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Preface

The 22nd International Conference on Financial Cryptography and Data Security,
FC 2018, was held from February 26 to March 2, 2018, at the Santa Barbara Beach
Resort in Curaçao.

We received 110 papers by the submission deadline for the conference, which was
September 22, 2017. Of these, 29 were accepted – two as short papers and 27 as full
papers – resulting in an acceptance rate of 26.4%. The present proceedings volume
contains revised versions of all the papers presented at the conference.

The conference started with an invited talk by Yassir Nawaz, Executive Director, JP
Morgan Chase & Co, titled “Blockchain and Cryptography at JP Morgan Chase.”

The Program Committee consisted of 46 members spanning both industry and
academia and covering all facets of financial cryptography. The review process took
place over a period of roughly two months and was double-blind. Each paper received
at least three reviews; certain papers, including submissions by Program Committee
members, received additional reviews. The Program Committee used the HotCRP
system to organize the paper reviewing. The merits of each paper were discussed
thoroughly and intensely in the online platform as we converged to the final decisions.
In the end, a number of worthy papers still had to be rejected owing to the limited
number of slots in the conference program. The Program Committee made a substantial
effort in improving the quality of accepted papers in the post-notification stage: Seven
of the papers were conditionally accepted; each one was assigned a shepherd from the
Program Committee, who guided the authors in the preparation of the conference
version.

A number of grateful acknowledgments are due. First and foremost, we would like
to thank the authors of all submissions for contributing their work for peer review by
the Program Committee. Their support of FC 2018 was the most important factor for
the success of the conference. Second, we would like to thank the members of the
Program Committee for investing a significant amount of their time in the review and
discussion of the submitted papers. In addition to the Program Committee, 68 external
reviewers were invited to contribute to the review process and we also thank them for
their efforts. In total, 360 reviews were submitted, 3.27 on average per submission. We
would like to thank Nicolas Christin for administrating the reviewing system.

The conference also featured a poster session. We are grateful to the presenters
of the posters for submitting their work and presenting it at the conference.

The general chair of the conference was Rafael Hirschfeld. We would like to
especially thank him for his continued and tireless efforts to make FC a success over the
years. A special thanks also goes to the board of directors of the International Financial
Cryptography Association and the Financial Cryptography Steering Committee for
their support and guidance.

Finally, we would like to thank all our sponsors this year, whose generous support
was crucial in making the conference a success. In particular our platinum sponsors



Binary District, Blockchain Institute, Ethereum Foundation, and Zcash, our gold
sponsors Kadena, Maker, and Protocol Labs, our silver Sponsors BANEX, Block-
stream, Chia, Journal of Cybersecurity, Mosaic, and TrueBit, and our sponsor in kind
WorldPay.

September 2018 Sarah Meiklejohn
Kazue Sako
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“Major Key Alert!” Anomalous Keys
in Tor Relays

George Kadianakis1, Claudia V. Roberts2, Laura M. Roberts2,
and Philipp Winter2(B)

1 The Tor Project, Cambridge, USA
2 Princeton University, Princeton, USA

pwinter@cs.princeton.edu

Abstract. In its more than ten years of existence, the Tor network has
seen hundreds of thousands of relays come and go. Each relay maintains
several RSA keys, amounting to millions of keys, all archived by The
Tor Project. In this paper, we analyze 3.7 million RSA public keys of
Tor relays. We (i) check if any relays share prime factors or moduli, (ii)
identify relays that use non-standard exponents, (iii) characterize mali-
cious relays that we discovered in the first two steps, and (iv) develop
a tool that can determine what onion services fell prey to said mali-
cious relays. Our experiments revealed that ten relays shared moduli
and 3,557 relays—almost all part of a research project—shared prime
factors, allowing adversaries to reconstruct private keys. We further dis-
covered 122 relays that used non-standard RSA exponents, presumably
in an attempt to attack onion services. By simulating how onion services
are positioned in Tor’s distributed hash table, we identified four onion
services that were targeted by these malicious relays. Our work provides
both The Tor Project and onion service operators with tools to identify
misconfigured and malicious Tor relays to stop attacks before they pose
a threat to Tor users.

Keywords: Tor · RSA · Cryptography · Factorization · Onion service

1 Introduction

Having seen hundreds of thousands of relays come and go over the last decade,
the Tor network is the largest volunteer-run anonymity network. To implement
onion routing, all the relays maintain several RSA key pairs, the most impor-
tant of which are a medium-term key that rotates occasionally and a long-term
key that ideally never changes. Most relays run The Tor Project’s reference C
implementation on dedicated Linux systems, but some run third-party imple-
mentations or operate on constrained systems such as Raspberry Pis which
raises the question of whether these machines managed to generate safe keys

All four authors contributed substantially and share first authorship. The names are
ordered alphabetically.

c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 3–19, 2018.
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4 G. Kadianakis et al.

upon bootstrapping. Past work has investigated the safety of keys in TLS and
SSH servers [15], in nation-wide databases [3], as well as in POP3S, IMAPS, and
SMTPS servers [14]. In this work, we study the Tor network and pay particular
attention to Tor-specific aspects such as onion services.

Relays with weak cryptographic keys can pose a significant threat to Tor
users. The exact impact depends on the type of key that is vulnerable. In the
best case, an attacker only manages to compromise the TLS layer that protects
Tor cells, which are also encrypted. In the worst case, an attacker compromises a
relay’s long-term “identity key,” allowing her to impersonate the relay. To protect
Tor users, we need methods to find relays with vulnerable keys and remove them
from the network before adversaries can exploit them.

Drawing on a publicly-archived dataset of 3.7 million RSA public keys [30], we
set out to analyze these keys for weaknesses and anomalies: we looked for shared
prime factors, shared moduli, and non-standard RSA exponents. To our surprise,
we found more than 3,000 keys with shared prime factors, most belonging to a
2013 research project [4]. Ten relays in our dataset shared a modulus, suggesting
manual interference with the key generation process. Finally, we discovered 122
relays whose RSA exponent differed from Tor’s hard-coded exponent. Most of
these relays were meant to manipulate Tor’s distributed hash table (DHT) in
an attempt to attack onion services as we discuss in Sect. 5.4. To learn more, we
implemented a tool—itos1—that simulates how onion services are placed on the
DHT, revealing four onion services that were targeted by some of these malicious
relays. Onion service operators can use our tool to monitor their services’ secu-
rity; e.g., a newspaper can make sure that its SecureDrop deployment—which
uses onion services—is safe [11].

The entities responsible for the incidents we uncovered are as diverse as the
incidents themselves: researchers, developers, and actual adversaries were all
involved in generating key anomalies. By looking for information that relays had
in common, such as similar nicknames, IP address blocks, uptimes, and port
numbers, we were able to group the relays we discovered into clusters that were
likely operated by the same entities, shedding light on the anatomy of real-world
attacks against Tor.

We publish all our source code and data, allowing third parties such as The
Tor Project to continuously check the keys of new relays and alert developers
if any of these keys are vulnerable or non-standard.2 Tor developers can then
take early action and remove these relays from the network before adversaries
get the chance to take advantage of them. In summary, we make the following
three contributions:

– We analyze a dataset consisting of 3.7 million RSA public keys for weak and
non-standard keys, revealing thousands of affected keys.

– We characterize the relays we discovered, show that many were likely operated
by a single entity, and uncover four onion services that were likely targeted.

1 The name is an acronym for “identifying targeted onion services.”.
2 Our project page is available online at https://nymity.ch/anomalous-tor-keys/.

https://nymity.ch/anomalous-tor-keys/
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– Given a set of malicious Tor relays that served as “hidden service directories,”
we develop and implement a method that can reveal what onion services these
relays were targeting.

The rest of this paper details our project. In Sect. 2, we provide background
information, followed by Sect. 3 where we discuss related work. In Sect. 4, we
describe our method, and Sect. 5 presents our results. We discuss our work in
Sect. 6 and conclude in Sect. 7.

2 Background

We now provide brief background on the RSA cryptosystem, how the Tor net-
work employs RSA, and how onion services are implemented in the Tor network.

2.1 The RSA Cryptosystem

The RSA public key cryptosystem uses key pairs consisting of a public encryption
key and a privately held decryption key [27]. The encryption key, or “RSA public
key,” is comprised of a pair of positive integers: an exponent e and a modulus
N . The modulus N is the product of two large, random prime numbers p and
q. The corresponding decryption key, or “RSA private key,” is comprised of the
positive integer pair d and N , where N = pq and d = e−1 mod (p − 1)(q − 1).
The decryption exponent d is efficient to compute if e and the factorization of
N are known.

The security of RSA rests upon the difficulty of factorizing N into its prime
factors p and q. While factorizing N is impractical given sufficiently large prime
factors, the greatest common divisor (GCD) of two moduli can be computed in
mere microseconds. Consider two distinct RSA moduli N1 = pq1 and N2 = pq2
that share the prime factor p. An attacker could quickly and easily compute
the GCD of N1 and N2, which will be p, and then divide the moduli by p
to determine q1 and q2, thus compromising the private key of both key pairs.
Therefore, it is crucial that both p and q are determined using a strong random
number generator with a unique seed.

Even though the naive GCD algorithm is very efficient, our dataset consists
of more than 3.7 million keys and naively computing the GCD of every pair
would take more than three years of computation (assuming 15 µs per pair).
Instead, we use the fast pairwise GCD algorithm by Bernstein [2] which can
perform the computation at hand in just a few minutes.

2.2 The Tor Network

The Tor network is among the most popular tools for digital privacy and
anonymity. As of December 2017, the Tor network consists of around 7,000
volunteer-run relays [31]. Each hour, information about all relays3 is summarized
3 This information includes IP addresses, ports, version numbers, and cryptographic

information, just to name a few.
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in the network consensus, which is used by clients to bootstrap a connection to
the Tor network. The network consensus is produced by eight geographically-
distributed directory authorities, machines run by individuals trusted by The
Tor Project. For each relay in the consensus, there is a pointer to its descriptor,
which contains additional, relay-specific information such as cryptographic keys.

Each of the ∼7,000 relays maintains RSA, Curve25519, and Ed25519 key
pairs to authenticate and protect client traffic [9, Sect. 1.1]. In this work, we
analyze the RSA keys. We leave the analysis of the other key types for future
work. Each Tor relay has the following three 1024-bit RSA keys:

Fig. 1. The protocol stack between two Tor relays Rn and Rn+1. The lowest encryption
layer is a TLS connection that contains one (between the middle and exit relay) to
three (between the client and guard relay) onion layers. The onion layers protect the
application data that the client is sending.

Identity key. Relays have a long-term identity key that they use only to sign
documents and certificates. Relays are frequently referred to by their finger-
prints, which is a hash over their identity key. The compromise of an identity
key would allow an attacker to impersonate a relay by publishing spoofed
descriptors signed by the compromised identity key.

Onion key. Relays use medium-term onion keys to decrypt cells when circuits
are created. The onion key is only used in the Tor Authentication Protocol
that is now superseded by the ntor handshake [13]. A compromised onion
key allows the attacker to read the content of cells until the key pair rotates,
which happens after 28 days [32, Sect. 3.4.1]. However, the onion key layer is
protected by a TLS layer (see Fig. 1) that an attacker may have to find a way
around.

Connection key. The short-term connection keys protect the connection
between relays using TLS and are rotated at least once a day [9, Sect. 1.1].
The TLS connection provides defense in depth as shown in Fig. 1. If com-
promised, an attacker is able to see the encrypted cells that are exchanged
between Tor relays.

In our work we consider the identity keys and onion keys that each relay has
because the Tor Project has been archiving the public part of the identity and
onion keys for more than ten years, allowing us to draw on a rich dataset [30]. The
Tor Project does not archive the connection keys because they have short-term
use and are not found in the network consensus or relay descriptors.
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2.3 Onion Services

In addition to client anonymity, the Tor network allows operators to set up
anonymous servers, typically called “onion services.”4 The so-called “hidden
service directories,” or “HSDirs,” are a subset of all Tor relays and comprise a
distributed hash table (DHT) that stores the information necessary for a client
to connect to an onion service. These HSDirs are a particularly attractive target
to adversaries because they get to learn about onion services that are set up
in the Tor network. An onion service’s position in the DHT is governed by the
following equations:

secret-id-part = SHA − 1(time-period |
descriptor-cookie |
replica)

descriptor-id = SHA − 1(permanent-id |
secret-id-part)

(1)

Fig. 2. Each day, an onion service places its descriptor ID at a pseudorandom location
in Tor’s “hash ring,” which consists of all HSDir relays (illustrated as circles).

Secret-id-part depends on three variables: time-period represents the number
of days since the Unix epoch; descriptor-cookie is typically unused and hence
empty; and replica is set to both the values 0 and 1, resulting in two hashes
for secret-id-part. The concatenation of both permanent-id (the onion service’s
hashed public key) and secret-id-part is hashed, resulting in descriptor-id, which
determines the position in the DHT. When arranging all HSDirs by their finger-
print in ascending order, the three immediate HSDir neighbors in the positive
direction constitute the first replica while the second replica is at another, pseu-
dorandom location, as shown in Fig. 2. The onion service’s descriptor ID and
hence, its two replicas, changes every day when time-period increments.

4 The term “hidden services” was used in the past but was discontinued, in part
because onion services provide more than just “hiding” a web site.
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3 Related Work

In 2012, Lenstra et al. [20] and Heninger et al. [15] independently analyzed a large
set of RSA public keys used for TLS, SSH, and PGP. Both groups discovered
that many keys shared prime factors, allowing an attacker to efficiently compute
the corresponding private keys. The researchers showed that the root cause was
weak randomness at the time of key generation: Many Internet-connected devices
lack entropy sources, resulting in predictable keys.

One year later, Bernstein et al. [3] showed similar flaws in Taiwan’s national
“Citizen Digital Certificate” database. Among more than two million 1024-bit
RSA keys, the authors discovered 184 vulnerable keys, 103 of which shared
prime factors. The authors could break the remaining 81 keys by applying a
Coppersmith-type partial-key-recovery attack [6,7].

Valenta et al. [36] optimized popular implementations for integer factoriza-
tion, allowing them to factor 512-bit RSA public keys on Amazon EC2 in under
four hours for only $75. The authors then moved on to survey the RSA key
sizes that are used in popular protocols such as HTTPS, DNSSEC, and SSH,
discovering numerous keys of only 512 bits.

Most recently, in 2016, Hastings et al. [14] revisited the problem of weak
keys and investigated how many such keys were still on the Internet four years
after the initial studies. The authors found that many vendors and device owners
never patched their vulnerable devices. Surprisingly, the number of vulnerable
devices has actually increased since 2012.

4 Method

In this section, we discuss how we drew on a publicly-available dataset (Sect. 4.1)
and used Heninger and Halderman’s fastgcd [16] tool to analyze the public keys
that we extracted from this dataset (Sect. 4.2).

4.1 Data Collection

The Tor Project archives data about Tor relays on its CollecTor platform [30],
allowing researchers to learn what relays were online at any point in the past.
Drawing on this data source, we compiled a set of RSA keys by downloading
all server descriptors from December 2005 to December 2016 and extracting the
identity and onion keys with the Stem Python library [19]. Table 1 provides an
overview of the resulting dataset—approximately 200 GB of unzipped data. Our
3.7 million public keys span eleven years and were created on one million IP
addresses.

Our dataset also contains the keys of Tor’s directory authorities. The author-
ities’ keys are particularly sensitive: If an attacker were to compromise more
than half of these keys, she could create a malicious network consensus—which
could consist of attacker-controlled relays only—that would then be used by Tor
clients. Therefore these keys are paramount to the security of the Tor network.
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Table 1. An overview of our RSA public key dataset.

First key published 2005-12

Last key published 2016-12

Number of relays (by IP address) 1,083,805

Number of onion keys 3,174,859

Number of identity keys 588,945

Total number of public keys 3,763,804

4.2 Finding Vulnerable Keys

To detect weak, potentially factorable keys in the Tor network, we used Heninger
and Halderman’s fastgcd [16] tool which takes as input a set of moduli from
public keys and then computes the pair-wise greatest common divisor of these
moduli. Fastgcd’s C implementation is based on a quasilinear-time algorithm for
factoring a set of integers into their co-primes. We used the PyCrypto library [21]
to turn Tor’s PKCS#1-padded, PEM-encoded keys into fastgcd’s expected for-
mat, which is hex-encoded moduli. Running fastgcd over our dataset took less
than 20 min on a machine with dual, eight-core 2.8 GHz Intel Xeon E5 2680 v2
processors with 256 GB of RAM.

Fastgcd benefits from having access to a pool of moduli that is as large
as possible because it allows the algorithm to draw on a larger factor base to
use on each key [15]. To that end, we reached out to Heninger’s group at the
University of Pennsylvania, and they graciously augmented their 129 million key
dataset with our 3.6 million keys and subsequently searched for shared factors.
The number of weak keys did not go up, but this experiment gave us more
confidence that we had not missed weak keys.

5 Results

We present our results in four parts, starting with shared prime factors
(Sect. 5.1), followed by shared moduli (Sect. 5.2), unusual exponents (Sect. 5.3),
and finally, targeted onion services (Sect. 5.4).

5.1 Shared Prime Factors

Among all 588,945 identity keys, fastgcd found that 3,557 (0.6%) moduli share
prime factors. We believe that 3,555 of these keys were all controlled by a single
research group, and upon contacting the authors of the Security & Privacy 2013
paper entitled “Trawling for Tor hidden services” [4], we received confirmation
that these relays were indeed run by their research group. The authors informed
us that the weak keys were caused by a shortcoming in their key generation
tool. The issue stemmed from the fact that their tool first generated thousands
of prime numbers and then computed multiple moduli using combinations of
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those prime numbers in a greedy fashion without ensuring that the same primes
were not reused. Because of the following shared properties, we are confident
that all relays were operated by the researchers:

1. All relays were online either between November 11, 2012 and November 16,
2012 or between January 14, 2013 and February 6, 2013, suggesting two sep-
arate experiments. We verified this by checking how long the relays stayed in
the Tor network consensus. The Tor consensus is updated hourly and docu-
ments which relays are available at a particular time. This data is archived by
The Tor Project and is made publicly available on the CollecTor platform [30].

2. All relays exhibited a predictable port assignment scheme. In particular, we
observed ports {7003, 7007, . . . , 7043, 7047} and {8003, 8007, . . . , 8043,
8047}.

3. Except for two machines that were located in Russia and Luxembourg, all
machines were hosted in Amazon’s EC2 address space. All machines except
the one located in Luxembourg used Tor version 0.2.2.37.

4. All physical machines had multiple fingerprints. 1,321 of these 3,557 relays
were previously characterized by Winter et al. [38, Sect. 5.1].

The remaining two keys belonged to a relay named “DesasterBlaster,” whose
origins we could not determine. Its router descriptor indicates that the relay has
been hosted on a MIPS machine which might suggest an embedded device with
a weak random number generator:

router DesasterBlaster 62.226.55.122 9001 0 0

platform Tor 0.2.2.13-alpha on Linux mips

To further investigate, we checked whether the relay “DesasterBlaster” shares
prime factors with any other relays. It appears that the relay has rotated multiple
identity keys, and it only shares prime factors with its own keys. Unfortunately
the relay did not have any contact information configured which is why we could
not get in touch with its operator.

5.2 Shared Moduli

In addition to finding shared prime factors, we discovered relays that share a
modulus, giving them the ability to calculate each other’s private keys. With p, q,
and each other’s es in hand, the two parties can compute each other’s decryption
exponent d, at which point both parties now know the private decryption keys.

Table 2 shows these ten relays with shared moduli clustered into four groups.
The table shows the relays’ truncated, four-byte fingerprint, IP addresses, and
RSA exponents. Note that the Tor client hard-codes the RSA exponent to
65,537 [9, Sect. 0.3], a recommended value that is resistant to attacks against low
public exponents [5, Sect. 4]. Any value other than 65,537 indicates non-standard
key generation. All IP addresses were hosted by OVH, a popular French hosting
provider, and some of the IP addresses hosted two relays, as our color coding indi-
cates. Finally, each group shared a four- or five-digit prefix in their fingerprints.
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We believe that a single attacker controlled all these relays with the intention to
manipulate the distributed hash table that powers onion services [4]—the shared
fingerprint prefix is an indication. Because the modulus is identical, we suspect
that the attackers iterated over the relays’ RSA exponents to come up with the
shared prefix. The Tor Project informed us that it discovered and blocked these
relays in August 2014 when they first came online.

Table 2. Four groups of relays that have a shared modulus. All relays further share a
fingerprint prefix in groups of two or three, presumably to manipulate Tor’s distributed
hash table.

Short fingerprint IP address Exponent

838A296A 188.165.164.163 1,854,629

838A305F 188.165.26.13 718,645

838A71E2 178.32.143.175 220,955

2249EB42 188.165.26.13 4,510,659

2249EC78 178.32.143.175 1,074,365

E1EFA388 188.165.3.63 18,177

E1EF8985 188.165.138.181 546,019

E1EF9EB8 5.39.122.66 73,389

410BA17E 188.165.138.181 1,979,465

410BB962 5.39.122.66 341,785

5.3 Unusual Exponents

Having accidentally found a number of relays with non-standard exponents in
Sect. 5.2, we checked if our dataset featured more relays with exponents other
than 65,537. Non-standard exponents may indicate that a relay was after a
specific fingerprint in order to position itself in Tor’s hash ring. To obtain a
fingerprint with a given prefix, an adversary repeatedly has to modify any of
the underlying key material p, q, or e until they result in the desired prefix.
Repeated modification of e is significantly more efficient than modifying p or q
because it is costly to verify if a large number is prime. Leveraging this method,
the tool Scallion [29] generates vanity onion service domains by iterating over
the service’s public exponent.

Among all of our 3.7 million keys, 122 possessed an exponent other than
65,537. One relay had both non-standard identity and onion key exponents while
all remaining relays only had non-standard identity key exponents. Ten of these
relays further had a shared modulus, which we discuss in Sect. 5.2. Assuming
that these relays positioned themselves in the hash ring to attack an onion
service, we wanted to find out what onion services they targeted. One can identify
the victims by first compiling a comprehensive list of onion services and then
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determining each service’s position in the hash ring at the time the malicious
HSDirs were online.

5.4 Identifying Targeted Onion Services

We obtained a list of onion services by augmenting the list of the Ahmia search
engine [25] with services that we discovered via Google searches and by con-
tacting researchers who have done similar work [23]. We ended up with a list of
17,198 onion services that were online at some point in time. Next, we developed
a tool that takes as input our list of onion services and the malicious HSDirs
we discovered.5 The tool then calculates all descriptors these onion services ever
generated and checks if any HSDir shared five or more hex digits in its finger-
print prefix with the onion service’s descriptor. We chose the threshold of five
manually because it is unlikely to happen by chance yet easy to create a five-digit
collision.

It is difficult to identify all targeted onion services because (i) our list of
onion services does not tell us when a service was online, (ii) an HSDir could be
responsible for an onion service simply by chance rather than on purpose, result-
ing in a false positive, and (iii) our list of onion services is not exhaustive, so we
are bound to miss victims. Nevertheless our tool identified four onion services
(see Table 3) for which we have strong evidence that they were purposely tar-
geted. While HSDirs are frequently in the vicinity of an onion service’s descriptor
by accident, the probability of being in its vicinity for several days in a row or
cover both replicas by chance is negligible. Table 4 shows all partial collisions
in detail. Because none of these four services seem to have been intended for
private use, we are comfortable publishing them.

Table 3. The four onion services that were most likely targeted at some point. The
second column indicates if only one or both replicas were attacked while the third
column shows the duration of the attack.

Onion service Replicas Attack duration

22u75kqyl666joi2.onion 2 Two consecutive days

n3q7l52nfpm77vnf.onion 2 Six non-consecutive days

silkroadvb5piz3r.onion 1 Nine mostly consecutive days

thehub7gqe43miyc.onion 2 One day

22u75kqyl666joi2.onion. The service appears to be offline today, so we were
unable to see for ourselves what it hosted. According to cached index pages
we found online, the onion service used to host a technology-focused forum
in Chinese. A set of relays targeted the onion service on both August 14 and
15, 2015 by providing nine out of the total of twelve responsible HSDirs.

5 Both the tool and our list of onion services are available online at https://nymity.
ch/anomalous-tor-keys/.

https://nymity.ch/anomalous-tor-keys/
https://nymity.ch/anomalous-tor-keys/
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n3q7l52nfpm77vnf.onion. As of February 2017, the service is still online, host-
ing the “Marxists Internet Archive,” an online archive of literature.6 A set
of relays targeted the onion service from November 27 to December 4, 2016.
The malicious HSDirs acted inconsistently, occasionally targeting only one
replica.

silkroadvb5piz3r.onion. The onion service used to host the Silk Road mar-
ketplace, whose predominant use was a market for narcotics. The service was
targeted by a set of relays from May 21 to June 3, 2013. The HSDirs were
part of a measurement experiment that resulted in a blog post [26].

thehub7gqe43miyc.onion. The onion service used to host a discussion forum,
“The Hub,” focused on darknet markets. A set of relays targeted both of The
Hub’s replicas from August 22, 2015.

Our data cannot provide insight into what the HSDirs did once they con-
trolled the replicas of the onion services they targeted. The HSDirs could have
counted the number of client requests, refused to serve the onion service’s descrip-
tor to take it offline, or correlate client requests with guard relay traffic in order
to deanonymize onion service visitors as it was done by the CMU/SEI researchers
in 2014 [8]. Since these attacks were short-lived we find it unlikely that they were
meant to take offline the respective onion services.

6 Discussion

We now turn to the technical and ethical implications of our research, propose
possible future work, and explain how the next generation of onion services will
thwart DHT manipulation attacks.

6.1 Implications of Anomalous Tor Keys

Implications for the Network. As touched on earlier in Sect. 2.2, the main use of
the identity key in Tor is to sign the relay’s descriptor, which includes various
information about the relay, e.g., its IP address and contact information. Relays
publish their public identity keys in their descriptor. The network consensus acts
as the public key infrastructure of Tor. Signed by the directory authorities whose
public keys are hard-coded in Tor’s source code, the network consensus points
to the descriptors of each Tor relay that is currently online. If an attacker were
to break the identity key of a relay (as we demonstrated), she could start signing
descriptors in the relay’s name and publishing them. The adversary could publish
whatever information she wanted in the descriptor, e.g. her own IP address, keys,
etc., in order to fool Tor clients. In other words, weak keys allow adversaries to
obtain the affected relay’s reputation which matters because Tor clients make
routing decisions based on this reputation.

6 The onion service seems to be identical to the website https://www.marxists.org
(visited on 2017-05-09).

https://www.marxists.org
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The Tor protocol’s use of forward secrecy mitigates the potential harm of
weak keys. Recall that a relay’s long-lived identity keys are only used to sign
data, so forward secrecy does not apply here. Onion keys, however, are used
for decryption and encryption and are rotated by default every 28 days [32,
Sect. 3.4.1]. An attacker who manages to compromise a weak onion key is still
faced with the underlying TLS layer, shown in Fig. 1, which provides defense in
depth. The Tor specification requires the keys for the TLS layer to be rotated
at least once a day [9, Sect. 1.1], making it difficult to get any use out of com-
promised onion keys.

Implications for Tor Users. To understand how Tor users are affected by weak
keys we need to distinguish between targeting and hoovering adversaries.7 The
goal of targeting adversaries is to focus an attack on a small number of users
among the large set of all Tor users. Generally speaking, weak keys can be
problematic in a targeted setting if they allow an attacker to gain access to a
Tor relay she would otherwise be unable to control. This can be the case if the
attacker learned the targeted user’s guard relay, and the guard happens to have
weak keys. However, judging by our experimental results, the probability of an
attacker’s knowing a targeted user’s guard relay and said guard relay’s having
vulnerable keys is very low.

Hoovering adversaries are opportunistic by definition and seek to
deanonymize as many Tor users as possible. Recall that Tor clients use a long-
lived guard relay as their first hop and two randomly chosen relays for the next
two hops.8 A single compromised relay is not necessarily harmful to users but
weak keys can be a problem if a user happens to have a guard relay with weak
keys and selects an exit relay that also has weak keys, allowing the hoovering
adversary to deanonymize the circuit. Again, considering the low prevalence of
weak keys and the ease with which The Tor Project could identify and block
relays with weak keys, hoovering adversaries pose no significant threat.

6.2 Preventing Non-standard Exponents

Recall that the Tor reference implementation hard-codes its public RSA expo-
nent to 65,537 [9, Sect. 0.3]. The Tor Project could prevent non-standard expo-
nents by having the directory authorities reject relays whose descriptors have an
RSA exponent other than 65,537, thus slowing down the search for fingerprint
prefixes. Adversaries would then have to iterate over the primes p or q instead of
the exponent, rendering the search computationally more expensive because of
the cost of primality tests. Given that we discovered only 122 unusual exponents
in over ten years of data, we believe that rejecting non-standard exponents is a
viable defense in depth.

7 We here use Jaggard and Syverson’s nomenclature of an adversary that either targets
specific Tor users (targeting) or hoovers up all available data to deanonymize as many
users as possible (hoovering) [17].

8 We refer to these relays as randomly chosen for simplicity, but the path selection
algorithm is more complicated.
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6.3 Analyzing Onion Service Public Keys

Future work should shed light on the public keys of onion services. Onion services
have an incentive to modify their fingerprints to make them both recognizable
and easier to remember. Facebook, for example, was lucky to obtain the easy-to-
remember onion domain facebookcorewwwi.onion [24]. The tool Scallion assists
onion service operators in creating such vanity domains [29]. The implications of
vanity domains on usability and security are still poorly understood [37]. Unlike
the public keys of relays, onion service keys are not archived, so a study would
have to begin with actively fetching onion service keys.

6.4 Investigating the Vulnerability of Tor Relays to Attacks on
Diffie-Hellman

Recent work has demonstrated how Diffie-Hellman key exchange is vulnerable
to attack [1,10,35]. Because Tor uses Diffie-Hellman, we decided to investigate
how it might be affected by those findings. The Tor specification states that the
implementation uses the Second Oakley Group for Diffie-Hellman, where the
prime number is 1024 bits long [9, Sect. 0.3]. To gather evidence of this usage,
we performed an nmap scan on Tor relays using the ssl-dh-params script [12],
which confirmed the Tor specification. The use of a 1024-bit prime is concerning
because Adrian et al. [1] stated that “1024-bit discrete log may be within reach
for state-level actors,” and thus, they suggest a move to 2048 bits. The authors
also mention that developers should move away from using 1024-bit RSA, as
well, which Tor uses.

6.5 In Vivo Tor Research

Caution must be taken when conducting research using the live Tor network.
Section 5.1 showed how a small mistake in key generation led to many vulnerable
Tor relays. To keep its users safe, The Tor Project has recently launched a
research safety board whose aim is to assist researchers in safely conducting Tor
measurement studies [33]. This may entail running experiments in private Tor
networks that are controlled by the researchers or using network simulators such
as Shadow [18].

As for our own work, we were in close contact with Tor developers throughout
our research effort and shared preliminary results as we progressed. Once we
wrote up our findings in a technical report, we brought it to the broader Tor
community’s attention by sending an email to the tor-dev mailing list [28]. On
top of that, we adopted open science practices and wrote both our code and
paper in the open, allowing interested parties to follow our progress easily.

6.6 The Effect of Next-Generation Onion Services

As of December 2017, The Tor Project is testing the implementation of next-
generation onion services [22]. In addition to stronger cryptographic primitives,

www.facebookcorewwwi.onion
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the design fixes the issue of predicting an onion service’s location in the hash
ring by incorporating a random element. This element is produced by having
the directory authorities agree on a random number once a day [34]. The ran-
dom number is embedded in the consensus document and used by clients to
fetch an onion service’s descriptor. Attackers will no longer be able to attack
onion services by positioning HSDirs in the hash ring; while they have several
hours to compute a key pair that positions their HSDirs next to the onion ser-
vice’s descriptor (which is entirely feasible), it takes at least 96 hours to get the
HSDir flag from the directory authorities [32, Sect. 3.4.2], so attackers cannot
get the flag in time. We expect this design change to disincentivize attackers
from manipulating their keys to attack onion services.

7 Conclusion

Inspired by recent research that studied weak keys in deployed systems, we set
out to investigate if the Tor network suffers from similar issues. To that end, we
drew on a public archive containing cryptographic keys of Tor relays dating back
to 2005, which we subsequently analyzed for weak RSA keys. We discovered that
(i) ten relays shared an RSA modulus, (ii) 3,557 relays shared prime factors,
and (iii) 122 relays used non-standard RSA exponents.

Having uncovered these anomalies, we then proceeded to characterize the
affected relays, tracing back the issues to mostly harmless experiments run by
academic researchers and hobbyists, but also to attackers that targeted Tor’s
distributed hash table which powers onion services. To learn more, we imple-
mented a tool that can determine what onion services were attacked by a given
set of malicious Tor relays, revealing four onion services that fell prey to these
attacks.

The practical value of our work is twofold. First, our uncovering and char-
acterizing of Tor relays with anomalous keys provides an anatomy of real-world
attacks that The Tor Project can draw upon to improve its monitoring infrastruc-
ture for malicious Tor relays. Second, our work provides The Tor Project with
tools to verify the RSA keys of freshly set up relays, making the network safer for
its users. In addition, onion service operators can use our code to monitor their
services and get notified if Tor relays make an effort to deanonymize their onion
service. We believe that this is particularly useful for sensitive deployments such
as SecureDrop instances.
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A Potentially Targeted Onion Services

Table 4. The details of the attacks on four onion services. The second column shows
the fingerprints of the HSDirs that were participating in the attack. The third column
shows the affected onion service descriptors, followed by the date of the attack in the
last column.

Onion service Truncated HSDir fingerprint Truncated onion service descriptor Date

22u75kqyl666joi2 325CAC0B7FA8CD77E39D 325CAC08B0A3180B590E 2015-08-14

325CAC0AB1AAD27493B9 325CAC08B0A3180B590E 2015-08-14

325CAC0A43B2121B81CD 325CAC08B0A3180B590E 2015-08-14

FA256741ED22FD96AF5A FA256740740356704AB8 2015-08-14

FA256743ACFCA9B7C85D FA256740740356704AB8 2015-08-14

E5E778326AF0FF0A634A E5E7783245096FB554A1 2015-08-15

A5C59B3D0FFBDE88405E A5C59B3CD34802FC4AC3 2015-08-15

A5C59B3FCCD2FA8FAD42 A5C59B3CD34802FC4AC3 2015-08-15

A5C59B3FD5625A0D85D1 A5C59B3CD34802FC4AC3 2015-08-15

n3q7l52nfpm77vnf A0E83AA191220B240EC0 A0E83AA115098CA7FE9B 2016-11-27

A0E83AA28382135DC839 A0E83AA115098CA7FE9B 2016-11-27

EBF154DA21B49101ED5B EBF154D809425D3E923E 2016-11-28

EBF154D8BB6EECCC2921 EBF154D809425D3E923E 2016-11-28

EBF154D9E2B10A2420E0 EBF154D809425D3E923E 2016-11-28

6761D2BE758FA0D76822 6761D2BCF40FF34274F3 2016-11-29

59E415D78921BFF88168 59E415D5075157CAADB7 2016-11-29

26597E62875C498AC139 26597E6048BF7CC9D593 2016-11-30

26597E61DDFEE78F336D 26597E6048BF7CC9D593 2016-11-30

7CDB224FE64F2A50CC50 7CDB224DC51432C037C5 2016-11-30

2D148D3EBF9D2B9D8CCB 2D148D3CB6C5FC4DCA14 2016-12-01

2E25D8469331FEAE933D 2E25D842BF5DDA936BA2 2016-12-05

2E25D847E579AED1B0EC 2E25D842BF5DDA936BA2 2016-12-05

2E25D8454C96E20CF153 2E25D842BF5DDA936BA2 2016-12-05

2E25D846564DCBE43CD2 2E25D842BF5DDA936BA2 2016-12-05

2E25D8447518DA93B4FF 2E25D842BF5DDA936BA2 2016-12-05

264EA12B47CBCC8043C5 264EA12410F7D9CD6E54 2016-12-05

264EA1284855A596D5D6 264EA12410F7D9CD6E54 2016-12-05

264EA12B4C46672E002C 264EA12410F7D9CD6E54 2016-12-05

silkroadvb5piz3r BC89A92F53581C4F6169 BC89A889D3DF7F0027A5 2013-05-21

712CA45AF4055E7AC69A 712CA3DEF4EB21C76A95 2013-05-22

DE15299D7EE5882F0BEF DE1529316F5172B35B8E 2013-05-23

FF0BF54FBEEE7A003CE6 FF0BF49076AA63C97FA2 2013-05-24

E9F25C4899F9DC81E48E E9F25BBA0D4501FAE18B 2013-05-28

B81B43C015DE42D05208 B81B43637F22592ECC80 2013-05-29

59529817C6E797D78311 5952979BD9FEECE847E7 2013-05-31

BCB332864640653892D4 BCB33236E0AD461DF585 2013-06-02

51FC178DFF3D0B869760 51FC172F0062B623A39D 2013-06-03

thehub7gqe43miyc F6961286D361F825A9AD F6961286C2FEEA8DEDEB 2015-08-22

F6961286C453F6A6381D F6961286C2FEEA8DEDEB 2015-08-22

F6961286D826D7D1C0F9 F6961286C2FEEA8DEDEB 2015-08-22

816FEE16200BE1719D00 816FEE15D26F41A72039 2015-08-22
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Abstract. The European General Data Protection Regulation (GDPR)
gives primacy to purpose: Data may be collected and stored only when
(i) end-users have consented, often explicitly, to the purposes for which
that data is collected, and (ii) the collected data is actually necessary
for achieving these purposes. This development in data protection regu-
lations begets the question: how do we audit a computer system’s adher-
ence to a purpose?

We propose an approach that identifies a purpose with a business pro-
cess, and show how formal models of interprocess communication can be
used to audit or even derive privacy policies. Based on this insight, we
propose a methodology for auditing GDPR compliance. Moreover, we
show how given a simple interprocess dataflow model, aspects of GDPR
compliance can be determined algorithmically.

1 Introduction

Data protection is now heavily anchored in national and international law. The
prime example of this is the European General Data Protection Regulation (the
GDPR) [9], which strengthens previous data protection directives to give indi-
viduals more rights on how their personal data is processed. A central principle
of data protection in general, and the GDPR in particular, is that organisations
collecting and processing personal data must be explicit about how the data will
be used and the data is actually used for the purposes for which it was collected.

Contrast this situation with standard access control, which regulates who
may carry out which operations in a system. With few exceptions (e.g., history-
based access control or access decisions incorporating environmental attributes)
access is independent of context: if Alice has the right to access Bob’s bank
account balance, then she can do this for any purpose. This includes both
intended purposes, such as serving as his customer relations manager, or unin-
tended ones, such as selling information on his financial status to credit agencies.
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Modern data protection calls for something more: access control relative to a
purpose.

The key difficulty then is that mainstream programming technologies do not
leave us any obvious representation of purpose, much less one that can be rea-
sonably related to sites of data collection or data use. There is, however, one area
of computer science where a notion of purpose takes a center stage, and where
formal models abound: The study of Business Process Management, in partic-
ular Business Process Modelling. Here, the operations (both IT and human) of
a business are modelled in one of a variety of formal languages including State-
charts [11], UML [21,22], BPMN [2], GSM [13], CMMN [23], DECLARE [1,25],
or DCR graphs [12,19]. Such a model will include details about both data col-
lection and data use. Crucially, most definitions of “business process” also either
implicitly or explicitly include the purpose of the process, although sometimes
expressed in terms of a product to be manufactured or a service to be rendered.

We propose exploiting the formal notion of a business process model as a
bridge between a system implementation and the GDPR. In doing so, we exploit
that a business process model by its very nature embodies a particular purpose,
while at the same time it specifies at what points data is collected and used. For
instance, an online-shop will have an order-fulfilment process where a customer’s
address is used to ship a product. Our proposal conflates a formal model of that
process with the purpose of order-fulfilment; the model then describes both data
collection and data use.

This idea poses a challenge to formal business process models. Under the
GDPR, we must account for the data transferred between processes: data col-
lected for one purpose and used for another. For example, a mailing address
might be collected in a customer registration process that is subsequently used in
an order-fulfilment process. Typical process models do not give detailed accounts
of such inter-process interactions. We posit that an interprocess dataflow model
is necessary to audit GDPR compliance.

We show that formal models of interprocess communication enable the algo-
rithmic verification of parts of GDPR compliance. However the GDPR in certain
cases goes beyond what we can automatically verify. For example, it can be dif-
ficult to determine whether a text message is an advertisement or a notification
about an upcoming delivery. In these cases, the underlying business processes
themselves must be augmented with human actions, for example explicit man-
ager approval of the text message. Our approach therefore supports automated
compliance checking complimented by human actions when necessary.

In summary, we make the following contributions:

1. We show how a mechanism for relating purpose to implementation artefacts
is necessary to demonstrate compliance with the GDPR (Sect. 4.1).

2. We put forward the idea of identifying a business process and a purpose
(Sect. 4.2).

3. We identify inter-process communication as key to GDPR compliance
(Sect. 4.3).
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4. We propose a methodology for auditing GDPR compliance by decomposing
the audit into verifying the compliance of an implementation to a process
model, of a process model to a privacy policy, and of these latter two to the
GDPR itself (Sect. 4.4).

5. We show how a formal process model allows us to verify compliance of certain
aspects of the GDPR algorithmically (Definitions 5.1 and 5.4). In particular,
we can generate compliant privacy policies.

6. Finally, we illustrate through examples that GDPR compliance cannot be
fully achieved by algorithmic means, and that process models can fill the gap
here by specifying needed human actions (Sect. 5.4).

2 The General Data Protection Regulation

The GDPR [9] was passed on April 14, 2016 and will come into force May 25,
2018. It embodies a major departure from current practices. It requires not only
that data is only collected after obtaining consent from the user, but also that
data is collected and used only for specific purposes, and must be deleted when
those purpose are no longer applicable. The GDPR spells out these requirements
in its notions of purpose limitation and data minimisation, its treatment of con-
sent, and the right to be forgotten.

Purpose limitation [9, Article 5, Sect. 1(b)]:

“[Personal data shall be] collected for specified, explicit and legitimate pur-
poses and not further processed in a manner that is incompatible with those
purposes; [...]”

Data minimisation [9, Article 5, Sect. 1(c)]:

“[Personal data shall be] adequate, relevant and limited to what is necessary
in relation to the purposes for which they are processed [...]”

Consent (and its connection to purpose) [9, Recital (32), emphasis ours]:

“Consent should be given by a clear affirmative act establishing a freely
given, specific, informed and unambiguous indication of the data subject’s
agreement to the processing of personal data relating to him or her [...]
Consent should cover all processing activities carried out for the
same purpose or purposes. When the processing has multiple
purposes, consent should be given for all of them.”

Right to be forgotten [9, Article 17, Sect. 1]:

“[...] the controller shall have the obligation to erase personal data without
undue delay where one of the following grounds applies:
(a) the personal data are no longer necessary in relation to the purposes

for which they were collected or otherwise processed;
(b) the data subject withdraws consent [...]”
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We remark that the GDPR mandates access control [9, Article 25, Sect. 1]:

“The controller shall implement appropriate technical and organisational
measures for ensuring that, by default, only personal data which are neces-
sary for each specific purpose of the processing are processed. [...] personal
data are not made accessible without the individual’s intervention to an
indefinite number of natural persons.”

Finally, the GDPR has teeth. It imposes two levels of fines, depending on
which parts of the GDPR are violated. The highest level imposes fines of up to
20 million EUR or 4% of the organisation’s world-wide turnover, whichever is
higher [9, Article 83, Sect. 5]. Processing without consent is on the list of high-
level infringements [9, Article 83 Sect. 5(a)].

For the purposes of the present paper, we shall emphasize the above concepts
of purpose limitation, data minimisation, consent, and the right to be forgotten.
However, the GDPR confers on citizens (data subjects) a remarkable range of
additional rights, such as rights of “access” and “data portability” [9, Article 15
& 20] and the right to be notified of data breaches [9, Article 33].

In summary, for data collection to be GDPR compliant, the data must:

1. be collected for a purpose,
2. to which the user has consented, and
3. be necessary to achieve that purpose;
4. moreover the collected data must be deleted when it is no longer necessary

for any purpose.

Contrast to Extant Privacy Policies. Privacy policies are statements about how
an organization collects, processes, and more generally manages, the personal
data of its customers or other individuals. An informal survey of existing policies
(including Facebook [8], Google [10], and IBM [14]) shows that their essence
effectively consists of two types of declarations:

– The kinds of data collected, e.g., credentials, cookies, purchases, etc.
– How collected data is used, e.g., to process orders, personalize offerings

and advertisements, etc.

These statements may be augmented with additional information, such as how
non-personally identifiable information may be used, which usages one may opt
out of, security measures taken when storing and processing data, and the like.

From the above, we conclude that current best-practice is to formulate coarse
grained privacy policies. Their essence amounts to two sets, a set DC of the kinds
of data collected and a set DU of data usages. In some cases (e.g., Google), a
relation (a subset of DC×DU) is given, where it is indicated how particular data
items are used, e.g., “we use information collected from cookies to improve your
user experience.” However, in most cases (e.g., Facebook, IBM) the description
of DC is non-specific with respect to which data is involved in which usages,
e.g., “The information you provide may be used for marketing purposes.”
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The GDPR requires more. For example, Recital 39 specifies that the pur-
poses that data will be used must be transparently laid out in a privacy policy.
In particular, it should be clear that the personal data should be “adequate,
relevant, and limited to what is necessary for the purposes for which they are
processed.” Indeed, “personal data should be processed only if the purpose of
the processing could not reasonably be fulfilled by other means.” This requires
fine grained privacy policies that clearly elucidate purposes and the associated
data required. Our thesis is that business process models provide the right basis
for this elucidation, both supporting the creation of fine-grained natural lan-
guage privacy policies (e.g., informing data owners) and supporting audit and
compliance (e.g., informing technical specialists).

3 Running Example

We provide an example from on-line retailing that we subsequently use to illus-
trate our methodology to audit compliance with the GDPR. An on-line retailer
has customers who order goods using the retailer’s homepage, pay with their
credit cards, and expect to subsequently receive their orders by post. The retailer
may engage in marketing, targeted or otherwise, using channels such as web-
advertisements and e-mail.

We will focus just on the core processes of such a retailer, emphasizing what
data is collected and used. These core processes are:

Register Customer: A prospective customer signs up with an on-line retailer. As
part of this process, the customer provides his e-mail, his mailing addresses,
and his credit card information.

Purchase: A registered customer selects a product on the retailer’s homepage,
pays using the recorded credit card number, and the retailer subsequently
sends the product and invoice.

Mass Marketing: A customer’s e-mail or physical address is used to send other-
wise un-targeted advertisement.

Targeted Marketing: A customer’s e-mail or physical address and past purchase
history is used to send individually targeted advertisements.

In the following, we write processes in sans-serif, e.g., Mass Marketing, and
descriptions of data classes in brackets, e.g., 〈credit card number〉.

In Fig. 1 we show example models of these processes, written in the BPMN [2]
notation. In brief, the diagram comprises four pools, one for each process; inside
each pool is a number of activities in boxes, some human, some automated.
Activities with white envelopes take incoming messages, typically user input;
black envelopes produce outgoing messages, typically output to the user. Activ-
ities marked with a person icon are undertaken by humans. The sequencing of
activities is indicated with solid arrows between them. Activities may both pro-
duce and consume data stored in databases, indicated by dashed arrows. Note
that the databases allow data to be shared between processes.
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Fig. 1. BPMN model of the core on-line retailer processes.

4 Purposes

The GDPR’s emphasis on purpose has interesting and subtle ramifications for
both the design and audit of computer systems. In this section, we develop the
idea that business process models encode purposes, and that this encoding can
be used to analyse compliance with the GDPR.

4.1 Purpose and Compliance

As with any regulation that applies to computer systems, we are faced with two
key questions:

– How do we build a computer system in a manner guaranteeing compliance?
– How do we analyse or audit a computer system for compliance?



26 D. Basin et al.

Reviewing the conditions (1)–(4) from Sect. 2, which are required for a data-
collection to be compliant with the GDPR, we see an immediate problem: The
notion of compliance revolves around the notion of purpose, but purpose tends
not to have an explicit representation in contemporary computer system imple-
mentations. Whereas notions like “user authentication” or “order management”
usually have an explicit representation as lines of code and tables in databases,
we seldom see implementation artefacts representing “the purpose” of a partic-
ular dataset. But to answer the two questions above, we must not only be able
to identify the points at which data is collected (which is presumably easy), we
must also associate that data with a purpose.

For example, suppose our on-line retailer collects a user’s e-mail address dur-
ing registration. There are legitimate uses for such information: it may be used
as a user-id, to send invoices, or for password resets; alternatively, it might also
be used for illegitimate purposes such as unsolicited marketing. By examining
the system’s code, we will readily discover where data may be collected and pro-
cessed. However, it is impossible to determine from the code alone whether data
being collected at a particular point is personal data or not, for what purpose
data is being processed, and if it is really necessary for that purpose.

Even if we can technically determine every place in the implementation that
accesses this e-mail address, we still may not be able to determine the purpose
for that access. For example, the Mass Marketing process of our e-shop could
enable staff to send arbitrary messages to every registered customer. Obviously,
we cannot statically determine what the purpose of these messages might be: A
staff member might send important information about deliveries (“Due to strikes
at our logistics partner, all deliveries will be delayed.”); marketing messages
(“You have ordered recently from us. How about also buying an electric cat
food dispenser?”); or even political propaganda (“Vote for me for president!”).

Finally, we must delete data when it has served its purposes. But it is difficult
to know when this is the case, especially in large computer systems where the
same data may be used in multiple subsystems, for multiple purposes.

4.2 Business Processes as Purposes

We propose using the business processes [5] that the computer system in question
supports to identify purposes and to classify the types of data collected. The key
insight is that business processes explicitly represent one or more purposes. Here
is a standard definition of a business process [5, pp. 5–7] (emphasis ours):

“a structured, measured set of activities designed to produce a specific out-
put for a particular customer or market. It implies a strong emphasis on
how work is done within an organization, in contrast to a product focus’s
emphasis on what. A process is thus a specific ordering of work activities
across time and space, with a beginning and an end, and clearly defined
inputs and outputs: a structure for action. [...] Processes are the struc-
ture by which an organization does what is necessary to produce
value for its customers [...]”
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The emphasized sentence highlights that a business process comprises both
a purpose—the specifics of “to produce value for its customers”—as well as
concrete steps—the specifics of “the structure by which.” In practice, the purpose
of a process will be most clearly represented by its title or perhaps a brief natural
language statement. Through the description of “how work is done,” a process
description also gives us the necessary information about what data is collected,
and where it is used. Moreover, when purposes are processes, we can determine
when a purpose is served, e.g., when the corresponding process has terminated.

In general, it is reasonable to associate a “process” with a “purpose”, e.g., the
purchase process/purpose, the mass marketing process/purpose, the customer
satisfaction evaluation process/purpose, or the warranty process/purpose.

4.3 Inter-process Communication

In practice, a company may collect data about customers in one process and
use that data in another. In our example, the Customer registration process col-
lects 〈credit card number〉 and customer information (name, email, and physical
address) that we simply refer to as 〈customer〉, but it does not itself use these.
They are instead used by the Purchase, Targeted marketing, and Mass marketing
processes. This disconnect mirrors a challenge faced by many companies: whereas
the individual processes within the company are usually well-understood by the
staff undertaking them, including the interfaces to other processes, the global
picture of all processes in the company is rarely well-understood. But the GDPR
requires such a global understanding: data collected in one process may migrate
to other processes, and end-user consent is required for all involved processes.1

We propose that for contemporary process models to be truly useful for
GDPR analysis, we must interpret collections of processes as data-flow graphs.
We therefore introduce the following simple model of process collections.

Definition 4.1 (process collection). A process collection PC is a tuple
PC = (P,D,DU,DC) comprising:

1. a set P of processes,
2. a set of data classes D,
3. a relation DC ⊆ D × P specifying what data is collected by which processes,

and
4. a relation DU ⊆ D × P specifying what data is used by which processes.

Note that the set D of data classes is not a set of data values per se, but rather
a set of the possible kinds of data, e.g., addresses, credit card numbers, etc.

Example 4.2. We construct a process collection modelling the example from
Sect. 3 by lifting the informal description of the example to the process col-
lection QC given formally in Fig. 2 and represented visually in Fig. 3. In the
1 Notice that without the anchor of processes-as-purposes, this problem is hardly

solvable in practice. For example, what are the purposes the user consents to for the
hundreds of computer systems running at a large corporation?
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Fig. 2. The use of personal data in an online retailer: process collection QC =
(P,D,DU,DC) corresponding to the example of Sect. 3. To conserve space, the rela-
tions DU and DC have been represented as maps.

Fig. 3. Graphical representation of the process collection QC of Fig. 2.

latter figure, the processes of the retailer are rendered as square boxes labelled
Purchase, Register Customer, Targeted Marketing, and Mass Marketing. Data is
written as dashed, dog-eared boxes, e.g., 〈customer〉, 〈credit card number〉, and
〈order〉. Data use and collection is indicated by arrows between process boxes
and data boxes:

1. An arrow from a process to data indicates that the process collects and stores
the given data, e.g., the Register Customer process records the new customer’s
contact information (name and address) in the data class 〈customer〉.

2. An arrow from data to a process indicates that the process uses the given
data, e.g., the Purchase process uses the customer’s contact information in
〈customer〉 and the payment information in 〈credit card number〉.

For example, the Targeted Marketing process uses the order data 〈order〉 and
produces the personal 〈profile〉 of the customer. The Mass Marketing process
similarly uses the customer data, but it does not use the orders.

In this example, we derived the process collection from the informal descrip-
tion of the on-line retailer. In general, process collections can be extracted (even
automatically) from formal process models such as the BPMN diagrams of Fig. 1.
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Example 4.3. Consider the BPMN models in Fig. 1. The set P of processes is
the set of labels of lanes. The set of data classes D is the set of labels of database
access lines. The relations DC and DU are given by dashed lines from processes
to databases (DC) and databases to processes (DU).

We can use the data production and usage relations to derive which user
consents are needed. For example, the on-line retailer must acquire consent to
use the customer data for future purchases and mass marketing. If we know
when processes can no longer be started, we can also use the relations to infer
when data must be deleted or made non-personal, for example by anonymising
it. We shall pursue this idea further in Sect. 5.3.

4.4 A Methodology for Auditing for the GDPR

We now propose a methodology for auditing for the GDPR. Our methodology
has the following inputs. First, at the lowest level, we require an implementation,
say, written in Java, of the system under consideration. Second, we require a
collection of process models describing the system’s behaviour , from which we
can produce a formal process collection (Definition 4.1). Finally, we require a
user-facing privacy policy. Recall from Sect. 2 (transparency, consent) that this
is required by the GDPR.

To establish GDPR compliance, we must show the following:

1. The implementation conforms to the process collection. That is, the imple-
mentation implements the processes described in the process collection.

2. The process collection conforms to the privacy policy. That is, the processes
described actually treat data in the manner described by the privacy policy.

3. The process collection conforms to the GDPR. That is, the processes
described follow the GDPR, for example they delete data as appropriate.

4. The privacy policy conforms to the GDPR. That is, the privacy policy does
not make statements outside the GDPR, such as “we collect your personal
information and use it for undisclosed purposes.”

We illustrate the required conformance relations in Fig. 4.
Following this methodology ensures that the purpose limitation is upheld

because the implementation collects and uses data as specified by the process col-
lection (1); the process collection uses data as specified in the privacy policy (2);
and both the privacy policy and process collection conform to the GDPR (3,4).

GDPR

Privacy policy

  (4)Process model collection
 (3)

(2)
Implementation(s)  (1)

Fig. 4. Conformance requirements. An arrow A −→ RHDB means “A conforms to
B”.
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The difficulty of these steps depend on the exact nature of the implementa-
tion. For example, for Step (1), if the implementation has a collection of BPMN
models as its specification, the compliance of that collection to an implementa-
tion might be reasonably assumed or spot-checked by an auditor. If the imple-
mentation is based on a BPMN process engine or a Statechart interpreter [11],
the process might be automated. Alternatively, a process collection might be
obtained from an informal requirements specification (indicating processes) and
a dataflow analysis [16] of a mainstream programming-language implementation
(establishing collection and use).

In the latter case, where an informal requirements specification is the start-
ing point, Step (1) involves establishing that a process collection is a dataflow
model of a program. This problem is in general undecidable, so this step entails
approximating dataflow. But what kind of approximation do we need? An under-
approximation would leave DU smaller than it really is: Some pair (d, p) is not in
DU even though the system uses data d for the purpose p, in violation of GDPR
consent requirements. Conversely, an over-approximation would leave DU larger
than it really is: Some pair (d, p) is in DU even though the system does not use
data d for the purpose p, in violation of the purpose limitation.

These observations point to a curious problem at the intersection between
computer science and law: if static analysis cannot determine whether data will
or will not be used, is there a violation of the purpose limitation? Here, we take
the pragmatic solution that the inclusion of a data usage in a process collection
means the possible use of that data, and leave for the human audit to verify that
this usage may indeed happen in the implemented process.

Finally, we note that if we omitted the process-model middleman, some other
means would be required to relate purposes to implementation artefacts.

5 Algorithmic Verification of Compliance

We demonstrate in this section how parts of our methodology for demonstrating
GDPR compliance can be supported or even achieved algorithmically.

5.1 Consent Statements

We saw in Sect. 2 that the GDPR requires consent to the collection of data for
specific purposes. We also saw how current privacy policies do not support this,
primarily by failing to distinguish between different kinds of data and the pur-
poses they are used for. For example, because Mass Marketing uses 〈customer〉,
a privacy policy compliant with the GDPR must include words to the effect “we
use your customer contact information (name and address) for mass marketing,”
indicating for what purpose the customers’ contact information is used.

We now show how conformance of a process collection to a privacy policy
(Part 2 of Fig. 4) can be decided algorithmically. Recall that the DU component
of a process collection PC comprises a set of pairs (d, p), where d is a class of
data and p is a process using that data. Assuming that PC adequately models
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the underlying processes, that is, DU comprises exactly the data used by the
processes, we can automatically generate the corresponding privacy policy.

Definition 5.1 (Data purpose). Let PC = (P,D,DU,DC) be a process col-
lection. A data purpose DP is a relation DP ⊆ D×P . For a data purpose DP ,
the privacy policy pp(DP ) is the set of statements

“We use d for p,”

for each (d, p) ∈ DP .

That is, a data purpose associates data with processes. Note that the above
definition may associate the same data with multiple uses, e.g., users would
typically be presented with a consent statement like “we collect d1, d2 for purpose
p1 and we collect d1, d3, d4 for purpose p2.”

d p

〈customer〉 Purchase
〈credit card number〉 Purchase
〈customer〉 Mass Marketing
〈profile〉 Targeted Marketing
〈order〉 Targeted Marketing
〈customer〉 Targeted Marketing

Fig. 5. Privacy policy pp(DU) for the process collection QC = (P,D,DU,DC) of
Fig. 2.

Example 5.2. Let QC = (P,D,DU,DC) be the process model of Fig. 2. Then
DU comprises the pairs in Fig. 5. Using Definition 5.1, and allowing meaning-
preserving natural language transformations, the Targeted Marketing privacy pol-
icy reads: “We collect your customer information (name, address), order history,
and profile, and use them to send you targeted advertising.”

The notion of data purpose (Definition 5.1) naturally orders the possible data
purposes by set inclusion.

Lemma 5.3. Let D be a universe of data and P a collection of processes. Then
the possible data purposes form a lattice under the subset-relation, i.e., DP �
DP ′ iff DP ⊆ DP ′.

Proof. Immediate from Definition 5.1

The lattice ordering provides a means of formalising privacy policies where
users give consent to some, but not all, purposes supported by the system. For
a process collection PC = (P,D,DU,DC), DU is the maximal data purpose;
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asking anything more is in effect asking users for permission to data that the
underlying processes do not actually use, violating purpose limitation.

Returning to the present setting where users must consent to all purposes, we
note that DU is in fact also the least admissible data purpose: If users consent to
strictly less than DU , there must be a pair (d, p) ∈ DU the user did not consent
to. Hence the system violates the GDPR requirements on obtaining consent.

Besides the outright generation of privacy policies, we can also use this obser-
vation to check an existing privacy policy for correctness: Simply extract from
the policy the appropriate set of pairs {(d1, p1), (d2, p2), (d3, p2)} and compare
it with DU .

5.2 Data Minimisation

In the last section, we generated data purpose statements algorithmically from
process models. However, these statements are GDPR compliant only if they
mention all the data used by the process. As we saw in Sect. 2, the GDPR also
requires that all of the data collected is necessary for the stated purpose.

We caution that necessity is a slippery concept. For example, one may ask
whether an online merchant really needs my credit card number given that send-
ing an invoice might satisfy the same purpose of collecting payment. We shall
leave such fine distinctions for the auditors.

We can however determine algorithmically some classes of unnecessary data:
we can check whether data that has been collected is in fact also used. If not,
that data is clearly unnecessary, violating data minimisation. This information
will help a human auditor quickly judge the conformance arrow (3) in Fig. 4.

Definition 5.4 (Used data). Let PC = (P,D,DU,DC) be a process collec-
tion and let d ∈ D be data for PC. We say that d is used iff for some p ∈ P we
have (d, p) ∈ DU .

In other words, d is “used” if some process uses it according DU .

Example 5.5. Returning to the process collection QC of Figs. 2 and 3, it is
straightforward to verify that no collected data is unused. However, if we did
not have the Targeted Marketing process, then 〈profile〉 would not be present at
all and 〈order〉 would not be “used” in the sense of Definition 5.4. Consequently,
either the order data could not be legally stored in an order data base or the
process collection is incomplete.

We remark that the data used is computable in time polynomial in the size
of L(PC) under reasonable assumptions about representation:

Proposition 5.6. Let PC = (P,D,DU,DC) be a process such that P and DU
are finite, and assume that P and DU are represented as sequences of their ele-
ments. Then computing whether any d of D is used is possible in time polynomial
in the sizes of P and DU .
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Proof. Let d ∈ D be given. Observe that d is used iff for some (d′, p) ∈ DU
we have d′ = d. Given a pair (d′, p), we can determine in time O(|d|) whether
d′ = d. We can then compute whether d is used by iterating over the elements
of DU in time O(|d| ∗ |DU |).

5.3 Deletion

We saw in Sect. 2 that the GDPR, via the right to be forgotten, requires that
data must be deleted on request, provided that the purposes for which consent
has been given no longer apply. Since we have identified purposes and processes,
this would be when either (i) no currently running process uses the data, and
(ii) no process that may be started in the future uses the data.

For practical purposes, determining the set of (non-)applicable processes is
often straightforward. In many web-services, the set of applicable processes is
all or nothing: all the services are offered until the user deletes his account, at
which point no services are offered.

Example 5.7. In our running example of an on-line retailer, we assume that
consent is given before the customer inputs personal data, i.e. in the first activity
in the Register customer process given in Fig. 1. After a customer is registered,
purchases and marketing may be started indefinitely. Implicit in our process
collection model is that once the user deletes his account then no more processes
can be started (equivalently, no more purposes can be activated) and the user’s
data must now be deleted.

5.4 Human Verification of Compliance

We have seen in the preceding subsections that some aspects of GDPR com-
pliance can be verified algorithmically. However, in Sect. 4.1 we explained that
other aspects cannot: We cannot distinguish algorithmically between, e.g., mar-
keting messages and political propaganda. To enforce the purpose limitation in
such cases it may be necessary to add human enforcement activities.

We saw an example already in the BPMN processes given in Fig. 1: the
Mass Marketing process includes a human activity “Approve advertisement text”,
whereby an authorised staff member confirms that the proposed advertisement
text is in fact an advertisement.

This ability to model both automated and human activities is unique to busi-
ness process models. This makes them particularly well-suited for the analysis
of GDPR compliance: A model of only the computer systems cannot account for
the necessary human activities.

6 Related Work

Purpose-based access control [3,4] proposes an access control mechanism for
databases where each data item has an associated intended purpose. To access
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the item, a user must state his access purpose. Both kinds of purposes are
arranged in hierarchies, and a notion of compatibility of purpose is defined. The
access control mechanism itself is essentially role-based access control (RBAC).
Similar ideas form the basis of a formal language for specifying purpose-based
access control policies in [30] and for deriving formal invariants and proof obliga-
tions from a formal specification of such policies. The idea of matching a stated
with an intended purpose is also pursued in [24]. Finally, similar to our work, [26]
proposes identifying purposes and business processes. The authors use knowl-
edge of the current task within a process for access control decisions. In contrast
to all of these works, our focus is not on designing access control mechanisms,
but rather audit and compliance.

Privacy-aware role based access control [20] proposes extending RBAC with
a hierarchical notion of purpose to model privacy policies, emphasizing conflict
detection in the resulting formal models. Similarly, Purpose-Aware Role-Based
Access Control [18] extends RBAC with an explicit notion of purpose, in part
to alleviate technical difficulties in expressing privacy policies in RBAC. In [7],
the authors propose an access control mechanism supporting conditional pur-
pose, allowed purpose, and prohibited purpose, each of which is defined through
dynamic roles, with the actual intended purpose computed dynamically. The
paper emphasizes balancing privacy concerns against data mining opportunities.
In [17], the authors use information-flow labels to specify and enforce purpose-
based access control policies. They argue that information-flow diagrams are
well-suited to express and reason about purpose-based privacy policies. This is
very much akin to the use of process collections in the present paper.

All the above works associate data with purpose, an idea we have taken up
in our notion of process collections. However, the previous works proceed to give
methods for access control under various circumstances. In contrast, our work
is concerned with the questions: what are the appropriate purposes in the first
place, and is (data) access required for these purposes? Moreover, these other
methods are invariably automated, whereas we have emphasized that the GDPR
also requires human activities to ensure compliance (see Sect. 5.4).

Finally, [15] gives a semantic model of purposes themselves, stipulating that
“the purpose of an action is determined by its situation among other inter-
related actions.” The authors model actions and their relations in an action
graph, and develop a modal logic and model-checking algorithm for verifying
purpose-based policies. This work is akin to the present one in that it addresses
the question “how do we find purposes?” However, the present paper does not
attempt a semantic analysis of purpose, and leverages instead the observation
that practitioners have already defined purposes via business process modelling.

7 Discussion and Conclusion

We investigated the GDPR and we showed how a mechanism for relating purpose
to implementation artefacts is necessary to demonstrate compliance. To remedy
the problem that purpose is usually not represented explicitly in implementations
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of computer systems, we put forward the idea of identifying a business process
and a purpose. We proposed a methodology where GDPR compliance is decom-
posed into the compliance of an implementation to an interprocess dataflow
model, of the dataflow model to a privacy policy, and of these latter two models
to the GDPR. We demonstrated that given a model of interprocess dataflow, we
may verify compliance of certain aspects of the GDPR algorithmically. In partic-
ular, we can generate privacy policies automatically from the model and detect
violations of data minimisation. Finally, we explained why GDPR compliance
cannot be entirely automated and the role of humans in enforcement.

Discussion. We return now to the question of data deletion. Recall from Sect. 5.3
that data should be deleted once the purposes for which it is used can no longer
apply, that is, when the corresponding processes can no longer be started. Pro-
viding such a fine-grained account of deletion requires modelling when processes
start using a process lifecycle model. We provide an illustrative example here,
leaving the full development of this idea to future work.

0start 1 2

3

Register customer

Purchase
Mass Marketing

Targeted Marketing

Revoke consent

Delete account Delete account

Purchase

Fig. 6. Lifecycle model for the on-line retailer processes.

Our example is the model in Fig. 6, which models the lifecycle of the pro-
cesses in our running example. We have added processes here for deleting an
account and revoking consent. This model is a finite state machine where states
distinguish what processes can be started and transitions are processes started.
Some processes, such as Purchase, do not change the current state. Other pro-
cesses lead to state changes, such as the new processes Revoke consent and Delete
account. In a given state, the set of processes that may yet start is the set of
reachable transitions. For example, in state 0, it is all the processes; in state 1
it is all but Register customer; in state 2 it is only Purchase and Delete account;
and in state 3, we may not start any processes. From this information, we can
compute what data we must delete. For example, in the transition from state 1
to 2 we lose the ability to start Targeted marketing, which is the only purpose
for storing the 〈profile〉 data. It follows that immediately after this transition,
we must delete that data.
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Future Work. Another important area for future work concerns data transfers
to third parties. The GDPR has precise rules about who may transfer data to
other parties, when these transfers can occur, and under what circumstances
other parties can or must delete, produce, or store data. Naturally, this opens
up questions about audits and compliance similar to the ones addressed in this
paper. Moreover, enforcement in this setting is closely related to research on
distributed usage control [27,28] and on executable process models [6,29]. Other
relevant future work includes how to distinguish between personally identifiable
information and other information, and handling systems that allow users to
consent to some, but not all, purposes.
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Abstract. This paper presents a novel private presence protocol,
referred to as MP3, where the service provider does not have any knowl-
edge of the social graph of its users. In prior work, a private presence pro-
tocol, referred to as DP5, was presented. However, the size of the presence
database in this protocol grows rapidly as the number of users increases;
this limits its scalability and increases its cost. In the proposed protocol,
the size of the presence database is reduced significantly, enabling signif-
icantly cheaper registration and lookup compared to that of DP5. MP3
requires about two-thirds the bandwidth of DP5 for N = 200 000 users
and about one-half the bandwidth of DP5 for N = 1000 000 users. Fur-
thermore, these savings grow asymptotically with the number of users.
Additionally, the client-facing latency in MP3 is an order of magnitude
less than that of DP5. We provide an evaluation of the performance and
scalability of both protocols.

1 Introduction

Due to the recent threat and concern of government surveillance and collection
of user data [1], an increasing number of services have emerged with the goal of
protecting users’ privacy from the provider of the service. A common approach
is end-to-end secure messaging, which is currently employed in services such
as Apple’s iMessage, Open Whisper Systems’ Signal Protocol, and Facebook’s
Messenger [2–4]. Secure messaging hides the content of the conversation from
the provider by using strong cryptographic techniques, but the metadata of the
conversation is still known to the service provider.

A critical part of secure messaging is presence, i.e., knowing when a friend is
online. Although secure messaging providers do not have access to the plaintext
conversation, they still have access to the set of friends of every user. This means
that these services know the social graph of their users as well as the presence
status of every user at any given time. To have a truly private communication
platform, the metadata of the communication must also be protected.

An existing solution to this problem is DP5—the Daghstul Privacy Preserv-
ing Presence Protocol P—proposed by Borisov, Danezis, and Goldberg [5]. DP5
is the first private presence protocol to leak no information about the social
graph to third parties and limit the information retained by the service itself.
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DP5 allows its users to see the online status of their friends in a completely
private manner. It utilizes Private Information Retrieval (PIR) [6] for querying
the service for a given user’s buddy’s presence.

The major weakness of DP5 is its lack of scalability for a large number of
users. The presence database of DP5 grows much more rapidly than the number
of users of the service. This results in a very expensive service for even a small
number of users. To overcome this bottleneck, we propose MP3—the Minnesota
Private Presence Protocol. MP3 maintains the same security goals as DP5. This
is elaborated in Sects. 2.3 and 3.7. Compared to DP5, MP3 assumes that revok-
ing and unrevoking friends is uncommon and thus we are able to significantly
reduce the size of the presence database by using a dynamic broadcast encryption
scheme [7]. As a result, MP3 is significantly cheaper to run for even a relatively
modest user base. Additionally, these savings increase as the number of users
increase. The key contribution of this paper lies in significantly reducing the
size of the presence database compared to DP5; this allows cheaper registration
and lookup queries in the context of the bandwidth required. The client-facing
latency of MP3 is also an order of magnitude less than that of DP5 due to the
smaller presence database.

This paper is organized as follows. Section 2 describes the background, goals,
and related work pertaining to the MP3 protocol. Section 3 presents a detailed
description of the MP3 protocol. Section 4 analyzes the performance of MP3 and
compares it to that of DP5.

2 Background

The primary functionality of a private presence protocol is to allow for the
registration of one’s online presence and to allow for the query of the presence
status of one’s buddies in a completely private manner.

2.1 DP5 Overview

Since our design shares many characteristics with DP5, we give a brief overview
of the protocol here. DP5 uses Private Information Retrieval (PIR), in which a
database is distributed to several servers so that a user can query the servers
to retrieve a specific record without revealing which record they retrieve. Given
this functionality, a “trivial” private presence protocol would have each user A
with nA friends encrypt nA presence records recording their status (and possibly
other information, such as a contact address), with a shared key for each friend,
and periodically upload this information to a presence database. When A’s friend
B wants to check on A’s status, they would query the current database (using
PIR) for the presence records encrypted under the symmetric key A shares with
B. To hide information about the social graph, each user would need to pad
the number of presence records uploaded per period to some maximum value
denoted by Nfmax. This protocol results in a nearly quadratic-size database in
the number of users. Moreover, the server-side computational costs of PIR scale
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linearly in the size of the database (and the bandwidth costs also increase, though
sub-linearly).

To combat this inefficiency, DP5 splits the presence service into two asym-
metric services. The primary, short-term, service is used to register and query
presence of users with the precision of short windows (on the order of minutes).
The secondary service is the long-term service, which is used to provide metadata
for querying during the short-term. The long-term service also provides friend
registration and revocation with the precision of long windows (on the order of
days). As in the “trivial” protocol, it is assumed that users share a unique secret
with each of their friends. Additionally, in order to not leak information about
how many friends a given user has, DP5 defines a limit of Nfmax as the maximum
number of friends a user may have.

In each period of the long-term service, a user (let’s say Alice) of DP5 will
upload her presence to the registration mechanism of DP5. This is referred to
as Alice’s long-term presence record. This record is actually several records,
one for each of Alice’s friends, padded with random records upto Nfmax. If,
Nfmax is on the order of the number of users of the service, then the long-term
presence database scales quadratically with the number of users, which in turn
increases the amount of bandwidth and CPU this service requires. These long-
term records contain information used by her friends to identify her during the
short-term period. Then, during the short-term period, Alice uploads a single
record to the short-term presence database in each short-term period she is
online. Additionally, a single record containing a signature is uploaded to an
auditable signature database during every short-term period. Thus, the short-
term service, which is queried more often, grows only linearly with the number
of online users.

To improve the DP5 protocol, we address the issue of scaling in the long-term
service of DP5 by reducing the number of records Alice uploads in each long-
term period to only a relatively constant number of records, yielding performance
closer to that of the short-term service. We leave the short-term service of DP5
unchanged as it is already quite cheap.

2.2 Threat Model

We make standard assumptions about the users and adversaries of MP3. They
are real world adversaries with common capabilities.

– We assume that honest users’ end systems are secure and not compromised.
We also assume that honest servers can maintain secrecy and integrity. Our
design maintains forward security and does not require servers to store any
long-term secrets.

– We allow the adversary to be an observer or a dishonest user of the system,
and we assume they have not made any recent breakthrough in computational
cryptographic assumptions, and assume that they cannot distinguish between
different ciphertexts. More detailed assumptions are described in the protocol
description in Sect. 3.
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– Our security properties are under the covert model, i.e., adversaries will not
act dishonestly if it would cause them to be detected and identified.

– Our protocol maintains availability against malicious parties. This is further
detailed in Appendix B.

2.3 Security Goals

Here, we describe the goals required for a private presence service. Our goals are
the same as the goals of DP5.

Privacy of Presence and Auxiliary Data. The presence status of a user
and their auxiliary data should be available to only that user’s explicit friends.

Integrity of Authentication and Auxiliary Data. The friends of Alice
should not accept the presence and auxiliary data unless it was submitted by
Alice.

Unlinkability of Sessions. It should be infeasible for a user to be linked
between multiple uses of the service. The infrastructure and non-friend users
should not be able to link the presence of another between epochs.

Privacy of the Social Graph. No information about the social graph of a user
should be revealed to any other party of the service. More specifically, friends
should not learn about other friends and the infrastructure should not learn any
new information about a user.

Forward/Backward Secrecy of the Infrastructure. Any compromised keys
stored in the infrastructure servers should not reveal past or future information
that is secured with previous or future keys.

Auditability. All operations performed by the infrastructure should be
auditable. A user should detect when their friend registration or presence regis-
tration has not been performed honestly by the service provider.

Support for Anonymous Channels. The protocol should not require any
identifying information for operation. The use of an anonymous channel should
only enhance the privacy of the system and the service will not compromise the
anonymity of the user.

Indistinguishability of Revocation, Suspension, and Offline Status. A
user is revoked if they are no longer able to query the presence status of the buddy
that revoked them. A suspension is a temporary revocation, i.e., for some period
of time, a user cannot query the presence status of the buddy that suspended
them. This means a suspended buddy can be “unrevoked.” Revocations and
suspensions should not be distinguishable from being offline. For example, if
Bob’s buddy Alice appeared to be offline, Bob would not know if he was revoked
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or suspended, or if Alice was genuinely offline. MP3 provides plausibly deniable
revocation and suspension of buddies. Plausibly deniable revocation means the
transcript does not prove a user has been revoked. However, if a user does not
see their friend come online for an extended period of time they may begin to
assume they have been revoked. This is discussed in further detail in Sect. 3.7.

2.4 Related Work

DP5 seems to have been the first and only previous work to address social graph
privacy in the context of presence services. Similar, but different, related work
includes Dissent [8] and Riposte [9] which offer anonymous micro-blogging ser-
vices; these systems are similar to private presence in that posting a micro-blog
implies the author was online. Dissent is based on a DC-net with a client-server
architecture. Clients in Dissent must form a group to post anonymous messages
for each other using distrusted servers. Dissent provides anonymity within a
static group. Riposte utilizes a novel private database writing mechanism based
on techniques of PIR. Both of these systems have high latency when dealing
with large anonymity sets and are not concerned with social graph privacy.

Two other similar and relevant anonymous messaging/microblogging systems
that build on PIR techniques include Riffle [10] and Pung [11]. These systems
allow for a user to send a message to their friends without revealing the social
graph of the users. These messages could be used to indicate presence. However,
these two systems assume every user uploads a message during every epoch.
This implies that all users must be present at all times which is unrealistic and
negates the need for a private presence protocol.

3 The MP3 Protocol

3.1 Overview

In this section, we provide an overview of MP3. MP3 is composed of two
databases, a long-term database and a short-term database. The short-term
database contains the presence status and information of a user. A new short-
term database is generated on the order of minutes (5 min), we refer to these
as short-term epochs. The long-term database contains information for a user
to identify their friends’ short-term database entries. A new long-term database
is generated less frequently (once every 24 h), these are referred to as long-
term epochs. Alice uploads her presence at most once for every long-term and
short-term epoch. When Bob wants to check if his friend Alice is online, he first
queries the long-term database and retrieves Alice’s entry. Then he computes her
short-term identifier and queries the short-term database for her presence. Each
long-term database entry of a user contains information for looking up the next
long-term database entry of that user. Alice may be unable to upload every long-
term epoch so MP3 keeps the most recent long-term databases corresponding to
30 days.
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The database entries are simple 〈key, value〉 pairs where the key is a unique
identifier for a user in that specific epoch. These databases are queried using a
hash-based PIR protocol of retrieving 〈key, value〉 pairs. Since these databases
are queried with PIR, the infrastructure does not learn any information about
a user’s queries. In our implementation users upload their database entries to a
single registration server and use a distributed PIR protocol with Nlookup servers
for database queries. Similar to DP5, when querying the long-term database the
users must query all long-term databases to avoid revealing which database
contained the entry they needed.

The short-term database contains a single entry (presence message) per
online user. For Alice (a) we denote presence message as ma(i) during short-
term epoch ti. This presence message may contain information such as how to
contact Alice or a public key. If ma(i) is not present in during ti, Alice is assumed
to not be online.

MP3 uses a Dynamic Broadcast Encryption (DBE) [7] scheme for long-term
database entries. DBE allows Alice to create a single constant-sized ciphertext
that can be decrypted by all of her friends. Before participating in MP3, Alice
generates a single DBE encryption key (mk) and a decryption key (dkaf ) for each
friend (f). During long-term epoch Tj Alice creates a DBE ciphertext with her
short-term identity information for all short-term epochs that occur during Tj .

The dynamic part of DBE allows Alice to revoke decryption keys so the
revoked keys cannot decrypt future ciphertexts. We utilize this to allow Alice to
revoke up to Nrev friends in each long-term epoch. To provide plausible deniabil-
ity of revocation, Alice distributes new decryption keys to the revoked friends. If
Alice wants to truly revoke the friend she gives them a new randomly generated
decryption key. If they are revoked for deniability reasons she gives them a new
correctly generated decryption key. For the rest of the paper DBE.Revoke is
used to refer to DBE revocations and MP3.Revoke is used to refer to Alice
actually revoking a friend.

To unrevoke a previously MP3.Revoked friend, Alice constructs a special
long-term database entry using the revoked friend’s random decryption key. This
record DBE.Revokes the random key and issues a new valid decryption key.
This special entry must maintain Nrev DBE revocations to be indistinguishable
from a regular entry. MP3 allows Nunrev friends to be unrevoked during a single
long-term epoch. This means Alice uploads Nunrev + 1 entries, each of Nrev size
for a long-term epoch. One entry to distribute short-term lookup information to
her friends and possibly revoke Nrev friends. And Nunrev entries that allow her
to unrevoke friends.

Finally, to prevent forged records, we employ two signature schemes, one for
long-term presence records and another for short-term presence records. Thus,
all of Alice’s friends can be confident that the record they received from MP3’s
lookup mechanism can only belong to Alice. We use Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) [12] for long-term epochs and Boneh-Lynn-Shacham
(BLS) [13] signature scheme for short-term epochs. Moreover, an auditable sig-
nature database is employed during each short-term epoch.
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3.2 Cryptographic Primitives

It is assumed that everyone participating in MP3 shares a set of known cryp-
tographic primitives. We assume three primes pdbe, pdsa, pbls, for simplicity we
omit the subscripts when it is clear which prime we are discussing. Let G1 and
G2 be two cyclic groups of prime order pdbe and let GT be a cyclic group also
of prime order pdbe. Denote Zp as the ring of integers modulo p and denote Z

×
p

as the set of units in Zp, also denote g ← G as randomly selecting an element g
from a set G. An efficiently computable asymmetric pairing defined by the map
e : G1 × G2 → GT is known so that for generators g1 ∈ G1, g2 ∈ G2 and for all
u, v ∈ Zp

e(gu
1 , gv

2) = e(g1, g2)uv

The decisional Diffie-Hellman problem and the decisional co-Diffie-Hellman prob-
lem are assumed hard for G1 and G2. It is also assumed that our pairing is
non-degenerate.

MP3 utilizes the following:

– ECDSA [12] signature scheme with group Gdsa of prime order pdsa with
generator gdsa.

– BLS signature scheme [13] with groups G3, G4, G5 of prime order pbls with
g3 generating G3 and an efficiently computable asymmetric pairing defined
by the map ebls : G3 × G4 → G5.

– PRFK , a keyed pseudorandom function that maps a short-term epoch times-
tamp to keys for AEAD described below.

– H1, an efficiently computable hash function that maps the concatenation of
the byte representations of long-term epoch timestamps and elements of GT

to elements of Z×
p .

– H2, an efficiently computable hash function that maps long-term public key
to shared identifiers.

– H3, an efficiently computable hash function that maps elements of GT to
elements of Z×

p .
– H4, an efficiently computable hash function that maps elements of G1 to keys

in the pseudorandom function above.
– H5, an efficiently computable hash function that maps short-term epoch

timestamps to elements of G4.
– H6, an efficiently computable hash function that maps elements of GT to

shared identifiers.
– AEADIV

K (m), an authenticated encryption function where m is the message,
K is the key, and IV is the initialization vector.

3.3 Dynamic Broadcast Encryption

In our construction of MP3, long-term epochs share many characteristics with
a broadcast encryption scheme. In the context of MP3’s long-term epoch, we
use a dynamic broadcast encryption scheme with constant-size ciphertexts and
decryption keys.
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The definition of a Dynamic Broadcast Encryption (DBE) [7] is slightly dif-
ferent from a conventional broadcast encryption scheme in that it involves two
authoritative parties: a group-manager and a broadcaster. The job of the group
manager is to grant new users access to the group. The job of the broadcaster
is to encrypt and transport messages to this group of users. When a message is
encrypted, some members of this group can be revoked temporarily (suspended)
or permanently (revoked) from decrypting the broadcasted message. Formally,
a DBE scheme with revocation is a tuple of probabilistic algorithms (Setup,
Join, Encrypt, Decrypt, Revoke, Update). These algorithms rely on an
asymmetric pairing as described in Sect. 3.2.

Our design relies on the DBE scheme proposed by Delerablée et al. [7].
In our use case, every user is both a group-manager and a broadcaster. We
introduce two additional operations (ShiftMK, ShiftDK) to support MP3’s
plausibly deniable revocation and suspension. Our modifications are detailed in
Appendix A. We provide the relevant components of DBE as it pertains to MP3
below:

– DBE.Setup() - generates a manager key as the tuple mk := (G,H, γ), where
G ← G1 and H ← G2 are randomly selected generators and γ ← Z

×
p .

– DBE.Join(mk = (G,H, γ)) - allows a user to friend someone by sharing a
decryption key derived from their manager key as the tuple dk := (x,A,B),
where x ← Z

×
p is fresh, A := G

x
γ+x , B := H

1
γ+x . If x and γ happen to be

inverses, resample x. In our construction of MP3, we add an additional com-
ponent to the decryption key, κ, a shared random symmetric key for AEAD
that is persistent even when (x,A,B) is reassigned. Thus, the decryption key
derived is dk := (x,A,B, κ).

– DBE.Encrypt(mk = (G,H, γ)) - generates a shared secret K := e(G,H)w

and two ciphertexts: C1 := Gwγ and C2 := Hw, where w ← Z
×
p .

– DBE.Decrypt(dk = (x,A,B, κ), C1, C2) - takes as input a decryption key
and the ciphertexts and computes the shared secret K = e(C1, B) · e(A,C2).
Notice that this is the same shared secret computed by the broadcast manager
in DBE.Encrypt.

– DBE.Revoke(mk = (G,H, γ), xr, Br) - revokes the user with decryption key
that contains xr and Br from the group of the user with manager key mk by
updating H := H

1
γ+xr . The user then advertises xr and H

1
γ+xr to all their

buddies.
– DBE.Update(dk = (x,A,B, κ), xr, Br) - every non-revoked user with

decryption key dk = (x,A,B, κ) must update their decryption key via

B :=
(

Br

B

) 1
x−xr to revoke the user who owns xr and Br. Note that the revoked

buddy will not be able to update their B value due to not being able to com-
pute 1

xr−xr
. It is important to notice that this revocation is explicit to the

revoked buddy, but in our construction of MP3 we add some auxiliary func-
tionality in the long-term epoch to make revocations plausibly deniable as
described in Sect. 3.7.

– DBE.ShiftMK(mk = (G,H, γ), λ) - updates G := Gλ and H := Hλ.
– DBE.ShiftDK(dk = (x,A,B, κ), λ) - updates A := Aλ and B := Bλ.
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3.4 Setup

Initialization. To participate in MP3, Alice generates a manager key

mka := DBE.Setup()

She also generates a set of private-public base key pairs

(Ya,init, Pa,init) and (za,init, qa,init)

where Ya,init is a randomly generated ECDSA private key and Pa,init = g
Ya,init

dsa ,
and za,init is a BLS private key randomly selected from Z

×
p and qa,init = g

za,init

3 .

Adding Buddies. For every friend f of Alice, she derives a decryption key

dkaf := DBE.Join(mka)

and shares it along with her public base keys out-of-band. Assuming that the
current long-term epoch is Tj , Alice also shares her most recent shared secrets
K, from DBE.Encrypt, and R, her most recently generated random bit-string
R, i.e., Alice shares1 (dkaf , Pa,init, qa,init,K,R) with friend f out-of-band.

3.5 Long-Term Epoch

Registration. To register for epoch Tj , Alice must register during epoch Tj−1.
Let Tj′ be the last long-term epoch in which Alice has registered. To begin, Alice
computes a new long-term private-public key pair for Tj

hj := H1(Tj ‖ Kj′ ⊕ Rj′), Ya(j) := Ya,init · hj , Pa(j) := P
hj

a,init

as well as a new short-term private-public key pair for all short-term epochs
during Tj

za(j) := za,init · hj , qa(j) := q
hj

a,init

where Kj′ is Alice’s shared secret from calling DBE.Encrypt in epoch Tj′ and
Rj′ is a random bit-string generated in epoch Tj′ . The ⊕ between Kj′ and Rj′

implicitly converts Kj′ to a bit-string of some length and the length of Rj′ is
defined to be that length.

During a long-term registration, Alice has the opportunity to revoke or sus-
pend, or unrevoke a certain number of her buddies. Denote the number of buddies
she can revoke or suspend at each long-term epoch as Nrev and the number of
buddies she can unrevoke at each long-term epoch as Nunrev.

Every long-term epoch registration, Alice will upload 1+Nunrev records to the
long-term presence database. A single record is for all her buddies she wishes

1 If this is the very first epoch, Alice must generate an initial K := Kinit and R := Rinit

to share with her buddies to bootstrap the protocol.
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to continue being buddies with or that she wishes to revoke or suspend. The
remaining Nunrev records are for buddies she had previously suspended and
wishes to “re-friend.” Alice constructs the single record according to Algorithm1
and she constructs the other Nunrev records according to Algorithm 2.

All long-term records are of the form

(a)
︷︸︸︷
P ‖x1 ‖ B1 ‖ · · · ‖ xNrev ‖ BNrev︸ ︷︷ ︸

(b)

‖
(c)

︷ ︸︸ ︷
E1 ‖ · · · ‖ ENrev ‖C1 ‖ C2︸ ︷︷ ︸

(d)

‖
(e)

︷︸︸︷
R ‖ S︸︷︷︸

(f)

where (a) is a long-term identifier, (b) contains the x and B values of all buddies
to revoke or suspend, (c) contains new encrypted decryption keys for all buddies
revoked in (b), (d) contains the ciphertext components from DBE, (e) is a random
bit string, and (f) is the signature for the record that can be verified with (a).
Further details of how (b) and (c) are used to allow plausibly deniable revocation
and suspension are described in Sect. 3.7.

Upon receiving a record of the form

P ‖ x1 ‖ B1 ‖ · · · ‖ xNrev ‖ BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖ R ‖ S

from Alice, the registration server verifies the signature S with P . If the signature
is valid, it computes IDa(j) := H2(P ) and stores the 〈key, value〉 pair

〈IDa(j), x1 ‖ B1 ‖ · · · ‖ xNrev ‖ BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖ R ‖ S〉

Otherwise, if the signature is invalid, nothing is stored.

Lookup. To look up Alice’s presence for epoch Tj , Bob first requests the meta-
data associated with the databases from each lookup server. Since all lookup
servers have the same database, the metadata should be the same, but in the
event that some of the servers are dishonest, he takes the majority of the received
metadata. The metadata contains information about the number of buckets and
size of the buckets. He then computes Pa(j) := P

H1(Tj‖Kj′⊕Rj′ )
a,init using Kj′ and

Rj′ he queried from the most recent long-term epoch in which Alice registered,
and subsequently computes IDa(j) = H2(Pa(j)). Finally, he builds a PIR request
using the metadata for IDa(j) to retrieve a record of the form
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Algorithm 1. Alice computing her long-term presence record
Input:
mka = (Ga, Ha, γa), Alice’s manager key
(Ya(j), Pa(j)), Alice’s private-public key pair for Tj

R, the set of buddies’ decryption keys to MP3.Revoke or suspend
B, the set of buddies’ decryption keys to continue being buddies
Output: Long-term presence record

1: function
2: (C1, C2, K) := DBE.Encrypt(mka)
3: Generate and store a random bit-string Rj

4: λ := H3(K)
5: DBE.ShiftMK(mka, λ)

6: Store Kj := Kλ2

7: record := Pa(j)
8: n := Nrev − |R|
9: Bpadded := pad B with random decryption keys upto Nfmax

10: F := n decryption keys chosen uniformly from Bpadded

11: for each (x, A, B, κ) ∈ R ∪ F do

12: record := record ‖ x ‖ H
1

γ+xr

13: DBE.Revoke(mka, x, B)
14: end for
15: for each (x, A, B, κ) ∈ R do
16: x′ ← Z

×
p , A′ ← G1, B′ ← G2 � Here, x′ is fresh

17: � Store the following in case we want to unrevoke this buddy
18: Store ((x′, A′, B′, κ), C1, C2, Rj) in a global set U
19: E := AEADj

κ(x′ ‖ A′ ‖ B′)
20: record := record ‖ E
21: end for
22: for each (x, A, B, κ) ∈ F do
23: � generate new and valid x, A, and B
24: (x′, A′, B′, ) := DBE.Join(mka)
25: E := AEADj

κ(x′ ‖ A′ ‖ B′)
26: record := record ‖ E
27: end for
28: Shuffle the ciphertexts E (the encrypted x ‖ A ‖ B) in record
29: record := record ‖ C1 ‖ C2 ‖ Rj

30: S := ECDSA-SignYa(j)(record)
31: record := record ‖ S
32: return record
33: end function

x1 ‖ B1 ‖ · · · ‖ xNrev ‖ BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖ R ‖ S

Bob then processes this long-term record according to Algorithm 3 and stores the
returned K and R values for computing Alice’s long- and short-term identifiers
in the next long-term epochs.
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Algorithm 2. Alice computing Nunrev presence records to unrevoke buddies
Input:

U , the global set of buddies to unrevoke

Tj , the current long-term epoch

mka, Alice’s manager key

(Ya,init, Pa,init), Alice’s initial long-term epoch base keys

Kj stored from Algorithm1

Rj stored from Algorithm1

Output: list of Nunrev long-term presence records

1: function

2: ret := new list

3: for each ((x, A, B, κ), C1, C2, Rrevoked) ∈ U to unrevoke do

4: Remove ((x, A, B, κ), C1, C2, Rrevoked) from U
5: Krevoked := DBE.Decrypt((x, A, B, κ), C1, C2)

6: Yrevoked := Ya,init · H1(Tj ‖ Krevoked ⊕ Rrevoked)

7: Prevoked := P
H1(Tj‖Krevoked⊕Rrevoked)
a,init

8: Runrevoked := Kj ⊕ Rj ⊕ Krevoked

9: record := Prevoked

10: � We concatenate enough bytes so the record is the same length as that of Algorithm1.

We also make sure the byte encodings are of the correct type.

11: record := record ‖ 〈Nunrev − 1 encrypted random triples x ← Z
×
p ‖ A ← G1 ‖ B ← G2〉

12: � generate a fresh decryption key for the unrevoked buddy

13: (x′, A′, B′, ) := DBE.Join(mka)

14: record := record ‖ AEADj
κ(x′ ‖ A′ ‖ B′)

15: Shuffle the record as in Algorithm1 line 28

16: record := record ‖ C1 ‖ C2 ‖ Runrevoked

17: Sunrevoked := ECDSA-SignYrevoked
(record)

18: record := record ‖ Sunrevoked

19: store record in ret

20: end for

21: if number of buddies unrevoked < Nunrev then

22: � these records must be of the correct encoding

23: store random records in ret so that its length is Nunrev

24: end if

25: return ret

26: end function

3.6 Short-Term Epoch

Registration. To register for epoch ti, Alice must register during ti−1. Assume
that epoch ti is during epoch Tj . Recall that Alice computed the private-public
key pair (za(j), qa(j)) during the long-term registration for Tj . To begin, Alice
encrypts her presence message, ma(i) as follows:

ka(i) := PRFH4(qa(j))(ti) ca(i) := AEADi
ka(i)(ma(i))

She then computes the unforgeable signature:

sa(i) := H5(ti)za(j)

Alice then uploads ca(i) ‖ sa(i) to the short-term registration server.
Upon receiving Alice’s record, the short-term registration server will compute

ida(i) = H6(ebls(g1, sa(i))), and store 〈ida(i), ca(i)〉. Additionally, 〈ida(i), sa(i)〉
is stored in a short-term signature database to audit.
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Algorithm 3. Bob processing the long-term record of Alice
Input:
Pa(j), Alice’s long-term key for Tj

x1 ‖ B1 ‖ · · · ‖ xNrev ‖ BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖ R ‖ S, long-term record
Output: K and R for the next long-term epoch

1: function
2: � Only process the record if the signature is valid, otherwise the lookup server

was malicious
3: if S is valid signature for the record with Pa(j) then
4: plausiblyRevoked := false
5: for i = 1 to Nrev do
6: if xab �= xi then
7: DBE.Update(dkab, xi, Bi)
8: else
9: plausiblyRevoked := true

10: end if
11: end for
12: if plausiblyRevoked then
13: for i := 1 to Nrev do
14: Try to decrypt Ei with κab

15: if successfully decrypted Ei then
16: (x′, A′, B′) := Ei decrypted with κab

17: xab := x′, Aab := A′, Bab := B′

18: end if
19: end for
20: � Note that we updated dkab in line 17
21: K := DBE.Decrypt(dkab, C1, C2)
22: return K, R
23: else
24: K := DBE.Decrypt(dkab, C1, C2)
25: λ := H3(K)
26: DBE.ShiftDK(dkab, λ)

27: K := Kλ2

28: return K, R
29: end if
30: end if
31: end function

Lookup. To lookup Alice’s presence for epoch ti, Bob requests the metadata
associated with the short-term databases in the same manner as in the long-term
epoch. To begin, he first computes qa(j) := q

H1(Tj‖Kj′⊕Rj′ )
a,init using Kj′ and Rj′ he

queried from the most recent long-term epoch in which Alice registered. Then he
computes ida(i) := H6(ebls(qa(j),H5(ti)) which is equivalent to the registration
server’s computation of H6(ebls(g3, sa(i))) by the properties of pairings. He then
builds a PIR request for ida(i) to retrieve ca(i). Bob can be certain that ca(i)
is from Alice due to the unforgeable signature sa(i) by auditing the signature
database.
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Bob can then compute ka(i) := PRFH4(qa(j))(ti) and decrypts ca(i) retrieving
ma(i). The decryption being successful implies that Alice is online during epoch
ti. As in the long-term epoch, in order to not leak information of how many
buddies Bob has, he must pad his lookup to Nfmax ids.

3.7 Details

Unrevoking and Unsuspending. For simplicity in this section we assume
Nrev = 1. The long-term presence record of Alice that MP3.Revokes Bob
takes the form

P ‖ xab ‖ Bab ‖ Eab ‖ C1 ‖ C2 ‖ R ‖ S

That is xab and Bab are Bob’s x and B values and Eab contains a triple of
random (x,A,B). encrypted with κab, i.e., x, A, and B were not generated from
Alice’s manager key. This means that for future epochs, Bob cannot compute the
proper K (Algorithm 3 line 21), and thus can no longer query for Alice. Alice can
unrevoke Bob by computing the incorrect K that he computes from when he was
revoked (Algorithm 2 line 5) and use this to upload a record that Bob can query
for. This record will allow Bob to compute the correct K and R values for Alice
for future epochs, as well as providing Bob with fresh x, A, and B values that
are generated from Alice’s manager key (Algorithm 2 line 14). This is possible
by storing the correct K value within the R value in this “unrevoking” record
(Algorithm 2 line 8). This allows Bob to compute the proper identifier for Alice
in the next long-term epoch. Thus, Bob can continue to query Alice’s presence
as before.

Alice’s friends must process all of her long-term database entries so they must
query all long-term databases. To allow users to be offline for extended periods
of time MP3 stores the previous 30 days worth of long-term database. If a user
does not come online for more than 30 days they must share new keys with all
of their friends. Revocations in the database entries are plausible deniable but a
user may be able to notice if a friend does not come online anymore indicating
they may have been revoked. This problem is inherent to presence systems.

Plausible Deniability of Revocation and Suspension. For MP3.Revoke
to be deniable a revoked user must not be able to determine they have been
revoked. MP3 implements this by DBE.Revoking users that have not been
MP3.Revoked and issues these users new valid DBE decryption keys. Where as
friends which are MP3.Revoked are issued a new random decryption key. For a
friend to determine if they have been MP3.Revoked they must be able to distin-
guish between valid and random decryption keys. We introduce DBE.ShiftMK
and DBE.ShiftDK to make the decryption keys indistinguishable. Appendix A
details a distinguisher if DBE.ShitfMK and DBE.ShiftDK are not used.

More formally, if a friend can distinguish a transcript where they have been
MP3.Revoked from a transcript where they have been DBE.Revoked but
not MP3.Revoked they can be used as a Decisional Diffie-Hellman (DDH)
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distinguisher. That is, given (g, gx, gy, gz) determine if gxy = gz. We assume all
hash functions are modeled as random oracles.

We now quickly sketch the proof. If given a decryption key (x,A,B) and
ciphertext (C1 = Gw0γ , C2 = Hw0) and ciphertext (C ′

1 = Gw1γλ, C2 = Hw1
1

γ+x λ)
where w0, γ, w1, and λ are random, and given (x′, A′, B′), determine if (x′, A′, B′)
are valid decryption keys or random. Given a DDH challenger we can construct
the above problem. Let the manager key mk = (G = g,H = gx, γ). Then
C1 = gw0γ , C2 = gxw0 . Define λ = y, thus mk′ = (G = gy,H = gz 1

γ+x , γ)
and C ′

1 = gyw1γ , and C ′
2 = gz 1

γ+x w1 . If a friend can determine they have been
MP3.Revoked they can win the DDH game.

Complexity Comparisons. During each long-term epoch in DP5, N · Nfmax

records are stored, where each record is a constant size. Thus, the registration
bandwidth is Θ(N · Nfmax). During each long-term epoch in MP3, N · (Nunrev +
1) records are stored, where each record’s length scales with Nrev. Thus, the
registration bandwidth complexity is Θ(N · Nunrev · Nrev). In reality, Nunrev and
Nrev will be relatively constant2 compared to N . This implies that (as functions
of N and Nfmax) the registration bandwidth complexities for DP5 and MP3 are
Θ(N · Nfmax) and Θ(N), respectively.

With the PIR protocol used in both DP5 and MP3, the bandwidth cost per
query of a single record scales with the square root of the size of the database3.
Also, recall that each user must query for Nfmax buddies to not reveal any infor-
mation about their number of buddies. This implies that the bandwidth complex-
ities for an entire long-term epoch (assuming all users query) for DP5 and MP3
are Θ

(
N3/2 · N

3/2
fmax

)
and Θ

(
N3/2 · N

1/2
rev · N

1/2
unrev · Nfmax

)
, respectively. Using

the same approximations for Nunrev and Nrev as above, this results in lookup
bandwidth complexities of Θ

(
N3/2 · N

3/2
fmax

)
for DP5 and Θ

(
N3/2 · Nfmax

)
for

MP3. Similar arguments can be made for the shared short-term epoch of DP5
and MP3 and are summarized in Table 1.

4 Experimental Results

Implementation. Our MP3 library is implemented in 350 lines of C and 4000
lines of C++. The core cryptography relies on OpenSSL for AES, SHA-256,
and elliptic curve arithmetic and signatures; RELIC [14] for pairing-friendly
curves; and Percy++ [15] for PIR. The groups G1, G2, and GT are defined by
the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve. We use a 224-
bit Elliptic Curve, specifically secp224r1, for ECDSA, though the choice was

2 Arguments for why this is a valid assumption are discussed in Sect. 4.
3 As in the PIR protocol in DP5, we constructed r = �√ns 	 buckets and we can

upper bound the size of each bucket by
(

n
r

+
√

n
r

) · s ≈ √
ns +

4
√

ns3 (here, s is the
size of each record in bytes); since a query results in an entire bucket, this scales
with the square root of the size of the database.
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Fig. 1. Presence database sizes
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Fig. 2. Lookup server bandwidth

arbitrary. AEAD is implemented using AES in Galois/Counter Mode (GCM).
The PRFs and hash functions are implemented using SHA-256.

Evaluation. To evaluate the performance of MP3 vs. DP5, we simulated both
protocols in a “worst-case” scenario with the number of users ranging from
1000 to 1 000 000 clients. To simulate the worst-case scenario, we had all clients
perform registration and lookup for all epochs. All simulations were run on
a machine with dual Intel Xeon E5-2630 v3 CPUs and 256GB of RAM. The
number of PIR servers (Nlookup) was held fixed at 3 for all setups and both
protocols. The equivalent of 1 year of execution were simulated in all setups.
For both MP3 and DP5, the most expensive components are the lookup servers
from both CPU and bandwidth perspectives.

Figure 1 compares the size of the presence databases for the long-term epoch
of MP3 and DP5 as well as the shared short-term epoch. If we fix Nrev and
Nunrev to small constants compared to N , it is obvious that the size of the
long-term database of MP3 is significantly less than that of DP5. A smaller
database implies cheaper lookup costs in the context of both bandwidth and
CPU. Additionally, we can raise Nrev quite a bit and still maintain a smaller
long-term database than that of DP5. It’s also important to see how cheap the
short-term database is relative to the long-term databases. Also note that the
presence database sizes are proportional to the registration bandwidth.
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Figure 3 compares the client-facing latency of
the long-term epochs of MP3 and DP5 as well as
the shared short-term epoch, for N = 100 000 users.
The latency of MP3’s long-term epoch is smaller
than that of DP5 due to the inherently smaller
database. The short-term epoch’s latency is even
less as the short-term databases are even smaller.

Figure 2 compares the bandwidth of a single
long-term lookup server for the long-term epoch of
MP3 and DP5 as well as the shared short-term
epoch. The same pattern occurs that we saw in
Fig. 1 - for relatively constant Nrev and Nunrev, the bandwidth required is sig-
nificantly less for MP3 than for DP5 and the bandwidth requirements of the
short-term epoch are negligible compared to that of the long-term epochs.

Table 1. Bandwidth complexities comparing MP3 and DP5 as a function of N , Nfmax,
Nrev, and Nunrev.

Client Server
registration lookup registration lookup

long-term
DP5 Θ(Nfmax) Θ

(
N1/2 ·N3/2

fmax

)
Θ(N ·Nfmax) Θ

(
N3/2 ·N3/2

fmax

)

MP3 Θ(Nrev ·Nunrev) Θ
(
N1/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
Θ(N ·Nrev ·Nunrev) Θ

(
N3/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)

short-term
DP5

Θ(1) Θ
(
N1/2 ·Nfmax

)
Θ(N) Θ

(
N3/2 ·Nfmax

)

MP3

Discussion of Scalability and Cost Improvements. A primary bottleneck
in DP5 is its lack of scaling with large number of users, specifically for long-
term epochs. MP3 solves just that. The complexity for bandwidth usage of all
operations are summarized in Table 1.

The bulk of the cost in running a service such as MP3 or DP5 comes from the
bandwidth usage of the given protocol. Nrev and Nunrev are always less than or
equal to Nfmax by definition. In reality, with a 24-h long-term epoch, setting Nrev

and Nunrev to a small constant is very reasonable4; therefore, MP3 is significantly
cheaper during long-term epochs, and thus overcomes the scalability bottleneck
of DP5.

In Fig. 2a, with N = 1000 000 users, Nfmax = 1000, Nrev = Nunrev = 5, we
can see that MP3 uses about half the bandwidth of that of DP5 and it’s evident
that the savings grow as the number of users increases.

5 Conclusion

The proposed protocol reduced the complexity and cost of the most expen-
sive component of DP5, i.e., the long-term presence database. In reference to
4 Social networks such as Twitter disallow bulk unfollowing [16], making our argument

about setting Nrev and Nunrev to a small/constant value even stronger.
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DP5, MP3 requires about half the bandwidth for N = 1000 000 users, and this
reduction only increases as the number of users increases. Therefore, MP3 is a
more efficient private presence protocol than DP5. Future work will be directed
towards formally proving the security properties of MP3.

Acknowledgments. This research was partially supported by the NSF under grant
1314637 and by an Undergraduate Research Opportunities Program (UROP) Award
from the University of Minnesota.

A Modifications to Dynamic Broadcast Encryption

Recall the operations of DBE from Sect. 3.3. Our modifications to DBE [7] only
add the DBE.ShiftMK and DBE.ShiftDK operations. These operations are
required for plausibly deniable revocations and suspensions. Recall that in a
long-term database record for Alice in which Bob is actually revoked, Bob’s old
decryption key (dkab) is revoked and he is issued a new, but invalid, decryption
key (dk′

ab). Without DBE.ShiftMK and DBE.ShiftDK, Bob could use dk′
ab

to invert the Update operation and detect whether he was revoked or not.
The inverse update function is:

– DBE.Update−1(dk′ = (x′, A′, B′, κ′), xr, Br) - takes as input a decryption
key and a revocation values and computes a new decryption key dk :=
(x′, A′, B, κ′) where B := Br

B′(x′−xr) that can decrypt ciphertexts created before
the revocation.

Assuming DBE.ShiftMK and DBE.ShiftDK are not in place, a revoked
user Bob can use DBE.Update−1 to detect that he has been revoked by Alice.
Given two long-term presence records of Alice, where the former has not revoked
Bob and the latter has revoked Bob, Bob can apply the DBE.Update−1 function
to his new decryption key and compute a decryption key for the former presence
record.

Let Bob’s decryption keys for the former presence record be dkab and let Bob’s
decryption key for the latter presence record (after calling DBE.Update−1)
be dk′

ab. Also let C1, C2 be the ciphertext components from the former pres-
ence record. To detect if he has been revoked, all he must do is check if
DBE.Decrypt(dkab, C1, C2) 	= DBE.Decrypt(dk′

ab, C1, C2). If the statement
is true, then Bob has been revoked by Alice.

By introducing DBE.ShiftMK and DBE.ShiftDK we create a one-way
operation to the revocation process of MP3; thus Bob cannot invert the
DBE.ShiftMK and DBE.ShiftDK functions without the knowledge of the
plaintext of (C1, C2) and therefore cannot detect whether or not he was revoked.

B Availability Against Malicious Parties

Some conventional approaches to ensure availability against malicious parties
cannot be applied directly to privacy-preserving protocols, as they can leak infor-
mation. This causes several challenges: keeping the databases small, ensuring
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the registration server stores all uploaded presence records, ensuring the lookup
servers store all presence records and do not modify them.

A malicious client could upload many presence records during a given epoch,
causing a denial of service (DoS) for all other clients. If a malicious client were
using an anonymous channel, authentication would compromise the anonymity of
that client, defeating the purpose of MP3. To eliminate this, k-times anonymous
authentication schemes have been proposed [17,18]. In these schemes, users are
guaranteed anonymity up to k times; that is, if a user authenticates k +1 times,
the identity of the user can be computed. Such private rate-limiting schemes
can be used to limit the number of times a client registers during a given epoch
without losing anonymity.

In the case that the registration server is dishonest and drops records, a user
could “friend themself” to ensure that their presence records are being stored,
by looking themself up during every epoch. Note that all presence records are
indistinguishable, so the registration server can not target specific records for
dropping.

Lastly, in the case that the lookup servers are dishonest and modify the
database, Devet et al. propose a robust PIR scheme [19] that allows detection
of malicious servers. This detection requires at least t + 2 honest servers, where
t is the number of servers needed to collude to be able to determine the data in
a query. This robust PIR scheme is implemented in MP3.
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Abstract. A signature scheme is unique if for every public key and
message there is only one signature that is accepted as valid by the ver-
ification algorithm. At Crypto 2017, Guo, Chen, Susilo, Lai, Yang, and
Mu gave a unique signature scheme whose security proof incurred a secu-
rity loss logarithmic in the number of hash oracle queries made by the
adversary, bypassing an argument due to Bader, Jager, Li, and Schäge
that the security loss must be at least linear in the number of signing
oracle queries made by the adversary. Unfortunately, the number of ele-
ments in a Guo et al. signature is also logarithmic in the number of hash
oracle queries made by the adversary.

We translate Guo et al.’s signatures into the integer factorization set-
ting. Doing so allows us to bring to bear signature aggregation ideas due
to Lysyanskaya, Micali, Reyzin, and Shacham. We obtain unique signa-
tures that are short and have a tight security reduction from the RSA
problem.

1 Introduction

A signature scheme is unique if for every public key and message there is only
one signature accepted as valid by the verification algorithm. Unique signatures
make useful building blocks in primitives such as verifiable random functions [16].

At Eurocrypt 2016, Bader et al. [1] used a meta-reduction technique to show
that any security proof for a unique signature scheme given some static assump-
tion must incur a qS security loss, where qS is the number of signing oracle
queries made by the adversary. In other words, ε-intractability of the underlying
hard problem will translate only into qSε-unforgeability of the unique signature.
By contrast, there exist signature schemes with just two valid signatures per
message whose security reductions incur a security loss of 2 [8].

At Crypto 2017, Guo et al. [9] observed that the Bader et al. meta-reduction
assumed that the unforgeability reduction would extract the information it
needed to break the underlying hard problem from the adversary’s forgery.
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An unforgeability reduction that instead extracts the information it needs from
the adversary’s hash oracle queries (in the random oracle model) would fall out-
side the Bader et al. model and might be able to give better security guarantees.

Guo et al. presented a unique signature scheme with a proof of security
assuming the computational Diffie-Hellman problem is intractable with a secu-
rity loss of just nq

1/n
H , where qH is the number of hash oracle queries made by

the forger and n is a scheme parameter. Security loss is minimized by choosing
n ≈ ln qH . Unfortunately, signatures in Guo et al.’s scheme have length linear
in n; Guo et al. describe the resulting signatures as “somewhat impractical even
taking the loss factor into account,” but “theoretically interesting.”

Our Contributions. We show that the ideas of Guo et al. give rise not just to
“theoretically interesting” unique signatures with tight reductions but also to
practical ones. We give a unique signature scheme with the same security loss as
that of Guo et al. —nq

1/n
H — where signatures consist of just two group elements,

compared to n + 1 for Guo et al.
Guo et al. signatures consist of n + 1 iterations of an underlying BLS signa-

ture. A BLS signature on a message M is of the form H(M)x, where x is the
secret exponent. It is straightforward to replace BLS with RSA full-domain hash
signatures, of the form H(M)d mod N , where d is a secret exponent.

Our key insight is that although BLS and RSA signatures have a similar
signing operations but quite different verification operations. BLS verification
transforms a signature in group G1 into a value in group GT by means of the
pairing. It is intractable to go in the other direction, from GT to G1 [17]. RSA
verification computes σe mod N , where e is the public exponent, producing a
value that is still in Z/NZ and therefore might be transformed into another
signature to verify. This property was used by Lysyanskaya et al. [12] to build
aggregate signatures from RSA. In an aggregate signature, a single, short sig-
nature takes the place of n signatures by n signers on n respective messages. A
verifier given the aggregate signature σ, public keys pk1, . . . , pkn, and messages
M1, . . . , Mn should accept only if the signing key corresponding to each pki was
applied to Mi in the signing protocol.

The ideas of Lysyanskaya et al. do not immediately apply to give a short
variant of Guo et al.’s signatures. The key difference is that in an aggregate
signature scheme the verifier must still be sent the messages M1, . . . , Mn; in
Guo et al.’s scheme, Mi includes σ1‖σ2‖ · · · ‖σi−1; transmitting even just Mn

along with the signature would negate any benefit to be had from signature
aggregation.

We replace σ1‖σ2‖ · · · ‖σi−1 in Guo et al.’s block messages with G(M, 1, σ1)⊕
G(M, 2, σ2) ⊕ · · · ⊕ G(M, i − 1, σi−1), essentially aggregating the block mes-
sages along with the block signatures. The Guo et al. security analysis no longer
applies, and we replace it with a new security analysis that draws on both Guo
et al. and Lysyanskaya et al.

The ith block signature in our scheme is of the form

σi =
[
σi−1 + H(M, i, μi−1)

]d mod N
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along with the block messages aggregated as as above. The verifier can com-
pute μi−1 as μi ⊕ G(M, i, σi), then peel back σi to recover σi−1 as σe −
H(M, i, μi−1) mod N . Verification consists of repeating this procedure n times
starting from (σn, μn).

Our scheme resembles a construction for single-signer aggregate signatures
with message recovery presented (without security proof) by Neven [14].

We show how our scheme can be instantiated from any family of certi-
fied trapdoor permutations, then explain how to obtain a suitable permutation
from RSA. Our scheme shows that unique signatures built using the Guo et al.
paradigm can be of more than just theoretical interest. At the 128-bit security
level, and assuming qS = 240 and qH = qG = 280, a signature in our scheme is
under 4,000 bits, including 256 bits for the group E, whereas full-domain RSA
signatures must be nearly 6,000 bits long to obtain (128+40)-bit factoring secu-
rity and make up for their loose security reduction. (These estimates make use
of the bit-length formula of Orman and Hoffman [15].)

2 Preliminaries

Trapdoor Permutations. Let D be a finite set. A permutation family Π over D
specifies a randomized algorithm for generating (descriptions of) a permu-
tation and its inverse, written (s, t) R← Generate; an evaluation algorithm
Evaluate(s, ·); and an inversion algorithm Invert(t, ·). We require that, for all
(s, t) output by Generate, Evaluate(s, ·) be a permutation of D, and that
Invert

(
t,Evaluate(s, ·)) be the identity map.

A trapdoor permutation family is one way if it is hard to invert given just
the forward permutation description s. Formally [12, Definition 2.1], a trapdoor
permutation family is (t, ε)-one way if no t-time algorithm A has advantage
greater than ε in the game

Adv InvertA
def= Pr

[
x = A(

s,Evaluate(s, x)
)

: (s, t) R← Generate, x R← D
]
,

where the probability is over the coin tosses of Generate and A.
A trapdoor permutation is certified [3] if a permutation description s output

by Generate can be efficiently recognized: if there is an algorithm Certify that
returns 1 for every string in the set S =

{
s

∣
∣ (s, t) R← Generate

}
and 0 for every

string not in the set S.
Where it does not introduce ambiguity, we prefer a more compact notation:

we write (π, π−1) R← Π in place of (s, t) R← Generate and π(·) and π−1(·) in place
of Evaluate(s, ·) and Invert(t, ·) respectively.

Digital Signatures. A digital signature scheme consists of a randomized key
generation algorithm that emits a (public) verification and a (private) signing
key, written (pk, sk) R← KeyGen; a (possibly randomized) signing algorithm that
takes a signing key and a message M ∈ {0, 1}∗, and emits a signature σ, written
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σ
R← Sign(sk,M); and a (usually not randomized) verification algorithm that

takes a verification key, message, and claimed signature, and returns 0 or 1,
written 1 ?= Verify(pk,M, σ). We require that for all (pk, sk) R← KeyGen, for all
M ∈ {0, 1}∗, and for all σ

R← Sign(sk,M) we have Verify(pk,M, σ) = 1.
A digital signature scheme is (t, qS, ε) existentially unforgeable if no t-time

algorithm A has advantage greater than ε in the game

Adv ForgeA
def= Pr

[
Verify(pk,M∗, σ∗) = 1 :
(pk, sk) R← KeyGen, (M∗, σ∗) R← ASign(sk,·)(pk)

]

,

where the probability is over the coin tosses of KeyGen, Sign, and A, and where
we require that A make no more than qS queries to the signing oracle and (to
exclude trivial forgeries) that A not have queried its signing oracle at M∗.

In the random oracle model, all parties have access to a hash oracle that
returns an independently random result on every input. A digital signature
scheme is (t, qH , qS, ε) if no t-time algorithm A has advantage greater than ε
in game Adv ForgeA above while making at most qS signing oracle queries and
at most qH hash oracle queries. The definition generalizes naturally to multiple
oracle hash functions.

A digital signature is unique if for every message M ∈ {0, 1}∗ and every
public key pk there is at most one signature σ such that Verify(pk,M, σ) = 1.
This property must hold unconditionally, even for maliciously generated public
keys that would not be emitted by KeyGen. In a unique signature scheme the
signing and verification algorithms are not randomized.

Full-Domain Hash Signatures. Trapdoor permutations give rise to a simple,
natural unique signature scheme. Let Π be a trapdoor permutation family
over domain D, and let H : {0, 1}∗ → D be a hash function, modeled as a
random oracle. The key generation algorithm KeyGen picks a trapdoor per-
mutation (s, t) R← Generate and sets pk = s and sk = t. The signing algo-
rithm Sign(sk,M) parses sk as t and emits σ = Invert

(
t,H(M)

)
. The verifi-

cation algorithm Verify(pk,M, σ) parses pk as s and rejects if Certify(s) �= 1;
checks that σ is an element of D and rejects if not; and, finally, accepts if
Evaluate(s, σ) = H(M) and rejects otherwise.

In our compact notation, the signature on a message M is σ = π−1
(
H(M)

)
;

the verifier checks whether π(σ) ?= H(M).
Certifying that s is valid ensures that Evaluate(s, ·) is a permutation of D;

there can be only one element of D whose image under that permutation is
H(M), which guarantees unique signatures.

Bellare and Rogaway showed that the full-domain hash signature scheme is
existentially unforgeable in the random oracle model if the underlying trapdoor
permutation is one-way [2]. Their reduction suffered a security loss of qH . Coron
gave an improved security analysis, with security loss qS, assuming that the
underlying trapdoor permutation family is homomorphic, as RSA is [6]. Coron
later gave a “meta-reduction” that showed that any proof that full-domain hash
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signatures are secure assuming that an underlying trapdoor permutation family
is one way must incur a qS security loss [7]. Even so, Kakvi and Kiltz proved
that RSA full-domain hash signatures are secure under the phi-hiding assump-
tion with a tight reduction [10]. Kakvi-Kiltz signatures have public exponent
e < N1/4. With e in this range, the RSA permutation is not certified, and the
resulting signatures are not unique.

3 Unique Signatures with Tight Security Reduction

At Eurocrypt 2016, Bader et al. [1] extended Coron’s meta-reduction technique
to show that any security proof for a unique signature scheme assuming a static
assumption like computational Diffie-Hellman or the trapdoor permutation one-
wayness must incur a qS security loss. Nevertheless, at Crypto 2017, Guo et al. [9]
were able to present unique signatures secure under the computational Diffie-
Hellman problem, with a tight security reduction. The Bader et al. metareduc-
tion assumes that the simulator extracts the information it uses to break the
underlying problem from the adversary’s forgery. In the Guo et al. signature
scheme, the simulator instead extracts that information from the adversary’s
hash queries. A Guo et al. signature is built from n + 1 blocks, where n is a sys-
tem parameter. Each block consists of a BLS signature [4] on the message and
the previous blocks. For the adversary to compute the ith block of a forgery in
progress, it must first reveal blocks 1 through i−1 in a hash query; the simulator
takes advantage of these hash queries to solve the underlying hard problem.

The security loss in the Guo et al. reduction is nq
1/n
H . Even n = 2 improves

on the Bader et al. bound; with qH = 280, setting n = 55 gives security loss less
than 151.1

Guo et al. observe that their signature framework could be instantiated using
a different underlying block signature. In this section, we translate the Guo et al.
signatures to the trapdoor permutation setting, still with signature size linear
in n. In the next section, we present our variant of Guo et al. signatures with
O(1) signature size.

Let Π be a trapdoor permutation family over domain D. Let H : {0, 1}∗ ×
N× D∗ → D be a hash function, modeled as a random oracle. Note that we can
instantiate H using a hash function H ′ : {0, 1}∗ → D by means of an unambigu-
ous encoding of {0, 1}∗ × N × D∗ in {0, 1}∗.

KeyGen. Pick (s, t) R← Generate. The public key is pk = s. The private key
is sk = t.

