) ≤ c}, which is also a compact subset of Ω . By compactness, there
exists δ ∈ (0, c) such that x, y ∈ K ′ and |x − y| < δ imply that | f (x) − f (y)| < ε.

Take x, y ∈ Ω with |x − y| < δ. If neither x or y are elements of K , then | f (x) −
f (y)| ≤ | f (x)| + | f (y)| < ε. If at least one of them, say x , belongs to K , then
|x − y| < δ and δ < c implies that y ∈ K ′ and | f (x) − f (y)| < ε also. This proves
that f is uniformly continuous. �

If Ω is bounded, so that Ω̄ is compact, C p(Ω̄, R) will denote the set of functions
onΩ which are p times differentiable onΩ , each partial derivative being extended to
a continuous function on Ω̄; C p(Ω̄, R) has a Banach space structure when equipped
with ‖ · ‖p,∞. Note that C p

0 (Ω, R) can be considered as a subset of C p(Ω̄, R).
For bounded Ω , relatively compact sets in C0(Ω̄, R) are exactly described by

Ascoli’s theorem: they are bounded subsetsM ⊂ C0(Ω̄, R) (for the supremumnorm)
which are uniformly continuous, meaning that, for any x ∈ Ω̄ , for any ε > 0 there
exists an η > 0 such that

sup
y∈Ω

|x−y|<η

sup
h∈M

|h(x) − h(y)| < ε .

Compact sets in C p(Ω̄, R) are bounded subsets of C p(Ω̄, R) over which all the pth
partial derivatives are uniformly continuous.
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When Ω is not bounded, Ascoli’s theorem implies that uniformly continuous and
bounded (for the p first derivatives) subsets of C p

b (Ω, R
d) are relatively compact

with respect to uniform convergence over compact sets.
Compact subsets of C p

0 (Ω, R) can be obtained via Ascoli’s theorem as follows.
Let Ω∗ be the one point compactification Ω (obtained by adding a new point to it,
called ∞, and new open subsets taking the form {∞} ∪ Kc, where K varies over
all compact subsets of Ω). If f : Ω → R is any function, let f ∗ be its extension to
Ω∗ such that f ∗(∞) = 0. Then C p

0 (Ω, R) can also be seen as the set of functions
f ∈ C p(Ω, R) such that (∂J f )∗ ∈ C0(Ω∗, R) for all partial derivatives of order p
or less. Then relatively compact subsets of C0

0 (Ω, R) are sets that are bounded and
uniformly continuous onΩ and such that for any ε > 0 there exists a compact subset
K ⊂ Ω such that

sup
y∈Ω\K

sup
h∈M

|h(y)| < ε .

The relatively compact subsets of C p
0 (Ω, R) are such that this condition is true for

all partial derivatives of order p or less.
The spaces C p(Ω, R

d) are spaces of functions f : Ω → R
d with all coordinates

in C p(Ω, R). The extension of the previous discussion to these spaces is straightfor-
ward by considering coordinates.

A.8.2 Hilbert Sobolev Spaces

We now define the space H 1(Ω, R) of functions with square integrable generalized
derivatives. A function u belongs to this set if and only if u ∈ L2(Ω, R), and for each
i = 1, . . . , k, there exists a function ui ∈ L2(Ω, R) such that for any C∞ function
ϕ with compact support in Ω , one has

∫

Ω

u(x)∂iϕ(x)dx = −
∫

Ω

ui (x)ϕ(x)dx .

The function ui is called the (generalized) directional derivative of u with respect to
the i th variable, and is denoted ∂i u. The integration by parts formula shows that this
derivative coincides with the standard partial derivative when the latter exists.

H 1(Ω, R
d) has a Hilbert space structure with the inner product:

〈
u , v

〉
H 1 = 〈u , v

〉
2 +

k∑

i=1

〈
∂i u , ∂iv

〉
2.

The space Hm(Ω, R) can be defined by induction as the set of functions
f ∈ H 1(Ω, R) with all partial derivatives belonging to Hm−1(Ω, R). Partial deriva-
tives of increasing order are defined by induction, and one can define an inner product
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on Hm as the sum of the L2 inner products of all partial derivatives up to order m,
for which Hm is Hilbert.

These spaces can be embedded in classical spaces of functions. We will in
particular use a special case ofMorrey’s theorem, stated below. This theorem requires
additional assumptions on the regularity of ∂Ω , that we will not detail here, referring
the reader to [3] for a complete statement.

Theorem A.16 Assume thatm − d/2 > 0 and thatΩ has a regular boundary. Then,
for any j ≥ 0, H j+m(Ω, R) is embedded in C j

b (Ω, R).
If Ω is bounded, then H j+m(Ω, R) is compactly embedded in C j (Ω̄, R) and,

if θ ∈]0,m − d/2], and u ∈ H j+m(Ω, R), then every partial derivative of u ∈
H j+m(Ω, R) of order j has Hölder regularity θ: for all x, y ∈ Ω

|∂J u(x) − ∂J u(y)| ≤ C ‖u‖Hm+ j |x − y|θ

if |J | = j .

As a final definition, we let Hm
0 (Ω, R) be the completion in Hm(Ω, R) of the set

of C∞ functions with compact support in Ω: u belongs to Hm
0 (Ω, R) if and only

if u ∈ Hm(Ω, R) and there exists a sequence of functions un , C∞ with compact
support in Ω , such that ‖u − un‖Hm tends to 0. A direct application of Theorem
A.16 shows that, if m − d/2 > 0, then, for any j ≥ 0, H j+m

0 (Ω, R) is embedded in
C j
0 (Ω, R).
General Sobolev spaces (W p,k) are defined similarly to the spaces H p, using Lk

norms of derivatives instead of L2 norms. The interested reader can refer to classical
textbooks (e.g., [3, 45, 306]) on functional analysis for more detail.

A.8.3 The Duality Paradox

The Riesz representation theorem allows one to identify a Hilbert space H and its
dual H∗. However, when H is densely embedded in another Hilbert space H0, every
continuous linear form on H0 is also continuous on H , and H∗

0 is densely embedded
in H∗. We therefore have the sequence of embeddings

H → H0 � H∗
0 → H∗

but this sequence loops since H∗ � H . This indicates that H0 is also embedded
in H . This is arguably a strange result. For example, let H = H 1(Ω, R), and
H0 = L2(Ω, R): the embedding of H in H0 is canonical, and clear from their def-
inition (it is dense because C∞ functions form a dense subset for both of them);
but the converse inclusion does not seem natural, since there are more constraints in
belonging to H than to H0. To understand this reversed embedding, we must think
in terms of linear forms.
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If u ∈ L2(Ω, R), we may consider the linear form ϕu defined by

(ϕu | v ) = 〈u , v
〉
2 =

∫

Ω

u(x)v(x)dx .

When v ∈ H 1(Ω, R), we have

(ϕu | v ) ≤ ‖u‖2 ‖v‖2 ≤ ‖u‖2 ‖v‖H 1 ,

so that ϕu is continuous when seen as a linear form on H 1(Ω, R). The Riesz
representation theorem implies that there exists a ũ ∈ H 1(Ω, R) such that, for all
v ∈ H 1(Ω, R),

〈
u , v

〉
2 = 〈ũ , v

〉
H 1 : the relation u �→ ũ provides the embedding of

L2(Ω, R) into H 1(Ω, R). Let us be more specific and take Ω =]0, 1[. The relation
states that, for any v ∈ H 1(Ω, R),

∫ 1

0
∂ũ(t) ∂v(t)dt +

∫ 1

0
ũ(t)v(t)dt =

∫ 1

0
ũ(t)v(t)dt.

In order to integrate the first integral by parts, let us make the simplifying assumption
that ũ has two derivatives, and obtain

∂u(1)v(1) − ∂u(0)v(0) −
∫ 1

0
∂2ũ(t)v(t) +

∫ 1

0
ũ(t)v(t)dt =

∫ 1

0
ũ(t)v(t)dt.

(A.6)
Such an identity canbe true for everyv in H 1(Ω, R) if andonly if∂u(0) = ∂u(1) = 0
and −∂2ũ + ũ = u: ũ is thus a solution of a second-order differential equation,
with first-order boundary conditions, and the embedding of L2((0, 1), R) into
H 1((0, 1), R) just shows that a unique solution exists, at least in the generalized
sense of Eq. (A.6).

As seen in these examples, even if, from an abstract point of view, we have an
identification between two Hilbert spaces, the associated embeddings are of a very
different nature, the first one corresponding to a set inclusion (it is canonical), the
second to the solution of a differential equation in one dimension, and to a partial
differential equation in the general case.

A.9 Weak Convergence

Let us start with the definition:

Definition A.17 When V is a Banach space, a sequence (vn) in V is said to weakly
converge to some v ∈ V if and only if, for all bounded linear forms α ∈ V ∗, one has
(α | vn ) → (α | v ) as n tends to infinity.

Recall that hn → h “strongly” if ‖hn − h‖V → 0. The following proposition
describes how convergence is related to inclusion.
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Proposition A.18 Assume that V and W are Banach spaces and that W ⊂ V with
a continuous inclusion. If a sequence (wn) in W converges weakly (in W) to some
w ∈ W, then wn also converges weakly to w in V .

This just says that if (α | wn ) → (α | w) for all bounded linear functionals on W ,
then the convergence holds for all bounded linear functionals on V , which is in fact
obvious because the restriction to W of any bounded linear functional on V is a
fortiori bounded on W .

In the case of a Hilbert space, the Riesz representation theorem immediately
provides the following proposition:

Proposition A.19 Let V be a Hilbert space. A sequence vn in V converges weakly
to an element v ∈ V if and only if, for all w ∈ V ,

lim
n→∞

〈
w , vn

〉
V = 〈w , v

〉
V .

Moreover, if vn converges weakly to v, then ‖v‖V ≤ lim inf ‖vn‖V .
The last statement comes from the inequality:

〈
vn , v

〉
V ≤ ‖vn‖V ‖v‖V , which pro-

vides at the limit
‖v‖2V ≤ ‖v‖V lim inf

n→∞ ‖vn‖V .

Finally, the following result is about the weak compactness of bounded sets
[306, 315].

Theorem A.20 If V is a Hilbert space and (vn) is a bounded sequence in V (there
exists a constant C such that ‖vn‖ ≤ C for all n), then one can extract a subsequence
from vn which weakly converges to some v ∈ V .

A.10 The Fourier Transform

We provide here a brief overview of Fourier transforms with their definition and
basic properties. We let H = L2(Rd , C). For a function f ∈ H , one defines

F ( f ) (ξ) = f̂ (ξ) =
∫

Rd

f (x)e−2ιπξT xdx .

This is well defined as soon as f is absolutely integrable, i.e.,

∫

Rd

| f (x)| dx < ∞,

but can be extended (based on isometry properties, see below) to the whole space H .
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We have the following inversion formula:

Theorem A.21 Assume that f and f̂ are both absolutely integrable. Then, we have

f (x) =
∫

Rd

f̂ (ξ)e2ιπx
T ξdξ.

The inversion formula illustrates the bijective nature of the Fourier transform.
Another important property is that, if both f and f̂ are in L1 ∩ L2, then‖ f̂ ‖2 = ‖ f ‖2.
This implies that there is a unique isometric extension of the Fourier transform to L2.
In particular, we have, for this extension:

〈〈 f̂ , ĝ〉〉2 = 〈〈 f, g〉〉2, (A.7)

with the notation

〈〈 f, g〉〉2 =
∫

Rd

f ḡ dx

for complex-valued functions (ḡ being the complex conjugate of g).
The Fourier transform has some other useful properties. In the following propo-

sition, x and ξ are dummy variables, x0, ξ0 ∈ R
d and α1,α2, a ∈ R.

Proposition A.22

(1) F ( f (x − x0)) (ξ) = e−2ιπξT x0 f̂ (ξ);
(2) F

(
e2ιπx

T ξ0 f (x)
)

(ξ) = f̂ (ξ − ξ0);

(3) F ( f (ax)) (ξ) = 1

|a|d f̂

(
ξ

a

)
;

(4) F (α1 f1 + α2 f2) = α1 f̂1 + α2 f̂2;
(5) F

(
e−πxT x

)
(ξ) = e−πξT ξ;

(6) F (∂i f ) (ξ) = (2ιπξi ) f̂ .

The transform also interacts nicely with convolutions.

Proposition A.23 If h and f are absolutely integrable, then

F (h ∗ f ) = ĥ f̂

with

(h ∗ f )(x) =
∫

Rd

h(x − y) f (y)dy.



Appendix B
Elements from Differential Geometry

B.1 Introduction

This chapter describes a few notions from differential geometry that are relevant to
this book. One of the primary goals of differential geometry is to provide mathemat-
ical tools that make possible the use of infinitesimal calculus for sets that are more
general than Euclidean spaces. In this setting, we will not go further than the notion
of tangent spaces and Riemannian metrics, leaving aside some fundamental features
(e.g., curvature), for which we refer the reader to general textbooks on the subject,
such as [1, 43, 87, 142, 162, 198].

B.2 Differential Manifolds

B.2.1 Definition

A differential manifold is a topological space within which points can be described
by coordinate systems, which must satisfy some compatibility conditions allowing
for the definition of intrinsic differential operations. We start with the definition:

Definition B.1 LetM be a topological Hausdorff space. A d-dimensional local chart
on M is a pair (U, Φ) where U is an open subset of R

d and Φ a homeomorphism
between U and some open subset of M .

Two d-dimensional local charts, (U1, Φ1) and (U2, Φ2), are C∞-compatible if
either Φ1(U1) and Φ2(U2) do not overlap, or the function Φ−1

1 ◦ Φ2 is a C∞-
diffeomorphism between U2 ∩ Φ−1

2 (Φ1(U1)) and Φ−1
1 (Φ2(U2)) ∩U1.

A d-dimensional atlas on M is a family of pairwise compatible local charts
((Ui , Φi ), i ∈ I ) such that M =⋃I Φi (Ui ). Two atlases on M are equivalent if
their union is also an atlas, i.e., if every local chart of the first one is compatible with
every local chart of the second one.
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A Hausdorff space with a d-dimensional atlas is called a d-dimensional (C∞)
differential manifold.

One defines Ck differential manifolds simply by replacing C∞ by Ck in the
definition above. We take k = ∞ here only for convenience, all definitions and
statements below generalizing easily to the Ck case, for large enough k.

If M is a manifold, a local chart on M will always be assumed to be compatible
with the atlas on M . If M and N are two manifolds, their product M × N is also a
manifold; if (U, Φ) is a chart on M and (V, Ψ ) a chart on N , then (U × V, (Φ,Ψ ))

is a chart on M × N , and one shows easily that one can form an atlas for M × N
using such cross products between two atlases of M and N .

When a local chart (U, Φ) is given, the coordinate functions x1, . . . , xd are defined
by Φ−1(p) = (x1(p), . . . , xd(p)) for p ∈ U . Formally, xi is a function from Φ(U )

to R. However, when a point p is given, one generally refers to xi = xi (p) ∈ R as
the i th coordinate of p in the chart (U, Φ).

According to these definitions, Rd is a differential manifold, and so are open sets
in R

d . Another example is given by the d-dimensional sphere, Sd , defined as the
set of points p ∈ R

d+1 with |p| = 1. The sphere can be equipped with an atlas with
2(d + 1) charts, (Ui , Φi ), i = 1, . . . , 2(d + 1), letting

U1 = {p = (p2, . . . , pd+1) ∈ R
d : p22 + · · · + p2d+1 < 1}

and

Φ1(p2, . . . , pd+1) =
(√

1 − p22 − · · · − p2d+1, p2, . . . , pd+1

)
,

Φ2(p2, . . . , pd+1) =
(

−
√
1 − p22 − · · · − p2d+1, p2, . . . , pd+1

)
,

and so on with each of the coordinates p2, . . . , pd+1 expressed as functions of the
others.

We now consider functions on manifolds.

Definition B.2 Let k ≤ ∞. A function ψ : M → R is Ck if, for every local chart
(U, Φ) on M , the function ψ ◦ Φ : U ⊂ R

d → R is Ck in the usual sense. The
function ψ ◦ Φ is called the interpretation of ψ in (U, Φ).

From the compatibility condition, if this property is true for an atlas, it is true for
all charts compatible with it. The set of Ck functions on M is denoted Ck(M, R),
or just Ck(M). If U is open in M , the set Ck(U ) contains functions defined on U
which can be interpreted as Ck functions of the coordinates for all local charts of M
that are contained in U . The first examples of C∞ functions are the coordinates: if
(U, Φ) is a chart, the i th coordinate (xi (p), p ∈ U ) belongs to C∞(U ), since, when
interpreted in (U, Φ), it reduces to (x1, . . . , xd) �→ xi .

If M is only a Cl manifold with l < ∞, one can only speak of Ck functions for
k ≤ l, if one wants this property to be independent of the local chart representation.
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B.2.2 Vector Fields, Tangent Spaces

In this section we fix a differential manifold, denoted M , of dimension d. We define
vector fields and tangent vectors via their actions on functions, and later provide
alternative interpretations.

Definition B.3 A vector field on M is a function X : C∞(M) → C∞(M) such that:
∀α,β ∈ R, ∀ϕ,ψ ∈ C∞(M):

X (α.ϕ + β.ψ) = α.X (ϕ) + β.X (ψ) ,

X (ϕψ) = X (ϕ)ψ + ϕX (ψ) .

The set of vector fields on M is denoted by X (M).

Definition B.4 If p ∈ M , a tangent vector to M at p is a function ξ : C∞(M) → R

such that: ∀α,β ∈ R, ∀ϕ,ψ ∈ C∞(M)

ξ(α.ϕ + β.ψ) = α.ξ(ϕ) + β.ξ(ψ) ,

ξ(ϕψ) = ξ(ϕ)ψ(p) + ϕ(p)ξ(ψ) .

The set of tangent vectors to M at p is denoted TpM .

So vector fields assign C∞ functions to C∞ functions and tangent vectors assign
real numbers to C∞ functions.

One can go from vector fields to tangent vectors and vice versa as follows. If
X ∈ X (M) is a vector field on M , and if p ∈ M , define X p : C∞(M) → R by

X p(ϕ) = (X (ϕ))(p)

to obtain a tangent vector at p. Conversely, if a collection (X p ∈ TpM, p ∈ M) is
given, one can define (X (ϕ))(p) = X p(ϕ) for ϕ ∈ C∞(M) and p ∈ M ; X will be
a vector field on M if and only if, for all ϕ ∈ C∞(M) the function p �→ X p(ϕ) is
C∞. Finally, one can show [142] that, for all ξ ∈ TpM , there exists a vector field X
such that ξ = X p.

The linear nature of DefinitionsB.3 and B.4 is clarified in the next proposition:

Proposition B.5 For all p ∈ M, the tangent space TpM is a d-dimensional vector
space.

Proof Let C = (U, Φ) be a local chart with p ∈ Φ(U ). Define x0 = Φ−1(p), x0 ∈
U . If ϕ ∈ C∞(M), then, by definition,

ϕC : U ⊂ R
d → R

x �→ ϕ ◦ Φ(x)
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is C∞. Define, for i = 1, . . . , d,

∂i,p(ϕ) := ∂iϕC(x0).

It is easy to check that ∂i,p satisfies the conditions given in DefinitionB.4, so that
∂i,p ∈ TpM . We show that every ξ ∈ TpM may be uniquely written in the form

ξ =
d∑

i=1

λi∂i,p. (B.1)

Indeed,

ϕC(x) = ϕC(x0) +
d∑

i=1

(xi − x0i )ψ
∗
i (x)

with ψ∗
i (x) =

∫ 1

0
∂iϕC(x0 + t (x − x0))dt . Thus, if p′ ∈ U ,

ϕ(p′) = ϕ0 +
d∑

i=1

(xi (p
′) − xi (p))ψi (p

′)

with ψi (p′) = ψ∗
i (Φ

−1(p′)), and ϕ0 = ϕ(p). If ξ ∈ TpM and f is constant, we have
ξ( f ) = f ξ(1) = f ξ(12) = 2 f ξ(1) so that ξ( f ) = 0. Thus, for all ξ ∈ TpM ,

ξ(ϕ) = 0 +
d∑

i=1

ψi (p)ξ(xi ) .

But ψi (p) = (∂i,p)(ϕ), which yields (B.1) with λi = ξ(xi ). �
This result also implies that, within a local chart, a vector field can always be

interpreted in the form

X =
d∑

i=1

ϕi∂i ,

with ϕi ∈ C∞(M) and [∂i ]p = ∂i,p.
There is another standard definition of tangent vectors on M , in relation to differ-

entiable curves on M . This starts with the following definitions.

Definition B.6 Let t �→ μ(t) ∈ M be a continuous curve,μ : [0, T ] → M . One says
that this curve is C∞ if, for any local chart C = (U, Φ), the curve μC : s �→ Φ−1 ◦
μ(s), defined on {t ∈ [0, T ] : μ(t) ∈ U }, is C∞.

Let p ∈ M . One says that two C∞ curves, μ and ν, starting at p (i.e., μ(0) =
ν(0) = p) have the same tangent at p if, and only if, for all charts C = (U, Φ), the
curves μC and νC have identical derivatives at t = 0.
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Proposition B.7 The tangential identity at p is an equivalence relation. The tangent
space to M at p can be identified with the set of equivalence classes for this relation.

Proof We sketch the argument. If a curve μ is given, with μ(0) = p, define, for
ϕ ∈ C∞(M),

ξμ(ϕ) = ∂(ϕ ◦ μ)(0).

One can check that ξμ ∈ TpM , and that ξμ = ξν if μ and ν have the same tangent at
p.

Conversely, if ξ ∈ TpM there exists a curveμ such that ξ = ξμ, and the equivalence
class of μ is uniquely specified by ξ. To show this, consider a chart (U, Φ). We must
have

ξμ(xi ) = ξ(xi ) = ∂(xi ◦ μ)(0),

which indeed shows that the tangent at p is uniquely defined. To determine μ, start
froma line segment inU , passing throughΦ−1(p),with directiongivenby (ξ(xi ), i =
1, . . . , d) and apply Φ to it to obtain a curve on M . �

When X ∈ X (M) is given, one can consider the differential equation

∂tμ(t) = Xμ(t).

Such a differential equation always admits a unique solution given an initial condition
μ(0) = p, at least for t small enough. This can be proved by translating the problem
in a local chart and applying the results of AppendixC.

Finally, we can define the differential of a scalar-valued function, followed by that
of a function between manifolds.

Definition B.8 If ϕ ∈ C∞(M), one defines a linear form on TpM by ξ �→ ξ(ϕ). It
will be denoted dϕ(p), and called the differential of ϕ at p.

Definition B.9 Let M and M ′ be two differential manifolds. A mapping Φ : M →
M ′ has class C∞ if and only if, for all ϕ ∈ C∞(M ′), one has ϕ ◦ Φ ∈ C∞(M).

Definition B.10 If p ∈ M and p′ = Φ(p), define the tangent map of Φ at p,

dΦ(p) : TpM → Tp′ M ′,

by: for all ξ ∈ TpM , ϕ ∈ C∞(M ′),

(dΦ(p)ξ)(ϕ) = ξ(ϕ ◦ Φ).

The tangent map dΦ(p) is also called the differential of Φ at p.

The chain rule is true for tangent mappings: if Φ : M → M ′ and Ψ : M ′ → M ′′ are
differentiable, then Ψ ◦ Φ : M → M ′′ is also differentiable and
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d(Ψ ◦ Φ)(p) = dΨ (Φ(p)) ◦ dΦ(p).

This almost directly follows from the definition.
The set T M = {(p, ξ) : p ∈ M, ξ ∈ TpM

}
is also a manifold called the tangent

bundle of M . Local charts on T M can be derived from local charts (U, Φ) on M as
(U × R

d , Φ̃) with
Φ̃(x, ξ) = (Φ(x), dΦ(x)ξ) ,

where dΦ(x) simply maps (ξ1, . . . , ξd) to
∑d

i=1 ξi∂i .
One similarly defines the frame bundle over M as the set

FM = {(p, ξ1, . . . , ξd) : p ∈ M, (ξ1, . . . , ξd) basis of TpM
}
,

which is also a manifold, associating with (U, Φ) the chart (U × GLd(R), Φ̃) with

Φ̃(x, A) = (Φ(x), dΦ(x)A)

(where GLd(R) is the set of invertible d by d matrices with real coefficients, an open
subset of R

d2
).

B.3 Submanifolds

One efficient way to build manifolds is to characterize them as submanifolds of
simple manifolds like R

d . If M is a manifold, a submanifold of M is a subset of M
that is itself a manifold, but also inherits the manifold structure of M .

Definition B.11 Let M be a d-dimensional differential manifold. We say that P is
a d ′-dimensional submanifold of M (with d ′ ≤ d) if, for all m0 ∈ P , there exists a
local chart (U, Φ) of M such that m0 ∈ Φ(U ), with local coordinates (x1, . . . , xd),
such that

U ∩ Φ−1(P) = {m ∈ M : xi = 0, i = 1, . . . , d − d ′}.

The next theorem is one of the main tools for defining manifolds:

Theorem B.12 Let M be a d-dimensional differential manifold, Φ a differentiable
map from M to R

k . Let a ∈ Φ(M) and

P = Φ−1(a) = {p ∈ M : Φ(p) = a}.

If for all p ∈ P the linear map dΦ(p) : TpM → R
k has full rank k, then P is a

submanifold of M, with dimension d ′ = d − k.

Here is a quick justification. Working in a local chart if needed, one can assume
without loss of generality that M is an open subset of R

d . Moreover, if dΦ(p)
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has rank k, then one can find k of its columns that are linearly independent, and
these column will remain independent in a neighborhood of p. Applying the implicit
function theorem, the identity Φ(p′) = a can then be solved in a neighborhood
of p by expressing k coordinates (say x1. . . . , xk) as functions f1, . . . fk of the
d − k remaining ones, so that P is, in a neighborhood of P , equivalent to the set
provided by the k equations x j − f j (xk+1, . . . , xd) = 0, j = 1, . . . , k. This shows
that P is a (d − k)-dimensional submanifold of M . (The local chart in Defini-
tionB.11 is Φ(x1, . . . , xn) = (x1 − f1(xk+1, . . . , xd), . . . , xk − fk(xk+1, . . . , xd),
xk+1, . . . , xd).)

This result can be applied, for example, to the sphere Sd , defined by x21 + · · · +
x2d+1 = 1, which is a submanifold of R

d+1 of dimension d.
If P ⊂ M is a submanifold of M defined as in TheoremB.12, the tangent space

to P at p can be identified with the null space of dΦ(p) in TpM :

TpP = {ξ ∈ TpM, dΦ(p)ξ = 0}.

Another way to define submanifolds is via embeddings, as outlined below.

Definition B.13 Let M and P be two differential manifolds. An embedding of M
into P is a C∞ map Φ : M → P such that:

(i) For all p ∈ M , the tangent map, dΦ(p), is one-to-one, from TpM to TΦ(p)P .
(ii) Φ is a homeomorphism between M and Φ(M) (this last set being considered

with the topology induced by P).

The second condition means that Φ is one-to-one, and, for all open subsets U in M ,
there exists an open subset V in P such that Φ(U ) = V ∩ Φ(M). Maps that satisfy
(i) (but not necessarily (ii)) are called immersions. We then have:

Proposition B.14 If Φ : M → P is an embedding, then Φ(M) is a submanifold of
P, with same dimension as M.

B.4 Lie Groups

B.4.1 Definitions

A group is a set G with a composition rule (g, h) �→ gh which is associative, has an
identity element (denoted idG , or id if there is no risk of confusion) and such that
every element inG has an inverse inG. A Lie group is both a group and a differential
manifold, such that the operations (g, h) �→ gh and g �→ g−1, respectively from
G × G to G and from G to G, are C∞.
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B.4.2 The Lie Algebra of a Lie Group

If G is a Lie group, g ∈ G and ϕ ∈ C∞(G), one defines ϕ · g ∈ C∞(G) by
(ϕ · g)(g′) = ϕ(g′g). A vector field on G is right-invariant if, for all g ∈ G and
ϕ ∈ C∞(G), one has X (ϕ · g) = X (ϕ) · g. Denoting by Rg the right translation
on G (defined by Rg(g

′) = g′g), right invariance is equivalent to the identity
Xg′g = dRgXg′ being true for all g, g′ ∈ G. The set of right-invariant vector fields is
called the Lie algebra of the group G, and denoted g.

Because (X (ϕ · g))(id) = (X (ϕ) · g)(id) = (X (ϕ))(g) whenever X ∈ g, an ele-
ment X of g is entirely specified by the values of X (ϕ)(id) for ϕ ∈ C∞(G). This
implies that the Lie algebra g may be identified with the tangent space to G at id,
TidG. If ξ ∈ TidG, its associated right-invariant vector field is

X ξ : g �→ dRg(id)ξ ∈ TgG.

