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Abstract. LoRaWAN is a worldwide deployed IoT security protocol.
We provide an extensive analysis of the version 1.0, which is the currently
deployed version, and we show that it suffers from several weaknesses.
We introduce several attacks, including practical ones, that breach the
network availability, data integrity, and data confidentiality, and target
either an end-device or the backend system.

Based on the inner weaknesses of the protocol, these attacks do not
lean on potential implementation or hardware bugs. Likewise they do not
entail a physical access to the targeted equipment and are independent
from the means used to physically protect secret parameters.

Finally we propose practical recommendations aiming at thwarting
the attacks, while at the same time being compliant with the specifica-
tion, and keeping the interoperability between patched and unmodified
equipment.

1 Introduction

1.1 Context

With the arrival of the Internet of Things, several communication protocols
have been proposed, with technical specifics suited to the intended use case.
For instance, the Bluetooth wireless protocol [3] is designed for short distance
communication. Technologies such as ZigBee [30] or Z-Wave [29] afford medium
range distance communication, and aim at reducing the energy needed by the
nodes to set up and maintain a mesh network.

As for long range distance communication (several kilometers), proposals
have been made, such as LoRa. LoRa, developed by Semtech company, aims
at setting up a Low-Power Wide-Area Network (LPWAN) based on a long-
range, low-rate, wireless technology. It is somewhat similar to a cellular technol-
ogy (2G/3G/4G mobile systems) but optimised for IoT/M2M. LoRa does not
require a spectrum license because it uses free (although regulated) frequency
bands (e.g., 863-870 MHz in Europe, 902-928 MHz in the USA, 779-787 MHz
in China) [14]. A LoRa end-device, with an autonomous power-supply, is sup-
posed to communicate through several kilometers in an urban area, and to have
a lifespan up to eight or ten years.
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LoRaWAN is a protocol that aims at securing the Medium Access Con-
trol layer of a LoRa network. It is designed by the LoRa Alliance, which is
an association that gathers more than 400 members (telecom operators, semi-
conductor manufacturers, digital security companies, hardware manufacturers,
network suppliers, etc.).

Public and private LoRaWAN networks are deployed in more than 50 coun-
tries worldwide [23] by telecom operators (SK Telecom, FastNet, ZTE, KPN,
Orange, Proximus, etc.), private providers (e.g., LORIOT.io [15]), and private
initiatives (e.g., The Things Network [27]). Several nationwide networks are
already deployed in Europe (France, Netherlands) [7], Asia (South Korea) [16],
Africa (South Africa) [1], Oceania (New Zealand) [24], providing coverage to at
least half of the population. Trials are launched in Japan [4], the USA (starting
with a hundred cities) [10], China (the expected coverage extend to 100 mil-
lion homes and 300 million people) [22], India (the first phase network aims at
covering 400 million people across the country) [9].

The services provided by LoRa end-devices are numerous, from performing
measurements (humidity, temperature, water leak, etc.), up to achieving more
sensitive purposes such as triggering an alarm/help message, detecting an intru-
sion, or allowing to remotely switch on and off another equipment. The data
sent by the end-device may also have to remain confidential (e.g., geolocation of
valuable assets sent by a tracker).

In this paper we focus on the version 1.0.2 of the LoRaWAN specification
released in 2016, which is the version currently deployed worldwide, and whose
official name is now 1.0.

1.2 Protocol Overview

A LoRaWAN network corresponds to a star-of-stars topology: a set of end-
devices communicates with several gateways, which relay the data to a Network
Server (NS) in the backend. In turn, the NS delivers the data to one or more
Application Servers (AS), which own the corresponding end-devices, optionally
through intermediary servers such as an MQTT server (see Fig. 1). The security
mechanisms are based on a symmetric key AppKey (the root key) shared between
an end-device and the NS. From this key, distinct per end-device, two session
keys are computed: the application session key AppSKey guarantees the data con-
fidentiality between the end-device and the AS; the network session key NwkSKey
guarantees the data integrity between the end-device and the NS (it is worth
noting that data integrity is not provided end-to-end between the end-device and
the AS1). When a frame is exchanged exclusively between an end-device and the
NS, both data confidentiality and data integrity are provided by the network ses-
sion key NwkSKey. An application payload is always encrypted. Moreover, if no
payload is carried, the frame is only authenticated. Encryption is done with AES
[19] in CTR mode [5,20], and data integrity is provided with AES in CMAC mode
[21,25]. An end-device may establish an “activation” (namely a session) with the

1 As acknowledged by the specification ([26], Sect. 6.1.4).
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Fig. 1. LoRaWAN network (simplified view)

NS through two ways. The pre-personalization (Activation By Personalization,
ABP) consists in setting two session keys (and other parameters but not the
AppKey root key) into the end-device before its deployment. An ABP end-device
is then able to communicate with the NS (and its AS) but not to renew the
“session” keys. The other possibility (Over The Air Activation, OTAA) consists
in provisioning the end-device with an AppKey root key and other parameters,
allowing for key exchanges with the NS through the radio interface once it is
deployed. In this paper we focus on OTAA end-devices.

1.3 Paper Outline

The LoRaWAN protocol is detailed in Sect. 2. Theoretical and practical attacks
against LoRaWAN are described in Sect. 3. Section 4 describe recommendations
that thwart the attacks. Section 5 summarises previous comments and analysis on
the protocol. Section 6 deals with the responsible disclosure. We finally conclude
in Sect. 7.

2 The LoRaWAN Protocol

The technical features described in this section are based on [26].