Sign(sk,M). Parse sk as t. For each i, 1 ≤ i ≤ n + 1, compute

hi ← H
(
M, i, (σ1, σ2, . . . , σi−1)

)
and σi ← Invert(t, hi).

The signature is σ = (σ1, σ2, . . . , σn, σn+1).

1 The Bitcoin network hash rate is estimated at 279 hashes per day. See https://
blockchain.info/charts/hash-rate, visited September 22, 2017.

https://blockchain.info/charts/hash-rate
https://blockchain.info/charts/hash-rate
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Verify(pk,M, σ). Parse pk as s and reject if Certify(s) �= 1. Parse σ as
(σ1, σ2, . . . , σn, σn+1) ∈ Dn+1, and reject if parsing fails. For each i, 1 ≤
i ≤ n + 1, compute

hi ← H
(
M, i, (σ1, σ2, . . . , σi−1)

)
.

For each i, i ≤ i ≤ n + 1, check that

Evaluate(s, σi) = hi.

If any of these checks fails, reject; otherwise, accept.

The proof that the Guo et al. signature scheme is unforgeable [9, Section 5]
can be easily adapted to show that the variant above is unforgeable as well. The
simulator B is given the public description π of a trapdoor permutation, and an
element y∗ of D. Its goal is to find x∗ ∈ D such that π(x∗) = y∗. It sets π as the
challenge signing key and interacts with the forger A as specified by Guo et al.
For hash oracle queries other than the one in which it will embed the challenge,
the simulator chooses x

R← D and returns π(x) as the hash; this allows it to
compute the corresponding block signature x, should it later need to answer a
signing oracle query on the same message. For the hash oracle query where it
chooses to embed the challenge, A simply responds with y∗. A subsequent hash
oracle query from B that contains the next block signature on the same message
will reveal x∗ to B. The proof and analysis are otherwise unchanged.

4 Short Unique Signatures with Tight Security Reduction

We now explain how to compress the signatures of Guo et al. Our scheme
is inspired by the sequential aggregate signature of scheme of Lysyanskaya
et al. [12].

Let D be a group with operation +, identity 0D, and inverse operation −.
Let Π be a trapdoor permutation family over domain D; we do not require any
homomorphic interaction between Π and +.

Let λ be a positive integer (whose value depends on the security parameter, as
discussed below), and let E be the set {0, 1}λ together with the bitwise exclusive
or operation ⊕ and identity 0E .

Let H : {0, 1}∗ ×N×E → D and G : {0, 1}∗ ×N ×D → E be hash functions,
modeled as random oracles. As before, we can instantiate H and G from hash
functions with domain {0, 1}∗ using appropriate unambiguous encodings.

KeyGen. Pick (s, t) R← Generate. The public key is pk = s. The private key
is sk = t.

Sign(sk,M). Parse sk as t. Set

σ0 ← 0D and μ0 ← 0E .
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For each i, 1 ≤ i ≤ n, compute

σi ← Invert
(
t, σi−1 + H(M, i, μi−1)

)
(1)

and
μi ← μi−1 ⊕ G(M, i, σi). (2)

The signature is σ = (σn, μn).
Verify(pk,M, σ). Parse pk as s and reject if Certify(s) �= 1. Parse σ as (σn,

μn) ∈ D × E, and reject if parsing fails. For i from n down to 1, compute

μi−1 ← μi ⊕ G(M, i, σi) (3)

and
σi−1 ← Evaluate(s, σi) − H(M, i, μi−1). (4)

Check that

σ0 = 0D and μ0 = 0E .

If either of these checks fails, reject; otherwise, accept.

4.1 Proof of Correctness

Let σ = (σn, μn) be a signature on message M under keys pk = s and sk = t.
The signer computed partial values σ0, σ1, . . . , σn and μ0, μ1, . . . , μn according
to (1) and (2). The verifier will compute partial values σ′

n, σ′
n−1, . . . , σ

′
0 and

μ′
n, μ′

n−1, . . . , μ
′
0 according to (3) and (4).

We know that σ′
n = σn and μ′

n = μn, because the verifier is verifying the
output of the signing algorithm. Suppose that for some i we have σ′

i = σi and
μ′

i = μi. Then

μ′
i−1 = μ′

i ⊕ G(M, i, σ′
i) = μi ⊕ G(M, i, σi) = μi−1

and

σ′
i−1 = Evaluate(s, σ′

i) − H(M, i, μ′
i−1) = Evaluate(s, σi) − H(M, i, μi−1)

= Evaluate
(
s, Invert

(
t, σi−1 + H(M, i, μi−1)

)) − H(M, i, μi−1)

= σi−1 + H(M, i, μi−1) − H(M, i, μi−1) = σi−1.

By induction, then, σ′
0 = σ0 = 0D and μ′

0 = μ0 = 0E , so the verification checks
will succeed.
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4.2 Proof of Uniqueness

Suppose for the sake of contradiction that σ �= σ′ are two valid signatures on a
message M under public key pk. If pk cannot be parsed as s or Certify(s) �= 1, the
verification algorithm will reject both σ and σ′. Accordingly, Evaluate(s, ·) must
be a permutation of D, which means that, for any u, v ∈ D, if Evaluate(s, u) =
Evaluate(s, v) then u = v.

Parse σ as (σn, μn) ∈ D × E and σ′ as (σ′
n, μ′

n) ∈ D × E. If either signa-
ture fails to parse it will be rejected by the verification algorithm. Applied to
σ, the verification algorithm will compute partial values σn, σn−1, . . . , σ0 and
μn, μn−1, . . . , μ0 according to (3) and (4). Applied to σ′, the verification algo-
rithm will compute partial values σ′

n, σ′
n−1, . . . , σ

′
0 and μ′

n, μ′
n−1, . . . , μ

′
0 accord-

ing to (3) and (4). All of the σi and σ′
i values must be elements of D because

σn and σ′
n are. All of the μi and μ′

i values must be elements of E because μn and
μ′

n are.
Since both σ and σ′ verify, we know that σ0 = 0D, μ0 = 0E , σ′

0 = 0D, and
μ′
0 = 0E . Stated another way, we know that σ0 = σ′

0 and μ0 = μ′
0. Now suppose

that for some i we have σi−1 = σ′
i−1 and μi−1 = μ′

i−1. Then, substituting (4)
twice in σi−1 = σ′

i−1 we obtain

Evaluate(s, σi) − H(M, i, μi−1) = Evaluate(s, σ′
i) − H(M, i, μ′

i−1),

and, substituting μ′
i−1 = μi−1 on the right hand side, we obtain

Evaluate(s, σi) − H(M, i, μi−1) = Evaluate(s, σ′
i) − H(M, i, μi−1),

and we can obtain

Evaluate(s, σi) = Evaluate(s, σ′
i)

by adding H(M, i, μi−1) to both sides. Because Evaluate(s, ·) is a permutation,
we conclude that σi = σ′

i. Now, substituting (3) twice into μi−1 = μ′
i−1, we have

μi ⊕ G(M, i, σi) = μ′
i ⊕ G(M, i, σ′

i)

and, since σi = σ′
i, we conclude that G(M, i, σi) = G(M, i, σ′

i) and therefore
μi = μ′

i. By induction, σn = σ′
n and μn = μ′

n, contradicting the assumption that
σ �= σ′.

4.3 Proof of Unforgeability

Suppose, for the sake of contradiction, that there exists some algorithm A that
forges signatures with non-negligible probability. We will show that we can use A
to break the one-wayness of the underlying trapdoor permutation family Π.

Description of the Simulator. We describe algorithm B that uses A to break
the security of the trapdoor permutation family Π.
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Environment Setup. Algorithm B is given a permutation key s∗ and a value y∗ ∈
D. Its goal is to compute x∗ ∈ D such that Evaluate(s∗, x∗) = y∗. Algorithm B
picks an integer c∗ uniformly at random from the range [1, n], and then an integer
k∗ uniformly at random from the range

[
1, (qH + 1)(n+1−c∗)/n

]
. (Note that the

range from which k∗ is chosen depends on c∗.) Algorithm B initializes a global
variable x∗ to ⊥ and a global counter k to 0.

Algorithm B sets pk ← s∗; it does not know the corresponding sk. It then
runs A with input pk.

The Tables Recording Hash Oracle Queries and Responses. Algorithm B main-
tains a table to help it answer H oracle queries, which we call the H-table. The
H-table starts out empty. Each row in the H-table has the following entries:

– M ∈ {0, 1}∗, i ∈ N, μ ∈ E: these, together, are the inputs to the hash query.
– z ∈ D: the output from the hash query.
– good ∈ {true, false}: a flag used by B to track hash queries that could

contribute to an eventual signature.
– internal ∈ {true, false}: a flag used by B to track H oracle queries that it

initiated as part of signature generation, versus those initiated by A.
– x ∈ D ∪ {⊥}: a secret used by B as the basis for computing the answer z to

some hash queries.

Algorithm B likewise maintains a table to help it answer G oracle queries, which
we call the G-table. The G-table starts out empty. Each row in the G-table has
the following entries:

– M ∈ {0, 1}∗, i ∈ N, σ ∈ D: these, together, are the inputs to the hash query.
– z ∈ E: the output from the hash query.
– good ∈ {true, false}: a flag used by B to track hash queries that could

contribute to an eventual signature.
– internal ∈ {true, false}: a flag used by B to track G oracle queries that it

initiated as part of signature generation, versus those initiated by A.
– μ ∈ E ∪{⊥}: the value algorithm A is expected to compute for μi, as the xor

of μi−1 and z, or ⊥ if not known.

Answering an H oracle query. To answer an H oracle query on (M, i, μ) ∈
{0, 1}∗ × N × E, B responds as follows.

1. If there has already been an H oracle query for (M, i, μ), there will be an entry
(M, i, μ, z, good , internal , x) in the H-table. Algorithm B responds with z.
This keeps the oracle consistent if queried multiple times on the same input.

2. If i < 1 or i > n, the query is not relevant to any signature. Algorithm B
picks z

R← D at random, sets good ← false, internal ← false, and x ← ⊥.
It adds the entry (M, i, μ, z, good , internal , x) to the H-table, and responds
with z.

3. If i = 1, B consults μ. If μ �= 0E , the query is not relevant to any signature.
Algorithm B picks z

R← D at random, sets good ← false, internal ← false,
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and x = ⊥. It adds the entry (M, i, μ, z, good , internal , x) to the H-table, and
responds with z.
Otherwise, μ = 0, and the query is relevant to an eventual signature on the
message M . Algorithm B will decide whether to embed its challenge as the
answer to this query, according to the following criteria. If this H oracle query
was generated internally by B as part of handling a signing query from A,
algorithm B sets internal ← true; it will not embed its challenge as the
answer to this query. Otherwise, B sets internal ← false. If i �= c∗, B will
not embed its challenge as the answer to this query. Otherwise, if i = c∗, B
increments the global counter k. If the counter k now has a value different
from k∗, B will not embed its challenge as the answer to this query. Otherwise
all three of the following conditions hold: (1) the query was generated by A;
(2) i equals c∗; and (3) k, incremented, equals k∗. In this case B will embed
its challenge as the answer to this query.
If B didn’t chose to embed its challenge as the answer to this query, it selects
x

R← D, computes z ← Evaluate(s∗, x), and sets good ← true. It adds the
entry (M, i, μ, z, good , internal , x) to the H-table, and responds with z.
If B did chose to embed its challenge as the answer to this query, it sets x ← ⊥,
z ← y∗, and good ← true. It adds the entry (M, i, μ, z, good , internal , x) to
the H table.
Before returning, algorithm B checks whether its answer to this query is
inconsistent with a previous query to the G oracle at level i. Algorithm B
examines all entries in the G-table matching (M ′′ = M, i′′ = i, σ′′, z′′,
good ′′ = false, internal ′′, μ′′). If x �= ⊥, algorithm B checks for such an
entry with σ′′ = x. If x = ⊥, algorithm B checks for such an entry with
Evaluate(s∗, σ′′) = y∗. In either case there is at most one such entry in the
G-table (in the latter case because Evaluate(s∗, ·) is a permutation). If such
an entry exists, it was inserted with good = false but should have been
inserted with good = true. Algorithm B cannot fix this problem and must
abort.
If algorithm B was not forced to abort, it responds to the H-query with z.

4. Otherwise, we have 2 ≤ i ≤ n. Algorithm B cannot immediately tell whether
μ makes the query good — it must consult G oracle queries for the previous
block, i − 1. Algorithm B searches the G-table for an entry matching (M ′ =
M, i′ = i − 1, σ′, z′, good ′ = true, internal ′, μ′ = μ). There is at most one
such entry in the G-table.
If no matching entry is found, the query is not relevant to any signature.
Algorithm B picks z

R← D at random, sets good ← false, internal ← false,
and x = ⊥. It adds the entry (M, i, μ, z, good , internal , x) to the H-table, and
responds with z.
Otherwise, there is a matching entry (M ′ = M, i′ = i − 1, σ′, z′, good ′ =
true, μ′ = μ). (For each M ′ and i′ there can be at most one entry in the G-
table with good ′ = true.) This means that the H query now being handled is
relevant to an eventual signature on the message M . Algorithm B will decide
whether to embed its challenge as the answer to this query according to the
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following criteria. If this H oracle query was generated internally by B as
part of handling a signing query from A, algorithm B sets internal ← true;
it will not embed its challenge as the answer to this query. Otherwise, B sets
internal ← false. If i �= c∗, B will not embed its challenge as the answer
to this query. Otherwise, if i = c∗, B increments the global counter k. If the
counter k now has a value different from k∗, B will not embed its challenge as
the answer to this query. Otherwise all three of the following conditions hold:
(1) the query was generated by A; (2) i equals c∗; and (3) k, incremented,
equals k∗. In this case B will embed its challenge as the answer to this query.
If B didn’t chose to embed its challenge as the answer to this query, it selects
x

R← D, computes z ← Evaluate(s∗, x) − σ′, and sets good ← true. It adds
the entry (M, i, μ, z, good , internal , x) to the H table, and responds with z.
If B did chose to embed its challenge as the answer to this query, it sets x ← ⊥,
z ← y∗ −σ′, and good ← true. It adds the entry (M, i, μ, z, good , internal , x)
to the H table.
Before returning, algorithm B checks whether its answer to this query is
inconsistent with a previous query to the G oracle at level i. Algorithm B
examines all entries in the G-table matching (M ′′ = M, i′′ = i, σ′′, z′′,
good ′′ = false, internal ′′, μ′′). If x �= ⊥, algorithm B checks for such an
entry with σ′′ = x. If x = ⊥, algorithm B checks for such an entry with
Evaluate(s∗, σ′′) = y∗. In either case there is at most one such entry in the
G-table (in the latter case because Evaluate(s∗, ·) is a permutation). If such
an entry exists, it was inserted with good = false but should have been
inserted with good = true. Algorithm B cannot fix this problem and must
abort.
If algorithm B was not forced to abort, it responds to the H-query with z.

Answering a G oracle query. To answer a G oracle query on (M, i, σ) ∈ {0, 1}∗ ×
N × D, B responds as follows.

1. If there has already been a G oracle query for (M, i, σ), there will be an entry
(M, i, σ, z, good , μ) in the G-table. Algorithm B responds with z. This keeps
the oracle consistent if queried multiple times on the same input.

2. If i < 1 or i > n, the query is not relevant to any signature. Algorithm B picks
z

R← D at random. It sets good ← false, internal ← false, and μ ← ⊥.
It adds the entry (M, i, σ, z, good , internal , μ) to the G-table, and responds
with z.

3. Otherwise, we have i ≤ i ≤ n. Algorithm B searches its H-table for entries
matching (M ′ = M, i′ = i, μ′, z′, good ′ = true, internal ′, x′). There is at
most one such entry in the H-table.
If no matching entry is found, the query is not relevant to any signature.
Algorithm B picks z

R← E at random. It sets good ← false, internal ←
false, and μ ← ⊥. It adds the entry (M, i, σ, z, good , internal , μ) to the G-
table, and responds with z.
Otherwise, algorithm B has found a matching entry (M ′ = M, i′ = i, μ′, z′,
good ′ = true, internal ′, x′) in the H-table. The query now being handled is
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relevant to an eventual signature if either (a) x′ �= ⊥ and σ = x′ or (b) x′ = ⊥
and Evaluate(s∗, σ) = y∗. In the latter case, algorithm B has just learned the
solution to the inversion problem it was posed. It stores the solution σ in its
global variable x∗.
If the query now being handled is not relevant to any signature. Algorithm B
picks z

R← E at random. It sets good ← false, internal ← false, and μ ← ⊥.
It adds the entry (M, i, σ, z, good , internal , μ) to the G-table, and responds
with z.
Otherwise, the query now being handled is relevant to an eventual signature
on the message M . Algorithm B picks z

R← E at random and sets good ←
true and μ ← μ′ ⊕ z. If this G oracle query was generated internally by B as
part of handling a signing query from A, algorithm B sets internal ← true.
Otherwise, B sets internal ← false. It adds the entry (M, i, σ, z, good , μ) to
the G-table.
So long as i �= n, algorithm B checks whether its answer to this query is
inconsistent with a previous query at level i+1 before returning. Algorithm B
searches its H-table for an entry matching (M ′′ = M, i′′ = i+1, μ′′ = μ′⊕z,
z′′, good ′′ = false, internal ′′ = false, x′′). If such an entry exists, it was
inserted with good = false but should have been inserted with good = true.
Algorithm B cannot fix this problem and must abort.
If algorithm B was not forced to abort, it responds to the hash query with z.

Answering a Signing Oracle Query. To answer a signature query on M ∈ {0, 1}∗,
B responds as follows.

Otherwise, for each i from 1 to n, algorithm B searches its H-table for entries
of the form (M ′ = M, i′ = i, μ′, z′, good ′ = true, internal ′ = false, x′).
There will be at most one such entry in the H-table for each i. There will be
some index I such that for all i ≤ I there is a matching entry in the table, and
for all i > I there is not. (It’s possible that there are no matching entries in the
H-table, in which case I is 0.)

For each i from 1 to n, algorithm B searches its G-table for entries of the
form (M ′′ = M, i′′ = i, σ′′, z′′, good ′′ = true, internal ′′ = false, μ′′). There
will be at most one such entry in the G-table for each i. There will be some
index J such that for all i ≤ J there is a matching entry in the table, and for
all i > J there is not. (It’s possible that there are no matching entries in the
G-table, in which case J is 0.) It must be the case that either J = I −1 or J = I.

If I = 0, algorithm B sets σI ← 0D and μI ← 0E .
Otherwise, if I > 0 and J = I, let (M ′ = M, i′ = I, μ′, z′, good ′ =

true, internal ′ = false, x′) be the matching entry in the G-table for i′ = I,
and let (M ′′ = M, i′′ = J, σ′′, z′′, good ′′ = true, internal ′′ = false, μ′′). be
the matching entry in the G-table for i′′ = J = I. Algorithm B sets σI ← σ′′ and
μI ← μ′′.

Otherwise, we have I > 0 and J = I − 1. Let (M ′ = M, i′ = I, μ′,
z′, good ′ = true, internal ′ = false, x′) be the matching entry in the G-
table for i′ = I. If x′ = ⊥, algorithm B does not know how to compute the
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next block signature, and must abort. Otherwise, x′ ∈ D, and B sets σI ← x′.
It makes an internal G oracle query for G(M, i, σI). This query ensures that
there is an entry in the G-table of the form (M ′′ = M, i′′ = I, σ′′, z′′,
good ′′ = true, internal ′′ = true, μ′′). Algorithm B sets μI ← μ′′.

Now algorithm B repeats the following steps for each i from I + 1 to n. It
makes an internal H oracle query for H(M, i, μi−1). This hash query ensures that
there is an entry in the H-table of the form (M ′ = M, i′ = i, μ′ = μi−1, z′,
good ′ = true, internal ′ = true, x′). Algorithm B sets σi ← x′. (Algorithm B
has set μi−1 to the value that will cause its hash oracle code to create an entry
with good ′ = true and x′ �= ⊥.) Algorithm B makes an internal G oracle query
for G(M, i, σi). This query ensures that there is an entry in the G-table of the
form (M ′′ = M, i′′ = i, σ′′, z′′, good ′′ = true, internal ′′ = true, μ′′).
Algorithm B sets μi ← μ′′.

When the loop has finished, B returns (σn, μn) as the answer to the signature
query.

Handling the Claimed Forgery. Finally, algorithm A halts and emits a mes-
sage M∗ ∈ {0, 1}∗ and a claimed signature forgery σ∗ on M . Algorithm A must
not have made a signing oracle query on message M∗, or the forgery would be
trivial. Algorithm B attempts to parse σ as (σ∗

n, μ∗
n) ∈ D×E. If parsing succeeds,

B attempts to verify the signature.
Algorithm B repeats the following steps for each i from n down to 1. Algo-

rithm B checks that the G-table includes an entry of the form (M ′′ = M∗, i′′ =
i, σ′′ = σ∗

i , z′′, good ′′ = true, internal ′′ = false, μ′′). If there is no such entry,
A must not have queried its G oracle at G(M∗, i, σ∗

i ). Algorithm B declares fail-
ure and aborts. Otherwise, G(M∗, i, σ∗

i ) = z′′. Algorithm B sets μ∗
i−1 ← μ∗

i ⊕z′′.
Algorithm B then checks that the H-table includes an entry of the form
(M ′ = M∗, i′ = i, μ′ = μ∗

i−1, z′, good ′ = true, internal ′ = false, x′). If
there is no such entry, A must not have queried its H oracle at H(M∗, i, μ∗

i−1).
Algorithm B declares failure and aborts. Otherwise, H(M∗, i, μ∗

i−1) = z′. Algo-
rithm B sets σ∗

i−1 ← Evaluate(s, σ∗
i )−z′ and continues to the next loop iteration.

Assuming it completes the loop without aborting, B can tell whether the
claimed forgery σ∗ is valid by checking whether σ∗

0 = 0D and μ∗
0 = 0E .

Finally, B checks whether one of A’s hash queries revealed the answer to the
one-wayness challenge posed to B by examining its global variable x∗. If that
variable still contains ⊥, B declares failure. Otherwise B declares success: x∗ is
the value such that Evaluate(s∗, x∗) = y∗.

Analysis of the Simulator. We now analyze the performance of the sim-
ulator B. Suppose that A makes qS signing queries and qH hash queries, and
produces a valid forgery with probability ε. There are six reasons why B might
fail to break the one-wayness of the trapdoor permutation family Π:

1. Algorithm B discovers, when handling a H oracle query at level i, that it
failed to mark a G oracle query at level i as good.
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2. Algorithm B discovers, when handling a G oracle query at level i, that it
failed to mark a H oracle query at level i + 1 as good.

3. Algorithm B discovers, when verifying A’s claimed forgery, that A didn’t
query the H oracle at H(M∗, i, μ∗

i−1) for some i.
4. Algorithm B discovers, when verifying A’s claimed forgery, that A didn’t

query the G oracle at G(M∗, i, σ∗
i ) for some i.

5. Algorithm A makes a signature query that B cannot answer because it would
require knowing the preimage of the challenge value y∗.

6. Algorithm A produces a valid forgery but never made a hash oracle query
that revealed the preimage of the challenge value y∗.

We can bound the likelihood of reasons 1 through 4 in a straightforward way.
To bound the likelihood of reasons 5 and 6, we will need to recall machinery by
Guo et al. [9].

We start by bounding reason 1. Algorithm B is handling an H oracle query
for H(M, i, μ). For each M and i, there is exactly one value of μ that will
trigger a consistency check, with B examining its G-table for entries matching
(M ′′ = M, i′′ = i, σ′′, z′′, good ′′ = false, internal ′′, μ′′). There is exactly one
value of σ′′ in such an entry that would cause B to abort, and that this value
depends on a value that isn’t in A’s view: either σ′′ = x, with x chosen uniformly
at random as part of the query handling, or Evaluate(s∗, σ′′) = y∗, with y∗ not
previously revealed to A.

Let QG(M, i) be the set of queries algorithm A makes to its G oracle of the
form G(M, i, ·), i.e., the set of queries that can add a matching entry to G-table.
Then when algorithm A makes a query H(M, i, μ) with the one value of μ that
triggers a consistency check, the probability that the consistency check will lead
B to abort is at most |QG(M, i)|/|D|, and the probability that B ever needs to
abort for reason 1, regardless of how many H oracle queries A makes, is at most

∑

(M,i)

|QG(M, i)|
|D| =

1
|D|

∑

(M,i)

|QG(M, i)| ≤ qG

|D| .

(Crucially, for each M and i there is only one H(M, i, ·) query that can trigger
a consistency check, and so QG(M, i) is counted only once.)

We bound reason 2 similarly. Algorithm B is handling a G oracle query for
G(M, i, σ). For each M and i, there is exactly one value of σ that will trigger
a consistency check, with B examining its H-table for entries matching (M ′′ =
M, i′′ = i + 1, μ′′, z′′, good ′′ = false, internal ′′ = false, x′′).

There is exactly one value of μ′′ in such an entry that would cause B to abort,
and that this value depends on a value, z, that is chosen uniformly at random
as part of the query handling and isn’t in A’s view.

Let QH(M, i) be the set of queries algorithm A makes to its H oracle of the
form G(M, i, ·), i.e., the set of queries that can add a matching entry to G-table.
Then when algorithm A makes a query G(M, i, σ) with the one value of σ that
triggers a consistency check, the probability that the consistency check will lead
B to abort is at most |QG(M, i + 1)|/|E|, and the probability that B ever needs
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to abort for reason 1, regardless of how many G oracle queries A makes, is at
most

∑

(M,i)

|QH(M, i + 1)|
|E| =

1
|E|

∑

(M,i)

|QH(M, i + 1)| ≤ qH

|E| .

To bound reason 3, we observe that if A did not query its H oracle at
H(M∗, i, μ∗

i−1) for some i then the value of H(M∗, i, μ∗
i−1) is uniformly random

and independent of A’s view, and therefore so is the correct value for σ∗
i . We

have already shown (in Sect. 4.2) that only one signature on M∗ will verify as
valid); it follows that only one value of σ∗

i will be valid as part of a signature.
The value chosen (implicitly) by algorithm A is correct with probability 1/|D|.

Similarly, to bound reason 4, we observe that if A did not query its G oracle
at H(M∗, i, σ∗

i ) for some i then the value of G(M∗, i, σ∗
i ) is uniformly random

and independent of A’s view, and therefore so is the correct value for μ∗
i . We

have already shown (in Sect. 4.2) that only one signature on M∗ will verify as
valid); it follows that only one value of μ∗

i will be valid as part of a signature.
The value chosen (implicitly) by algorithm A is correct with probability 1/|E|.

If A produces a valid forgery in an ε fraction of runs when run in the unforge-
ability experiment, it will produce a valid forgery without inducing a reason-1
through 4 abort in at least an ε − (qG + 1)/|D| − (qH + 1)/|E| fraction of runs
under B.

Now suppose that A, running under B, produces a valid forgery without
inducing a reason-1 through 4 abort. We review the H-table and G-table main-
tained by B. For each i, 1 ≤ i ≤ n, we define the set Mi as follows: a message
M ∈ {0, 1}∗ is included in Mi if there is an entry (M ′ = M, i′ = i, μ′,
z′, good ′ = true, internal ′ = false, x′) in the H-table, for some μ′, z′,
and x′. We further define the set Mn+1 as follows: a message M ∈ {0, 1}∗

is included in Mn+1 if there is an entry (M ′′ = M, i′′ = n, σ′′, z′′,
good ′′ = true, internal ′′ = false, μ′′) in the G-table, for some σ′′, z′′, and μ′′.

Only an H oracle query made by A can cause a message M to be included
in Mi for some i ≤ n (because internal ′ = false), and each H oracle query
made by A can add only one entry to the H-table. We therefore know that∑n

i=1 |Mi| ≤ qH . Only a G oracle query made by A can cause a message M
to be included in Mn+1 (because internal ′′ = false), and each G oracle query
made by A can add only one entry to the G-table.

In handling a G oracle query G(M, i, ·) with 1 ≤ i ≤ n, algorithm B will
add an entry to the G-table with good = true only if it finds a corresponding
entry in the H-table with M ′ = M , i′ = i, and good ′ = true. In handling
an H oracle query H(M, i, ·) with 2 ≤ i ≤ n, algorithm B will add an entry
to the H-table with good = true only if it finds a corresponding entry in the
G-table with M ′ = M , i′ = i − 1, and good ′ = true. We therefore know that
M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ Mn+1. Finally, since B produced a valid forgery on
some message M∗ but did not induce a reason-2 abort, we know that M∗ ∈ Mi

for all i and, in particular, that M∗ ∈ Mn+1. It follows that |Mn+1| > 0.
We now restate two lemmas from Guo et al. [9].
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Lemma 1 (Range Lemma [9]). Let q and n be positive integers, and let
M1, . . . ,Mn+1 be sets satisfying |M1| < q, |Mn+1| > 0, and M1 ⊇ M2 ⊇
· · · ⊇ Mn ⊇ Mn+1. Then there exists an integer i∗ ∈ [1, n] such that

|Mi∗ | < q(n+1−i∗)/n and |Mi∗+1| ≥ q(n−i∗)/n

Lemma 2 (Probability Lemma [9]). Let q and n be positive integers, and let
M1, . . . ,Mn+1 be sets satisfying |M1| < q, |Mn+1| > 0, and M1 ⊇ M2 ⊇ · · · ⊇
Mn ⊇ Mn+1. Fix some arbitrary ordering on the elements of each set Mi. Then
if an integer c∗ is chosen uniformly at random from the set [1, n] and an integer
k∗ is chosen uniformly at random from the set

[
1, q(n+1−c∗)/n

]
, the probability

that the k∗th message in Mc∗ is also in Mc∗+1 is at least 1/
(
nq1/n

)
.

For the proofs of these lemmas, see Guo et al. [9, Section 4]. Note that the
Probability Lemma follows from the Range Lemma: We have c∗ = i∗ with prob-
ability 1/n, and conditioned on c∗ = i∗ the probability that a message from Mc∗

with index k ∈ [
1, q(n+1−c∗)/n

]
is also in Mc∗+1 is at least

|Mc∗+1|∣
∣[1, q(n+1−c∗)/n]

∣
∣ ≥ q(n−c∗)/n

q(n+1−c∗)/n
=

1
q1/n

.

Setting q = qH + 1, we have already shown that the sets M1, . . . ,Mn+1

defined by the hash table maintained by B satisfy the preconditions of the Prob-
ability Lemma in the case that A produces a valid forgery without inducing a
reason-1 through 4 abort.

When algorithm B starts running, it chooses c∗ uniformly at random from the
set [1, n] and k∗ uniformly at random from the set

[
1, q

(n+1−c∗)/n
S

]
. It embeds the

challenge in the k∗th entry in Mc∗ , where the arbitrary ordering on the elements
of the sets Mc∗ is the order of A’s H oracle queries that cause elements to be
added to Mc∗ .

In handling a signing query on a message M , algorithm B will find in its H-
table an entry of the form (M ′ = M, i′ = i, μ′, z′, good ′ = true, internal ′ =
false, x′) for each i, 1 ≤ i ≤ I, and will find in its G-table an entry of the form
(M ′′ = M, i′′ = i, σ′′, z′′, good ′′ = true, internal ′′ = false, μ′′) for each i,
1 ≤ i ≤ J , where I < n and J equals either I−1 or I. In the case that I = J = n,
algorithm B has all the information it needs to answer the signing query. In any
other case, it will make internal H oracle and G oracle queries in handling the
signing query. These internal queries will add entries to the H-table and G-table,
respectively, with good = true and internal = true, which will prevent the later
addition of entries with good = true and internal = false.

In the notation we have just introduced, any message M submitted by A to
its signing oracle will end up a member of M1 through MI and, if I = J = n, of
Mn+1. A signing query on message M will induce a reason-5 abort if J = I − 1
and the H-table entry with M ′ = M and i′ = I has x′ = ⊥. This can happen
only if B chose to embed its inversion challenge in the response to a level-I
H oracle query for the message M , but A did not then make a corresponding
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level-I G oracle query for the message M , revealing the solution to the inversion
challenge. And, provided that I < n, if A did not make a level-I G oracle query
for the message M it also did not make a level-(I + 1) H oracle query for the
message M . But B embeds its inversion challenge in the k∗th entry in Mc∗ . Put
another way: If the k∗th message in Mc∗ is also in Mc∗+1 then no signing oracle
query will induce a reason-5 abort.

Finally, a reason 6 abort will occur if none of A’s G oracle queries revealed
to B the solution to the challenge it embedded in M , the k∗th message in Mc∗ .
If c∗ = n, then the presence of M in Mn+1 guarantees that A made a level-n
G oracle query for M , revealing the solution. If c∗ < n, then the presence of M
in Mc∗+1 guarantees that A made a level-(c∗ + 1) H oracle query for M , which
means it must also have made a level-c∗ G oracle query for M , likewise revealing
the solution. Put another way: If the k∗th message in Mc∗ is also in Mc∗+1,
then A will not be forced into a reason-6 abort.

Under Guo et al.’s Probability Lemma, then, assuming that A, running
under B, produces a valid forgery without inducing a reason-1 through 4 abort,
no signing oracle query will induce a reason-5 abort and B will not be forced
into a reason 6 abort with probability at least 1/

(
nq1/n

)
, where q = qH + 1.

Thus if A produces a valid forgery in an ε fraction of runs when run in the
unforgeability experiment, B will use A to solve a one-wayness challenge in at
least an

(
ε − (qG + 1)/|D| − (qH + 1)/|E|) / (

n(qH + 1)1/n
)

fraction of runs.
Accounting for the running time incurred by B in answering A’s oracle queries,
we have proved the following theorem:

Theorem 1. Let Π be a (t′, ε′)-one-way trapdoor permutation family over
domain D. Then the short signature scheme on Π is (t, qH , qG, qS, ε)-secure
against existential forgery under an adaptive chosen-message attack (in the ran-
dom oracle model) for all t and ε satisfying

ε ≥ n(qH + 1)1/nε′ +
qG + 1

|D| +
qH + 1

|E| and t ≤ t′ − O(qH + qG + nqS).

5 Instantiation with RSA

Lysyanskaya et al. explain how to use the RSA function to create a certified
trapdoor permutation [12]. As usual, the permutation description consists of a
modulus N = pq, where p and q are two large primes, along with e, relatively
prime to ϕ(N) = (p − 1)(q − 1). The trapdoor is d = e−1 mod ϕ(N). The
domain D is Z/NZ, and the permutation is evaluated as

π : x �→ xe mod N and π−1 : y �→ yd mod N.

Two challenges remain.
First, we need π(·) to be a permutation of all of Z/NZ, even if N and e were

maliciously generated. Lysyanskaya et al. extend π(·) as

π(x) =

{
xe mod N if x is relatively prime to N

x otherwise
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and extend π−1(·) similarly. If we knew that e is relatively prime to ϕ(N), we
would be done. Unfortunately, this property is not easy to verify given just N and
e — indeed, it is intractable to verify when e < N1/4, assuming the phi-hiding
assumption holds, a fact used by Kakvi and Kiltz to build RSA full-domain
hash signatures with tight security reduction [10]. Lysyanskaya et al., following
Micali, Ohta, and Reyzin [13] and Cachin, Micali, and Stadler [5], propose to
require that e prime and larger than N , properties that are easy to check and
that are sufficient to guarantee that the extended π(·) above is a permutation.
The downside to such large e is that applying π(·) takes time linear in log e,
which is why e = 65537 is frequently chosen in other applications of RSA.

Kakvi, Kiltz, and May observed that for prime e in the range N
1
4+ε < e < N

it is possible to use Coppersmith’s method to certify that e is relatively prime to
ϕ(N) in time O(ε−8 log2 N) [11]. Where verifiers are expected to process many
signatures for each signing key they encounter, using smaller e and Kakvi-Kiltz-
May certification instead of e > N should reduce overall running time.

Second, we must pick the group operation for the domain D = Z/NZ. It
cannot be ×, because, e.g., p has no multiplicative inverse modulo N = pq.
Instead, following Lysyanskaya et al., we pick + as our group operation.

Finally, we must select a group E. Here the only requirement is that (qH +
1)/|E| be negligible. It is sufficient for E to consist of bit strings of length twice
the security parameter. At the 128-bit security level, for example, elements of
E can be 256 bits long.
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Abstract. Given the value of imported counterfeit and pirated goods,
the need for secure supply chain management is pertinent. Maleki et al.
(HOST 2017) propose a new management scheme based on RFID tags
(with 2–3K bits NVM) which, if compared to other schemes, is compet-
itive on several performance and security metrics. Its main idea is to
have each RFID tag stores its reader events in its own NVM while mov-
ing through the supply chain. In order to bind a tag’s identity to each
event such that an adversary is not able to impersonate the tag’s iden-
tity on another duplicate tag, a function with a weak form of unforge-
ability is needed. In this paper, we formally define this security prop-
erty, present three constructions (MULTIPLY-ADD, ADD-XOR, and S-
Box-CBC) having this security property, and show how to bound the
probability of successful impersonation in concrete parameter settings.
Finally, we compare our constructions with the light-weight hash func-
tion PHOTON used by Maleki et al. in terms of security and circuit area
needed. We conclude that our ADD-XOR and S-Box-CBC constructions
have approximately 1/4 − 1/3 of PHOTON’s total circuit area (this also
includes the control circuitry besides PHOTON) while maintaining an
appropriate security level which takes care of economically motivated
adversaries.

Keywords: Light-weight cryptography · Unforgeability
One-time hash function · Secure supply chain management

1 Introduction

According to a recent report (in 2016) by the OECD and the EU’s Intellectual
Property Office [1], the value of imported counterfeited and pirated goods is
worth nearly half a trillion dollars a year, which is around 2.5% of global imports
with many of the proceeds going to organized crime. Close to 5% of goods that
are imported into the European Union are fakes. The report analyses about half
a million customs seizures around the world during 2011–13 covering all kinds
of physical counterfeit goods (that infringe trademarks, intellectual property
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rights, or copyright) in order to obtain rigorous estimates of the scale of trade in
counterfeit and pirated goods (online piracy is not included). These fake products
appear everywhere – the most dangerous ones are auto parts that fail, drugs
making people sick, medical instruments delivering false readings, etc.

It is of utmost importance to make supply chains secure in order to detect
counterfeit product injection into the supply chain. To this purpose, Radio-
Frequency Identification (RFID) tags are used as a low-cost wireless identifica-
tion method: Each product is equipped with an RFID tag which has a unique
identifier and which is initialized at the supply chain back-end server with corre-
sponding product information. In addition the RFID tag is either initialized with
digital keys used for future authentication or, if a Physical Unclonable Function
(PUF) is embedded, then read-out ‘challenge response pairs’ from the PUF at
the back-end server can later be used for authentication. A supply chain moves
through different supply chain partners that interact with RFID tags using RFID
readers. These interactions are collected/stored and are together analyzed at the
back-end server in order to detect whether the product is genuine or fake before
the product exits the supply chain.

1.1 NVM-Based Scheme

This paper focuses on the most recent state-of-the-art proposal by Maleki et al.
[2] for secure supply chain management based on RFID tags. Previous schemes
come in two kinds: A first kind [3–7] requires persistent online communication
between readers of supply chain partners and the back-end server. This, how-
ever, is in practice not always possible; sometimes the online connection does get
lost and even an hour communication disruption can delay product transporta-
tion leading to financial loss. In order to avoid the need for persistent online
communication, a second kind of scheme has been proposed which requires each
supply chain partner to implement a local database [8–11]. Local databases are
used as temporal storage to keep track of reader events. The local databases are
integrated into the back-end server at a suitable time when an online connection
with the back-end server is available.

The disadvantage of using local databases is that they need a reliable infras-
tructure and they must be maintained and secured. This imposes extra costs to
partners and makes the supply chain possibly less secure as these local databases
become an accessible point of attack. The main contribution of [2] is a new
method which does not require any persistent online communication and also
does not require local databases. Their idea is to distribute the local databases
into the RFID tags themselves by utilizing the 2–3K bit Non-Volatile Memory
(NVM) present in current off-the-shelve RFID tags [12]. This memory is suf-
ficient for storing all the reader events the RFID tag engages in. Only when
exiting the supply chain, the RFID tag is read out and verified by the back-end
server for which online communication is needed (a minimal requirement for any
scheme). The NVM-based scheme of Maleki et al. [2] is presented in detail in
AppendixA (with discussion of pros and cons).
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1.2 Software Unclonable Functions

The main take-away of the NVM-based scheme is that in order to bind the
identity of an RFID tag to a reader event, the tag consumes one of its secret
keys k stored in its NVM in order to compute Fk(x) where input x is received
from the reader and cannot be distinguished from a random bit string. The tag
overwrites k with Fk(x) in its NVM – and in this way the tag authenticates its
own reader events stored in its NVM. For completeness, the reader represents
the reader event (which includes the identities of the reader and tag, and a time
stamp) as a bit string, which the reader MACs using its own key and this results
in x. The back-end server has in its database the key sequence of the tag (which
includes k) and the reader key; this is sufficient to verify the binding of the event
to the reader (through the MAC) and tag (through Fk(x)).

Maleki et al. [2] explain that it is sufficient to require that Fk(.) is a collision
resistant hash function – and they propose to use PHOTON 80/20/16, a light-
weight hash function costing 865 GE (Gate Equivalent). The complete solution
(including control logic etc.) costs 1428 GE. Juels and Weis [13] state (and
confirmed by [12]) “A basic RFID tag may have a total of anywhere from 1000–
10000 gates, with only 200–2000 budgeted specifically for security.” Also every
1000 gates costs approximately one dollar cent per tag. It is therefore important
to further reduce the gate equivalence of the complete solution. It turns out that
collision resistance is not required and this allows the design of a much more
light-weight Fk(.), which is the problem statement of this paper.

In the NVM-based scheme, Fk(.) is used to protect against an adversary who
can only access the tag through its read and write interface in order to gather
sufficient information to construct a ‘tag-simulator’ which can be programmed
into a fake tag. The read and write interface is such that after initialization only
the values that have replaced keys in NVM can be read out. This means that
in order to learn about one specific key k, an adversary can engage in a reader-
like interaction with the tag in order to replace k with Fk(x′) for some value
x′ of his choice. Next Fk(x′) can be read out and the pair (x′, Fk(x′)) can be
used to design a simulator for predicting Fk(x) for random input bit vectors x.
Modeling this (very) weak attacker leads to the definition of “software unclonable
functions” in [2] of which they only give collision resistant hash functions as an
instance. We notice that in the discussion above the adversary is only allowed
to use an RFID tag’s read and write interface according to its specifications.
An adversary who can circumvent the interface circuitry by means of a physical
attack is not considered.

1.3 Contributions and Organization

In Sect. 2 we take the definition of software unclonable functions and give an
equivalent definition in terms of a “software unclonable response game”. Next
we discuss its relation to the standard crypto notion of unforgeability for MACs
and we conclude that being software unclonable means “unforgeable for random
inputs when given one chosen input-output pair” – hence, the title of our paper.
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We enrich the definition of software unclonability by adding a security measure
for worst-case scenarios in concrete parameter settings.

Sections 3, 4, and 5 provide very light-weight constructions. The first, called
MULTIPLY-ADD, is based on a simple multiplication with addition over inte-
gers. The second, called ADD-XOR, combines xor with addition-with-carry over
binary vectors. The third, called S-Box-CBC, uses the idea of Cipher Block
Chaining (CBC) mode with a specially designed S-box. In Sect. 6 we compare
the different solutions and we show ADD-XOR and S-Box-CBC lead to dramatic
reductions in total circuit size for reasonable security.

2 Software Unclonable Functions

Software unclonable functions are defined as follows:

Definition 1. [2] A keyed function Fk(.) is called software unclonable if the
probability of guessing the output of Fk(x) for a randomly chosen input x with
knowledge of one chosen input-output pair (x′, Fk(x′)) (the adversary chooses
x′) is less than negligible (in the function’s key size).

We notice that Definition 1 requires resistance against adversaries with
unbounded computation – the definition formulates software unclonability in
terms of information theoretic security. This implies that a symmetric key
encryption scheme may not satisfy software unclonability since one chosen plain-
text ciphertext pair may reveal significant information about the underlying
secret key in the information theoretical setting. For a polynomial time adver-
sary a semantically secure symmetric key encryption scheme will be software
unclonable. Therefore, we recast the above definition for adversaries with poly-
nomial computation by using the software unclonable response game given in
Algorithm 1, where

– λ is a security parameter and Gen(1λ) is a ppt algorithm which generates a
random key k,

– A0 is a ppt adversarial algorithm which allows the adversary to generate
exactly one chosen input value x′

– for which the adversary is allowed to learn the output/response of function
Fk(x′),

– A1 is a ppt adversarial algorithm which takes just this one input-output pair
(x′, Fk(x′)) in order to produce a ppt simulator S, and

– where S successfully predicts Fk(x) for a random input x if it outputs Fk(x).

This leads to the following definition which we will use in our analysis in next
sections:

Definition 2. A function Fk(x) is software unclonable if for any ppt pair
(A0,A1), the probability that SoftwareUnclRespGame(A0,A1) (see Algo-
rithm1 with security parameter λ) returns 1 is negl(λ).
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Algorithm 1. Software unclonable response game
1: function SoftwareUnclRespGame(A0,A1)
2: k ← Gen(1λ);
3: x′ ∈ {0, 1}λ ← A0(1

λ);
4: S ← A1(x

′, Fk(x′)); /* S is a ppt algorithm */
5: Random x ∈ {0, 1}λ

6: if Fk(x) ← S(x) then b = 1; else b = 0; end if
7: Return b;
8: end function

Now, based on standard cryptography there are numerous cryptographic
functions which are software unclonable. Given our motivation we are only inter-
ested in light-weight solutions in the sense that at most a couple 100 gates should
suffice for implementation. This implies that the primitive (as far as the authors
know) cannot be based on a computational hardness assumption. And this means
that we need to prove information theoretical security for our constructions after
all (in Definition 2 algorithms A0, A1, and S do not need to be restricted to ppt).
As a consequence, since the adversary can use one λ-bit vector equation repre-
senting an input-output pair for construction of a simulator, the key must have
size at least λ + O(λ) (as opposed to a symmetric key encryption scheme which
can have a λ-bit secret key).

2.1 Unforgeability

A closer look at Definition 2 shows the relation of a software unclonable function
to a Message Authentication Code (MAC): A MAC is a triple (Gen, Sign, V er)
of ppt algorithms where k ← Gen(1λ) with security parameter λ, t ← Sign(k, x)
produces a tag t for input string x with key k, and V er verifies whether a tag
t fits input x with key k. A software unclonable function Fk(x) plays the role
of producing tags as in Sign. A first small difference is that Fk(.) is a function
and not an algorithm. This implies that verification of the tag is straightforward
in that the corresponding V er simply verifies whether tag t = Fk(x) (and this
directly implies the correctness property for a MAC).

The security of a MAC is defined as follows: A MAC is unforgeable if for all
ppt algorithms A,

Prob

⎛
⎝

k ← Gen(1λ),
(x, t) ← ASign(k,.)(1λ) where A does not query Sign(k, x),
V er(k, x, t) = accept

⎞
⎠ < negl(λ),

where ASign(k,.) denotes that A has access to oracle Sign(k, .).
The second difference with software unclonability is that the adversarial algo-

rithm is split into A0, which selects an x′ for querying oracle Sign(k, .) = Fk(.),
and A1 which, based on the output of the queried oracle, produces a simula-
tor S whose goal is to produce a valid (verifiable) tag Sign(k, x) = Fk(x) for



Weak-Unforgeable Tags for Secure Supply Chain Management 85

some random input x. This means that software unclonability does not allow
the adversary to adaptively choose an x for which a tag is constructed, instead
unforgeability is for tags of random inputs.

The third difference is that software unclonability does not allow the adver-
sary to have a polynomial number of queries to the oracle, instead only one cho-
sen input-tag pair can be used. We conclude that a software unclonable function
produces tags as in a MAC with a much weaker unforgeability property: a tag
corresponding to a random input is unforgeable given only one chosen input-tag
pair. The motivation presented in the introduction has led to the name “software
unclonable”. From a crypto perspective, however, a better terminology would be
“unforgeable for random inputs when given one chosen input-output pair” and
call the primitive a “one-time MAC for authenticating random (not chosen)
inputs.”

In a one-time MAC [14] a key is used at most once and can be constructed
using a universal hash function which is pairwise independent. An example light-
weight pairwise independent hash function is defined by tag t = k0x+k1 mod p,
where p is prime. In Sect. 3 we analyse the “MULTIPLY-ADD” function where
a tag is computed as k0x+k1 mod 2λ and the “key” (k0, k1) is chosen at random
(not necessarily odd).

2.2 Average vs. Worst-Case Analysis

Software unclonable functions are meant to be applied in RFID-based secure
supply chain management. Rather than just proving asymptotic results in the
form of the probability of a successful attack being negligible in λ, we want to
know a concrete upper bound on this probability as a function of λ. This will
allow us to suggest concrete parameter settings.

As we will explain below, Definition 2 talks about the average over ‘queries
x′ ← A0(1λ) to oracle Fk(.)’ of the probability of a successful prediction by the
simulator computed by S ← A1(x′, Fk(x′)). In asymptotic terms, if this average
is negligible, then it is not possible to have a significant worst-case probability γ0
of selecting an oracle query which leads to a simulator which also has a significant
probability ≥ γ1 of success, because γ0γ1 is at most average p which is negligible,

γ0γ1 ≤ p. (1)

In other words, either γ0 or γ1 must be negligible.
In this argument we did not specify the pair (γ0, γ1) and we note that

there are many possibilities. In the concrete non-asymptotic setting, we want
an achievable pair (γ0, γ1) for which both the probability γ0 of having a ‘lucky’
query as well as the probability γ1 of succesfull prediction by a simulator origi-
nating from ‘normal’ queries to be equally small: If we find such a pair, then we
know that both the worst-case probability γ0 is small as well as the probability
γ1 of success in the normal case is small. This is not captured by studying the
concrete asymptotic behavior of the average as a function of λ.

For example, if p = 2−λ, then the minimum α of max{γ0, γ1} over all possi-
ble/achievable pairs (γ0, γ1) could be realized by γ0 = γ1 = 2−λ/2 which meets



86 M. van Dijk et al.

(1) with equality (the argument is in essence the application of the birthday para-
dox to our problem setting). This leads to a very different concrete parameter
setting compared to ‘just’ considering the average case.

So, we are still not entirely satisfied with Definition 2 when considering con-
crete parameter settings for the following reason: For A1 and x′ ∈ {0, 1}λ, let

p[A1](x′) = Probx←{0,1}λ(Fk(x) ← S(x)|S ← A1(x′)). (2)

In Definition 2 the probability p[A0,A1] that SoftwareUnclRespGame
(A0,A1) returns 1 (over random x and coin flips in A0, A1, and S) is equal
to the average

p[A0,A1] =
∑

x′∈{0,1}λ

Prob(x′ ← A0(1λ))p[A1](x′). (3)

In Definition 2 we only require that the average p[A0,A1] should be negligible
in λ. As explained above, we need to formulate security in terms of a worst-
case analysis. We may ask whether the adversary can be lucky (the worst-
case) and somehow select in A0 a x′ which “fits” k well in that p[A1](x′) is
(much) larger than the average p[A0,A1]. In order to analyze this we introduce
αh[A0,A1] as the probability (over coin flips used in A0 and A1) that game
SoftwareUnclRespGame(A0,A1) produces a simulator S which correctly
predicts Fk(x) ← S(x) with probability (over random x and coin flips in S)
≤ 2−h. We note that

αh[A0,A1] =
∑

x′:p[A1](x′)≤2−h

Prob(x′ ← A0(1λ)). (4)

We want both 2−h small and αh[A0,A1] large as this implies that (1) the prob-
ability that the adversary is able to construct a “lucky” simulator is equal to
1−αh[A0,A1], which is small, and (2) when the adversary constructs a “normal”
(i.e., “not lucky”) simulator, then the simulator correctly predicts Fk(x) ← S(x)
with small probability ≤ 2−h. We can think of 1 − αh[A0,A1] as the probability
mass of the tail of distribution p[A1](x′) that describes the lucky scenarios x′

for the adversary, i.e., the worst-case scenarios from a security point of view.
We want 1 − αh[A0,A1] and 2−h to be in balance and this leads to the

definition of
α[A0,A1] = min

h
max{1 − αh[A0,A1], 2−h}. (5)

α[A0,A1] is the smallest value α with the property that the probability that game
SoftwareUnclRespGame(A0,A1) produces a simulator S which correctly
predicts Fk(x) ← S(x) with probability > α is at most α, in formula,

α[A0,A1] = min
{

α : Prob

(S ← A1(x′) such that
Prob(Fk(x) ← S(x)) > α

)
≤ α

}
,

where the inner probability is over random x ← {0, 1}λ and the outer probability
is over x′ ← A0(1λ).
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Definition 3. For a software unclonable function Fk(x) we define the ‘average
exponential growth factor’

p = lim sup
λ→∞

−(log sup
(A0,A1)

p[A0,A1])/λ

and we define the ‘worst-case exponential growth factor’

a = lim sup
λ→∞

−(log sup
(A0,A1)

α[A0,A1])/λ,

where p[A0,A1] is a function of λ given by (2, 3) and α[A0,A1] is a function of
λ given by (2, 4, 5).

A software unclonable function Fk(x) has better security if a is larger, and is
more light-weight if the gate equivalence of its circuit implementation is smaller.
In this paper we propose three constructions and compare them along these
metrics.

Notice that by (3, 4), p[A0,A1] ≥ (1 − αh[A0,A1])2−h. Combined with (5),
this implies

α[A0,A1]) ≤ min
h

max{p[A0,A1]/2−h, 2−h} =
√

p[A0,A1]

(since h can be any real number; in the analysis of our constructions we consider
only integers h). This proves that the exponential growth factors p and a satisfy
a ≥ p/2. This argument is in essence the birthday paradox.

In the next sections we analyze for several candidate software unclonable
functions both p[A0,A1] as well as α[A0,A1] together with their exponential
growth factors. It turns out that for these functions the probability mass of the
tail of distribution p[A0](x′) is large so that a ≈ p/2.

3 MULTIPLY-ADD

Below we prove that the “MULTIPLY-ADD” function

F(k0,k1)(x) = k0x + k1 mod 2λ, for k0, k1, x ∈ {0, 1}λ, (6)

where k0 and x are multiplied modulo 2λ and + modulo 2λ is binary addition
with carry truncated after λ bits, is a software unclonable function. In what
follows when we write + we mean addition modulo 2λ.

Theorem 1. For the MULTIPLY-ADD function defined in (6),

p[A0,A1] ≤ (λ + 2)2−λ−1 and α[A0,A1] ≤ 2−	(λ−1)/2


for all algorithm pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). These upper bounds can be met with
equality, this implies average and worst-case exponential growth factors

p = 1 and a = 1/2.
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Proof. We will first translate the problem of creating a simulator with maximum
possible successful prediction probability to an equivalent problem which we are
able to analyze precisely:

Suppose the adversary knows the pair (x′, F(k0,k1)(x
′)) and wants to built a

simulator which predicts F(k0,k1)(x) for random x. We notice that for

z = F(k0,k1)(x) − F(k0,k1)(x
′), v = k0, and w = x − x′,

z = vw mod 2λ. (7)

Also, notice that given x′, since x is random, w is random; and since k0 is random,
v is random. These observations can be used to show that predicting F(k0,k1)(x)
for a randomly selected input x based on (x′, F(k0,k1)(x

′)) where F is defined by
(6) is equivalent to (notice that k1 is unknown and random) predicting z in (7)
for a randomly selected input w and unknown/random v. This implies that the
probability of SoftwareUnclRespGame(A0,A1) returning 1 is equal to the
probability of ZWGameMA(A), see Algorithm 2, returning 1. This probability
is maximized for A outputting a simulator S which on input w outputs a z that
maximizes |{v : z = vw}|. In other words, z maximizes the number of collisions v
that yield the same z = vw. In formula, p[A0,A1] (where A0 and A1 are derived
from A according to the transformation described above) is equal to

2−λ
∑
w

max
z

Probv←{0,1}λ [z = vw] = 2−λ
∑
w

max
z

|{v : z = vw}|
2λ

. (8)

Algorithm 2. Finding z based on w

1: function ZWGameMA(A)
2: v ∈ {0, 1}λ is a random input;
3: S ← A(1λ);
4: w ∈ {0, 1}λ is a random input;
5: if S(w) = vw then
6: b = 1;
7: else
8: b = 0;
9: end if

10: Return b;
11: end function
12: /*On input w, an optimal S outputs a z which maximizes |{v : z = vw}|.*/

We will now analyze (8) by distinguishing the cases w �= 0 and w = 0.
Let w �= 0. If 2λ−h is the largest power of 2 dividing w, then z = vw mod 2λ

is equivalent to z = v(w/2λ−h) mod 2h. Since w/2λ−h is an odd integer, it has an
inverse modulo 2h. This implies that there is exactly one v = z(w/2λ−h)−1 mod
2h for which z = v(w/2λ−h) mod 2h. Therefore there are 2λ−h possible v for
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which z = vw mod 2λ (these v are equal to z(w/2λ−h)−1 mod 2h plus some
multiple of 2h).

If w = 0, then only for z = 0 there exists a v such that z = vw; in this case
all 2λ possible v satisfy z = vw.

Let Wh, 1 < h ≤ λ, be the number of integers w, 0 < w < 2λ, for which 2λ−h

is the largest power of 2 dividing w. Define W0 = 1. Then (8) is equal to

2−λ
λ∑

h=0

Wh2−h.

We notice that Wh = 2h−1 for 1 ≤ h ≤ λ. Hence, (8) is equal to

2−λ(1 +
λ∑

h=1

2−1) = (λ + 2)2−λ−1.

This proves p[A0,A1] = (λ + 2)2−λ−1 and p = 1.
The above derivation also proves that the number of w for which

maxz Probv←{0,1}λ [z = vw] ≤ 2−h is equal to
∑λ

i=h Wi = 2λ − ∑h−1
i=0 Wh =

2λ −(1+
∑h−1

i=1 2i−1) for h ≥ 2. The probability that such a w is selected is equal
to

∑λ
i=h Wi/2λ. This can be interpreted as

αh[A0,A1] =
λ∑

i=h

Wi/2λ = 1 − (1 +
h−1∑
i=1

2i−1)/2λ = 1 − 2−(λ+1−h),

which in turn proves

α[A0,A1] = min
h

max{2−(λ+1−h), 2−h} = 2−	(λ−1)/2
 and a = 1/2.

4 ADD-XOR

Below we prove that the “ADD-XOR” function

F(k0,k1)(x) = (k0 + x mod 2λ) ⊕ k1, for k0, k1, x ∈ {0, 1}λ, (9)

where + modulo 2λ is binary addition with carry truncated after λ bits and
where ⊕ represents XOR, is a software unclonable function.

In Appendix B of the full version [15], we prove the following theorem:

Theorem 2. For the ADD-XOR function as defined in (9),

p[A0,A1] ≤ 2−0.234·λ and α[A0,A1] ≤ 2 · 2−0.141·λ

for all algorithm pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). This implies average and worst-case
exponential growth factors

p ≥ 0.234 and a ≥ 0.141.

Simulations with the optimal simulator constructed in [15] show that the
bounds for p and a are very tight. (Notice that for ADD-XOR, a > p/2.)
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5 S-Box-CBC

In this section we introduce a construction which uses the idea of S-boxes in
block-cipher design together with CBC mode [16].

Suppose we have a non-linear mapping

S ∈ {0, 1}m → {0, 1}m,

where m is generally very small (we will propose small powers of two, m = 4
or m = 8). Mapping S is called an S-Box. Since we use a software unclon-
able function for authentication in the NVM-based supply chain management
scheme, this means that the software unclonable function does not necessarily
need to be invertible given knowledge of the keys. It turns out that ADD-XOR
and MULTIPLY-ADD are invertible; in this section, however, we will construct
a non-invertible software unclonable function based on a non-invertible S-box
mapping S.

Our construction is iterative following the design principle used in CBC mode
for symmetric key encryption (where we replace encryption by our S-box): For
n with nm = λ, we use the vector notation x = (x1, . . . , xn) ∈ {0, 1}λ with xi ∈
{0, 1}m. For keys k0 = (k0

1, k
0
2, . . . , k

0
n) and k1 = (k1

1, k
1
2, . . . , k

1
n) and input x, we

recursively compute

yi+1 = S(yi ⊕ xi+1 ⊕ k0
i+1) ⊕ k1

i+1 (10)

for 0 ≤ i ≤ n − 1 with y0 = 0. We define

F(k0,k1)(x) = y. (11)

In the construction we mask input xi with k0
i and we mask the output of the S-

box with k1
i . The S-box is a kind of non-linear obfuscation mapping. Forwarding

yi into the computation of yi+1 corresponds to the main design principle used
in CBC mode for symmetric key encryption.

Below we will prove (in a couple of steps) that the S-box construction leads
to a software unclonable function.

We start with analyzing the average case:

Theorem 3. Let F(k0,k1)(x) be defined by the S-Box-CBC construction in (10,
11) for λ = nm. For the S-box mapping S used in F , we define

ρ[S](w) = max
z∈{0,1}m

|{v : z = S(v) ⊕ S(v ⊕ w)}|/2m, and

ρ[S] =
∑

w∈{0,1}m

ρ[S](w)/2m.

Then, for all algorithm pairs (A0,A1) (unrestricted, the theorem does not require
(A0, A1), and produced simulators to be ppt),

p[A0,A1] ≤ ρ[S]n with p = −(log ρ[S])/m.
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Proof. We will first translate the problem of creating a simulator with maximum
possible successful prediction probability to an equivalent problem which we are
able to analyze precisely:

Suppose the adversary knows the pair (x′, y′ = F(k0,k1)(x
′)) and wants to

built a simulator which predicts F(k0,k1)(x) for random x. We notice that for
z = F(k0,k1)(x

′) ⊕ F(k0,k1)(x) the recursive definition of F in (10, 11) implies
zi+1 = y′

i+1 ⊕ yi+1 = S(y′
i ⊕ x′

i+1 ⊕ k0
i+1) ⊕ S(yi ⊕ xi+1 ⊕ k0

i+1). If we define
vi+1 = y′

i ⊕x′
i+1⊕k0

i+1, and wi+1 = (y′
i ⊕yi)⊕(x′

i+1⊕xi+1) = zi ⊕(x′
i+1⊕xi+1),

then
zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1). (12)

Notice that given x′
i+1 and y′

i, since k0
i+1 is random and y′

i only depends on k0
j

for j ≤ i, vi+1 is random. Therefore, by induction on i, given x′, v is random.
We also notice that given x′

i+1 and zi, since xi+1 is random and zi only depends
on xj for j ≤ i, wi+1 is random. Therefore, by induction on i, given x′, w is
random.

The above observations can be used to show that predicting F(k0,k1)(x) for a
randomly selected input x based on (x′, F(k0,k1)(x

′)) where F is defined by (10,
11) is equivalent to (notice that k1 is unknown and random) predicting z in (12)
for a randomly selected input w and unknown/random v. This implies that the
probability of SoftwareUnclRespGame(A0,A1) returning 1 is equal to the
probability of ZWGameSB(A), see Algorithm 3, returning 1. This probability
is maximized over A outputting a simulator S which on input w outputs a z
that maximizes |{v : ∀i zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1)}|. In other words,
z maximizes the number of collisions v that satisfy the same set of equations
zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1). In formula, p[A0,A1] (where A0 and A1 are
derived from A according to the transformation described above) is equal to

2−λ
∑
w

max
z

Probv←{0,1}λ [∀i zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1)]

= 2−λ
∑
w

max
z

|{v : ∀i zi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1)}|
2λ

.

= 2−λ
∑
w

n−1∏
i=0

ρ[S](wi+1) =
n−1∏
i=0

∑
wi+1

ρ[S](wi+1)/2m = ρ[S]n. (13)

This concludes the proof of Theorem 3.
According to Theorem3, the smaller ρ[S], the larger the average exponential

growth factor p. The next lemma shows a lower bound on ρ[S] and describes an
S-box S which meets this lower bound leading to the largest possible p for the
S-Box-CBC construction:

Lemma 1. (i) For any S-box S, ρ[S](w) ≥ 2/2m for w �= 0. If w = 0, then
ρ[S](w) = 1. As a consequence ρ[S] ≥ (3 − 1/2m−1)2−m. This lower bound can
be met with equality: (ii) Let m ≥ 3. If we represent elements in {0, 1}m as finite
field elements in GF (2m) and define S(x) = x3 in GF (2m), then ρ[S](w) = 2/2m

for w �= 0 and ρ[S] = (3 − 1/2m−1)2−m.
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Algorithm 3. Finding z based on w

1: function ZWGameSB(A)
2: v ∈ {0, 1}λ is a random input;
3: S ← A(1λ);
4: w ∈ {0, 1}λ is a random input;
5: if ∀izi+1 = S(vi+1) ⊕ S(vi+1 ⊕ wi+1) then
6: b = 1;
7: else
8: b = 0;
9: end if

10: Return b;
11: end function
12: /*On input w, an optimal S outputs a z which maximizes |{v : ∀i zi+1 = S(vi+1)⊕

S(vi+1 ⊕ wi+1)}|.*/

Proof. Let z, v, w ∈ {0, 1}m (in the proof of the previous theorem z, v, w ∈
{0, 1}λ). The first part of the lemma follows immediately from the observation
that if z = S(v) ⊕ S(v ⊕ w) then v′ = v ⊕ w also satisfies this equation. If
w �= 0, then v �= v′ and this shows that if a solution v for z = S(v) ⊕ S(v ⊕ w)
exists, then there also exists a second different solution, hence, ρ[S](w) ≥ 2/2m.
If w = 0, then S(v) ⊕ S(v ⊕ w) = S(v) ⊕ S(v) = 0 for all v. As a consequence
ρ[S](0) = 2m/2m = 1 and ρ[S] ≥ 1/2m + (1 − 1/2m)2/2m = (3 − 1/2m−1)2−m.

In the second part of the lemma we take S(x) = x3 where we consider binary
vectors x ∈ {0, 1}m to represent elements in GF (2m). Notice that ⊕ becomes
addition in GF (2m). This means that the equation z = S(v)⊕S(v⊕w) translates
to z = v3 + (v + w)3 = v2w + vw2 + w3 in GF (2m). This is equivalent to

wv2 + w2v + (w3 + z) = 0,

a quadratic equation in v for w �= 0 (notice that w2 does not reduce to a linear
expression in w since the irreducible polynomial defining GF (2m) has degree
≥ 3 for m ≥ 3). If w �= 0, then the equation becomes v2 +wv +(w2 + zw−1) = 0
which has at most 2 solutions, hence, ρ[S](w) = 2/2m.

Corollary 1. For the S-Box-CBC construction in (10, 11) for λ = nm and the
S-box specified in Lemma 1(ii),

p[A0,A1] ≤ (3 − 1/2m−1)λ/m2−λ and p = 1 − log(3 − 1/2m−1)
m

for all algorithms pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). There exist algorithm pairs for which
the upper bound holds with equality.

We prove our result for the worst-case scenario in Appendix C in the full
version [15].
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Theorem 4. For the S-Box-CBC construction in (10, 11) for λ = nm and
S-box S specified in Lemma 1(ii),

α[A0,A1] ≤ λ(m − 1)
m(2m − 1)

2− (m−1)2

m(2m−1)λ with a =
(m − 1)2

m(2m − 1)
,

for all algorithms pairs (A0,A1) (unrestricted, the theorem does not require (A0,
A1), and produced simulators to be ppt). There exist algorithm pairs for which
the upper bound is almost tight. Notice that a is only slightly larger than p/2.

6 Comparison

Our theorems state for unbounded adversaries (we prove information theoretical
security as opposed to PHOTON which assumes computational hardness)

α[A0,A1] ≤ 2−	(λ−1)/2
 for MULTIPLY-ADD,
α[A0,A1] ≤ 2 · 2−0.141·λ for ADD-XOR, and

α[A0,A1] ≤ λ(m − 1)
m(2m − 1)

2− (m−1)2

m(2m−1)λ for S-Box-CBC.

Table 1 lists for which λ the different constructions give rise to upper bounds
approximately equal to 2−16, 2−32, 2−40, and 2−64.

Table 1. Comparison light-weight constructions.

α[A0, A1] MULT.-ADD ADD-XOR S-Box-CBC S-Box-CBC PHOTON
m = 4 m = 8

λ = 33 λ = 121 λ = 60 λ = 48 N/A
≤ 2−16 1200b NVM 2960b NVM 1680b NVM 1360b NVM

≥ 726 GE 372 GE 440 GE 726 GE
(308+64) (277+163) (261+465)

λ = 65 λ = 243 λ = 112 λ = 88 N/A
≤ 2−32 1840b NVM 5360b NVM 2640b NVM 2160b NVM

≥ 1430 GE 478 GE 748 GE
(315+163) (283+465)

λ = 81 λ = 291 λ = 140 λ = 112 λ = 80
≤ 2−40 2160b NVM 6320b NVM 3280b NVM 2640b NVM 1200b NVM

≥ 1782 GE 764 GE 1428 GE [2]
(299+465) (563+865)

λ = 129 λ = 461 λ = 216 λ = 168 λ = 128
≤ 2−64 3120b NVM 9680b NVM 4720b NVM 3760b NVM 1680b NVM

1795 GE
(673+1122)

Since we want to prevent an adversary from successfully cloning an RFID
tag in order to tag and insert a counterfeit product into the supply chain, we
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are actually fine with very small unconditional collision resistance. Even 2−16 is
acceptable for the following reason: Our constructions are unconditional secure in
that even an adversary with unbounded computational resources cannot create a
cloned RFID tag which can do better than answering future reader queries with
probability > 2−16. This implies that only one out of 64K inserted counterfeit
products makes it successfully through the supply chain. This is an economical
impractical proposition for the adversary.

One reason to have a higher collision resistance like 2−32 is if fake trapdoored
products are very cheap and the adversary wants to disrupt consumers of these
products, e.g., the military. In this case the adversary is not economically moti-
vated, he simply wants to be able to get a hardware footprint in order to be able
to launch future attacks. In this case a collision resistance of 2−32 would imply
an enormous number (4 billion) fake products needed by the adversary making
such an attack quite impractical. When we put our crypto-hat on, we may even
want the psychological safe collision resistance of 2−64.

For each solution, it is important to verify whether it fits the 2–3K bit NVM
requirement. A reader event is 40 bits [2] with a λ-bit output of the software
unclonable function, which will replace one 40-bit key for a one time pad in the
NVM based scheme and two λ-bit keys for our software unclonable constructions
– while PHOTON only needs one λ-bit key. Since the RFID NVM is assumed to
be read out per byte, we will round λ bits up to a multiple of bytes. Hence, for
each reader event, a total of 5 + 2�λ/8�} bytes in NVM are needed. Following
[2], we expect at most 10 reader events per path through the supply chain. This
gives a total of 10 · 8 · (5 + 2�λ/8�) required NVM bits. In bold are indicated
which entries violate the 2–3K bit requirement.

Table 1 also compares constructions (that do not violate the 2–3K bit NVM
requirement) with respect to the Gate Equivalence (GE) – measured in number of
2-input NAND gates – of their circuit implementations1. In the table “261+465”
under e.g. the S-Box-CBC entry for m = 8 and λ = 48 indicates that 465
GE is spend on the software unclonable function with its own control logic
and another 261 GE is spend on general control logic for a full NVM-based
supply chain management scheme implementation; 261 + 465 GE makes a total
of 726 GE. Appendix D in [15] lists and explains the optimal implementations
of each construction – we list the implemented results for ADD-XOR and S-
Box-CBC, and the estimated lower bound ≥ 22 ·λ GE for the MULTIPLY-ADD
construction.

PHOTON [17] has two light-weight variations: [2] uses PHOTON 80/20/16 as
software unclonable function. It takes 80 bits input and generates 80 bits output
with 40 bits collision resistance considering state-of-the-art attacks2. Table 1 also
shows PHOTON 128/16/16 with 64 bits collision resistance.

The shaded entries in Table 1 minimize the circuit area given a 2–3K bit
NVM constraint.

1 GE is a metric for comparing the size of hardware implementation regardless of the
manufacturing technology.

2 [2] states 64 bits collision resistance, but this is incorrect.
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7 Conclusion

We introduced a formal definition of software unclonable functions and con-
structed several light-weight options with a rigorous security analysis. Our ADD-
XOR and S-Box-CBC (m = 4) constructions significantly reduce the circuit size
of the implementation of the NVM-based supply chain management scheme of
Maleki et al. [2] to 372 GE for α ≤ 2−16 and 478 GE for α ≤ 2−32. When com-
pared to PHOTON, S-Box-CBC (m = 8) gives the smaller area size of 764 GE
for α ≤ 2−40, while PHOTON 128/16/16 with 1795 GE is the preferred choice
for very small α ≤ 2−64. For an economically motivated adversary, it turns out
that α ≤ 2−16 offers sufficient protection.

A NVM-Based RFID Scheme

The NVM-based scheme of Maleki et al. [2] implements the following steps:

Initialization RFID tag. The NVM of the RFID tag is initialized with a
sequence of keys (k1, k2, . . . , ku) and a pointer p = 1. The back-end server
stores the RFID identity ID together with the sequence of keys.

Initialization Reader. Each RFID tag reader is initialized with its own key
K. The back-end server stores the reader identity together with K.

Reader Event. The RFID tag is read out by a reader of a supply chain partner:
1. The RFID tage transmits its ID to the reader.
2. The reader creates a message m which has the reader identity and time

stamp of the event.
3. The reader computes x = MACK(m, ID). This binds the reader to the

event.
4. The reader transmits (m,x) to the RFID tag.
5. The RFID tag receives (m,x). This triggers the RFID tag to read a next

key kp from its NVM and to increment pointer p by 1. Key kp is large
enough in order to be split up into a first part kp,0 and a second part
kp,1. The tag computes the pair yp = (m ⊕ kp,0, Fkp,1(x)), where F is a
software unclonable function. Since kp is unique to the RFID tag, the use
of function F binds the RFID tag to the event. The key part kp,0 serves
as a one time pad which prevents traceability.

6. The RFID tag stores yp at the spot where kp was stored in NVM.
Exit. When the tag exits the supply chain, its NVM is read out and communi-

cated to the back-end server. I.e., the internal logic only allows NVM to be
read out up to but not including the address pointed at by pointer p. This
means that the back-end server receives ID together with (y1, . . . , yp−1). The
ID is used to look up the sequence of keys corresponding to the tag. For each
y, this allows the server to first reconstruct the messages m, second to extract
the corresponding reader identity with key K from its database, third to com-
pute the mac value x = MACK(m, ID), fourth to evaluate F on x with the
appropriate key, and finally verify that this is part of y. If all checks pass, then
the recorded reader events were not impersonated and they can be verified
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to correspond to a legitimate path through the supply chain. The server will
invalidate the tag for future use in its database.

A detailed explanation, security analysis, and discussion around how to make
the scheme reliable with respect to miss reads and miss writes can be found in
[2].

A comparison of state-of-the-art schemes over a range of metrics can be found
in [18]. Besides being unique in that, unlike any other scheme, the need for persis-
tent online communication or local databases is avoided, the NVM-based scheme
also compares well with most competitive other schemes. The only dimension on
which the NVM-based scheme scores negatively is its lack of being able to resist
physical attack (where a strong adversary attempts to circumvent the read and
write interface in order to clone all the keys stored in NVM). We notice that even
though the trace based scheme [8] can withstand physical attacks, the scheme
cannot distinguish between a fake and legitimate tag which possibly results in sig-
nificant financial loss. Current PUF based schemes [19–21] are not secure against
physical attack because of recent machine learning modeling attacks [22–24] –
however, as soon as improved PUF designs will resist these modeling attacks,
PUF based schemes will resist physical attacks as opposed to the NVM-based
scheme. Inherent to current PUF-based schemes, they do need persistent online
communication. Also an improved PUF design will likely lead to a higher gate
count than the 500–1000 GE for current PUF-based schemes – and this is where
the NVM based scheme performs better as well.

As a final note, Sect. 6 discusses several upper bounds on the collision resis-
tance. Obviously, if the resistance is set to 2−32 or 2−64, then creating a cloned or
fake RFID tag which successfully passes the supply chain becomes very unlikely.
In fact too many counterfeit products labelled with fake RFID tags are needed
in order to be successful and this makes such an attack economically infeasible.
In the introduction we state “An adversary who can circumvent the interface
circuitry by means of a physical attack is not considered.” Clearly, the weak link
in the NVM-based scheme for high collision resistance will now be its lack of
resistance against physical attack.
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Abstract. Content providers often face legal or economic pressures to
censor or remove objectionable or infringing content they host. While
decentralized providers can enable censorship-resistant storage, central-
ized content providers remain popular for performance and usability rea-
sons. But centralized content providers can always choose not to respond
to requests for a specific file, making it difficult to prevent censorship. If
it is not possible to prevent, is it possible to detect and punish censorship
on a centralized service?

A natural approach is to periodically audit the service provider by
downloading the file. However, failure to download a file is not a proof
of censorship. First, the provider could claim benign failure. Second, the
proof is non-transferable: verifying censorship requires third parties to
individually request the censored file. Moreover, a content provider may
only selectively deny access to particular users or only for a short time
frame. As such, checking by downloading does not work even for third
parties who are online and willing to make queries.

In this paper, we introduce proof of censorship, whereby a content
provider cannot delete or otherwise selectively remove content from their
service without creating transferable cryptographic proof of their mis-
deed. Even if the provider restores the file at a later date, the proof
remains valid, allowing the reputation of a content provider’s commit-
ment to censorship resistance to be based on the existence (or absence)
of such proofs.

1 Introduction

Online censorship is done in many ways. In addition to blocking access to web-
sites, censors also use legal means to remove information from content providers
directly, such as through laws like the DMCA [5] in the United States. In the
second half of 2016, Twitter received over 5,000 removal requests from govern-
ment and police agencies worldwide, and complied with 19% of them [22]. In
one example from August 2016, Twitter complied with a Brazilian government
request to remove a tweet comparing then-mayoral candidate Rafael Greca to a
fictional villain from the 1992 film Batman Returns [16].
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This style of censorship can be significantly less apparent than overt website
blocking. Because the service remains accessible, users are unaware of the con-
tent that may be secretly withheld from them. While some content providers
(including Twitter) publish transparency reports containing overall statistics or
examples of removed content [7,8,22], these reports are difficult to confirm or
refute: How can users know if the transparency reports themselves have not been
similarly censored?

While decentralized or distributed tools provide a way to make content robust
against censorship, these techniques do not fully solve the problem. In a dis-
tributed censorship-resistant scheme, users must download and use specialized
software which may itself be blocked by a censor. Due to this requirement, these
tools are only utilized by well-informed users, while the majority of people rely
exclusively on centralized content providers. Thus, there are clear advantages to
providing censorship resistance in a centralized content storage context.

One idea proposed to incentivize censorship-resistant content providers to
not delete data is to use proof of retrievability (PoR) to enable content providers
to prove that they still retain a copy of a file. In PoR, providers respond to
requests or challenges for specific subsets of a file they have agreed to store.
A provider responds with the subset, proving (over many challenges) that they
likely still store the entire contents of the file. With enough successful PoR
challenge responses, a client can reconstruct the file, meaning that a provider
that gives valid PoR responses for a file necessarily provides access to it. While
this is a useful starting point, there are two major problems with this approach.

First, the content provider can always choose to not respond to a PoR request.
Note that this is different from providing an invalid response to a request. By
simply leaving a connection open and providing no response, the service never
provides any incriminating evidence that they are not providing access to the file.
While other clients can see this suspicious behavior, the provider could choose
to respond correctly to some subset of users, seeding confusion and distrust over
claims of censorship.

Second, the content provider can cease this behavior at any time, with no
evidence that they ever censored a file. For example, a provider could wait until
a certain number of users realized a file was removed or journalists started to
ask questions before they reverted the decision to censor a file. Such a provider
could pretend they never censored a file, and those that observed that they did
would have no transferable proof. This allows a provider to censor files at will,
and restore them only when convenient.

In this paper, we describe a way that a content provider can be held account-
able for the files that they censor. We do this via a proof of censorship that a
content provider unavoidably produces should they censor a file. Furthermore,
these proofs are transferable, meaning that once one has been produced, others
can verify the cryptographic proof and see that it attests to a censored file. Even
if the content provider restores the original file, this proof still maintains the
evidence of previous censorship.



Proof of Censorship: Enabling Centralized Censorship-Resistant 101

To construct our proof of censorship, we use private information retrieval
(PIR) which hides what information a client is requesting from a server. At
a high level, servers commit to storing (encrypted) files by signing hashes of
those files on upload. To download a file, a client performs a PIR query, which
the server responds to, signing both the PIR query and the server’s response.
Because the server does not know what file a client is requesting, it cannot
selectively answer queries. To censor a file, the provider must return garbage
data. Upon decryption of the PIR response, the client can confirm the file has
been censored, and can reveal its PIR queries and the signed response to the
world. Anyone with this proof (and the content provider’s long-term public key)
can verify that the content provider has removed the file.

Our proofs of censorship are compact and relatively efficient to verify: in the
event of censorship, for a reasonable size database, the proof is on the order of a
few megabytes, and takes approximately 50 ms to verify on a laptop computer.

2 Background

To describe our proof of censorship, we first provide background on private
information retrieval (PIR) [13]. PIR allows a client to request data from a
server without revealing to the server what data is being requested. A naive
way to accomplish this is for the client to download the entire database from
the server, then select its data locally. This method is bandwidth inefficient,
however, and does not scale to large datasets.

There are two settings for PIR. In information-theoretic PIR (ITPIR), a set
of N servers share the database, with clients making requests to all of them and
combining their responses to obtain the requested files. If at least one of the
servers is not colluding with the others, the client’s request remains private. In
computational PIR (CPIR), a single server stores the database, and clients use

Fig. 1. Vector-matrix PIR—private information retrieval involves a client making a
query against a database. In Vector-Matrix PIR the client encrypts a vector of query
elements and the server then multiplies the query elements against the database blocks
homomorphically, using homomorphic addition to produce a single sum. This results in
an encrypted value corresponding to the element where the client encrypted 1 (instead
of 0), which is sent back to the client for decryption.
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homomorphic-encrypted requests to retrieve data. As long as the computational
hardness assumptions on the underlying cryptography hold, the server cannot
determine what information the client requested. As we are focused on a single
centralized content provider, in this paper, we only consider and describe CPIR.

Many CPIR schemes fall into the “matrix-vector” model [10], which is illus-
trated in Fig. 1. In this model, CPIR uses a (IND-CPA-Secure, additive) homo-
morphic encryption that allows operations done on ciphertext to correspond to
operations done on the corresponding plaintext. As an example, consider an
additively homomorphic encryption function E() with corresponding decryption
function D() that allows addition of ciphertext and multiplication by a constant;
i.e,:

D(E(a) + E(b)) = a + b

and
D(E(a) · c) = a · c.

To perform a PIR query, a client constructs a vector of encrypted 0s and 1s.
For example, if the server has n blocks, and the client wishes to retrieve block x
from the server where 0 ≤ x < n, the client sends a query vector Q to the server,
comprised of qi�=x = E(0), and qx = E(1). Note that the IND-CPA security of
the encryption scheme implies that the server cannot determine which qi is the
encryption of 1.

With Q, the server (homomorphically) multiplies each qi with its corre-
sponding data block di in the database. The server then takes the homomor-
phic sum over the result. When i �= x, the multiplication by E(0) will ensure
the corresponding block does not contribute to the later-decrypted sum. The
response is sent back to and decrypted by the client, resulting in D(

∑
i qi ·di) =

D(E(1) · dx) = 1 · dx.
The PIR library that we use (XPIR [2]) provides two optimizations: recursion

and aggregation. Recursion allows clients to send fewer query elements to the
server, by breaking the database into a d-dimensional cube, and having the query
select the row/column vectors. For example with a database of 100 records, it
can be broken into a 10×10 table of elements. The client sends 10 queries, which
the server copies and applies to each row effectively selecting a singular column.
Then, a separate 10 queries can be used to select a single element from that
column. Thus the client sends a total of 20 query elements, as opposed to 100
(with no recursion).

Aggregation allows a client and server to pack multiple plaintext files into
a single element. For example, if the ciphertext allows for an absorption of
768 bytes, but files are only 128 bytes, the database could utilize aggregation,
fitting 6 files into each block. Clients then select the block of 6 files that contains
their requested file, and locally discard the other 5. With aggregation, the client
sends fewer request elements to the server, resulting in smaller queries.
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3 Threat Model

We consider a setting consisting of a single centralized content provider with
multiple clients who upload and download content. Clients upload files to the
provider, and distribute tickets that enable others to download the file. The
information in a ticket can be summarized in a URL to be provided to others.
This allows clients to easily share tickets in the same way they would distribute
online content to others. In this model, we wish to detect a censoring content
provider while preventing malicious clients from making false accusations. We
achieve two properties:

Non-repudiation of Targeted Censorship. A provider cannot selectively
censor a file while responding to queries from honest clients without pro-
ducing a transferable proof of their misdeed.

Unforgeability. Against a non-censoring content provider, an attacker cannot
forge a proof that a file was censored.

We note that our threat model does not prohibit a provider that chooses
to delete or remove access to all of its files: a provider can always shut down
entirely, or refuse to sign statements with its private key.

4 System Design

In this section, we describe the details of our proof of censorship. A proof of
censorship has two parts: a commitment from the server that it will store and
distribute a file, and second, a later proof that it failed to uphold that com-
mitment. The first part is obtained during file upload, where the server returns
a signed and timestamped ticket that efficiently represents the commitment to
store the file, while the second part is obtained when a client downloads the file
the server is attempting to censor. We assume the server has a widely published
long-term public signing key.

We begin our description assuming that a file fits in a single block that can
be requested in a single PIR query to the server. In Sect. 4.2, we describe how
to efficiently extend this idea to provide proofs of censorship for files that span
multiple blocks.

4.1 Proof of Censorship Construction

Ticket Construction. On upload, a client will upload an encrypted block that
represents the file. The server chooses an index for the block to be stored, and
provides a signature over the data and the index. For block data Bi stored at
index i, the server hashes the block data to obtain H(Bi). The server then signs
the tuple containing a timestamp t, the index i, and the block hash H(Bi) using
its long-term private key. This signature, along with t, i, and H(Bi) are sent to
the client in the form of a ticket.

This ticket can be encoded into a URL that can be distributed easily to other
users in the form of:
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Fig. 2. Ticket creation—when a file is uploaded, the server produces a signed ticket
that commits the server to storing the block of data. The server signs a timestamp, the
index where the data is stored, and a hash of the data, and returns this to the client
for local storage.

https://<service>/#H(Bi)/i/t/sig

where sig is the server’s signature of the ticket. This gives the client all of the
information it needs to verify as well as a simple way to distribute the ticket.
Additionally the sensitive information is provided to the client in such a manner
that it is not passed to the server, as values after a # symbol are only handled
locally in browsers.

The client then verifies that the ticket is well formed and valid. First, the
client hashes the data it has uploaded to obtain H(B). Then, it ensures that the
timestamp t it received from the server is a recent timestamp1. Finally, the client
checks the signature of the ticket, using t, i, and the client-computed H(B). If
the signature is valid, the client stores the ticket for this block. If any checks fail,
the client can attempt to re-upload their file until they receive a well-formed
ticket. Figure 2 illustrates how tickets are generated during file upload.

File Download. To download a file, a client creates a PIR query that will result
in a proof of censorship if it does not receive the file requested. During a normal
PIR request, a client encrypts a vector of 0 and 1 elements using random coins
for the encryption. In our scheme, these coins are the output of a pseudorandom
generator with a seed (Qseed) randomly selected by the client. This allows us to
later reproduce the same query with only the seed and the index i. With this we
create a compressed representation of the query which consists of the queried
index (in the clear), and the seed.

The client creates the request Q and sends it to the server, along with the
public key (as well as any cryptographic parameters needed to allow the server to
perform homomorphic operations on the query2). The server then performs the
1 The client must ensure t is not located days in the future to avoid a server producing

invalid proofs later.
2 E.g. in Paillier, this involves the public modulus generated by the client.
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Fig. 3. Proof of censorship—to verify a file is still in place, a client constructs a PIR
query for its block. The server, without knowing which block was requested, signs the
encrypted PIR query and the response it produces. The client decrypts the response,
and can verify the data is correct. If it is not, the client can combine the signed response,
the parameters it used to generate the PIR query, and the original ticket for this file
to produce a stand-alone proof-of-censorship that can be verified by a third party.

query over its database using PIR, producing a short reply R that contains an
encrypted representation of Bi. The server then hashes Q (including the public
key) to obtain H(Q), and produces a signature over a timestamp t, the query
hash H(Q), and the reply R. The server sends this signature, along with t and
R to the client (Fig. 3).

The client then extracts Bi from R using standard PIR extraction (i.e.
decrypting R with its Qseed-derived private key). The client then checks if this is
the expected file by comparing it to the hash in the corresponding ticket for this
file. If the client detects that the block has been censored, it now has a proof of
censorship in the form of the server’s response. The client publishes the original
ticket, the server’s signed PIR reply, and its Qseed as a proof of censorship.

During this process, the server does not know what file is being requested.
Therefore, to censor a file, the server must either not respond to any queries, or
risk revealing that it has removed a file from its database.

Verifying Proofs of Censorship. Given the server’s public key, a signed ticket, a
signed reply, and a query seed, a third party can verify whether the proof is valid
evidence of censorship. To verify a proof of censorship, a verifier must perform
several steps, detailed below.

1. Check Timestamps. The verifier checks that the ticket’s timestamp (tt) is
before the reply’s timestamp (tr), ensuring that the query took place after
the server committed to storing the file.

2. Check Ticket Signature. Given the ticket’s timestamp tt, the requested
index i, and the hash of the file H(Bi), the verifier validates the ticket’s
signature with the server’s public key.
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3. Regenerate PIR Query. Verifier uses Qseed and the index i to determinis-
tically derive the PIR query Q, and computes the hash over the query H(Q).

4. Check Reply Signature. Given the reply’s timestamp tr, the computed
hash H(Q), and the server’s reply, the verifier checks the reply’s signature
using the server’s public key.

5. Extract Reply. Again using the key derived from Qseed, the client extracts
the PIR reply R to obtain Bi.

6. Check Data Hash. The verifier finally compares the hash of the extracted
data Bi to the hash committed to in the ticket. If the hashes are equal, the
server did not censor the file, and returned the expected result. However, if
the hashes do not match, this is a valid proof of censorship.

4.2 Handling Multiple Blocks

So far, we have described how a client can efficiently receive a proof of censorship
for a single uploaded block, but this does not address what happens if a file is
larger than a single block. While a client could easily split up a file into multiple
blocks, and receive a ticket for each block, storing each of these signed tickets
may be expensive.

Instead, we can extend our design to allow for multiple blocks to receive
a single ticket, while still allowing a proof to catch if an individual block is
censored. To do this, our ticket will contain a Merkle tree root [18] in place
of the single block’s hash. The leaves of the Merkle tree will be the hashes of
each block’s data, and the ticket will consist of the list of hashes, and the final
signature over the Merkle root, timestamp, and block index range.

To verify a proof, the verifier reconstructs the Merkle root from the suspected
censored block and its Merkle tree-adjacent neighbors, and uses the root to verify
the ticket. Thus, a verifier does not have to know all of the hashes of the tree,
but rather only those that allow it to reconstruct the Merkle root (log(N) hashes
for an N -block file). This allows proofs to stay relatively compact even as the
file size grows. After validation of the ticket, the verifier can be assured that the
hash of the suspected block (H(Bi)) they have been given is the correct hash for
the given block Bi, and can perform the remaining checks described previously.

4.3 Security Argument

Non-repudiation. Assuming an honest client, that H is a collision resistant
hash function, and the query privacy of the PIR scheme, we can show that the
non-repudiation property holds (that a selectively censoring server will produce
a proof of censorship).

The server can attempt to censor a file in two ways: by not responding to
queries for the file, or by creating a malformed response. Malformed responses
themselves can be made by either changing the data as it is stored/responded
to, or by creating invalid signatures over the reply depending on the query.

A server that chooses to change its response based on the query (either not
respond or produce an invalid signature) is prevented by the privacy of the PIR
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scheme. The server cannot know what file is being requested, and thus cannot
selectively perform different behaviors based on the file requested. Honest clients
will detect and reject malformed responses, effectively censoring the file they
requested without the server knowing which file it is censoring.

The server can modify a file block directly, but because they have committed
to the hash of the block’s data in the ticket, and because of the collision resistance
of the hash, the server is unable to change this data without producing a proof
when that data is next requested.

Unforgeability. We show that the scheme is unforgeable assuming the servers
signature scheme is unforgeable, H a random oracle, and the PIR scheme is the
“vector-matrix type” [10] with an underling encryption scheme that is “homo-
morphic quasi-committing”.

Homomorphic Quasi-Committing. A homomorphic encryption scheme
gen, enc, dec is homomorphic quasi-committing if an attacker cannot produce
a ciphertext ct and values m1,m2, c1, c2, pk, sk, rkeygen, r1, r2, such that

pk, sk ← gen(λ; rkeygen)

ct = c1 · enc(pk,m1; r1) + c2 · enc(pk,m2; r2)

where
dec(sk, ct) �= c1 · m1 + c2 · m2

This property is closely related to correctness, which states that for all choices
of random coins and query indexes, an incorrect result is returned with negligible
probability. However, crucially, correctness is insufficient here. First, it does not
ensure that a given query could be correct for two different choices of coins (and
therefore private keys) and query indexes. I.e, it doesn’t explicitly prevent a
forgery where an attacker opens a legitimate query to a different result. Second,
correctness effectively says there is a negligibly set of bad random coins which
cause the scheme to fail. It provides no protections against an attacker choosing
from that subset intentionally.

Homomorphic quasi-committing is a strong property to require of an encryp-
tion scheme. For the rest of the paper, we assume that the underlying encryption
scheme used in the PIR is homomorphic quasi-committing in the random oracle
model where rkeygen, r1, r2 are the output of a random oracle h evaluated on a
nonce nonce and the query index i.

Consider an attacker interacting with an honest content provider who pro-
duces a ticket and a proof of forgery for that ticket. Either the ticket or the PIR
transcript must be forged. Forgeries in the ticket are prevented by the collision
resistance of h and the security of the signature scheme.

Security Argument. We now consider the case of forgeries in the PIR transcript.
By the collision resistance of the hash function and security of the signature
scheme, a attacker cannot substitute either the query or response. As such the
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PIR transcript itself must represent the actual query to and response from the
provider. The only freedom an attacker has here is the choice of openings for the
transcript (i.e. the random coins used for encryption and the public and private
keys.) and she must reveal those as part of the proof. Thus the attacker reveals

pk, sk, rkeygen, r1, . . . , rn, ct

for a query on block i such that

ct = Bi · enc(pk, 1; ri) +
N∑

j=0,j �=i

Bj · enc(pk, 0; rj)

and
dec(sk, ct) �= Bi

It follows that 0, 1,
∑

Bj , Bi, pk, sk, rkeygen,
∑

rj , ri violates the “homomorphic
quasi-committing” property of the encryption scheme for B∗ =

∑N
j=0,j �=i Bj ·

enc(pk, 0; rj) By assumption, this is not possible.

5 Implementation and Evaluation

We implemented our proof of censorship construction on top of XPIR, a fast
PIR tool written in C++ [2]. Our implementation consisted of several hundred
lines of modifications to XPIR, as well as an approximately 500-line application
using the resulting libXPIR library. We used OpenSSL to perform the necessary
signatures and hashes in our protocol.

The parameters we selected for testing were motivated by a simple text-
only Twitter-like application, where messages are short (256 bytes, enough to
include a short post and its metadata). We tested against a database of 1 million
simulated messages in order to evaluate the time and size of different parts of
the system. We used a quad-core Intel Core i5 CPU (3.30 GHz) with 32 GBytes
of RAM to evaluate our prototype.

Table 1. Ticket and proof size—we implemented a prototype of our proof-of-censorship
system, simulating a database of 1 million 256-byte messages. We are able to keep a
constant size of our proof at 2MB. This allows clients that receive a proof of censorship
to be able to easily distribute it.

Size Generation time (std-dev) Validation time (std-dev)

Ticket 120 bytes 334 µs (0.53) 381 µs (4.61)

Query 3.8 Mbytes 28 ms (0.44) n/a

Reply/proof 2.0 Mbytes 2.8 s (0.19) 52 ms (0.54)

Table 1 shows the size and time to generate and validate our ticket, PIR
query, and PIR reply (containing the proof). For our XPIR parameters, we
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choose to use XPIR’s Learning with Errors implementation with 248 bits of
security, using a polynomial of degree 2048 and a modulus of 60 bits, with
recursion level (d) 3, and aggregation (α) 16. All of the client operations are
relatively fast: ticket validation (395 µs), query generation (27 ms), plaintext
extraction (3.5 ms), and proof validation (45 ms) suggest that clients could be
implemented in smartphones or even Javascript web pages without significant
performance issues [1].

5.1 Scalability

We performed measurements of our proof of censorship and underlying PIR
library to determine how the system scales. We measured the performance of
downloading a single file with various database sizes, ranging from 5,000 to 1 mil-
lion files of both small (256 byte) and large (1 MByte) size. For each database
size, we used XPIR’s built-in optimizer to determine the best parameters. XPIR
chooses between two encryption options (Paillier, and the lattice-based learning
with errors (LWE)), varying parameters of each to be optimal given a bandwidth
estimate, file size, and number of files. We encouraged XPIR to optimize for small
query and response sizes by providing a low bandwidth. Although Paillier pro-
duced the smallest query/responses, its server-side processing time was many
orders of magnitude slower than LWE, effectively making it impractical. As a
compromise between bandwidth and processing time, we selected LWE encryp-
tion optimized for small query and response sizes. For small files (256 bytes),
the XPIR optimizer selected a polynomial of degree 2048 and 60-bit modulus
with varying recursion and aggregation values depending on database size. When
considering 1 MByte files the optimizer selected differing LWE flavors, all above
the 80-bit security level, with polynomial degrees ranging from 2048 bits to 4096
bits and modulus bits ranging from 60 bits to 180 bits.

Table 2. Small file scaling—we measured query and response sizes generated for several
different database sizes with 256 byte files to determine how the system scales for a
Twitter-like content server. We find that even at millions of files, the system remains
relatively practical: an 8 MByte query and 2 MByte response are needed to select a
single file privately (with accompanying proof of censorship) from 10 million files.

Number of files 5k 10k 50k 100k 500k 1M 10M 100M

Recursion depth 1 1 2 2 2 3 3 3

Aggregation value 300 420 96 64 126 16 16 15

Query size (MBytes) 0.53 0.75 1.44 2.5 3.9 3.8 8.0 17.7

Reply size (MBytes) 0.56 0.78 1.44 1.0 2.0 2.0 2.0 2.4

For each database size we measured the size of queries a client would have
to generate and the time to generate them. On the server side we measured the
amount of replies it needed to send (based on file size and aggregation value)
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and the time it took to construct those queries. And finally, back on the client
side, we measured the time it took to extract the actual response from the given
replies. The results of our experiments are shown in Tables 2, 3 and Fig. 4.

Fig. 4. Amount of time taken for the actions necessary for our tool to work. The time
taken for the client to generate queries, and to extract the response from the server
replies is very minimal compared to the amount of time that is spent by the server
generating the replies to send back to the server. This time however can be decreased
by using servers with hardware specifically designed to do these computations.

For comparison, we allowed the optimizer to select Paillier 1024, which gen-
erates a 34.7 KB query and a 9.6 KB response when querying a 256 byte file from
1 million files. While this is several orders of magnitude smaller than LWE, server
reply generation took nearly 2 h for a single query. However, query generation
and extraction times on the client were still fast (100 ms and 77 ms respectively).
This suggests that with specialized modular arithmetic hardware on the central-
ized server, reply times could be considerably improved, potentially making this
scheme practical and very attractive for its small query and response sizes.

We also note that a server need not contain all of its files in a single PIR
database. Instead, one could partition the file space into many buckets, and
requests could be made over a much smaller number of files in each bucket,
similar to an idea proposed in bbPIR [25]. This allows for a tradeoff between
the granularity at which a server can censor without producing a proof, and the
efficiency or scalability of the system as a whole. With more buckets, a server
could choose to not respond to queries for an entire bucket without producing
a proof of censorship. If each bucket only contained a few files, the collateral
damage to censoring the entire bucket could be small. In addition, if multiple
buckets exist, a server that wishes to censor could place new files in their own
bucket, allowing for free censorship of the file in the future should it desire. To
combat this, clients could choose which buckets they insert files into.
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Table 3. Large file scaling—we also measured query and response sizes assuming
1 MByte files, to approximate our system being applied to an image or video-streaming
content server. The XPIR optimizer chooses different security, polynomial and modulus
parameters for each database size for 1 MByte files, due to it attempting to limit
the amount of data the client has to send and receive over the network. While the
parameters that are chosen are not always the most secure or privacy preserving, these
parameters do result in the least amount of bandwidth necessary for clients to use.
Additionally, while overheads are low, even with only 50 thousand files in a database,
responses are 73 MBytes for a single megabyte file, likely making application of proof
of censorship impractical to video streaming content providers.

Number of files 5k 10k 50k 100k 500k 1M 10M 100M

Recursion depth 2 2 2 2 2 2 3 3

Aggregation value 1 1 1 1 1 1 1 1

Query size (MBytes) 17.8 25.0 14.0 19.8 44.2 62.5 121.3 174.1

Reply size (MBytes) 32.8 32.8 73.1 73.1 83.7 83.7 138.4 199.4

6 Discussion

In this section, we discuss possible attacks and defenses on our proof of censorship
system, as well as describe potential incentives and future applications for this
type of proof.

6.1 Attacks

Server Produces Invalid Tickets. The server can choose to either not sign or not
produce tickets during file upload, allowing it to delete those files later. However,
the server does not know what file is being uploaded at the time of upload: the
file could be encrypted, where the information to download the file (e.g. URL)
contains the key used to decrypt it. Thus, the server must choose to produce
tickets or not without knowing file contents, making it difficult to target specific
content. In addition, clients that do not receive a valid ticket could reupload the
file (perhaps through an anonymous proxy [6]) until they receive one.

Server Doesn’t Sign Replies. By using PIR, the server does not know what file
is being downloaded. Therefore, it cannot know if a particular request is for
the file it wishes to censor. It can choose to never sign replies (or sign them
randomly), but it does so without knowledge of the file involved. In this case,
we can require that honest clients refuse to extract downloaded files unless the
PIR reply contains a valid signature, meaning that the server effectively would
be censoring unknown files that were requested. This is effectively the same as
a server shutting down its service by not responding to any queries.

Incorrect Timestamps. A server can advance timestamps in tickets (or delay
them in replies), tricking verifying clients into thinking a proof of censorship
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is invalid because the reply appears to come after the ticket (a feature used to
protect against client forgeability). To solve this, we require clients to check the
timestamps of tickets and replies and ensure they are recent before considering
the response valid. This may still leave room for an equivocating server to leave
a small window to censor a file, but if uploaded files are encrypted, the server
will have little information to determine if the file should be censored before the
window has passed.

6.2 Incentives and Applications

How do we use a proof of censorship? The first answer is as a reputation sentinel:
Proofs of censorship can be used to show others that a censoring content provider
cannot be trusted. However, this only works if the proof is widely distributed
(and not itself censored). As the proof is on the order of a few megabytes, it
should be transferable to other verifiers via social media, email, or other content-
sharing sites.

An intriguing possibility is to use proofs of censorship to impose a financial
penalty. This could take the form of a smart contract in Ethereum [26] that
controls a bond posted by the provider which is payable (in part) to whoever
submits a valid proof of censorship.

Another option is to force the provider to reveal some sensitive secret if they
ever censor a file. This can be accomplished via either multi party computation or
trusted hardware. In either case, the content provider is forced to blindly interact
with someone and evaluate a function that either returns nothing or, if fed a valid
proof of work, returns the secret. For example, every request for a file could be
accompanied by a query to the provider’s SGX enclave [11] via an encrypted
channel that is terminated within the enclave. The enclave could derive a private
key from the server’s secret, and use it to sign responses (requiring the enclave
to have the secret loaded). If the enclave receives a valid proof of censorship,
it returns the secret encrypted under the requester’s key. Otherwise, it returns
a dummy value. If the server chooses to provide no response at all, the honest
client aborts3. This forces a censoring provider to either take down their whole
system service once they have censored a file, or risk leaking their secret.

Proofs of censorship may also be purposefully created by a provider to disclose
the extent of what they have censored. In an effort toward transparency, many
content providers voluntarily report takedown notices and removal requests to
Lumen [15] (formerly Chilling Effects). However, there is no guarantee that a
provider hasn’t withheld reports from this database. To combat this, providers
could submit their own proofs of censorship to the database, and any proofs of
censorship not present in the database serve as evidence of the provider attempt-
ing to secretly censor without reporting.

3 To prevent lazy but well meaning clients simply ignoring empty enclave responses,
the enclave could instead return a decryption key needed for the particular file.



Proof of Censorship: Enabling Centralized Censorship-Resistant 113

7 Related Work

Previous research has explored alternative solutions to the problem of content
censorship.

One such approach is proof of retrievability, proposed by Juels et al. in
2007 [12]. In this model, servers provide cryptographic proof to users that they
have access to a file. However, as previously mentioned, this does not mean that
a server must provide such a proof for every file requested: if the server knows
what portion of a file is being requested, they can censor specific parts or files
by simply not responding.

Several works have provided monetary incentives for successful proofs of
retrievability. Permacoin proposes a cryptocurrency with proof of retrievabil-
ity of an agreed-upon file in place of the traditional proof of work [19]. This
encourages miners to keep portions of the file around in order to qualify for
mining rewards associated with the currency. Lavinia incentivizes publishers to
store documents by having a third-party verifier check and provide payments to
well-behaved publishers in a distributed system [3].

Numerous projects have detailed the idea of combining files to discourage
their removal from servers. Tangler [23] stores files across multiple servers and
“entangles” newly uploaded files with existing files using Shamir secret shar-
ing [20]. This entanglement means that deleting an old file may inadvertently
remove more recently uploaded files that depend on it, increasing the collateral
damage in censoring a file. Dagster [21] xors blocks of data together requiring
users to obtain multiple blocks from the server in order to retrieve one block of
desired data. This combining of blocks ties files together in such a way that if
older blocks are removed, newer blocks are no longer accessible. However, newly
uploaded files are not protected, and access patterns of files could be used to
detect what file is being downloaded.

Others have leveraged distributed systems to make content harder to censor.
Publius [24] allows clients to upload encrypted files to multiple servers along
with parts of a split encrypted key in such a way that a threshold of servers
behaving honestly will allow the file to be retrievable. Freenet [4] provides a
volunteer-based peer-to-peer network for file retrieval with the aim of allowing
both authors and readers to remain anonymous. Tor [6] supports hidden ser-
vices, where a central provider could potentially obscure its network location
while hosting objectionable content. However, all of these schemes lack a mech-
anism to discourage servers or participants from misbehaving, opting instead to
either hide or share responsibility of hosted content. Moreover, they provide no
guarantees on file lifetimes, which is determined by the resource constraints of
the participating servers.

8 Future Work

Proof of censorship could be extended in several directions and applications.
As mentioned previously, monetary incentives built on top of such proofs could
encourage content providers to deploy such a system and keep them honest.
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Beyond this, there are many open problems in how to apply proof of cen-
sorship to different applications in an efficient manner. For instance, applying
this scheme to a video streaming service would be a difficult engineering task,
as large file sizes, database volumes, and high bandwidth demands require low-
overhead efficient solutions. To solve this problem, it may be possible to combine
proof of censorship with other scalable private media retrieval systems such as
Popcorn [9].

Proof of censorship could also augment existing key transparency applica-
tions, such as Certificate Transparency [14] or CONIKS [17]. Although these
systems already detect server equivocation when a server modifies a particular
object, they fail to provide any sort of guarantee on responses for every object
in their certificate or key store. Using proof of censorship, these systems could
provide such an assurance in addition to the protections provided.

9 Conclusion

Content censorship from providers remains a growing problem. As network
effects push users and content toward more centralized provider platforms, legal
and political pressures have followed suit. While centralized providers can claim
they stand for free speech or open access, they have no mechanism to prove they
do.

In this paper, we have presented a scheme whereby a content provider can
stand behind such a claim cryptographically. By deploying this scheme, providers
will create a cryptographically verifiable and transferable proof of censorship
should they delete or remove access to a specific file. The threat of this proof
provides a disincentive to content providers from even temporarily censoring a
file, as their reputation with respect to Internet freedom is at stake.
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Abstract. Vendors in the Android ecosystem typically customize their
devices by modifying Android Open Source Project (AOSP) code, adding
in-house developed proprietary software, and pre-installing third-party
applications. However, research has documented how various security
problems are associated with this customization process.

We develop a model of the Android ecosystem utilizing the concepts
of game theory and product differentiation to capture the competition
involving two vendors customizing the AOSP platform. We show how
the vendors are incentivized to differentiate their products from AOSP
and from each other, and how prices are shaped through this differentia-
tion process. We also consider two types of consumers: security-conscious
consumers who understand and care about security, and näıve consumers
who lack the ability to correctly evaluate security properties of vendor-
supplied Android products or simply ignore security. It is evident that
vendors shirk on security investments in the latter case.

Regulators such as the U.S. Federal Trade Commission have sanc-
tioned Android vendors for underinvestment in security, but the exact
effects of these sanctions are difficult to disentangle with empirical data.
Here, we model the impact of a regulator-imposed fine that incentivizes
vendors to match a minimum security level. Interestingly, we show how
product prices will decrease for the same cost of customization in the
presence of a fine, or a higher level of regulator-imposed minimum
security.

1 Introduction

Android, the mobile operating system released under open-source licenses as
the Android Open Source Project (AOSP), has the largest market share among
smartphone platforms worldwide with more than one billion active devices [2].
Due to the openness of the platform, vendors and carriers can freely customize
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features to differentiate their products from their competitors. This differentia-
tion includes customizing the hardware, but there is also a substantial fragmen-
tation in the software packages utilized in the Android ecosystem [15,22].

The fragmentation of the software base available from various vendors is due
to various customization steps, including the modification of the open source
Android codebase as well as the addition of proprietary software. Product dif-
ferentiation may benefit consumers by providing Android devices for sale that
better match consumer tastes, and may also benefit businesses by helping them
to sidestep intense price competition of homogeneous product markets [24].

However, we also observe that Android platform fragmentation is associated
with a number of security challenges [23,25,26]. For example, Wu et al. showed
that a large proportion of security vulnerabilities in the Android ecosystem are
due to vendor customization. They calculated that this proportion is between
64% to 85% for different vendors [25]. Similarly, Zhou et al. showed how cus-
tomized drivers for security-sensitive operations on Android devices available
by different vendors often compare unfavorably to their respective counterparts
on the official Android platform [26]. Thomas et al. provided evidence for the
substantial variability of security patch practices across different vendors and
carriers [23]. Using a dataset about over 20,000 Android devices, they showed
that on average over 87% of the devices are exposed to at least one of 11 known
critical (and previously patched) vulnerabilities.1

The Android ecosystem fragmentation and the associated security problems
have caused consumer protection agencies to intervene in the marketplace. In
2013, the Federal Trade Commission (FTC) charged a leading vendor because it
“failed to employ reasonable and appropriate security practices in the design and
customization of the software on its mobile devices” [9]. The case was settled
and the vendor was required to “establish a comprehensive security program
designed to address security risks during the development of new devices and
to undergo independent security assessments every other year for the next 20
years” [9]. Not observing significant improvements in the Android ecosystem,
the FTC recently solicited major vendors to provide detailed information about
their security practices including what vulnerabilities have affected their devices
as well as whether and when the company patched those vulnerabilities [8].

In this paper, we propose a product differentiation model that captures key
facets of the Android ecosystem with a focus on the quality of security. We con-
sider multiple competing vendors, who can customize Android for their prod-
ucts in order to differentiate themselves from their competitors. We consider
both security-conscious consumers, who value security quality, and näıve con-
sumers, who do not take security issues into consideration when they make adop-
tion choices. When consumers are näıve, vendors do not have any incentives to
address security issues arising from the customization. In order to incentivize
investing in security, a regulator may impose a fine on vendors that do not

1 Further compounding the problem scenario is how third-party apps targeting out-
dated Android versions and thereby disabling important security changes to the
Android platform cause additional fragmentation [19].
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uphold a desired level of security. We show that fines can achieve the desired
effect, and we study how they impact the competitive landscape in the Android
ecosystem.

Roadmap. In Sect. 2, we provide background on Android customization and the
associated security challenges. Section 3 presents the economic model on Android
customization. We analyze the model without a fine in Sect. 4 and consider how
to calculate the parameters in our model in Sect. 5. We extend the model to
the case with a regulator-imposed fine in Sect. 6. We support our analysis with
numerical results in Sect. 7. We conclude in Sect. 8.

2 Background

Customization: One approach to measure the level of customization by vendors
is provenance analysis [25], which studies the distribution and origin of apps
on Android devices. There are mainly three sources of app origins on Android
devices: (1) AOSP: apps available in the default AOSP that, however, can be
customized by a vendor; (2) Vendor: apps that were developed by that vendor;
and (3) Third-party: apps that are not in AOSP and were not developed by the
vendor.

Table 1 summarizes the published findings of a provenance analysis of five
popular vendors: Google, Samsung, HTC, Sony, and LG [25]. The authors found
that on average 18.22%, 64.41%, and 17.38% of apps originate from AOSP, ven-
dors, and third parties, respectively. Further, the number of apps and lines of
code (LoC) associated with the devices are increasing with newly released ver-
sions. Likewise, the complexity of the baseline AOSP is increasing over time [25].

Table 1. Provenance analysis [25].

Vendor Device Version and Build# #apps #LOC AOSP Vendor 3rd-party

#apps #LOC #apps #LOC #apps #LOC

Samsung Galaxy S2 2.3.4; 19100XWKI4 172 10M 26 2.4M 114 3.5M 32 4.1M

Samsung Galaxy S3 4.0.4; 19300UBALF5 185 17M 30 6.3M 119 5.6M 36 5.3M

HTC Wildfire S 2.3.5; CL362953 147 9.6M 24 2.7M 94 3.5M 29 3.3M

HTC One X 4.0.4; CL100532 280 19M 29 4.7M 190 7.3M 61 7.5M

LG Optimus P350 2.2; FRG83 100 6.1M 27 1.1M 40 0.6M 33 4.4M

LG Optimus P880 4.0.3; IML74K 115 12M 28 3.1M 63 3.2M 24 5.6M

Sony Xperia Arc S 2.3.4; 4.0.2.A.0.62 176 7.6M 28 1.1M 123 2.6M 25 3.8M

Sony Xperia SL 4.0.4; 6.1.A.2.45 209 10M 28 1.8M 156 4.1M 25 4.7M

Google Nexus S 2.3.6; GRK39F 73 5.2M 31 1M 41 2.8M 1 1.3M

Google Nexus 4 4.2; JOP40C 91 15M 31 2.5M 57 12M 3 1.1M

One of the challenges in this fragmented ecosystem is the security risk that
arises from the vendors’ and carriers’ customization to enrich their systems’
functionality without fully understanding the security implications of their cus-
tomizations. In this paper, our focus is on security issues resulting from such
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customization. We provide an overview of relevant work in this area in the fol-
lowing subsection.

Security Impact of Customization: The problems related to security aspects
of Android customization are mainly due to vendors’ change of critical config-
urations. These changes include altering security configurations of Linux device
drivers and system apps, etc. One approach for better understanding the effect
of customization is to compare security features of different Android devices with
each other, which is called differential analysis. Aafer et al. proposed a number
of security features to take into account [1]. First, permissions which protect
data, functionalities, and inner components can be analyzed. In Android, we
have four level of permissions: Normal, Dangerous, Signature, SystemOrSigna-
ture. The goal of differential analysis is to find a permission with a different
(and typically lower) level of protection on some devices. Second, group IDs
(GIDs) are another feature to take into account. Some lower-level GIDs are
given Android permissions, which could potentially be mapped into a privileged
permission due to customization. Protected broadcasts sent by system level pro-
cesses are a third important security feature. Due to customization, some pro-
tected broadcasts could be removed and, as a result, apps can be triggered by
not only system-level processes but also by untrusted third-party apps.

By comparing these security features, Aafer et al. found that the smaller the
vendor is, the more significant inconsistencies are observable for the different
security features. One interpretation is that the cost of investment in security
is too high for those vendors (e.g., hiring of security experts). The results also
imply that different vendors invest in security to different degrees.

Research aiming to understand Android customization is clearly demonstrat-
ing that customization is a pervasive feature in Android, and this is associated
with a wide variety of security challenges and vulnerabilities. Further, we are
unaware of any research that provides evidence for security improvements result-
ing from customization, which outweighs the aforementioned risks. At the same
time, research is missing that aims to understand the economic forces associated
with the customization process, which is the objective of our work.

Product Differentiation: Hotelling proposed a widely cited model for product
differentiation in which a linear city of fixed length lies in the horizontal axis,
and consumers are distributed uniformly in this interval [16]. Firms strategically
chose a location in this space, since consumers appreciate firms who are closer
to their location. We draw from this basic setup, and a more tractable exten-
sion using a quadratic function for consumer preferences for distance [5,24].
An alternative product differentiation model was proposed by Salop with con-
sumers located uniformly on a circular city [21]. These two models are typically
referred to as spatial competition or horizontal differentiation. In contrast, verti-
cal (quality) differentiation has been used to formalize quality competition [11].
Our model also draws on quality differentiation by considering different levels of
security investments by Android vendors.

Another type of (perceived) product differentiation is related to the lack
of complete information about the characteristics of different products by
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consumers, which is called information differentiation. Advertising is a key
factor affecting the perceived product differentiation and resulting consumer
demand [24]. Kaldor [17] proposed that advertising yields information benefits
to consumers, while other researchers suggest that advertisement misleads con-
sumers [12,24]. In our model, we take the view that consumers are largely unin-
formed about the security quality of Android devices by different vendors when
they make adoption decisions. We are unaware of any research studying explic-
itly users’ awareness of Android OS security, however the recent FTC request
for information from Android vendors provides indirect evidence of the opaque-
ness of Android security practices [8]. In addition, a multitude of papers have
addressed lack of awareness about third-party app security (e.g., [20]). While we
believe that at least a small segment of consumers is concerned about Android
security, and takes proactive steps to inform themselves (see, for example, the
following paper on Android permissions [10]), we defer research on populations
with mixed levels of security-awareness to future work.

3 Model Definition

In this section, we propose our baseline model in the tradition of game theory
and the theory of product differentiation [16,24]. Our model considers three types
of entities: (1) AOSP, (2) vendors, such as Samsung or LG, and (3) consumers.

AOSP: Google, the developer of Android, provides monthly security updates
for its devices and for base Android. However, other vendors have to adjust
AOSP security updates for their Android devices because of their customization.
Further, customization may also introduce new security vulnerabilities.

To incorporate these effects into our model, we assume that a customized ver-
sion of Android can be represented by a point on the segment [0, 1]. Our analysis
could be extended to multidimensional customizations in a straightforward way,
but we assume one dimension for ease of presentation, since our focus is on the
relative level of customization rather than its direction. Moreover, the location
of each Android customization is independent of objective measures of product
quality. In other words, we map the features of a mobile device to a point on
the segment [0, 1] to quantify its difference (e.g., percentage of customized code)
from the base version of Android provided by AOSP. In our model, ZA denotes
the point corresponding to the base version of AOSP. Since AOSP aims to pro-
vide a base version that maximizes the market share of Android, it provides a
version that can attract the widest range of consumers. Hence, in the numerical
analysis, we assume that AOSP is in the middle, i.e., ZA = 0.5.

Vendor: There are multiple vendors selling Android devices. Likewise, carriers
can also sell the vendors’ Android devices with their own prices and customiza-
tions. Here, we will use the term “vendor” to refer to both vendors and carriers.
The price and the market share of the device sold by vendor i are denoted by pi
and Di, respectively. Further, qi denotes the security quality of patches delivered
by vendor i. We assume that pi ≥ 0 (product prices are non-negative) and qi ≥ 0
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(security quality is represented by a non-negative number) for every vendor i.
Similar to the AOSP base version, a point zi ∈ [0, 1] represents the customization
of the Android version of vendor i.

We consider two types of costs for customization. First, through customiza-
tion, the vendor makes its product different from what Google has developed in
AOSP. Hence, the vendor incurs development cost, which is related to the degree
of customization. Here, we model this cost as a convex quadratic function of the
difference between the vendor’s position and the positions of the AOSP base
version. Second, the security related cost of a vendor depends not only on the
quality and frequency of security updates provided by the vendor, but also on
the difference due to customization. Vendors receive security patch updates from
AOSP, but due to customizations, vendors need to adapt these security patches
before distribution. Often, vendors degrade the quality or frequency of security
patches in order to save development and distribution costs [23]. Hence, the
security-related cost is affected by both the customization level and the security
quality. In our model, we employ a convex quadratic function to capture how
the security cost of vendor i depends on qi. The utility of vendor i is equal to:

πi = piDi − Ci (zi − ZA)2 − Siq
2
i (zi − ZA)2 , (1)

where Ci and Si are constants representing cost per unit of customization and
security quality, respectively. Note that we focus on security issues resulting from
Android customization rather than security-related cost of AOSP.

We have considered quadratic functions for the cost terms, which is a common
assumption for modeling customization costs, e.g., see [4] and [6]. The quadratic
cost function captures the fact that the cost of customization increases as the
customization increases. In a similar way, with an increase in the cost of cus-
tomization or the quality of security, the security cost resulting from customiza-
tion increases. It would be possible to use any functional form with increasing
marginal cost, such as an exponential cost function, which would lead to the
same qualitative results as the ones presented here.

We also consider the quality of security patch updates provided by AOSP,
denoted by Q, to be an exogenous parameter in our model, which applies to all
vendors in the same way. Note that we observe that in practice, vendors virtu-
ally never provide better security quality. Further, we are primarily interested
in studying the effect of customization on security; hence, we will not consider
vendors implementing additional security measures that are independent of cus-
tomization. Hence, we assume that the value of qi is upper bounded by Q.

Consumers: Consumers choose mobile devices primarily based on prices and
how well the devices match their preferences, but they may also consider security
quality. A consumer’s preference, similar to a vendor’s customization, can be rep-
resented by a point x in [0, 1]. Consumers’ preferences for smartphone selection
are heterogeneous and we assume that the consumers’ preferences are distributed
uniformly in [0, 1]. We consider security-conscious consumers who take security
into account when choosing their product. The utility of consumer j for choosing
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Android type i given that consumer j is at xj is:

ui
j = βqi − pi − T (xj − zi)

2
, (2)

where T represents the consumer’s utility loss for one unit of difference between
its preference and the location of the product, which we call customization-
importance. Similarly, β represents the consumer’s utility gain for one unit of
security quality, which we call security-importance. Näıve consumers, who do not
understand or care about security quality, can be modeled by letting β = 0.

Our utility for consumers is in agreement with literature in economics [5]. It
is common to consider quadratic term in economics to model utility.

Game Formulation: For tractability, we consider a two-player game between
vendor 1 and vendor 2 without any other vendors.2 In our analysis, we assume
that vendors are on different sides of AOSP. Further, we let a = z1 and 1−b = z2.
Without loss of generality, we assume that 0 ≤ a ≤ 1 − b ≤ 1. Figure 1 shows
the location of vendor 1 and vendor 2.

