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Abstract. Bitcoin has become the most successful cryptocurrency ever
deployed, and its most distinctive feature is that it is decentralized. Its
underlying protocol (Nakamoto consensus) achieves this by using proof
of work, which has the drawback that it causes the consumption of vast
amounts of energy to maintain the ledger. Moreover, Bitcoin mining
dynamics have become less distributed over time.

Towards addressing these issues, we propose SpaceMint, a cryptocur-
rency based on proofs of space instead of proofs of work. Miners in
SpaceMint dedicate disk space rather than computation. We argue that
SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most
notably, its large energy consumption. SpaceMint also rewards smaller
miners fairly according to their contribution to the network, thus incen-
tivizing more distributed participation.

This paper adapts proof of space to enable its use in cryptocurrency,
studies the attacks that can arise against a Bitcoin-like blockchain that
uses proof of space, and proposes a new blockchain format and transac-
tion types to address these attacks. Our prototype shows that initializing
1TB for mining takes about a day (a one-off setup cost), and miners
spend on average just a fraction of a second per block mined. Finally,
we provide a game-theoretic analysis modeling SpaceMint as an exten-
sive game (the canonical game-theoretic notion for games that take place
over time) and show that this stylized game satisfies a strong equilibrium
notion, thereby arguing for SpaceMint’s stability and consensus.

1 Introduction

E-cash was first proposed by Chaum [8] in 1983, but did not see mainstream
interest and deployment until the advent of Bitcoin [26] in 2009. With a market
cap of over 300 trillion US dollars by December 2017, Bitcoin has given an
unprecedented demonstration that the time was ripe for digital currencies.

In an early version, our proposal was called “Spacecoin”. We changed it to “SpaceMint”
due to name conflicts.
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On the flip side, Bitcoin’s dramatic expansion has provoked serious questions
about the currency’s long-term sustainability. Bitcoin miners produce proofs of
work (PoW) to add blocks to the blockchain, the public ledger of all transactions.
For each block added, there is a reward of newly minted coins. One concern is
that proofs of work deplete large amounts of natural resources: by some estimates
from December 2017, the Bitcoin network consumed over 30 terawatt-hours per
year, which exceeds Denmark’s energy consumption. Moreover, most mining is
currently done by specialized ASICs, which have no use beyond Bitcoin mining.

A related concern is the emergence of a “mining oligarchy” controlled by
a handful of powerful entities. One of the original ideas behind basing Bitcoin
mining on computing power was that anyone could participate in the network
by dedicating their spare CPU cycles, incurring little cost as they would be
repurposing idle time of already-existing personal computers. However, mod-
ern Bitcoin mining dynamics have become starkly different [31]: the network’s
mining clout is overwhelmingly concentrated in large-scale mining farms using
special-purpose hardware for Bitcoin mining, often in collaboration with elec-
tricity producers. As a result, mining with one’s spare CPU cycles today would
result in net loss due to electricity costs. This phenomenon undermines the sta-
bility and security intended by the original decentralized design.

In light of these issues, there has been increasing interest in cryptocurren-
cies based on alternatives to proofs of work. The most explored alternative is
proofs of stake (PoStake), in which a miner’s probability of successfully creating
a block increases with the amount of currency he holds, rather than the amount
of computation he performs. This concept has several incarnations, from ad-
hoc implementations in existing cryptocurrencies [9,22] to designs with rigorous
security proofs in various models [10,11,21,23]. While these are innovative pro-
posals, the early constructions have variously suffered from attacks that arise
due to the inexpensive nature of mining. On the other hand, the more recent
proposals are fairly complex, usually running some kind of Byzantine agreement
protocol among a sufficiently large subset of stakeholders, and thus diverge sub-
stantially from the simplicity of the original Nakamoto design. Such schemes
also typically fail in case of low participation (i.e., if stakeholders are not mostly
online).

In this paper, we propose SpaceMint, a cryptocurrency that uses proofs of
space (PoSpace) [4,14,30] to address the aforementioned issues that occur in
Bitcoin and alternative proposals such as PoSpace-based currencies. To mine
blocks in SpaceMint, miners invest disk space rather than computing power,
and dedicating more disk space yields a proportionally higher expectation of
successfully mining a block. SpaceMint has several advantages compared to a
PoW-based blockchain like Bitcoin, summarized below.

– Ecological: Once the dedicated space for mining is initialized, the cost of
mining is marginal: a few disk accesses with minimal computation.

– Economical: Unused disk space is readily available on many personal com-
puters today, and the marginal cost of dedicating it to SpaceMint mining



482 S. Park et al.

would be small (by the previous point).1 We thus expect that space will be
dedicated towards mining even if the reward is much smaller than the cost of
buying disk space for mining. In contrast, in PoW-based blockchains rational
miners will stop mining if the reward does not cover the energy cost.

– Egalitarian: Bitcoin mining is done almost entirely on application-specific
integrated circuits (ASIC) and by large “mining farms,” to the point that
small-scale participation (e.g., based on general-purpose hardware) is impos-
sible. We believe SpaceMint to be less susceptible to specialized hardware
than Bitcoin, as discussed in Sect. 5.
Another cause of centralization of mining power in Bitcoin is mining pools.
This paper does not address that problem directly, but an elegant and simple
idea [25] to discourage mining pools in PoW-based blockchains – namely,
having the mining process require the secret key to redeem the block reward
– can be straightforwardly adapted for SpaceMint.2

1.1 Challenges and Our Contributions

In order to “replace” PoW by PoSpace to achieve consensus on the blockchain,
the following problems must be addressed.

