
Kaleidoscope: An Efficient Poker Protocol
with Payment Distribution and Penalty

Enforcement

Bernardo David1(B), Rafael Dowsley2,3, and Mario Larangeira1,3

1 Tokyo Institute of Technology, Tokyo, Japan
{bernardo,mario}@c.titech.ac.jp

2 Aarhus University, Aarhus, Denmark
rafael@cs.au.dk

3 IOHK, Central, Hong Kong

Abstract. The two main challenges in deploying real world secure poker
protocols lie in enforcing the distribution of rewards and dealing with
misbehaving/aborting parties. Using recent advances in cryptocurrencies
and blockchain techniques, Kumaresan et al. (CCS 2015) and Bentov et
al. (ASIACRYPT 2017) were able to solve those problems for the gen-
eral case of secure multiparty computation. However, in the specific case
of secure poker, they leave major open problems in terms of efficiency
and security. This work tackles these problems by presenting the first
full-fledged simulation-based security definition for secure poker and the
first fully-simulatable secure poker protocol that provably realizes such a
security definition. Our protocol provably enforces rewards distribution
and penalties for misbehaving parties, while achieving efficiency compa-
rable to previous tailor-made poker protocols, which do not have formal
security proofs and rewards/penalties enforcement. Moreover, our proto-
col achieves reduced on-chain storage requirements for the penalties and
rewards enforcement mechanism.

1 Introduction

Shamir, Rivest and Adleman, soon after their seminal work on the RSA cryp-
tosystem, started exploring new ideas on cryptography inspired by everyday
activities such as playing games. In particular, they started investigating how to
play poker remotely [26], a problem related to very interesting questions in the
distributed setting. For example, securely shuffling with remote parties requires

B. David and M. Larangeira—This work was supported by the Input Output Cryp-
tocurrency Collaborative Research Chair, which has received funding from Input Out-
put HK.
R. Dowsley—This project has received funding from the European research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation programme
(grant agreement No. 669255).

c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 500–519, 2018.
https://doi.org/10.1007/978-3-662-58387-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58387-6_27&domain=pdf
https://doi.org/10.1007/978-3-662-58387-6_27


Kaleidoscope 501

every player to participate in the procedure; otherwise, security may not be
assured at all for the participants.

Mental Poker, Cryptography and the Gambling Market: Since its origins
the research on mental poker and card games worked as a drive for the research
in cryptography. The original work of Shamir et al. inspired a number of follow-
ups, starting in the eighties with the works on the feasibility of playing mental
games, e.g. [11]. The first protocols for mental poker faced several limitations
due to poor efficiency, which was improved in the following decades several by a
number of works, e.g. [3,9,25,28,29,32,33].

In economic terms, online poker has been a strong industry since the “Poker
Boom” of the 2000s, as described in prestigious economic venues [15]. Much of
the strong interest in online gambling has its advent due to the appearance of
online casinos. Despite legal restrictions imposed by new US legislation, players
resort to websites based in other countries. For example, a Financial Times
report [1] describes how UK firms filled the vacuum left by the US counterparts
in the estimated 40 billion dollars global market of international online gambling
(with one of the major online casino reporting 22 millions users and revenue of
2.5 billions dollars).

The current model of online gambling is based on trusted casinos, which
are responsible for generating the randomness used to shuffle the cards and for
enforcing the proper execution of the game. In contrast, a real world poker game
requires almost no trust among the players, or between players and third par-
ties like casinos. In the current model, a malicious casino or an insider attacker
working for a casino can greatly influence the outcome of the game by manip-
ulating the randomness used for shuffling or by leaking additional information
to the players. And such cases have already happened (see Section “Integrity
and Fairness” of [30] for more details). This state of affairs represents a clear
disadvantage from online poker in comparison with a game played face-to-face.
Techniques from mental poker can be used to overcome this problem and securely
play poker online without the need of trusted casinos.

Challenges Preventing Deployment: Two central problems preventing
deployment of secure poker protocols that were not addressed in the litera-
ture until very recently are protecting against aborts and ensuring that winners
get their rewards. The first problem consists in players who leave the game
prematurely (i.e. abort the protocol execution) causing the protocol to freeze.
Castellà-Roca et al. [9] investigated this scenario and proposed a protocol that
we show to be flawed (details in the full version of this paper [12]). The second
problem of ensuring that a player actually gets a reward if it wins has only been
tackled very recently after the advent of cryptocurrencies and blockchain tech-
nologies. Kumaresan et al. [20] addressed the problem with the help of Bitcoin
and blockchains following the approach of [2,6]. They concurrently also dealt
with the abort problem in a far more satisfactory way by imposing financial
penalties on the aborting parties and using the collected money to compensate
the remaining players.



502 B. David et al.

Basically, the protocol of Kumaresan et al. [20] uses an unfair multiparty com-
putation protocol along with many simple smart contracts and Bitcoin deposits
to ensure that the rewards are distributed to players whenever the relevant con-
ditions are fulfilled, and to enforce financial penalties on aborting/misbehaving
parties. Using this strategy, a specific poker protocol was also designed, although
with inefficiencies (for a more detailed discussion see [7, Sect. 6]). A significant
improvement was obtained by Bentov et al. [7] by leveraging the power of state-
ful contracts to greatly improve the efficiency, solving some of the bottlenecks in
the previous protocol. While the protocol in [20] requires O(n2) rounds of inter-
action with the cryptocurrency network and an amount of collateral linear in
the number of messages exchanged during the protocol, the protocol of Bentov
et al. [7] requires O(1) rounds of interaction with the cryptocurrency network
and an amount of collateral equal to the compensation the players would receive.
The central idea for improving the performance and decreasing the amount of
collateral is to use a single stateful contract that keeps all the deposits and exe-
cutes the unfair protocol off-chain. After the initial deposits, this contract is only
involved in two situations: for the cash distribution, or if a problem happens.

Lack of Strong Security Proofs: Even though efficient solutions are known
for different components of card games, most have not been formally proven
secure in a strong security model. In fact, it has been observed in [25] that the
protocols of [32,33] are broken and we describe in the full version of this work
[12] new concrete flaws that we have identified in the protocols proposed in [9]
and [3]. Out of the few protocols that have been suggested, it seems that only [20]
and its follow-up work [7] present a more detailed security proof in a strong,
simulation-based security model. However, in [7] only the general solution based
on enhanced trapdoor permutations has a full security proof (but incurs high
computational and communication costs due to its generality). Bentov et al. [7,
Sect. 7] argue that, instead of the general protocol, the tailor-made protocol of
Wei and Wang [28,29] can be used as a building block and coupled with their
techniques for dealing with aborts and cash distribution in order to obtain more
efficient poker protocols. However they do not present a proof for this claim,
and not even define the security properties that such tailor-made poker protocol
would have to satisfy in order for the overall solution to be secure. In fact, the
security models used in [28,29] are not formally defined and seem to be rather
weak (judging by the informal descriptions given in these works).