The utilities of vendors 1 and 2 are then as follows:

π1 = p1D1 − C1 (a − ZA)2 − S1q
2
1 (a − ZA)2 , (3)

π2 = p2D2 − C2 (1 − b − ZA)2 − S2q
2
2 (1 − b − ZA)2 . (4)

0 1Vendor 1 AOSP Vendor 2

a b

Fig. 1. Location of vendor 1 and vendor 2.

To calculate the Nash equilibrium, we need to define the stages of the game,
i.e., the order in which the two players choose their prices, locations, and security
levels. For our analysis, we consider the following stages:

• Stage 1: Both vendors simultaneously choose their location parameters a
and b. They also choose their level of security quality, i.e., q1 and q2.

• Stage 2: Both vendors simultaneously choose their prices p1 and p2.

The reason is that a vendor freely modifies the AOSP code base, adds its
developed proprietary software, and installs a diverse set of third-party apps to
customize its device. These changes, however, result in the change of critical
2 While we restrict our model to two vendors, we are aware that in practice, there

are more than two vendors competing with each other. However, we believe that
similar to classic economic studies with two companies in the context of product
differentiation, our model provides a meaningful understanding of the customization
in the Android ecosystem and of security quality.



126 S. Farhang et al.

configurations leading to security issues [23,25,26]. Therefore, it is reasonable
to consider that the customization and security quality effort happen at the
same stage. Then, by taking into account its effort in customization and security
quality, the vendor chooses its price. We use backward induction to solve our
game. First, we consider stage 2 and calculate the price Nash equilibrium for
given locations and quality. Then, we consider stage 1 and calculate the location
and quality equilibrium assuming a price equilibrium in stage 2.

Table 2 shows a list of the symbols used in our model.

Table 2. List of symbols

Symbol Description

ZA Point corresponding to AOSP

Di Market share of vendor i

zi Customization of the Android version of vendor i

pi Price of vendor i

qi Security quality of patches delivered by vendor i

Si Cost per unit of security quality

Ci Cost per unit of customization

πi Utility of vendor i

Q Quality of security patch updates provided by AOSP

β Consumer’s security-importance

T Consumer’s customization-importance

xj Consumer’s location

ui
j Utility of consumer j for choosing Android type i

qmin Minimum level of security from the regulator’s point of view

fi Fine function for vendor i

F Monetary value of fine for each unit of violation from qmin

4 Analytical Results

In this section, we analyze our proposed model. Before considering the two stages,
we first have to find the market shares of both vendors. To do so, we need to
find the point in which a consumer j is indifferent between choosing vendor 1’s
product and vendor 2’s product. This means that a user’s preference at this
point is identical for the two products. Hence, we have:

u1
j = u2

j ⇒ βq1 − p1 − T (xj − a)2 = βq2 − p2 − T (1 − b − xj)
2
. (5)

Solving the above equation yields:

D1 = xj = a +
1 − a − b

2
+

β (q1 − q2)
2T (1 − a − b)

+
p2 − p1

2T (1 − a − b)
. (6)
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All of the consumers that are on the left side of xj choose the product of
vendor 1. As a result, the market share of vendor 1 is D1 = xj . This means
that for equal prices and security qualities, vendor 1 controls its own “turf” of
size a and the consumers located between vendor 1 and vendor 2 that are closer
to vendor 1 than vendor 2. The last two terms represent the effect of security
quality and price differentiation on the demand, respectively.

We restrict the model to consumers who definitely choose between these
two products, which is a reasonable assumption for a wide range of parame-
ters given the “cannot-live-without-it” desirability of modern phones, which is a
valid assumption in economics, see [24]. Hence, the remaining consumers choose
vendor 2’s product, and its demand is accordingly:

D2 = 1 − D1 = b +
1 − a − b

2
+

β (q2 − q1)
2T (1 − a − b)

+
p1 − p2

2T (1 − a − b)
. (7)

If two vendors are at the same location, they provide functionally identical
products. For a consumer who takes into account customization, price, and secu-
rity quality, the factors that matter in this case are security quality and price.
To increase their market share, vendors have to decrease their prices or increase
their security quality. This will lead to lower product prices and higher costs
due to higher security quality, and significantly lower – and eventually zero –
utility for both vendors. Hence, vendors have no incentives for implementing
customizations that result in identical product locations.

Price Competition: In the following, we state the price Nash equilibrium.

Theorem 1. The unique price Nash equilibrium always exists, and it is

p∗
1 =

β

3
(q1 − q2) + T (1 − a − b)

(
1 +

a − b

3

)
, (8)

p∗
2 =

β

3
(q2 − q1) + T (1 − a − b)

(
1 +

b − a

3

)
. (9)

The proof of Theorem 1 can be found in the extended version of the paper [7].
In Theorem 1, the price of a product depends on both the security quality

and the customization level of both vendors. Further, the price depends on the
customization importance T and security-importance β constants, which model
the consumers in our model. A vendor can increase its price by improving its
security quality or customizing its devices more.

Quality and Product Choice: To calculate the Nash equilibrium of both
vendors in terms of location and security quality, we consider the following opti-
mization problems.

Vendor 1 maximizes its utility in q1 and a considering that p1 is calculated
according to Eq. 8. For vendor 1, we have:

maximize
a, q1

p∗
1D1 − C1 (a − ZA)2 − S1q

2
1 (a − ZA)2

subject to p∗
1 ≥ 0, 0 ≤ a ≤ ZA, 0 ≤ q1 ≤ Q.

(10)
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The constraints in the above optimization problem reflect our previous
assumptions about the parameters in our model definition. For each value of
b and q2, the solution of the above optimization problem provides vendor 1’s
best response. In a similar way, for vendor 2, we have:

maximize
b, q2

p∗
2D2 − C2 (1 − b − ZA)2 − S2q

2
2 (1 − b − ZA)2

subject to p∗
2 ≥ 0, 0 ≤ b ≤ ZA, 0 ≤ q2 ≤ Q.

(11)

For given values of a and q1, the above optimization problem provides vendor
2’s best response. Based on the Nash equilibrium definition, the intersection of
these two optimization problems gives the Nash equilibrium of our proposed
game, i.e., a∗, b∗, q∗

1 , and q∗
2 . In the extended version of the paper [7], we provide

our method for solving these two optimization problems and for finding the Nash
equilibrium.

Lemma 1. When consumers take into account security, zero investment in
security for both vendors, i.e., q1 = q2 = 0, is not a Nash equilibrium.

The proof of Lemma 1 is provided in the extended version of the paper [7].
The above lemma shows that when consumers take into account security,

then vendors have to invest to improve their security quality. However, it is
challenging for the majority of consumers to measure by themselves the security
quality of a product, or in this case, to make a comparison between the security
quality of many customized versions of Android provided by the vendors. Con-
sumers mainly rely on information that is made available to them.3 However,
in the absence of any reliable market signal, any unsubstantiated communica-
tion/advertisements by vendors about security quality have to be considered
with caution.4

Previous research has shown that businesses aim to exploit such information
barriers. In particular, the theory of informational market power posits that
when it is hard for consumers to understand and/or observe certain features
of a product (e.g., security quality), then businesses are incentivized to under-
invest in these product features and rather focus on easily observable aspects
such as product design and price [3].5 Any effect of informational market power
is emphasized by well-known human biases such as omission neglect [18]. This

3 While we have identified a small set of research projects which aim to understand
the security impact of customization, e.g., [23,25,26], we are unaware of any well-
known market signals regarding the security of different Android versions. The recent
FTC initiative to solicit security-relevant data from vendors may contribute to such
signals in the future [8].

4 In fact, research by Wu et al. shows that vendors of different reputation (which
may also influence perceptions regarding Android security) all suffer from similar
challenges due to Android customization [25].

5 Note that it is not required that businesses have an accurate assessment of the
security quality of their own product (or competitors’ products) for informational
market power to be exploited.
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describes the human lack of sensitivity about product features that are not the
focus of advertisements or product communications; to paraphrase, consumers
will often not consider in their perceived utilities product features which are not
emphasized. Therefore, we consider an important baseline case of näıve con-
sumers. In particular, we show that our model is in agreement with what we
have seen in practice, i.e., vendors do not invest in security when consumers are
näıve. Further, we determine under what conditions maximal differentiation, i.e.,
a∗ = b∗ = 0, is Nash equilibrium; see the extended version of the paper [7].

5 Parameter Selection

In the previous section, our analyses were focused on six variables: p1, p2, q1,
q2, a, and b. In addition to these six variables, we have six parameters, which
are β, T , C1, C2, S1, and S2. In this section, we discuss how we can quantify
these six parameters in practice. In doing so, we use a reverse approach. First,
we measure the values of p1, p2, q1, q2, a, and b. Then, based on our analyses in
the previous section, we calculate the values of the constants in our model.

Table 3. Origin of apps in two devices [25].

Vendor Device Version

and Build#

#apps #LOC AOSP Vendor 3rd-party

#apps #LOC #apps #LOC #apps #LOC

HTC (vendor 1) One X 4.0.4;

CL100532

280 19M 29 4.7M 190 7.3M 61 7.5M

Samsung (vendor 2) Galaxy S3 4.0.4;

19300UBALF5

185 17M 30 6.3M 119 5.6M 36 5.3M

Location Quantification: In order to quantify customization and map it to a
location, we need to quantify how different two Android versions are in terms of
pre-loaded apps. To do so, we can access the image of an Android OS version,
e.g., see [25] and [1], and investigate how many apps a vendor has developed for
a specific version.

To quantify customization, we use the results of Table 3 and calculate the
proportion of the code that was developed by a vendor. Note that in our model,
we assume that the locations are in the interval [0, 1]. First, we need to specify
the location of ZA and then select the locations of the other vendors. Here, we
assume that ZA = 0.5. For the HTC One X (i.e., vendor 1), 7,354,468 LoC
were developed by the vendor and 7,550,704 LoC stem from third-party apps.
This means that about 75.95% LOC were added by that vendor to the baseline
AOSP version. Here, we interpret this number as the level of difference between
the device and AOSP. In order to keep the value of a in the interval [0, 0.5], we
let a = ZA − (percentage/2). Therefore, we have a = ZA − (0.7595/2) = 0.1203.
In a similar way, for the Samsung Galaxy 3 (i.e., vendor 2), 5,660,569 LOC were
developed by the vendor in addition to 5,334,152 LoC coming from third-party
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apps, which is equal to 63.41% of the total number of LOC. In a similar way, we
let b = 1 − ZA − (0.6341/2) = 0.1830.

Quality: To quantify q1 and q2, we use the analysis reported in [25]. For a sample
of 10 devices, they found that the maximum number of vulnerabilities for a device
is 40. Some of these vulnerabilities are the result of vendor customization. For
the HTC One X, 15 vulnerabilities were found, and 10 of these vulnerabilities are
due to vendor customization. By dividing the number of vulnerabilities resulting
from customization with the maximum number of vulnerabilities, we get 0.25.
In order to calculate security quality, we let

q1 = 1 − #Customization V ulnerabilities

Maximum#V ulnerabilities
= 0.75.

In a similar way, for the Samsung Galaxy S3, 40 vulnerabilities were found, and
33 of these are the result of customization. Hence, we have q2 = 1− 33

40 = 0.1750.

Price: The prices of the HTC One X and the Samsung Galaxy S3 are equal
to e170 [13] and e190 [14], respectively. GSM Arena (http://www.gsmarena.
com/) groups both of these devices as group 4 out of 10 for their price. Here, we
consider p1 = p2 = 4.

Parameter Estimation: By inserting these six values into our model analysis,
we can calculate the six constants in our model. Here, we assume that both ven-
dors are completely rational and as a result they have chosen their customization
levels, prices, and security qualities following the dependencies captured by our
model. Therefore, we can calculate the parameters in our model in a reverse way.
By inserting our quantified parameters, i.e., a, b, q1, q2, p1, and p2, into Eqs. 8
and 9, we have two equations and two variables, i.e., β and T . The system of
equations then yields the values of β and T . Note that these two equations are
linear in T and β. Therefore, the resulting answer is unique.

To calculate the values of C1, C2, S1, and S2, we assume that the measured
values of q1, q2, a, b form a Nash equilibrium of our game. Since the vendors’
strategies are mutual best responses in a Nash equilibrium, q1, q2, a, b are solu-
tions to the corresponding best-response equations, which are available in the
extended version of the paper [7]. We have four variables and four equations.
The solution of this system of equations provides the values of S1, C1, S2, C2,
which are unique. Therefore, based on the measured values, we have β = 0.4362,
T = 5.7414, S1 = 0.6723, C1 = 1.4882, S2 = 4.1338, and C2 = 2.4875.

6 Fine Model and Analysis

The background on actual security practices and our analysis provide evidence
and explanations for vendors’ unsatisfactory security practices in the context
of customization. In particular, vendors will not adequately invest in security
if consumers do not take security sufficiently into account. In the following,
we propose a mechanism to incentivize a vendor to invest in security quality.

http://www.gsmarena.com/
http://www.gsmarena.com/
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In doing so, we introduce a regulator whose role is to define a corresponding
policy. More specifically, we propose the following fine function for vendor i for a
regulatory policy which takes as input the vendor’s security quality and outputs
the monetary value of the fine imposed on the vendor:

fi(qi) =

{
F

(
qmin − qi

)
if qmin ≥ qi

0 otherwise,
(12)

where F and qmin are constants defined by the regulator. qmin is the minimum
acceptable level of security from the regulator’s point of view and the regulator
tries to force each vendor to satisfy at least this security level. F is a coefficient
relating quality to monetary value and denotes the monetary value of fine for
each unit of security violation from qmin for a vendor. The monetary value of
the fine should be proportional to the market share, since a higher market share
of a vendor with security issues results in a higher number of consumers with
vulnerabilities. In our model, we multiplied fi by the market share of that vendor.

In this section, we show that under certain conditions, a regulator can force
a vendor to spend on security issues resulting from customization. Moreover, we
prove that the product’s price decreases as the vendor invests in the adequate
level of security imposed by the regulator, for the same value of customization
cost. More specifically, our analysis shows that under some conditions, the higher
the security quality imposed by the regulator is, the lower the product’s price is.

By imposing a fine, the vendors’ utilities change to the following:

π1 = p1D1 − C1 (a − ZA)2 − S1q
2
1 (a − ZA)2 − f1D1. (13)

π2 = p2D2 − C2 (1 − b − ZA)2 − S2q
2
2 (1 − b − ZA)2 − f2D2. (14)

It is worth mentioning that the consumers’ utility does not change. Hence,
all of Eqs. 5, 6, and 7 are still valid for the case when there is a fine. The validity
of these equations implies that the formulae for the vendors’ market share is
the same for both cases. However, the vendors’ equilibrium prices are different
compared to the previous case.

Similar to the case without a fine, here we have the same two stages with
the same ordering. The regulator’s goal is to force the vendors to invest in an
adequate security level. Hence, in our analysis, we focus on the case where the
regulator forces the vendor to invest in an adequate security quality level.

Theorem 2 characterizes both vendors’ prices in Nash equilibrium when the
regulator imposes a fine.

Theorem 2. The Nash equilibrium in prices, which always exists, is

p∗
1 =

β

3
(q1 − q2) + T (1 − a − b)

(
1 +

a − b

3

)
+

2f1
3

+
f2
3

, (15)

p∗
2 =

β

3
(q2 − q1) + T (1 − a − b)

(
1 +

b − a

3

)
+

2f2
3

+
f1
3

. (16)
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This proof of the theorem is included in the extended version of the paper [7].
By comparing the above two equations with Eqs. 8 and 9, we observe that

the introduction of a fine will increase the product price of the vendors for fixed
locations and security level.

Näıve Consumers: Based on Theorem 2, by letting β = 0, we can characterize
the price NE for näıve consumers (see the extended version of the paper [7]).
Lemma 2 introduces the sufficient conditions to force vendors to invest in ade-
quate level of security, when consumers do not take security into account.

Lemma 2. Both vendors invest in q∗
1 = q∗

2 = qmin, if the following conditions
are satisfied for the optimal locations of both vendors:

F 2 − 18TS1 (1 − a − b) (a − ZA)2 ≥ 0, (17)

F 2 − 18TS2 (1 − a − b) (1 − b − ZA)2 ≥ 0, (18)

3 + a − b − Fqmin

T (1 − a − b)
≥ 0. (19)

Proof of the above lemma is provided in the extended version of the paper [7].
Lemma 3 calculates the location Nash equilibrium of both vendors consider-

ing that the regulator forces the vendors to invest in adequate levels of security.

Lemma 3. For a given b, vendor 1’s best response for location, when the con-
sumers do not take security into account and conditions of Lemma 2 are satisfied,
is as follows:

• C1 + S1

(
qmin

)2 ≤ T
12ZA

: Vendor 1 differentiates its product the most, i.e.,
a∗(b) = 0.

• C1 + S1

(
qmin

)2 ≥ T
9ZA

: The positive root of the following quadratic equation
is called a2. In this case, for vendor 1 we have a∗(b) = min{a2, ZA}.

−3Ta2 + a
(
2Tb − 10T − 36

(
C1 + S1

(
qmin

)2))

+T
(
b2 − 2b − 3

)
+ 36

(
C1 + S1

(
qmin

)2)
ZA = 0 (20)

• T
12ZA

<C1+S1

(
qmin

)2
< T

9ZA
and b ≤ min{1−

√
4 − 36(C1+S1(qmin)2)

T ZA, ZA}:
Vendor 1 chooses its location as a∗(b) = min{a2, ZA}.

• T
12ZA

< C1 + S1

(
qmin

)2
< T

9ZA
and 1 −

√
4 − 36(C1+S1(qmin)2)

T ZA ≤ ZA and

1 −
√

4 − 36(C1+S1(qmin)2)
T ZA ≤ b ≤ ZA: Vendor 1 differentiates its product

the most, i.e., a∗(b) = 0.

By changing C1 to C2, S1 to S2, a to b, and ZA to (1 − ZA), in the above
lemma, we can derive the same results for vendor 2. Proof of Lemma 3 is provided
in the extended version of the paper [7].

Comparing Lemma 3 with the case without fine, maximal differentiation
occurs when the customization cost is lower than when there is no fine, since a
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vendor’s cost is affected by both the costs of customization and security quality.
Further, according to Eq. 20, the location NE depends on qmin rather than F .
However, both F and qmin have the effect to satisfy the conditions for forcing a
vendor to invest in an adequate level of security, i.e., Lemma 2.

7 Numerical Illustration

In this section, we evaluate our findings numerically. First, we evaluate the case
in which consumers are näıve, but a regulator imposes fines. Then, we compare
the equilibrium prices and locations in the absence and in the presence of the
regulatory fine. Interestingly, we observe that the products’ prices (of both ven-
dors) decrease in the presence of fines, and both vendors invest in the minimum
level of security qmin set by the regulator. Finally, we evaluate the case in which
there are no fines but the consumers take into account security quality.
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Fig. 2. Equilibrium locations and prices for various values of C1 and C2. Here, con-
sumers are näıve, but there is a regulatory fine, and T = 8, S1 = 0.602, S2 = 1.54,
F = 10, and qmin = 0.4. For these values of C1 and C2 and choices of a and b, both
vendors invest in qmin set by the regulator.
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In Fig. 2, we examine the effect of regulation on location, price, and security
quality for various values of C1 and C2. In our evaluation, in the presence of
a regulator, the conditions of Lemma2 are satisfied. As a result, both vendors
invest in qmin set by the regulator. Similar to the case without any fine, the
higher the customization cost (e.g., C1), the lower is the differentiation from the
baseline AOSP (e.g., the higher the value of a∗ is). Similarly, we again observe
little changes in a vendor’s location in response to changes in its opponent’s
customization cost and the customization level. Further, the equilibrium prices
of both vendors are decreased by an increase in customization costs, since both
of them choose lower levels of customization and enter a price competition.
Note that even in the presence of fines, vendor 2 chooses the maximum level of
customization (i.e., b∗ = 0) when C2 = 0, considering that its cost of security
is proportional to its level of customization and S2 > S1. The reason for this is
that vendor 2 is reluctant to enter a price competition.
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Fig. 3. Comparison between the presence and the absence of a fine for näıve consumers.
We have T = 8, S1 = 0.602, S2 = 1.54, F = 10, and qmin = 0.4.

In Fig. 3, we compare the equilibria in the presence and the absence of a
regulatory fine, when consumers do not take security into account. Based on
Fig. 3(c), vendor 1 chooses a lower level of customization when a fine exists.
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Figure 3(d) shows that vendor 2 chooses the same location in both cases as we
discussed earlier when C2 = 0. For C2 = 3, vendor 2 chooses a lower level of
customization (i.e., higher value of b∗) compared to the case when there is no fine.
Consequently, the prices of both vendors are lower for higher customization costs
due to the fact that both vendors are moving closer to the AOSP baseline model.
Moreover, the existence of regulation and the fine leads to higher values of a∗ and
b∗ (i.e., lower customization levels) for the same customization costs compared
to the case without a fine, since each vendor tries to maximize its utility by
avoiding a regulatory fine through investing in the minimum level of security
quality qmin. Therefore, each vendor has to pay both the cost of customization
as well as the cost of security quality resulting from customization. To decrease
these costs, each vendor chooses a lower level of customization. Further, choosing
higher values of a∗ and b∗ (i.e., lower customization level) leads to lower prices
for both vendors. Therefore, the existence of a regulatory fine leads to more
secure products at lower prices when consumers cannot evaluate security
properties by themselves.

To find equilibrium locations and security qualities when consumers take
security into account but there is no fine, we calculate each vendor’s best-
response security quality and location for its opponent’s given location and
security quality. Then, the Nash equilibrium is the intersection of these best
responses. Table 4 shows the equilibrium for various values of C1, where T = 1.6,
β = 0.6, C2 = 1.3, Q = 1, and S1 = S2 = 1. In this case, due to the consumers’
security considerations, both vendors invest in security. For C1 = 0, vendor 1
maximizes its differentiation from baseline AOSP. Because of the consumers’
security awareness, vendor 1 invests in security, but at a lower level than Q. It
is interesting to see that vendor 2 does not differentiate its product from the
baseline AOSP version due to maximal differentiation of vendor 1 and conse-
quently, it does not have any security issues resulting from customization (i.e.,
q∗
2 = Q = 1).

Table 4. The vendors’ equilibrium prices and security qualities for various values of
C1. Here, we have S1 = S2 = 1, T = 1.6, β = 0.6, Q = 1, and C2 = 1.3.

C1 a∗ q∗
1 b∗ q∗

2

0 0 0.2612 0.5 1

0.3684 0.2888 1 0.3639 1

0.7368 0.3195 1 0.3638 1

1.1053 0.3452 1 0.3637 1

1.4737 0.3677 1 0.3636 1

It is noteworthy that both vendors invest in the maximum level of security
when both vendors’ customization costs are greater than zero. This observation
shows that if all consumers are capable of measuring security quality and it
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is one of the factors affecting their product choice, then vendors will invest in
security. Similar to the case where consumers do not take security into account,
the higher the customization cost, the lower is the customization level. In other
words, increasing C1 results in higher values of a∗. Moreover, changing the value
of C1, while C2 is fixed, results in little changes in b∗.

8 Conclusion

Our model shows that vendors have to invest in security quality for security-
conscious consumers. Further, for näıve consumers, our proposed model captures
the fact that vendors underinvest in security. To incentivize vendors to invest
in security for näıve consumers, a regulator may assign a fine to those vendors
that do not uphold a desired level of security, which is a well-motivated scenario
given Android-related FTC actions [9].

We show that the imposed fine structure achieves the expected effect in
addition to changes in the competitive landscape. First, the price of the product
decreases for the same cost of customization compared to the case without any
fine. Second, a higher level of security quality imposed by the regulator leads to a
lower product price, if certain conditions are satisfied. Our findings suggest that
requiring higher baseline levels of security investments (as triggered by recent
FTC actions [9]) does not impose higher product prices on näıve consumers,
which is important from a technology policy perspective. Moreover, increasing
consumers’ attention about security is substantiated by our analysis as a positive
and meaningful factor to address challenges related to informational market
power and neglected security efforts.
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Abstract. White hat hackers, also called ethical hackers, who find and
report vulnerabilities to bug bounty programs have become a signifi-
cant part of today’s security ecosystem. While the efforts of white hats
contribute to heightened levels of security at the participating organi-
zations, the white hats’ participation needs to be carefully managed to
balance risks with anticipated benefits. One way, taken by organizations,
to manage bug bounty programs is to create rules that aim to regulate
the behavior of white hats, but also bind these organizations to certain
actions (e.g., level of bounty payments). To the best of our knowledge,
no research exists that studies the content of these program rules and
their impact on the effectiveness of bug bounty programs.

We collected and analyzed the rules of 111 bounty programs on a
major bug bounty platform, HackerOne. We qualitatively study the con-
tents of these rules to determine a taxonomy of statements governing
the expected behavior of white hats and organizations. We also report
specific examples of rules to illustrate their reach and diversity across
programs. We further engage in a quantitative analysis by pairing the
findings of the analysis of the program rules with a second dataset about
the performance of the same bug bounty programs, and conducting sta-
tistical analyses to evaluate the impact of program rules on program
outcomes.

1 Introduction

Opposing malicious hackers, so-called white hats or ethical hackers strive to con-
tribute to the security efforts of organizations by finding and reporting security
vulnerabilities. Various factors motivate white hats, such as monetary benefits,
increasing reputation, or job opportunities. Others aim to acquire knowledge by
identifying bugs in systems.

White hats frequently work for specific target organizations under the
umbrella of paid or unpaid bug bounty programs [9,12,25]. Further, these pro-
grams are now often facilitated by bug bounty platforms such as HackerOne,
BugCrowd, Cobalt, etc. As part of bug bounty programs, organizations allow
c© International Financial Cryptography Association 2018
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white hats to perform ethical hacking on their systems, to identify the loop-
holes that their internal security teams could not identify (given personnel, time,
expertise, and cost constraints) and which could become important targets of
black hats. Platforms facilitate the process by, for example, managing the pay-
ment of bounties, serving as a point of contact for conflicts between white hats
and bug bounty programs or even law enforcement, and perhaps most impor-
tantly, acting as a central point of attraction for white hats and organizations
alike.

In this paper, we are contributing to existing work on vulnerability discovery
by conducting the first study of bug bounty programs’ rules of engagement,
which are the program rules governing the interaction between white hats and
organizations. They fulfill at least two key functions. First, they state for each
bug bounty program the expectations regarding white hats’ behaviors when they
engage in vulnerability discovery on the program’s site, and when they submit
vulnerability reports to the program. Second, they also bind organizations to
certain actions, e.g., the size of bounty payments for specific types of discovered
vulnerabilities, expected speed of resolving identified issues, etc.

A careful management of these various factors specified in the program rules
may also help to address two key problems, a high number of reports that are
later categorized as invalid [13] and a high number of duplicate findings [26]. The
annual reports from bug bounty platforms show that the resulting outcomes can
be quite inefficient (see, for example, [5,6]).

Going beyond the direct relationship between a program and white hats, the
rules likely also shape the competitive process between the different programs on
a platform. The stated terms may contribute to attract white hat researchers,
or they may dissuade them from working for a particular program. All these
factors are so far largely unexplored.

In this paper, we collected and analyzed the program rules of 111 bounty
programs on a major bug bounty platform, HackerOne. We qualitatively study
the contents of these rules to determine a taxonomy of statements governing
the expected behavior of white hats and organizations. We also report specific
examples of rules to illustrate their reach and diversity across programs. We
further engage in a quantitative analysis by pairing the findings of the analysis
of the program rules with a second dataset about the performance of the same
bug bounty programs, and conducting statistical analyses to evaluate the impact
of program rules on program outcomes.

We will proceed as follows. In Sect. 2, we discuss related work. In Sect. 3,
we describe our dataset. In Sect. 4, we present qualitative results. We then pro-
vide a quantitative investigation of the program rules and program performance
including a regression analysis in Sect. 5. In Sect. 6, we discuss various aspects
of the rules along with some suggestions for program improvements. We offer
concluding remarks in Sect. 7.
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2 Related Work

In the academic domain, several studies have focused on the discovery of soft-
ware vulnerabilities (e.g., [4,7,17,18,21,23]), and software vulnerability markets
[1–3,19]. And, in recent years, there has also been a growing research interest in
bug bounty programs. Researchers have conducted multiple empirical analyses of
independently run bug-bounty programs. Studying the incentives and practices
of organizations and white hats initiating and participating in such programs,
respectively, is crucial to understand their economic viability and impact on secu-
rity. For example, Finifter et al. empirically investigated the Google Chrome and
Mozilla bug-bounty programs [9], and suggested that these programs are more
cost-effective compared to hiring full-time security researchers in terms of finding
security flaws. In an effort to better understand the human side of vulnerabil-
ity discovery, Edmundson et al. conducted an experiment where participants
were asked to identify seven security vulnerabilities embedded in a code sample,
but no participant was able to accomplish this task alone. However, when the
researchers collected a random sample of 50% of the participants, the probability
of finding all bugs increased to 95% [8].

Researchers have also studied the dynamics of bug bounty platforms [11,15,
25]. Zhao et al. conducted a comprehensive study of two emerging bug bounty
platforms, Wooyun and HackerOne, to understand their characteristics, trajec-
tories and impact [25]. One key finding of their work is that not only top con-
tributors are important for bug bounty platforms, but that also the long tail of
white hat researchers makes significant and diverse contributions (as a group).
In follow-up research, Maillart et al. empirically studied reward distribution and
hacker enrollments of public bounty programs on HackerOne and found that
growing rewards cannot match the increasing difficulty of vulnerability discov-
ery, and thus hackers tend to switch to newly launched programs to find bugs
more easily [15]. Our work may help to understand how programs aim to attract
(or retain) white hats by offering attractive rules of participation.

These research efforts also helped to identify hurdles which may limit the
further growth of bug-bounty platforms and programs. The data suggests that
bug-bounty platforms suffer from a high rate of submitted reports which for
a variety of reasons are considered invalid. The percentage of invalid reports
is currently significant, ranging from 35% to 55% on different platforms [14].
Programs may try to regulate the in-flow of invalid reports by adjusting the
rules and incentives to discourage certain behaviors [13]. Further, due to the
decentralized nature of vulnerability discovery, white hats may discover the same
issues and file reports which are then recorded as so-called duplicates [14]. This
problem can potentially be alleviated by designing an allocation plan for white
hats’ efforts and diversifying the workforce [26].

We are unaware of any work which has investigated the program rules for
vulnerability discovery to complement the aforementioned research efforts.
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3 Dataset

Since its inception in 2012, HackerOne has continuously grown as a community
and has been attracting numerous white hats and organizations to participate
in its bounty platform. By September 2017, white hats on HackerOne have suc-
cessfully contributed over 50,000 bug reports (which have been fixed), and have
been paid bounties totaling over $20 million. Participating organizations have
thanked over 4,500 hackers.

We collected data in January 2016. For the (then available) 112 public pro-
grams on HackerOne’s website, we downloaded the program descriptions and the
announced minimum bounty paid by the program. Of the 112 organizations, 52
register themselves with a clause of paying “no minimum bounty.” In our further
analysis, we consider 111 organizations by excluding HackerOne, which runs a
bounty program on its own platform, and consider only outside organizations
participating on HackerOne.

Of these 111 programs, we were able to download the detailed history of rule
description changes, bugs resolved, and hackers thanked for 77 programs. For
each one of these programs, we determined the date of the last major update
to the rule description before January 20161, and we counted the number of
bugs resolved and hackers thanked in the interval between the last major rule
update and January 2016. By dividing these numbers with the length of the
time interval, we were able to determine the rate of hackers thanked and bugs
resolved for the program description that was in effect in January 2016.

In the subsequent sections, we focus on the program descriptions of the
bounty programs, which include the rules of engagement, and provide a qual-
itative analysis of their contents. We also conduct several analyses correlating
discernible features of these program rules with important metrics such as the
number of bugs resolved and hackers thanked.

We further pair the aforementioned data with an additional dataset. We
collected, following the methodology of previous research [15,24,25], data about
the average bounty and the age of bounty programs, and their Alexa ranks
(which is based on web traffic data). This additional data is used for a deeper
assessment of the rules’ impact in a regression analysis.

We are also aware of the limitations of this dataset. One limitation is that we
do not have data for private bug bounty programs, which are only accessible to a
selected group of (internal) researchers. In addition, other competing bug bounty
platforms, such as BugCrowd, could affect white hat behaviors on HackerOne as
well. However, our current dataset does not include these competing platforms.

4 Qualitative Study

On a high level, each line of a program description carries with it some meaning
and may provide important information to white hats who are interested in a
1 We used the Python difflib implementation of the Ratcliff/Obershelp matching

algorithm [20] with parameter 0.9.



142 A. Laszka et al.

particular bug bounty program. On HackerOne, each organization has been given
the liberty to specify the description of the program in its own way, which on
the one hand promotes diversity, but on the other hand may complicate matters
for white hats and may affect the comprehensiveness of the information covered.
Since there is no framework for structuring rules, the necessary first step in
studying rules is to construct a general taxonomy. In this section, we aim to
provide such a taxonomy of the contents of the rules on the basis of “what they
are trying to convey” to capture a generic structure for the program description.

To achieve this objective, the program descriptions were parsed statement by
statement and in iterations to extract information and to tabularize the different
statements contained in the rules according to the evolving taxonomy. We also
cross-verified the extracted information to check whether we followed a consistent
classification process. If a statement in the rules was found to fit in more than one
category, then it was marked accordingly. If a statement conveyed no concrete
guidance to the white hat, we categorized it under “other instructions.” Based
on this process, the rules specified by the 111 organizations could be categorized
and defined according to the following taxonomy. To save space, we list example
rule statements in AppendixA and only reference them in the main text.

4.1 In-scope Areas

Statements of this type define the exact scope of the bug-bounty program. The
organizations state typically the list of system and product areas on which white
hats should work. The majority of the organizations will list their core produc-
tion websites as the target of bug bounty. Some organizations also list staging
websites, and encourage or require white hats to conduct vulnerability research
only against them (Example 1). Some organizations may also provide source
code to white hats (Example 2). In addition to web applications, there may
be other types of components, such as APIs, mobile applications, and desktop
applications, which are in scope. Further, vulnerability discovery may also extend
to physical products with digital components. For example, ToyTalk allows the
search for “a security issue in our products or service” which include a doll and
a playhouse with voice capabilities.

4.2 Out-of-scope Areas

Each organization can also explicitly specify all the domains and areas that they
do not wish the white hats to work on. We have identified the following reasons
for listing an area as out-of-scope. First, organizations typically exclude web
applications (e.g., blog, support, community, etc.) hosted by third-parties, as
these websites are not controlled by the organization, and/or have low risk (e.g.,
no user data) (Example 3). Second, customer websites or services are usually out
of scope as well (Example 4). Third, some organizations also exclude areas that
belong to business partners or subsidiaries (Example 5). Fourth, as discussed
above, organizations may set up staging sites, but also explicitly declare their
production site to be out of scope (Example 6).
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4.3 Eligible Vulnerabilities

This category provides additional detailed rules focused on the types of vul-
nerabilities which the organizations want the white hats to find. In general,
organizations encourage white hats to spend their effort on those types of vul-
nerabilities which they likely consider of particular severity to their organiza-
tions. Frequently mentioned vulnerability types across many organization are:
SQL Injection, Remote Code Execution, Cross-Site Request Forgery, Directory
Traversal, Cross-Site Scripting, Information Disclosure and Logical Issues.

Rules can be fairly precise and may even include additional conditions such as
the potential for financial damage. One example is from Coinbase (an exchange
for digital assets) (Example 7). However, some organizations may not rely on
specifying a set of vulnerability types. For example, Envoy’s rules state that
reports should be about “issues that are very clearly security problems.”

4.4 Non-eligible Vulnerabilities

Certain types of vulnerabilities are often excluded from being rewarded with a
bug-bounty, because they have very low or no security risk from the perspective
of an organization. Frequently mentioned examples include Self-XSS, Logout
CSRF, no maximum password length, etc. Some of these issues may also be
rather easy to identify for a white hat. Listing such non-eligible vulnerabilities
in an upfront manner can reduce the cost of processing reports which may even
be declared invalid. Please note that invalid reports are very common, and a
significant challenge to bug bounty programs [13]. Denial of Service (DoS) is
another typical type of non-eligible vulnerability as some organizations already
know their general vulnerability to this type of attack, or doubt that any white
hat report would yield novel insights (Example 8).

4.5 Deepening Engagement with Organizations

This category includes further instructions to the white hats (going beyond the
scope and eligible vulnerabilities categories) in regards to how they can better
engage in vulnerability research for the organization. Specifying such instructions
helps the white hats to align their effort with the organization’s interest, and to
more likely find bugs which will be rewarded. For example, some organizations
ask white hats to create dedicated test accounts (Example 9). Another inter-
esting case is Square’s Capture-the-flag (CTF) challenge within its bug-bounty
program. Basically, Square hides a secret flag inside its system, and whoever finds
it can qualify for a $1,000 reward. Understanding the impact of such mechanisms
on white hat engagement is an interesting aspect for future work.

4.6 Prohibited or Unwanted Actions

Rules in this category list further instructions to the white hats in regards to
what they should not do (going beyond the scope restrictions and non-eligible
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vulnerabilities) when they are searching for vulnerabilities for the organizations.
These instructions specify detailed bounds to the work of white hats which
organizations may use to protect their business interests, while participating
in crowdsourced security research.

There are several subcategories within this rule. First, many organizations
forbid or limit the use of automated scanning, because they can lead to a large
amount of false positive reports, and may cause a significant amount of traffic
to the site (Example 10). Another subcategory rule disallows interaction with
other users’ accounts, in order to reduce the risk potentially caused by vulner-
ability research (Example 11). Third, other dangerous activities, such as social
engineering (Example 12) and physical access to a data center (Example 13),
are also prohibited.

Disregarding rules in this section may disqualify the white hats from receiving
a bounty reward or participating in the program in the future. Violations could
also cause white hats to face legal actions against them or exclusion from the
entire platform.

4.7 Legal Clauses

Some organizations explicitly specify details of legal issues related to bug bounty.
Statements of one subcategory promise not to bring legal actions against white
hats, if rules are followed (Example 14). Another subcategory is to remind
the white hats to comply with all relevant laws and regulations (Example 15).
Another type of statements withhold the right to modify the rules at anytime
(Example 16). We will analyze the occurrence of legal statements in Sect. 5.1.

4.8 Participation Restrictions

Although bug-bounty platforms are known for their openness to welcome white
hats from around the world, some organizations explicitly exclude certain types
of individuals from participating. Some organizations disallow their employees to
participate, possibly in fear of misaligned incentives (Example 17). Organizations
might also restrict participation based on white hats’ nationality (Example 18).
Some programs include explicit age restrictions (Example 19).2

4.9 Submission Guidelines

In this category, the organizations may describe what kind of details about
discovered vulnerabilities they wish to have included in reports submitted by
the white hats. Some organizations are very particular about report standards
and they expect reports in a specific format with sufficient details like screen-
shots, pages visited, etc. (Example 20).
2 HackerOne’s Privacy Policy (https://www.hackerone.com/privacy/) states as a gen-

eral policy that “we welcome minors to submit reports to HackerOne.” However,
the site is not directed at minors below 13 who would need to have their par-
ents/guardians submit vulnerability reports and to set up an account.

https://www.hackerone.com/privacy/
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4.10 Disclosure Guidelines

Organizations may also state whether they allow white hats to engage in public
disclosure of the identified problems, or they may ask white hats to give them
enough time to triage and fix the issue before public disclosure. We will discuss
this aspect in Sect. 5.1 (Example 21). In addition, a bug bounty platform may
have specific rules that apply to all programs concerning disclosure. HackerOne,
for example, listed a process in its Vulnerability Disclosure Guidelines.3

4.11 Reward Evaluation

Rules in this category specify the concrete point system or evaluation process
that the organization uses to determine whether white hats’ submissions are eli-
gible for rewards or appreciation. Some organizations list detailed reward evalu-
ation criteria for different types of vulnerabilities. For example, Twitter provides
a table in its rules statement which matches reward amounts to specific types
of vulnerabilities, areas of the site, and various other conditions. Other organi-
zations may simply specify a minimum reward (Example 22).

Another rule in this category is a “Duplicate Report Clause,” which states
whether only the first submission of a particular vulnerability is eligible for a
reward, or whether later submissions may also receive (partial) rewards (Example
23). We will analyze the occurrence of such statements in Sect. 5.1. Further,
organizations often state that they have the final decision authority whether a
reward will be given (Example 24).

In addition, rewards are not restricted to monetary bounties, but could also
represent other forms of appreciation, such as hacker points or swags (Exam-
ple 25). As previously stated, about 50% of the organizations do not pay any
monetary rewards.

4.12 Company Statements

In our efforts to iteratively classify rules, this last category contains statements
which are more of a description rather than clear instructions or other reward-
relevant information. A key objective of this category appears to be demonstrat-
ing an organization’s willingness to improve security, and to collaborate with the
white hat community (Example 26).

5 Quantitative Analysis

In this section, we provide an exploratory quantitative analysis of our rule
dataset. Note that for measuring the rates of bugs resolved and hackers thanked,

3 HackerOne’s Vulnerability Disclosure Guidelines (https://www.hackerone.com/
disclosure-guidelines/).

https://www.hackerone.com/ disclosure-guidelines/
https://www.hackerone.com/ disclosure-guidelines/
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we restrict our analysis to the 77 programs for which detailed history was avail-
able. This restriction ensures that we compute the rates for each program in a
time interval when the rules of the program did not change significantly.

We first study whether more detailed rule descriptions lead to greater suc-
cess (Sect. 5.1). To answer this question, we study the relationships between
description length and the number of bugs resolved and hackers thanked by a
program. We show that programs with longer descriptions generally tend to be
more successful, which suggests that detailed program descriptions are an impor-
tant factor in success. Then, we investigate the readability of program rules using
established metrics from the field of readability studies (Sect. 5.1), and show that
the readability of program descriptions could be significantly improved in prac-
tice. Next, we study three important clauses that program rules may include:
duplicate reports, legal actions and public disclosure (Sect. 5.1). We show that
the presence or absence of these clauses can have a very strong impact on the suc-
cess of a program, which implies that organizations need to include them in their
rules if they wish to be successful. We also study statements for staging sites,
test accounts, and source code availability in the program description. Finally,
we perform a detailed regression analysis (Sect. 5.2), and study the combined
effects of description length, various clauses, etc.

5.1 Descriptive Analysis

Length of Bug Bounty Rules. The average length of program rules is 481
words (N = 77). The shortest description is 72 words (Vulners) and the longest
one is provided by ownCloud with 1,744 words. To provide an initial overview
of the data, we categorize the organizations into four groups based on pro-
gram description length (measured as number of words). These groups contain
programs with word counts of (1) 0–250 words (N = 13), (2) 250–500 words
(N = 36), (3) 50–750 words (N = 16), and (4) 750+ words (N = 12). Figure 1
shows the average rates of bugs resolved and hackers thanked for each group.
Note that the rates were computed for each program over a time interval in
which the description was unchanged, dividing the number bugs resolved and
hackers thanked by the length of the interval in years. Tables 2, 3, and 4 in
AppendixB list the descriptive statistics of word count, bugs resolved, hack-
ers thanked and bounty paid for all organizations (Table 2), organizations pay-
ing minimum bounty (Table 3) and organizations paying no minimum bounty
(Table 4), respectively.

It is noteworthy that the length of program rules is positively associated with
the average rate of bug resolved as well as the average rate of hackers thanked
(see Fig. 1 and Table 2). These observations also hold for all organizations pay-
ing a minimum bounty (N = 44, see Table 3). For organizations that are not
paying a minimum bounty (N = 33), these relationships hold very consistently
(see Table 4). However, there is no obvious trend observable for the relationship
between the length of program rules and the average bounty paid by programs
for valid discoveries (see Tables 2 and 3).
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Fig. 1. Statistics for programs grouped by description length (measured as number of
words). Please note the logarithmic scaling of the vertical axes.

Readability of Program Rules. We computed various metrics for the read-
ability of program rules. For brevity, we report the results only for the Flesch
Reading-Ease Score [10] here (see Fig. 2), which is an established metric in the
field of readability studies. Results for other metrics are shown in Fig. 6 in
AppendixD, but they do not differ in a meaningful way regarding the following
basic observations.

The higher the score, the easier a document is to read. Scores towards 100
indicate that a minor in 5th grade would likely understand the document without
problems. A score of 30 and below typically requires a college degree. Law review
articles and technical documents frequently score in the 30s.
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Fig. 2. Length and readability of program descriptions.

We find that the average level of the Flesch Reading-Ease Score for the sample
of program rules is 39.6, indicating a set of documents requiring some college
education (on average). The least readable document scored 12.2, whereas the
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most readable document had a score of 74.4. There are 18 program rules that
score below 30, which indicates documents that are very difficult to read.

While our analysis does not yet account for the specific characteristics of pro-
gram rule documents (e.g., technical terminologies, tables etc.), it is indicative
that improvements could be undertaken to make these documents more approach-
able. Perhaps in contrast to the going practice for many forms of legal agree-
ments, program rules should be written with the intention of being read and
understood by white hats who search for vulnerabilities in a particular program.
A lack of readability may be a contributing factor to inefficient outcomes, and
might encourage white hats to prefer other programs.

Statements About Duplicate Reports, Legal Actions, and Public
Disclosure. In the taxonomy section, we already provided an initial overview
of the various rules included in the program description. In the following, we
study three key rules numerically.

First, we recorded whether the program rules include a duplicate report
clause, i.e., whether the organization explicitly specifies if submitting a duplicate
report will affect the white hat’s eligibility for a bounty or not. Please note that
duplicates occur very frequently in practice, and may pose a significant problem.
For Google’s bug bounty program and on the BugCrowd platform, the number
of duplicates is higher than the number of valid reports. The ratio of duplicates
is lower on HackerOne, but still substantial. It is therefore likely that white hats
prefer to work with programs that are aware of this challenge and discuss it in
their program rules.

Second, we identified programs that have some form of a legal action clause.
Using a legal action clause, an organization informs white hats under what con-
ditions it may (or may not) bring a lawsuit against them. Due to several highly-
publicized incidents, where companies sued white hat hackers, or prevented them
from speaking at conferences or other events, we believe that such statements
can influence a white hat’s decision to work for a specific program.

Third, we investigated which programs include a specific statement regarding
public disclosure. Organizations may be particularly concerned about the inter-
nal security of their systems and applications, hence they may prohibit white
hats from disclosing any identified vulnerabilities to other entities for a specified
time period or until the bug has been fixed. HackerOne’s Vulnerability Disclosure
Guidelines allow white hats to publicly disclose information about bugs 180 days
after they have submitted the report. Hence, organizations who take the extra
step to alter their program policy may have specific concerns, and the presence
of such a clause may also influence white hat behavior.

In general, we believe that specifying these three policies is indicative of a
better developed program by the organization. To verify this, we investigated
the 111 programs and found that 51 organization mention at least one of the
three clauses in their programs. For these 51 organizations, we further show their
status in Fig. 3. Only 10 out of these 51 organizations have all three clauses.
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Fig. 3. Venn diagram explaining extensibility of rules.

In Fig. 4 (and Table 5 in AppendixC), we provide descriptive statistics of
how the presence or absence of these three rule clauses are related to the rate of
hackers thanked and rate of bugs resolved. We observe that the presence of these
rules is associated with more active programs. Both the rate of hackers thanked
and the rate of bugs resolved are significantly higher on average for programs
that include these statements in their program rules.
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Fig. 4. Statistics for duplicate report, legal action, and public disclosure clauses.

Statements About Staging Sites, Test Accounts, and Source Code
Availability. Other important indicators of sophistication are whether the orga-
nization provides white hats with a staging site for identifying vulnerabilities,
whether it asks them to create designated testing accounts, and whether it allows
them to download a copy of the application/software for testing.



150 A. Laszka et al.

Our classification shows that 5 out of 111 organizations have staging sites,
24 ask white hats to use a test account, and 13 provide source code of the
application/software. When we investigate whether the availability of a staging
site or source code impacts the rate of approved vulnerability reports and hackers
thanked, we do not observe a very strong pattern (see Fig. 5 below and Table 6
in AppendixC). However, the requirement to use test accounts appears to have
positive impact.
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Fig. 5. Statistics for statements of staging sites, test accounts, and source code.

5.2 Regression Analysis

For the findings stated above, further quantitative analysis is needed to substan-
tiate the observed effects. Particularly, we want to study the combined effects of
rule features, including the length of the rule (L), the Flesch Reading-Ease Score
that measures the readability of the description (R), the existence of legal action,
duplicate report, public disclosure, staging site, test account, and source code
download statements (LE, DU , DI, ST , TA, SC) on the success of a program,
which is measured by the number of bugs resolved (V ). Therefore, we build the
following least square regression model:

V = β0 + β1L + β2R + β3LE + β4DU + β5DI + β6ST + β7TA + β8SC + β9Z + ε. (1)

In the regression model, we have considered other characteristics of bug
bounty programs that could affect both the success of a program and the textual
features, in order to mitigate the correlated omitted variable bias. More specifi-
cally, we add three control variables (represented as a vector Z in the regression
model), based on previous work [15,25]: B is the average bounty paid by the
program,4 T is the age of the bug bounty program, and A is the log of the

4 Since not all programs disclose their average bounty, we have to restrict our analysis
to 58 data points in this subsection.



The Rules of Engagement for Bug Bounty Programs 151

Alexa rank of the organization’s website.5 Alexa rank proxies for the complexity
of the website, and a more complex website is likely to have both longer rule
descriptions and inherently more vulnerabilities to find.

Table 1. Regression results

Variables (1) (2) (3) (4)

V V V V

Length of the rule (L) 0.18*** 0.09* 0.09* 0.01

(0.04) (0.04) (0.04) (0.05)

Average bounty (B) 0.12* 0.12* 0.09*

(0.05) (0.05) (0.05)

Age of the program (T ) 0.05 0.05 0.13***

(0.04) (0.04) (0.05)

Log(Alexa rank) (A) −4.65 −4.30 −4.20

(2.86) (2.98) (2.88)

Readability score (R) −0.51

(0.79)

Has legal clause (LE) 23.04

(27.41)

Has duplicate report clause (DU) 47.39*

(22.08)

Has public disclosure clause (DI) 60.41**

(24.45)

Has staging site (ST ) 1.10

(40.70)

Has source code (SC) 45.56*

(27.03)

Asks to use test accounts (TA) 1.01

(26.78)

Constant −15.21 23.21 34.25 −14.40

(18.95) (39.10) (45.93) (39.34)

Observations 54 54 54 54

R-squared 0.27 0.43 0.44 0.57

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

5 A lower value of Alexa rank represents a more popular website. For example, an
Alexa rank of 1 indicates the most-visited website.
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The results of our regression analysis can be found in Table 16. We incre-
mentally add the factors to the regression model, beginning with a simple model
explaining the number of discovered vulnerabilities through the varying length
of program rules. Other more complex models follow.

Our first observation is that the length of the rule description is positively
correlated with the number of vulnerabilities discovered. The correlation is sig-
nificant in three out of the four models. Several hypotheses could explain this
positive correlation. First, a long rule may indicate that the organization spends
more effort on improving the engagement with white hats (e.g., by giving more
guidance on what to look for), which in turn makes white hats more productive.
Second, a long rule could also be associated with larger scope, leading to more
opportunities for finding bugs.

We do not observe a significant correlation between the readability score
and the number of bugs resolved. We see positive and statistically significant
coefficients for the existence of duplication clause, disclosure statements, and
source code.

In summary, the results indicate that rules with more content (e.g., more
detailed list of included/excluded areas and issues) and explicit statements on
duplication, disclosure, etc., are associated with more bugs resolved. This sug-
gests that rules could have indeed a tangible impact on bug bounty program per-
formance, and organizations should spend more effort to maintain and improve
their rules. On the other hand, we are also aware of limitations of our regres-
sion analysis. Particularly, the sample size is rather small, and the dataset has
some additional limitations, as we have discussed in Sect. 3. As such, a potential
future work item is to include more data points into our regression. One could
also consider other bug bounty platforms, such as BugCrowd and Cobalt, to
conduct a cross-platform study.

6 Discussion

The emergence of bug bounty platforms allows many different organizations,
such as Yahoo!, General Motors, and even the U.S. Department of Defense, to
harvest the power of the global white hat hacker community for improving secu-
rity. However, as previous research shows (e.g., [13]), effectively and efficiently
engaging white hats is a challenging task. In addition, there are risks for both
sides. For organizations, there are security risks associated with vulnerability
research and disclosure. For white hats, there are legal risks to worry about as
well as a potential lack of adequate appreciation of their findings. The program
rules serve as a key method to control the risk and facilitate engagement.

Currently, program rules are primarily created by participating organizations
independently. Therefore, they vary by content, length, style and many other
factors. The bug bounty rule taxonomy we assembled in Sect. 4 is a first step

6 Note that we use data from the entire history of each bug bounty program. We have
also tested the models using only data available after the last major rule update of
each program. The regression analysis shows the same directionality of effects, but
the dataset is much smaller to report a robust analysis.
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toward organizing and studying these widely different bug bounty rules. Based
on HackerOne’s public bug bounty programs, we created 12 categories of rule
statements. In the future, this taxonomy can be referenced by organizations
when they create or update their own bug bounty rules. Further, the taxonomy
also provides a basis for academia to further analyze program rules on different
bug bounty platforms.

Our research mainly focuses on the rules of individual bug bounty programs.
However, it is also possible that a platform-wide rule influences hacker engage-
ment. We also examined the platform rule created by HackerOne, and deter-
mined that it only provides some high-level guidance, and that it primarily refers
to individual program’s rules for critical issues. In addition, we find a potential
issue with the following statement in the platform rule: “Security Teams will
publish a program policy designed to guide security research into a particular
service or product. You should always carefully review this policy prior to sub-
mission as they will supersede these guidelines in the event of a conflict.” It is
surprising that the guidelines do not state that white hats should read the policy
before doing vulnerability research, as the investigative process can bring harm
to an organization’s system if not properly conducted. We suggest that plat-
forms shall work more closely with individual programs to make the platform
rules consistent with the diverse program rules. Also, we suggest platforms to
create more comprehensive rules for cases not covered by individual rules.

7 Conclusion

As bug bounty platforms gain in perceived sophistication and impact, the par-
ticipation of organizations and white hats will likely continue to increase. As
such, it will become increasingly important to appropriately manage the rules
which govern the interactions between the different stakeholders.

Our analyses demonstrate that bug bounty programs are on average associ-
ated with better success characteristics if the level of comprehensiveness of their
rules of engagement increases. We demonstrate this finding for a high level met-
ric (i.e., program length) as well as detailed characteristics such as the presence
of legal action clauses, rules for duplicate submissions and rules for public dis-
closure. These observations are novel to the research literature on bug bounty
platforms. We anticipate that our analysis will be motivation to bug bounty
programs and platforms to pay greater attention to the detailed rules in order
to provide a fair and more effective workplace for white hat researchers.

Further work is desirable to solidify and extend our findings. In particular,
we plan an additional iterative analysis of the program rules to extract more
performance-relevant criteria and to embed them in the statistical analysis. Fur-
ther, the scope of the analysis could be broadened to include more bug bounty
platforms in order to add robustness to the findings.

Acknowledgment. We thank the anonymous reviewers for their comments. The
research activities of Jens Grossklags are supported by the German Institute for Trust
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A Example Bug Bounty Rule Statements

We list example rule statements below:
1. “Please report serious vulnerabilities in our website (https://staging.

factlink.com), proxy (https://staging.fct.li), or other components (our annota-
tion library, Wordpress plugin, browser extensions, and gems)” (Factlink)

2. “Please note that Binary.com’s front-end code is open-sourced at [. . . ] -
please feel free to report any vulnerabilities found in this code by submitting a
pull-request in github” (Binary)

3. “Not in scope: shopify.asia, go.shopify.com and investors.shopify. com are
operated by third parties, and are not in scope” (Shopify)

4. “Any Sucuri customer website are out of the scope of this disclosure pro-
gram” (Sucuri)

5. “Mattel websites and services are owned and operated by Mattel and are
explicitly outside the scope of this bug bounty program” (ToyTalk)

6. “Please only use our staging environments for testing, they are otherwise
identical to production” (Factlink)

7. “In general, anything which has the potential for financial loss or data
breach is of sufficient severity, including: XSS, CSRF, Authentication bypass
or privilege escalation, Click jacking, Remote code execution, Obtaining user
information, Accounting errors” (Coinbase)

8. “We are generally not interested in DoS vulnerabilities that are perceived
by a lack of rate-limiting or captcha. As a web-scale service, our threshold for
rate limiting is higher than you would probably expect. Of course, if you think
you have found an exception to this rule, please let us know” (Automattic)

9. “Please create a free account and (pen) test away our GhostMail,
ChostChat and GhostBox” (Flox)

10. “Please note that automated testing is not permitted! System will ban you
permanently if you do” (DigitalSellz); “If you employ automated scanning tools,
their requests must be rate limited to not exceed 3 requests per second without
prior approval” (Vimeo)

11. “Do not attempt to gain access to another user’s account or confidential
information” (Adobe)

12. “You are not allowed to conduct social engineering attacks against our
support team” (Coinbase)

13. “While researching, we’d like to ask you to refrain from: [. . . ] Any physical
attempts against BitHunt property or data centers” (BitHunt)

14. “In order to encourage responsible disclosure, we promise not to bring
legal action against researchers who point out a problem provided they do their
best to follow the above” (Openfolio)

15. “You must comply with all applicable laws in connection with your partic-
ipation in this program. You are also responsible for any applicable taxes associ-
ated with any reward you receive” (Twitter)

16. “Yahoo reserves the right to change or modify the terms of this program
at any time” (Yahoo)

https://staging.factlink.com
https://staging.factlink.com
https://staging.fct.li
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17. “Yahoo employees and contingent workers, as well as their immediate
family members and persons living in the same household, are not eligible to
receive bounties or rewards of any kind under the Yahoo Bug Bounty Program,
whether hosted by Yahoo or any third party” (Yahoo)

18. “You must be eligible to work within the U.S.; meaning you are a U.S.
citizen, a noncitizen national of the U.S., a lawful permanent resident, or an
alien authorized to work within the U.S.” (Hack the Army)

19. “You must be 18 years of age or older. Please be an adult when messaging
us. We want to work with serious security professionals only” (Envoy)

20. “Share with us the full details of any problem found. Detailed steps on
reproducing the bug. If valuable, please include any screen-shots, links you clicked
on, pages visited, etc. Provide us with a concrete attack scenario. How will
the problem impact Bookfresh or our customers? Put the problem into context”
(BookFresh)

21. “Provide us a reasonable amount of time to resolve the issue before any
disclosure to the public or a third-party” (ownCloud)

22. “Minimum reward is $100 for security vulnerabilities. The reward depends
on the vulnerability severity and will be paid via HackerOne only. Every
researcher with accepted vulnerability will be mentioned on http://hackerone.
com/algolia/thanks” (Algolia)

23. “We only reward the first reporter of a vulnerability” (DropBox)
24. “Twitter will determine in its discretion whether a reward should be

granted and the amount of the reward” (Twitter)
25. “Post on our Hall of Fame. Your very own Informatica Bug Bounty T-

Shirt With More Awesome Swag to Come” (Informatica)
26. “Security and privacy are top priorities at Coursera. We believe that no

technology is perfect and that working with skilled security researchers across the
globe is crucial in identifying weaknesses in our technology” (Coursera)

B Statistics for Programs Grouped by Description
Length

Table 2. Statistics for programs grouped by description length

Number
of words

Number of
programs

Mean number
of words

Mean number of
bugs resolved
(per year)

Mean number of
hackers thanked
(per year)

Mean
bounty
paid

0–250 13 200 49 34 225

250–500 36 340 36 28 392

500–750 16 633 67 48 59

750– 12 1011 189 123 105

Overall 77 481 69 48 250

http://hackerone.com/algolia/thanks
http://hackerone.com/algolia/thanks
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Table 3. Statistics for programs paying a minimum bounty (grouped by description
length)

Number
of words

Number of
programs

Mean number
of words

Mean number of
bugs resolved
(per year)

Mean number of
hackers thanked
(per year)

Mean
bounty
paid

0–250 8 211 74 49 366

250–500 15 318 13 10 941

500–750 12 630 68 49 79

750– 9 1042 194 143 140

Overall 44 532 76 55 437

Table 4. Statistics for programs paying no minimum bounty (grouped by description
length)

Number
of words

Number of
programs

Mean number
of words

Mean number of
bugs resolved
(per year)

Mean number of
hackers thanked
(per year)

Mean
bounty
paid

0–250 5 182 10 8 0

250–500 21 355 53 41 0

500–750 4 641 66 46 0

750– 3 918 176 65 0

Overall 33 415 59 39 0

C Statistics for Programs Grouped by Clauses

Table 5. Statistics for duplicate report, legal action, and public disclosure clauses

Clause Present Number of
programs

Mean number of
bugs resolved
(per year)

Mean number of
hackers thanked
(per year)

Duplicate yes 35 117 79

No 42 29 22

Legal action yes 17 134 95

No 60 50 35

Public disclosure yes 38 102 73

No 39 36 24
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Table 6. Statistics for staging sites, test accounts, and downloading source

Clause Present Number of
programs

Mean Number
of bugs resolved
(per year)

Mean number of
hackers thanked
(per year)

Staging site yes 5 51 41

No 72 70 49

Test account yes 24 133 97

No 53 40 26

Source code yes 13 40 34

No 64 75 51
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Fig. 6. Program descriptions length and readability, measured using Smog Index [16]
and Automated Readability Index [22].
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Abstract. Why do individuals choose to use (or not use) Two Factor
Authentication (2FA)? We sought to answer this by implementing a two-
phase study of the Yubico Security Key. We analyzed acceptability and
usability of the Yubico Security Key, a 2FA hardware token implementing
Fast Identity Online (FIDO). This token has notable usability attributes:
tactile interaction, convenient form factor, physical resilience, and ease
of use. Despite the Yubico Security Key being among best in class for
usability among hardware tokens, participants in a think-aloud protocol
still encountered several difficulties in usage. Based on these findings,
we proposed certain design changes, some of which were adopted by
Yubico. We repeated the experiment, showing that these recommenda-
tions enhanced ease of use but not necessarily acceptability. With the
primary halt points mitigated, we could identify the remaining principle
reasons for rejecting 2FA, like fear of losing the device and perceptions
that there is no individual risk of account takeover. Our results illustrate
both the importance and limits of usability on acceptability, adoption,
and adherence in Two-Factor Authentication.

Keywords: Two-Factor Authentication
Hardware authentication device · Usable security · Adaptability

1 Introduction

The Yubico Security Key is an implementation of Fast Identity Online (FIDO)
[21] Universal Second Factor (U2F) in a USB token form. The Security Key is
designed to appeal to high-touch, low-tech users who want more secure interac-
tions and improved ease of use from their online service providers [13]. According
to Brett McDowell, Executive Director of the FIDO Alliance, “We fail if FIDO
is not more usable than all the other (hardware token) options you have used
before” [14].

We explore the acceptability and usability of the FIDO U2F technology, in
the form of the Yubico Security Key, against these goals and metrics using a
think-aloud protocol. We recruited students from STEM degree programs and
tested different setup instruction sets. Our goal was to identify difficulties that
c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 160–179, 2018.
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might be barriers to adoption. Usability measures if individuals can complete a
set of tasks with a given technology. Acceptability addresses the experience of
use, including perceived risks and benefits, and impinges on user adoption.

We asked experiment participants to configure a FIDO U2F Security Key
for their Gmail account. From the analysis of the participants’ experiences, we
developed a series of recommendations for Yubico. Yubico adopted and imple-
mented a subset of the recommendations. A year later, after the changes were
made, we repeated the experiment to evaluate the new interaction with the secu-
rity keys. There was a significant increase in usability, but we could not assert
any corresponding increase in acceptability.

We detail the related literary work in Sect. 2, our experiment methods in
Sect. 3, and results in Sect. 5. We further discuss on future recommendations in
Sect. 7 both for Yubico Security Keys in specific and Two-Factor Authentication
at large. We conclude by providing an overview of the study and giving a future
direction towards a better usability, acceptability, and adaptability of the FIDO
security keys in Sect. 8.

2 Related Work

Our work was primarily informed by research on usable authentication as well as
influenced by research on online risk perception and risk communication. Bon-
neau et al. provided a framework for examining the usability of authentication
technologies [4]. Before authoring this framework with Bonneau, Stajano pro-
vided a set of recommendations for any authentication system through research
grounded in the Pico hardware token authentication project [22]. This earlier
work demonstrated five core requirements: security, memory-less operation, scal-
ability, loss resistance, and theft resistance.

Previous work has shown that FIDO Security Keys are easy to deploy. Lang
et al. refer to the use of a Security Key as “brainless”, which seems to indicate a
belief that there are no halt points in Security Key adoption [13]. However, this
study included neither qualitative components nor human subject experiments.
In our work, we have implemented a think-aloud protocol and found numerous
halt points and challenges to acceptability. A previous human-centered evalua-
tion of 2FA also found that users perceived twice the utility from avoiding 2FA
compared to adopting it [6]. Our results echoed this finding, with most subjects
simply leaving or returning the keys. Usability of 2FA methods has been studied
by Krol et al. [12], however they studied online banking customers and people
often relate financial accounts as more confidential than their email accounts.
The study by Krol et al. also focused on 2FA in general and approached the
usability of 2FA from the steps a user has to follow in contrast to how we stud-
ied the Yubico Security Key, it’s usability and acceptability.

Passwords have been heavily critiqued in academic research. Archaic recom-
mendations such as formulaic complexity requirements of passwords and periodic
password changes may be helpful, but still cannot ensure protection against pass-
word vulnerabilities. Instead, best practice guidelines are proposed such as vali-
dating newly created passwords against commonly-used or known compromised
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passwords [17]. In Understanding Password Choices, Wash et al. showed that
users tend to re-use passwords across sites, especially where they must enter
passwords frequently [24]. Komanduri et al. found that users frequently have
critical misunderstandings about what make passwords secure - with a tendency
to overestimate the effects of additional complexity, while underestimating the
impact of using common phrases [11].

Unusable password policies often result in insecure workarounds, but Ingle-
sant and Sasse assess that the cost goes beyond insecurity and often negatively
impacts the productivity of both individuals and their organizations. Their work
indicated that human-centered design principles should influence policy creation
which guides users to create suitably secure passwords in accordance with the
usage context [9]. Through the password system, Abbott et al. showed that users
can indeed be guided towards better password decisions without corresponding
increase in cost [5]. Biddle et al. shows that though it was more acceptable
to the users, it gradually resulted in decreased predictability of user password
behavior [3]. The major alternative to FIDO in 2FA is time-based (TOTP) or
hash-based (HOTP) one-time codes. However, neither TOTP or HOTP offers
mutual authentication of both the user and the service [15,16]. Our study was
informed by a two-phase examination of Tor by Norcie et al. [18]. Norcie et al.’s
study followed the same process of a think-aloud protocol implemented in our
study. Their study also analyzed the design modifications made to Tor and was
in turn strongly influenced by the canonical Why Johnny Can’t Encrypt, which
examined the use of Pretty Good Privacy(PGP) [26] by asking participants to
complete the tasks required for adoption and use. By observing the difficulties
encountered by participants, Norcie and Whitten offered design heuristics for
anonymized systems and public key systems for emails respectively. Some of the
recommendations, such as focusing on the importance of the setup steps prior
to operation or conveying to the user why a feature exists may be generalized to
authentication systems. Our target was to provide specific solutions to enhance
the adaptability of the security keys.

3 Methodology

We investigated the end user experience of configuring and using the FIDO Secu-
rity Key by combining a think-aloud protocol and two surveys before and after
the experiment. In a think-aloud protocol the subjects narrate their actions,
providing a real-time description of their decisions, choices, or motivations. The
preliminary survey was online, followed by the think-aloud protocol being imple-
mented in a university computer laboratory. There were open questions asked
after the think-aloud protocol and a final survey sent via email. We then imple-
mented the first phase of the study and made recommendations to Yubico and
Google, some of which were adopted. This experiment was repeated after a year.

Participants were recruited from an undergraduate non-technical introduc-
tory security course. We recruited the participants from the same course in
the consecutive year. Participants completed a preliminary background, knowl-
edge, and skills survey to evaluate any differences in the security and computing
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expertise of the subject pool. These technical knowledge and skill inventories
were implemented and calculated as done by Rajivan et al. [19]. The partici-
pants were required to be (i) at least 18 years old, (ii) have a personal Gmail
account, (iii) own a laptop with the Chrome browser, and (iv) own a personal
mobile phone.

The participants were consciously selected to have more security and com-
puter expertise than the general population. Similar to the experiments on set-
ting up access control rules [2], firewalls [20] and PGP [26], we chose a population
likely to be successful.

A coin flip was used to randomly divide the participants into two groups.
In one group, participants were directed to the official Yubico Security Key
instructions. The other group was directed to the Security Key instructions
provided by Google. The think-aloud protocol began by giving each participant
a Yubico Security Key, as shown in Fig. 1. The participant was then asked to
configure 2FA using the Yubico Security Key with their Gmail account while
narrating the experience. Each participant was paired with one researcher who
took notes, but did not offer additional guidance unless requested when the
participant was unable to proceed without some guidance. After the task was
complete, participants were asked to describe the benefits and importance of the
Yubico Security Key using the seven open-ended questions below.

1. How could you test to confirm that your key is working?
2. If your key was lost or stolen, what would you do?
3. Based on your current understanding of the technology, could you use the

same key with an account on another web site, or would you need to obtain
an additional key?

4. Based on your current understanding, could you add a second key to your
account?

5. Do you see any benefits from using the security key? Please explain.
6. Do you expect to continue to use your key after today? Why or why not?
7. How would you remove a key from your account if you decided to?

There were two goals for this closing interview. One was to explore the par-
ticipant’s reflection on the experience of configuring 2FA. The second was to
ensure that we would not harm the participants by locking them out of their
accounts. Each participant departed only after the researchers were certain that
the research subjects were capable of removing 2FA without any assistance.

Fig. 1. Yubico security key

One month after the end of the think-aloud pro-
tocol, the subjects received a follow-up survey inquir-
ing about their continued use of 2FA. The follow-up
survey was sent over email.

3.1 Coding and Analysis

Recall that there was a preliminary survey, a think-
aloud protocol, an interview after the protocol, and
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a survey on continued use well after the experiment. In this section, we describe
the coding and analysis of the qualitative data. The procedure was identical
in both phases. We solved the few discrepancies between the codes which were
discussed between the coders and the researchers.

There were two sources of qualitative data. The first source was the tran-
scripts of the think-aloud protocol itself. These transcripts began after the
Yubico Security Key was handed to the participant and ended after the enroll-
ment into 2FA was complete. The second source consisted of the transcription
of the responses to the open-ended questions from the interview immediately
following the experiment.

For the enrollment task, the halt points were noted for each subject. The
conversations around the halt points as well as the responses to the open-ended
questions were transcribed. Three researchers trained independently in qualita-
tive methods read through the transcripts. As standard in qualitative research,
the themes were compiled into a code book. Of the recorded halt points, the
cause was identified to be centered around 4 major mutually exclusive points:
form factor, a setup demo, setup validation, and security valuation of the device.
Halt points occurred when participants could not move forward alone. Confusion
points occurred when the participants significantly slowed down due to confu-
sion, or stopped but would have been able to continue with the registration
procedure without assistance. We also noted expressions of value, where partic-
ipants expressed ideas or opinions about the perceived utility of the technology,
device, or installation process.

In both experiments, many participants recognized the potential value of the
Security Key in theory, but not in practice for themselves. The details of the
two phases are described in the following two sections followed by a discussion
addressing both.

4 Experiment

4.1 Phase-I

In Phase-I, we discovered that the most significant halt point was the confusion
resulting from a Yubico demonstration tool. Yubico had built a tool clearly
illustrating how to register the 2FA token with a service. Participants went
through the demo and believed that they had completed the installation process.
No participant in the experimental group that was directed to the Yubico demo
was able to realize that they needed to continue and complete the installation
without researcher intervention.

Phase-I concluded with a set of recommendations about the instructions,
visualization, device identification, and guidance provided to users. The details
of the recommendations are described in Sect. 5.3. We repeated the experiment
to test the efficacy of the adopted recommendations after Yubico implemented a
subset of them. We also revisited the recommendations (in Sect. 7) from Phase-I
that were not implemented to determine if those changes were still needed.
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As reported in Sect. 3, our participants for both the phases were recruited
from the same class to ensure that the sample was moderately security savvy.
We had 27 young scholar participants in total - 6 were between 18 and 20, 16
were between 21 and 23, 4 were between 24 and 26, and 1 was over 30 years
old. There were 20 male and 7 female students, a 74% to 26% split. Every
student was enrolled in at least one information or computer science class, by
definition. Unfortunately, due to the nature of the recorded data we lost data
of 6 participants and the results in Tables 1 and 2 indicate reflect that from 21
participants.

Depending on the computer and security expertise questions answered by
the participants before the in-lab experiment, the mean security expertise was
2.96 of 5 and the mean computing expertise was 4.34. We compared this with a
general population survey of 593 participants where the results showed a mean
security expertise (using the same calculation) of 1.7 and a mean computing
expertise of 1.77 [10]. As a result, it is reasonable to assume that any halt points
encountered by this population would also occur in a less technical and less
educated population.

4.2 Phase-II

In Phase-II, as with Phase-I, the participants were students recruited from the
same computer security course after a year. We had 34 young scholar participants
in total - 1 was between 18 and 20, 29 were between 21 and 23, 2 were between
24 and 26, 1 was over 30 years old, and one chose not to answer. There were 26
male students, and 8 female students, a 76.4% to 23.6% split. Every student was
enrolled in at least one information or computer science class, by definition. In
Phase-II, the mean security expertise score was 2.95 of 5 and the mean computing
score was 4.34. Again, it is reasonable to assert that our participants have more
security and computing expertise than the general population. The differences
in the mean values were not significant.

5 Results

5.1 Phase I Findings and Usability

In this section, we discuss about the various halt and confusion points where the
participants found it difficult to register the Yubico Security Key.

Inserting the Device. We were able to identify several points of confusion
related to device form factor. Primarily, users experienced confusion about the
correct orientation of the key due to the slim design which allows it to enter the
USB port both correctly or upside-down.

Finding Instructions. Once the device was successfully inserted and individ-
uals were directed to setup the device for their account, they had trouble get-
ting started. Over half of the users navigated to their browser settings or their
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email settings first. The second time they encountered an instruction-centered
challenge was when they had actually found the correct ‘account settings’ con-
trol panel. For successful setup, users were required to follow a non-linear path
through the control panel, and at each page, a large array of options were offered.
This presented many opportunities for confusion and abandonment of setup alto-
gether for several participants.

Illumination. To activate the Security Key, either for enrollment or authen-
tication, users must touch a capacitive button on the device. The button light
would blink on insertion and at other seemingly unrelated points. Participants
frequently displayed confusion over the timing of button press and the meaning
of the blinking light.

Correctly Identifying the Device. Participants in the first condition found
the Yubico landing page to be difficult to understand and navigate. Despite
having the original packaging for the device, participants generally were not
confident about which model of Yubico Security Key they were using. This was
a halt point where device identification was required to receive setup instructions.
The most commonly mentioned reason for choosing a particular device was color.
No subjects mentioned using the images on the button to differentiate between
Security Key models.

“Try Out This Key” Link. Once subjects had determined which model of key
they were using, the next challenge was finding the correct setup instructions.
Without exception, participants identified a link to a demo application as the
most salient option for their goal of setting up their key with a Google account.

Demo Versus Reality. Many participants either believed they had completed
the task after successfully authenticating to the demo, or repeated the enrollment
and test cycle of the demo tool several times without progressing. After ten
minutes of repeating the demonstration cycle, we considered subjects to have
reached a halt point. As one participant noted, “The web site is kinda confusing
because I do not know what it wants me to do.”

Biometric Versus Touch. Many participants thought the circular touch sensor
was a biometric authenticator that read their fingerprints. This has both positive
and negative implications. On the positive side, this indicated awareness that
interaction was necessary. It also implied, however, a higher benefit than the
device actually provides, since, in reality, anyone can use it. If the token is lost,
users who believe they have biometric enrollment would not realize that others
could use it. One of the participant’s mention: “I guess it is more secure because
they make you scan your fingerprint before you can log into your account, but to
me it’s a bit excessive.”

Confirmation of Operation. Participants were unable to confirm that the
device was working after setup. When users were queried, “How could you test
to confirm that your key is working?”, a common response was the intuitive
“Log out and back in”. Unfortunately, since the default during setup is to trust
the current computer, users never got to actually experience using their Yubico
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Security Key outside the set-up process. For single-computer users, this experi-
ence could be left until weeks in the future - “Why didn’t you prompt me?! It
said it would...maybe I’ll just try again.”

5.2 Phase-I Acceptability

The primary drivers of acceptability were the lack of awareness of the risk and the
resulting perception that there was no benefit. Here we recommend changes to
increase this acceptability. Several of the participants in our experiments dropped
the keys in a shared bin for leftover hardware, often used for mice or cables. This
reiterates the importance of theft and loss resistance noted in related work [4,22].
Participants in the experiment did not have a clear understanding of the possible
risk of account subversion. Similar lack of awareness and uncertainty of the risk
of their choices has been found in privacy as well as security previously [1].

5.3 Phase-I Recommendations

In response to our results we made specific recommendations in a technical talk
presented to Yubico and Google. Some of these recommendations were adopted,
either as a result of our work or serendipity. Here we list our recommendations
and, in the case of adoption, note the difference.

Finding Instructions. The other issue was that people had difficulty finding
instructions. The current Yubico web page has vastly improved this, providing
icons that link not just to the service but directly to the instructions for Security
Key enrollment. We found that the service provider descriptions were easier to
follow than the Yubico descriptions for each service provider. Our recommen-
dation for Yubico to provide pointers rather than instructions for each service
provider was acknowledged.

Demo Versus Reality. First time users were not easily able to identify which
product they had, or which instructions they were to follow. The “Try out your
YubiKey” demo was a source of much confusion. In every experiment condition
where a user was directed to the Yubico instructions, they got stuck in a loop
with the instructions and required guidance for the next step.

The demo does appear to serve the important goal of providing hypotheti-
cal demonstrations to prospective institutional customers. However, when this
demo is included as part of the display to those who have already purchased
the product, it consistently caused confusion. We recommended that this demo
should not be accessible to the end user, as it was a consistent halt point. Though
still accessible, the demo has been removed from the installation work flow. As
a result this halt point went from confounding nearly every single subject in
Phase-I to having negligible impact in Phase-II.

Correctly Identifying the Device. In our initial experiment, the instruc-
tions asked what Yubico product a user had, but provided little identification
guidance. A user’s best option was a product comparison table, the top of the
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website. The table appeared to have been designed to assist in purchase decisions
rather than configuration, with prominent price information and technical data.

A new interface offers more prominent pictures and descriptors which allows
for easier identification of the device to be used. The title clearly shows the
purpose, providing confidence to the subject participants that they had found
the correct source for device identification.

Biometric Versus Touch. A significant change implemented in the Yubico
setup instructions is the clear identification that the button is not a fingerprint
reader.

Confirmation of Operation. During the experiment, participants found it
challenging to confirm that a newly registered Security Key was in fact operating
correctly. This confusion was caused by Google’s default behavior of marking the
browser as a “trusted” device. In this case, users are not required to use a second
authentication factor when logging in, even when 2FA is enabled for the account.

The default browser trust defeated subjects’ natural inclination to test the
newly enrolled device by logging out of their account and logging back in, as there
was no prompt to use the key. A subset of the experimental group did arrive at
a solution, either using “incognito mode” or clearing cookies from their browser
before logging in again. However, not all participants possessed the technical
understanding of Google’s authentication process necessary to arrive at such a
solution.

5.4 Phase-I Acceptability Recommendations

Despite the fact that the chosen research pool was more educated and security
aware than the general population, no participant in Phase-I decided to con-
tinue to use the token provided. We know that some Yubico security tokens
were returned to researchers immediately or placed in the discarded available
hardware bin after the experiment. We also piloted the study before deploying
it to the participants in phase-I. In contrast, the participants in the pilot phase
were all graduate students in security and all of the pilot participants continued
to use the tokens.

Communicate the Intrinsic Benefit. Rational decision making theories fail
to account for observed security and privacy choices, either individual or in the
aggregate. Yet people consistently use a set of heuristics in making decisions,
such that benefits obtained are greater than the risk. Garg argued that security
systems should be designed to take advantage of these theories to encourage
more adoption [7]. Applying the observations here, we recommend better risk
communication that indicates that the use of the token is a benefit.

Developing appropriate feedback for users has long been recognized as a
design challenge [26,27]. Thus, we recommend the addition of such feedback for
users to be aware of the benefits of using the device. This may include confir-
mation of successful registration on first login, or occasional information about
the superior security while content loads.
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Communicating the Risks. Users did not understand the benefit of the device
as compared to a longer, more secure password. Users who chose to return the
token expressed confidence in their own security management and length of pass-
words. Many of the users thought the device was useful in the case of computer
theft, but were dismayed to find that the device would remain trusted even when
lost.

Create a Cognitive Benefit. A major impediment to users’ perception of
value was the continued need for passwords to authenticate when using trusted
devices. During experimental sessions, several people expressed a desire for the
authentication device to somehow streamline authentication compared to typical
password entries. Other users were surprised that passwords were still needed
after setup. Many participants felt that the second factor was an overkill, or too
much of a burden in exchange for the no cognitive benefit.

West and Garg had two recommendations that address this major challenge
to acceptability: reducing costs associated with security and improving rewards
for good decisions [7,25]. Specifically, we recommend a visible reduction of the
cognitive load of passwords in return for use of FIDO to improve acceptability.
Streamlining could be achieved by not prompting the user for the full password as
long as the proper FIDO token was plugged into a trusted device, or by allowing
users to have a shorter, easier to use password when the device is present.

Highlight the Features. The FIDO standard is designed so that a single key
can be used with multiple accounts without revealing any link between the two
accounts even if service providers collude. This feature is crucial to the scalability
of U2F for end users; without it they would need to obtain and manage at least
one token per account. Unfortunately, only about half of our sample understood
that a single U2F token could be used with multiple accounts from different
service providers.

5.5 Phase-II Results

The second experimental phase consisted of running an identical protocol with a
similar sample of participants. We again focused on analyzing the usability and
acceptability of the two-factor authentication tool after the changes described in
Sect. 5.3.

Tables 1 and 2 show a comparison of halt points and confusion points between
the two phases. We observe that Phase-I had a higher percentage of halt points
and confusion points when combined.

The demo and going to the incorrect settings were significant halt point in
Phase-I, but in Phase-II, most of the participants did not require any intervention
from the researchers for resolving this issue.

Several participants expressed confusion over whether the device would oper-
ate with Apple devices due to the implementation of the new USB-C port. While
this problem can be solved by using YubiKey 4C, it is beyond the scope of the
current experiment. It is worth noting that presently YubiKeys are not com-
patible with browsers other than Chrome or Opera. In this vein, the partici-
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pants strongly recommended that YubiKeys be made compatible with all other
browsers.

Phase-II include two conditions, as with Phase-I. The Google condition in
Phase-II directed participants to Google Support’s instructions on how to add
and register the Yubico security key [23].

5.6 Phase-II Acceptability

In Phase-I of the experiment, no participant chose to continue the use of the
token after registering it in our experiment. In Phase-II, most of the participants
chose to keep the security keys after the experiment. However, the follow-up
survey had low participation and hence, was not coded. Yet we note in Phase-II
that five of ten participants reported continued use of the key on the survey.
2FA that requires pairing with a smart device is likely the only exposure to
2FA technology that many students have due to a compulsory 2FA that the
University has implemented on the students to login to use University services.
However, lack of participation in the follow-up study could be an indicator of
lack of engagement with the token.

Communicate the Intrinsic Benefit. Confirmation of operation remains a
serious issue underlying acceptability. If any artifact is not seen as working then
it will not be seen to have benefits. When asked about continued use, one of the
participants said, “No, my password is secure enough and alerts are active.”

The instructions in the updated Yubico condition included information about
the association of the device with other websites such as Facebook, and Sales-
force. The links to the other sets of instructions also provided benefit information.
Several users pointed out that multiple platforms could be linked and secured
by YubiKeys.

Create a Cognitive Benefit. Google continues to require use of the full pass-
word even with Yubico Security Keys, and does not offer a decreased cognitive
burden option. Thus, there was no cognitive benefit for using the device. As
noted by a participant in Phase-II, the question arose, Why is it still asking
for a password?. Remembering a password which adheres to the password rules
remains a challenge if one still needs it along with the hardware tokens.

Highlight the Engineering. In the first phase, participants believed that they
required different tokens for different websites. Phase-II participants indicated
some awareness of the potential benefit of Security Key across different websites.

Communicating the Risks. One Phase-II participant identified risk mitiga-
tion as a reason to use the Security Key, stating that it is, “more secure against
brute force or stolen password.” In Phase-II, due to various alterations in the
design, description, and specifically in the demo of the Yubico instructions, par-
ticipants found it more usable and acceptable in their day-to-day life. We dis-
cussed more on how the problems in Phase-I were mitigated in Sect. 5.3, along
with a discussion on further recommendations in Sect. 7 to make the device more
acceptable and to make the online usage experience of users more secure.
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Table 1. Percentage of participants
encountering halt points: comparison

Phase-I Phase-II

Halt point (stop) Yubico Google Yubico Google

Demo 72.7% 0% 0% 0%

Incorrect settings 72.7% 20.0% 19.04% 14.29%

Instruction 36.4% 20.0% 4.76% 0%

Form factor 9% 10% 4.76% 0%

Biometric 9% 0% 0% 0 %

Pressing button 9% 0% 0% 7.14%

Table 2. Percentage of participants
encountering confusion points: comparison

Phase-I Phase-II

Confusion point Yubico Google Yubico Google

Demo 9% 0% 0% 0%

Incorrect settings 18.2% 0% 4.76% 0%

Instruction 9% 20% 23.80% 71.43%

Form factor 9% 0% 23.80% 7.14%

Biometric 9% 0% 0% 0%

Pressing button 9% 10% 23.80% 28.57%

5.7 Comparison of Two Phases

The modification of the instructions and other changes mentioned in Sect. 5.3
made the Security Keys more usable. Table 3 list the statistically significant
changes between the two studies. Figure 2 shows a stark improvement in the
halt and confusion points in between the two phases.

The most important changes were the removal of the demo, the presentation
of the devices so that they were easily identified, and links to the sites in which
the Yubico Security Key can be used. Yubico‘s removal of their own instructions
was a major improvement. Instead, the Yubico website redirected the user to the
website the person was seeking to secure. Though the instructions still remains
slightly confusing to the participants, which can be improved further.

Yubico Instructions. In Phase-I we noted that participants were not happy
with the instructions especially those who received the Yubico instructions. We
found that 72.7% who got the Yubico instructions were restricted by the demo,
36.4% found the instructions unclear and were stopped with the way the instruc-
tions were given, and 72.7% of the participants didn’t understand which setting
to go to setup their device. One of the participants also exclaimed by saying
“This is a horrible web site. I don’t know what it wants from me.” In Phase-II,
though some of the participants found the instructions verbose, the problems
faced by them were reduced.

Biometric versus Touch. We noted that participants were more aware of
how to press the golden button in Phase-II and no one faced difficulty and
asked for assistance from researchers as compared to the 9% in the Phase-I.
The instructions helped users in knowing about the keys and the participants
expressed awareness that the button was not a biometric.

Demo. In Phase-I, the participants who received the Yubico instructions were
confused by the demo setup, resulting in 72.7% of the participants failing to reg-
ister the keys with their account even with the help of the researchers. Removal
of the demo from the instructions in Phase-II removed the halt points found in
Phase-I completely. Everyone in the second phase was able to register the keys
and associate them to their Gmail account as described in Tables 1 and 2.
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Table 3. Table of significance with Kruskal-Wallis test (p value greater than 0.2 are
excluded)

Phase-I Phase-II Yubico Google

Halt point Y vs. G Y vs. G I v. II I v. II

Demo 0.0008 - 0.0033 -

Settings 0.0183 - 0.0033 -

Instructions - - 0.0213 0.0988

Form factor - - - -

Biometric - - 0.1671 -

Pressing button - 0.2037 0.1671 -

Table 3 shows the results of a Kruskal–Wallis test comparing the two phases.
Any p value greater than 0.05 is not significant. Those which are borderline (i.e.,
between 0.05 and 0.2) are included in the table as these also may be interesting
for future experimental evaluations. Those not included were not distinguishable
from random chance and we would not focus on them in future work.

6 Analysis

We implemented a set of correlation matrices to examine the potential inter-
action of the halt points and confusion points. For several people where we
observed the correlation between form factor and settings in practice, this took
the path of not understanding the nature of the device, in that they treated
the device as a memory storage devices rather than an authentication device.
Please note, the first phase of the experiment was identification of the device,
so that all participants would have seen a description of these as authentication
devices. Before having been directed to the settings, the participants searched
their computers for this additional memory device and a few also inserted the
device upside-down.

We also examined the correlation of halt points for Phase-II participants who
received instructions from Google, finding only one non-zero correlation. In this
case, the difficulty of finding settings was correlated with the operation of the
button. This means that once the settings were identified, the participants were
confused on when to engage with the pressure sensor in the enrollment phase.

Conversely, for those participants who interacted with the Yubico instructions
the correlation between the confusion points of finding settings and interacting
with the pressure sensor was negative (as shown in the correlation matrices in the
Appendix). The only positive correlation was between difficulty in understanding
the instruction and operating with the button by touching it at the correct time.

For the confusion points for participants who received the instructions from
Google is also provided in the Appendix. The matrix shows an unsurprising cor-
relation between not understanding the form factor and not being able to interact
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with the button. This is unsurprising as individuals who, for example, placed the
device upside down can neither see the illumination nor reach the button itself.
A second positive correlation was found between difficulty understanding the
instructions and interacting with the button.

We cannot conclude that the confusion and halt points are independent. The
correlation of different halt and confusion factors appear inter-related.

Fig. 2. Comparison of halt and confusion points between two study phases

7 Discussion and Further Suggestions

Based on student feedback, we characterize the lack of acceptability of the Secu-
rity Key as lack of awareness of the risk, lack of knowledge about the benefits,
and the fact that the burden of passwords is not mitigated so there is a lack of
actual cognitive benefits. This lack of recognition of the intrinsic benefit appears
to be a function of defaults and expertise. The members of the security lab imple-
mented a pilot think-aloud protocol to augment experimenter training. None of
the members of the lab selected the option to trust the computer. Therefore, the
expertise of the employees at Google [13] and Yubico might make this difficulty
effectively invisible. Literature on psychology of security illustrates that com-
municating security as a benefit rather than a cost can be expected to increase
acceptability of a technology [7]. Behavioral economics of security indicates that
presenting the safety of two factor as an asset that the participants possess,
rather than having them experience it as a cost, has the potential to improve
perceived value and increase long-term use [8].

As we cannot make all users experts, communication of the benefits and
the creation of a cognitive benefit are most promising. Communication of ben-
efit could occur in the form of a validation email and communicating benefit
information upon enrollment. There are other possible points of interaction. For
example, after a password reset email, a simple message indicating that the
participant is safer could be provided. Currently, security information focuses
heavily on risk avoidance information and rarely provides benefit information.
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One possible form of benefit communication could be illustration of the options
of different Security Keys.

A suggestion is to remind participants at first login after enrollment that the
selected hardware is trusted. Explicit positive benefit messages could include
initial congratulations on successful login the first time. After that a periodic
reminder that “only this computer can log in without your key” with an image
would provide clear indication of benefit. If any login is ever refused from a
remote computer, a message to the participant indicating their successful tri-
umph over a potential attacker would clearly identify a benefit.

Even in the second condition, many participants did not understand the ben-
efit of the device as compared to a longer, more secure password. To address this,
providers that support 2FA could include a pointer to U2F tokens when there
are suspicious login attempts. In both phases, multiple participants expressed
disappointment that their full password was still required after configuring the
Security Key, even on trusted devices where a second factor was not needed.
From a user experience perspective, pressing the single button to activate a U2F
token presents a lower physical and cognitive load compared to typing a pass-
word [4,22]. From a security perspective, the authentication provided by the
token is stronger than any password a normal participant is likely to choose.
As an alternative to this, one can use a shorter password with a few characters
along with the Yubico Security Key rather than a password phrase.

Using the security token as a primary authentication factor also offers acces-
sibility benefits. For enterprise customers, it could ease ADA compliance with
respect to authentication requirements for employees. Individuals who can be
supported through voice recognition or other alternative means of entering text
often still struggle with authentication, particularly when required to submit
password phrases. Although still an unusual complaint, an ADA compliance
issue could arise in the face of password complexity requirements.

In this experiment we studied the usability and acceptability of the FIDO
U2F security key. Further studies could include a range of tokens, not only
other Yubico security keys such as YubiKey 4, YubiKey 4 Nano, YubiKey 4C,
and YubiKey NEO but also pico and other secure hardware. In addition, a
goal of future work is to include vulnerable populations. Such populations are
likely to have lower expertise but may have greater awareness of risk. We choose
the undergraduates because of their increased skill in relation to computer and
security and that they are early adopters of new technology but in the future we
hope to expand this study for more diverse age groups including retirees.

8 Conclusion

Through a two-phase experimental study, we investigated the usability issues
of the FIDO Security Key. In the first phase, we discovered there were six pri-
mary usability concerns or halt points - a confusing demo, going to incorrect
account settings, confusing instructions, the hardware’s form-factor, validation
after setup, and participants’ doubts regarding the benefit of the Security Key.
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In the second phase of the experiment, the usability concerns were mostly mit-
igated. These included updating installation instructions, removing the demo
from the setup work flow, and clarifying descriptions of the registration pro-
cess. This resulted in a remarkable improvement in the usability of the device
- while 33.3% of the users were not able to complete the registration process
in the first phase, everyone was successful in the second phase. In the second
phase, although the halt points were reduced considerably, many participants
were still confused whether the key was working due to the absence of message
confirmation at the end of the registration process.

The improvement of usability did not automatically result in improvements
in acceptability. Participants continued to express belief in the strength of pass-
words alone, showing undue faith in their own security acumen. We conclude
with compliments to the usability of the 2FA token, and with a warning that
even the best designed hardware will not be used if the benefits are not apparent.
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A Appendix

We have provided the correlation matrices of the halt and confusion points for
different sets of instructions (Yubico and Google) across the Two Phases. Due
to lack of space we have used abbreviations for the halt and confusion points.
The abbreviation list are as follows:

1. D: Demo
2. S: Incorrect Settings
3. I: Instructions
4. F: Form Factor
5. B: Bio-metric
6. P: Pressing Button

10.1 Phase-I

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 1 0.04 0.19 0.19 0.19 D
1 1 0.04 0.19 0.19 0.19 S

0.04 0.04 1 −0.24 0.42 0.42 I
0.19 0.19 −0.24 1 −0.1 −0.1 F
0.19 0.19 0.42 −0.1 1 −0.1 B
0.19 0.19 0.42 −0.1 −0.1 1 P
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Correlation Matrix of Halt Points for Phase-I participants who received
Yubico Instructions.

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 Demo
0 1 0.38 −0.17 0 0 S
0 0.38 1 0.67 0 0 I
0 −0.17 0.67 1 0 0 F
0 0 0 0 1 0 B
0 0 0 0 0 1 P

Correlation Matrix of Halt Points for Phase-I participants who received
Google Instructions.

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 −0.15 −0.1 −0.1 −0.1 −0.1 D
−0.15 1 −0.15 −0.15 −0.15 −0.15 S
−0.1 −0.15 1 −0.1 −0.1 −0.1 I
−0.1 −0.15 −0.1 1 1 −0.1 F
−0.1 −0.15 −0.1 1 1 −0.1 B
−0.1 −0.15 −0.1 −0.1 −0.1 1 P

Correlation Matrix of Confusion Points for Phase-I participants who received
Yubico Instructions.

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 D
0 1 −0.15 −0.15 −0.15 −0.15 S
0 −0.15 1 −0.1 −0.1 −0.1 I
0 −0.15 −0.1 1 1 −0.1 F
0 −0.15 −0.1 1 1 −0.1 B
0 −0.15 −0.1 −0.1 −0.1 1 P

Correlation Matrix of Confusion Points for Phase-I participants who received
Google Instructions.
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10.2 Phase-II

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 D
0 1 −0.11 0.46 0 0 S
0 −0.11 1 −0.05 0 0 I
0 0.46 −0.05 1 0 0 F
0 0 0 0 1 0 B
0 0 0 0 0 1 P

Correlation Matrix of Halt Points for Phase-II participants who received
Yubico Instructions.

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 D
0 1 0 0 0 0.68 S
0 0 1 0 0 0 I
0 0 0 1 0 0 F
0 0 0 0 0 1 B
0 0.68 0 0 0 1 P

Correlation Matrix of Halt Points for Phase-II participants who received
Google Instructions.

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 D
0 1 −0.13 0.4 0 −0.13 S
0 −0.13 1 −0.31 0 0.21 I
0 0.4 −0.31 1 0 −0.31 F
0 0 0 0 1 0 B
0 −0.13 0.21 −0.31 0 1 P

Correlation Matrix of Confusion Points for Phase-II participants who received
Yubico Instructions.

D S I F B P⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 D
0 1 0 0 0 0 S
0 0 1 0.18 0 0.4 I
0 0 0.18 1 0 0.44 F
0 0 0 0 1 0 B
0 0 0.4 0.44 0 1 P
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Correlation Matrix of Confusion Points for Phase-II participants who received
Google Instructions.
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Abstract. We propose a novel multi-party computation protocol for
evaluating continuous real-valued functions with high numerical preci-
sion. Our method is based on approximations with Fourier series and
uses at most two rounds of communication during the online phase. For
the offline phase, we propose a trusted-dealer and honest-but-curious
aided solution, respectively. We apply our algorithm to train a logistic
regression classifier via a variant of Newton’s method (known as IRLS)
to compute unbalanced classification problems that detect rare events
and cannot be solved using previously proposed privacy-preserving opti-
mization algorithms (e.g., based on piecewise-linear approximations of
the sigmoid function). Our protocol is efficient as it can be implemented
using standard quadruple-precision floating point arithmetic. We report
multiple experiments and provide a demo application that implements
our algorithm for training a logistic regression model.

1 Introduction

Privacy-preserving computing allows multiple parties to evaluate a function
while keeping the inputs private and revealing only the output of the function and
nothing else. Recent advances in multi-party computation (MPC), homomorphic
encryption, and differential privacy made these models practical. An example of
such computations, with applications in medicine and finance, among others,
is the training of supervised models where the input data comes from distinct
secret data sources [18,24,26,27] and the evaluation of predictions using these
models.

In machine learning classification problems, one trains a model on a given
dataset to predict new inputs, by mapping them into discrete categories. The
classical logistic regression model predicts a class by providing a probability asso-
ciated with the prediction. The quality of the model can be measured in several

c© International Financial Cryptography Association 2018
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ways, the most common one being the accuracy that indicates the percentage of
correctly predicted answers.

It appears that for a majority of the datasets (e.g., the MNIST database of
handwritten digits [16] or the ARCENE dataset [15]), the classification achieves
very good accuracy after only a few iterations of the gradient descent using a
piecewise-linear approximation of the sigmoid function sigmo : R → [0, 1] defined
as

sigmo(x) =
1

1 + e−x
,

although the current cost function is still far from the minimum value [26]. Other
approximation methods of the sigmoid function have also been proposed in the
past. In [30], an approximation with low degree polynomials resulted in a more
efficient but less accurate algorithm. Conversely, a higher-degree polynomial
approximation applied to deep learning algorithms in [25] yielded more accu-
rate, but less efficient algorithms (and thus, less suitable for privacy-preserving
computing). In parallel, approximation solutions for privacy-preserving methods
based on homomorphic encryption [2,28], [19,23] and differential privacy [1,11]
have been proposed in the context of both classification algorithms and deep
learning.

Nevertheless, accuracy itself is not always a sufficient measure for the quality
of the model, especially if, as mentioned in [20, p. 423], our goal is to detect
a rare event such as a rare disease or a fraudulent financial transaction. If, for
example, one out of every one thousand transactions is fraudulent, a näıve model
that classifies all transactions as honest achieves 99.9% accuracy; yet this model
has no predictive capability. In such cases, measures such as precision, recall and
F1-score allow for better estimating the quality of the model. They bound the
rates of false positives or negatives relative to only the positive events rather
than the whole dataset.

The techniques cited above achieve excellent accuracy for most balanced
datasets, but since they rely on a rough approximation of the sigmoid function,
they do not converge to the same model and thus, they provide poor scores on
datasets with a very low acceptance rate. In this paper, we show how to regain
this numerical precision in MPC, and to reach the same score as the plaintext
regression. Our MPC approach is mostly based on additive secret shares with
precomputed multiplication triplets [4]. This means that the computation is
divided in two phases: an offline phase that can be executed before the data is
shared between the players, and an online phase that computes the actual result.
For the offline phase, we propose a first solution based on a trusted dealer, and
then discuss a protocol where the dealer is honest-but-curious.

1.1 Our Contributions

Fourier Approximation of the Sigmoid Function. Evaluation of real-valued func-
tions has been widely used in privacy-preserving computations. For instance, in
order to train linear and logistic regression models, one is required to compute
real-valued functions such as the square root, the exponential, the logarithm, the
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sigmoid or the softmax function and use them to solve non-linear optimization
problems. In order to train a logistic regression model, one needs to minimize
a cost function which is expressed in terms of logarithms of the continuous sig-
moid function. This minimum is typically computed via iterative methods such
as the gradient descent. For datasets with low acceptance rate, it is important
to get much closer to the exact minimum in order to obtain a sufficiently precise
model. We thus need to significantly increase the number of iterations (näıve
or stochastic gradient descent) or use faster-converging methods (e.g., IRLS [5,
Sect. 4.3]). The latter require a numerical approximation of the sigmoid that is
much better than what was previously achieved in an MPC context, especially
when the input data is not normalized or feature-scaled. Different approaches
have been considered previously such as approximation by Taylor series around
a point (yielding only good approximation locally at that point) or polynomial
approximation (by e.g., estimating least squares). Although better than the first
one, this method is numerically unstable due to the variation of the sizes of the
coefficients. An alternative method based on approximation by piecewise-linear
functions has been considered as well. In MPC, this method performs well when
used with garbled circuits instead of secret sharing and masking, but does not
provide enough accuracy.

In our case, we approximate the sigmoid using Fourier series, an approach
applied for the first time in this context. This method works well as it provides a
better uniform approximation assuming that the function is sufficiently smooth
(as is the case with the sigmoid). In particular, we virtually re-scale and extend
the sigmoid to a periodic function that we approximate with a trigonometric
polynomial which we then evaluate in a stable privacy-preserving manner. To
approximate a generic function with trigonometric polynomials that can be eval-
uated in MPC, one either uses the Fourier series of a smooth periodic extension
or finds directly the closest trigonometric polynomial by the method of least
squares for the distance on the half-period. The first approach yields a super-
algebraic convergence at best, whereas the second converges exponentially fast.
On the other hand, the first one is numerically stable whereas the second one is
not (under the standard Fourier basis). In the case of the sigmoid, we show that
one can achieve both properties at the same time.

Floating-Point Representation and Masking. A typical approach to multi-party
computation protocols with masking is to embed fixed-point values into finite
groups and use uniform masking and secret sharing. Arithmetic circuits can
then be evaluated using, e.g., precomputed multiplication triplets and follow-
ing Beaver’s method [4]. This idea has been successfully used in [14] and [13].
Whereas the method works well on low multiplicative depth circuits like cor-
relations or linear regression [18], in general, the required group size increases
exponentially with the multiplicative depth. In [26], this exponential growth is
mitigated by a two-party rounding solution, but the technique does not extend to
three or more players where an overflow in the most significant bits can occur. In
this work, we introduce an alternative sharing scheme, where fixed-point values
are shared directly using (possibly multibit) floating points, and present a tech-
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nique to reduce the share sizes after each multiplication. This technique easily
extends to an arbitrary number of players.

Significant Reduction in Communication Time. In this paper, we follow the same
approach as in [26] and define dedicated triplets for high-level instructions such
as large matrix multiplications, a system resolution, or an oblivious evaluation of
the sigmoid. This approach is less generic than masking low-level instructions as
in SPDZ, but it allows to reduce the communication and memory requirements
by large factors. Masks and operations are aware of the type of vector or matrix
dimensions and benefit from the vectorial nature of the high-level operations.
For example, multiplying two matrices requires a single round of communication
instead of up to O(n3) for coefficient-wise approaches, depending on the batching
quality of the compiler. Furthermore, masking is defined per immutable variable
rather than per elementary operation, so a constant matrix is masked only once
during the whole algorithm. Combined with non-trivial local operations, these
triplets can be used to achieve much more than just ring additions or multiplica-
tions. In a nutshell, the amount of communications is reduced as a consequence of
reusing the same masks, and the number of communication rounds is reduced as a
consequence of masking directly matrices and other large structures. Therefore,
the total communication time becomes negligible compared to the computing
cost.

New Protocol for the Honest But Curious Offline Phase Extendable to n Players.
We introduce a new protocol for executing the offline phase in the honest-but-
curious model that is easily extendable to a generic number n of players while
remaining efficient. To achieve this, we use a broadcast channel instead of peer-
to-peer communication which avoids a quadratic explosion in the number of
communications. This is an important contribution, as none of the previous
protocols for n > 3 players in this model are efficient. In [18], for instance, the
authors propose a very efficient algorithm in the trusted dealer model; yet, the
execution time of the oblivious transfer protocol is quite slow.

2 Notation and Preliminaries

Assume that P1, . . . , Pn are distinct computing parties (players). We recall some
basic concepts from multi-party computation that will be needed for this paper.

2.1 Secret Sharing and Masking

Let (G, •) be a group and let x ∈ G be a group element.
A secret share of x, denoted by �x�• (by a slight abuse of notation), is a tuple

(x1, . . . , xn) ∈ Gn such that x = x1 • · · · • xn. If (G,+) is Abelian, we call the
secret shares x1, . . . , xn additive secret shares. A secret sharing scheme is compu-
tationally secure if for any two elements x, y ∈ G, strict sub-tuples of shares �x�•
or �y�• are indistinguishable. If G admits a uniform distribution, an information-
theoretic secure secret sharing scheme consists of drawing x1, . . . , xn−1 uniformly
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at random and choosing xn = x−1
n−1 • · · · • x−1

1 • x. When G is not compact, the
condition can be relaxed to statistical or computational indistinguishability.

A closely-related notion is the one of group masking. Given a subset X of G,
the goal of masking X is to find a distribution D over G such that the distribu-
tions of x • D for x ∈ X are all indistinguishable. Indeed, such distribution can
be used to create a secret share: one can sample λ ← D, and give λ−1 to a player
and x•λ to the other. Masking can also be used to evaluate non-linear operations
in clear over masked data, as soon as the result can be privately unmasked via
homomorphisms (as in, e.g., the Beaver’s triplet multiplication technique [4]).

2.2 Arithmetic with Secret Shares via Masking

Computing secret shares for a sum x + y (or a linear combination if (G,+) has
a module structure) can be done non-interactively by each player by adding
the corresponding shares of x and y. Computing secret shares for a product
is more challenging. One way to do that is to use an idea of Beaver based on
precomputed and secret shared multiplicative triplets. From a general point of
view, let (G1,+), (G2,+) and (G3,+) be three abelian groups and let π : G1 ×
G2 → G3 be a bilinear map.

Given additive secret shares �x�+ and �y�+ for two elements x ∈ G1 and
y ∈ G2, we would like to compute secret shares for the element π(x, y) ∈ G3.
With Beaver’s method, the players must employ precomputed single-use random
triplets (�λ�+, �μ�+, �π(λ, μ)�+) for λ ∈ G1 and μ ∈ G2, and then use them to
mask and reveal a = x + λ and b = y + μ. The players then compute secret
shares for π(x, y) as follows:

– Player 1 computes z1 = π(a, b) − π(a, μ1) − π(λ1, b) + (π(λ, μ))1;
– Player i (for i = 2, . . . , n) computes zi = −π(a, μi) − π(λi, b) + (π(λ, μ))i.

The computed z1, . . . , zn are the additive shares of π(x, y). A given λ can
be used to mask only one variable, so one triplet must be precomputed for each
multiplication during the offline phase (i.e. before the data is made available
to the players). Instantiated with the appropriate groups, this abstract scheme
allows to evaluate a product in a ring, but also a vectors dot product, a matrix-
vector product, or a matrix-matrix product.

2.3 MPC Evaluation of Real-Valued Continuous Functions

For various applications (e.g., logistic regression in Sect. 6), we need to compute
continuous real-valued functions over secret shared data. For non-linear func-
tions (e.g. exponential, log, power, cos, sin, sigmoid, etc.), different methods are
proposed in the literature.

A straightforward approach consists of implementing a full floating point
arithmetic framework [6,13], and to compile a data-oblivious algorithm that
evaluates the function over floats. This is, e.g., what Sharemind and SPDZ use.
However, these two generic methods lead to prohibitive running times if the
floating point function has to be evaluated millions of times.
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The second approach is to replace the function with an approximation that is
easier to compute: for instance, [26] uses garbled circuits to evaluate fixed point
comparisons and absolute values; it then replaces the sigmoid function in the
logistic regression with a piecewise-linear function. Otherwise, [25] approximates
the sigmoid with a polynomial of fixed degree and evaluates that polynomial
with the Horner method, thus requiring a number of rounds of communications
proportional to the degree.

Another method that is close to how SPDZ [14] computes inverses in a finite
field is based on polynomial evaluation via multiplicative masking: using a pre-
computed triplet of the form (�λ�+, �λ−1�+, . . . , �λ−p�+), players can evaluate
P (x) =

∑p
i=0 apx

p by revealing u = xλ and outputting the linear combination∑p
i=0 aiu

i�λ−i�+.
Multiplicative masking, however, involves some leakage: in finite fields, it

reveals whether x is null. The situation gets even worse in finite rings where the
multiplicative orbit of x is disclosed (for instance, the rank would be revealed in
a ring of matrices), and over R, the order of magnitude of x would be revealed.

For real-valued polynomials, the leakage could be mitigated by translating
and rescaling the variable x so that it falls in the range [1, 2). Yet, in general, the
coefficients of the polynomials that approximate the translated function explode,
thus causing serious numerical issues.

2.4 Full Threshold Honest-But-Curious Protocol

Since our goal is to emphasize new functionalities, such as efficient evaluation of
real-valued continuous functions and good quality logistic regression, we often
consider a scenario where all players follow the protocol without introducing any
errors. The players may, however, record the whole transaction history and try
to learn illegitimate information about the data. During the online phase, the
security model imposes that any collusion of at most n−1 players out of n cannot
distinguish any semantic property of the data beyond the aggregated result that
is legitimately and explicitly revealed. To achieve this, Beaver triplets (used to
mask player’s secret shares) can be generated and distributed by a single entity
called the trusted dealer. In this case, no coalition of at most n−1 players should
get any computational advantage on the plaintext triplet information. However,
the dealer himself knows the plaintext triplets, and hence the whole data, which
only makes sense on some computation outsourcing use-cases. In Sect. 5, we
give an alternative honest-but-curious (or semi-honest) protocol to generate the
same triplets, involving this time bi-directional communications with the dealer.
In this case, the dealer and the players collaborate during the offline phase in
order to generate the precomputed material, but none of them have access to the
whole plaintext triplets. This makes sense as long as the dealer does not collude
with any player, and at least one player does not collude with the other players.
We leave the design of actively secure protocols for future work.
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3 Statistical Masking and Secret Share Reduction

In this section, we present our masking technique for fixed-point arithmetic and
provide an algorithm for the MPC evaluation of real-valued continuous functions.
In particular, we show that to achieve p bits of numerical precision in MPC, it
suffices to have p + 2τ -bit floating points where τ is a fixed security parameter.

The secret shares we consider are real numbers. We mask these shares using
floating point numbers. Yet, as there is no uniform distribution on R, no additive
masking distribution over reals can perfectly hide the arbitrary inputs. In the
case when the secret shares belong to some known range of numerical precision, it
is possible to carefully choose a masking distribution, depending on the precision
range, so that the masked value computationally leaks no information about the
input. A distribution with sufficiently large standard deviation could do the job:
for the rest of the paper, we refer to this type of masking as “statistical masking”.
In practice, we choose a normal distribution with standard deviation σ = 240.

On the other hand, by using such masking, we observe that the sizes of the
secret shares increase every time we evaluate the multiplication via Beaver’s tech-
nique (Sect. 2.2). In Sect. 3.3, we address this problem by introducing a technique
that allows to reduce the secret share sizes by discarding the most significant
bits of each secret share (using the fact that the sum of the secret shares is still
much smaller than their size).

3.1 Floating Point, Fixed Point and Interval Precision

Suppose that B is an integer and that p is a non-negative integer (the number
of bits). The class of fixed-point numbers of exponent B and numerical precision
p is:

C(B, p) = {x ∈ 2B−p · Z, |x| ≤ 2B}.

Each class C(B, p) is finite, and contains 2p+1+1 numbers. They could be rescaled
and stored as (p + 2)-bit integers. Alternatively, the number x ∈ C(B, p) can
also be represented by the floating point value x, provided that the floating
point representation has at least p bits of mantissa. In this case, addition and
multiplication of numbers across classes of the same numerical precision are
natively mapped to floating-point arithmetic. The main arithmetic operations
on these classes are:

– Lossless Addition: C(B1, p1) × C(B2, p2) → C(B, p) where B =
max(B1, B2) + 1 and p = B − min(B1 − p1, B2 − p2);

– Lossless Multiplication: C(B1, p1) × C(B2, p2) → C(B, p) where B = B1 +
B2 and p = p1 + p2;

– Rounding: C(B1, p1) → C(B, p), that maps x to its nearest element in
2B−p

Z.

Lossless operations require p to increase exponentially in the multiplication
depth, whereas fixed precision operations maintain p constant by applying a
final rounding. Finally, note that the exponent B should be incremented to
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store the result of an addition, yet, B is a user-defined parameter in fixed point
arithmetic. If the user forcibly chooses to keep B unchanged, any result |x| > 2B

will not be representable in the output domain (we refer to this type of overflow
as plaintext overflow.

3.2 Floating Point Representation

Given a security parameter τ , we say that a set S is a τ -secure masking set
for a class C(B, p) if the following distinguishability game cannot be won with
advantage ≥ 2−τ : the adversary chooses two plaintexts m0,m1 in C(B, p), a
challenger picks b ∈ {0, 1} and α ∈ S uniformly at random, and sends c =
mb + α to the adversary. The adversary has to guess b. Note that increasing
such distinguishing advantage from 2−τ to ≈1/2 would require to give at least
2τ samples to the attacker, so τ = 40 is sufficient in practice.

Proposition 1. The class C(B, p, τ) = {α ∈ 2B−p
Z, |α| ≤ 2B+τ} is a τ -secure

masking set for C(B, p).

Proof. If a, b ∈ C(B, p) and U is the uniform distribution on C(B, p, τ), the
statistical distance between a+U and b+U is (b− a) · 2p−B/#C(B, p, τ) ≤ 2−τ .
This distance upper-bounds any computational advantage. �	

Again, the class C(B, p, τ) = C(B + τ, p + τ) fits in floating point numbers of
p+ τ -bits of mantissa, so they can be used to securely mask fixed point numbers
with numerical precision p. By extension, all additive shares for C(B, p) will be
taken in C(B, p, τ).

We now analyze what happens if we use Beaver’s protocol to multiply two
plaintexts x ∈ C(B1, p) and y ∈ C(B2, p). The masked values x + λ and y + μ
are bounded by 2B1+τ and 2B2+τ respectively. Since the mask λ is also bounded
by 2B1+τ , and μ by 2B2+τ , the computed secret shares of x · y will be bounded
by 2B1+B2+2τ , So the lossless multiplication sends C(B1, p, τ) × C(B2, p, τ) →
C(B, 2p, 2τ) where B = B1+B2 instead of C(B, p, τ). Reducing p is just a matter
of rounding, and it is done automatically by the floating point representation.
However, we still need a method to reduce τ , so that the output secret shares
are bounded by 2B+τ .

3.3 Secret Share Reduction Algorithm

The algorithm we propose depends on two auxiliary parameters: the cutoff,
defined as η = B + τ so that 2η is the desired bound in absolute value, and
an auxiliary parameter M = 2κ larger than the number of players.

The main idea is that the initial share contains large components z1, . . . , zn

that sum up to the small secret shared value z. Additionally, the most significant
bits of the share beyond the cutoff position (say MSB(zi) = 
zi/2η�) do not
contain any information on the data, and are all safe to reveal. We also know
that the MSB of the sum of the shares (i.e. MSB of the data) is null, so the sum
of the MSB of the shares is very small. The share reduction algorithm simply
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computes this sum, and redistributes it evenly among the players. Since the sum
is guaranteed to be small, the computation is done modulo M rather than on
large integers. More precisely, using the cutoff parameter η, for i = 1, . . . , n,
player i writes his secret share zi of z as zi = ui + 2ηvi, with vi ∈ Z and ui ∈
[−2η−1, 2η−1). Then, he broadcasts vi mod M , so that each player computes the
sum. The individual shares can optionally be re-randomized using a precomputed
share �ν�+, with ν = 0 mod M . Since w =

∑
vi’s is guaranteed to be between

−M/2 and M/2, it can be recovered from its representation mod M . Thus, each
player locally updates its share as ui + 2ηw/n, which have by construction the
same sum as the original shares, but are bounded by 2η. This construction is
summarized in Algorithm 3 in [7, Appendix B].

4 Fourier Approximation

Fourier theory allows us to approximate certain periodic functions with trigono-
metric polynomials. The goal of this section is two-fold: to show how to evaluate
trigonometric polynomials in MPC and, at the same time, to review and show
extensions of some approximation results to non-periodic functions.

4.1 Evaluation of Trigonometric Polynomials

Recall that a complex trigonometric polynomial is a finite sum of the form
t(x) =

∑P
m=−P cmeimx, where cm ∈ C is equal to am + ibm, with am, bm ∈ R.

Each trigonometric polynomial is a periodic function with period 2π. If c−m = cm

for all m ∈ Z, then t is real-valued, and corresponds to the more familiar cosine
decomposition t(x) = a0 +

∑N
m=1 am cos(mx) + bm sin(mx). Here, we describe

how to evaluate trigonometric polynomials in an MPC context, and explain why
it is better than regular polynomials.

We suppose that, for all m, the coefficients am and bm of t are publicly
accessible and they are 0 ≤ am, bm ≤ 1. As t is 2π periodic, we can evaluate it
on inputs modulo 2π. Remark that as R mod 2π admits a uniform distribution,
we can use a uniform masking: this method completely fixes the leakage issues
that were related to the evaluation of classical polynomials via multiplicative
masking. On the other hand, the output of the evaluation is still in R: in this
case we continue using the statistical masking described in previous sections.
The inputs are secretly shared and additively masked: for sake of clarity, to
distinguish the classical addition over reals from the addition modulo 2π, we
temporarily denote this latter by ⊕. In the same way, we denote the additive
secret shares with respect to the addition modulo 2π by �·�⊕. Then, the transition
from �·�+ to �·�⊕ can be achieved by trivially reducing the shares modulo 2π.

Then, a way to evaluate t on a secret shared input �x�+ = (x1, . . . , xn) is to
convert �x�+ to �x�⊕ and additively mask it with a shared masking �λ�⊕, then
reveal x⊕λ and rewrite our target �eimx�+ as eim(x⊕λ) ·�eim(−λ)�+. Indeed, since
x ⊕ λ is revealed, the coefficient eim(x⊕λ) can be computed in clear. Overall, the
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whole trigonometric polynomial t can be evaluated in a single round of commu-
nication, given a precomputed triplet such as (�λ�⊕, �e−iλ�+, . . . , �e−iλP �+) and
thanks to the fact that x ⊕ λ has been revealed.

Also, we notice that to work with complex numbers of absolute value 1 makes
the method numerically stable, compared to power functions in regular polyno-
mials. It is for this reason that the evaluation of trigonometric polynomials is a
better solution in our context.

4.2 Approximating Non-periodic Functions

If one is interested in uniformly approximating (with trigonometric polynomi-
als on a given interval, e.g. [−π/2, π/2]) a non-periodic function f , one cannot
simply use the Fourier coefficients. Indeed, even if the function is analytic, its
Fourier series need not converge uniformly near the end-points due to Gibbs
phenomenon.

Approximations via C∞-Extensions. One way to remedy this problem is to look
for a periodic extension of the function to a larger interval and look at the
convergence properties of the Fourier series for that extension. To obtain expo-
nential convergence, the extension needs to be analytic too, a condition that can
rarely be guaranteed. In other words, the classical Whitney extension theorem
[29] will rarely yield an analytic extension that is periodic at the same time. A
constructive approach for extending differentiable functions is given by Hestenes
[21] and Fefferman [17] in a greater generality. The best one can hope for is to
extend the function to a C∞-function (which is not analytic). As explained in
[9,10], such an extension yields a super-algebraic approximation at best that is
not exponential.

Least-Square Approximations. An alternative approach for approximating a non-
periodic function with a trigonometric functions is to search for these functions
on a larger interval (say [−π, π]), such that the restriction (to the original inter-
val) of the L2-distance between the original function and the approximation is
minimized. This method was first proposed by [8], but it was observed that the
coefficients with respect to the standard Fourier basis were numerically unstable
in the sense that they diverge (for the optimal solution) as one increases the num-
ber of basis functions. The method of [22] allows to remedy this problem by using
a different orthonormal basis of certain half-range Chebyshev polynomials of first
and second kind for which the coefficients of the optimal solution become numer-
ically stable. In addition, one is able to calculate numerically these coefficients
using a Gaussian quadrature rule. More details are given in [7, Appendix C].

Approximating the Sigmoid Function. We now restrict to the case of the sigmoid
function over the interval [−B/2, B/2] for some B > 0. We can rescale the
variable to approximate g(x) = sigmo(Bx/π) over [−π/2, π/2]. If we extend g by
anti-periodicity (odd-even) to the interval [π/2, 3π/2] with the mirror condition
g(x) = g(π − x), we obtain a continuous 2π-periodic piecewise C1 function.
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By Dirichlet’s global theorem, the Fourier serie of g converges uniformly over
R, so for all ε > 0, there exists a degree N and a trigonometric polynomial
gN such that ‖gN − g‖∞ ≤ ε. To compute sigmo(t) over secret shared t, we
first apply the affine change of variable (which is easy to evaluate in MPC), to
get the corresponding x ∈ [−π/2, π/2], and then we evaluate the trigonometric
polynomial gN (x) using a Fourier triplet. This method is sufficient to get 24
bits of precision with a polynomial of only 10 terms, however asymptotically,
the convergence rate is only in Θ(n−2) due to discontinuities in the derivative of
g. In other words, approximating g with λ bits of precision requires to evaluate
a trigonometric polynomial of degree 2λ/2. Luckily, in the special case of the
sigmoid function, we can make this degree polynomial by explicitly constructing
a 2π-periodic analytic function that is exponentially close to the rescaled sigmoid
on the whole interval [−π, π] (not the half interval). Besides, the geometric decay
of the coefficients of the trigonometric polynomial ensures perfect numerical
stability. The following theorem, whose proof can be found in [7, Appendix D]
summarizes this construction.