The operation that provides the structure of an algebra on g is called the Lie
bracket. Recall that a vector field on a manifold M is a function X : C∞(M) →
C∞(M) which satisfies the conditions of DefinitionB.3. When X and Y are two
vector fields, it is possible to combine them and compute (XY )(ϕ) = X (Y (ϕ)); XY
also transforms C∞ functions into C∞ functions, but will not satisfy the conditions
of DefinitionB.3, essentially because it involves second derivatives. However, it is
easy to check that the second derivatives cancel in the difference XY − Y X , which
is a vector field on M , denoted [X,Y ], and called the bracket of X and Y . A few
important properties of Lie brackets are listed (without proof) in the next proposition.

Proposition B.15

i. [X,Y ] = −[Y, X ].
ii. [[X,Y ], Z ] = [X, [Y, Z ]].
iii. [[X,Y ], Z ] + [[Z , X ],Y ] + [[Y, Z ], X ] = 0.
iv. If Φ ∈ C∞(M, N ), dΦ[X,Y ] = [dΦX, dΦY ].
Here, dΦX is the vector field ϕ �→ X (ϕ ◦ Φ) such that (dΦX)p = dΦ(p)X p. This
last property is important for Lie groups, because when it is applied with Φ = Rg :
G �→ G, and X,Y ∈ g, it yields

dRg[X,Y ] = [dRgX, dRgY ] = [X,Y ],

so that [X,Y ] ∈ g. The Lie algebra of G is therefore closed under the Lie bracket
operation (which is the reason for the term ‘Lie algebra’).Becauseof the identification
of g with TidG, the bracket notation is also used for tangent vectors at the identity,
letting [ξ, η] = [X ξ, Xη]id.

There is alternative, equivalent, definition of the Lie bracket on g. For g ∈ G,
one can define the group isomorphism Ig : h �→ ghg−1. It is differentiable, and the



Appendix B: Elements from Differential Geometry 447

differential of Ig at h = id is denoted Adg : TidG → TidG. We therefore have, for
η ∈ TidG,

Adg(η) = d Ig(id)η.

The transformation Ad : g �→ Adg maps G into the group of linear transformations
of TidG and is called the adjoint representation of G.

Now consider the mapUη : g �→ Adg(η), which is defined on G and takes values
in TidG. One can show [142] that

dUη(id)ξ = [ξ, η]. (B.2)

The notation adξη = [ξ, η] is commonly used to represent the Lie bracket. The trans-
formation ξ �→ adξ now maps TidG (or, after identification, the Lie algebra g) to the
set of linear transformations of TidG and is called the adjoint representation of g.

When a vector field X ∈ g is given, the solution of the associated differential
equation

∂tμ(t) = Xμ(t) (B.3)

with initial conditionμ(0) = id always exists, not only for small time, but for arbitrary
times. The small time existence comes from the general theory of ordinary differential
equations, and the existence for arbitrary time comes from the fact that, wherever it
is defined, μ(t) satisfies the semi-group property μ(t + s) = μ(t)μ(s): this implies
that if μ(t) is defined on some interval [0, T ], one can always extend it to [0, 2T ] by
letting μ(t + T ) = μ(t)μ(T ) if t > 0. The semi-group property can be proved to be
true as follows: if X = X ξ , for ξ ∈ TidG, the ordinary differential equation can be
written

∂tμ(t) = dRμ(t)(id)ξ.

Consider now ν : s �→ μ(t + s). It is a solution of the same equation with initial
condition ν(0) = μ(t). If ν̃(s) = μ(s)μ(t), we have

∂s ν̃(s) = dRμ(t)(μ(s))(∂sμ(s)) = dRμ(t)(μ(s)) dRμ(t)(id)ξ

= d(Rμ(t) ◦ Rμ(s))(id)ξ

= dRν(s)(id)ξ.

Thus, ν and ν̃ satisfy the same differential equation, with the same value, μ(t), at
s = 0. They therefore coincide, which is the semi-group property.

The solution of (B.3) with initial condition id is called the exponential map on G,
and is denoted exp(t X) or exp(tξ) if X = X ξ . The semi-group property becomes
exp((t + s)X) = exp(t X) exp(sX). Using the exponential map, Eq. (B.2) can be
written as

∂t
[
∂s exp(tξ) exp(sη) exp(−tξ)|s=0

]
|t=0

= [ξ, η] .

We finally quote one last important property of the exponential map [87, 142]:
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Theorem B.16 There exists a neighborhood V of 0 in g and a neighborhood U of
id in G such that exp is a diffeomorphism between V and U.

B.4.3 Finite-Dimensional Transformation Groups

Finite-dimensional transformation groups, and in particular matrix groups, are fun-
damental examples of Lie groups. They also provide important transformations in
the analysis of shapes. Denote by Mn(R) the n2-dimensional space of real n by n
matrices. For i, j ∈ {1, . . . , n}, denote by ∂i j the matrix with (i, j) coefficient equal
to 1, and all others to 0. Let IdRn denote the identity matrix of size n.

Linear Groups

GLn(R) is the group of invertible matrices in Mn(R). It is open in Mn(R) and
therefore is a submanifold of this space, of same dimension, n2. The Lie algebra of
GLn(R) is equal toMn(R), and is generated by all (∂i j , i, j = 1, . . . , n).

If ξ ∈ Mn(R), the associated right-invariant vector field is X ξ : g �→ ξg. The
adjoint map is η �→ gηg−1, and the Lie bracket is [ξ, η] = ξη − ηξ. Finally, the
exponential is the usual matrix exponential:

exp(ξ) =
∞∑

k=0

ξk

k! .

Special Linear Group

SLn(R) is the subgroup of GLn(R) containing all matrices with determinant 1. The
determinant is a C∞ function. Its derivative at g ∈ GLn(R) is a linear map from
Mn(R) to R, given by d(det(g)) ξ = det(g) trace(g−1ξ). Since this differential has
rank one, TheoremB.12 implies that SLn(R) is a submanifold of GLn(R), of dimen-
sion n2 − 1. The Lie algebra of SLn(R) is defined by d(det(IdRn )) ξ = 0, and there-
fore consists of matrices with vanishing trace.

Rotations

On(R) is the group of matrices g such that gT g = IdRn . SOn(R) is the subgroup of
On(R) containing all matrices of determinant 1. The map Φ : g �→ gT g is C∞, and
its differential is

dΦ(g)ξ = gT ξ + ξT g.

The null space of dΦ(g) therefore contains matrices ξ = gη such that η is skew
symmetric, and has dimension n(n − 1)/2. Thus, again by TheoremB.12, On(R)

and SOn(R) are submanifolds of Mn(R), of dimension n(n − 1)/2.
The Lie algebra of On(R) is the space of skew-symmetric matrices of size n.
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Similitudes

Simn(R) is the group of similitudes. It is composed ofmatrices g such that gT g = λId,
for some λ > 0 in R. In fact, one must have λ = det(g)2/n , so that Simn(R) is the
set of invertible matrices for which Φ(g) = 0, with

Φ : GLn(R) → Mn(R)

g �→ gT g − det(g)2/nIdRn .

One can check thatΦ has constant rank and that Simn(R) is a submanifold ofMn(R)

of dimension 1 + n(n − 1)/2.
The Lie algebra of Simn(R) contains all matrices of the form αIdRn + ξ, with ξ

skew-symmetric.

Affine Groups

Groups of affine transformations are obtained by combining the previous linear trans-
formations with translations. Let G be one of the linear groups we have discussed.
Associating a translation to a vector in R

n , we can represent an affine transformation
with linear part in G by a pair (g, a) with g ∈ G and a ∈ R

n . The set of such pairs
is denoted G � R

n . This notation indicates that we have a semi-direct product: if
(g, a) and (g′, a′) belong to G � R

n , their product must be defined (in order to be
consistent with the composition of maps) by

(g, a)(g′, a′) = (gg′, ga′ + a)

(and not (gg′, a + a′), which would correspond to a direct product).
One can also find alternative notations for some affine groups, like GAn(R) for

GLn(R) � R
n , or SAn(R) for SLn(R) � R

n .
Affine groups of dimension n can also be represented as subgroups of GLn+1(R):

to (g, a) ∈ G × R
n , one can associate

Φ(g, a) =
(

g a
0 1

)
.

It is easy to check that this is a bijection and a group isomorphism, in the sense that

Φ(g, a)Φ(g′, a′) = Φ((g, a)(g′, a′)).

This allows one to identify the Lie algebra of G � R
n with the set of matrices of the

form (
A a
0 0

)

where A belongs to the Lie algebra of the subgroup of GLn(R) on which the affine
group is built, and a ∈ R

n .
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Projective Group

Definition B.17 The set of real lines passing through the origin in an (n + 1)-
dimensional vector space is the n-dimensional projective space, denoted by P

n(R).

An element of P
n(R) is therefore a collection of lines m = R x = {λx,λ ∈ R},

x being a non-vanishing vector in R
d+1. There is no loss of generality in assuming

that x has norm 1, and since x and −x provide the same point m, Pn(R) can be seen
as the sphere Sn in which antipodal points are identified.

The set P
n(R) is a differential manifold of dimension n. It can be equipped with

the quotient topology of the space R
n+1 under the equivalence relation of being

collinear with the origin (we skip the details). One can define the local chart (Ui , Φi )

by
Ui = {x = (x1, . . . , xi−1, xi+1, . . . , xn+1) ∈ R

n} (B.4)

and

Φi : Ui → R
n

(x1, . . . , xi−1, xi+1, . . . , xn+1) �→ R(x1, . . . , xi−1, 1, xi+1, . . . , xn+1).

(B.5)

One can easily check that the family ((Ui , Φi ), i = 1, . . . , d) forms an atlas of
P
n(R).

Definition B.18 Because linear maps transform lines into lines, one can associate
to each g ∈ GLn+1(R) an induced transformation of P

n(R), still denoted g, defined
by

g(R x) = R(gx).

The set of all such transformations g : P
n(R) → P

n(R) is a group, called the
n-dimensional projective group, and denoted PGLn(R). This group is a Lie group
(we skip the proof). It can be identified to the quotient of GLn+1(R) with respect to
the relation: g ∼ h if there exists aλ �= 0 such that g = λh. This group has dimension
(n + 1)2 − 1.

The Lie algebra of PGLn(R) is the Lie algebra of GLn+1(R) in which twomatrices
are identified if they differ by a matrix of the form αIdRn+1 . It can also be identified
with the set of (n + 1) by (n + 1) matrices with zero trace.

A local chart for this group in a neighborhood of the identity is formed by the set
U of matrices g = (gi j ) ∈ GLn+1(R) such that gn+1,n+1 = 1, with Φ(g) = Rg.



Appendix B: Elements from Differential Geometry 451

B.5 Group Actions

B.5.1 Definitions

One says that a group G acts (on the left) on a set M if there exists a mapping Φ

from G × M to M which associates to a pair (g, p) the result of the action of g on
p with the properties that Φ(g, Φ(h, p)) = Φ(gh, p) and Φ(id, p) = m. The map
Φ is a right action if the first property is replaced by Φ(g, Φ(h, p)) = Φ(hg, p).
Left actions are usually denoted (g, p) �→ g · p, and right actions (g, p) �→ p · g,
and the associativity property becomes g · (h · p) = (gh) · p in the first case and
(p · h) · g = p · (hg) in the second case.

The orbit, or coset, of p ∈ M under a left action is the set G · p = {g · p, g ∈ G}.
Orbits either coincide or are disjoint, and they form a partition of M . We let M/G =
{G · p, p ∈ M}. A similar definition holds for right actions.

The action of G is transitive if there exists only one orbit, i.e., for all p, p′ ∈ M ,
there exists a g ∈ G such that g · p = p′.

The isotropy subgroup of a point p ∈ M is the collection of elements g ∈ G such
that g · p = p. It is denoted Isop(G), and forms a subgroup of G, (i.e., it is closed
under group products and under group inversion). The isotropy subgroup of M is the
intersection of all Isop(G), and is denoted IsoM(G).

When G is a Lie group and M is a manifold, one implicitly assumes that, in
addition, the map (g, p) �→ g · p is C∞.

B.5.2 Homogeneous Spaces

If H is a subgroup of G, the map (h, g) �→ gh defines a right action of H on G.
The coset space G/H is the set of orbits {[g]H = gH, g ∈ G} for this action. When
G is a Lie group and H a closed subgroup ofG,G/H is called a homogeneous space.
The differential structure of G can be transferred to G/H to provide this set with the
structure of a differential manifold. To achieve this, one expresses the Lie algebra
of G as a direct sum g = h + q, where h is the Lie algebra of H , and shows that
the exponential map of G restricted to q provides, after projection on G/H , a local
chart of G/H in a neighborhood of [id]H ∈ G/H . We refer to [142] for a complete
construction.

The group G acts on the left on G/H through g · (g′H) = (gg′)H . This action is
transitive and H is the isotropy subgroup of [id]H . Conversely, the following is true.

Proposition B.19 Let G be a group acting transitively on the left on a set M.
Fix p ∈ M and let H = Isop(G) be the isotropy subgroup of p. The map
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Φ : G/H → M

[g]H �→ g · p

is a bijection which commutes with the actions of G on G/H and of G on M.

Proof First notice that thismapping is well-defined: if [g]H = [g′]H , then g−1g′ ∈ H
so that g−1 · (g′ · p) = p, which implies g′ · p = g · p. It is onto because the action
is transitive, and one-to-one because g · p = g′ · p if and only if [g]H = [g′]H . The
fact thatΦ commutes with the actions means thatΦ(g · [g′]H ) = g · Φ([g′

H ]), which
is obvious. �

When G is a Lie group and M a differential manifold, one shows [142] that,
in addition, Φ is differentiable; this provides an identification between M and a
homogeneous space.

B.5.3 Infinitesimal Actions

Many Lie group concepts can be interpreted infinitesimally as essentially equivalent
concepts on the group Lie algebra. This applies, in particular, to group actions.

We consider a left action, and focus on the mapping

Φp : G → M

g �→ g · p,

where G is a Lie group acting on a manifold M . Let ξ be an element of g, the Lie
algebra of G (i.e., a tangent vector to G at the identity id). For all p ∈ M , we let

ξ · p = dΦp(id)ξ.

Define ρ(ξ) : p ∈ M �→ ξ · p, which is a vector field on M , so that ρ itself is a
mapping ρ : g → X (M), called the infinitesimal action of G on M .

The map ρ being linear, its range, ρ(g), forms a linear subspace of X (M). Its
dimension is finite and must be smaller than or equal to the dimension of G. Its
elements are called infinitesimal generators.

For the dimension of ρ(g) to be strictly smaller than the dimension of G, there
must exist a non-vanishing ξ such that ρ(ξ) = 0. It is easy to see that this implies
that exp(tξ) · p = p for all p ∈ M , which means that the isotropy group ofG is non-
trivial. Conversely, one can show that any element ξ of the Lie algebra of IsoM(G)

is such that ρ(ξ) = 0.
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B.6 Riemannian Manifolds

B.6.1 Introduction

In this section, M is a differential manifold of dimension d.

Definition B.20 A Riemannian structure on M is the definition of a C∞ inner prod-
uct between vector fields:

(X,Y ) ∈ X (M) × X (M) �→ 〈
X , Y

〉 ∈ C∞(M)

such that
〈
X , Y

〉 = 〈Y , X
〉
,
〈
X , X

〉 ≥ 0,
〈
X , X

〉 = 0 if and only if X = 0, and for
all ϕ,ψ ∈ C∞(M)

〈
ϕX + ψX ′ , Y

〉 = ϕ
〈
X , Y

〉+ ψ
〈
X ′ , Y

〉
.

The value of
〈
X , Y

〉
at p ∈ M will be denoted

〈
X , Y

〉
p, and it can be shown that

it depends only on X p and Yp. An equivalent construction is to assume that, for all
p ∈ M , an inner product denoted

〈· , ·〉
p
is given on TpM , which is such that, if X and

Y are vector fields, the function p �→ 〈
X p , Yp

〉
p is C

∞. We shall use the notation

|ξ|p =
√〈

ξ , ξ
〉
p .

In a local chart, C = (U, Φ), with coordinates (x1, . . . , xd), a tangent vector at
p ∈ U can be written as a linear combination of the basis vectors ∂i,p, i = 1, . . . , d.
From elementary linear algebra, there exists a positive definite symmetric matrix
Sp, the coefficients of which being C∞ functions of p, such that, if ξ =∑λi∂i,p,
η =∑μi∂i,p, then, 〈

ξ , η
〉
p = λT Spμ .

(Indices in summations always go from 1 to d, here and below.)
The Riemannian structure permits us, among other things, to measure lengths

of displacements on the manifold. If μ : [0, T ] → M is continuous and piecewise
differentiable, its length is defined by

L(μ) =
∫ T

0
|μ̇|μ(t) dt.

In other terms, one defines infinitesimal length elements from norms on tangent
spaces to M . Similarly, the energy of μ is defined by

E(μ) = 1

2

∫ T

0
|μ̇|2μ(t) dt.
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The extremal curves of the energy are called geodesics (one says that a curve is
an extremal of a given variational problem if any first-order local perturbation of
the curve has only second-order effects on the functional). In a chart where μ(t) =
(y(1)(t), . . . , y(n)(t)), and where S(y) = (s(i j)(y)) is the matrix associated to the
inner product, we have

|μ̇|2μ(t) =
∑

i j

s(i j)(y(t))ẏ(i) ẏ( j).

Making a local variation y(i) �→ y(i) + h(i), we find that extremals of the energy are
characterized by: for all i

∫ T

0

⎛

⎝
∑

l j

ḣ(l)s(l j)(y(t))ẏ( j) +
∑

i, j,l

ẏ(i) ẏ( j)∂l s
(i j)h(l)

⎞

⎠ dt = 0,

which yields, after an integration by parts

−2
∫ T

0

(∑

l, j

h(l)∂t
(
s(l j)(y(t))ẏ( j)

)+
∑

i, j,l

ẏ(i) ẏ( j)∂l s
(i j)h(l)

)
dt = 0.

This relation being true for every h, we can conclude that extremals must satisfy, for
all l = 1, . . . , d,

−2
∑

j

s(l j)(y)ÿ( j) − 2
∑

i j

∂i s
(l j) ẏ(i) ẏ( j) +

∑

i, j

ẏ(i) ẏ( j)∂l s
(i j) = 0.

Let s̃(i j) denote the coefficients of S−1. The previous identities give (with a sym-
metrized second term)

−2 ÿ(k) =
∑

i j

ẏ(i) ẏ( j)
∑

l

s̃(kl)(∂i s
(l j) + ∂ j s

(li) − ∂l s
(i j)).

Defining

Γ k
i j = 1

2

∑

l

s̃(kl)(∂i s
(l j) + ∂ j s

(li) − ∂l s
(i j)), (B.6)

this is
ÿ(k) +

∑

i, j

Γ k
i j ẏ

(i) ẏ( j) = 0. (B.7)

The coefficients Γ k
i j only depend on the Riemannian metric. They are called the

Christoffel symbols of themanifold at a given point. Therefore, geodesics (expressed
in a local chart) are solutions of a second-order differential equation. This implies
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that they are uniquely specified by their value at time, say, t = 0 and their derivative
μ̇ at t = 0. Using this property, one defines the Riemannian exponential at p ∈ M in
the direction v ∈ TpM by

Expp(tv) = μ(t), (B.8)

where μ(·) is the geodesic with μ(0) = p and μ̇(0) = v. (The capital “E” and the
index p differentiate this notation from the Lie group exponential that was defined
previously.) Such a geodesic exists, as a solution of a differential equation, at least for
small times, so that the exponential is well-defined at least for small enough t . If this
exponential exists at all p’s for all times, M is said to be a (geodesically) complete
manifold. The Riemannian exponential can be restricted to some neighborhood of 0
in TpM to form a local chart of the manifold.

B.6.2 Geodesic Distance

When M is a Riemannian manifold, one defines the distance between two points p
and p′ in M to be the length of the shortest path that links them, setting

d(p, p′) = inf{L(μ) : μ : [0, 1] → M,

μ continuous, piecewise differentiable, μ(0) = p,μ(1) = p′}.

The following theorem is standard, and may be proved as an exercise or read, for
example, in [87]:

Theorem B.21 The function d which is defined above is a distance on M.Moreover,

d(m,m ′) = inf{√2E(μ) : μ : [0, 1] → M,

μ continuous, piecewise differentiable, μ(0) = p,μ(1) = p′}.

B.6.3 Lie Groups with a Right-Invariant Metric

On Lie groups, Riemannian structures can be coupled with invariance constraints.
As seen in Chap.7 when considering groups of diffeomorphisms, the suitable way
of “moving” within a group is by iterating small steps through the composition rule.
For a curve g(·) on the group, the length of a portion between g(t) and g(t + ε)
should measure the increment g(t + ε)g(t)−1. Fix t and let u(ε) = g(t + ε)g(t)−1:
one has u(0) = 0 and g(t + ε) = u(ε)g(t). If there is a Riemannian structure on G,
the length of the displacement from g(t) to g(t + ε) is

∫ t+ε

t
|ġs |g(s) ds � ε |∂εg(t + ε)|g(t) ,

https://doi.org/10.1007/978-3-662-58496-5_7
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where the last derivative is taken at ε = 0. The right-invariance constraint says that
this length should in fact only be measured by the increment on the group and
therefore be a function of u(ε). But u(·) is itself a curve on G, between id and
g(t + ε)g(t)−1, and its length is, at first order, given by ε |u̇(0)|id. Thus, with the
invariance constraint, we should take

|ġ(t)|g(t) = |u̇(0)|id .

Introduce the right translation in the Lie group:

Rg : G → G

h �→ hg

so that g(t + ε) = Rg(t)(u(ε)). We have, by the chain rule,

ġ(t) = dRg(t)(id)u̇(0).

This leads to the following definition:

Definition B.22 A Riemannian metric on a Lie group G is said to be right-invariant
if and only if, for all u ∈ g = TidG, for all g ∈ G

∣∣dRg(id)u
∣∣
g

= |u|id .

Thus, themetric on any TgGmaybe obtained from themetric ongby right translation.
The conservation of momentum (see Sect. 10.5) is in fact true in any Lie group

with a right-invariant metric. The proof is very similar to the one we have given for
diffeomorphisms [18, 19, 188].

B.6.4 Covariant Derivatives

We briefly describe here how a Riemannian structure leads naturally to the notion
of a directional derivative of a vector field relative to another. This can provide an
introduction to, and a motivation for, the more abstract theory of affine connections
[87]. This will allow us to interpret a geodesic as a curve with vanishing acceleration,
similar to straight lines in Euclidean spaces.

Let us work on the simpler case in which M is a submanifold of R
N . In this case,

the tangent spaces to M can be considered as affine subspaces of R
N , which inherit

its standard dot product, which is the Riemannian metric on M . A curve μ on M is
also a curve in R

N , and its energy is given by

E(μ) = 1

2

∫ 1

0
|μ̇|2 dt,

https://doi.org/10.1007/978-3-662-58496-5_10
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where the norm here is simply the Euclidean norm in R
N . To compute the geodesics,

we need the extremals of E , subject to the constraint that the curves must remain
on M .

For such an extremal, μ, and a small perturbation h such that h(t) ∈ Tμ(t)M for
all t , we have

E(μ + h) � E(μ) +
∫ 1

0

〈
μ̇ , ḣ

〉
dt + o(h) = E(μ) −

∫ 1

0

〈
μ̈ , h

〉
dt + o(h).

Thus, μ is an extremal if and only if

〈
μ̈ , h

〉 = 0

for all h ∈ Tμ(t)M , which is equivalent to, for all t

Πμ(t) (μ̈) = 0,

where Πp is the orthogonal projection of R
N on TpM , with p ∈ M . This provides

another characterization of geodesics (which does not require the introduction of
local coordinates), in the particular case of a submanifold of R

N .
Still restricting ourselves to this case, let us fix a curve μ on M , and define, for

all vector fields Y on M , the derivative of Y along μ by

DY

Dt |μ(t)

= Πμ(t)
(
∂t Yμ(t)

)
.

This is a vector field along μ, and the previous computation shows that a geodesic is
characterized by the equation

Dμ̇

Dt
= 0.

One can show (we skip the details) that the expression in a local chartC = (U, Φ)

of the derivative along μ of a vector field Y =∑d
i=1 ηi∂i is given by

d∑

i=1

ρi∂i,μ(t)

with

ρi = ∂(ηi ◦ μ(t)) +
d∑

j,k=1

Γ i
jk(μ(t))η j (μ(t))ηk(μ(t)).

TheΓ i
jk’s are the sameChristoffel symbols as defined in (B.6). Introducingλ1, . . . ,λd

such that
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μ̇(t) =
d∑

i=1

λi (t)∂xi (μ(t))

one can write

ρi =
d∑

j=1

λ j (t)∂x j ηi +
d∑

j,k=1

Γ i
jk(μ(t))η j (μ(t))ηk(μ(t)).

This expression is intrinsic: it does not depend on the ambient space R
N , but on

quantities that are computed on the manifold. So, assuming now that M is a general
Riemannian manifold, we can define, in a chart C = (U, Φ), and for two vector
fields X =∑d

i=1 ξi∂i and Y =∑d
i=1 ηi∂i , a third vector field, called the covariant

derivative of Y along X , by

(∇X Y )p =
d∑

i=1

ρi∂i,p

with

ρi =
d∑

j=1

ξ j∂ jηi +
d∑

j,k=1

Γ i
jkη jξk .

(Note that (∇X Y )p only depends on the coordinates of X at p.)
From our definition of the Christoffel symbols in the general case, we see that

curves of minimal energy still satisfy

Dμ̇

Dt
:= ∇μ̇ μ̇ = 0.

The equation ∇μ̇ μ̇ is therefore called the geodesic equation for curves on M . Curves
that satisfy it are called geodesics, even when they are not energy-minimizing
(although they are always locally so, see [87]).

Covariant derivatives can be defined inmore general contexts than on Riemannian
manifolds [87, 142]. The one we have defined above is adapted to the Riemannian
metric and called the Levi-Civita connection. It satisfies the two characteristic prop-
erties:

(1) Z
〈
X , Y

〉 = 〈∇Z X , Y
〉+ 〈X , ∇Z Y

〉

(2) ∇X Y − ∇Y X = [X,Y ] with [X,Y ] = XY − Y X,
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and is explicitly defined by the identity

〈∇XY , Z
〉 = 1

2

(
X
〈
Y , Z

〉+ Y
〈
X , Z

〉− Z
〈
Y , X

〉
(B.9)

− 〈[X, Z ] , Y
〉− 〈[Y, Z ] , X

〉+ 〈[X,Y ] , Z
〉)

.

B.6.5 Parallel Transport

Parallel transport (or translation) is the displacement of a vector along a curve with
vanishing covariant derivative. It is the generalization of translation in Euclidean
spaces. Given a curve t �→ μ(t) on a Riemannian manifold M , a time-dependent
tangent vector t �→ X (t)with X (t) ∈ Tμ(t)M is said to be parallel onμ if its derivative
along μ vanishes, i.e.,

∇μ̇X = DX

Dt
= 0.

So, by definition, a geodesic is a curve with derivative moving parallel to itself.
Parallel transport derives from a first-order differential equation (for X ) along the
curve, which, in a chart, is given by:

∂t (ρk ◦ μ) +
d∑

i, j=1

Γ k
i j ρi ◦ μ μ̇ j = 0

with X =∑d
k=1 ρk∂xk . This first-order linear system of equations in ρ ◦ μ can be

integrated, with a unique solution, as soon as an initial condition ρ ◦ μ(0) is given.
This leads to the following definition.

Definition B.23 LetM be aRiemannianmanifold, p ∈ M and ξ0 ∈ TpM . Letμ be a
curve onM withμ(0) = p. The parallel transport of ξ0 along μ is the time-dependent
vector ξ(t) ∈ Tμ(t)M such that ξ(0) = ξ0 and

∇μ̇ξ = 0.

It is important to remember that parallel transport is only defined along a curve.
If p, p̃ ∈ M , ξ ∈ TpM , and μ and μ̃ are two curves linking p to p̃, the results of the
parallel transport of ξ along μ and μ̃ are generally distinct.
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B.6.6 A Hamiltonian Formulation

Geodesics in a chart have a Hamiltonian formulation that is sometimes convenient.
Define the function (Hamiltonian)

H(p, a) = 1

2
aT S(p)−1a, (B.10)

where S is the metric, p ∈ M and a is a d-dimensional vector. One can prove that a
curve t �→ m(t) on M is a geodesic if and only if it satisfies the system

⎧
⎨

⎩

∂tm = S(μ(t))−1a(t) = ∂aH(m(t), a(t)),

∂t a = −∂pH(m(t), a(t)).

(This is an immediate consequence of the Pontryagin maximum principle that will
be discussed in Appendix D.) Introducing the coefficients s̃(i j) of S−1, this is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tmi =
d∑

j=1

s̃(i j)(m)a j ,

∂t ai = −1

2

d∑

k,l=1

akal∂i (s̃
(kl))(m).