– Interactivity: PoSpace, as originally defined [14], is an interactive protocol.
Although the same is true for the original definition of PoW [13], there
the interaction was very simple (i.e., a two-message, public-coin protocol).
PoSpace requires more interaction, thus it is more challenging to adapt
PoSpace to the blockchain setting.

– Determine the winner: In a PoW-based blockchain like Bitcoin, the proba-
bility of a miner being the first to find an eligible next block increases with
its hashing power. The Bitcoin protocol prescribes that once an eligible next
block is announced, all miners should append that block to the blockchain
and continue mining on the new longest chain. Generating a PoSpace, on the
other hand, is deliberately computationally cheap. We thus need some way to
determine which of many different proofs “wins”. Moreover, the probability
of any miner winning should be proportional to the space it dedicates, and
we want a miner to learn if he is a likely winner without any interaction.

– “Nothing-at-stake” problems: When replacing PoW by proofs that are compu-
tationally easy to generate (such as PoStake or PoSpace), a series of problems
arise known as nothing-at-stake problems [16].3 The computation-intensive
nature of Bitcoin mining is a key property that, informally, ensures that all

1 By marginal cost we mean the cost of using disk space that otherwise would just sit
around unused.

2 In a PoW this can be achieved by, e.g., not applying the hash function to a nonce
directly, but to its signature. In the PoS [14] used for SpaceMint, this can be achieved
by augmenting each “label” that is stored with its signature.

3 Although PoSpace-based currencies share some of the issues PoStake-based curren-
cies have, they are robust to others, in particular, PoSpace does not share the tricky
participation problem of PoStake.
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miners are incentivized to concentrate their mining efforts on a single chain,
which leads to consensus. When mining is computationally cheap however,
miners can intuitively (1) mine on multiple chains simultaneously, not just
the one the protocol specifies, and (2) try creating many different blocks with
a single proof (of space or of stake) by altering the block contents slightly
(e.g., by using different transaction sets) before choosing the most favorable
one to announce. The latter behavior is known as “(block) grinding”. Those
issues are undesirable as
1. they slow down consensus;
2. they potentially allocate a greater reward to cheating miners
3. they potentially enable double-spending attacks by an adversary control-

ling much less than 50% of the space.
– Challenge grinding: Yet another issue arises when the content of past blocks

can influence which blocks are added to the blockchain in future. Then it
may be possible for a miner to generate a long sequence of blocks whose
earlier blocks might have proofs of low quality, but are generated in a biased
way (by “grinding” through all the possible proofs) so that the miner can
create high quality proofs later in the sequence. The problem arises when the
overall sequence is of higher quality than would be expected from the miner’s
disk space size, due to the disproportionately high quality of later blocks.
Challenge grinding may be considered a nothing-at-stake problem, but we
state it separately as, unlike the other nothing-at-stake problems, we have
not encountered it in other contexts.

To tackle the interactivity problem, SpaceMint uses the Fiat-Shamir paradigm (a
standard technique to replace a public-coin challenge with a hash of the previous
message, already used to adapt PoW for Bitcoin); additionally, we leverage the
blockchain itself to record messages of the PoSpace protocol (concretely, we use
a special type of transaction to record the commitment to its space a prover
needs to send to the verifier in the initialization phase of the PoSpace).

To determine the winner, we define a quality function, which assigns a quality
value to a PoSpace proof. This function can be computed by the miner locally,
and is designed such that the probability of a miner having the highest-quality
proof in the network is proportional to the space it dedicates.

The nothing-at-stake problems are more challenging to solve. To tackle these,
we introduce several new ideas and leverage existing approaches. To disincen-
tivize miners from extending multiple chains we ensure such behavior is detected
and penalize it. To prevent block grinding, SpaceMint ensures that the PoSpace
is “unique”, i.e., a miner can generate exactly one valid proof for every given
challenge, and this challenge itself is uniquely determined by the proofs that
were used to mine a previous block. This is done by basically running two chains
in parallel, a “proof chain” that contains the proofs, and a “signature chain”
that contains the transactions.

Finally, to address challenge grinding, SpaceMint prescribes that past blocks
influence the quality of short sequences of future blocks, thus exponentially driv-
ing down the probability that a miner could generate a sequence of blocks of
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disproportionately high quality by exploiting the relationship between past and
future blocks.

The idea of making the challenge for a block a deterministic function of a
unique credential of the resource that “won” a previous block – in combination
with having a quality function by which miners can locally decide if they are
likely winners – has been used in subsequent blockchain proposals like Algorand
[23] or the Chia Network [3].

We also implement and evaluate the modified PoSpace to demonstrate the
effectiveness of our scheme. Even for space larger than 1 TB, we show that (1)
miners need less than a second to check if they are likely to “win” and therefore
should generate a candidate next block, (2) block generation takes less than 30 s,
and (3) verifying the validity of a block takes a fraction of a second. Moreover,
these numbers grow logarithmically with larger space.

Finally, we provide a game-theoretic analysis of SpaceMint modeled as an
extensive game. To do this, we formally specify a stylized model of SpaceMint
mining and show that adhering to the protocol is a sequential equilibrium for
rational miners in this game (i.e., deviating from the protocol does not pay
off). Our analysis works in a simplified model that serves to rule out certain
classes of attacks (i.e., profitable deviations based on a simplistic set of possible
actions), but does not capture all possible attack vectors by real miners.4 To our
knowledge, this is the first analysis of a cryptocurrency mining as an extensive
game with the corresponding game-theoretic equilibrium concepts; though the
model is simplistic, we hope that this framework for rigorously ruling out certain
classes of attacks will serve as a useful base upon which to build more nuanced
game-theoretic models to rule out larger classes of attacks, in this and other
similar cryptocurrencies.