Theorem 1. Let hα(x) = 1/(1+e−αx)−x/2π for x ∈ (−π, π). For every ε > 0,
there exists α = O(log(1/ε)) such that hα is at uniform distance ε/2 from a 2π-
periodic analytic function g. There exists N = O(log2(1/ε)) such that the N th
term of the Fourier series of g is at distance ε/2 of g, and thus, at distance ≤ ε
from hα.

5 Honest But Curious Model

In the previous sections, we defined the shares of multiplication, power and
Fourier triplets, but did not explain how to generate them. Of course, a single
trusted dealer approved by all players (TD model) could generate and distribute
all the necessary shares to the players. Since the trusted dealer knows all the
masks, and thus all the data, the TD model is only legitimate for few computa-
tional outsourcing scenarios.

We now explain how to generate the same triplets efficiently in the more tra-
ditional honest-but-curious (HBC) model. To do so, we keep an external entity,
called again the dealer, who participates in an interactive protocol to generate
the triplets, but sees only masked information. Since the triplets in both the
HBC and TD models are similar, the online phase is unchanged. Notice that in
the HBC model, even if the dealer does not have access to the secret shares, he
still has more power than the players. In fact, if one of the players wants to gain
information on the secret data, he has to collude with all other players, whereas
the dealer would need to collaborate with just one of them.

In what follows, we suppose that during the offline phase, a private channel
exists between each player and the dealer. In the case of an HBC dealer, we also
assume that an additional private broadcast channel (a channel to which the
dealer has no access) exists between all the players (Fig. 5 in [7, Appendix 5]).
Afterwards, the online phase only requires a public broadcast channel between
the players (Fig. 5 in [7, Appendix 5]). In practice, because of the underlying
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Algorithm 1. Honest but curious triplets generation for a trigonometric poly
Output: Shares (�λ�, �eim1λ�+, . . . , �eimNλ�+).
1: Each player Pi generates λi, ai (uniformly modulo 2π)
2: Each player Pi broadcasts ai to all other players.
3: Each player computes a = a1 + · · · + an mod 2π.
4: Each player Pi sends to the dealer λi + ai mod 2π.
5: The dealer computes λ + a mod 2π and w(1) = eim1(λ+a), . . . , w(N) = eimN (λ+a)

6: The dealer creates �w(1)�+, . . . , �w(N)�+ and sends w
(1)
i , . . . , w

(N)
i to player Pi.

7: Each player Pi multiplies each w
(j)
i by e−imja to get (eimjλ)i, for all j ∈ [1, N ].

encryption, private channels (e.g., SSL connections) have a lower throughput
(generally ≈20 MB/s) than public channels (plain TCP connections, generally
from 100 to 1000 MB/s between cloud instances).

The majority of the honest-but-curious protocols proposed in the literature
present a scenario with only 2 players. In [3] and [12], the authors describe
efficient HBC protocols that can be used to perform a fast MPC multiplication
in a model with three players. The two schemes assume that the parties follow
correctly the protocol and that two players do not collude. The scheme proposed
in [12] is very complex to scale for more than three parties, while the protocol
in [3] can be extended to a generic number of players, but requires a quadratic
number of private channels (one for every pair of players). We propose a different
protocol for generating the multiplicative triplets in the HBC scenario that is
efficient for an arbitrary number n of players. In our scheme, the dealer evaluates
the non-linear parts in the triplet generation, over the masked data produced
by the players, then he distributes the masked shares. The mask is common to
all players, and it is produced thanks to the private broadcast channel that they
share. Finally, each player produces his triplet by unmasking the precomputed
data received from the dealer.

In [7, Appendix E], we present in detail two algorithms: one for the generation
of multiplicative Beaver’s triplets (Algorithm 4) and the other for the generation
of the triplets used in the computation of the power function (Algorithm 5), both
in the honest-but-curious (HBC) model.

Following the same ideas, Algorithm 1 describes our triplets generation for
the evaluation of a trigonometric polynomial in the honest-but-curious scenario.

6 Application to Logistic Regression

In a classification problem one is given a data set, also called a training set,
that we will represent here by a matrix X ∈ MN,k(R), and a training vector
y ∈ {0, 1}N . The data set consists of N input vectors of k features each, and the
coordinate yi of the vector y corresponds to the class (0 or 1) to which the i-th
element of the data set belongs to. Formally, the goal is to determine a function
hθ : Rk → {0, 1} that takes as input a vector x, containing k features, and which
outputs hθ(x) predicting reasonably well y, the corresponding output value.
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In logistic regression typically one uses hypothesis functions hθ : R
k+1 →

[0, 1] of the form hθ(x) = sigmo(θTx), where θTx =
∑k

i=0 θixi ∈ R and x0 = 1.
The vector θ, also called model, is the parameter that needs to be determined.
For this, a convex cost function Cx,y(θ) measuring the quality of the model at a
data point (x, y) is defined as

Cx,y(θ) = −y log hθ(x) − (1 − y) log(1 − hθ(x)).

The cost for the whole dataset is thus computed as
∑N

i=1 Cxi,yi
(θ). The

overall goal is to determine a model θ whose cost function is as close to 0 as
possible. A common method to achieve this is the so called gradient descent
which consists of constantly updating the model θ as

θ := θ − α∇Cx,y(θ),

where ∇Cx,y(θ) is the gradient of the cost function and α > 0 is a constant
called the learning rate. Choosing the optimal α depends largely on the quality
of the dataset: if α is too large, the method may diverge, and if α is too small, a
very large number of iterations are needed to reach the minimum. Unfortunately,
tuning this parameter requires either to reveal information on the data, or to
have access to a public fake training set, which is not always feasible in private
MPC computations. This step is often silently ignored in the literature. Similarly,
preprocessing techniques such as feature scaling, or orthogonalization techniques
can improve the dataset, and allow to increase the learning rate significantly.
But again, these techniques cannot easily be implemented when the input data
is shared, and when correlation information should remain private. In this work,
we choose to implement the IRLS method [5, Sect. 4.3], which does not require
feature scaling, works with learning rate 1, and converges in much less iterations,
provided that we have enough floating point precision. In this case, the model
is updated as:

θ := θ − H(θ)−1 · ∇Cx,y(θ),

where H(θ) is the Hessian matrix.

6.1 Implementation and Experimental Results

We implemented an MPC proof-of-concept of the logistic regression algorithm
in C++. We represented numbers in C(B, p) classes with 128-bit floating point
numbers, and set the masking security parameter to τ = 40 bits. Since a 128-
bit number has 113 bits of precision, and the multiplication algorithm needs
2τ = 80 bits of masking, we still have 33 bits of precision that we can freely use
throughout the computation. Since our benchmarks are performed on a regular
x86 64 CPU, 128-bit floating point arithmetic is emulated using GCC’s quad-
math library, however additional speed-ups could be achieved on more recent
hardware that natively supports these operations (eg. IBM’s next POWER9
processor). In our proof of concept, our main focus was to improve the run-
ning time, the floating point precision, and the communication complexity of
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Algorithm 2. Model training: Train(X,y)
Input: A dataset X ∈ MN,k(R) and a training vector y ∈ {0, 1}N

Output: The model θ ∈ R
k that minimizes CostX,y(θ)

1: Precompute Prodsi = XT
i Xi for i ∈ [0, N − 1]

2: θ ← [0, . . . , 0] ∈ R
k

3: for iter = 1 to IRLS ITERS do � In practice IRLS ITERS = 8
4: a ← X · θ
5: p ← [sigmo(a0), . . . , sigmo(aN−1)]
6: pmp ← [p0(1 − p0), . . . , pN−1(1 − pN−1)]
7: grad ← XT (p − y)
8: H ← pmp · Prods
9: θ = θ − H−1 · grad

10: end for
11: return θ

Model-training algorithm with the IRLS method. The algorithm is explained over the
plaintext. In the MPC instantiation, each player gets a secret share for each variables.
Every product is evaluated using the bilinear formula of Section 2, and the sigmoid
using the Fourier method of Section 4.

the online phase, so we implemented the offline phase only for the trusted dealer
scenario, leaving the honest but curious dealer variant as a future work.

We implemented the logistic regression model training described in Algo-
rithm2. Each iteration of the main loop evaluates the gradient (grad) and the
Hessian (H) of the cost function at the current position θ, and solves the Hes-
sian system (line 7) to find the next position. Most of the computation steps are
bilinear on large matrices or vectors, and each of them is evaluated via a Beaver
triplet in a single round of communication. In step 5 the sigmoid functions are
approximated (in parallel) by an odd trigonometric polynomial of degree 23,
which provides 20 bits of precision on the whole interval. We therefore use a
vector of Fourier triplets, as described in Sect. 4. The Hessian system (step 9)
is masked by two (uniformly random) orthonormal matrices on the left and the
right, and revealed, so the resolution can be done in plaintext. Although this
method reveals the norm of the gradient (which is predictable anyway), it hides
its direction entirely, which is enough to ensure that the final model remains pri-
vate. Finally, since the input data is not necessarily feature-scaled, it is essential
to start from the zero position (step 2) and not a random position, because the
first one is guaranteed to be in the IRLS convergence domain.

To build the MPC evaluation of Algorithm2, we wrote a small compiler to
preprocess this high level listing, unroll all for loops, and turn it into a sequence of
instructions on immutable variables (which are read-only once they are affected).
More importantly, the compiler associates a single additive mask λU to each of
these immutable variables U . This solves two important problems that we saw in
the previous sections: first, the masking information for huge matrices that are
re-used throughout the algorithm are transmitted only once during the whole
protocol (this optimization already appears in [26], and in our case, it has a
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huge impact for the constant input matrix, and their precomputed products,
which are re-used in all IRLS iterations). It also mitigates the attack that would
retrieve information by averaging its masked distribution, because an attacker
never gets two samples of the same distribution. This justifies the choice of 40
bits of security for masking.

During the offline phase, the trusted dealer generates one random mask value
for each immutable variable, and secret shares these masks. For all matrix-vector
or matrix-matrix products between any two immutable variables U and V (com-
ing from lines 1, 4, 6, 7 and 8 of Algorithm2), the trusted dealer also generates
a specific multiplication triplet using the masks λU of U and λV of V . More pre-
cisely, he generates and distributes additive shares for λU · λV as well as integer
vectors/matrices of the same dimensions as the product for the share-reduction
phase. These integer coefficients are taken modulo 256 for efficiency reasons.

6.2 Results

We implemented all the described algorithms and we tested our code for two and
three parties, using cloud instances on both the AWS and the Azure platforms,
having Xeon E5-2666 v3 processors. In our application each instance commu-
nicates via its public IP address. Furthermore, we use the zeroMQ library to
handle low-level communications between the players (peer-to-peer, broadcast,
central nodes etc.).

In the results that are provided in Table 1 in AppendixA, we fixed the number
of IRLS iterations to 8, which is enough to reach a perfect convergence for most
datasets, and we experimentally verified that the MPC computation outputs the
same model as the one with plaintext iterations. We see that for the datasets of
150000 points, the total running time of the online phase ranges from 1 to 5 min.
This running time is mostly due to the use of emulated quad-float arithmetic,
and this MPC computation is no more than 20 times slower than the plaintext
logistic regression on the same datasets, if we implement it using the same 128-bit
floats (yet, of course, the native double-precision version is much faster). More
interestingly, we see that the overall size of the totality of the triplets and the
amount of online communications are small: for instance, a logistic regression on
150000 points with 8 features requires only 756 MB of triplets per player, and out
of it, only 205 MB of data are broadcasted during the online phase per player.
This is due to the fact that a Fourier triplet is much larger than the value that is
masked and exchanged. Because of this, the communication time is insignificant
compared to the whole running time, even with regular WAN bandwidth.

Finally, when the input data is guaranteed to be feature-scaled, we can
improve the whole time, memory and communication complexities by about
30% by performing 3 classical gradient descent iterations followed by 5 IRLS
iterations instead of 8 IRLS iterations. We tested this optimization for both the
plaintext and the MPC version and in AppendixA, we show the evolution of the
cost function, during the logistic regression, and of the F-score (Figs. 1 and 2),
depending on the method used.
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We have tested our platform on datasets that were provided by the banking
industry. For privacy reasons, these datasets cannot be revealed. However, the
behaviour described in this paper can be reproduced by generating random data
sets, for instance, with Gaussian distribution, setting the acceptance threshold
to 0.5%, and adding some noise by randomly swapping a few labels. Readers
interested in testing the platform should contact the authors.

Open Problems. A first important open question is the indistinguishability
of the distributions after our noise reduction algorithm. On a more fundamental
level, one would like to find a method of masking using the basis of half-range
Chebyshev polynomials defined in the appendix as opposed to the standard
Fourier basis. Such a method, together with the exponential approximation,
would allow us to evaluate (in MPC) any function in L2([−1, 1]).

Acknowledgements. We thank Hunter Brooks, Daniel Kressner and Marco Picasso
for useful conversations on data-independent iterative optimization algorithms. We are
grateful to Jordan Brandt, Alexandre Duc and Morten Dahl for various useful discus-
sions regarding multi-party computations and privacy-preserving machine learning.

A Timings for n = 3 players

We present in this section a table (Table 1) summarizing the different measures
we obtained during our experiments for n = 3 players. For this we considered
datasets containing from 10000 to 1500000 points having 8, 12 or 20 features
each.

Figure 1 shows the evolution of the cost function during the logistic regression
as a function of the number of iterations, on a test dataset of 150000 samples,
with 8 features and an acceptance rate of 0.5%. In yellow is the standard gra-
dient descent with optimal learning rate, in red, the gradient descent using the
piecewise linear approximation of the sigmoid function (as in [26]), and in green,
our MPC model (based on the IRLS method). The MPC IRLS method (as well
as the plaintext IRLS) method converge in less than 8 iterations, against 500
iterations for the standard gradient method. As expected, the approx method
does not reach the minimal cost.

Figure 2 shows the evolution of the F-score during the same logistic regression
as a function of the number of iterations. The standard gradient descent and our
MPC produce the same model, with a limit F-score of 0.64. However, no positive
samples are detected by the piecewise linear approximation, leading to a null F-
score. However, in the three cases, the accuracy (purple) is nearly 100% from
the first iteration.
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Table 1. Summary of the different measures (time, amount of exchanged data and
amount of precomputed data) for n = 3 players.

Dataset size
N

# features
k

Communication
size (MB)

Precomputed
data size (MB)

Time (sec) Time (sec)

Offline
phase

Online
phase

10000 8 13.75 50.55 20.07 6.51

10000 12 21.88 66.18 26.6 9.81

10000 20 45.97 113.1 46.26 19.83

25000 8 34.2 126.23 51.59 19.24

25000 12 54.52 165.14 68.14 24.7

25000 20 114.5 281.98 115.56 48.8

50000 8 68.53 252.35 103.41 32.89

50000 12 108.93 330.1 135.07 49.99

50000 20 228.7 563.46 229.17 103.3

100000 8 137 504.6 205.53 67.11

100000 12 217.75 659.96 269.04 99.99

100000 20 457.1 1126.41 457.33 205.28

150000 8 205.48 756.84 308.14 101.36

150000 12 326.56 989.83 343.86 152.41

150000 20 685.51 1689.36 685.74 314.4
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23. Jäschke, A., Armknecht, F.: Accelerating homomorphic computations on rational
numbers. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 405–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 22

24. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

25. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of
training neural networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Sys-
tems: Annual Conference on Neural Information Processing Systems 2014, Mon-
treal, Quebec, Canada, 8–13 December 2014, vol. 27, pp. 855–863 (2014)

26. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, 22–26 May 2017, pp. 19–38. IEEE Computer Society (2017)

27. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Sym-
posium on Security and Privacy, SP 2013, Berkeley, CA, USA, 19–22 May 2013,
pp. 334–348. IEEE Computer Society (2013)

https://doi.org/10.1007/978-3-642-32009-5_38
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://archive.ics.uci.edu/ml/datasets/Arcene
http://yann.lecun.com/exdb/mnist/
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-319-39555-5_22
https://doi.org/10.1007/978-3-319-39555-5_22
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3


202 C. Boura et al.

28. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning: revisited and enhanced. In: Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.)
ATIS 2017. CCIS, vol. 719, pp. 100–110. Springer, Singapore (2017). https://doi.
org/10.1007/978-981-10-5421-1 9

29. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets.
Trans. Am. Math. Soc. 36(1), 63–89 (1934)

30. Wu, S., Teruya, T., Kawamoto, J., Sakuma, J., Kikuchi, H.: Privacy-preservation
for stochastic gradient descent application to secure logistic regression. In: The
27th Annual Conference of the Japanese Society for Artificial Intelligence, vol. 27,
pp. 1–4 (2013)

https://doi.org/10.1007/978-981-10-5421-1_9
https://doi.org/10.1007/978-981-10-5421-1_9


Faster Unbalanced Private Set
Intersection

Amanda C. Davi Resende(B) and Diego F. Aranha

Institute of Computing, University of Campinas (UNICAMP), Campinas, Brazil
{amanda.resende,dfaranha}@ic.unicamp.br

Abstract. Protocols for Private Set Intersection (PSI) are important
cryptographic primitives that perform joint operations on datasets in a
privacy-preserving way. They allow two parties to compute the inter-
section of their private sets without revealing any additional information
beyond the intersection itself. Unfortunately, PSI implementations in the
literature do not usually employ the best possible cryptographic imple-
mentation techniques. This results in protocols presenting computational
and communication complexities that are prohibitive, particularly in the
case when one of the participants is a low-powered device and there
are bandwidth restrictions. This paper builds on modern cryptographic
engineering techniques and proposes optimizations for a promising one-
way PSI protocol based on public-key cryptography. For the case when
one of the parties holds a set much smaller than the other (a realis-
tic assumption in many scenarios) we show that our improvements and
optimizations yield a protocol that outperforms the communication com-
plexity and the run time of previous proposals by around one thousand
times.

Keywords: Cuckoo filter · Private set intersection · Unbalanced PSI
Software implementation

1 Introduction

Private Set Intersection (PSI) is a special case of secure multiparty computation
(MPC) where two parties perform joint operations on datasets while preserv-
ing privacy. They have been used in several applications such as genetic testing
of fully-sequenced human genomes [4], private contact discovery [7], relation-
ship path discovery in social networks [28], botnet detection [29] and proximity
testing [32].

PSI protocols allow two parties storing a set of private data such as lists of
patients, criminal suspects or telephone contacts to compute the intersection of
their sets without revealing any additional information beyond the intersection
to one or both parties. These protocols can be divided into one-way PSI, i.e., only
one of the parties learns the intersection; or mutual PSI (mPSI), in which both
parties learn the intersection. The focus of this work is one-way PSI protocols.
For more information about mPSI, the reader is invited to check [6,8,24].
c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 203–221, 2018.
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PSI protocols can also be classified based on their set sizes. In the litera-
ture, Chen et al. [7] defined the PSI setting as symmetric when the sets have
approximately the same size, and asymmetric when one of the sets is substan-
tially smaller than the other. We propose a new terminology to prevent confusion
with the type of primitive being used (symmetric or asymmetric): balanced for
sets with approximately the same size and unbalanced for the opposite scenario1.

However, even with several PSI protocols proposed in the literature, most
real-word applications use naive solutions (as later detailed in Sect. 2.2). A reason
for this is that some solutions are efficient when performing operations on small
datasets, but become impractical for large sets. They may also be efficient in
terms of execution time, but when performed in constrained environments with
low bandwidth became impractical as they transmit too much data.

Protocols proposed and implemented in several papers by Pinkas et al. [36,
38,39] are efficient in terms of computation (by using mostly symmetric opera-
tions), but need to transmit a lot of data, while other works based on public-key
cryptography [4,7,19,27] need to transmit fewer data, but require less efficient
operations. Thus, the choice of the protocol depends on the PSI setting, network
bandwidth, storage space, security properties, among other factors.

1.1 Our Contributions

Several of the PSI implementations available in the literature makes no use of
modern and efficient techniques for the implementation of cryptographic pro-
tocols, mainly based on public-key cryptography. We aim at filling this gap
by showing that the protocol previously proposed by Baldi et al. in [4] can
be optimized as to reduce its communication and running time by a factor of
at least three. Our implementation is available online at http://github.com/
amandadavi7/PSI. In more detail, the main contributions of this paper are:

– Improvements on the one-way PSI protocol based on public-key
cryptography by Baldi et al. [4]: We show that the version of the protocol
secure against semi-honest adversaries becomes an efficient and practical one-
way PSI for the unbalanced setting after our optimizations2. Moreover, it
satisfies a desired forward secrecy property on the client side, usually more
vulnerable than the server, which guarantees that elements exchanged in the
past will remain confidential even if long-term secrets (keys) are exposed.

– We propose Cuckoo filters to reduce the amount of data to be
exchanged by the protocol and stored by the client: Cuckoo filters
present many advantages: (i) they require less storage space than other similar
approaches, like Bloom filter and Cuckoo hashing, for a false positive rate
(FPR) less than 3% [11]; (ii) they allow the delete operation (important in

1 Throughout this paper, the client set is always the smaller one.
2 In constrained scenarios, like 1Mbps of network bandwidth, our optimized protocol

remains a good choice for balanced one-way PSI. See Table 4 in the full version of
this paper [40].

http://github.com/amandadavi7/PSI
http://github.com/amandadavi7/PSI
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some applications); and (iii) the lookup operation is performed in linear time
in the number of entries per bucket. To the best of our knowledge, this is the
first time that a Cuckoo filter is employed in PSI protocols, where normally
a Bloom filter is used.

– We provide an efficient software implementation of the protocols
using the Galbraith-Lin-Scott binary elliptic curve (GLS-254) with
point compression: To the best of our knowledge, this is the first time that
a state-of-the-art implementation of elliptic curves is used to instantiate PSI
protocols that rely on this type of operation. Our implementation of the GLS-
254 curve takes around 50,000 cycles to compute an exponentiation, which is
24× faster than the 283-bit Koblitz curve implementation used, for example,
in the PSI protocol presented in [37].

– Experimental comparison: We implemented the original version [4] and
our optimized protocol (both using the GLS-254 curve) and compared them
with the most promising PSI protocols in the literature, showing the results
of the (offline) preprocessing phase (when it is possible) and the online phase.
Our results show that with our optimizations, this protocol is efficient even
when used in bandwidth restricted scenarios.

1.2 Application to Private Contact Discovery

In the private contact discovery problem, a user signs up to a messaging appli-
cation such as WhatsApp, Signal or Telegram, and would like to discover which
contacts in his/her address book are also registered. However, the user is not
willing to reveal his entire list of contacts. In this setting, the user typically has
a set with a few hundred contacts, while the messaging service can have from a
few million to a few billion users, characterizing the unbalanced setting.

Because of the sheer number of entries in the social network server’s side,
secure messaging applications such as TextSecure/Signal3 and Secret4, currently
employ naive approaches (see Sect. 2.2) to “solve” the private contact discovery
problem, since they have both better run time and communication complexity
when compared to state-of-the-art secure protocols. Signal is also experimenting
with the Intel SGX, a trusted execution environment, in order to improve the
security of private contact discovery5.

At the cost of tolerating a small FPR, our optimized protocol provides a
secure solution that works in this realistic scenario, being potentially useful for
social networks with millions of users.

Organization. This paper is organized as follows. In Sect. 2, we define notation
and terminology used during the development of this work, a classification of
PSI protocols into categories and a brief overview of the main protocols in each
3 https://signal.org/blog/contact-discovery/.
4 https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f#.

5433o6e8h.
5 https://signal.org/blog/private-contact-discovery/.

https://signal.org/blog/contact-discovery/
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f#.5433o6e8h
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f#.5433o6e8h
https://signal.org/blog/private-contact-discovery/
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class. In Sects. 3 and 4, the basic protocol is presented and the optimizations
are proposed, respectively. In Sect. 5 we describe the experimental results and
compare them with the most promising protocols from the literature. Finally, in
Sect. 6 we present our conclusions.

2 Related Work for PSI Protocols

We start by formalizing the notation used throughout the paper and other rele-
vant definitions.

2.1 Notation and Terminology

– P1 and P2 are the participating parties in the protocols, where P1 is the
server and P2 the client, except when referring to server-aided (third party)
PSI protocols. X and Y are the respective input sets of P1 and P2, with size
n1 = |X| and n2 = |Y |. The set X is denoted by {x1, x2, ..., xn1} and the set
Y by {y1, y2, ..., yn2} where each element has bit-length σ.

– For a set S, the notation x
R← S indicates that x was sampled from S with

uniform distribution.
– The operation a

?= b denotes the comparison whether a is equal or not to b.
– κ = 128 is the symmetric security parameter.
– ρ = 40 is the statistical security parameter (hashing failure).
– ϕ = 256 is the size of the representation of a point in the GLS-254 binary

elliptic curve when using point compression (number of bits to store one x-
coordinate and two trace bits).

– η = 30 is the hash collision parameter, i.e., the probability of a hash collision
occurring is < 2−30.

– G is a multiplicative group of prime order q.
– H : {0, 1}∗ → {0, 1}l, H1 : {0, 1}σ → G, H2 : G → {0, 1}l are hash functions

modeled as random oracles in the security analysis. In some cases, the output
length is defined as l = ρ+log n1 +log n2 bits (l′ = �l/8� bytes), as suggested
by Pinkas et al. [39], instead of 2 · κ. This produces the collision probability
2−η, which is suitable for most applications.

– For the Cuckoo filter, we also define v as the fingerprint length (in bits), w
as the load factor (0 ≤ w ≤ 1), b as the number of entries per buckets, m as
the number of buckets, εmax = 1− (1− 1

2v )2b as the upper bound on the false
positive rate (FPR) and ε as the observed FPR, both given in %.

2.2 Classification and Related Work of PSI Protocols

Many one-way PSI protocols have been proposed in the open research litera-
ture [7,9,15,18,21,36,38,39]. They are constructed based on several primitives
such as Bloom filters [5], Homomorphic Encryption [12,16], Oblivious Pseudo-
random Function (OPRF) [14], Unpredictable Function [21], Oblivious Transfer
(OT) [25,31], Oblivious Polynomial Evaluation (OPE) [30], Cuckoo hashing [35],
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Garbled Circuits (GC) [41,42], among others. Following Pinkas et al. [36,38,39],
PSI protocols can be classified into: naive hashing (or naive solution), server-
aided PSI (or third-party based PSI), PSI based on generic protocols (or circuit-
based PSI), OT-based PSI and PSI based on public-key cryptography.

Naive Hashing. Both P1 and P2 use a hash function H to compute the hash
of their elements. P1 then computes x′

i = H(xi) while P2 computes y′
j = H(yj),

where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. After, P1 sends values x′
i to P2 which

computes the intersection by checking if y′
j

?= x′
i for all values of i and j. This

approach is very efficient in both run time and communication. However, if the
hash function inputs were taken from a low-entropy domain D, P2 can discover
all elements of P1 by performing a brute-force attack. One solution could be to
choose D with high entropy when possible. This would prevent the problem, but
consecutive executions of the protocol would still leak repeated elements and
would not guarantee forward secrecy since P2 can verify if a specific element
z ∈ D was part of the P1 set, by just checking if H(z) ?= x′

i. Nonetheless, this
naive protocol is employed by messaging applications for the private contact
discovery problem, and social networks like Facebook6 and Twitter7 to measure
advertisement conversion rates.

Server-Aided PSI. Several works in the literature [8,9,22] have employed a
third party, in this case, called as server, to achieve better performance in PSI
protocols. The server can be semi-honest (cannot deviate from protocol, learns
only by observing communication between parties), covert (if it deviates from
protocol, it is detected with some probability by an honest party) or malicious
(can arbitrarily deviate from the protocol). In [22], Kamara et al. present a semi-
honest server protocol that takes 10 min with 12 GB of communication and 100
threads to evaluate 2 sets of 1 billion of elements each. However, such protocols
are secure only if the third party does not collude with any of the other parties,
thus having a different security model from conventional protocols.

PSI Based on Generic Protocols. Generic secure computation uses arith-
metic or Boolean circuits to securely evaluate functions, among them, the set
intersection. In [18], Huang et al. presented several of these protocols using
Boolean circuits, all of them constructed using Yao’s garbled circuits [41,42]. The
simplest protocol described in [18] involves the comparison of each element from
P1 with each from P2. This approach is known as Pairwise-Comparison (PWC)
and involves O(n2) comparisons, which does not scale well for large sets. Another
more efficient approach presented in [18], the Sort-Compare-Shuffle (SCS) cir-
cuit, is more efficient, with complexity O(n log n). The major advantage of this
type of protocol is that they can be easily adapted to any other features that PSI

6 https://www.wired.com/2014/12/oracle-buys-data-collection-company-datalogix/.
7 https://support.twitter.com/articles/20170410.

https://www.wired.com/2014/12/oracle-buys-data-collection-company-datalogix/
https://support.twitter.com/articles/20170410
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protocols may require, such as revealing only the intersection size or whether the
size is larger or smaller than a threshold. However, despite the improvements in
recent years, they still have a very high run time compared to others.

OT-Based PSI. This category of protocols is the most recent and, up to date
the most promising, mainly because of the large performance improvements from
OT extensions. The first protocol was proposed in 2013 by Dong et al. [9],
combining Bloom filters and OT [20] in their construction.

In 2014, Pinkas et al. [38] presented improvements to [9] and also proposed a
new and more efficient protocol combining OT and hashing. In 2015, they have
shown [36] that their previously proposal [38] could be improved by using the
permutation-based hashing technique [2], since it reduces the size of each element
stored in the bins, which until then was the main overhead of the protocol. In
2016, Pinkas et al. [39] presented improvements for their earlier protocols, where
the complexity no longer depends on the size of each element. This solution is
the state of the art for balanced one-way PSI protocols and, depending on the
scenario (network bandwidth), also for unbalanced PSI protocols with security
against semi-honest adversaries. By using only symmetric operations in almost
all of its construction, the solution is extremely efficient8.

Public-Key Cryptography Based PSI. Meadows [27] and Huberman
et al. [19] proposed the earliest PSI approaches based on public-key cryptogra-
phy, even before the PSI problem was formally defined in [15]. Both were based
on the commutative properties of the Diffie-Hellman (DH) key exchange. Later
Jarecki et al. [21] presented a PSI protocol secure against malicious adversaries
based on a Parallel Oblivious Unpredictable Function (POUF). In [4], Baldi
et al. relaxed the security of [21] to semi-honest adversaries. Another PSI proto-
col was proposed by Chen et al. [7] and is based on the one presented by Pinkas
et al. [39], but instead of performing OPRF (via OT) operations, it uses the Fan-
Vercauteren (FV) leveled Fully Homomorphic Encryption (FHE) scheme [12].
This change considerably decreases the amount of data to be transmitted in
the unbalanced setting. Therefore, depending on the setting and the network
bandwidth, Chen et al. [7] is faster than [39]. The good performance is however
restricted to 32-bit elements due to limitations in the parameters of the FHE
scheme. The protocol proposed in [4] was used to obtain the results in this paper.

The most recent work was presented by Kiss et al. [23]. They independently
noted that in some PSI protocols the server can perform operations on its data
only once and send the result to the client, which will use them in future exe-
cutions to compute the intersection. They proposed using a Bloom filter (or
a counting Bloom filter) to decrease the amount of data to be transmitted or
stored by the client. These observations are very important in an unbalanced

8 The protocol presented in [39] uses asymmetric operations [31] to generate the OT
bases. However, the cost of these operations is negligible when the number of elements
evaluated is substantially greater than the value of κ.
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setting since all operations and communication are only performed considering
the smaller client set. In terms of security, there is an important limitation in
their approach: in the protocol closest to our optimized proposal (DH-based
PSI [19,27]), the client and server reuse the same keys across all executions,
which does not provide forward secrecy. In terms of performance, during the
preprocessing phase alone (the setup phase, as in the paper), the server should
send n1ϕ bits to the client and the server and the client compute n1 exponenti-
ations. For example, if n1 = 224 it will be necessary to transmit 568 MB, and to
perform 224 exponentiations on the server and client side.

One efficient way to instantiate PSI protocols based on public-key cryptog-
raphy is to use elliptic curves. The exponentiation on elliptic curves becomes
a scalar multiplication operation, but we will keep the exponentiation notation
throughout the paper for compatibility with other works.

3 The Basic Protocol

Jarecki and Lui [21] presented a one-way PSI protocol secure against mali-
cious adversaries based on the hardness of the One-More-Gap-Diffie-Hellman
(OMGDH) problem and a Zero-Knowledge Proof (ZKP). Later, Baldi et al. [4]
relaxed the security of this protocol to be secure against semi-honest adversaries,
by removing the ZKP. This protocol is shown in Fig. 1 and works as follows: for
each element xi ∈ X, the server computes the hash H1(xi), the exponentia-
tion H1(xi)α with the same exponent for all the elements, and again computes

Fig. 1. Basic PSI protocol proposed in [4] that relaxes the security of the [21] to
be secure against semi-honest adversaries. H1 and H2 are hash functions modeled as
random oracles. [4, Adapted].
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the hash txi = H2(H1(xi)α), sending values txi to the client. For each element
yj ∈ Y , the client computes the hash H1(yj), the exponentiation aj = H1(yj)βj

with ephemeral exponents βj and sends values aj to the server. The server com-
putes a′

j = (aj)α for each aj using the same α used previously and sends values
a′

j to the client. The client then calculates tyj = H2((a′
j)

1/βj ), by “removing” the
exponents that were applied earlier. Finally, the client computes the intersection
by checking if tyj ∈ {tx1, tx2, ..., txn1}. The long-term secret is the server key α.

4 Optimizations

We propose a few modifications to the protocol presented in Sect. 3 that drasti-
cally improve its performance during the preprocessing and online phase.

(i) The offline phase is executed just once and the results stored in a database.
We significantly reduce the size of the database by using a Cuckoo filter [11].

(ii) We implement the protocol based on the GLS-254 elliptic curve, which
improves its computational performance.

Below these improvements are described in detail.

4.1 Generating the Database

As it can be seen in Fig. 1, the protocol is divided into two parts: offline and
online. The offline part is executed without the need of any communication from
the server to the client, except for any possible negotiation to define the initial
parameters such as the group G and its order q. Thus, the server can mask all
elements using α and the hash functions H1 and H2 (txi = H2(H1(xi)α)) before
receiving connections. Because of this feature, the offline part can be performed
only once, where the server would compute the mask of each element and send
them to the client, which would store them for use in each execution of the
protocol. Therefore, only the online part needs to be used. The resulting proto-
col is very efficient when used in unbalanced PSI setting because in the online
part all operations are performed only on the client elements (3n2 asymmetric
cryptographic operations and 2n2ϕ bits are transmitted).

4.2 Reducing the Database Size

The database size increases as the server set grows. For example, assuming each
masked server element has l bits and ρ = 40, as defined in Sect. 2.1, with n2 = 28

and n1 = 224, each masked element would have l = 72 bits. Since the server has
224 elements, all server masked elements would occupy 144 MB. However, if the
scale changes from a few million to a few billion, as is the case of a large messaging
application with approximately 230 users, the server masked elements would need
10 GB of space. Downloading and storing this data on devices with low memory
resources, such as mobile devices, or with constrained network connection (low
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bandwidth or/and high latency) can be prohibitive. To reduce the size of the
data, techniques have been used previously in the literature such as Bloom filters
and their variants [5,13], and Cuckoo hashing [35].

We take a different approach and propose to use Cuckoo filters [11]. They
have clear advantages over Bloom filters and Cuckoo hashing, since they allow the
delete operation (essential in private contact discovery), besides the insertion and
lookup operations, using significantly less space than the Bloom filter variants
and the Cuckoo hashing by storing only the element’s fingerprint. For the two
examples given above, a Cuckoo filter would use 48 MB and 3 GB, respectively9.
For a reader not familiar with the concept and looking for more detail, we invite
you to read [11,40]. To the best of our knowledge, this is the first application of
Cuckoo filters to the problem of PSI.

4.3 Efficient Software Implementation of GLS-254 Elliptic Curve

Our implementation of ECC is based on the latest version of the GLS-254 soft-
ware [33] available in SUPERCOP10. The binary GLS curve is a particularly
efficient choice for our target platform due to its native support to binary field
arithmetic, the lambda coordinate system [34] and the GLS endomorphism for
fast scalar multiplications [17], achieving the current speed record for this oper-
ation. The code is structured in three layers: an efficient vectorized implemen-
tation of binary field arithmetic targeting Intel vector instruction sets; a regular
window-based method for variable-base scalar multiplication implemented in
constant time; a thin protocol layer implementing the DH key exchange. The
exponentiations in our protocol were heavily based on the two last layers, while
hashing and point compression were directly implemented over the field arith-
metic available in the first layer.

The approach selected for hashing was a combination of the SHA256 hash
function with the binary Shallue-van de Woestijne well-bounded encoding algo-
rithm [1]. Elements are first hashed to a binary field element u ∈ F2m using
SHA256, and then the encoding outputs the lambda coordinates (x, λ) of a point
over the binary elliptic curve. This approach requires only a single inversion, a
quadratic equation solution and some cheaper field operations, and provides bet-
ter statistical properties than popular try-and-increment heuristics. Point com-
pression adapts a rather classical technique [26]. The λ coordinate defined over
a quadratic extension F22m [s]/(s2 + s + 1) as (λ0 + λ1s) is compressed to a pair
of trace values (Tr(λ0), T r(λ1)), which can later be used to solve a quadratic
equation and disambiguate among the four possible solutions. In total, 256 bits
are used by concatenating the 254 bits of the x-coordinate with the two trace
bits. Decompression again requires a field inversion, solving a quadratic equation
and some cheaper binary field operations. Our entire code runs in constant time
for side-channel resistance, including the quadratic solver [1].

9 These values may change if the FPR changes. Here we set εmax = 0.009155%.
10 https://bench.cr.yp.to.

https://bench.cr.yp.to


212 A. C. D. Resende and D. F. Aranha

4.4 Our Optimized Protocol

Figure 2 presents our optimized protocol based on Baldi et al. [4]. In the first
part (offline), the server generates a Cuckoo filter, from his/her masked elements,
using the insertion operation (CF.Insert), and sends the filter (CF ) to the client.
The online part is divided in two: in the first, client and server interact in order
to mask the elements of the client. In the second, the client with his/her masked
elements, checks if each one of them belongs to the filter, through the lookup
operation (CF.Check), thus computing the set intersection. The last part of the
protocol is the step of updating the filter. The server has a set of elements Z
that he/she would like to insert, such as new users of a messaging application; or
to delete, in the case where some users no longer use the service. In both cases,
the server masks each element zk ∈ Z using α and sends them to the client.
Along with these values, a variable is also sent to tell the client what is the type
of update, if it is an insertion or a deletion.

In the insertion operation, the user must first check the load factor w of the
filter. If it is greater than 0.95, the user must request the server to generate a
new filter using all the elements, as in the first part of the protocol. Otherwise,
the client inserts the element in the filter CF. The value 0.95 was set in [11] to
be the highest w for the filter to have high space and lookup efficiency. After
that, it is hard to insert elements without errors. Therefore, when w is greater
than 0.95, a new and larger filter must be generated. In the case of deletion, the
element is removed from the filter without the need to generate a new one.

4.5 Correctness and Security Guarantees with Our Modifications

The correctness guarantees of the protocol with the modifications shown above
follow from the correctness of the original protocol by Jarecki and Lui [21] and
Baldi et al. [4] and the correctness of the Cuckoo filter (up to false positives)
[10,11]. This happens due to the fact that the same messages are exchanged
and the same computational steps are performed by both parties, with the only
difference that the server’s masked elements are encoded in a Cuckoo filter.

The FPR of the Cuckoo filter can be as small as the application requires
considering the cost of increasing the filter size. We have 2 different FPR: εmax

and ε. The first is an upper bound and does not take into account the load factor
of the filter, and the second is the observed measure that takes into account the
load factor (for more details see the full version of this paper [40]).

The security guarantees of the modified protocol also follow from the security
of the original protocol, which is based on the hardness of the OMGDH problem.
We apply only one modification to the protocol that does not change the security:
we replace the transmission of the server’s masked elements to the client, in the
offline phase, by sending a Cuckoo filter which encodes the masked elements.

However, sending the Cuckoo filter does not reveal any more information
than sending the masked elements. By assumption, there is an algorithm A
that the attacker can use on the modified protocol (with the Cuckoo filter) and
breaks security with non-negligible probability γ. It is possible to devise the
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Fig. 2. Our optimized protocol combining the PSI protocol of Baldi et al. [4] with
Cuckoo filter [11]. CF is a Cuckoo filter, CF.Insert is the insertion operation, CF.Check
is the lookup operation and CF.Delete is the deletion operation.

algorithm A′ with which the attacker can use to break the original protocol
and works as follows: first A′ runs the original protocol and keeps the raw set
of masked elements received from the server. Then, the attacker encodes the
masked elements as a Cuckoo filter and feeds A with it. Therefore, A observes
the same view as in a run of the modified protocol and thus can break security
with probability γ. Thus, A′ breaks the security with the same probability.

We have preserved a weak notion of forward secrecy on the client side, as
provided in the original version [4]. This weak notion ensures that elements
exchanged in the past will remain confidential even if long-term keys are exposed.
In the case of private contact discovery, where the client set is always almost the
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same, compromising the client once reveals almost all the contacts used in previ-
ous executions, so forward secrecy does not provide much advantage. However,
when the client set changes from one execution to another, as in the case of
other applications, having forward secrecy is important. One such application
is malware detection, where the client set may store networking data collected
during a time interval. Modifying the protocol to relax forward secrecy allows
precomputation in the client side which potentially improves its performance.

5 Implementation and Experimental Evaluation

We ran our experiments in a computer equipped with an Intel Haswell i7-4770K
quadcore CPU with 3.4 GHz and 16 GB of RAM and Turbo Boost turned off.
All tests were performed using only this machine, and network bandwidth and
latency were simulated using the Linux command tc. For the Local Area Network
(LAN) setting, the two parties (client and server) are connected via local host
with 10 Gbps of bandwidth and a 0.2 ms Round-Trip Time (RTT). In addition
to the LAN, we also considered three Wide Area Network (WAN) settings with
100 Mbps, 10 Mbps and 1 Mbps of bandwidth, each with an 80 ms RTT. These
settings follow what was proposed by Chen et al. [7].

We evaluate the performance of the PSI protocols in the unbalanced setting,
(in the full version [40] we also show the performance in the balanced setting)
where n2 ∈ {5535, 11041} and n1 ∈ {216, 220, 224}, as proposed by Chen et al. [7].
The size of each element was set to be σ = 32 bits, but this does not impact
the performance of our protocol due to hashing. The output length of the hash
function used in Baldi et al. [4] is l, as defined in Sect. 2.1. The run time of
each protocol was measured from the beginning of the execution until the client
computes the intersection. Each protocol was executed 10 times and the run
times were computed as the average of these executions as done in [7,39].

5.1 Implementation

The implementation of OT+Hashing [39] was obtained from Pinkas et al. [39],
available at https://github.com/encryptogroup/PSI. They used OpenSSL
(v.1.0.1e) for the symmetric cryptographic primitives, the implementation of
[3] and the code available at https://github.com/encryptogroup/OTExtension
for the OT extension, and the MIRACL library (v.5.6.1) for ECC. According
to our benchmarking, an exponentiation within their codebase takes 1.2 million
cycles11, which indicates a misconfigured version of MIRACL. Up to now, there
is no implementation available for the Chen et al. [7] protocol, but we tried to
reproduce the benchmarking scenarios as close as possible to their work.

We implemented our optimized protocol and the original [4] using the soft-
ware provided by Pinkas et al. [39] replacing the NIST K-283 curve, available in
MIRACL, with the GLS-254 curve. Our implementation of the GLS-254 curve

11 Average of 220 exponentiations performed on our Haswell machine.

https://github.com/encryptogroup/PSI
https://github.com/encryptogroup/OTExtension
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takes around 50,000 cycles to compute an exponentiation, which is 24× faster
than [39]. We note, however, that the K-283 curve is a more conservative choice of
parameters. We used the Cuckoo filter implementation of Fan et al. [11] available
at https://github.com/efficient/cuckoofilter. Our implementation is available at
http://github.com/amandadavi7/PSI.

All protocols were implemented using C and C++ programming languages
and executed using the same hardware. The same libraries were used to perform
the cryptographic operations, except for the OTs in OT+Hashing [39] which still
use the Koblitz curve. This does not impact the run time of the protocol since
the cost of this operation is negligible when the number of elements is large.

5.2 Preprocessing

To improve performance, some PSI protocols can be divided into two phases
(online and offline) without impact on security. The offline part of the protocol
can be executed only once and reused in future executions. In the protocol
proposed by Chen et al. [7], the server precomputes some values to facilitate
the underlying FHE multiplications. In this case, only the server will use the
precomputed data and no transfer to the client is required.

Unlike Chen et al. [7], in the basic protocol presented in Sect. 3, the server can
preprocess the encryption/masking of all elements and send them to the client,
which must store and reuse this data in all subsequent executions to compute
the intersection, as shown in Sect. 4.1. Beyond using the precomputing allowed
in the basic protocol, our approach also inserts each encrypted element into a
Cuckoo filter, according to Sect. 4.2, in order to reduce the data that must be
transmitted to the client and that should be stored.

Table 1 presents the preprocessing and data transmission time using the net-
work settings defined in the beginning of Sect. 5. The run times of Chen et al.
were obtained from their own paper [7], and since some parameters of the FHE
can generate more efficient processing depending on the configuration, the pre-
processing column may have two different values (we separate them with the
symbol *) that will be used in the next section.

We note that the run times for the protocol proposed by Baldi et al. in [4]
here presented, are for an implementation based on the binary elliptic curve
GLS-254 and not for the original implementation proposed in [4] which works
over a 1024-bit prime number. The improvements would be way more drastic
had the original implementation proposed in [4] been used for comparison.

It is interesting to note that the preprocessing run times of our optimized
protocol and our implementation of the original protocol are practically the same
since we perform the same operations. However, by employing a Cuckoo filter to
reduce the amount of data to be transmitted, our optimized version transmits
up to 3.3× less data than [4] and is accordingly 3.3× faster.

https://github.com/efficient/cuckoofilter
http://github.com/amandadavi7/PSI
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Table 1. Preprocessing and transmission time for PSI protocols. The WAN setting
has 80 ms RTT and the LAN 0.02 ms RTT. For the filter in our optimized protocol we
have v = 16, b = 3, w = 0.66 and εmax = 0.009155%. More details about Cuckoo filter
is given in the full version of this paper [40]. Chen et al. [7] does not have transmission
time, since only the server will use the precomputed data. Best values marked in bold.

Transmission time (s)

Comm. Preprocessing LAN WAN

Protocol n1 n2 Size (MB) Time (s) 10Gbps 100Mbps 10Mbps 1Mbps

Chen et al. [7] 224 11041 - 70.90, ∗76.80 - - - -

5535 - 64.10, ∗71.20 - - - -

220 11041 - 6.40 - - - -

5535 - 4.30 - - - -

216 11041 - 1.00 - - - -

5535 - 0.70 - - - -

Baldi et al. [4] 224 11041 160.00 334.17 0.13 15.73 136.32 1,345.55

5535

220 11041 10.00 20.91 0.01 1.10 8.38 84.40

5535

216 11041 0.56 1.31 0.01 0.19 0.53 5.09

5535

Our protocol 224 11041 48.00 333.62 0.06 4.82 40.71 403.68

5535

220 11041 3.00 20.78 0.00 0.60 2.55 25.63

5535

216 11041 0.19 1.30 0.00 0.01 0.19 1.56

5535

5.3 Comparison to Others PSI Protocols

The performance evaluation of the protocols was performed in the unbalanced
setting. Since the code for Chen et al. [7] was not made available, we obtained
results for this protocol and OT+Hashing [39] from [7]. As shown in Sect. 2.2,
PSI protocols can be classified into five categories. Because the naive hashing
and server-aided approaches have different security notions from the others, they
are not included. PSI based on generic protocols are out of scope because they
have limitations in run time and memory. Among the two remaining categories,
OT-based PSI and PSI based on public-key, we will analyze the best protocol in
each category comparing the results with our optimized proposal.

Table 2 shows the run time (in seconds) and the communication (in MBs) of
the unbalanced scenario considering both the LAN and WAN settings. We have
analyzed the best protocol for the OT-based PSI, the two best protocols for PSI
based on public-key and we compare them with our optimized proposal.

Amongst the public-key protocols, our optimized proposal and the Baldi
et al. [4] have the same communication cost (2n2ϕ bits) and, regarding run
time, our approach is slightly better by employing the Cuckoo filter in the
server database, what makes the final computation of the intersection more effi-
cient, since the filter is already constructed and the lookup is done in O(b)
per element. Because of this, we omitted the figures related to Baldi et al.



Faster Unbalanced Private Set Intersection 217

protocol [4] in Table 2. In addition, comparing with the Chen12 et al. proto-
col [7], our optimized approach transmits up to 59× less data and is up to 76×
faster with 10 Gbps, for n2 = 5535 and n1 = 224. Comparing our optimized
protocol with OT+Hashing [39], our approach transmits up to 1, 413× less data
and is up to 74× faster with 10 Gbps of bandwidth and 946× faster with 1 Mbps,
for n2 = 5535 and n1 = 224.

Table 2. Run time and communication for unbalanced PSI protocols. In the commu-
nication column, the Chen et al. [7] may have two values due to different parameters
used in the FHE system. For more information, see [7]. The results of OT+Hashing [39]
and Chen et al. [7] were obtained from [7]. Best values marked in bold.

Transmission time (s)

Parameters Comm. LAN WAN

Type Protocol n1 n2 Size (MB) 10Gbps 100Mbps 10Mbps 1Mbps

OT OT+Hashing [39] 224 11041 480.90 40.50 88.00 449.50 4,084.80

5535 480.40 40.10 87.90 449.20 4,080.60

220 11041 30.90 3.30 7.00 29.80 263.70

5535 30.40 3.10 6.80 29.00 260.00

216 11041 2.60 0.70 1.50 3.30 21.60

5535 2.10 0.70 1.40 2.90 19.80

Public key Chen et al. [7] 224 11041 23.20, ∗21.10 44.50 46.90 63.50 ∗214.00

5535 20.10, ∗12.50 41.10 43.10 ∗49.10 ∗139.90

220 11041 11.50 6.40 7.60 15.80 99.00

5535 5.60 4.30 4.90 9.00 49.30

216 11041 4.10 2.00 2.40 5.40 35.00

5535 2.60 1.10 1.30 3.20 21.80

Our optimized

protocol

224 11041 0.67 0.87 1.52 1.86 7.81

5535 0.34 0.54 1.04 1.21 4.31

220 11041 0.67 0.67 1.31 1.65 7.59

5535 0.34 0.34 0.83 1.00 3.97

216 11041 0.67 0.66 1.29 1.64 7.57

5535 0.34 0.33 0.82 0.99 3.93

Our optimized approach performs well in unbalanced scenarios because our
operations depend only on the client set size, with 2n2ϕ bits transmitted and 3n2

exponentiations. Although exponentiations are considered an expensive opera-
tion, when performed a small number of times and with an efficient elliptic curve
implementation, a curve-based protocol becomes competitive with the others.

In a recent paper, Kiss et al. [23] present many PSI protocols, where the
closest to our proposal is ECC-DH-PSI [19,27]. In the preprocessing stage, the
server needs to compute n1 exponentiations like in our protocol, but the client
also needs to compute n1 exponentiations. In some applications, such as private
contact discovery, this amount of exponentiations in the client side could be
12 In the communication column of Table 2, the protocol [7] can have 2 different values,

because according to the networking setting it is better that operations take more
time and generate less data than taking less time but producing more data. This
trade-off can be changed in FHE by adjusting the system parameters.
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prohibitive, because typically the client has a resource constrained device. Con-
sidering n1 = 220 and according to [23], the preprocessing takes 1,325 s while
our proposal takes 21 s (using a 1 Gbps network), which is 63× faster. Moreover,
the server sends n1ϕ (ϕ = 284 in their case), that adds up to 35.5 MB, while
our proposal just sends a 2.125 MB filter for ε = 0.05% (v = 16, w = 0.94 and
b = 17) and a 5 MB filter for ε = 1.6 × 10−7% (v = 32, w = 0.8 and b = 5)13.
This is 16.7× and 7.1× less data to be transmitted, respectively.

In the online phase the amount of data to be transmitted is asymptotically
the same, 2n2ϕ, but concretely Kiss et al. [23] use ϕ = 284 bits for the K-
283 curve with compression, and we have ϕ = 256 bits for the GLS-254 curve.
Considering the number of exponentiations, their approach needs to compute 2n2

operations while our protocol computes 3n2. This advantage happens because
the ECC-DH-PSI from [23] does not provide forward secrecy on the client side
and reuse the same key across all protocol executions.

In order to reduce the amount of data to be stored by the client, Kiss
et al. [23] use a Bloom filter, while our optimized approach employs a Cuckoo
filter. The Cuckoo filter allows deletions while the traditional Bloom filter does
not and uses 30% less space for the same FPR [10]. While counting Bloom filters
do allow deletions, this happens at the cost of using 3-4× more space.

In summary, our protocol provides an efficient preprocessing phase, forward
secrecy on the client side and a filter that needs less storage space. The ECC-
DH-PSI protocol from [23] has an asymptotically faster online phase, but the
performance improvement is small in the unbalanced setting when n2 is small.
Moreover, their protocol does not provide any forward secrecy to clients and the
preprocessing phase is expensive and can be prohibitive on mobile devices.

6 Conclusions

Private set intersection is an important cryptographic primitive to allow two
parties to perform joint operations on their private sets without revealing addi-
tional information beyond the intersection. Despite many protocols available in
the literature, few of them provide solutions that are efficient in both run time
and data transmission. In most approaches, the computational cost is based on
both the server and client set sizes, giving no advantages in the unbalanced
setting.

We show that the protocol of Baldi et al. [4] based on public-key cryptogra-
phy, with our optimizations, becomes an efficient, practical and simple one-way
PSI protocol for unbalanced sets that ensures forward secrecy on the client side.
Additionally, we implemented the protocol using the GLS-254 binary elliptic
curve with point compression using techniques considered state of the art, that
allow a better comparison with the other proposed approaches.

Our optimized protocol with this implementation provides an interesting
trade-off between preprocessing and the online phase of the protocol, where for

13 The filter in the client side from [23] has ε = 0.1% and ε = 10−7%, respectively.
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n1 = 224 the preprocessing takes less than six minutes of computing time (recall
that this phase needs to be done only once) and the online phase for n2 = 11041
takes less than 8 seconds even with 1 Mbps bandwidth. The client needs to store
only 48 MB of information for this configuration. We believe that our improved
protocol is a practical alternative for the solutions currently in place for privacy-
preserving contact discovery in existing social networks.
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Abstract. Suppose a server holds a long text string and a receiver holds
a short pattern string. Secure pattern matching allows the receiver to
learn the locations in the long text where the pattern appears, while
leaking nothing else to either party besides the length of their inputs. In
this work we consider secure wildcard pattern matching (WPM), where
the receiver’s pattern is allowed to contain wildcards that match to any
character.

We present SWiM, a simple and fast protocol for WPM that is heavily
based on oblivious transfer (OT) extension. As such, the protocol requires
only a small constant number of public-key operations and otherwise
uses only very fast symmetric-key primitives. SWiM is secure against
semi-honest adversaries. We implemented a prototype of our protocol to
demonstrate its practicality. We can perform WPM on a DNA text (4-
character alphabet) of length 105 and pattern of length 103 in just over
2 s, which is over two orders of magnitude faster than the state-of-the-art
scheme of Baron et al. (SCN 2012).

1 Introduction

Secure two-party computation allows mutually untrusted parties to perform a
computation on their private inputs without revealing any additional informa-
tion except for the result itself. Over the last few years, secure two-party com-
putation has been extensively studied and has become practical for a variety of
applications. Two adversarial models are usually considered. In the semi-honest
model, the adversary is assumed to follow the protocol, while trying to learn
information from the protocol transcript. In the malicious model, the adversary
can follow an arbitrary polynomial-time strategy. We consider the semi-honest
model in this work.

Pattern matching is a basic problem in secure computation. It has been
extensively studied in the past decade, e.g., [HL08,BEDM+12,DF13,DCFT13,
FHV13,YSK+13,HT14,CS15,YSK+14,WJW+15,WZX17]. Pattern matching
is frequently used in text processing, database search [GHS10,CS15], network
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security [NN10], DNA analysis [OPJM10], and other practical algorithms. The
most commonly considered variant of secure pattern matching, which we will
call exact PM, is the setting where a server with input a text x ∈ Σn (over
some alphabet Σ) interacts with a receiver with input a pattern p ∈ Σm (for
m < n). The receiver learns where the pattern occurs as a substring of the
server’s text without revealing any additional information. There are several
important variants of pattern matching, including approximate pattern match-
ing and outsourced pattern matching, which we discuss in Sect. 1.2.

In this work, we focus on secure pattern matching with wildcards, which
we will call WPM. In this variant, the receiver’s pattern can include wildcard
characters that can match any character in the data, hence p ∈ (Σ∪{�})m. With
wildcards, the security requirements are more demanding: the server should not
learn which positions of p contain wildcards, and in the case of a match the
receiver should not learn the text character that matches a wildcard character
in the pattern (unless this could be inferred from the presence or absence of an
overlapping match).

Allowing wildcards in a pattern matching functionality has been well stud-
ied in the absence of a security requirement [CH02,CWZ+06,CLI07,CEPR09,
SOF10,Tha11,BGVV14,BI14,SSSS15,AWY15], and is motivated by the goal of
providing the facility of searching with errors/unknowns. Privacy issues arise
in searching on sensitive data and secure pattern matching with wildcards has
applications, e.g., in computational genetics and DNA analysis. Indeed, consider
the case of a hospital or biomedical research center holding patient genomic data,
and a researcher holding a specific cancer marker sequence with some errors. The
researcher wishes to know the frequency and positions of the gene occurrences
in the database. Due to the genome’s highly sensitive nature, the hospital is
required keep genomic data private, while the researcher needs to protect spe-
cific genome sequence he is working on. The abundance of WPM applications,
such as privacy-preserving DNA matching described above, is our main motiva-
tion for improving the state-of-the-art in secure wildcard pattern matching.

1.1 Pattern Matching with Wildcards

In this section, we discuss directions and related work that achieves, or can be
naturally used to achieve, the WPM functionality in the semi-honest setting.

Circuit Based. Generic secure computation protocols [Yao86,GMW87], allowing
evaluation of arbitrary functions, have seen tremendous performance improve-
ments in the last decade. Modern garbled circuit (GC) protocols evaluate two
million AND gates per second on a 1 Gbps LAN. Several garbled circuits for
Pattern Matching and its variants were studied in [JKS08,KM10]. The best
protocol using this technique were proposed by Katz and Malka [KM10]. The
authors showed how to modify Yao’s garbled circuit to solve Pattern Match-
ing where the size of circuit is linear in the (a priori upper bound on the)
number of occurrences of the pattern in text. While it is possible to extend
circuit-based protocol [KM10] to allow wildcards, it would still require a bound
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on the number of matches to be provided a priori for the circuit construction.
When such bound is high or simply unknown, their protocol suffers correspond-
ing performance penalty. The work [KM10] does not provide implementation or
experimental results.

Homomorphic Encryption Based. To our knowledge, Hazay and Toft [HT10]
were the first to explicitly consider wildcard secure pattern matching. The core
idea of their protocol is that the receiver provides the wildcard positions to the
server in an encrypted form, and the substrings of the server’s text are obliviously
modified so as to match the pattern at those positions. Later, Vergnaud [Ver11]
improved the work of [HT10] by employing Fast Fourier Transform. Both works
rely on the fact that if a pattern bit pi is equal to a text bit ti, then (ti − pi)2

equals 0, and otherwise it is equal to 1. The work of Vergnaud [Ver11] requires
O((n + m)κ2) communication and O(n log m) computational cost in both semi-
honest and malicious settings, where κ is computational security parameters.
As [HT10,Ver11] do not provide the experimental results, we do not compare
execution times with their work.

In 2012, Baron et al. [BEDM+12] proposed an efficient pattern matching
protocol called 5PM, for 5ecure Pattern Matching. 5PM works with character
(non-binary) wildcards, and was the first to provide and accompanying imple-
mentation. The protocol is based on an insecure pattern matching algorithm pro-
posed by Hoffmann [HHD11]. To obtain a secure pattern matching, 5PM modi-
fies the algorithm [HHD11] to work with basic linear operations, which allowed
instantiation with additive homomorphic encryption. 5PM requires O(nκ) com-
munication and O(n + m) computational costs in semi-honest setting. In Sect. 5
we compare our performance to that of 5PM and report 2 − 499× performance
improvement even on medium-size instances.

Yasuda et al. [YSK+14] extend the exact pattern matching protocol
of [YSK+13] to support wildcards. The security of [YSK+14] is based on the
polynomial LWE assumption. Their scheme operates by blocks, limited by the
lattice dimension; for larger inputs x, inefficiency is introduced either by using
a larger lattice, or by the difficulty and cost of handling boundaries of blocks.
In [YSK+14], the authors do not present the performance comparison with 5PM
protocol, but indirectly this can be calculated. Yasuda et al. [YSK+14] mention
that their protocol only 4 − 5× slower than the protocol [YSK+13], which does
not allow wildcards. In addition, [YSK+13] estimated that their work is about
10× faster than 5PM when using much stronger hardware than 5PM ([YSK+13]
experiments were performed on Intel Xeon X3480 3.07 GHz machine with 16 GB
RAM, while 5PM [BEDM+12] used Intel dual quad-core 2.93 GHz machine with
8 GB RAM). Putting all together, we conclude that [YSK+14] is approximately
2−2.5× faster than 5PM. In contrast, our protocol is 2−499× times faster than
5PM, while running on weak commodity hardware (same at 5PM, cf. Sect. 5.1);
this translates into the corresponding improvement over [YSK+14] as well. Fur-
ther, our approach is simpler and easier to implement.

We mention recent work of Saha and Koshiba [SK17], which improves on the
work of [YSK+14] by proposing a new packing method that efficiently addresses
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continuous wildcards occurring in the pattern (e.g., pattern 10����01���110 has
k = 3 sub-patterns: 10, 01, and 110). The main idea of their packing method
is to let the receiver break down the pattern into k sub-patterns and have the
parties perform the traditional pattern matching on these patterns. This solution
is about k× faster than previous work [YSK+14]. However, it reveals significant
information about the pattern, especially for larger k.

1.2 Variants of Pattern Matching

For completeness, we briefly discuss work on several additional variants of secure
pattern matching.

Exact Pattern Patching. To our knowledge, Troncoso-Pastoriza et al. [TPKC07]
were the first to consider secure pattern matching. Their protocol is based on
oblivious automaton evaluation. The protocol [TPKC07] requires O(nm) com-
munication and computational cost. Several follow-up works [Fri09,MNSS12]
improved the computational cost and reduced the round complexity. Another line
of work [HL08,GHS10] is based on oblivious pseudorandom functions (OPRF),
and obtains security in the malicious setting using O(nm) communication and
computational cost with O(m) rounds. De Cristofaro et al. [DCFT13] consider
a secure and efficient pattern matching protocol which hides the length of the
pattern.

Approximate/Fuzzy Pattern Matching. The functionality of this problem is to
find the text positions matches approximately (rather than exactly). This prob-
lem can be solved by determining whether the Hamming distance between
each text substring and the pattern is less than a threshold t. Hazay and
Toft [HT10,HT14] proposed a malicious-secure solution with O(nt) communica-
tion and O(nm) computation costs.

Outsourcing Pattern Matching. In this setting, parties outsource their encrypted
data and computation to an untrusted server, while maintaining data privacy.
The main goal here is to minimize the communication and computational over-
head of the parties by relying on the powerful resources of the untrusted server.
The first work that considered secure pattern matching in the cloud setting can
be traced back to Faust et al. [FHV13]. Other follow-up works are [WJW+15].
Recently, Wei et al. [WZX17] proposed an efficient solution by combining a
secret sharing scheme and oblivious transfer which requires O(κ) computation
and O(mn) communication costs. Outsourcing pattern matching can be viewed
as substring searchable encryption which are studied in [CS15,ÇCL+17].

2 Overview of Our Results and Techniques

In this work we present SWiM (Secure Wildcard Pattern Matching), a protocol
for WPM based on two fast cryptographic tools: oblivious transfer and secure
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Table 1. Communication (bits) and computation (number of exponentiations) com-
plexities of WPM protocols in the semi-honest setting, where n is length of text,m is
length of pattern; and λ and κ are the statistical and computational security param-
eters, respectively. λ = 40 and κ = 128 in our protocols, while κ is in the range
1024–2048 in [Ver11,BEDM+12] protocols (due to their use of public-key primitives).

Protocol Computation Communication Rounds Security model

Online Offline Online Offline Online Offline

[Ver11] O(n log m) O((m + n)κ2) O(1) Semi-honest & malicious

[BEDM+12] O(m + n) O(nκ) 2 Semi-honest

Ours 0 O(κ) O(m + (λ + κ)n) O(nm) 2 2 Semi-honest

string equality test (given two strings of equal lengths, without wildcards, deter-
mine whether they are equal). Thanks to recent optimizations in oblivious trans-
fer protocols [Bea96,IKNP03,KK13,ALSZ13], it is possible to realize a large
number of OT instances with amortized cost of only a few μs. Kolesnikov et
al. [KKRT16] give a protocol for secure string equality test based on techniques
for efficient OT. With their protocol, one can perform many private equality
tests with amortized cost of 5 µs.

Overview of Techniques. Suppose the sender holds a string x ∈ {0, 1}∗ and the
receiver holds a pattern p ∈ {0, 1, �}∗.

As a very simple warm up, consider the case that |x| = |p| = 1. The receiver
will first encode its pattern p ∈ {0, 1, �} as a pair of bits (

�
p,p) (“p-star &

p-bar”), using the following encoding:

p
�
p p

� 1 0
1 0 1
0 0 0

(1)

The significance of this encoding is the following:

x matches pattern p ⇐⇒ x =
�
p · x ⊕ p (2)

Indeed, if p = �, then (
�
p,p) = (1, 0), so the RHS of (2) simplifies to x and the two

sides equal (regardless of x). On the other hand, if p �= �, then (
�
p,p) = (0,p),

so the RHS simplifies to p and the two sides equal if and only if p = x.
Our next trick is to blindly evaluate Eq. (2) using a single OT evaluation. The

parties invoke an instance of 1-out-of-2 bit-OT, where the sender gives inputs
(k,k ⊕ x), and the receiver gives input

�
p. Here k is a random bit chosen by the

sender. Note that the receiver’s output from this OT is k ⊕ �
p · x.

Now, adding k to both sides of the equation in (2), we have that x matches
pattern p, if and only if k ⊕ x = (k ⊕ �

p · x) ⊕ p. Importantly, the LHS of this
equation is known to the sender, while the RHS is known to the receiver. At the
same time, the random mask k hides all information about x from the receiver.
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We can summarize the above gadget as follows: using a single OT of bits, the
sender and receiver each compute a bit which is the same bit if and only if x
matches pattern (possibly wildcard) p.

This technique can be easily extended to the case of WPM with |x| = |p| =
n by simply doing the above gadget n times, bit-by-bit. After doing so, each
party will hold an n-bit string (without wildcards); these two strings will be
equal if and only if x matches the pattern p. An example is given in Fig. 1 (we
simply extend the notation ⊕ and · to bit-vectors). In short, we have reduced the
problem of WPM with |x| = |p| to the problem of secure (exact, no wildcards)
equality test of strings. We complete the wildcard pattern matching by actually
testing the equality of these strings, using the efficient protocol of Kolesnikov et
al. [KKRT16].

The security of this protocol (in the semi-honest model) is easy to understand:
the only new information is that the receiver obtains output k ⊕ �

p · x, which
leaks no information about the sender’s input x since k is uniform. Now consider
extending this approach to the general case of WPM with |x| > |p|. The idea
is the natural one: for each i ∈ {1, |x| − |p| + 1} simply perform the above
approach on the substring x[i . . . i + |p| − 1] and p. Unpacking the abstractions
reveals room for optimizations, as follows. While the previous constructions were
presented in terms of OT of bits, the OT of strings is significantly more efficient
in practice. We observe that in each subprotocol, the receiver’s OT choice bits
are always the same

�
p, allowing corresponding OT instances to be combined

easily. Hence instead of |p|(|x| − |p| + 1) instances of bit-OT, we can use |p|
instances of string-OT, with strings of length |x| − |p| + 1. This optimization
actually reduces costs by a multiplicative factor of the security parameter. The
details are given in Sect. 4.

OT

x 0 0 1 1 1 0

k 1 0 0 1 0 1

k ⊕ x 1 0 1 0 1 1

}
p � � � 1 1 0

�
p 1 1 1 0 0 0
p 0 0 0 1 1 0

k ⊕ �
p · x 1 0 1 1 0 1

1 0 1 0 1 1

⊕

strings equal ⇔ x matches p

Fig. 1. Illustration of the main idea behind our protocol: using oblivious transfer and
private string equality test to perform private string equality with wildcards.

In Sect. 4.1 we present additional optimizations and extensions, such as mov-
ing almost all of the cost to the offline, amortization and efficient handling of
non-binary alphabets.
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Efficiency. SWiM requires only O(κ) public-key operations (all in the offline
phase). In terms of communication, our protocol requires O(mn) in the offline
phase, but only O(m + (λ + κ)n) in online phase. Here, κ, λ are the computa-
tional and statistical security parameters, respectively. As noted previously, all
constants under the big-O are small, as we use fast optimized building blocks. We
describe the performance of representative Secure Wildcard Pattern Matching
protocols in Table 1.

We note that SWiM is efficient concretely. This is because we carefully opti-
mize both computation and communication. Further, we use algorithmically-
and implementation-optimized building blocks, namely the OT extension
of [ALSZ13] and private equality test of [KKRT16]. In particular, the [KKRT16]
equality test is independent of the length of the players’ inputs.

This significantly improves over the state-of-the-art secure wildcard pattern
matching protocol of [BEDM+12]. In Sect. 5, we report in detail on implemen-
tation and evaluation, and find that SWiM is a 2 − 499× faster than 5PM, and
continues to scale well on larger instances. 5PM considers WPM instances on
DNA text of length up to 105 and pattern of length up to 103. These larger
instances require only 1.96 s in our protocol, in comparison with 304.53 s with
1024-bit key and 978.94 s with 2048-bit key using [BEDM+12].

3 Preliminaries

3.1 Notation

Throughout the paper we use the following notation: The length of the text is
n, while the length of the pattern is m. Wildcard is denoted by �. The computa-
tional and statistical security parameters are denoted by κ, λ, respectively. [m]
to denote a set {1, . . . , m}.

The notation OTm denotes a 1-out-of-2 OT where the string is m bits long.
We denote vectors in bold a, and matrices in capitals A. For the vector, we let
a[i,j] denote the sub-vector of a from i-th bit to j-th bit, and ai denote the i-th
bit of vector a. Given vectors a = a1‖ · · · ‖an and b = b1‖ · · · ‖bn, we define
⊕ and · operations as follows. We use the notation a ⊕ b to denote the vector
(a1 ⊕ b1)‖ · · · ‖(an ⊕ bn). Similarly, the notation a · b denotes the vector (a1 ·
b1)‖ · · · ‖(an ·bn). Let c ∈ {0, 1}, then c ·a denotes the vector (c ·a1)‖ · · · ‖(c ·an).
For a matrix A, we let ai denote the i-th row of A, aj denote the j-th column
of A; Aj

i denote the entry of A at the i-th row and the j-th column.
Consider an alphabet Σ. We define a pattern matching relation 	 via

the following rules: (1) a 	 a for a ∈ Σ; (2) � 	 a for a ∈ Σ. We extend the
notation to vectors as x 	 y ⇔ (∀i)xi 	 yi. If p 	 x we say that x matches
the pattern p.

3.2 Oblivious Transfer

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive, and neces-
sary for secure computation, which was introduced by Rabin [Rab05]. In OT, a
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sender with two input strings (x0, x1) interacts with a receiver who has a input
choice bit b. In a privacy-preserving way, the receiver learns xb without learning
anything about x1−b, while the sender learns nothing about b. Rabin’s proto-
col requires expensive public key cryptography. Ishai et al. [IKNP03] proposed
OT extension, an efficient protocol that evaluates a small number of expensive
OTs, from which a large number of OTs can be performed using only cheap
symmetric-key operations. OT extension, to which we sometimes refer as IKNP,
has become a core building block in many aspects of secure computation such as
Garble Circuit, Private Set Intersection [PSZ14,KKRT16,KMP+17], Hamming
Distance [BCP13]. We describe the ideal functionality for OT in Fig. 2.

Despite the wide use of OT, there are very few improvement of IKNP OT
protocol in semi-honest setting. In 2013, Kolesnikov and Kumaresan [KK13] pro-
posed an generalization of IKNP OT extension for short secrets, which brought
O(log(κ)) factor performance improvement in communication and computa-
tion, where κ is security parameter. They also proposed an IKNP optimization,

Parameters: A bit length m, and two parties: sender S and receiver R
Functionality:

• Wait for pair-input (x0,x1) ⊆ {0, 1}m from the sender S
• Wait for bit-input b ∈ {0, 1} from the receiver R
• Give output xb to the receiver R.

Fig. 2. Oblivious Transfer functionality OTm.

Parameters: Two parties: sender S and receiver R
Functionality:

• Wait for input x0 ∈ {0, 1}∗ from the sender S.
• Wait for input x1 ∈ {0, 1}∗ from the receiver R.
• Give the receiver R output 1 if x0 = x1 and 0 otherwise.

Fig. 3. The Private Equality ideal functionality Fpeqt

Parameters: A text length n, a pattern length m, and two parties: sender S and
receiver R
Functionality:

• Wait for text x ∈ {0, 1}n from the sender S
• Wait for pattern p ∈ {0, 1, �}m from the receiver R
• Give the receiver R output {i ∈ [n − m + 1] | p � x[i,i+m−1]} (see Section 3.1

for notation)

Fig. 4. Wildcard Pattern Matching functionality Fn,m
wpm .
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saving on the auxiliary matrix transfer. Later same year, Asharov et al. [ALSZ13]
proposed several IKNP optimizations (one of which was the optimization inde-
pendently discovered by [KK13]). Importantly, [ALSZ13] also provided optimized
implementation of (improved) IKNP OT protocol.

[ALSZ13] also presented optimizations for a useful variant of OT. In Corre-
lated OT (COT), the sender’s OT inputs x0, x1 are chosen randomly subject to
x0⊕x1 = Δ, where Δ is chosen by the sender (possibly a different Δ for each OT
instance). In this case, it is possible to let the protocol itself “choose” the value
x0 randomly. Doing so reduces the bandwidth requirement by approximately
half. It is easy to see that we require only this weaker variant of OT for pattern
matching, hence our implementation takes advantage of this optimization.

3.3 Private Equality Test

Definition. A Private Equality Test (PEQT) is a 2-party protocol in which
the sender with input string x0 interacts with a receiver with input string x1

in the following way. The receiver learns a bit indicating whether x0 = x1 and
nothing else, while the sender learns nothing about x1. We describe the ideal
functionality for an PEQT in Fig. 3.

To our knowledge, PEQT was first introduced in 1996 by Fagin, Naor, and
Winkler [FNW96]. Follow-up works [NP99,BST01,Lip03] improved the efficiency
of PEQT, while still relying on expensive public-key operations. PEQT is heav-
ily used in two-party private set intersection (PSI) protocols [FNP04]. Recently,
Kolesnikov et al. [KKRT16], in the context of PSI proposed an efficient PEQT,
which was constructed by applying novel encodings inside the OT extension
matrix. Their protocol, cast as a variant of Oblivious PRF, executes many
PEQT instances by using only cheap symmetric cryptographic operations, apart
from base OTs. Concretely, the amortized cost of each PEQT instance with
unbounded input domain {0, 1}∗ is only a few symmetric-key operations and
488 bits in communication. We heavily rely on the high-performing PEQT pro-
tocol of [KKRT16] in this work.

4 SWiM: The Main Construction

We present SWiM, our main construction for the WPM functionality in Fig. 4.
It closely follows and formalizes the high-level overview presented in Sect. 2. For
readability, we present SWiM for binary alphabet Σ = {0, 1}. In Sect. 4.1 we
show how to easily extend it to an arbitrary Σ. We first run OT extension with
the chosen inputs defined in Fig. 2, which will allow the receiver to compute
α = k ⊕ �

p · x ⊕ p. Recall, as discussed in Sect. 2, x matches p, iff α equals to
k ⊕ x held by the sender. This equality is efficiently checked in bulk by calling
instances of Private Equality Test defined in Fig. 3, with the result delivered to
the receiver and output. The SWiM protocol is presented in Fig. 5 and is proven
secure against semi-honest adversaries.
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Parameters:

1. Two parties: sender S and receiver R
2. A length n of text, a length m of pattern. Define n′ = n − m + 1
3. A repetition encoding C : {0, 1} → {0, 1}n′

defined by C(a) = an′
for a ∈ {0, 1}.

4. Ideal OT and Fpeqt primitives defined in Figure 2 and Figure 3, respectively.

Input of S: a text x ∈ {0, 1}n

Input of R: a pattern p ∈ {0, 1, �}m encoded into p,
�
p ∈ {0, 1}m, as described in Section 2.

Protocol:

1. [Random Keys] S chooses {ki}i∈[m] ← {0, 1}n′
at random

2. [OT] For each i ∈ [m], S and R invoke OTn′ -functionality
(a) R acts as receiver with a input-bit

�
pi.

(b) S acts as sender with a ordered pair input (ki,ki ⊕ x[i,i+n′−1])
(c) R receives output qi

3. [Matrix Form]
(a) S forms m×n′ matrix T such that the i-th row of T is the vector ti = ki⊕x[i,i+n′−1]

(b) R forms m×n′ matrix U such that the i-th row of U is the vector ui = qi ⊕C(p̄i).
4. [PEQ]

(a) For each i ∈ [n′], S and R invoke the Fpeqt-functionality:
• S acts as sender with input ti as the i-th column of T
• R acts as receiver with input ui as the i-th column of U

(b) R outputs {i ∈ [n′] | ith instance of Fpeqt outputs 1}

Fig. 5. SWiM: Secure Wildcard Pattern Matching Protocol for Σ = {0, 1}.

Correctness. The main observation of OT-extension is that the receiver obtains
output qi such that:

qi = ki ⊕ �
pi · x[i,i+n′−1] =

{
ki, if

�
pi = 0

ki ⊕ x[i,i+n′−1], if
�
pi = 1

Therefore, the i-th row of U is equal to ui = ki ⊕ �
pi · x[i,i+n′−1] ⊕ C(p̄i).

Let K denote the m × n′ matrix such that the i-th row of K is the vector ki.
When viewing the matrices U and T column-wise, we see that the receiver holds
ui = ki ⊕ �

p ·x[i,i+m−1] ⊕p while the sender holds ti = ki ⊕x[i,i+m−1]. Following
the high-level idea described Sect. 2, and specifically the pattern match test of
Eq. 2, it is clear that the pattern matches the text x at the i-th position if and
only if ui = ti.

Theorem 1. The SWiM protocol in Fig. 5 securely computes the WPM func-
tionality (Fig. 4) in semi-honest setting, given the ideal OT and Fpeqt primitives
defined Figs. 2 and 3, respectively.

Proof. The proof of security of our construction is based on the fact that the
OT and Fpeqt are secure.
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Simulating S. It is easy to argue that the view of the sender S can be perfectly
simulated since the semi-honest S receives nothing from the protocol.

Simulating R. The view of the receiver R consists of two kinds of messages:
(1) output of the form qi from the OT primitive in Step 2c, which is equal to
ki ⊕ �

pi · x[i,i+n′−1] and hence information-theoretically hides x; (2) outputs of
Fpeqt in step 4b, which correspond exactly to the WPM protocol output itself.
Hence both can be perfectly simulated.

Cost. Using OT extension, some initial “base OT” instances are required. These
base OTs consist of O(κ2) communication and O(κ) exponentiations. Thereafter,
any number of OTs can be obtained with communication and computation pro-
portional only to total size of parties’ inputs. The computation consists of only
symmetric-key operations. In our case, there are m OT instances, each on strings
of length n′, so O(n′m) total communication and symmetric-key operations.

The Fpeqt protocol of [KKRT16] has a statistical security parameter which
we denote λ. Specifically, the protocol allows for a false positive (output 1 for
input strings which are different) with probability 2−λ. The protocol also uses OT
extension, but the base OTs can be shared/reused from the base OTs mentioned
above. The amortized cost of an equality test is 448 + λ bits of communication
(using typical parameters) and a constant number of symmetric-key operations.

4.1 Additions, Optimizations

Online/Offline Phase. We briefly describe how the protocol can be modified so
that most of the cost can be incurred in an offline phase, before the parties’
inputs are known.

First, we can run all OTs in Step 2 of the protocol before the receiver’s input
p is known, by taking advantage of a well-known technique of Beaver [Bea95].
The following modifications are required: First, the receiver uses a random π ∈
{0, 1}m (rather than

�
p) as its OT choice bits in Step 2 (note that p is not used

until Step 3). Later, upon learning p, the receiver sends δ = p⊕π to the sender.
The sender sets k′

i = ki ⊕ δi · x[i,i+n′−1]. It is easy to see that the receiver holds

qi = ki ⊕ πi · x[i,i+n′−1] = ki ⊕ (δi ⊕ �
pi) · x[i,i+n′−1] = k′

i ⊕ �
pi · x[i,i+n′−1].

In other words, k′
i and qi satisfy the appropriate condition, now with respect to

the receiver’s true input p. The rest of the protocol continues as usual, with k′
i

instead of ki.
There is also a standard Beaver technique for preprocessing OTs before the

sender’s OT input is known. Applying here naively would require the sender to
send online correction strings of total length O(|p||x|) since that is the combined
length of all the sender’s OT inputs.

Instead, we propose the following technique that is similar in spirit but takes
advantage of the fact that the sender’s OT inputs are derived from a single x
value. The parties run step 1, but with the sender using a random χ ∈ {0, 1}n
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instead of the true input x (which is not yet known). After the online phase
described above, the sender will have k′

i strings and the receiver will have qi =
k′

i ⊕ �
pi · χ[i,i+n′−1]. As the sender learns its input x, it sends γ = x ⊕ χ to the

receiver. The receiver can compute

q′
i
def= qi ⊕ �

pi · γ[i,i+n′−1] = (k′
i ⊕ �

pi · χ[i,i+n′−1]) ⊕ �
pi · γ[i,i+n′−1]

= k′
i ⊕ �

pi · (χ[i,i+n′−1] ⊕ γ[i,i+n′−1])

= k′
i ⊕ �

pi · x[i,i+n′−1]

In other words, k′
i and q′

i satisfy the appropriate condition, now with respect to
the sender’s true input x. The protocol can proceed, using q′

i instead of qi.
By having precomputation, we are able to shift the bulk of the O(nm) com-

munication to the offline phase. In the online phase, each party only sends a
“correction string” whose length is proportional to its input size, followed by
the equality tests. Similarly to the standard Beaver’s technique, it is easy to see
that the resulting protocol is secure, namely that the separation of the offline
and online phases can be simulated.

Amortization. In certain multiple-execution scenarios, the cost of our protocol
can be further significantly reduced by reusing the OT/PEQT outputs.

First, notice that in SWiM (Fig. 5), the OT step is independent of the non-
wildcard characters of the pattern string (i.e., independent of p). Therefore, if the
positions of wildcards in the receiver’s pattern (i.e.,

�
p) are the same across several

executions, OT in subsequent executions can be implemented as length extension
of the OT in the first execution. Further, if additionally the sender’s text is the
same across the executions (and the only variation is the non-� pattern), then
only the equality tests need to be run in the subsequent executions.

Further, in the PEQT protocol of [KKRT16], the receiver can check his input
for equality against a polynomial number sender’s inputs at the cost λ per check
(vs 4κ + λ for full KKRT PEQT). Indeed, on the KKRT BaRK-OPRF output
(R,S) ← (Fk(x), k), KKRT sender S can send to receiver R a set of {Fk(yi)},
and R will determine x = yi ⇐⇒ Fk(x) = Fk(yi).

To use this in the amortization, we let the WPM sender play the role of
PEQT’s receiver. We note that this amortization will reveal whether the WPM
receiver has used the same pattern in different instances. Additionally, PEQT
receiver learns the comparison output, and so will the WPM sender. Both restric-
tions may be acceptable in certain scenarios.

Non-binary Alphabets. The protocol extends naturally to alphabets Σ beyond
Σ = {0, 1}. Without loss of generality let Σ = Zb for some b. The receiver holds
a pattern p ∈ (Σ ∪ {�})m and will encode the pattern into

�
p ∈ {0, 1}m and

p ∈ Σm, as follows:
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pi

�
pi pi

� 1 0
a �= � 0 a

Consider the corresponding amendment to SWiM (Fig. 5), where the parties hold
strings of length m and n, both over the alphabet Σ. The parties still perform
m 1-out-of-2 OT, using

�
p as the receiver’s choice bits. All other vectors (k, q,

etc.) become vectors over Σ, and the ⊕ operation is replaced by component-
wise addition mod |Σ|. Note that the “·” operation in the protocol is only used
between a binary vector

�
p and a Σ-vector, so its meaning can still be taken

as component-wise multiplication. Finally, the KKRT PEQT can be naturally
amended to support equality tests of non-binary strings, e.g. by translating the
strings into binary.

5 SWiM Implementation and Performance

Our SWiM implementation uses code from [KKRT16,Rin,WMK16]. All running
times are reported as the average over 10 trials. Our complete implementation
is available on https://github.com/osu-crypto/PatternMatching.

5.1 Experimental Performance: Comparison with Prior Work

We compare our prototype to the state-of-art WPM protocols [BEDM+12,
YSK+14]. While the implementations [BEDM+12,YSK+14] are not publicly
available, [BEDM+12] reports experimental numbers. Further, as we discussed
in Sect. 1.1, [YSK+14] numbers can be indirectly estimated to be around 2−2.5×
faster than 5PM. We give detailed comparisons to 5PM protocol [BEDM+12];
comparison to other works can be appropriately derived.

Runtime Comparison. For the most direct comparison, we matched the test
system’s computational performance to that of [BEDM+12], as reported in their
Table 13. Since 5PM [BEDM+12] experiments were performed on Intel dual
quad-core 2.93 GHz Linux machine with 8 GB RAM, we evaluate our protocol
on a virtual Linux machine with 8GB RAM and 2 cores (the host machine is
Intel Core i7 2.60 GHz with 12 GB RAM). Table 2 presents the running time of
our protocol compared with 5PM [BEDM+12]. For our protocol, we report both
the total running time and the online time. We use log(Σ)� bits to encode the
text and pattern alphabet into binary alphabet.

When comparing the two protocols, we find that the total running time of
SWiM is significantly less than that of the prior works, requiring 1.96 s to per-
form a wildcard pattern matching with 4-symbol alphabet for text size n = 105

and pattern size m = 103. This is a 155× improvement in running time com-
pared to 5PM [BEDM+12] which used 1024-bit key length. When considering
5PM [BEDM+12] with 2048-bit key length (which better corresponds to our
security level), our improvement is 499×.

https://github.com/osu-crypto/PatternMatching
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SWiM is optimized for the typical use case, where the length of the text
is greater than that of the pattern. If this doesn’t hold (indeed, an unusual
setting for the motivating examples we consider), our performance improvement
is moderate. For instance when m = n = 103, our protocol requires 0.61 s. Using
the same parameters, the protocol of [BEDM+12] results in an execution time of
1.39 s. The moderate 2× improvement is due to the constant-cost overheads of
OT extension and PEQT, which do not pay off without amortization in a larger
execution. Even in these cases, our protocol achieves great improvement in the
online phase (e.g., running in just 3ms for m = n = 103).

Bandwidth Comparison. We calculate the bandwidth requirements of our pro-
tocol on the range of the length text n ∈ {216, 218, 220, 222} and the length
pattern m ∈ {28, 210, 212, 214}, for the binary alphabet. For comparison, we cal-
culate the communication cost of 5PM [BEDM+12], for the same parameters.
5PM bandwidth requirements is independent on the length of pattern, and is
roughly (n + 2)κ bits. 5PM protocol relies on public-key operations, and needs
1024–2048-bit key lengths.

Table 4 reports the communication overhead of the protocols. Our protocol
requires less communication for smaller pattern sizes. Concretely, for n = 222

and m = 28, our protocol requires 392.1 MB of communication, a 1.37 to 2.7×
improvement compared to 5PM [BEDM+12]. Increasing the pattern length to
m = 212 the communication cost of 5PM protocol (at a great performance
penalty!) becomes preferable to ours, since their bandwidth is independent of
the length of pattern. Note, the bulk of the communication cost in our protocol
is OT extension in the offline phase.

We note that Table 4 does not show off SWiM algorithmic improvement for
non-binary alphabet, which reduces the number of OT calls. For larger Σ, we
(but not other approaches, to our knowledge) get factor ≈ log |Σ| bandwidth
reduction in the offline phase over the simple mapping of Σ to a binary alphabet.

5.2 SWiM Performance at Scale: Experiments and Discussion

To understand the scalability of SWiM, we evaluate it on the range of the
text/pattern lengths n ∈ {216, 218, 220, 222, 224}, m ∈ {28, 210, 212, 214}, for the
binary alphabet. We report SWiM detailed performance results in Table 3, show-
ing total running time and online time in both LAN and WAN settings.

This set of experiments was ran on a larger machine (a single server with 2x
36-core Intel Xeon 2.30 GHz CPU and 256 GB of RAM), whose resources were
carefully limited by us to provide a good understanding of the performance.
Specifically, we ran each party single threaded, both on the same machine, com-
municating via localhost network. We simulated a network connection using
the Linux tc command. We configured LAN setting with 0.02ms round-trip
latency, 10 Gbps network bandwidth, and WAN setting with a simulated 40ms
round-trip latency, 400 Mbps network bandwidth.

The step of forming the matrices in SWiM is relatively costly. We push it into
the preprocessing phase, which will include creating OT matrices and performing
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Table 2. 5PM vs SWiM. Comparison of 5PM and SWiM of the total runtime (in
seconds) for wildcard pattern matching of length n, the pattern of length m, and the
alphabets of sizes 4 (DNA). In SWiM, the online time is presented in parenthesis. Best
results marked in bold. SWiM experiment ran on Intel Core i7 2.60 GHz with 8GB
RAM. 5PM timings reported on comparable hardware.

Protocol Bit key length Pattern length m Text length n

103 104 105

5PM 1024 10 0.42 4.08 40.43

102 0.67 6.81 64.76

103 0.39 29.15 304.53

2048 10 1.50 14.18 140.52

102 2.27 22.37 216.27

103 1.39 92.29 978.94

SWiM 128 10 0.29 (0.006) 0.36 (0.03) 0.76 (0.32)

102 0.37 (0.005) 0.62 (0.09) 1.82 (0.49)

103 0.61 (0.003) 0.73 (0.04) 1.96 (0.39)

Table 3. SWiM scaling. Total running time and online time (in parenthesis) in second
of SWiM for the text of length n, the pattern of length m, binary alphabet. The results
mentioned in the discussion is marked in bold. Experiment ran sender and receiver
single-threaded on 2x 36-core Intel Xeon 2.30 GHz CPU and 256GB of RAM.

Setting Pattern length m Text length n

216 218 220 222 224

LAN 28 0.21 (0.04) 0.40 (0.15) 0.94 (0.48) 4.07 (2.78) 16.11 (11.38)

210 0.24 (0.03) 0.48 (0.12) 1.41 (0.57) 5.21 (2.38) 20.61 (10.00)

212 0.37 (0.03) 0.97 (0.17) 3.40 (0.78) 12.92 (3.34) 51.88 (14.44)

214 1.02 (0.07) 3.91 (0.37) 15.14 (1.66) 60.10 (6.46) 246.24 (43.51)

WAN 28 1.04 (0.40) 1.90 (1.02) 5.10 (3.10) 17.84 (12.04) 70.45 (48.43)

210 1.28 (0.40) 2.81 (0.95) 8.62 (3.04) 31.29 (12.00) 127.92 (48.08)

212 2.28 (0.36) 6.46 (0.96) 21.61 (3.17) 84.52 (12.48) 363.06 (50.15)

214 6.16 (0.34) 22.24 (1.07) 85.98 (3.87) 318.23 (15.45) 1,382.03 (65.86)

Table 4. Bandwidth calculation of communication (in MB) for wildcard pattern match-
ing of text length n, pattern length m, binary alphabet. In SWiM, the online commu-
nication cost is presented in parenthesis. Compared to 5PM, best results marked in
bold.

Protocol Bit key length Pattern length m Text length n

216 218 220 222

5PM 1024 {28, 210, 212, 214} 8.4 33.5 134.2 536.9

2048 {28, 210, 212, 214} 16.8 67.1 268.4 1073.7

SWiM 128 28 7.6(3.9) 25.9(16.1) 99.2(64.1) 392.1(256.4)

210 13.7(3.9) 50.9(15.9) 199.7(64.1) 794.6(256.3)

212 36.7(3.7) 149.5(15.8) 600.2(63.8) 2403.1(256.1)

214 105.2(2.9) 519.9(15.1) 2178.6(63.1) 8813.3(255.4)
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the matrix transposition. Our experiments show that the offline phase takes
60−90% of the total running time. For instance, with text size n = 222 and
pattern size m = 214 our overall running time is 60.10 s with an offline phase of
53.64 s, a 89% of the overall cost.

We find that SWiM scales well in the experiments. For text size n = 216 and
pattern size m = 28, our protocol takes only 0.21 s in which 0.04 s is for online
time. When increasing the lengths to n = 224 and m = 212, we see that our
protocol requires roughly 52 s in total.

When evaluating our implementation in the WAN setting, we still have a
fast online phase due to the fact that OTs can be precomputed in the offline
phase. For n = 224 and m = 212, we obtain an overall running time of 363.06 s
and an online time of 50.15 s which contains only 13% of the total cost. For the
small text and pattern, the protocol requires only a few seconds. With n = 216

and m = 28, our protocol takes an overall running time of 1.04 s with the online
phase requiring 0.4 s.
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Abstract. GSMA is developing and standardizing specifications for
embedded SIM cards with remote provisioning, called eUICCs, which
are expected to revolutionize the cellular network subscription model.
We study GSMA’s “Remote Provisioning Architecture for Embedded
UICC” specification, which focuses on M2M devices, and we analyze the
security of remote provisioning. Our analysis reveals weaknesses in the
specification that would result in eUICCs being vulnerable to attacks: we
demonstrate how a network adversary can exhaust an eUICC’s memory,
and we identify three classes of attacks by malicious insiders that pre-
vent service. We disclosed our findings to GSMA; GSMA confirmed the
validity of these attacks and acknowledged their potential to disrupt the
cellular industry. We propose fixes, which GSMA is incorporating into
its specification. Thus, we improve security of next generation telecom-
munication networks.

1 Introduction

Machine to Machine (M2M) devices (i.e., machines communicating together
without human intervention) are ubiquitous. Some of these devices communicate
using cellular networks. To access such networks, a device authenticates using an
embedded SIM, which is issued by a Mobile Network Operator (MNO). Authen-
tication is established with the AKA protocol [4]. AKA algorithms and keys are
embedded in SIMs, which physically ensures their confidentiality and integrity.
Limitations of SIMs include being neither re-programmable (hence, restricted to
a single subscription during their lifetime) nor remotely personalizable (hence,
installation requires physical access).

ETSI [5] specified requirements for re-programmable and remotely person-
alizable embedded SIMs to overcome the aforementioned limitations. Follow-
ing ETSI’s specification, industrial researchers, e.g., [2,6,16], and academic
researchers, e.g., [19], proposed remote provisioning schemes. Moreover, building
upon ETSI’s specification and GlobalPlatform’s smart card standard [7], GSMA
c© International Financial Cryptography Association 2018
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released a specification for a next generation SIM, namely, an embedded UICC,
which supports multiple operators simultaneously. Profiles are remotely provi-
sioned and installed into eUICCs. For M2M devices, remote provisioning proto-
cols and management mechanisms are described by GSMA’s “Remote Provision-
ing Architecture for Embedded UICC” specification [11]1. (We adopt GSMA’s
terminology for consistency with their specification.)

Unlike SIMs, which are restricted to a single subscription from a single oper-
ator, eUICCs support multiple subscriptions and multiple operators. Subscrip-
tions are defined by Profiles (PMNO in Fig. 1), which encapsulate subscription
data. Each profile is stored inside a separate Security Domain (ISD-P in Fig. 1)
and an interface (ISD-R in Fig. 1) is defined for communication between ISD-Ps
and remote entities. Authentication of that communication is managed by an
application (ECASD in Fig. 1). Internal communication between eUICC compo-
nents exploits the underlying GlobalPlatform framework, which is reliant on the
Application Protocol Data Unit (APDU) message format.

Remote provisioning is a core aspect of GSMA’s specification. Motivated
by business cases [10, Sect. 3], GSMA introduces Subscription Managers which
act as intermediaries between operators and eUICCs. Subscription managers are
separated into two roles: Data Preparation roles (SM-DPs) oversee eUICC profile
formatting and installation, they may be controlled by an individual operator;
and Secure Routing roles (SM-SRs) oversee remote eUICC management, they
may be operated by an independent organization, e.g., a regulator.

eUICC

MNO

SM-DP SM-SR ISD-R

ECASD

ISD-P

ISD-P

PMNO

(*)
ISD-P

O3
ISD-P
PMNO2

(*)

eUICC secure communication channel.
eUICC internal communication.

MNO, SM-DP and SM-SR communications for eUICC management.
Entity with certified key.

(*) Message respecting the Application Protocol Data Unit (APDU) format.

Fig. 1. Remote provisioning interfaces and communication channels, adapted from
[17]

GSMA is promoting their specification for standardization [9,22]. Any weak-
ness or flaw in the specification or subsequent standard could have disastrous
consequences on the secure deployment of eUICCs. As such, security of remote
1 Meyer, Quaglia and Smyth provide a detailed introduction to GSMA’s specifica-

tion [17].
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provisioning must be analyzed. Indeed, finding and fixing specification flaws is
paramount, because the cost of fixing problems increases exponentially once
production commences.

Contribution and Structure. We study version 3.1 of GSMA’s M2M remote pro-
visioning specification and present the first analysis of remote provisioning. Our
analysis reveals flaws which would make eUICCs vulnerable to attacks and we
present fixes to eliminate those flaws. We proceed as follows: Sect. 2 describes
creation of a profile and its associated security domain. Sect. 3 presents a memory
exhaustion attack against eUICCs. The attack works by dropping an acknowl-
edgement message sent during ISD-P creation, which causes the creation of an
empty and undeletable ISD-P, and can be repeated to exhaust an eUICC’s mem-
ory. Section 4 presents attacks by malicious insiders that exploit remote man-
agement messages to prevent operators from installing new profiles on eUICCs.
Section 5 shows how a malicious operator can lock an eUICC to their profile and
block other operators. Section 6 documents our disclosure of the aforementioned
attacks to GSMA and explains how GSMA is revising its specification.

2 Preliminaries

2.1 Profile Download and Installation

GSMA’s eUICC specification defines a remote provisioning procedure, called
Download&Install, which transmits profiles from an operator to an eUICC,
and installs them. The procedure can be summarized as follows (see Fig. 2):

1. An operator initiates the process with a DownloadProfile request to an SM-
DP containing a profile description (e.g., profile size, network capabilities).

2. The SM-DP uses the GetEIS function to obtain data about the target eUICC,
including mutable (e.g., remaining memory, SM-SR identifier, installed pro-
files description) and immutable (e.g., production date, platform version)
information about the eUICC. The SM-DP checks the validity of the pro-
file description against the characteristics of the eUICC and creates a profile
according to the operator’s profile description.

3. The SM-DP makes a CreateISDP request to the SM-SR responsible for
the target eUICC (procedure CreateISDP detailed in Sect. 2.2). The SM-SR
receives the request (labelled 3a in Fig. 2) and creates an ISD-P on the eUICC
to hold the profile (labelled 3b).

4. The SM-DP establishes a secure channel with the ISD-P (labelled 4a), and
sends the profile to the ISD-P over that channel (labelled 4b).

5. The ISD-P installs the profile, and relays acknowledgments to the operator.
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eUICC

MNO SM-DP SM-SR

ISD-P

(1) DownloadProfile
(2) GetEIS

(3a) CreateISDP
(3b) new ISD-P

(4a) Secret key establishment

(4b) Send profile

(5)
(5)

APDU command message

Secure channel between the SM-SR and the ISD-R

Return APDU message

Fig. 2. Profile download and installation flow (high level)

2.2 ISD-P Creation

ISD-P creation (Step 3 in Sect. 2.1) precedes the upload of the profile onto the
eUICC. At the end of this phase, the profile container’s unique application iden-
tifier (ISD-P AID) has been set, and memory has been reserved for the future
profile onto the eUICC. The creation proceeds as follows (see Fig. 3):

1. The SM-DP sends a CreateISDP request to the SM-SR containing the fol-
lowing payload: the identifiers of the target eUICC and the operator that
requested profile creation, along with memory requirements.

2. The SM-SR establishes a secure channel with the eUICC, via its ISD-R inter-
face.

3. The SM-SR instructs the ISD-R to create an ISD-P, specifying its creation
parameters (e.g., ISD-P identifier (AID), profile size, etc.).

4. The command is processed by the smart card (labelled 4a in Fig. 3) which
creates the ISD-P (4b) and returns (4c).

5. The ISD-R reports the success of the ISD-P creation to the SM-SR.
6. The SM-SR updates the eUICC Information Set (EIS) file.
7. Finally, the SM-SR returns the ISD-P identifier to the SM-DP.

3 Memory Exhaustion Attack by Network Adversary

We analyzed the security of GSMA’s remote provisioning protocol [11] by consid-
ering potential adversaries and their motivations. In this section, we consider a
network adversary, i.e., an adversary that is able to read, modify and delete mes-
sages sent over wireless networks. In practice, such an adversary can intercept a
signal simply by being close enough to the signal transmitter or receiver.
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eUICC

SM-DP SM-SR ISD-R Smart Card
Framework

ISD-PAID

(1) CreateISDP
(2) opening HTTPS session

(3) new ISD-P (AID)
(4a) ISD-P (AID)

(4b) new

(4c)
(5)

(6) updateEIS

(7) (AID)

APDU command message Return APDU message

Secure channel between the SM-SR and the ISD-R

Fig. 3. ISD-P creation flow

3.1 Memory Exhaustion Attack

It is possible to launch an attack that fills part of an eUICC’s memory with
an empty ISD-P by exploiting error handling during ISD-P creation, and the
ISD-P deletion mechanism. Moreover, the eUICC’s memory could be exhausted
by repeating the attack. Indeed, an adversary could drop the ISD-R’s response
to the SM-SR (see (5) in Fig. 3) as is common in denial of service attacks [26,27]
(The adversary can identify and drop the response, even when it is encrypted,
using truncation attacks [3,23]). As a result of the dropped message, the SM-
SR, unaware of the ISP-D creation status, cannot update the EIS file, and after
waiting some time, sends a timeout response message to the SM-DP. The ISD-P
created remains on the card, neither associated to an SM-DP nor operator, thus
the ISD-P is orphaned and memory space on the eUICC has been reserved for
its profile.

Recovery from this attack by deleting the created ISD-P is not possible,
because deletion of an ISD-P and its profile is restricted to operators or SM-
DPs and requires the ISD-P’s identifier. Restricting deletion to operators and
SM-DPs was motivated by a operator’s requirements. An exceptional procedure
called Master Delete is defined in the specification to allow an SM-SR to delete
a profile correctly installed on an eUICC for which the operator owning the
profile has given its approval for deletion and for which the subscription period
is elapsed [11, Sect 3.10]. Consequently, the master delete procedure cannot be
applied. In fact, there is no mechanism defined in the specifications for the SM-
SR or the eUICC to delete orphaned ISD-Ps. If the attack is repeated to exhaust
the eUICC’s memory, only profiles existing on the eUICC before the attack can
be used later.

This attack causes financial loss, as it prevents operators from providing
service. Moreover, recovery is impossible and any trace of the attack is minimal.
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An operator, with a profile on an eUICC, could, for example, collude with a
network adversary and deliberately fill the eUICC memory.

Countermeasure. The attack can be prevented by creating a mechanism on
the card to manage ISD-P creation. Once an ISD-P is created, the mechanism
awaits the next logical instruction of the DownloadProfile process, i.e., the
APDU command for the key exchange between the SM-DP and the ISD-P. If the
awaited instruction is not received on time, the ISD-P is automatically deleted
by this mechanism and a notification is sent to the SM-SR. As such, even if
the notification is dropped too, the orphaned ISD-P is deleted. This mechanism
could be implemented as an extension of the GlobalPlatform framework.

4 Payload Exploitation by Malicious Insiders

GSMA does not formally define the trust model between the different network
entities. In this section, we exploit this and we present two attacks that can
be performed by a malicious entity, behaving as a malicious insider [14,21].
Such an adversary is dishonest, perhaps due to greed. Malicious entities have
the capabilities of their honest counterparts, plus they will try to modify the
protocol or the messages sent without being suspected of being dishonest as
they could face sanctions otherwise [8,24], resulting in what is considered as low
cost attacks (see [1] for further information on such attacks).

4.1 Undersizing Memory Attack

A malicious SM-SR could, after receiving a GetEIS request from the SM-DP
(Sect. 2.1), return the EIS file with the value of field remainingMemory set to
a random value under the minimal size of a profile (This cannot be detected
because the field is not signed). By doing so, the SM-SR prevents an SM-DP
from creating an ISD-P required for uploading a new profile on the eUICC,
because the Download&Install process would halt, and the eUICC would be
considered by the SM-DP as unable to receive a new profile. Therefore, an SM-
SR can deny operators from installing profiles on an eUICC.

This attack is feasible as mutable fields from the EIS file, including the
remainingMemory field, are not signed.2 Such an attack is likely to be detected
if the eUICC has been recently created but, for an old eUICC, the SM-SR will
likely probably not be detected.

Countermeasure. This attack can be prevented by having eUICCs sign the values
sent back to the SM-SR during an AuditEIS request. Such a request updates
the value of an eUICC’s mutable characteristics present in the EIS file, ensuring
the SM-DP of their integrity. To prevent replay attacks, the signature should
also contain a timestamp.
2 Immutable characteristics of eUICCs, set at manufacture time, are signed by the

manufacturer and stored, with other mutable information, into the EIS file. The
EIS file is issued by the manufacturer to the first SM-SR responsible for the eUICC.



Attacks Against GSMA’s M2M Remote Provisioning 249

4.2 Inflated Profile Attack

A malicious operator could request, during the DownloadProfile protocol
(Sect. 2.1), a profile almost exhausting the eUICC’s remaining memory (The
operator can learn how much memory is available from using the getEIS func-
tion). This prevents other operators from installing profiles on the eUICC. This
attack can similarly be initiated by an SM-DP during the createISDP request.

Countermeasure. This attack can be avoided by defining a profile size upper
bound. During a profile creation, the operator’s profile request would be verified
by the subscription managers.3

5 Locking Profile Attacks by Network Operators

5.1 Profile Policy Rules and eUICC Lock

GSMA’s specification defines policy rules for managing the life cycle of profiles.
These rules are initialized by the operator during profile creation, and are stored
inside each profile. An unsynchronized copy of these rules, maintained by the
operator, is in the EIS file stored by the SM-SR. They specify whether a profile
can be disabled, can be deleted, or should be deleted once it is disabled. A
profile’s rules can only be modified when the profile is enabled by the operator
owning the profile.

The policy rule CannotBeDisabled locks an eUICC to a profile, forcing the
device to connect to a specific network. It is a feature of the existing subscrip-
tion model [25], typically used to subsidize subscriptions. However, contrarily to
eUICCs, for 4G networks, once unlocked, a device cannot be locked again.

At a high level, rule CannotBeDisabled is either true or false for the enabled
profile. We show that this rule introduces a weakness that can result in an eUICC
being locked to an undesirable operator’s profile, without regard for the initial
value of the rule. We demonstrate that a malicious operator can launch an attack
when rule CannotBeDisabled is false (Sect. 5.2.1) and that an opportunistic
operator can take advantage of its position when the rule is true (Sect. 5.2.2).

5.2 Locking Profile Attacks

5.2.1 Rule CannotBeDisabled Is False

Suppose all of an eUICC’s profiles have set the policy rule CannotBeDisabled
to false. Further suppose a malicious operator is interested in blocking other
operators’ profiles. For this, the malicious operator installs its profile (Sect. 2.1),
enables it and sets policy rule CannotBeDisabled to true. This disables the
enabled profile, which is possible given its policy rules. The eUICC is locked
to the malicious operator’s profile which cannot be disabled and, consequently,
cannot be deleted. Thus, even upon receiving a notification from the SM-SR file,
the operator owning the previously enabled profile will be unable to re-enable
it. The following examples present scenarios whereby eUICCs might be locked:
3 The SM-SR should perform the check to prevent a similar attack by the SM-DP.
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– Cyberwarfare. Assuming conflict between countries, one country could use
a national operator to remotely attack the other country’s eUICCs [20].

– Hackers. Hackers might steal valid certificates, as previously observed [15,
18]. Thus, it is feasible for hackers to pose as insiders.

– Supply chain attack. Assuming devices are powered-on once manufactured,
and then shipped to their destination, and further assuming that devices are
passing along the border of a country where operators have an aggressive
market strategy, one operator could install a profile on all devices inside the
container. Such attacks could also occur while devices are in production or in
storage.

5.2.2 Rule CannotBeDisabled Is True

An issue might arise when a subscriber wants the operator to unlock devices.
Indeed, device owners are likely to initiate the remote unlocking of eUICCs.
This setting, where the client ask the operator to unlock devices, is problematic
in the presence of an opportunistic operator. Such an operator can delay the
unlocking process, thus preventing other operator’s from enabling their profile
on the locked eUICC. Furthermore, the locking profile cannot be deleted without
the operator’s approval.

Countermeasure. We present several countermeasures that can be combined,
if desired. First, a mechanism to automatically unlock the eUICC, once a lock
expires. Secondly, specifying an upper bound on the locking period (e.g., two
years), to prevent abuse. Finally, permitting locking only once during the life of
an eUICC. This can be achieved by using a counter set to a specific value once
a lock is used on a profile.

6 GSMA Response

We reported our findings to GSMA under their Coordinated Vulnerability Dis-
closure Programme. GSMA’s experts investigated our findings, acknowledged
our attacks and confirmed their ability to impact the mobile industry. GSMA
publicly recognized our work and contribution by adding our names to their Hall
of Fame. Moreover, GSMA is working with us to incorporate our fixes into their
specification. So far, GSMA has released an updated specification [13], which
includes the fix described in Sect. 3 (see Sect. 3.1.1 (7) of the updated specifica-
tion). They have also released a document detailing non-technical trust model
and dependencies between the different parties needed for remote provisioning
[12], which covers attacks initiated by malicious insiders by claiming that certi-
fication will solve the problem. Furthermore, GSMA is still integrating technical
countermeasures, including our suggestions, to appear in the next releases of the
specification.
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7 Conclusion

GSMA is striving towards standardization of remotely provisioned, embedded
SIMs. Its efforts have resulted in specifications for remote provisioning, in par-
ticular, for M2M devices. This evolution towards next generation telecommu-
nications is exciting, but not without risk. Indeed, we have studied release 3.1
of GSMA’s specification and discovered that the proposed evolution is insecure.
More issues might well exist and it is crucial that the specification is studied fur-
ther to ensure security of next generation telecommunications, ideally resulting
in formal security proofs.

Acknowledgments. This work was largely conducted at Huawei’s Mathematical and
Algorithmic Sciences Lab in France.
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Abstract. LoRaWAN is a worldwide deployed IoT security protocol.
We provide an extensive analysis of the version 1.0, which is the currently
deployed version, and we show that it suffers from several weaknesses.
We introduce several attacks, including practical ones, that breach the
network availability, data integrity, and data confidentiality, and target
either an end-device or the backend system.

Based on the inner weaknesses of the protocol, these attacks do not
lean on potential implementation or hardware bugs. Likewise they do not
entail a physical access to the targeted equipment and are independent
from the means used to physically protect secret parameters.

Finally we propose practical recommendations aiming at thwarting
the attacks, while at the same time being compliant with the specifica-
tion, and keeping the interoperability between patched and unmodified
equipment.

1 Introduction

1.1 Context

With the arrival of the Internet of Things, several communication protocols
have been proposed, with technical specifics suited to the intended use case.
For instance, the Bluetooth wireless protocol [3] is designed for short distance
communication. Technologies such as ZigBee [30] or Z-Wave [29] afford medium
range distance communication, and aim at reducing the energy needed by the
nodes to set up and maintain a mesh network.

As for long range distance communication (several kilometers), proposals
have been made, such as LoRa. LoRa, developed by Semtech company, aims
at setting up a Low-Power Wide-Area Network (LPWAN) based on a long-
range, low-rate, wireless technology. It is somewhat similar to a cellular technol-
ogy (2G/3G/4G mobile systems) but optimised for IoT/M2M. LoRa does not
require a spectrum license because it uses free (although regulated) frequency
bands (e.g., 863-870 MHz in Europe, 902-928 MHz in the USA, 779-787 MHz
in China) [14]. A LoRa end-device, with an autonomous power-supply, is sup-
posed to communicate through several kilometers in an urban area, and to have
a lifespan up to eight or ten years.
c© International Financial Cryptography Association 2018
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LoRaWAN is a protocol that aims at securing the Medium Access Con-
trol layer of a LoRa network. It is designed by the LoRa Alliance, which is
an association that gathers more than 400 members (telecom operators, semi-
conductor manufacturers, digital security companies, hardware manufacturers,
network suppliers, etc.).

Public and private LoRaWAN networks are deployed in more than 50 coun-
tries worldwide [23] by telecom operators (SK Telecom, FastNet, ZTE, KPN,
Orange, Proximus, etc.), private providers (e.g., LORIOT.io [15]), and private
initiatives (e.g., The Things Network [27]). Several nationwide networks are
already deployed in Europe (France, Netherlands) [7], Asia (South Korea) [16],
Africa (South Africa) [1], Oceania (New Zealand) [24], providing coverage to at
least half of the population. Trials are launched in Japan [4], the USA (starting
with a hundred cities) [10], China (the expected coverage extend to 100 mil-
lion homes and 300 million people) [22], India (the first phase network aims at
covering 400 million people across the country) [9].

The services provided by LoRa end-devices are numerous, from performing
measurements (humidity, temperature, water leak, etc.), up to achieving more
sensitive purposes such as triggering an alarm/help message, detecting an intru-
sion, or allowing to remotely switch on and off another equipment. The data
sent by the end-device may also have to remain confidential (e.g., geolocation of
valuable assets sent by a tracker).

In this paper we focus on the version 1.0.2 of the LoRaWAN specification
released in 2016, which is the version currently deployed worldwide, and whose
official name is now 1.0.

1.2 Protocol Overview

A LoRaWAN network corresponds to a star-of-stars topology: a set of end-
devices communicates with several gateways, which relay the data to a Network
Server (NS) in the backend. In turn, the NS delivers the data to one or more
Application Servers (AS), which own the corresponding end-devices, optionally
through intermediary servers such as an MQTT server (see Fig. 1). The security
mechanisms are based on a symmetric key AppKey (the root key) shared between
an end-device and the NS. From this key, distinct per end-device, two session
keys are computed: the application session key AppSKey guarantees the data con-
fidentiality between the end-device and the AS; the network session key NwkSKey
guarantees the data integrity between the end-device and the NS (it is worth
noting that data integrity is not provided end-to-end between the end-device and
the AS1). When a frame is exchanged exclusively between an end-device and the
NS, both data confidentiality and data integrity are provided by the network ses-
sion key NwkSKey. An application payload is always encrypted. Moreover, if no
payload is carried, the frame is only authenticated. Encryption is done with AES
[19] in CTR mode [5,20], and data integrity is provided with AES in CMAC mode
[21,25]. An end-device may establish an “activation” (namely a session) with the

1 As acknowledged by the specification ([26], Sect. 6.1.4).
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Fig. 1. LoRaWAN network (simplified view)

NS through two ways. The pre-personalization (Activation By Personalization,
ABP) consists in setting two session keys (and other parameters but not the
AppKey root key) into the end-device before its deployment. An ABP end-device
is then able to communicate with the NS (and its AS) but not to renew the
“session” keys. The other possibility (Over The Air Activation, OTAA) consists
in provisioning the end-device with an AppKey root key and other parameters,
allowing for key exchanges with the NS through the radio interface once it is
deployed. In this paper we focus on OTAA end-devices.

1.3 Paper Outline

The LoRaWAN protocol is detailed in Sect. 2. Theoretical and practical attacks
against LoRaWAN are described in Sect. 3. Section 4 describe recommendations
that thwart the attacks. Section 5 summarises previous comments and analysis on
the protocol. Section 6 deals with the responsible disclosure. We finally conclude
in Sect. 7.

2 The LoRaWAN Protocol

The technical features described in this section are based on [26].

2.1 Key Exchange

The key exchange done over the air is triggered when the end-device sends a Join
Request message. The NS then responds with a Join Accept message. The (unen-
crypted) Join Request message includes two static identifiers (the end-device’s
DevEUI and the AS’ AppEUI), and a pseudo-random value DevNonce generated
by the end-device. The message is protected with a 4-byte CMAC authentica-
tion tag (called MIC) computed with the 128-bit (static) root key AppKey. The
Join Accept response from the NS contains the (static) identifier of the latter
(NetID), a pseudo-random value generated by the NS (AppNonce), a value used
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as the end-device short address (DevAddr), and several (optional) radio param-
eters. The Join Accept message is protected with a CMAC authentication tag,
and encrypted with AES (both operations made with the root key AppKey).2

Two 128-bit session keys are then computed:

NwkSKey = AES(AppKey, 0x01‖data)
AppSKey = AES(AppKey, 0x02‖data)

with data = AppNonce (3)‖NetID (3)‖DevNonce (2)‖0x00 · · · 00 (7).

End-device Network Server
(secret key AppKey, (secret key AppKey,

identifiers DevEUI, AppEUI) identifiers DevEUI, AppEUI, NetID)

DevNonce ∈R {0, 1}16

Join Request = AppEUI DevEUI DevNonce MICAppKey−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
AppNonce ∈R {0, 1}24

Join Accept = AES−1(AppKey,AppNonce NetID DevAddr radio parameters MICAppKey)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NwkSKey, AppSKey ← key derivation(AppKey, AppNonce, DevNonce, NetID)

UL frame0 =

hdr

DevAddr (ul cnt=0) FOpts [FRMPayload]AppSKey MICNwkSKey−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DL frame0 =

hdr

DevAddr (dl cnt=0) FOpts [FRMPayload]AppSKey MICNwkSKey←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

Fig. 2. LoRaWAN activation (simplified scheme).

Thus the session keys depend mostly on a secret and static value (the root
key AppKey), and two pseudo-random values, respectively 2-byte and 3-byte
long. Once the Join Request and Join Accept messages are exchanged, the end-
device, the NS, and the AS are able to communicate. After the NS computes
the session keys, it transmits the application session key AppSKey to the AS.
It is worth noting that the AS is not involved in the key agreement, which
is handled by the NS. The NS must keep the previous session keys, and the
corresponding security parameters, until it receives a (valid) frame protected by
the new security parameters. The security mechanisms between NS and AS are
out of the LoRaWAN scope. Figure 2 depicts an activation.

2 More precisely the AES decryption function is used to protect the Join Accept mes-
sage, because the end-device implements the encryption function only.
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2.2 Data Encryption and Authentication

The frame payload FRMPayload is encrypted in CTR mode. From block counters

Ai = 0x01 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖cnt (4)‖0x00 (1)‖i (1)

a secret keystream Si = AES(K,Ai) is produced with K ∈ {AppSKey, NwkSKey},
and used to mask the payload3: [FRMPayload] = (S0‖ · · · ‖Sn−1) ⊕ FRMPayload.

dir specifies the direction (uplink = 0x00, downlink = 0x01). cnt is the
frame counter (of 16 or 32 bits), initialised to 0 when the session starts, and
monotonically increased when a (valid) frame is sent or received. Two differ-
ent counters are used depending on the frame’s direction. DevAddr is the end-
device address (within a given LoRa network) chosen by the NS and sent in
the Join Accept message, and it remains constant during the entire session. To
compute DevAddr, seven bits are chosen from the NS’ unique identifier NetID:
msb7(DevAddr) = lsb7(NetID), and 25 bits are “arbitrarily” assigned by the NS.
The i value numbers the AES blocks within the payload to encrypt.

AES CMACNwkSKey

FRMPayload

AES CTRAppSKey

B0 hdr [FRMPayload] MIC

frame

Fig. 3. Generation of an application frame.

A 4-byte authentication tag is computed with CMAC and the network session
key NwkSKey on the whole frame (header hdr of size hlen ∈ {8, . . . , 24} and
encrypted payload [FRMPayload] of size plen) and a 16-byte prefix block

B0 = 0x49 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖cnt (4)‖0x00 (1)
‖(hlen + plen) (1)

The frame eventually sent is hdr (hlen)‖[FRMPayload] (plen)‖MIC (4).

The frame header hdr includes, among other fields, DevAddr, the frame
counter cnt on 2 bytes, and an (optional) field FOpts which may contain com-
mands exclusively exchanged between the end-device and the NS (see Fig. 3).
3 The session key K = AppSKey is used when application messages are exchanged

between the end-device and the AS, and K = NwkSKey is used when command-only
messages are exchanged between the end-device and the NS.
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3 Attacks Against LoRaWAN

Hereinafter we present our findings regarding the LoRaWAN protocol ver-
sion 1.0, the currently deployed version. Table 1 summarises the attacks we have
found.

Our attacker, standing between a LoRaWAN end-device and the NS, needs
only to act on the air interface: she needs to eavesdrop on data exchanged
between the end-device and the server, and to send data to any equipment.

Table 1. Attacks against LoRaWAN 1.0 (nja: number of Join Accept messages usable
by the attacker. njr: number of Join Request messages usable by the attacker. m:
number of new session keys sets stored by the NS. ED: end-device)

Attack Complexity
(# Join
message)

Probability
of success

Impact

(A1) Replay or decrypt
(ED, Sect. 3.1)

216/nja � 1 Downlink frame replay,
uplink frame
decryption

(A2) Replay or decrypt
(NS, Sect. 3.1)

njr � njr/2
24 Uplink frame replay,

downlink frame
decryption

(A3) Desynchronization
(ED, Sect. 3.2)

1 1 End-device
desynchronization

(A4) Desynchronization
(NS, Sect. 3.2)

m 1 End-device
desynchronization

3.1 Replay or Decrypt

Targeting an End-Device (Attack A1)

Goal. The purpose of this attack is to compel the end-device to reuse pre-
vious session keys and other security parameters. When this happens, frames
picked from a previous session become cryptographically valid anew, hence can
be replayed. Moreover the same secret keystream is then used to protect the
frames exchanged during the new session. This allows an adversary to decrypt
frames.4

4 Note that since the end-device ends up reusing previous session keys (which are
no longer shared with the NS), this attack is also a kind of “desynchronization”
attack. However, contrary to the desynchronization attacks described in Sect. 3.2,
this “replay or decrypt” attack has more devastating consequences (and a higher
complexity) than “only” desynchronizing the end-device and the NS.
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Core. The encryption keystream Si = AES(K,Ai) used to protect a frame pay-
load is produced from a session key K ∈ {AppSKey, NwkSKey} and Ai block
counters. Within a given session the blocks

Ai = 0x01 (1)‖0x00 · · · 00 (4)‖dir (1)‖DevAddr (4)‖cnt (4)‖0x00 (1)‖i (1)

(as well as the prefix block B0) depend mostly on the frame counter cnt (set
to 0 when the session starts and monotonically increased frame after frame),
and on the DevAddr parameter (static during the whole session). The other
parameters are the direction dir unchanged for a given direction, and the i
block index which evolves the same way for each frame. Hence the way the
keystream Si changes depends only on the DevAddr parameter and the session
key (usually AppSKey). For a given end-device, which connects to the same NS
(hence uses the same static NetID parameter), the session keys depend mainly
on a secret and static value (AppKey) and two pseudo-random values (DevNonce,
AppNonce). Therefore, if one succeeds in compelling the end-device to reuse the
same DevAddr, DevNonce and AppNonce parameters, this leads not only to the
reuse of previous session keys AppSKey, and NwkSKey, but also to the reuse of
previous keystream Si and prefix block B0.