Note that the energy of the curve is (at time t)

1

2

〈
ṁ , ṁ

〉
m = 1

2
ṁT S(m)ṁ = 1

2
aT ṁ.

The vector a(t) is cotangent to the motion (because it acts as a linear form on tangent
vectors) and must be considered as an element of TpM∗. It is the momentum of the
motion.

The covariant derivative can also be written in terms of a. If a = SX , b = SY
and if we let

∇∗
a b = S(∇XY ),

then, the kth coordinate of ∇∗
a b is

(∇∗
a b)k =

d∑

j=1

∂ j (bk)X j

+1

2

⎛

⎝
d∑

i, j=1

∂k s̃
(i j)aia j +

d∑

i, j,l,q=1

skl∂ j s
(lq)(bq X j − aqY j )

⎞

⎠ .
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This expression also provides the equation for parallel translation of b along a curve
m with Sṁ = a, namely

∂t bk + 1

2

⎛

⎝
d∑

i, j=1

∂k s̃
(i j)aib j +

d∑

j,l,q=1

skl∂ j s
(lq)(bq X j − aqY j )

⎞

⎠ = 0.

B.6.7 Riemannian Submersions

All submanifolds of R
d (or of a Riemannian manifold) are Riemannian manifolds

when they inherit the inner product of the larger space. This provides a large number
of examples of such manifolds.

Another way to define metrics on manifolds is through Riemannian submersions.
A differentiable mapping π : M → B (where B and M are differential manifolds of
respective dimensions k ≤ d) is a submersion if π is onto and dπ(p) has full rank,
d, for all p ∈ M .

Assume thatM and B are Riemannian and that π : M → B is a submersion. Then
the set Fb = π−1(b) is a submanifold of M for any b ∈ B, with dimension d − k. For
p ∈ M , we let Vp = TpFπ(p) (vertical space at p) andHp = V⊥

p (horizontal space at
p), where the orthogonality is takenwith respect to themetric onM . Then, dπ(p)v =
0 for any v ∈ Vp (because π is constant on Fπ(p), so that Vp = Null(dπ(p)). This
shows that dπ(p) restricted toHp is an isomorphism between Hp and Tπ(p)M , i.e.,
it is one-to-one and onto. One says that π is a Riemannian submersion if and only if,
for all p ∈ M , this isomorphism is, in addition, an isometry, i.e.,

|dπ(p)h|π(p) = |h|p (B.11)

for all h ∈ Hp.
Given a submersion π : M → B and a Riemannian metric on M , one can define

a Riemannian metric on B so that π is a Riemannian submersion if and only if the
horizontal spaces are isometric via the submersion, i.e.,

h1 ∈ Hp1 , h2 ∈ Hp2 , dπ(p1)h1 = dπ(p2)h2 =⇒ |h1|p1 = |h2|p2 . (B.12)

Notice that, for b ∈ B, ξ ∈ TbB, and b = π(p), there is a unique h ∈ Hp such
that dπ(p)h = ξ, which is called the horizontal lift of ξ to TpM . Equation (B.12)
expresses the condition that the norms of all horizontal lifts of a given tangent vector
to M must coincide.

Another way to express the relationship between the metrics is via

|u|π(p) = min
{|h|p, dπ(p)h = u

}
(B.13)
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for u ∈ Tπ(p)B, which derives from the orthogonality of Vp and Hp. To be well
defined, this formula should only depend on π(p). This requirement is equivalent to
(B.12).

An important property of Riemannian submersions is that geodesics on M that
start horizontal remain so over all times.

Proposition B.24 Let π : M → B be a Riemannian submersion. Assume that μ :
[0, 1] → M is a geodesic such that μ̇(0) ∈ Hμ(0). Then μ̇(t) ∈ Hμ(t) for all t ∈ [0, 1].
Proof We start with a lemma that defines horizontal lifts of curves on B.

Lemma B.25 If μ∗ is a curve on B and p ∈ M such that π(p) = μ(0), there exists
a unique curve μ̂, called the horizontal lift of μ∗ to M starting at p, such that
π(μ̂) = μ∗, μ̂(0) = p and ∂t μ̂(t) horizontal for all t .

To prove this lemma, we note that the lift can be defined (locally) by taking local
charts around p inM and aroundμ∗(0) in B such that π in this chart maps coordinates
x1, . . . , xd to x1, . . . , xk . If the metric of M in this chart takes the form

S =
(

A B
BT C

)

(where A is k by k), a horizontal vector takes the form h = (h1,−C−1BT h1)T in the
chart, as can be checked by expressing the condition that hT Sv = 0 for any vertical
vector v = (0, v2)T . Letting ξ∗ denote the expression of μ∗ in the chart, one can
define the lift as ξ̂ = (ξ∗, η) where η satisfies η̇ = −C−1BT ξ̇∗, which characterizes
η uniquely once η(0) is specified. This specifies the lift in a neighborhood of μ(0),
and it now suffices to extend it as needed by iterating the construction.

If X∗ is a vector field on B, there exists a unique horizontal vector field X on M
such that dπ(p)X (p) = X∗(π(p)) for all p ∈ M . Let∇ and∇∗ denote the covariant
derivatives on M and on B. One then has the following lemma.

Lemma B.26 If X and Y are horizontal,

dπ ∇XY = ∇∗
X∗Y ∗. (B.14)

Moreover, ∇X X is also horizontal.

To show the first statement of this lemma, it suffices to notice that the left-hand side
satisfies the properties of a covariant derivative, including those that characterize
the Levi-Civita connection on B, and we skip the details. For the second one, let-
ting V be a vertical vector field onM , one needs to show that

〈∇X X , V
〉 = 0. One has

0 = X
〈
X , V

〉 = 〈∇X X , V
〉+ 〈X , ∇XV

〉
. Moreover

〈
X , ∇XV

〉 = 〈X , ∇V X
〉+〈

X , [X, V ]〉, and the conclusion comes from the fact that both terms on the right-
hand side vanish: the first one because 0 = V

〈
X , X

〉 = 2
〈∇V X , X

〉
, because the

metric is constant along vertical directions; the second one because dπ[X, V ] =
[dπX, dπV ] = 0, so that [X, V ] is vertical.
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Going back to the statement of PropositionB.24, let μ∗ denote the geodesic in
B such that μ̇∗(0) = dπ(μ(0))μ̇(0) and μ̂ its horizontal lift at μ(0). Equation (B.14)
implies that Dμ̂/Dt is horizontal, but, since it is also vertical by the second part of the
lemma, we see that Dμ̂/Dt = 0 so that μ̂ is a geodesic on M . We have μ(0) = μ̂(0)
(by construction) and ∂μ(0) = ∂μ̂(0) (because they are both horizontal and project
on ∂μ∗(0)). From the uniqueness of geodesics given initial position and derivative,
we find that μ = μ̂, so that μ is horizontal. �

While proving PropositionB.24, we have also proved the following important
result.

Proposition B.27 Let π : M → B be a Riemannian submersion. If μ∗ is a geodesic
on B, then all its horizontal lifts are geodesics on M.

The relationship between parallel transport on M and on B is less direct. If γ∗ is
a curve on B and ξ∗

0 ∈ Tγ∗(0)B, the parallel transport of ξ∗
0 along γ∗ is defined by

D∗ξ∗

Dt
= 0

with the notation D∗ξ∗/Dt = ∇∗
γ̇∗ξ∗ for a vector field along γ∗. If p is such that

π(p) = γ∗(0) and γ(t) is the unique horizontal curve such that γ(0) = p and
π(γ(t)) = γ∗(t) for all t , then, letting ξ denote the horizontal lift of ξ∗,

D∗ξ∗

Dt
= dπ(γ(t))

Dξ

Dt
.

Parallel transport on B can therefore be described in terms of the submersion and
the metric on M via

dπ(γ(t))
D

Dt
(�γ(t)(ξ

∗(t))) = 0, (B.15)

where �p : Tπ(p)B → Hp denotes the horizontal lift.
More details on Riemannian submersions can be found in [225]. We now review

some examples of Riemannian manifolds built according to this principle.

Unit Spheres and Projective Spaces

Take B = P
d(R), which, we recall, is the set of all real lines passing through 0

in R
d+1. Letting M = Sd ⊂ R

d+1, B can also be considered as the set of all pairs
{p,−p} for p ∈ M with the surjection π : p �→ {−p, p}. It is easy to show that π
is smooth: consider the local charts (Ui , Φi ) described for the projective space in
Eqs. (B.4) and (B.5). Consider the charts (Ui , Φ

+
i ) and (Ui , Φ

−
i ) on Sd , with

Φ+(x1, . . . , xi−1, xi+1, . . . , xn+1) = (x1, . . . , xi−1, 1, xi+1, . . . , xn+1)/λ,

where λ =
√
x21 + · · · + x2i−1 + 1 + x2i+1 + · · · + x2n+1 and Φ− = −Φ+. Then the

mapping π interpreted in coordinates between (Ui , Φi ) and (Ui , Φ
±
i ) is the identity,

proving that it is smooth and has a full rank.
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Trivially, the vertical fiber above b = {−p, p} ∈ B is b itself (considered as a
subset of Sd ), and the tangent planes at these points are clearly isometric via the
submersion π. One can therefore define a Riemannian metric on TbB by duplicating
the one on Sd at one of the antipodal points that maps onto b.

Stiefel and Grassmann Manifolds

We now let M = St(n, k) be the set of all orthonormal families of size k in R
n

and B = Gr(n, k) the space of all subspaces of dimension k in R
n . This example

generalizes the previous one because Sd = St(d + 1, 1) and P
d = Gr(d + 1, 1).

Both M and B are manifolds: M can be identified with the subset of Mn,k(R)

comprising n × k matrices A that satisfy the equation AT A = IdRk . The mapping
Φ : Mn,k(R) → Mk(R) defined by Φ(A) = AT A is such that dΦ(A)H , which is
equal to AT H + HT A, is a symmetric matrix. Conversely, given any symmetric
matrix, S, one has dΦ(A)(AS/2) = S if AT A = IdRk , which shows that dΦ(A) is
a surjection onto the space of symmetric matrices. This shows that Φ has constant
rank, given by k(k + 1)/2, on M , which is therefore a submanifold of Mn,k(R) of
dimension nk − k(k + 1)/2. M also inherits the Riemannian structure of this space,
with |H |2A = trace(HT H).

To define local charts on B = Gr(n, k), first notice that k linearly independent
vectors in R

n can be represented as an n by k matrix A = (xi j ) such that, for at
least one tuple J = (r1, . . . , rk) with 1 ≤ r1 < · · · < rk ≤ n, the submatrix AJ with
entries (xri j , i, j = 1, . . . , k) is invertible. A change of basis in the subspace gener-
ated by the columns of A can be obtained by multiplying A on the right by a k by k
invertible matrix. In particular, the matrix Ã = A A−1

J generates the same subspace
and satisfies ÃJ = IdRk (and is the only matrix with both these properties).

For a k-tuple J as above, let U = Mn−k,k , the set of all (n − k) × k matrices
and ΦJ : U → Gr(n, k) be such that ΦJ (A) = Range( Â), where Â is such that
ÂJ = IdRk and ÂJ c = A, where the latter expression denotes the (n − k) × k matrix
obtained by removing from Â the rows corresponding to indices in J . The family
(U, ΦJ ) provide an atlas on B, which therefore has dimension k(n − k). Note that
the transformation ΦJ,R in which the condition ÂJ = IdRk is replaced by ÂJ = R
can also be chosen as a local chart for any R ∈ GLk(R).

Consider the mapping π : M → B defined by π(A) = Range(A). Then π is a
submersion. To see this, first notice that π is the restriction to M of the mapping
π̂ : Mn,k → B, also defined by π̂(A) = Range(A). Then π̂ interpreted between the
charts π̂−1(ΦJ (U )) andU is simply the transformation A �→ (A A−1

J )J c = AJc A
−1
J ,

which is smooth. This implies that π̂ and therefore π is smooth. One has (with the
same chart interpretation)

dπ̂(A)H = HJc A
−1
J − AJc A

−1
J HJ A

−1
J ,

which vanishes when HJc = AJc A
−1
J HJ so that Null(dπ̂(A)) has dimension

k2 = dim(Mnk) − dim(B), which shows that dπ̂ has full rank. Note that this condi-
tion can also be written as H = AH̃ for some H̃ ∈ Mk(R) (namely H̃ = A−1

J HJ ).
The fact that these matrices belong to the null space of dπ(A) results from the
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observation that π(AR) = π(R) for any R ∈ GLk(R). If A ∈ M (so that AT A = Id),
matrices H in the intersection of this null space with the tangent space to M at
A must also satisfy AT H + HT A = 0. Writing H = AH̃ , we see that the con-
dition requires that H̃ is skew-symmetric, so that Null(dπ(A)) has dimension
k(k − 1)/2 = dim(M) − dim(B) and π is also a submersion.

The vertical fiber that contains A is the set of matrices AR for some R ∈ Ok(R)

and the vertical space VA is the set of matrices H ∈ TAM such that H = AH̃ for
H̃ skew-symmetric (which implies AT H + HT A = 0). Therefore, the horizontal
space contains matrices H such that AT H + HT A = 0 and trace(HT AH̃) = 0 for
all skew-symmetric matrices H . The latter condition implies that AT H is symmetric,
which, combined with the former, implies that AT H = 0.

The left action of Ok(R) on M induces transformations ψR : A �→ AR. They are
such that dψR(A)H = HR and are therefore isometries between tangent spaces
along vertical fibers: |dψR(A)H |2AR = trace(HRRT HT ) = trace(HHT ) = |H |2A.
Since these transformations map vertical spaces onto vertical spaces, they also con-
serve horizontality. Using the fact that π ◦ ψR = π, we see that dπ ◦ ψR and dπ are
related by an isometry (dψR), which shows that π is a Riemannian submersion.

We can therefore transport the metric of M onto B to provide the Grassmann
manifold with a Riemannian structure. For q ∈ B and β ∈ Tq B, it is defined by

|β|2q = trace(HHT ),

where H ∈ Mn,k(R) is such that AT H = 0 and dπ(A)H = β for some A ∈
π−1(q). In the local chart considered above, in which β is represented as an
(n − k) by k matrix, this identity corresponds to HJc − AJc A

−1
J HJ = βAJ with

AT
J HJ + AT

Jc HJc = 0, which uniquely defines H with

{
HJc = (IdRn−k + AJc A

−1
J A−T

J AT
Jc
)−1

βAJ

HJ = −A−T
J AT

Jc
(
IdRn−k + AJc A

−1
J A−T

J AT
Jc
)−1

βAJ

so that

|β|2q = trace(HT
J HJ + HT

Jc HJc)

= trace
(
AT
J β

T
(
IdRn−k + AJc A

−1
J A−T

J AT
Jc
)−1

βAJ

)
.

B.7 Differential Forms

B.7.1 Multilinear Forms

A k-linear form on R
d is a function α : (Rd)k → R which is linear with respect to

each of its variables. We will use the notation
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α(u1, . . . , uk) = (α | u1, . . . , uk ),

which is consistent with our notation for k = 1.
A k-linear form is skew-symmetric (or alternating) if (α | u1, . . . , uk ) = 0 when-

ever ui = u j for some i �= j . Equivalently, such a form satisfies

(α | u1, . . . , uk ) = ε(σ)
(
α
∣∣ uσ(1), . . . , uσ(k)

)

for σ ∈ Sk , the group of permutations of {1, . . . , k} and ε(σ) ∈ {−1, 1} its signature,
associated with the parity of the decomposition of the permutation as a sequence of
inversions.

The k-linear skew-symmetric forms define a vector space, denoted by Λk (or
Λk(R

d)). A one-form can always be expressed as (ηa | u ) := aT u for some a ∈ R
d ,

and we retrieve the fact that Λ1(R
d) � R

d .
Given two one-forms α1 and α2, the product (u1, u2) �→ (α1 | u1 )(α2 | u2 ) is

bilinear, but not alternating. It can be modified by defining

(α1 ∧ α2 | u1, u2 ) = (α1 | u1 )(α2 | u2 ) − (α1 | u2 )(α2 | u1 ),

yielding an alternating two-form called the wedge product of α1 and α2. More gen-
erally, one defines the wedge product between k 1-forms as the k-form given by

(α1 ∧ · · · ∧ αk | u1, . . . , uk ) =
∑

σ∈Sk

ε(σ)
(
α1

∣∣ uσ(1)
) · · · (αk

∣∣ uσ(k)
)
.

One also defines the product between a k-form α and an l-form β so that the above
expression becomes associative, i.e.,

(α1 ∧ · · · ∧ αk) ∧ (β1 ∧ · · · ∧ βl) = α1 ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧ βl ,

where all forms in this identity are one-forms. This results in the definition

(α ∧ β | u1, . . . , uk+l ) =
1

k! l!
∑

σ∈Sk+l

ε(σ)
(
α
∣∣ uσ(1), . . . , uσ(k)

)(
β
∣∣ uσ(k+1), . . . , uσ(k+l)

)
.

The sum in the previous equation is redundant, in the sense that the summand only
depend on the sets {σ(1), . . . ,σ(k)} and {σ(k + 1), . . . ,σ(k + l)}, and not on the
orders within these sets. This explains the normalization by k! l!.

If e1, . . . , ed is a basis of R
d , one defines the dual basis e∗

1, . . . , e
∗
d ∈ Λ1(R

d) by(
e∗
i

∣∣ e j
) = 1 if i = j and 0 otherwise, so that e∗

i (u) is the i th coefficient of u ∈ R
d

in its decomposition over the basis e1, . . . , ed , yielding
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u =
d∑

j=1

(
e∗
j

∣∣ u
)
e j .

Using this expression and after some algebra, one sees that any k-form α can be
decomposed as

α =
∑

1≤i1<···<ik≤d

(
α
∣∣ ei1 , . . . , eik

)
e∗
i1 ∧ · · · ∧ e∗

ik .

Using the fact that (
e∗
i1 ∧ · · · ∧ e∗

ik

∣∣ e j1 , . . . , e jk
) = 1

if (i1, . . . , ik) = ( j1, . . . , jk) and 0 otherwise (assuming that the two sequences are
increasing), one proves that such a sum vanishes if and only if all its coefficients
vanish, so thatΛk(R

d) is
(d
k

)
-dimensional, with (e∗

i1
∧ · · · ∧ e∗

ik
, 1 ≤ i1 < · · · < ik ≤

d) as a basis.
In particular, Λd(R

d) has dimension one so that there is, up to a multiplicative
constant, only one non-vanishing skew-symmetric d-linear functional. If (e1, . . . , ed)
is orthonormal, it is clear from the definition of the determinant that

(
e∗
1 ∧ · · · ∧ e∗

d

∣∣ u1, . . . , ud
) = det(u1, . . . , ud),

so that, for any d-form

(α | u1, . . . , ud ) = (α | e1, . . . , ed ) det(u1, . . . , ud).

In fact, for any k ≤ d, the skew-symmetry property implies that, for any alternating
k-linear form α and any k × k matrix A = (ai j ),

(α | v1, . . . , vk ) = det(A)(α | u1, . . . , uk ) (B.16)

when vi =∑k
j=1 ai j u j , i = 1, . . . , k.

For k < d, one defines the cross-product between k vectors u1, . . . , uk as the
skew-symmetric (d − k)-linear functional

(u1 × · · · × uk | v1, . . . , vd−k ) = det(u1, . . . , uk, v1, . . . , vd−k).

In particular, if e1, . . . , ed is orthonormal, then

ei1 × · · · × eik = ε e∗
ik+1

∧ · · · ∧ e∗
id ,

where {ik+1, . . . , id} = {1, . . . , d} \ {i1, . . . , ik} and

ε = det(ei1 , . . . , eid ) = (−1)i1+···+ik−k(k+1)/2.
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If k = d − 1, one usually identifies u1 × · · · × ud−1 with the unique vector w such
that

(u1 × · · · × ud−1 | v ) = wT v

andw is also denoted u1 × · · · × ud−1 in this case. (This provides the usual definition
of the cross-product in R

3, for example.)
One defines an inner product on Λk by first selecting an orthonormal basis

(e1, . . . , ed) of R
d and deciding that (e j1 × · · · × e jd−k , 1 ≤ j1 < · · · < jd−k ≤ d)

is an orthonormal family in Λk . This inner product will be denoted
〈· , ·〉

Λk
and does

not depend on the choice made for the orthonormal basis of R
d .

B.7.2 Differential Forms

A differential k-form on R
d is a function x �→ α(x) such that, for all x , α(x) is a

k-linear skew symmetric form, i.e., α is a function from R
d toΛk(R

d). For example,
0-forms are ordinary functions. The space of differential k-forms is denoted Ωk (or
Ωk(R

d)). The set ofm-times continuously differentiable k-forms is denotedΩm
k . The

wedge product between k-forms immediately extends to differential k-forms via

(α ∧ β)(x) = α(x) ∧ β(x).

If M is a d-dimensional manifold, one similarly defines Ωk(M) as the set
of mappings ω : p ∈ M → ω(p) where ω(p) ∈ Λk(TpM). If the mapping p �→
(ω(p) | X1(p), . . . , Xk(p) ) has class Cm for any collection of Cm vector fields
X1, . . . , Xk , then one says that ω has classCm , i.e., ω ∈ Ωm

k (M). Therefore,Ωm
k (M)

is the set of skew linear maps

ω : X (M)k → Cm(M)

with
(ω | X1, . . . , Xk ) : p �→ (ω(p) | X1(p), . . . , Xk(p) ).

IfΦ : U → M is a local chart, then (∂1, . . . , ∂d) form a basis of the tangent space.
Let x1, . . . , xd denote the coordinate functions in the chart (xi is the i th coordinate
of Φ−1). Then, the differential, dxi , of the function p �→ xi coincides with the i th
element of the dual basis: dx j = ∂∗

j (we leave the proof of this statement to the
reader). Recall that ∂ j and dx j depend on p ∈ Φ(U ), and are respectively (local)
vector fields and differential 1-forms. Any differential k-form can be expressed in a
local chart as

ω =
∑

1≤i1<···<ik≤n

(
ω
∣∣ ∂i1 , . . . , ∂ik

)
dxi1 ∧ · · · ∧ dxik (B.17)
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andω isCm as soon as the coefficients in this decomposition arem times continuously
differentiable.

If ω ∈ Ωk(M), its exterior derivative dω is a (k + 1)-form defined in a chart as
follows. If ω is given by (B.17), then

dω =
∑

1≤i1<···<ik≤n

d(
(
ω
∣∣ ∂i1 , . . . , ∂ik

)
) ∧ dxi1 ∧ · · · ∧ dxik

=
∑

1≤i1<···<ik≤n

d∑

j=1

∂ j
(
ω
∣∣ ∂i1 , . . . , ∂ik

)
dx j ∧ dxi1 ∧ · · · ∧ dxik .

Note that only terms j /∈ {i1, . . . , ik} are in the right-hand term, because the wedge
product of any form with itself is zero. One can show that this formula does not
depend on the local chart, and actually corresponds to the intrinsic definition, applied
to vector fields X0, . . . , Xk on M :

(dω | X0, X1, . . . , Xk ) =
k∑

i=0

(−1)i Xi (ω | X0, . . . , Xi−1, Xi+1, . . . , Xk )

+
∑

0≤i< j≤k

(−1)i+ j
(
ω
∣∣ [Xi , X j ], X1, . . . , Xi−1, Xi+1, . . . , X j−1, X j+1, . . . , Xk

)
,

where [Xi , X j ] = Xi X j − X j Xi is the Lie bracket between Xi and X j . If α is a
k-form and β is an l-form, one shows from the definition that

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

and that, for any k-form ω, one has ddω = 0.
If g : M → M ′ is a smooth mapping, where M and M ′ are manifolds, and ω ∈

Ωk(M ′), one defines the pullback, g∗ω ∈ Ωk(M), by

g∗ω(X1, . . . , Xk) = ω(dg X1, . . . dg Xk) ◦ g.

The exterior derivative commutes with pullbacks: d(g∗ω) = g∗dω. One also has,
given two differential forms α and β: g∗(α ∧ β) = (g∗α) ∧ (g∗β).

B.7.3 Integration of Differential Forms

Boundaries

If M is a manifold and P is a submanifold of M , we can define P̄ as the topological
closure of P in M (the set of limits of sequences in P that converge in M). The set
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∂P = P̄ \ P is called the boundary of P . If P is closed, so that ∂P = ∅, P is called
a manifold without boundary.

For example, an open line segment P = {p + t (q − p), t ∈ (0, 1)} in M = R
2

is such that ∂P = {p, q}. The unit circle S1 ⊂ R
2 is such that ∂S1 = ∅, while the

unit open disc, P = B(0, 1), is such that ∂P = S1. Note that this definition of a
boundary is different from the usual topological boundary P̄ \ P̊ (since submanifolds
have empty interior as soon as their dimension is smaller than that of the ambient
manifold).

Let k = dim(P) and d = dim(M). A point p ∈ ∂P is called a regular boundary
point if there exists a local chart Φ : U → M , where U is an open neighborhood of
0 in R

d , with p = Φ(0) and

P ∩ Φ(U ) = Φ ({x ∈ U : xk > 0, xk+1 = · · · = xd = 0}) ,

∂P ∩ Φ(U ) = Φ ({x ∈ U : xk = 0, xk+1 = · · · = xd = 0}) .
(B.18)

This says that in a small neighborhood of p, M can be parametrized so that P is a
half subspace in that chart and ∂P is the boundary of this subspace. For example,
the interior of a triangle is a submanifold of R

2 (since it is an open subset) and its
boundary is the triangle itself. The vertices of the triangle are not regular boundary
points, however.

Denote by ∂′P the regular boundary of P (the sets of regular boundary points).
Then∂′P is a submanifold ofM , with dimension k − 1, using the charts thatwere just
described to provide an atlas. We will say that P is a submanifold of M with regular
boundary if ∂′P = ∂P . One can extend tangent spaces on P to regular boundary
points by simply letting TpP = span(∂1, . . . , ∂k) ⊂ TpM if p ∈ ∂′P and (U, Φ) is
as above. Obviously Tp∂

′P = span(∂1, . . . , ∂k−1).
Note that one can define an abstract notion of “manifold with boundary” [175] by

letting local charts be open subsets of closed half spaces. Using this terminology P
is a manifold without boundary, and P ∪ ∂′P is a manifold with boundary. We will
however not need this concept since all the manifolds we work with can be easily
represented as submanifolds of Euclidean spaces.

Orientation

Let M be a d-dimensional manifold. One says that an atlas A = ((Ui , Φi ), i ∈ I)

on M is oriented if and only if the changes of coordinates Φ−1
j ◦ Φi have positive

Jacobian determinant whenever they are defined over non-empty sets (i.e., whenever
the charts overlap). Two atlases A and A′ define the same orientation if and only if
their union is oriented. The manifold is orientable if an oriented atlas exists. If M
is orientable, one can fix an orientation of M by specifying an oriented atlas, say
A0, and one then says that M is oriented. In this case, any new local chart (U, Φ) is
said to be positively oriented ifA0 ∩ {(U, Φ)} is oriented (i.e., (U, Φ) has the same
orientation as the charts that compose the atlas) and negatively oriented otherwise.

An orientation of M immediately provides an orientation of TpM for p ∈ M ,
simply by letting (∂1, . . . , ∂d) be a positively oriented basis of TpM as soon as
(U, Φ) is a positively oriented local chart at p. An orientation of M can therefore be
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seen as a continuous mapping ε : FM → {−1, 1}, where FM is the frame bundle
of M , associating 1 or −1 to a basis of TpM depending on whether this basis is
positively oriented or not, and M is orientable if such a continuous mapping exists.

Assume now that P is an oriented submanifold of M . One can then provide ∂′P
with a natural orientation, which will always be implicitly assumed in the rest of this
discussion. If (U, Φ) is a boundary chart around p ∈ ∂′P , we will say that a basis
(ξ1, . . . , ξk−1) of Tp(∂

′P) is positively oriented if and only if (ξ1, . . . , ξk−1, ∂k) is
positively oriented in P . This definition is independent of the chosen chart: assume a
change of chart, say, (x1, . . . , xk) → (y1, . . . , yk). Let ∂′

k denote the element of the
basis of TpP associated with the new chart (replacing ∂k). Then

∂′
k = (∂1yk)∂1 + · · · + (∂k yk)∂k .

Because ∂1, . . . , ∂k−1 ∈ Tp∂
′P , one can also write

∂′
k = α1ξ1 + · · · + αk−1ξk−1 + (∂k yk)∂k

for some coefficients α1, . . . ,αk−1. This implies that the determinant of the family
(ξ1, . . . , ξk−1, ∂

′
k) with respect to (ξ1, . . . , ξk−1, ∂k) is equal to ∂k yk . However, we

have yk(p) = xk(p) = 0, and we know that xk > 0 implies yk > 0. This is only
possible if ∂k yk > 0 so that the two charts give the same orientation on ∂′P .