General Requirements for Useful Poker Protocol: The current state of the
art is unsatisfactory as there is no solution that meets all the following criteria
necessary in a deployment in a real world scenario in which money is at stake: (1)
Efficiency: performance that is comparable to tailor-made poker protocols; (2)
Security: a simulation-based, formal proof of security; (3) Penalties: avoid-
ing aborts/misbehavior or penalizing the misbehaving players; (4) Rewards:
securely distributing the rewards to the players.

The works that are closer to achieve these criteria are [20] and [7], which made
fundamental progress towards providing viable solutions to satisfy conditions (3)
and (4). Nevertheless, none of their solutions meet simultaneously conditions (1)



Kaleidoscope 503

and (2). The solutions in [20] as well as the general solution in [7] do not meet
condition (1), while the solution in [7] using tailor-made protocol improves on
condition (1) but does not address (2) as it lacks a security proof.

1.1 Our Contribution

We present our protocol, Kaleidoscope, named after the homonymous poker
themed movie from the sixties [18]. Given the earlier discussion, our main goal in
this work is to design a poker protocol that concurrently meets all four criteria
above. In designing our solution we face two main challenges: 1. constructing an
efficient off-chain protocol without sacrificing provable security guarantees as in
previous tailor-made poker protocols, 2. reducing the amount of data stored in
the blockchain, which is a highly constrained resource. In summary, our contri-
butions are: (1) First full-fledged simulation-based security definition for poker
(check full version [12]); (2) First fully-simulatable poker protocol (Sect. 3), which
provably realizes our security definition; (3) Improved concrete computational
and communication complexities for off-chain card operations (around 10 times
better than previous works) and reduced on-chain storage requirements for the
penalties and rewards enforcement mechanism (estimated in Sect. 4).

As our goal is to provide a strong security guarantee, we first specify a poker
functionality that encompasses the whole game execution, penalizes aborting
parties and guarantees the distribution of the rewards. Such modeling of the
whole poker game as an ideal functionality is, to the best of our knowledge, novel.
Then we design a tailor-made protocol that provably realizes such functionality
in a simulation-based security model. Our protocol is designed with both off-
chain and on-chain efficiency in mind. We focus on the case where players act
honestly and the on-chain protocol execution is used as a last resort to recover
from malicious actions. In this context, we meet criteria (1) and (2) by designing
an off-chain protocol that is highly efficient while providing compact witnesses
to be posted to the blockchain for claiming rewards or enforcing penalties. Our
protocol represents cards as ciphertexts of a threshold version of the well known
El Gamal cryptosystem as proposed by Barnett and Smart [3] but significantly
differs from their work in the techniques we employ for distributed key generation
and card shuffling. Namely, we use a technique for distributed key generation of
threshold El Gamal public keys that addresses the security issue we found in the
protocol of [3] (described in the full version of this work [12]) without sacrificing
efficiency. Moreover, we significantly improve the efficiency of the card shuffling
procedure by leveraging recent advances in zero-knowledge proofs for correctness
of shuffles [4]. This initial protocol itself is unfair, meaning that an adversarial
abort can cause the execution to fail without consequences. In order to meet
criteria (3) and (4), we build on top of the ideas in [20] and [7], financially
penalizing an adversary and rewarding honest players through a stateful smart
contract. We optimize their general rewards/penalties mechanism for the specific
case of poker and define concrete compact witnesses of correct behavior, resulting
in a smaller on-chain footprint.



504 B. David et al.

1.2 Overview and Intuition of Our Protocol

Next we present a more detailed overview of our protocol. Due to the fact that it
is not reasonable to assume that the majority of the players are honest in a poker
game, the secure poker protocol will not be able to guarantee fairness. Instead, we
follow the approach of imposing a financial penalty on the party that interrupts
the correct execution of the protocol, and use this money to compensate the
honest parties. A stateful contract is used to enforce these properties. As it is
highly desirable to decrease the burden on the blockchain as much as possible
(thus improving the efficiency and decreasing the impact on other users), the
execution of the protocol is performed mostly off-chain and the parties only go
back on-chain for the cash distribution or if some problem happens. When the
protocol goes back on-chain, the parties need to present witnesses to the stateful
contract to validate the state of the game. It is important to decrease the size of
these witnesses that need to be stored by the players, as well as the verification
costs for the stateful contract. In this regard, a key characteristic of poker is
that the future execution is independent from the past when conditioned on a
few variables that keep track of the current status. Hence, if all participants sign
these variables at a checkpoint, then this constitutes a witness witness that can
be delivered to the stateful contract in order to prove the state of the game at
this particular point. Therefore, at the checkpoints, the players can delete all
other previous witnesses, saving space for the players and verification efforts for
the stateful contract. The general overview of the protocol is:

1. Initially the parties lock into the stateful contract functionality an amount of
money equal to the sum of the collateral and the money that they will use for
the bets. A few initialization procedures are also executed during this stage.

2. The players run our novel unfair tailor-made poker protocol off-chain. During
this stage, an aborting adversary can cause the off-chain protocol to fail, so
the players need to record a few witnesses that must be sent to the stateful
contract in the case of problems that require its intervention. All messages are
signed by the senders, and at some checkpoints a few variables that summarize
the status of the game are signed by all players, constituting a compact witness
of correct execution.

3. If the protocol finishes correctly off-chain, then the final payout amounts will
have been signed by all players, and so the parties only come back on-chain
for the cash distribution that is performed by the stateful contract.

4. If some problem happens and a player requests the intervention of the state-
ful contract, each party that does not want to get penalized handles their
respective recorded witnesses to the stateful contract, which is then able to
verify the latest status of the protocol execution and continue the execution
(on-chain) under its mediation. During the mediated execution, it penalizes
any participant that does not follow the protocol rules or abort.

Note that on Step 2, the adopted technique is used in order to decrease the
size of the witnesses that the players need to store after the checkpoint as well as
to reduce the amount of on-chain verification that needs to be performed in case



Kaleidoscope 505

of intervention (thus reducing the burden on the blockchain, which affects all
cryptocurrency’s users). The safe deposit d that each of the n participants lock
into the contract should be enough to pay the compensation amount q for all the
other parties, i.e., d ≥ q(n− 1). Obviously, the monetary compensation q should
be related to the maximum possible bet amount m at each hand; otherwise the
corrupted parties would have an incentive to abort the protocol if they notice
that one hand will end up badly for them.