Attack. The purpose is to make the end-device use twice the same DevNonce,
AppNonce, and DevAddr values. The 2-byte DevNonce and 3-byte AppNonce
parameters are pseudo-random. Let us assume that an attacker is able to impose
the AppNonce value that the end-device uses to compute the session keys. The
probability that the session keys repeat depends then only on the DevNonce
parameter. Firstly note that a collision due to the birthday paradox happens with
high probability (p = 1

2 ) after roughly
√

2 ln(2) × 216 � 301 activations only.
However the attacker can speed up the whole process: the attacker eavesdrops
on a given session, and compels the end-device to generate multiple DevNonce
values until the expected value is produced once again. In such a case only one
value among 216 is useful to the attacker. Hence, the end-device must generate
on average 216 DevNonce values. If the attacker eavesdrops on nja different Join
Accept messages (each one corresponding to a different DevNonce value) previ-
ously received by the targeted end-device, then the probability for the attacker to
succeed is p = nja/216. If the attacker repeats this experiment k times, the prob-
ability to be successful at least once among the k experiments is 1−(1−p)k � kp
if p is close to 0. In order for this probability to be close to 1, the number of
experiments the attacker has to perform is k � 216/nja. This means that the end-
device has to send 216/nja Join Request messages before one carries a DevNonce
value that matches with one of the Join Accept messages.

The shortest receiving window of a Join Accept message is 5 s [14]. If the
attacker uses nja = 16 Join Accept messages, the attack is achieved after roughly
216/16×5 s = 5.7 h (assuming that the time needed to process the Join messages
is negligible compared to the communication duration).5

5 See Appendix A.
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Once this first phase of the attack is achieved, the attacker ends with two
different sessions protected with the same security parameters, denoted respec-
tively sold and snew.

Technique 1 Used to Achieve the Attack: Replay of a Join Accept Message. In
order to compel the end-device to use a given AppNonce value, the attacker can
replay a previous Join Accept message sent to the targeted end-device. Then
the end-device will reuse (once again) the parameters included in the message.
Indeed the data carried in a Join Accept message correspond to

AppNonce (3)‖NetID (3)‖DevAddr (4)‖radio parameters (2 . . . 18)‖MIC (4)

where MIC is an authentication tag computed on the preceding fields with the
(static) root key AppKey. These parameters are protected with AES and AppKey.
The cornerstone of this attack is that all the parameters are chosen by the NS,
in particular AppNonce and DevAddr. NetID is the NS’ (static) identifier, and
the radio parameters are also defined by the NS. The only secret parameter
involved in the message calculation is static (AppKey). Hence, the end-device is
not able to verify if the received Join Accept message corresponds to the Join
Request it sent. Replaying a Join Accept message allows the attacker to compel
the end-device to (re)use both AppNonce and DevAddr parameters.

Technique 2 Used to Achieve the Attack: Harvest of Join Messages. The abil-
ity of the attacker to make the end-device generate multiple DevNonce values is
related to the behaviour of the end-device when it sends a Join Request mes-
sage but does not receive a Join Accept response or receives an invalid mes-
sage. The specification states that the NS shall ignore Join Request messages
containing previously used DevNonce values in order to thwart a replay attack
([26], Sect. 6.2.4). Hence, the end-device has to generate a new pseudo-random
DevNonce value each time it computes a Join Request message, even when a pre-
vious Join Request message did not receive a response. Otherwise the end-device
may fear the subsequent Join Request messages to be dropped by the NS. This
allows the attacker to collect multiple new and valid Join Request messages. It
is enough for the attacker to send “false” (i.e., invalid) Join Accept messages in
response to the end-device’s messages. Moreover, if the attacker forbids the NS
from receiving the Join Request messages sent by the end-device, he gets “fresh”
messages (i.e., unknown to the NS) for free. In order to make the end-device start
producing the Join Request messages, the attacker may wait or force (once only)
the end-device to start a new session (e.g., the attacker may turn the end-device
off and on: once the power supply is re-established, the end-device likely starts
a new activation).6

6 Being able to influence on the power supply does not necessarily mean to physically
intrude on the end-device. The attacker could turn off or interrupt a remote electric
generator the end-device is connected to, or the link between the generator and
the end-device (if the end-device is powered by an external source), or use other
means (e.g., electromagnetic impulse targeting the end-device and leading to a power
outage).
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Note that every time the NS receives a Join Request message, it sends a new
Join Accept message. Therefore, this procedure is also a way to collect multiples
Join Accept messages.

Impact: Frame Replay. Frames drawn from the previous session (sold) can be
replayed to the end-device throughout the new session (snew).7 These frames are
valid since they are protected with a cryptographically correct keystream and
authentication tag.

Impact: Frame Decryption. The frame payload is encrypted in CTR mode. Once
the attack is achieved, the end-device uses twice the same keystream in order to
protect different frames. The frame of counter t sent during session sold contains
an encrypted payload csold

t = m ⊕ ksold
t , where m is the clear data and ksold

t

the keystream. The frame of same counter t sent during session snew contains
an encrypted payload csnew

t = m′ ⊕ ksnew
t . Since ksold

t = ksnew
t , we have that

csold
t ⊕ csnew

t = (m ⊕ ksold
t ) ⊕ (m′ ⊕ ksnew

t ) = m ⊕ m′. Therefore m and m′ may
(partially or completely) be retrieved, in an obvious manner if either message is
known, or through analysis of m ⊕ m′ [17].

Targeting the NS (Attack A2)

Goal. The same kind of attack can be performed against the NS, aiming at com-
pelling the server to use the same security parameters throughout two different
sessions. The goal is then to compel the NS to use twice the same DevNonce,
AppNonce, and DevAddr values.

Attack. An attacker who replays a Join Request message sets the DevNonce value
before knowing the DevAddr and AppNonce values generated by the NS. These
values must correspond to the DevNonce value chosen by the attacker. Hence
only one such pair among all possible values is of interest to the attacker.

According to the specification, the NS must keep track of “a certain number”
of received DevNonce values in order to prevent replay attacks, without clarifying
if this means all values or a few of them. We may reasonably assume that the
NS keeps track of a few values (say n). Thus the attacker cannot choose any
Join Request she wants to replay. The corresponding DevNonce value must not
belong to the list of n stored values. If the value the attacker wants to replay
still belongs to the server’s list (let i be its index, with 0 and n − 1 the index of
the oldest and of the latest received values), she has to wait for i + 1 additional
(legitimate) key exchanges before the NS “forgets” that value. The duration of
such an “opportunist” attack depends on the frequency of the key exchanges.

7 We use the term “session” for the sake of simplicity, but it does not depict precisely
what are the actual exchanges since the end-device, at this point, has no “partner”:
neither the NS nor the AS is able to communicate with the end-device, and the
attacker is unable to forge new valid frames.
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According to the specification, AppNonce is a 3-byte pseudo-random value,
and the 32-bit DevAddr parameter is made of 7 bits from NetID, and 25 bits “arbi-
trarily” chosen by the NS ([26], Sect. 6.1.1). If DevAddr is pseudo-random then
the probability of success is 2−(24+25) = 2−49. But “arbitrarily” does not mean
“pseudo-random” and experiments we have performed show that the DevAddr
parameter may remain unchanged for a given end-device throughout different
sessions.8 In such a case the probability of success increases to 2−24, and the
overall probability of success is 2−24 every n + 1 sessions. Alternatively, the
attacker can eavesdrop on njr different Join Request messages (that the NS
has “forgotten”), and send them to the server.9 The probability that at least
one message triggers the same AppNonce value as during a previous session is
1− (1−2−24)njr � njr ×2−24. For instance, if the attacker uses njr = 2048 Join
Request messages, her probability to succeed raises to 1

8192 .
This attacker knows if the AppNonce value repeats through the direct compar-

ison of the Join Accept messages, even if these messages are encrypted. Indeed,
all the parameters of such a message are likely static but the AppNonce param-
eter.

Impact. Once the attacker succeeds in compelling the NS to compute once again
the same security parameters, she eventually gets two different sessions (sold and
snew) protected with the same security parameters. The attacker is then able to
replay uplink frames and attempt decryption of downlink frames. Note that the
attacker is then able to send (i.e., to replay) a valid frame that indicates the NS
to switch from the current security context to the new one (hence the NS drops
the current session keys and uses the new ones).

3.2 Desynchronization

Targeting an End-Device (Attack A3)

Goal. This attack aims at “disconnecting” the end-device from the network.
That is the end-device performs a successful key exchange which ends with the
end-device not sharing the new session keys with the NS (the end-device has no
“partner”). Therefore the frames sent by the end-device are ignored by the NS,
and conversely.

Core. The session keys are computed, by a given end-device and the NS, with
two static parameters (the NS’ unique identifier NetID, and the end-device’s root
key AppKey), and two variable parameters (the pseudo-random values AppNonce
computed by the NS, and DevNonce by the end-device). As soon as the end-
device receives a (valid) Join Accept message it can derive the session keys and
8 Thus some NS implementation derives the DevAddr parameter from the unique end-

device’s identifier DevEUI. Also the DevAddr value may be chosen once and for all at
the time of the end-device provisioning.

9 The messages may come from different end-devices, hence, may have to be sent to
one or several NS servers.
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start transmitting protected frames. In the key derivation, if the end-device uses
values different from those actually sent by the NS (say (DevNonce, AppNonce) =
(x, ỹ) on the one hand, and (DevNonce, AppNonce) = (x, y), on the other hand,
y �= ỹ), it eventually computes different session keys than those computed by
the server. This does not forbid the end-device to send protected frames though.
However those frames will be dropped by the NS since they are invalid from
the server perspective. Conversely, the frames sent by the NS will be discarded
by the end-device. Thus the end-device, unable to communicate with the NS, is
“disconnected” from the network.

Attack. In order to perform such a desynchronization attack, an attacker can
first passively eavesdrop on a Join Accept message sent by the NS in response
to the end-device’s Join Request message. When the end-device starts a new
session and sends another Join Request message, the attacker replies before the
NS and replays the eavesdropped Join Accept message. This replayed message
likely contains an AppNonce = ỹ value different from the fresh one sent by the
NS (AppNonce = y). Hence, the end-device and the NS compute different session
keys and security parameters.

Means Used to Achieve the Attack. The attacker is able to replay a previous Join
Accept message thanks to the peculiarities of the LoRaWAN protocol: indeed
the end-device has no means to verify neither if the message is a replay, nor
if it is an actual response to the Join Request message it just sent. Moreover
the attacker can use the procedure described in Sect. 3.1 to collect several Join
Accept messages and use these “desynchronization ammunition” anytime later.
The Join Accept message used by the attacker must be intended to the targeted
end-device. Indeed such a message is protected with the root key of the end-
device it is sent to.

Impact. Such a desynchronization attack may be harmful because it can lastingly
disturb the operating of a LoRaWAN network. So then the usual behaviour
of a sensor may be to regularly send some measurements without expecting a
response unless the server detects an anomaly in the collected data. If the end-
device sends its measurement at a low rate, days or even weeks may elapse before
something abnormal is noticed, even if the end-device is supposed to react if it
does not receive a downlink frame after a fixed number of sent frames.

Targeting the NS (Attack A4)

Goal. The same kind of desynchronization attack can be done against the NS,
aiming at disconnecting a given end-device from the network. In that case, the
NS completes the key exchange without being “partnered” with the intended
end-device (i.e., identified by the DevEUI parameter within the Join Request
message). Therefore the frames the NS (or the AS) may send are ignored by the
end-device, and conversely.
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Attack. Upon reception of a (valid) Join Request message, the NS generates a
new AppNonce value and computes new session keys. If an attacker succeeds in
replaying to the NS a valid Join Request message, the corresponding end-device
will no longer share the same session keys with the NS. The attacker can do the
following. She waits for the end-device to start a new activation. New session keys
(seskeysi+1) are then computed. The end-device stores seskeysi+1 only while
the NS stores both seskeysi and seskeysi+1 (respectively the current and the
new session keys). Before the end-device sends a frame, the attacker immediately
sends to the NS a Join Request message she previously eavesdropped on (and
not received, hence new to the server). The server computes new session keys
seskeysi+2 which replace the unconfirmed keys seskeysi+1. Then the NS stores
seskeysi and seskeysi+2 while the end-device stores seskeysi+1. Hence the
end-device and the NS do not share the same session keys. More generally, if the
NS keeps the latest valid session keys and m new sets of keys, the attacker must
send successively m new Join Request messages in order to desynchronize the
NS and the end-device.

Means Used to Achieve the Attack. In order to get a new Join Request message
the attacker can use the technique described in Sect. 3.1 aiming at compelling
the end-device to generate multiple Join Request messages. The attacker can
gather several such messages and use these anytime later as “desynchronization
ammunition”.

Impact. The consequences of this attack against the NS are the same as the
one against the end-device: the targeted end-device is disconnected from the
network. Unaware that the NS does not share the same security parameters, it
may keep sending uplink frames for quite a long time while the NS is unable to
process them. Conversely, the frames the NS may send cannot be understood by
the end-device.

4 Recommendations

In this section we aim at providing recommendations that thwart the attacks
described in Sect. 3. This may lead to major changes in the protocol specifica-
tion and break the interoperability between patched and non-modified equip-
ment. Hence, as an additional constraint, we aim at proposing improvements
that could solve the issues as best as possible while retaining at the same time
the compliance with unchanged version of end-devices or servers, in particular
equipment that is already deployed and may not be easily patched.

The methods to be implemented in order to thwart the attacks against
LoRaWAN must be chosen with caution. Indeed, the reduced LoRaWAN param-
eters size limits the efficiency of some countermeasures one may think of by
paving the way to new attacks.10 In order to preclude all the attacks, we recom-
mend to implement all the following changes.
10 For instance turning the DevNonce parameter into a counter is not a suitable solution

(see Appendix B).
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Generate AppNonce Values with no Repetition. This countermeasure aims at
thwarting attack A2. A counter may be used to produce the AppNonce values.
The counter must not overlap, and one different counter must be used for each
end-device in order not to artificially lower the number of activations per end-
device.11

Detect a Replay of AppNonce Values. This countermeasure aims at thwarting
attack A1. It may be implemented using computationally and memory efficient
techniques such as Bloom filters [2,6]. However the AppNonce parameter being
turned into a counter, it is enough for the end-device to store the last received
AppNonce value in order to detect a replay.

Verify that the Received Join Accept Message Corresponds to the Sent Join
Request Message. This countermeasure aims at checking that the Join Request
and Join Accept messages are bound in order to thwart attack A3. We
recommend to compute the DevAddr parameter in the following way. Let
NwkAddr be the least 25 significant bits. NwkAddr is computed as NwkAddr =
H(DevNonce, AppNonce, DevEUI) where H is a collision-resistant function.

Verify that the Session Keys are Shared. This countermeasure aims at thwarting
attack A4. We suggest to implement it the following way. Straight after the key
exchange is done, the NS must send a so-called DevStatusReq command and
verify (authentication tag) the DevStatusAns response from the end-device, or
verify, if it comes earlier, the first frame sent by the end-device. The lack of
response must be read into this as an issue (device or NS under attack).

In addition the NS must keep all sets of session keys from the last valid one
up to the latest computed one. When the NS receives an uplink frame (carrying
a DevStatusAns response, or another uplink frame), it checks the authentication
tag with all keys, starting from the latest. If the keys that match with the
authentication tag belong to one of the (currently) unapproved sets, then the
NS keeps this set of session keys only and drops all the others. This set becomes
then the last valid one.

5 Related Work

Few analyses on LoRaWAN have been done and publicly released. Most of the
public reviews deal with technical consideration such as the network manage-
ment (secret keys storage, etc.) and generic attacks (e.g., hardware attacks, web
attacks) unrelated to the LoRaWAN protocol. Some attacks, which exploit spe-
cific features of the protocol, are mentioned but without excess of details.

Regarding the presentation [12], no paper nor slides were made publicly avail-
able after the conference (to the best of our knowledge), however we got a sum-
mary of the talk. Yet we cannot claim to be aware of all the specifics provided
during the talk.
11 This would also make easier an attack aiming at exhausting the AppNonce counter

(see Appendix B).
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Desynchronization Against an End-Device. According to Lifchitz [12], L’Héréec
and Joulain [11], and Miller [18] a way to attack the end-device is to replay to the
NS a previous Join Request message, leading to the end-device “disconnection”
from the network. Conversely Zulian indicates that it is possible to replay a
previous Join Accept message to an end-device ending with different session
keys used by the NS and the end-device [31]. However Zulian does not exploit
all the possibilities provided by such a replay. In particular, he does not envisage
more devastating attacks such as our “replay or decrypt” attack.

Frame Replay and Frame Decryption. Regarding the pseudo-random AppNonce
parameter, Lifchitz notes that it may repeat due to the birthday paradox [12].
Hence, under the strong assumption that the DevNonce value is “forced” (device
controlled by an attacker), a keystream reuse is possible with high probability
after

√
2 ln(2) × 11 × 224 � 16,000 activations, or 22 h if a key exchange is done

in 5 s. In fact, such a statement is wrong or, at least, hazy: if both DevNonce
and AppNonce values repeat, this leads to a session keys reuse. In order to get
a keystream reuse, it is necessary for the DevAddr parameter to repeat as well.
Moreover this means a continuous series of key exchanges without any interme-
diary application frame. Hence the sake of such an attack may be questioned.

Finally this attack is unlikely successful against a NS implementing version
1.0.2 (the current 1.0 version). Indeed, according to the specification, the NS
must receive a valid uplink frame protected by the new security parameters
before dropping the current ones and using the new ones. The attack leads to
the computation of the same session keys two different times. Yet, with high
probability, these keys are fresh (i.e., never used previously by the NS with
a legitimate end-device) because the attacker has no control on the AppNonce
parameter. This means that the attacker has to forge a valid uplink frame if she
wants to compel the NS to use these keys. That is the attacker must forge a valid
32-bit authentication tag (without the corresponding key). That being said, we
are not aware of the LoRaWAN version analysed in that talk (1.0.1 or 1.0.2).
Moreover Lifchitz does not consider the attacks doable against an end-device
(without any physical intrusion on it).

Yang notes that it is possible to replay previous frames and to decrypt frames
if some security parameters are reused (namely frame counter, keytsream) [28].
According to the author, this can be done if the frame counter is reset or wraps
around. However the way to achieve the latter is not explained (in particular
regarding an OTAA end-device). Moreover Yang’s attacker targets the NS. It is
unclear why the server would accept frame replays (it seems that Yang confuses
the gateway and the NS). Similarly, the reuse of the keystream (allowing to
decrypt frames) is due to a reuse of the same frame counter (with unchanged
session keys). Yet, how to get the latter is not explained.

Data Integrity. Yang indicates that the lack of data integrity between the NS
and the AS allows an attacker to modify the plaintext by changing the encrypted
payload (due to the encryption in counter mode) [28].
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6 Responsible Disclosure

We have informed the LoRa Alliance of the vulnerabilities and the subsequent
attacks against LoRaWAN 1.0. Prior to our communication, the LoRa Alliance’s
technical committee decided to start the development of a new version (namely
1.1). As a result of our disclosure, some countermeasures we propose have been
included in the version 1.1 (turning the AppNonce parameter into a counter),
while some features similar to other countermeasures were already included in
the specification (binding the Join Request and the Join Accept messages, doing
a key confirmation between the end-device and the NS).

7 Conclusion

The extensive analysis we perform of the security protocol LoRaWAN 1.0 shows
that it suffers from several weaknesses. We describe precisely how these flaws can
be exploited to carry out attacks, including practical ones. These attacks lead to
a breach in data integrity, data confidentiality, and in the network availability.

The first type of attacks ends up with the end-device desynchronization from
the network (that is the end-device is “disconnected”). The second kind allows an
attacker to replay and to decrypt frames, therefore deceiving the NS (and the AS)
or the end-device (which may be an actuator). The aforementioned attacks, due
to the protocol flaws, do not lean on potential implementation or hardware bugs,
and are likely to be successful against any equipment implementing LoRaWAN
1.0.

We present new attacks and, contrary to previous works (to the best of
our knowledge), the attacks we describe target both types of equipment (end-
device or NS). Moreover our attacker needs only to act on the air interface (to
eavesdrop and send data), but she does not need to get a physical access to any
equipment (in particular the end-device). In addition, the success of the attacks
is independent from the means used to protect the secret values (e.g., using a
tamper resistant module such as a Secure Element).

In addition we provide practical recommendations allowing to thwart the
attacks we have found, while at the same time being compliant with the specifi-
cation, and keeping the interoperability between patched and unmodified equip-
ment. According to us, the recommended countermeasures can be implemented
in a straightforward manner.

Acknowledgment. The authors thank Sébastien Canard for valuable comments and
suggestions, and the anonymous reviewers for helpful comments. This article is based
upon work from COST Action IC1403 CRYPTACUS, supported by COST (European
Cooperation in Science and Technology).

A Duty Cycle

The ducty cyle is a mechanism used to regulate the occupation rate of the
radio channel by the end-device. Enforcing the duty cycle implies that an end-
device cannot repeatedly send a lot of messages. Hence one could claim that the
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duration of the attack is greater than the figure we provide. However, the duty
cycle is a regulation mechanism, not a security one (even if it could cleverly be
used as such). And not all countries compel to use such a mechanism. Also, an
end-device may well be certified (by the LoRa Alliance [13]) and yet not apply
the duty cycle. Indeed a LoRa Alliance certification document explicitly states
that “the LoRa Certification testing will not do any duty cycle testing” [8].

B Exhaustion Attack

Generating a parameter (DevNonce, AppNonce) with no repetition, and detecting
replays are some countermeasures one may think of. Yet, in LoRaWAN, size
does matter. Applying one of these methods while keeping at the same time the
original parameter size (for compliance reasons) may lead to an attack aiming at
exhausting all possible DevNonce or AppNonce values, hence forbidding the NS
or the end-device to start a new activation. Therefore this exhaustion attack,
targeting the end-device or the NS it connects to, may lead to an irrevocable
disconnection of the end-device.

B.1 Against the DevNonce Parameter

Core. If the end-device generates DevNonce values with no repetition or if the
NS keeps track of all DevNonce values it receives, it is possible to disconnect the
end-device once and for all.

Attack. Every time the end-device sends a Join Request message, the attacker
replies with a “false” Join Accept message. Hence the end-device generates a
new message once again. If unique DevNonce values are generated, all values
will be eventually used. If the NS keeps track of all DevNonce values, the NS
will refuse further Join Request messages once all possible DevNonce values have
been received, be these values pseudo-random or not.

Numerical Example. Let us assume that a key exchange is done in 5 s. If the
DevNonce values never repeat, the attack targeting the end-device is achieved in
216 × 5 s = 91 h.

Let us consider the case when the NS keeps track of all DevNonce values. If
the values are pseudo-random, the proportion effectively generated by the end-
device, hence received by the NS after � key exchanges, is p = 1 − exp(− �

216 ).
In order this proportion to be p = 99%, the number of key exchanges must be
at least � = −216 × ln(1 − p). This corresponds to � � 301,804 activations and
more than 17 days to exhaust almost all DevNonce values. Remind that such an
end-device is supposed to have an autonomous lifespan of up to ten years.

B.2 Against the AppNonce Parameter

Core. If the NS generates the AppNonce parameter so that it never repeats, or if
the end-device keeps track of all AppNonce values it receives, then it is possible
to disconnect the end-device once and for all.
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Attack. Let us consider the first case. The purpose is to compel the NS to use all
possible AppNonce values. The NS generates a Join Accept message (hence a new
AppNonce value) only if it receives a valid Join Request message. Therefore the
NS must accept as many Join Request messages as possible AppNonce values.
Since |DevNonce| < |AppNonce|, this is possible only if the NS does not keep
track of all DevNonce values it receives (which is likely its behaviour). Then the
attacker can use a circular list of Join Request messages. Such messages can be
collected using the technique described in Sect. 3.1, and then used in a similar
way as the one described in Sect. 3.1.

Note that if the NS uses the same pool of AppNonce values for all the end-
devices, this leads to the definitive disconnection of all these end-devices. In
such a case the attack may be distributed among several “false” end-devices
(controlled by the attacker; no duty cycle enforced).

Let us consider the second case. The purpose of this attack is to make the
end-device keep track, hence receive, all possible AppNonce values. This means
that the NS has to accept as many Join Request messages as possible AppNonce
values. Therefore the NS must not keep track of all the DevNonce values it
receives (since |DevNonce| < |AppNonce|). Yet this is not sufficient. Indeed the
end-device accepts as many Join Accept messages (hence AppNonce values) as
Join Request messages it sends. Therefore if the end-device generates DevNonce
values with no repetition, it limits the number of received AppNonce values.
Therefore this attack is possible if the NS does not keep track of all DevNonce
values, and if the end-device does not generate unique DevNonce values (which
is likely their basic behaviour).

Moreover the implementation of this second case implies to be able to com-
pel the end-device to send multiples Join Request messages while receiving the
corresponding Join Accept responses. We have not identified such means but
to be able to influence on the end-device power supply. Yet, if the end-device
is switched off, it may lose memory of the stored AppNonce values, which is
orthogonal to the goal of this attack.

Numerical Example. If the AppNonce values do not repeat, they are all produced
after 224 × 5 s = 2.66 years (using one end-device).

If the same pool of AppNonce values is used by the NS for all end-devices, the
attack may be distributed among several end-devices controlled by the attacker.
If 300 such end-devices are used in parallel, the attack is achieved in 3 days
approximately.

If the end-device keeps track of all AppNonce values, and if the values are
pseudo-random, p = 99% values are received by the end-device after � = −224 ×
ln(1 − p) � 77.26 × 106 activations. This means more than 12 years to exhaust
almost all AppNonce values.
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Abstract. In this paper we present three attacks against the predictable
solo mining (PSM) scheme. In PSM, miners receive shares for submit-
ting partially valid solutions to the current Proof of Work, adding those
shares to their account. When the pool successfully mines a block, the
block is awarded to the miner with the most shares, and the rewarded
miner “pays” an amount of shares equal to the next highest miner’s to
claim the block. Our attacks take advantage of the fact that the amount
of shares expended winning two different blocks, which have the same
monetary value, can vary by up to a factor of four. We show that by
strategically spreading its shares across multiple accounts, a malicious
miner can generate more revenue than a naive miner of the same compu-
tational power by only claiming blocks with a low share cost. By doing
so, a miner can reduce computational power it must expend to win a
block by more than 30%. Our other two attacks reduce the profitability
of victim miners in the pool by minimizing the gap between first and
second place when the victim wins a block. This drives up the average
amount of computational power the victim must contribute to receive a
reward. An adversary not concerned with cost can reduce the number of
shares a victim retains after winning a block by up to 26%. We also find
that an adversary with more computational power than their victim can
reduce the number of shares the victim retains after winning a block by
more than 8% with only limited impact on the adversary’s profitability.

1 Introduction

Cryptocurrency mining represents a several hundred million dollar a year indus-
try. As a point of reference, Bitcoin miners alone generated 563 million US
dollars worth of revenue in 2016 [10]. The increasing popularity and profitability
of cryptocurrency mining has resulted in an exponential increase in the total
computational power dedicated to the task. For example, the cryptocurrency
Ethereum has seen a more than 18 fold increase in overall network hashrate
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between September 2016 and September 2017 [5]. This increase in overall net-
work compute power means that individuals possessing small amounts of com-
putational resources find themselves unable to consistently generate mining rev-
enue. As a result, miners often opt to join mining pools where they aggregate
their computational resources in an effort to receive a consistent, reliable income
proportional to their contribution to the pool.

The payout scheme of a mining pool decides how to distribute the pool’s rev-
enue between individual miners. Ideally, a payout scheme should demonstrate
proportional fairness, where miners receive rewards proportional to their con-
tribution to the pool. Additionally, pool operators want a payout scheme that
is incentive compatible between themselves and their miners. Specifically, the
miner’s best strategy should be that they dedicate all of their computational
resources towards the pool, resulting in maximized revenue by both miner and
pool operator. With the number of different mining pools increasing, so too has
the number of different payout schemes that are implemented by these pools.
Many of these schemes are not vetted for incentive compatibility or fairness,
resulting in attacks against deployed payout schemes which break either propor-
tional fairness or incentive compatibility [7,15,17].

In this paper we present three attacks against a relatively new payout scheme,
the predictable solo mining (PSM) scheme. Unlike other payout schemes that
split each won block between all mining participants, PSM awards the entire
block to the miner that currently has saved the most “computational credit”
or shares. The winning miner’s shares are then adjusted to be the difference
between their current shares and the next highest miner’s shares. This payment
scheme results in a variance in the number of shares “needed” to win a block,
even when the pool’s computational power is held constant. Our attacks take
advantage of the fact that the amount of shares expended winning two different
blocks, which have the same monetary value, can vary by up to a factor of four.
By strategically adjusting our malicious miner’s behavior, we can exclusively
take advantage of highly efficient blocks, while at the same time forcing victims
to more frequently accept less efficient blocks. The attacks we develop present
evidence that this payout scheme is neither incentive compatible nor fair.

In our first attack, we show that by launching a Sybil attack against a pool
using PSM, a malicious miner can generate more revenue than an honest miner of
equivalent computational power. Additionally, we show that in an ecosystem of
PSM pools, the PSM payout scheme is not incentive compatible, and encourages
miners to spread computational resources between several pools to maximize
returns of their computational power investment. We find that an adversary can
trivially increase their profits by 10%, even if they just interact with a single
PSM pool, and can increase their profits by more than 30% when they apply
our strategy across multiple PSM pools. This means that miners are incentivized
to spread their computational resources across several PSM pools, making the
PSM mining scheme not incentive compatible between miner and pool operator.
Our second attack shows that miners can degrade the profitability of victim
miners by driving up the average amount of computational power a victim must



274 J. Holland et al.

invest to receive a reward at a financial cost to themselves. We demonstrate
than an adversary can reduce the number of shares retained by a victim after
winning a block by up to 26%, reducing the victim’s mining efficiency. Lastly,
our third attack utilizes an altered variant of our original Sybil attack to degrade
competitor profitability while at the same time maintaining the adversary’s.

The rest of this paper is laid out as follows: Sect. 2 discusses the process of
mining cryptocurrencies, mining pools, and payout schemes across mining pools;
Sect. 3 examines the attacks we have constructed and lays out how they work;
Sect. 4 discusses the simulator we built and the data we collected to test our var-
ious attacks; Sect. 5 examines our evaluation in carrying out our attacks; Sect. 6
dives into existing attacks against mining pools and where our contributions lie
and the current state of integrity in the cryptocurrency ecosystem; finally, Sect. 7
summarizes what we have discovered and presents potential future work.

2 Background

2.1 Mining Cryptocurrencies

Cryptocurrency mining is the process of adding transaction records to to the
currency’s public ledger of past transactions. This ledger of past transactions
is called the blockchain, and serves as a means to tracking valid transactions
in the network. In order to add transaction records to the blockchain, miners
must compute a resource-intensive proof-of-work (PoW) that serves to provide
security guarantees against double-spending and ensure that transactions are
tamper-resistant. In exchange for computing the PoW, miners are rewarded with
a number of units of currency to compensate the miner [1].

In order to control the rate at which records are added to the blockchain,
cryptocurrency networks can adjust the what is considered a valid solution to
the PoW in an effort to require miners to spend more computational cycles to
find one. The network difficulty is a relative measure of how difficult it is to
find a new block, where the difficulty is adjusted periodically as a function of
how much hashing power has been deployed by the network of all miners for a
cryptocurrency.

2.2 Mining Pools

As a result of the large number of miners working on the most profitable cryp-
tocurrencies, new miners often face a high barrier to entry due to the variability
associated with successfully computing solutions to PoW. Miners with small
hashrates relative to the largest miners have a lesser probability of mining a
block, which causes the variance in its overall profitability to increase. Addition-
ally, as the mining difficulty of the network increases so too does the variability,
meaning that individual miners can expect to mine for long periods without any
reward.

To mitigate this variability in rewards, cryptocurrency miners can join a
mining pool which aggregates computing power (i.e. collective hashing power),
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thus lessening the variability in finding blocks. Pools distribute the rewards of
successfully mined blocks to their member miners regardless of whether the
miner was the actual node to solve the PoW. This scheme allows smaller-scale
miners who would otherwise receive only sporadic rewards to instead receive a
steady, reliable income. In exchange, pool owners will collect a small fee from
each block found by the pool before distributing the remaining rewards to pool
participants.

Pools attempt to distribute rewards proportionally to each miner based on
their contribution to the pool’s overall hashrate. Therefore, pools need a secure
manner to estimate the computational power of each miner. To accomplish this,
miners occasionally submit shares, solutions to the PoW for the current block
that are at a lower difficulty than the network difficulty, to their pool. Miners find
shares in the process of hunting for a full solution to the PoW. The frequency and
difficulty of the shares submitted to the pool serves as a proxy for the miner’s
computational power. When a block is found, the pool uses a pre-determined
payout scheme that determines how to allocate the reward of the found block to
the miners in the pool based on submitted shares.

2.3 Mining Pool Payout Schemes

Various payout schemes have been used in mining pools, as explored by Rosen-
feld et al. [17]. The pay-per-last-N shares (PPLNS) scheme and predictable solo
mining (PSM) are two examples of current mining pool payout schemes. PPLNS
is used in the largest Ethereum mining pool [4], Ethermine.org, and PSM is
used in another major Ethereum mining pool [6], Ethpool.org, as well as Bit-
coin, Litecoin, ZCash, DogecCoin, ZClassic, Komodo, and Hush solo mining
pools [2,9,16,19]. The two schemes work as follows:

– PPLNS Scheme: This reward system is round based, where one round is an
arbitrary number of minutes. When a block is found by the pool, the block
reward is distributed according to the number and difficulty of the shares
submitted by each during the last hour. Payout takes place immediately after
the minimum payout amount of 1 coin has been reached.

– PSM Scheme: In this scheme, each submitted share will increase the credits
of the miner who submitted the share by the share difficulty. The miner who
accumulates the most credits receives the reward of the next mined block
and their credits will be reset to their current credits minus the credits of
the runner-up miner. Re-setting the credits of the miner who did receive the
block reward to 0 was abandoned as it did penalize miners having an above
average hashrate. Typically, a miner will receive a full block reward as soon
as their accumulated credits equals the current block difficulty (+/− pool
luck) [6].

3 Attacking PSM Pools

In a PSM pool, the entire block reward is awarded to the miner with the most
shares any time the pool finds a block, and the winner’s shares are then decreased

http://Ethermine.org
http://Ethpool.org
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by the number of shares held by the miner with the second-most shares. There-
fore, the “cost” of a block reward can be characterized by the number of shares
held by the second-place miner at the time the block is mined by the pool. Like-
wise, the efficiency of a miner can be characterized by the number of blocks won
per share contributed.

The average cost of a block in a PSM pool is equal to the network difficulty [6].
However, because the mining process is random, the time between mined blocks
in the pool varies. As a result, the number of shares that miners have when a
block is found (and by extension, the cost for the block reward) also varies.

Fig. 1. The average cost per block is equal to the network difficulty (approximately
2.3×1015 in Ethereum at the time of writing), but block costs are distributed randomly.

3.1 Minimizing the Cost of Winning Blocks

A key observation to make about a PSM pool is that a miner can never pay
more shares for a block than the miner current has in their account. Miners who
naively submit all found shares to a single account in a single PSM pool can
expect to see block costs drawn from the population seen in Fig. 1, resulting in
an average cost that is approximately equal to the network difficulty. However,
by refusing to place more shares into their account, a malicious miner will only
ever win the cheapest cheapest blocks produced by the pool. A miner who uses
this strategy can expect to pay less per block, on average, compared to a naive
miner with a comparable hash rate.

A miner who employs this strategy may have leftover computing power after
filling its account to the target number of shares. When the miner succeeds
at filling an account to the target number of shares, the miner in turn begins
crediting shares into a new account, filling it the target number. Our adversaries
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goal is to always have an account at the target number, meaning that if a block
would be claimed for that value or lower, they will always win it, paying exactly
their targeted cost.

A natural risk of the cost minimization strategy is that blocks at or bellow
the adversary’s particular cost threshold will be insufficiently frequent. If our
adversary can fill accounts to the target number of shares faster than blocks at
that cost appear then some of those accounts will be wasted. In other words,
although a miner may decrease their average cost per block, they may win fewer
total blocks if any of their hashing ability goes unused. Since these shares do not
directly contribute to the adversaries revenue, the adversary has no motivation
to generate them; we term such shares withheld shares.

In order to counteract this loss of throughput the adversary can adopt one
of two strategies. First, the adversary can increase the cost it is willing to pay
for blocks, reducing its efficiency, but increase its throughput. Alternatively, the
adversary can spread computational power across multiple pools, attempting
to claim inexpensive blocks from several different pools. As long as the miner
can submit shares to alternate pools, it may use the cost minimization strategy
without a loss in throughput. In order to show that the cost-minimization strat-
egy is advantageous for miners in practice, we also demonstrate that realistic
miners can achieve a significant reduction in per-block cost without withholding
too many shares. In particular, for a miner with access to N mining pools, the
maximum acceptable proportion of wasted shares is 1 − 1

N .
The total profit of a miner for a given time period can be calculated as:

Profit =
(Shares earned)

(Share cost per block)
× (Block reward)

Assuming that a miner is never idle (that is, that there are sufficient alternate
pools where leftover computing power can be used to earn shares), then an
individual miner’s shares are roughly proportional to the miner’s hashing power
(barring the effects of luck), which is assumed to be constant. The block reward
is likewise assumed to be constant, as is the case in Ethereum. Therefore, a
miner who lowers their average cost per block for a fixed time period can expect
a greater total profit during that time.

Mining pools profit from the pool fees that are deducted for blocks mined
by the pool, so the pool is solely interested in miners contributing as much
hashing power as possible to the pool. If miners can obtain a greater payout
by contributing certain shares to alternate pools, then the PSM payout model
cannot be incentive-compatible. Furthermore, since the pool cannot expect to
find blocks at an average cost that is less than the network difficulty, a single
miner who wins blocks at an average cost that is less than the network difficulty
necessarily increases the average cost for the other miners in the pool.

3.2 Increasing a Miner’s Block Costs by Donating Shares

Malicious miners in PSM pools can abuse the lack of integrity on share submis-
sions in order to inflate a target miner’s average block cost. Consider the “cost”
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of each block as the number of shares that the second place miner has when a
block is found. An adversary can submit shares under another miner’s public
key to the corresponding pool, inflating that miner’s share count. Our adversary
can increase a victim’s costs by artificially closing the gap between the victim
and the miner in second place at the time that the victim wins a block. By
consistently minimizing the difference between the target miner and this runner
up we can effectively define the cost of the block for the target, and increase the
target miner’s average block cost. Since the malicious miner is donating shares
to other miners, this attack will cost the adversary money, while also reducing
the victim’s profitability.

3.3 Multiple Account Idling to Drive Up Target Miner Block Cost

The previous attack is intuitive and effective, but a malicious miner can do
almost as well in driving up the cost of a target miner without donating all
of their work to other miners. Furthermore, we can do this even the pool has
implemented integrity-checking measures. This attack involves having at least
two accounts in the same pool and spreading one’s submitted shares among those
accounts. Consider the “cost” of a block being the number of shares the second
place miner has when a block is found. Increasing the average cost of a target
miner then involves minimizing this difference. By driving an attack account up
near the top of leaderboard of the pool and then “idling” at a specific rank,
the attack account can wait until the target is in range to attempt to position
himself in second by a minimum number of shares in the case of a target miner
victory.

While idling the attack account, the adversary can offloads extra shares to
an offload account, slowly driving that account up the leaderboard. Once the
target passes the attacker, the malicious miner then uses all shares it finds to
constantly minimize the gap between itself and the target. By riding the target
miner up the few spots left in the leaderboard, the attacker is able to minimize
the gap between it and the target at the time of the target miner’s victory, and
thus define the cost of the block for the target.

Once the target miner has won, on a successful attack the attacker should
be at the top of the leaderboard at the start of the new block. The attacking
account now uses all of its hashing power to win the first block it can. After the
attacker wins a block he switches to the offloading account, making it the new
attacker account. Due to the offloading of shares while “idling” the new attacking
account is in a much better position to get back to the “idling” state where the
attack on the target can be launched. By spreading out across multiple accounts
(ultimately as many as needed) the attacker is able to almost constantly be in
an “attacking” position given a higher hash rate than the target.
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4 Experimental Setup

4.1 Simulation Methodology

To evaluate our attacks against the integrity of PSM pools, we have built a
generic discrete mining pool simulator, which is publicly available at [11]. We
use random probabilistic distributions to model both the rounds in which blocks
are found as well as the shares distributed to each miner based on their total
hash rate, the average difficulty, and the number of shares we wish each miner to
receive per second. Most documented configurations of real-world mining pools
can be configured in our simulator by manipulating the following parameters:

– Number of Honest Miners: the number of miners which model generic,
non-malicious miners that contribute all shares available per round to their
own total.

– Number of Malicious Miners: the number of miners which behave mali-
ciously in one of several considerations, depending on the chosen attack. These
miners are global adversaries and can see all members of the mining pool,
including each miner’s current shares, and have the ability to make predic-
tions about the next round’s accumulated shares for a given miner. Malicious
miners can freely distribute their valid shares to other miners or completely
separate pools in any manner they see fit. Finally, malicious miners can make
accurate guesses on when the next block will occur, and use this informa-
tion to make informed decisions about what to do with their currently valid
shares.

– Miner hash rates: the distribution of hash rates both the honest and mali-
cious miners should pull from, which come from both real-world PPNS and
PSM pools. The collection of this data will be discussed in the next section,
Sect. 4.2.

– Number of block rounds to simulate: the number of blocks our simulator
should simulate being found by the combined power of the miners in the pool.
Note, there is not necessarily a 1-to-1 mapping of simulated rounds and rounds
where blocks are found; in general, there can be thousands of rounds for every
block round.

– Round length: the round length in simulated seconds that each round
should last. This value informs the calculation of the block rounds and the
share distribution to each miner per round by influencing the difficulty to find
blocks.

– Shares per second: the number of shares per second on average that a
miner should find. We use this value when calculating share distribution per
round for each miner.

– Network difficulty: the total difficulty of finding a block for the given pool,
which is pulled from the real-world pool being simulated. If we are simulating
a PSM pool, we pull this from the Ethpool API; otherwise, if it is a PPLNS
pool, we pull this from the Ethermine API.
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To represent realistic pools, we use known statistical distributions for mod-
eling both the rounds where blocks will be found and the distribution of shares
to miners per round. These distributions are calculated as follows:

– Finding Blocks: We model finding blocks using a geometric distribution
based on the configured round length, the total pool hash rate as given by
summing the hash rates of all honest and malicious miners in the pool, and the
average network difficulty of the Ethereum network measured as the number
of hashes required on average to find a block. We calculate the probability of
finding a block in a given round as:

P (finding block) =
round length× total pool hash rate

network difficulty
(1)

We then sample n samples from a geometric distribution of Bernoulli trials,
where n is the number of blocks we wish to find from the parameters above,
and the probability is calculated from Eq. 1.

– Distributing Shares to Miners: We model the distribution of shares per
round to each miner with a binomial distribution based on the miner’s hash
rate, the desired shares per second, and the configured round length. We first
calculate the difficulty of getting shares by Eq. 2.

D(shares) =
⌊
log2

miner hash rate

shares per second

⌋
(2)

Then, we get the actual probability of the miner finding a valid hash in one
second by Eq. 3 using the difficulty we just computed.

P (finding hashes) =
miner hash rate

2difficulty
(3)

Next, we derive the shares the miner should find each round by sampling from
a binomial distribution based on n trials, where n is the round length in sec-
onds, and the probability computed in Eq. 3 and multiplying it by 2difficulty,
where the difficulty comes from Eq. 2.

This generic simulator gives us a way to simulate the interactions of honest
and malicious miners over any arbitrary number of blocks as well as various pool
types. In the next section, we discuss our method to collect data from existing,
real-world pools to use as our miner hash rates. In the sections following, we
discuss how we have used our simulator to find novel attacks on PSM pools that
are not incentive-compatible and can be or may already be actively exploited on
the largest Ethereum mining pools.

4.2 Collecting Real-World Miner Data

Our simulator uses hash rates and difficulties collected from the Ethpool and
Ethermine APIs, where Ethpool is a PSM mining pool and Ethermine is a
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PPLNS mining pool. Using the miner addresses that Ethpool and Ethermine
use to pay miners, we were able to find miners that were paid by the mining
pools on the Ethereum block-chain via geth [8], the official Ethereum command-
line interface. The paid miners’ addresses were then queried against the Ethpool
and Ethermine APIs to locate active miners, their hash rates, and the difficulty
of the Ethereum network. At the time of writing, Ethpool has roughly 1,000
active miners, and Ethermine has approximately 40,000 active miners.

5 Evaluation

5.1 Cost Minimization Attack

32 simulations were run for pools of 100 miners for with hash rates drawn at
random from the real distribution of miners in Ethpool. In each case, the simu-
lation was allowed to run until the pool found 10000 blocks. In each run, a single
miner used the “cost minimization” strategy by mining until reaching a fixed
target (75% of the expected block cost) and then stopping. The remainder of the
miners naively contributed every share found immediately. Miners whose hash
rates were so small as to never win a block for the duration of the simulation
are omitted. Results are shown in Fig. 2.

Fig. 2. Average cost per block as a function of miner hash capacity, comparing naive
(blue) and malicious (red) miners. (Color figure online)

Figure 2 shows that the PSM payout scheme already gives an advantage
to miners with lower hash rates. The average block cost for an honest miner
increases proportionally with the logarithm of the miner’s hash rate. But even
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many lower-than-average miners can expect to decrease their average cost per
block with the cost minimization attack, compared to honest miners with the
same hash rate. Unlike normal PSM schemes where miners with higher hash
rates are less efficient, our malicious miner becomes more efficient as hash rate
grows. This is a result of the miner being able to more rapidly fill accounts to the
target share value, allowing the miner to take advantage of several inexpensive
blocks in short succession.

A second set of simulations was run to demonstrate that this attack is prac-
tical at a significant advantage for a typical miner without reducing throughput,
assuming access to only a small number of alternate pools. Each simulation from
this set used a fixed set of 100 miners with 1 malicious and the remainder honest.
The malicious miner’s hash rate for these simulations was fixed at the median
hash rate from Ethpool, to represent a typical miner. The malicious miner’s tar-
get block cost was varied across simulations to observe the relationship between
the average block cost and the proportion of shares not submitted to the pool.

Fig. 3. Average block cost as a function of shares not contributed to the pool for a
median Ethpool miner (1.3 GH/s) with network difficulty 2.3 × 1015. A naive miner
would have an average block cost equal to the network difficulty in PSM pools.

Figure 3 shows that a typical miner can expect to reduce their average cost
per block from approximately 2.1×1015 hashes to 1.8×1015 hashes by withhold-
ing only 50% of its shares. Assuming the existence of only a single alternative
mining pool of comparable size, this malicious miner can achieve this reduction
without any wasted hashing power, by contributing the leftover hashing power
to the alternate pool.
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5.2 Malicious Donation Attack

An antagonistic miner can inflate the cost of a victim miner by allocating shares
to miners immediately below the victim in shares when the victim is about to win
a block in the PSM pool. As the victim miner increases its shares, the malicious
miner can give its own shares to the runner-up miner in order to decrease the
difference in shares between the victim and the runner-up to 1. This ensures that
the victim almost always has no shares to put towards the next block. Under
this scenario, the attacker saves no shares for itself and gives shares to any miner
so long as it closes the gap between the victim – when the victim is about to
win a block – and the next miner.

Fig. 4. Average shares remaining after winning a block without (left) and with (right)
a scorched-earth attacker

Figure 4 shows that by using the above strategy, an attacker can consistently
force a victim to spend all shares available to win a block, or to put it differently
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the gap between the victim and the second place miner is always a difference of 1
share. The amount of shares left over after winning a block generally follows an
exponential increase with respect to hash rate. The aforementioned figure shows
that the victim miner’s left-over shares decrease by roughly 26% in the presence
of this attack, given this distribution of 100 hash rates. Over time this decrease
in the amount of shares available for the next block will ultimately increase the
average block cost required for the victim to obtain a block. This assumes that
the malicious miner values punishing the victim more than making money, so
this study disregards the performance of the attacker under this scenario.

5.3 Idling Attack

A malicious miner can increase the average block cost of a target miner in PSM
mining pools even if the pool has integrity measures implemented, provided the
attacking miner has a sufficiently large hash rate in comparison with the target.
By situating multiple accounts strategically in the pool, the malicious miner can
be in second place almost every time the target miner is close to winning a block.
This in turn means that the adversary can ensure that the victim miner always
has their shares reset to zero after winning a block.

Table 1. The average decrease in a victim’s gap when it wins a block by a computa-
tionally stronger adversary launching our “idling” attack.

Attacker/target ratio % Decrease in average
winning difference

1.2 .03

4.2 5.02

7.5 6.31

9.0 5.6

14.2 8.36

Table 1 shows that by using this attack a miner can cause the target to have a
smaller average number of leftover shares after winning a block. The data for this
table was gathered by running a control group of 100 miner’s for 10,000 blocks,
10 times. Afterwards, we ran the same group of 100 miners, taking control of
the miner with the highest hashrate in the pool, making it our attacker. Each
attack scenario was then ran 10 times for 10,000 blocks, and then averaged
out over the different runs. This results in raising the target miner’s average
block cost, and therefore reduces the miner’s profits. The only cost incurred
by the malicious miner is when the malicious miner accidentally exceeds the
victim’s shares essentially attack themselves. Our reported results are with a
hand optimized algorithm. We believe that with some machine optimization the
attacker could further drive up the target’s average block cost at a very small
overall cost to himself.
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6 Related Work

Other attacks have been proposed against different mining pool payout schemes
which break incentive compatibility and fairness. Rosenfeld et al.’s work [17]
examines several payout schemes including Pay-Per-Share (PPS) and Pay-Per-
Last-N-Shares (PPLNS), exploring their vulnerability to pool-hopping attacks. In
a pool hopping attack an adversarial miner jumps between several pools hoping
to capitalize on instances where any one of those pools successfully mines a block
earlier than expected. This attack has a similar end goal to our cost minimizing
attack in Sect. 3.1, however our attack can achieve greater efficiency if multiple
pools exist to spread attacker resources across, it can still provide the adversary
gains even if only one pool exists.

Concurrent work recently published by Zamyatin et al. [20] also examined
PSM pools1. Several key differences exist between our work and Zamyatin et al.’s.
First, our attacks utilize different properties than Zamyatin’s work. Our cost-
based attack described in Sect. 3.1 successfully wins blocks at a minimum cost,
rather than building up a large gap between the malicious miner and the second-
place miner. This allows our attacks to be more efficient than Zamyatin’s in terms
of average work performed per winning block by between 10% to 30%. Increasing
other miner’s block costs via multiple idling accounts, presented in Sect. 3.3, is
a new attack not proposed by Zamyatin and does not require donating shares
to other miners not controlled by the adversary. As a result, our idling attack,
unlike their tactical donation attack, can not be trivially defeated by adding
authentication to the mining pool. Lastly, in Zamyatin. et al.’s work, the actual
attack simulations were conducted with a mining pool consisting of only two
miners, a high hashrate and low hashrate miner. As described in Sect. 4, our work
evaluates attacks with realistic simulations based on representative population
of miners and hashrates taken the Ethpool API. Our more accurate model better
captures the dynamics of what an adversary needs to accomplish to realize the
attacks presented in our work.

Besides these related attacks, a wide body of literature on payout schemes
exists. Many related papers, for example work by Lewenberg et al. [14] and
Schrijvers et al. [18], examine cryptocurrency mining pools from a game-theoretic
perspective. These works often focus on theoretical constructions of mining pools
involving limited players. To our knowledge, no such game theoretic analysis has
been conducted specifically on PSM pools. Other studied attacks include denial-
of-service attacks [12,13] and withholding attacks [3,7,15], where malicious pools
attack rival pools and damage their reward by withholding valid blocks.

7 Conclusions

In this paper we have presented three separate attacks against the predictable
solo mining scheme. The variability in the cost of the blocks in this scheme leave
it vulnerable to a malicious miner strategically gaining an advantage. First, we
1 In Zamyatin’s work, these pools were called queue-based pools.
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showed that a miner that strategically spreads out its shares across multiple
accounts can generate more revenue than a naive miner with the same computa-
tional power by only claiming blocks below the average share cost. The second
attack presented shows that an adversary, not concerned with cost, can reduce
the shares a victim retains after winning a block, reducing their profitability.
Our third attack on the PSM scheme shows that even on pools with integrity
implemented, an adversary can reduce the number of shares a victim retains lim-
ited impact to his overall profitability. In conclusion, we recommend the PSM
scheme not be implemented in any new pools and any pools currently using the
scheme change to another, more incentive compatible and fair, payout scheme.
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Abstract. Bit-decomposition is a powerful tool which can be used to
design constant round protocols for bit-oriented multiparty computation
(MPC) problems, such as comparison and Hamming weight computa-
tion. However, protocols that involve bit-decomposition are expensive in
terms of performance. In this paper, we introduce a set of protocols for
distributed exponentiation without bit-decomposition. We improve upon
the current state-of-the-art by Ning and Xu [1,2], in terms of round and
multiplicative complexity. We consider different cases where the inputs
are either private or public and present privacy-preserving protocols for
each case. Our protocols offer perfect security against passive and active
adversaries and have constant multiplicative and round complexity, for
any fixed number of parties. Furthermore, we showcase how these primi-
tives can be used, for instance, to perform secure distributed decryption
for some public key schemes, that are based on modular exponentiation.

1 Introduction

The use of Internet connected devices has become essential in people’s daily lives.
However, serious privacy concerns have been raised as more and more sensitive
private information is transmitted (over the Internet), processed and stored in
third party databases or the cloud. This movement of information has been
fostered by decades of research in cryptography, helping to develop tools and
techniques to perform computational tasks in a privacy-friendly manner. Secure
multiparty computation (MPC) is one such tool that allows the computation of
functions on private inputs by mutually non-trusted parties. The initial tech-
niques and problems proposed in the seventies and eighties have indeed evolved
into a growing field with not only theoretical results but into the implementa-
tion of practical applications (e.g., [3–5]). More recently, thanks to the advent of
frameworks such as SPDZ [6] or MASCOT [7], it is possible to implement any
functionality in a relatively efficient fashion.

One of the basic and commonplace problems in applied MPC is distributed
modular exponentiation. Classical approaches for distributed modular exponen-
tiation over arithmetic circuits rely on bit-decomposition, which was first pro-
posed by Damg̊ard et al. in [8]. However, bit-decomposition is an expensive
c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 291–309, 2018.
https://doi.org/10.1007/978-3-662-58387-6_16
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procedure in terms of performance. Recently, Ning and Xu proposed protocols
for modular reduction and exponentiation without bit-decomposition in [1,2].
In this paper, we build upon [1,2], and present mechanisms to compute modu-
lar exponentiation in a simpler and practically efficient fashion. Our approach
does not require exhaustive parallelization and has a constant round complex-
ity. Finally, we show how our approach can be used in, for example, distributed
decryption of public key protocols.

Bit-Decomposition. The process of decomposing secretly held finite field ele-
ments into their bit-representations for exponentiation was originally introduced
by Damg̊ard et al. [8]. The same decomposition mechanism was then used not
only to construct secure exponentiation mechanisms, but also as a basic building
block for (in)equality tests and modular operations [9]. Although highly prac-
tical, the cost of operating bitwise on arithmetic circuits cannot be dismissed.
An extended polynomial representation, such as a bit extension, implies a large
bound on the amount of work i.e. multiplication performed.

It can be argued that in many cases involving bit-decomposition, the opera-
tions are not co-dependent and hence can be parallelized (low round complexity).
Even if we put aside the increase in transmission costs due to increased number
of shares to be transmitted, the fact that the total amount of work (amount of
multiplications) depends on the input size, cannot be addressed only by paral-
lelization. For example, 4096 concurrent multiplications would require a batching
structure composed of several threads to compute the multiplications not only in
a single round, but in an equivalent amount of CPU time. This would necessitate
the need for developing practically efficient mechanisms for modular operations,
such as exponentiation, without relying on bit-decomposition.

Related Work. As previously mentioned, initial alternatives focus on bit-
decomposition. Namely, the work introduced by Damg̊ard et al. [8], that offered
security against both active and passive adversaries for all three cases that we
consider in this paper. However, for the case concerning the publicly available
exponent, certain adaptations are needed to achieve security against malicious
adversaries. It also requires the production of additional randomness r and ra,
where a is the public exponent, which would require additional communication
rounds. Our protocol gets rid of such requirements and offers security against
malicious adversaries.

The other two exponentiation protocols introduced in [8] make use of bit-
decomposition, which has the aforementioned performance drawbacks. None of
our protocols require bitwise operations, and optimizes the process in a simple
straight-forward fashion. The main advantage of our approach is the reduction
of non-linear operations which are, in general terms, expensive [10], as well as
the decoupling the protocol complexity from the input size.

Recently, Ning and Xu [1,2], introduced several protocols aimed to remove
the necessity of decomposing secret inputs into their bit representations. They
achieve this by using a series of constructions based on bitwise operations over
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some randomness. Their work achieves constant round, with a linear asymptotic
bound on the amount of work (on the size of input). We not only simplify their
process, but also reduce round complexity making use of constant amount of
multiplications.

On a similar line, Grassi et al. introduced a mechanism to perform secure
exponentiation over a publicly available base to a secret shared exponent in [11].
Their protocol was used in the context of the implementation of symmetric key
primitives. Their protocol, however, was designed such that the output of the
protocol is disclosed to the computational parties every time. Our protocols, on
the other hand, allow the parties to keep the output secret and produce the
output only when needed.

Note that, although the input size is not a factor in any of our protocols’
complexity, this is not the case for the number of parties performing the compu-
tation. However, it is safe to assume this number remains unaltered throughout
common practical applications giving room to specialized frameworks for a con-
stant number of parties; see, e.g., [3,5,12,13]. This is not the case for the input
size, given their variability in practical applications.

Our Contribution. We propose distributed modular exponentiation protocols
without bit-decomposition, for the following configurations:

– Public Base: the base is public and the exponent is secret;
– Public Exponent: the base is private and the exponent is public; and
– Private Exponentiation: both the base and the exponent are privately

held.

Note that, since the output of these functionalities would remain secret, our
protocols can be used as sub-routines for more complex functionalities. This is
indeed congruent with the literature on this topic e.g., [1,2], without prejudice to
its security under composition [14]. Our protocols outperform their most recent
counterparts in terms of round complexity and amount of work, which in our
case are both constant for a fixed number of parties. Table 1 contrasts our results
with the results by Ning and Xu [2]. Note that in this context l stands for the
bit-size of the input and n for the number of parties.

As an application, we explore the case where decryption of common public
key encryption schemes (such as RSA [15] and El-Gammal [16]) performed over
MPC. The scenario that we consider is as follows: a user encrypts a message
using a public key pk, corresponding to a private key sk, such that pk is publicly
available and sk is secretly shared among several parties. An MPC decryption
would not only facilitate what is commonly called threshold decryption, a pow-
erful technique used for example in voting systems [17], but also transforms any
ciphertext into secretly held shares of the message.

Outline. This work is organized as follows: We introduce the necessary back-
ground material in Sect. 2. We then give a detailed description of our results on
exponentiation in Sect. 3. We provide an overview on the usage of our protocols
for public key decryption in Sect. 4. Section 5 concludes the paper.
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Table 1. Round/multiplication complexity for modular exponentiation without bit-
decomposition.

Protocol Semi-honest [2] Semi-honest (this work)

Rounds Multiplications Rounds Multiplications

exp([b], a) 5 33 (10 · n + 3) 8 8 (4 + 2 · �log(n)�)
exp(b, [a]) N/A N/A 3 3 (1 + �log(n)�)
exp([b], [a]) 20 157 · l + 7 · l + 7 + 5 13 13 (7 + 3 · �log(n)�)

2 Preliminaries

2.1 Notation

We follow the square notation introduced in [18]. Let [x] denote a secretly shared
input x. Let P be the set of n parties, Pi be the i-th party for i = 1, · · · , n
and q be a large prime number. Let Z

∗
q be the multiplicative group Zq − {0}.

To distinguish secretly shared elements of Zq from that of Z
∗
q , we use [x]q for

x ∈ Zq and [x]q∗ for x ∈ Z
∗
q . Additionally, consider p = q − 1, such that we can

define Zp and Z
∗
p accordingly. Furthermore, our protocols make use of the infix

notation, to make calls to the secure functionality e.g. [z] ← [x] + [y]. Note that
in practice, basic operations are carried out by the underlying MPC protocol
e.g., [6,7,13,19,20]. Our exponentiation protocols do not make direct use of any
specific representation for signed values. However, other protocols such as the
modular operation used in later sections may need such support definitions.

To denote a shared value x we use [x] ← Share(x). To denote open or
reconstruct the shared value we use x ← Open([x]). Note that for simplicity, we
assume, in this work, that the inputs have been secretly shared using Shamir’s
Secret Sharing Scheme [21] which uses public constants αi (coefficients of a
Lagrange polynomial) in the reconstruction of the secret. To be specific, x ←
Open([x]) is computed as x =

∑|P |
i=1 αi · xi, where xi is the i-th party’s share.

Fan-in multiplication of shared secrets resulting in the sharing of their product
[c] ← Product([a], [b]). Similarly inversion (in the considered finite field) of a
shared value resulting in the sharing of the inverse value [x−1] ← Inverse([x]).

2.2 Complexity Metrics

Typically, complexity is measured by the number of non-concurrent operations
executed by the parties in charge of executing the functionality. We follow the
relevant literature in the field, and differentiate between the operations that
require any level of communication exchange in between the participants and
those operations that can be executed locally. Indeed, following [10], we consider
that the linear operations such as additions or scalar multiplications to be of
negligible cost, given they do not require any message exchange and hence, are
free. On the other hand, non-linear operations, such as multiplications, require



Practically Efficient Secure Distributed Exponentiation 295

such exchanges and are substantially more expensive. Furthermore, we define
round complexity as the number of sequential (non-parallelizable) invocations
to functionality that requires at least one communication round i.e. the multi-
plicative depth of an arithmetic circuit. However, this is not the only metric that
we use, the number of multiplications and equivalent operations, also referred
to as the amount of work holds great importance as well, given that it would
determine the volume of the information exchanged.

2.3 Secure Multiparty Computation

Secure multi-party computation lets us compute any functionality that can be
composed into either an arithmetic or boolean circuit, among any number of
mutually distrustful parties. Moreover, notable results known as BGW [19] and
CCD [22] prove that any functionality can be calculated with perfect security,
as long as a majority of players remained honest for the semi-honest case, and
two thirds for the malicious case, thanks to the use of Verifiable Secret Sharing
(VSS).

More recent results have focus on offering security against malicious adver-
saries in the presence of dishonest majorities e.g., [6,7,20], at the cost of an offline
phase that provides cryptographic security. Furthermore, sub-protocols imple-
menting functions can be securely composed thanks to their Universal Com-
posability (UC) security [14]. Indeed, we make use of well known mechanisms
designed to work on MPC settings, namely the following:

Secure Comparison. We specifically refer to equality and inequality tests for inte-
ger ring elements. Several protocols for secure comparison have been introduced
by the literature, designed under the same model used by this paper achieving
different security guarantees i.e. perfect security [8] or statistical security [23,24].
Such functionality can be further defined as follows:

[z] ← Equal([x], [y]) ([x] ?= [y]) where [z] ∈ {0, 1}, (1)

[z] ← Compare([y], [y]) ([x]
?
< [y]) where [z] ∈ {0, 1}. (2)

Randomization. Protocols for efficient random number generation have been
introduced by [25]. This work, commonly referred to as PRNG (Pseudo-Random
Number Generation) introduced techniques to generate secret shared random-
ness at a negligible cost i.e., no communication cost associated to it. Furthermore
all randomness can be easily pre-computed before the execution of any of our
protocols. This includes the generation of the multiplication triples (see [6,7])
and any other process randomness needed across the underlying MPC protocols
and our results.

Security. Security of MPC is typically defined following the Universal Compos-
ability (UC) framework [14,26], which is a general framework allowing arbitrary
MPC protocols to be represented and analyzed. Informally speaking, in the UC
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framework, for every real protocol an ideal functionality is first defined that may
include a trusted third party which securely interacts with all involved players,
performs computations on the players’ private inputs and distributes the output
to the parties. That is, for every real world protocol an ideal functionality F

must be defined, which takes all the inputs from the players and performs the
desired computation in an ideal way. Then the real protocol is said to be secure if
whatever can be done in the real world by an adversary can also be simulated in
the ideal world by an (ideal-world) simulator. Hence, UC security of a protocol
ensures that the security provided by the ideal functionality is not stronger than
that provided by the real protocol. This is done by introducing an environment
Z. The environment Z chooses all the inputs to every involved party, receives all
outputs, and communicates freely with the adversary A throughout the entire
protocol run. Basically, in the ideal case, adversary A is replaced by a simulator
S, which internally simulates A and acts as a buffer between Z and F.

The ideal functionality for MPC is modeled by arithmetic blackbox
(ABB) [18]. ABB allows the players (or users) to provide input/output val-
ues that are to be secret shared and that performs arithmetic operations on the
values of the secret shares over a finite field, say Zq. It can be thought of as a
generic procedure for secure computation. Any party (or parties) can send its
(or their) private input to ABB and ask it to compute any computable function.
The computation results are stored in the internal state of ABB so that they
can be used in the subsequent computations. Stored values can only be made
public if majority of the players agree on it. ABB provides us with abstraction
of the details of MPC operations and of secret sharing. The ABB functionality
is defined as follows.

Definition 1 (ABB Functionality FABB). The ideal functionality FABB for
MPC, where ν ∈ {q, q − 1}, is defined as follows:

– Input: Receive a value x ∈ Zν or x from some party and store x.
– Share(x): Create a share [x] of x.
– Product([x], [y]): Compute z = x · y and store [z].
– Compare([x], [y]): Compare x and y, and return 0 if x < y and 1 otherwise.
– Equal([x], [y]): Check if x = y; return 1 if x = y, 0 otherwise.
– sRand(Zν): Sample r

R←− Zν and store [r].
– Open([x]): Send the value x to all players.

Addition and scalar multiplication are denoted by their corresponding conven-
tional symbols + and ·.
Definition 2 (UC-security [14]). A real protocol π is UC-secure if, for all
adversaries A, there exists a simulator S for which no environment Z can dis-
tinguish with a non-negligible probability if it is interacting with A and players
running π or S and players using the ideal functionality F.

As we shall see later, our protocols for exponentiation offer perfect security
against active and passive adversaries.
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2.4 Exponentiation Based on Bit-Decomposition

Currently, the literature offers mechanisms to solve exponentiation, using bit-
wise decomposition techniques. Initially, work introduced by Damg̊ard et al. [8],
showed how to achieve this with perfect security. However, as mentioned before,
the cost related to the bit-decomposition of the inputs is relatively high, and
has been seen as restrictive by other works in the field e.g. [2,24]. For instance,
bit-decomposition protocols, such as the one described by [8], require bit-wise
addition. A naive implementation of a carry for the addition would require at
least as many sequential multiplications as the bit-wise input size. The costs
related to the random bit generation have to be considered as well. In this section,
we give a more detailed view and explanation on the Damg̊ard et al. methods for
exponentiation. The protocols follow the same notation as the rest of the paper.
Furthermore, we assume the existence of the function [x]bits ← bd([x]), which
receives a secret shared input [x] and return its shared bit-decomposition [x]bits.

Exponentiation Protocol to a Public Value: This is achieved by executing
a fan-in multiplication in Zq as expressed by the following equation

[ba] ← Producta
i=1([b]). (3)

This naive approach provides perfect security for both passive and malicious
cases. However, the process has its own drawback in complexity terms, given that
it directly depends on a i.e. O(a), in case no optimized implementation of the
fan-in operation is used. Damg̊ard et al. [8] introduced a more efficient procedure
that can be executed in constant time. Protocol 1 shows its implementation.

Protocol 1. Secure Damg̊ard et al. exp([b],a) operation to a public
exponent
Input: secretly shared base [b] in Zq∗ , publicly available exponent a in Zp

Output: secret shared [ba]
1 [r], [ra] ← sRand(Z∗

q , a);
2 [c] ← Product([b], [r]);
3 c ← Open([c]);
4 [ba] ← (ca) · Inverse([ra]);

As its naive counterpart, it provides security against passive adversaries, but
requires extra processing for the active case. Basically, during the generation of
[r] and [ra] an adversary could maliciously select the share corresponding to [ra].
We invite the reader to revise [8] to explore the malicious case.

Exponentiation Protocol with a Public Base: To achieve this, the authors
propose securely bit-decomposing the inputs (bd). In this case, the protocol
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decomposes the secretly shared exponent into bits, and uses fan-in multiplica-
tions of a specially crafted term to achieve the desired behavior. On complexity,
this process delivers the results in a constant round complexity for fixed input
sizes, but it linearly grows with the input size. Protocol 2 shows its implementa-
tion.

Protocol 2. Secure exp(b,[a]) operation on a public base
Input: publicly available base b in Zq,secretly shared exponent [a] in Zp, size of

the inputs in bits l
Output: secret shared [ba]

1 [a]bits ← bd([a]); // ([a0], [a1], ..., [al−1]) s.t. ai ∈ {0, 1}
2 [ba] ← Productl−1

i=0([ai] · b2i + [1] − [ai]);

Privacy Preserving Exponentiation: This case considers that both, base
and exponent are secretly held, can be achieved in a similar fashion. In this case,
a secure exp([b],a) should be used instead of the plain text base exponentiation
step, as shown by Protocol 3.

On Extending Exponentiation for Zq : Damg̊ard et al. [8] presented an easy
to implement technique to avoid revealing the secret [b] when it is equal to 0,
and hence extending this functionality to Zq instead of Z

∗
q . This is achieved

by simply adding the result of the following equality test [b] ?= [0] to [b] such
that b + ([b] ?= [0]), and then subtracting the equality test at the end of the
computation. This can be achieved in log(l) rounds. This way the secret [b]
is not disclosed. The same can be applied to Protocols 1 and 3, to preserve the
privacy of the inputs after being multiplicatively masked, hence we do not revisit
this issue.

3 Secure Distributed Exponentiation

In this section, we explore different protocols for exponentiation based on pub-
licly available and privately held inputs of any set of parties. Note that the
protocols are designed to work for the case when the base b is secret shared in
Zq and its exponent a in Z

∗
p.

3.1 Public Base Exponentiation

Intuitively, this is the case where a publicly available base b is raised to a secretly
shared exponent [a]. Its ideal functionality is defined as follows:

Definition 3. Let base b and exponent a be elements of Zq and Z∗p, respectively,
and let b be publicly available and a be privately preserved that is hosted by any
subset of honest parties. The ideal functionality Fexp(b,[a]) takes b and the secret
[a]p∗ as input and returns [ba] as output.
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Protocol 3. Secure exp([b],[a]) operation
Input: secretly shared base [b] in Zq∗ ,secretly shared exponent [a] in Zp, size of

the inputs in bits l
Output: secret shared [ba]

1 [a]bits ← bd([a]); // ([a0], [a1], ..., [al−1]) s.t. ai ∈ {0, 1}
2 [ba] ← Productl−1

i=0(Product([ai], exp([b], 2
i)) + [1] − [ai]);

Protocol 4 shows how this functionality can be achieved, for the semi-honest
case. We further upgrade the construction in Protocol 4 to provide perfect secu-
rity against active adversaries later in this section. Note that, without loss
of generality, we assume the inputs have been secretly shared, using Shamir’s
scheme [21], where αi are the publicly available interpolation coefficients as it
was previously described.

Protocol 4. Secure exp(b,[a]) operation with public base
Input: publicly available base b in Zq, secret shared exponent [a] in Zp∗

Output: secret shared [ba]
1 each party Pi locally computes ci ← bαi·ai ;
2 [ci]q ← Share(ci);

3 [ba]q ← Product
|P |
i=1([ci]q);

Protocol 4 returns b[a]p∗ by directly reconstructing the shares of [a]p∗ on the
exponent. This requires every party Pi to multiply locally its share ai by its
corresponding αi constant. Let us analyze Shamir’s scheme, for instance: parties
should make use of the Lagrange interpolation multipliers (which are publicly
held constants). Note that for the case of additive secret sharing, it suffices for the
parties to apply the share of the exponent. Parties then proceed to calculated ci

locally, secret share it and multiply the resulting shares, finally obtaining b
[a]
p∗ as a

result. This is a standard and common technique used for threshold decryption,
for instance in voting systems e.g., [27], or more recently by some symmetric key
techniques over MPC [11].

However, one issue becomes immediately obvious - the protocol, as described,
cannot offer security for the malicious case. Protocol 4 description is secure
against passive adversaries, that is because each party can choose its share as
ci. The protocol, nonetheless can be extended to provide malicious security at
the cost of adding communication rounds.

Malicious Case. Let us first explore the basic naive approach to achieve mali-
cious security: First, we calculate the result provided by the exp(b, [a]p∗) func-
tionality, and then we compute exp(b, [a′]p∗) for [a′]p∗ which is the product of



300 A. Aly et al.

Protocol 5. Secure exp(b,[a]) operation with public base against mali-
cious adversaries
Input: publicly available base b in Zq, secret shared exponent [a] in Zp∗

Output: secret shared [ba]
1 [ba]q ← exp(b, [a]p∗);
2 [r]p∗ ← sRand(Z∗

p);
3 [a′]p∗ ← Product([r]p∗ , [a]p∗);

4 [ba′
]p∗ ← exp(b, [a′]p∗);

5 r ← Open([r]p∗);
6 [r′]q ← sRand(Z∗

q);

7 [v]q ← Product([r′], exp([ba]q, r) − [ba′
]q) + [1]; // correct if [v] == 1

8 vq ← Open([v]q);

[a]p∗ with some randomness [r]p∗ . We then just verify both calculated inputs are
equal. We show how to achieve this in Protocol 5.

A similar process can be implemented by means of performing additional
calls to any semi-honest exp(b, [a]p∗) functionality, including ours. To achieve
this we take a somewhat different approach as shown in Protocol 6, in the sense
that we sacrifice randomness, and use b as the base of every call to exp(b, [a]p∗),
so that we can arithmetically operate over the exponents for verification.

Protocol 6. Secure exp+(b,[a]) operation with public base against mali-
cious adversaries
Input: publicly available base b in Zq, secret shared exponent [a] in Zp∗

Output: secret shared [ba]
1 [ba]q ← exp(b, [a]);
2 [r]p∗ ← sRand(Z∗

p);
3 [a′]p∗ ← Product([a]p∗ , [r]p∗ − [1]);

4 [ba′
]q ← exp(b, [a′]p∗);

5 [w]p∗ ← Product([a]p∗ , [r]p∗);
6 w ← Open([w]p∗);
7 [r′]q ← sRand(Z∗

q);

8 [v]q ← Product([r′]q, Product(Product([ba]q, [b
a′

]q), b
−w) − [1]) + [1]; //

correct if [v] == 1
9 v ← Open([v]q);

Given that all factors being multiplied are powers of the same base b, Proto-
col 6 then performs the following operation: [a]p∗ +Product([a]p∗ , [r]p∗ −[1])−[w].
This in turn, translates to [a]p∗ +Product([a]p∗ , [r]p∗ −[1])−Product([a]p∗ , [r]p∗).
Therefore we can correctly validate if the intermediate calls to the exp(b, [a]p∗)
functionalities are correct. Succinctly speaking [v] would be 1 if, and only if
integrity was maintained. Note that no other information is leaked by means
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of applying [r′]q to the output, this is also true for Protocol 5. Note that the
protocol keeps the basic structure of its naive counterpart.

Security. Let πexp(b,[a]) be the Protocol 6. Then the ideal functionality
Fexp(b,[a]) for the procedure exp(b,[a]) exactly FABB extended with exp(r, [e]).
This means that πexp(b,[a]) uses only the MPC operations provided by FABB.
Therefore, it is straightforward to see that πexp(b,[a]) is secure. Formally, we have
the following.

Theorem 1. The protocol πexp(b,[a]) securely implements Fexp(b,[a]) in the
FABB framework.

Proof. Since Fexp(b,[a]) is the same as FABB, the security of πexp(b,[a]) inherits
the security of the MPC operations in FABB. �

3.2 Public Exponent Case

We now present our constant time secure exponentiation protocol for the case
when the base b is privately held and the exponent a is public. The results
on this section make use of the exp(b, [a]p∗) functionality introduced by this
work, however, any other mechanism that implement such functionality could
be used instead. Furthermore, we assume exp(b, [a]p∗) can be realized providing
perfect security against semi-honest and malicious adversaries. This case ideal
functionality can be defined as follows:

Definition 4. Let base b and exponent a be elements of Zq where [b] is privately
preserved, a is publicly available and hosted by any subset of honest parties. The
ideal functionality Fexp([b],a) retrieves the secret b and [a] and returns to the
adversary [ba].

We show how to implement our exp([b], a) functionality in Protocol 7, note
that it directly provides security against passive and active adversaries.

Protocol 7. Secure exp([b],a) operation with public exponent
Input: secret shared base [b] in Zq, public available exponent a in Zp∗

Output: secret shared [ba]
1 g ← getGenerator(Zq); [r′]p∗ ← sRand(Zp∗);

2 [r̄]q ← exp(g, [r′]p∗); // gr′

3 [c]q ← Product([r̄]q, [b]q);
4 c ← Open([c]q);

5 c′ ← ca; // c′ = g[r
′]·a · [b]a

6 [e]p∗ ← −a · [r′]p∗ ;
7 [ba]q ← c′ · exp(g, [e]p∗); // c′ · re

The protocol itself works as follows: Parties agree on a unique generator g
and some secret shared randomness [r̄]q. The protocol, then makes use of [r̄]q to
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mask the base [b]q by calculating [c]q = Product([r̄]q, [b]q). Note that [c]q is then
immediately made public. The protocol proceeds to compute [ca]q by means of
calling exp(b, [a]p∗) functionality. Finally, the protocol is able to construct the
expression [r′] ·a− [r′] ·a as the exponent of an [r] whilst multiplying [ba], which
is equivalent to Product([r0], [ba]) = [ba].

Security. Let πexp([b],a) be the protocol described in Protocol 7. Then the ideal
functionality Fexp([b],a) for the procedure exp([b],a) is FABB extended with
exp(b, [a]), which is described by Protocol 6. But Fexp(b, [a]) is the same as FABB,
hence Fexp([b],a) is also the same as FABB. Therefore, the security of this protocol
is also straightforward.

Theorem 2. The protocol πexp([b],a) securely implements Fexp([b],a) in the
FABB framework.

Proof. The same as the proof of Theorem 1. �

3.3 Privacy Preserving Exponentiation

We now introduce our constant time protocol for secure exponentiation given a
privately held base b and exponent a. Its ideal functionality can be expressed as
follows:

Definition 5. Let base b ∈ Zq and exponent a ∈ Zp∗ be privately preserved and
hosted by any subset of honest parties. The ideal functionality Fexp([b],[a]) takes
[b]q and [a]p∗ as input and returns [ba] as output.

Our construction assumes that exp(b,[a]) functionality is available. Our
construction, showcased by Protocol 8, offers perfect security against both, pas-
sive and active adversaries.

Protocol 8. Secure exp([b],[a]) operation with shared exponent and
base
Input: secret shared base [b] in Zq, and exponent [a] in Zp∗

Output: secret shared [ba]
1 g ← getGenerator(Zq); [r′]p∗ ← sRand(Zp∗);

2 [r̄]q ← exp(g, [r′]p∗) //g[r
′]

3 [c]q ← Product([r̄]q, [b]q);
4 c ← Open([c]q);

5 [c′]q ← exp(c, [a]p∗); // g[r
′]·[a] · [b][a]

6 [e]p∗ ← −1 · Product([r′]p∗ , [a]p∗);
7 [ba]q ← Product([c′]q, exp(g, [e]p∗));

In this case, we make use of many of the mechanisms introduced by Protocol 7
with some basic dissimilarities. Basically, to obtain [ca]p∗ , the protocol makes
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use of the secure exp(b, [a]) functionality. This way the protocol can obtain [c′]q,
instead of c′. Despite this, protocol behaves just in the same way as described
for Protocol 7. Note that also plain and scalar arithmetic operations are replaced
by their equivalent privately preserving counterparts.

Security. Let πexp([b],[a]) be the protocol described in Protocol 8. Then the
ideal functionality Fexp([b],[a]) for the procedure exp([b],[a]) is again FABB

extended with exp(b, [a]), the ideal functionality of which is nothing but FABB.
Hence, the security of Fexp([b],[a]) is also straightforward.

Theorem 3. The protocol πexp([b],[a]) securely implements Fexp([b],[a]) in the
FABB framework.

Proof. The same as the proof of Theorem 1. �

Remark on Security. As we can see, the security of our protocols follow directly
from the actual security of the MPC operations in FABB achieved in practice.
As we have mentioned in the previous section, seminal results such as BGW [19]
and CCD [22] showed that any functionality can be achieved with perfect secu-
rity, as long as a majority of the players are honest for the semi-honest case,
and two thirds for the malicious case. Security against malicious adversaries
in the presence of dishonest majorities can also be achieved at the cost of an
offline computation phase [6,7,20]. Furthermore, sub-protocols (i.e., the MPC
operations in FABB) are UC secure, hence they can be securely composed.

3.4 Complexity

All of our protocols have constant round and multiplicative complexity with
respect of the size of the input. Note that in all our protocols the amount of
work and their multiplicative depth grows linearly with respect to the number
of parties n. Given that the focus of industry and academia have been cen-
tered on developing and optimizing protocols for the 2-Party and 3-Party case
e.g. [12,13,28,29], we have introduced in our complexity analysis both scenar-
ios. It is worth notice that other protocols designed for n-parties such as [6,30]
have been mainly used on either the 2 or 3 party scenario e.g. [31]. Table 2 show-
cases how such protocol complexities vary on these different scenarios. Note that
round complexity (r.) or multiplicative depth is the same as the multiplicative
complexity (amount of work) for all our protocols.

Although the multiplicative depth of the protocol is altered by the number
of parties, its effect is constrained to the linear behavior we mentioned above.
For the malicious case the asymptotic complexity of all protocols is the same
i.e., O(log(n)), albeit the function constants would be larger (protocols would
require to use the exp(b, [a]) variant, that is secure against active adversaries,
instead of its passive counterpart, which requires a proportionally larger amount
of work).
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Table 2. Protocol complexity for exponentiation protocols

Protocol Semi-honest

2-P 3-P n-P

exp([b], a) O(1) → 6 r. O(1) → 8 r. O(log(n)) → (4 + 2 · �log(n)�)
exp(b, [a]) O(1) → 2 r. O(1) → 3 r. O(log(n)) → (1 + �log(n)�)
exp+(b, [a]) O(1) → 2 r. O(1) → 3 r. O(log(n)) → (1 + �log(n)�)
exp([b], [a]) O(1) → 10 r. O(1) → 13 r. O(log(n)) → (7 + 3 · �log(n)�)

3.5 Performance

To estimate our protocols performance, we consider that the cost of an atomic
non-linear (or equivalent) operation is negligible (additions and scalar multi-
plications), given they do not depend on communication rounds. Given that
our multiplicative complexity is equivalent to our round complexity for all our
protocols, it follows that: we can easily project the computational time that
our protocols need by measuring one multiplication. For instance, we have used
the Ben-Or, Goldwasser and Wigderson [19] (BGW) protocol implementation
described by [32] to test its multiplicative performance. The implementation is a
C++ self-contained library based on Number Theory Library (NTL) [33] designed
for 3 parties in a semi-honest setting. For our estimations, we have averaged two
million of multiplications (using Gennaro’s protocol [34]) on a 64-bit server with
2 * 2 * 10-cores Intel Xeon E5-2687 at 3.1 GHz where only the minimum 2 core
pero process needed where used. The results yield a 2.08 · 10−5 s time per each
communication round consisting of a single multiplication. We can then extrapo-
late the computational time of our protocols as follows: exp(a, [b]) is 6.24 ·10−5 s;
exp([a], b) is 1.665 · 10−4 s and; exp([a], [b]) is 2.7 ∗ 10−4 s. Similar estimations
could be performed for other settings using any other suitable MPC protocol
e.g., SPDZ [6,7].

4 Public Key Decryption

We now show how to use our primitives to build a particular secure distributed
decryption scheme that can be utilized for threshold decryption. Under this
scenario a private key sk is shared among n parties, and a publicly available
ciphertext c (of a message m) has to be decrypted, such that the output of the
decryption is a share under any linear secret sharing scheme used for MPC. In
other words from c and [sk], we have to obtain [m]. This way we can use public
key decryption as a subprotocol for any other MPC functionality. We explore
such scenario for two basic and well known public key schemes, namely RSA [15],
ElGamal [16]. We start by giving an overview about these protocols. Note that
all schemes described in this section are IND-CPA-secure. In all the protocols
below, λ denotes the security parameter.
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We stress that such distributed decryption can be of interest in applica-
tions, such as privacy-preserving biometric authentication. For instance, one can
encrypt users’ biometric templates and share the decryption key among different
parties. Then, when a user wants to authenticate, the user provides an encrypted
fresh biometric template, which is then compared with the stored template in a
distributed fashion. At the end, the result indicating whether there is a match
is jointly decrypted by the parties following the procedures that we present in
this section. We plan to demonstrate this in the future.

4.1 RSA

The RSA encryption is based on the hardness of prime factorization of integers.

– KeyGen: The key generation algorithm takes a security parameter λ as input
and outputs a public key pk = (n, e) and a private key sk = (p, q, d), i.e.,
(pk, sk) ← KeyGen(λ). Here and throughout forward, for the purposes of this
section p and q are large distinct primes, n = pq, e is such that gcd(e, φ(n)) =
1, and d satisfies de ≡ 1 mod φ(n), where φ() is the Euler’s totient function.

– Enc: The encryption algorithm takes the public key pk = (n, e) and a message
which is converted into a number m < n as input and outputs a ciphertext
c ≡ me mod n; i.e., c ← Enc(pk,m).

– Dec: The decryption algorithm takes sk = (p, q, d) and a ciphertext c as input
and outputs a message m ≡ cd mod n; i.e., m ← Dec(sk, c).

4.2 ElGamal

The ElGamal encryption is based on the hardness of discrete logs.

– KeyGen: The key generation algorithm takes a security parameter λ as input
and outputs a public key pk = (G, g, q, h) and a private key sk = x, i.e.,
(pk, sk) ← KeyGen(λ). This is done first by choosing a large prime p and a
generator for the multiplicative group G = Z∗

p, whose order is q = p − 1, and
then by choosing a random x ∈ G and computing h ≡ gx mod p.

– Enc: The encryption algorithm takes the public key pk = (G, g, p, h) and a
message which is converted into an element m ∈ G as input and outputs a
ciphertext c = (c1, c2), i.e., c ← Enc(pk,m), by computing c1 ≡ gy mod p
and c2 ≡ hym, for a randomly chosen y ∈ G.

– Dec: The decryption algorithm takes sk = x and a ciphertext c = (c1, c2) as
input and outputs a message m ≡ c−x

1 c2 mod p; i.e., m ← Dec(sk, c).

4.3 Privacy Preserving Decryption

The data oblivious implementation of the decryption protocols of this public key
schemes can be easily achieved by reusing both the exponentiation functionality
described in Sect. 3 and the modulo operation showcased above. In our case, We
assume that the ciphertext is publicly available, whereas the private key is secret
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shared. The objective for us is to have a secret shared version of the message
without leaking its content to any party involved in the computation.

Note that protocols to perform secure modulo operations for MPC, have
indeed been extensively studied by the literature. We can name for instance the
construction from the seminal paper by Damg̊ard et al. [8]. In recent years, more
efficient results although sometimes with more limited security capabilities e.g.
statistical instead of perfect security, have been introduced as well e.g. [9].

RSA. For this case, given that the decryption protocol m ← Dec(sk, c), where
c ≡ me, the computation of [m] can be summarized by the computation of:
m = cd = (me)d mod N. Thus, with the functionality provided by this work it
suffices for the parties computing the decryption to do [m] ← exp(c, [d]) mod N .

ElGamal. The decryption protocol in this case consists on some basic opera-
tions on what we assume to be publicly available c1 and c2 values, as follows:
m = c2

cx1
mod p. To implement such protocol on MPC, where the sk [x] is secretly

shared we make use of the following: a scalar multiplication, our exponentiation
method, the multiplicative inverse of such result, which can be computed in one
round, and a secure mod operation: [m] = c2 · Inverse(exp(c1, [x])) mod p.

5 Conclusions

In this paper, we introduce secure mechanisms to perform exponentiation over
MPC for arithmetic circuits without bit decomposition. Our protocols are simple
and easy to follow mechanisms that have constant round/multiplicative com-
plexity and offer security against semi-honest and malicious adversaries. Our
protocols, besides being lean and simplified, improves the current state of the
art for such kind of mechanisms. Additionally, we included a possible appli-
cation for our techniques, in the form of public key decryption. Further work
should explore the viability of these results on other related MPC fundamental
applications such as comparisons. Another direction for future work would be
to validate our protocols in practical applications such as in biometric settings,
where templates need to be securely transmitted to some MPC based processing
server, using PKI infrastructure.
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Abstract. Electronic payment systems have leveraged the advantages
offered by the RFID technology, whose security is promised to be
improved by applying the notion of Physically Unclonable Functions
(PUFs). Along with the evolution of PUFs, numerous successful attacks
against PUFs have been proposed in the literature. Among these are
machine learning (ML) attacks, ranging from heuristic approaches to
provable algorithms, that have attracted great attention. Our paper pur-
sues this line of research by introducing a Fourier analysis based attack
against PUFs. More specifically, this paper focuses on two main aspects
of ML attacks, namely being provable and noise tolerant. In this regard,
we prove that our attack is naturally integrated into a provable Proba-
bly Approximately Correct (PAC) model. Moreover, we show that our
attacks against known PUF families are effective and applicable even in
the presence of noise. Our proof relies heavily on the intrinsic proper-
ties of these PUF families, namely arbiter, Ring Oscillator (RO), and
Bistable Ring (BR) PUF families. We believe that our new style of ML
algorithms, which take advantage of the Fourier analysis principle, can
offer better measures of PUF security.

Keywords: Physically Unclonable Functions · Boolean analysis
Noise sensitivity · Low degree algorithm · Machine learning
PAC Learning

1 Introduction

Payment systems, including electronic payment and ticketing systems, provide
one of the prominent examples of the diversified applications of RFID-tags. As
an effective and cost-efficient security mechanism for these tags, PUFs have
been introduced in the literature cf. [10,48,49]. The design of PUFs relies on
inherent manufacturing process variations, being uncontrollable, but exploitable
by a circuitry to generate either a source of randomness or an instance-specific
fingerprint [18]. The growing need for using PUFs in several applications stems
from two main issues. On the one hand, the ineffectiveness of traditional security
measures, e.g., secure key generation/storage, has been widely accepted. On the
other hand, the inevitable fact that overbuilt and counterfeit hardware primitives
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can be used in various important applications further contribute to this need for
robust security measures [26]. Since the notion of PUFs has been introduced to
address the aforementioned issues, several studies have focused on the advantages
and disadvantages of this concept. Designing such circuits and their respective
security assessments, more particularly, cryptanalysis of PUFs are within two
ends of the wide spectrum of these studies.

In addition to invasive and semi-invasive attacks, e.g., [20,37,45–47], a
broad range of cryptanalysis of PUFs is covered by non-invasive attacks, for
instance [42]. A great variety of these frameworks and numerous models have
been developed around the principles of linear algebra [11], stochastic optimiza-
tion [5], and machine learning (ML) [12,14–16,23,42]. When launching the latter
attacks, the adversary observes only a small subset of challenges and their cor-
responding responses (i.e., the inputs and the outputs of the PUF) in order to
build a model of the challenge-response behavior of the PUF. Therefore, when
compared with invasive and semi-invasive attacks, these attacks are cost-effective
and nondestructive, and consequently, attractive for adversaries.

Applying empirical ML algorithms (e.g., [42]) in the assessment of the secu-
rity of PUFs marked the beginning of an era, after which the well-established
concepts and existing algorithms in the field of ML were applied to analyze
the security of these primitives. Beyond the early heuristic methods, probably
approximately correct (PAC) learning frameworks have been developed to prove
vulnerabilities for the known families of intrinsic PUFs to ML attacks [12,14–
16,19]. The results of these studies have been acknowledged, and form now a
solid basis for the design of PUFs, c.f. [51]. Albeit being useful for this pur-
pose, the question remains open whether practical aspects of the design of PUFs
have been adequately reflected by the PAC learning frameworks. More specifi-
cally, except the proof provided for XOR-arbiter PUFs [15], PAC learning in the
presence of noise has not been discussed in the literature so far.

This issue is of twofold importance. First, the term “noise” in the PUF-
related literature refers to the observation that applying the same challenge
may result in obtaining different responses due to the environmental changes,
see, e.g. [30]. These noisy responses reveal some information about the challenge-
response behavior of the PUF, in a similar way to side channel information, which
can be beneficial to model the PUF [5,8,9]. Understanding the mechanisms of
generating noisy responses is therefore essential for designing a PUF that is
robust against such hybrid attacks. Secondly, the gap between the existing noise
models in the ML- and PUF-related literature should be bridged primarily by
a thorough understanding of differences and similarities between these models.
Accordingly, a refined model of noisy PUFs should be established, which provides
a firm basis for analyzing the security of these primitives against ML attacks.
This paper aims to address these issues by providing the following contributions.

Establishing a Refined Model of Noisy PUFs that is in Line with
Models Widely Accepted in ML Theory. In our model, we take into con-
sideration the impact of noise on the final response of a PUF and as well at the
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inter-stage behavior of a PUF. We demonstrate that this model agrees with the
noise models in ML theory, namely, attribute and classification noise.

Introducing a New ML Attack Relying on the Principles of Fourier
Analysis. Thanks to the representation of PUFs as Boolean functions, we
explore the properties of PUFs from the Fourier analysis perspective. We intro-
duce the notion of noise sensitivity of Boolean functions representing PUFs as a
powerful analysis tool. Moreover, for known and widely-used PUFs a so-called
low degree algorithm approximating the Fourier coefficients of the corresponding
Boolean functions is presented in this paper.

Provability of our ML Attack, Even in the Presence of Attribute and
Classification Noise. Eventually, we prove that for known families of PUFs
our attack can be launched to learn their challenge-response behavior, with pre-
scribed levels of accuracy and confidence, even if the challenge-response pairs
are noisy.

2 Notation and Preliminaries

2.1 PUFs

First, we stress that our paper does not cover the topics of formalization and
formal definitions of the PUFs. For more details on these topics see, e.g., [3,4].
Note that hereafter the term “PUF” refers to the most popular, and known
families of standalone PUFs: arbiter PUFs, Ring Oscillator (RO) PUFs, and
Bistable Ring (BR) PUFs. Here, a standalone PUF means a PUF that is not
composed of a combination of some PUFs (e.g., XOR arbiter PUFs) or other
means. Generally speaking, PUFs are physical mappings from the inputs to
the outputs, i.e., from the given challenges to the respective responses. These
mappings are characterized by physical properties of the platform, on which the
PUF is implemented. From among several security properties of PUFs, here we
consider solely unclonability. Let the mapping fPUF : C → Y, where fPUF(c) = y,
describes a PUF. Ideally, for a given PUF fPUF unclonability reflects the fact that
creating a clone, i.e., a (physical) mapping gPUF �= fPUF, is virtually impossible,
where the challenge-response behavior of gPUF is similar to fPUF [3].

2.2 Boolean Functions as Representations of PUFs

Similar to the most relevant studies on PUFs, we adopt the general definition of
PUFs that is the physical mappings (see Sect. 2.1). This enables us to represent
PUFs as Boolean functions over the finite field F2. To this end, consider Vn =
{c1, c2, . . . , cn} that is the set of Boolean attributes or variables, being either
true or false denoted by “1” and “0”, respectively. Moreover, let Cn = {0, 1}n

be the set of all binary strings with n bits, and an assignment be a mapping
from Vn to {0, 1}. Therefore, an assignment can be thought of as an n-bits string,
where the ith bit associated with the value of ci (i.e., “0” or “1”).
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A Boolean formula is a mapping that assigns values from the set {0, 1} to an
assignment. In this regard, each Boolean attribute is also a formula, i.e., ci is a
possible formula. If the Boolean formula assigns “1” to a Boolean assignment, it
is a positive example of the concept, otherwise a negative example. Furthermore,
a Boolean function f : Cn → {0, 1} defines a Boolean formula accordingly.

In general, Boolean functions can be represented by several different classes
of functions, e.g., juntas, Linear Threshold functions (LTFs), and Decision Lists
(DLs), cf. [38,41]. A k-junta is a Boolean function, whose output is deter-
mined solely by an unknown set of k variables. A list L containing r pairs
(f1, v1), . . . , (fr, vr) is called a DL, where the Boolean formula fi is a conjunc-
tion of Boolean attributes, and vi ∈ {0, 1} with 1 ≤ i ≤ r − 1. For i = r, we
have vr = 1. When representing a Boolean function by a decision list, L(c) = vj ,
where c ∈ Cn and j is the smallest index in L so that fj(c) = 1. Let k-DL denote
the set of DLs, where each fi is a conjunction of at most k Boolean attributes.

Before defining linear threshold functions, we define the encoding scheme
χ(0F2) := +1, and χ(1F2) := −1. Hence, the Boolean function f can be defined
as f : {−1,+1}n → {−1, + 1}. Such a function is called a linear threshold
function, if there are coefficients ω1, ω2, · · · ,ωn ∈ R and θ ∈ R such that f(c) =
sgn ((

∑n
i=1 ωici) − θ). Without loss of generality, we assume that

∑n
i=1 ωici �= θ

for every c ∈ Cn.

Noise Sensitivity of Boolean Functions. This term should not be mistaken
as the notion of noise discussed in the PUF-related literature. The noise sensitiv-
ity of the Boolean function f : {−1,+1}n → {−1, + 1} can be defined as follows
(see Sect. 2.2 for more details on the encoding scheme required to define the
noise sensitivity). Let c be a string chosen randomly and uniformly. By flipping
each bit of this string independently with probability ε (0 ≤ ε ≤ 1) we obtain
the string c′. The noise sensitivity of f at ε is

NSε(f) := Pr[f(c) �= f(c′)].

When studying the noise sensitivity of Boolean functions, applying method-
ologies developed for the spectral analysis of Boolean functions can provide a
better understanding of this notion. The Fourier expansion of a Boolean function
can be written as

f(c) =
∑

S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏

i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)]. Note
that Ec∈U [·] indicates the expectation over examples chosen uniformly.

2.3 PAC Learning Model [24]

Consider a PAC learner that is a learning algorithm, which is given access to
a set of examples to generate an approximately correct hypothesis, with high
probability. More formally, suppose that F = ∪n≥1Fn denotes a target concept
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class, i.e., a set of Boolean functions over the instance space Cn = {0, 1}n. In
this paper, we are interested in a useful extension of the PAC model, in which
each example is drawn from the instance space Cn with regard to the uniform
distribution U . The hypothesis h ∈ Fn that is a Boolean function over Cn is an
ε-approximator for f ∈ Fn, if

Pr
c∈UCn

[f(c) = h(c)] ≥ 1 − ε.

The complexity of a target concept f ∈ F is assessed by measuring the size of
that under a target representation. In order to define the size of a target concept
f ∈ F , size(f), we define the mapping size : {0,1}n → N, relating a natural
number size(f) with a target concept f ∈ F . A polynomial-time algorithm A,
i.e., our learner, is provided with labeled examples (c, f(c)), where f ∈ Fn, and
c is chosen uniformly at random from Cn. Here we concentrate on the strong
uniform PAC learning algorithms, defined as follows.

Definition 1. A strong uniform PAC learning algorithm A for the target con-
cept class F is given a polynomial number of labeled examples to generate an
ε-approximator for f under the uniform distribution U , with probability at least
1 − δ. In this regard, for any n ≥ 1, any 0 < ε, δ < 1, and any f ∈ Fn, the run-
ning time of the algorithm A is poly(n, 1/ε, size(f), 1/δ), where poly(·) denotes
a polynomial function.

3 Noise: Its Origin and Models

In this section we aim to come up with a model for PUFs enabling us to under-
stand, how the noise can affect the functionality of a PUF. As mentioned in
Sect. 1, in the PUF-related literature the response to a challenge is noisy, if
repeated evaluations of the PUF with the respective challenge results in dif-
ferent responses. This is due to environmental variations and their impact on
the functionality of physical components forming the PUF, e.g., the stages in
an arbiter PUF. Environmental variations cover a wide range of uncontrollable
random noise, e.g., thermal noise, uncertainties in measurement, cross talk, and
power supply noise [3,50]. According to the lessons from performance specifi-
cations of circuits, these random variations can be conventionally modeled as
random variables following Gaussian distributions [2,36,44].

3.1 Impact of the Noise on a Single Stage

To provide a better understanding of the impact of the environmental variations
on the internal functionality of a PUF, we focus on a single constitutive physical
component of the PUF, hereafter called a stage. As carefully formulated in [29],
although the consideration of low-level physical details is a tedious task, (mea-
surable) physical processes can be approximated by “hidden variables”, namely
the process variable and the noise variable. The latter variable corresponds to
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Fig. 1. (a) The Gaussian random variable Xi that corresponds to the ith physical
component of the PUF, and its two realizations xi,1 and xi,0. In a meta-stable state
these two realizations will be very close together. (b) Our simple Probabilistic (labeled)
Transition Systems (PTS) describing how the noise can affect each stage in a PUF. The
expressions included in parentheses denote the labels, whereas the information given in
brackets refers to the probability of the transition between the states.

the effect of random noise on a single stage of the PUF. This variable follows a
Gaussian distribution Ni, with realization ni for each evaluation of the PUF. The
definition of process variable determines the effect of manufacturing process vari-
ations on a single stage of the PUF [29]. As discussed before, this variable dented
by Xi follows a Gaussian distribution. Similarly and independently, X1, · · · ,Xn

can be defined, where n denotes the number of stages. In this manner, the mean
value of the respective distribution (μ) is reported by manufactures as the nom-
inal value, and the standard deviation σi is the result of the process variations,
cf. [8,16,34]. Two realizations of the random variable Xi, namely xi,1 and xi,0,
are generated during manufacturing. Without loss of generality, suppose that
the following holds. When ci = 1 is applied to the ith stage, the realization xi,1

is chosen to be involved in generating the final response of the PUF, whereas
xi,0 corresponds to ci = 0. Moreover, suppose that the order relation between
these realizations is xi,1 > xi,0. Now, the total impact of hidden variables on a
stage can be formulated as Zi = Xi +Ni (1 ≤ i ≤ n), where Z is clearly a Gaus-
sian random variable. In addition, the realizations of this random variable are
zi,1 = xi,1+ni,1 and zi,0 = xi,0+ni,0, relating to the challenge bit applied to the
PUF. Since the realizations zi,1 and zi,0 are related to two different evaluations
of the PUF (with ci = 1 and ci = 0, respectively), the noise realizations vary, as
indicated by different indices. As defined in [29], the final response of the PUF is
determined by these realizations. Obviously, the difference between zi,1 and zi,0

is the main factor contributing to the final response of the PUF. Now consider
the ith stage that is a meta-stable state, see Fig. 1(a). Here by meta-stable con-
dition we refer to the fact that the realizations of the random variable Xi, i.e.,
xi,1 and xi,0 can be very close together so that under the effect of environmental
noise one realization can be equal to another: zi,0 = xi,1 or zi,1 = xi,0, depending
on the value of the challenge bit ci [7]. To explain this, a simple Probabilistic
(labeled) Transition Systems (PTS) can be defined as follows [40].
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– There are two processes (i.e., sequences of events) corresponding to the value
of the challenge bit applied to the ith stage: ci = 1 and ci = 0, see Fig. 1(b).

– In both processes, the set of states S contains two states denoted by s0 and
s1. The state s0 represented the case that the challenge bit ci = 0 is applied
and in an ordinary condition (i.e., not meta-stable) we expect that xi,0 would
be involved in generating the final response of the PUF. Similarly, the state
s1 can be defined.

– sint ∈ S is the initial state in each process, shown by dashed circles in each
process. And the set of action labels is L.

– A transition probability function T : S × L × S → [0,1] represents, under
which circumstances and what degree of probability the system transits from
one state to another. Clearly,

∑
(li,sj)∈L×S T (sint, li, sj) = 1.

Precisely defining our PTS, the tuple Ai represents the process related to the
case, when the challenge bit ci is applied: Ai = (S,L, T ).

In each of the processes, as illustrated in Fig. 1(b), the PTS may transit from
one state to another with probability ε, otherwise it remains in its initial state.
For instance, applying the challenge bit ci = 0, the initial state s0 indicates
that xi,0 would contribute to the final response of the PUF. However, if this
stage (the ith stage) is in a meta-stable state, i.e., zi,0 = xi,1, it is not possible to
differentiate whether xi,1 or zi,0 would be involved to generate the final response
of the PUF1. In other words, it can be thought that ci = 1 is applied and the
final response is under the influence of xi,1, i.e., the PTS is in s1 state. More
precisely, we define a discrete random variable A corresponding to the event of
a transition between s0 and s1. Formally, let Ω := {transition, stay} denote the
sample space of the random variable A defined as A(ω) = 1 if ω = transition,
and otherwise, A(ω) = 0. Obviously, this random variable follows a Bernoulli
distribution with the success probability ε, i.e., A ∼ Bern (ε).

Furthermore, as described above, we have translated the impact of noise on
a single stage to a transition from one state to another state. Consequently, this
change in the states can be seen as a probabilistic change of a challenge bit,
e.g., the challenge bit ci = 0 is flipped to challenge bit ci = 1 or vice versa. To
precisely summarize, with regard to our model, when applying the challenge c
that is a Boolean string, the input to the PUF fPUF can be written as c ⊕ a,
where ⊕ denotes the bit-wise XOR operator and a is a random string composed
of bits generated independently from the distribution Bern (ε).

3.2 Impact of the Noise on the Measuring Element of the PUF

In the second phase, we should take into consideration the impact of uncer-
tainty on the generation of the final response. In the literature this issue has
been already explored, when discussing the precision of the measuring element
(e.g., the arbiter in the case of arbiter PUFs), which makes a decision whether

1 Note that such transition does not always lead to a change in the response of the
PUF.
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Fig. 2. Schematic of an arbiter PUF composed of n stages and an arbiter terminating
the chain. When applying a challenge bit to a respective stage, either the realizations
xi,1 or the realization xi,0 is chosen to be involved in generating the response of the
PUF. For instance, we have xi,1 = δia − δid and xi,0 = δib − δic .

the response of the PUF to the respective challenge is “0” or “1” [8,16,32].
Clearly, being limited in the precision, such component may change the out-
put of the PUF. For the purpose of this paper, we are not interested in the
real-world distribution of this noise, but in how the effect of this noise on the
responses can be precisely described. A useful interpretation of this effect is
given in [15], namely that after generating the response of the PUF an unfair
coin (Head with probability 1 − η) is flipped. Depending on the outcome, the
final response is determined: when the outcome is Head, the response gener-
ated by the PUF remains unchanged, or otherwise, the response of the PUF is
flipped. Here we follow the same principle to model the uncertainty with regard
to the final response. Let a random variable B represent the impact of a lim-
ited precision of the physical component that makes the decision about the final
answer. As explained above, this random variable also follows a Bernoulli distri-
bution with the success probability 1 − η, i.e., B ∼ Bern (1 − η). For the sake of
readability hereafter we denote Bern (1 − η) by R, and Bern (ε) by D. We have
already defined the random string a containing independent random bits drawn
according to the distribution D (see Sect. 3.1), and the random bit b drawn from
the distribution R. Hence, the final response of the PUF can be formalized as
y = fPUF(c ⊕ a) ⊕ b.

3.3 Practical Implications of the Noise Model

In this section, we explain, how a relation between the parameters introduced
(in Sects. 3.1–3.2) and real-world PUFs can be established.

Arbiter PUFs: First we consider the impact of the noise on a single stage of
an arbiter PUF. For the arbiter PUF family, the realizations xi,0 and xi,1 are
associated with the difference between the delays of crossed and straight signal
paths, namely, δia −δid = xi,1 and δib −δic = xi,0, see Fig. 2. When the difference
between these variables is small and the challenge bit ci is applied to the stage,
in the presence of the noise it is not possible to make a decision whether xi,0 or
xi,1 has impacted the final response of the PUF.
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Moreover, the impact of the noise on the response of the PUF can be
explained by considering the limited precision of the arbiter terminating the
chain, see Fig. 2 [16]. In this case, if after the final stage the delay difference
between the upper and the lower paths is smaller than the precision of the
arbiter, the arbiter could enter a metasable state and thus generate a wrong
response.

Ring Oscillator (RO) PUFs: The response of this PUF is generated according
to the difference between the frequencies of two ROs selected by the challenge.
In other words, the challenge determines a pair of ROs that contributes to the
final response of the PUF. When the frequency differences of ROs in two pairs
vary insignificantly, under noisy conditions one of those RO pairs can mimic
another one. Therefore, it can be thought that some of the bits of the challenge
applied to the PUF are flipped so that another RO pair makes impact on the
final response of the PUF.

Furthermore, the limited precision of the counters measuring the frequencies
of the ROs can affect the response of the PUF. More precisely, if the difference in
the oscillation frequencies of a selected RO pair is not significant, the counters
cannot measure the frequencies with high precision. Comparison of uncertain
frequency measurements can lead to the generation of a wrong response.

Bistable Ring (BR) PUFs: Although a precise analytical model of the BR
PUF is missing in the literature [12], we can still describe the impact of the
noise on individual stages. For a given challenge in the BR PUF, n inverters are
selected, and upon setting the reset signal to low, the created inverter ring starts
to oscillate until it settles down to a valid logical state. In this case, the process
variables can be intrinsic differences in the propagation delays and electrical gains
of each inverter. Therefore, based on the environmental conditions, the noise
can be added to the realization of the process variables. However, in contrast to
the arbiter and RO PUFs, there is no explicit measuring element in this PUF
architecture. But the required additional measurement element which introduces
noise for this type of PUF is explicitly discussed in [12,21,22].

3.4 Modeling the Noise from the Perspective of Machine Learning

With regard to the discussion from the previous Sects. 3.1–3.3, PUFs can be
thought of as Boolean functions, whose input-output behavior is determined by
random process variations as well as the inevitable impact of random noise. In
line with this view, a model of PUFs as illustrated in Fig. 3 can be established.
This model can be seen as an extension of a model introduced and evaluated
practically in [29]. Our model is composed of two components: random and
deterministic components. The random component represents the random envi-
ronmental noise, whereas the deterministic component accounts for the deter-
ministic Boolean function realized in the chip. In other words, in the absence
of noise, the response of the PUF to a challenge applied repeatedly remains the
same. The building blocks as well as the parameters related to the model have
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Fig. 3. Our model composed of blocks representing a noisy PUF. The random string a
contains independent random bits drawn according to the distribution D (see Sect. 3.1),
and the random bit b is drawn from the distribution R (see Sect. 3.2). From the machine
learning point of view, they refer to attribute noise and classification noise, respectively.

been introduced previously, although their interpretations in the machine learn-
ing context have not yet been considered. As the next step in our framework,
this section elaborates on how the functionality of a noisy PUF, as shown in
Fig. 3, can be described from the point of view of machine learning. To this end,
the following Lemma plays an important role, cf. [6].

Lemma 1. Consider U , D and R that are a uniform, and two arbitrary distribu-
tions2 over the space {0, 1}, respectively. Moreover, let the function f : Fn

2 → F2

be an arbitrary Boolean function. Let C ∈U F
n
2 , A ∈D F

n
2 and B ∈R F2 be

independent random strings and a random variable, respectively. The random
variables (C,f(C ⊕ A) ⊕ B) and (C ⊕ A,f(C) ⊕ B) follow identical distribution.

For the proof of this Lemma, we refer to [6]. The conclusions drawn from it
are of great importance for us. First, from the machine learning point of view,
the noise represented by the random variable A is called the “attribute noise”,
whereas the random variable B corresponds to the “classification noise”. The
issue of attribute and classification noise learnability has been well addressed in
the relevant literature, see, e.g., [6,52]. Secondly, thanks to the seminal paper
published by Bshouty et al. [6], a relationship between machine learning under
noisy conditions and the noise sensitivity of Boolean functions has been estab-
lished. The consequence of this relation is that efficient algorithms developed to
estimate the Fourier coefficients of an unknown function can be applied to learn
the respective function even under noisy conditions.

4 Fourier Analysis Based Attacks Against PUFs

To mount our attack, we apply an algorithm proposed by Linial, Mansour, and
Nisan [28] to estimate the Fourier coefficients of an unknown function (i.e., so-
called LMN-style algorithm). The rationale behind the LMN-style algorithm,
originally called “low degree” algorithm [35], is that some classes of Boolean
functions can be approximated by taking into account solely a small number
of their Fourier coefficients (called “low” coefficients), corresponding to small
subsets of [n] (see Sect. 2.2).

2 Regarding the physical properties of noisy PUFs we have defined the distributions
D and R precisely, but in general these distribution can be arbitrary.
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Theorem 1 (Low degree algorithm) [28,35,39]. Assume that an algorithm
can determine a set S ⊆ 2[n] containing subsets of [n] so that

∑
S∈S f̂(S)2 ≥ 1−ε.

The algorithm is given a pre-defined confidence level δ and access to a polynomial
number of input-output pairs of the Boolean function f that are chosen uniformly
at random. With probability 1 − δ the algorithm delivers a Boolean function h
that is an ε-approximator of the Boolean function f such that

∑

S⊆[n]

(
f̂(S) − ĥ(S)

)2

≤ ε.

The running time of the algorithm is poly (|S|, n, 1/ε, log2(1/δ)).

For the proof of this theorem, we refer the reader to [28,35], in which the
mechanism for determining the set S, and the lower bound on the number of
input-output pairs required by the algorithm has been discussed extensively.

4.1 An LMN-Style Algorithm for RO PUFs

Although the security of these PUFs can be easily broken by simply reading out
all CRPs, launching a machine learning attack in the specific circumstance of
having limited access to the CRPs (e.g., eavesdropping them) has been addressed
in the literature, see for instance [14,42]. In the present case, learning of noisy
RO PUFs has not been discussed. Our proof of the existence of an LMN-style
algorithm for RO PUFs relies on the fact that these PUFs can be represented
by k-DLs [14].

Theorem 2 [27,35]. An LMN-style algorithm can be employed that with prob-
ability 1 − δ delivers a Boolean function h approximating a decision list
L, which represents an RO PUF. The running time of this algorithm is
poly (n, log2(1/ε), log2(1/δ)).

The proof sketch can be summarized as follows. According to results pre-
sented in [14], an RO PUF can be represented by a DL. Furthermore, Mansour
proved that a DL could be approximated by a Boolean function h, whose Fourier
coefficients concentrate only on a small set of variables, namely, log2(1/ε) vari-
ables [35]3. To find this set of variables, the low degree algorithm can be applied
to deliver h and the running time of that is poly (n, log2(1/ε), log2(1/δ)).

4.2 An LMN-Style Algorithm for Arbiter PUFs

To prove the existence of an LMN-style algorithm for arbiter PUFs we argue as
follows. It is known that if a Boolean function exhibits a bounded, small noise
sensitivity, its Fourier coefficients are mainly low coefficients. More precisely, the
following Corollary can be proved (for the proof see Corollary 2.3.3 in [39]) that
forms the basis for proof.
3 Here we do not discuss the details of the proof. For the proof cf. [35].
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Corollary 1 [39]. Consider α : [0,1/2] → [0,1] that is a strictly increasing con-
tinuous function so that NSε(f) ≤ α(ε). We have

∑
|S|≥m f̂(S)2 ≤ ε, where

m = 1/α−1(ε/2.32)) and α−1(·) denotes the inverse of the function α(·).
Now Corollary 2 states how Corollary 1 can be applied to prove the existence

of an LMN-style algorithm for arbiter PUFs.

Corollary 2. Representing an arbiter PUF by an LTF, a Boolean function h
approximating this LTF can be delivered by an LMN-style algorithm, whose run-
ning time is polynomial in n, 1/ε2, and log2(1/δ).

Proof: Thanks to the results reported in [18,33,42], LTFs are appropriate rep-
resentations of arbiter PUFs. For any LTF f its noise sensitivity is a bounded,
small value depending only on ε, namely we have NSε(f) ≤ 8.54

√
ε [25]. Now

fix α(ε) =
√

ε. According to Corollary 1, the running time of the LMN-style
algorithm is polynomial in O(nm), where m = 1/α−1(ε/2.32). �

4.3 An LMN-Style Algorithm for BR PUFs

Similar to the proof of the existence of an LMN-style algorithm for arbiter PUFs,
we take advantage of the properties of the Boolean functions representing BR
PUFs. More specifically, we rely on the fact that a BR PUF can be represented
by k-junta, where k is a (relatively) small constant value for practical values of
n, as demonstrated in [12]. Moreover, the noise sensitivity of a k-junta function
is a bounded, small value: NSε(f) ≤ kε/2., see, e.g., [17]. Now the following
corollary of can be formulated to prove the existence of an LMN-style algorithm
for BR PUFs.

Corollary 3. An LMN-style algorithm can be applied to deliver an ε-
approximator for a k-junta representing a BR PUF. The running time is poly-
nomial in n, 1/ε, and log2(1/δ).

4.4 Provability in the Sense of PAC Model

The low degree algorithm mainly aims to provide an approximator of a Boolean
function with a given probability, when it is given a polynomial number of input-
output pairs of the Boolean function that are chosen uniformly at random. How-
ever, its existence has a serious consequence. More specifically, if the set S is
composed of all the subsets of low degree, Theorem 1 introduces a PAC learning
algorithm under the uniform distribution [39]. Before formulating this precisely,
we first shift our focus to the issue of dealing with noise.

As explored in Sect. 3.4, we take the attribute and the classification noise into
account. The question is how these processes affect the functionality and the effi-
ciency of an LMN-style algorithm. This issue is well addressed by Bshouty et
al., [6], and here we briefly summarize their results. They have shown that the
attribute and the classification noise attenuate the Fourier coefficients, which
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Table 1. Results for learning RO PUFs with N rings.

The number of
ROs N

# CRPs in
training set

# CRPs in
test set

|S| Accuracy η ε

256 5000 65536 1491 99.53 Noiseless

5000 97.45 0.1 0

5500 98.64

5000 93.22 0.2 0

7500 98.56

5000 89.06 0 0.1

12000 98.73

5000 85.45 0 0.2

20000 98.66

512 7500 262144 1681 99.26 Noiseless

7500 93.29 0.1 0

15000 98.66

7500 93.08 0.2 0

18000 98.72

7500 86.03 0 0.1

22000 99.01

7500 82.98 0 0.2

30000 98.67

the LMN-style algorithm aims to estimate from the uniformly random exam-
ples. To be exact, assume that an LMN-style algorithm attempts to estimate the
Fourier coefficient f̂(S). Under the noisy conditions, it delivers f̂(S)(1 − 2η)αS ,
where (1 − 2η) and αS are attenuation factors corresponding to the classifi-
cation and attribute noise, respectively. While the former factor is known, see
e.g., [15], the latter requires more attention. The attenuation factor αS is the
defined as αS := Ea∈D[χS(a)], where Ea∈D[·] denotes the expectation over ran-
dom examples drawn from the known distribution D. As discussed in Sect. 3.4,
here we consider a that is a random string, whose bits are independently gen-
erated following a Bernouli distribution Bern (2ε) with ε ∈ (0,1/2]. Hence,
|αS | =

∏
i∈S(1 − 2ε) = (1 − 2ε)|S|. Note that the practical implication of the

attenuation factors ((1 − 2η) and αS) is that after running the LMN-style algo-
rithm each Fourier coefficient delivered by the algorithm should be multiplied
by (1 − 2η)−1 and α−1

S to eliminate the impact of the noise.
Now we can summarize the above discussion and the results presented in

Sects. 4.1–4.3 in a more formal manner, as stated in Corollary 4.

Corollary 4. Consider a given PUF that is represented by a Boolean function
fPUF and can be learned by applying an LMN-style learning algorithm. Then
the PUF is PAC learnable under the uniform challenge distribution, even in
the presence of attribute and classification noise. The running time of the PAC
learner is poly (|S|, n, 1/ε, log2(1/δ), (1/1 − 2η)).
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Table 2. Results for learning arbiter PUFs with n stages.

The number of
stages n

# CRPs in
training set

# CRPs in
test set

|S| Accuracy η ε

64 2000 100000 1078 99.19 Noiseless

2000 97.30 0.1 0

2250 99.02

2000 97.06 0.2 0

2350 98.86

2000 97.09 0 0.1

2300 99.15

2000 97.97 0 0.2

2300 99.28

128 2100 99.51 Noiseless

2100 98.81 0.1 0

2300 99.06

2100 96.94 0.2 0

2500 99.29

2100 97.23 0 0.1

2500 99.23

2100 98.04 0 0.2

2500 99.45

5 Results and Discussion

The effectiveness of our proposed attack is evaluated by conducting simulations
on data collected from PUFs that are implemented on FPGAs. The PUF sim-
ulators, as well as LMN algorithm, are implemented in Matlab [1]. To simulate
the challenge-response behaviors of the PUFs, we have taken the real physical
properties of the PUFs into account. For instance, the maximum delay devia-
tion of each inverter and the precision of the arbiter used in our arbiter PUF
chain are equal to 9 ps and 2.5 ps, respectively, as reported for a Xilinx Virtex-5
FPGA (65 nm technology) [31,32]. The delays of the stages are generated with
respect to a Gaussian distribution with the above-mentioned maximum devi-
ation. By applying a random challenge chosen uniformly, the response of the
arbiter PUF is generated and stored in our data set. As for RO PUFs, similar
to the approach introduced in [14], the publicly accessible measurement results
from a dataset [43] have been taken into account. These results contain 100
samples of the frequency of each and every ring-oscillators, which comprise RO
PUFs with 512 rings implemented on 193 Xilinx Spartan-3 FPGAs (90 nm tech-
nology). These frequencies are the inputs of our RO PUF simulator that mimics
the challenge-response behavior of RO PUFs with 256 and 512 ring-oscillators.
The RO PUF simulator randomly selects N (N = 256, 512) frequencies cor-
responding to N different ring-oscillators. Feeding the simulator with random
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Table 3. Results for learning BR PUFs with n stages.