Taking, for example, M = R
2, P an open subset of R

2 such that ∂P is a smooth
Jordan curve, parametrized as γ(t), the orientation of the boundary should be such
that det(γ̇(t), N ) > 0 for the inward normal N . This is consistent with our definition
of a positive orientation of a closed curve in Definition1.14.

Note that using the last coordinate, xk , as the one defining the boundary differs
from the choice often made in the literature (which is x1), and will result in a (−1)d

factor in Stokes’s formula below. This choice however ensures that the inward normal
is always equal to the cross product between basis vectors in positively oriented charts
of the boundary, which is why we preferred it.

Integration of d-Forms on M

We assume from now on that M is oriented and any local chart on M will be assumed
to be positively oriented unless specified otherwise.

Let ω be a d-form on M . Let S be a chartable set in M , i.e., an open set in M
that can be completely covered by a chart, so that there exists a (positively oriented)
local chart (U, Φ) such that S = Φ(U ). We say that ω is integrable on S if

∫

S
|ω| :=

∫

U
|(ω | ∂1, . . . , ∂d )| ◦ Φ dx1 . . . dxd < ∞

and one then defines the integral of ω on S by

∫

S
ω =

∫

U
(ω | ∂1, . . . , ∂d ) ◦ Φ dx1 . . . dxd .

https://doi.org/10.1007/978-3-662-58496-5_1
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These definitions are parametrization-independent.Assume that (Ũ , Φ̃) is another
positively oriented local chart satisfying Φ̃(Ũ ) = S. Let ψ = Φ̃−1 ◦ Φ : U → Ũ
(a diffeomorphism). Let ∂̃1, . . . , ∂̃d be the coordinate vector fields associated with
the new chart. Then, using the identity

(∂̃1, . . . , ∂̃d)p = dψ(x)(∂1, . . . , ∂d)p,

we have
∫

Ũ

(
ω
∣∣∣ ∂̃1, . . . , ∂̃d

)
◦ Φ̃ dx̃1 . . . dx̃d

=
∫

Ũ
det(dψ) ◦ ψ−1 (ω | ∂1, . . . , ∂d ) ◦ Φ ◦ ψ−1dx̃1 . . . dx̃d

=
∫

U
(ω | ∂1, . . . , ∂d ) ◦ Φ dx1 . . . dxd ,

where the last identity uses the change of variable formula and the fact that det(dψ) >

0. This shows that our formula for the integral of ω over S did not depend on the
chosen chart. The same conclusion holds for the integral of |ω|, which does not
require the positivity assumption.

One can define the integral of |ω| or ω on M by covering M by a locally finite
family of chartable sets (Si , i ∈ I ) and using a partition of the identity, which is a
set of smooth functions (αi , i ∈ I ) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi (p) ≥ 0, ∀i ∈ I,∀p ∈ M

αi (p) = 0, ∀i ∈ I,∀p ∈ M \ Si
∑

i∈I
αi (p) = 1, ∀p ∈ M.

(One says that (Si , i ∈ I ) is locally finite if, given any p ∈ M , there exists only a
finite number of indices i such that p ∈ Si . Under this assumption, the sum in the
third equation only involves a finite number of terms. One can show that locally finite
chartable sets and associated partitions of unity always exist on M .)

One then says that ω is integrable over M if

∫

M
|ω| :=

∑

i∈I

∫

Si

αi |ω| < ∞

and one defines ∫

M
ω =

∑

i∈I

∫

Si

αiω.
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These expressions do not depend on the family (Si ,αi , i ∈ I ). Assuming a second
family, (Tj ,β j , j ∈ J ), one only needs to observe that integrals over chartable sets
are obviously additive, so that

∑

i∈I

∫

Si

αiω =
∑

i∈I

∑

j∈J

∫

Si∩Tj

αiβ jω =
∑

j∈J

∫

Tj

β jω.

A d-form ω on M is called a volume form if ω(p) �≡ 0 for all p ∈ M . If ω is such
a form and ω′ another d-form, there exists a functionα : M → R such that ω′ = αω.
If ω′ is itself a volume form, then α never vanishes.

Change of Variables

The change of variables formula is remarkably simple when expressed with differen-
tial forms. Let g : M → M ′ be a C1 function between two d-dimensional manifolds
M and M ′. Let ω be a d-form on M ′. Then

∫

M
g∗ω =

∫

M ′
ω.

Canonical Volume form on a Riemannian Manifold

The volume of a d-dimensional parallelogram with edges u1, . . . , ud ∈ R
d ,

U = {α1u1 + · · · + αdud , 0 ≤ α1, . . . ,αd ≤ 1} ,

is equal to | det(u1, . . . , ud)|. If A is the d by d matrix with columns u1, . . . , ud ,
then AT A is the Gram matrix with coefficients uT

i u j and | det A| = √det(AT A). On
a Riemannian manifold M , the infinitesimal volume in a local chart is defined by

dσM = √det S(x) dx1 . . . dxd

where d is the dimension of M and s(i j)(x) = 〈∂xi , ∂x j

〉
x
. This directly provides the

integral of functions f : M → R which are supported by the image of a local chart
(U, Φ) using ∫

M
f dσM =

∫

U
f ◦ Φ(x)

√
det S(x) dx1 . . . dxd

and one passes to integrals of arbitrary functions on M using partitions of unity.
If M is oriented, the Riemannian volume form is defined on a positively oriented

chart (U, Φ) by
ωM = √det S(x)dx1 ∧ · · · ∧ dxd

so that one can also write ∫

M
f dσM =

∫

M
f ωM .
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More generally, for any ξ1, . . . , ξd ∈ TpM , one has

ωM(ξ1, . . . , ξd) = ε(ξ1, . . . , ξp)

√

det
(〈

ξi , ξ j
〉
p

)
, (B.19)

where ε(ξ1, . . . , ξp) is the orientation of the family.

B.7.4 Stokes’s Theorem

Stokes’s theorem expresses that the integral of the exterior derivative of a differential
form over a bounded domain is equal to the integral of this form on the boundary
of the domain. This generalizes the fundamental theorem of calculus (where the
domain is simply a bounded interval) and implies the divergence theorem and other
important results in vector calculus. We state the following theorem without proof
(see, e.g., [175]).

Theorem B.28 (Stokes’s Theorem) Let P be an oriented k-dimensional submani-
fold of a manifold M such that P has a regular boundary. Let ω be a C1 differential
(k − 1)-form on M. Then ∫

∂P
ω = (−1)k

∫

P
dω.

The requirement that ∂P is regular can be partially lifted to allow for singularities on
“negligible subsets” of the boundary (see [175], in which it is shown that negligible
sets can be defined as finite unions of images of closed rectangles of dimension
≤ k − 2).

Divergence and the Kelvin–Stokes Theorems on R
d

We now review a few applications of this formula. LetM = R
d and P an open subset

of R
d such that ∂P is regular and therefore a smooth submanifold of R

d . Let ω be a
C1 (d − 1)-form on R

d so that ω can be written as

ω =
d∑

k=1

(−1)k−1αkdx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxd , (B.20)

where α1, . . . ,αd are C1 functions on R
d and x1, . . . , xd are the Euclidean coordi-

nates on R
d . In particular, letting α = (α1, . . . ,αd) ∈ R

d , so that α is a vector field,
we have

ω(ξ1, . . . , ξd−1) = det(α, ξ1, . . . , ξd−1).

Moreover, we have dω = div(α) dx1 ∧ · · · ∧ dxd .
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There exists a unique vector u = u(ξ1, . . . , ξd−1) such that, for any vectorβ ∈ R
d ,

det(ξ1, . . . , ξd−1,β) = βT u

(because the right-hand side is a linear form as a function of β). This vector is the
cross product of ξ1, . . . , ξd−1, denoted ξ1 × · · · × ξd−1 if d > 2 and ξ⊥

1 if d = 2. If
ξ1, . . . , ξd−1 are linearly dependent, then obviously ξ1 × · · · × ξd−1 = 0. Otherwise
the cross-product is perpendicular to ξ1, . . . , ξd−1 and completes it into a positively
oriented basis of R

d . Moreover, one has

|ξ1 × · · · × ξd−1| = √det(Gram(ξ1, . . . , ξd−1)),

where Gram(ξ1, . . . , ξd−1) is the matrix with entries ξTi ξ j . To prove this identity, first
make a change of positively oriented orthonormal basis in R

d to reduce to the case
in which ξ1, . . . , ξd−1 are perpendicular to the last basis vector, say ed , and write

det(ξ1, . . . , ξd−1, ed) = eTd (ξ1 × · · · × ξd−1) = |ξ1 × · · · × ξd−1|,

so that the norm of the cross product is equal to the determinant of the coefficients
ξ1, . . . , ξd−1 in the first d − 1 vectors of the basis, and is therefore also equal to the
square root of the Gram matrix.

Now, if p ∈ ∂P , then, in a chart (U, Φ)

N (p) = ∂1 × · · · × ∂d−1

|∂1 × · · · × ∂d−1|
is the positively oriented unit normal at p to ∂P and

ω(∂1, . . . , ∂d−1) dx1 . . . dxd−1 = (−1)d−1αT (∂1 × · · · × ∂d−1) dx1 . . . dxd−1

= (−1)d−1αT Ndσ∂P .

Using this identity, we can write Stokes’s theorem in this case as

∫

∂P
αT Ndσ∂P = −

∫

P
divα dx1 . . . dxd , (B.21)

which is the divergence theorem (N being the inward normal).
Here is another application of Stokes’s theorem. Let P be a bounded surface in

R
3 with a regular boundary. Let ω be a one-form on R

3, so that

ω = α1dx1 + α2dx2 + α3dx3

for some vector field α on R
3. Then dω is a two-form with

dω = β1dx2 ∧ dx3 − β2dx1 ∧ dx3 + β3dx1 ∧ dx2
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such that β = curl(α) is formally defined by

curl(α) =
⎛

⎝
∂1

∂2

∂3

⎞

⎠×
⎛

⎝
α1

α2

α3

⎞

⎠ .

Moreover, one has (see the discussion above)

dω(ξ1, ξ2) = det(β, ξ1, ξ2) = det(ξ1, ξ2,β) = βT (ξ1 × ξ2).

We therefore have ∫

P
dω =

∫

P
βT NdσP .

Here N is the unit normal to P defined by N = (∂1 × ∂2)/|∂1 × ∂2| in any positively
oriented chart of P . Let T be the positively oriented unit tangent on ∂P . Then we
have ∫

∂P
ω =

∫

∂P
αT T dσ∂P

and we conclude from Stokes’s theorem (with d = 2) that

∫

P
(curl(α))T NdσP =

∫

∂P
αT T dσ∂P .

This is the Kelvin–Stokes theorem.

The Divergence Theorem on a Riemannian Manifold

If M is a d-dimensional Riemannian manifold, and ωM its volume form, one can
associate to any vector field v the (d − 1)-form IvωM

(ξ1, . . . , ξd−1) �→ ωM(v, ξ1, . . . , ξd−1)

(Iv is the insertion operator that transforms any k form into a k − 1 form by replacing
the first vector with v.) The exterior derivative d(IvωM) is then a d-form, necessarily
proportional to ωM . The proportionality coefficient is called the divergence of v,
divMv, therefore defined by

d(IvωM) = (divMv)ωM .

The divergence theorem on M is obtained by applying Stokes’s theorem to IvωM :
If P is an open subset of M with a regular boundary, then

∫

∂P
IvωM = (−1)d

∫

P
(divMv) dσM .
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In a local chart (U, Φ) such that ∂P corresponds to xd = 0 and P to xd > 0, Tp∂P
is generated by ∂x1 , . . . , ∂xd−1 , so that

∫

Φ(U )∩∂P
IvωM =

∫

U∩{xd=0}
ωM(v, ∂1, . . . , ∂d−1)dx1 . . . dxd−1.

Defining ∂1 × · · · × ∂d−1 by

ωM(∂1, . . . , ∂d−1, w) = 〈∂1 × · · · × ∂d−1 , w
〉
p

one defines the inward normal to ∂P by

ν = ∂1 × · · · × ∂d−1

|∂1 × · · · × ∂d−1|p .

Noticing that (using (B.19))

|∂1 × · · · × ∂d−1|p = ωM(∂1, . . . , ∂d−1, ν) = ω∂P(∂1, . . . , ∂d−1),

we can conclude that
∫

∂P
(IvωM) = (−1)d−1

∫

∂P

〈
v , ν

〉
pdσ∂P ,

yielding ∫

∂P

〈
v , ν

〉
pdσ∂P = −

∫

P
(divMv) dσM . (B.22)

Manifold Evolution

Let ω be aC1 k-form in R
d and M a k-dimensional oriented manifold, with a regular

boundary ∂M . Let m : (t, p) �→ m(t, p) be a C1 mapping from [0, 1] × M to R
d ,

and let mt : p �→ m(t, p). Define

F(t) =
∫

M
m∗

t ω.

When mt is an embedding, one has (letting Mt = mt (M))

F(t) =
∫

Mt

ω

and we are studying the evolution of the integral of a fixed form over a moving
submanifold of R

d .
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Theorem B.29 One has

∂t F(t) = (−1)k
∫

∂M
m∗

t I∂tmω +
∫

M
m∗

t I∂tmdω.

When the mt ’s are embeddings, this reduces to

∂t F(t) = (−1)k
∫

∂Mt

I∂tmω +
∫

Mt

I∂tmdω.

Proof Consider the manifold M̂ = (t, t + ε) × M . One can define local charts
(Û , Φ̂) on M̂ from local charts (U, Φ) on M by Û = (t, t + ε) ×U and Φ̂(u, x) =
(u, Φ(x)). We orient M̂ so that (Û , Φ̂) is positive as soon as (U, Φ) is.

Then ∂M̂ has a regular boundary given by the union of the sets {t} × M ,
{t + ε} × M and (t, t + ε) × ∂M . The singular part is ({t} × ∂M) ∪ ({t + ε} × ∂M)

and can be neglected when applying Stokes’s theorem. If (U, Φ) is a positive chart
on M , one can take the boundary charts (Ũ , Φ̃) on {t} × M and (Ũ , Φ̃ ′) on
{t + ε} × M by letting Ũ = U × (−δ, δ), Φ̃(x, u) = (t + u, Φ(x)) and Φ̃ ′(x, u) =
(t + ε − u, Φ(x)). Note that these two charts have reversed orientations, which
depend on the parity of k: (−1)k for the former and (−1)k+1 for the latter. On
(t, t + ε) × ∂M , starting from a positively oriented boundary chart (U, Φ) of ∂M ,
the chart (Û , Φ̂) is also a boundary chart of M̂ and is positively oriented.

Stokes’s theorem applied to M̂ implies that

∫

∂M̂
m∗ω = (−1)k+1

∫

M̂
d(m∗ω) = (−1)k+1

∫

M̂
m∗dω.

We have

∫

∂M̂
m∗ω = (−1)k+1F(t + ε) + (−1)k F(t) +

∫ t+ε

t

∫

∂M
I∂t m

∗ω

and ∫

M̂
m∗dω =

∫ t+ε

t

∫

M
I∂t m

∗dω =
∫ t+ε

t

∫

M
m∗

t I∂tmdω,

so that

F(t + ε) − F(t) = (−1)k
∫ t+ε

t

∫

∂M
I∂t m

∗ω +
∫ t+ε

t

∫

M
m∗

t I∂tmdω,

and the conclusion follows. �



Appendix B: Elements from Differential Geometry 479

Consider the case k = d − 1 andω given by (B.20). Assume that themt ’s are embed-
dings. Then, we have

F(t) = (−1)d−1
∫

Mt

αT N dσMt ,

where N is the unit normal to Mt . We also have

dω(∂tm, ∂1, . . . , ∂d−1) = (−1)d−1divα (∂tm)T (∂1 × · · · × ∂d−1)

and ∫

Mt

I∂tmdω =
∫

Mt

divα (∂tm)T NdσMt .

Moreover,
I∂tmω(ξ1, . . . , ξd−2) = det(α, ∂tm, ξ1, . . . , ξd−2).

If d = 2 we have
∫

∂Mt

I∂tmω =
∑

p∈∂Mt

δ(p) det(α(p), ∂tm),

where δ(p) = 1 if the oriented arc that contains p has p as a starting point, and
δ(p) = −1 if p is an end point.

Ford > 2, letn(p) ∈ TpMt be the inward-pointingunit normal to∂Mt (p ∈ ∂Mt ).
If ξ1, . . . , ξd−2 is a positively oriented basis of T∂Mt , then (n, N , ξ1, . . . , ξd−2) is a
positive basis of R

d and

det(α, ∂tm,ξ1, . . . , ξd−2)

= ((αT n)(∂tm
T N ) − (αT N )(∂tm

T n)) det(n, N , ξ1, . . . , ξd−2).

Note that
det(n, N , ξ1, . . . , ξd−2) = ω∂M(ξ1, . . . , ξd−2)

(the volume form on ∂M) as soon as (ξ1, . . . , ξd−2) is positively oriented. Therefore

∫

∂Mt

I∂tmω =
∫

∂Mt

(αT n ∂tm
T N − αT N ∂tm

T n)dσ∂Mt .

Collecting all terms in TheoremB.29, we obtain the following corollary.

Corollary B.30 Assume that m(t, ·) is C1 from [0, 1] × M to R
d , where M is a

(d − 1)-dimensional manifold with regular boundary, such that m(t, ·) is an embed-
ding for all t . Let α be a C1 vector field on R

d . Then, if d > 2,
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∂t

∫

Mt

αT NdσMt =
∫

∂Mt

((αT n) (∂tm
T N ) − (αT N ) (∂tm

T n))dσ∂Mt (B.23)

+
∫

Mt

divα (∂tm)T NdσMt ,

where n(t, ·) is the inward normal to ∂Mt and N (t, ·) is the positively oriented
normal to Mt . If d = 2, the boundary term reduces to

∑

p∈∂Mt

δ(p) det(α(p), ∂tm),

where δ(p) = 1 if the oriented arc that contains p has p as a starting point, and
δ(p) = −1 if p is an end point.



Appendix C
Ordinary Differential Equations

In the first part of this chapter, we review basic existence theorems and properties
of ordinary differential equations (ODEs) on Banach spaces. The presentation will
follow those provided in standard textbooks [69], althoughwewill workwith slightly
relaxed regularity conditions. The second part will provide a partial overview of some
of the most important numerical methods designed to solve ODEs.

We start with some definitions about differentials in infinite dimensions.

C.1 Calculus in Banach Space

A domain Ω in a Banach space B is open if, for every point x ∈ Ω , there exists an
ε(x) > 0 such that the open ball B(x, ε(x)) is included in Ω , with

B(x, ε(x)) = {y ∈ B : ‖y − x‖B < ε(x)} .

A set F is closed in B if B − F is open. The closure of a set A (denoted clos(A)

or Ā) is the smallest closed set that contains it and its interior (int(A) or Å) is the
largest open set included in it. Its boundary is ∂A = Ā \ Å.

A function f defined on a subset Ω ′ of a Banach set B
′ with values in B is

continuous if ‖ f (xn) − f (x)‖B → 0 whenever (xn) is a sequence in Ω ′ such that
‖xn − x‖B′ → 0 for some x ∈ Ω ′. The function f is Lipschitz if there exists a con-
stant c such that

‖ f (x) − f (y)‖B ≤ c‖x − y‖B′

for all x, y ∈ Ω ′. The smallest c for which this is true is called the Lipschitz constant
of f and denoted Lip( f ).

A function f : R → B is differentiable at t ∈ R if there exists an element of B,
denoted ∂ f (t) or ḟ (t), such that
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lim
ε→0

∥∥∥∥
1

ε
( f (t + ε) − f (t)) − ∂ f (t)

∥∥∥∥
B

= 0.

IfB andB
′ are Banach spaces and f : B

′ → B, we say that f isGâteaux differen-
tiable at x ∈ B

′ if, for all h ∈ B
′, t �→ f (x + th) is differentiable at t = 0 and there

exists a bounded linear transformation, denoted d f (x) : B
′ → B, such that, for all

h ∈ B
′:

∂t f (x + th)(0) = d f (x)h.

Then, d f (x) is called the Gâteaux derivative of f at x .
We say that f is differentiable in the Fréchet sense, or Fréchet differentiable at

x ∈ B
′, if there exists a bounded linear transformation d f (x) : B

′ → B such that, for
any h ∈ B

′,

lim‖h‖B′→0

1

‖h‖B′
‖ f (x + h) − f (h) − d f (x)h‖B = 0;

d f (x) is called the Fréchet derivative of f at x .
There is no ambiguity in the notation, because it is clear that if f is Fréchet

differentiable, then it is also Gâteaux differentiable, and the two definitions of d f (x)
coincide. When writing that f is differentiable without qualifier, we will always
mean Fréchet differentiable.

If f is differentiable over Ω ′ ⊂ B
′, then d f maps Ω ′ to the space L(B′, B) of

bounded linear functionals from B
′ to B, which is a Banach space for the operator

norm
‖A‖op(B′,B) = sup

{‖Ah‖B : h ∈ B
′, ‖h‖B′ = 1

}
.

(We will write ‖ · ‖op(B) when B = B
′.) The second derivative can therefore be

defined, and, when it exists, maps Ω ′ to L(B′,L(B′, B)). This space is usually iden-
tified with L2(B′, B), the Banach space of bilinear forms from B

′ × B
′ to B, and one

uses the notation, for the second derivative

d2 f (x)(h1, h2) = (d2 f (x)h1)h2.

Higher order derivatives are defined similarly, so that d p f (x) ∈ Lp(B′, B) is
p-linear. The space of p-time continuously differentiable maps from Ω ′ to B will be
denoted C p(Ω ′, B) and differentials of order p or less of functions in that space are
symmetric linear forms. Similar to finite dimensions, we let C p

b (Ω ′, B) denote the
set of functions f ∈ C p(Ω ′, B) with bounded derivatives up to order p. This space
is a Banach space for

‖ f ‖p,∞ = max
0≤k≤p

‖dk f ‖∞.

Wewill also denote byC p
0 (Ω ′, B) the Banach space of functions f ∈ C p(Ω ′, B) that

are restrictions of functions f̃ ∈ C p
b (B′, B) that vanish on (Ω ′)c ∪ {∞}. This space

coincides with the space of functions f ∈ C p
b (Ω ′, B) such that for any sequence
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xn ∈ Ω ′ such that ‖xn‖B′ → ∞ or ‖xn − x‖B′ → 0with x /∈ Ω ′, one has dk f (xn) →
0 for all k = 0, . . . , p.

The following standard theorems are used at several points in this book. Their
proofs can be found in many textbooks, such as [175].

Theorem C.1 (Banach fixed-point theorem) Let B be a Banach space. Let U ⊂ B

be a closed set andΦ be a contraction of U, i.e.,Φ : U → U is such that there exists
a constant c ∈ [0, 1) satisfying, for all x, y ∈ U,

‖Φ(x) − Φ(y)‖B ≤ c ‖x − y‖B .

Then, Φ has a unique fixed point in U, i.e., there exists a unique x0 ∈ U such that
Φ(x0) = x0.

Theorem C.2 (Inverse mapping theorem) Assume that Ω is an open subset of the
Banach spaceB and thatΨ : Ω → B is continuously differentiable, such that dψ(x0)
is invertible for some x0 ∈ Ω . Then there exists an open neighborhood Ω̃ ⊂ Ω of x0
such that the restriction of Ψ to Ω̃ is a diffeomorphism between Ω̃ and Ψ (Ω̃) with

d(Ψ −1)(y) = (dΨ (Ψ −1(y))−1

for all y ∈ Ψ (Ω̃).

Theorem C.3 (Implicit mapping theorem) LetΩ andΩ ′ be open subsets of Banach
spaces B and B

′ and Φ : Ω × Ω ′ → B
′ be continuously differentiable. Assume that

(x0, y0) ∈ Ω × Ω ′ is such that Φ(x0, y0) = 0 and d2Φ(x0, y0) is invertible. Then
there exist open neighborhoods Ω̃ ⊂ Ω of x0 and Ω̃ ′ ⊂ Ω ′ of y0 and a continuously
differentiable function F : Ω̃ ′ → Ω̃ such that, for all y ∈ Ω̃ ′, x = F(y) is the unique
solution in Ω̃ of the equation Φ(x̃, y) = 0 and

dF(y) = −d2Φ(x, y)−1d1Φ(x, y).

(Here, d1 and d2 denote the differentialswith respect to the first and second variables.)

C.2 The Bochner Integral

The integral of a Banach-valued function f : [a, b] → B can be defined, as in finite
dimensions, by the limit of the integral of sums of simple functions (i.e., constant
over a finite number of measurable subsets of [a, b])). More precisely, a function
g : [a, b] → B is simple if and only if it is measurable and takes a finite number of
different values, and one then defines

∫ b

a
g(t) dt =

∑

x∈Range(g)

x |g−1(x)|,
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where |g−1(x)| is the Lebesgue measure of the set of t ∈ [a, b] such that g(t) = x ,
the sum being, by assumption, over a finite set.

One then says that f is Bochner integrable (see [38, 83, 84, 202, 306]) if and
only if there exists a sequence fn of simple functions such that

lim
n→∞

∫ b

a
‖ f (t) − fn(t)‖B dt = 0

and the Bochner integral of f is then defined by

∫ b

a
f (t) dt = lim

n→∞

∫ b

a
fn(t) dt,

the right-hand term being well defined and independent of the choice of the approxi-
mating sequence of simple functions. A Bochner integrable function is automatically
measurable.

The following result characterizes Bochner integrable functions and greatly sim-
plifies their analysis.

Theorem C.4 (Bochner) A measurable function f : [a, b] → B is Bochner inte-
grable if and only if ‖ f ‖B : [a, b] → R is Lebesgue integrable. Moreover, one has

∥∥∥∥

∫ b

a
f (t) dt

∥∥∥∥
B

≤
∫ b

a
‖ f (t)‖B dt.

The space of Bochner integrable functions from an interval [a, b] toBwill be denoted
L1([a, b], B). Functions that coincide on sets of Lebesgue measure 0 are identified
in this space.

The dominated convergence theorem is true for Bochner integrals, and states
that, if fn is a sequence of measurable function in B that converges strongly to a
limit f , and if there exists a Lebesgue-integrable function g : [a, b] → R such that
‖ fn(t)‖B ≤ g(t) for all t ∈ [a, b], then

lim
n→∞

∫ b

a
fn(t) dt =

∫ b

a
f (t) dt.

Lebesgue’s theorem also holds, so that, if f is Bochner integrable, then

lim
ε→0

1

2ε

∫ t+ε

t−ε

f (u) du = f (t)

almost everywhere on [a, b]. Moreover, if f is continuously differentiable,

f (t) − f (a) =
∫ t

a
∂ f (t) dt.



Appendix C: Ordinary Differential Equations 485

TheBochner integral commuteswith bounded linear operators, in the sense that, if
A : B → B

′ is such an operator between Banach spaces B andB
′ and if f : [a, b] →

B is Bochner integrable, then so is A f with

∫ b

a
A f (t) dt = A

∫ b

a
f (t) dt.

We will use this integral in the proof of the next proposition, which provides
conditions for Gâteaux differentiability to imply Fréchet differentiability.

Proposition C.5 Let f : Ω ′ ⊂ B
′ → B be Gâteaux differentiable at all points x ∈

Ω ′, which is an open subset of the Banach space B
′. Assume that d f is continuous

on Ω ′ in the sense that, if

ω(x, δ, d f ) =
sup
{‖(d f (y) − d f (x))h‖B, ‖h‖B′ = 1, y ∈ Ω ′, ‖x − y‖B′ ≤ δ

}
,

then, for all x ∈ Ω ′,
lim
δ→0

ω(x, δ, d f ) → 0.

Then f is also Fréchet differentiable.

(In other terms, if f is continuously Gâteaux differentiable, then it is Fréchet differ-
entiable.)

Proof Note that, for x, h ∈ Ω ′, such that the segment [x, x + h] is included in Ω ′,
the transformation t �→ ∂t f (x + th)(t) = d f (x + th) h is integrable (because d f is
continuous) and

f (x + h) − f (x) =
∫ 1

0
∂t f (x + th)dt.

This implies

f (x + h) − f (x) − d f (x)h =
∫ 1

0
(d f (x + th) − d f (x)) h dt

≤ ω(x, ‖h‖B′ , d f ) ‖h‖B′

= o(‖h‖B′).

�

C.3 A Class of Ordinary Differential Equations

LetB be a Banach space. We define the Banach spaceL(B, B) of Lipschitz functions
from B to itself, equipped with the norm
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‖v‖L(B,B) = ‖v(x∗)‖B + Lip(v),

where x∗ ∈ Ω is fixed and Lip(v) is the Lipschitz constant of v. For an open set
Ω ⊂ B, we let L(0)(Ω, B) be the set of restrictions to Ω of functions ṽ ∈ L(B, B)

that vanish outside of Ω , with ‖v‖L(0)(Ω,B) = ‖ṽ‖L(B,B).
We will also consider the spaces C p

(0)(Ω, B) of restrictions to Ω of functions
ṽ ∈ C p(B, B) with bounded derivatives of order 1 to p (without assuming that the
function ṽ itself is bounded) that vanish on Ωc. This space is Banach with norm

‖v‖C p
(0)(Ω,B) = ‖ṽ‖C p

(0)(B,B) = ‖ṽ(x∗)‖B + ‖d ṽ‖p−1,∞.