2.1 Key Exchange

The key exchange done over the air is triggered when the end-device sends a Join
Request message. The NS then responds with a Join Accept message. The (unen-
crypted) Join Request message includes two static identifiers (the end-device’s
DevEUI and the AS’ AppEUI), and a pseudo-random value DevNonce generated
by the end-device. The message is protected with a 4-byte CMAC authentica-
tion tag (called MIC) computed with the 128-bit (static) root key AppKey. The
Join Accept response from the NS contains the (static) identifier of the latter
(NetID), a pseudo-random value generated by the NS (AppNonce), a value used
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as the end-device short address (DevAddr), and several (optional) radio param-
eters. The Join Accept message is protected with a CMAC authentication tag,
and encrypted with AES (both operations made with the root key AppKey).2

Two 128-bit session keys are then computed:

NwkSKey = AES(AppKey, 0x01‖data)
AppSKey = AES(AppKey, 0x02‖data)

with data = AppNonce (3)‖NetID (3)‖DevNonce (2)‖0x00 · · · 00 (7).

End-device Network Server
(secret key AppKey, (secret key AppKey,

identifiers DevEUI, AppEUI) identifiers DevEUI, AppEUI, NetID)

DevNonce ∈R {0, 1}16

Join Request = AppEUI DevEUI DevNonce MICAppKey−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
AppNonce ∈R {0, 1}24

Join Accept = AES−1(AppKey,AppNonce NetID DevAddr radio parameters MICAppKey)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NwkSKey, AppSKey ← key derivation(AppKey, AppNonce, DevNonce, NetID)

UL frame0 =

hdr

DevAddr (ul cnt=0) FOpts [FRMPayload]AppSKey MICNwkSKey−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DL frame0 =

hdr

DevAddr (dl cnt=0) FOpts [FRMPayload]AppSKey MICNwkSKey←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

Fig. 2. LoRaWAN activation (simplified scheme).

Thus the session keys depend mostly on a secret and static value (the root
key AppKey), and two pseudo-random values, respectively 2-byte and 3-byte
long. Once the Join Request and Join Accept messages are exchanged, the end-
device, the NS, and the AS are able to communicate. After the NS computes
the session keys, it transmits the application session key AppSKey to the AS.
It is worth noting that the AS is not involved in the key agreement, which
is handled by the NS. The NS must keep the previous session keys, and the
corresponding security parameters, until it receives a (valid) frame protected by
the new security parameters. The security mechanisms between NS and AS are
out of the LoRaWAN scope. Figure 2 depicts an activation.

2 More precisely the AES decryption function is used to protect the Join Accept mes-
sage, because the end-device implements the encryption function only.
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2.2 Data Encryption and Authentication

The frame payload FRMPayload is encrypted in CTR mode. From block counters

Ai = 0x01 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖cnt (4)‖0x00 (1)‖i (1)

a secret keystream Si = AES(K,Ai) is produced with K ∈ {AppSKey, NwkSKey},
and used to mask the payload3: [FRMPayload] = (S0‖ · · · ‖Sn−1) ⊕ FRMPayload.

dir specifies the direction (uplink = 0x00, downlink = 0x01). cnt is the
frame counter (of 16 or 32 bits), initialised to 0 when the session starts, and
monotonically increased when a (valid) frame is sent or received. Two differ-
ent counters are used depending on the frame’s direction. DevAddr is the end-
device address (within a given LoRa network) chosen by the NS and sent in
the Join Accept message, and it remains constant during the entire session. To
compute DevAddr, seven bits are chosen from the NS’ unique identifier NetID:
msb7(DevAddr) = lsb7(NetID), and 25 bits are “arbitrarily” assigned by the NS.
The i value numbers the AES blocks within the payload to encrypt.

AES CMACNwkSKey

FRMPayload

AES CTRAppSKey

B0 hdr [FRMPayload] MIC

frame

Fig. 3. Generation of an application frame.

A 4-byte authentication tag is computed with CMAC and the network session
key NwkSKey on the whole frame (header hdr of size hlen ∈ {8, . . . , 24} and
encrypted payload [FRMPayload] of size plen) and a 16-byte prefix block

B0 = 0x49 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖cnt (4)‖0x00 (1)
‖(hlen + plen) (1)

The frame eventually sent is hdr (hlen)‖[FRMPayload] (plen)‖MIC (4).

The frame header hdr includes, among other fields, DevAddr, the frame
counter cnt on 2 bytes, and an (optional) field FOpts which may contain com-
mands exclusively exchanged between the end-device and the NS (see Fig. 3).
3 The session key K = AppSKey is used when application messages are exchanged

between the end-device and the AS, and K = NwkSKey is used when command-only
messages are exchanged between the end-device and the NS.
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3 Attacks Against LoRaWAN

Hereinafter we present our findings regarding the LoRaWAN protocol ver-
sion 1.0, the currently deployed version. Table 1 summarises the attacks we have
found.

Our attacker, standing between a LoRaWAN end-device and the NS, needs
only to act on the air interface: she needs to eavesdrop on data exchanged
between the end-device and the server, and to send data to any equipment.

Table 1. Attacks against LoRaWAN 1.0 (nja: number of Join Accept messages usable
by the attacker. njr: number of Join Request messages usable by the attacker. m:
number of new session keys sets stored by the NS. ED: end-device)

Attack Complexity
(# Join
message)

Probability
of success

Impact

(A1) Replay or decrypt
(ED, Sect. 3.1)

216/nja � 1 Downlink frame replay,
uplink frame
decryption

(A2) Replay or decrypt
(NS, Sect. 3.1)

njr � njr/2
24 Uplink frame replay,

downlink frame
decryption

(A3) Desynchronization
(ED, Sect. 3.2)

1 1 End-device
desynchronization

(A4) Desynchronization
(NS, Sect. 3.2)

m 1 End-device
desynchronization

3.1 Replay or Decrypt

Targeting an End-Device (Attack A1)

Goal. The purpose of this attack is to compel the end-device to reuse pre-
vious session keys and other security parameters. When this happens, frames
picked from a previous session become cryptographically valid anew, hence can
be replayed. Moreover the same secret keystream is then used to protect the
frames exchanged during the new session. This allows an adversary to decrypt
frames.4