The number of
stages n

# CRPs in
training set

# CRPs in
test set

|S| Accuracy η ε

32 500 100000 59 99.72 Noiseless

500 95.91 0.1 0

950 99.45

500 95.02 0.2 0

950 99.63

500 94.39 0 0.1

1000 99.55

500 94.72 0 0.2

1200 99.40

64 500 165 99.53 Noiseless

500 97.3 0.1 0

900 99.19

500 92.65 0.2 0

950 98.93

500 97.56 0 0.1

950 99.23

500 95.63 0 0.2

950 99.39

challenges a pair of rings is chosen and their frequency are compared to generate
the response.

Moreover, our BR PUF simulator relies on the results presented in [12],
where BR PUFs have been implemented on Altera Cyclone IV FPGAs (60 nm
technology). The internal functionality of these PUFs has been simulated by
taking k-juntas into account. This is valid since in a follow-up work [13], the
authors of [12] have demonstrated that a BR PUF (with practical values of n,
e.g., 32 and 64) belongs to the class of k-junta functions. Hence, to simulate the
challenge-response behavior of BR PUFs, the value k and the conjunctive rule
presented in above studies are considered.

For all PUFs, the procedure of adding classification and attribute noise is as
discussed in Sect. 3. In our experiments, we have δ = 0.01, and various levels of
noises: η = 0, 0.1, 0.2 and ε = 0.1, 0.2. All simulators and the LMN algorithms are
implemented on a MacBook Pro with 2.6 GHz Intel Core i5 processor and 8 GB
of RAM. The key difference between our approach and the methodology usually
employed in ML attack scenario is that an adversary applying LMN algorithm
needs to simply write a script (e.g., in Matlab), which computes a small set
of Fourier coefficients. To this end, according to Theorem 1, the total number
of relevant coefficients is |S| and the Fourier coefficients can be computed in a
straightforward manner as shown in Sect. 2.2.

Our results are presented in Tables 1, 2 and 3. The accuracy of the final
model, i.e., the approximated the function fPUF generated by using the low
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degree Fourier coefficients, is reported in these tables. For each experiment, the
accuracy reported in the table is the minimum accuracy over 5 repetitions of
the experiments that our algorithm achieves. First, as a reference, we conduct
experiments on noiseless CRPs collected from PUFs. By adding the noise, the
accuracy of the model decreases for the number of CRPs applied in the case of
the noiseless PUF. Afterwards, we increase the number of CRPs in the training
set to achieve virtually the same accuracy (with the maximum ±1% difference)
in both cases. The results demonstrate that as promised by Corollary 4, the
increase in the number of CRPs needed in the presence of noise is polynomial in
noise levels.

6 Conclusion and Remarks

Our paper presents the first study on the feasibility and the applicability of a
new attack, i.e., the LMN algorithm against PUFs. This algorithm has not been
applied in the context of PUFs, although being known to the ML community.
Thus, similar to other ML attacks against PUFs discussed in the literature,
the novelty of our approach is the introduction of a new attack against PUFs,
even applicable in the case of noisy CRPs. The proposed attack mainly relies
on approximating the low degree Fourier coefficients by applying a so-called low
degree algorithm developed in ML theory.

Moreover, our paper is the first to introduce the notion of noise sensitivity to
assess the security of PUFs. This notion not only reflects the physical properties
of a PUF (discussed in Sect. 3), but also it is closely related to the resilience of a
PUF against LMN attacks. In this respect, the implication of Corollaries 3 and 4
(related to the existence of an LMN algorithm for PUFs) is that since the noise
sensitivity of the Boolean functions representing the PUFs is a small, bounded
value, an attacker can launch the LMN attack. Moreover, in the case of noisy
PUFs, the attenuation factors can affect the efficiency of the LMN algorithm.
In other words, if the noise sensitivity is well adjusted by the designer, the
attacker cannot compute the Fourier coefficients. Hence, when designing a new
PUF, it is important to consider the noise sensitivity as an indicator of the
robustness of PUF against LMN attacks. We believe that in addition to the
proof of PAC learnability in the presence of noise, this paper provides several
interesting insights into not only the assessment of the security of PUFs, but
also the design of PUFs with better security-related characteristics.
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Abstract. We consider the computational complexity of finding a legal
black pebbling of a DAG G = (V, E) with minimum cumulative cost. A
black pebbling is a sequence P0, . . . , Pt ⊆ V of sets of nodes which must
satisfy the following properties: P0 = ∅ (we start off with no pebbles on
G), sinks(G) ⊆ ⋃

j≤t Pj (every sink node was pebbled at some point) and

parents
(
Pi+1\Pi

) ⊆ Pi (we can only place a new pebble on a node v if
all of v’s parents had a pebble during the last round). The cumulative
cost of a pebbling P0, P1, . . . , Pt ⊆ V is cc(P ) = |P1| + . . . + |Pt|. The
cumulative pebbling cost is an especially important security metric for
data-independent memory hard functions, an important primitive for
password hashing. Thus, an efficient (approximation) algorithm would
be an invaluable tool for the cryptanalysis of password hash functions
as it would provide an automated tool to establish tight bounds on the
amortized space-time cost of computing the function. We show that such
a tool is unlikely to exist in the most general case. In particular, we prove
the following results.

– It is NP-Hard to find a pebbling minimizing cumulative cost.
– The natural linear program relaxation for the problem has integrality

gap Õ(n), where n is the number of nodes in G. We conjecture that
the problem is hard to approximate.

– We show that a related problem, find the minimum size subset S ⊆ V
such that depth(G−S) ≤ d, is also NP-Hard. In fact, under the Unique
Games Conjecture there is no (2 − ε)-approximation algorithm.

1 Introduction

Given a directed acyclic graph (DAG) G = (V,E) the goal of the (parallel)
black pebbling game is to start with pebbles on some source nodes of G and
ultimately place pebbles on all sink nodes (not necessarily simultaneously). The
game is played in rounds and we use Pi ⊆ V to denote the set of currently
pebbled nodes on round i. Initially all nodes are unpebbled, P0 = ∅, and in each
round i ≥ 1 we may only include v ∈ Pi if all of v’s parents were pebbled in the
previous configuration (parents(v) ⊆ Pi−1) or if v was already pebbled in the
last round (v ∈ Pi−1). In the sequential pebbling game we can place at most one
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new pebble on the graph in any round (i.e., |Pi\Pi−1| ≤ 1), but in the parallel
pebbling game no such restriction applies.

Let P‖
G (resp. PG) denote the set of all valid parallel (resp. sequential)

pebblings of G. We define the cumulative cost (respectively space-time cost)
of a pebbling P = (P1, . . . , Pt) ∈ P‖

G to be cc(P ) = |P1| + . . . + |Pt| (resp.
st(P ) = t × max1≤i≤t |Pi|), that is, the sum of the number of pebbles on the
graph during every round. The parallel cumulative pebbling cost of G, denoted
Π

‖
cc(G) (resp. Πst(G) = minP∈PG

st(G)), is the cumulative cost of the best legal
pebbling of G. Formally,

Π‖
cc(G) = min

P∈P‖
G

cc(P ), and Πst(G) = min
P∈PG

st(P ).

In this paper, we consider the computational complexity of Π
‖
cc(G), showing that

the value is NP-Hard to compute. We also demonstrate in the full version of the
paper [BZ16] that the natural linear programming relaxation for approximating
Π

‖
cc(G) has a large integrality gap and therefore any approximation algorithm

likely requires more powerful techniques.

1.1 Motivation

The pebbling cost of a DAG G is closely related to the cryptanalysis of data-
independent memory hard functions (iMHF) [AS15], a particularly useful prim-
itive for password hashing [PHC,BDK16]. In particular, an efficient algorithm
for (approximately) computing Π

‖
cc(G) would enable us to automate the crypt-

analysis of candidate iMHFs. The question is particularly timely as the Internet
Research Task Force considers standardizing Argon2i [BDK16], the winner of the
password hashing competition [PHC], despite recent attacks [CGBS16,AB16,
ABP17] on the construction. Despite recent progress [AB17,ABP17,BZ17] the
precise security of Argon2i and alternative constructions is poorly understood.

An iMHF is defined by a DAG G (modeling data-dependencies) on n nodes
V = {1, . . . , n} and a compression function H (usually modeled as a random
oracle in theoretical analysis)1. The label �1 of the first node in the graph G is
simply the hash H(x) of the input x. A vertex i > 1 with parents i1 < i2 < · · · <
iδ has label �i(x) = H(i, �i1(x), . . . , �iδ

(x)). The output value is the label �n of
the last node in G. It is easy to see that any legal pebbling of G corresponds to an
algorithm computing the corresponding iMHF. Placing a new pebble on node i
corresponds to computing the label �i and keeping (resp. discarding) a pebble on
node i corresponds to storing the label in memory (resp. freeing memory). Alwen
and Serbinenko [AS15] proved that in the parallel random oracle model (pROM)

1 Because the data-dependencies in an iMHF are specified by a static graph, the
induced memory access pattern does not depend on the secret input (e.g., password).
This makes iMHFs resistant to side-channel attacks. Data-dependent memory hard
functions (MHFs) like scrypt [Per09] are potentially easier to construct, but they
are potentially vulnerable to cache-timing attacks.
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of computation, any algorithm evaluating such an iMHF could be reduced to a
pebbling strategy with (approximately) the same cumulative memory cost.

It should be noted that any graph G on n nodes has a sequential pebbling
strategy P ∈ PG that finishes in n rounds and has cost cc(P ) ≤ st(P ) ≤ n2. Ide-
ally, a good iMHF construction provides the guarantee that the amortized cost of
computing the iMHF remains high (i.e., Ω̃

(
n2

)
) even if the adversary evaluates

many instances (e.g., different password guesses) of the iMHF. Unfortunately,
neither large Πst(G) nor large min

P∈P‖
G

st(P ), are sufficient to guarantee that

Π
‖
cc(G) is large [AS15]. More recently Alwen and Blocki [AB16] showed that

Argon2i [BDK16], the winner of the recently completed password hashing com-
petition [PHC], has much lower than desired amortized space-time complexity.
In particular, Π

‖
cc(G) ≤ Õ

(
n1.75

)
.

In the context of iMHFs, it is important to study Π
‖
cc(G), the cumulative

pebbling cost of a graph G, in addition to Πst(G). Traditionally, pebbling strate-
gies have been analyzed using space-time complexity or simply space complexity.
While sequential space-time complexity may be a good model for the cost of com-
puting a single-instance of an iMHF on a standard single-core machine (i.e., the
costs incurred by the honest party during password authentication), it does not
model the amortized costs of a (parallel) offline adversary who obtains a pass-
word hash value and would like to evaluate the hash function on many different
inputs (e.g., password guesses) to crack the user’s password [AS15,AB16]. Unlike
Πst(G), Π

‖
cc(G) models the amortized cost of evaluating a data-independent

memory hard function on many instances [AS15,AB16].
An efficient algorithm to (approximately) compute Π

‖
cc(G) would be an

incredible asset when developing and evaluating iMHFs. For example, the
Argon2i designers argued that the Alwen-Blocki attack [AB16] was not par-
ticularly effective for practical values of n (e.g., n ≤ 220) because the constant
overhead was too high [BDK16]. However, they could not rule out the possi-
bility that more efficient attacks might exist2. As it stands, there is a huge
gap between the best known upper/lower bounds on Π

‖
cc(G) for Argon2i and

for the new DRSample graph [ABH17], since in all practical cases the ratio
between the upper bound and the lower bound is at least 105. An efficient
algorithm to (approximately) compute Π

‖
cc(G) would allow us to immediately

resolve such debates by automatically generating upper/lower bounds on the
cost of computing the iMHF for each running time parameters (n) that one
might select in practice. Alwen et al. [ABP17] showed how to construct graphs
G with Π

‖
cc(G) = Ω

(
n2

log n

)
. This construction is essentially optimal in theory as

results of Alwen and Blocki [AB16] imply that any constant indegree graph has
Π

‖
cc(G) = O

(
n2 log log n

log n

)
. However, the exact constants one could obtain through

2 Indeed, Alwen and Blocki [AB17] subsequently introduced heuristics to improve their
attack and demonstrated that their attacks were effective even for smaller (practical)
values of n by simulating their attack against real Argon2i instances.



332 J. Blocki and S. Zhou

a theoretical analysis are most-likely small. A proof that Π
‖
cc(G) ≥ 10−6×n2

log n
would be an underwhelming security guarantee in practice, where we may have
n ≈ 106. An efficient algorithm to compute Π

‖
cc(G) would allow us to imme-

diately determine whether these new constructions provide meaningful security
guarantees in practice.

1.2 Results

We provide a number of computational complexity results. Our primary contri-
bution is a proof that the decision problem “is Π

‖
cc(G) ≤ k for a positive integer

k ≤ n(n+1)
2 ” is NP-Complete.3 In fact, our result holds even if the DAG G has

constant indeg.4 We also provide evidence that Π
‖
cc(G) is hard to approximate.

Thus, it is unlikely that it will be possible to automate the cryptanalysis process
for iMHF candidates. In particular, we define a natural integer program to com-
pute Π

‖
cc(G) and consider its linear programming relaxation. We then show in

the full version of the paper [BZ16] that the integrality gap is at least Ω
(

n
log n

)

leading us to conjecture that it is hard to approximate Π
‖
cc(G) within constant

factors. We also give an example of a DAG G on n nodes with the property that
any optimal pebbling (minimizing Π

‖
cc) requires more than n pebbling rounds.

The computational complexity of several graph pebbling problems has been
explored previously in various settings [GLT80,HP10]. However, minimizing
cumulative cost of a pebbling is a very different objective than minimizing the
space-time cost or space. For example, consider a pebbling where the maxi-
mum number of pebbles used is significantly greater than the average number of
pebbles used. Thus, we need fundamentally new ideas to construct appropriate
gadgets for our reduction.5 We first introduce a natural problem that arises from
solving systems of linear equations, which we call Bounded 2-Linear Covering
(B2LC) and show that it is NP-Complete. We then show that we can encode a
B2LC instance as a graph pebbling problem thus proving that the decision version
of cummulative graph pebbling is NP-Hard.

In Sect. 5 we also investigate the computational complexity of determining
how “depth-reducible” a DAG G is showing that the problem is NP-Complete
even if G has constant indegree. A DAG G is (e, d)-reducible if there exists a
subset S ⊆ V of size |S| ≤ e such that depth(G−S) < d. That is, after removing
nodes in the set S from G, any remaining directed path has length less than
d. If G is not (e, d)-reducible, we say that it is (e, d)-depth robust. It is known
that a graph has high cumulative cost (e.g., Ω̃

(
n2

)
) if and only if the graph

is highly depth robust (e.g., e, d = Ω̃ (n)) [AB16,ABP17]. Our reduction from

3 Note that for any G with n nodes we have Π
‖
cc(G) ≤ 1 + 2 + . . . + n = n(n+1)

2
since

we can always pebble G in topological order in n steps if we never remove pebbles.
4 For practical reasons most iMHF candidates are based on a DAG G with constant

indegree.
5 See additional discussion in Sect. 3.2.
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Vertex Cover preserves approximation hardness.6 Thus, assuming that P �= NP
it is hard to 1.3-approximate e, the minimum size of a set S ⊆ V such that
depth(G − S) < d [DS05]. Under the Unique Games Conjecture [Kho02], it is
hard to (2 − ε)-approximate e for any fixed ε > 0 [KR08]. In fact, we show in
the full version of the paper [BZ16] that the linear programming relaxation to
the natural integer program to compute e has an integrality gap of Ω(n/ log n)
leading us to conjecture that it is hard to approximate e.

2 Preliminaries

Given a directed acyclic graph (DAG) G = (V,E) and a node v ∈ V we use
parents(v) = {u : (u, v) ∈ E} to denote the set of nodes u with directed edges
into node v and we use indeg(v) = |parents(v)| to denote the number of directed
edges into node v. We use indeg(G) = maxv∈V indeg(v) to denote the maximum
indegree of any node in G. For convenience, we use indeg instead of indeg(G)
when G is clear from context. We say that a node v ∈ V with indeg(v) = 0
is a source node and a node with no outgoing edges is a sink node. We use
sinks(G) (resp. sources(G)) to denote the set of all sink nodes (resp. source
nodes) in G. We will use n = |V | to denote the number of nodes in a graph, and
for convenience we will assume that the nodes V = {1, 2, 3, . . . , n} are given in
topological order (i.e., 1 ≤ j < i ≤ n implies that (i, j) /∈ E). We use depth(G)
to denote the length of the longest directed path in G. Given a positive integer
k ≥ 1 we will use [k] = {1, 2, . . . , k} to denote the set of all integers 1 to k
(inclusive).

Definition 1. Given a DAG G = (V,E) on n nodes a legal pebbling of G is a
sequence of sets P =

(
P0, . . . , Pt

)
such that:

1. P0 = ∅
2. ∀i > 0, v ∈ Pi\Pi−1 we have parents(v) ⊆ Pi−1

3. ∀v ∈ sinks(G) ∃0 < j ≤ t such that v ∈ Pj

The cumulative cost of the pebbling P is cc(P ) =
∑t

i=1 |Pi|, and the space-time
cost is st(P ) = t × max0<j≤t |Pi|.

The first condition states that we start with no pebbles on the graph. The
second condition states that we can only add a new pebble on node v during
round i if we already had pebbles on all of v’s parents during round i−1. Finally,
the last condition states that every sink node must have been pebbled during
some round.

We use P‖
G to denote the set of all legal pebblings, and we use PG ⊂ P‖

G to
denote the set of all sequential pebblings with the additional requirement that
|Pi\Pi−1| ≤ 1 (i.e., we place at most one new pebble on the graph during ever
round i). We use Π

‖
cc(G) = min

P∈P‖
G

cc(P ) to denote the cumulative cost of the
best legal pebbling.
6 Note that when d = 0 testing whether a graph G is (e, d) reducible is equivalent to

asking whether G has a vertex cover of size e. Our reduction establishes hardness
for d � 1.
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Definition 2. We say that a directed acyclic graph (DAG) G = (V,E) is (e, d)-
depth robust if ∀S ⊆ V of size |S| ≤ e we have depth(G − S) ≥ d. If G contains
a set S ⊆ V of size |S| ≤ e such that depth(G − S) ≤ d then we say that G is
(e, d)-reducible.

Decision Problems
The decision problem minCC is defined as follows:
Input: a DAG G on n nodes and an integer k < n(n + 1)/2. (See footnote 3.)
Output: Yes, if Π

‖
cc(G) ≤ k; otherwise No.

Given a constant δ ≥ 1 we use minCCδ to denote the above decision problem
with the additional constraint that indeg(G) ≤ δ. It is clear that minCC ∈ NP and
minCCδ ∈ NP since it is easy to verify that a candidate pebbling P is legal and
that cc(P ) ≤ k. One of our primary results is to show that the decision problems
minCC and minCC2 are NP-Complete. In fact, these results hold even if we require
that the DAG G has a single sink node.

The decision problem REDUCIBLEd is defined as follows:
Input: a DAG G on n nodes and positive integers e, d ≤ n.
Output: Yes, if G is (e, d)-reducible; otherwise No.

We show that the decision problem REDUCIBLEd is NP-Complete for all d > 0
by a reduction from Cubic Vertex Cover, defined below. Note that when d =
0 REDUCIBLEd is Vertex Cover. We use REDUCIBLEd,δ to denote the decision
problem with the additional constraint that indeg(G) ≤ δ.

The decision problem VC (resp. CubicVC) is defined as follows:
Input: a graph G on n vertices (CubicVC: each with degree 3) and a positive
integer k ≤ n

2 .
Output: Yes, if G has a vertex cover of size at most k; otherwise No.

To show that minCC is NP-Complete we introduce a new decision problem
B2LC. We will show that the decision problem B2LC is NP-Complete and we will
give a reduction from B2LC to minCC.

The decision problem Bounded 2-Linear Covering (B2LC) is defined as follows:
Input: an integer n, k positive integers 0 ≤ c1, . . . , ck, an integer m ≤ k and k
equations of the form xαi

+ ci = xβi
, where αi, βi ∈ [n] and i ∈ [k]. We require

that
∑k

i=1 ci ≤ p(n) for some fixed polynomial n.
Output: Yes, if we can find mn integers xy,z ≥ 0 (for each 1 ≤ y ≤ m and
1 ≤ z ≤ n) such that for each i ∈ [k] there exists 1 ≤ y ≤ m such that
xy,αi

+ ci = xy,βi
(that is the assignment x1, . . . , xn = xy,1, . . . , xy,n satisfies the

ith equation); otherwise No.

3 Related Work

The sequential black pebbling game was introduced by Hewitt and Pater-
son [HP70], and by Cook [Coo73]. It has been particularly useful in exploring
space/time trade-offs for various problems like matrix multiplication [Tom78],
fast fourier transformations [SS78,Tom78], integer multiplication [SS79b] and
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many others [Cha73,SS79a]. In cryptography it has been used to con-
struct/analyze proofs of space [DFKP15,RD16], proofs of work [DNW05,
MMV13] and memory-bound functions [DGN03] (functions that incur many
expensive cache-misses [ABW03]). More recently, the black pebbling game has
been used to analyze memory hard functions e.g., [AS15,AB16,ABP17,AT17].

3.1 Password Hashing and Memory Hard Functions

Users often select low-entropy passwords which are vulnerable to offline attacks
if an adversary obtains the cryptographic hash of the user’s password. Thus, it
is desirable for a password hashing algorithm to involve a function f(.) which is
moderately expensive to compute. The goal is to ensure that, even if an adversary
obtains the value (username, f(pwd, salt), salt) (where salt is some randomly
chosen value), it is prohibitively expensive to evaluate f(., salt) for millions (bil-
lions) of different password guesses. PBKDF2 (Password Based Key Derivation
Function 2) [Kal00] is a popular moderately hard function which iterates the
underlying cryptographic hash function many times (e.g., 210). Unfortunately,
PBKDF2 is insufficient to protect against an adversary who can build customized
hardware to evaluate the underlying hash function. The cost computing a hash
function H like SHA256 or MD5 on an Application Specific Integrated Circuit
(ASIC) is dramatically smaller than the cost of computing H on traditional
hardware [NBF+15].

[ABW03], observing that cache-misses are more egalitarian than computa-
tion, proposed the use of “memory-bound” functions for password hashing—a
function which maximizes the number of expensive cache-misses. Percival [Per09]
observed that memory costs tend to be stable across different architectures
and proposed the use of memory-hard functions (MHFs) for password hash-
ing. Presently, there seems to be a consensus that memory hard functions are
the ‘right tool’ for constructing moderately expensive functions. Indeed, all
entrants in the password hashing competition claimed some form of memory
hardness [PHC]. As the name suggests, the cost of computing a memory hard
function is primarily memory related (storing/retrieving data values). Thus, the
cost of computing the function cannot be significantly reduced by construct-
ing an ASIC. Percival [Per09] introduced a candidate memory hard function
called scrypt, but scrypt is potentially vulnerable to side-channel attacks as
its computation yields a memory access pattern that is data-dependent (i.e.,
depends on the secret input/password). Due to the recently completed password
hashing competition [PHC] we have many candidate data-independent memory
hard functions such as Catena [FLW13] and the winning contestant Argon2i-
A [BDK15].7

7 The specification of Argon2i has changed several times. We use Argon2i-A to refer to
the version of Argon2i from the password hashing competition, and we use Argon2i-
B to refer to the version that is currently being considered for standardization by
the Cryptography Form Research Group (CFRG) of the IRTF [BDKJ16].
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iMHFs and Graph Pebbling. All known candidate iMHFs can be described
using a DAG G and a hash function H. Graph pebbling is a particularly useful
as a tool to analyze the security of an iMHF [AS15,CGBS16,FLW13]. A peb-
bling of G naturally corresponds to an algorithm to compute the iMHF. Alwen
and Serbinenko [AS15] showed that in the pROM model of computation, any
algorithm to compute the iMHF corresponds to a pebbling of G.

Measuring Pebbling Costs. In the past, MHF analysis has focused on
space-time complexity [Per09,FLW13,BCS16]. For example, the designers of
Catena [FLW13] showed that their DAG G had high sequential space-time
pebbling cost Πst(G) and Boneh et al. [BCS16] showed that Argon2i-A and
their own iMHF candidate iBH (“balloon hash”) have (sequential) space-time
cost Ω

(
n2

)
. Alwen and Serbinenko [AS15] observed that these guarantees are

insufficient for two reasons: (1) the adversary may be parallel, and (2) the
adversary might amortize his costs over multiple iMHF instances (e.g., mul-
tiple password guesses). Indeed, there are now multiple known attacks on
Catena [BK15,AS15,AB16]. Alwen and Blocki [AB16,AB17] gave attacks on
Argon2i-A, Argon2i-B, iBH, and Catena with lower than desired amortized
space-time cost—Π

‖
cc(G) ≤ O

(
n1.8

)
for Argon2i-B, Π

‖
cc(G) ≤ Õ

(
n1.75

)
for

Argon2i-A and iBH and Π
‖
cc(G) ≤ O

(
n5/3

)
for Catena. This motivates the

need to study cumulative cost Π
‖
cc instead of space-time cost since amortized

space-time complexity approaches Π
‖
cc as the number of iMHF instances being

computed increases.
Alwen et al. [ABP17] recently constructed a constant indegree graph G with

Π
‖
cc(G) = Ω

(
n2

log n

)
. From a theoretical standpoint, this is essentially optimal as

any constant indeg DAG has Π
‖
cc = O

(
n2 log log n

log n

)
[AB16], but from a practical

standpoint the critically important constants terms in the lower bound are not
well understood.

Ren and Devedas [RD17] recently proposed an alternative metric MHFs
called bandwidth hardness. The key distinction between bandwidth hardness
and cumulative pebbling cost is that bandwidth hardness attempts to approx-
imate energy costs, while cumulative pebbling cost attempts to approximate
amortized capital costs (i.e., the cost of all of the DRAM chips divided by the
number of MHF instances that can be computed before the DRAM chip fails). In
this paper we focus on the cumulative pebbling cost metric as we expect amor-
tized capital costs to dominate for sufficiently large n. In particular, bandwidth
costs scale linearly with the running time n (at best), while cumulative pebbling
costs can scale quadratically with n.

3.2 Computational Complexity of Pebbling

The computational complexity of various graph pebbling has been explored pre-
viously in different settings [GLT80,HP10]. Gilbert et al. [GLT80] focused on
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space-complexity of the black-pebbling game. Here, the goal is to find a peb-
bling which minimizes the total number of pebbles on the graph at any point
in time (intuitively this corresponds to minimizing the maximum space required
during computation of the associated function). Gilbert et al. [GLT80] showed
that this problem is PSPACE complete by reducing from the truly quantified
boolean formula (TQBF) problem.

The optimal (space-minimizing) pebbling of the graphs from the reduction of
Gilbert et al. [GLT80] often require exponential time. By contrast, observe that
minCC ∈ NP because any DAG G with n nodes this algorithm has a pebbling
P with cc(P ) ≤ st(P ) ≤ n2. Thus, if we are minimizing cc or st cost, the
optimal pebbling of G will trivially never require more than n2 steps. Thus, we
need different tools to analyze the computational complexity of the problem of
finding a pebbling with low cumulative cost.

In the full version [BZ16], we show that the optimal pebbling from [GLT80]
does take polynomial time if the TQBF formula only uses existential quantifiers
(i.e., if we reduce from 3SAT). Thus, the reduction of Gilbert et al. [GLT80]
can also be extended to show that it is NP-Complete to check whether a DAG
G admits a pebbling P with st(P ) ≤ k for some parameter k. The reduction,
which simply appends a long chain to the original graph, exploits the fact that if
we increase space-usage even temporarily we will dramatically increase st cost.
However, this reduction does not extend to cumulative cost because the penalty
for temporarily placing large number of pebbles can be quite small as we do not
keep these pebbles on the graph for a long time.

4 NP-Hardness of minCC

In this section we prove that minCC is NP-Complete by reduction from B2LC.
Showing that minCC ∈ NP is straightforward so we will focus on proving that the
decision problem is NP-Hard. We first provide some intuition about the reduction.

Recall that a B2LC instance consists of n variables x1, . . . , xn, and k equations
of the form xαi

+ ci = xβi
, where αi, βi ∈ [n], i ∈ [k], and each ci ≤ p(n) is

a positive integer bounded by some polynomial in n. The goal is to determine
whether there exist m different variable assignments such that each equation is
satisfied by at least one of the m assignments. Formally, the goal is to decide
if there exists a set of m < k variable assignments: xy,z ≥ 0 for each 1 ≤
y ≤ m and 1 ≤ z ≤ n so that for each i ∈ [k] there exists y ∈ [m] such that
xy,αi

+ ci = xy,βi
—that is the ith equation xαi

+ ci = xβi
is satisfied by the yth

variable assignment xy,1, . . . , xy,n. For example, if k = 2 and the equations are
x1 + 1 = x2 and x2 + 2 = x3, then m = 1 suffices to satisfy all the equations.
On the other hand, if x1 + 1 = x2 and x1 + 2 = x2, then we require m ≥ 2 since
the equations are no longer independent. Observe that for m = 1, B2LC seeks a
single satisfying assignment, whereas for m ≥ k, each equation can be satisfied
by a separate assignment of the variables (specifically, the ith assignment is all
zeroes except xβi

= ci).
Suppose we are given an instance of B2LC. We shall construct a minCC instance

GB2LC in such a way that the optimal pebbling of GB2LC has “low” cost if the
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instance of B2LC is satisfiable and otherwise, has “high” cost. The graph B2LC
will be constructed from three different types of gadgets: τ gadgets C1

i , . . . , Cτ
i

for each variable xi, a gadget Ei for each equation and a “m-assignments” gadget
Mi for each variable xi. Here τ is a parameter we shall set to create a gap between
the pebbling costs of satisfiable and unsatisfiable instances of B2LC. Each gadget
is described in more detail below.

Variable Gadgets. Our first gadget is a chain of length c =
∑

ci so that each node
is connected to the previous node, and can only be pebbled if there exists a pebble
on the previous node in the previous step, such as in Fig. 1. For each variable
xi in our B2LC instance we will add τ copies of our chain gadget C1

i , . . . , Cτ
i .

Formally, for each j ∈ [τ ] the chain gadget Cj
i consists of c vertices vj,1

i , . . . , vj,c
i

with directed edges
(
vj,z

i , vj,z+1
i

)
for each z < c. We will later add a gadget to

ensure that we must walk a pebble down each of these chains m different times
and that in any optimal pebbling P ∈ P‖

GB2LC
(with cc(P ) = Π

‖
cc (GB2LC)) the

walks on each chain gadget C1
i , . . . , Cτ

i are synchronized e.g., for each pebbling
round y and for each z ≤ c we have vj,z

i ∈ Py ↔ {v1,z
i , . . . vτ,z

i } ⊆ Py. Intuitively,
each time at which we begin walking a pebble down these chains will correspond
to an assignment of the B2LC variable xi. Hence, it suffices to have c =

∑
ci

nodes in the chain.

Cj
i : vj,1i vj,2i vj,3i

. . . vj,ci

Fig. 1. Example variable gadget Cj
i of length c =

∑
ci. GB2LC replicates this gadget τ

times: C1
i , . . . , Cτ

i . Each of the τ copies behaves the same.

Equation Gadget. For the ith equation xαi
+ ci = xβi

, the gadget Ei is a chain
of length c − ci. For each j ∈ [τ ] we connect the equation gadget Ei to each of
the variable gadgets Cj

αi
and Cj

βi
as follows: the ath node ea

j in chain Ej has
incoming edges from vertices vl,a

αi
and vl,a+ci

βi
for all 1 ≤ l ≤ τ , as demonstrated in

Fig. 2. To pebble the equation gadget, the corresponding variable gadgets must
be pebbled synchronously, distance ci apart.

Intuitively, if the equation xα + ci = xβ is satisfied by the jth assignment,
then on the jth time we walk pebbles down the chain xα and xβ , the pebbles on
each chain will be synchronized (i.e., when we have a pebble on vl,a

α , the ath link
in the chain representing xα we will have a pebble on the node vl,a+ci

β during the
same round) so that we can pebble all of the nodes in the equation gadget, such
as in Fig. 3. On the other hand, if the pebbles on each chain are not synchronized
appropriately, we cannot pebble the equation gadget. Finally, we create a single
sink node linked from each of the k equation chains, which can only be pebbled
if all equation nodes are pebbled.

We will use another gadget, the assignment gadget, to ensure that in any legal
pebbling, we need to “walk” a pebble down each chain Cj

i on m different times.
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Cj
1 : vj,11 vj,21 vj,31

. . . vj,c1

Cj
3 : vj,13 vj,23 vj,33

. . . vj,c3

Gadget Ei e1i . . . ec−2
i

Fig. 2. The gadget Ei for equation x3+2 = x1. The example shows how Ei is connected
to the variable gadgets Cj

1 and Cj
3 for each j ∈ [τ ].

Cj
1 :

Cj
3 :

Time step 1

Cj
1 :

Cj
3 :

Time step 2

Cj
1 :

Cj
3 :

Time step 3

Cj
1 :

Cj
3 :

Time step 4

Cj
1 :

Cj
3 :

Time step 5

Cj
1 :

Cj
3 :

Time step 6

Fig. 3. A pebbling of the equation gadget x3 +2 = x1 (at the top) using the satisfying
assignment x3 = 1 and x1 = 3.

Each node vj,z
i of a variable gadget in a satisfiable B2LC instance has a pebble on

it during exactly m rounds. On the other hand, the assignment gadget ensures
that for any unsatisfiable B2LC instance, there exists some i ≤ n and z ≤ c such
that each of the nodes v1,z

i , . . . , vτ,z
i are pebbled during at least m + 1 rounds.

We will tune the parameter τ to ensure that any such pebbling is more
expensive, formalized in the full version of the paper [BZ16].

m Assignments Gadget. Our final gadget is a path of length cm so that each
node is connected to the previous node. We create a path gadget Mi of length
cm for each variable xi and connect Mi to each the variable gadgets C1

i , . . . Cτ
i

as follows: for every node zp+qc
i in the path with position p + qc > 1, where

1 ≤ p ≤ c and 0 ≤ q < m − 1, we add an edge to zp+qc
i from each of the nodes

vj,p
i , 1 ≤ j ≤ τ (that is, the pth node in all τ chains C1

i , . . . Cτ
i representing the

variable xi ). We connect the final node in each of the n paths to the final sink
node vsink in our graph GB2LC.
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Intuitively, to pebble vsink we must walk a pebble down each of the gadgets
Mi which in turn requires us to walk a pebble along each chain Cj

i , 1 ≤ j ≤ τ ,
at least m times. For example, see Fig. 4.

z1i . . . zci . . . . . . z2ci . . . . . . zcmi

Chain for Cj
i : vj,1i

. . . vj,ci

Mi:

Fig. 4. The gadget Mi for variable xi is a path of length cm. The example shows how
Mi is connected to Cj

i for each j ∈ [τ ]. The example shows m = 3 passes and c = 3.

Figure 5 shows an example of a reduction in its entirety when τ = 1.

M2:

M1:

C1
1 :

C1
2 :

E1 (equation 1: x1 + 0 = x2):

E2 (equation 2: x2 + 1 = x1):
Sink

Fig. 5. An example of a complete reduction GB2LC, again m = 3 and c = 3. The green
nodes represent the pebbled vertices at time step 2 while the red nodes represent the
pebbled vertices at time step 10. (Color figure online)

Lemma 1. If the B2LC instance has a valid solution, then Π
‖
cc

(
GB2LC

) ≤ τcmn+
2cmn + 2ckm + 1.

Lemma 2. If the B2LC instance does not have a valid solution, then
Π

‖
cc

(
GB2LC

) ≥ τcmn + τ .

We outline the key intuition behind Lemma1 and Lemma 2 and refer to the
full version of the paper [BZ16] for the formal proofs. Intuitively, any solution
to B2LC corresponds to m walks across the τn chains Cj

i , 1 ≤ i ≤ n, 1 ≤ j ≤ τ
of length c. If the B2LC instance is satisfiable then we can synchronize each of
these walks so that we can pebble every equation chain Ej and path Mj along
the way. Thus, the total cost is τcmn plus the cost to pebble the k equation
chains Ej (≤2ckm), the cost to pebble the n paths Mj (≤2cmn) plus the cost
to pebble the sink node 1.
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We then prove a structural property about the optimal pebbling P =
(P0, . . . , Pt) ∈ P‖

GB2LC
. In particular, we formally claim in the full version of the

paper [BZ16] that if P = (P0, . . . , Pt) is optimal (i.e., cc(P ) = Π
‖
cc (GB2LC)) then

during each pebbling round y ≤ t the pebbles on each of the chains C1
i , . . . , Cτ

i

are synchronized. Formally, for every y ≤ t, i ≤ n and z ≤ c we either have
(1)

{
v1,z

i , . . . , vτ,z
i

}
⊆ Py, or (2)

{
v1,z

i , . . . , vτ,z
i

} ⋂
Py = ∅—otherwise we could

reduce our pebbling cost by discarding these unnecessary pebbles.
If the B2LC instance is not satisfied then we must adopt a “cheating” pebbling

strategy P , which does not correspond to a B2LC solution. We say that P is a
“cheating” pebbling if some node vj,z

i ∈ Cj
i is pebbled during at least m + 1

rounds. We can use Lemma 2 to show that the cost of any “cheating” pebbling is
at least cc(P ) ≥ τ (mc + 1). In particular, P must incur cost at least τmc(n−1)
to walk a pebble down each of the chains Cj

i′ with i′ �= i and 1 ≤ j ≤ τ . By
Lemma 2, any cheating pebbling P incurs costs at least τ(mc+1) on each of the
chains C1

i , . . . , Cτ
i . Thus, the cumulative cost is at least τcmn + τ .

Theorem 1. minCC is NP-Complete.

Proof. It suffices to show that there is a polynomial time reduction from B2LC to
minCC since B2LC is NP-Complete (see Theorem 3). Given an instance P of B2LC,
we create the corresponding graph G as described above. This is clearly achieved
in polynomial time. By Lemma 1, if P has a valid solution, then Π

‖
cc(G) ≤

τcmn+2cmn+2ckm+1. On the other hand, by Lemma2, if P does not have a
valid solution, then Π

‖
cc(G) ≥ τcmn+τ . Therefore, setting τ > 2cmn+2ckm+1

(such as τ = 2cmn+2ckm+2) allows one to solve B2LC given an algorithm which
outputs Π

‖
cc(G).

Theorem 2. minCCδ is NP-Complete for each δ ≥ 2.

Note that the only possible nodes in GB2LC with indegree greater than two
are the nodes in the equation gadgets E1, . . . , Em, and the final sink node. The
equation gadgets can have indegree up to 2τ + 1, while the final sink node has
indegree n+m. To show that minCCδ is NP-Complete when δ = 2 we can replace
the incoming edges to each of these nodes with a binary tree, so that all vertices
have indegree at most two. By changing τ appropriately, we can still distinguish
between instances of B2LC using the output of minCCδ. We refer to the full version
of the paper [BZ16] for a sketch of the proof of Theorem2.

Theorem 3. B2LC is NP-Complete.

To show that B2LC is NP-Complete we will reduce from the problem
3-PARTITION, which is known to be NP-Complete. The decision problem
3-PARTITION is defined as follows:
Input: A multi-set S of m = 3n positive integers x1, . . . , xm ≥ 1 such that (1)
we have T

4n < xi < T
2n for each 1 ≤ i ≤ m, where T = x1 + . . . + xm, and (2) we

require that T ≤ p(n) for a fixed polynomial p.8

8 We may assume T
4n

< xi < T
2n

by taking any set of positive integers and adding a
large fixed constant to all terms, as described in [Dem14].
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Output: Yes, if there is a partition of [m] into n subsets S1, . . . , Sn such that∑
j∈Si

xj = T
n for each 1 ≤ i ≤ n; otherwise No.

Fact 4. [GJ75,Dem14] 3-PARTITION is NP-Complete.9

We refer to the full version of the paper [BZ16] for the proof of Theorem3,
where we show that there is a polynomial time reduction from 3-PARTITION to
B2LC.

5 NP-Hardness of REDUCIBLEd

The attacks of Alwen and Blocki [AB16,AB17] exploited the fact that the
Argon2i-A, Argon2i-B, iBH and Catena DAGs are not depth-robust. In gen-
eral, Alwen and Blocki [AB16] showed that any (e, d)-reducible DAG G can
be pebbled with cumulative cost O

(
ne + n

√
nd

)
. Thus, depth-robustness is a

necessary condition for a secure iMHF. Recently, Alwen et al. [ABP17] showed
that depth-robustness is sufficient for a secure iMHF. In particular, they showed
that an (e, d)-depth reducible graph has Π

‖
cc(G) ≥ ed.10 Thus, to cryptanalyze

a candidate iMHF it would be useful to have an algorithm to test for depth-
robustness of an input graph G. However, we stress that (constant-factor) hard-
ness of REDUCIBLEd does not directly imply that minCC is NP-Hard. To the best
of our knowledge no one has explored the computational complexity of testing
whether a given DAG G is (e, d)-depth robust.

We have many constructions of depth-robust graphs [EGS75,PR80,Sch82,
Sch83,MMV13], but the constant terms in these constructions are typically
not well understood. For example, Erdös, Graham and Szemerédi [EGS75] con-
structed an

(
Ω(n), Ω(n)

)
-depth robust graph with indeg = O

(
log n

)
. Alwen

et al. [ABP17] showed how to transform an n node (e, d)-depth robust graph
with maximum indegree indeg to a (e, d × indeg)-depth robust graph with max-
imum indeg = 2 on n × indeg nodes. Applying this transform to the Erdös,
Graham and Szemerédi [EGS75] construction yields a constant-indegree graph
on n nodes such that G is (Ω(n/ log(n)), Ω(n)

)
-depth robust—implying that

Π
‖
cc(G) = Ω

(
n2

log n

)
. From a theoretical standpoint, this is essentially optimal

as any constant indeg DAG has Π
‖
cc = O

(
n2 log log n

log n

)
[AB16]. From a practical

standpoint it is important to understand the exact values of e and d for specific
parameters n in each construction.

9 The 3-PARTITION problem is called P[3, 1] in [GJ75].
10 Alwen et al. [ABP17] also gave tighter upper and lower bounds on Π

‖
cc(G) for

the Argon2i-A, iBH and Catena iMHFs. For example, Π
‖
cc(G) = Ω

(
n1.66

)
and

Π
‖
cc(G) = O

(
n1.71

)
for a random Argon2i-A DAG G (with high probability). Blocki

and Zhou [BZ17] recently tightened the upper and lower bounds on Argon2i-B show-

ing that Π
‖
cc(G) = O

(
n1.767

)
and Π

‖
cc(G) = Ω̃

(
n1.75

)
.
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5.1 Results

We first produce a reduction from Vertex Cover which preserves approxima-
tion hardness. Let minREDUCIBLEd denote the problem of finding a minimum
size S ⊆ V such that depth(G − S) ≤ d. Our reduction shows that, for each
0 ≤ d ≤ n1−ε, it is NP-Hard to 1.3-approximate minREDUCIBLEd since it is NP-Hard
1.3-approximate Vertex Cover [DS05]. Similarly, it is hard to (2−ε)-approximate
minREDUCIBLEd for any fixed ε > 0 [KR08], under the Unique Games Conjec-
ture [Kho02]. We also produce a reduction from Cubic Vertex Cover to show
REDUCIBLEd is NP-Complete even when the input graph has bounded indegree.

The techniques we use are similar to those of Bresar et al. [BKKS11] who
considered the problem of finding a minimum size d-path cover in undirected
graphs (i.e., find a small set S ⊆ V of nodes such that every undirected path
in G − S has size at most d). However, we stress that if G is a DAG, Ĝ is the
corresponding undirected graph and S ⊆ V is given such that depth(G − S) ≤ d
that this does not ensure that Ĝ − S contains no undirected path of length
d. Thus, our reduction specifically address the needs for directed graphs and
bounded indegree.

Theorem 5. REDUCIBLEd is NP-Complete and it is NP-Hard to 1.3-approximate
minREDUCIBLEd. Under the Unique Games Conjecture, it is hard to (2 − ε)-
approximate minREDUCIBLEd.

Theorem 6. Even for δ = O(1), REDUCIBLEd,δ is NP-Complete.

We defer the proofs of Theorem5 and Theorem 6 to the full version of
the paper [BZ16]. We leave open the question of efficient approximation algo-
rithms for minREDUCIBLEd. Lee [Lee17] recently proposed a FPT O (log d)-
approximation algorithm for the related problem d-path cover problem running
in time 2O(d3 log d)nO(1). However, it is not clear whether the techniques could
be adapted to handle directed graphs and in most interesting cryptographic
applications we have d = Ω (

√
n) so the algorithm would not be tractable.

6 Conclusions

We initiate the study of the computational complexity of cumulative cost mini-
mizing pebbling in the parallel black pebbling model. This problem is motivated
by the urgent need to develop and analyze secure data-independent memory hard
functions for password hashing. We show that it is NP-Hard to find a parallel
black pebbling minimizing cumulative cost, and we provide evidence that the
problem is hard to approximate. Thus, it seems unlikely that we will be able to
develop tools to automate the task of a cryptanalyst to obtain strong upper/lower
bounds on the security of a candidate iMHF. However, we cannot absolutely rule
out the possibility that an efficient approximation algorithm exists. In fact, our
results only establish worst case hardness of graph pebbling. We cannot rule
out the existance of efficient algorithms to find optimal pebblings for practical
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iMHF proposals such as Argon2i [BDK16] and DRSample [ABH17]. The primary
remaining challenge is to either give an efficient α-approximation algorithm to
find a pebbling P ∈ P‖ with cc(P ) ≤ αΠ

‖
cc(G) or show that Π

‖
cc(G) is hard

to approximate. We believe that the problem offers many interesting theoreti-
cal challenges and a solution could have very practical consequences for secure
password hashing. It is our hope that this work encourages others in the TCS
community to explore these questions.
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Abstract. In electronic anonymity markets a taker seeks a specified
number of market makers in order to anonymize a transaction or activity.
This process requires both coalition formation, in order to create an
anonymity set among the taker and makers, and the derivation of the
fee that the taker pays each maker. The process has a novel property in
that the taker pays for anonymity but anonymity is created for both the
taker and the makers. Using the Shapley value for nontransferable utility
cooperative games, we characterize the formation of the anonymity set
and the fee for any arbitrary number of makers selected by the taker.
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1 Introduction and Literature Review

Several advances in information technology have brought about that electronic
transactions reveal identifying information of transaction partners. Specifically,
packet-switched networks transmit addresses in every data packet to ensure
delivery, digital signatures include identifying public keys for verification, and
public ledger-based cryptocurrencies use references to – unique and therefore
potentially identifying – past transactions for verification.

Sometimes identifiability is dysfunctional, and demand for anonymity arises
out of private or public interest. However, establishing anonymity in systems that
depend on identifying information requires effort. Technical solutions, known as
mixes, bundle and shuffle the electronic records of similar activities (messages,
transactions) from many participants so as to hide the relation between subjects
and objects. Practical examples include the Tor network for Internet commu-
nication [11], mixes offering transaction anonymization in Bitcoin1 [25], or the
existence of dark pools next to conventional financial markets [40].
1 The popular belief that Bitcoin payments are anonymous is wrong. This cryptocur-

rency uses pseudonymous accounts and a public transaction ledger. Agents who want
to hide the relation between their accounts, some of which may fully identify them,
need anonymizing technology [6].
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Surprisingly little research studies the price of anonymity. Acquisti et al.
[2] describe the economics of participating in (message) mixing services. They
observe that anonymity is co-created by multiple agents sharing activities with
the same observable features: one cannot be anonymous alone. More specifically,
the authors consider decentralized anonymity infrastructures and suggest non-
cooperative game theory to identify viable participation equilibria, but they do
not offer a solution to their game. Acquisti and Varian [4] consider optional
anonymization with simple technology (“delete cookie”), available without cost
to some customers in their model, as a constraint to individual pricing. By
contrast, Friedman and Resnick [14] study the effect of optional anonymity on
the social level. Their repeated game with random matching predicts negative
welfare effects. This is because bad reputation does not stick when agents can
choose to be anonymous, resounding with the models of credit information shar-
ing, which also contribute to the formal economic treatment of identity [29,30].

Other works, broadly related to anonymity and prices, focus on the pay-
ment system needed to compensate the operators of anonymizing infrastructure
without revealing identifying information on the payment channel [5,13,17]; or
empirically approximate users’ willingness to pay for anonymous Internet access
by measuring the tradeoff between the anonymity provided by a mixing service
and the experienced performance [19].

The present work is inspired by Böhme and Möser’s measurement study
of JoinMarket2 [23], a platform in the Bitcoin ecosystem that matches agents
who seek to merge their payments in a single transaction in order to improve
anonymity. Such transactions are called CoinJoins in jargon [21] and, to offer
some anonymity, they must entail payments of the same amount at the same
time.3 JoinMarket is organized as platform where supply-side agents, called mak-
ers, offer funds to participate in CoinJoin transactions for an advertised mixing
fee.4 Demand-side agents, called takers, initiate an anonymizing transactions
by choosing several of these offers. As a result, a typical transaction from this
market is funded by exactly one taker and two or more makers. The matching
and settlement is supported with software provided by the JoinMarket devel-
opers and run in a decentralized manner on many Internet nodes. Möser and
Böhme [24] speculate why demand and supply might exist in this market, but
acknowledge that “puzzles” remain. They do not formally characterize the rela-
tion between key parameters, such as the level of anonymity provided and its
price (i. e., the fees paid to form the CoinJoin).

Here, to the best of our knowledge, we provide the first formal solution to
price anonymity in systems which require the coordination of multiple partic-
ipants. While we adopt the terminology of transaction anonymization used in
CoinJoins, our results generalize to all anonymization schemes with similar prop-

2 See http://joinmarket.io. Last visited on June 25th, 2018.
3 See Meiklejohn and Orlandi [22] on the hardness of untangling CoinJoin transactions.
4 The fee is composed of fixed and variable parts to account for contributions to the

Bitcoin network’s miner fees. Our model abstracts from this complexity by assuming
a normalized nominal transaction value.

http://joinmarket.io
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erties. As one cannot be anonymous alone, anonymity requires an agreement
among individuals to behave in an indistinguisable way; e.g. via common message
length or transaction amount. This results in the formation of an anonymity set,
being the collection of individuals that nonmembers cannot distinguish between.
The degree of anonymity is generally associated with the size of the anonymity
set [32]. An anonymity set therefore requires coalition formation, and the tradi-
tional game-theoretic approach to coalition formation is cooperative game the-
ory. Consequently, at its most basic level, a CoinJoin transaction requires the
formation of an anonymity set/coalition organized around a common transaction
amount. In addition, the formation of the anonymity set/coalitions is enforce-
able because a Bitcon CoinJoin agreement occurs only if all members of the
anonymity set sign the transaction [21]. This is again consistent with coopera-
tive game theory.

In a cooperative game representation of a CoinJoin, a characteristic function
is specified for all potential coalitions in the transaction. For each coaltion, the
characteristic function is a vector of payoffs for each member of that coalition,
where payoffs are defined in terms of the size of the anonymity set specified
by the taker, each player’s valuation of their identity, the fee paid by a taker
to get enough makers to join the anonymity set, the fee received by makers
for joining the anonymity set, etc. What matters is that this approach cap-
tures the key property of anonymity markets, which is that some participants
pay for anonymity but all participants benefit from anonymity being created.
This is also novel from the perspective of cooperative game theory in that one
player (the taker) is paying other players (the makers) to form a coalition from
which all members benefit. Consequently, the characteristic function is defined
for the anonymity set (the grand coalition) and all potential subcoalitions of
the anonymity set, where the anonymity fee is an unknown to be determined
endogenously as a function of the solution concept used to solve the game.

In this paper we use the Shapley value to solve the cooperative game. The
Shapley value an economically-motivated solution that gives each player their
expected marginal contribution to the anonymity set and all possible subcoali-
tions of the anonymity set. In particular, we derive expressions for the Shapley
value of the market participant demanding anonymity (the taker) and any num-
ber of suppliers (the market makers) participating in a CoinJoin. This in turn
allows for a characterization of the price of anonymity. The class of anonymiza-
tion schemes to which our theory applies can be further expanded by adapting
the characteristic function to the anonymization scheme and attacker model.

Our work is distinct from a line of formal research on privacy quantifica-
tion with respect to attribute disclosure. For example, differential privacy offers
a framework to measure and account the privacy loss when querying private
databases interactively [12]. Game theory, also in its cooperative form [9,18],
has been applied in this subfield in order to establish the price of attribute val-
ues as a function of their precision, or to incentivize disclosure [8,15]. Acquisti
et al. [3] survey the economics of privacy more broadly.

This paper is organized as follows. Section 2 specifies anonymity markets as
a cooperative game. Section 3 presents the Shapley value as the solution concept
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for the game. Section 4 solves the game for the case of three players. Section 5
generalizes to N players, and Sect. 6 concludes.

2 Anonymity Markets as Cooperative Games

In this section we introduce the building blocks for specifying an anonymity
market as a cooperative game. We consider anonymity markets with two types
of participants: takers and (market) makers [24]. Makers offer their identities or
pseudoidentities (such as Bitcoin addresses) for use in a transaction or activity
that the taker seeks to engage in anonymously. Recall from the introduction
that existing markets match exactly one taker with two or more makers to form
a transaction. All makers are assumed to be honest in that they do not seek
to ascertain the taker’s identity for their own purposes. Hence, the returns of
interest to a maker in an anonymity transaction are the fee that the maker
receives from the taker and the anonymity that the maker receives as well in
the transaction. This is the peculiarity of anonymity markets: the taker pays for
anonymity but the transaction itself anonymizes the identities of the taker and
makers alike. In this sense anonymity is akin to a public good that only the taker
pays for.5

Following Pfitzmann and Köhntopp [32, p. 2], anonymity can be defined as:
“the state of being not identifiable within a set of subjects, the anonymity set.”6

The purpose of an anonymity market is to create an anonymity set, S, which is
a coalition consisting of a taker and makers. As anonymity is meant to preserve
identities, the term D will denote the taker’s value of its identity. All makers will
be assumed to value their identity identically, with d denoting a maker’s valua-
tion of its identity. The fee that a taker pays to each maker in an anonymity set
is denoted as f (to be determined endogenously). A cooperative game approach
to anonymity is appropriate because the focus is on the distribution of benefits
among the taker and makers when they form an anonymity set.

In a CoinJoin, the probability that a player remains anonymous (retains their
identity) against a global passive adversary (GPA) in an anonymity set/coalition
of size |S| is (|S| − 1)/|S|, as all |S| members of the anonymity set are indis-
tinguishable to the GPA owing to the common transaction amount and use of
different input and output addresses in the transaction. In other words, the prob-
ability that the GPA randomly guesses the identity of a member of anonymity
set S is 1/|S|. Hence, participating in an anonymity market involves some risk

5 Public goods have the property that they are nonexclusive and nonrival [34]. Nonex-
clusive means that once created, the associated benefits of the good cannot be with-
held from others. Technically, the nonexcludability property of anonymity applies
only to the makers and taker engaged in the transaction. Nonrivalry means that use
of the good does not prohibit its use by others.

6 This definition is compatible with common alternatives. For example, the size of
the anonymity set corresponds to the parameter k in the k-anonymity model [39].
Entropy-based anonymity metrics generalize to sets with non-uniform priors [10,35].
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of loss of identity to each maker, and the fee we derive that is paid by the taker
to each maker must compensate makers for this risk.7

In addition, it is assumed that anonymity is only created within coalitions
involving a taker. Intuitively, potential makers do not costlessly create anonymity
amongst themselves because they have no underlying transaction or message that
requires anonymization, and forming an anonymity set always carries some risk.
Instead, makers rely on a taker (who does have a transaction or message needing
anonymization) to compensate them for creating anonymity for both the taker
and themselves. This implies that the payoffs for makers in coalitions that do
not involve a taker are normalized to zero. Normalizing in this way facilitates an
emphasis on taker identity, maker identity and the public nature of anonymity
in determining the fee for anonymity, which is the focus of the paper.

The specifics of the transaction to be anonymized (e.g., amount, message
length, or time) precludes takers from matching with other takers. As Narayanan
et al. [27] observe, a one-taker transaction avoids the necessity for multiple takers
to agree on transaction specifics, which is inefficient and costly. Hence, there is no
requirement for coincidence of transaction specifics among takers. Only makers
customize the transaction to the specific needs of a taker so as to make their
activities indistinguishable in the anonymity set. The incentive for makers to
form a coalition with the taker is that they are compensated for facilitating
anonymity by meeting the taker’s transaction needs. This compensation takes
the form of a fee, f , paid by the taker and the anonymity received by the maker
when participating in the CoinJoin.

The taker’s alternative is known as a mix, and is addressed within the model
as the taker’s outside option. Specifically, instead of an anonymity market, such
as JoinMarket, a taker could go to an outside option (e.g., a mix) and pay a fee,
F , for anonymity. Anonymity markets are almost instantaneous transactions for
the taker whereas the outside option may involve a significant delay and risk.
Mixing services in the Bitcoin ecosystem reportedly stole their clients’ funds, a
threat that can be mitigated with CoinJoin transactions arranged on anonymity
markets [25]. Consequently, the reservation value of anonymity for the taker of
going to the outside option for anonymity is δD where δ ∈ (0, 1) is a function of
both the probability that the funds are transmitted as intended while anonymity
is preserved by this outside option, and the taker’s time preference (discount
factor). As both probabilities and discount factors lie within the (0, 1) interval,
δ ∈ (0, 1) by definition. By comparison, in a CoinJoin with an anonymity set of
size |S| the taker retains its anonymity with probability (|S| − 1)/|S|, leading to
an expected value of anonymity of (|S| − 1)/|S| × D. Lastly, the mixing fee, F,
is posted, whereas the CoionJoin fee, f, is to be determined via the equilibrium
process associated with the CoinJoin.

Finally, anonymity is a public good but it need not be valued identically
among the anonymity market participants; hence, the value D for the taker’s

7 In addition to the first-order risk of losing one’s identity, makers may also face
the risk of legal authorities investigating Bitcoin purchases as part of a criminal
investigation. This potentiality lies beyond the scope of the present paper.
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identity and d for each maker’s identity. Moreover, interpersonal comparisons
of anonymity are not possible. For example, the taker’s value of its identity
need not be expressed in terms of the same measure of value as the maker’s.
Another rationale for nontransferable utility is that it is likely that takers and
makers have differing time preferences [24]. Even if the valuation of anonymity
was comparable between players, practical anonymity markets are restricted in
arranging transfer payments. For example with Bitcoin and JoinMarket, trans-
fer payments are either not enforceable (because alternative payments cannot
be part of the same atomic transaction), or compromise the anonymity of the
transaction (because the GPA may infer identity information from observing the
transfer payments). In this model the transfer payment is the fee for anonymity,
which is the same for every maker. Enforceable sidepayments beyond this con-
stant fee would potentially compromise anonymity.

This implies that what is attainable by an anonymity set associated with
a coalition of taker and makers cannot be assigned a single real number, as
is the case in cooperative games with transferable utility, known as TU games
[33]. More-to-the point, the assumption of transferable utility would imply that
identity can be expressed in the same units of measurement for every member
of the anonymity set and that it is possible to distribute the value that each
member places on their identity across the membership of the anonymity set in
a meaningful way. We do not believe that identity has such properties. Follow-
ing Shapley [37,38],“Interpersonal comparability of utility is generally regarded
as an unsound basis on which to erect theories of multipersonal behavior.” For
this reason, much of noncooperative game theory steers clear of the transferable
utility assumption. For similar reasons we use cooperative games with nontrans-
ferable utility, known as NTU games. NTU games are a more generalized version
of cooperative games, as transferable utility is a restrictive assumption. Indeed,
any TU game can be expressed as an NTU game. We therefore turn to the formal
definition of an NTU game and the Shapley value solution to NTU games.

3 NTU Games and the Shapley Value

In a NTU game, for any non-empty coalition, S, the associated NTU charac-
teristic function, V (S), denotes the set of feasible utility vectors attainable by
that coalition. Specifically, V (S) ⊆ R

|S|, where |S| is the cardinality of S. For
each vector x ∈ V (S) the entry xi specifies the maximum payoff to player i
should player i be a member of that coalition.8 Characteristic function V (S) is
the vector of utilities that is feasible for the members of S when they cooperate
with each other. As described, an anonymity market is a cooperative game with
sidepayments but without transferable utility [31].

An NTU game is defined by a pair (N,V ), where N is the set of all players,
and V (S) is the characteristic function specifying the payoff to each member
i ∈ S for all coalitions S ⊆ N . Given the game (N,V ) our approach uses the
8 Technically, any yi ≤ xi is a potential payoff for player i as well. This property is

known as “comprehensiveness” [28].
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Shapley value [36] to derive the anonymity fee, f . The Shapley value allocates
the total net benefits of an anonymity transaction according to each player’s
marginal contribution to every subcoalition of the anonymity set that the player
can potentially be a member of.

The Shapley value was originally defined for TU cooperative games. Later,
Shapley [37,38] established that one can create a TU game associated with an
NTU game by creating a fictitious transfer game (a λ-transfer game), which
converts the NTU game into a TU game that can be solved via Shapley’s original
method. The steps associated with this procedure can be summarized as follows.
First, begin with a nonnegative set of weights for each of the players, λ =
(λ1, λ2, . . . , λ|N |). Given these weights, find the maximum sum of the λ-weighted
utility for each vector x ∈ V (S). Second, these maximal sums essentially define a
TU game (the fictitious transfer game) for which a Shapley value can be derived.
Solve for the Shapley value. Denote as ϕi(ω,λ) the allocation received by player
i in the Shapley value, where ω(S) is the characteristic function for the fictitious
transfer game. Third, verify that the vector [ϕi(ω,λ)/λi]i∈N is feasible for the
grand coalition in the NTU game; i. e., [ϕi(ω,λ)/λi]i∈N ∈ V (N). If feasible, then
ϕi(ω,λ)/λi is the Shapley value allocation for player i in the NTU game.

Given this synopsis we now specify the formal procedure. First, create a
fictitious transfer game by specifying a vector λ ∈ (R+)|N |

. For each coalition,
S, the function ω(S) is called the worth function (the characteristic function of
the fictitious transfer game), where

ω(S) = max
x∈V (S)

∑

i∈S

λixi. (1)

The λi/λj ratios can be considered as exchange rates between the nontransfer-
able utilities of the players. As a simple example, if a taker measures its identity
in terms of US$ and makers in terms of euros, e, then an exchange rate, λe/λ$,
is needed to relate D to d, and λ$/λe is needed to relate d to D.9

Second, the worth functions, ω(S), can be regarded as characteristic functions
for a TU game derived from the NTU game. The Shapley value for the associated
TU game is

ϕi(ω,λ) =
∑

i∈S,
S⊆N

(|S| − 1)!(|N | − |S|)!
|N |! · (ω(S) − ω(S \ {i})) . (2)

For any coalition, S, that i is a member of, the term ω(S) − ω(S \ {i}) in
Eq. (2) measures i’s marginal contribution to coalition S. That is, the difference
ω(S)−ω(S\{i}) is what the coalition can achieve with i as a member less what it

9 Myerson [26, p. 16] offers an alternative interpretation: “With nontransferable utility,
we have no grounds for interpersonal comparison of utility, so we may feel free to
rescale either player’s utility separately by a positive scaling factor or utility weight
λi. Now, in the rescaled version of the game, pretend that the weighted-utility payoffs
are transferable.”
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achieves without i. The Shapley value is therefore the expected value of a player’s
marginal contribution over all potential |N |! orderings of the players in the game.
The coefficient on the marginal contribution of i in Eq. (2) is the probability
that a particular coalition with i as a member occurs, assuming that all |N |!
orderings are equally likely. In this way, the Shapley value allocates each player
their marginal contribution averaged over all possible orderings (permutations)
of the players. For any TU game the Shapley value exists and has the following
properties, among other characteristics [36]: (i) uniqueness, (ii) symmetry: any
two players that are treated identically by characteristic function ω(·) have equal
Shapley value allocations, and (iii) (Pareto) efficiency, the gains of the grand
coalition must be fully distributed:

∑

i∈N

ϕi = ω(N). (3)

These properties make the Shapley value the predominant solution concept for
cooperative games. As a reminder, the Shapley value is also individually rational.

Third, [ϕi(ω,λ)/λi]i∈N is the Shapley value (λ-transfer value) for the NTU
game if it is feasible for the grand coalition in the NTU game. This is the
case when [ϕi(ω,λ)/λi]i∈N ∈ V (N). If it is not feasible, then the procedure
must be redone for another vector λ′ �= λ until a solution is found. Shapley
[37,38] establishes that such a solution exists.10 Most importantly, in establishing
feasibility we endogenously derive the fee, f , paid by the taker to each maker in
the anonymity set. An example is given in the following section.

4 A Three-Player Anonymity Market

In a 3-player anonymity market the taker specifies that it desires two makers in
the associated anonymity set. Let player t be the taker and players 1 and 2 be
the makers. For single-player coalitions the NTU characteristic functions, which
specify the vector of maximum utilities achievable by each member of a coalition
when that coalition is formed, are

V ({t}) = {xt | xt ≤ δD − F}, (4)

this reflects the outside option for the taker (the mix); and

V ({i}) = {xi | xi ≤ 0 : i = 1, 2} for makers 1 and 2. (5)

Makers require a taker for an anonymity market to form. Without a taker, a
maker’s utility is normalized to zero.

10 As the proof is based on a fixed point theorem it does not guarantee uniqueness.
We are unaware of any example in the literature where multiple weights are derived
that lead to alternative NTU Shapley values. If multiple fixed points exist, selecting
among them is a well-defined problem. A natural criterion would be to maximize
the taker’s payoff.
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For 2-player coalitions, in a coalition of {t, 1} or {t, 2} each player remains
anonymous with probability 1/2. It is the existence of these intermediate coali-
tions that separates this analysis from 3-player bargaining. Consequently,

V ({t, 1}) = {(xt, x1) | xt ≤ 1/2D − f, x1 ≤ 1/2d + f} ; (6)
V ({t, 2}) = {(xt, x2) | xt ≤ 1/2D − f, x2 ≤ 1/2d + f} . (7)

Notice how (i) anonymity is akin to a public good that is (probabilistically)
produced when an anonymity set/coalition is formed, and (ii) only the taker
is paying for anonymity. Consequently, no anonymity is produced in a {1, 2}
maker-only coalition because neither maker pays the other to create anonymity.
To wit, makers are direct suppliers of anonymity to the taker. As a byproduct
makers supply anonymity to each other. Makers do not contract directly for
anonymity amongst themselves:

V ({1, 2}) = {(x1, x2) | x1 ≤ 0, x2 ≤ 0} . (8)

Finally, the probability of retaining one’s identity is increased to 2/3 in the grand
coalition, N = {t, 1, 2}:

V (N) = {(xt, x1, x2) | xt ≤ 2/3D − 2f, x1 ≤ 2/3d + f, x2 ≤ 2/3d + f }. (9)

Note that in all of these specifications, the anonymity fee in the NTU game is
not taken as given, but is an unknown to be solved for.

Following the procedure outlined above, the solution is derived by following
these three steps. First, set λ = (λt, λ1, λ2) = (1, 1, 1).11 Second, create the
worth functions that are consistent with this λ and solve for the Shapley value
of the TU game. Third, demonstrate feasibility of the NTU solution for this λ.

The associated worth functions, which can be regarded as characteristic func-
tions for the TU game derived from the NTU game, are constructed via Eq. (1).
Therefore the worth functions are

ω({t}) = δD − F ; (10)
ω({1}) = ω({2}) = 0; (11)

ω({t, 1}) = 1/2D + 1/2d; (12)

ω({t, 2}) = 1/2D + 1/2d; (13)
ω({1, 2}) = 0; (14)

ω(N) = 2/3D + 4/3d. (15)

Once the worth functions have been derived, the result is a TU game. The
Shapley value is calculated according to the formula in Eq. (2). The Shapley
values for this TU game are (derivation in Appendix A),

ϕt(ω,λ) =
14
36

D +
22
36

d +
1
3
(δD − F ); and (16)

ϕ1(ω,λ) = ϕ2(ω,λ) =
5
36

D +
13
36

d − 1
6
(δD − F ). (17)

11 This is consistent with finding a solution under the condition λt = λ1 = λ2 (where
all λ’s are finite), which yields an equivalent result.
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To establish the NTU Shapley values, feasibility requires:

(ϕt(ω,λ)/λt, ϕ1(ω,λ)/λ1, ϕ2(ω,λ)/λ2) ∈ V (N). (18)

Recall that (λt, λ1, λ2) = (1, 1, 1); hence, feasibility for the taker requires that
ϕt(ω,λ) ≤ 2/3D − 2f ; i. e.,

14
36

D +
22
36

d +
1
3
(δD − F ) ≤ 2

3
D − 2f. (19)

Solving for f yields the following result.

Result 1. The fee associated with Shapley value of a 3-player (one taker, two
makers) anonymity set is

f =
5
36

D − 11
36

d − 1
6
(δD − F ). (20)

Proof. What remains is to show that the solution is feasible for the makers.
Given the definition of V (N), feasibility also requires that ϕ1(ω,λ) ≤ 2/3d + f
and ϕ2(ω,λ) ≤ 2/3d + f . Substituting in the value for f in Eq. (20), 2/3d + f =
5
36D + 13

36d − 1
6 (δD − F ), which according to Eq. (17) is the solution for both

ϕ1(ω,λ) and ϕ2(ω,λ).

This result establishes that the Shapley value can be used to characterize the
fees for anonymity as a function of the taker’s subjective identity valuation (D),
the makers’ subjective identity valuation (d) and the outside alternative (δ and
F ). Several novel observations emerge from this result. First, it cannot be the
case that anonymity/identity is symmetrically valued across takers and makers
(D = d) because then f < 0.12 This would require makers to pay the taker. As
such an arrangement is never observed, it must be the case that D � d. Second,
the maker fee, f , is increasing in the outside fee, F , but only by a factor of
one-sixth. Third, one can re-write the fee in (20) as

f =
5 − 6δ

36
D − 11

36
d +

1
6
F, (21)

in which case it is clear that non-fee based characteristics of the outside option,
captured by δ, contribute significantly to determining the fee in a one taker, two
maker market. Recall that δ is a function of both the taker’s time preferences
and the size of the anonymity set generated by the outside option (mix). In
particular, Möser and Böhme [24] posit that takers’ time preference cause takers
to pay a premium for immediate anonymity services. Such a low discount factor
implies a low value of δ, perhaps approaching zero.

12 The term δD − F must be nonnegative; otherwise, the outside alternative is not
viable for the taker.
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5 The Price of Anonymity

Now we derive the anonymity fee for an arbitrary number of makers, m. As
the makers are assumed to be identical, what matters in expressing the NTU
characteristic function for a coalition is the number of makers involved. Let:

– m be the total number of makers that the taker seeks in the anonymity set;
– n = 1, 2, . . . ,m be the number of makers in a coalition;
– {t, n} is a coalition with the taker, t, and n makers;
– {t} is a coalition where the taker instead uses the outside option (mix);
– {n} is a coalition with n makers and no taker.

Then the NTU characteristic functions for the game are

V ({t}) = {xt | xt ≤ δD − F} ; (22)

V ({n}) = {(xi) | xi ≤ 0 ∀i : 1 ≤ i ≤ n} ; (23)

V ({t, n}) =
{(

xt, (xi)
) | xt ≤ n

n + 1
D − nf ;xi ≤ n

n + 1
d + f ∀i : 1 ≤ i ≤ n

}
.

(24)

The worth functions for a coaltition, S, in the λ-transfer game are derived
by setting λi = 1 for all i ∈ S and applying Eq. (1):

ω({t}) = δD − F ; (25)
ω({n}) = 0 ∀n : 1 ≤ n ≤ m; (26)

ω({t, n}) =
n

n + 1
D +

n2

n + 1
d. (27)

Theorem 2. The Shapley values for an anonymity set with one taker, t, and
m makers are

ϕt(ω,λ)
λt

=
δD − F

m + 1
+

D

m + 1

m∑

n=1

n

n + 1
+

d

m + 1

m∑

n=1

n2

n + 1
; and (28)

ϕi(ω,λ)
λi

=
D

m · (m + 1)

m∑

n=1

1
n + 1

+
d

m · (m + 1)

m∑

n=1

n2 + n − 1
n + 1

− δD − F

m · (m + 1)
,

(29)

for all makers i ∈ {1, . . . , m}.
See Appendix B for the proof. An alternative representation using harmonic
numbers instead of finite sums is given in Appendix C.

The associated anonymity fee is derived from the requirement that ϕt/λt

must be feasible for V ({t,m}); i. e., ϕt/λt ≤ m
m+1D − mf . From Eq. (28) and

given λt = 1, this becomes

ϕt

λt
=

δD − F

m + 1
+

D

m + 1

m∑

n=1

n

n + 1
+

d

m + 1

m∑

n=1

n2

n + 1
≤ m

m + 1
D − mf. (30)
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Setting the two sides of the inequality equal to each other and solving for f
yields the following characterization.

Corollary 1. The fee associated with the Shapley value for an anonymity set
with m ≥ 1 makers is

f =
D

m + 1
− D

m · (m + 1)

m∑

n=1

n

n + 1
− d

m · (m + 1)

m∑

n=1

n2

n + 1
− δD − F

m · (m + 1)
.

(31)

Once again, the anonymity fee, f , is increasing in the outside fee, F . Yet the
increase in f due to F is decreasing in the number of makers, m. Specifically,
f is increasing in F by a factor of 1/(m(m + 1)). The anonymity fee is also
increasing in the taker identity, D, and decreasing in the makers’ identity, d. In
particular, the pricing of anonymity has remained a puzzle because the produc-
tion of anonymity generates a positive externality in that all agents who supply
anonymity also receive it as a good [24]. We provide the first characterization of
the relation between f and d.

Regarding computational aspects, observe that the calculation of the Shapley
value and its associated fee requires linear time in m at fixed precision, and
polynomial time at arbitrary precision. Hence, our solution offers an efficient
algorithm to determine the price of anonymity.

6 Conclusion

We have specified a cooperative game that captures the features of anonymity
markets known as CoinJoins. More generally, our model captures the fact that
in anonymity markets it is often the case that one demand-side participant
(“taker”) pays for anonymity, but all participants of a trade, including m > 1
“makers” on the supply side, receive anonymity if the trade happens. This is
novel from a game-theoretic perspective as well because one member of a coali-
tion is paying a fee to all other members to form the coalition even though
all members ultimately benefit from the resulting coalition. Using the Shapley
value as solution concept, we have derived the price of anonymity endogenously
as a function of the taker’s and makers’ valuation of their identities, as well as
the price and quality of an outside option for the taker. Of particular note is
that we are able to characterize the way in which the associated positive exter-
nality received by makers (anonymity) affects the fee paid by the taker. The
model is general enough to inform the design of all anonymity schemes that
create anonymity by coordinating observable activities in order to make them
look alike. These include anonymous communication systems and their appli-
cations in electronic voting and privacy-enhancing middleware, cryptocurrency
transaction systems, and possibly the organization of dark pools in finance.

The model establishes a broad canvas for follow-up work. An immediate
example is that alternative cooperative solution concepts exist for NTU games;
most notably, the core, and the NTU values introduced by Harsanyi [16] and
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Maschler-Owen [20]. The Shapley value is utilitarian in that it maximizes the
weighted sum of the individual payoffs in each coalition. This is only the case
for the grand coalition in the Harsanyi value. Instead, the Harsanyi value is
equitable in that weighted net utility gains are equal for each individual in a
coalition. By investigating these alternative solutions one may gather whether
CoinJoins may be able to compete on different coalitional ethics. Our results
can also be experimentally tested via behavioral techniques in which subjects (a
taker and makers) are endowed with values for their respective identities. One
could then see how fees vary with alternative magnitudes of identity values and
also the amount of anonymity provided. In addition, the question of whether the
fee varies with the external fee for anonymity mixes can be investigated both
experimentally and via comparisons of the prices in CoinJoins and mixes.

In its present form, the game is one-shot. It does not capture the reported
practice of repeated anonymization [25], which could increase anonymity as the
cardinality of the joint anonymity set grows. Hence, a direction for future work is
to consider alternative payoff functions than the global passive adversary (GPA)
used here, who guesses exactly once with uniform probability. For example, a
straightforward extension is to model varying risk appetite of takers by adjusting
the NTU characteristic function. The problem gets substantially more compli-
cated if non-identical and potentially adversarial makers are considered. Möser
and Böhme [24] speculate that attackers could try to actively participate in Coin-
Join transactions, possibly with multiple identities, in order to extract informa-
tion about the composition of the anonymity set and eventually de-anonymize
the taker. Such attackers could offer their enticing services at subsidized fees,
below the Shapley value, in order to increase their odds of being selected. This
scenario clearly requires an analysis based on characteristic functions that are
derived from an underlying noncooperative game. The same applies to situa-
tions where takers choose m out of a large number of competing makers. Let us
emphasize again that, although we give solutions for arbitrary m, the present
theory does not lend itself to interpretations where m is endogenous.

Other directions of potential interest are to consider (opportunity) costs of
engaging in anonymous transactions; to endogenize the quality of the outside
option, δ, by modeling the behavior of the mix operator under incentive regimes
as suggested by Bonneau et al. [7]; to consider transactions with coins of different
quality (such as due to taint or blacklisting) as proposed by Abramova et al. [1];
to relax the strict dichotomy between taker and makers and replace it with
heterogenous agents in some preference space. Finally, the mechanism design
required to elicit the fair price of anonymity derived here is up to future work.
JoinMarket, the platform that inspired this line of research, seems to employ
ad-hoc mechanisms, as witnessed by many changes in the course of its history.
And there seems to be room for improvement on the mechanism as well as need
for a more principled approach towards constructing anonymity markets.
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Appendix

A Shapley Value Derivation for the 3-Player Example

Following the formula given in Eq. (2), the Shapley value for the taker, t, with
the makers as players 1 and 2, is

ϕt(ω,λ) =
1
3
(
ω(N) − ω({1, 2})

)
+ (grand coalition)

1
6
(
ω({t, 1}) − ω({1})

)
+ (taker & maker 1)

1
6
(
ω({t, 2}) − ω({2})

)
+ (taker & maker 2)

1
3
(
ω({t}) − ω(∅)

)
. (taker alone) (32)

Substituting in the worth function values, Eqs. 10–15,
(by convention, ω(∅) = 0):

ϕt(ω,λ) =
1
3

(
2
3
D +

4
3
d

)
+

1
6

(
1
2
D +

1
2
d

)
+

1
6

(
1
2
D +

1
2
d

)
+

1
3

(δD − F ) .

(33)

Aggregating terms,

ϕt(ω,λ) =
(

2
9

+
1
12

+
1
12

)
D +

(
4
9

+
1
12

+
1
12

)
d +

1
3

(δD − F ) (34)

and simplifying:

=
14
36

D +
22
36

d +
1
3

(δD − F ) . (35)

Using Eq. (2) to calculate the Shapley value for player 1, who is a maker:

ϕ1(ω,λ) =
1
3
(
ω(N) − ω({t, 2})

)
+ (grand coalition)

1
6
(
ω({t, 1}) − ω({t})

)
+ (taker & maker 1)

1
6
(
ω({1, 2}) − ω({2})

)
+ (both makers)

1
3
(
ω({1}) − ω(∅)

)
. (maker 1 alone) (36)
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Substituting in the worth function values:

ϕ1(ω,λ) =
1
3

(
2
3
D +

4
3
d − 1

2
D − 1

2
d

)
+

1
6

(
1
2
D +

1
2
d − (δD − F )

)
. (37)

Aggregating terms and simplifying:

ϕ1(ω,λ) =
(

2
9

− 1
6

+
1
12

)
D +

(
4
9

− 1
6

+
1
12

)
d − 1

6
(δD − F ) (38)

=
5
36

D +
13
36

d − 1
6

(δD − F ) . (39)

By the symmetry property of the Shapley value, ϕ2(ω,λ) = ϕ1(ω,λ). �

B Proof of Theorem 2

The proof consists of three parts.

B.1 Shapley Value for the Taker

Proof. From Eq. (2), the coefficient on ω({t}) − ω(∅) = δD − F in the Shapley
value is 1/N = 1/(m + 1). This is the first term in Eq. (28).

Given m makers, there are
(
m
n

)
= m!

n! (m−n)! combinations of coalitions that
can be expressed as S = {t, n}. Note also that N = m + 1. From Eq. (2), the
coefficient on each coalition {t, n} in the Shapley value is

(|S| − 1)! (N − |S|)!
N !

=

(
(n + 1) − 1

)
!
(
(m + 1) − (n + 1)

)
!

(m + 1)!
=

n! (m − n)!
(m + 1)m!

.

(40)

For each coalition, {t, n}, the marginal contribution for the taker in the formula
for ϕt is

(
ω({t, n}) − ω({n})

)
= ω({t, n}). In aggregate, the partial sum in the

Shapley value for a specific n is the product of the following three terms: (i) the
number of {t, n} coalitions, (ii) the Shapley coefficient that is common to each
{t, n} coalition, (40), and (iii)

(
ω({t, n}) − ω({n})

)
= ω({t, n}), from Eq. (27):

m!
n! (m − n)!

× n! (m − n)!
(m + 1)m!

× ω({t, n} =
1

m + 1

(
n

n + 1
D +

n2

n + 1
d

)
. (41)

Summing this over all possible n = 1, . . . , m yields the final two terms in Eq. (28).
This completes the derivation of the Shapley value for the taker, ϕt/λt, given
that λt = 1.
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B.2 Shapley Value for the Makers

In deriving the Shapley value for maker i, ϕi, note that for any coalition, Ŝ,
where t �∈ Ŝ, ω(Ŝ) = 0. This simplifies the remaining steps for calculating the
Shapley value for i to only those worth functions whose coalitions include a
taker, t, as a member; i. e., ω({t, n}).

Proof. For any maker, i, there is one and only one {t, i} coalition. The coefficient
on this coalition in the Shapley value is

(2 − 1)!
(
(m + 1) − 2

)
!

(m + 1)!
=

(m − 1)!
(m + 1)!

=
1

m · (m + 1)
. (42)

As ω({t, i}) = 1/2D+1/2d and ω({t, i}\{i}) = δD−F , the part of the calculation
of ϕi that corresponds to the marginal contribution of i to {t, i} is:

1
m · (m + 1)

(
ω({t, i}) − ω({t, i} \ {i})

)
=

1
m · (m + 1)

(
1
2
D +

1
2
d − (δD − F )

)
.

(43)

From Eq. (2) the calculation of the Shapley value is now:

ϕi =
1

m · (m + 1)

(
1
2
D +

1
2
d − (δD − F )

)

+
∑

i∈
{

{t,n}|n≥2
}
,

{t,n}⊆N

(|S| − 1)! (N − |S|)!
N !

×
(
ω({t, n}) − ω({t, n} \ {i})

)
. (44)

The remainder of the coalitions where i ∈ {t, n} require n ≥ 2. For a given n,
the number of coalitions for which maker i is a member, i ∈ {t, n}, is

(
m − 1
n − 1

)
=

(m − 1)!
(n − 1)!

(
(m − 1) − (n − 1)

)
!

=
(m − 1)!

(n − 1)! (m − n)!
. (45)

Given n, the coefficient in the Shapley value for the marginal contribution,
ω({t, n}) − ω({t, n} \ {i}), of maker i is

(
(n + 1) − 1

)
!
(
(m + 1) − (n + 1)

)
!

(m + 1)!
=

n! (m − n)!
(m + 1)!

. (46)

To calculate ω({t, n}) − ω({t, n} \ {i}), use Eq. (27) and observe that

ω({t, n} \ {i}) = ω({t, n − 1} =
n − 1

n
D +

(n − 1)2

n
d. (47)

Consequently, i’s marginal contribution to the coalition {t, n} is

ω({t, n}) − ω({t, n} \ {i}) =
1

n · (n + 1)
D +

n2 + n − 1
n · (n + 1)

d. (48)
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Hence, when n ≥ 2, for a given value of n the partial sum within the Shapley
value corresponding to {t, n} such that i ∈ {t, n} is the product:

(m − 1)!
(n − 1)! (m − n)!︸ ︷︷ ︸

Eq. 45

× n! (m − n)!
(m + 1)!︸ ︷︷ ︸

Eq. 46

×
(

1
n · (n + 1)

D +
n2 + n − 1
n · (n + 1)

d

)

︸ ︷︷ ︸
Eq. 48

=
1

m · (m + 1)
×

(
1

n + 1
D +

n2 + n − 1
n + 1

d

)
. (49)

Summing this over all possible n = 2, . . . , m yields:

D

m · (m + 1)

m∑

n=2

1
n + 1

+
d

m · (m + 1)

m∑

n=2

n2 + n − 1
n + 1

. (50)

To derive ϕi, combine this with the Shapley value term for {t, i}, Eq. (43):

ϕi =
1

m · (m + 1)

(
1
2
D +

1
2
d − (δD − F )

)

+
D

m · (m + 1)

m∑

n=2

1
n + 1

+
d

m · (m + 1)

m∑

n=2

n2 + n − 1
n + 1

. (51)

Aggregating terms:

ϕi =
D

m · (m + 1)

m∑

n=1

1
n + 1

+
d

m · (m + 1)

m∑

n=1

n2 + n − 1
n + 1

− δD − F

m · (m + 1)
. (52)

This completes the derivation of the Shapley value for a maker, ϕi/λi, given
λi = 1.

B.3 Feasibility Check

The final step requires verification that ϕi/λi is feasible for V (N). This is facil-
itated using the expressions of ϕt/λt and ϕi/λi in terms of harmonic numbers,
as given in Eqs. (56) and (57) in Appendix C.

Proof. Recall that the fee, f , given in Eq. (31) was derived from the feasibility
condition for ϕt/λt when λt = 1: ϕt ≤ m

m+1D − mf , yielding f = 1
m+1D − 1

mϕt.
The feasibility condition for ϕi/λi when λi = 1 is

ϕi ≤ m

m + 1
d + f =

m

m + 1
d +

1
m + 1

D − 1
m

ϕt. (53)
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Setting the two sides equal and substituting in the value for ϕt, Eq. (56):

ϕi =
m · d

m + 1
+

D

m + 1

− 1
m

(
δD − F + D (m − Hm+1 + 1)

m + 1

)

+
1
m

(
d

(
Hm+1 +

(
m
2 − 1

)
(m + 1)

)

m + 1

)
, (54)

which reduces to

ϕi =
D(Hm+1 − 1) + d

(
m2+m

2 − Hm+1 + 1
)

− δD + F

m · (m + 1)
. (55)

This is exactly the right side of Eq. (57). Hence the condition holds under the
theorem.

C Alternative Form of Theorem 2 Using Harmonic
Numbers

Let Hm denote the m-th harmonic number, i.e., Hm =
∑m

n=1
1
n . Using this

shorthand, Eq. (28) of Theorem 2 can be rewritten as,

ϕt(ω,λ)
λt

=
δD − F + D · (m − Hm+1 + 1) + d · (

Hm+1 +
(
m
2 − 1

)
(m + 1)

)

m + 1
;

(56)

and Eq. (29) becomes:

ϕi(ω,λ)
λi

=
D · (Hm+1 − 1) + d ·

(
m2+m

2 − Hm+1 + 1
)

− δD + F

m · (m + 1)
. (57)
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Abstract. BIP70 is the Bitcoin payment protocol for communication
between a merchant and a pseudonymous customer. McCorry et al.
(FC 2016) showed that BIP70 is prone to refund attacks and proposed a
fix that requires the customer to sign their refund request. They argued
that this minimal change will provide resistance against refund attacks.
In this paper, we point out the drawbacks of McCorry et al.’s fix and
propose a new approach for protection against refund attacks using the
Bitcoin multisignature mechanism. Our solution does not rely on mer-
chants storing refund requests, and unlike the previous solution, allows
updating refund addresses through email. We discuss the security of our
proposed method and compare it with the previous solution. We also pro-
pose a novel application of our refund mechanism in providing anonymity
for payments between a payer and payee in which merchants act as mix-
ing servers. We finally discuss how to combine the above two mechanisms
in a single payment protocol to have an anonymous payment protocol
secure against refund attacks.

1 Introduction

Since the introduction of Bitcoin in 2008 [15], it has been widely adopted by
merchants as a payment method. By 2015, the number of merchants accepting
Bitcoin was reported to surpass 100,000 [9] and it has continued to expand
into new markets (see e.g. [10,11]). Bitcoin standards are developed through
a process which involves a so-called (Standard Track) Bitcoin Improvements
Proposal (BIP) being proposed, discussed, ratified, and adopted by the Bitcoin
community. BIP70 [1] is the Bitcoin Payment Protocol standard that defines
the communications between a pseudonymous customer and a merchant with a
public key certificate. The protocol, provides a number of properties to improve
the interaction between the two entities (e.g. allows the merchant’s address to
be human-readable) and also provides the necessary guarantees (e.g. a proof of
payment to the customer that can be used for dispute resolution). One important
feature of the protocol is that the customer can specify refund addresses that

The full version of this paper is available at https://arxiv.org/abs/1807.01793 [3].
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will be used by the merchant in the case of refunds for cancelled orders or
overpayments.

McCorry, Shahandashti and Hao however showed two refund attacks on the
BIP70 protocol [14]. These attacks are referred to as the Silkroad Trader and
Marketplace Trader attacks, and exploit the inadequacies of the refund mech-
anism in the standard, including for example the fact that the protocol only
provides one-way authentication. In the Silkroad Trader attack, a malicious cus-
tomer uses the refund mechanism to relay a payment to an illicit merchant (the
Silkroad Trader) through an honest merchant. This is by simply declaring the
Bitcoin address of the Silkroad Trader as the refund address, and later asking for
a refund. McCorry et al. [14] discuss the steps required for the attack in detail
and showed its feasibility by successfully carrying out the attack in real-life pay-
ment scenarios. The authors also described a second attack, called Marketplace
Trader attack, in which a rogue trader plays the role of a Man-in-the-Middle
(MITM) between the customer and a reputable merchant and effectively direct
the customer’s payment to its own address after using the inadequate authen-
tication of the protocol to change the refund address. In both these attacks,
the analysis of blockchain data will not reveal the attacks. In McCorry et al.’s
solution the customer signs the refund addresses by the public key they have
used in the payment (the signature is called a proof of endorsement) and so
effectively binds the refund addresses to the customer address. This prevents
the first attack since the customer cannot deny their link to the Silkroad trader
anymore. McCorry et al. [14] argue that this measure also discourages the second
attack since merchants will become more reluctant to update the refund address
through unauthenticated channels such as email.

McCorry et al.’s solution, although minimally changing the protocol, intro-
duces a major data management challenge for the merchant. This is because
protection against the Silkroad trader attack requires the merchant to main-
tain a database of the proofs of endorsement and transactions that are signed
by the customer. These transactions include the refund information including
the amount and the refundee address that the merchant must use, and the
amount and address of the customer that the merchant has received the bitcoins
from. Using the stored data, the merchant can “prove” that they have followed
the customer’s request and have not colluded with the customer in transferring
money to the refundee (Silkroad Trader). We refer to this as an explicit log solu-
tion where all the relevant information must be stored and kept indefinitely by
the merchant. The stored data are also privacy sensitive and so the merchant
must adopt extra measures to secure the storage. The data must be kept in the
database indefinitely as proof may become necessary at any time in the future.
The database must be securely backed up (e.g. using cloud services) to ensure
data is available when required.

Our Contributions. We introduce implicit logging that requires the merchant
to only store a number of indexes to the blockchain that will be used to recover
the required proof of innocence, when needed. The solution works as follows:
a refund operation consists of two transactions produced by the merchant. The
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first transaction is a two output transaction with the refund amount that requires
the signatures of the refundee and the customer to release the fund. The second
transaction has the same value and is issued to the customer, with a time lock
that allows the transaction to be released only after a specified time passes. The
refundee requires the signature of the customer to receive their refund, which
implies that they endorse the refund. If the customer does not endorse the refund
(e.g. in the case of a Marketplace Trader attack), the first transaction will not
be redeemed in time and hence the customer will be able to use the second
(time-locked) transaction to redeem the bitcoins.

The merchant will store the indexes of the two transactions that are issued for
a refund request, together with the indexes of the original payment transaction
and the redeemed transaction. In the case of multiple refundees, all their details
will be included in the first transaction and so the same amount of storage will
be required.

The solution is robust in the sense that transactions that are associated
with a refund and contain the proof of the relation between the customer and
the refundee are kept on the blockchain and are immutable. If the database
that contains the indexes of the transactions is corrupted, the merchant can
still recover the information about the transactions that they have issued or
received, by searching the blockchain for transactions that include their public
key information. The solution preserves the privacy of the refund transaction
against an adversary who has access to the blockchain and eavesdrops on the
communication between the customer and the merchant, in the sense that the
linkage between the customer and the refundee can only be revealed by the
customer or the merchant. We will discuss how the scheme can be modified when
there are more than one transaction issuers (this was considered by McCorry et
al.). The details are provided in the full version of the paper [3].

We show that this solution also provides protection against Marketplace
Trader attack without putting any restriction on BIP70. This is in contrast
with McCorry et al.’s solution that requires the refund address not be accepted
through email. This restriction is likely to be ignored in practice, rendering
McCorry et al.’s solution incapable of preventing Marketplace Trader attacks.

In Sect. 4 we consider a novel application of the refund mechanism in provid-
ing payment anonymity. The main observation is that refund addresses in Bitcoin
can effectively provide a level of indirection that if carefully used, can decouple
the payer and payee. In our proposal, the merchant provides a mixing service
that allows the customers to pay for other services and to other merchants using
a combination of overpayment and refund. By “mixing” transactions of multiple
customers, the linkage of transactions using their payer and payee fields, as well
as values, will be removed. We define the communication protocol between the
customer and the mixing service based on BIP70. In the full version of the paper
[3] we discuss how the above two mechanisms can be combined to provide an
anonymous payment protocol with security against refund attacks.



372 S. Avizheh et al.

2 Preliminaries

2.1 The BIP70 Payment Protocol

BIP70 [1] is a Bitcoin application layer payment protocol that defines the
sequence of messages communicated between a customer and a merchant. BIP70
consists of three messages: payment request, payment, and payment acknowledg-
ment. It proceeds as follows.

After the customer selects an item from the merchant’s website and clicks to
pay, the merchant responds by sending a payment request message. This message
contains payment details, the information related to merchant’s X.509 certificate
(PKI type and PKI data), as well as the signature of the merchant on the hash of
the payment request. Here payment details consists of the Bitcoin address that
the customer should send the bitcoins to, the time that request has been created,
an expiration time, a memo containing notes to the customer, a payment URL,
and finally the merchant data which is used by the merchant to identify the
payment request.

The customer’s Bitcoin wallet subsequently verifies the signature and the
merchant’s identity, the information in the payment details, such as the time of
the request creation and expiry, displays the merchant’s identity, the amount to
pay, and the memo to the customer and asks the customer whether they want to
continue. If confirmed, the wallet will create the necessary Bitcoin transactions
for the payment and broadcast them to the Bitcoin peer-to-peer (P2P) network.
Then, a payment message is sent to the merchant. This message consists of the
merchant data from the payment details in payment request, one or more valid
Bitcoin transactions, the refund to field which specifies a set of refund amount
and address pairs to be used in case of a refund request, and a note for the
merchant (memo).

When the merchant receives the payment message, it verifies that the trans-
actions satisfy the payment conditions, broadcasts the transactions, and sends
back a payment acknowledgment message. This message contains a copy of the
payment message and a final memo including a note on the status of the trans-
action.

BIP70 does not specify how the payment request message should be down-
loaded, but requires that the payment and payment acknowledgment messages
are communicated over a secure channel (such as HTTPS).

BIP70 does not explicitly define a refund protocol. It is implicitly assumed
that if the customer requests a refund identifying the payment by the merchant
data field, the merchant issues a refund transaction which sends the refund
amounts to the corresponding refund addresses specified in the refund to field
of the payment message.

Figure 1 shows the communication flow in BIP70 and its implicit refund pro-
cedure. Note that besides communicating with each other, both the customer
and the merchant are assumed have access to the Bitcoin P2P network. Both
are able to broadcast transactions to the Bitcoin P2P network. Upon receiving
a transaction, the Bitcoin P2P network decides whether to add the transaction
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into the distributed ledger (i.e. the Bitcoin blockchain) through the Bitcoin con-
sensus mechanism. Both the customer and the merchant are also able to check
whether their broadcasted transaction has been included in the blockchain. It is
important to distinguish the communications in the application layer payment
protocol and those in the P2P network. To simplify our diagrams, we do not
explicitly show the P2P network communications.

Customer Merchant

Click to pay
PaymentRequest: { pki_type, pki_data, payment_details, signature } 

payment_details: { pay_to, me, expires, memo, payment_url, merchant_data } 

Payment: { merchant_data, transac ons, refund_to, memo }

PaymentAck: { payment, memo }

Broadcast 
transac ons

Broadcast 
transac ons

Refund Request: {merchant_data}

Broadcast 
refund transac ons

BI
P7

0 
Pa

ym
en

t P
ro

to
co

l
Re

fu
nd

Fig. 1. The BIP70 payment protocol and its refund procedure. Note that the Bitcoin
P2P network to which the transactions are broadcast is not explicitly shown here.

2.2 Refund Attacks

McCorry et al. propose two attacks on the refund process of BIP70 [14]. These
attacks work even if a secure channel such as HTTPS is used for communication
between parties. We briefly describe these two attacks in the following.

Silkroad Trader Attack. The refund addresses provided by the customer (in
the refund to field) are in no way endorsed and can be repudiated at a later
time. This means that a malicious customer may abuse the refund mechanism to
relay their payment to an illicit trader (here called the Silkroad trader) through
an honest merchant. The customer simply provides the illicit trader’s address
as the refund address to the merchant and thus when a refund is requested, the
merchant will send the refund to the illicit Trader. The customer can later deny
abusing the refund mechanism and the merchant will have no way to prove they
have been cheated. Figure 2 shows the interaction among parties in this attack.

Marketplace Trader Attack. Some merchants allow customers to specify new
refund addresses upon a refund request. The customer requesting the refund
is not authenticated. This means that any entity who has knowledge of the
payment identifier (specified in the merchant data field of the payment details
in the payment request message) can request a refund to any arbitrary account.
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Customer Merchant

PaymentRequest2

Payment2: { …, refund_to = pay_toST , … }

PaymentAck2

Broadcast Tx

Broadcast Tx

Refund Request

Broadcast 
RefundTx

Silkroad Trader

PaymentRequest1: { …, { pay_toST , … }, … } 

Payment1: { …, transac ons = RefundTx, … }

PaymentAck1

Fig. 2. The Silkroad Trader attack.

This is the basis for the Marketplace Trader attack, in which a rogue trader
acts as relaying man-in-the-middle for the payment request message between the
merchant and the customer. Hence, the rogue trader is able to find out merchant
data. At a later time, the rogue trader requests a refund to an arbitrary address
and is able to steal the funds. Figure 3 shows the interactions among the parties
in this attack.

Rogue Trader Merchant

PaymentRequest: {…, { merchant_data }, …}

PaymentBroadcast Tx

Broadcast Tx

Refund Request: { merchant_data, refund_to }

Broadcast RefundTx

Customer

PaymentRequest (copied)

PaymentAck

Fig. 3. The Marketplace Trader attack.

2.3 McCorry et al.’s Solution to Refund Attacks

McCorry et al. propose to include in the payment message a “proof of endorse-
ment” for refund addresses. To do this, each customer address involved in the
payment protocol is required to produce a digital signature on (and therefore
“endorse”) a corresponding refund address. Employing this solution, at the end
of a successful payment protocol, the merchant will be in possession of a proof of
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endorsement for each refund address. Such a proof can be presented and verified
by a third party in case of a Silkroad Trader attack to implicate the malicious
customer. Besides, since such a proof of endorsement is valuable for merchants,
McCorry et al. argue that it will discourage merchants to accept new refund
addresses unless accompanied by a proof of endorsement, resulting in reducing
the possibility of Marketplace Trader attacks.

In McCorry et al.’s solution, for guaranteed protection against attacks, mer-
chants will need to store payment transactions as well as payment requests and
payment messages which are required to verify the proof of endorsement. There-
fore, the actual storage overhead of McCorry et al.’s solution is much larger than
only keeping proofs of endorsement. As noted earlier, maintaining a secure and
robust database to store proof of endorsement messages is a security bottleneck
of the system and can particularly become expensive for smaller merchants with
limited resources.

2.4 Multisignature and Time-Locked Transactions in Bitcoin

Although it is convenient to think of Bitcoin transactions as sending funds to
certain account addresses, technically what the transaction specifies is a set of
redemption criteria in a certain script language. Any subsequent transaction
which satisfies the redemption criteria may authorize the transfer of funds made
available in the original transaction.

The most popular script is “Pay to Public Key Hash” (P2PKH), which
requires a signature corresponding to an address, hence effectively sending the
bitcoins to the address. Typical Bitcoin transactions use this script.

Another popular and more versatile script is “Pay to Script Hash” (P2SH),
which requires satisfying a script, the hash of which is listed. P2SH can be used to
implement a diverse range of transactions including multisignature transactions.
A k-of-n multisignature transaction requires k signatures corresponding to k
addresses within a set of n specified addresses to be present to redeem the funds
in the transaction.

An interesting script which can be combined with the ones discussed above
is one that effectively freezes the transaction funds until a time in the future to
create a so-called time-locked transaction. The funds in a time-locked transaction
cannot be spent by any other transaction until a certain (absolute or relative)
time in the future.

3 A New Approach to Protection Against Refund
Attacks

We propose a solution to refund attacks that requires the merchant to store a
fixed number of indexes (and so constant size) in each run of BIP70 protocol.
The solution is robust to possible damages to database content, and ensures
privacy of refund transaction from outsiders.
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BIP70 requires the payment and payment acknowledgment to be sent over
a secure channel, however does not specify such a requirement for the payment
request message [1]. Therefore, in general we consider two types of attackers:

– Online attacker, intercepts the communication channel and sees all the
input/output messages of a merchant; they also have access to blockchain
data.

– Offline attacker, has only access to the blockchain data.

To simplify our description, we first assume BIP70 communication is over
HTTPS and so we only need to consider an offline attacker. We will then show
how to secure the protocol against an online attacker.

Our goal is to provide the following properties for the refund mechanism:

Implicit log. The merchant only stores indexes of transactions in a protocol
run. This has the following advantages:

– Constant storage size per protocol run. The local storage size for a
customer’s payment in a protocol run is constant.

– Robustness. The refund mechanism will work correctly and reliably in
the case of a dispute, even if the merchant’s local database is corrupted
or lost. In the worst case when none of the locally stored indexes are
accessible, the merchant can recover the required proofs by searching the
blockchain using their own public key information.

Refund privacy. An offline adversary with access to the blockchain, or an
online adversary with access to the blockchain and the communication link
between the merchant and the customer, cannot reveal the linkage between
the customer and the refundee. Note that BIP70 does not require secure
communication between the customer and the merchant and so an online
adversary can access unencrypted communication between the two. We note
that the merchant’s local database must be kept secure for customers’ privacy.

We also aim to conform with BIP70 specifications and avoid extra restrictions
including not accepting refund addresses by email. Note that Refund addresses
are valid for two months from the time of the payment [1], and during this period
the customer should be allowed to change the refund addresses for example when
an existing refundee has lost their wallet. Coinbase and Bitpay [7,8] both accept
refund address updates via email.

3.1 Our Solution

Our proposed refund mechanism works as follows. The merchant creates a 2-of-
2 multisignature transaction, and hence binds the refund amount to both the
customer and refundee. Then, to make the protocol robust in case one of the
addresses is not available, a second transaction is created. This second transac-
tion is a time-locked transaction, and the customer is its only recipient. Merchant
uses a lock time for this transaction to give priority to the first transaction. If the
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customer and the refundee could not collaborate to redeem the refund, the cus-
tomer is able to claim them after the lock time. Note that the lock time creates
a delay in the system only if the customer does not know the refundee, e.g. in
the case of a Marketplace Trader attack. In other words, the second transaction
is a backup for system robustness (see Fig. 4).

a) Payment:

b) Refund:
in

pu
ts

outputs

MainTC

Pkc

Customer

Pkm

Merchant

in
pu

ts

outputs

RefundTC1

Pkm1

Merchant

Pkc1

Customer

in
pu

ts

outputs

RefundTC2

Pkm2

Merchant

Pkc2

CustomerPkr

Refundee
Mul -sig Time-Locked

Fig. 4. (a) The main transaction. (b) The proposed Refund mechanism, in which mer-
chant locks the transaction to the customer and the refundee and they may redeem this
transaction if they collaborate. The merchant also issues RefundTC2 for robustness to
ensure that the refund can be unlocked by customer in case the first transaction is not
redeemed.

In addition, to preserve refund privacy against offline attackers1 the merchant
deterministically creates fresh addresses from the public key of the customer and
then masks them with a Diffie-Hellman key, generated using the fresh address
of the customer and the private key of the merchant. This is to ensure that only
the merchant or the customer who are able to re-generate the Diffie-Hellman key
can discover the linkage between the refund key and the payment transaction. To
derive fresh addresses we assume the customer has a deterministic wallet based
on BIP32 [19]. Most Bitcoin wallets support BIP32 and so this is a reasonable
assumption. In the rest of the paper, by deterministic wallet we mean a BIP32
wallet with a master key and key hierarchy (keys can be specified with an index).

Based on BIP32, a deterministic wallet generates a tree of public/private
key pairs on elliptic curve E, e.g. for a 1-level tree, it creates 231 hardened and
231 non-hardened keys. Hardened keys are public keys for which the associated
private keys can only be known before the generation of the public key. Non-
hardened keys however allow anyone to derive a valid child public key from
the parent public key, while the owner of the parent (master) private key can
generate the respective child private key. In our protocol, the customer address
in the payment transaction is a non-hardened public key which is used as a

1 Bitcoin transactions use fresh addresses (address freshness) [5] to protect the privacy
of the address owner as well as others.
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parent key by the merchant to derive child public keys. The customer knows the
respective private keys and can also create the Diffie-Hellman key using the child
private key and the public key of the merchant. Hardened keys can be used for
refund addresses. The step by step process is given below:

Key generation. The customer wallet software generates a tree of pub-
lic/private key pairs using BIP32 [19]. Each private key is an element of
Fq, where q = pn is a prime power. Each public key is a point on an ellip-
tic curve E (specified for bitcoin) over Fq. Hl denotes the 256 leftmost bits
of HMAC-SHA512 which is used for computing the child key; the rightmost
bits of HMAC-SHA512 are used as the next level chain code. Let Pkc = cP
be a non-hardened public key. A child public key can be derived by anyone
using this parent public key as follows: Pk′

c = Pkc + Hl(chc, Pkc||index)P ;
where Pk′

c is a child public key, Pk′
c = c′P , but only the customer who knows

the parent private key can compute the child private key c′. chc denotes the
chain code which is the 256 rightmost side of the parent hash, and index
is the index of the generated child key in the tree. (Pkc, chc) is called the
extended pubic key (see [19] for details). We also use H∗ to denote a collision
resistant hash function which maps a point on Elliptic curve E to Fq, this is
used for computing the Diffie-Hellman component in child keys as we describe
it below.

Click to pay. The customer visits the merchant website and chooses an item,
then declares their intent to pay (e.g. by clicking a “pay” button).

Payment request. The merchant sends the payment request including their
public key, Pkm = mP . This public key is unique for each transaction.

Payment message. The customer after authenticating the merchant, puts
together a payment transaction, MainTC, that transfers the cost of the
chosen item to the merchant, and uses a non-hardened extended public
key (with external chain) (Pkc = cP, chc), as a data output (using the
OP Return opcode). Finally, the customer creates a Payment message based
on MainTC, and specifies their extended public key, n refund addresses,
(Pkr1 , Pkr2 , . . . , Pkrn

), and the amount of refund for each address.
Payment ack. The merchant detects MainTC, and returns a PaymentAck mes-

sage to the customer.
Refund request. Within a 2 month period from the payment request [1], the

customer can use the addresses provided in Payment.refund to field to receive
their refund. In this case, the merchant does the following:
1. Generates two new keys, Pkm1 = m1P and Pkm2 = m2P .
2. Derives child keys from the customer extended public key as described

earlier, Pk′
ci for 1 ≤ i ≤ n + 1.

3. Masks the child keys as Pk′′
ci = Pk′

ci + H∗(m1Pk′
ci)P for 1 ≤ i ≤ n, and

Pk′′
ci = Pk′

ci + H∗(m2Pk′
ci)P for i = n + 1.

4. Creates and broadcasts two transactions, RefundTC1 (in which the mer-
chant’s public key is Pkm1) and RefundTC2 (in which the merchant’s
public key is Pkm2). RefundTC1 is a P2SH transaction that can be
redeemed by providing signatures from both Pk′′

ci and Pkri
for 1 ≤ i ≤ n.
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RefundTC2 is a P2PKH transaction that can be redeemed by the private
key corresponding to Pk′′

cn+1
after a specified lock time period (e.g. one

week).

3.2 Protection Against Silkroad Trader Attacks

In the Silkroad Trader attack, the customer wants to remove their link to the
Silkroad Trader using a victim merchant. In our approach the refund transac-
tion can be only redeemed if the customer and the refundee collaborate. Hence,
the redemption of the refund transaction constitutes an evidence of the linkage
between the customer and the refundee. This linkage, however, is hidden from
those who observe the Bitcoin blockchain and so the merchant is the only one
who knows this linkage. The merchant can prove that a payment transaction and
a refund transaction are linked to each other by first deriving the child keys from
the payment transactions and adding the respective Diffie-Hellman key (based
on the public key of the merchant and the customer’s child key) to them, then
using the refundees’ public key and the customer’s masked child keys to create
the P2SH address and show that it matches the address within the refund trans-
action; finally showing that the refund transaction has been redeemed by a pair
of collaborating customer and refundee, thus establishing the evidence of the
linkage. The merchant does not need to store the transactions in their database
and the proofs are robustly preserved on the blockchain.

3.3 Protection Against Marketplace Trader Attacks

If the customer provides a refund address during the BIP70 protocol run and
later update it via email, the merchant just uses the newest refund address and
locks the refund amount to both the refundee and the customer. If the customer
and the refundee collaborate to redeem the refund, the refund is finalized; oth-
erwise, if the rogue trader sends their own address to the merchant, they cannot
later claim the bitcoins since the customer will not collaborate with an unknown
refundee to sign the refund transaction. In case of such an attack, the customer
will be able to claim the refund after the lock time expires. Thus, the approach
protects the customer against Marketplace Trader attacks and at the same time
provides the possibility to update the refund addresses.

3.4 Communication over HTTP

BIP70 does not restrict the customer and merchant to use HTTPS. Our pro-
posed solution to refund attacks although by design hide the relation between
the customer and the merchant, payment messages include information such as
the refundee’s address which can be used by an online attacker to find the cor-
responding refund transactions by searching the blockchain for the transactions
that contain the address and so trace refundees transactions. To protect against
these attacks, the customer may use HTTPS, or Diffie-Hellman key agreement
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on the merchant’s public key and their own private key, to generate a key that
will be used to encrypt sensitive messages such that they are decryptable by the
merchant. Alternatively, merchant can follow the key generation algorithm of
our scheme for both customers and refundees (for refundees derive child keys of
the refund addresses and then mask them with Diffie-Hellman key on the refun-
dees child key and their own private key). In this case refundee can still find the
corresponding private key to claim the refund, but attacker cannot detect the
refund transactions.

3.5 Analysis

In the following, we show how each of the mentioned properties will be satisfied.

Implicit Logging. A merchant may store information that are communicated
during a payment protocol for various reasons, including bookkeeping, refund or
exchange, or statistics about customers and products. Here we do not consider
bookkeeping that is mainly for accounting purposes or the ability to honour
refund or exchange policies. Nor we consider data storage that are for statistical
analysis purposes. As noted in [14], using the Bitcoin Payment Protocol requires
the merchant to store evidence to protect them against refund attacks. This
information must be kept for a sufficiently long time to be effective in providing
such protection.

Consider a single run of the payment protocol. Transactions which are the
“evidence for innocence” (of the merchant) are stored on the blockchain. The
merchant must just store the transaction indexes, that is, the transaction ids
(txid) of the MainTC, both the refund transactions RefundTC1 and RefundTC2,
and Redeem transaction by which the customer (and possibly the refundee)
redeem the refund. Table 1 shows a full refund record in the merchant’s database.
Each transaction index is 32 bytes and so 4 × 32 = 128 bytes are needed for the
four transactions ids (MainTC, RefundTC1, RefundTC2, and Redeem transac-
tion). Note that the merchant can always use a deterministic approach for the
child key indexes, for example always start from index 0 and increment it for
each new child key, and so they do not need to be stored. It is not difficult to
see that storage size is independent of the number of refundees.

Table 1. One refund record in the merchant’s database.

MainTC txid RefundTC1 txid RefundTC2 txid Redeem txid

32 bytes 32 bytes 32 bytes 32 bytes

In the case of a dispute, the merchant can retrieve all the mentioned trans-
actions from the blockchain using their stored transaction ids, and then use the
chain code, index, and the public key of the customer, to derive the related child
key, and use their own private key mi, i = 1, 2, to re-create the masked address,
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Pk′′
c = Pk′

c+H∗(miPk′
c)P . If the output of the P2PKH transaction with address

Pk′′
c is a spent output, it indicates that the customer has redeemed the refund

without the collaboration of the refundee. If the redeemed transaction is the
P2SH transaction, Pk′′

c and the refund addresses in the Redeem transaction are
used to re-generate the P2SH address. If the address matches the RefundTC2
and it is a spent output we know that the owner of the masked child public
key Pk′′

c (or more precisely the owner of the public key Pkc) and refundee have
collaborated with each other to redeem the refund.

Minimal Storage Size. In the following we compare the storage cost of our
proposed protocol with that of McCorry et al. [14]. The comparison summary
can be found in Table 2. In McCorry et al.’s solution, the proof of endorsement
is a signature that must be locally stored. Verification of this signature requires
information about the main transaction and the communicated messages includ-
ing the refund addresses, refund values, the memo from the customer, and the
payment request message. The merchant also needs to store the transaction ids
for both the payment and refund transactions. Let LS denote the size of the
proof of endorsement signature. The size of a transaction input with one signer
is at least 146 bytes2. Other values are, refund address which is 34 bytes, refund
value which is 8 bytes, memo and payment request message sizes are denoted
by Lpay and can reach 50,000 bytes. Finally a transaction id is 32 bytes. Thus
in total, for one refundee, 252 + LS + Lpay bytes must be stored at the merchant
side and this cost grows linearly with the number of refundees. The total storage
for n refundees will be 210 + 42n + LS + Lpay bytes which is significantly higher
than our scheme. Note that we are not considering the size of the merchants’
keys in our calculations.

Table 2. Storage size (in bytes) of our approach vs. [14]

Scenario McCorry et al. [14] Our approach

1 refundee 252 + LS + Lpay 128

n refundees 210 + 42n+ LS + Lpay 128

Robustness. The payment protocol must work correctly in case of a dispute
or when the information stored in the merchant’s database is corrupted or
lost. In [14], if the local database that stores the signature (proof of endorse-
ment) is corrupted, the evidence of the collusion will be irreversibly lost and
the merchant will become vulnerable to refund attacks. In our proposed app-
roach however the merchant can exhaustively search on all their keys to retrieve
the database records. To do so, the merchant re-generates all the private/public

2 Previous transaction hash is 32 bytes, previous Tx-out index is 4 bytes, Tx-in script
length is 1–9 bytes, public key is 33 bytes in compressed format, signature is 72
bytes, sequence number is 4 bytes.
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keys using their wallet (through the master key) and then uses a blockchain
explorer (e.g. blockchain.info) to search for the transactions that contain these
public keys. We denote the search complexity on blockchain with OS . Assum-
ing the number of keys used by the merchant to be 2k, the search complex-
ity becomes 2kOS . The retrieved transactions are then identified as MainTC,
RefundTC1, and RefundTC2 based on their types and the merchant role as a
sender or receiver of each transaction. If the merchant is the recipient, the trans-
action is MainTC. If the merchant is the sender and the transaction is P2SH,
it is RefundTC1, otherwise if the merchant is the sender and the transaction is
P2PKH, the transaction is RefundTC2. Redeem transactions are also found by
searching the output addresses in RefundTC1 and Refund TC2. If the number
of these transactions is � the search complexity increases to 2k.�.OS . After this
classification, the merchant can follow the steps below to retrieve the database:

1. The merchant chooses one specific MainTC transaction and stores its index
in the database.

2. To find the related refund transactions, the merchant should reconstruct the
masked child key of the customer Pk′′

c . First, merchant generates the child
key of the customer, Pk′

c, using the chain code stored in MainTC (for the
index, merchant can always try the first index, i.e. pick index 0 and 1). Then,
they mask the child key with the Diffie-Hellman component, H(miPk′

c)P to
generate Pk′′

c . For this, the merchant should try all the private keys mi, for
1 ≤ i ≤ 2k.

– If Pk′′
c matches the key inside RefundTC2, the used index is stored in

the database as RefundTC2 txid. If this transaction is a spent transac-
tion, merchant stores the corresponding Redeem transaction index in the
database and halts, since the proof is fully retrieved and customer have
spent the transaction alone.

– Otherwise, RefundTC1 may have been spent, so the merchant uses Pk′′
c

to find the corresponding Redeem transaction and uses the refund keys
in that transaction to reconstruct the P2SH address. The corresponding
RefundTC1 is the one which contains the mentioned P2SH address. The
index of this transaction is stored in the database and the proof is fully
retrieved.

– However, if Redeem transaction for a specific customer does not exist
at all, it shows that customer has not redeemed the refund value yet,
hence the merchant should wait for the customer to claim the refund and
subsequently retrieve the database record.

The complexity of reconstruction depends on the number of keys the mer-
chant has used, the key generation, the search operation, and the number of
refund transactions. If key generation (calculating the point arithmetic and hash-
ing related to masked child key) takes OK , and the total number of customers is
t, then the total complexity is upper bounded by 2k(2tOK + �OS). The factor 2
for OK is because we should follow this procedure for both refund transactions
RefundTC1 and RefundTC2.

https://blockchain.info/
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Privacy. To show that our scheme guarantees privacy, that is, only the mer-
chant and the customer can reveal the linkage between the customer and the
refundee, we consider two types of attackers: online attackers and offline attack-
ers. Since an online attacker has access to both the communication channel and
the blockchain, and hence is stronger, we only provide the justification for pri-
vacy for an online attacker. Privacy against offline attackers who only have access
to the blockchain is straightforward.

Suppose that the channel is not TLS-protected (worst case), so the online
attacker can intercept all the communicated messages between the customer and
the merchant. Through PaymentRequest and Payment message, the attacker
discovers the public key of the merchant Pk∗

m, the extended public key of the
customer (ch∗

c , Pk∗
c ), and the public key of the refundee Pk∗

r . The goal of the
attacker is to link the customer address Pk∗

c in MainTC to the refund address
Pk∗

r . For simplicity we assume that RefundTC1 and Redeem transaction is also
given to the attacker; this simulates the case where the refundee is the attacker.
In practice this assumption may not be true, and the attacker needs to also guess
the transactions. Overall, the attacker observes the information given in Table 3.

Table 3. View of an online attacker.

Information Key Source(s)

Extended public key of customer (ch∗
c , Pk∗

c ) MainTC

Public key of refundee Pk∗
r Payment message, Redeem transaction

Public key of merchant Pk∗
m1 RefundTC1

Public key of customer Pk′′
c Redeem transaction

From Redeem transaction, the attacker can link the customer address Pk′′
c

to Pk∗
r . The reason is that to claim the bitcoins both the customer and the

refundee need to sign the Redeem transaction. Hence, a spent refund transaction
shows that the customer with Pk′′

c knows the refundee with Pk∗
r . Thus, to link

the customer Pk∗
c to refundee Pk∗

r , the attacker needs to just find whether Pk′′
c

is derived from Pk∗
c .

Pk′′
c is generated as follows Pk′′

c = Pk′
c+H∗(m∗

1c
′P )P , where Pk′

c is the child
key derived from the customer address Pk′

c = Pk∗
c +Hl(ch∗

c , Pk∗
c ||index)P . The

attacker knows Pk∗
c and ch∗

c , so they can guess Pk′
c by trying different indexes

with probability 1
n , assuming the number of refundees is n. To link the child key

Pk′
c to Pk′′

c , the attacker needs to solve the decisional Diffie-Hellman problem
(DDH) given m∗

1c
′P , Pk∗

m1
= m∗

1P , and Pk′
c = c′P . Since solving DDH is

hard (say with ε representing the probability of solving DDH), the attacker’s
probability of success will be Psuccess = ε

n which is negligible.
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4 Bitcoin User Anonymity Using Refund Mechanism

Despite using pseudonym for senders and receivers of transaction, it has been
shown that transactions can be linked [2,16,17] and combined with other data
possibly reveal user identities. There have been a number of approaches for pro-
viding anonymity [4,12,13,18]. Stealth address schemes [18] guarantee address
anonymity against an online attacker who intercepts the communication link
and sees the Bitcoin address of the payee when it is sent to payer to create the
transaction. By stealth address technique, payer adds a Diffie-Hellman key to
the payee’s address in a way that the corresponding private key is still known
by payee. In CoinSwap [13] a party uses an intermediary node to send the pay-
ment to payee; the goal is anonymity against online attacker. In CoinJoin [12] a
number of parties agree to create one transaction together, they also use values
with equal worth to provide value anonymity against an offline attacker. In Fair
Exchange [4] two people exchange their bitcoins with each other to achieve coins
with a history that is unrelated to them, to resist against an offline attacker.
Each of these solutions can be considered as a traditional mixing service. Users
can also mix their coins through a mix server (e.g. bitmixer.io [6]), which receives
their coins and pay them back a fresh coin, although mixer receives a fee from
the user. This technique, however has a problem, user should trust the mix server
that they will not steal their money.

Refund mechanism provides a level of indirection that can be used for adding
anonymity to Bitcoin users. We propose to use merchants as a trusted mixing
servers by using a modified BIP70 protocol refund’s policy. To use this service,
the customer visits the website of a merchant and selects an item for purchase.
By using overpayment and the recipients’ addresses as the refund addresses,
the sender can send payment to refundees in an anonymous way. Alternatively,
they can send the desired amount to the merchant and later cancel their order
for the refund. In these situations, merchant acts as an intermediary to allow
the customer to pay the bitcoins to the recipients indirectly. Merchant can also
split the value to smaller chunks and mix the refund transactions of different
entities to provide value and time anonymity respectively (see Fig. 5). Reputable
merchants are generally trusted and are expected to follow the protocol. Note
that the merchant does not know if the refundee in a refund transaction is a
customer and cannot relate the output bitcoin addresses to the user. Merchants
can benefit for such service by requesting a fee for it.