We letV = L1([0, T ], L(0)(Ω, B)) andV
(p) = L1([0, T ],C p

(0)(Ω, B)) denote the
spaces of Bochner integrable functions with values in L(0)(Ω, B) and C p

(0)(Ω, B).
Given v ∈ V, we will say that a continuous function y : [0, T ] → Ω is a solution of
the ordinary differential equation ∂t y = v(t, y) with initial condition y(t) = x if it
satisfies

y(s) = x +
∫ s

t
v(u, y(u))du.

The right-hand term is well defined as a Bochner integral because

‖v(u, y(u))‖B ≤ ‖v(u, x∗)‖B + Lip(v(u))‖y(u) − x∗‖B (C.1)

is integrablewhen y is continuous (hence bounded over [0, T ]).Wemake the notation
abuse of writing v(t, x) = v(t)(x).

C.3.1 Existence and Uniqueness of Solutions

Theorem C.6 Let v ∈ V. For all x ∈ Ω and t ∈ [0, T ], there exists a unique solution
on [0, T ] of the ordinary differential equation ∂t y = v(t, y) with initial condition
y(t) = x.

Proof The proof slightly deviates from the standard Picard–Lindelöf theorem, which
assumes that Lip(v(t, ·)) is uniformly bounded [69, 252]. We have here an integra-
bility condition instead, so that the statement is slightly more general, although the
proof, which follows [93, 277], is very similar.

We first prove the result for Ω = B. Fix x ∈ B, t ∈ [0, T ] and δ > 0. Let I =
I (t, δ) denote the interval [0, T ] ∩ [t − δ, t + δ]. If ϕ is a continuous function from
I to B such that ϕ(t) = x , we define the transformation Γ (ϕ) : I → B by

Γ (ϕ)(s) = x +
∫ s

t
v(u,ϕ(u))du.
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The function s �→ Γ (ϕ)(s) is continuous and is such thatΓ (ϕ)(t) = x . The set of
continuous functions from the compact interval I to B, equipped with the supremum
norm, is a Banach space, and we now show that for δ small enough, Γ satisfies

∥∥Γ (ϕ) − Γ (ϕ′)
∥∥∞ ≤ γ

∥∥ϕ − ϕ′∥∥∞

with γ < 1. The fixed-point theoremwill then imply that there is a unique functionϕ
such thatΓ (ϕ) = ϕ, and this is the definition of a solution of the ordinary differential
equation on I .

Since Γ (ϕ)(s) − Γ (ϕ′)(s) = ∫ s
t (v(u,ϕ(u)) − v(u,ϕ′(u)))du we have

‖Γ (ϕ) − Γ (ϕ′)‖∞ ≤
(∫

I
Lip(v(u, ·))du

)
‖ϕ − ϕ′‖∞.

But
∫
I Lip(v(u, ·))du can be made arbitrarily small by reducing δ so that existence

and uniqueness over I is proved.
We also note that δ can be taken independent of t . This is because the function

α : s �→ ∫ s
0 Lip(v(u, ·))du is continuous, hence uniformly continuous on the inter-

val [0, T ], so that there exists a constant η > 0 such that
∣∣s − s ′∣∣ < η implies that∣∣α(s) − α(s ′)

∣∣ < 1/2, and it suffices to take δ < η/2. From this, we can conclude
that a unique solution of the ordinary differential equation exists over all [0, T ],
because it is now possible, starting from the interval I (t, δ), to extend the solution
from both sides, by jumps of δ/2 at least, until the boundaries are reached.

This proves the result for Ω = B and we now consider arbitrary open sets Ω .
By extending v(t) by 0 on Ωc, the value of LipT (v(t, ·)) remains unchanged and
we can apply the result over B to ensure existence and uniqueness of the solution
with a given initial condition. So, it only remains to show that solutions such that
y(t) ∈ Ω for some t belong to Ω at all times. This is true because if there exists an
s such that y(s) = x ′ /∈ Ω , then the function ỹ(u) = x ′ for all u is a solution of the
equation, since v(u, x ′) = 0 for all u. Uniqueness implies ỹ = y at all times, which
is impossible. �

Important special cases of this theorem are linear equations. They correspond to
taking v(t, x) = A(t)x + b(t) in Theorem C.6. Noting that

‖v‖V ≤
∫ T

0

(‖A(t)‖op(B)‖x∗‖B + ‖b(t)‖B
)
dt +

∫ T

0
‖A(t)‖op(B) dt,

we have the following corollary.

Corollary C.7 Assume that, for t ∈ [0, T ], A(t) : B → B is a bounded linear oper-
ator, b(t) ∈ B, and that they are integrable and satisfy

∫ T

0
(‖A(t)‖op(B) + ‖b(t)‖B) dt < ∞.
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Then the equation
∂t y = A(t)y + b(t)

has a unique solution over [0, T ] for a given initial condition.

C.3.2 Flow Associated to an ODE

Definition C.8 Let v ∈ V. We denote byϕv
st (x) the solution at time t of the equation

∂t y = v(t, y)with initial condition y(s) = x . The function (t, x) �→ ϕv
st (x) is called

the flow associated to v starting at s. It is defined on [0, T ] × Ω and takes values in
Ω .

From the definition, we have the following property.

Proposition C.9 If v ∈ V and s, r, t ∈ [0, T ], then

ϕv
st = ϕv

r t ◦ ϕv
sr .

In particular, ϕv
st ◦ ϕv

ts = id and ϕv
st is invertible for all s and t.

Proof If x ∈ Ω , ϕv
st (x) is the value at time t of the unique solution of ∂t y = v(t, y),

which is equal to x at time s. It is equal to x ′ := ϕv
sr (x) at time r , and thus also equal

to ϕv
r t (x

′), which is the statement of the proposition. �

Theorem C.10 If v ∈ V, the associated flow, ϕv
st , is at all times s and t a homeo-

morphism of Ω (it is continuous, invertible, with a continuous inverse).

The proof of this result uses Gronwall’s lemma, which we first state and prove.

Theorem C.11 (Gronwall’s lemma) Consider two non-negative functionsα(s) and
u(s), defined for s ∈ I where I is an interval in R containing 0. Assume that u is
bounded, and that, for some integrable function c, and for all t ∈ I ,

u(t) ≤ c(t) +
∣∣∣∣

∫ t

0
α(s)u(s) ds

∣∣∣∣ . (C.2)

Then, for all t ∈ I ,

u(t) ≤ c(t) +
∣∣∣∣

∫ t

0
c(s)α(s)e|

∫ s
0 α(u) du| ds

∣∣∣∣ . (C.3)

When c is a constant, this upper bound becomes

u(t) ≤ ce|
∫ t
0 α(s) ds|. (C.4)
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Proof To address simultaneously the cases t > 0 and t < 0, we let ε = 1 in the first
case and ε = −1 in the second case. Inequality (C.2) now becomes:

u(t) ≤ c(t) + ε

∫ t

0
α(s)u(s)ds.

Iterating this inequality once yields

u(t) ≤ c(t) + ε

∫ t

0
c(s)α(s)ds + ε2

∫ t

0

∫ s1

0
α(s1)α(s2)u(s2)ds ,

and iterating further, we get

u(t) ≤ c(t) + ε

∫ t

0
c(s)α(s)ds + · · ·

+ εn
∫

0≤εs1≤···≤εsn≤εt
c(sn)α(s1) . . . α(sn)ds1 . . . dsn

+ εn+1
∫

0≤εs1≤···≤εsn≤εt
α(s1) . . . α(sn+1)u(sn+1)ds1 . . . dsndsn+1 .

Consider the integral

In =
∫

0≤εs1≤···≤εsn

α(s1) . . . α(sn−1)ds1 . . . dsn−1.

By symmetry of the integration indices, we have

In = 1

(n − 1)!
∫

[0,sn ]n−1
α(s1) . . . α(sn−1)ds1 . . . dsn−1

= 1

(n − 1)!
(∫ sn

0
α(s)ds

)n−1

.

Therefore, using the fact that u is bounded, we have

u(t) ≤ c(t) +
n∑

k=1

εk

(k − 1)!
∫ t

0
c(sn)α(sn)

(∫ sn

0
α(s)ds

)k−1

dsn

+ εn+1 sup(u)

(n + 1)!
(∫ t

0
α(s)ds

)n+1

,

and passing to the limit yields (C.3). If c is constant, the previous upper bound can
be written
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u(t) ≤ c
n∑

k=0

εk

k!
(∫ t

0
α(s)ds

)k

+ εn+1 sup(u)

(n + 1)!
(∫ t

0
α(s)ds

)n+1

,

which yields (C.4). �

We now pass to the proof of Theorem C.10.

Proof (TheoremC.10) It suffices to show thatϕv
st is continuous, because Proposition

C.9 implies that (ϕv
st )

−1 = ϕv
ts . Take x, y ∈ Ω . We have

∥∥ϕv
st (x) − ϕv

st (y)
∥∥
B

=
∥∥∥∥x − y +

∫ t

s

(
v(s,ϕv

sr (x)) − v(s,ϕv
sr (y))

)
dr

∥∥∥∥
B

≤ ‖x − y‖B +
∫ t

s
Lip(v(t, ·)) ∥∥ϕv

sr (x) − ϕv
sr (y)

∥∥
B
ds.

WeapplyGronwall’s lemma, equation (C.4),with c = ‖x − y‖B,α(r) = Lip(v(r, ·))
and u(r) = ∥∥ϕv

0r (x) − ϕv
0r (y)

∥∥
B
, which is bounded because ϕv

sr is continuous in r .
This yields

∥∥ϕv
sr (x) − ϕv

sr (y)
∥∥
B

≤ ‖x − y‖B exp
(∫ t

s
Lip(v(r, .))dr

)
, (C.5)

which shows that ϕv
st is continuous on Ω , and even Lipschitz, with a Lipschitz

constant smaller than exp (‖v‖V). �

Remark Using the fact that (C.1) implies that, if ∂t y = v(t, y) and y(0) = x , then

‖y(t) − x∗‖B ≤ ‖x − x∗‖B +
∫ t

0
(‖v(u, x∗)‖B + Lip(v(u))‖y(u) − x∗‖B) du,

Gronwall’s lemma implies that

‖y(t) − x∗‖B ≤
(

‖x − x∗‖B +
∫ t

0
‖v(u, x∗)‖B dt

)
exp

(∫ t

0
Lip(v(u) du

)
,

which, in turn, implies the simpler expression

‖y(t) − x∗‖B ≤ (‖v‖V + ‖x − x∗‖B) exp (‖v‖V) . (C.6)

C.4 Variation in the Initial Condition

We now discuss the differentiability of the flow associated with an ODE. Because
we consider variations along a given trajectory, we will only need to require that the
vector field is regular in a neighborhood of this trajectory. We first formalize this
concept.
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Definition C.12 Let v be a time-dependent vector field on Ω and y : [0, T ] → Ω a
continuous curve. Let δ > 0 be small enough so that y(t) + x ∈ Ω for all t ∈ [0, T ]
and x ∈ B(0, δ). Let vy(t, x) = v(t, y(t) + x), x ∈ B(0, δ). We then say that v is
Lipschitz in a δ-tube along y if vy ∈ L1([0, T ], L(B(0, δ), B)). Similarly, v is C p

b in
this tube if vy ∈ L1([0, T ],C p

b (B(0, δ), B)).

(As usual, B(x, δ) denotes the open ball with center x and radius δ in B.)
We then have the following proposition.

Proposition C.13 Assume that v is Lipschitz in a δ0-tube along a continuous curve
y0 : [0, T ] → Ω which furthermore satisfies (with a fixed s ∈ [0, T ])

y0(t) = x0 +
∫ t

s
v(s, y0(s)) ds.

Then there exists a δ > 0 and a flow ϕst , t ∈ [0, T ], of homeomorphisms of Ω

such that, for ‖x − x0‖ < δ, y(t) = ϕst (x) is the unique solution of the equation
∂t y = v(t, y)with condition at time s: y(s) = x.Moreover,ϕst is such that‖ϕst (x) −
y0(t)‖B < δ0 at all times.

Proof Let χ : [0,+∞) → [0, 1] be a smooth function such that χ(τ ) = 1 for τ ∈
[0, 1] and χ(τ ) = 0 for τ ≥ 2. For δ > 0, let vδ(t, x) = χ(‖x − y0(t)‖B/δ)v(t, x),
with δ < δ0/2. Then vδ ∈ V = L1([0, T ], L(0)(Ω, B)), and TheoremC.6 and Propo-
sition C.9 imply that it generates a flow ϕvδ

st of homeomorphisms of Ω .
Clearly, ϕvδ

st (x) is solution of ∂t y = v(t, y) as long as ‖ϕvδ
st (x) − y0(t)‖ ≤ δ,

which also ensures that y0(t) = ϕvδ
st (x0). Using Eq. (C.5), we see that there exists

a δ′ > 0 such that ‖x − x0‖ ≤ δ′ implies ‖ϕvδ
st (x) − y0(t)‖B ≤ δ for t ∈ [0, T ], so

that ϕvδ
st (x) is the solution of ∂t y = v(t, y) with y(s) = x . This completes the proof

of the proposition. �

Let us now assume that v is C1
b in a δ0-tube along one of its solutions, y0, such

that y0(s) = x0. Denote by W the space L1([0, T ],C1
b(B(0, δ0), B)). Let ϕst be the

flow provided by Proposition C.13, such that ϕst (x) is a solution of ∂t y = v(t, y) if
x ∈ B(x0, δ). We now study the differentiability of ϕst in that ball. In the following,
dϕ, dv, etc. will always refer to derivatives over the “space” variable x ∈ Ω . Because
ϕst (x) remains in the δ0-tube around y0 for ‖x − x0‖B < δ, we have, following the
proof of Theorem C.10

‖ϕst (x) − ϕst (x
′)‖B ≤ ‖x − x ′‖B +

∫ t

s
‖vy0(r)‖1,∞‖ϕsr (x) − ϕsr (x

′)‖B dr,

with
vy0 : [0, T ] × B(0, δ0) → B

(t, z) �→ v(t, y0(t) + z) .

Using Gronwall’s lemma, we get, for x, x ′ ∈ B(x0, δ),



492 Appendix C: Ordinary Differential Equations

‖ϕst (x) − ϕst (x
′)‖B ≤ ‖x − x ′‖B exp(‖vy0‖W).

Because we have

ϕst (x) = x +
∫ t

s
v(t,ϕsr (x))dr,

a natural candidate for Wh(t, x) := dϕst (x)h (where h ∈ B) should satisfy

Wh(t, x) = h +
∫ t

s
dv(r,ϕsr (x))Wh(r, x) dr,

which is well defined as soon as x ∈ B(x0, δ), which implies that ϕsr (x) belongs
to the δ0-tube along y0, within which v(r, ·) is differentiable. This defines Wh as a
solution of a linear equation for which Corollary C.7 applies as soon as x ∈ B(x0, δ).
We now prove that ϕst (x + h) − ϕst (x) − Wh(t, x) = o(‖h‖B), writing

ϕst (x + h) − ϕst (x) − Wh(t, x) =
∫ t

s
(v(r,ϕsr (x + h)) − v(r,ϕsr (x)) − dv(r,ϕsr (x))(ϕsr (x + h) − ϕsr (x))) dr

+
∫ t

s
dv(r,ϕsr (x))(ϕsr (x + h) − ϕsr (x) − Wh(r, x)) dr

so that

‖ϕst (x + h) − ϕst (x) − Wh(t, x)‖B
≤
∫ t

s

∫ 1

0
‖dv(r,ϕsr (x + εh)) − dv(r,ϕsr (x))‖op(B)‖ϕsr (x + h) − ϕsr (x))‖B dε dr

+
∫ t

s
‖dv(r,ϕsr (x))‖op(B)‖ϕsr (x + h) − ϕsr (x) − Wh(r, x)‖B dr

≤‖h‖B exp(‖vy0‖W)

∫ 1

0

∫ T

0
‖dv(r,ϕsr (x + εh)) − dv(r,ϕsr (x))‖op(B) dε dr

+
∫ t

s
‖dv(r,ϕsr (x))‖op(B)‖ϕsr (x + h) − ϕsr (x) − Wh(r, x)‖B dr.

The continuity of dv implies that ‖dv(r,ϕsr (x + εh)) − dv(r,ϕsr (x))‖op(B) tends
to 0 with ‖h‖B for all ε ∈ [0, 1]. This norm being moreover bounded by 2‖dv(r)‖∞,
which is integrable by assumption, the dominated convergence theorem implies that

lim
h→0

∫ 1

0

∫ T

0
‖dv(r,ϕsr (x + εh)) − dv(r,ϕsr (x))‖op(B) dε dr = 0.

The fact that ϕst (x + h) − ϕst (x) − Wh(t, x) = o(‖h‖B) is then a consequence of
Gronwall’s lemma. Gronwall’s lemma applied again to
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‖Wh(t, x)‖B = ‖h‖B +
∫ t

s
‖dv(r,ϕsr (x))‖op(B)‖Wh(r, x)‖B dr

shows that W (t, x) : h �→ Wh(t, x) ∈ L(B, B) with

‖W (t, x)‖op(B) ≤ exp(‖vy0‖W).

Finally, writing

Wh(t, x) − Wh(t, x
′) =

∫ t

s
(dv(r,ϕsr (x)) − dv(r,ϕsr (x

′)))Wh(r, x) dr

+
∫ t

s
dv(r,ϕsr (x

′))(Wh(r, x) − Wh(r, x
′)) dr,

so that

‖Wh(t, x) − Wh(t, x
′)‖B

≤ ‖h‖B exp(C(v))

∫ t

s
‖dv(r,ϕsr (x)) − dv(r,ϕsr (x

′))‖op(B) dr

+
∫ t

s
‖dv(r,ϕsr (x

′))‖op(B)‖Wh(r, x) − Wh(r, x
′)‖B dr,

and applyingGronwall’s lemma and the continuity of dv ensures thatW is continuous
in x . We have therefore proved the following theorem.

Theorem C.14 Assume that y0 : [0, T ] → B is a continuous curve, that v is C1
b in

a δ0-tube along y0, and that y0 is a solution of ∂t y = v(t, y) with y0(x) = x0. Then
there exists a δ > 0 such that the flow ϕst associated with the ODE is well defined
and continuously differentiable for x ∈ B(x0, δ), and dϕv

st (x)h is the solution at time
t of the equation

∂tWh = dv(t,ϕv
st (x))Wh (C.7)

with Wh(s) = h.

The following global version of the theorem is then immediate.

Theorem C.15 Assume that v ∈ L1([0, T ],C1
(0)(Ω, B)). Then ϕv

st is a diffeomor-
phism of Ω and dϕv

st (x)h is the solution at time t of (C.7) with Wh(s) = h.

We can alternatively restate this theorem by writing that dϕv
st (x) if the solution of

the equation
∂tW = dv(t,ϕv

st (x))W (C.8)

with W (0) = Id, which is now a linear ODE over L(B, B).
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C.5 Variation with Respect to a Parameter

We now assume that v depends on a parameter λ. We introduce for this a set U , an
open subset of a Banach space U, and consider a mapping λ �→ vλ defined onU and
returning a time-dependent vector field on Ω .

We fix λ0 ∈ U and consider a continuous curve y0 : [0, T ] → Ω such that, defin-
ingwλ(t, x) = vλ(t, y0(t) + x), themapping λ �→ wλ is continuously differentiable
from U to W = L1([0, T ],C1

b(B(0, δ0), B)) for some δ0 > 0. We also assume that

y0(t) = x0 +
∫ T

0
vλ0(t, y0(t)) dt

i.e., y0 is a solution of ∂t y = vλ0(y). In the following computation, we will use the
letter d to denote a derivative with respect to the x variable (x ∈ B), and ∂λ for
derivatives with respect to λ. Restricting the domain U to a small neighborhood of
λ0 if needed, we will furthermore assume thatU is convex and that ‖wλ‖W ≤ C0 for
some constant C0 and all λ ∈ U .

If δ < δ0/2 and χ : [0,+∞) → [0, 1] is a smooth function such that χ(τ ) = 1
on [0, 1] and χ(τ ) = 0 on [2,+∞), we can associate to each λ the Lipschitz vector
field v̂λ(t, x) = χ(‖x − y0(t)‖B/δ)vλ(t, x)whose solution yλ starting at x0 provides
a solution of ∂t y = vλ(t, y) as long as it remains at distance less that δ from y0. Using
Gronwall’s lemma, we can show that this remains true over the whole interval [0, T ].
Indeed,

yλ(t) − y0(t) =
∫ t

0

(
v̂λ(s, yλ(s)) − v̂λ0(s, yλ(s))

)
ds

+
∫ t

0

(
v̂λ0(s, yλ(s)) − v̂λ0(s, y0(s))

)
ds.

We have

v̂λ(t, x) − v̂λ0(t, x) = χ

(‖x − y0(t)‖B
δ

)
(vλ(t, x) − vλ0(t, x))

so that the left-hand side vanishes if x − y0(t) /∈ B(0, δ0) and is such that

‖v̂λ(t, x) − v̂λ0(t, x)‖B ≤ χ

(‖x − y0(t)‖B
δ

)
‖vλ(t, x) − vλ0(t, x)‖

≤
(∫ 1

0
sup

x∈B(y0(t),δ0)
‖∂λv

λ0+α(λ−λ0)(t, x)‖op(U,B)dα

)

‖λ − λ0‖U ,
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so that

∫ t

0
‖v̂λ(s, yλ(s)) − v̂λ0(s, yλ(s)‖B ds ≤

(∫ 1

0
‖wλ0+α(λ−λ0)‖W dα

)
‖λ − λ0‖U

≤ C0‖λ − λ0‖U.

We also have

‖v̂λ0(s, yλ(s)) − v̂λ0(s, y0(s))‖B ≤ sup
x∈B(0,δ0)

‖dwλ0(s, x)‖op(B)‖yλ(s) − y0(s)‖B.

Combining these inequalities and applying Gronwall’s lemma implies that

‖yλ(s) − y0(s)‖B ≤ (C0e
C0)‖λ − λ0‖U . (C.9)

We can therefore find some δ > 0 such that ‖yλ(s) − y0(s)‖B < δ0 at all times s ∈
[0, T ] for all λ such that ‖λ − λ0‖U < δ. Hence, yλ is a solution of ∂t y = vλ(y) for
λ ∈ B(λ0, δ). To simplify the discussion below, and without loss of generality, we
will assume that U = B(λ0, δ) in the following.

We now study the differentiability of yλ with respect toλ. Formally differentiating
the identity

yλ(t) = x0 +
∫ t

0
vλ(s, yλ(s)) ds,

we get, for small enough η ∈ U,

∂λy
λ(t)η =

∫ t

0
(∂λv

λη)(s, yλ(s)) ds +
∫ t

0
dvλ(s, yλ(s))(∂λy

λ(s)η) ds.

Given this, we introduce the solution Wη of the equation

Wη(t) =
∫ t

0
(∂λv

λη)(s, yλ(s)) ds +
∫ t

0
dvλ(s, yλ(s))Wη(s) ds

and show that Wη(t) is the differential of yλ(t) with respect to λ in the direction η.
Using the same argument as the one leading to (C.9), we have, for small

enough η,
‖yλ+η(t) − yλ(t)‖B ≤ C(λ)‖η‖U. (C.10)
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Consider now the difference

yλ+η(t) − yλ(t) − Wη(t) =
∫ t

0

(
vλ+η(s, yλ+η(s)) − vλ(s, yλ+η(s)) − (∂λv

λη)(s, yλ+η(s))
)
ds

+
∫ t

0

(
vλ(s, yλ+η(s)) − vλ(s, yλ(s)) − dvλ(s, yλ(s))(yλ+η(s) − yλ(s))

)
ds

+
∫ t

0
((∂λv

λη)(s, yλ+η(s)) − (∂λv
λη)(s, yλ(s)))ds

+
∫ t

0
dvλ(s, xλ(s))(yλ+η(s) − yλ(s) − Wη(s))ds

(C.11)
and the upper-bound

‖yλ+η(t) − yλ(t) − Wη(t)‖B ≤
∫ t

0

∫ 1

0

∥∥(∂λv
λ+εηη)(s) − (∂λv

λη)(s)
∥∥∞ dε ds

+
∫ t

0

∫ 1

0
‖dvλ(s, yλ+εη(s)) − dvλ(s, yλ(s))‖op(B)‖yλ+η(s) − yλ(s))‖B dε ds

+
∫ t

0
‖d(∂λv

λη)(s)‖∞‖yλ+η(s) − yλ(s)‖B ds

+
∫ t

0
‖dvλ(s)‖∞‖yλ+η(s) − yλ(s) − Wη(s)‖B ds.

If we prove that the first three terms in the right-hand side are o(‖η‖U), then Gron-
wall’s lemma will ensure that the left-hand side is also o(‖η‖U).

The first term is bounded by

‖η‖U max
ε∈[0,1] ‖∂λw

λ+εη − ∂λw
λ‖W,

which is o(‖η‖U), because λ �→ wλ is C1. The second one is bounded by

(
max
t∈[0,T ] ‖y

λ+η(t) − yλ(t)‖B
)

∫ T

0

∫ 1

0
‖dvλ(s, yλ+εη(s)) − dvλ(s, yλ(s))‖op(B) dε ds

≤ C ′
0‖η‖U max

ε∈[0,1] ‖w
λ+εη − wλ‖W

for some constant C ′
0, so that this term is also o(‖η‖U ).
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Finally, the third term is less than

‖∂λv
λ‖op(V(1),V(1)) ‖η‖U max

t∈[0,T ] ‖y
λ+η(t) − yλ(t)‖B = o(‖η‖U).

This proves that Wη = ∂λyλη.

Theorem C.16 Assume that λ �→ vλ is such that, for some λ0 ∈ U, and with
wλ(t, x) = vλ(t, y0(t) + x), the mapping λ �→ wλ is continuously differentiable
from U to W = L1([0, T ],C1

b(B(0, δ0), B)) for some δ0 > 0, where y0 satisfies

y0(t) = x0 +
∫ T

0
vλ0(t, y0(t)) dt .

Then, there exists a neighborhood of λ0 such that ∂t y = vλ(t, y) has a unique solu-
tion yλ satisfying yλ(0) = x0, and λ �→ yλ is differentiable. Moreover, for η ∈ U,
∂λyλ(t)η is the solution of the equation

∂tWη = dvλ(t, yλ(t))Wη + (∂λv
λη)(t, yλ(t)) (C.12)

with Wη(0) = 0.

This directly implies the following global version.

Theorem C.17 Assume thatλ �→ vλ is C1 fromU toV
(1), whereU is an open subset

of a Banach spaceU. Fix x0 ∈ B. Then the solution yλ of the equation ∂t y = vλ(t, y)
with yλ(0) = x0 is differentiable inλand forη ∈ U,∂λyλ(t)η is the solution of (C.12)
with Wη(0) = 0.

The solutions of (C.8) and (C.12) are related because the former is the homoge-
neous part of the latter. This implies that one can deduce the solutions of (C.12) from
those of (C.8) using a variation of the constant. To simplify the notation, we fix λ and
write v for vλ. Let also M(t) denote (∂λv

λη)(t, yλ(t)). Take Wη(t) = dϕv
0t (x0)h(t),

with h to be determined. Then one must have

M(t) = dϕv
0t (x0)ḣ(t),

so that (given that Wη(0) = 0)

h(t) =
∫ t

0
(dϕv

0s(x0))
−1M(s) ds =

∫ t

0
dϕv

s0(y
λ(s))M(s) ds,

yielding (returning to the full notation)

(∂λy
λ(t))η =

∫ t

0
dϕvλ

st (y
λ(s))(∂λv

λη)(s, yλ(s)) ds. (C.13)
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As a second connection between Theorems C.15 and C.17, notice that x acts
as a parameter in Eq. (C.8). This implies that higher derivatives of ϕv

st will fol-
low an ODE provided by Theorem C.17. Assume, for example, that v ∈ V

(2) =
L1([0, T ],C2

(0)(Ω, B)). Then W in Eq. (C.8) is the solution of a linear ODE with
associated vector field in L1([0, T ],C∞

0 (B, B)) (because it is linear) which is con-
tinuously differentiable in x . This implies that d2ϕst (x) is the solution of an ODE
overL2(B, B) (symmetric bilinear forms) obtained by formal differentiation of (C.8).
Letting W (0) = ϕv

st (x), W
(1) = dϕv

st (x), etc., we have

∂tW
(2)(h1, h2) = d2v(t,W (0))(W (1)(h1),W

(1)(h2)) + dv(t,W (0))W (2)(h1, h2).