2 Preliminaries

We now define some building blocks used in our protocols. For details about the
Decision Diffie Hellman problem and digital signatures check the full version [12].

Security Model, Adversarial Model and Setup Assumptions: We prove
our protocol secure in the real/ideal simulation paradigm with sequential com-
position. This is an intuitive paradigm that provides strong security guarantees
for the protocols that are proven secure according to it. For more details, check
the full version of this work [12]. We consider malicious adversaries that may
deviate from the protocol in arbitrary ways. Moreover we consider the static
case, where the adversary is only allowed to corrupt parties before protocol exe-
cution starts and parties remain corrupted (or not) throughout the execution.
Our protocol uses the Random Oracle Model (ROM) [5] and assumes the exis-
tence of a stateful contract functionality FSC (that is described in Sect. 3 and
can be implemented using blockchain techniques).

Non-interactice Zero-Knowledge Proofs: We will need a NIZK of knowl-
edge of a value α ∈ Zp such that x = gα and y = hα given g, x, h, y. For this
we use the Fiat-Shamir transformation on the protocol of Chaum and Peder-
sen [10], which we denote by DLEQ(g, x, h, y). We will also need a simpler NIZK
of knowledge of a value α ∈ Zp such that x = gα given g, x. For this we use the
Fiat-Shamir transformation on the protocol of Schnorr [24], which we denote by
DLOG(g, x). We give a full description of these NIZKs in the full version [12].

A central component of our protocol is a zero-knowledge proof that an
ordered set of ElGamal ciphertexts has been obtained by re-randomizing each
ciphertext and permuting the resulting ciphertexts in a previous ordered set (an
operation called a Shuffle). Formally, we want to prove knowledge of a permuta-
tion π ∈ ΣN and randomness r = (r1, . . . , rN ) such that for the vectors of cipher-
texts c = (c1, . . . , cN ) and c′ = (c′

1, . . . , c
′
N ) we have c′

i = TEG.ReRand(cπ(i), ri).
An efficient zero-knowledge argument for correctness of this kind of shuffle has
been proposed in [4] and it can be turned into the required zero-knowledge
proof through the Fiat-Shamir heuristic [17,22]. We denote this NIZK by
ZKSH(π, r, c, c′) and refer interested readers to [4] for details on its construction
and proof. Further discussion of this NIZK’s efficiency and distributed generation
of setup parameters is presented in the full version [12].



506 B. David et al.

(n, n)-Threshold ElGamal Cryptosystem: A cryptosystem with (t, n)-
threshold allow a group of n parties to jointly generate a public key that is
then used to encrypt plaintext messages in such a way that they can only be
recovered from the ciphertexts if at least t parties cooperate [13]. In our card deck
generation procedure we employ a (n, n)-threshold version of the ElGamal cryp-
tosystem [16] based on the constructions of [14,21] with a verifiable decryption
protocol similar to the Verifiable Threshold Masking Functions (VTMF) of [3].
The final goal is to encode card information as Threshold ElGamal ciphertexts
as in the VTMF based construction of [3]. However, we employ different tech-
niques for distributed key generation in order to address the security issues we
have identified in [3]. Moreover, we do not require the verifiable masking and
verifiable re-masking (rerandomization) operations because the verification that
these ciphertexts are correctly re-randomized is handled by the zero-knowledge
proofs of correctness of a shuffle [4] presented in the next section. We do use
the fact that this scheme is additively homomorphic (and rerandomizable) and
a verifiable decryption procedure, where it is possible to verify that each user is
providing a valid decryption share. We now present the (n, n)-Threshold ElGa-
mal cryptosystem with verifiable decryption TEG and refer interested readers
to [3,14,21] for a full discussion:

– Key Generation TEG.Gen(1λ) : Each party Pi generates a random secret-
key share TEG.ski

$← Zp and broadcasts hi = gTEG.ski along with a proof
DLOG(g, hi)1. Once all n parties have broadcast their public key share hi, each
party Pi verifies the accompanying proofs DLOG(g, hj) (aborting if invalid)
and then saves all hj , for i �= j, reconstructing the public key by computing
TEG.pk = h =

∏n
i=1 hi = g

∑n
i=1 TEG.ski .

– Encryption TEG.EncTEG.pk(m, r) : The encryption of a message m ∈ G

under a public-key TEG.pk with randomness r ∈ Zp is carried out as a reg-
ular ElGamal encryption. Namely, a ciphertext c = (c1 = gr, c2 = hrm) is
generated.

– Re-Randomization TEG.ReRand(c, r′) : For fresh randomness r′, a cipher-
text c = (c1, c2) is re-randomized by computing c′ = (gr′

c1, h
r′

c2).
– Verifiable Decryption TEG.DecTEG.sk1,...,TEG.skn

(c): Parse c = (c1, c2).
Each party Pi broadcast a decryption share di = cTEG.ski

1 and a proof
DLEQ(g, hi, c1, di) showing that they have correctly used their secret-key
share TEG.ski. Once all n parties have broadcast their decryption share di,
each party Pi checks that the DLEQ(g, hj , c1, dj) proofs are correct for all
i �= j (aborting otherwise) and retrieves the message by computing

c2∏n
i=1 di

=
c2

c
∑n

i=1 TEG.ski

1

=
m · TEG.pkr

gr
∑n

i=1 TEG.ski
=

m
(
g

∑n
i=1 TEG.ski

)r

gr
∑n

i=1 TEG.ski
= m.

Smart Contracts: The concept of smart contracts was introduced by Szabo [27]
and recently popularized by the Ethereum plaftorm [8,31], which implements
1 This zero-knowledge proof of the knowledge of the exponent solves the issue in [3]

that was pointed out in the introduction.



Kaleidoscope 507

smart contracts based on blockchain techniques. Basically, smart contracts allow
a user to specify much richer conditions for transactions to be approved over a
cryptocurrency scheme, mimicking contracts in real life. Besides ensuring that
an amount of money is paid to a certain party who manages to fulfill a given
static set of conditions, smart contracts can also maintain an evolving state that
is taken into consideration when evaluating conditions for contract fulfillment.

In Ethereum, smart contracts can be written using Solidity, a Turing com-
plete programming language specially designed for this purpose. In order to
avoid denial-of-service attacks, the amount of computation involved in verifying
fulfillment of a contract is bounded by how much a user is willing to pay have
the contract checked. This payment is made by means of an auxiliary cryptocur-
rency called gas, which is given to the miners who verify a contract. Basically,
more complex contracts require larger amounts of gas to be verified so that the
miners receive compensation for computationally heavy contract verification.