4 Note that since the end-device ends up reusing previous session keys (which are
no longer shared with the NS), this attack is also a kind of “desynchronization”
attack. However, contrary to the desynchronization attacks described in Sect. 3.2,
this “replay or decrypt” attack has more devastating consequences (and a higher
complexity) than “only” desynchronizing the end-device and the NS.
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Core. The encryption keystream Si = AES(K,Ai) used to protect a frame pay-
load is produced from a session key K ∈ {AppSKey, NwkSKey} and Ai block
counters. Within a given session the blocks

Ai = 0x01 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖cnt (4)‖0x00 (1)‖i (1)

(as well as the prefix block B0) depend mostly on the frame counter cnt (set
to 0 when the session starts and monotonically increased frame after frame),
and on the DevAddr parameter (static during the whole session). The other
parameters are the direction dir unchanged for a given direction, and the i
block index which evolves the same way for each frame. Hence the way the
keystream Si changes depends only on the DevAddr parameter and the session
key (usually AppSKey). For a given end-device, which connects to the same NS
(hence uses the same static NetID parameter), the session keys depend mainly
on a secret and static value (AppKey) and two pseudo-random values (DevNonce,
AppNonce). Therefore, if one succeeds in compelling the end-device to reuse the
same DevAddr, DevNonce and AppNonce parameters, this leads not only to the
reuse of previous session keys AppSKey, and NwkSKey, but also to the reuse of
previous keystream Si and prefix block B0.

Attack. The purpose is to make the end-device use twice the same DevNonce,
AppNonce, and DevAddr values. The 2-byte DevNonce and 3-byte AppNonce
parameters are pseudo-random. Let us assume that an attacker is able to impose
the AppNonce value that the end-device uses to compute the session keys. The
probability that the session keys repeat depends then only on the DevNonce
parameter. Firstly note that a collision due to the birthday paradox happens with
high probability (p = 1

2 ) after roughly
√

2 ln(2) × 216 � 301 activations only.
However the attacker can speed up the whole process: the attacker eavesdrops
on a given session, and compels the end-device to generate multiple DevNonce
values until the expected value is produced once again. In such a case only one
value among 216 is useful to the attacker. Hence, the end-device must generate
on average 216 DevNonce values. If the attacker eavesdrops on nja different Join
Accept messages (each one corresponding to a different DevNonce value) previ-
ously received by the targeted end-device, then the probability for the attacker to
succeed is p = nja/216. If the attacker repeats this experiment k times, the prob-
ability to be successful at least once among the k experiments is 1−(1−p)k � kp
if p is close to 0. In order for this probability to be close to 1, the number of
experiments the attacker has to perform is k � 216/nja. This means that the end-
device has to send 216/nja Join Request messages before one carries a DevNonce
value that matches with one of the Join Accept messages.

The shortest receiving window of a Join Accept message is 5 s [14]. If the
attacker uses nja = 16 Join Accept messages, the attack is achieved after roughly
216/16×5 s = 5.7 h (assuming that the time needed to process the Join messages
is negligible compared to the communication duration).5

5 See Appendix A.
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Once this first phase of the attack is achieved, the attacker ends with two
different sessions protected with the same security parameters, denoted respec-
tively sold and snew.

Technique 1 Used to Achieve the Attack: Replay of a Join Accept Message. In
order to compel the end-device to use a given AppNonce value, the attacker can
replay a previous Join Accept message sent to the targeted end-device. Then
the end-device will reuse (once again) the parameters included in the message.
Indeed the data carried in a Join Accept message correspond to

AppNonce (3)‖NetID (3)‖DevAddr (4)‖radio parameters (2 . . . 18)‖MIC (4)

where MIC is an authentication tag computed on the preceding fields with the
(static) root key AppKey. These parameters are protected with AES and AppKey.
The cornerstone of this attack is that all the parameters are chosen by the NS,
in particular AppNonce and DevAddr. NetID is the NS’ (static) identifier, and
the radio parameters are also defined by the NS. The only secret parameter
involved in the message calculation is static (AppKey). Hence, the end-device is
not able to verify if the received Join Accept message corresponds to the Join
Request it sent. Replaying a Join Accept message allows the attacker to compel
the end-device to (re)use both AppNonce and DevAddr parameters.

Technique 2 Used to Achieve the Attack: Harvest of Join Messages. The abil-
ity of the attacker to make the end-device generate multiple DevNonce values is
related to the behaviour of the end-device when it sends a Join Request mes-
sage but does not receive a Join Accept response or receives an invalid mes-
sage. The specification states that the NS shall ignore Join Request messages
containing previously used DevNonce values in order to thwart a replay attack
([26], Sect. 6.2.4). Hence, the end-device has to generate a new pseudo-random
DevNonce value each time it computes a Join Request message, even when a pre-
vious Join Request message did not receive a response. Otherwise the end-device
may fear the subsequent Join Request messages to be dropped by the NS. This
allows the attacker to collect multiple new and valid Join Request messages. It
is enough for the attacker to send “false” (i.e., invalid) Join Accept messages in
response to the end-device’s messages. Moreover, if the attacker forbids the NS
from receiving the Join Request messages sent by the end-device, he gets “fresh”
messages (i.e., unknown to the NS) for free. In order to make the end-device start
producing the Join Request messages, the attacker may wait or force (once only)
the end-device to start a new session (e.g., the attacker may turn the end-device
off and on: once the power supply is re-established, the end-device likely starts
a new activation).6

6 Being able to influence on the power supply does not necessarily mean to physically
intrude on the end-device. The attacker could turn off or interrupt a remote electric
generator the end-device is connected to, or the link between the generator and
the end-device (if the end-device is powered by an external source), or use other
means (e.g., electromagnetic impulse targeting the end-device and leading to a power
outage).
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Note that every time the NS receives a Join Request message, it sends a new
Join Accept message. Therefore, this procedure is also a way to collect multiples
Join Accept messages.