If one assumes higher derivatives, i.e., v ∈ V
(p) for p ≥ 1, then the argument can be

iterated to the pth order, leading to the following result.

Theorem C.18 Assume that v ∈ V
(p) = L1([0, T ],C p

(0)(Ω, B)). Then W (0)(x) =
ϕv
st ∈ C p(Ω, B) and, for k = 1, . . . , p, W (k)(t, x) = dkϕv

st is the solution of the
linear ODE

∂tW
(k) = B(k)(t) + dv(t,W (0))W (k)(t), (C.14)

where the symmetric k-linear form B(k) ∈ Lk(B, B) depends on v and on
W (0), . . . ,W (k−1) and satisfies

B(l+1)(h1, . . . , hl+1) = d(B(l)(h1, . . . , hl))hl+1+
d2v(t,W (0))(W (l)(h1, . . . , hl),W

(1)hl+1). (C.15)

The initial conditions are W (1)(s) = Id and W (k)(s) = 0, s ≥ 2.

The symmetry of B(k) results from the fact that the other two terms in (C.14) are
symmetric. Equation (C.14) can also be written in the form

∂tW
(k) = dk(v(t,W (0))) (C.16)

with W (l+1) = dW (l).

C.6 Numerical Integration of ODEs

We end this chapter with a few remarks on how ODEs can be solved numerically
(in finite dimensions!). Of course, it cannot be our intention, in these few paragraphs,
to include all the information that can be found in specialized textbooks (e.g., [234,
270, 271]), so we refer the reader to these references for a comprehensive presenta-
tion.
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C.6.1 Explicit Schemes

Consider the differential equation ∂t y = v(t, y)where y ∈ R
n . Denote by ϕst (z) the

solution at time t of this equation with initial condition y(s) = z. Explicit one-step
numerical schemes for this ODE implement iterations of the form

{
zk+1 = η(tk, zk, hk)
tk+1 = tk + hk

in which zk is intended to provide a numerical approximation of ϕ0tk (z0). If hk = h
is fixed, this is a fixed step method, and is hk is optimized at each step, this is an
adaptive step method.

The simplest such algorithm is the Euler method, for which

η(t, z, h) = z + hv(t, z).

This algorithm has the advantage of requiring only one evaluation of v per iteration,
but it also has a limited accuracy, as measured by the difference

δ(t, z, h) = 1

h
(ϕt,t+h(z) − η(t, z, h)).

For the Euler method, we have, making a second-order Taylor expansion of y around
y(t):

δ(t, z, h) = h

2
ÿ(t) + o(h)

with ÿ = ∂tv(t, y) + dv(t, y)v(t, y) (therefore requiring that v is differentiable in
time and space). A method is said to be accurate at order p if δ(t, z, h) = O(h p). So
the Euler method has order 1.

Slightly more complex is the modified Euler, or Euler midpoint method in which
η is defined by the iteration

⎧
⎨

⎩

u1 = v(t, z),

η(t, z, h) = z + hv(t, z + h

2
u1).

Using a second-order expansion, one proves that the Euler midpoint method has
order 2, assuming this time two derivatives in time and space for v. A fourth-order
method is provided by the Runge–Kutta iteration, defined by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = v(t, z),

u2 = v(t + h

2
, z + h

2
u1),

u3 = v(t + h

2
, z + h

2
u2),

u4 = v(t + h, z + hu3),

η(t, z, h) = z + h

6
(u1 + 2u2 + 2u3 + u4).

More generally, one defines Runge-Kutta methods with s stages using iterations of
the form ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui = v
(
t + ci h, z + h

i−1∑

j=1

ai j u j

)
, i = 1, . . . , s,

η(t, z, h) = z + h
s∑

i=1

biui

with ci =∑i−1
j=1 ai j . The method is therefore specified by the lower triangular s by s

matrix (with null diagonal) (ai j ) and by the vector (bi ). Such an iteration requires s
evaluations of the function v, but can reach higher orders of accuracy. Note that high
orders of accuracy can only be achieved provided v has at least the same number of
derivatives in time and space.

A lot can be gained in the accuracy vs. efficiency trade-off by using adaptive
step size. This can be implemented by comparing two similar Runge–Kutta methods
(using different coefficients in the expansion) and comparing their differences to
some tolerance level. If the difference is larger than the tolerance, the step is reduced;
otherwise, it is enlarged (see [88, 234]).

C.6.2 Implicit Schemes

The above methods are called explicit because zk+1 is explicitly given as a function
of the current value zk . Implicit methods relax this constraint, and require solving
a nonlinear equation to evaluate y(tk+1). In spite of this added complexity, such
methodsmay exhibit improved performances, because they are generallymore stable
and allow for the use of larger step sizes h. The simplest example is the Euler implicit
method, which iterates

zk+1 = zk + hkv(tk+1, zk+1).

To see why such a method can be interesting, consider the simple autonomous
and linear case in which v(t, y) = Ay. The solution of the ODE is y(t) = et A y(0).
When A only has negative eigenvalues, the solution converges to 0 as t tends to
infinity (one says that the resulting system is stable). An Euler discretization, say
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with constant step h, gives zk = (Id + hA)k z0. Such an iteration will converge to 0
only if the eigenvalues of (Id + hA) are smaller than 1 in modulus, requiring h to be
smaller than 2/|λmax|, where λmax is the eigenvalue of A that has the largest absolute
value. The implicit iteration yields zk = (Id − hA)−k z0, which always converges
to 0.

More general one-step implicit schemes use iterations for which η is given by

θ(t, z, η(t, z, h), h) = 0

for some function θ such that θ(t, z, z′, h) − z′ tends to 0 as h tends to 0. Since an
analytical solution (expressing z′ as a function of t, z and h) for

θ(t, z, z′, h) = 0

is almost never available, one typically uses fixed-point iterations. The sequence

ζq+1 = ζq − θ(t, z, ζq , h)

will converge to the required z′ for small enough h (ensuring that ζ �→
(θ(t, z, ζ, h) − ζ) is contractive). Doing this may clearly require several evaluations
of η (which may in turn require several evaluations of v), so that the gain obtained
from being able to use larger steps may be lost if evaluating v is costly.

A natural situation in which implicit methods are needed is when one wants to
solve an equation backward in time, in a way which is consistent with the forward
solution. Let us restrict ourselves to autonomous equations, so that v does not depend
on t , assuming the same property at the discretization level (θ does not depend on t).
The uniqueness theorem for ODEs implies that if y is a solution of ∂t y = v(y), then
the solution of ∂t ỹ = −v(ỹ) initialized with ỹ(0) = y(T ) is ỹ(t) = y(T − t). This
property is useful if one needs to recover the initial condition of an ODE given its
state at time T . If one separately discretizes the forward and the backward equations,
this property is generally not satisfied exactly at the discrete level. One needs to make
sure that the backward iteration is consistent with the forward one. This implies that,
if the forward iteration is solved using (assuming constant steps)

θ(zk, zk+1, h) = 0

then the backward scheme should use

θ̃(z̃k, z̃k+1, h) = 0

with
θ̃(z̃k, z̃k+1, h) = θ(z̃k+1, z̃k, h)

and it is clear that θ and θ̃ cannot be explicit together. Another interesting notion
related to reversibility in time is the adjoint scheme
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θ∗(z, z′, h) = θ(z′, z,−h),

which is such that θ̃(z, z′, h) = θ∗(z, z′,−h). The adjoint scheme is also a forward
scheme. For example, the adjoint of the Euler explicit scheme is the Euler implicit
scheme.

One says that the scheme is symmetric if θ∗ = θ. Symmetric schemes are interest-
ing because they can be used to solve both the backward and the forward equation in a
consistent way. One simple way to build a symmetric scheme from a non-symmetric
one is to combine the latter with its adjoint, i.e., define z′ from z by first finding z′′
such that θ∗(z, z′′, h/2) = 0, then solving θ(z′′, z′, h/2) = 0. Starting with the Euler
method, this yields the implicit midpoint method, which is defined by

⎧
⎪⎨

⎪⎩

y′ = yk + h

2
v(y′)

yk+1 = yk + h

2
v(y′) .

Another important class of problems in which implicit methods are useful are
those which require the solution of Hamiltonian systems, such as the one described
in Sect.B.6.6, or such as the EPDiff equation, which is extensively discussed in this
book. Such systems are split over two variables, traditionally denoted p (momentum,
or co-state) and q (state), and involve a real-valued function H(p, q) called the
Hamiltonian.

The resulting Hamiltonian system is the ODE

{
∂t q = ∂pH(p, q),

∂t p = −∂q H(p, q).

An important property of Hamiltonian systems is that their flow is “symplectic”.
To define this notion, introduce the matrix

J =
(

0 Id
−Id 0

)
.

With this notation, we can rewrite the Hamiltonian system in the form

∂t

(
p
q

)
= J∇H(p, q)

or, letting Φ denote the flow associated to this equation:

∂tΦ = J ∇H ◦ Φ.
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The differential of Φ satisfies

∂t dΦ = J (d2H ◦ Φ)dΦ,

fromwhich one easily deduces that ∂t (dΦT JdΦ) = 0, which implies (becauseΦ =
id at t = 0)

dΦT JdΦ = J.

Transformations Φ that satisfy this equation are called symplectic. In fact, such
a property characterizes Hamiltonian systems, and a natural requirement is that it
should be shared by discrete systems, too. This leads to the definition of symplectic
integrators, which are integrators for which the function z �→ η(z, h) is symplectic
for all h (there is no time variable because the Hamiltonian system is autonomous).

The simplest examples of symplectic integrators are the symplecticEulermethods.
There are two of them, defined by

{
pn+1 = pn − h∂q H(pn+1, qn)

qn+1 = qn + h∂pH(pn+1, qn)
and

{
pn+1 = pn − h∂q H(pn, qn+1)

qn+1 = qn + h∂pH(pn, qn+1)
.

Note that the latter equation is the dual of the former. When composed, they
form the Störmer–Verlet schemes (there are two of them, depending on which of the
symplectic Euler schemes is applied first). Symplectic Euler is a first-order method,
whereas Störmer–Verlet has order two. Another symplectic method of order two is
the implicit midpoint, defined by

{
pn+1 = pn − h∂q H(p′

n, q
′
n)

qn+1 = qn + h∂pH(p′
n, q

′
n)

with p′
n = (pn + pn+1)/2 and q ′

n = (qn + qn+1)/2. The proof of these statements
and many more details can be found in [98, 191].



Appendix D
Introduction to Optimization and Optimal
Control Theory

D.1 Unconstrained Optimization Problems

We consider a function F : Ω → R where Ω is an open subset of a Banach space
B, and we first discuss the unconstrained optimization problem of finding

x∗ = argmin
x∈Ω

F(x). (D.1)

The following theorem gives the usual necessary conditions for optimality. They are
the same as those that hold in finite dimensions, with whichwe assume that the reader
is familiar.

Theorem D.1 Assume that F is differentiable over Ω , and that x∗ satisfies (D.1);
then dF(x∗) = 0.

When dF : x �→ dF(x), which maps Ω to B
∗, is differentiable, one defines the

second derivative, d2F , which is such that d2F(x) ∈ L(B, B
∗), the space of contin-

uous linear transformations from B to B
∗ and say that F is twice differentiable. If F

is twice differentiable on Ω , we have

F(x + th + th′) − F(x + th) − F(x + th′) + F(x)

=
∫ t

0

(
dF(x + th + u′h′) − dF(x + th)

∣∣ h′ )du′

=
∫ t

0

∫ t

0

(
d2F(x + uh + uh′)h

∣∣ h′ )dudu′.

If x �→ d2F(x) is continuous, i.e., F ∈ C2(Ω), we have

lim
t→0

(
F(x + th + th′) − F(x + th) − F(x + th′) + F(x)

)
= (d2F(x)h

∣∣ h′ ).
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Since the left-hand side is symmetric in h and h′, this proves that
(
d2F(x)h

∣∣ h′ ) = (d2F(x)h′ ∣∣ h
)

for any h, h′ ∈ B. This generalizes the usual theorem on symmetry of second par-
tial derivatives in finite dimensions. In this case, d2F(x) can be identified with a
symmetric bilinear form on B,

HF(x)(h, h′) := (d2F(x)h
∣∣ h′ )

called the Hessian of F . With this definition, we can state the generalization of the
sufficiency conditions on a local minimum in finite dimensions.

Theorem D.2 Assume that F ∈ C2(Ω). If x∗ ∈ Ω is such that dF(x∗) = 0 and
HF(x∗) is positive definite, then x∗ is a local minimum of F.

(One says that HF(x∗) is positive definite if HF(x∗)(h, h) ≥ 0 for all h, with equality
if and only if h = 0.)

D.2 Problems with Equality Constraints

The extension of the Lagrange-multiplier theorem to infinite dimensions is not as
straightforward as the extension of the optimality conditions in the unconstrained
case. Let us first recall how Lagrange multipliers arise in finite dimensions. Consider
the problem of finding

x∗ = argmin
x∈Ω

F(x) (D.2)

subject to Γ (x) = 0, where Ω is an open subset of R
d , and F : Ω → R and Γ :

Ω → R
k , k ≤ d, are continuously differentiable. The following theorem holds.

Theorem D.3 If x∗ is a solution of (D.2), there exists ρ ∈ {0, 1} and λ ∈ R
k , with

(ρ,λ) �= (0, 0), such that x∗ is a stationary point of the Lagrangian

L(x) = ρF(x) + λTΓ (x)

(i.e., dL(x∗) = 0.)
If dΓ (x∗) has rank k, one must have ρ = 1.

Proof First assume that dΓ (x∗) has rank q < k. Then there exists a vector
λ �= 0 ∈ R

k such that dΓ (x∗)Tλ = 0. This is because, for a matrix A, one has
dim(Range(A)) = dim(Range(AT )) and

dim(Range(AT )) + dim(Null(AT )) = k,
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so that
dim(Null(AT )) = k − q > 0 .

This proves the theorem with ρ = 0. Conversely, if the theorem holds with ρ = 0,
then dΓ (x∗) cannot have rank k.

Now assume that dΓ (x∗) has rank k (which is its maximal rank since k ≤ d).
We note that it suffices to show that, whenever v ∈ R

k satisfies dΓ (x∗)v = 0, then
dF(x∗)v = 0. If this is true, then a standard result in linear algebra (the proof of
which being left to the reader) states that one must have dF(x∗)T + dΓ (x∗)Tλ = 0
for some λ ∈ R

k , which is exactly the statement of the theorem with ρ = 1 (note that
dΓ (x∗) is a k by d matrix and dF(x∗) a 1 by d matrix).

So let us prove that

dΓ (x∗)v = 0 ⇒ dF(x∗)v = 0.

We note that one can, without loss of generality, assume that Γ (x) = x2 − Q(x1)
where x2 is composed with k coordinates from x and x1 contains the remaining
d − k. Indeed, since dΓ (x∗) has rank k, the implicit function theorem implies that
the equation Γ (x) = 0 can be solved (in some neighborhood of x∗) by expressing k
coordinates of x as functions of the remaining ones. Defining the linear projections
π1(x) = x1, π2(x) = x2, we will therefore assume that Γ = π2 − Q ◦ π1. In such a
case,

dΓ (x∗)v = π2(v) − dQ(x∗
1 )π1(v),

which vanishes if and only if π2(v) = dQ(x∗
1 )π1(v).

Fix such a v. Consider the function t �→ x(t) with x1(t) = x∗
1 + tπ1(v) and

x2(t) = Q(x∗
1 + tπ1(v)). Then Γ (x(t)) = 0 for all t in a neighborhood of t = 0

and the function f (t) = F(x(t)) is differentiable and minimal at t = 0, so that

ḟ (0) = dF(x∗)ẋ(0) = 0.

But we have π1(ẋ(0)) = π1(v) and

π2(ẋ(0)) = dQ(x∗
1 )π1(v) = π2(v),

which implies that ẋ(0) = v. We have therefore proved that dF(x∗)v = 0, which
completes the proof of the theorem when dΓ (x∗) has full rank. �

Another way to interpret the previous theorem is that the row vectors of the matrix

(
dF(x∗)
dΓ (x∗)

)
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must be linearly dependent if x∗ is aminimizer. Thepossibility thatλ = 0 is important
to keep in mind. It is easy to provide examples for which this occurs. One can, for
example, transform any minimization problem such as (D.2) into the problem

x∗ = argmin
x∈V

F(x) (D.3)

subject to |Γ (x)|2 = 0. Both problems clearly have the same solutions, but, letting
Γ̃ (x) = |Γ (x)|2, one has dΓ̃ (x) = 2Γ (x)T dΓ (x), which vanishes for any x that sat-
isfies the constraints. This means that no solution x∗ will satisfy dF(x∗) + λdΓ̃ (x∗)
unless dF(x∗) = 0, i.e., x∗ is already stationary for F , which is not true in general.
To take a less artificial example, let d = 3, k = 2 with F(x, y, z) = x/2 + y and
Γ (x, y, z) = (x2 − y2, y − z2). Noting that Γ = 0 implies that y = |x |, one checks
that F(x, y, z) = |x | + x/2 ≥ 0 and vanishes only when x = y = 0, in which case
z = 0. At this point, dF(0) = (1/2, 1, 0),

dΓ (0) =
(
0 0 0
0 1 0

)

and there is no λ ∈ R
2 such that dF(0) + λT dΓ (0) = 0.

Theorem D.3 can be generalized to infinite dimensions, but some precautions
must be taken. Two aspects of the proof cannot be immediately transcribed within a
Banach space setting. The first one is the separation of the variable x into two parts
x1 and x2, but this can be fixed by using a quotient space argument instead. The
second one is the argument about ranks and null spaces that was applied in the first
part of the proof, which now requires the additional assumption, always true in finite
dimension, that the range of dΓ (x∗) is closed. The closed range assumption means
that, if a sequence vn is such that wn = dΓ (x∗)vn converges to a limit w, then there
exists a v such that w = dΓ (x∗)v. When this is true, we have the following theorem
(see [179]).

Theorem D.4 Let B and B̃ be Banach spaces, and F : B → R, Γ : B → B̃ be
Fréchet differentiable. Assume that x∗ is a solution of (D.2), and thatRange(dΓ (x∗))
is a closed subspace of B̃. Then there exists ρ ∈ {0, 1} and λ ∈ B̃

∗, with (ρ,λ) �=
(0, 0), such that x∗ is a stationary point of the Lagrangian

L(x) = ρF(x) + (λ | Γ (x) ).

If dΓ (x∗) is onto, i.e., Range(dΓ (x∗)) = B̃, then one has ρ = 1.

D.3 An Optimal Control Problem

When discussing control systems, one usually introduces two types of variables. The
first ones, called state variables, contain quantities that must be driven to a desired
behavior, while the second ones, called control variables, can be specified by the
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user in order to influence the state variables. Both variables evolve with time. The
relationship between the state, q, and the control, u, is typically represented by an
evolution equation of the form

∂t q = f (q, u). (D.4)

We will let U denote the set of controls, and Ω the set of states. The former will be
assumed to form a Banach space, and the latter an open subset of a Banach space
Q. We will also make assumptions ensuring that the state evolution equation is a
well-posed ODE in q for fixed u.

We will discuss the problem of finding a control that drives the state variable from
an initial position, say q0 at time t = 0, to (or near) a target state, q1, at a fixed time,
t = 1, with a minimal cost according to a cost function that will be specified. This
is not the only kind of optimal control problems that one can consider. For example,
one can relax the fixed time constraint and find an optimal way to reach q1 at some
time t > 0, where this time is also part of the optimization process. One can also
generalize the unique target setting and rather search for a control that will lead
the state to (or near) a target set of states, Q1 ⊂ Ω , any element q1 ∈ Q1 being an
acceptable end point. A particular case of this situation will be considered later.

Restricting to the unique target setting, we will consider two types of problems.
Both problems assume the definition of a cost function, definedonΩ × U , denotedg :
(q, u) �→ g(q, u). The first optimal control (OC) problem that we consider attempts
to drive q to q1 exactly, and is formulated as follows. Find

(q∗, u∗) = argmin
q,u

∫ 1

0
g(q(t), u(t))dt (D.5)

subject to q(0) = q0, q(1) = q1, ∂t q = f (q, u).
The second problem,which is both theoretically and numerically easier to address,

replaces the constraint q(1) = q1 by an endpoint cost G(q(1)), where G, defined on
Ω , will penalize large differences between q(1) and q1. This yields the formulation

(q∗, u∗) = argmin
q,u

(∫ 1

0
g(q(t), u(t))dt + G(q(1))

)
(D.6)

subject to q(0) = q0, ∂t q = f (q, u). For both problems, the control is assumed to
be a bounded measurable function from [0, 1] to U , i.e., u ∈ U := L∞([0, 1],U).

We now formalize our assumptions. For u ∈ U , define

f u : Ω → Q
q �→ f (q, u).

We assume that f u takes values inB
(1) := C1

(0)(Ω,Q) and that the mapping u �→ f u

is continuously differentiable from U to B
(1). We will furthermore assume that
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max(‖ f u‖B(1) , ‖∂u f
u‖op(U ,B(1))) ≤ C(‖u‖U ), (D.7)

where C is a continuous function. It is easy to check that these assumptions imply
that f ∈ C1(Ω × U , Q), with ∂2 f (q, u) = ∂u f u(q), and that the cross derivative
exists with ∂1∂2 f (q, u) = d∂u f u(q) = ∂ud f u(q) = ∂2∂1 f (q, u). We then have the
following proposition, in which we let V

(1) := L1([0, 1], B
(1)).

Proposition D.5 With the above notation and assumptions, let V u(t)(q) =
V u(t, q) = f (q, u(t)). Then, for u ∈ U, V u takes its values in V

(1) and u �→ Vu

is continuously differentiable from U to V
(1), with

∂uV
uη : t �→ ∂u f

u(t)η(t).

(Note that u, V u etc. are defined up to modifications over sets of measure 0.)

Proof We have

‖Vu‖V(1) =
∫ 1

0
‖ f u(t)‖B(1) dt,

which is finite if u(·) ∈ U, from (D.7). The same equation ensures that

∫ 1

0
‖∂uV

uη(t)‖B(1) dt ≤
∫ 1

0
‖∂u f

u(t)‖op(U ,B(1))‖η(t)‖U dt

≤ ‖η‖U
∫ 1

0
C(‖u(t)‖U ) dt

and the last integral is finite because C is continuous and u is bounded. This shows
that ∂uVu ∈ L(U, V

(1)). The continuity of ∂uV u with respect to u can be assessed
by writing

∫ 1

0
‖∂u f

u(t)η(t) − ∂u f
u′(t)η(t)‖B(1) dt

≤
∫ 1

0
‖∂u f

u(t) − ∂u f
u′(t)‖op(U ,B(1))‖η(t)‖U dt

≤ ‖η‖U
∫ 1

0
‖∂u f

u(t) − ∂u f
u′(t)‖op(U ,B(1)) dt

so that

‖∂uVu − ∂uVu‖op(U,V(1)) ≤
∫ 1

0
‖∂u f

u(t) − ∂u f
u′(t)‖op(U ,B(1)) dt,

which tends to 0 as u′ tends to u (using the continuity of ∂u f u and the dominated
convergence theorem).
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Finally, we write

f u(t)+η(t) − f u(t) =
∫ 1

0
∂u f

u(t)+εη(t)η(t) dε

and

∫ 1

0
‖ f u(t)+η(t) − f u(t) − ∂u f

u(t)η(t)‖B(1)dt ≤

‖η‖U
∫ 1

0

∫ 1

0
‖∂u f

u(t)+εη(t) − ∂u f
u(t)‖op(U ,B(1)) dεdt = o(‖η‖U),

using the fact that ∂u f u is continuous. This concludes the proof. �

If we now apply Theorem C.17 to the solution qu of ∂t q = f (q, u) with qu(0) =
qu
0 , we find that

∂uq
u(t) =

∫ t

0
dϕu

st (q
u(s))∂2 f (q

u(s), u(s))η(s)ds,

where ϕu is the flow associated with ∂t q = Vu(t, q).

Remark D.6 One can prove a similar result with U = L2([0, 1],U) instead of L∞
if we replace (D.7) by

‖ f u‖B(1) ≤ C‖u‖U
‖∂u f

u‖op(U ,B(1)) ≤ C
(D.8)

for some constant C . The proof follows the same lines, with the Cauchy–Schwartz
inequality replacing direct bounding of integrals using supremum norms. To prove
that quantities such as

∫ 1

0
‖∂u f

u(t) − ∂u f
u′(t)‖2op(U ,B(1))

dt

tend to 0 (as u′ tends to u in L2), it suffices to use the fact that, if g is a bounded
function, continuous at 0 with g(0) = 0, then

∫ 1

0
g(η(t)) dt → 0

as η → 0 in L2, which can easily be proved as a consequence of Chebyshev’s
inequality.
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D.3.1 Soft Endpoint Condition

Assume that g is C1 as a function of q and u, and G as a function of q. Then, noting
that (D.6) can be written as

u∗ = argmin
u

F(u)

with F(u) = ∫ 1
0 g(qu(t), u(t))dt + G(qu(1)), we find that an optimal solution must

satisfy (dF(u) | η ) = 0 for all η ∈ L∞([0, 1],U) with

(dF(u) | η )

=
∫ 1

0

(
∂1g(qu(t), u(t))

∣∣∣
∫ t

0
dϕu

st (q
u(s))∂2 f (q

u(s), u(s))η(s)ds
)
dt

+
∫ 1

0

(
∂2g(qu(t), u(t))

∣∣ η(t))
)
dt

+
(
dG(qu(1))

∣∣∣
∫ 1

0
dϕu

s1(q
u(s))∂2 f (q

u(s), u(s))η(s)ds
)

=
∫ 1

0

(∫ 1

s
∂2 f (q

u(s), u(s))∗dϕu
st (q

u(s))∗∂1g(qu(t), u(t))dt
∣∣∣ η(s)

)
ds

+
∫ 1

0

(
∂2g(qu(t), u(t))

∣∣ η(t))
)
dt

+
∫ 1

0

(
∂2 f (q

u(s), u(s))∗dϕu
s1(q

u(s))∗dG(qu(1))
∣∣∣ η(s)

)
ds

= −
∫ 1

0

(
∂2 f (q

u(s), u(s))∗ p(s)
∣∣ η(s)

)
ds +

∫ 1

0

(
∂2g(qu(t), u(t))

∣∣ η(t))
)
dt,

where we have set

p(s) = −
∫ 1

s
dϕu

st (q
u(s))∗∂1g(qu(t), u(t)) dt − dϕu

s1(q
u(s))∗dG(qu(1))

= −dϕu
0s(q0)

−∗
∫ 1

s
dϕu

0t (q0)
∗∂1g(qu(t), u(t)) dt (D.9)

−dϕu
0s(q0)

−∗dϕu
01(q0)

∗dG(qu(1)).

Here we have used the identity dϕu
0t = dϕu

st ◦ ϕu
0s dϕu

0s (and the “−∗” exponent
represents the inverse of the conjugate operator). We therefore obtain the fact that

dF(u)(t) = −∂2 f (q
u(t), u(t))∗ p(t) + ∂2g(qu(t), u(t)).
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Wenow reinterpret this results in a form thatwill lead us to Pontryagin’smaximum
principle. The function p : [0, 1] → Q∗ in (D.9) is continuous and differentiable a.e.
From (C.8), we have

∂t (dϕu
0t (q0)

−∗) = −dϕu
0t (q0)

−∗ ∂t (dϕu
0t (q0)

∗) dϕu
0t (q0)

−∗

= −∂1 f (q
u(t),u(t))∗ dϕu

0t (q0)
−∗.

Using this identity, one can easily check that, for an optimal control,

∂t p(t) = −∂1 f (q
u(t), u(t))∗ p(t) + ∂1g(qu(t), u(t))

with p(1) = −dG(qu(1)).
Introduce the family ofHamiltonian functions Hu : Q∗ × Ω → R,u ∈ U , defined

by
Hu(p, q) = (p | f (q, u) ) − g(q, u) . (D.10)

We have ∂1Hu = f (q, u) and ∂2Hu = ∂1 f ∗ p − ∂1g. Moreover, we have ∂u Hu =
∂2 f ∗ p(t) − ∂2g. We can therefore summarize the results we have obtained in the
following theorem.

Theorem D.7 If (q(·), u(·)) is a solution of (D.6), there exists a time-dependent
linear form p(·) ∈ Q∗, called the co-state, such that the following conditions are
satisfied. ⎧

⎪⎨

⎪⎩

∂t q(t) = ∂1Hu(t)(p(t), q(t))

∂t p(t) = −∂2Hu(t)(p(t), q(t))

∂u Hu(t) = 0

(D.11)

with the boundary condition p(1) = −dG(q(1)).