The use of Ethereum based stateful contracts for rewards/penalties enforce-
ment in secure multiparty computation protocols was first proposed in [7]. Their
approach consists in having parties provide a deposit of a certain number of coins
before protocol execution, later receiving a refund in case they behave honestly.
Our protocol follows the same approach and consists mainly of operations over a
cyclic group (where the Discrete Logarithm and DDH assumptions are believed
to be hard). It has been estimated in [23] that a modular exponentiation over
such a group (computed as a scalar multiplication over an elliptic curve) costs
40000 gas (0.075 US Dollars) while [7] estimated the DLEQ NIZK [10] to cost
1287858 gas (0.30 US Dollars) assuming an exponentiation cost of 300000 gas.
Such estimates provide good evidence that our protocol could be implemented
in a smart contract platform such as Ethereum at a reasonable price.

3 Poker Protocol

For an overview of the poker game and the game formalization using the ideal
functionality Fpoker, check the full version of this work [12].

Our protocol represents cards as ciphertexts of a threshold ElGamal cryp-
tosystem, similarly to the scheme of [3], but employs different techniques for
distributed key generation in order to address the security issues we have iden-
tified in [3] and a highly improved procedure for shuffling cards based on recent
advances in zero-knowledge proofs of shuffle correctness [4]. In order to gener-
ate the representation of a shuffled deck, the parties first run a distributed key
generation algorithm to obtain a public-key (while each holds a share of the
secret-key). Next, they start a shuffling procedure that involves rerandomizing
and the randomly permuting ciphertexts that encrypt the numbers assigned to
each card (1 to 52), which is executed by all parties in a round-robin manner.
The parties also provide to each other proofs that the shuffling was correctly
executed, meaning that the resulting ciphertexts are indeed rerandomized and
permuted version of ciphertexts provided by the previous party, which prevents
adversaries from injecting ciphertexts representing arbitrary cards. When cards



508 B. David et al.

are intended to be revealed publicly, each party broadcasts a decryption share
of the ciphertext representing the card along with a zero-knowledge proof show-
ing its correctness. If a covered card is to be given to one specific party, each
of the other parties sends their decryption shares and proofs directly to that
party through a private channel. The main efficiency improvement in our pro-
tocol is obtained by employing an a compact zero-knowledge proof of a shuffle
introduced in [4] (made non-interactive by the Fiat-Shamir transform), instead
of the cut-and-choose technique employed by [3]. This proof is compatible with
ElGamal ciphertexts and achieves the same security level of the one in [3] with
only a fraction of the computational and communication complexities.

The main new feature of our protocols is a mechanism for detecting and
(financially) punishing cheaters without requiring the whole protocol to the exe-
cuted on chain. This mechanism requires that the parties first deposit of a num-
ber of coins for “collateral”, i.e. they lose these coins if they are detected as
cheaters or abort. The protocol execution has a series of checkpoints where par-
ties cooperate to generate a witness that the execution was correct up to that
point. The witness is a signature by all parties agreeing on the current state of
the execution. If at any point a protocol malfunction occurs (a party either does
not receive a message or receives a invalid message), the party who detected it
posts a complaint to the blockchain along with the last checkpoint witness and
the protocol messages generated after the checkpoint. All the other are required
to do the same or face punishment otherwise. This procedure verifies the current
state of the protocol and then the execution continues in the blockchain until
the next checkpoint. Any misbehavior or abort in this on-chain execution is pun-
ished financially. After the protocol execution reaches the next checkpoint and
the parties obtain the corresponding witnesses, the protocol is again executed
off-chain.

Smart Contract Functionality FSC : Our poker protocol πPoker makes use of
a stateful contract functionality FSC, described in Fig. 1, that models blockchain
transactions used to keep collateral deposits and enforce punishment of players
who misbehave, as well as ensuring that winners get their rewards. It is impor-
tant to emphasize that the FSC functionality can be easily implemented via smart
contracts over a blockchain. More formally, using a public available ledger. More-
over, our construction (for protocol πPoker) requires only simple operations, i.e.,
verification of signatures and discrete logarithm operations over cyclic groups.
The regular operation of our protocol is performed entirely off-chain, without
intervention of the contract. However in the event that any problem happen or
in the case that any participant in the game claim problems in the execution,
any player can publish their agreed status of the game in the chain, via short
witnesses (to be detailed in the protocol description).

Protocol πPoker: The protocol is executed by n players (P1, . . . ,Pn) interacting
with the stateful contract functionality FSC, and is parametrized by the small
sb and big bb blind bets amount, the initial stake t, the maximum bet m per
hand, the security deposit d and a timeout limit τ . In addition to the stateful
contract functionality FSC, the other setup assumption is the random oracle



Kaleidoscope 509

Functionality FSC

The functionality is executed with n players P1, . . . , Pn. It is parametrized by the
small sb and big bb blind bets amount, the initial stake t, the maximum bet m per
hand, the security deposit d, the compensation amount q, a protocol verification
mechanism pv and a timeout limit τ .
Players Check-in: Wait to receive from each player Pi a message
(checkin, Pi, coins(d + t), SIG.vki, hi,DLOG(g, hi)) containing the necessary coins,
its signature verification key, its share of the threshold ElGamal public-key and the
zero-knowledge proof of knowledge of the secret-key’s share. Record the values and
send (checkedin, Pi, SIG.vki, hi,DLOG(g, hi)) to all players. Allow the players to
dropout and reclaim their coins if a player fails to check-in within the timeout limit
τ . Once all check-ins are done, order the players by picking a random permutation
and announce the ordered sequence of players by (P1, . . . , Pn) to them. Mark all
players as active.
Player Check-out: Upon receiving (checkout, active, balance, σ) from Pi, verify
that σ contains valid signatures by all active players on active and balance and that
active[i] = 0. If everything is correct, for w = balance[i] + d, send (payout, coins(w))
to Pi and mark him as inactive. Send (checkedout, i, w) to the other players.
Recovery: Upon receiving a recovery request (report, Pi,Checkpointi,CurrPhasei)
from Pi containing some checkpoint witnesses and current phase witnesses, send to
each Pj �= Pi (request, Pi,Checkpointi,CurrPhasei). Upon getting (response, Pj ,
Checkpointj ,CurrPhasej) from some player Pj with checkpoint and phase witnesses
(which are not necessarily relative to the same checkpoint as received from other
players) or an acknowledgement of previous submitted witnesses, forward this infor-
mation to the other parties. Upon getting replies from all players or reaching the
timeout limit τ , determine the current phase by verifying the most recent checkpoint
that has valid witnesses. Verify the last valid point of the protocol execution using
the current phase witnesses and pv. If there exists some Pi who sent misbehaving
messages (together with a signature) in the current phase, then for each Pj �= Pi