Impact: Frame Replay. Frames drawn from the previous session (sold) can be
replayed to the end-device throughout the new session (snew).7 These frames are
valid since they are protected with a cryptographically correct keystream and
authentication tag.

Impact: Frame Decryption. The frame payload is encrypted in CTR mode. Once
the attack is achieved, the end-device uses twice the same keystream in order to
protect different frames. The frame of counter t sent during session sold contains
an encrypted payload csold

t = m ⊕ ksold
t , where m is the clear data and ksold

t

the keystream. The frame of same counter t sent during session snew contains
an encrypted payload csnew

t = m′ ⊕ ksnew
t . Since ksold

t = ksnew
t , we have that

csold
t ⊕ csnew

t = (m ⊕ ksold
t ) ⊕ (m′ ⊕ ksnew

t ) = m ⊕ m′. Therefore m and m′ may
(partially or completely) be retrieved, in an obvious manner if either message is
known, or through analysis of m ⊕ m′ [17].

Targeting the NS (Attack A2)

Goal. The same kind of attack can be performed against the NS, aiming at com-
pelling the server to use the same security parameters throughout two different
sessions. The goal is then to compel the NS to use twice the same DevNonce,
AppNonce, and DevAddr values.

Attack. An attacker who replays a Join Request message sets the DevNonce value
before knowing the DevAddr and AppNonce values generated by the NS. These
values must correspond to the DevNonce value chosen by the attacker. Hence
only one such pair among all possible values is of interest to the attacker.

According to the specification, the NS must keep track of “a certain number”
of received DevNonce values in order to prevent replay attacks, without clarifying
if this means all values or a few of them. We may reasonably assume that the
NS keeps track of a few values (say n). Thus the attacker cannot choose any
Join Request she wants to replay. The corresponding DevNonce value must not
belong to the list of n stored values. If the value the attacker wants to replay
still belongs to the server’s list (let i be its index, with 0 and n − 1 the index of
the oldest and of the latest received values), she has to wait for i + 1 additional
(legitimate) key exchanges before the NS “forgets” that value. The duration of
such an “opportunist” attack depends on the frequency of the key exchanges.

7 We use the term “session” for the sake of simplicity, but it does not depict precisely
what are the actual exchanges since the end-device, at this point, has no “partner”:
neither the NS nor the AS is able to communicate with the end-device, and the
attacker is unable to forge new valid frames.
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According to the specification, AppNonce is a 3-byte pseudo-random value,
and the 32-bit DevAddr parameter is made of 7 bits from NetID, and 25 bits “arbi-
trarily” chosen by the NS ([26], Sect. 6.1.1). If DevAddr is pseudo-random then
the probability of success is 2−(24+25) = 2−49. But “arbitrarily” does not mean
“pseudo-random” and experiments we have performed show that the DevAddr
parameter may remain unchanged for a given end-device throughout different
sessions.8 In such a case the probability of success increases to 2−24, and the
overall probability of success is 2−24 every n + 1 sessions. Alternatively, the
attacker can eavesdrop on njr different Join Request messages (that the NS
has “forgotten”), and send them to the server.9 The probability that at least
one message triggers the same AppNonce value as during a previous session is
1− (1−2−24)njr � njr ×2−24. For instance, if the attacker uses njr = 2048 Join
Request messages, her probability to succeed raises to 1

8192 .
This attacker knows if the AppNonce value repeats through the direct compar-

ison of the Join Accept messages, even if these messages are encrypted. Indeed,
all the parameters of such a message are likely static but the AppNonce param-
eter.

Impact. Once the attacker succeeds in compelling the NS to compute once again
the same security parameters, she eventually gets two different sessions (sold and
snew) protected with the same security parameters. The attacker is then able to
replay uplink frames and attempt decryption of downlink frames. Note that the
attacker is then able to send (i.e., to replay) a valid frame that indicates the NS
to switch from the current security context to the new one (hence the NS drops
the current session keys and uses the new ones).

3.2 Desynchronization

Targeting an End-Device (Attack A3)

Goal. This attack aims at “disconnecting” the end-device from the network.
That is the end-device performs a successful key exchange which ends with the
end-device not sharing the new session keys with the NS (the end-device has no
“partner”). Therefore the frames sent by the end-device are ignored by the NS,
and conversely.

Core. The session keys are computed, by a given end-device and the NS, with
two static parameters (the NS’ unique identifier NetID, and the end-device’s root
key AppKey), and two variable parameters (the pseudo-random values AppNonce
computed by the NS, and DevNonce by the end-device). As soon as the end-
device receives a (valid) Join Accept message it can derive the session keys and
8 Thus some NS implementation derives the DevAddr parameter from the unique end-

device’s identifier DevEUI. Also the DevAddr value may be chosen once and for all at
the time of the end-device provisioning.

9 The messages may come from different end-devices, hence, may have to be sent to
one or several NS servers.
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start transmitting protected frames. In the key derivation, if the end-device uses
values different from those actually sent by the NS (say (DevNonce, AppNonce) =
(x, ỹ) on the one hand, and (DevNonce, AppNonce) = (x, y), on the other hand,
y �= ỹ), it eventually computes different session keys than those computed by
the server. This does not forbid the end-device to send protected frames though.
However those frames will be dropped by the NS since they are invalid from
the server perspective. Conversely, the frames sent by the NS will be discarded
by the end-device. Thus the end-device, unable to communicate with the NS, is
“disconnected” from the network.