A stronger result is actually true. For a control to be optimal, one must have, at all
times:

u(t) = argmax
u

(Hu(p(t), q(t))),

which implies the last condition in (D.11). The resulting statement is Pontryagin’s
maximum principle, and we have proved, via Theorem D.7, a weak form of this
principle. Proving the strong form would require more work [5, 148, 183, 297],
which will not be needed in our case, because, in the applications we will consider,
Hu will always be strictly convex in u, so that ∂u Hu = 0 will in fact be equivalent to
u maximizing Hu .

Note that we have also proved that, for any u (not necessary optimal), one has

dF(u)(t) = −∂2 f (q
u(t), u(t))∗ p(t) + ∂2g(qu(t), u(t)), (D.12)

where p and q satisfy q(0) = q0, p(1) = −dG(q(1)) and
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{
∂t q(t) = ∂1Hu(t)(p(t), q(t))

∂t p(t) = −∂2Hu(t)(p(t), q(t)).
(D.13)

D.3.2 Fixed Endpoint Condition

Problem D.5 is a constrained minimization problem, requiring us to minimize

F0(u) =
∫ 1

0
g(qu(t), u(t)) dt

subject to the constraint Γ (u) = qu(1) − q1 = 0. We have

dΓ (u)η = dϕu
01(q0)

∫ 1

0
dϕu

0t (q0)
−1∂2 f (q

u(t), u(t)η(t) dt . (D.14)

To be able to apply Theorem D.4, we need to ensure that dΓ (u) has closed range.
When this holds, then we can state that, if u is an optimal control, there exists a
λ ∈ Q∗ such that

ρdF0(u) + dΓ (u)∗λ = 0 (D.15)

with ρ ∈ {0, 1} and (ρ,λ) �= (0, 0). We can then make exactly the same computation
as before, replacing g by ρg and dG(qu(1)) byλ. This leads to the following theorem.

Theorem D.8 Assume that (q(·), u(·)) is a solution of (D.5), and that dΓ (u) has
closed range, where Γ (u) = qu(1) − q1. Then there exists a time-dependent linear
form p(·) ∈ Q∗, called the co-state, such that the following conditions are satisfied.

⎧
⎪⎨

⎪⎩

∂t q(t) = ∂1Hu(t)(p(t), q(t))

∂t p(t) = −∂2Hu(t)(p(t), q(t))

∂u Hu(t) = 0,

(D.16)

where
Hu(p, q) = (p | f (q, u) ) − ρg(q, u) , (D.17)

with ρ ∈ {0, 1} and (ρ, p(1)) �= (0, 0).

Here again, the stronger result u(t) = argmax Hu(p, q) is true. Solutions for which
ρ = 1 are called normal solutions of the optimal control problem, and those forwhich
ρ = 0 are referred to as abnormal solutions. The case excluded from this theorem,
for which dΓ (u) does not have closed range, or, more generally, for which (D.15)
has no non-trivial solution, has been referred to in [17] as an elusive solution.
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Propositions D.9 and D.11 provides two cases for which the former result applies.

Proposition D.9 Theorem D.8 holds if Q has finite dimension.

(This is obvious, because the range of dΓ (u) is a linear subspace of Q.)

Definition D.10 For a state-control pair (q, u) satisfying ∂t q = f (q, u), define the
linearized control system

∂t h(t) = ∂1 f (q(t), u(t))h(t) + ∂2 f (q(t), u(t))η(t). (D.18)

One says that (q, u) is a regular trajectory if the system (D.18) is controllable, i.e., for
any h1, there exists a pair (h, η) satisfying (D.18) such that h(0) = 0 and h(1) = h1.

We then have the following.

Proposition D.11 ([179]) If an optimal trajectory (q, u) is regular, then dΓ (u) is
onto and Theorem D.8 holds with ρ = 1.

Proof The solution of (D.18) is given by

h(t) = dϕu
0t (q0)

∫ t

0
dϕu

0s(q0)
−1∂2 f (q

u(s), u(s))η(s) ds .

Since h(1) = dΓ (u)η, (q, u) being regular is indeed equivalent to dΓ (u) being onto.

An important special case is whenU = Q and f (q, u) = u (so that u = q̇), which
provides the standard formulation of a problem in the Calculus of Variations. Then
any (q, u) is regular because one can always take η(t) = h1, which gives h(t) = th1
in (D.18), since ∂1 f = 0. The same statement clearly applies to the more general
setting in which ∂2 f is invertible.

To conclude this section, we mention that Pontryagin’s maximum principle holds
under more general assumptions than the ones we have considered here, with a proof
significantly more complicated. The interested reader can refer to textbooks such as
[183] or [5].

D.3.3 Control from the Initial Condition

We now consider the problem of minimizing G(q(1)) with respect to q0, subject to
the condition ∂t q = f (t, q), q(0) = q0, or more directly

F(q0) = G(ϕ01(q0)),
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where ϕ is the flow associated with ∂t q = f (t, q). This can be addressed with
an approach similar (and simpler) than the optimal control problem studied in
Sect.D.3.1. We have

(dF(q0) | h ) = (dG(q(1) | dϕ01(q0)h )

= (
dϕ01(q0)

∗dG(q(1)
∣∣ h
)

= −(p(0) | h )

with
p(t) = −dϕ−∗

0t (q0)dϕ∗
01(q0)dG(q(1)).

Using a computation made in Sect.D.3.1, we have

∂t p(t) = −∂2 f (t, q(t))∗ p(t)

with p(1) = −dG(q(1)). We therefore have the following proposition.

Proposition D.12 The differential of F(q0) = G(q(1)), where q is the solution of
∂t q = f (t, q)with q(0) = q0 is given by dF(q0) = −p(0)where p(t) is the solution
of ∂t p(t) = −∂2 f (t, q(t))∗ p(t) with p(1) = −dG(q(1)).

Wecould have saved onminus signs by replacing p by−p, butwewanted tomaintain
a similarity with the statement of the maximum principle. Indeed, another way to
state the proposition is that the differential of F is computed by solving

{
∂t q = ∂1Ht (p, q)

∂t p = −∂2Ht (p, q),

where Ht (p, q) = (p | f (t, q) ), with boundary conditions q(0) = q0 and p(1) =
−dG(q(1)).

D.4 Time Discretization and Discrete Maximum Principle

We now discuss how the time variable in (D.6) can be discretized, and the associated
variational problem. Fixing a positive integer, n, we let h = 1/n and tk = kh for
k = 0, . . . , n. We assume that the control is also a discrete function, u(t) = uk on
[tk, tk+1) for k = 0, . . . , n − 1, so that

∫ 1

0
g(q(t), u(t))dt =

n−1∑

k=0

∫ tk+1

tk

g(q(t), uk)dt.
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Choose an explicit approximation scheme for ∂t q = f (t, u) in the form qk+1 =
η(qk, uk). For example,η(q, u) = q + h f (q, u),which corresponds to a simpleEuler
scheme. Finally, approximate

∫ tk+1

tk

g(q(t), uk)dt � γ(qk, qk+1, uk),

using, for example, the trapezoidal rule

γ(q, q ′, u) = h

2
(g(q, u) + g(q ′, u)).

This results in the discrete-time optimal control problem minimizing, letting q =
(q1, . . . , qn) and u = (u0, . . . , un−1),

F(q, u) =
n−1∑

k=0

γ(qk, qk+1, uk) + G(qn)

subject to qk+1 = η(qk, uk) (q0 being given). Since there is a finite number of con-
straints, whose differential, forming a triangular system, has full range, minimizers
must be stationary solutions of

Λ(q, u) =
n−1∑

k=0

γ(qk, qk+1, uk) + G(qn) +
n−1∑

k=0

(λk | qk+1 − η(qk, uk) ),

where λ0, . . . ,λn−1 ∈ Q∗ are Lagrange multipliers. This provides the equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qk+1 = η(qk, uk), k = 0, . . . , n − 1

λn−1 = −dG(qn) − ∂2γ(qn−1, qn, un−1)

λk−1 = ∂1η(qk, uk)
∗λk − ∂1γ(qk, qk+1, uk) − ∂2γ(qk−1, qk, uk−1),

k = 0, . . . , n − 1

∂3γ(qk, qk+1, uk) − ∂2η(qk, uk)
∗λk = 0, k = 0, . . . , n − 1.

(D.19)

We retrieve the Pontryagin maximum principle in a discrete form (λk being the
co-state). In particular, if F̃(u) is the objective function when q is considered as a
function of u, then

∂k F̃(u) = ∂3γ(qk, qk+1, uk) − ∂2η(qk, uk)
∗λk

for k = 0, . . . , n − 1, where q and λ satisfy the first three equations of (D.19).
For example, for the simplest choices of η and γ, namely η(q, u) = q + h f (q, u)

and γ(q, q’, u) = hg(q, u), (D.19) becomes
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qk+1 = qk + h f (qk, uk), k = 0, . . . , n − 1

λn−1 = −dG(qn)

λk−1 = λk + h∂1 f (qk, uk)
∗λk − h∂1g(qk, uk), k = 0, . . . , n − 1

∂2g(qk, uk) − ∂2 f (qk, uk)
∗λk = 0, k = 0, . . . , n − 1.

(D.20)

D.5 Optimization Algorithms

Similar to our discussion of numerical algorithms for ordinary differential equations
(ODEs), we give in this chapter a very limited and very partial account of numerical
optimization methods, limiting ourselves to the few concepts and algorithms that are
used in this book, and inviting the reader to consult one of many available textbooks
(e.g., [40, 112, 221]) for more information.

D.5.1 Directions of Descent and Line Search

Since the problemswe consider in this book are nonlinear, and very often non-convex,
we will consider the general problem of finding a (local) minimizer of a function
x �→ E(x), defined on an R

n and taking values in R without making any specific
assumption on E except that it is sufficiently differentiable. We will discuss iterative
methods that update a current value of x by first finding a good direction, h ∈ R

n ,
then replacing x by x + εh for a suitably chosen ε. We will assume, in the following,
that E has enough derivatives for the computations to make sense, without repeating
the exact assumptions every time.

The minimal requirement for h is that it must be a direction of descent, i.e., there
must exist an ε0 > 0 such that E(x + εh) < E(x) for ε ∈ (0, ε0). Once h is given
(and most of our discussion will be on how to find a good h) determining ε is a
one-dimensional operation which is usually referred to as a line search. If we expand
E(x + εh) to first order in ε, we get

E(x + εh) = E(x) + ε(dE(x) | h ) + o(ε)

and we see that a sufficient condition for h to be a direction of descent is that
(dE(x) | h ) < 0. We will only consider directions h that satisfy this condition, and
therefore always assume that it holds when speaking of directions of descent.

For such an h, we find that, for any γ ∈ (0, 1), the expression

c(ε, x, h) = 1

ε

(
E(x + εh) − E(x) − γε(dE(x) | h )

)
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converges to a non-vanishing negative number when ε → 0. Given this, one devises
a simple line search procedure as follows. Fix two constants α, γ ∈ (0, 1). Let x and
a descent direction h be given. Start with some reasonably large value of ε, say, ε̄,
and replace ε by αε iteratively, as long as c(ε, x, h) ≥ 0. This is the backtracking
line search technique, and c(ε, x, h) < 0 is called the Armijo rule.

The choice of ε̄ is important because choosing it too large would require trying too
many values of ε before finding a satisfactory one, and taking it too smallmay prevent
the algorithm from making large steps. One possibility is to start a minimization
procedure with some choice of ε̄0, and choose at step k of the procedure ε̄k to be
some multiple of ε̄k−1 by some factor larger than one. Let’s summarize this in the
following algorithm.

Algorithm 5 (Generic minimization with backtracking line search) Start with an
initial choice for x0, ε̄0. Choose positive constants α, γ < 1 and β > 1. Let xk , ε̄k
be their current values at step k and obtain their values at the next step as follows.

1. Compute a good direction of descent hk.
2. Set εk = ε̄k . While

E(xk + εkhk) − E(xk) − γεk(dE(xk) | hk ) > 0

replace εk by αεk .
3. Set xk+1 = xk + εkhk and ε̄k+1 = βεk .

One typically stops the algorithm if the decrease (E(xk + εkhk) − E(xk))/ε is
smaller than a given threshold. Other, more elaborate line search methods can be
devised, including a full optimization of the function ε �→ E(x + εh). One addi-
tional condition which is often imposed in the line search is the Wolfe condition,
which ensures (taking 0 < ρ < 1) that

(dE(xk+1) | hk ) ≥ ρ (dE(xk) | hk ),

or the strong Wolfe condition, which is

|(dE(xk+1) | hk )| ≤ ρ |(dE(xk) | hk )|,

which force the steps to be larger as long as the slope of E along the direction of
descent remains significantly negative. But one must not forget that the line search
needs to be repeated many times during the procedure and should therefore not
induce too much computation (enforcing the Wolfe condition may be impractical if
the computation of the gradient is too costly).

The key part of the algorithm is, however, the choice of the direction of descent,
which is now addressed, starting with the simplest one.
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D.5.2 Gradient Descent

Adirection of descent at x being characterized by (dE(x) | h ) < 0, a natural require-
ment is to try to find h such that this expression is as negative as possible. Of course,
this requirement does not make sense unless some normalization is imposed on h,
and this is based, for gradient descent, on the specification of an inner product that
may depend on x .

More precisely, assume that, for all x ∈ R
n , an inner product denoted

〈· , ·〉
x
is

selected (or, in other words, that a Riemannianmetric is chosen onR
n; smoothness of

the dot product as a function of x is not a requirement, but it is needed, for example, in
error estimation formulas like (D.22) below). In finite dimensions, this is equivalent
to associating to each x a symmetric, definite positive matrix A(x) and to setting

〈
u , v

〉
x = uT A(x)v.

Notice that the choice of the metric can be inspired by infinite-dimensional repre-
sentations of the problem, but it is important to make sure that it remains positive
once discretized.

The gradient of E at x for this metric, denoted ∇ AE(x), is defined by

∀h ∈ R
d , (dE(x) | h ) = 〈∇ AE(x) , h

〉
x .

If we denote by ∇E(x) the column vector representation of dE(x), i.e., the gradient
for the usual dot product (with A(x) = Id), this definition implies

∇ AE(x) = A(x)−1∇E(x). (D.21)

A gradient descent procedure for the Riemannianmetric associated to A selects, at
a given point x , the direction of descent h as aminimizer of (dE(x) | h ) subject to the
constraint

〈
h , A(x)h

〉
x = 1. The solution of this problem can readily be computed

as

h = − ∇ AE(x)

|∇ AE(x)|x
(unless of course ∇ AE(x) = 0, in which case no direction of descent exists).

Since directions of descent need only be defined up to a multiplicative factor, we
may as well take h = −∇ AE(x). This can be plugged into step 1 of Algorithm 5,
which becomes: Set hk = −A(xk)−1∇E(xk).

Gradient descent is, like all the methods considered in this discussion, only able
to find local minima of the function E (one may even not be able to rule out the
situation in which it gets trapped in a saddle point). The speed at which it finds it
is linear [221], in the sense that, if x∗ is the limit point, and if an exact line search
algorithm is run, there exists ρ ∈ (0, 1) such that, for large enough k,
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E(xk+1) − E(x∗) ≤ ρ (E(xk) − E(x∗)). (D.22)

The smallest possible ρ in this formula depends on how “spherical” the function
E is around its minimum. More precisely, if c∗ is the ratio between the largest
and the smallest eigenvalue (or condition number) of A−1/2

∗ d2E(x∗)A−1/2
∗ where

A∗ = A(x∗), then ρ must be larger than (c∗ − 1)2/(c∗ + 1)2, so that c∗ should be as
close to 1 as possible.

The gradient descent algorithm can also be written in continuous time, namely

∂t x = −A(x)−1∇E(x).

This is a convenient formulation, provided that one remembers that it is usually
preferable to discretize it using a line search rather than using standard ODEmethods
(since the goal is not to solve the ODE, but to minimize E).

The time-continuous formulation can easily be extended to Riemannian mani-
folds. If M is such a manifold, and E is defined on M , the gradient descent algorithm
runs

∂t x = −∇M E(x).

When discretized, however, one must remember that additions do not make sense
on nonlinear manifolds (even when they are submanifolds of Euclidean spaces). The
Riemannian equivalent to moving along a straight line is to use geodesics [2], so that
gradient descent should be discretized as

xk+1 = Expxk (−ε∇M E(xk))

where Exp is the Riemannian exponential (as defined in Eq.B.8).

D.5.3 Newton and Quasi-Newton Directions

If the condition number of A−1/2
∗ d2E(x∗)A−1/2

∗ is 1, which is equivalent to A∗ =
d2E(x∗), then ρ can be taken arbitrarily small in (D.22), and one says that the con-
vergence is superlinear. This suggests using A(x) = d2E(x) in the metric, provided,
of course, this matrix is positive (it is nonnegative at the minimum, but not every-
where if the function is not convex). The direction −d2E(x)−1∇E(x) is called the
Newton direction. It is optimal up to a second-order approximation, as shown by the
following computation. For a given x , we have

E(x + h) = E(x) + ∇E(x)T h + 1

2
hT d2E(x)h + o(h2).

If we neglect the error, and if d2E(x) is a positive matrix, the minimum of the
second-order approximation is indeed given by



522 Appendix D: Introduction to Optimization and Optimal Control Theory

ĥ = −d2E(x)−1∇E(x).

If d2E(x) is not positive, the Newton direction is not necessarily a direction of
descent. It has to be modified, the simplest approach being to add a multiple of
the identity matrix to the Hessian, i.e., to use A(x) = d2E(x) + λ(x)Id for a large
enough λ(x). Given x , the choice of a suitable λ can be based on ensuring that the
Cholesky decomposition of A(x) (i.e., the decomposition A = LL∗ where L is lower
triangular and L∗ the conjugate of the transpose of L [131]) only has real coefficients.

When the computation of the Hessian is too complex, or its inversion too costly,
using a Newton direction is impractical. Alternative methods, called quasi-Newton,
are available in that case. One such method, called BFGS (based on the initials
of its inventors, who independently discovered the method [47, 79, 115, 130]),
updates an approximation Ak of the Hessian at step k of the algorithm. Let xk be
the current variable at step k, and hk = −A−1

k ∇E(xk) the associated direction of
descent, computed using the current Ak . Then, the new value of x is xk+1 = xk + sk
with sk = εkhk . The BFGSmethod defines a matrix Ak+1 for the next step as follows.
Letting yk = ∇E(xk+1) − ∇E(xk), take

Ak+1 =
(
I − yksTk

yTk sk

)
Ak

(
I − yksTk

yTk sk

)
+ yksTk

yTk sk
.

Werefer the reader to [221] for a justification of this updating rule. It has the important
feature to ensure that Ak+1 is positive as soon as Ak is, and sTk yk > 0. This last
condition can be written

∇E(xk + εk)
T hk > ∇E(xk)

T hk

and one can always find εk such that this is satisfied, unless the minimum of E is
−∞. This is because the left-hand side is ∂εE(xk + εhk)(εk), and

∂εE(xk + εhk) ≤ ∇E(xk)
T hk < 0

for all ε > 0 implies that limε→∞ E(xk + εhk) = −∞. The condition sTk yk > 0 can
therefore be added to the line search procedure. It is automatically satisfied if the
Wolfe condition is ensured.

Equally important to the fact that Ak can be made to remain positive is the fact
that an inverse to it can be computed iteratively too. If we let Bk = A−1

k , then

Bk+1 = Bk − Bk yk yTk Bk

yTk Bk yk
+ sksTk

yTk yk
, (D.23)

which allows for an efficient computation of the direction of descent,
hk = −Bk∇E(xk).

A variation of the method offers an even more efficient update rule, namely
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Bk+1 = V T
k BkVk + ρksks

T
k , (D.24)

with ρk = 1/yTk sk and Vk = Id − ρksksTk .
The BFGS method is not directly applicable for large n (the dimension), how-

ever, because the computation and storage of n by n matrices like Bk would become
impractical. One possibility is to use the iteration specified by (D.24) over a finite
time interval only (say p iterations in the past), resetting the value of Bk−p−1 to
Id. The computation of Bkhk only requires storing the values of yk− j and sk− j for
j = 1, . . . , p, and can be done recursively using (D.24), with a storage and compu-
tation cost which is now linear in the dimension. This results in the limited-memory
BFGS (L-BFGS) method.

D.5.4 Conjugate Gradient

Nonlinear conjugate gradient methods can be seen as intermediate in complexity
and efficiency between basic gradient descent and quasi-Newtonmethods. Theymay
provide a reasonable choice for very large-scale methods, for which even limited-
memory quasi-Newton methods may be too costly.

Since non-linear conjugate gradient derives from the linear one, and since linear
conjugate gradient is a method of choice for solving large-scale linear systems, we
start with this linear case.

Linear Conjugate Gradient

The goal of the conjugate gradient method is to invert a linear system

Ax = b

where A is an n by n symmetric, positive definite matrix. This problem is equivalent
to minimizing the quadratic function

E(x) = 1

2
xT Ax − bT x .

Conjugate gradient works by generating a set of conjugate directions,
h0, . . . , h p, . . . that satisfy hT

i h j = 0 if i �= j , and generate the sequence

xk+1 = xk + αkhk (D.25)

in whichαk is the optimal choice for theminimization ofα �→ E(xk + αhk), namely

αk = − (Axk − b)T hk
hT
k Ahk

.
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It is easy to prove by induction that, if h1, . . . , hk are non-vanishing conjugate
directions, then Axk+1 − b is orthogonal to span(h0, . . . , hk) and, since this space
has dimension k + 1, this implies that Axn − b = 0 so that the algorithm converges
to a solution of the linear system in at most n steps. This also implies that

E(xk+1) = min
{
E(x) : x = x0 + t1h1 + · + tkhk, t1, . . . , tk ∈ R

}

because (Axk+1 − b)T h j = ∂t j E(x0 + t1h1 + · + tkhk).
It remains to describe how a good sequence h1, . . . , hn can be specified. Gram–

Schmidt orthogonalization is a standard process to build a conjugate family of vectors
starting from linearly independent vectors r0, . . . , rk . It consists in setting h0 = r0
and, for k ≥ 1,

hk = rk +
k−1∑

j=0

μk j h j

with

μk j = − r Tk Ah j

hT
j Ah j

.

The beautiful achievement made in conjugate gradient was to recognize that, if
rk = Axk − b with xk coming from (D.25) (which is algorithmically feasible), then
μk j = 0 except for j = k − 1. To prove this, one needs to first check, by induction,
that

span(h0, . . . , hk) = span(r0, Ar0, . . . , A
kr0),

the latter space being called the Krylov space of order k associated to A and r0. This
implies that, for j ≤ k − 1,

Ah j ∈ span(r0, Ar0, . . . , A
j+1r0) = span(r0, . . . , r j+1) ⊂ span(r0, . . . , rk).

Sinceweknow that rk is perpendicular to this space,wehave r Tk Ah j = 0 if j ≤ k − 1.
Given these remarks, the following iteration provides a family of conjugate direc-

tions, starting with an initial x0 and h0 = r0 = Ax0 − b (and letting βk = μk,k−1):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + αkhk with αk = − r Tk hk
hT
k Ahk

,

rk+1 = rk + αk Ahk,

hk+1 = rk+1 + βk+1hk with βk+1 = −r Tk+1Ahk
hT
k Ahk

.

This is, in essence, the conjugate gradient algorithm. The computation can be
made slightly more efficient by noticing that r Tk hk = r Tk rk and r

T
k+1Ahk = r Tk+1rk+1

[131, 221].
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The rate of convergence of conjugate gradient can be estimated from the eigen-
values of A. If λ1 ≤ · · · ≤ λn are the ordered eigenvalues, and ρk = λn−k+1/λ1,
then,

|xk − xn| ≤
(

ρk − 1

ρk + 1

)
|x0 − xn| (D.26)

(xn being the final —and correct— state of the algorithm). So, if many eigenvalues
of A are much larger than the smallest one, conjugate gradient will converge very
slowly. One the other hand, if A has a few large eigenvalues, which then drop to
being close to the smallest, then a few iterations will be needed to obtain a good
approximation of the solution.

We could have formulated the initial problem in terms of any inner product onR
n .

Let M be symmetric, and positive definite, and consider the inner product
〈
x , y

〉
M =

xT My. Let Ã be self-adjoint for this product, i.e.,

∀x, y, 〈x , Ãy
〉
M = 〈Ax , y

〉
M or M Ã = ÃT M.

Then solving Ãx = b̃ is equivalent to minimizing

Ẽ(x) = 1

2

〈
x , Ãx

〉
M − 〈b̃ , x

〉
M

and the same argument we made for M = Id leads to the algorithm (taking r̃0 =
Ãx0 − b̃) ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + αkhk with αk = −
〈
r̃k , r̃k

〉
M〈

hk , Ãhk
〉
M

,

r̃k+1 = r̃k + αk Ãhk,

hk+1 = r̃k+1 + βk+1hk with βk+1 = −
〈
r̃k+1 , r̃k+1

〉
M〈

hk , Ãhk
〉
M

.

Now, we can remark that given any symmetric matrix A, we get a self-adjoint matrix
for the M dot product by letting Ã = M−1A and that the problem Ax = b is equiva-
lent to Ãx = b̃with b̃ = M−1b, which can be solved using the M dot product. Doing
this leads to the iterations (in which we set r̃k = M−1rk): start with r0 = Ax0 − b
and iterate

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + αkhk with αk = −r Tk M
−1rk

hT
k Ahk

,

rk+1 = rk + αk Ahk,

hk+1 = M−1rk+1 + βk+1hk with βk+1 = −r Tk+1M
−1rk+1

hT
k Ahk

.
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This is preconditioned conjugate gradient. Its speed of convergence is now
governed by the eigenvalues of M−1A (or, equivalently of M−1/2AM−1/2), and a
lot of efficiency can be gained if most of these eigenvalues get clustered near the
smallest one. Of course, for this to be feasible, the equation Mr̃k = rk has to be easy
to solve. Preconditioning has most of the time to be designed specifically for a given
problem, but it may result in a dramatic reduction of the computation time.

Nonlinear Conjugate Gradient

Now, assume that E is a nonlinear function. We can formally apply the conjugate
gradient iterations by replacing rk by ∇E(xk), which yields, starting with h0 =
−∇E(x0), ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = xk + εkhk,

hk+1 = ∇E(xk+1) + βk+1hk

with βk+1 = −|∇E(xk+1)|2
|∇E(xk)|2 .

This is the Fletcher–Reeves algorithm. In this algorithm, εk should be determined
using a line search. This algorithm can significantly accelerate the convergence of
gradient descent methods, especially when closing up to a minimum, around which
E will be roughly quadratic. However, hk is not guaranteed to always provide a
direction of descent (this is true when the line search is exact, or under the strong
Wolfe condition; see [221]). It may sometimes be useful to reinitialize the iterations
at regular intervals, setting hk+1 = −∇E(xk+1) (or, equivalently, βk+1 = 0).

Variants of this algorithm use different formulae for βk+1. One of them is the
Polak–Ribière algorithm, which sets

β̃k+1 = ∇E(xk+1)
T (∇E(xk+1) − ∇E(xk))

|∇E(xk)|2

and βk+1 = max(β̃k+1, 0).



Appendix E
Principal Component Analysis

E.1 General Setting

Assume that a random variable X takes values in a finite- or infinite-dimensional
Hilbert space H . Denote by

〈· , ·〉
H

the inner product in this space. Assume that
x1, . . . , xN are observed.

The goal of principal component analysis (PCA) is to provide, for each finite
p ≤ dim(H), an optimal representation of order p in the form

xk = x̄ +
p∑

i=1

αki ei + Rk, k = 1, . . . , N ,

where (e1, . . . , ep) is an orthonormal family in H . The error terms, R1, . . . , RN ,
should be as small as possible. More precisely, PCA minimizes the residual sum of
squares

S =
N∑

k=1

‖Rk‖2H . (E.1)

When x̄ and (e1, . . . , ep) are fixed,
∑p

i=1 αki ei must then be the orthogonal pro-
jection of xk − x̄ on span(e1, . . . , ep), which implies that

αki = 〈xk − x̄ , ei
〉
H .

Still assuming that (e1, . . . , ep) is fixed, it is easy to prove that the optimal choice
for x̄ is x̄ = 1

N

∑N
k=1 xk . For notational simplicity, we assume that x̄ = 0, which is

equivalent to assuming that all xk’s have been replaced by xk − x̄ .
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From these results, (e1, . . . , ep) must minimize

S =
N∑

k=1

‖xk −
p∑

i=1

〈
xk , ei

〉
ei‖2H

=
N∑

k=1

‖xk‖2H −
p∑

i=1

N∑

k=1

〈
xk , ei

〉2
H .