1.2 Related Work

We have already discussed proofs of stake above. Here, we briefly mention other
related proposals. A more detailed discussion can be found in the full version [27].

Proof of storage/retrievability [6,7,12,18,19, and many more] are proof sys-
tems where a verifier sends a file to a prover and later requests a proof that the
prover really stored the file. Proving storage of a (random) file does show that
one dedicated space, but the verifier must send the entire file first. In contrast,
PoSpace requires verifier computation and communication to be polylogarithmic
in the prover’s storage size.

Proof of secure erasure (PoSE), one-time computable functions [5,15,20,29]
are proof systems where a prover convinces the verifier that is has access to some
space. Additionally one can require that the proof implies that the space also was
erased [20,29], or some function can only be computed in forward direction [15].

4 For example, “selfish mining” [17] or block withholding is not captured by our sim-
plified model, and SpaceMint is in fact susceptible to block withholding attacks to
a similar extent to Bitcoin.
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Those protocols have only one phase, and thus cannot be used as a PoSpace,
i.e., to efficiently prove space usage over time.

Permacoin [24] is a cryptocurrency proposal that uses proofs of retrievability
with a novel variant of PoW. While solutions to Bitcoin’s PoW puzzles carry no
intrinsic value, Permacoin makes proof-of-work mining serve a useful purpose:
miners are incentivized to store useful data and thus the network serves as a
data archive. Permacoin is however still fundamentally a PoW-based scheme. In
contrast, in SpaceMint the dedicated storage does not store anything useful, but
we completely avoid PoW and the associated perpetual computation.

Burstcoin [1] is the only cryptocurrency we are aware of in which disk space is
the primary mining resource. However, Burstcoin’s design allows time/memory
trade-offs: i.e., a miner doing a little extra computation can mine at the same
rate as an honest miner, while using just a small fraction (e.g., 10%) of the
space. Moreover, Burstcoin requires a constant (albeit small) fraction (0.024%)
of dedicated disk space to be read every time a block is mined, while SpaceMint
requires only a logarithmic fraction. Finally, verification in Burstcoin is prob-
lematic: miners must hash over 8 million blocks to verify another miner’s claim.
The details on this attacks can be found in Appendix B of the full version [27].

Chia Network [3] is a very recent proposal of a blockchain based on PoSpace
in combination with proofs of sequential work. In a nutshell, the better the qual-
ity of the PoSpace, the faster the block can be “finalized” by a proof of sequential
work, and this proof tuple then can be used to create a block. By using proofs
of sequential work on top of PoSpace, Chia is even more similar to Bitcoin than
SpaceMint in several respects: for example, it requires no synchronization/clocks
(except, as in Bitcoin, time-stamped blocks for the occasional re-calculation of
the mining difficulty), while retaining the efficiency of a pure PoSpace-based cur-
rency. The PoSpace that was developed for Chia [4] is based on ideas completely
different from the PoSpace [14] we use. It has worse asymptotic security guaran-
tees, but unlike [14], it has a non-interactive initialization phase and extremely
short and efficient proofs.

Outline

– Cryptocurrency from proofs of space: In (Sects. 2 and 3) we modify
PoSpace [14] for the blockchain setting and present SpaceMint, a cryptocur-
rency based purely on proofs of space.

– Addressing the “nothing-at-stake” problems: After describing attacks that
arise from nothing-at-stake problems and challenge grinding, we describe how
our design uses novel approaches to overcome them (Sect. 4). Our solutions
extend to other blockchain designs based on easy-to-generate proofs.

– Evaluation of proof of space: We evaluate our modified PoSpace in terms
of time to initialize the space, to generate and verify blocks, and block
size (Sect. 5).

– Game theory of SpaceMint: We model SpaceMint as an extensive game,
and show that adhering to the protocol is an ε-sequential Nash equilibrium
(Sect. 6).
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Algorithm 1. Space commit
Common input: A hard-to-pebble graph G with n nodes and a function
hash : {0, 1}∗ → {0, 1}L.

1. P generates a unique nonce μ and then computes and stores (γ, Sγ) := Init(μ, n),
and sends the nonce9 μ and the commitment γ to V. Sγ contains the labels of all
the nodes of G computed using Eq. (1) and γ is a Merkle-tree commitment to these
n labels. The total size of Sγ is N = 2 · n · L (graph + Merkle tree).

2 Proof of Space in SpaceMint

A PoSpace [14] is a two-phase protocol between a prover P and a verifier V.
After an initialization phase, P stores some data Sγ of size N , and V stores a
short commitment γ to Sγ . Then, in the execution phase, V sends a challenge c
to P, who returns a short answer a after reading a small fraction of Sγ .

The PoSpace from [14,30] are specified a family of “hard-to-pebble” directed
acyclic graphs of increasing size. The prover picks a graph G = (V,E) from this
family depending on the amount of space it wants to dedicate. P then stores a
label li for each node i ∈ V , which is computed as

li := hash(μ, i, lp1 , . . . , lpt
), (1)

where p1, . . . , pt are the parents of node i and hash is a hash function (sampled
by V). In [14] two graph families are suggested, one for which any successful
cheating prover must either use Ω(|V |/ log(|V |)) space between the initialization
and execution phase, or use Ω(|V |/ log(|V |)) space during execution. The other
graph family enforces either Θ(|V |) space between the phases (i.e., the same as
the honest prover, up to a constant), or Θ(|V |) time during execution.