In our proposed protocol, the merchant receives inputs from customers’ trans-
action, and issues transaction with outputs based on the addresses in the Pay-
ment.refund to field. Refund addresses are extended public keys of refundees.
Merchant generates child keys of the respective refund addresses, split the val-
ues of refund to smaller equal chunks and sends the partitioned values to child
keys. Merchant considers the refund address as a parent key and uses its child
keys for refund transactions to have a fresh address for each chunk. To pro-
vide confidentiality for the parent refund key (this is needed because we assume
online attacker exists and the communication is HTTP), the merchant encrypts
the child keys using the Diffie-Hellman key generated by the public key of the

https://bitmixer.io
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Fig. 5. Alice wants to send 0.4 B to Carol and Elena, and Bob 0.5 B to David and
Frank. Alice pays the bitcoins to merchant, and introduces Carol and Elena as refun-
dees, through BIP70. Bob also pays the bitcoins to merchant and introduces David
as refundee. Merchant creates a few refund transactions and mixed their outputs and
send them to refundees.

merchant and the private key of the customer. For secure mixing, the time rela-
tionship between the input and the output of the mix must be protected. Other-
wise an adversary who intercepts the merchant’s channel can link the two using
the time information of the merchant input and output. In the following pro-
tocol the merchant mixes the refunds of different customers and hides the time
relation between inputs and outputs of the mix service.

Key generation. We assume that Refundee is using BIP32 [19] wallets,
and sends their extended public key to the customer. Customer generates a
private/public key pair as Pkc = cP .

Click to pay. The customer visits the merchant website and chooses an item,
then clicks on “pay”.

Payment request. The merchant sends the payment request message including
their public key, Pkm = mP . This public key is unique for each transaction.

Payment message. After authenticating the merchant, the customer picks a
public key, Pkc, and generates MainTC which pays the cost of the cho-
sen item to Merchant. Then, the customer creates a payment message with
extended refund keys, (Pkri

, chri
),∀1 ≤ i ≤ n, for n refund addresses, and

the amount of refund value for each; then encrypts the Payment.refund to
field using Diffie-Hellman key H∗(cPkm) (this is not required if channel is
TLS-protected).

Payment ack. The merchant detects MainTC, decrypts the refund addresses,
and returns an acknowledgment message, PaymentAck, to customer.

Refund request. Within a predetermined distance from payment request (can
be defined in Payment.refund to field), customer can use the addresses pro-
vided in refund to field to receive the refund. In this case, the merchant
1. Splits each refund value (for different customers) to k partition; for exam-

ple, v1 is divided to v11, v12, . . . v1k, and v2 to v21, v22, . . . v2k and so on.
The goal is to have equal amounts.

2. Derives child keys of each refund address, Pk′
rij

∀1 ≤ i ≤ n, and ∀1 ≤
j ≤ k.
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3. Creates a few transactions. For each child key merchant creates an output
that pays its chunk of refund value to the corresponding masked child key
Pk′′

rij
= Pk′

rij
+ H∗(m∗Pk′

rij
), ∀1 ≤ i ≤ n, and ∀1 ≤ j ≤ k. While mix-

ing the outputs of different customers in each transaction, the merchant
broadcasts the transactions to the Bictoin network.

5 Concluding Remarks

We proposed a new approach to mitigate Refund attacks against BIP70 using
implicit logging which requires the merchant to only store indexes of four transac-
tions for each run of the protocol. Our approach provides a solution that is robust
against possible corruption of the merchant’s local database, and preserves the
privacy of the refund (i.e. the link between the customer and the refundee). We
also showed that refund mechanism can be used to provide anonymity for payers
and payees, through merchant acting as a mix server, and provided the commu-
nication protocol between the customer and the mixing service based on BIP70.
This is a novel approach for providing anonymity for bitcoin transaction that
need careful evaluation. This will be an interesting direction for future work.
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Abstract. In this work, we revisit the Anonymous Reputation Systems
presented by Blömer et al. in (FC’15). An anonymous reputation sys-
tem allows users to review/rate products that they have purchased. The
main security guarantee that such systems ensure is privacy, i.e., users
are allowed to anonymously write reviews for any products which they
have purchased. However, to avoid abuse/misuse cases, a review-once-
policy is also enforced, i.e., if a user tries to write a second review for
the same product, his reviews will be publicly linkable. Therefore, the
system manager can revoke this user from the system.

The contribution of this paper is threefold. First, we strengthen and
re-formalize the security model for reputation systems of Blömer et al.
so that it captures more accurately real-life threats. In particular, our
security model captures all possible framing scenarios including when
the adversary tries to produce a review that links to another review pro-
duced by an honest user. Without this security notion, an adversary can
exploit this vulnerability in order to revoke or partially de-anonymize a
particular user. Second, our reputation system is fully dynamic so that
users and items can be added and revoked at any time. This is an attrac-
tive and should possibly be a default feature for reputations systems to
have, since the system manager will not know the users/items in the
time of setup of the system. Finally, we propose the first construction of
a reputation system based on lattice assumptions that are conjectured
to be resistant to quantum attacks by incorporating a lattice-based tag
scheme.

1 Introduction

Since 2000, a tremendous effort has been made to improve the state-of-the-art
of reputation systems1, trying to build the best possible system that helps both
consumers and sellers establish mutual trust on the internet. A reputation system
allows users to anonymously rate or review products that they bought over the
1 In this paper, we will use the terms reputation systems and anonymous reputation

systems interchangeably.
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internet, which would help people decide what/whom to trust in this fast emerg-
ing e-commerce world. In 2000, Resnick et al. in their pioneering work [RKZF00]
concluded their paper on reputation systems with an allusion to democracy. They
envisioned what would Winston Churchill (British prime minister during WWII)
comment on reputation systems as he did on democracy. They claim that he
might say the following: “Reputation systems are the worst way of building trust
on the Internet, except for all those other ways that have been tried from time-
to-time.” Sixteen years later, Zhai et al., in their interesting work [ZWC+16],
are still asking the intriguing and challenging question; “Can we build an anony-
mous reputation system?” This clearly shows how challenging and difficult it is
to build a useful, secure, and deployable reputation system.

Why reputation systems? Because they simulate what used to happen before
the internet era; people used to make decisions on what to buy and from whom,
based on personal and corporate reputations. However, on the internet, users are
dealing with total strangers, and reputation systems seem to be a suitable solu-
tion for building trust while maintaining privacy. Without a doubt, privacy has
become a major concern for every internet user. Consumers want to rate prod-
ucts that they buy on the internet and yet keep their identities hidden. This
is not merely paranoia; Resnick and Zeckhauser showed in [RZ02] that sellers
on eBay discriminate against potential customers based on their review history.
This discrimination could take the form of “Sellers providing exceptionally good
service to a few selected individuals and average service to the rest”, as stated
in [Del00]. Therefore, anonymity seems to be the right property for a reputation
system to have. However, on the other hand, we cannot simply fully anonymize
the reviews, since otherwise malicious users can for example create spam reviews
for the purpose of boosting/reducing the popularity of specific products, thus
defeating the purpose of a reliable reputation system. Therefore, reputation sys-
tems must also enforce public linkability, i.e., if any user misuses the system by
writing multiple reviews or rating multiple times on the same product, he will
be detected, and therefore revoked from the system.

Different cryptographic tools have been used to realize reputation systems,
including Ring Signatures (e.g., [ZWC+16]), Signatures of Reputations (e.g.,
[BSS10]), Group Signatures (e.g., [BJK15]), Blockchains (e.g., [SKCD16]), Mix-
Nets (e.g., [ZWC+16]), Blind Signatures (e.g., [ACBM08]), etc., each of which
improves on one or multiple aspects of reputation systems that are often comple-
mentary and incomparable. Other relevant works include a long line of interest-
ing results presented in [Del00,JI02,KSGM03,DMS03,Ste06,ACBM08,Ker09,
YSK+09,GK11,VMG+12,CSK13,MKKSM13,MK14].

Why Group Signatures. In this work, we choose to move forward and
strengthen the state-of-the-art of reputation systems built from group sig-
natures presented in [BJK15] in three orthogonal directions (see details in
next paragraph). Undeniably, group signatures are considered to be one
of the most well-established type of anonymous digital signatures, with a
huge effort being made to generically formalize such an intriguing tool
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(see for instance, [CVH91,Cam97,AT99,BMW03,BBS04,BS04,CG04,BSZ05,
BW06,BCC+16,LNWX17]), and therefore, building a reputation system from
group signatures seems one of the advanced and safe options.

Although anonymous reputation systems share some of their security prop-
erties with group signatures, they do have their unique setting that requires
a different and more challenging security model. For instance, a unique secu-
rity property that is required by reputation systems is public-linkability ; adding
public-linkability will surely affect the way we would define the anonymity and
non-frameability properties. For example, public-linkability can be easily seen to
harm the standard anonymity notion for group signatures. Furthermore, a new
framing threat arises when using any linking technique within an anonymous
system (see details in Sect. 3.2). Therein lie the main subtleties of reputation
systems’ design, and that is why it has been difficult to define an acceptable
security model for such systems so far even though reputation systems have
been a hot topic for the last decade and one of the most promising applications
of anonymous digital signatures.

Contribution. In our work, we substantially boost the line of work of rep-
utation systems built from group signatures by providing a reputation system
that affirmatively addresses three main challanges simultanouesly; namely, we
give a rigorous security model, achieve full dynamicity (i.e., users can join and
leave at any moment), and equip this important topic with an alternative con-
struction to be ready for the emerging post-quantum era. In more details, we
first strengthen and re-formalize the security model for anonymous reputation
systems presented in [BJK15] to fully capture all the real-life threats. In par-
ticular, we identify an essential security notion2 uncalled in the presentation of
[BJK15]; we capture and formalize the framing scenario where the adversary
tries to produce a review that links to another review produced by an honest
user. We believe this to be one of the central security notions to be considered
in order to maintain a reliable anonymous reputation system, as an adversary
otherwise can exploit this vulnerability for the purpose of revoking or partially
de-anonymizing a particular user. Also, our security model captures the notion
of tracing soundness. It is indeed an important security property as it ensures
that even if all parties in the system are fully corrupt, no one but the actual
reviewer/signer can claim authorship of the signature. Additionally, in our secu-
rity model, we are able to put less trust in the managing authorities, namely,
the tracing manager does not necessarily have to be honest as is the case with
[BJK15]. Second, our reputation system is fully dynamic where users/items can
be added and revoked at any time. This is an attractive and should possibly be

2 We would like to emphasize that the scheme of [BJK15] is secure according to their
formalization, and we do not claim their scheme to be wrong in their proposed
security model. We view one of our contribution as identifying a security hole which
was not captured by the previous security model for reputation systems [BJK15],
and providing a more complete treatment of them by building on the ideas of the
most up-to-date security model for group signatures [BCC+16].
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a default feature for a reputation system to have, due to its dynamic nature,
i.e., the system manager will not have the full list of users and items that will
be participating in the system upon the setup of the system. Finally, we give
a construction of a reputation system that is secure w.r.t our strong security
model based on lattice assumptions. To the best of our knowledge, this is the
first reputation system that relies on non number-theoretic assumptions, and
thereby not susceptible to quantum attacks.

2 Preliminaries

2.1 Lattices

For positive integers n,m such that n ≤ m, an integer n-dimensional lattice
Λ in Z

m is a set of the form {
∑

i∈[n] xibi|xi ∈ Z}, where B = {b1, · · · ,bn}
are n linearly independent vectors in Z

m. Let DZm,σ be the discrete Gaussian
distribution over Z

m with parameter σ > 0. In the following, we recall the
definition of the Short Integer Solution (SIS) problem and the Learning with
Errors (LWE) problem.

Definition 1 (SIS). For integers n = n(λ),m = m(n), q = q(n) > 2 and a
positive real β, we define the short integer solution problem SISn,m,q,β as the
problem of finding a vector x ∈ Z

m such that Ax = 0 mod q and ‖x‖∞ ≤ β
when given A ← Z

n×m
q as input.

When m,β = poly(n) and q >
√

nβ, the SISn,m,q,β problem is at least as hard
as SIVPγ for some γ = β · Õ(

√
nm). See [GPV08,MP13].

Definition 2 (LWE). For integers n = n(λ),m = m(n), t = t(n), a prime
integer q = q(n) > 2 such that t < n and an error distribution over χ = χ(n)
over Z we define the decision learning with errors problem LWEn,m,q,χ as the
problem of distinguishing between (A,A�s+x) from (A,b), where A ← Z

n×m
q ,

s ← χn, x ← χm and b ← Z
m
q . We also define the search first-are-errorless

learning with errors problem faeLWEn,t,m,q,χ as the problem of finding a vector
s ∈ Z

n
q when given b = A�s + x mod q as input, where A ← Z

n×m
q , s ← χn

and x ← {0}t × χm−t, i.e., the first t samples are noise-free.

[ACPS09] showed that one can reduce the standard LWE problem where s is
sampled from Z

n
q to the above LWE problem where the secret is distributed

according to the error distribution. Furthermore, [ALS16] showed a reduction
from LWEn−t,m,q,χ to faeLWEn,t,m,q,χ that reduces the advantage by at most
2n−t−1. When χ = DZ,αq and αq > 2

√
2n, the LWEn,m,q,χ is at least as (quan-

tumly) hard as solving SIVPγ for some γ = Õ(n/α). See [Reg05,Pei09,BLP+13].
We sometimes omit the subscript m from LWEn,m,q,χ, faeLWEn,m,q,χ, since the
hardness of the problems hold independently from m = poly(n). In the following,
in case χ = DZ,β , we may sometimes denote LWEn,m,q,β , faeLWEn,m,q,β .
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2.2 Tag Schemes

We recall here the lattice-based linkable indistinguishable tag (LWE-LIT) scheme
presented in [EE17]. Let m,ω, q be positive integers with m = 3ω and q > 2
a prime. Assume they are all implicitly a polynomial function of the security
parameter n, where we provide a concrete parameter selection in our construction
(see Sect. 4). Let H : {0, 1}∗ → Z

m×ω
q be a hash function modeled as a random

oracle in the security proofs. Let K = Z
m
q ∩ [−β, β]m be the key space for some

positive integer β < q, T = Z
m
q be the tag space, and I = {0, 1}∗ be the message

space. Finally, let β′ be some positive real such that β > β′ω(
√

log n). Then, the
lattice-based linkable indistinguishable tag scheme is defined by the following
three PPT algorithms LIT = (KeyGenLIT,TAGLIT, LinkLIT):

KeyGenLIT(1n): The key generation algorithm takes as input the security param-
eter 1n, it samples a secret key sk ← DZm,β′ until sk ∈ K.3 It then outputs
sk.

TAGLIT(I, sk): The tag generation algorithm takes as input a message I ∈ I and
a secret key sk ∈ K, and samples an error vector e ← DZω,β′ . It then outputs
a tag τ = H(I)�sk + e ∈ T .

LinkLIT(τ0, τ1): The linking algorithm takes as input two tags τ0, τ1, and outputs 1
if ‖τ0 − τ1‖∞ ≤ 2β and 0 otherwise.

We require one additional algorithm only used during the security proof.

IsValidLIT(τ, sk, I) : This algorithm takes as input a tag τ , a secret key sk and a
message I, and outputs 1 if ‖τ − H(I)�sk‖∞ ≤ β and 0 otherwise.

The tag scheme (LIT) must satisfy two security properties, namely, the tag-
indistinguishability and linkability. Informally speaking, tag-indistinguishability
ensures that an adversary A cannot distinguish between two tags produced by
two users (of his choice) even given access to a tag oracle. Linkability means that
two tags must “link” together if they are produced by the same user on the same
message. In the context of reputation systems, the messages associated to the
tag will correspond to the items that the users buy. Therefore, when the users
write two anonymous reviews on the same item, the tags will help us link the
two reviews.

Tag-Indistinguishability. A tag-indistinguishability for a LIT scheme is
defined by the experiment in Fig. 1 and a tag oracle as in Fig. 2. We define the
advantage of an adversary A breaking the tag-indistinguishability as follows:

AdvTagA (n) =
∣
∣
∣Pr[ExpTag,0

A (n) = 1] − Pr[ExpTag,1
A (n) = 1]

∣
∣
∣

We say that a LIT scheme is tag-indistinguishable if for all polynomial time
adversary A the advantage is negligible.

The proof of the following Theorem1 will be provided in the full version.
3 The expected number of samples required will be a constant due to our parameter

selection. In particular, we have Pr[|x| > β′ω(
√

log n)] = negl(n) for x ← D
Z,

√
2β′ .
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Experiment: ExpTag,bA (n)

skj ← KeyGenLIT(1
n) for j = 0, 1.

V0, V1 ← ∅
(I∗, st) ← AOTag(·,·),H(·)(1n)
τ∗ ← TAGLIT(I∗, skb)
b∗ ← AOTag(·,·),H(·)(τ∗, st)
If either (0, I∗) or (1, I∗) was submitted

to OTag return 0
If b∗ = b return 1, else return 0

Fig. 1. Tag-indistinguishability

Oracle: OTag(j, I)

If j {∈� 0, 1} return ⊥
If ∃τ such that (I, τ) ∈ Vj return τ
Else τ ← TAGLIT(I, skj)
Vj ← Vj ∪ {(I, τ)}
return τ

Fig. 2. Description of the tag oracle

Theorem 1 (tag-indistinguishability). For any efficient adversary A
against the tag-indistinguishability experiment of the LWE-LIT scheme as defined
above, we can construct an efficient algorithm B solving the LWEm,ωQ,q,β′/

√
2

problem with advantage:

Adv
LWEm,ωQ,q,β′/

√
2

B (n) ≥ AdvTagA (n) − negl(n),

where Q denotes the number of random oracle queries made by A. In particu-
lar, assuming the hardness of LWEm,ωQ,q,β′/

√
2, the advantage of any efficient

adversary A is negligible.

Linkability. A linkability of a LIT scheme is defined by the experiment in
Fig. 3. We define the advantage of an adversary A breaking the linkability as
AdvLinkA (n) = Pr[ExpLinkA (n) = 1]. We say that a LIT scheme is non-linkable if for
all adversary A the advantage is negligible.

Experiment: ExpLinkA (n)

(τ0, τ1, I, sk) ← AH(·)(1n)
If IsValidLIT(τb, sk, I) = 1 for b ∈ {0, 1} and

LinkLIT(τ0, τ1) = 0 return 1
Else return 0

Fig. 3. Linkability

Theorem 2 (Linkability). For any adversary A against the linkability exper-
iment of the LWE-LIT scheme as defined above, the advantage AdvLinkA (n) is neg-
ligible.

Proof. Suppose, towards a contradiction, that an adversary A wins the linka-
bility experiment. In particular, A outputs (τ0, τ1, I, sk) such that the follow-
ing three conditions hold: ‖τ0 − H(I)�sk‖ ≤ β, ‖τ1 − H(I)�sk‖ ≤ β, and
‖τ0 − τ1‖ > 2β. From the first two inequalities, we have
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‖τ0 − τ1‖ = ‖(τ0 − H(I)�sk) + (−τ1 + H(I)�sk)‖
≤ ‖τ0 − H(I)�sk‖ + ‖τ1 − H(I)�sk‖ ≤ 2β,

by the triangular inequality. However, this contradicts the third inequality.

2.3 Group Signatures

In a group signature, a group member can anonymously sign on behalf of the
group, and anyone can then verify the signature using the group’s public key
without being able to tell which group member signed it. A group signature
has a group manager who is responsible for generating the signing keys for the
group members. There are two types of group signatures: the static type and the
dynamic type. In the static type [BMW03], the group members are fixed at the
setup phase. In this case, the group manager can additionally trace a signature
and reveal which member has signed it. In the dynamic type [BSZ05,BCC+16],
users can join/leave the system at anytime. Now a group has two managers; the
group manager and a separate tracing manager who can open signatures in case
of misuse/abuse. Briefly speaking, a group signature has three main security
requirements; anonymity, non-frameability, and traceability. Anonymity ensures
that an adverary cannot tell which group member has signed the message given
the signature. Non-frameability ensures that an adversary cannot produce a valid
signature that traces back to an honest user. Finally, traceability ensures that
an adversary cannot produce a valid signature that does not trace to an user.

In our work, we build on the recent lattice-based fully dynamic group signa-
ture scheme of [LNWX17] to construct our reputation system. We briefly sketch
how the group signature scheme of [LNWX17] works; a group manager maintains
a Merkle-tree in which he stores members’ public keys in the leaves where the
exact position are given to the signers at join time. The leaves will be hashed to
the top of the tree using an accumulator instantiated using a lattice-based hash
function. The relevant path to the top of the tree will be given to each mem-
ber where the top of the tree itself is public. In order to sign, a group member
has to prove in zero-knowledge that; first, he knows the pre-image of a public
key that has been accumulated in the tree, and that he also knows of a path
from that position in the tree to its root. Additionally, they apply the Naor-
Yung double-encryption paradigm [NY90] with Regev’s LWE-based encryption
scheme [Reg05] to encrypt the identity of the signer (twice) w.r.t the tracer’s
public key to prove anonymity. To summarize, a group signature would be of the
form (Π, c1, c2), where Π is the zero-knowledge proof that the signer is indeed a
member of the group (i.e., his public key has been accumulated into the Merkle-
tree), and the encrypted identity in both c1 and c2 is a part of the path that
he uses to get to the root of the Merkle-tree. Note that this implies that the
ciphertexts (c1, c2) are bound to the proof Π.
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3 Syntax and Security Definitions

We formalize the syntax of reputation systems following the sate-of-the-art for-
malization of dynamic group signatures of [BCC+16]. We briefly explain the two
major differences that distinguish between a reputation system from a group sig-
nature scheme. First, a reputation system is in essence a group of group signature
schemes run in parallel, where we associate each item uniquely to one instance
of the group signature scheme. Second, we require an additional algorithm Link
in order to publicly link signatures (i.e., reviews), which is the core functional-
ity provided by reputation systems. We now define reputation systems by the
following PPT algorithms:

RepSetup(1n) → pp: On input of the security parameter 1n, the setup algorithm
outputs public parameters pp.

KeyGenGM(pp) ↔ KeyGenTM(pp): This an interactive protocol between the
group manager GM and the tracing manager TM. If completed successfully,
KeyGenGM outputs the GM’s key pair (mpk,msk) and KeyGenTM outputs the
TM’s key pair (tpk, tsk). Set the system public key to be gpk := (pp,mpk, tpk).

UKgen(1n) → (upk, usk): On input of the security parameter 1n, it outputs a
key pair (upk, usk) for a user. We assume that the key table containing the
various users’ public keys upk is publicly available.

Join(infotcurrent , gpk, upk, usk, item) ↔ Issue(infotcurrent ,msk, upk, item): This is an
interactive protocol between a user upk and the GM. Upon successful comple-
tion, the GM issues an identifier uiditem associated with item to the user who
then becomes a member of the group that corresponds to item4. The final
state of the Issue algorithm, which would always include the user public key
upk, is stored in the user registration table reg at index (item, uiditem) which
is made public. Furthermore, the final state of the Join algorithm is stored in
the secret group signing key gsk[item][uiditem].

RepUpdate(gpk,msk, R, infotcurrent , reg) → (infotnew , reg): This algorithm is run by
the GM to update the system info. On input of the group public key gpk,
GM’s secret key msk, a list R of active users’ public keys to be revoked, the
current system info infotcurrent , and the registration table reg, it outputs a new
system info infotnew while possibly updating the registration table reg. If no
changes have been made, output ⊥.

Sign(gpk, gsk[item][uiditem], infotcurrent , item,M) → Σ: On input of the system’s pub-
lic key gpk, user’s group signing key gsk[item][uiditem], system info infotcurrent at
epoch tcurrent, an item, and message M, it outputs a signature Σ. If the user
owning gsk[item][uiditem] is not an active member at epoch tcurrent, the algo-
rithm outputs ⊥.

4 Here our syntax assumes that the items to be reviewed have been already commu-
nicated to the GM from the respective service providers. We merely do this to make
our presentation simple and we emphasize that our construction is general in the
sense that the GM does not need to know neither the number of items nor the items
themselves ahead of time. Items can dynamically be added/removed from the system
by GM when it is online.
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Verify(gpk, infotcurrent , item,M, Σ) → 1/0: On input of the system’s public key gpk,
system info infotcurrent , an item, a message M, and a signature Σ, it outputs 1
if Σ is valid signature on M for item at epoch tcurrent, 0 otherwise.

Trace(gpk, tsk, infotcurrent , reg, item,M, Σ) → (uiditem,ΠTrace): On input of the sys-
tem’s public key gpk, the TM’s secret key tsk, the system information infotcurrent ,
the user registration table reg, an item, a message M, and a signature Σ, it
outputs the identifier of the user uiditem who produced Σ and a proof ΠTrace

that attests to this fact. If the algorithm cannot trace the signature to a
particular group member, it returns ⊥.

Judge(gpk, uiditem,ΠTrace, infotcurrent , item,M, Σ) → 1/0: On input of the system’s
public key gpk, a user’s identifier uiditem, a tracing proof ΠTrace from the Trace
algorithm, the system info infotcurrent , an item, a message M and signature Σ,
it outputs 1 if ΠTrace is a valid proof that uiditem produced Σ and 0 otherwise.

Link(gpk, item, (m0, Σ0), (m1, Σ1)) → 1/0: On input of the system’s public key
gpk, an item, and two message-signature pairs, it returns 1 if the signatures
were produced by the same user on behalf of the group that corresponds to
item, 0 otherwise.

IsActive(infotcurrent , uiditem, reg, item) → 1/0: this algorithm will only be used in the
security games. On input of the system infotcurrent , a user’s identifier uiditem,
the user registration table reg, and an item, it outputs 1 if uiditem is an active
member of the group for item at epoch tcurrent and 0 otherwise.

3.1 Discussion on the Security Model of FC’15 Reputation System

Blömer et al. [BJK15] constructed an anonymous reputation system from group
signatures based on number-theoretical assumptions. In their work, they claim
to formalize reputation systems following the formalization of partially dynamic
group signature schemes presented by Bellare et al. [BSZ05], i.e., they have two
managers, the group manger and key issuer5. However, one can notice that the
security model is in fact strictly weaker than that of [BSZ05]; the major difference
being the assumption that the opener/tracer is always honest. Furthermore, in
their public-linkability property, the key issuer (the GM in our case) is assumed to
be honest. Another observation, which we believe to be of much bigger concern,
is that their security notion for reputation systems does not fully capture all
the real-life threats. In particular, their strong-exculpability property (which is
essentially the notion of non-frameability), does not capture the framing scenario
where the adversary outputs a signature that links to an honest user; it only
captures the scenario where the adversary outputs a signature that traces to an
honest user. Note that the former attack scenario does not exist in the context
of group signatures since no tag schemes are being used there, i.e., the whole
notion of linkability does not exist. However, it is a vital security requirement
in the reputation system context as an adversary could try to generate a review
that links to an honest user’s review so that the GM may decide to revoke or

5 Note that [BJK15] does not completely follow the notation used in [BSZ05], i.e.,
their group manager is in fact the tracer in [BSZ05].
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de-anonymize the honest user. In our work, we provide a formal definition of
reputation systems that models more accurately these real-life threats, which in
particular, solve the aforementioned shortcomings of [BJK15].

3.2 Security Definitions

We provide a formal security definition following the experiment type defini-
tion of [BCC+16,LNWX17] for fully dynamic group signatures, which originates
to [BSZ05]. Anonymity, non-frameability and public-linkability are provided in
Fig. 4, whereas the rest of the security experiment together with the oracles used
therein are provided in the full version of the paper. One of the main differences
between theirs and ours is that, we require the public-linkability property, which
does not exist in the group signature setting. Moreover, the existence of the tag
scheme further affects the anonymity and non-frameability properties, which are
depicted in Fig. 4; for the former, an adversary should not be allowed to ask for
signatures by the challenge users on the challenge item, otherwise he could triv-
ially win the game by linking the signatures. In the latter, an additional attack
scenario is taken into consideration, i.e., when an adversary outputs a review
that links to an honest user’s review.

In our formalization, we only require TM to be honest in the anonymity
experiment, which is inevitable as otherwise the adversary could trivially win
the game. Also, our public linkability holds unconditionally, and therefore, GM
can be assumed to be corrupt there. We now present the security properties of
our reputation system.

Correctness. A reputation system is correct if reviews produced by honest,
non-revoked users are always accepted by the Verify algorithm and if the honest
tracing manager can always identify the signer of such signatures where his
decision will be accepted by a Judge. Additionally, two reviews produced by the
same user on the same item should always link.

Anonymity. A reputation system is anonymous if for any PPT adversary the
probability of distinguishing between two reviews produced by any two honest
signers is negligible even if the GM and all other users are corrupt, and the
adversary has access to the Trace oracle.

Non-frameability. A reputation system is non-frameable if for any PPT adver-
sary it is unfeasible to generate a valid review that traces or links to an honest
user even if it can corrupt all other users and chose the keys for GM and TM.

Traceability. A reputation system is traceable if for any PPT adversary it is
unfeasible to produce a valid review that cannot be traced to an active user at
the chosen epoch, even if it can corrupt any user and can choose the key of TM6.
6 The group manager GM is assumed to be honest in this game as otherwise the

adversary could trivially win by creating dummy users.
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Experiment: ExpAnon-brep-sys,A(n)
pp ← RepSetup(1n);HUL,CUL,BUL, SL,CL := ∅
(st, info,mpk,msk) ← A(·↔KeyGenTM(pp))(pp)
if KeyGenTM did not accept or A’s output is not well-formed, return 0
gpk := (pp,mpk, tpk)
b∗ ← AAddU,CrptU,SndToU,RevealU,Trace,MReg,Chalb,Sign(st, gpk)
if |CL|�= 1 return 0, otherwise, let CL = {(uid0, uid1, item∗, M, Σ)}
if (−, uidb, −, item∗, −, −) ∈ SL for b = 0 or 1, return 0
else return b∗

Experiment: Expnon-frame
rep-sys, A(n)

pp ← RepSetup(1n);HUL,CUL,BUL, SL := ∅
(st, info,msk,mpk, tsk, tpk) ← A(pp)
if A’s output is not well-formed, return 0
Set gpk := (pp,mpk, tpk)
(uid∗

item∗ , Π∗
Trace, infot∗ , item∗,M∗, Σ∗) ← ACrptU,SndToU,RevealU,Sign,MReg(st, gpk)

X ← RUser(item∗, uiditem∗)
if X = ⊥ return 0, else upk∗ := X
if Verify(gpk, infot∗ , item∗,M∗, Σ∗) = 0, return 0
if ∃(upk, uiditem∗ , t, item∗,M, Σ) ∈ SL s.t. uiditem∗ ∈ HUL[upk] ∧ upk �∈ BUL

∧ Link(gpk, item∗, (M∗, Σ∗), (M, Σ)) = 1, return 1
if Judge(gpk, uid∗

item∗ , Π∗
Trace, infot∗ , item∗,M∗, Σ∗) = 1 ∧ uid∗

item∗ ∈ HUL[upk∗]
∧ upk∗ �∈ BUL ∧ (upk∗, uid∗

item∗ , t∗, item∗,M∗, Σ∗) �∈ SL, return 1
else return 0

Experiment: ExpPublic-Linkrep-sys, A(n)
pp ← RepSetup(1n);CUL := ∅
(st, info,msk,mpk, tsk, tpk) ← A(pp)
if A’s output is not well-formed, return 0
Set gpk := (pp,mpk, tpk)
(item, uiditem, infot, {(Mb, Σb, ΠTrace,b)}b=0,1) ← ACrptU,MReg(st, gpk)
if Verify(gpk, infot, item,Mb, Σb) = 0 for b = 0 or 1, return 0
if Link(gpk, item, (M0, Σ0), (M1, Σ1)) = 1, return 0
if Judge(gpk, uiditem, ΠTrace,b, infot, item,Mb, Σb) = 0 for b = 0 or 1, return 0
else return 1

Fig. 4. Security experiments for the reputation system-1

Public-Linkability. A reputation system is publicly linkable if for any (possibly
inefficient) adversary it is unfeasible to output two reviews for the same item
that trace to the same user but does not link. This should hold even if the
adversary can chose the keys of GM and TM.

Tracing Soundness. A reputation system has tracing soundness if no (possibly
inefficient) adversary can output a review that traces back to two different
signers even if the adversary can corrupt all users and chose the keys of GM
and TM.
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4 Our Lattice-Based Reputation System

Intuition Behind Our Scheme. It is helpful to think of our reputation system
as a group of group signatures managed by a global group manager (or call it a
system manager), whom we refer to as a group manager GM for simplicity. This
group manager shares the managerial role with the tracing manager TM who
is only called for troubleshooting, i.e., to trace users who misused the system.
The group manager maintains a set of groups, each corresponding to a prod-
uct/item owned by a certain service provider. Users who bought a certain item
are eligible to become a member of the group that corresponds to that item,
and can therefore write one anonymous review for that item. Every user in the
system will have his own pair of public-secret key (upk, usk). When he wants to
join the system for a particular item, he would engage in the Join-Issue protocol
with GM, after which, he would be assigned a position uid = bin(j) ∈ {0, 1}�

in the Merkle-tree that corresponds to the item in question, and his public key
will be accumulated in that tree. Here, j (informally) denotes the j-th unique
user to have bought the corresponding item. The user can now get his witness
wj that attests to the fact that he is indeed a consumer of the item, on which he
is then ready to write a review for that item. Technically speaking, he needs to
provide a non-interactive zero-knowledge argument of knowledge for a witness
to the following relation RSign:

RSign =
{
(A,u,HTag(item), τ, c1, c2,B,P1,P2), (p, wj ,x, e, uiditem, r1, r2) :

p �= 0nk ∧ TVerifyA(p, wj ,u) = 1 ∧ A · x = G · p mod q

∧ (EncRegev
(
(B,P1,P2), uiditem; (r1, r2)

)
= (c1, c2)

∧ τ = HTag(item)�x + e
}
.

As can be seen, the signer encrypts his uid and computes a tag for the item
in question. This tag ensures that he can only write one review for each item,
otherwise his reviews will be publicly linkable and therefore detectable by GM.
Regarding the verification, anyone can then check the validity of the signature by
simply running the verify algorithm of the underlying NIZKAoK proof system.
In any misuse/abuse situation, TM can simply decrypt the ciphertext attached
to the signature to retrieve the identity of the signer. TM also needs to prove cor-
rectness of opening (to avoid framing scenarios) via the generation of a NIZKAoK
for the following relation RTrace:

RTrace = {(c1, c2, uiditem,B,P1), (S1,E1) :DecRegev
(
(S1,E1), (c1, c2)

)
= uiditem}

Finally, for public linkability, we require that any two given signatures (Σ0, Σ1)
for the same item can be publicly checked to see if they are linkable, i.e., check
that were produced by the same reviewer. This can be done simply by feeding the
tags τ0 and τ1 of the two signatures, to the LinkLIT algorithm of the underlying
LIT scheme. If LinkLIT returns 0, then Σ0 and Σ1 were not produced by the same
user, and therefore are legitimate reviews from two different users. Otherwise, in
the case it returns 0, we know that some user reviewed twice for the same item;
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the GM asks TM to trace those signatures and find out who generated them and
GM will then revoke the traced user from the system.

4.1 Our Construction

Underlying Tools. In our construction, we use the multi-bit variant of
the encryption scheme of Regev [KTX07,PVW08], which we denote by
(KeyGenRegev,EncRegev, DecRegev). We also employ the lattice-based tag scheme
(KeyGenLIT,TAGLIT, LinkLIT) provided in Sect. 2.2. We assume that both schemes
share the same noise distribution χ (see below). We also use a lattice-based
accumulator (TSetup, TAccA,TVerifyA,TUpdateA) [LNWX17]. Finally, we use
a Stern-like zero-knowledge proof system where the commitment scheme of
[KTX08] is used internally. More details on these building blocks can be found
in the full version of the paper.

Construction. The proposed reputation system consists of the following PPT
algorithms:

RepSetup(1n): On input of the security parameter 1n, it outputs the public
parameters,

pp = (N,n, q, k,m,mE , ω, , β, χ, κ,HTag,HSign,HTrace,A).

Where, N = 2� = poly(n) is the number of potential users, q = O(n1.5), k =
�log2 q�,m = 2nk,mE = 2(n + )k, ω = 3m,β =

√
n · ω(log n), and a β/

√
2-

bounded noise distribution χ. Moreover, HTag : {0, 1}∗ → Z
m×ω
q is the hash

function used for the tag scheme, and HSign,HTrace : {0, 1}∗ → {1, 2, 3}κ are
two hash functions used for the NIZKAoK proof systems for RSign and RTrace,
where κ = ω(log n). Finally, A ← Z

n×m
q .

KeyGenGM(pp) ↔ KeyGenTM(pp): This is for the group manager and tracing
manager to set up their keys and publish the system’s public information.
The group manager samples msk ← {0, 1}m, and sets mpk := A · msk
mod q. On the other hand, TM runs (pkEnc, skEnc) ← KeyGenRegev(1n) and
sets tpk := pkEnc = (B,P1,P2) and tsk := skEnc = (S1,E1). GM receives tpk
from TM and creates an empty reg table. Namely, reg[item][bin(j)][1] = 0nk

and reg[item][bin(j)][2] = 0 for j = 1, · · · , N − 1 and all item in the system,
i.e., it is epoch 0 and no users have joined the system yet7. Here, GM main-
tains multiple local counters citem to keep track of the registered users for each
item, which are all set initially to 0. Finally, GM outputs gpk = (pp,mpk, tpk)
and info = ∅.

UKgen(1n): This algorithm is run by the user. It samples x ← KeyGenLIT(1n)
where x ∈ [−β, β]m and sets usk := x. It then computes upk := p =
bin(Ax mod q) ∈ {0, 1}nk. Hereafter, the user is identified by his public key
upk.

7 Recall that for simplicity of presentation, we assume the all items are provided
to the GM. Our scheme is general enough so that the items can dynamically be
added/removed from the system by GM.
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Join ↔ Issue: A user (upk, usk) = (p,x) requests to join the group that corre-
sponds to item at epoch t. He sends p to GM. If GM accepts the request,
it issues an identifier for this user, i.e., uiditem = bin(citem) ∈ {0, 1}�. The
user’s signing key for item is then set to gsk[uiditem][item] = (uiditem,p,x).
Now, GM updates the Merkle tree via TUpdateitem,A(uiditem,p), and sets
reg[item][uiditem][1] := p, reg[item][uiditem][2] := t. Finally, it increments the
counter citem := citem + 1.

RepUpdate(gpk,msk, R, infotcurrent , reg): This algorithm is be run by GM. Given a
set R of users to be revoked, it first retrieves all the uiditem associated to each
upk = p ∈ R. It then runs TUpdateitem,A(reg[item][uiditem][1],0nk) for all the
retrieved uiditem. It finally recomputes utnew,item and publishes

infonew =
{(

utnew,item,Witem

)}
item

,

where, Witem = {wi,item}i and wi,item ∈ {0, 1}� ×({0, 1}nk)� is the witness that
proves that upki = pi is accumulated in utnew,item. Here, the first -bit string
term of the witness refers to the user identifier uiditem associated to item.

Sign(gpk, gsk[item][uiditem], infotcurrent , item,M): If infotcurrent does not contain a wit-
ness wi,item with the first entry being uiditem ∈ {0, 1}�, return ⊥. Otherwise,
the user downloads utcurrent,item and his witness wi,item from infotcurrent . Then, it
computes (c1, c2) ← EncRegev(tpk, uiditem) and the tag τ ← TAGLIT(item,x),
where recall usk = x. Finally, it generates a NIZKAoK ΠSign = ({CMTi}κ

i=1,
CH, {RSP}κ

i=1) for the relation RSign , where

CH = HSign

(
M, {CMTi}κ

i=1,A,u,HTag(item), τ, c1, c2,B,P1,P2

)
∈ {1, 2, 3}κ,

and outputs the signature Σ = (ΠSign, τ, c1, c2).
Verify(gpk, infotcurrent , item,M, Σ): It verifies if ΠSign is a valid proof. If so it outputs

1 and otherwise it outputs 0.
Trace(gpk, tsk, infotcurrent , reg, item,M, Σ): It first runs uiditem ← DecRegev((S1,

E1), (c1, c2)). Then, it generates a NIZAoK proof ΠTrace for the relation RTrace.
Judge(gpk, uiditem,ΠTrace, infotcurrent , item,M, Σ): It verifies if ΠTrace is a valid proof.

If so it outputs 1 and otherwise it outputs 0.
Link(gpk, item, (M0, Σ0), (M1, Σ1)): It parses Σ0 and Σ1 and outputs b ←

LinkLIT(τ0, τ1), where b = 1 when it is linkable and 0 otherwise.

4.2 Security Analysis

We show that our reputation system is secure. Each of the following theorems
correspond to the security definitions provided in Sect. 3.2, except for the cor-
rectness which can be easily checked to hold. Here, we only provide the high-level
overview of some of the proofs that we believe to be of interest, and defer the
formal proofs to the full version of the paper. The parameters that appear in
the theorems are as provided in the above construction.

Theorem 3 (Anonymity). Our reputation system is anonymous, assuming
the hardness of the decision LWEn,q,χ problem.



402 A. El Kaafarani et al.

Proof Overview. We proceed in a sequence of hybrid experiments to show that
|ExpAnon-0rep-sys,A(n) − ExpAnon-1rep-sys,A(n)| ≤ negl for any PPT algorithm. The high level
strategy is similar to the anonymity proof for the dynamic group signature
scheme provided in [LNWX17], Lemma 2. Namely, for the challenge signature,
we swap the user identifier uiditem embedded in the ciphertexts (c1, c2) and the
user’s secret key usk embedded in the tag τ . The main difference between the
proof of [LNWX17] is that for our reputation system we have to swap the tag in
the challenge signature. For this, we use the tag indistinguishability property of
the underlying tag scheme LWE-LIT presented in Theorem 1. This modification
in the experiments are provided in Exp5 of our proof.

Theorem 4 (Non-Frameability). Our Reputation System is non-frameable,
assuming the hardness of the SISn,m,q,1 problem of the search faeLWEm,n,q,χ (or
equivalently the search LWEm−n,q,χ) problem.

Proof Overview. For an adversary to win the experiment, he must output a
tuple (uid∗

item∗ ,Π∗
Trace, infot∗ , item∗,M∗, Σ∗) such that (informally): (i) the pair

(M∗, Σ∗) links to some other message-signature pair (M, Σ) corresponding to
item∗ of an honest non-corrupt user or (ii) the proof Π∗

Trace traces the signature
Σ∗ back to some honest non-corrupt user. Since the latter case (ii) essentially
captures the non-frameability of fully dynamic group signatures, the proof fol-
lows similarly to [LNWX17], Lemma 3. However, for case (i), we must use a
new argument, since this is a security notion unique to reputation systems. In
particular, we aim to embed a search LWE problem into the tag of the message-
signature pair (M, Σ) of an honest non-corrupt user (where the simulator does
not know the secret key usk) for which the adversary outputs a linking signa-
ture forgery (M∗, Σ∗). Due to the special nature of our LWE tag scheme, we can
prove that if the signatures link, then the two secret keys usk, usk∗ embedded in
the tags must be the same. Therefore, by extracting usk∗ from the adversary’s
forgery, we can solve the search LWE problem. However, the problem with this
approach is that since the simulator does not know usk, he will not be able to
provide the adversary with this particular user’s public key upk, which is defined
as A·usk mod q. Our final idea to overcome this difficulty is by relying on the so
called first-are-error-less LWE problem [BLP+13,ALS16], which is proven to be
as difficult as the standard LWE problem. Namely, the simulator will be provided
with A ·usk as the error-less LWE samples and uses the remaining non-noise-less
LWE samples to simulate the tags.

Theorem 5 (Public Linkability). Our reputation system is unconditionally
public-linkable.

Proof Overview. We show that no such (possibly inefficient) adversary exists by
assuming the linkability property of our underlying tag scheme LWE-LIT pre-
sented in Theorem 2, which holds unconditionally. Our strategy is to prove by
contradiction. Assuming that an adversary winning the public-linkability exper-
iment exists, we obtain two signatures Σ0, Σ1 on item such that the two tags
τ0, τ1 associated with the signatures does not link, but the two tags embed the
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same user secret key usk (which informally follows from the ΠTrace,b provided
by the adversary). Then, by extracting the usk from the signatures produced
by the adversary, we can use (τ0, τ1, I = item, sk = usk) to win the linkability
experiment of the tag scheme. Thus a contradiction.

The following two theorems follow quite naturally from the proofs of the
dynamic group signatures schemes of [LNWX17]. At a high level, this is because
the following security notions captures threats that should hold regardless of the
presence of tags.

Theorem 6 (Traceability). Our reputation system is traceable assuming the
hardness of the SISn,m,q,1 problem.

Theorem 7 (Tracing Soundness). Our reputation system is unconditionally
tracing sound.
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Abstract. Digital currencies have flourished in recent years, buoyed by
the tremendous success of Bitcoin. These blockchain-based currencies,
called altcoins, are associated with a few thousand to millions of dollars
of market capitalization. Altcoins have attracted enthusiasts who enter
the market by mining or buying them, but the risks and rewards could
potentially be significant, especially when the market is volatile. In this
work, we estimate the potential profitability of mining and speculating 18
altcoins using real-world blockchain and trade data. Using opportunity
cost as a metric, we estimate the mining cost for an altcoin with respect
to a more popular but stable coin. For every dollar invested in mining or
buying a coin, we compute the potential returns under various conditions,
such as time of market entry and hold positions. While some coins offer
the potential for spectacular returns, many follow a simple bubble-and-
crash scenario, which highlights the extreme risks—and potential gains—
in altcoin markets.

1 Introduction

In its nine years of existence, Bitcoin [1] (BTC) has been tremendously popular,
reaching billions of dollars of market capitalization at the time of this writing.
Its success has inspired the creation of many new digital currencies that borrow
Bitcoin’s key design principles—a blockchain-based public ledger and a means
of acquiring a stake in the currency computationally—and, in many cases, Bit-
coin’s source code. Today, there are over 1,400 such currencies, collectively called
altcoins. Unlike Bitcoin, which can be used as a medium of exchange, the vast
majority of altcoins appear to serve largely as speculative investment vehicles.
The market capitalization and trade volume for a given altcoin can range from
thousands to millions of dollars. Whether one believes in a coin’s merits or not,
altcoins offer ample opportunities for speculation for altcoin investors, especially
given the volatile prices. As such, the potential risks and rewards can be signif-
icant.

One way to analyze the altcoin market is to look at the profit-driven investors.
Among these investors are miners, a logical role who expends energy in finding
hash collisions to computationally produce the digital assets in a process known
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as mining ; and also speculators, another logical role who takes advantage of the
price volatility of altcoins and profits from speculation.1 An investor has the
flexibility to choose to become a miner and/or a speculator at any point in time.
To enter the altcoin market, an investor can mine an altcoin or buy it from the
market. If she mines some units of an altcoin,2 she can further hold onto the
coin units and sell them when the price rises, thereby speculating in addition to
mining.

The fluidity of these roles makes it difficult for us to retroactively analyze
profitability. While existing techniques can potentially help us identify the trans-
fer of altcoins to and from exchanges [6], blockchains frequently do not record
when and how many altcoins are internally traded at exchanges; thus, it is diffi-
cult to track the profitability of individual investors. Instead, we develop a set of
techniques to analyze the potential profitability of particular altcoin investment
stategies, from the collective perspectives of miners and speculators. Specifically,
our analysis asks these questions: (1) For every $1 of investment, what is the
potential profitability of mining versus speculating an altcoin? (2) How does the
potential profitability of mining/speculating vary across multiple coins?

In this work, we use historical data to retroactively examine the costs and
potential revenue of altcoin mining and speculation. We use opportunity cost to
compare the relative cost of mining across different altcoins as viewed by a profit-
driven miner. Furthermore, we artificially construct simple investment strategies
that miners and speculators could have followed—for example, holding units of
an altcoin for a fixed period of time before liquidating, without considering the
market. We retroactively simulate these strategies to estimate the potentially
profitability of miners and speculators. Using this entirely descriptive rather than
prescriptive method, we make the following observations based on the altcoins
we study. Miners who mine an altcoin immediately after it is listed on exchanges
tend to enjoy higher potential returns than miners who mine on subsequent days.
In contrast, speculators who buy an altcoin shortly after it is listed on exchanges
are likely to generate lower returns than speculators who buy at a later point,
and they also generate lower returns than miners in the same period. A more
detailed description of our study, including additional findings, can be found in
the technical report [7].

2 Methodology

To estimate the potential profitability of mining and speculating across different
altcoins, we use historical blockchain and trade data for 18 altcoins, along with
1 We are aware that there are many ways to profit from altcoins, including gaming

the mining protocol [2,3] or trading altcoins as if they were penny stocks [4,5]. It
is beyond the scope of this paper to discuss all these ways. Furthermore, there may
be other participants in the altcoin ecosystem that are not necessarily profit-driven;
again, these participants are beyond the our scope.

2 Throughout this paper, we use “altcoin” or “coin” interchangeably to refer to the
cryptocurrency. In contrast, we use “units” to refer to individual units of reward as
a result of mining an altcoin.
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Bitcoin (BTC) and Litecoin (LTC). This data contains detailed block metadata,
such as the reward and difficulty of each block, along with daily aggregated trade
statistics, such as the mean price and trade volume every day. We show these 18
altcoins in the first column of Table 1. A full description of our data collection
and clean-up process is available in our technical report [7]. In this section, we
describe how we use this data to estimate the cost of mining and profitability.

Estimating the Cost of Mining. In order for profit-driven miners to decide
which coin to mine through proof-of-work, they first need to estimate the cost of
mining each coin. However, the precise value is difficult to calculate, as the capital
investment and energy costs differ across individual miners. As an alternative
to direct costs, we instead consider opportunity cost. Economists consider the
opportunity cost of an activity to be the revenue lost by engaging that activity
rather than its best alternative. We apply the same idea to altcoin mining. In
particular, for two coins based on the same hash function, the real costs of mining
one versus the other depends entirely on their respective difficulty, because the
underlying unit of work, computing a hash, is the same. For example, XJO is
a SHA-256-based altcoin. The opportunity cost of mining XJO is the revenue a
miner can expect from mining another SHA-256 currency instead of XJO over
the same time period. To be a meaningful concept for the miner, this alternative
revenue should be something a miner can reasonably expect to receive a priori.
In other words, to say that a miner chose to mine A units of XJO rather than
receive D US Dollars for mining another currency, the miner must be certain
that he could get D US Dollars by choosing the alternative before choosing one
or the other. In our comparisons, we use the least volatile alternative currencies
with the highest trade volumes. For SHA-256-based coins, this is Bitcoin; for
Scrypt-based coins, this is Litecoin. We call the currency whose opportunity
cost we are computing (e.g. XJO) the target currency, and Bitcoin or Litecoin
the base currency.

Formally, we define the opportunity cost of mining a unit of a currency on
a given day as follows. First, we determine the expected number of hashes,
H, necessary to mine a unit of the target currency based on the difficulty of
mining the currency that day. Next, we determine the expected number of units
of Bitcoin (for SHA-256-based altcoins) or Litecoin (for Scrypt-based altcoins)
that could be mined on that day with H hashes. Finally, we convert this expected
number of bitcoins or litecoins to US Dollars at that day’s exchange rate. Thus,
the opportunity cost of mining a unit of currency X is OppCostX = DX ·RB/DB ,
where DX is the expected number of hashes required to mine a unit of X based
on the day’s difficulty, DB is the expected number of hashes required to mine
a unit of the base currency (Bitcoin or Litecoin) based on the day’s difficulty,
and RB is the exchange rate of the base currency, in US Dollars per unit of the
currency, on that day. We compute DX and DB based on the blockchain data
of the target and base currencies, while we obtain RB from our trade data.

Some altcoins start as simple SHA-256/Scrypt proof-of-work cryptocurren-
cies, but later change the hash functions or types of proof (such as proof-of-
stake). In such circumstances, we consider the history of the currency up to the
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day of change, so that we can use BTC or LTC as the base currency for calcu-
lating opportunity costs of mining from the start of the blockchain to the day
of the change. For example, DOGE blocks are based on Scrypt in the first 276
days of the blockchain; afterwards, DOGE allows auxiliary proof-of-work mining
(i.e., “merged mining”). As a result, we only consider the first 276 days of the
919-day blockchain for DOGE.

Validation. Focusing on the relevant analysis periods, we compute the oppor-
tunity cost, c, of mining a unit of a given coin on a day. From the trade data
that we have collected, we can compare it to the market price, p, of the unit
on the same day and compute the Pearson correlation coefficient for the daily c
and p values. Across the 18 altcoins we study, 12 altcoins are associated with a
correlated coefficient > 0.80. (As a comparison, the Dow Jones Industrial Aver-
age and the S&P 500 Index between May 2012 and 2017 are correlated with a
coefficient of 0.99.) The high correlation between c and p suggests not only is
opportunity cost is an effective estimate of the actual mining cost, but that the
markets are reasonably efficient. One possible explanation for market efficiency
is that as more hype is created around a coin, the market price increases, which
in turn attracts more miners. This increases the difficulty of mining and also
the opportunity cost, so the opportunity cost goes up along with the price. Con-
versely, a coin that has attracted a significant amount of hashing capacity has a
high difficulty and thus opportunity cost. Thus, miners expect to sell the mined
coin units at a higher price. For a detailed analysis of the opportunity cost of
mining each altcoin, refer to our technical report [7].

Estimating Profitability. Computing the profit obtained by individual actors
is difficult, especially when we only have a daily aggregates of the trade data.
Instead, we focus on the potential profitability of a dollar invested, either through
mining (i.e., $1 of opportunity cost) or speculating (e.g., literally spending $1 to
buy a given altcoin).

We estimate the profitability of miners through simulation. Using histori-
cal blockchain and trade data, we retroactively simulate the investment of $1
worth of opportunity cost in mining across different altcoins, start dates, and
durations—conditions that we have artificially constructed in the hope of cov-
ering a diverse range of investment strategies. For speculators, we use a similar
simulation, varying the time when an investor enters the market by buying $1
worth of an altcoin’s units, as well as the holding position of the investor. In
this way, we can compute the profitability of mining/speculating depending on
the participant’s strategy. An altcoin market typically has a trade volume much
higher than $1, such that $1 of mining or speculating is unlikely to change the
price significantly. This profitability analysis, while retrospective, assesses the
relative risks and rewards for each coin, across multiple coins.
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Table 1. Mining continuously for 7 and 30 days. All units are in percentages unless
otherwise stated.

Coin (a) 7 Days of mining (b) 30 Days of mining

1st day r E(r) σ(r) P Tr≥0

(Days)

1st day r E(r) σ(r) P Tr≥0

(Days)

ARG 4.41 2.61 7.22 76.28 8 −0.51 0.71 1.50 80.71 0

AUR 10.17 0.63 2.25 61.35 19 1.37 0.13 0.35 62.31 18

BTA 6.67 2.01 5.18 69.33 14 0.99 0.45 1.07 68.97 13

CURE 6.23 −6.68 5.92 14.54 18 0.72 −1.54 1.01 8.79 8

DGC 3.24 1.16 2.79 61.66 111 0.77 0.27 0.57 64.89 207

DOGE 70.63 4.22 10.51 100.00 N/A 8.88 0.76 1.31 100.00 N/A

DOT 10.48 18.29 12.12 99.21 14 2.94 4.92 1.15 100.00 N/A

EFL 16.48 2.00 2.07 89.29 30 1.61 0.47 0.34 94.89 18

HAM 13.49 −2.19 6.43 18.82 46 3.10 −0.51 1.30 14.89 65

PPC 0.09 −1.13 1.37 16.50 1 0.02 −0.26 0.17 3.40 4

RPC 10.52 0.74 3.08 59.54 6 0.82 0.17 0.46 59.85 32

SWING 2.74 −2.46 3.77 19.09 3 −0.04 −0.53 0.55 21.83 0

TROLL −0.01 4.37 1.31 98.08 0 0.87 0.99 0.06 100.00 N/A

UNO 8.44 −5.43 5.52 20.99 79 1.26 −1.34 1.23 15.98 72

VCN 56.98 −2.22 11.77 27.18 34 7.40 −0.75 1.87 30.23 25

VIA −1.68 2.76 2.09 95.07 0 0.71 0.67 0.33 100.00 N/A

WBB 6.21 6.58 4.45 97.87 83 0.75 1.54 0.78 100.00 N/A

XJO 3.03 −5.51 4.00 4.48 15 0.18 −1.28 0.75 0.83 4

3 Estimating Profitability

In this section, we compute the profitability of miners and speculators for every
dollar invested, either by expending $1 worth of opportunity cost in mining or
buying $1 worth of an altcoin.

Mining. We start by considering the profitability of miners. Using the unit
opportunity cost that we computed in the previous section, we construct a sim-
ulator in which a miner continuously mines over a duration of d days, starting
on Day i. Every day, he invests $1 worth of opportunity cost in mining. At the
end of each day, he sells all the coin units mined on that day. At the end of
the d days, his total revenue would be v dollars. We vary i between 1 to N − d,
where N is the length of the trading period; for instance, i = 1 means that our
simulated miner starts mining on the day when an altcoin is first listed on an
exchange. We also vary d for d = 1, 7, 30 days. For all these i and d combina-
tions, we compute the daily average returns, r, by solving for r in this equation:
d(1 + r)d = v.

Table 1(a) shows the result of our first simulation, in which a miner contin-
uously mines for d = 7 days. The “1st Day r” column shows the value of r
if the miner starts mining a coin on Day 1 and continues until Day 7, selling
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Fig. 1. Potential profitability of mining a random altcoin.

any mined units on the same day. In contrast, the “E(r)” column computes the
expected/mean r if the miner starts mining on a random day. The standard
deviation is shown in the “σ(r)” column. The larger the standard deviation, the
higher the risk of investment if a miner starts on a random day. For instance, min-
ing DOT on a random day results in an expected daily return of 18.29±12.12%,
which potentially presents a higher reward and risk than mining AUR, with an
expected daily return of 0.63 ± 2.25%. We stress that the r value is computed
based on a simulated investment of $1 worth of opportunity cost. In total, DOT
is associated with $917 of trade volume and $3,198 of total opportunity cost.
Even though its r value is high, the amount of actual profit extracted is likely
to be limited. In contrast, a PPC miner can generate an expected return of
−1.13 ± 1.37%. Given that PPC is associated with more than $8 million worth
of trade volume and $8 million total opportunity cost, an actual miner has the
potential to suffer significant losses.

Another way to measure risk is to compute the probability, P , of achieving
a positive r if a miner starts mining an altcoin for 7 days on a random start
day. As shown in the “P” column, miners of altcoins like DOGE and WBB will
earn positive returns on (almost, in the case of WBB) any random start day.
XJO miners, by contrast, will earn positive returns on a random start day with
a probability of only 4.48%.

We observe that of the 18 altcoins in the table, the 1st Day r values are higher
than the corresponding E(r) values in 14 altcoins, which suggests that miners
of these 14 coins obtain higher returns if they start mining as soon as an altcoin
is listed on an exchange, relative to the average case (i.e. E(r)). One possible
reason is that when an altcoin is first listed, the amount of mining capacity it
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Table 2. A speculator that holds for 7 and 30 days. All units are in percentages unless
otherwise specified.

Coin (a) 7 Days of speculating (b) 30 Days of speculating

1st day r E(r) σ(r) P Tr<0

(Days)
1st day r E(r) σ(r) P Tr<0

(Days)

ARG 10.72 −0.32 5.56 39.02 0 −0.48 −0.41 2.90 31.48 26

AUR 6.69 −0.22 5.87 41.38 0 3.39 −0.52 2.46 40.22 0

BTA −26.24 0.35 6.87 47.31 11 −11.71 0.56 3.06 54.35 31

BTC −1.97 0.44 2.51 55.17 6 −0.72 0.42 1.43 57.59 18

CURE −3.74 −0.45 3.76 41.90 22 −6.30 −0.40 1.77 40.19 47

DGC −5.33 0.00 4.44 41.26 10 −1.90 −0.06 2.21 37.04 10

DOGE 86.27 −0.06 4.53 39.06 0 5.24 −0.06 1.48 37.84 0

DOT −17.47 −0.37 20.13 41.09 2 −18.67 −1.68 7.79 45.28 23

EFL 17.07 0.02 4.60 47.95 0 0.21 −0.18 2.06 47.83 0

HAM −19.35 0.46 7.15 51.05 8 −1.12 0.35 2.35 64.24 1

LTC −4.12 0.08 3.54 45.45 6 −0.34 0.05 1.63 39.55 6

PPC −1.66 0.14 3.08 44.25 6 −0.16 0.11 1.60 46.99 3

RPC −1.99 −1.13 4.89 39.08 1 −1.46 −1.25 2.24 28.50 88

SWING 1.61 −0.52 5.20 42.28 0 −1.04 −0.66 2.05 48.59 51

TROLL −1.93 −0.69 4.38 51.92 1 −2.25 −0.16 1.22 51.72 13

UNO 3.34 −0.09 3.74 47.45 0 −2.08 −0.10 1.39 44.65 20

VCN −43.26 0.80 7.99 58.97 5 −13.06 1.18 2.44 73.26 6

VIA 2.72 −0.21 3.53 44.74 0 1.49 −0.39 1.43 33.19 0

WBB −20.82 0.17 5.77 41.97 22 −7.41 0.25 2.41 53.05 17

XJO 7.36 −0.82 3.37 35.68 0 −2.37 −0.86 1.58 29.90 25

has attracted is still on the rise, as there is friction for miners to reconfigure
their equipment to mine a new-to-market altcoin; thus the opportunity cost of
mining tends to be low in the beginning. Furthermore, the market price is often
high when an altcoin is listed—a period typically associated with hype. The gap
between high price and low opportunity cost creates a potential for miners to
profit during this period.

In fact, miners can potentially profit during the first few consecutive days
after an altcoin is listed on exchanges. Column “Tr≥0” shows the number of
consecutive days since Day 1, such that a miner who starts mining on one of
these days and continues for 7 days will not encounter a negative r. For example,
an ARG miner who starts mining on any day of the first 8 days will receive r ≥ 0;
if she starts mining on Day 9, she would receive r < 0 for the first time (although
she could still obtain positive returns subsequently). For TROLL and VIA, the
1st Day r is already negative, so Tr≥0 = 0. For DOGE, all r values are positive
regardless of the start day; thus Tr≥0 = N/A.

Finally, we repeat the simulation above, changing d = 30 days. We show
the results in Table 1(b). Again, for 14 out of the 18 altcoins, mining on Day 1
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Fig. 2. Potential profitability of speculating a random coin.

will yield a higher r than the expected case. The expected returns are lower for
d = 30 than d = 7 in 11 of the altcoins, while all the σ(r) values are smaller.

So far, we have examined the daily average returns for individual altcoins.
This approach assumes that a miner already knows which altcoin to mine. Our
next simulation departs from such an assumption, and it instead looks at a case
where a miner randomly picks one of the 18 altcoins in Table 1 and start mining
on Day i. Again, i = 1 means the miner starts on the same day when a coin
is listed on an exchange. The miner will stick to mining this altcoin for d days,
devoting $1 of opportunity cost of mining every day, and selling all mined units
at the end of each day. Since the miner picks a coin at random for each i, our
goal is to compute the distribution of daily returns for these 18 coins for given
i and d values.

First, suppose we set d = 1 day. The top chart in Fig. 1 shows the result of our
new simulation. The x-axis shows the start day of mining, i (relative to the first
day of listing at an exchange for each coin). The y-axis shows the distribution
of daily average returns, r. The solid line represents the expected (i.e. mean) r
for picking a random coin and starting to mine on Day i for d = 1 day. The
band above and below the solid line indicates the standard deviation of r. For i
between 0 and 57, a miner can randomly mine one of the 18 altcoins on Day i.
At its peak, the mean r is 885.1 ± 2, 781.0% on Day i = 0. The expected r value
decreases over time. Between i = 58 and i = 132, the miner can only pick one of
17 altcoins, as we do not have the trading data for one of the altcoins beyond 57
days. In general, the mean of the expected r values between i = 0 and i = 365
is 21.2 ± 79.4% (i.e. the expected returns for a miner who picks a random coin
on a random start day).
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Fig. 3. Comparing the potential profitability of mining and speculating for the same
set of 14 altcoins.

The middle and bottom charts in Fig. 1 show the results for d = 7 and 30
days. As d increases, the expected r and its standard deviation both decrease.
Effectively, with lower expected returns, the risks are potentially lower, too.
Furthermore, as d increases, a persistent pattern is that the returns tend to be
higher when i is low, regardless of the d values. This implies that a miner who
picks a random altcoin and mines it shortly after the altcoin is listed is likely to
receive higher returns than later.

Speculating. In contrast to miners who acquire altcoins through mining, spec-
ulators acquire altcoins by buying from exchanges. Also, while miners mine and
sell on the same day, speculators buy coins on one day and sell them later. We
design similar simulations to measure the potential profitability for speculators.
Specifically, we require that a speculator enter the market on a random day i,
buy $1 worth of coins, hold them the next d − 1 days, sell all the coins at the
end of the d-day period for a total of v dollars. Again, we compute the average
daily return by solving for r in this equation: 1 · (1 + r)d = v.

Table 2 shows the results of our simulation. Similar to Tables 1 and 2 shows
the returns on the 1st Day, as well as the expected r values for d = 7 and 30 days.
However, the trend is the opposite. Across the 18 altcoins, plus LTC and BTC,
a speculator who enters the market on Day 1 receives lower returns than the
average case for 12 of the coins for d = 7; for 30 days, we observe the same trend
across 16 of the coins. In contrast to the Tr≥0 metric in Table 1, we compute
Tr<0 here in Table 2, which counts the number of consecutive days since Day 1,
such that if a speculator enters the market on one of these days for a given d
value, she will receive r < 0. For instance, for d = 7 days, if a CURE speculator
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enters the market on any day between 1 and 22, she will receive negative returns;
on Day 23, she will receive positive returns for the first time.

In addition to analyzing the returns for individual altcoins, we examine the
case where a speculator picks an altcoin at random. Figure 2 shows the result.
Similar to Fig. 1 and 2 shows that as d increases from 1 Day, 7 Days, to 30
Days, the mean of the expected r values decreases, and so does the standard
deviation; in other words, as the holding time increases, the potential returns
and risks decrease. Contrary to Fig. 1 and 2 shows that a speculator who picks a
random altcoin and enters the market soon after the altcoin is listed on exchanges
is likely to receive lower returns than if she enters the market later.

To compare the returns between mining and speculating, we identify 14 out
of the 18 coins, such that all of them can be involved in mining and speculation
for d = 7, 30 days and i = 0, . . . , 180 days. Again, we assume that an investor
randomly picks one of the 14 coins on Day i, enters the market either by mining
or buying, and exits d days later. We show the results in Fig. 3. For both d = 7
and 30 days, if an investor who picks a random altcoin decides to enter the
market early, her expected returns will be higher if she becomes a miner. For
d = 30, if an investor decides to become a speculator, she can potentially receive
higher returns in the best case (e.g. more than 6% around i = 120) than the
best-case returns in mining (i.e. less than 5% at i = 0). However, the risk of
speculation is also higher, as indicated by the larger standard deviation for the
expected r value.

For more details on our findings, discussions of the results, and a description
of the related work, refer to our technical report [7].

4 Conclusion

In this work, we compare the profitability of mining versus speculation for 18
altcoins. By comparing against BTC and LTC, we use opportunity cost to esti-
mate the miners’ effort in the 18 coins, and we design simulations to estimate
the daily returns per $1 of investment, either through mining or speculating,
under various conditions. These simulations show that a miner who starts min-
ing shortly after an altcoin is listed can potentially earn higher returns than the
average case, whereas a speculator who enters the market shortly after an altcoin
is listed on exchanges might potentially earn lower returns. We also show that
returns from mining a random altcoin tend to be lower with smaller standard
deviations—less risky—than from speculation.
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Abstract. Blockchains primarily enable credible accounting of digi-
tal events, e.g., money transfers in cryptocurrencies. However, beyond
this original purpose, blockchains also irrevocably record arbitrary data,
ranging from short messages to pictures. This does not come without
risk for users as each participant has to locally replicate the complete
blockchain, particularly including potentially harmful content. We pro-
vide the first systematic analysis of the benefits and threats of arbitrary
blockchain content. Our analysis shows that certain content, e.g., ille-
gal pornography, can render the mere possession of a blockchain illegal.
Based on these insights, we conduct a thorough quantitative and quali-
tative analysis of unintended content on Bitcoin’s blockchain. Although
most data originates from benign extensions to Bitcoin’s protocol, our
analysis reveals more than 1600 files on the blockchain, over 99% of which
are texts or images. Among these files there is clearly objectionable con-
tent such as links to child pornography, which is distributed to all Bitcoin
participants. With our analysis, we thus highlight the importance for
future blockchain designs to address the possibility of unintended data
insertion and protect blockchain users accordingly.

1 Introduction

Bitcoin [45] was the first completely distributed digital currency and remains the
most popular and widely accepted of its kind with a market price of ∼4750USD
per bitcoin as of August 31st, 2017 [14]. The enabler and key innovation of Bit-
coin is the blockchain, a public append-only and tamper-proof log of all transac-
tions ever issued. These properties establish trust in an otherwise trustless, com-
pletely distributed environment, enabling a wide range of new applications, up to
distributed general-purpose data management systems [69] and purely digital
data-sharing markets [41]. In this work, we focus on arbitrary, i.e., non-financial,
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data on Bitcoin’s famous blockchain, which primarily stores financial trans-
actions. This non-financial data fuels, e.g., digital notary services [50], secure
releases of cryptographic commitments [16], or non-equivocation schemes [62].

However, since all Bitcoin participants maintain a complete local copy of the
blockchain (e.g., to ensure correctness of blockchain updates and to bootstrap
new users), these desired and vital features put all users at risk when objection-
able content is irrevocably stored on the blockchain. This risk potential is exem-
plified by the (mis-)use of Bitcoin’s blockchain as an anonymous and irrevocable
content store [35,40,56]. In this paper, we systematically analyze non-financial
content on Bitcoin’s blockchain. While most of this content is harmless, there
is also content that is considered objectionable in many jurisdictions, e.g., the
depiction of a nude, young woman or hundreds of links to child pornography. As
a result, it could become (or already is today) illegal to possess a copy of the
blockchain, which is required to participate in Bitcoin. Hence, illegal content can
jeopardize the currently popular multi-billion dollar blockchain systems.

These observations raise the question whether or not such initially unintended
content is ultimately beneficial or destructive for blockchain-based systems. To
address this question, we provide the first comprehensive and systematic study of
non-financial content on Bitcoin’s blockchain. We first survey and explain meth-
ods to store non-financial content on Bitcoin’s blockchain and discuss potential
benefits as well as threats, most notably w.r.t. content deemed illegal in different
jurisdictions. Subsequently and in contrast to related work [12,40,56], we quan-
tify and discuss unintended blockchain content w.r.t. the wide range of insertion
methods. We believe that objectionable blockchain content is a pressing issue
despite potential benefits and hope to stimulate research to mitigate the result-
ing risks for novel as well as existing systems such as Bitcoin.

This paper is organized as follows. We survey methods to insert arbitrary
data into Bitcoin’s blockchain in Sect. 2 and discuss their benefits and risks in
Sect. 3. In Sect. 4, we systematically analyze non-financial content on Bitcoin’s
blockchain and assess resulting consequences. We discuss related work in Sect. 5
and conclude this paper in Sect. 6.

2 Data Insertion Methods for Bitcoin

Beyond intended recording of financial transactions, Bitcoin’s blockchain also
allows for injection of non-financial data, either short messages via special trans-
action types or even complete files by encoding arbitrary data as standard trans-
actions. We give a brief introduction to Bitcoin transactions and then survey
methods available to store arbitrary content on the blockchain via transactions.

Bitcoin transactions transfer funds between a payer (sender) and a payee
(receiver), who are identified by public-private key pairs. Payers announce their
transactions to the Bitcoin network, whose miners then publish these transac-
tions in new blocks using their computational power in exchange for a fee. These
fees vary, with an average fee of 215 sat (satoshi, 1 sat = 10−8 bitcoin) per byte
during August 2017 [4]. Each transaction consists of several input scripts, which
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Fig. 1. Bitcoin data insertion methods
(italics show content insertion services)

Table 1. Payload, costs, and efficiency
of low-level data insertion methods

Method Payload Costs/B Eff.

OP RET. 80B 3.18–173.55ct Poor

Coinbase 96B — Poor

Non-St. Out. 99 044B 1.03–198.05ct Poor

Non-St. In. 99 044B 1.03–198.05ct Med.

P2PK 85 345B 1.24–207.79ct High

P2PKH 58 720B 1.87–197.58ct High

P2MS 92 625B 1.11–234.33ct High

P2SH Out. 62 400B 1.77–195.54ct High

P2SH In. 99 018B 1.03–225.61ct High

unlock funds of previous transactions, and of several output scripts, which spec-
ify receivers of funds. To unlock funds, input scripts contain a signature for the
previous transaction generated by the owner of the funds. To prevent malicious
scripts from causing excessive transaction verification overheads, Bitcoin uses
transaction script templates and expects peers to discard non-compliant scripts.

Figure 1 shows the insertion methods for non-financial data we identified for
Bitcoin. We distinguish low-level data insertion methods inserting small data
chunks and content insertion services, which systematically utilize these low-
level methods to insert arbitrary content. From now on, we refer to non-financial
blockchain data as content if it has a self-contained structure, e.g., a file or read-
able text, or as data otherwise, e.g., fragments inserted via a low-level method.

2.1 Low-Level Data Insertion Methods

We first survey the efficiency of the low-level data insertion methods w.r.t. to
insertable payload and costs per transaction (Table 1). To this end, we first
explain our comparison methodology, before we detail (i) intended data insertion
methods (OP RETURN and coinbase), (ii) utilization of non-standard transac-
tions, and (iii) manipulation of standard transactions to insert arbitrary data.

Comparison Methodology. We measure the payload per transaction (PpT),
i.e., the number of non-financial bytes that can be added to a single standard-
sized transaction (≤ 100 000B). Costs are given as the minimum and maximum
costs per byte (CpB) for the longest data chunk a transaction can hold, and for
inserting 1B. Costs are inflicted by paying transaction fees and possibly burning
currency (at least 546 sat per output script), i.e., making it unspendable. For
our cost analysis we assume Bitcoin’s market price of 4748.25USD as of August
31st, 2017 [14] and the average fees of 215 sat per byte as of August 2017 [4].
Note that high variation of market price and fees results in frequent changes
of presented absolute costs per byte. Finally, we rate the overall efficiency of
an approach w.r.t. insertion of arbitrary-length content. Intuitively, a method is
efficient if it allows for easy insertion of large payloads at low costs.
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OP RETURN. This special transaction template allows attaching one small
data chunk to a transaction and thus provides a controlled channel to anno-
tate transactions without negative side effects. E.g., in typical implementa-
tions peers increase performance by caching spendable transaction outputs and
OP RETURN outputs can safely be excluded from this cache. However, data
chunk sizes are limited to 80B per transaction.

Coinbase. In Bitcoin, each block contains exactly one coinbase transaction,
which introduces new currency to incentivize miners to dedicate their compu-
tational power to maintain the blockchain. The input script of coinbase trans-
actions is up to 100B long and consists of a variable-length field encoding the
new block’s position on the blockchain [9]. Stating a larger size than the overall
script length allows placing arbitrary data in the resulting gap. This method is
cumbersome as only active miners can insert only small data chunks.

Non-standard Transactions. Transactions can deviate from the approved
transaction templates [48] via their output scripts as well as input scripts. In the-
ory, such transactions can carry arbitrarily encoded data chunks. Transactions
using non-standard output scripts can carry up to 96.72 KiB at comparably low
costs. They are cumbersome as miners ignore them with high probability. Yet,
non-standard output scripts occasionally enter the blockchain if miners insuf-
ficiently check them (cf. Sect. 4.2). Contrarily, non-standard input scripts are
only required to match their respective output script. Hence, input scripts can
be altered to carry arbitrary data if their semantics are not changed, e.g., by
using dead conditional branches. This makes non-standard input scripts slightly
better suited for large-scale content insertion than non-standard output scripts.

Standard Financial Transactions. Even standard financial transactions can
be (mis-)used to insert data using mutable values of output scripts. There are
four approved templates for standard financial transactions: Pay to public key
(P2PK) and pay to public-key hash (P2PKH) transactions send currency to a
dedicated receiver, identified by an address derived from her private key, which
is required to spend any funds received [48]. Similarly, multi-signature (P2MS)
transactions require m out of n private keys to authorize payments. Pay to script
hash (P2SH) transactions refer to a script instead of keys to enable complex
spending conditions [48], e.g., to replace P2MS [10]. The respective public keys
(P2PK, P2MS) and hash values (P2PKH, P2SH) can be replaced with arbitrary
data as Bitcoin peers cannot verify their correctness before they are referenced
by a subsequent input script. While this method can store large amounts of
content, it also incurs significant costs: In addition to transaction fees, the user
must burn bitcoins as she replaces valid receiver identifiers with arbitrary data
(i.e., invalid receiver identities), making the output unspendable. Using multiple
outputs enables PpTs ranging from 57.34 KiB (P2PKH) to 96.70 KiB (P2SH
inputs) at CpBs from 1.03ct to 1.87ct. As they behave similarly w.r.t. data
insertion, we collectively refer to all standard financial transactions as P2X in
the following. P2SH scripts also allow for efficient data insertion into input scripts
as P2SH input scripts are published with their redeem script. Due to miners’
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verification of P2SH transactions, transactions are not discarded if the redeem
script is not template-compliant (but the overall P2SH transaction is).

We now survey different services that systematically leverage the discussed
data insertion methods to add larger amounts of content to the blockchain.

2.2 Content Insertion Services

Content insertion services rely on the low-level data insertion methods to add
content, i.e., files such as documents or images, to the blockchain. We identify
four conceptually different content insertion services and present their protocols.

CryptoGraffiti. This web-based service [30] reads and writes messages and files
from and to Bitcoin’s blockchain. It adds content via multiple P2PKH output
scripts within a single transaction, storing up to 60 KiB of content. To retrieve
previously added content, CryptoGraffiti scans for transactions that either con-
sist of at least 90% printable characters or contain an image file.

Satoshi Uploader. The Satoshi Uploader [56] inserts content using a single
transaction with multiple P2X outputs. The inserted data is stored together
with a length field and a CRC32 checksum to ease decoding of the content.

P2SH Injectors. Several services [35] insert content via slightly varying P2SH
input scripts. They store chunks of a file in P2SH input scripts. To ensure file
integrity, the P2SH redeem scripts contain and verify hash values of each chunk.

Apertus. This service [29] allows fragmenting content over multiple transac-
tions using an arbitrary number of P2PKH output scripts. Subsequently, these
fragments are referenced in an archive stored on the blockchain, which is used
to retrieve and reassemble the fragments. The chosen encoding optionally allows
augmenting content with a comment, file name, or digital signature.

To conclude, Bitcoin offers various options to insert arbitrary, non-financial
data. These options range from small-scale data insertion methods exclusive to
active miners to services that allow any user to store files of arbitrary length. This
wide spectrum of options for data insertion raises the question which benefits
and risks arise from storing content on Bitcoin’s blockchain.

3 Benefits and Risks of Arbitrary Blockchain Content

In Bitcoin, there are several methods to insert arbitrary, non-financial data into
its blockchain in both intended and unintended ways. In this section, we discuss
the potential benefits of storing arbitrary data on Bitcoin’s blockchain as well
as the risks of (mis-)using these channels for content insertion.

3.1 Benefits of Arbitrary Blockchain Content

Besides the manipulation of standard financial transactions, Bitcoin offers coin-
base and OP RETURN transactions as explicit channels to irrevocably insert
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small chunks of non-financial data into its blockchain (cf. Sect. 2). As we discuss
in the following, each insertion method has distinguishing benefits:

OP RETURN. Augmenting transactions with short pieces of arbitrary data
is beneficial for a wide area of applications [12,40,62]. Different services use
OP RETURN to link non-financial assets, e.g., vouchers, to Bitcoin’s block-
chain [12,40], to attest the existence of digital documents at a certain point of
time as a digital notary service [12,50,58], to realize distributed digital rights
management [12,70], or to create non-equivocation logs [8,62].

Coinbase. Coinbase transactions differ from OP RETURN as only miners, who
dedicate significant computational resources to maintain the blockchain, can
use them to add extra chunks of data to their newly mined blocks. Beyond
advertisements or short text messages [40], coinbase transactions can aid the
mining process. Adding random bytes to the coinbase transactions allows miners
to increase entropy when repeatedly testing random nonces to solve the proof-
of-work puzzle [48]. Furthermore, adding identifiable voting flags to transactions
enables miners to vote on proposed features, e.g., the adoption of P2SH [10].

Large-Scale Data Insertion. Storing large amounts of data on the blockchain
creates a long-term non-manipulable file storage. This enables, e.g., the archiv-
ing of historical data or censorship-resistant publication, which helps protecting
whistleblowers or critical journalists [66]. However, their content is replicated to
all users, who do not have a choice but to persistently store it.

Hence, non-financial data on the blockchain enables new applications that
leverage Bitcoin’s security guarantees. In the following, we discuss threats of
forcing oblivious, honest users to download copies of all blockchain content.

3.2 Risks of Arbitrary Blockchain Content

Despite potential benefits of data on the blockchain, insertion of objectionable
content can put all participants of the Bitcoin network at risk [11,40,43], as
such unwanted content is unchangeable and locally replicated just like benign
data by each peer of the Bitcoin network. To fortify this threat, we first develop
an extensive catalog of content that poses high risks if possessed by individuals
and then argue that objectionable blockchain content is able to harm oblivious,
honest users. We identify five categories of objectionable content:

Copyright Violations. With the advent of file-sharing networks, pirated data
has become a huge challenge for copyright holders. To tackle this problem, copy-
right holders predominantly target users that actively distribute pirated data.
E.g., German law firms sue users who distribute copyright-protected content via
file-sharing networks for fines on behalf of the copyright holders [28]. In recent
years, prosecutors also convicted downloaders of pirated data. For instance,
France temporarily suspended users’ Internet access and subsequently switched
to issuing high fines [36]. As users distribute their copy of the blockchain to new
peers, copyright-protected material on the blockchain can thus provoke legal
disputes about copyright infringement.
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Malware. Another threat is malware [20,42], which could potentially be spread
via blockchains [31]. Malware has serious consequences as it can destroy sensitive
documents, make devices inoperable, or cause financial loss [34]. Furthermore,
blockchain malware can irritate users as it causes antivirus software to deny
access to important blockchain files. E.g., Microsoft’s antivirus software detected
a non-functional virus signature from 1987 on the blockchain, which had to be
fixed manually [68].

Privacy Violations. By disclosing sensitive personal data, individuals can
harm their own privacy and that of others. This threat peaks when individuals
deliberately violate the privacy of others, e.g., by blackmailing victims under
the threat of disclosing sensitive data about them on the blockchain. Real-world
manifestations of these threats are well-known, e.g., non-consensually releasing
private nude photos or videos [54] or fully disclosing an individual’s identity to
the public with malicious intents [21]. Jurisdictions such as the whole European
Union begin to actively prosecute the unauthorized disclosure and forwarding of
private information in social networks to counter this novel threat [5].

Politically Sensitive Content. Governments have concerns regarding the
leakage of classified information such as state secrets or information that other-
wise harms national security, e.g., propaganda. Although whistleblowers unveil
problems such as corruption, they force all blockchain users to keep a copy of
leaked material. Depending on the jurisdiction, the intentional disclosure or the
mere possession of such content may be illegal. While, e.g., the US government
usually tends to prosecute intentional theft or disclosure of state secrets [63],
in China the mere possession of state secrets can result in longtime prison sen-
tences [49]. Furthermore, China’s definition of state secrets is vague [49] and
covers, e.g., “activities for safeguarding state security” [60]. Such vague allega-
tions w.r.t. state secrets have been applied to critical news in the past [18,24].

Illegal and Condemned Content. Some categories of content are virtually
universally condemned and prosecuted. Most notably, possession of child pornog-
raphy is illegal at least in the 112 countries [64] that ratified an optional pro-
tocol to the Convention on the Rights of the Child [65]. Religious content such
as certain symbols, prayers, or sacred texts can be objectionable in extremely
religious countries that forbid other religions and under oppressive regimes that
forbid religion in general. As an example, possession of items associated with
an opposed religion, e.g., bibles in radical Islamist countries, or blasphemy have
proven risky and were sometimes even punished by death [13,38].

In conclusion, a wide range of objectionable content can ultimately harm
users if possessed by them. In contrast to systems such as social media platforms,
file-sharing networks, or online storage systems, such content can be stored on
blockchains anonymously and irrevocably. Since all blockchain data is down-
loaded and persistently stored by users, they are liable for any objectionable
content added to the blockchain by others. Consequently, it would be illegal to
participate in a blockchain system as soon as illegal content is introduced to it.
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While this risk has previously been acknowledged [43], definitive answers
require court rulings yet to come. However, considering legal texts we anticipate
a high potential for illegal blockchain content to jeopardize blockchain-based sys-
tems such as Bitcoin in the future. Our belief stems from the fact that, w.r.t. child
pornography as an extreme case of illegal content, legal texts from countries such
as the USA [47], England [3], and Ireland [32] deem all data illegal that can be
converted into a visual representation of illegal content. As we stated in Sect. 2,
it is easily possible to locate and reassemble such content on the blockchain.
Hence, even though convertibility usually covers creating a visual representation
by, e.g., decoding an image file, we expect that the term can be interpreted to
include blockchain data in the future. For instance, this is already covered implic-
itly by German law, as a person is culpable for possession of illegal content if
she knowingly possesses an accessible document holding said content [2]. It is
critical here that German law perceives the hard disk holding the blockchain as
a document [1] and that users can easily reassemble any illegal content on the
blockchain. Furthermore, users can be assumed to knowingly maintain control
over such illegal content w.r.t. German law if sufficient media coverage causes the
content’s existence to become public knowledge among Bitcoin users [61], as has
been attempted by Interpol [31]. We thus believe that legislators will deal with
non-financial blockchain content and that this has the potential to jeopardize
systems such as Bitcoin if they hold illegal content.

4 Blockchain Content Landscape

To understand the landscape of non-financial blockchain data and assess its
potentials and risks, we thoroughly analyze Bitcoin’s blockchain as it is the
most widely used blockchain today. Especially, we are interested in (i) the degree
of utilization of data and content insertion methods, (ii) the temporal evolution
of data insertion, and (iii) the types of content on Bitcoin’s blockchain, especially
w.r.t. objectionable content. In the following, we first outline our measurement
methodology before we present an overview and the evolution of non-financial
data on Bitcoin’s blockchain. Finally, we analyze files stored on the blockchain to
determine if any objectionable content is already present on the blockchain.

4.1 Methodology

We detect data-holding transactions recorded on Bitcoin’s blockchain based on
our study of data insertion methods and content insertion services (cf. Sect. 2).
We distinguish detectors for data insertion methods and detectors for content
insertion services. To reduce false positives, e.g., due to public-key hash values
that resemble text, we exclude all standard transaction outputs that include
already-spent funds from analysis. This is sensible as data-holding transactions
replace public keys or hashes such that spending requires computing correspond-
ing private keys or pre-images, which is assumed to be infeasible. Contrarily, even
though we thoroughly analyzed possible insertion methods, there is still a chance
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that we do not exhaustively detect all non-financial data. Nevertheless, our con-
tent type analysis establishes a solid lower bound as we only consider readable
files retrieved from Bitcoin’s blockchain. In the following, we explain the key
characteristics of the two classes of our blockchain content detectors.

Low-Level Insertion Method Detectors. The first class of detectors is tai-
lored to match individual transactions that are likely to contain non-financial
data (cf. Sect. 2.1). These detectors detect manipulated financial transactions as
well as OP RETURN, non-standard, and coinbase transactions.

Our text detector scans P2X output scripts for mutable values containing ≥
90% printable ASCII characters (to avoid false positives). The detector returns
the concatenation of all output scripts of the same transaction that contain text.

Finally, we consider all coinbase and OP RETURN transactions as well as
non-standard output scripts. We detect coinbase transactions based on the length
field mismatch described in Sect. 2.1. OP RETURN scripts are detectable as
they always begin with an OP RETURN operation. Non-standard output scripts
comprise all output scripts which are not template-conform.

Service Detectors. We implemented detectors specific to the content insertion
services we identified in Sect. 2.2. These service-specific detectors enable us to
detect and extract files based on the services’ protocols. These detectors also
track the data insertion method used in service-created transactions.

The CryptoGraffiti detector matches transactions with an output that sends
a tip to a public-key hash controlled by its provider. For such a transaction, we
concatenate all mutable values of output scripts that spend fewer than 10 000 sat
and store them in a file. This threshold is used to ignore non-manipulated output
scripts, e.g., the service provider spending their earnings.

To detect a Satoshi Uploader transaction, we concatenate all of its mutable
values that spend the same small amount of bitcoins. If we find the first eight
bytes to contain a valid combination of length and CRC32 checksum for the
transaction’s payload, we store the payload as an individual file.

We detect P2SH Injector content based on redeem scripts containing more
than one hash operation (standard transactions use at most one). We then
extract the concatenation of the second inputs of all redeem scripts (the first
one contains a signature) of a transaction as one file.

Finally, the Apertus detector recursively scans the blockchain for Apertus
archives, i.e., Apertus-encoded lists of previous transaction identifiers. Once a
referenced Apertus payload does not constitute another archive, we retrieve its
payload file and optional comment by parsing the Apertus protocol.

Suspicious Transaction Detector. To account for less wide-spread insertion
services, we finally analyze standard transactions that likely carry non-financial
data but are not detected otherwise. We only consider transactions with at least
50 suspicious outputs, i.e., roughly 1 KiB of content. We consider a set of outputs
suspicious if all outputs (i) spend the same small amount (< 10 000 sat) and (ii)
are unspent. This detector trades off detection rate against false-positive rate.
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Fig. 2. Cumulative numbers of
detected transactions per data inser-
tion method

Fig. 3. Ratio of transactions that uti-
lize data insertion methods
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Fig. 5. Cumulative sizes of transac-
tions from content insertion services

Due to overlaps with service detectors, we exclude matches of this detector from
our quantitative analysis, but discuss individual findings in Sect. 4.3.

4.2 Utilization of Data Insertion Methods

Data and content insertion in Bitcoin has evolved over time, transitioning from
single miners exploiting coinbase transactions to sophisticated services that
enable the insertion of whole files into the blockchain. We study this evolution
in terms of used data insertion methods as well as content insertion services and
quantify the amount of blockchain data using our developed detectors. Our key
insights are that OP RETURN constitutes a widely accepted success story while
content insertion services are currently only infrequently utilized. However, the
introduction of OP RETURN did not shut down other insertion methods, e.g.,
P2X manipulation, which enable single users to insert objectionable content.

Our measurements are based on Bitcoin’s complete blockchain as of August
31st, 2017, containing 482 870 blocks and 250 845 217 transactions with a total
disk size of 122.64 GiB. We first analyze the popularity of different data inser-
tion methods and subsequently turn towards the utilization of content insertion
services to assess how non-financial data enters the blockchain.

Data Insertion Methods. As described in Sect. 2.1, OP RETURN and coin-
base transactions constitute intended data insertion methods, whereas P2X and
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non-standard P2SH inputs manipulate legitimate transaction templates to con-
tain arbitrary data. Figure 2 shows the cumulative number of transactions con-
taining non-financial data on a logarithmic scale. In total, our detectors found
3 535 855 transactions carrying a total payload of 118.53 MiB, i.e., 1.4% of Bit-
coin transactions contain non-financial data. We strive to further understand the
characteristics of this non-financial blockchain content as even a single instance
of objectionable content can potentially jeopardize the overall system.

The vast majority of extracted transactions are OP RETURN (86.8% of
all matches) and coinbase (13.13%) transactions. Combined, they constitute
95.90 MiB (80.91% of all extracted data). Out of all blocks, 96.15% have content-
holding coinbase transactions. While only 0.26% of these contain ≥ 90% print-
able text, 33.49% of them contain ≥ 15 consecutive printable ASCII characters
(mostly surrounded by data without obvious structure). Of these short messages,
14.39% contain voting flags for new features (cf. Sect. 3.1). Apart from this, min-
ers often advertise themselves or leave short messages, e.g., prayer verses.

OP RETURN transactions were introduced in 2013 to offer a benign way
to augment single transactions with non-financial data. This feature is widely
used, as shown by Fig. 3. Among all methods, OP RETURN is the only one to
be present with a rising tendency, with currently 1.2% of all transactions con-
taining OP RETURN outputs. These transactions predominantly manage off-
blockchain assets or originate from notary services [12]. While P2X transactions
are continuously being manipulated, they make up only 0.02% of all transactions;
P2SH inputs are virtually irrelevant. Hence, short non-financial data chunks are
well-accepted, viable extensions to the Bitcoin system (cf. Sect. 3.1).

P2X transactions are asymmetric w.r.t. the number and sizes of data-carrying
transactions. Although constituting only 1.6% of all detector hits, they make up
9.08% of non-financial data (10.76 MiB). This again highlights the high content-
insertion efficiency of P2X transactions (cf. Sect. 2.1).

Finally, we discuss non-standard transactions and non-standard P2SH input
scripts. In total, we found 1 703 transactions containing non-standard out-
puts. The three first non-standard transactions (July 2010) repeatedly used the
OP CHECKSIG operation. We dedicate this to an attempted DoS attack that aimed
to cause high verification times. Furthermore, we found 23 P2PKH transactions
from October 2011 that contained OP 0 instead of a hash value. The steady
increase of non-standard transactions in 2012 is due to scripts that consist of 32
seemingly random bytes. Contrarily, P2SH input scripts sporadically carry non-
standard redeem scripts and are then often used to insert larger data chunks (as
they are used by P2SH Injectors). This is due to P2SH scripts not being checked
for template conformity. We found 888 such transactions holding 8.37 MiB of
data. Although peers should reject such transactions [48], they still often man-
age to enter the blockchain. Non-standard P2SH scripts even carry a substantial
amount of data (7.07% of the total data originate from P2SH Injectors).

Content Insertion Services. We now investigate to which extent content
insertion services are used to store content on Bitcoin’s blockchain. Figure 4
shows utilization patterns for each service and Fig. 5 shows the cumulative size
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of non-financial data inserted via the respective service. Notably, only few users
are likely responsible for the majority of service-inserted content.

In total, content insertion services account for 16.12 MiB of non-financial
data. More than a half of this content (8.37 MiB) originates from P2SH Injec-
tors. The remainder was mostly inserted using Apertus (21.70% of service-
inserted data) and Satoshi Uploader (21.24%). Finally, CryptoGraffiti accounts
for 0.82 MiB (5.10%) of content related to content insertion services. In the fol-
lowing, we study how the individual services have been used over time.

Our key observation is that both CryptoGraffiti and P2SH Injectors are infre-
quently but steadily used; since 2016 we recognize on average 23.65 data items
being added per month using these services. Contrarily, Apertus has been used
only 26 times since 2016, while the Satoshi Uploader has not been used at all.
In fact, the Satoshi Uploader was effectively used only during a brief period:
92.73% of all transactions emerged in April 2013. During this time, the service
was used to upload four archives, six backup text files, and a PDF file.

Although Apertus and the Satoshi Uploader have been used only infrequently,
together they constitute 64.32% of all P2X data we detected. This stems from
the utilization of those services to store files on the blockchain, e.g., archives
or documents (Satoshi Uploader), or images (Apertus). Similarly, P2SH Injec-
tors are used to backup conversations regarding the development of the Bitcoin
client, especially online chat logs, forum threads, and emails, with a signifi-
cant peak utilization between May and June 2015 (76.46% of P2SH Injector
matches). Especially Apertus is well-suited for this task as files are spread over
multiple transactions. Based on the median, the average Apertus file has a size
of 17.15 KiB and is spread over 10 transactions, including all overheads. The
largest Apertus file is 310.72 KiB large (including overheads), i.e., three times
the size of a standard transaction, and is spread over 96 transactions. The most
heavily fragmented Apertus file even spans 664 transactions. Contrarily, 95.7%
of CryptoGraffiti matches are short text messages with a median length of 80B.

In conclusion, content insertion services are only infrequently used with vary-
ing intentions and large portions of content were uploaded in bursts, indicating
that only few users are likely responsible for the majority of service-inserted
blockchain content. While CryptoGraffiti is mostly used to insert short text
messages that also fit into one OP RETURN transaction, other services are pre-
dominantly used to store larger files, e.g., images or documents. As such files can
constitute objectionable content, we further investigate them in the following.

4.3 Investigating Blockchain Files

After quantifying basic content insertion in Bitcoin, we now focus on readable
files that are extractable from the blockchain. We refer to files as findings of our
content-insertion-service or suspicious-transaction detectors that are viewable
using appropriate standard software. We reassemble fragmented files only if this
is unambiguously possible, e.g., via an Apertus archive. Out of the 22.63 MiB
of blockchain data not originating from coinbase or OP RETURN transactions,
we can extract and analyze 1 557 files with meaningful content. In addition to
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Table 2. Distribution of blockchain file types according to our content-insertion-service
and suspicious-transactions detectors.

File type Via service? Overall portion File type Via service? Overall portion

Yes No Yes No

Text 1 353 54 87.07% Archive 4 0 0.25%

Images 144 2 9.03% Audio 2 0 0.12%

HTML 45 0 2.78% PDF 2 0 0.12%

Source code 7 3 0.62% Total 1 557 59 100.0%

these, we extracted 59 files using our suspicious-transaction detector (92.25%
text). Table 2 summarizes the different file types of the analyzed files. The vast
majority are text-based files and images (99.34%).

In the following, we discuss our findings with respect to objectionable con-
tent. We manually evaluated all readable files with respect to the problematic
categories we identified in Sect. 3.2. This analysis reveals that content from all
those categories already exists on Bitcoin’s blockchain today. For each of these
categories, we discuss the most severe examples. To protect the safety and pri-
vacy of individuals, we omit personal identifiable information and refrain from
providing exact information on the location of critical content on the blockchain.

Copyright Violations. We found seven files that publish (intellectual) prop-
erty and showcase Bitcoin’s potential to aid copyright violations. Stored are the
text of a book, a copy of the original Bitcoin paper [45,56], and two short tex-
tual white papers. Furthermore, we found two leaked cryptographic keys: one
firmware secret key [56] and an RSA private key. Finally, the blockchain con-
tains a so-called illegal prime, encoding software to break the copy protection of
DVDs [56].

Malware. We could not find actual malware on Bitcoin’s blockchain. How-
ever, an individual non-standard transaction contains a non-malicious cross-site
scripting detector. A security researcher inserted this small piece of code, which,
if interpreted by an online blockchain parser, notifies the author about the vul-
nerability. Such malicious code could become a threat for users as most websites
offering an online blockchain parser also offer online Bitcoin accounts.

Privacy Violations. Users store memorable private moments on the block-
chain. We extracted six wedding-related images and one image showing a group
of people, labeled with their online pseudonyms. Furthermore, 609 transactions
contain online public chat logs, emails, and forum posts discussing Bitcoin,
including topics such as money laundering. Storing private chat logs on the block-
chain can, e.g., leak single user’s private information irrevocably. Moreover, third
parties can release information without knowledge nor consent of affected users.
Most notably, we found at least two instances of doxing, i.e., the complete dis-
closure of another individual’s personal information. This data includes phone
numbers, addresses, bank accounts, passwords, and multiple online identities.
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Recently, jurisdictions such as the European Union began to punish such seri-
ous privacy violations, including the distribution of doxing data [5]. Again, the
blockchain’s immutability aggravates the impact of such assaults.

Politically Sensitive Content. The blockchain has been used by whistleblow-
ers as a censorship-resistant permanent storage for leaked information. We found
backups of the WikiLeaks Cablegate data [37] as well as an online news arti-
cle concerning pro-democracy demonstrations in Hong Kong in 2014 [25]. As
stated in Sect. 3.2, restrictive governments are known to prosecute the posses-
sion of such content. For example, state-critical media coverage has already put
individuals in China [18] or Turkey [24] at the risk of prosecution.

Illegal and Condemned Content. Bitcoin’s blockchain contains at least eight
files with sexual content. While five files only show, describe, or link to mildly
pornographic content, we consider the remaining three instances objectionable
in almost all jurisdictions: Two of them are backups of link lists to child pornog-
raphy, containing 274 links to websites, 142 of which refer to Tor hidden ser-
vices. The remaining instance is an image depicting mild nudity of a young
woman. In an online forum this image is claimed to show child pornography,
albeit this claim cannot be verified (due to ethical concerns we refrain from pro-
viding a citation). Notably, two of the explicit images were only detected by our
suspicious-transaction detector, i.e., they were not inserted via known services.

While largely harmless, potentially objectionable blockchain content is infre-
quently being inserted, e.g., links to alleged child pornography or privacy vio-
lations. We thus believe that future blockchain designs must proactively cope
with objectionable content. Peers can, e.g., filter incoming transactions or revert
content-holding transactions [11,51], but this must be scalable and transparent.

5 Related Work

Previous work related to ours comprises i) mitigating the distribution of objec-
tionable content in file-sharing peer-to-peer networks, ii) studies on Bitcoin’s
blockchain, iii) reports on Bitcoin’s susceptibility for content insertion, and iv)
approaches to retrospectively remove blockchain content.

The trade-off between enabling open systems for data distribution and risk-
ing that unwanted or even illegal content is being shared is already known from
peer-to-peer networks. Peer-to-peer-based file-sharing protocols typically limit
the spreading of objectionable public content by tracking the reputation of users
offering files [6,26,55,73] or assigning a reputation to files themselves [19,67].
This way, users can reject objectionable content or content from untrustworthy
sources. Contrarily, distributed content stores usually resort to encrypt private
files before outsourcing them to other peers [7,17]. By storing only encrypted
files, users can plausibly deny possessing any content of others and can thus
obliviously store it on their hard disk. Unfortunately, these protection mecha-
nisms are not applicable to blockchains, as content cannot be deleted once it
has been added to the blockchain and the utilization of encryption cannot be
enforced reliably.
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Bitcoin’s blockchain was analyzed w.r.t. different aspects by numerous stud-
ies. In a first step, multiple research groups [33,39,53,71,72] studied the cur-
rency flows in Bitcoin, e.g., to perform wealth analyses. From a different line of
research, several approaches focused on user privacy and investigated the iden-
tities used in Bitcoin [23,44,46,52,59]. These works analyzed to which extent
users can be de-anonymized by clustering identities [23,44,46,52,59] and aug-
menting these clusters with side-channel information [23,44,52,59]. Finally, the
blockchain was analyzed w.r.t. the use cases of OP RETURN transactions [12].
While this work is very close to ours, we provide a first comprehensive study of
the complete landscape of non-financial data on Bitcoin’s blockchain.

The seriousness of objectionable content stored on public blockchains has
been motivated by multiple works [11,40,43,51,56,57]. These works, however,
focus on reporting individual incidents or consist of preliminary analyses of the
distribution and general utilization of content insertion. To the best of our knowl-
edge, this paper gives the first comprehensive analysis of this problem space,
including a categorization of objectionable content and a survey of potential
risks for users if such content enters the blockchain. In contrast to previously
considered attacks on Bitcoin’s ecosystem [22,27], illegal content can be inserted
instantly at comparably low costs and can put all participants at risk.

The utilization of chameleon hash functions [15] to chain blocks recently
opened up a potential approach to mitigate unwanted or illegal blockchain con-
tent [11]. Here, a single blockchain maintainer or a small group of maintainers
can retrospectively revert single transactions, e.g., due to illegal content. To
overcome arising trust issues, µchain [51] leverages the consensus approach of
traditional blockchains to vote on alterations of the blockchain history. These
approaches tackle unwanted content for newly designed blockchains, and we seek
to motivate a discussion on countermeasures also for existing systems, e.g., Bit-
coin.

6 Conclusion

The possibility to store non-financial data on cryptocurrency blockchains is both
beneficial and a threat for its users. Although controlled channels to insert non-
financial data at small rates open up a field of new applications such as digital
notary services, rights management, or non-equivocation systems, objectionable
or even illegal content has the potential to jeopardize a whole cryptocurrency.
Although court rulings do not yet exist, legislative texts from countries such
as Germany, the UK, or the USA suggest that illegal content such as child
pornography can make the blockchain illegal to possess for all users.

As we have shown in this paper, a plethora of fundamentally different meth-
ods to store non-financial and potentially objectionable content on the blockchain
exists in Bitcoin. As of now, this can affect at least the 112 countries in which
possessing content such as child pornography is illegal. This especially endangers
the multi-billion dollar markets powering cryptocurrencies such as Bitcoin.

To assess this problem’s severity, we comprehensively analyzed the quantity
and quality of non-financial blockchain data in Bitcoin today. Our quantitative
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analysis shows that 1.4% of the roughly 251 million transactions on Bitcoin’s
blockchain carry arbitrary data. We could retrieve over 1 600 files, with new con-
tent infrequently being added. Despite a majority of arguably harmless content,
we also identify different categories of objectionable content. The harmful poten-
tial of single instances of objectionable blockchain content is already showcased
by findings such as links to illegal pornography or serious privacy violations.
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Abstract. Blockchain-based cryptocurrencies have demonstrated how
to securely implement traditionally centralized systems, such as curren-
cies, in a decentralized fashion. However, there have been few measure-
ment studies on the level of decentralization they achieve in practice. We
present a measurement study on various decentralization metrics of two
of the leading cryptocurrencies with the largest market capitalization and
user base, Bitcoin and Ethereum. We investigate the extent of decentral-
ization by measuring the network resources of nodes and the intercon-
nection among them, the protocol requirements affecting the operation
of nodes, and the robustness of the two systems against attacks. In par-
ticular, we adapted existing internet measurement techniques and used
the Falcon Relay Network as a novel measurement tool to obtain our
data. We discovered that neither Bitcoin nor Ethereum has strictly bet-
ter properties than the other. We also provide concrete suggestions for
improving both systems.

1 Introduction

Cryptocurrencies are emerging as a new asset class, with a market capitalization
of about $150B as of Sept 2017 [15], a growing ecosystem, and a diverse commu-
nity. The most prominent platforms that account for over 70% of this market are
Bitcoin [57] and Ethereum [28,70]. The underlying technology, the blockchain,
achieves consensus in a decentralized, open system and enables innovation in
industries that conventionally relied upon trusted authorities. Some examples of
such services include land record management [3], domain name registration [51],
and voting [55]. The key feature that empowers such services and makes these
platforms interesting is decentralization. Without it, such services are technolog-
ically easy to construct but require trust in a centralized administrator.

Decentralization is a property regarding the fragmentation of control over the
protocol. In the Bitcoin and Ethereum protocols, users submit transactions for
miners to sequence into blocks. Better decentralization of miners means higher
resistance against censorship of individual transactions. For communication, Bit-
coin and Ethereum also have a peer-to-peer network for disseminating block and
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transaction information. Both Bitcoin and Ethereum also contain full nodes,
which serve two critical roles: (1) to relay blocks and transactions to miners (2)
and to answer queries for end users about the state of the blockchain. Under-
standing the network properties of full nodes is crucial for protocol design and
analysis of each network’s resilience to attacks. Ongoing research explores ways
to make the Bitcoin and Ethereum networks more decentralized without mea-
surements on the underlying network. Hence, debates and decisions about the
underlying networks are often based on assumptions rather than measurement.

In this paper, we present a comprehensive measurement study on decentral-
ization metrics in these operational systems and shed light on whether or not
existing assumptions are satisfied in practice. We adapt prior Internet measure-
ment techniques for Bitcoin and Ethereum and use novel approaches to obtain
application layer data. Our main data sources are (1) direct measurements of
these networks from multiple vantage points, (2) a Bitcoin relay network called
Falcon that we deployed and operated for a year, and (3) blockchain histories
of Bitcoin and Ethereum. Our study presents findings regarding the network
properties, impact of protocol requirements, security, and client interactions.

This paper makes three contributions. First, it provides new tools and tech-
niques for measuring blockchain-based cryptocurrency networks. The key tool
introduced here is the Falcon relay network that we built to serve as a backbone
for ferrying blocks. This network was deployed for Bitcoin across five continents,
providing a unique vantage point on pruned blocks. Second, we perform a com-
parative study of decentralization metrics in Bitcoin and Ethereum. Our key
findings are: (1) the Bitcoin network can increase the bandwidth requirements
for nodes by a factor of 1.7 and keep the same level of decentralization as 2016,
(2) the Bitcoin network is geographically more clustered than Ethereum, with
many nodes likely residing in datacenters. (3) Ethereum has lower mining power
utilization than Bitcoin and would benefit from a relay network, and (4) small
miners experience more volatility in block rewards in Bitcoin than Ethereum.

2 Bitcoin and Ethereum

Bitcoin and Ethereum use Nakamoto consensus [5–7,38,57] to regulate transac-
tion serialization in their blockchains. While architecturally very similar, these
systems differ significantly in terms of their API, abstractions, and wire protocol.

2.1 The Bitcoin Protocol

Bitcoin is a protocol that sequences transactions into groups called blocks. The
protocol targets a block production interval of 10 min with a maximum size of
1 MB. At the time of our measurements, the last 100 blocks had a 0.99 MB
median block size and a 9.8 min mean interval. The wire protocol implements a
peer-to-peer network based on flooding block and transaction announcements.

The peer to peer network is formed through point to point links. To form a
link, clients establish a TCP connection and perform a protocol-level three-way
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handshake. The protocol-level handshake exchanges the state of each client, such
as the height of the blockchain and a version string associated with the software
being run. When a client discovers or receives a new block, it floods the network
with the hash of the block. If a neighboring client needs the block, it requests
the block based on the hash value. There are many different block formats, such
as compact [17] and Merkle [44] blocks, but we focus on retrieval of full blocks.

2.2 The Ethereum Protocol

The Ethereum protocol [28] focuses on providing a platform to facilitate building
decentralized applications on its blockchain. To sequence transactions, Ethereum
adopts a design inspired by Nakamoto consensus and the GHOST protocol [64].

Ethereum adopts a chain selection rule to harness the residual mining power
in pruned blocks for improved security. The protocol includes such blocks, called
uncles, in its blockchain and rewards the corresponding miners [70]. Ethereum
targets a block interval between 10 to 20 s [41]. The block size is indirectly
determined by an execution fee, called gas, that fluctuates over time. At the
time of our measurements, the last 100 blocks were generated with a 2.9 KB
median block size and a 16.3 s average interval.

Fig. 1. The measurement infrastructure is
built on 18 globally distributed nodes.

Ethereum employs a UDP-based
node discovery mechanism inspired
by Kademlia [54], but the rest of
the P2P communication is over TCP.
Unlike Bitcoin, messages between
nodes are encrypted and authenti-
cated. Ethereum’s wire protocol is
poorly documented, so we rely on the
client implementations [19,42,60,61]
and Ethereum wiki pages [25–27,29,
30] for information.

In Ethereum, clients request blocks
by the corresponding block hash. Older clients request blocks, which consist
of a body and header, while newer clients request each piece separately. The
measurement system in this paper focuses on retrieval of full blocks and block
bodies.

3 Measurement Infrastructure

Blockchain-based cryptocurrencies operate on global peer-to-peer networks that
span multiple administrative domains. Measurement of such networks concerns
the exploration of the relationship between peers, the capabilities of individual
peers, and the properties of the system as a whole–e.g. its security and fair-
ness. To characterize Bitcoin and Ethereum, we deployed Blockchain Measure-
ment System (BMS ), a measurement system than ran experiments of varying
duration–from a few days up to 12 months.
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Table 1. Timeline of measurements. All dates are in 2017 unless otherwise noted.

Measurement Network Num. Nodes Dates

Bandwidth (All) Latency

(BTC IPv4) (Single beacon)

BTC IPv4 3441 Jan 11–16;Jan 30–Mar 16

IPv6 515 Jan 13–14; Apr 20–25

Tor 127 Jan 13; Apr 23–25

ETH IPv4 285 Mar 27–Apr 25

Peer-to-Peer Latency (Mult.

Vantage Pts.)

BTC IPv4 3390 (5.7M edges) Jan 10–15; Jan 30–Mar 01

ETH IPv4 4302 (9.3M edges) Mar 01–Apr 11

Latency (Single Beacon) BTC IPv6 845 Jan 13–14; Feb 03–Apr 25

Pruned Blocks BTC IPv4 5977 May 5 2016–Apr 29

Network Properties. BMS uses multiple vantage points in order to gain a com-
prehensive view of the cryptocurrency networks. To capture the evolution of
these networks, BMS has been continuously collecting data regarding the pro-
visioned bandwidth of peers and peer-to-peer latency. BMS first connects to a
peer, collects measurements, and then disconnects before proceeding to the next
peer. These measurements target (1) Bitcoin nodes connected over IPv4, IPv6,
and Tor [23] and (2) Ethereum nodes connected over IPv4. As of May 2017,
Ethereum does not have any Tor nodes mainly because Tor is exclusively TCP,
whereas Ethereum node discovery is UDP-based. Moreover, this study excludes
Ethereum’s IPv6 network because BMS was unable to discover enough nodes to
reach generalized conclusions. Table 1 shows the timeline of the data collection
for each network and the number of nodes measured in each measurement.

To estimate the peer-to-peer latency, BMS uses multiple vantage points geo-
graphically distributed across the world. Figure 1 shows the geographic distribu-
tion of the measurement infrastructure. 15 out of 18 nodes reside in PlanetLab’s
global research network [14] and the remaining three nodes are part of Cornell’s
academic network, located in Ithaca, NY.

To measure the provisioned bandwidth of nodes in Bitcoin and Ethereum,
BMS used nodes with extensive resources. In particular, measuring the maximum
bandwidth that Bitcoin and Ethereum nodes have access to requires nodes with
(1) high download capacities to ensure that the bottlenecks are not in the mea-
surement apparatus, and (2) sufficient disk capacities to store detailed results.
Since these machines need access to orders of magnitude higher bandwidth capac-
ity than what is achievable on shared infrastructure, such as PlanetLab nodes,
some BMS data was collected using dedicated, well-provisioned beacon nodes
located at Cornell University.

Finally, BMS needs to pick a sample of nodes from the Bitcoin and Ethereum
networks. As a sample, BMS uses a list containing nodes from Bitcoin and
Ethereum node crawling sites [1,31], and a locally deployed Ethereum supern-
ode configured with a high peer limit. Interpretations in this paper assume that
inferences made from the reachable public nodes are representative of their entire
networks. In reality, these networks contains nodes that are not visible to the
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public, e.g. they are behind a NAT or a firewall. One such class of nodes are part
of mining. While much of the mining infrastructure is private, prior measurement
work shows that mining operations often have gateway nodes to communicate
with the peer-to-peer network [56]. The properties of internal mining pool nodes
are orthogonal to the focus of this paper.

Blockchain Information. A naive approach to obtaining information about the
blockchain would be to simply run a Bitcoin and Ethereum node. However,
this precludes information that cannot be obtained through the respective wire
protocols. Many important decentralization metrics center around the analysis
of blocks that are not part of the main blockchain. In Ethereum, many of these
blocks become uncles which can simply be requested through the wire protocol.

In Bitcoin, however, a block that is not part of the main blockchain simply
becomes pruned. Pruned blocks in Bitcoin have no effect on the state of the
system, they are deleted by clients without impacting correctness. Thus, it is
crucial to connect directly to miners to capture pruned blocks.

A critical component of BMS to observe pruned blocks is the Falcon Relay
Network, which relays blocks between Bitcoin miners. The Falcon Relay Net-
work uses cut-through routing to quickly disseminate blocks worldwide, which
incentivizes miners to connect to Falcon. Indeed, Falcon is directly connected to
at least 36.4% of the entire hashpower in Bitcoin. Since there is just one other
operational relay network for Bitcoin [16,18], Falcon has observed blocks that
have not been seen on other well-connected nodes [8].

4 Measurements

In this section, we present the measurements taken by BMS. In each measure-
ment, we describe the methodology, followed by the results of our analysis. As
with any measurement study of a large-scale, uninstrumentable artifact, mea-
surements are not perfect; we conclude each section by addressing some potential
sources of error and their mitigation.

4.1 Provisioned Bandwidth

Provisioned bandwidth is an estimate on a node’s transmission capacity charac-
terizing how much bandwidth the node has to communicate with the rest of the
cryptocurrency network. Greater provisioned bandwidth helps miners to propa-
gate/collect blocks to/from the network faster. Thus, it becomes more difficult
for a malicious miner to situate themselves in the network to achieve the rushing
property [35] and attack the blockchain. Knowledge of provisioned bandwidth
also aids in setting protocol parameters, such as the block size and frequency.

Methodology. BMS measures the provisioned bandwidth of each peer by
requesting a large amount of data from each peer and seeing how fast the peers
can stream the data to BMS’s measurement nodes. BMS does this by asking for
blocks that were first seen over a year ago – similar to how a stale node asks
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for blocks to sync state. Each request asks for the same set of blocks in Bitcoin
and blocks or the corresponding bodies in Ethereum. Next, BMS divides the
time into epochs and records the number of bytes received during each epoch.
This process continues until either BMS receives all data or a predefined timeout
of 30 s is reached. A long timeout helps BMS eliminate effects from TCP slow
start and other initialization noise as well as identify and eliminate spurious
spikes in throughput caused by buffering in the kernel by BMS. Finally, BMS
processes the collected data to determine the provisioned bandwidth. To do so,
first, it identifies the independent data streams by combining successive epochs
containing active data transfers. Then, it eliminates streams that are shorter
than 500 ms to mitigate initialization artifacts such as TCP slow start. BMS
then outputs the maximum observed throughput among the remaining distinct
continuous streams as the provisioned bandwidth of the remote peer.

The experiments in this paper are run on servers with 1 Gbps links at Cornell
University. This has not changed from 2016 to 2017, which allows us to make
comparisons to a previous study in 2016 [20].

Fig. 2. Statistics on distribution of provisioned bandwidth and the CDF.

Results. Table 2a summarizes per-node bandwidth results that BMS has col-
lected. We see that Bitcoin nodes in both IPv4 and IPv6 networks have consis-
tently higher bandwidth compared to Ethereum IPv4 nodes. In particular, the
median Bitcoin IPv4 and IPv6 nodes have about 1.9× and 2.7× the bandwidth of
the typical Ethereum IPv4 node. In contrast, Bitcoin Tor nodes have an order of
magnitude lower bandwidth compared to directly connected nodes, though they
are not unusable – e.g. 90% has more than 2 Mbit/s. Ongoing research explores
alternatives to the Tor network that also provide efficient communication [50].

Figure 2b shows the cumulative distribution of the bandwidth measurements.
Steep increases in the Bitcoin IPv4/IPv6 curves at around 10 Mbps and 100 Mbps
regions represent typical bandwidth capacities of a home user, and a typical
Amazon EC2 Bitcoin instance. For Ethereum, we observe a similar accumulation
around 10 Mbps region, but the bandwidth is more evenly distributed over the



Decentralization in Bitcoin and Ethereum Networks 445

remaining nodes. As the long tailed distribution and higher standard deviation
indicates, bandwidth of Bitcoin IPv4/IPv6 nodes are spread out over a wider
range of values compared to Ethereum nodes. While the most well provisioned
Bitcoin nodes have around 300 Mbps of spare bandwidth, the highest Ethereum
node capacity that BMS has observed is limited to 250 Mbps.

One of the most interesting discoveries of this study is that the Bitcoin net-
work has improved tremendously in terms of its provisioned bandwidth. The
results show that Bitcoin IPv4 nodes, which used to be connected to the network
with a median bandwidth of 33 Mbit/s in 2016 [20], have a median bandwidth
of 56 Mbit/s, as of February 2017. In other words, the provisioned bandwidth of
a typical full node is now 1.7× of what it was in 2016.

Critical system parameters, such as the maximum block size and block fre-
quency, can be increased when the provisioned bandwidth increases. The increase
in provisioned bandwidth suggests that the block size can be increased by a fac-
tor of 1.7 without increasing centralization beyond its de facto level in 2016.

Caveats. As with every measurement technique in the real world, our results
above are subject to experimental limitations and expected errors. The accu-
racy of the measurements may drop under certain circumstances, including the
cases where: (1) the network bottleneck lies on the side of the measurement
beacon rather than the remote peer, (2) network traffic on the side of BMS
interferes with the collected results, (3) the remote peer intentionally shapes
the traffic to selectively limit the bandwidth available to BMS, for instance via
bandwidth throttling, and (4) different steady state bandwidth between Bitcoin
and Ethereum, skewing the numbers for one system over another The setup of
our bandwidth infrastructure helps minimize potential inaccuracies due to the
first two issues. Moreover, analysis of popular Bitcoin [5] and Ethereum client
implementations [19,42,60,61] shows that the third case is not supported by this
software and would require additional, potentially non-trivial, work to set up. To
verify the impact of the last issue, we ran an Ethereum and Bitcoin client and
saw that their bandwidth consumption differed by 0.2 Mbps, which introduces
about a 1% error on our measurements above.

In addition to our analysis above, we also expect to see certain artifacts in our
data. As noted above, we see clusters of nodes around 10 Mbps and 100 Mbps,
which are typical bandwidth capacities of home and EC2 users, respectively.

4.2 Network Structure

The structure of the peer-to-peer network impacts the security and performance
for cryptocurrencies. A geographically clustered network can quickly propagate
a new block to many other nodes. This makes it more difficult for a malicious
miner to propagate conflicting blocks/transactions quicker than honest nodes.
However, a less clustered network may mean that full nodes are being run by a
wider variety of users which is also good for decentralization.
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Methodology. Since it is not possible to obtain direct measurements between
peers we do not control, we use the state of the art estimation techniques to
establish bounds and gain insights into network structure.

Single Beacon Latency. We first collect direct ICMP ping measurements from
BMS nodes to all peers in the network. We report the minimum observed ping
latency, as it provides a physical bound on the distance to the BMS beacon.

Peer-to-Peer Latency. Measuring the peer-to-peer latency requires access to the
end points. In both Bitcoin and Ethereum, peers do not reveal their neighbors.
Hiding the network structure boosts privacy and security [45,56], but also makes
it harder to infer properties about the network. BMS provides latency estimates
for a superset of the actual links between known peers. We do not normalize for
the slightly different network sizes, 3390 for Bitcoin and 4302 for Ethereum, as
our samples from both networks were very similar. Since measuring peer-to-peer
latencies directly is not feasible, we establish bounds from observed latencies
from multiple beacons, using techniques from prior literature [37]. BMS starts
with the measurements taken from a single beacon. Then, it uses the triangle
inequality to estimate the upper and lower bounds for the latency between peers.
Repeating this process from other vantage points yields a set of bounds for each
pair of peers. Finally, BMS determines a range for latency estimates between each
peer by picking the maximum lower bound and the minimum upper bound. The
paper also presents the average of the lower bound and upper bound latency
between peers. In this study, BMS includes nodes that do not support the DAO
fork [10] in its measurements for Ethereum.

Geographical Distance. BMS takes the minimum of repeated latency measure-
ments to eliminate transient network effects and capture the geographic distance
between two nodes [13,43,69]. BMS also uses IP geolocation data to calculate
distances between peer nodes as an additional validation on our results. To cal-
culate distances, BMS applies the Haversine formula [63] using the coordinate
values gathered from an IP-based geolocation service [46].

Table 2. Min single beacon latencies observed and
P2P latency estimates.

Single beacon Peer-to-Peer

Bitcoin Bitcoin Eth.

IPv4 [ms] IPv6 [ms] IPv4 [ms] IPv4 [ms]

10% 29 40 48 92

33% 78 80 79 125

50% 89 95 109 152

67% 98 95 152 200

90% 201 165 286 276

Avg. 97 103 135 171

Std. Dev. 59 62 88 76

Results. Our measurements
indicate considerable differ-
ences between P2P latencies
of Bitcoin and Ethereum
IPv4 networks, summarized
in Table 2 and PDF graphed
in Fig. 3.