For u, v ∈ H , define

〈
u , v

〉
T = 1

N

N∑

k=1

〈
xk , u

〉
H

〈
xk , v

〉
H

and ‖u‖T = 〈u , u
〉1/2
T (the index T refers to the fact that this norm is associated to

a training set). This provides a new quadratic form on H . The formula above shows
that minimizing S is equivalent to maximizing

p∑

i=1

‖ei‖2T

subject to the constraint that (e1, . . . , ep) is orthonormal in H .
If μ is a square integrable probability measure on H , such that

σ2
μ = ∫H ‖x‖2H dμ(x) < ∞, one can more generally define the covariance bilinear

form

Γμ(u, v) =
∫

H

〈
u , x

〉
H

〈
v , x

〉
H dμ(x),

which is bounded, with Γμ(u, v) ≤ σ2
μ‖u‖H ‖v‖H . With this notation,

〈
u , v

〉
T = Γμ̂T (u, v),

where μ̂T = (1/N )
∑N

k=1 δxk is the empirical measure. The generalization of the
previous problem then requires us to maximize

p∑

k=1

Γμ(ek, ek)

over all orthonormal families (e1, . . . , ep) in H .
Whenμ is square integrable, the associated operator, Aμ, defined by

〈
u , Aμv

〉
H =

Γμ(u, v) for all u, v ∈ H , is a Hilbert–Schmidt operator [306]. Such an operator
can, in particular, be diagonalized in an orthonormal basis of H , i.e., there exists
an orthonormal basis, ( f1, f2, . . .) of H such that Aμ fi = λi fi for a non-decreasing
sequence of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0.
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We have the following result, which we state without proof:

Theorem E.1 The optimal (e1, . . . , ep) must be such that span(e1, . . . , ep) =
span( f1, . . . , f p). In particular f1, . . . , f p provide a solution. They are called the p
principal components of the dataset (x1, . . . , xN ).

The result can be applied to μ = μ̂T . In this case, with this choice, S in (E.1) is
such that

S = N
∑

i>p

λ2
i .

The interest of discussing PCA associated with a covariance operator for a square
integrable measure (in which case it is often called a Karhunen–Loeve (KL) expan-
sion) is that it is often important when discussing infinite-dimensional random pro-
cesses (such as Gaussian random fields). They moreover quite naturally correspond
to asymptotic version of sample-based PCA. Interesting issues, that are part of func-
tional data analysis [239], address the design of proper estimation procedures to
obtain converging estimators of KL expansions based on finite samples for stochas-
tic processes in infinite-dimensional spaces.

E.2 Computation of the Principal Components

E.2.1 Small Dimension

Assume that H = R
d has finite dimension, d, and that x1, . . . , xN ∈ R

d are column
vectors. Let the inner product on H be associated to a matrix Q:

〈
u , v

〉
H = uT Qv.

Writing AT = Aμ̂T , and introducing the covariance matrix of the data

ΣT = 1

N

N∑

i=1

xi x
T
i ,

one can then identify AT = ΣT Q. Eigenvectors f of AT are such that Q1/2 f are
eigenvectors of the symmetric matrix Q1/2ΣT Q1/2, which shows that they form an
orthogonal system in H , whichwill be orthonormal if the eigenvectors are normalized
so that f T Q f = 1.
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E.2.2 Large Dimension

It often happens that the dimension of H is much larger than the number of observa-
tions, N . In such a case, the previous approach is quite inefficient (especially when
the dimension of H is infinite!) and one proceeds as follows.

The basic observation is that there are at most N principal components f1, . . . , fN
with non-vanishing eigenvalues, and they must belong to the vector space generated
by x1, . . . , xN , so that, for some αik, 1 ≤ i, k ≤ N :

fi =
N∑

k=1

αik xk .

With this notation, we have
〈
fi , f j

〉
H =∑N

k,l=1 αikα jl
〈
xk , xl

〉
H and

〈
fi , f j

〉
T =

N∑

l=1

〈
fi , xl

〉
H

〈
f j , xl

〉
H =

N∑

k,k ′=1

αikα jk ′

N∑

l=1

〈
xk , xl

〉
H

〈
xk ′ , xl

〉
H .

Let S be theGrammatrix formed by the inner products
〈
xk , xl

〉
H , for k, l = 1, . . . , N .

We have
〈
fi , f j

〉
H = αT

i Sα j and
〈
fi , f j

〉
T = αT

i S
2α j , which implies that, in this

representation, the operator AT is also given by S. Thus, the previous simultaneous
orthogonalization problem can be solved with respect to the α’s by diagonalizing S
and taking the first eigenvectors, normalized so that αT

i Sαi = 1.

E.3 Statistical Interpretation and Probabilistic PCA

We take here H = R
d with the standard inner product. The statistical interpreta-

tion of linear PCA is quite simple: assume that X is a centered random vector with
covariance matrix Σ . Consider the problem that consists in finding a decomposition
X =∑p

i=1 ξi ei + Rwhere (ξ1, . . . , ξp) forms a p-dimensional centered randomvec-
tor, e1, . . . , ep is an orthonormal system, and R is a random vector, uncorrelated to
the ξi ’s and as small as possible, in the sense that E(|R|2) is minimal. One can see
that, in an optimal decomposition, one needs RT ei = 0 for all i , because one can
always write

p∑

i=1

ξi ei + R =
p∑

i=1

(ξi + RT ei )ei + R −
p∑

i=1

(RT ei )ei

and |R −∑p
i=1(R

T ei )ei | ≤ |R|. Also, one can always restrict oneself to uncorrelated
(ξ1, . . . , ξp) by a change of basis in span(e1, . . . , ep).
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Then, we can write

E(|X |2) =
p∑

i=1

E(ξ2i ) + E(|R|2),

with ξi = eTi X . So, to minimize E(|R|2), one needs to maximize

p∑

i=1

E((eTi X)2),

which is equal to
p∑

i=1

eTi Σei .

The solution for this problem is given by the first p eigenvectors of Σ . PCA exactly
applies this procedure, with Σ replaced by the empirical covariance.

Probabilistic PCA is based on the statistical model in which it is assumed that X
can be decomposed as X =∑p

i=1 λiξi ei + σR, where R is a d-dimensional standard
Gaussian vector and ξ = (ξ1, . . . , ξp) a p-dimensional standard Gaussian vector,
independent of R. The parameters here are the coordinates of e1, . . . , ep, the val-
ues of λ1, . . . ,λp and of σ. Introduce the d × p matrix W with columns given by
λ1e1, . . . ,λpep to rewrite this model in the form

X = Wξ + σ2R,

where the parameters are W and σ2, with the constraint that WTW is diagonal. As a
linear combination of independent Gaussian random variables, X is Gaussian with
covariance matrixWWT + σ2 I . The log-likelihood of the observation x1, . . . , xN is

L(W,σ) = −N

2
(d log 2π + log det(WWT + σ2 I ) + trace((WWT + σ2 I )−1Σ)),

where Σ is the empirical covariance matrix of x1, . . . , xN . This function can be
maximized explicitly in W and σ. One can show that the solution can be obtained

by taking e1, . . . , ep to be the first p eigenvectors of Σ , λi =
√

δ2i − σ2, where δ2i is
the eigenvalue of Σ associated to ei , and

σ2 = 1

d − p

d∑

i=p+1

δ2i .



Appendix F
Dynamic Programming

This chapter describes a few basic dynamic programming algorithms.

F.1 Minimization of a Function on a Tree

We consider the issue of minimizing a function E : x �→ E(x), defined for all x of
the form x = (xs, s ∈ S), in the following context:

• S is a finite set which forms the vertices of an oriented tree. We will represent
edges in this tree by relations s → t , for some pairs (s, t) in S. The assumption
is that, for any s, s ′ ∈ S, there exists at most one path between s and s ′ (such that
s = s0 → s1 → · · · → sN = s ′). For s ∈ S, we denote the product space by Vs

the set of all children of s, i.e., the set of all t such that s → t .
• For all s ∈ S, xs belongs to a finite set As . We denote the product space

∏
s∈S As

by A.
• The function E takes the form E(x) =

∑

s,t∈S,s→t

Est (xs, xt ).

We will consider the following partial order on S: s < t if there exists a sequence
s = s0 → s1 → · · · → sp = t . For all s ∈ S, define

E+
s (x) =

∑

t∈Vs

Est (xs, xt ) +
∑

t>s,u>s,t→u

Etu(xt , xu).

Clearly, E+
s (x) only depends on xs , and xt for t > s. One can furthermore prove the

relation
E+
s (x) =

∑

t∈Vs

(
Est (xs, xt ) + E+

t (x)
)
. (F.1)

Let F+
s (xs) = min{E+

s (y), y ∈ A, ys = xs}. The following equation, which is a
consequence of (F.1), essentially describes the dynamic programming algorithm.
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F+
s (xs) = min

xt ,t∈Vs

⎡

⎣
∑

t∈Vs

(
Est (xs, xt ) + F+

t (xt )
)
⎤

⎦ . (F.2)

This implies that, in order to compute the values of F+(xs), it suffices to know
F+(xt ) for all t ∈ Vs , and all xt . This yields an algorithm that successivelyminimizes
the functions F+

s , starting from the leaves of the tree (the minimal elements for our
order) to the roots (the maximal elements). IfR is the set of roots, we have

min
x∈A

E(x) =
∑

s∈R
min
xs∈As

[F+
s (xs)]

so that this algorithmdirectly provides aminimumof E . (Notice that we allow “trees”
with multiple roots, sometimes called “forests” in the literature.)

There are practical limitations to this approach. First, the minimization involved
in (F.2) should not be too difficult, because it has to be replicated at every s. This
means that the product space of all At for t ∈ Vs must not be too large. Second, the
memory load should remain tractable; for a given s, the value of F+

s (xs)must be kept
in memory for all xs ∈ As , until the values of F+

t have been computed for the parent
of s. One does not need to keep track of the configuration xt , t > s, that achieves this
minimum because the optimal configuration can be reconstituted if all the values of
F+
s (xs) have been saved. Indeed, if this is done, the optimal configuration can be

reconstructed by starting with the roots of the tree, and keeping the best xs at each
step.

One can, however, devise upgraded versions of the algorithm for which the values
and solutions of some of the F+(xs) can be pruned a priori, based on lower bounds
on the best value of E they can lead to.

F.2 Shortest Path on a Graph: a First Solution

The search for a shortest path on a graph is important for the methods discussed in
this book, because it can be used to compute geodesics on discretized manifolds.

The set S now forms the vertices of a general oriented graph. A cost Γ (s, t) is
attributed to each edge s → t ; the global cost of a path s = (s0 → · · · → sN ) is
defined by

E(s) =
N∑

k=1

Γ (s, t).

Given s and t in S, we want to compute the shortest path (or path with lowest
cost) s = (s = s0 → · · · → sN = t). The variables therefore are s1, . . . , sN−1, and
the integer N . The optimal cost will be denoted d(s, t). To avoid infinite minima, we
will assume that there exists at least one path from s to t , for any s, t ∈ S.
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We fix t and consider s as an additional variable. We denote by Vs the set of all
u ∈ S such that s → u. We then have the formula, which is the analog of (F.2) in
this case:

d(s, t) = min
u∈Vs

[d(u, t) + Γ (s, u)]. (F.3)

This equation provides an algorithm to compute d(s, t) for all s ∈ S. Define, for all
N ≥ 0,

dN (s, t) = min {E(s) : s path between s and t with at most N points} .

We have
dN+1(s, t) = min

u∈Vs

[dN (u, t) + Γ (s, u)]. (F.4)

Let d0(s, t) = +∞ if s �= t and 0 if s = t . Equation (F.4) can be iterated to provide
dN (u, t) for all u and arbitrary N . We have d(s, t) = limN→∞ dN (s, t), but it is clear
that, if dN (s, t) = dN+1(s, t) for all s, then dN (s, t) = d(s, t) and the computation
is over.

This provides the distance. To also obtain the shortest path between s and t once
all distances d(u, t), u ∈ S, have been computed, it suffices to start the path at s and
iteratively choose the neighbor of the current point that is closest to t . More precisely,
one lets s0 = s, and, given sk , take sk+1 such that d(sk+1, t) = min{d(u, t), u ∈ Vsk }.

F.3 Dijkstra’s Algorithm

Dijkstra’s algorithm provides an alternative, and significantly more efficient, method
for the computation of shortest paths. This algorithm provides, for a given s0 ∈ S,
the shortest path between s0 and any t ∈ S with a number of operations of order
|S| log |S|.

To each step of the algorithm are associated two subsets of S; the first one is the set
of all unresolved vertices, and will be denoted C ; the second is the set of all vertices
t for which d(s0, t) is known, and will be denoted D. Since d(s0, s0) = 0, the initial
partition is D = {s0} and C = S \ {s0}. We will also ensure that at each step of the
algorithm

max {d(s0, t) : t ∈ D} ≤ min {d(s0, t), t ∈ C} ,

which is true at the beginning.
Introduce the function F defined on S by:

F(t) =
{
d(s0, t) if t ∈ D;
inf {d(s, u) + Γ (u, t) : u ∈ D, u → t} if t ∈ C, with inf(∅) = +∞.
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We therefore start with F(s0) = 0, F(t) = Γ (s, t) for all t ∈ Vs0 and F(t) = +∞
otherwise.

The basic observation is that, at each step, the vertex t ∈ C for which F(t) is
minimal is such that d(s0, t) = F(t); indeed, we can already see that

d(s0, t) = inf {d(s0, u) + Γ (u, t) : u ∈ S} ≤ F(t).

Assume d(s0, t) < F(t). This implies that there exists a u ∈ C such that d(s0, u) +
Γ (u, t) < F(t). Choose an optimal path between s0 and u and let u′ denote the first
time that this path leaves D. We have F(u′) = d(s0, u′) ≤ d(s0, u) < F(t), which
is a contradiction to the fact that F(t) is minimal. Moreover, for all u ∈ C , we have
d(s0, u) ≥ F(t): to prove this, it suffices to consider again the exit point from D of
an optimal path between s0 and u to have a contradiction.

One step of Dijkstra’s algorithm therefore consists in identifying a minimizer, t ,
of F in C and moving it from C to D. The function is then updated, and only needs
to be modified for points t ′ ∈ Vt , for which F(t ′) must be replaced by

min(F(t ′), F(t) + Γ (t, t ′)).

The algorithm stops whenC = ∅. Similar to the previous section, the function F can
be used to reconstruct optimal paths.

F.4 Shortest Paths in Continuous Spaces

Wenowprovide an efficient algorithm to compute a certain class of geodesic distances
in R

d [257], which can be seen as a numerically consistent version of Dijkstra’s
algorithm.Although the algorithmgeneralizes to anydimension,we restrict ourselves
here to d = 2 in order to simplify the presentation.

Let W be a positive function and consider the Riemannian metric on R
2 given by

|u|x = W (x)|u|, for u ∈ R
2. The length of a path γ(·) defined over [a, b] is therefore

given by

L(γ) =
∫ b

a
|γ̇(t)|W (γ(t))dt.

The geodesic distance is then given by the length of the shortest path between two
points. Now let f (x) denote the distance of x to a set S0 ⊂ R

2. The function f can
be shown to satisfy the following eikonal equation

|∇ f | = W (F.5)

and the algorithm consists in solving (F.5) given that f = 0 on S0.
The principle is to progressively update f starting from S0. The norm of the

gradient is discretized according to the following formulas. Let
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∂+
1 f (i, j) = ( fi+1 j − fi j )/h,

∂−
1 f (i, j) = ( fi j − fi−1 j )/h,

∂+
2 f (i, j) = ( fi j+1 − fi j )/h,

∂−
2 f (i, j) = ( fi j − fi j−1)/h

and [248]

|∇ f (i, j)| =
(
max

(
max(∂−

1 f (i, j), 0),−min(∂+
1 f (i, j), 0)

)2

+max
(
max(∂−

2 f (i, j), 0),−min(∂+
2 f (i, j), 0)

)2)1/2
,

which can also be written

|∇ f (i, j)| = (( fi j − min( fi j ,Ui j ))
2 + ( fi j − min( fi j , Vi j ))

2
)1/2

with Ui j = min( fi−1 j , fi+1 j ) and Vi j = min( fi j−1, fi j+1).
Before proceeding further, let us try to understand why this is a well-chosen

formula, starting with a one-dimensional example, and restricting ourselves to the
particular caseW ≡ 1, which corresponds to the Euclidean distance function. In one
dimension, it suffices to consider the case in which the set with respect to which
the distance is computed has two points, say 0 and 1. We also focus on the interval
[0, 1] in which interesting things happen. The distance function in this case is given
by the first plot of Fig.F.1. The following two plots in the same figure provide a
discretization of the same function over respectively an odd and an even number of
points. For such a function, it is easy to check that

| fi − min( fi , fi−1, fi+1)| = 1

for every point; this partially justifies the choice made for the discretization of the
eikonal equation. Approximating the gradient by central differences (for example,
by ( fi+1 − fi−1)/2) would not satisfy the equation at the central points, since the
result would be 0 in the odd case, and ±0.5 in the even case. Note that the formula
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Fig. F.1 A typical distance map in 1D, followed by a discretization over an odd and even number
of points
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would have worked without including fi in the minimum, but this is because, in
one dimension, the situation in which fi is smaller that its two neighbors does not
happen, unless the distance is zero.

This can happen in two dimensions, however. Let us illustrate the formula in
the simplest case when one computes the distance to a single point, say (0, 0); that
is, we consider the function f (x, y) = √x2 + y2. Let this function be discretized
over a grid (ih, jh), i, j ∈ Z, h being the discretization step. When i and j are non-
vanishing, a first-order expansion shows that the norm of the previous estimation of
the gradient is equal to 1 at first order in h (we skip the computation). If, say, i = 0, the
provided approximation formulaworks exactly, since in this casemin( f1 j , f0 j , f−1 j )

is equal to f0 j so that the approximation of the first derivative is zero, while the
approximation of the other derivative is exactly 1. But this would not have worked
if the term fi j had been omitted in the minimum. The reader is referred to [255] for
further justifications of this discretization.

We now solve the discretized eikonal equation,

( fi j − min( fi j ,Ui j ))
2 + ( fi j − min( fi j , Vi j ))

2 = W 2
i j ,

with respect to fi j . For this, it suffices to discuss the relative position of fi j , Ui j and
Vi j , and solve a second-degree polynomial equation in each case. Thefirst observation
is that, unless Wi j = 0, which is excluded, there is no solution, fi j , which is smaller
than both Ui j and Vi j . Let us consider the case Ui j ≤ fi j ≤ Vi j . In such a case the
equation is

( fi j −Ui j )
2 = W 2

i j ,

which yields fi j = Wi j +Ui j . To satisfy the current assumption fi j ≤ Vi j , we need
Wi j ≤ Vi j −Ui j . We have the same conclusion inverting the roles of Ui j and Vi j ,
and both cases can be summarized in the unique statement:

fi j = Wi j + min(Ui j , Vi j ) if Wi j ≤ |Vi j −Ui j |.

To have fi j larger that both Ui j and Vi j , we must solve

( fi j −Ui j )
2 + ( fi j − Vi j )

2 = W 2
i j ,

which yields

fi j = 1

2

(
Ui j + Vi j +

√
2W 2

i j − (Ui j − Vi j )2
)

.

One can prove that fi j is larger than max(Ui j , Vi j ) only if Wi j ≥ |Ui j − Vi j | which
is complementary to the previous case. To summarize
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fi j =

⎧
⎪⎪⎨

⎪⎪⎩

Wi j + min(Ui j , Vi j ) if Wi j ≤ |Ui j − Vi j |,

(√
2W 2

i j − (Ui j − Vi j )2 +Ui j + Vi j

)
/2 if Wi j ≥ |Ui j − Vi j |.

(F.6)

This will be called the update formula. From this formula, one can organize an iter-
ative algorithm in which one progressively updates the fi j ’s one at a time according
to this formula until stabilization [255]. Notice that, if, at some point, the values of
Ui j and Vi j are exactly known, then the value of fi j will also be exactly known after
the application of the update formula.

The construction introduced in [257] makes it possible to organize the algorithm
so that the correct values Ui j and Vi j are known at the time they are needed. This
parallels Dijkstra’s algorithm (Sect. F.3) and goes as follows.

Denote by S the complete discretized grid. This setwill be divided into two subsets
which evolve during the algorithm. These subsets are denoted C and D, the former
containing the pixels which have not been updated yet, and the latter those for which
the values of f are already known. At the beginning of the algorithm, D contains
the points in S0 (after discretization), f being 0 on D, and C contains all the other
points, on which we temporarily set f = ∞. The algorithm stops when C = ∅.
Preliminary step. Compute the value of f for all points m which are neighbors of
D according to the update formula (F.6).

Then iterate the main loop until C is empty:

Main loop. Select a point t in C for which f is minimal, and add it to D. Then
recompute f for the neighbors of t according to (F.6). (Provided of course these
neighbors do not already belong to D.)

Figure F.2 provides an example of a distance function to a plane curve, computed
using this algorithm.

To show why the algorithm converges, we first note that if tn is the point added
to D at step n, and f n the current function f at the same time, the sequence f ntn
is increasing. Indeed, consider tn+1. If tn+1 is not a neighbor of tn , then the value
of f is not updated after step n and f n+1

tn+1
= f ntn+1

≥ f ntn since tn was the minimum.
So, if f n+1

tn+1
< f ntn , then tn and tn+1 are neighbors, and the value of f at tn+1 must

have changed; this implies that the new value at tn must have affected Utn+1 or Vtn+1

depending on whether tn and tn+1 are horizontal or vertical neighbors. Say it has
affected Utn+1 . The only way this could have happened is when Utn+1 = f ntn . We are
therefore in the situation when f n+1

tn+1
≤ Utn+1 , which implies f n+1

tn+1
= Vtn+1 + Wtn+1 .

But this value has not been affected by the previous step, since, for Vtn+1 to be smaller
than f ntn , it must be equal to the value at a point which is already in D, which has not
changed. This is a contradiction to f ntn+1

< f ntn and proves our initial statement.
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Fig. F.2 A curve and its distance map

Given this, any updated value after step n must be larger than the stored value
at ftn . But this cannot affect the update formula, since this one only depends on the
values of f at the neighbors which are smaller than ftn . So the update formula is
satisfied, and remains so for all points added to D, which proves the convergence of
the method.
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Banach fixed-point theorem, 483
Banach space, 423
Banach spaces (C p functions), 432
BFGS method, 522
Bochner integral, 483

C
Canonical volume, 473
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Conservation of momentum, 302
Convex curve, 19
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Covariant derivative, 456
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Curvature motion (implicit form), 139
Curve evolution, 131
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D
Deformable object, 243
Deformable templates, 169, 174
Delta function, 97
Density matching, 258
Diffeomorphic matching

discretization, 338
gradient in deformable object, 330
gradient in initial momentum, 322
gradient in momentum, 318
gradient in velocity, 314
image matching, 333
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Distance equivariant to a group action, 347
Distance invariant to a group action, 347
Divergence

on manifolds, 476
on surfaces, 90

Divergence theorem
on R

2, 17
on R

n , 475
on manifolds, 477
on surfaces, 91

Dynamic programming, 533

E
Effort functional, 351
Eikonal equation, 536, 538
Elastica, 152
Embedded curves, 6
Embedding, 445
Embedding of Hilbert spaces, 431
Energetic representation (deformable tem-

plates), 170
EPDiff equation, 302

Hamiltonian form, 311
measure momenta, 312

EPDiff equation on vector fields, 310
Equations of Weingarten, 96
Euclidean arc length, 7
Euclidean curvature (plane curves), 11
Euclidean invariance (plane curves), 14
Eulerian differential, 245
Eulerian gradient, 245
Euler implicit scheme, 500
Euler method (ODE), 499
Euler midpoint method, 499
Exterior derivative, 469

F
First fundamental form, 87
Flow associated to an ODE, 488
Fourier transform, 437
Four-vertex theorem, 20
Frame matching, 282
Fréchet derivative, 482
Fréchet distance (curves), 358
Fréchet mean, 407
Frénet frame

2D, 15
3D, 74

Friedrichs extension, 217
Front propagation, 135

G
Gâteaux derivative, 482
Gauss–Bonnet formula, 100
Gauss curvature, 95
Geodesic active contours, 160
Geodesic curvature, 94
Geodesic distance, 455
Geodesic PCA, 410
Geodesic regression, 411
Geodesic surface evolution, 162
Geodesics (general case), 454
Geodesics (surfaces), 88
Gradient descent, 520

diffeomorphisms, 246
Riemannian, 521

Gradient flow, 150
Gradient vector flow (active contours), 157
Grassfires, 135
Grassmann manifold, 464
Green’s formula, 17
Green theorem (surfaces), 91
Gronwall’s lemma, 488
Group action, 451
Groupwise registration, 405

H
Hamiltonian form of geodesics, 460
Hausdorff distance, 357
Hessian, 506
Hilbert Sobolev spaces, 434
Hilbert space, 423
Hilbert space of �2 sequences, 425
Hilbert subspace, 424
Homeomorphisms, 183
Homogeneous spaces, 451
Horizontal tangent vectors, 367

I
Image matching, 249
Immersed curves, 6
Immersion, 445
Implicit mapping theorem, 483
Implicit polynomials, 30
Implicit representation (curves), 28
Implicit surfaces, 80
Infinitesimal action, 452
Infinitesimal generator, 452
Integration on surfaces, 84
Invariant kernels, 230
Invariant operators, 220
Inverse mapping theorem, 483
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Isocontour, 123
Isoperimetric inequality, 18
Isosurface, 125
Isotropy subgroup, 451

J
Jordan curve, 1

K
Kelvin–Stokes theorem, 476
Kendall’s shape space, 353
Kendall’s space of triangles, 356

L
Lie algebra, 446
Lie bracket, 446
Lie group, 445
Linear assignment, 257
Linear group, 448
Line search, 518
Local chart, 75, 439
Local coordinates, 440
Local parametrization, 75
L2 space, 425

M
Manifold with boundary, 469
Marching cubes, 125
Mass transportation, 293
Matching functional, 243
Mean curvature, 95
Mean curvature flow, 150
Measure matching, 255
Medial axis, 57
Mercer’s theorem, 235
Metamorphosis, 373

images, 380
plane curves, 389
point sets, 378

Modal representation, 171
Momentum representation, 368
Monge–Kantorovitch, 293
Morrey’s theorem, 435
Moving frame (general case), 45
Moving frame (linear case), 36
Multi-linear form, 465

N
Newton method, 521

Normal curvature, 94
Normal vector (surfaces), 83

O
Optimal control, 508
Orbit, 451
Ordinary differential equation (Existence),

486
Orientation (curve), 17
Orientation (implicit curves), 28
Orientation (manifold), 470
Orientation (surfaces), 83
Orthogonal Hilbert subspaces, 426
Orthogonal projection, 426
Orthonormal families, 428
Osculating circle, 12

P
Parallel transport, 459
Parametrized plane curve, 1
Point matching, 247
Polar coordinates, 13
Pontryagin’s maximum principle, 513
Pre-Hilbert space, 423
Principal Component Analysis (PCA), 527
Principal curvatures, 95
Probabilistic PCA, 531
Projective arc length, 42
Projective curvature, 48
Projective group, 450
Pseudo-distance, 347

Q
Quasi-Newton methods, 522

R
Radial kernels, 232
Reach (plane curves), 23
Reach (surfaces), 107
Regular boundary, 469
Regular surface, 74
Reproducing kernel

asymptomatically affine, 239
scalar, 206
vector, 210

Reproducing kernel Hilbert spaces
scalar, 205
vector, 210

Riemannian center of mass, 407
Riemannian manifold, 453
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Riemannian splines, 413
Riemannian submersion, 365, 461
Riesz representation theorem, 430
Right-invariantmetrics on diffeomorphisms,

360
Rotation group, 448
Rotation index, 18
Runge–Kutta method, 499

S
Scale-invariant arc-length, 35
Scale-invariant curvature, 39
Second fundamental form, 95
Semi-direct product, 449
Semi-local invariants, 49
Separable Hilbert space, 424
Shape context, 50
Shape operator, 93
Shortest path on a graph, 534
Similitudes (group of), 449
Skeletal structure, 65
Skeleton, 57
Sobolev active contours, 166
Special affine arc-length, 35
Special affine curvature, 39
Special linear group, 448
Sphere, 76
Spherical coordinates, 77
Spline interpolation (scalar), 206
Spline interpolation (vector), 211
Stiefel manifold, 464
Stokes’s theorem, 474
Störmer–Verlet integrator, 503
Strongly monotonic operator, 216
Submanifold, 444
Surface evolution, 143
Surface matching, 268
Symmetric scheme, 502

Symplectic Euler integrator, 503
Symplectic integrator, 503
Symplectic transformation, 502

T
Tangent mapping, 443
Tangent PCA, 409
Tangent plane (surfaces), 80
Tangent vectors, 441
Target, 243
Template, 243
Tensor matching, 285
Thinning of planar domains, 62
Thin plates, 237
Transitive action, 451
Triangulated surface, 101

U
Unit normal, 5
Unit tangent, 5

V
Varifold, 276
Vector field matching, 277
Vector fields, 441
Vector measure, 267
Vertical tangent vectors, 367
Voronoï diagrams, 60

W
Wasserstein distance, 257
Weak convergence, 436
Willmore flow, 152
Winding number, 19
Wolfe condition, 519
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