Formally, [14] specifies a PoSpace by a tuple of algorithms {Init,Chal,Ans,
Vrfy}, which specify a two-phase protocol between a verifier V and a prover P.
Init is used to initialize the space, Chal generates a challenge, Ans computes the
response to a challenge and Vrfy verifies the response. The initialization phase
consists of running Algorithm1,5 where P commits to its space, followed by
Algorithm 2, where P proves that the commitment is computed “mostly cor-
rect”. In the execution phase, given by Algorithm 3, V simply opens some of the
committed labels to prove it has stored them.

The algorithms we give here are already made partially non-interactive for
our blockchain application – in the actual PoSpace the challenges in Algorithms 2
and 3, as well as μ in Algorithm 1 are sampled by V and sent to P.

5 The nonce just ensures that the same space cannot be used for two different
proofs [14]; thus in a single-verifier setting, P can generate the nonce.
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Algorithm 2. Prove commit
Initial state: V holds commitment γ and nonce μ; P stores Sγ and μ. Both are given
the challenges c = (c1, . . . , ckv ) to be used.

1. P computes openings b := (b1, b2, . . .) of all the labels of the nodes {ci}i∈[kv ] and of
all their parents and sends them to V. This is done using Ans where Ans(μ, Sγ , c)
returns the Merkle inclusion proof of label lc w.r.t. γ.

2. V verifies these openings using Vrfy, where Vrfy(μ, γ, c, a) = 1 iff a is a correct
opening for c. It then checks for all i = 1, . . . , kv if the label lci is correctly computed
as in Eq. (1).

Algorithm 3. Prove space
Initial state: V holds commitment γ and nonce μ; P stores Sγ and μ. Both are given
the challenges c = (c1, . . . , ckp) to be used.

1. P computes openings {ai := Ans(μ, Sγ , ci)}i∈[kp] and sends them to V.
2. V verifies these openings by executing Vrfy(μ, γ, ci, ai).

3 SpaceMint Protocol

3.1 Mining

The mining process consists of two phases: initialization and mining.

Initialization. When a miner first joins the SpaceMint network and wants to
contribute N bits of space to the mining effort, it first generates a public/secret
key pair (pk, sk) and runs Algorithm1 as P, with nonce μ set to pk, to generate

(γ, Sγ) := Init(pk,N).

The miner stores (Sγ , sk) and announces its space commitment (pk, γ) via a
special transaction. We require miners to commit (pk, γ) to prevent a type of
grinding attack: the problem is that the PoSpace we use [14] have the prop-
erty that by making minor changes one can turn (pk, γ) into many other space
commitments that re-use most of the space.

Once this transaction is in the blockchain, the miner can start mining.

Mining. Similar to Bitcoin, SpaceMint incentivizes mining (adding new blocks)
through block rewards (freshly minted coins per block) and transaction fees.
Once initialized, each miner attempts to add a block to the blockchain every
time period. For time period i, a miner proceeds as follows:

1. Retrieve the hash value of the last block in the best chain so far, and a
challenge c (we discuss how c is derived in Sect. 3.4), which serves as a short
seed from which we derive two long random strings $p, $v.

2. Compute challenges (c1, . . . , ckp
) := Chal(n, kp, $p) for use in Algorithm 3.

3. Compute the proof of space a = {a1, . . . , akp
} using Algorithm 3.
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4. Compute the quality Quality(pk, γ, c, a) of the proof (details of the quality
function are given in Sect. 3.5).

5. If the quality is high enough, so that there is a realistic chance of being
the best answer in period i, compute the proof of correct commitment b =
{b1, . . . , bkv

} using Algorithm 2; then create a block and send it to the network
in an attempt to add it to the chain. This block contains the proofs a and b
computed above and a set of transactions; the exact specification is in given
Sect. 3.2 below.

Remark 1. (Postponing Algorithm 2). Note that unlike in the interactive
PoSpace where one runs Algorithms 1 and 2 during initialization, we only require
miners to execute Algorithm 2 if they want to add a block. This is done for effi-
ciency reasons. For one thing, this way, the proof b (which is significantly larger
than a or γ) must only be recorded in the blockchain once the corresponding
space has actually been used to mine a block. Another more subtle advantage is
that now the challenge for Algorithm2 changes with every block; thus a cheat-
ing miner (who computed some of the labels incorrectly) will only know if he
was caught cheating at the same time when he generates a potentially winning
proof a (and if b does not pass, he cannot use a). This allow us to tolerate a much
larger soundness error in Algorithm2, which means we can choose a smaller kv

(concretely, it’s ok if he passes the proof with large probability p, as long as this
requires using at least a p times the space an honest miner would use).

...

...

Block i

hash

signature

transaction

Block i+1

hash

signature

transaction

Block i+2

hash

signature

transaction

... the proof chain

... the signature chain

Fig. 1. Our blockchain consists of a proof chain that prevents grinding, and a signature
chain that binds the transactions to the proof chain.

3.2 Blockchain Format

A blockchain in SpaceMint is a sequence of blocks β0, β1, . . . which serve as a
public ledger of all transactions. Each block βi = (φi, σi, τi) consists of three
parts, called “sub-blocks”, which contain the index i that specifies the position
of the block in the blockchain. The structures of sub-blocks are as follows:

• The hash sub-block φi contains
– the current block index i,
– the miner’s signature ζφ on φi−1, the (i − 1)th hash sub-block, and
– a “space proof” containing the miner’s pk.
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• The transaction sub-block τi contains
– the current block index i and
– a list of transactions (Sect. 3.3).