Attack. In order to perform such a desynchronization attack, an attacker can
first passively eavesdrop on a Join Accept message sent by the NS in response
to the end-device’s Join Request message. When the end-device starts a new
session and sends another Join Request message, the attacker replies before the
NS and replays the eavesdropped Join Accept message. This replayed message
likely contains an AppNonce = ỹ value different from the fresh one sent by the
NS (AppNonce = y). Hence, the end-device and the NS compute different session
keys and security parameters.

Means Used to Achieve the Attack. The attacker is able to replay a previous Join
Accept message thanks to the peculiarities of the LoRaWAN protocol: indeed
the end-device has no means to verify neither if the message is a replay, nor
if it is an actual response to the Join Request message it just sent. Moreover
the attacker can use the procedure described in Sect. 3.1 to collect several Join
Accept messages and use these “desynchronization ammunition” anytime later.
The Join Accept message used by the attacker must be intended to the targeted
end-device. Indeed such a message is protected with the root key of the end-
device it is sent to.

Impact. Such a desynchronization attack may be harmful because it can lastingly
disturb the operating of a LoRaWAN network. So then the usual behaviour
of a sensor may be to regularly send some measurements without expecting a
response unless the server detects an anomaly in the collected data. If the end-
device sends its measurement at a low rate, days or even weeks may elapse before
something abnormal is noticed, even if the end-device is supposed to react if it
does not receive a downlink frame after a fixed number of sent frames.

Targeting the NS (Attack A4)

Goal. The same kind of desynchronization attack can be done against the NS,
aiming at disconnecting a given end-device from the network. In that case, the
NS completes the key exchange without being “partnered” with the intended
end-device (i.e., identified by the DevEUI parameter within the Join Request
message). Therefore the frames the NS (or the AS) may send are ignored by the
end-device, and conversely.
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Attack. Upon reception of a (valid) Join Request message, the NS generates a
new AppNonce value and computes new session keys. If an attacker succeeds in
replaying to the NS a valid Join Request message, the corresponding end-device
will no longer share the same session keys with the NS. The attacker can do the
following. She waits for the end-device to start a new activation. New session keys
(seskeysi+1) are then computed. The end-device stores seskeysi+1 only while
the NS stores both seskeysi and seskeysi+1 (respectively the current and the
new session keys). Before the end-device sends a frame, the attacker immediately
sends to the NS a Join Request message she previously eavesdropped on (and
not received, hence new to the server). The server computes new session keys
seskeysi+2 which replace the unconfirmed keys seskeysi+1. Then the NS stores
seskeysi and seskeysi+2 while the end-device stores seskeysi+1. Hence the
end-device and the NS do not share the same session keys. More generally, if the
NS keeps the latest valid session keys and m new sets of keys, the attacker must
send successively m new Join Request messages in order to desynchronize the
NS and the end-device.

Means Used to Achieve the Attack. In order to get a new Join Request message
the attacker can use the technique described in Sect. 3.1 aiming at compelling
the end-device to generate multiple Join Request messages. The attacker can
gather several such messages and use these anytime later as “desynchronization
ammunition”.

Impact. The consequences of this attack against the NS are the same as the
one against the end-device: the targeted end-device is disconnected from the
network. Unaware that the NS does not share the same security parameters, it
may keep sending uplink frames for quite a long time while the NS is unable to
process them. Conversely, the frames the NS may send cannot be understood by
the end-device.

4 Recommendations

In this section we aim at providing recommendations that thwart the attacks
described in Sect. 3. This may lead to major changes in the protocol specifica-
tion and break the interoperability between patched and non-modified equip-
ment. Hence, as an additional constraint, we aim at proposing improvements
that could solve the issues as best as possible while retaining at the same time
the compliance with unchanged version of end-devices or servers, in particular
equipment that is already deployed and may not be easily patched.

The methods to be implemented in order to thwart the attacks against
LoRaWAN must be chosen with caution. Indeed, the reduced LoRaWAN param-
eters size limits the efficiency of some countermeasures one may think of by
paving the way to new attacks.10 In order to preclude all the attacks, we recom-
mend to implement all the following changes.
10 For instance turning the DevNonce parameter into a counter is not a suitable solution

(see Appendix B).
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Generate AppNonce Values with no Repetition. This countermeasure aims at
thwarting attack A2. A counter may be used to produce the AppNonce values.
The counter must not overlap, and one different counter must be used for each
end-device in order not to artificially lower the number of activations per end-
device.11

Detect a Replay of AppNonce Values. This countermeasure aims at thwarting
attack A1. It may be implemented using computationally and memory efficient
techniques such as Bloom filters [2,6]. However the AppNonce parameter being
turned into a counter, it is enough for the end-device to store the last received
AppNonce value in order to detect a replay.

Verify that the Received Join Accept Message Corresponds to the Sent Join
Request Message. This countermeasure aims at checking that the Join Request
and Join Accept messages are bound in order to thwart attack A3. We
recommend to compute the DevAddr parameter in the following way. Let
NwkAddr be the least 25 significant bits. NwkAddr is computed as NwkAddr =
H(DevNonce, AppNonce, DevEUI) where H is a collision-resistant function.

Verify that the Session Keys are Shared. This countermeasure aims at thwarting
attack A4. We suggest to implement it the following way. Straight after the key
exchange is done, the NS must send a so-called DevStatusReq command and
verify (authentication tag) the DevStatusAns response from the end-device, or
verify, if it comes earlier, the first frame sent by the end-device. The lack of
response must be read into this as an issue (device or NS under attack).

In addition the NS must keep all sets of session keys from the last valid one
up to the latest computed one. When the NS receives an uplink frame (carrying
a DevStatusAns response, or another uplink frame), it checks the authentication
tag with all keys, starting from the latest. If the keys that match with the
authentication tag belong to one of the (currently) unapproved sets, then the
NS keeps this set of session keys only and drops all the others. This set becomes
then the last valid one.