who has not checked-out, send (compensation, coins(d+ q+balance[j]+bets[j])) to
him. Send any leftover coins after the compensation for Pi and halt. Otherwise, me-
diate the execution of the protocol until the next checkpoint. This is done by using
(nxt-stp, phase, round) to request an action from the next party that is supposed
to act and using pv to verify the answer (nxt-stp-rsp,msgphase,round). All messages
are delivered to all players. If during this mediated execution a player misbehaves or
does not answer within the timeout limit τ , penalize him and compensate the others
as above, and halt. Otherwise send (recovered, phase,Checkpoint) to the parties
once the next checkpoint is reached.

Fig. 1. The stateful contract functionality FSC.

model. We assume that the parties agree on a generator g of a group G of order
p for the (n, n)-Threshold ElGamal cryptosystem TEG and also on a EUF-CMA
secure digital signature scheme SIG. Moreover, a nonce unique to each protocol
execution and protocol round (e.g. a hash of the public protocol transcript up to
the current round) is implicitly attached to every signed message to avoid replay
attacks. The protocol proceeds in phases as described below:



510 B. David et al.

– Recovery Triggers: Whenever a signature or NIZK proof is received, its
validity is tested. If the test fails, the party proceeds to the recovery phase.
The same happens if a party does not receive an expected message until a
timeout limit τ . These triggers will be omitted henceforth.

– Players Check-in: For i = 1, . . . , n, player Pi proceeds as follows:
1. generates the keys of the signature scheme (SIG.vki,SIG.ski)

$←
SIG.Gen(1λ).

2. generates TEG’s key shares by sampling TEG.ski
$← Zp, setting hi =

gTEG.ski and generating a proof DLOG(g, hi).
3. sends (checkin, coins(d + t),SIG.vki, hi,DLOG(g, hi)) to FSC and waits

until getting from FSC the check-in confirmation (checkedin,Pj ,
SIG.vkj , hj ,DLOG(g, hj)) of each player and the parties’ order
(P1, . . . ,Pn) that is used henceforth in the protocol. If not received until
the timeout limit τ , contact FSC to dropout and reclaim the deposited
coins.

4. verifies each DLOG(g, hj) for j �= i, reconstructs the initial public key
TEG.pk =

∏n
j=1 hj , record all hj , and initializes a vector balance =

(t, . . . , t), a vector bets = (0, . . . , 0), a counter psb = 1 and a counter
pbb = 2.

– Hand Execution - Shuffle: As the first step in executing a hand, the parties
generate a randomly shuffled deck of closed cards c1, . . . , c52. For i = 1, . . . , n,
Pi proceeds as follows (w.l.o.g. we assume all parties are active, the adaptation
to the other cases is the straightforward one):
1. If Pi = P1, it sets c0 = (c01, . . . , c

0
52) where c0j = TEG.EncTEG.pk(j, 1).

Otherwise, Pi considers the cards ci−1 = (ci−1
1 , . . . , ci−1

52 ) received from
Pi−1. Notice that these initial ciphertexts just encrypt the number of each
card (in increasing order) under deterministic randomness 1, allowing P2

to locally compute the initial set of ciphertexts for verification.
2. Pi samples uniformly at random a permutation π ∈ Σ52 and r = (r1, . . . ,

r52) where rj
$← Zp, and sets ci

j = TEG.ReRandTEG.pk(ci−1
π(j), rj), obtain-

ing a new set ci = (ci
1, . . . , c

i
52). Notice that this new set of ciphertexts

representing cards simply contains rerandomized versions of the previous
ciphertexts in a random order.

3. Pi generates a zero-knowledge proof of correctness of shuffle ZKSH(π, r,
ci−1, ci) and broadcasts it with the shuffled deck ci. All other parties
verify this zero-knowledge proof.

After all parties have participated in the shuffling procedure, the shuffled
deck for the current hand is set to be D = cn. All parties sign it by computing
σi

D = SIG.SignSIG.sk(DECK − READY,D), broadcasts σi
D and verifies all signatures.

Checkpoint Witness: The previous checkpoint witness concatenated with the
deck D and corresponding signatures σi

D.

– Hand Execution - Small and Big Blinds: After the shuffle is done,
all parties wait for the small blind, i.e. for Ppsb to broadcast a signature



Kaleidoscope 511

σpsb
sb = SIG.SignSIG.skpsb

(SB) as well as signatures on vectors balance and bets,
where balance[psb] is decreased by sb coins, bets[psb] is increased by sb coins,
while all other coordinates remain the same. Upon receiving the signatures,
each party Pi broadcasts a signature σi

sb = SIG.SignSIG.ski
(SB) as well as sig-

natures on balance and bets. All signatures are verified. Proceed analogously
for the big blind. Checkpoint Witness: The previous checkpoint witness with
the updated balance and bets (and signatures on them) concatenated with all
signatures σi

sb and σi
bb.

– Hand Execution - Drawing Cards and Private Cards Distribution:
Two private cards pci,1, pci,2 for each active party Pi as well as the community
cards cc1, cc2, cc3, cc4, cc5 are drawn from D according to the rules of poker.
For i = 1, . . . , n , Pi proceeds as follows to open cards pcj,1, pcj,2 towards Pj

for j = 1, . . . , n and to obtain its own private cards (here all parties act in
parallel):
1. Pi computes its decryption shares for pcj,1, pcj,2 by parsing pcj,k

as (cj,k,1, cj,k,2) and computing dj,k,i = cTEG.ski

j,k,1 and a NIZK
DLEQ(g, hi, cj,k,1, dj,k,i) for k ∈ {1, 2}. Pi sends the decryption shares
dj,1,i, dj,2,i along with their corresponding proofs to Pj through a private
channel.

2. Once it has received all di,1,j , di,2,j and corresponding DLEQ proofs from
the other parties, Pi checks that the proofs are valid. Finally, Pi learns
its private cards by computing pc′

i,k = ci,k,2∏n
i=1 di,k,j

for k ∈ {1, 2}.
3. Pi broadcasts σi

pc = SIG.SignSIG.ski
(PRIVATE − CARDS) after retrieving its

private cards. Remember the signature implicitly includes a nonce unique
to this protocol execution and specific round. Once signatures σj

pc from
all parties have been received, verify them.