• The signature sub-block σi contains
– the current block index i,
– the miner’s signature ζτ on τi, the ith transaction sub-block, and
– the miner’s signature ζσ on σi−1, the (i − 1)th signature sub-block.

The links between blocks in a blockchain are illustrated in Fig. 1. We will refer
to the hash sub-blocks as the proof chain, and the signature sub-blocks with the
transactions as the signature chain. While the signature and transaction sub-
blocks are all linked, the hash sub-blocks are only linked to each other and not
to any signature or transaction sub-blocks.

This design may seem to prevent any kind of consensus, as now we can have
arbitrary many signature chains containing different transactions consistent with
the same proof chain. The key observation is that once an honest miner adds
the ith block (honest in the sense that he will only sign one block and keep its
secret key secret), the transactions corresponding to this proof chain up to block
i cannot be changed any more even by an adversary who controls all secret keys
from miners that added the first i − 1 blocks.

3.3 Transactions in SpaceMint

There are three types of transactions in SpaceMint: (1) payments, (2) space com-
mitments, and (3) penalties. Every transaction is signed by the user generating
the transaction, and sent to the miners to be added to the blockchain. Here, we
specify the three types of transactions.

Payments. Coins in SpaceMint are held and transferred by parties identified
by public keys. A payment transaction transfers coins from m benefactors to n
beneficiaries and has the form

ctx = (payment, txId , in ,out).

– txId : A unique, arbitrary transaction identifier. That is, no two transactions
in a blockchain can have the same identifier.

– in : A list of input coins to the transaction. Specifically, in = (in1, . . . , inn),
a list of n benefactors, each being a triple: inj = (txId j , kj , sigj), where:

• txId j is the identifier of a past transaction,
• kj is an index that specifies a beneficiary pkkj

of the transaction txId j ,
• sigj is a signature of (txId , txId j , kj ,out), which verifies under key pkkj

proving ownership of the the kjth beneficiary of transaction txId j and
binding the coin to the beneficiaries.

– out : A list of beneficiaries and the amount they receive. Specifically, out =
(out1, . . . , outm) with outi = (pki, vi), where:

• pki specifies a beneficiary, and
• vi is the number of coins that pki is to be paid.
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For a transaction to be valid, we require that (1) all signatures in in verify
correctly; (2) no benefactor is referenced by more than one subsequent transac-
tion in the blockchain (to prevent double-spending); (3) the sum of the input
values to the transaction is at least the sum of the amounts paid to beneficiaries.

Space Commitments. A space-commitment transaction

ctx = (commit, txId , (pk, γ))

consists of pk, a public key, and γ which was computed as (γ, Sγ) := Init(pk,N).
Thus, ctx is a space commitment to a space of size N .

Penalties. A penalty transaction

ctx = (penalty, txId , pk, prf )

consists of pk, the public key of the transaction creator, and prf, a proof of
penalty-worthy behavior by another miner. These transactions serve to penalize
miners that engage in malicious behavior. The primary usage of penalties in
SpaceMint is to disincentivize mining on multiple chains (e.g., the proof would
contain two blocks of the same index signed by the same miner), but penalty
transactions can be used to discourage other types of (detectable) behavior in
blockchain-based currencies.

3.4 Where the Challenge Comes From

In Bitcoin, the PoW challenge for block i is simply the hash of block i − 1.
For SpaceMint, using block i − 1 for the challenge can slow down consensus: If
there are many different chains, miners can get different challenges for different
chains. A rational miner would thus compute answers for many different chains
(since it is easy to do), and if one of them is very good, try to add a block to
the corresponding chain, even if this chain is not the best chain seen so far. If
all miners behave rationally, this will considerably slow down consensus, as bad
chains get extended with blocks of quality similar to the current best chain, and
it will take longer for lower-quality chains to die off.

Instead, we derive the challenge for block i from the hash of block i−Δ, for a
reasonably large Δ: the probability of multiple chains surviving for more than Δ
blocks decreases exponentially as Δ increases. Moreover, in contrast to Bitcoin,
we only hash the block from the proof chain, but not the signature chain (Fig. 1):
this serves to prevent block-grinding attacks, since there is nothing to grind on
(the proof chain is fixed regardless of the set of transactions in the block). Finally,
we will use the same challenge not just for one, but for δ consecutive blocks. This
is done to prevent challenge-grinding attacks, as we explain in Sect. 4.

3.5 Quality of Proofs and Chains

Quality of a Proof. The block to be added to the chain at each time step is
decided by a quality measure on the PoSpace proof included in each proposed
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block. For a set of valid proofs π1=(pk1, γ1, c1, a1), . . . , πm =(pkm, γm, cm, am),
we require Quality(πi) to be such that the probability that πi has the best quality
among π1, . . . , πm corresponds to the ith miner’s fraction of the total space in
the network. The probability is over the choice of the random oracle hash, which
we use to hash answer a. We require:

Pr
hash

[∀j �= i : Quality(πi) > Quality(πj)
]

=
Nγi∑m

j=1 Nγj

,

where Nγi
is the space committed to by γi.