5 Related Work

Few analyses on LoRaWAN have been done and publicly released. Most of the
public reviews deal with technical consideration such as the network manage-
ment (secret keys storage, etc.) and generic attacks (e.g., hardware attacks, web
attacks) unrelated to the LoRaWAN protocol. Some attacks, which exploit spe-
cific features of the protocol, are mentioned but without excess of details.

Regarding the presentation [12], no paper nor slides were made publicly avail-
able after the conference (to the best of our knowledge), however we got a sum-
mary of the talk. Yet we cannot claim to be aware of all the specifics provided
during the talk.
11 This would also make easier an attack aiming at exhausting the AppNonce counter

(see Appendix B).
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Desynchronization Against an End-Device. According to Lifchitz [12], L’Héréec
and Joulain [11], and Miller [18] a way to attack the end-device is to replay to the
NS a previous Join Request message, leading to the end-device “disconnection”
from the network. Conversely Zulian indicates that it is possible to replay a
previous Join Accept message to an end-device ending with different session
keys used by the NS and the end-device [31]. However Zulian does not exploit
all the possibilities provided by such a replay. In particular, he does not envisage
more devastating attacks such as our “replay or decrypt” attack.

Frame Replay and Frame Decryption. Regarding the pseudo-random AppNonce
parameter, Lifchitz notes that it may repeat due to the birthday paradox [12].
Hence, under the strong assumption that the DevNonce value is “forced” (device
controlled by an attacker), a keystream reuse is possible with high probability
after

√
2 ln(2) × 11 × 224 � 16,000 activations, or 22 h if a key exchange is done

in 5 s. In fact, such a statement is wrong or, at least, hazy: if both DevNonce
and AppNonce values repeat, this leads to a session keys reuse. In order to get
a keystream reuse, it is necessary for the DevAddr parameter to repeat as well.
Moreover this means a continuous series of key exchanges without any interme-
diary application frame. Hence the sake of such an attack may be questioned.

Finally this attack is unlikely successful against a NS implementing version
1.0.2 (the current 1.0 version). Indeed, according to the specification, the NS
must receive a valid uplink frame protected by the new security parameters
before dropping the current ones and using the new ones. The attack leads to
the computation of the same session keys two different times. Yet, with high
probability, these keys are fresh (i.e., never used previously by the NS with
a legitimate end-device) because the attacker has no control on the AppNonce
parameter. This means that the attacker has to forge a valid uplink frame if she
wants to compel the NS to use these keys. That is the attacker must forge a valid
32-bit authentication tag (without the corresponding key). That being said, we
are not aware of the LoRaWAN version analysed in that talk (1.0.1 or 1.0.2).
Moreover Lifchitz does not consider the attacks doable against an end-device
(without any physical intrusion on it).

Yang notes that it is possible to replay previous frames and to decrypt frames
if some security parameters are reused (namely frame counter, keytsream) [28].
According to the author, this can be done if the frame counter is reset or wraps
around. However the way to achieve the latter is not explained (in particular
regarding an OTAA end-device). Moreover Yang’s attacker targets the NS. It is
unclear why the server would accept frame replays (it seems that Yang confuses
the gateway and the NS). Similarly, the reuse of the keystream (allowing to
decrypt frames) is due to a reuse of the same frame counter (with unchanged
session keys). Yet, how to get the latter is not explained.

Data Integrity. Yang indicates that the lack of data integrity between the NS
and the AS allows an attacker to modify the plaintext by changing the encrypted
payload (due to the encryption in counter mode) [28].
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6 Responsible Disclosure

We have informed the LoRa Alliance of the vulnerabilities and the subsequent
attacks against LoRaWAN 1.0. Prior to our communication, the LoRa Alliance’s
technical committee decided to start the development of a new version (namely
1.1). As a result of our disclosure, some countermeasures we propose have been
included in the version 1.1 (turning the AppNonce parameter into a counter),
while some features similar to other countermeasures were already included in
the specification (binding the Join Request and the Join Accept messages, doing
a key confirmation between the end-device and the NS).

7 Conclusion

The extensive analysis we perform of the security protocol LoRaWAN 1.0 shows
that it suffers from several weaknesses. We describe precisely how these flaws can
be exploited to carry out attacks, including practical ones. These attacks lead to
a breach in data integrity, data confidentiality, and in the network availability.

The first type of attacks ends up with the end-device desynchronization from
the network (that is the end-device is “disconnected”). The second kind allows an
attacker to replay and to decrypt frames, therefore deceiving the NS (and the AS)
or the end-device (which may be an actuator). The aforementioned attacks, due
to the protocol flaws, do not lean on potential implementation or hardware bugs,
and are likely to be successful against any equipment implementing LoRaWAN
1.0.

We present new attacks and, contrary to previous works (to the best of
our knowledge), the attacks we describe target both types of equipment (end-
device or NS). Moreover our attacker needs only to act on the air interface (to
eavesdrop and send data), but she does not need to get a physical access to any
equipment (in particular the end-device). In addition, the success of the attacks
is independent from the means used to protect the secret values (e.g., using a
tamper resistant module such as a Secure Element).

In addition we provide practical recommendations allowing to thwart the
attacks we have found, while at the same time being compliant with the specifi-
cation, and keeping the interoperability between patched and unmodified equip-
ment. According to us, the recommended countermeasures can be implemented
in a straightforward manner.

Acknowledgment. The authors thank Sébastien Canard for valuable comments and
suggestions, and the anonymous reviewers for helpful comments. This article is based
upon work from COST Action IC1403 CRYPTACUS, supported by COST (European
Cooperation in Science and Technology).