Checkpoint Witness: The previous checkpoint witness, except for the signa-
tures σi

sb and σi
bb, concatenated with all σi

pc.

– Hand Execution - Main Flow: After cards are drawn and private cards
are distributed, all parties proceed to the main flow of playing a hand, where
a number of community cards will be opened and a number of betting rounds
will be played, both according to the community card opening and betting
round procedures. All parties continue the main flow by proceeding as follows:

• Execute a betting round starting with the closest active successor of Ppbb.
• Execute a community card opening procedure for flop cards cc1, cc2, cc3.
• Execute a betting round starting with the closest active successor of

Ppsb−1.
• Execute a community card opening procedure for turn card cc4.
• Execute a betting round starting with the closest active successor of

Ppsb−1.
• Execute a community card opening procedure for river card cc5.
• Execute a betting round starting with the closest active successor of

Ppsb−1.



512 B. David et al.

• Proceed to showdown starting with the last player who increased the bet
in the last round, if there is one; otherwise, the closest active successor of
Ppsb−1.

– Community Card Opening: In the steps of πPoker where a community
card cc ∈ {cc1, cc2, cc3, cc4, cc5} has to be opened, party Pi, for i = 1, . . . , n,
proceeds as follows:
1. Pi parses cc = (cc1, cc2) and broadcasts its decryption shares di =

ccTEG.ski
1 along with a NIZK DLEQ(g, hi, cc1, di).

2. After all decryption shares dj and corresponding DLEQ NIZKs are
received from all parties, Pi verifies if all NIZKs are valid. Pi opens cc by
computing cc2∏n

i=1 dj
.

3. After opening cc, Pi broadcasts σi
cc = SIG.SignSIG.sk(COMMUNITY − OPEN,

cc) in order to communicate it has successfully opened cc. Once all signa-
tures σj

cc from other parties have been received, Pi verifies that they are
all valid.

Checkpoint Witness: The previous one together with all signatures σi
cc.

– Betting Round: In the steps of πPoker that require a betting round starting
from party Ps, each party Pi communicates its betting action actioni ∈
{fold,call, (raise, r),all-in,check} (as defined in Fpoker) in a round
robin manner starting from Ps and following the order (P1, . . . ,Pn) received
from FSC, proceeding as follows until the conditions specified in Fpoker for
finishing the betting round are met:

• When it is Pi’s turn to state its bet, Pi updates vectors bets and balance
according to its action actioni, i.e. it increases (resp. decreases) bets[i]
(resp. balance[i]) by the amount of coins required by actioni as defined
in Fpoker. Pi generates a signature σi

bet = SIG.SignSIG.ski
(actioni, bets[i],

balance[i]) and broadcasts (actioni, bets[i], balance[i], σi
bet).

• Upon receiving (actionj , bets[j], balance[j], σ
j
bet) from party Pj for j �= i,

Pi checks the validity of σj
bet. Next, Pi verifies that bets[j] and balance[j]

are consistent with actionj according to the rules defined in Fpoker. If not,
Pi proceeds to the recovery phase. If both checks succeed, Pi updates its
local copy of bets and balance with the new values of bets[j] and balance[j],
and proceeds in the betting round.

When the conditions for ending the betting round specified in Fpoker are met,
each party Pi broadcasts a signature σi

betstate = SIG.SignSIG.ski
(bets, balance) on

its local copy of vectors bets and balance. Pi waits until all signatures σj
betstate

are received from every other party Pj for j �= i and verifies that they are valid
signatures on their local vectors bets and balance (verifying that all parties agree
on the final bets and balance). Checkpoint Witness: The previous checkpoint
witness with the updated vectors bets and balance, along with all signatures
σi

betstate on the updated vectors.



Kaleidoscope 513

– Showdown: The parties proceed in a round-robin way. If a party Pi wishes
to open its private cards pci,1, pci,2 during showdown, Pi broadcasts the
decryption shares di,1,j , di,2,j along with their corresponding DLEQ proofs,
for j = 1, . . . , n. For every party Pi who opens its private cards during show-
down, the other parties Pj decrypt pci,1, pci,2 by following the same procedure
used for reconstructing their own private cards. If decryption fails, Pj pro-
ceed to the recovery phase. If a party Pi wishes to muck during showdown, it
broadcasts a signature σi

muck = SIG.SignSIG.ski
(MUCK), the other parties ver-

ify the signature. Once all parties have either opened or mucked, the parties
proceed to the pot distribution.

– Pot Distribution: Each party Pi uses the opened cards, chronological order
of folded/mucked hands and current vectors balance and bets to locally com-
pute the updated balance for all parties according to the rules of poker. It also
zeros out bets. Pi broadcast signatures on balance and bets. Upon receiving
these values from each party Pj , Pi verifies that it is a valid signature on its
own local updated vectors balance and bets. A party Pi who wishes to continue
playing broadcasts a signature σi

cont = SIG.SignSIG.ski
(CONTINUE). A party Pi

who no longer wishes to play or who has balance[i] = 0 broadcasts a signa-
ture σi

chko = SIG.SignSIG.skj
(CHECKOUT). Each party Pi checks that all other

parties’ signatures are valid. For all parties Pj who choose to check-out, mark
party Pj as inactive. After determining which parties remain active and which
check out, each party Pi constructs a vector active such that active[j] = 1 if
party Pj is active in the next hand or active[j] = 0 if Pj is checking out.
Pi broadcasts a signature σi

act = SIG.SignSIG.ski
(active). Pi checks that sig-

natures σj
act by all other parties Pj are valid signatures on the same active

vector, otherwise it proceeds to the recovery phase. If there were check-outs,
update the public key as TEG.pk =

∏n
j=1 s.t. j is active hj . Increment psb and

pbb using the order among the active players. A signature on these values are
also generated by each party and checked by the others. Checkpoint Witness:
Vectors balance, bets and active, counters psb and pbb, as well as all signatures
on these values.

– Player Check-out: If Pi was marked as checking out in the pot distribu-
tion phase, it sends a message (checkout, active, balance, σ) to FSC, where
σ contains all signatures on active and balance, waits for confirmation from
FSC and stops execution.

– Recovery Request: If a party Pi enters the recovery phase at any step
of a given phase, it sends a message (report,Pi,Checkpointi,CurrPhasei) to
FSC, where Checkpointi is the checkpoint witness from the previous phase and
CurrPhasei is the transcript of the current phase so far (i.e. only the messages
that received and sent by Pi after the last checkpoint).