Let DN be a distribution that samples N values in [0, 1] at random and
outputs the largest of them:

DN ∼ max
{
r1, . . . , rN : ri ← [0, 1], i ∈ [N ]

}
. (2)

Let DN (τ) denote a sample from DN with sampling randomness τ . For valid
proofs we now define

Quality(pk, γ, c, a) := DNγ
(hash(a)). (3)

The Quality of an invalid proof is set to 0.
It remains to show how to efficiently sample from the distribution DN for a

given N . Recall that if FX denotes the cumulative distribution function (CDF)
of some random variable X over [0, 1]. If the inverse F−1

X exists, then F−1
X (U)

for U uniform over [0, 1] is distributed as X. The random variable X sampled
according to distribution DN has CDF FX(z) = Pr[X ≤ z] = zN , since this is
the probability that all N values ri considered in (2) are below z. Therefore, if
we want to sample from DN , we can simply sample F−1

X (U) for U uniform over
[0, 1], which is U1/N . In (3) we want to sample DNγi

using randomness hash(ai).
To do so, we normalize the hash outputs in {0, 1}L to a value in [0, 1], and get

DNγi
(hash(ai)) :=

(
hash(ai)/2L

)1/N
.

Quality of a Chain. In order to decide which of two given proof-chain branches
is the “better” one, we also need to define the quality of a proof chain (φ0, . . . , φi),
which we denote by QualityPC(φ0, . . . , φi). Each hash sub-block φj contains a
proof (pkj , γj , cj , aj), and the quality of the block is vj = DNj

(hash(aj)). For
any quality v ∈ [0, 1], we define

N (v) = min
{
N ∈ N : Prw←DN

[v < w] ≥ 1/2
}

,

the space required to obtain a proof with quality better than v on a random chal-
lenge with probability 1/2. This quantity captures the amount of space required
to generate a proof of this quality.

In order to prevent challenge-grinding attacks, it is desirable for the chain
quality to depend multiplicatively on constituent block qualities (described in
more detail in Sect. 4), and moreover it is useful to weight the contribution of
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the jth block for a chain of length i by a discount factor Λi−j . From these
motivations we derive the following quality function. Note that we have used a
sum of logarithms, rather than a product, to achieve the multiplicativity.

QualityPC(φ0, . . . , φi) =
∑i

j=1 log(N (vj)) · Λi−j . (4)

4 Nothing-at-Stake Problems and Solutions

In this section we discuss the “nothing-at-stake” issues, which were already men-
tioned in the introduction. We describe them here in more detail, and outline
how SpaceMint defends against them.

Recall that the difficulty arises due to the ease of computing multiple can-
didate blocks: in a PoSpace (or PoStake) based currency, a miner can compute
many proofs (either extending different chains, or computing different proofs for
the same chain) at little extra cost. Deviating from the protocol like this can
be rational for a miner as it might lead to higher expected rewards. PoW-based
blockchains also suffer from such “selfish mining” attacks [17], and basing the
blockchain on efficiently computable proofs like PoSpace or PoStake can further
aggravate this problem. Such behavior can significantly slow down consensus
as well as push the scheme to follow energy expenditure trends similar to PoW-
based schemes, which arise whenever there is an advantage to be gained by doing
extra computation.

An even more serious issue is double-spending attacks, which become possible
if a miner can create a sufficiently long chain in private which has better quality
than the honestly mined chain. In all known blockchain proposals, a miner con-
trolling more than half of the mining resources (hashing power, stake or space)
can do this. But it is considered problematic if a blockchain is susceptible to
double spending by adversaries with significantly less than half of the network
resources.

I. Grinding Blocks. The problem: In Nakamoto-style blockchains, the chal-
lenge for the proof computed by the miners (like PoW in Bitcoin or PoSpace
in SpaceMint) is somehow derived from previous blocks. If it is computationally
easy to generate proofs, a miner can try out many different blocks (for exam-
ple by including different transactions) until it finds an advantageous one that
will allow him to generate good proofs for future blocks. This is an issue for
selfish-mining and double-spending attacks.
The solution: We decouple proofs from transactions as shown in Fig. 1. This
eliminates the problem of block grinding, as now challenges depend only on the
proof chain. Moreover, our PoSpace are “unique” in that a prover can generate
at most one valid proof per challenge. Hence, the only degree of freedom that
a miner has in influencing future challenges is to either publish its proof (so it
might end up in the chain), or to withhold it.

II. Mining on Multiple Chains. The problem: In Bitcoin, rational miners
will always work towards extending the longest known chain. However, when
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mining is computationally easy, it can be rational to mine on all (or at least
many) known chains in parallel, to “hedge one’s bets” across all chains that
might eventually become part of the public ledger. Again, this is an issue for
selfish-mining and double-spending attacks.
The solution: To address this problem in the context of selfish-mining attacks
(we discuss double-spending later), we derive the challenge for block i from block
i−Δ for some parameter Δ (Sect. 3.4). Let us consider two cases, depending on
whether mining is done on two or more chains that forked more or less than Δ
blocks in the past.
Case 1: chains forked less than Δ ago. In this case, the miner will get the same
challenge for both chains. SpaceMint uses penalties (Sect. 3.3) to disincentivize
miners from extending multiple chains in this case; without the penalties, a
rational miner with a good-quality PoSpace proof could announce blocks on
multiple chains to maximize his chances of winning. Concretely, suppose a miner
pk′ attempts to mine concurrently on two chains whose most recent blocks are
βj and β′

j , by announcing βj+1 and β′
j+1 (which have the same quality and were

mined using the same space). Then anyone who observes this can generate a
transaction (penalty, txId, pk, {pk′, βj+1, β