A Duty Cycle

The ducty cyle is a mechanism used to regulate the occupation rate of the
radio channel by the end-device. Enforcing the duty cycle implies that an end-
device cannot repeatedly send a lot of messages. Hence one could claim that the
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duration of the attack is greater than the figure we provide. However, the duty
cycle is a regulation mechanism, not a security one (even if it could cleverly be
used as such). And not all countries compel to use such a mechanism. Also, an
end-device may well be certified (by the LoRa Alliance [13]) and yet not apply
the duty cycle. Indeed a LoRa Alliance certification document explicitly states
that “the LoRa Certification testing will not do any duty cycle testing” [8].

B Exhaustion Attack

Generating a parameter (DevNonce, AppNonce) with no repetition, and detecting
replays are some countermeasures one may think of. Yet, in LoRaWAN, size
does matter. Applying one of these methods while keeping at the same time the
original parameter size (for compliance reasons) may lead to an attack aiming at
exhausting all possible DevNonce or AppNonce values, hence forbidding the NS
or the end-device to start a new activation. Therefore this exhaustion attack,
targeting the end-device or the NS it connects to, may lead to an irrevocable
disconnection of the end-device.

B.1 Against the DevNonce Parameter

Core. If the end-device generates DevNonce values with no repetition or if the
NS keeps track of all DevNonce values it receives, it is possible to disconnect the
end-device once and for all.

Attack. Every time the end-device sends a Join Request message, the attacker
replies with a “false” Join Accept message. Hence the end-device generates a
new message once again. If unique DevNonce values are generated, all values
will be eventually used. If the NS keeps track of all DevNonce values, the NS
will refuse further Join Request messages once all possible DevNonce values have
been received, be these values pseudo-random or not.

Numerical Example. Let us assume that a key exchange is done in 5 s. If the
DevNonce values never repeat, the attack targeting the end-device is achieved in
216 × 5 s = 91 h.

Let us consider the case when the NS keeps track of all DevNonce values. If
the values are pseudo-random, the proportion effectively generated by the end-
device, hence received by the NS after � key exchanges, is p = 1 − exp(− �

216 ).
In order this proportion to be p = 99%, the number of key exchanges must be
at least � = −216 × ln(1 − p). This corresponds to � � 301,804 activations and
more than 17 days to exhaust almost all DevNonce values. Remind that such an
end-device is supposed to have an autonomous lifespan of up to ten years.

B.2 Against the AppNonce Parameter

Core. If the NS generates the AppNonce parameter so that it never repeats, or if
the end-device keeps track of all AppNonce values it receives, then it is possible
to disconnect the end-device once and for all.
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Attack. Let us consider the first case. The purpose is to compel the NS to use all
possible AppNonce values. The NS generates a Join Accept message (hence a new
AppNonce value) only if it receives a valid Join Request message. Therefore the
NS must accept as many Join Request messages as possible AppNonce values.
Since |DevNonce| < |AppNonce|, this is possible only if the NS does not keep
track of all DevNonce values it receives (which is likely its behaviour). Then the
attacker can use a circular list of Join Request messages. Such messages can be
collected using the technique described in Sect. 3.1, and then used in a similar
way as the one described in Sect. 3.1.

Note that if the NS uses the same pool of AppNonce values for all the end-
devices, this leads to the definitive disconnection of all these end-devices. In
such a case the attack may be distributed among several “false” end-devices
(controlled by the attacker; no duty cycle enforced).

Let us consider the second case. The purpose of this attack is to make the
end-device keep track, hence receive, all possible AppNonce values. This means
that the NS has to accept as many Join Request messages as possible AppNonce
values. Therefore the NS must not keep track of all the DevNonce values it
receives (since |DevNonce| < |AppNonce|). Yet this is not sufficient. Indeed the
end-device accepts as many Join Accept messages (hence AppNonce values) as
Join Request messages it sends. Therefore if the end-device generates DevNonce
values with no repetition, it limits the number of received AppNonce values.
Therefore this attack is possible if the NS does not keep track of all DevNonce
values, and if the end-device does not generate unique DevNonce values (which
is likely their basic behaviour).

Moreover the implementation of this second case implies to be able to com-
pel the end-device to send multiples Join Request messages while receiving the
corresponding Join Accept responses. We have not identified such means but
to be able to influence on the end-device power supply. Yet, if the end-device
is switched off, it may lose memory of the stored AppNonce values, which is
orthogonal to the goal of this attack.

Numerical Example. If the AppNonce values do not repeat, they are all produced
after 224 × 5 s = 2.66 years (using one end-device).

If the same pool of AppNonce values is used by the NS for all end-devices, the
attack may be distributed among several end-devices controlled by the attacker.
If 300 such end-devices are used in parallel, the attack is achieved in 3 days
approximately.

If the end-device keeps track of all AppNonce values, and if the values are
pseudo-random, p = 99% values are received by the end-device after � = −224 ×
ln(1 − p) � 77.26 × 106 activations. This means more than 12 years to exhaust
almost all AppNonce values.
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11. L’Héréec, F., Joulain, N.: Sécurité LoRaWAN. In: Computer & Electronics Security
Applications Rendez-vous - C&ESAR (2016)

12. Lifchitz, R.: Security review of LoRaWAN networks. In: Hardwear.io (2016)
13. LoRa Alliance: LoRaWAN Certified Products. https://www.lora-alliance.org/

certified-products. Accessed 8 Dec 2017
14. LoRa Alliance Technical committee: LoRaWAN Regional Parameters, LoRa

Alliance, version 1.0, July 2016
15. LORIOT.io: https://www.loriot.io
16. Marek, S.: SK Telecom & KPN Deploy Nationwide LoRa IoT Net-

works, July 2016. https://www.sdxcentral.com/articles/news/sk-telecom-kpn-
deploy-nationwide-lorawan-iot-networks/2016/07/

17. Mason, J., Watkins, K., Eisner, J., Stubblefield, A.: A natural language approach
to automated cryptanalysis of two-time pads. In: Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, pp. 235–244.
ACM (2006). http://doi.acm.org/10.1145/1180405.1180435