– Responding to a Recovery Request: Upon receiving a message
(request,Pi,Checkpointi,CurrPhasei) from FSC containing the checkpoint
witness and current phase transcript included in the report message of
Pi, every other party Pj sends a message (response,Pj ,Checkpointj ,
CurrPhasej) to FSC containing their own most recent checkpoint witness and
transcript of the current phase if they are different from the ones already



514 B. David et al.

submitted by other parties. Otherwise, it simply acknowledges the one that
is equal. Once all parties have responded to the recovery request, all par-
ties have learned each other checkpoint witnesses and the transcripts of the
current phase. For i = 1, . . . , n, party Pi proceeds as follows:

• Upon receiving the message (nxt-stp, phase, round) from FSC, Pi com-
putes its message msgphase,round for the round specified by round of the
phase specified by phase and sends (nxt-stp-rsp,msgphase,round) to FSC

following the protocol.
• Upon receiving (recovered, phase,Checkpoint) from FSC, Pi records the

checkpoint witness of the phase specified by phase and returns to the regu-
lar execution of next phase as described in the protocol by communicating
directly to the other parties.

The security of Protocol πPoker is captured in the following theorem whose
proof is presented in the full version of this work [12] due to space limitations.

Theorem 1. Assuming that the DDH problem is hard and that the digital signa-
ture scheme SIG is EUF-CMA secure, protocol πPoker securely computes Fpoker in
the FSC-hybrid, random oracle model in the presence of malicious static adver-
saries.

4 Concrete Complexity Analysis

In this section we analyze the concrete communication and computational com-
plexities of πPoker. We estimate (off-chain) communication and computational
complexities for the case where no user cheats (thus never triggering the recov-
ery phase). The exact cost of performing recovery will depend on the exact
point of the protocol where the recovery request happened, since the players are
required to post their protocol messages generated in each round after the latest
checkpoint witness. Nevertheless, we discuss why our on-chain space complexity
is generally low given that we explicitly define compact witnesses for intermedi-
ate step of the protocol (even inside poker rounds). On the other hand, previous
works in [20] and [7] only mention (but not define) intermediate witnesses for
each round of the poker game. Moreover, we exclude the cost of generating and
sending the messages between the parties and FSC, since these messages are basi-
cally transactions being posted in the blockchain and their size and generation
cost may vary depending on the concrete implementation.

Estimating Complexity: We estimate computational complexity in terms of
the number of exponentiations that each party has to perform in each phase
of the protocol. On the other hand, we estimate communication complexity in
terms of the total number of group (i.e. G) elements and ring (i.e. Zp) elements
transferred by all parties in each phase of the protocol. Most of the messages
exchanged in the protocol are broadcast to all parties2. However, during pri-
vate cards distribution, decryption shares for each card are sent directly to its
2 We remark that, in our scenario, broadcasts can achieved by having parties commu-

nicate directly with each other due to the low number of parties (typically n ≤ 10).



Kaleidoscope 515

owner through a private channel. We denote messages transmitted through pri-
vate channels by [private] and messages broadcast through public channels by
[broadcast]. Messages that are not explicitly marked are assumed to be broad-
cast by public channels. Both the Betting Round and Showdown phases have
complexities that fully depend on the behavior of each player in the game of
poker and other conditions such as the stake of the game. For example, a user
can choose to keep raising his bet in a Betting Round and users can choose
whether to show their cards or muck in Showdown. Those choices are perfectly
honest and permitted in the game but they result in different final complexities
for these phases of πPoker. In the case of the Betting Round phase, we estimate
the complexity for the case where all players speak once, which can be easily used
to compute the complexity in cases where each player speaks multiple times. In
the case of the Showdown phase, we estimate the complexity for the worst case
(in terms of complexity), where all players choose to show their cards.

Instantiating the Building Blocks: In this analysis we instantiate ZKSH
(NIZK of correctness of a shuffle) with parameters k = 4 and l = 13, which
results in 208 exponentiations for the prover and 208 exponentiations for the
verifier, with a proof size of 44 elements of G and 65 elements of Zp. Notice
that this estimation is actually an upper bound for concrete communication
complexity, since it pertains to the interactive version of ZKSH, which is signif-
icantly improved in terms of concrete communication complexity after applying
the Fiat-Shamir heuristic. We instantiate the signature scheme SIG with the
ECDSA scheme [19], where a public key consists of a elliptic curve point (that
we count as an element of G) and a signature consists of two scalars (we count
as elements of Zp). The ECDSA scheme requires one elliptic curve point mul-
tiplication by a scalar for generating a key pair, one for signing and two for
signature verification (without optimizations), which we count as group expo-
nentiations since πPoker is written in terms of groups with multiplicative notation.
The concrete communication and computational complexities of are presented
in Table 1.

On-Chain Space Complexity: Considering that players act honestly through-
out the protocol, information is only stored in the blockchain when a player
wishes to redeem its rewards. In this case, the player must post a witness show-
ing that all players agree that the protocol was correctly executed. This wit-
ness consists of a simple digital signature. In case a malicious player does cheat
and an honest player triggers the recovery mechanism, players are required to
post to the blockchain their latest checkpoint witness (if they disagree with the
witnesses posted by other players) and the protocol messages generated after
that witness. Notice that this checkpoint witness is also a simple digital signa-
ture and that the bulk of the data posted on the blockchain actually depends on
which phase of the protocol is currently being executed. For example, if recov-
ery is triggered during the Main Flow phase of Hand Execution, only the latest
checkpoint witness and short messages required in that phase would have to
be posted to the blockchain, excluding the long messages previously sent in the
Shuffle and Drawing Cards phase. On the other hand, previous protocols in [20]



516 B. David et al.

Table 1. Concrete communication and computational complexities of πPoker in terms
of number of exponentiations executed per player and number of elements of G and Zp

transmitted by all players in total for each phase with n players. During private cards
distribution, some messages are sent through a private channel, which we denote by
[private]. All the other messages in the protocol are broadcast through public channels,
which we denote by [broadcast]. Messages that are not explicitly marked are assumed
to be broadcast by public channels.

Phase Exponentiations (Per Player) Communication (Total)

G Zp

Players Check-in 2n + 1 2n 2n

Hand Execution - Shuffle 209n + 104 148n 67n

Hand Execution - Blinds 12n 0 24n

Hand Execution -
Drawing/Private Cards
Distribution

16n− 13 2(n2 − n)
[private]

4(n2 − n) [private],
2n [broadcast]

Hand Execution - Main
Flow

52n− 20 5n 28n

Showdown (Worst Case) 8(n− 1)2 2n2 4n2

Pot Distribution 2n 0 4n

Total 8n2 + 271n + 82 2n2 + 155n
[broad-
cast],
2(n2 − n)
[private]

4n2 + 127n
[broadcast],
4(n2 − n) [private]

and [7] only mention that intermediate witnesses could be generated after a full
round of poker, incurring in a much higher overhead in terms of blockchain stor-
age when recovery happens. Moreover, such witnesses are not explicitly defined
in [20] and [7].