′
j+1}) to penalize pk′. This transaction

can be added to a chain extending βj+1 (or β′
j+1), and its meaning is that half of

the reward (block reward and transaction fees) that should go to the miner who
announced βj+1, is now going to pk (the “accuser”) instead, and the other half of
the reward is destroyed, i.e., cannot be redeemed by any party. We destroy half
of the reward so the penalty hurts even if the cheating miner can be reasonably
sure to be able to accuse itself. For this to work, mining rewards can only be
transferred by a miner some time after the block was added, so that there is
enough time for other miners to claim the penalty.6

Case 2: chains forked more than Δ ago. In this case the miner receives different
challenges for different chains, leading to proofs of different quality for the two
chains. In this case, even with our penalty scheme in place, a rational miner
can still get an advantage by deviating: instead of only trying to extending
the highest-quality chain, it also generates proofs for the lesser chain. As the
challenges differ, so will the two proofs, and if the proof on the lesser chain has
very high quality, the rational miner would publish it, hoping that this chain
will become the best chain and survive.

We address this problem by arguing that it is extremely unlikely (the prob-
ability is exponentially small in Δ) that this case occurs, as a weaker branch of
the chain would have to “survive” for Δ blocks despite a strong incentive (via
our punishment scheme) for miners to only extend the chain of highest quality.

III. Grinding Challenges. The problem: Challenge grinding is a type of attack
that can be used for double-spending, by generating a long chain in private that

6 The idea of penalizing miners for extending multiple chains goes back at least
to slasher https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-
algorithm. Unlike previous penalty-based proposals, we do not need the miners to
make a deposit up-front; instead, they will simply lose their mining reward if they
cheat.

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
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is of higher quality than what would result when using one’s resources honestly.
It arises from the fact that an adversary can split its space into m smaller
chunks. As discussed in Sect. 3.5, the quality of a block is purposely designed
such that splitting a fixed amount of space into smaller chunks and choosing the
highest-quality block among them does not affect the expected quality of the
block generated. However, a miner can examine all possible chains of some given
length, and then pick the chain that gives it the most favorable challenges for
future blocks.

Concretely, consider our setting, where the challenge for block i is determined
by block i − Δ. An adversary can generate a sequence of length 2Δ where the
first half of the blocks is chosen to provide the most favorable challenges for the
later half of the sequence.7 Note that the first half of this sequence would be
of even poorer quality than the expected quality from honest mining given the
adversary’s total amount of space; however, the benefit gained in the second half
of the sequence can outweigh this loss in quality in the first half. The adversary
can then release this high-quality chain (all at once) in an attempt to overtake
the current best chain.

Note that in this attack the adversary explores multiple chains in parallel,
which we have addressed already using a penalizing scheme. But penalizing
does not protect against double-spending attacks in which the adversary never
actually published two proofs for the same slot. And even he would, a double-
spending attack can be profitable even if one loses some mining rewards due to
the penalizing scheme.
The solution: As mentioned in Sect. 3.5, the problem with this attack is exacer-
bated if the metric for determining the quality of a chain is a sum or any other
linear function. Thus, to prevent this attack, (1) we define the quality of a chain
as the product of the amounts of space needed for the proofs in it, rather than
their sum; and (2) we use the same block to derive challenges for δ future blocks
(i.e., use hash(βi, nonce) for nonce ∈ [1, δ] as challenges for time i + Δ through
i + Δ + δ).

Intuitively, (1) makes it harder for the adversary to find a good chain of
length 2Δ, as worse blocks are weighted more; and (2) is helpful because it
means that a challenge-grinding adversary would have to choose “early” blocks
to optimize their chances over sequences of δ future challenges rather than just
a single future challenge, thus making it exponentially harder (in δ) to find a
“good” challenge that will yield δ high-quality blocks at once. Another way to
see this is that by the Chernoff bound, the average of δ independent random
variables deviates less from its expectation as δ grows. So for large δ, even the
ability to select between multiple challenges (each giving a sample of the average
of δ i.i.d. variables) is not very useful to find one where this value deviates by

7 As for each of the Δ blocks there are m distinct challenges, the search space here
is of huge size mΔ. Consequently, this attack might seem artificial, but by pruning
and just considering the most promising sub-chains at every level, one will probably
not miss the best one.



SpaceMint: A Cryptocurrency Based on Proofs of Space 495

a lot from its expectation. A more detailed discussion of this attack and our
defense is given in the full version [27].

5 Evaluation

To evaluate SpaceMint, we focused on space initialization time, proof size, and
time for proof generation and verification. We implemented a prototype in Go
using SHA3 in 256-bit mode as the hash function and the graphs from [28], which
forces cheating provers to store Ω(N/ log(N)) bits to efficiently generate proofs.
We used a desktop computer equipped with an Intel i5-4690K Haswell CPU and
8 GB of memory, and an off-the-shelf 2 TB hard disk drive with 64 MB cache.

Figure 2a shows initialization time for spaces from 8 KB to 1.3 TB, which
involves computing hashes of the nodes and a Merkle tree over them and is only
done once. For 1.3 TB this takes approximately 41 h, which prevents re-using the
same space for different commitments.

(a) Time to initialize space. (b) Proof size when open-
ing λ log(n) (left) or λ (right)
nodes for λ = 30.

(c) Time for proving and
verifying for opening λ log(n)
nodes for λ = 30.