18. Miller, R.: LoRa the explorer - attacking and defending LoRa systems. In: Infor-
mation Security Conference - SyScan360 (2016)

19. National Institute Of Standards and Technology: NIST FIPS 197 Specification for
the Advanced Encryption Standard (AES), November 2001. http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

20. National Institute Of Standards and Technology: NIST Special Publication
800–38A Recommendation for Block Cipher Modes of Operation - Methods
and Techniques, December 2001. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38a.pdf

http://www.biztechafrica.com/article/fastnet-announces-africas-first-dedicated-m2m-netw/10718/
http://www.biztechafrica.com/article/fastnet-announces-africas-first-dedicated-m2m-netw/10718/
http://doi.acm.org/10.1145/362686.362692
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
http://www.iotevolutionworld.com/iot/articles/423324-japan-opens-new-lorawan-network-iot-testing.htm
http://www.iotevolutionworld.com/iot/articles/423324-japan-opens-new-lorawan-network-iot-testing.htm
https://doi.org/10.1007/978-3-540-30494-4_26
https://internetofbusiness.com/orange-lora-network-france/
http://spectrumfutures.org/tata-to-deploy-lora-network-for-iot/
http://spectrumfutures.org/tata-to-deploy-lora-network-for-iot/
http://www.rcrwireless.com/20160615/internet-of-things/100-u-s-cities-covered-senet-lora-network-iot-tag17
http://www.rcrwireless.com/20160615/internet-of-things/100-u-s-cities-covered-senet-lora-network-iot-tag17
https://www.lora-alliance.org/certified-products
https://www.lora-alliance.org/certified-products
https://www.loriot.io
https://www.sdxcentral.com/articles/news/sk-telecom-kpn-deploy-nationwide-lorawan-iot-networks/2016/07/
https://www.sdxcentral.com/articles/news/sk-telecom-kpn-deploy-nationwide-lorawan-iot-networks/2016/07/
http://doi.acm.org/10.1145/1180405.1180435
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf


Rescuing LoRaWAN 1.0 271

21. National Institute Of Standards and Technology: NIST Special Publication 800–
38B Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication, May 2005. http://csrc.nist.gov/publications/nistpubs/800-38B/
SP 800-38B.pdf

22. SmartCitiesWorld: IoT connectivity for 100 million homes in China, November
2016. https://smartcitiesworld.net/news/news/iot-connectivity-for-100-million-
homes-in-china-1139

23. SmartCitiesWorld: LoRaWAN IoT network deployed in Japan, September 2016.
https://smartcitiesworld.net/connectivity/connectivity/lorawan-iot-network-
deployed-in-japan

24. SmartCitiesWorld: Semtech LoRa chosen for new IoT network in New Zealand,
September 2016. https://smartcitiesworld.net/news/news/semtech-lora-chosen-
for-new-iot-network-in-new-zealand-949

25. Song, J.H., Poovendran, R., Lee, J., Iwata, T.: The AES-CMAC Algorithm. RFC
4493, June 2006

26. Sornin, N., Luis, M., Eirich, T., Kramp, T., Hersent, O.: LoRaWAN Specification,
LoRa Alliance, version 1.0.2, July 2016

27. The Things Network. https://www.thethingsnetwork.org
28. Yang, X.: LoRaWAN: Vulnerability Analysis and Practical Exploitation (2017).

https://repository.tudelft.nl/islandora/object/uuid:87730790–6166-4424-9d82-8fe8
15733f1e/datastream/OBJ/download

29. Z-Wave Alliance: Z-Wave specification. http://z-wave.sigmadesigns.com/design-z-
wave/z-wave-public-specification/

30. ZigBee Alliance: ZigBee specification. http://www.zigbee.org/download/
standards-zigbee-specification/

31. Zulian, S.: Security threat analysis and countermeasures for LoRaWAN join pro-
cedure (2016). http://tesi.cab.unipd.it/53210/

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
https://smartcitiesworld.net/news/news/iot-connectivity-for-100-million-homes-in-china-1139
https://smartcitiesworld.net/news/news/iot-connectivity-for-100-million-homes-in-china-1139
https://smartcitiesworld.net/connectivity/connectivity/lorawan-iot-network-deployed-in-japan
https://smartcitiesworld.net/connectivity/connectivity/lorawan-iot-network-deployed-in-japan
https://smartcitiesworld.net/news/news/semtech-lora-chosen-for-new-iot-network-in-new-zealand-949
https://smartcitiesworld.net/news/news/semtech-lora-chosen-for-new-iot-network-in-new-zealand-949
https://www.thethingsnetwork.org
https://repository.tudelft.nl/islandora/object/uuid:87730790--6166-4424-9d82-8fe815733f1e/datastream/OBJ/download
https://repository.tudelft.nl/islandora/object/uuid:87730790--6166-4424-9d82-8fe815733f1e/datastream/OBJ/download
http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification/
http://z-wave.sigmadesigns.com/design-z-wave/z-wave-public-specification/
http://www.zigbee.org/download/standards-zigbee-specification/
http://www.zigbee.org/download/standards-zigbee-specification/
http://tesi.cab.unipd.it/53210/

	Rescuing LoRaWAN 1.0
	1 Introduction
	1.1 Context
	1.2 Protocol Overview
	1.3 Paper Outline

	2 The LoRaWAN Protocol
	2.1 Key Exchange
	2.2 Data Encryption and Authentication

	3 Attacks Against LoRaWAN
	3.1 Replay or Decrypt
	3.2 Desynchronization

	4 Recommendations
	5 Related Work
	6 Responsible Disclosure
	7 Conclusion
	A  Duty Cycle
	B  Exhaustion Attack
	B.1  Against the DevNonce Parameter
	B.2  Against the AppNonce Parameter

	References