Comparison with Previous Protocols: While we present estimated com-
putational and communication complexities for each phase of a complete poker
game, previous works only focus on individual card operations [3,9,25,28,29,32,
33], making it hard to provide direct comparisons to our results. In order to pro-
vide a meaningful comparison, we will focus on the card shuffling phase, which is
the main bottleneck of poker protocols. Considering a deck of 52 cards (necessary
for a poker game) and a security parameter k = 40 for the cut-and-choose step
(which is the lowest security parameter used for this kind of technique in mod-
ern cryptography), the protocol of [29] (used as a building block in [7]) requires
2120n exponentiations per player in the Shuffle phase where there are n players.
With the same parameters, the Shuffle phase of the protocol proposed in [3]
requires 6240(n − 1) + 8320 exponentiations, where n is the number of players.
On the other hand, our protocol only requires 209n + 104 exponentiations per
player as detailed in Table 1, resulting in improvements of an order of (at least)
10 times.



Kaleidoscope 517

5 Conclusion

We introduced the first specific purpose protocol for secure poker with payment
distribution and penalty enforcement with fully-simulatable security. In order to
argue about our protocol’s security, we introduced the first formal simulation
based security notions for such protocols, overlooked by previous works. More-
over, we identified concrete flaws in previously proposed protocols [3,9], show-
casing the need for formal security definitions and proofs. Our work improves
on previous heuristic approaches for constructing poker protocols and provides
a more efficient alternative to general results that provide payment distribution
and penalty enforcement for general MPC protocols, where generality comes at
the cost of efficiency.

References

1. Ahmed, M.: How UK beat the odds to win at online gambling (2017). https://www.
ft.com/content/044a3d9e-7d1a-11e7-9108-edda0bcbc928. Accessed 29 Aug 2017

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, May 2014

3. Barnett, A., Smart, N.P.: Mental poker revisited. In: Paterson, K.G. (ed.) Cryp-
tography and Coding 2003. LNCS, vol. 2898, pp. 370–383. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40974-8 29

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

7. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

8. Buterin, V.: White paper (2013). https://github.com/ethereum/wiki/wiki/White-
Paper. Accessed 5 Dec 2017

9. Castellà-Roca, J., Sebé, F., Domingo-Ferrer, J.: Dropout-tolerant TTP-free mental
poker. In: Katsikas, S., López, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592,
pp. 30–40. Springer, Heidelberg (2005). https://doi.org/10.1007/11537878 4

10. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

11. Crépeau, C.: A zero-knowledge Poker protocol that achieves confidentiality of the
players’ strategy or how to achieve an electronic Poker face. In: Odlyzko, A.M.
(ed.) CRYPTO 1986. LNCS, vol. 263, pp. 239–247. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-47721-7 18

https://www.ft.com/content/044a3d9e-7d1a-11e7-9108-edda0bcbc928
https://www.ft.com/content/044a3d9e-7d1a-11e7-9108-edda0bcbc928
https://doi.org/10.1007/978-3-540-40974-8_29
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-70697-9_15
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/11537878_4
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-47721-7_18


518 B. David et al.

12. David, B., Dowsley, R., Larangeira, M.: Kaleidoscope: an efficient poker protocol
with payment distribution and penalty enforcement. Cryptology ePrint Archive,
Report 2017/899 (2017). https://eprint.iacr.org/2017/899

13. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

14. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

15. The Economist: A Big Deal (2007). http://www.economist.com/node/10281315#
print. Accessed 24 Aug 2017

16. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

17. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 12

18. IMDb: Kaleidoscope (2017). http://www.imdb.com/title/tt0060581/. Accessed 12
Sept 2017

19. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

20. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 195–206. ACM
Press, October 2015

21. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 47

22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

23. Reitwiessner, C.: EIP 196 (2017). https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-196.md. Accessed 13 Dec 2017

24. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

25. Sebe, F., Domingo-Ferrer, J., Castella-Roca, J.: On the security of a repaired men-
tal poker protocol. In: Third International Conference on Information Technology:
New Generations, pp. 664–668 (2006)

26. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental poker. In: Klarner, D.A. (ed.)
The Mathematical Gardner, pp. 37–43. Springer, Heidelberg (1981). https://doi.
org/10.1007/978-1-4684-6686-7 5

27. Szabo, N.: Smart contracts: building blocks for digital markets (1996). http://
www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart contracts 2.html. Accessed 5
Dec 2017

28. Wei, T.J.: Secure and practical constant round mental poker. Inf. Sci. 273, 352–386
(2014)

29. Wei, T.J., Wang, L.C.: A fast mental poker protocol. J. Math. Cryptol. 6(1), 39–68
(2012)

30. Wikipedia: Online Poker (2017). https://en.wikipedia.org/wiki/Online poker.
Accessed 29 Aug 2017

https://eprint.iacr.org/2017/899
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
http://www.economist.com/node/10281315#print
http://www.economist.com/node/10281315#print
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://www.imdb.com/title/tt0060581/
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-68339-9_33
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://doi.org/10.1007/978-1-4684-6686-7_5
https://doi.org/10.1007/978-1-4684-6686-7_5
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://en.wikipedia.org/wiki/Online_poker


Kaleidoscope 519

31. Wood, G.: Ethereum: a secure decentralized transaction ledger (2014). http://
gavwood.com/paper.pdf. Accessed 5 Dec 2017

32. Zhao, W., Varadharajan, V.: Efficient TTP-free mental poker protocols. In: ITCC
2005 - Volume II, vol. 1, pp. 745–750, April 2005

33. Zhao, W., Varadharajan, V., Mu, Y.: A secure mental poker protocol over the
internet. In: ACSW Frontiers 2003, pp. 105–109. Australian Computer Society
Inc., Darlinghurst (2003)

http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

	Kaleidoscope: An Efficient Poker Protocol with Payment Distribution and Penalty Enforcement
	1 Introduction
	1.1 Our Contribution
	1.2 Overview and Intuition of Our Protocol

	2 Preliminaries
	3 Poker Protocol
	4 Concrete Complexity Analysis
	5 Conclusion
	References