Fig. 2. Results of evaluation

A proof consists of the Merkle inclusion proof for a set of node labels. The
number of nodes to be opened is λ · log(n) + 1 (as kv = λ · log(n) in Algorithm 2
and kp 	 kv in Algorithm 3), where λ is a statistical security parameter. Every
node has at most two parents, and each opening of a node is log(n) · 32 bytes.
The overall proof size is thus at most 3 · λ · log2(n) · 32 bytes. (Opening fewer
than λ log(n) nodes was not shown to be secure, but we are not aware of con-
crete attacks even for opening λ nodes; we believe that the number required for
security lies somewhere in between, closer to opening λ nodes.) Fig. 2b shows
the proof size for opening λ log(n) or only λ nodes, for λ = 30.

Assuming a miner is storing the space correctly, she only needs to open a
small kp number of nodes in the Merkle tree to check the quality of her solution
(Sect. 3.1). As it takes <1 ms to read a hash from the disk, this takes just a
fraction of a second. In the rare event that the answer is of very good quality,
she generates the full proof, which takes less than 30 s. Since a miner must
open kp nodes in every time slot, we want kp to be small. In practice kp = 1
seems secure; for safety, we set it to a small constant. Proofs in SpaceMint are
substantially bigger than in Bitcoin and require more than one hash evaluation
to verify. However, for an active currency, the transactions contained in a block
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will largely dominate block size and verification time. Figure 2c shows that while
it takes seconds to generate the proof, it only takes a fraction of a second to
verify it.

In terms of power consumption of the network, currently, the Bitcoin miners
consume more than 32 TWh of energy annually, or around 220 GJ/min. Our
prototype was evaluated on a full CPU, but a cost-conscious miner would mine
on a more energy-efficient device, such as a Raspberry Pi [2], which consumes
less than 10 W of power. Furthermore, we could set the quality threshold such
that only a small number of miners, e.g., 1,000 miners, have a realistic chance
of winning (i.e., have to generate a full proof). In such a scenario, the estimated
energy consumption of a SpaceMint network per block would be

10W · M · 0.01s + 10W · 1000 · 20s = (200, 000 + 0.1M)J/block,

where M is the number of miners in the network. In such scenario, even with
a billion miners in the network and with a block being added every minute,
SpaceMint network would use less than 1% of the power of the current Bitcoin
network.

Impact of Storage Medium. Almost all modern Bitcoin mining is done by
clusters of application-specific integrated circuits (ASICs), which can compute
hashes for a tiny fraction of the hardware and energy cost of a general-purpose
processor. We believe that SpaceMint mining would not be as susceptible to
advantages from specialized hardware as Bitcoin, and that regular hard disk
drives are well-suited to serve as SpaceMint mining equipment. Let us con-
sider existing categories of storage devices. Although hard disks are expensive
compared to other storage devices, most notably tapes, devices like tapes are
not adequate for mining as we require frequent random accesses to answer the
PoSpace challenges. Solid state drives do allow for (fast) random accesses, but
are more expensive than hard disks and do not provide any benefit since the rate
of lookups required for mining is very low. Notably, SpaceMint mining hinges
on doing a few random lookups every minute. The required frequency is so low
that speed is a non-issue: cheap, slow random access is what SpaceMint miners
are after.

6 Game Theory of SpaceMint

The miners in a cryptocurrency are strategic agents who seek to maximize the
reward that they get for mining blocks. As such, it is a crucial property of a
cryptocurrency that “following the rules” is an equilibrium strategy: i.e., it is
important that the protocol is designed so that miners are never in a situation
where deviating from the protocol is more profitable than behaving honestly.

To establish by a rigorous analysis that no deviations are beneficial is a
natural theoretical goal. In game theory, such analyses are done in the context
of a model specifying the “actions” that players can take during the course of a
game in which each player’s goal is to maximize her own utility. In our context,
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utility corresponds to profit from mining rewards. It is assumed that “actions”
describe all behavior that players may exhibit: in our context, this means that
the notion of “following the protocol,” as well as any possible deviations from
the protocol, are assumed to be expressible by an action or sequence of actions.

To our knowledge, this paper presents the first rigorous equilibrium analysis
in which cryptocurrency mining is modeled as an extensive game, the canonical
game-theoretic notion for games that take place over time. Our analysis works in
a simplified model that serves to rule out certain classes of attacks (i.e., profitable
deviations by modeled actions). In our stylized game, play occurs over a series of
discrete time steps, in each of which a block is added to the blockchain. At each
time step, each player (miner) must choose a strategy, specified by: (1) which
blocks to extend (if any), and (2) which extended blocks to publish (if any).

Our analysis herein is intended as a basic framework to model mining in
blockchain-based cryptocurrencies as an extended game, and does not claim
to comprise an exhaustive modeling of all possible attack vectors. In particular,
our stylized model does not capture some important aspects, most notably block
withholding, which is used in “selfish mining.” Nevertheless, we believe that our
simple modeling framework for cryptocurrency as an extended game can serve
as a useful base upon which to build more nuanced game-theoretic models.

Due to space constraints, we defer to the full version [27] the details of the
modeling of mining as an extensive game and the proof of equilibrium. Here, we
give just an informal statement of our main equilibrium theorem.

Theorem 1. It is a sequential equilibrium of the SpaceMint game (defined in
[27, Sect. 7]) for all computationally bounded players to adhere to the mining
protocol, provided that no player holds more than 50% of all space.

Showing that adhering to the protocol is an equilibrium of such a game
means that rational miners are not incentivized to deviate from the protocol
when playing the game: from this, it follows that rational miners will reach
consensus on a single chain, as they would not be able to get an advantage by
using a “cheating” strategy.
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