We find that Bitcoin has
many more nodes that are
closer geographically than
Ethereum. Figure 3 shows
that Ethereum’s most likely
latencies are centered around
120 ms, while Bitcoin nodes tend to be clustered around 50 ms. Only 13% of
Ethereum latencies are under 100 ms, while Bitcoin has a surprisingly high 46%.
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Additionally, the estimated peer-to-peer latency between Ethereum nodes is
26.7% higher than Bitcoin on average. This geographic proximity between nodes,
along with the observation that Bitcoin has many nodes with 100 Mbps of provi-
sioned bandwidth (see Sect. 4.1), seems to indicate that many Bitcoin nodes are
run in datacenters. 56% of Bitcoin’s nodes and 28% of Ethereum’s nodes belong
to an autonomous system that provides dedicated hosting services, a difference
significant at the 1% significance level.

Indeed Ethereum nodes are not accumulated in a single geographical region,
but are more evenly distributed around the world. Figure 3c shows the CDF of
distances between peer to peer nodes based on IP geolocation information. The
results corroborate our findings based on network latency measurements and
show that Ethereum nodes are geographically further apart than Bitcoin. As
additional evidence, when we use geolocation on the P2P distances and plot the
CDF in Fig. 3c, we see that Ethereum nodes are further apart than Bitcoin.

Fig. 3. The histogram of P2P latencies in Ethereum (a) and Bitcoin (b), as well as the
CDF of geographical distances (c).

Sanity Checks. The first two columns of Table 2 present single beacon latency
in Bitcoin IPv4/IPv6 networks. The results indicate that both the median and
the average latency to IPv4 nodes are smaller than IPv6 nodes. As there are
fewer IPv6 nodes than IPv4 nodes, we expect this result since IPv4 nodes are
more likely to be closer to our beacons.

While there has been a large body of work showing the prevalence of triangle
inequality violations in the Internet [12,52,67], there are several reasons BMS’s
measurements are not affected significantly. First, such violations were shown
to occur less than 5% of network snapshots [52]. Since we take the minimum
latency observed from a beacon, triangle inequality violations will only occur
in our dataset less than 1% of the time [52]. TIVs are also significantly less
prevalent when dealing with latencies less than 300 ms, which includes almost
our entire dataset [67]. To ensure that the above results hold for our dataset as
well, we used a geolocation service as ground truth to verify our results.

One other limitation in our study is that it is impossible to collect measure-
ments using ICMP pings from nodes that block ICMP traffic and from Tor nodes
that only communicate over TCP.
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4.3 Distribution of Mining Power

Mining on cryptocurrency networks is a complex process that typically requires
large computation power. With the current mining difficulty of Bitcoin and
Ethereum, using commodity hardware to generate blocks is not feasible [21]
which centralizes the mining process somewhat. However, as long as there are
many different entities mining, the system is still decentralized. We compare the
decentralization of the mining process between Bitcoin and Ethereum.

Fig. 4. Distribution of mining power in Bitcoin and Ethereum networks. Bars indicate
observed standard deviation from the average.

Methodology. To identify the power of miners in Bitcoin and Ethereum, we
examined their weekly distribution over the last 10 months starting on July 15,
2016. Our mining power estimations are based on the ratio of main chain blocks
generated by distinct entities. Hence, pruned blocks in Bitcoin and uncles in
Ethereum do not affect these estimations. In both networks, miners voluntarily
disclose their identity as part of each block they mine. We gathered this data
from a public API for Bitcoin [9] and a blockchain explorer for Ethereum [32]. In
Bitcoin, 1.8% of the blocks were unidentified, which we treated as if they were
generated by distinct individual miners. Finally, we manually processed identi-
ties to detect and merge duplicates. This includes pools operated by the same
administrator [47] and multiple identities representing the same pool, which we
identified by looking for the same pool name with a corresponding tag, e.g.
’DwarfPool1’ and ’DwarfPool2’. While it is important to note that miners can
be either solo miners or mining pools, this distinction is immaterial for the
purposes of this analysis. The argument that mining pools provide a degree of
decentralization due to mining pool participants having a check on pool opera-
tor behavior has no empirical support. For instance, censorship attacks by pool
operators are difficult, if not impossible, to detect by pool participants. Addi-
tionally, when miners exceeded the 51% threshold on three separate occasions
in Bitcoin’s history, the pool participants did not disband the pool despite clear
evidence of a behavior widely understood to be unacceptable. Most crucially,
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whether mining pools provide a degree of decentralization is inconsequential for
the purposes of this paper, which provides an accurate historical account. We
report what happened at the time the blocks were mined, as recorded on the
blockchain. As such, it is immaterial whether the miners were part of a pool or
whether they were solo miners. At the time a block was committed to the chain,
pool participants were plaintively cooperating as part of the same mining entity.

Results. For each week of the analysis period, we calculated the corresponding
mining power of entities and ranked each miner accordingly. Figure 4 shows the
top 20 weekly mining power distribution in the Ethereum and Bitcoin networks.
Each group of bars represents a chronologically ordered collection of weekly
mining power ratios, defined as the fraction of blocks contributed by a miner.

Figure 4 illustrates that, in Bitcoin, the weekly mining power of a single entity
has never exceeded 21% of the overall power. In contrast, the top Ethereum miner
has never had less than 21% of the mining power. Moreover, the top four Bitcoin
miners have more than 53% of the average mining power. On average, 61% of
the weekly power was shared by only three Ethereum miners. These observations
suggest a slightly more centralized mining process in Ethereum.

Although miners do change ranks over the observation period, each spot
is only contested by a few miners. In particular, only two Bitcoin and three
Ethereum miners ever held the top rank. The same mining pool has been at
the top rank for 29% of the time in Bitcoin and 14% of the time in Ethereum.
Over 50% of the mining power has exclusively been shared by eight miners
in Bitcoin and five miners in Ethereum throughout the observed period. Even
90% of the mining power seems to be controlled by only 16 miners in Bitcoin
and only 11 miners in Ethereum. Hence, both platforms rely heavily on very
few distinct mining entities to maintain the blockchain. Indeed, we see in Fig. 5
that the mining power trends can be fit as exponential distributions with curves
0.21e−0.19x and 0.35e−0.30x in Bitcoin and Ethereum, respectively. These curves
yield a coefficient of determination value of 0.99.

These results show that a Byzantine quorum system [53] of size 20 could
achieve better decentralization than proof-of-work mining at a much lower
resource cost. This shows that further research is necessary to create a per-
missionless consensus protocol without such a high degree of centralization.

Fig. 5. Exponential trendlines for the aver-
age distribution of mining power.

Sanity Checks. Similar to other
works in the literature [58,68], we
assume that miners accurately self-
identify themselves. A miner that con-
tributes a significant portion of the
hash power to the cryptocurrency can
exert some amount of influence over
protocol changes. Thus, it is likely that
miners will want to claim blocks that
they generated as their own. While
strong miners gain political clout and attract more members, getting too large
raises alarms among the community about centralization. Thus, such miners may



450 A. E. Gencer et al.

conceal or obfuscate this information to appear less powerful – e.g. by generating
multiple identities. For instance, two major mining pools, Ethpool and Ether-
mine, publicly reveal that they share the same admin [47]. Thus, any analysis
based on the voluntary miner data skews toward a more decentralized network
than the reality.

4.4 Mining Power Utilization

Mining power utilization [34], which measures the fraction of mined blocks that
remain in the main chain, is a metric for evaluating the efficiency of a protocol, as
well as a second order metric for robustness against rollbacks. As mining power
utilization increases, the protocol is able to convert more of the energy spent to
useful work, and therefore the cost to launch an attack is higher.

Methodology. To study the mining power utilization, we analyzed weekly and
daily distribution of pruned blocks in Bitcoin and uncles in Ethereum, compared
to the main chain blocks. We retrieved this data from (1) the Falcon network,
(2) a local Bitcoin client, and (3) public blockchain explorers for Bitcoin [9]
and Ethereum [32]. In particular, the Bitcoin blockchain explorer and Falcon
exclusively provided 12% and 20% of the total 124 pruned blocks, respectively.
Both sources commonly discovered the remaining 68%.

Fig. 6. Mining power utilization (MPU) for Bitcoin and Ethereum

Results. Figure 6a and b show weekly and daily distributions of mining power
utilization in Bitcoin and Ethereum networks, respectively. The results show
that Bitcoin utilization is always above 99%, which means that a pruned block
in Bitcoin is a relatively rare event. In contrast, daily utilization in Ethereum is
typically between 90% to 94% range and never goes above the 97% threshold.
During 2016, Ethereum faces occasional drops in its utilization down from 74%
to 88%, including (1) the days following the exploitation of the DAO vulnera-
bility [10] from June 17 to 18, (2) attacks on Ethereum network [11,66] between
September 22 to October 19, and (3) the days following the Spurious Dragon
hard fork [48] between November 23 to 29. These results indicate a strong rela-
tionship between mining power utilization and real life events in Ethereum. This
may be the result of preventive measures that spam the network to slow down the
DAO attacker, bad actors generating blocks with excessive resource demands,
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and miners with outdated clients. These results indicate that a relay network,
like Falcon, would be greatly beneficial to the Ethereum network.

Sanity Checks. The design of the Ethereum protocol requires peers to store and
propagate uncle blocks, which are not on the main chain. In contrast, Bitcoin’s
blockchain only stores the main chain so peers do not propagate pruned blocks.
Hence, capturing such blocks in Bitcoin requires actively watching the network.
While the Falcon relay network provides a strong incentive to miners to relay
blocks through it, some miners may choose not to do so. Consequently, we may
be missing some pruned blocks that were generated by the Bitcoin network.

4.5 Fairness

Fig. 7. Fairness distribution. Zero fairness
means no pruned block from miner.

Section 4.3 presented the mining power
distribution, which looks at the main
chain presence of miners. The impact
of this distribution on a miner’s
pruned block rate is unclear. To study
this relationship, we examine fairness
defined as the ratio of a miner’s share
of pruned blocks to her mining power.
In a fair protocol, miners generate
pruned blocks proportional to their
mining power; hence, the fairness is close to 1. A fairness greater than 1 implies
that the miner is at a disadvantage, while a fairness less than 1 implies that the
miner has an advantage.

Methodology. We used the Falcon network, and a Bitcoin blockchain
explorer [8] to retrieve pruned Bitcoin blocks. These sources have, respectively,
provided 109 and 99 blocks, yielding a total of 124 distinct pruned blocks. We
collected uncles from an Ethereum blockchain explorer [32].

Similar to Sect. 4.3, our results here also assume that miners voluntarily iden-
tify themselves in uncles/pruned blocks. Another caveat here lies in gathering
pruned blocks. While we incentivize miners to relay blocks through Falcon, there
is no guarantee that they necessarily will do so. We suspect that explicit storage
of uncles in Ethereum captures a larger proportion of pruned blocks.

Results. Figure 7 shows the distribution of fairness of 20 miners with the highest
mining power. The results indicate that, in both networks, the top four miners
generally are more successful at appending blocks to the main chain. We run
the Kolmogorov-Smirnov goodness of fit test with a p-value of 0.01 to compare
the fairness distributions of Bitcoin and Ethereum. Perhaps surprisingly, we see
that the fairness of Ethereum and Bitcoin differ significantly from each other
keeping a constant time period. The reason for this difference is a much larger
standard deviation in Bitcoin’s miner fairness compared to Ethereum (1.72 ver-
sus 0.25). The mean of both fairness distributions, however, are very similar,
with Ethereum at 1.08 and Bitcoin at 1.22.
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A high variance results in centralization pressure since smaller miners will
have a more difficult time affording the loss of revenue due to a transiently
high fairness score. This high variance is a direct result of a significantly smaller
number of blocks being generated in Bitcoin. Since Ethereum has a higher block
frequency than Bitcoin, smaller miners have a more predictable payoff than larger
miners. This makes Ethereum more predictable to mine for smaller miners due
to the lower variance in block rewards. Thus, it is important for blockchain
protocols to take variance of the block rewards in addition to the mean.

Simply increasing the block frequency may not be the solution to decrease the
variance of block rewards since the mining power distribution may be affected
as well. The increased block frequency in Ethereum may be part of the cause of
the slightly more centralized mining power distribution (see Sect. 4.3).

Sanity Checks. Similar to Sect. 4.4, our results here also assume that miners
voluntarily identify themselves in uncles/pruned blocks. As before, if the miners
are lying, they are likely to present a more fair system than reality. Another
caveat here lies in gathering pruned blocks. While we incentivize miners to relay
blocks through Falcon, there is no guarantee that they will. We suspect that
explicit storage of uncles in Ethereum allows for more accurate analysis.

Finally, Bitcoin has a significantly lower block generation frequency than
Ethereum. On top of that, Bitcoin also has a lower pruned block rate than
Ethereum does, which means it has significantly fewer pruned blocks. Thus, this
fairness metric is much noisier in Bitcoin compared to Ethereum.

5 Related Work

Network measurements in blockchain-based systems have mainly focused on Bit-
coin. One such study [22] demonstrated that the latency is the dominating factor
in propagation of blocks smaller than 20 KB. Following work [20] has shown that
(1) this limit has increased to 80 KB and (2) nodes are provisioned with sub-
stantially higher bandwidth capacity than what the protocol demands. Feld et
al. [36] pointed out a strong AS-level centralization that may impact Bitcoin
network’s connectivity – i.e. 10 ASes contain over 30% of peers. Recent work [2]
presented the level of vulnerability, showing that 13 ASes cover the same fraction
of peers, but only 39 IP prefixes host half of the overall mining power. Ours is
the first work that does a similar type of study on Ethereum as well.

Other work studied various aspects of the Bitcoin overlay network. Miller
et al. [56] found that a small fraction of the network, containing around 100
nodes, represents more than 75% of the mining power. The study conjectured
that these nodes are well-connected to major mining pools; hence, provide higher
efficiency in broadcasting blocks. Biryukov et al. [4] examined how peer neigh-
bors discover IP addresses that correspond to pseudonymous identities. Another
study [49] deanonymized peers by observing anomalous relaying behavior in
network. Pappalardo et al. [59] observed that low value transactions may experi-
ence waiting times of over a month. Other work measured churn and geolocated
peers [24]. Gervais et al. [40] discussed centralization concerns regarding the
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client development process, distribution of mining power, and spendable coins.
Most of these works focus on attacks and the structure of the overlay network,
while this work focuses on the resource capabilities of the nodes used in the
overlay network.

Recent work presented ways to reduce resource requirements to participate
in blockchain systems. Such solutions enhance decentralization by increasing
the diversity of participants. Aspen [39] achieves this through sharding the
blockchain. In this system, users store, process, and propagate only the data that
is relevant to them, hence need fewer resources to join the network. Another app-
roach [62] relies on authenticated data structures to reduce load on nodes. Relay
networks increase network efficiency through faster block propagation. The first
such system [16] achieved this by avoiding full block verification and retransmit-
ting known transactions. Falcon, the source of pruned block data in the Bitcoin
network in this paper, relies on cut-through routing for faster block propagation.
Finally, FIBRE incorporates cut-through routing with compact blocks [17] and
forward error correction over UDP. The novelty in our work was utilizing Falcon
data in order to gain insights into transient application layer information.

Blockchain explorers [8,32,33,65] provide a variety of data on cryptocurrency
networks, including online blockchain history; statistics on blockchain compo-
nents, transaction fees, and market value; and node information. While these
sources of information are useful to the community, this work scientifically tests
whether the intuitions provided by these sources of information indeed hold.

6 Conclusion

Decentralization in blockchain-based platforms is a component of the value
proposition these systems offer. This work presents a comparative assessment of
decentralization in two most popular cryptocurrencies, Bitcoin and Ethereum.
To do so, it relies on novel measurement techniques to obtain application layer
information using the Falcon Network and the application of well-established
internet measurement techniques.

Our observations show that Bitcoin has a higher capacity network than
Ethereum, but with more clustered nodes likely in datacenters. We also observe
that Bitcoin and Ethereum have fairly centralized mining processes and that
further research is needed to decentralize permissionless consensus protocols fur-
ther. In Ethereum, the block rewards have less variance than Bitcoin’s. Finally,
Ethereum has a lower mining power utilization than Bitcoin, likely due to the
high block frequency.

Further, we see that Bitcoin has undergone tremendous growth and can
increase the block size by a factor of 1.7x without any decrease in decentral-
ization compared to 2016. Additionally, our study uncovers that the volatility of
mining rewards is an important, but often ignored, metric. Finally, we see that
Ethereum would likely benefit from a relay network to increase its mining power
utilization.
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Abstract. In this paper, we construct an anonymous and decentralized
cryptocash system which is potentially secure against quantum comput-
ers. In order to achieve that, a linkable ring signature based on ideal
lattices is proposed. The size of a signature in our scheme is O(logN),
where N is the cardinality of the ring. The framework of our cryptocash
system follows that of CryptoNote with some modifications. By adopting
the short quantum-resistant linkable ring signature scheme, our system
is anonymous and efficient. We also introduce how to generate the ver-
ifying and signing key pairs of the linkable ring signature temporarily.
With these techniques, the privacy of users is protected, even though
their transactions are recorded in the public ledger.

1 Introduction

Electronic currencies or cryptocash systems have been proposed for many years.
But none of them is prevalent before the Bitcoin system appears. Bitcoin was
first described by Nakamoto in 2008 [25]. Its success is partially due to its prop-
erties of decentralization and anonymity. To prevent “double spending”, the
system maintains the history of transactions among most nodes in a peer-to-
peer network. A consensus mechanism called proof-of-work is used to maintain
the history.

Later, researchers find that the public history of Bitcoin causes weaknesses
which violate its original designing goals. The latest result states that Bitcoin
only addresses the anonymity and unlinkability issues partially [3]. For example,
multiple public keys of the same user can potentially be linked when a user sends
change back to his wallet. In this case, two or more of a single user’s public keys
will appear in the same transaction [28]. Recently, there are more discussions
about the weak anonymity of Bitcoin [27,30]. Although this weakness can be
overcome by adopting mixing and distributed methods, the solutions have to
include a trusted third party which is a violation to the decentralization property.

There are some creative works to design a strong anonymous cryptocash sys-
tem. Miers et al. [23] proposed “Zerocoin” that allows users to spend their coins
using anonymous proof of ownership instead of explicit public-key based digital
c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 461–479, 2018.
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signatures. Saberhagen presented two properties, namely, “untraceability” and
“unlinkability”, that must be possessed in a fully anonymous cryptocash model.
Then, they designed CryptoNote system with these properties [31]. Monero is a
system based on CryptoNote. In CryptoNote, to provide anonymity, there are
two ways for all transactions on the network: (1) hiding the sender’s address using
ring signatures, (2) hiding the receiver’s identity using stealth addresses. Both
sending and receiving addresses are verifying keys of a ring signature scheme. A
ring signature can also be used in the Zerocoin system [12].

The notion of ring signatures, introduced by Rivest et al. [29], permits a user
to sign a message on behalf of a group. A verifier is convinced that the real
signer is a member of the group, but cannot explicitly identify the real signer.
Considering the anonymity of a cryptocash system, a ring signature is obviously
more suitable than a standard signature. But there is a cost: the size of the
signature and the computational complexity are inherently larger than those
of a standard signature. A traditional ring signature scheme usually features a
signature size of O(N), where the ring has N participants. To construct a ring
signature of O(log N) or O(1) size was an open problem in this field. Recently,
Groth and Kohlweiss proposed a commitment-based scheme with logarithmic
signature size [12].

However, a cryptocash system which replaces a standard signature with a
ring signature naively suffers from the double spending attack. To fix this prob-
lem, it is necessary for the public to determine ring signatures generated by the
same key pair. The traceable ring signature [9] is a candidate that enables users
to trace the verifying and signing key pair which have been used for signing
different messages. But the traceability is redundant for an efficiency-sensitive
cryptocash system. CryptoNote and Monero chose to modify the traceable ring
signature into a “one-time signature” to reduce the computational cost. Gener-
ally speaking, a linkable ring signature [17], which is a variant of the linkable
spontaneous anonymous group signature [16], is sufficient enough for crypto-
cash systems to determine double spending. Even though signatures of these
schemes are of size O(N), CryptoNote and Monero do provide better privacy
than Bitcoin.

Most cryptocash systems are based on traditional cryptographic schemes.
The security of these schemes is based on hard computational problems, such as
the factorization and discrete logarithm problem (DLP). However, researchers
have proved that a quantum computer is able to solve these problems efficiently
so that schemes based on them are not secure under the quantum computing
model. One solution is to build schemes on computational problems that remain
even hard for quantum computers. Lattice problems have been widely believed
as suitable choices to build quantum resistant cryptographic schemes since Ajtai
proposed his seminal work [2]. Some post-quantum signature schemes have been
proposed recently [7,10,18]. Relying on these schemes, it is easy to obtain a
post-quantum cryptocash system by replacing the ECDSA signature scheme in
Bitcoin. However, the resulting cryptocash system is simply like Bitcoin in which
the transactions are still linkable. Even though there are several lattice-based ring
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signatures [6,36,37] including the one with logarithmic size [15], none of them
has the linkable or traceable property which is vital to prevent double spending.

In this paper, we aim at designing an anonymous post-quantum cryptocash
(APQC) system. In order to achieve this goal, we propose a linkable ring signa-
ture based on ideal lattices. The size of a signature in this scheme is O(log N),
where N is the cardinality of the ring. The framework of our cryptocash system
follows that of CryptoNote [31], and the ideal-lattice-based signature scheme is
inspired by the work of Groth and Kohlweiss [12] with some modifications.

The paper is organized as follows: in Sect. 2, we introduce notations and
concepts applied in our work. The model of the ring signature based cryptocash
is described in Sect. 3. Section 4 involves the concrete construction of the ideal-
lattice-based linkable ring signature. We design the standard transaction of our
cryptocash system in Sect. 5. Section 6 is a brief conclusion for this paper.

2 Preliminaries

2.1 Notations

We use Z, R to denote the set of all integers and the set of all reals, respectively.
For any x ∈ R, �x� denotes the smallest integer that is not smaller than x. A
set {x1, . . . , xn} is denoted by {xi}n

i=1. We use |S| to indicate the cardinality of
a set S. Vectors are named by lower-case bold letters (e.g., x) and matrices by
upper-case bold letters (e.g., X). For a vector x, ‖x‖p represents its �p norm,
and p is omitted if p = ∞. The norm of a polynomial is defined similarly by
regarding it as a vector. The ith entry of a vector x is denoted by xi. If x
is a vector of polynomials, then ‖x‖ = maxi ‖xi‖. A matrix X is identified
with the ordered set {xi}i of its column vectors, and its �p norm is defined as
‖X‖p = maxi ‖xi‖p. If a ∈ R and X is a matrix with entries in ring R, aX
denotes the scalar multiplication. I is the identity matrix whose dimension is
known from the context. For an integer i, ij symbolizes the jth bit of i. δi� is
Kronecker’s delta, i.e., δ�� = 1 and δi� = 0 for i �= �. For two strings x1 and x2,
x1‖x2 denotes the concatenation of them.

2.2 Lattices and Hard Problems

A lattice Λ = L(B) with dimension m and rank n is a subgroup of the linear
space R

m. Every element in Λ can be represented as an integral combination of
its basis B ∈ R

m×n. In our work, we will focus on a specific class of lattices,
called ideal lattices, which can be described as ideals of certain polynomial rings.

Definition 1 ([19]). An ideal lattice is an integer lattice L(B) ⊆ Z
n such that

L(B) = {g mod f : g ∈ I} for some monic polynomial f of degree n and ideal
I ∈ Z[x]/〈f〉.

The quotient ring Z[x]/〈f〉 is additively isomorphic to the integer lattice Z
n.

To extend the hash function family in previous works [2,5,22], Micciancio
defined the generalized knapsack function family [20,21].
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Definition 2 ([21]). For any ring R, subset D ⊂ R and integer m ≥ 1, the
generalized knapsack function family K(R,D,m) = {fa : Dm → R}a∈Rm is
defined by

fa(x) =
m∑

i=1

xi · ai,

for all a ∈ Rm and x ∈ Dm, where
∑

i xi · ai is computed using the ring addition
and multiplication operations.

Besides one-wayness, Micciancio showed that for a special case of the above
function family, the distribution of fa(x) is uniform and independent from a.

Theorem 1 ([21]). For any finite field F, subset S ⊂ F, and integers n,m, the
hash function family K(Fn, Sn,m) is ε-regular for

ε =
1
2

√
(1 + |F|/|S|m)n − 1.

In particular, for any q = nO(1), |S| = nΩ(1) and m = ω(1), the function
ensemble K(Fn

q , Sn,m) is almost regular (i.e., ε is negligible).

Here, “ε-regular” means that the statistical distance between uniform dis-
tribution U((Fn)m,Fn) and {(a, fa(x)) : a ← U((Fn)m),x ← U((Sn)m)} is at
most ε. Fn is a ring of vectors with convolution product.

Sometimes, one-wayness is not sufficient enough for the design of a crypto-
graphic protocol. Lyubashevsky and Micciancio proved that finding a collision in
some instance of the generalized knapsack function family is as hard as solving
the worst-case problem in a certain lattice [19].

Definition 3 (Collision Problem). For any generalized knapsack function
family K(R,D,m), define the collision problem ColK(ha) as follows: given a
function ha ∈ K, find b, c ∈ Dm such that b �= c and ha(b) = ha(c).

If there is no polynomial time algorithm that can solve ColK with non-
negligible probability when given a function ha which is distributed uniformly
at random in K, then K is collision resistant family of hash functions.

The expansion factor is a parameter proposed to quantify the quality of
modulus f in the ideal lattice [19]. The expansion factor of f is defined as

EF(f, k) = max
g∈Z[x],deg(g)≤k(deg(f)−1)

‖g‖f/‖g‖∞

where ‖g‖f is short for ‖g mod f‖∞. Moreover, EF(xn + 1, k) ≤ k.
The generalized knapsack function family K(R,D,m) considered in [19] is

instantiated as follows. Let R = Zq[x]/〈f〉 be a ring for some integer q, where
f ∈ Z[x] is a monic, irreducible polynomial of degree n with expansion factor
EF(f, 3) ≤ ε. Let D = {g ∈ R : ‖g‖ ≤ β} for some positive integer β.

Theorem 2 ([19]). Let K(R,D,m) be a generalized knapsack function family
as above with m ≥ log q

log 2β and q > 2εβmn1.5 log n. Then, for γ = 8ε2βmn log2 n,
there is a polynomial time reduction from f-SPPγ(I) for any ideal I ∈ R to
ColK(h) where h is chosen uniformly at random from K.
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If we denote by I(f) the set of lattices that are isomorphic (as additive
groups) to ideals of Z[x]/〈f〉, then there is a straightforward reduction from
I(f)-SVPγ to f -SPPγ , and the vise versa. It is conjectured that approximating
I(f)-SVPγ to within a polynomial factor is a hard problem, although it is not
NP-hard [1,11].

2.3 The Public-Key Encryption on Ideal Lattices

The encryption scheme we described here was proposed by Stehlé et al. [34].
The ideal-lattice-based encryption scheme is formalized as a collection of efficient
procedures ES = (Setup, KGen, Enc, Dec).

Setup(1n): n is the security parameter. Fix f(X) = Xn + 1 ∈ Z[X] and q =
poly(n) a prime satisfying q ≡ 3 mod 8. Set σ = 1, r = 1 + log3 q, and m =
(�log q� + 1)σ + r. Let R = Zq[X]/〈f〉. All the parameters generated in this
procedure are published as the global parameter pp.

KGen(pp): On input global parameter pp, it runs the trapdoor generation algo-
rithm Id-Trap to get a trapdoor function hg : Zn

q ×Z
mn
q → Z

mn
q and a trapdoor

S, where g is the function index. The first component of the domain of hg can
be viewed as a subset of Z�I

2 for �I = O(n log q). Generate r ∈ Z
�I+�μ

2 uniformly
and define the Toeplitz matrix MGL ∈ Z

�μ×�i

2 whose ith row is (ri, . . . , r�I+i−1).
It outputs the public key epk = (g, r) and the secret key esk = S.

Enc(pp, epk, μ): Given �μ bit message μ with �μ = n/ log n and public key epk =
(g, r), sample (s, e) with s ∈ Z

n
q uniform and e sampled from ψ̄αq, where ψ̄αq is

the reduction modulo q of the standard Gaussian distribution with parameter
αq. It then evaluates C1 = hg(s, e) and computes C2 = μ ⊕ (MGL · s), where
the product MGL · s is computed over Z2, and s is viewed as a string over Z

�I
2 .

Return the ciphertext C = (C1, C2).

Dec(pp, esk, C): Given cyphertext C = (C1, C2) and secret key esk = (S, r),
invert C1 to compute (s, e) such that hg(s, e) = C1, and return message μ =
C2 ⊕ (MGL · s).

To see the details of the trapdoor generation algorithm Id-Trap and the one-
way trapdoor function family {hg : Zn

q × Z
mn
q → Z

mn
q }g∈(Zq[x]/〈f〉)m , we refer to

the literature [34] in which Stehlé et al. also proved that the above encryption
scheme is IND-CPA secure if the Ideal-LWEf

m,q;Ψαq
problem is hard.

The notion of key privacy is formally defined by Bellare et al. [4]. It requires
that the receiver of a ciphertext is anonymous from the point of view of the
adversary. Fortunately, we can deduce from the observation 1 of [13] that the
aforementioned encryption scheme ES is of key privacy.

3 Anonymous Cryptographic Currency Model Based on
Linkable Ring Signatures

Cryptocash system based on linkable ring signatures emerged after researchers
found that Bitcoin was not fully anonymous and untraceable. CryptoNote and
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Monero are two typical instances. We describe here the properties of an anony-
mous cryptocash system and state the techniques [31] to construct such a system.

In a cryptocash system, there are three parties: a sender, who owns a coin
and decides to spend it, a receiver, who is the destination that a coin is deliv-
ered to, and a public ledger where all transactions are recorded. An anonymous
cryptocash system should satisfy the following properties:

– Untraceability: If Tx is a transaction from sender A to receiver B, and Tx
has been recorded in the public ledger, no one else can determine the sender
with probability significantly larger than 1/N by accessing the transcript of
Tx, where N is the number of possible senders in a related input of the Tx.
Moreover, even receiver B cannot prove that A is the true sender of Tx.

– Unlinkability: If Tx1 is a transaction from sender A to receiver C, Tx2 is
another transaction from sender B to receiver C, and Tx1, Tx2 have been
recorded in the public ledger, then for any subsequent transactions in the pub-
lic ledger, no one else can use them to link the outputs of the two transactions
to a single user, even for senders A and B.

– Detecting Double Spending: If Tx1 is a transaction which describes that
coin c has been sent from sender A to receiver B, and Tx1 has been recorded
in the public ledger, every user of the system could detect another transaction
Tx2 that describes the same coin c. Furthermore, Tx2 will never be accepted
and recorded in the public ledger.

To design a cryptocash protocol which provides all the above properties, the
CryptoNote and Monero suggested to adopt the modification of the traceable
ring signature [9], which generates a one-time signature on behalf of a temporal
group. Since it is a one-time signature with an explicit identification tag about
the signing key, it could prevent a coin being double-spent. Besides, since it is
a ring signature where the identity of the real signer is hidden within a set of
possible signers, it guarantees untraceability. In addition, ring signature supports
unlinkability since the inputs in a transaction may be brought from outputs of
transactions belonging to other users.

To employ a linkable ring signature in a cryptocash system, the receiver
should produce a one-time key pair for each transaction. A sender could obtain
the public key of the receiver for the transaction and build a transaction with
an output script containing that key’s information. The drawback of this trivial
method is that a receiver has to maintain a lot of one-time keys. Furthermore, a
sender has to contact each receiver for their fresh one-time public key when the
sender builds a transaction. Alternatively, CryptoNote suggests another method
which enables a receiver to store only a single key pair. A sender could produce
a random value to generate a one-time public key for the receiver based on
this single public key. The one-time public key is referred to as the destination
address (destination key). This is a convenient design at the cost of a slightly
weakened unlinkability. Specifically, if a user has a single key, a sender could
always identify a receiver from the sender’s transaction by its random value of
the transaction. If two senders collude, and they have sent coins to the same
receiver, they could identify the same receiver while the trivial method avoids
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this. And if a later transaction includes the two senders’ outputs at the same
time, with a higher probability, the later transaction is made by the receiver.
Note that a receiver could still produce another key pair at will as in the Bitcoin
system to avoid the small problem.

Finally, let us observe a standard transaction in a linkable ring signature
based cryptocash system. In such a system, the value of a coin is bound with a
destination address. Suppose A and B are two users in the system. B has a single
key pair (pkB , skB). A has the private key sk1 of a destination address vk1, which
represents a coin, say c, which has been sent to A previously. If A decides to send
c to B, he generates a destination address vk2 and an auxiliary input aux for B;
he then chooses a number of transactions from the public ledger such that the
delivered value of coin is equivalent to c; he extracts the destination addresses
of those transactions and assembles them with vk1 to form a ring L; he runs
a ring signature algorithm to sign transaction Tx, which involves information
about (c, aux, vk2, L), with signing key sk1 and broadcasts the transaction; If
the signature generated by sk1 is not linkable to any transaction on the ledger,
the public ledger will accept this transaction and record it; B uses its private
key skB to check every passing transaction to determine if transaction Tx is for
B and recovers the signing key sk2 corresponding to vk2. With sk2, user B can
spend c by signing another transaction. However, even A does not know when
and where B spends it due to the functionality of the linkable ring signature.

It is obvious that linkable ring signature is vital for an anonymous cryptocash
system. We next detail the ideal-lattice-based version of a linkable ring signature.

4 Linkable Ring Signature Based on Ideal-Lattices

The strong similarity in the construction between a lattice-based signature and
DLP-based one (see Lyubashevsky’s signature [18] and the Schnorr’s signature
[32,33]) implies that the latter can help us to design the former, e.g., using
the work in [17] or [18], we can easily obtain a linkable ring signature based
on lattices with signature size of O(N), where N is the number of participants
of the ring. However, such a construction is not efficient enough for a practical
cryptocash system. In this section, we will present an ideal-lattice-based linkable
ring signature of size O(log N) using the idea in [12]. We start this section with
a brief recall on their work.

4.1 A Brief Recall

In [12], Groth and Kohlweiss proposed an efficient Sigma-protocol, which can be
used as an ad-hoc group identification scheme. Their ring signature scheme is a
direct transformation of the identification scheme with the Fiat-Shamir heuris-
tic [8]. As the transmission of the identification scheme involves only O(log N)
commitments, the resulting ring signature scheme is of size O(log N).

Their work starts from homomorphic commitments scheme such as the Ped-
ersen commitment scheme (i.e., com(m; r) = hmgr). The first step is to design a
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Sigma-protocol Σ1 to prove in zero-knowledge that such a commitment is opened
to 0 or 1. Once the subroutine Σ1 is established, to design a ad-hoc group iden-
tification scheme is to construct a Sigma-protocol Σ2 to show in zero-knowledge
that one of N commitments is opened to 0. Here, a commitment to 0 is the public
key of a user and the randomness is the corresponding secret key. If the �th user
of the ad-hoc group {user0, · · · ,userN−1} wants to identify himself secretly, Σ2

first commits the integer � bit by bit and runs Σ1 to prove in zero-knowledge
that those log N commitments are opened to 0 or 1. Then Σ2 proves in zero-
knowledge that the �th user can open the �th public key (i.e., a commitment to
0) to 0, with the help of the intermediate parameters used in the foregoing Σ1’s.
By replacing the challenge message with the hash value of all initial messages
in Σ2, we obtain a non-interactive zero-knowledge proof system which can be
regarded as a ring signature. For the details of the generic construction of Σ1

and Σ2, we refer readers to the literature [12].
It is worth mentioning that the underlying homomorphic commitment is the

corner stone for both the construction and the security proof of the foregoing
ring signature. As a counterpart of their work, our scheme also contains an ideal-
lattice-based commitment scheme (i.e., com(S;X) = HS+GX). The details of
the commitment scheme is left to Sect. 4.3.

4.2 Our Construction

To construct an O(log N) ring signature, Groth and Kohlweiss proposed a tech-
nique to compute the coefficients of a polynomial in the indeterminate x over
finite field Zq in advance, where x is a hash value computed later [12]. We extend
their method to handle the polynomial with coefficients belonging to a ring of
square matrices. The major difference is that the multiplication of matrices is not
commutative. This is the reason why we restrict x in our scheme to be a 1 × 1
matrix. Since the scalar multiplication is commutative, we have the following
result.

Let integer � be in the interval [0, N − 1], and M = �log N�. Given matrices
Bj , set Wj = �jxI + Bj . Let Wj,1 = Wj = �jxI + Bj = δ1�j

xI + Bj and
Wj,0 = xI−Wj = (1 − �j)xI−Bj = δ0�j

xI−Bj . Then for each i ∈ [0, N − 1],
the product

∏M
j=1 Wj,ij

is a polynomial in x of the form

Pi(x) =
M∏

j=1

(δij�j
xI) +

M−1∑

k=0

Pi,kxk = δi�x
MI +

M−1∑

k=0

Pi,kxk, (1)

where Pi,k is the coefficient of the kth degree term, and can be efficiently com-
puted if {Bj}M

j=1, i and � are given.
The linkable ring signature scheme consists of a tuple of efficient procedures

LRS = (Setup, KGen, Sign, Vfy, Link). Let N be the maximum size of the
ring, M = �log N�, and n be a power of 2. The details of those procedures are
shown as follows:
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Setup(1n, N): On input N and security parameter n, the procedure initiates
a hash function introduced in [18] as a random oracle H : {0, 1}∗ → {v : v ∈
{−1, 0, 1}n, ‖v‖1 ≤ p}, such that 2p ·

(
n
p

)
≥ 2100. It sets ε = 3, t = nΩ(1),

β ≥ max{ t(pM+1−1)
(p−1) , 2mnt2}, m = ω(1). Pick a prime q such that (2β)m > q >

2εβmn1.5 log n. All operations in this system are done in R = Zq[X]/〈f〉, for
f = Xn + 1. Let Q = {g ∈ R : ‖g‖ ≤ t} and Q̃ = {g ∈ R : ‖g‖ ≤ t − 1}. Relying
on those parameters, this procedure samples matrices G,H ∈ R1×m uniformly at
random. Finally it outputs pp = (n,m,G,H,H, q, t,N) as the global parameters.

KGen(pp): For the ith user, this procedure randomly chooses Xi ← Qm×m and
computes Yi = GXi. The ith user’s verifying key is vki = Yi and the singing
key is ski = Xi.

Sign(pp, sk�, μ, L): Without loss of generality, let L = (Y0,Y1, . . . ,YN−1) be
the ensemble of a ring with the largest size. On input a message μ, the �th user’s
signature on behalf of L is generated as follows

– Compute R� = HX�.
– For j from 1 to M

• sample Kj ,Cj ,Dj ← Qm×m,
• if �j = 0, randomly pick Bj ← Qm×m,

else if �j = 1, randomly draw Bj ← Q̃m×m,
• compute V�j

= H(�jI) + GKj ,
• compute Vaj

= HBj + GCj ,
• compute Vbj

= H(�jBj) + GDj .
– For k from 0 to M − 1

• sample Ek ← Qm×m,
• compute Vdk

= (
∑N−1

i=0 YiPi,k) + GEk, where Pi,k is introduced in (1),
• compute V′

dk
= HEk.

– Let S1 = {V�j
,Vaj

,Vbj
,Vdj−1 ,V

′
dj−1

}M
j=1 and then compute hash value x =

H(pp, μ, L, S1,R�).
– For j from 1 to M , compute

1. Wj = �jxI + Bj ,
2. Zaj

= Kj(xI) + Cj ,
3. Zbj

= Kj(xI − Wj) + Dj .
– Compute Zd = X�(xMI) −

∑M−1
k=0 Ekxk.

– Let S2 = {Wj ,Zaj
,Zbj

}M
j=1. Publish the signature σ = {S1, S2,Zd,R�, L}.

Vfy(pp, μ, σ): On input signature σ and message μ, this procedure does as follows
to test the validity of σ.

1. Compute hash value x = H(pp, μ, L, S1,R�).
2. For j from 1 to M , consider the following inequalities

– ‖Wj‖ ≤ t,
– ‖Zaj

‖ ≤ (p + 1)t,
– ‖Zbj

‖ ≤ tp + t2nm + t,
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– ‖Zd‖ ≤ t(pM+1−1)
p−1 .

If any of them does not hold, output 0 and abort.
3. For j from 1 to M , consider the following equations

– V�j
(xI) + Vaj

= HWj + GZaj
,

– V�j
(xI − Wj) + Vbj

= GZbj
.

If any of the aforementioned equations does not hold, output 0 and abort.

4. If the equation R�(xMI) +
∑M−1

k=0 V′
dk

(−xk) = HZd does not hold, output 0
and abort.

5. Inspect whether

N−1∑

i=0

(Yi

M∏

j=1

Wj,ij
) +

M−1∑

k=0

Vdk
(−xk) = GZd

satisfies. If not, output 0; otherwise output 1 (accept).

Link(pp, σ1, σ2): For two signatures σ1 = (. . . ,R1, L1) and σ2 = (. . . ,R2, L2), if
R1 = R2, return 1 (linked) for concluding that they are generated by the same
signer; otherwise, return 0 (unlinked).

Correctness: To see that the signature generated by the Sign procedure always
passes the Vfy procedure, we first observe the four equations in the Vfy proce-
dure. The equations in step 3 are to prove in zero-knowledge that the signer is
the �th user (some � ∈ [0, N − 1]). The correctness of those equations is shown
directly through a simple deduction. The equation in step 4 is to prove that the
parameter for linking is correct. For a valid signature, it holds since

R�(xMI) +
∑M−1

k=0 V′
dk

(−xk)

= HX�(xMI) +
∑M−1

k=0 HEk(−xk)

= H(X�(xMI) −
∑M−1

k=0 Ekxk)

= HZd

.

The equation in step 5 is to prove in zero-knowledge that the anonymous signer
holds the secret key of the �th user. To see the correctness of the last equation,
observe that Pi(x) =

∏M
j=1 Wj,ij

introduced in (1) is a polynomial in x of degree
M , only if i = �. With this fact in mind, we have
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∑N−1
i=0 (Yi

∏M
j=1 Wj,ij

) +
∑M−1

k=0 Vdk
(−xk)

=
∑N−1

i=0 Yi(δi�x
MI +

∑M−1
k=0 Pi,kxk) +

∑M−1
k=0 ((

∑N−1
i=0 YiPi,k) + GEk)(−xk)

=
∑N−1

i=0

∑M−1
k=0 (YiPi,kxk − YiPi,kxk) + Y�(δ��x

MI) +
∑M−1

k=0 GEk(−xk)

= G(X�(xMI) −
∑M−1

k=0 Ekxk)

= GZd

.

It remains to show that {Wj ,Zaj
,Zbj

}M
j=1, and Zd are short enough to pass step

2 of the Vfy procedure.
Note that for polynomials a, b ∈ R, the norm of their product is bounded by

‖a‖ · ‖b‖ ·n. For a ∈ R and b ∈ {v : v ∈ {−1, 0, 1}n, ‖v‖1 ≤ p} the norm of a · b is
not larger than ‖a‖ · ‖b‖ · p. Depending on the above two facts and the triangle
inequality, the correctness of the inequalities in step 2 can be validated easily.
For example, ‖Zbj

‖ = ‖Kj(xI−Wj)+Dj‖ ≤ ‖KjxI‖+ ‖Kj(−Wj)‖+ ‖Dj‖ ≤
tp + t2nm + t and ‖Zd‖ ≤ ‖X�(xMI)‖ + ‖

∑M−1
k=0 Ekxp‖ ≤ tpM + ‖E0x

0‖ +

‖E1x
1‖ + · · · + ‖EM−1x

M−1‖ ≤ tpM + t + tp + · · · + tpM−1 = t(pM+1−1)
p−1 .

Even though the foregoing linkable ring signature is designed over ideal lat-
tices, a classic edition of this signature can be built by instead using any cyclic
group as long as its underlying DLP is hard. We propose a linkable ring signature
based on the ECDLP, and discuss how to implement this signature with ECC
in the full version of this paper [38]. It is easy to see that the RingCT [26] (later
strengthened by Sun et al. [35]), which is adopted in Monero to hide the amount
of a transaction, is trivially achievable with the ECDLP-based signature.

4.3 Security Proof

Groth and Kohlweiss have proved that the generic construction of their ring
signature is secure in the random oracle model, if its underlying commitment
scheme is perfectly hiding and computationally binding [12]. Since our LRS is
designed over the framework of their generic construction, in order to prove the
security of LRS, it is sufficient enough to prove the binding and hiding properties
of the commitment scheme applied in LRS.

Theorem 3 ([12]). The generic construction of the ring signature scheme in
[12] is perfect anonymity if the underlying commitment scheme is perfectly hid-
ing. It is unforgeable in the random oracle model if the commitment scheme is
perfectly hiding and computationally binding.

A non-interactive commitment scheme allows a sender to construct a com-
mitment to a value. The sender may later open the commitment and reveal the
value so that the receiver can verify the opening and check if it is the value that
was committed at the beginning. A commitment scheme is said to be hiding, only



472 H. Zhang et al.

if it reveals nothing about the committed value. The binding property ensures
that a sender cannot open the commitment to two different values.

The non-interactive commitment scheme adopted in our LRS consists of a
pair of efficient algorithms CMT = (Gen, Com).

Gen(1n): As the commitment scheme is a subroutine of LRS, the setup algo-
rithm runs LRS.Setup(1n) to obtain LRS.pp and picks pp = (n,m,G,H, q, t)
out of LRS.pp to be the global parameters of the commitment scheme. Values
and randomness are elements in Qm×m. All operations are done in R.

Com(pp,S): On input a value S ∈ Qm×m, this algorithm samples X ←
Qm×m uniformly at random, and generates the commitment by computing
C = HS + GX. C can later be opened by unveiling the short S and X.

The correctness of the foregoing commitment scheme CMT is obvious. It
remains to prove that CMT is hiding and biding.

Theorem 4 (Binding and Hiding). For any committed value S ∈ Qm×m

and uniformly chosen randomness X ← Qm×m, the commitment C = HS + GX
reveals nothing about S. Moreover, the sender cannot open C to S′ �= S, if the
collision problem ColK(hH) with respect to the generalized knapsack function
family K(R,D,m) is intractable to solve, where D = {g ∈ R : ‖g‖ ≤ β}.

Proof. Given a matrix G ∈ R1×m sampled uniformly at random, we obtain
a uniformly random instance fG : Qm → R from the generalized knapsack
function family F(R,Q,m). Let xi symbolize the ith column of the matrix X ∈
Qm×m, so that it is a vector sampled from Qm×1 uniformly at random. Note
that R can be regarded as Z

n
q and Zq is a finite field. Additionally, we have

q > 2εβmn1.5 log n, t = nΩ(1), m = ω(1) in our setting. Therefore, according
to Theorem 1, the distribution of fG(xi) = Gxi is almost uniform over Z

n
q

(namely R), and fG(X) = GX is almost uniform over R1×m. The same result
is also suitable for fH(S) = HS. Then, for any S ∈ Qm×m, C = HS + GX is
almost uniformly distributed over R1×m and reveals nothing about the S.

We proceed to prove the binding property. From our parameter settings
(2β)m ≥ q, we have m > log q

log 2β . Depending on Theorem 2, to solve the
collision problem ColK(hH) with respect to the generalized knapsack func-
tion family K(R,D,m) is as hard as to solve the I(f)-SVPγ problem, where
γ = 8ε2βmn log2 n is a polynomial in security parameter n. Suppose for the
sake of contradiction that a PPT adversary A can break the binding property
of CMT . We will design an algorithm B to solve ColK(hH) with respect to
K(R,D,m).

After B receiving an instance hH labeled by H ∈ R1×m from K(R,D,m),
it selects T ← Qm×m uniformly at random, and computes G = HT. Relying
on the discussion in the proof of hiding property, G is uniformly distributed
in R1×m. Subsequently, B simulates a commitment scheme for A by publishing
pp = (n,m,G,H, q, t) as the global parameters. Note that the distributions
of G and H are the same as that in the original scheme. Consequently, by
the hypothesis, A could return S,S′,X,X′ ∈ Qm×m, such that S �= S and
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HS + GX = HS′ + GX′ in a non-negligible probability. B considers the two
possible cases.

Case 1: If HS = HS′, then S and S′ are a pair of collisions with respect to hH,
since ‖S‖ ≤ t < β, ‖S′‖ ≤ t < β.

Case 2: If HS �= HS′, then X �= X′ and we have H(S − S′) = G(X′ − X). By
using G = HT, we can deduce that H(S − S′) = HT′, where T′ = T(X′ − X).
Since ‖T′‖ ≤ 2nmt2 < β, ‖S − S′‖ ≤ ‖S‖ + ‖S′‖ ≤ 2t < β, S − S′ and T′ are a
pair of collisions with respect to hH.

Both Case 1 and Case 2 yield a contradiction to the assumption that
ColK(hH) with respect to the generalized knapsack function family K(R,D,m)
is intractable to solve. Consequently, the commitment scheme is binding. ��

Since our underlying commitment scheme CMT is binding and hiding, the
anonymity and unforgeability of the linkable ring signature LRS can be shown
according to Theorem 3. For a complete discussion of the security proof, we refer
readers to the full version of this paper [38]. Actually, most of the techniques
follows that of [12] and x has the unique multiplicative inverse in R.

The next is to prove that our linkable ring signature is linkable.

Theorem 5 (Linkability). Our linkable ring signature LRS is linkable. For-
mally, given a key pair (X,Y = GX), it is impossible to generate a valid signa-
ture σ = {S1, S2,Zd,R, L}, such that Y ∈ L and R �= HX.

Proof. Assume that a user with (X,Y) generates a signature σ =
{S1, S2,Zd,R, L} on behalf of L, such that Y ∈ L and R �= HX. As σ is a
valid signature, from step 4 of the Vfy procedure, we have

R(xMI) +
M−1∑

k=0

V′
dk

(−xk) = HZd . (2)

Additionally, since Zd can pass step 5 of the Vfy procedure, it must be generated
by using the signing key X, i.e., Zd = X(xMI)−

∑M−1
k=0 Ekxk. Otherwise, it yields

a contradiction to the unforgeability of the signature scheme. Subsequently, we
can deduce from (2) that

(HX − R)(xMI) +
M−1∑

k=0

(V′
dk

− HEk)(xk) = 0 . (3)

If R �= HX, the left side of (3) is a polynomial in x of degree M . Once R, V′
dk

,
X and Ek are given, Eq. (3) has at most M solutions. However, x is obtained by
computing the hash function H(pp, μ, L, {V�j

,Vaj
,Vbj

,Vdj−1 ,V
′
dj−1

}M
j=1,R),

and involves 2n ·
(
n
p

)
≥ 2100 possible values. Consequently, the probability that

the hash value is the solution of (3) is negligible and the only sensible condition
for (3) to be satisfied is HX = R and V′

dk
= HEk. ��
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5 APQC Based on Linkable Ring Signatures

In CryptoNote, the author suggested using stealth addresses to protect the pri-
vacy of receivers in all transactions. A stealth address is a one-time address (a
verifying key which is also called a destination key) for a receiver to receive coins.
It is generated by the sender of a transaction, and only the real receiver could
determine the one-time address and recover the corresponding signing key.

In this section, we will introduce a key-generation protocol to handle stealth
addresses. By combining this protocol and the linkable ring signature presented
in the previous section, we describe the standard transaction of APQC in detail
at last.

5.1 Key-Generation Protocol

The key-generation protocol is responsible for three purposes. Firstly, it gener-
ates public and private keys for a user that initially joins the cryptocash system.
Secondly, if Alice wants to pay coins to Bob, this protocol generates a fresh one-
time address for Bob by using the random values chosen by Alice and the public
key of Bob. Note that the one-time address is essentially a verifying key of the
linkable ring signature scheme. Thirdly, since Alice broadcasts the transaction
labeled with the destination address, the key-generation protocol helps Bob to
efficiently recognize this transaction and to recover the corresponding signing
key.

This protocol is formalized as four efficient procedures KG=(Setup, UKey-
Gen, DKeyGen, DKeyRec) which are short forms for setup, user keys gen-
eration, destination keys generation, and destination keys recovery, respectively.

Setup(1n, 1λ): On input security parameter, this procedure generates global
parameters pp for the whole cryptocash system which means this procedure also
runs LRS.Setup(1n) and ES.Setup(1n) as subroutines so that the signature
scheme and encryption scheme are accurately initiated (see Sects. 2.3 and 4.2 for
details). Let (n,m,G,H,H, q, t,N) be the global parameters of the linkable ring
signature, and R = Z[X]q/〈Xn + 1〉. Besides that, it chooses a cryptographic
hash function hash : {0, 1}∗ → {0, 1}λ. Let D = {g ∈ R : ‖g‖ ≤ t/2}.

UKeyGen(pp): When a user wants to join the cryptocash system, he executes
this procedure. This procedure first generates the keys for public key encryption
scheme (epk, esk) ← ES.KGen(pp). It then generates a partial key pair for the
linkable ring signature scheme X ← Dm×m, Y = GX. Note that the norm of
the partial signing key X is a little smaller than the original one of the linkable
ring signature. (epk,Y) and (esk,X) are the public and private keys held by the
user.

DKeyGen(pp, epk,Y): If Alice wants to send coins to Bob who holds keys
(epk,Y), (esk,X), she runs the procedure with epk and Y. This procedure
samples Xp ← Dm×m and generates the destination key Yd = GXp+Y for Bob.
Xp is a part of the signing key with respect to the destination key Yd, but no one
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except Bob can recover the integral signing key. This procedure proceeds to pick
an AES secret key k uniformly at random. It then computes c1 = ES.Encepk(k)
with the public key encryption and computes c2 = AESk(hash(epk)‖Xp) with
the AES algorithm. Finally, it outputs the destination key Yd, and the auxiliary
information c1, c2. The process of DkeyGen procedure is depicted in Fig. 1.

Fig. 1. DKeyGen procedure

DKeyRec(pp, epk, esk,Y,X, (Yd, c1, c2)): Bob runs this procedure to check
(Yd, c1, c2) of a passing transaction. If it is a transaction with Bob as recipi-
ent, it will be that (1) k = ES.Decesk(c1); (2) (hash(epk)‖Xp) = AESk(c2).
If this procedure finds that the first part of the plaintext of c2 is not the hash
value of Bob’s public encryption key epk, then this procedure aborts and out-
puts 0. Otherwise, Bob computes Xd = Xp + X and Y′

d = GXd. If Y′
d = Yd,

this procedure outputs 1 and admits the validity of the destination key Yd and
its signing key Xd. Since ‖Xd‖ ≤ ‖Xp‖ + ‖X‖ ≤ t, Xd is a valid signing key
with correspondence to the destination key Yd. The process of this procedure is
briefly shown in Fig. 2.

5.2 Transactions

We proceed to introduce transactions in APQC. Let Bob and Alice be two users
of our APQC. Bob will runs KG.UKeyGen to generates his public and private
keys (epkBob,YBob), (eskBob,XBob), when he initially joins the system. Simi-
larly, (epkAlice,YAlice), (eskAlice,XAlice) are the keys held by Alice. Besides the
user keys, Alice and Bob maintain their own wallet addresses, respectively.

Assume that the destination address YBj and its signing key XBj are
in Alice’s wallet, and she wants to send coins of this address to Bob.
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Fig. 2. DKeyRec procedure

Alice will specify N − 1 foreign outputs (OutputB1, . . . , OutputB(j−1),
OutputB(j+1), . . . , OutputBN ) in which the amount is equivalent to that of
OutputBj . She proceeds to find Bob’s public key (epkBob,YBob) and runs
KG.DkeyGen(pp, epkBob,YBob) to generate the destination key YCj and its
auxiliary information c1, c2 for Bob (see Fig. 1). She then pushes (1) Tx input
including {OutputBi}N

i=1 and the amount she sends to Bob, (2) the destination
key YCj and auxiliary information c1, c2 she generated for Bob, (3) all previous
transactions with output {OutputBi}N

i=1, into the hash function to obtain a hash
digest, μ, of the transaction. Subsequently, she signs the hash digest by running
σ ← LRS.Sign(pp,XBj , μ,YB1, . . . ,YBN ), where YBi is the destination key
of OutputBi. Finally she broadcasts the transaction.

Bob checks all passing transactions. For each transaction, he extracts the
destination key and auxiliary information (Yd, c1, c2), and runs the procedure
KG.DKeyRec(pp, epkBob, eskBob,YBob,XBob, (Yd, c1, c2)). If this transaction
is the one that Alice sent to Bob, the foregoing procedure will return the signing
key XCj for the destination key Yd = YCj . If this happens, Bob accepts this
transaction and records XCj , Yd into his wallet. Bob can later spend the coin
stored in the destination address Yd because he has the signing key XCj .

The standard transaction is also briefly depicted in the full version [38].

6 Conclusions and Future Works

While a lot of lattice-based ring signature and standard signature have been
designed recently, linkable ring signature over lattices has not been to the best of
our knowledge. The strong similarity in the construction between a lattice-based
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signature and DLP-based one, e.g., the signature in [18] and the Schnorr’s signa-
ture [32,33], can help us to design the lattice-based counterparts of DLP-based
linkable ring signatures. In this paper, using the techniques in [12], we construct
a linkable ring signature from ideal-lattices in which the size of a signature,
on behalf of a ring with N participants, is O(log N). Based on the proposed
signature scheme, we present an anonymous post-quantum cryptocash system
by following the major ideas in CryptoNote and Monero. In order to generate
stealth addresses (verifying keys) and recover corresponding signing keys for the
linkable ring signature, we provide a key-generation protocol as a subroutine of
the cryptocash system. By combining all those techniques together, our crypto-
cash protocol obtains a new level anonymity comparing to the original Bitcoin
system. Furthermore, the new designed cryptocash system has the potential to
resist quantum attacks.

Recently, the unlinkability and untraceability of Monero were analyzed by
[24] and [14]. Some of them were blamed on the abuses of users, e.g. signing a
transaction on behalf of a ring with only 1 participant. Besides, there are still a
few inherent weakness in Monero, e.g. for an overwhelming proportion of input
addresses, a user cannot find enough addresses with the same value to hide his
real address, especially in the early time of the system. Next, we shall trace
these problems and discuss what should be done to make our cryptocash system
secure under these analyses. A full cryptocash system will be implement to test
the communication and computation costs. And if possible, we would like to
contribute our system to the cryptocash community for public usage.
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Abstract. Bitcoin has become the most successful cryptocurrency ever
deployed, and its most distinctive feature is that it is decentralized. Its
underlying protocol (Nakamoto consensus) achieves this by using proof
of work, which has the drawback that it causes the consumption of vast
amounts of energy to maintain the ledger. Moreover, Bitcoin mining
dynamics have become less distributed over time.

Towards addressing these issues, we propose SpaceMint, a cryptocur-
rency based on proofs of space instead of proofs of work. Miners in
SpaceMint dedicate disk space rather than computation. We argue that
SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most
notably, its large energy consumption. SpaceMint also rewards smaller
miners fairly according to their contribution to the network, thus incen-
tivizing more distributed participation.

This paper adapts proof of space to enable its use in cryptocurrency,
studies the attacks that can arise against a Bitcoin-like blockchain that
uses proof of space, and proposes a new blockchain format and transac-
tion types to address these attacks. Our prototype shows that initializing
1TB for mining takes about a day (a one-off setup cost), and miners
spend on average just a fraction of a second per block mined. Finally,
we provide a game-theoretic analysis modeling SpaceMint as an exten-
sive game (the canonical game-theoretic notion for games that take place
over time) and show that this stylized game satisfies a strong equilibrium
notion, thereby arguing for SpaceMint’s stability and consensus.

1 Introduction

E-cash was first proposed by Chaum [8] in 1983, but did not see mainstream
interest and deployment until the advent of Bitcoin [26] in 2009. With a market
cap of over 300 trillion US dollars by December 2017, Bitcoin has given an
unprecedented demonstration that the time was ripe for digital currencies.

In an early version, our proposal was called “Spacecoin”. We changed it to “SpaceMint”
due to name conflicts.

c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 480–499, 2018.
https://doi.org/10.1007/978-3-662-58387-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58387-6_26&domain=pdf
https://doi.org/10.1007/978-3-662-58387-6_26


SpaceMint: A Cryptocurrency Based on Proofs of Space 481

On the flip side, Bitcoin’s dramatic expansion has provoked serious questions
about the currency’s long-term sustainability. Bitcoin miners produce proofs of
work (PoW) to add blocks to the blockchain, the public ledger of all transactions.
For each block added, there is a reward of newly minted coins. One concern is
that proofs of work deplete large amounts of natural resources: by some estimates
from December 2017, the Bitcoin network consumed over 30 terawatt-hours per
year, which exceeds Denmark’s energy consumption. Moreover, most mining is
currently done by specialized ASICs, which have no use beyond Bitcoin mining.

A related concern is the emergence of a “mining oligarchy” controlled by
a handful of powerful entities. One of the original ideas behind basing Bitcoin
mining on computing power was that anyone could participate in the network
by dedicating their spare CPU cycles, incurring little cost as they would be
repurposing idle time of already-existing personal computers. However, mod-
ern Bitcoin mining dynamics have become starkly different [31]: the network’s
mining clout is overwhelmingly concentrated in large-scale mining farms using
special-purpose hardware for Bitcoin mining, often in collaboration with elec-
tricity producers. As a result, mining with one’s spare CPU cycles today would
result in net loss due to electricity costs. This phenomenon undermines the sta-
bility and security intended by the original decentralized design.

In light of these issues, there has been increasing interest in cryptocurren-
cies based on alternatives to proofs of work. The most explored alternative is
proofs of stake (PoStake), in which a miner’s probability of successfully creating
a block increases with the amount of currency he holds, rather than the amount
of computation he performs. This concept has several incarnations, from ad-
hoc implementations in existing cryptocurrencies [9,22] to designs with rigorous
security proofs in various models [10,11,21,23]. While these are innovative pro-
posals, the early constructions have variously suffered from attacks that arise
due to the inexpensive nature of mining. On the other hand, the more recent
proposals are fairly complex, usually running some kind of Byzantine agreement
protocol among a sufficiently large subset of stakeholders, and thus diverge sub-
stantially from the simplicity of the original Nakamoto design. Such schemes
also typically fail in case of low participation (i.e., if stakeholders are not mostly
online).

In this paper, we propose SpaceMint, a cryptocurrency that uses proofs of
space (PoSpace) [4,14,30] to address the aforementioned issues that occur in
Bitcoin and alternative proposals such as PoSpace-based currencies. To mine
blocks in SpaceMint, miners invest disk space rather than computing power,
and dedicating more disk space yields a proportionally higher expectation of
successfully mining a block. SpaceMint has several advantages compared to a
PoW-based blockchain like Bitcoin, summarized below.

– Ecological: Once the dedicated space for mining is initialized, the cost of
mining is marginal: a few disk accesses with minimal computation.

– Economical: Unused disk space is readily available on many personal com-
puters today, and the marginal cost of dedicating it to SpaceMint mining
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would be small (by the previous point).1 We thus expect that space will be
dedicated towards mining even if the reward is much smaller than the cost of
buying disk space for mining. In contrast, in PoW-based blockchains rational
miners will stop mining if the reward does not cover the energy cost.

– Egalitarian: Bitcoin mining is done almost entirely on application-specific
integrated circuits (ASIC) and by large “mining farms,” to the point that
small-scale participation (e.g., based on general-purpose hardware) is impos-
sible. We believe SpaceMint to be less susceptible to specialized hardware
than Bitcoin, as discussed in Sect. 5.
Another cause of centralization of mining power in Bitcoin is mining pools.
This paper does not address that problem directly, but an elegant and simple
idea [25] to discourage mining pools in PoW-based blockchains – namely,
having the mining process require the secret key to redeem the block reward
– can be straightforwardly adapted for SpaceMint.2

1.1 Challenges and Our Contributions

In order to “replace” PoW by PoSpace to achieve consensus on the blockchain,
the following problems must be addressed.

– Interactivity: PoSpace, as originally defined [14], is an interactive protocol.
Although the same is true for the original definition of PoW [13], there
the interaction was very simple (i.e., a two-message, public-coin protocol).
PoSpace requires more interaction, thus it is more challenging to adapt
PoSpace to the blockchain setting.

– Determine the winner: In a PoW-based blockchain like Bitcoin, the proba-
bility of a miner being the first to find an eligible next block increases with
its hashing power. The Bitcoin protocol prescribes that once an eligible next
block is announced, all miners should append that block to the blockchain
and continue mining on the new longest chain. Generating a PoSpace, on the
other hand, is deliberately computationally cheap. We thus need some way to
determine which of many different proofs “wins”. Moreover, the probability
of any miner winning should be proportional to the space it dedicates, and
we want a miner to learn if he is a likely winner without any interaction.

– “Nothing-at-stake” problems: When replacing PoW by proofs that are compu-
tationally easy to generate (such as PoStake or PoSpace), a series of problems
arise known as nothing-at-stake problems [16].3 The computation-intensive
nature of Bitcoin mining is a key property that, informally, ensures that all

1 By marginal cost we mean the cost of using disk space that otherwise would just sit
around unused.

2 In a PoW this can be achieved by, e.g., not applying the hash function to a nonce
directly, but to its signature. In the PoS [14] used for SpaceMint, this can be achieved
by augmenting each “label” that is stored with its signature.

3 Although PoSpace-based currencies share some of the issues PoStake-based curren-
cies have, they are robust to others, in particular, PoSpace does not share the tricky
participation problem of PoStake.
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miners are incentivized to concentrate their mining efforts on a single chain,
which leads to consensus. When mining is computationally cheap however,
miners can intuitively (1) mine on multiple chains simultaneously, not just
the one the protocol specifies, and (2) try creating many different blocks with
a single proof (of space or of stake) by altering the block contents slightly
(e.g., by using different transaction sets) before choosing the most favorable
one to announce. The latter behavior is known as “(block) grinding”. Those
issues are undesirable as
1. they slow down consensus;
2. they potentially allocate a greater reward to cheating miners
3. they potentially enable double-spending attacks by an adversary control-

ling much less than 50% of the space.
– Challenge grinding: Yet another issue arises when the content of past blocks

can influence which blocks are added to the blockchain in future. Then it
may be possible for a miner to generate a long sequence of blocks whose
earlier blocks might have proofs of low quality, but are generated in a biased
way (by “grinding” through all the possible proofs) so that the miner can
create high quality proofs later in the sequence. The problem arises when the
overall sequence is of higher quality than would be expected from the miner’s
disk space size, due to the disproportionately high quality of later blocks.
Challenge grinding may be considered a nothing-at-stake problem, but we
state it separately as, unlike the other nothing-at-stake problems, we have
not encountered it in other contexts.

To tackle the interactivity problem, SpaceMint uses the Fiat-Shamir paradigm (a
standard technique to replace a public-coin challenge with a hash of the previous
message, already used to adapt PoW for Bitcoin); additionally, we leverage the
blockchain itself to record messages of the PoSpace protocol (concretely, we use
a special type of transaction to record the commitment to its space a prover
needs to send to the verifier in the initialization phase of the PoSpace).

To determine the winner, we define a quality function, which assigns a quality
value to a PoSpace proof. This function can be computed by the miner locally,
and is designed such that the probability of a miner having the highest-quality
proof in the network is proportional to the space it dedicates.

The nothing-at-stake problems are more challenging to solve. To tackle these,
we introduce several new ideas and leverage existing approaches. To disincen-
tivize miners from extending multiple chains we ensure such behavior is detected
and penalize it. To prevent block grinding, SpaceMint ensures that the PoSpace
is “unique”, i.e., a miner can generate exactly one valid proof for every given
challenge, and this challenge itself is uniquely determined by the proofs that
were used to mine a previous block. This is done by basically running two chains
in parallel, a “proof chain” that contains the proofs, and a “signature chain”
that contains the transactions.

Finally, to address challenge grinding, SpaceMint prescribes that past blocks
influence the quality of short sequences of future blocks, thus exponentially driv-
ing down the probability that a miner could generate a sequence of blocks of
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disproportionately high quality by exploiting the relationship between past and
future blocks.

The idea of making the challenge for a block a deterministic function of a
unique credential of the resource that “won” a previous block – in combination
with having a quality function by which miners can locally decide if they are
likely winners – has been used in subsequent blockchain proposals like Algorand
[23] or the Chia Network [3].

We also implement and evaluate the modified PoSpace to demonstrate the
effectiveness of our scheme. Even for space larger than 1 TB, we show that (1)
miners need less than a second to check if they are likely to “win” and therefore
should generate a candidate next block, (2) block generation takes less than 30 s,
and (3) verifying the validity of a block takes a fraction of a second. Moreover,
these numbers grow logarithmically with larger space.

Finally, we provide a game-theoretic analysis of SpaceMint modeled as an
extensive game. To do this, we formally specify a stylized model of SpaceMint
mining and show that adhering to the protocol is a sequential equilibrium for
rational miners in this game (i.e., deviating from the protocol does not pay
off). Our analysis works in a simplified model that serves to rule out certain
classes of attacks (i.e., profitable deviations based on a simplistic set of possible
actions), but does not capture all possible attack vectors by real miners.4 To our
knowledge, this is the first analysis of a cryptocurrency mining as an extensive
game with the corresponding game-theoretic equilibrium concepts; though the
model is simplistic, we hope that this framework for rigorously ruling out certain
classes of attacks will serve as a useful base upon which to build more nuanced
game-theoretic models to rule out larger classes of attacks, in this and other
similar cryptocurrencies.

1.2 Related Work

We have already discussed proofs of stake above. Here, we briefly mention other
related proposals. A more detailed discussion can be found in the full version [27].

Proof of storage/retrievability [6,7,12,18,19, and many more] are proof sys-
tems where a verifier sends a file to a prover and later requests a proof that the
prover really stored the file. Proving storage of a (random) file does show that
one dedicated space, but the verifier must send the entire file first. In contrast,
PoSpace requires verifier computation and communication to be polylogarithmic
in the prover’s storage size.

Proof of secure erasure (PoSE), one-time computable functions [5,15,20,29]
are proof systems where a prover convinces the verifier that is has access to some
space. Additionally one can require that the proof implies that the space also was
erased [20,29], or some function can only be computed in forward direction [15].

4 For example, “selfish mining” [17] or block withholding is not captured by our sim-
plified model, and SpaceMint is in fact susceptible to block withholding attacks to
a similar extent to Bitcoin.
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Those protocols have only one phase, and thus cannot be used as a PoSpace,
i.e., to efficiently prove space usage over time.

Permacoin [24] is a cryptocurrency proposal that uses proofs of retrievability
with a novel variant of PoW. While solutions to Bitcoin’s PoW puzzles carry no
intrinsic value, Permacoin makes proof-of-work mining serve a useful purpose:
miners are incentivized to store useful data and thus the network serves as a
data archive. Permacoin is however still fundamentally a PoW-based scheme. In
contrast, in SpaceMint the dedicated storage does not store anything useful, but
we completely avoid PoW and the associated perpetual computation.

Burstcoin [1] is the only cryptocurrency we are aware of in which disk space is
the primary mining resource. However, Burstcoin’s design allows time/memory
trade-offs: i.e., a miner doing a little extra computation can mine at the same
rate as an honest miner, while using just a small fraction (e.g., 10%) of the
space. Moreover, Burstcoin requires a constant (albeit small) fraction (0.024%)
of dedicated disk space to be read every time a block is mined, while SpaceMint
requires only a logarithmic fraction. Finally, verification in Burstcoin is prob-
lematic: miners must hash over 8 million blocks to verify another miner’s claim.
The details on this attacks can be found in Appendix B of the full version [27].

Chia Network [3] is a very recent proposal of a blockchain based on PoSpace
in combination with proofs of sequential work. In a nutshell, the better the qual-
ity of the PoSpace, the faster the block can be “finalized” by a proof of sequential
work, and this proof tuple then can be used to create a block. By using proofs
of sequential work on top of PoSpace, Chia is even more similar to Bitcoin than
SpaceMint in several respects: for example, it requires no synchronization/clocks
(except, as in Bitcoin, time-stamped blocks for the occasional re-calculation of
the mining difficulty), while retaining the efficiency of a pure PoSpace-based cur-
rency. The PoSpace that was developed for Chia [4] is based on ideas completely
different from the PoSpace [14] we use. It has worse asymptotic security guaran-
tees, but unlike [14], it has a non-interactive initialization phase and extremely
short and efficient proofs.

Outline

– Cryptocurrency from proofs of space: In (Sects. 2 and 3) we modify
PoSpace [14] for the blockchain setting and present SpaceMint, a cryptocur-
rency based purely on proofs of space.

– Addressing the “nothing-at-stake” problems: After describing attacks that
arise from nothing-at-stake problems and challenge grinding, we describe how
our design uses novel approaches to overcome them (Sect. 4). Our solutions
extend to other blockchain designs based on easy-to-generate proofs.

– Evaluation of proof of space: We evaluate our modified PoSpace in terms
of time to initialize the space, to generate and verify blocks, and block
size (Sect. 5).

– Game theory of SpaceMint: We model SpaceMint as an extensive game,
and show that adhering to the protocol is an ε-sequential Nash equilibrium
(Sect. 6).
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Algorithm 1. Space commit
Common input: A hard-to-pebble graph G with n nodes and a function
hash : {0, 1}∗ → {0, 1}L.

1. P generates a unique nonce μ and then computes and stores (γ, Sγ) := Init(μ, n),
and sends the nonce9 μ and the commitment γ to V. Sγ contains the labels of all
the nodes of G computed using Eq. (1) and γ is a Merkle-tree commitment to these
n labels. The total size of Sγ is N = 2 · n · L (graph + Merkle tree).

2 Proof of Space in SpaceMint

A PoSpace [14] is a two-phase protocol between a prover P and a verifier V.
After an initialization phase, P stores some data Sγ of size N , and V stores a
short commitment γ to Sγ . Then, in the execution phase, V sends a challenge c
to P, who returns a short answer a after reading a small fraction of Sγ .

The PoSpace from [14,30] are specified a family of “hard-to-pebble” directed
acyclic graphs of increasing size. The prover picks a graph G = (V,E) from this
family depending on the amount of space it wants to dedicate. P then stores a
label li for each node i ∈ V , which is computed as

li := hash(μ, i, lp1 , . . . , lpt
), (1)

where p1, . . . , pt are the parents of node i and hash is a hash function (sampled
by V). In [14] two graph families are suggested, one for which any successful
cheating prover must either use Ω(|V |/ log(|V |)) space between the initialization
and execution phase, or use Ω(|V |/ log(|V |)) space during execution. The other
graph family enforces either Θ(|V |) space between the phases (i.e., the same as
the honest prover, up to a constant), or Θ(|V |) time during execution.

Formally, [14] specifies a PoSpace by a tuple of algorithms {Init,Chal,Ans,
Vrfy}, which specify a two-phase protocol between a verifier V and a prover P.
Init is used to initialize the space, Chal generates a challenge, Ans computes the
response to a challenge and Vrfy verifies the response. The initialization phase
consists of running Algorithm1,5 where P commits to its space, followed by
Algorithm 2, where P proves that the commitment is computed “mostly cor-
rect”. In the execution phase, given by Algorithm 3, V simply opens some of the
committed labels to prove it has stored them.

The algorithms we give here are already made partially non-interactive for
our blockchain application – in the actual PoSpace the challenges in Algorithms 2
and 3, as well as μ in Algorithm 1 are sampled by V and sent to P.

5 The nonce just ensures that the same space cannot be used for two different
proofs [14]; thus in a single-verifier setting, P can generate the nonce.
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Algorithm 2. Prove commit
Initial state: V holds commitment γ and nonce μ; P stores Sγ and μ. Both are given
the challenges c = (c1, . . . , ckv ) to be used.

1. P computes openings b := (b1, b2, . . .) of all the labels of the nodes {ci}i∈[kv ] and of
all their parents and sends them to V. This is done using Ans where Ans(μ, Sγ , c)
returns the Merkle inclusion proof of label lc w.r.t. γ.

2. V verifies these openings using Vrfy, where Vrfy(μ, γ, c, a) = 1 iff a is a correct
opening for c. It then checks for all i = 1, . . . , kv if the label lci is correctly computed
as in Eq. (1).

Algorithm 3. Prove space
Initial state: V holds commitment γ and nonce μ; P stores Sγ and μ. Both are given
the challenges c = (c1, . . . , ckp) to be used.

1. P computes openings {ai := Ans(μ, Sγ , ci)}i∈[kp] and sends them to V.
2. V verifies these openings by executing Vrfy(μ, γ, ci, ai).

3 SpaceMint Protocol

3.1 Mining

The mining process consists of two phases: initialization and mining.

Initialization. When a miner first joins the SpaceMint network and wants to
contribute N bits of space to the mining effort, it first generates a public/secret
key pair (pk, sk) and runs Algorithm1 as P, with nonce μ set to pk, to generate

(γ, Sγ) := Init(pk,N).

The miner stores (Sγ , sk) and announces its space commitment (pk, γ) via a
special transaction. We require miners to commit (pk, γ) to prevent a type of
grinding attack: the problem is that the PoSpace we use [14] have the prop-
erty that by making minor changes one can turn (pk, γ) into many other space
commitments that re-use most of the space.

Once this transaction is in the blockchain, the miner can start mining.

Mining. Similar to Bitcoin, SpaceMint incentivizes mining (adding new blocks)
through block rewards (freshly minted coins per block) and transaction fees.
Once initialized, each miner attempts to add a block to the blockchain every
time period. For time period i, a miner proceeds as follows:

1. Retrieve the hash value of the last block in the best chain so far, and a
challenge c (we discuss how c is derived in Sect. 3.4), which serves as a short
seed from which we derive two long random strings $p, $v.

2. Compute challenges (c1, . . . , ckp
) := Chal(n, kp, $p) for use in Algorithm 3.

3. Compute the proof of space a = {a1, . . . , akp
} using Algorithm 3.
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4. Compute the quality Quality(pk, γ, c, a) of the proof (details of the quality
function are given in Sect. 3.5).

5. If the quality is high enough, so that there is a realistic chance of being
the best answer in period i, compute the proof of correct commitment b =
{b1, . . . , bkv

} using Algorithm 2; then create a block and send it to the network
in an attempt to add it to the chain. This block contains the proofs a and b
computed above and a set of transactions; the exact specification is in given
Sect. 3.2 below.

Remark 1. (Postponing Algorithm 2). Note that unlike in the interactive
PoSpace where one runs Algorithms 1 and 2 during initialization, we only require
miners to execute Algorithm 2 if they want to add a block. This is done for effi-
ciency reasons. For one thing, this way, the proof b (which is significantly larger
than a or γ) must only be recorded in the blockchain once the corresponding
space has actually been used to mine a block. Another more subtle advantage is
that now the challenge for Algorithm2 changes with every block; thus a cheat-
ing miner (who computed some of the labels incorrectly) will only know if he
was caught cheating at the same time when he generates a potentially winning
proof a (and if b does not pass, he cannot use a). This allow us to tolerate a much
larger soundness error in Algorithm2, which means we can choose a smaller kv

(concretely, it’s ok if he passes the proof with large probability p, as long as this
requires using at least a p times the space an honest miner would use).

...

...
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hash

signature

transaction

Block i+2

hash

signature

transaction
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... the signature chain

Fig. 1. Our blockchain consists of a proof chain that prevents grinding, and a signature
chain that binds the transactions to the proof chain.

3.2 Blockchain Format

A blockchain in SpaceMint is a sequence of blocks β0, β1, . . . which serve as a
public ledger of all transactions. Each block βi = (φi, σi, τi) consists of three
parts, called “sub-blocks”, which contain the index i that specifies the position
of the block in the blockchain. The structures of sub-blocks are as follows:

• The hash sub-block φi contains
– the current block index i,
– the miner’s signature ζφ on φi−1, the (i − 1)th hash sub-block, and
– a “space proof” containing the miner’s pk.
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• The transaction sub-block τi contains
– the current block index i and
– a list of transactions (Sect. 3.3).

• The signature sub-block σi contains
– the current block index i,
– the miner’s signature ζτ on τi, the ith transaction sub-block, and
– the miner’s signature ζσ on σi−1, the (i − 1)th signature sub-block.

The links between blocks in a blockchain are illustrated in Fig. 1. We will refer
to the hash sub-blocks as the proof chain, and the signature sub-blocks with the
transactions as the signature chain. While the signature and transaction sub-
blocks are all linked, the hash sub-blocks are only linked to each other and not
to any signature or transaction sub-blocks.

This design may seem to prevent any kind of consensus, as now we can have
arbitrary many signature chains containing different transactions consistent with
the same proof chain. The key observation is that once an honest miner adds
the ith block (honest in the sense that he will only sign one block and keep its
secret key secret), the transactions corresponding to this proof chain up to block
i cannot be changed any more even by an adversary who controls all secret keys
from miners that added the first i − 1 blocks.

3.3 Transactions in SpaceMint

There are three types of transactions in SpaceMint: (1) payments, (2) space com-
mitments, and (3) penalties. Every transaction is signed by the user generating
the transaction, and sent to the miners to be added to the blockchain. Here, we
specify the three types of transactions.

Payments. Coins in SpaceMint are held and transferred by parties identified
by public keys. A payment transaction transfers coins from m benefactors to n
beneficiaries and has the form

ctx = (payment, txId , in ,out).

– txId : A unique, arbitrary transaction identifier. That is, no two transactions
in a blockchain can have the same identifier.

– in : A list of input coins to the transaction. Specifically, in = (in1, . . . , inn),
a list of n benefactors, each being a triple: inj = (txId j , kj , sigj), where:

• txId j is the identifier of a past transaction,
• kj is an index that specifies a beneficiary pkkj

of the transaction txId j ,
• sigj is a signature of (txId , txId j , kj ,out), which verifies under key pkkj

proving ownership of the the kjth beneficiary of transaction txId j and
binding the coin to the beneficiaries.

– out : A list of beneficiaries and the amount they receive. Specifically, out =
(out1, . . . , outm) with outi = (pki, vi), where:

• pki specifies a beneficiary, and
• vi is the number of coins that pki is to be paid.
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For a transaction to be valid, we require that (1) all signatures in in verify
correctly; (2) no benefactor is referenced by more than one subsequent transac-
tion in the blockchain (to prevent double-spending); (3) the sum of the input
values to the transaction is at least the sum of the amounts paid to beneficiaries.

Space Commitments. A space-commitment transaction

ctx = (commit, txId , (pk, γ))

consists of pk, a public key, and γ which was computed as (γ, Sγ) := Init(pk,N).
Thus, ctx is a space commitment to a space of size N .

Penalties. A penalty transaction

ctx = (penalty, txId , pk, prf )

consists of pk, the public key of the transaction creator, and prf, a proof of
penalty-worthy behavior by another miner. These transactions serve to penalize
miners that engage in malicious behavior. The primary usage of penalties in
SpaceMint is to disincentivize mining on multiple chains (e.g., the proof would
contain two blocks of the same index signed by the same miner), but penalty
transactions can be used to discourage other types of (detectable) behavior in
blockchain-based currencies.

3.4 Where the Challenge Comes From

In Bitcoin, the PoW challenge for block i is simply the hash of block i − 1.
For SpaceMint, using block i − 1 for the challenge can slow down consensus: If
there are many different chains, miners can get different challenges for different
chains. A rational miner would thus compute answers for many different chains
(since it is easy to do), and if one of them is very good, try to add a block to
the corresponding chain, even if this chain is not the best chain seen so far. If
all miners behave rationally, this will considerably slow down consensus, as bad
chains get extended with blocks of quality similar to the current best chain, and
it will take longer for lower-quality chains to die off.

Instead, we derive the challenge for block i from the hash of block i−Δ, for a
reasonably large Δ: the probability of multiple chains surviving for more than Δ
blocks decreases exponentially as Δ increases. Moreover, in contrast to Bitcoin,
we only hash the block from the proof chain, but not the signature chain (Fig. 1):
this serves to prevent block-grinding attacks, since there is nothing to grind on
(the proof chain is fixed regardless of the set of transactions in the block). Finally,
we will use the same challenge not just for one, but for δ consecutive blocks. This
is done to prevent challenge-grinding attacks, as we explain in Sect. 4.

3.5 Quality of Proofs and Chains

Quality of a Proof. The block to be added to the chain at each time step is
decided by a quality measure on the PoSpace proof included in each proposed
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block. For a set of valid proofs π1=(pk1, γ1, c1, a1), . . . , πm =(pkm, γm, cm, am),
we require Quality(πi) to be such that the probability that πi has the best quality
among π1, . . . , πm corresponds to the ith miner’s fraction of the total space in
the network. The probability is over the choice of the random oracle hash, which
we use to hash answer a. We require:

Pr
hash

[∀j �= i : Quality(πi) > Quality(πj)
]

=
Nγi∑m

j=1 Nγj

,

where Nγi
is the space committed to by γi.

Let DN be a distribution that samples N values in [0, 1] at random and
outputs the largest of them:

DN ∼ max
{
r1, . . . , rN : ri ← [0, 1], i ∈ [N ]

}
. (2)

Let DN (τ) denote a sample from DN with sampling randomness τ . For valid
proofs we now define

Quality(pk, γ, c, a) := DNγ
(hash(a)). (3)

The Quality of an invalid proof is set to 0.
It remains to show how to efficiently sample from the distribution DN for a

given N . Recall that if FX denotes the cumulative distribution function (CDF)
of some random variable X over [0, 1]. If the inverse F−1

X exists, then F−1
X (U)

for U uniform over [0, 1] is distributed as X. The random variable X sampled
according to distribution DN has CDF FX(z) = Pr[X ≤ z] = zN , since this is
the probability that all N values ri considered in (2) are below z. Therefore, if
we want to sample from DN , we can simply sample F−1

X (U) for U uniform over
[0, 1], which is U1/N . In (3) we want to sample DNγi

using randomness hash(ai).
To do so, we normalize the hash outputs in {0, 1}L to a value in [0, 1], and get

DNγi
(hash(ai)) :=

(
hash(ai)/2L

)1/N
.

Quality of a Chain. In order to decide which of two given proof-chain branches
is the “better” one, we also need to define the quality of a proof chain (φ0, . . . , φi),
which we denote by QualityPC(φ0, . . . , φi). Each hash sub-block φj contains a
proof (pkj , γj , cj , aj), and the quality of the block is vj = DNj

(hash(aj)). For
any quality v ∈ [0, 1], we define

N (v) = min
{
N ∈ N : Prw←DN

[v < w] ≥ 1/2
}

,

the space required to obtain a proof with quality better than v on a random chal-
lenge with probability 1/2. This quantity captures the amount of space required
to generate a proof of this quality.

In order to prevent challenge-grinding attacks, it is desirable for the chain
quality to depend multiplicatively on constituent block qualities (described in
more detail in Sect. 4), and moreover it is useful to weight the contribution of
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the jth block for a chain of length i by a discount factor Λi−j . From these
motivations we derive the following quality function. Note that we have used a
sum of logarithms, rather than a product, to achieve the multiplicativity.

QualityPC(φ0, . . . , φi) =
∑i

j=1 log(N (vj)) · Λi−j . (4)

4 Nothing-at-Stake Problems and Solutions

In this section we discuss the “nothing-at-stake” issues, which were already men-
tioned in the introduction. We describe them here in more detail, and outline
how SpaceMint defends against them.

Recall that the difficulty arises due to the ease of computing multiple can-
didate blocks: in a PoSpace (or PoStake) based currency, a miner can compute
many proofs (either extending different chains, or computing different proofs for
the same chain) at little extra cost. Deviating from the protocol like this can
be rational for a miner as it might lead to higher expected rewards. PoW-based
blockchains also suffer from such “selfish mining” attacks [17], and basing the
blockchain on efficiently computable proofs like PoSpace or PoStake can further
aggravate this problem. Such behavior can significantly slow down consensus
as well as push the scheme to follow energy expenditure trends similar to PoW-
based schemes, which arise whenever there is an advantage to be gained by doing
extra computation.

An even more serious issue is double-spending attacks, which become possible
if a miner can create a sufficiently long chain in private which has better quality
than the honestly mined chain. In all known blockchain proposals, a miner con-
trolling more than half of the mining resources (hashing power, stake or space)
can do this. But it is considered problematic if a blockchain is susceptible to
double spending by adversaries with significantly less than half of the network
resources.

I. Grinding Blocks. The problem: In Nakamoto-style blockchains, the chal-
lenge for the proof computed by the miners (like PoW in Bitcoin or PoSpace
in SpaceMint) is somehow derived from previous blocks. If it is computationally
easy to generate proofs, a miner can try out many different blocks (for exam-
ple by including different transactions) until it finds an advantageous one that
will allow him to generate good proofs for future blocks. This is an issue for
selfish-mining and double-spending attacks.
The solution: We decouple proofs from transactions as shown in Fig. 1. This
eliminates the problem of block grinding, as now challenges depend only on the
proof chain. Moreover, our PoSpace are “unique” in that a prover can generate
at most one valid proof per challenge. Hence, the only degree of freedom that
a miner has in influencing future challenges is to either publish its proof (so it
might end up in the chain), or to withhold it.

II. Mining on Multiple Chains. The problem: In Bitcoin, rational miners
will always work towards extending the longest known chain. However, when
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mining is computationally easy, it can be rational to mine on all (or at least
many) known chains in parallel, to “hedge one’s bets” across all chains that
might eventually become part of the public ledger. Again, this is an issue for
selfish-mining and double-spending attacks.
The solution: To address this problem in the context of selfish-mining attacks
(we discuss double-spending later), we derive the challenge for block i from block
i−Δ for some parameter Δ (Sect. 3.4). Let us consider two cases, depending on
whether mining is done on two or more chains that forked more or less than Δ
blocks in the past.
Case 1: chains forked less than Δ ago. In this case, the miner will get the same
challenge for both chains. SpaceMint uses penalties (Sect. 3.3) to disincentivize
miners from extending multiple chains in this case; without the penalties, a
rational miner with a good-quality PoSpace proof could announce blocks on
multiple chains to maximize his chances of winning. Concretely, suppose a miner
pk′ attempts to mine concurrently on two chains whose most recent blocks are
βj and β′

j , by announcing βj+1 and β′
j+1 (which have the same quality and were

mined using the same space). Then anyone who observes this can generate a
transaction (penalty, txId, pk, {pk′, βj+1, β

′
j+1}) to penalize pk′. This transaction

can be added to a chain extending βj+1 (or β′
j+1), and its meaning is that half of

the reward (block reward and transaction fees) that should go to the miner who
announced βj+1, is now going to pk (the “accuser”) instead, and the other half of
the reward is destroyed, i.e., cannot be redeemed by any party. We destroy half
of the reward so the penalty hurts even if the cheating miner can be reasonably
sure to be able to accuse itself. For this to work, mining rewards can only be
transferred by a miner some time after the block was added, so that there is
enough time for other miners to claim the penalty.6

Case 2: chains forked more than Δ ago. In this case the miner receives different
challenges for different chains, leading to proofs of different quality for the two
chains. In this case, even with our penalty scheme in place, a rational miner
can still get an advantage by deviating: instead of only trying to extending
the highest-quality chain, it also generates proofs for the lesser chain. As the
challenges differ, so will the two proofs, and if the proof on the lesser chain has
very high quality, the rational miner would publish it, hoping that this chain
will become the best chain and survive.

We address this problem by arguing that it is extremely unlikely (the prob-
ability is exponentially small in Δ) that this case occurs, as a weaker branch of
the chain would have to “survive” for Δ blocks despite a strong incentive (via
our punishment scheme) for miners to only extend the chain of highest quality.

III. Grinding Challenges. The problem: Challenge grinding is a type of attack
that can be used for double-spending, by generating a long chain in private that

6 The idea of penalizing miners for extending multiple chains goes back at least
to slasher https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-
algorithm. Unlike previous penalty-based proposals, we do not need the miners to
make a deposit up-front; instead, they will simply lose their mining reward if they
cheat.

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
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is of higher quality than what would result when using one’s resources honestly.
It arises from the fact that an adversary can split its space into m smaller
chunks. As discussed in Sect. 3.5, the quality of a block is purposely designed
such that splitting a fixed amount of space into smaller chunks and choosing the
highest-quality block among them does not affect the expected quality of the
block generated. However, a miner can examine all possible chains of some given
length, and then pick the chain that gives it the most favorable challenges for
future blocks.

Concretely, consider our setting, where the challenge for block i is determined
by block i − Δ. An adversary can generate a sequence of length 2Δ where the
first half of the blocks is chosen to provide the most favorable challenges for the
later half of the sequence.7 Note that the first half of this sequence would be
of even poorer quality than the expected quality from honest mining given the
adversary’s total amount of space; however, the benefit gained in the second half
of the sequence can outweigh this loss in quality in the first half. The adversary
can then release this high-quality chain (all at once) in an attempt to overtake
the current best chain.

Note that in this attack the adversary explores multiple chains in parallel,
which we have addressed already using a penalizing scheme. But penalizing
does not protect against double-spending attacks in which the adversary never
actually published two proofs for the same slot. And even he would, a double-
spending attack can be profitable even if one loses some mining rewards due to
the penalizing scheme.
The solution: As mentioned in Sect. 3.5, the problem with this attack is exacer-
bated if the metric for determining the quality of a chain is a sum or any other
linear function. Thus, to prevent this attack, (1) we define the quality of a chain
as the product of the amounts of space needed for the proofs in it, rather than
their sum; and (2) we use the same block to derive challenges for δ future blocks
(i.e., use hash(βi, nonce) for nonce ∈ [1, δ] as challenges for time i + Δ through
i + Δ + δ).

Intuitively, (1) makes it harder for the adversary to find a good chain of
length 2Δ, as worse blocks are weighted more; and (2) is helpful because it
means that a challenge-grinding adversary would have to choose “early” blocks
to optimize their chances over sequences of δ future challenges rather than just
a single future challenge, thus making it exponentially harder (in δ) to find a
“good” challenge that will yield δ high-quality blocks at once. Another way to
see this is that by the Chernoff bound, the average of δ independent random
variables deviates less from its expectation as δ grows. So for large δ, even the
ability to select between multiple challenges (each giving a sample of the average
of δ i.i.d. variables) is not very useful to find one where this value deviates by

7 As for each of the Δ blocks there are m distinct challenges, the search space here
is of huge size mΔ. Consequently, this attack might seem artificial, but by pruning
and just considering the most promising sub-chains at every level, one will probably
not miss the best one.
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a lot from its expectation. A more detailed discussion of this attack and our
defense is given in the full version [27].

5 Evaluation

To evaluate SpaceMint, we focused on space initialization time, proof size, and
time for proof generation and verification. We implemented a prototype in Go
using SHA3 in 256-bit mode as the hash function and the graphs from [28], which
forces cheating provers to store Ω(N/ log(N)) bits to efficiently generate proofs.
We used a desktop computer equipped with an Intel i5-4690K Haswell CPU and
8 GB of memory, and an off-the-shelf 2 TB hard disk drive with 64 MB cache.

Figure 2a shows initialization time for spaces from 8 KB to 1.3 TB, which
involves computing hashes of the nodes and a Merkle tree over them and is only
done once. For 1.3 TB this takes approximately 41 h, which prevents re-using the
same space for different commitments.

(a) Time to initialize space. (b) Proof size when open-
ing λ log(n) (left) or λ (right)
nodes for λ = 30.

(c) Time for proving and
verifying for opening λ log(n)
nodes for λ = 30.

Fig. 2. Results of evaluation

A proof consists of the Merkle inclusion proof for a set of node labels. The
number of nodes to be opened is λ · log(n) + 1 (as kv = λ · log(n) in Algorithm 2
and kp 	 kv in Algorithm 3), where λ is a statistical security parameter. Every
node has at most two parents, and each opening of a node is log(n) · 32 bytes.
The overall proof size is thus at most 3 · λ · log2(n) · 32 bytes. (Opening fewer
than λ log(n) nodes was not shown to be secure, but we are not aware of con-
crete attacks even for opening λ nodes; we believe that the number required for
security lies somewhere in between, closer to opening λ nodes.) Fig. 2b shows
the proof size for opening λ log(n) or only λ nodes, for λ = 30.

Assuming a miner is storing the space correctly, she only needs to open a
small kp number of nodes in the Merkle tree to check the quality of her solution
(Sect. 3.1). As it takes <1 ms to read a hash from the disk, this takes just a
fraction of a second. In the rare event that the answer is of very good quality,
she generates the full proof, which takes less than 30 s. Since a miner must
open kp nodes in every time slot, we want kp to be small. In practice kp = 1
seems secure; for safety, we set it to a small constant. Proofs in SpaceMint are
substantially bigger than in Bitcoin and require more than one hash evaluation
to verify. However, for an active currency, the transactions contained in a block
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will largely dominate block size and verification time. Figure 2c shows that while
it takes seconds to generate the proof, it only takes a fraction of a second to
verify it.

In terms of power consumption of the network, currently, the Bitcoin miners
consume more than 32 TWh of energy annually, or around 220 GJ/min. Our
prototype was evaluated on a full CPU, but a cost-conscious miner would mine
on a more energy-efficient device, such as a Raspberry Pi [2], which consumes
less than 10 W of power. Furthermore, we could set the quality threshold such
that only a small number of miners, e.g., 1,000 miners, have a realistic chance
of winning (i.e., have to generate a full proof). In such a scenario, the estimated
energy consumption of a SpaceMint network per block would be

10W · M · 0.01s + 10W · 1000 · 20s = (200, 000 + 0.1M)J/block,

where M is the number of miners in the network. In such scenario, even with
a billion miners in the network and with a block being added every minute,
SpaceMint network would use less than 1% of the power of the current Bitcoin
network.

Impact of Storage Medium. Almost all modern Bitcoin mining is done by
clusters of application-specific integrated circuits (ASICs), which can compute
hashes for a tiny fraction of the hardware and energy cost of a general-purpose
processor. We believe that SpaceMint mining would not be as susceptible to
advantages from specialized hardware as Bitcoin, and that regular hard disk
drives are well-suited to serve as SpaceMint mining equipment. Let us con-
sider existing categories of storage devices. Although hard disks are expensive
compared to other storage devices, most notably tapes, devices like tapes are
not adequate for mining as we require frequent random accesses to answer the
PoSpace challenges. Solid state drives do allow for (fast) random accesses, but
are more expensive than hard disks and do not provide any benefit since the rate
of lookups required for mining is very low. Notably, SpaceMint mining hinges
on doing a few random lookups every minute. The required frequency is so low
that speed is a non-issue: cheap, slow random access is what SpaceMint miners
are after.

6 Game Theory of SpaceMint

The miners in a cryptocurrency are strategic agents who seek to maximize the
reward that they get for mining blocks. As such, it is a crucial property of a
cryptocurrency that “following the rules” is an equilibrium strategy: i.e., it is
important that the protocol is designed so that miners are never in a situation
where deviating from the protocol is more profitable than behaving honestly.

To establish by a rigorous analysis that no deviations are beneficial is a
natural theoretical goal. In game theory, such analyses are done in the context
of a model specifying the “actions” that players can take during the course of a
game in which each player’s goal is to maximize her own utility. In our context,
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utility corresponds to profit from mining rewards. It is assumed that “actions”
describe all behavior that players may exhibit: in our context, this means that
the notion of “following the protocol,” as well as any possible deviations from
the protocol, are assumed to be expressible by an action or sequence of actions.

To our knowledge, this paper presents the first rigorous equilibrium analysis
in which cryptocurrency mining is modeled as an extensive game, the canonical
game-theoretic notion for games that take place over time. Our analysis works in
a simplified model that serves to rule out certain classes of attacks (i.e., profitable
deviations by modeled actions). In our stylized game, play occurs over a series of
discrete time steps, in each of which a block is added to the blockchain. At each
time step, each player (miner) must choose a strategy, specified by: (1) which
blocks to extend (if any), and (2) which extended blocks to publish (if any).

Our analysis herein is intended as a basic framework to model mining in
blockchain-based cryptocurrencies as an extended game, and does not claim
to comprise an exhaustive modeling of all possible attack vectors. In particular,
our stylized model does not capture some important aspects, most notably block
withholding, which is used in “selfish mining.” Nevertheless, we believe that our
simple modeling framework for cryptocurrency as an extended game can serve
as a useful base upon which to build more nuanced game-theoretic models.

Due to space constraints, we defer to the full version [27] the details of the
modeling of mining as an extensive game and the proof of equilibrium. Here, we
give just an informal statement of our main equilibrium theorem.

Theorem 1. It is a sequential equilibrium of the SpaceMint game (defined in
[27, Sect. 7]) for all computationally bounded players to adhere to the mining
protocol, provided that no player holds more than 50% of all space.

Showing that adhering to the protocol is an equilibrium of such a game
means that rational miners are not incentivized to deviate from the protocol
when playing the game: from this, it follows that rational miners will reach
consensus on a single chain, as they would not be able to get an advantage by
using a “cheating” strategy.
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Abstract. The two main challenges in deploying real world secure poker
protocols lie in enforcing the distribution of rewards and dealing with
misbehaving/aborting parties. Using recent advances in cryptocurrencies
and blockchain techniques, Kumaresan et al. (CCS 2015) and Bentov et
al. (ASIACRYPT 2017) were able to solve those problems for the gen-
eral case of secure multiparty computation. However, in the specific case
of secure poker, they leave major open problems in terms of efficiency
and security. This work tackles these problems by presenting the first
full-fledged simulation-based security definition for secure poker and the
first fully-simulatable secure poker protocol that provably realizes such a
security definition. Our protocol provably enforces rewards distribution
and penalties for misbehaving parties, while achieving efficiency compa-
rable to previous tailor-made poker protocols, which do not have formal
security proofs and rewards/penalties enforcement. Moreover, our proto-
col achieves reduced on-chain storage requirements for the penalties and
rewards enforcement mechanism.

1 Introduction

Shamir, Rivest and Adleman, soon after their seminal work on the RSA cryp-
tosystem, started exploring new ideas on cryptography inspired by everyday
activities such as playing games. In particular, they started investigating how to
play poker remotely [26], a problem related to very interesting questions in the
distributed setting. For example, securely shuffling with remote parties requires
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every player to participate in the procedure; otherwise, security may not be
assured at all for the participants.

Mental Poker, Cryptography and the Gambling Market: Since its origins
the research on mental poker and card games worked as a drive for the research
in cryptography. The original work of Shamir et al. inspired a number of follow-
ups, starting in the eighties with the works on the feasibility of playing mental
games, e.g. [11]. The first protocols for mental poker faced several limitations
due to poor efficiency, which was improved in the following decades several by a
number of works, e.g. [3,9,25,28,29,32,33].

In economic terms, online poker has been a strong industry since the “Poker
Boom” of the 2000s, as described in prestigious economic venues [15]. Much of
the strong interest in online gambling has its advent due to the appearance of
online casinos. Despite legal restrictions imposed by new US legislation, players
resort to websites based in other countries. For example, a Financial Times
report [1] describes how UK firms filled the vacuum left by the US counterparts
in the estimated 40 billion dollars global market of international online gambling
(with one of the major online casino reporting 22 millions users and revenue of
2.5 billions dollars).

The current model of online gambling is based on trusted casinos, which
are responsible for generating the randomness used to shuffle the cards and for
enforcing the proper execution of the game. In contrast, a real world poker game
requires almost no trust among the players, or between players and third par-
ties like casinos. In the current model, a malicious casino or an insider attacker
working for a casino can greatly influence the outcome of the game by manip-
ulating the randomness used for shuffling or by leaking additional information
to the players. And such cases have already happened (see Section “Integrity
and Fairness” of [30] for more details). This state of affairs represents a clear
disadvantage from online poker in comparison with a game played face-to-face.
Techniques from mental poker can be used to overcome this problem and securely
play poker online without the need of trusted casinos.

Challenges Preventing Deployment: Two central problems preventing
deployment of secure poker protocols that were not addressed in the litera-
ture until very recently are protecting against aborts and ensuring that winners
get their rewards. The first problem consists in players who leave the game
prematurely (i.e. abort the protocol execution) causing the protocol to freeze.
Castellà-Roca et al. [9] investigated this scenario and proposed a protocol that
we show to be flawed (details in the full version of this paper [12]). The second
problem of ensuring that a player actually gets a reward if it wins has only been
tackled very recently after the advent of cryptocurrencies and blockchain tech-
nologies. Kumaresan et al. [20] addressed the problem with the help of Bitcoin
and blockchains following the approach of [2,6]. They concurrently also dealt
with the abort problem in a far more satisfactory way by imposing financial
penalties on the aborting parties and using the collected money to compensate
the remaining players.
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Basically, the protocol of Kumaresan et al. [20] uses an unfair multiparty com-
putation protocol along with many simple smart contracts and Bitcoin deposits
to ensure that the rewards are distributed to players whenever the relevant con-
ditions are fulfilled, and to enforce financial penalties on aborting/misbehaving
parties. Using this strategy, a specific poker protocol was also designed, although
with inefficiencies (for a more detailed discussion see [7, Sect. 6]). A significant
improvement was obtained by Bentov et al. [7] by leveraging the power of state-
ful contracts to greatly improve the efficiency, solving some of the bottlenecks in
the previous protocol. While the protocol in [20] requires O(n2) rounds of inter-
action with the cryptocurrency network and an amount of collateral linear in
the number of messages exchanged during the protocol, the protocol of Bentov
et al. [7] requires O(1) rounds of interaction with the cryptocurrency network
and an amount of collateral equal to the compensation the players would receive.
The central idea for improving the performance and decreasing the amount of
collateral is to use a single stateful contract that keeps all the deposits and exe-
cutes the unfair protocol off-chain. After the initial deposits, this contract is only
involved in two situations: for the cash distribution, or if a problem happens.

Lack of Strong Security Proofs: Even though efficient solutions are known
for different components of card games, most have not been formally proven
secure in a strong security model. In fact, it has been observed in [25] that the
protocols of [32,33] are broken and we describe in the full version of this work
[12] new concrete flaws that we have identified in the protocols proposed in [9]
and [3]. Out of the few protocols that have been suggested, it seems that only [20]
and its follow-up work [7] present a more detailed security proof in a strong,
simulation-based security model. However, in [7] only the general solution based
on enhanced trapdoor permutations has a full security proof (but incurs high
computational and communication costs due to its generality). Bentov et al. [7,
Sect. 7] argue that, instead of the general protocol, the tailor-made protocol of
Wei and Wang [28,29] can be used as a building block and coupled with their
techniques for dealing with aborts and cash distribution in order to obtain more
efficient poker protocols. However they do not present a proof for this claim,
and not even define the security properties that such tailor-made poker protocol
would have to satisfy in order for the overall solution to be secure. In fact, the
security models used in [28,29] are not formally defined and seem to be rather
weak (judging by the informal descriptions given in these works).

General Requirements for Useful Poker Protocol: The current state of the
art is unsatisfactory as there is no solution that meets all the following criteria
necessary in a deployment in a real world scenario in which money is at stake: (1)
Efficiency: performance that is comparable to tailor-made poker protocols; (2)
Security: a simulation-based, formal proof of security; (3) Penalties: avoid-
ing aborts/misbehavior or penalizing the misbehaving players; (4) Rewards:
securely distributing the rewards to the players.

The works that are closer to achieve these criteria are [20] and [7], which made
fundamental progress towards providing viable solutions to satisfy conditions (3)
and (4). Nevertheless, none of their solutions meet simultaneously conditions (1)
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and (2). The solutions in [20] as well as the general solution in [7] do not meet
condition (1), while the solution in [7] using tailor-made protocol improves on
condition (1) but does not address (2) as it lacks a security proof.

1.1 Our Contribution

We present our protocol, Kaleidoscope, named after the homonymous poker
themed movie from the sixties [18]. Given the earlier discussion, our main goal in
this work is to design a poker protocol that concurrently meets all four criteria
above. In designing our solution we face two main challenges: 1. constructing an
efficient off-chain protocol without sacrificing provable security guarantees as in
previous tailor-made poker protocols, 2. reducing the amount of data stored in
the blockchain, which is a highly constrained resource. In summary, our contri-
butions are: (1) First full-fledged simulation-based security definition for poker
(check full version [12]); (2) First fully-simulatable poker protocol (Sect. 3), which
provably realizes our security definition; (3) Improved concrete computational
and communication complexities for off-chain card operations (around 10 times
better than previous works) and reduced on-chain storage requirements for the
penalties and rewards enforcement mechanism (estimated in Sect. 4).

As our goal is to provide a strong security guarantee, we first specify a poker
functionality that encompasses the whole game execution, penalizes aborting
parties and guarantees the distribution of the rewards. Such modeling of the
whole poker game as an ideal functionality is, to the best of our knowledge, novel.
Then we design a tailor-made protocol that provably realizes such functionality
in a simulation-based security model. Our protocol is designed with both off-
chain and on-chain efficiency in mind. We focus on the case where players act
honestly and the on-chain protocol execution is used as a last resort to recover
from malicious actions. In this context, we meet criteria (1) and (2) by designing
an off-chain protocol that is highly efficient while providing compact witnesses
to be posted to the blockchain for claiming rewards or enforcing penalties. Our
protocol represents cards as ciphertexts of a threshold version of the well known
El Gamal cryptosystem as proposed by Barnett and Smart [3] but significantly
differs from their work in the techniques we employ for distributed key generation
and card shuffling. Namely, we use a technique for distributed key generation of
threshold El Gamal public keys that addresses the security issue we found in the
protocol of [3] (described in the full version of this work [12]) without sacrificing
efficiency. Moreover, we significantly improve the efficiency of the card shuffling
procedure by leveraging recent advances in zero-knowledge proofs for correctness
of shuffles [4]. This initial protocol itself is unfair, meaning that an adversarial
abort can cause the execution to fail without consequences. In order to meet
criteria (3) and (4), we build on top of the ideas in [20] and [7], financially
penalizing an adversary and rewarding honest players through a stateful smart
contract. We optimize their general rewards/penalties mechanism for the specific
case of poker and define concrete compact witnesses of correct behavior, resulting
in a smaller on-chain footprint.
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1.2 Overview and Intuition of Our Protocol

Next we present a more detailed overview of our protocol. Due to the fact that it
is not reasonable to assume that the majority of the players are honest in a poker
game, the secure poker protocol will not be able to guarantee fairness. Instead, we
follow the approach of imposing a financial penalty on the party that interrupts
the correct execution of the protocol, and use this money to compensate the
honest parties. A stateful contract is used to enforce these properties. As it is
highly desirable to decrease the burden on the blockchain as much as possible
(thus improving the efficiency and decreasing the impact on other users), the
execution of the protocol is performed mostly off-chain and the parties only go
back on-chain for the cash distribution or if some problem happens. When the
protocol goes back on-chain, the parties need to present witnesses to the stateful
contract to validate the state of the game. It is important to decrease the size of
these witnesses that need to be stored by the players, as well as the verification
costs for the stateful contract. In this regard, a key characteristic of poker is
that the future execution is independent from the past when conditioned on a
few variables that keep track of the current status. Hence, if all participants sign
these variables at a checkpoint, then this constitutes a witness witness that can
be delivered to the stateful contract in order to prove the state of the game at
this particular point. Therefore, at the checkpoints, the players can delete all
other previous witnesses, saving space for the players and verification efforts for
the stateful contract. The general overview of the protocol is:

1. Initially the parties lock into the stateful contract functionality an amount of
money equal to the sum of the collateral and the money that they will use for
the bets. A few initialization procedures are also executed during this stage.

2. The players run our novel unfair tailor-made poker protocol off-chain. During
this stage, an aborting adversary can cause the off-chain protocol to fail, so
the players need to record a few witnesses that must be sent to the stateful
contract in the case of problems that require its intervention. All messages are
signed by the senders, and at some checkpoints a few variables that summarize
the status of the game are signed by all players, constituting a compact witness
of correct execution.

3. If the protocol finishes correctly off-chain, then the final payout amounts will
have been signed by all players, and so the parties only come back on-chain
for the cash distribution that is performed by the stateful contract.

4. If some problem happens and a player requests the intervention of the state-
ful contract, each party that does not want to get penalized handles their
respective recorded witnesses to the stateful contract, which is then able to
verify the latest status of the protocol execution and continue the execution
(on-chain) under its mediation. During the mediated execution, it penalizes
any participant that does not follow the protocol rules or abort.

Note that on Step 2, the adopted technique is used in order to decrease the
size of the witnesses that the players need to store after the checkpoint as well as
to reduce the amount of on-chain verification that needs to be performed in case
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of intervention (thus reducing the burden on the blockchain, which affects all
cryptocurrency’s users). The safe deposit d that each of the n participants lock
into the contract should be enough to pay the compensation amount q for all the
other parties, i.e., d ≥ q(n− 1). Obviously, the monetary compensation q should
be related to the maximum possible bet amount m at each hand; otherwise the
corrupted parties would have an incentive to abort the protocol if they notice
that one hand will end up badly for them.

2 Preliminaries

We now define some building blocks used in our protocols. For details about the
Decision Diffie Hellman problem and digital signatures check the full version [12].

Security Model, Adversarial Model and Setup Assumptions: We prove
our protocol secure in the real/ideal simulation paradigm with sequential com-
position. This is an intuitive paradigm that provides strong security guarantees
for the protocols that are proven secure according to it. For more details, check
the full version of this work [12]. We consider malicious adversaries that may
deviate from the protocol in arbitrary ways. Moreover we consider the static
case, where the adversary is only allowed to corrupt parties before protocol exe-
cution starts and parties remain corrupted (or not) throughout the execution.
Our protocol uses the Random Oracle Model (ROM) [5] and assumes the exis-
tence of a stateful contract functionality FSC (that is described in Sect. 3 and
can be implemented using blockchain techniques).

Non-interactice Zero-Knowledge Proofs: We will need a NIZK of knowl-
edge of a value α ∈ Zp such that x = gα and y = hα given g, x, h, y. For this
we use the Fiat-Shamir transformation on the protocol of Chaum and Peder-
sen [10], which we denote by DLEQ(g, x, h, y). We will also need a simpler NIZK
of knowledge of a value α ∈ Zp such that x = gα given g, x. For this we use the
Fiat-Shamir transformation on the protocol of Schnorr [24], which we denote by
DLOG(g, x). We give a full description of these NIZKs in the full version [12].

A central component of our protocol is a zero-knowledge proof that an
ordered set of ElGamal ciphertexts has been obtained by re-randomizing each
ciphertext and permuting the resulting ciphertexts in a previous ordered set (an
operation called a Shuffle). Formally, we want to prove knowledge of a permuta-
tion π ∈ ΣN and randomness r = (r1, . . . , rN ) such that for the vectors of cipher-
texts c = (c1, . . . , cN ) and c′ = (c′

1, . . . , c
′
N ) we have c′

i = TEG.ReRand(cπ(i), ri).
An efficient zero-knowledge argument for correctness of this kind of shuffle has
been proposed in [4] and it can be turned into the required zero-knowledge
proof through the Fiat-Shamir heuristic [17,22]. We denote this NIZK by
ZKSH(π, r, c, c′) and refer interested readers to [4] for details on its construction
and proof. Further discussion of this NIZK’s efficiency and distributed generation
of setup parameters is presented in the full version [12].
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(n, n)-Threshold ElGamal Cryptosystem: A cryptosystem with (t, n)-
threshold allow a group of n parties to jointly generate a public key that is
then used to encrypt plaintext messages in such a way that they can only be
recovered from the ciphertexts if at least t parties cooperate [13]. In our card deck
generation procedure we employ a (n, n)-threshold version of the ElGamal cryp-
tosystem [16] based on the constructions of [14,21] with a verifiable decryption
protocol similar to the Verifiable Threshold Masking Functions (VTMF) of [3].
The final goal is to encode card information as Threshold ElGamal ciphertexts
as in the VTMF based construction of [3]. However, we employ different tech-
niques for distributed key generation in order to address the security issues we
have identified in [3]. Moreover, we do not require the verifiable masking and
verifiable re-masking (rerandomization) operations because the verification that
these ciphertexts are correctly re-randomized is handled by the zero-knowledge
proofs of correctness of a shuffle [4] presented in the next section. We do use
the fact that this scheme is additively homomorphic (and rerandomizable) and
a verifiable decryption procedure, where it is possible to verify that each user is
providing a valid decryption share. We now present the (n, n)-Threshold ElGa-
mal cryptosystem with verifiable decryption TEG and refer interested readers
to [3,14,21] for a full discussion:

– Key Generation TEG.Gen(1λ) : Each party Pi generates a random secret-
key share TEG.ski

$← Zp and broadcasts hi = gTEG.ski along with a proof
DLOG(g, hi)1. Once all n parties have broadcast their public key share hi, each
party Pi verifies the accompanying proofs DLOG(g, hj) (aborting if invalid)
and then saves all hj , for i �= j, reconstructing the public key by computing
TEG.pk = h =

∏n
i=1 hi = g

∑n
i=1 TEG.ski .

– Encryption TEG.EncTEG.pk(m, r) : The encryption of a message m ∈ G

under a public-key TEG.pk with randomness r ∈ Zp is carried out as a reg-
ular ElGamal encryption. Namely, a ciphertext c = (c1 = gr, c2 = hrm) is
generated.

– Re-Randomization TEG.ReRand(c, r′) : For fresh randomness r′, a cipher-
text c = (c1, c2) is re-randomized by computing c′ = (gr′

c1, h
r′

c2).
– Verifiable Decryption TEG.DecTEG.sk1,...,TEG.skn

(c): Parse c = (c1, c2).
Each party Pi broadcast a decryption share di = cTEG.ski

1 and a proof
DLEQ(g, hi, c1, di) showing that they have correctly used their secret-key
share TEG.ski. Once all n parties have broadcast their decryption share di,
each party Pi checks that the DLEQ(g, hj , c1, dj) proofs are correct for all
i �= j (aborting otherwise) and retrieves the message by computing

c2∏n
i=1 di

=
c2

c
∑n

i=1 TEG.ski

1

=
m · TEG.pkr

gr
∑n

i=1 TEG.ski
=

m
(
g

∑n
i=1 TEG.ski

)r

gr
∑n

i=1 TEG.ski
= m.

Smart Contracts: The concept of smart contracts was introduced by Szabo [27]
and recently popularized by the Ethereum plaftorm [8,31], which implements
1 This zero-knowledge proof of the knowledge of the exponent solves the issue in [3]

that was pointed out in the introduction.
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smart contracts based on blockchain techniques. Basically, smart contracts allow
a user to specify much richer conditions for transactions to be approved over a
cryptocurrency scheme, mimicking contracts in real life. Besides ensuring that
an amount of money is paid to a certain party who manages to fulfill a given
static set of conditions, smart contracts can also maintain an evolving state that
is taken into consideration when evaluating conditions for contract fulfillment.

In Ethereum, smart contracts can be written using Solidity, a Turing com-
plete programming language specially designed for this purpose. In order to
avoid denial-of-service attacks, the amount of computation involved in verifying
fulfillment of a contract is bounded by how much a user is willing to pay have
the contract checked. This payment is made by means of an auxiliary cryptocur-
rency called gas, which is given to the miners who verify a contract. Basically,
more complex contracts require larger amounts of gas to be verified so that the
miners receive compensation for computationally heavy contract verification.

The use of Ethereum based stateful contracts for rewards/penalties enforce-
ment in secure multiparty computation protocols was first proposed in [7]. Their
approach consists in having parties provide a deposit of a certain number of coins
before protocol execution, later receiving a refund in case they behave honestly.
Our protocol follows the same approach and consists mainly of operations over a
cyclic group (where the Discrete Logarithm and DDH assumptions are believed
to be hard). It has been estimated in [23] that a modular exponentiation over
such a group (computed as a scalar multiplication over an elliptic curve) costs
40000 gas (0.075 US Dollars) while [7] estimated the DLEQ NIZK [10] to cost
1287858 gas (0.30 US Dollars) assuming an exponentiation cost of 300000 gas.
Such estimates provide good evidence that our protocol could be implemented
in a smart contract platform such as Ethereum at a reasonable price.

3 Poker Protocol

For an overview of the poker game and the game formalization using the ideal
functionality Fpoker, check the full version of this work [12].

Our protocol represents cards as ciphertexts of a threshold ElGamal cryp-
tosystem, similarly to the scheme of [3], but employs different techniques for
distributed key generation in order to address the security issues we have iden-
tified in [3] and a highly improved procedure for shuffling cards based on recent
advances in zero-knowledge proofs of shuffle correctness [4]. In order to gener-
ate the representation of a shuffled deck, the parties first run a distributed key
generation algorithm to obtain a public-key (while each holds a share of the
secret-key). Next, they start a shuffling procedure that involves rerandomizing
and the randomly permuting ciphertexts that encrypt the numbers assigned to
each card (1 to 52), which is executed by all parties in a round-robin manner.
The parties also provide to each other proofs that the shuffling was correctly
executed, meaning that the resulting ciphertexts are indeed rerandomized and
permuted version of ciphertexts provided by the previous party, which prevents
adversaries from injecting ciphertexts representing arbitrary cards. When cards
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are intended to be revealed publicly, each party broadcasts a decryption share
of the ciphertext representing the card along with a zero-knowledge proof show-
ing its correctness. If a covered card is to be given to one specific party, each
of the other parties sends their decryption shares and proofs directly to that
party through a private channel. The main efficiency improvement in our pro-
tocol is obtained by employing an a compact zero-knowledge proof of a shuffle
introduced in [4] (made non-interactive by the Fiat-Shamir transform), instead
of the cut-and-choose technique employed by [3]. This proof is compatible with
ElGamal ciphertexts and achieves the same security level of the one in [3] with
only a fraction of the computational and communication complexities.

The main new feature of our protocols is a mechanism for detecting and
(financially) punishing cheaters without requiring the whole protocol to the exe-
cuted on chain. This mechanism requires that the parties first deposit of a num-
ber of coins for “collateral”, i.e. they lose these coins if they are detected as
cheaters or abort. The protocol execution has a series of checkpoints where par-
ties cooperate to generate a witness that the execution was correct up to that
point. The witness is a signature by all parties agreeing on the current state of
the execution. If at any point a protocol malfunction occurs (a party either does
not receive a message or receives a invalid message), the party who detected it
posts a complaint to the blockchain along with the last checkpoint witness and
the protocol messages generated after the checkpoint. All the other are required
to do the same or face punishment otherwise. This procedure verifies the current
state of the protocol and then the execution continues in the blockchain until
the next checkpoint. Any misbehavior or abort in this on-chain execution is pun-
ished financially. After the protocol execution reaches the next checkpoint and
the parties obtain the corresponding witnesses, the protocol is again executed
off-chain.

Smart Contract Functionality FSC : Our poker protocol πPoker makes use of
a stateful contract functionality FSC, described in Fig. 1, that models blockchain
transactions used to keep collateral deposits and enforce punishment of players
who misbehave, as well as ensuring that winners get their rewards. It is impor-
tant to emphasize that the FSC functionality can be easily implemented via smart
contracts over a blockchain. More formally, using a public available ledger. More-
over, our construction (for protocol πPoker) requires only simple operations, i.e.,
verification of signatures and discrete logarithm operations over cyclic groups.
The regular operation of our protocol is performed entirely off-chain, without
intervention of the contract. However in the event that any problem happen or
in the case that any participant in the game claim problems in the execution,
any player can publish their agreed status of the game in the chain, via short
witnesses (to be detailed in the protocol description).

Protocol πPoker: The protocol is executed by n players (P1, . . . ,Pn) interacting
with the stateful contract functionality FSC, and is parametrized by the small
sb and big bb blind bets amount, the initial stake t, the maximum bet m per
hand, the security deposit d and a timeout limit τ . In addition to the stateful
contract functionality FSC, the other setup assumption is the random oracle
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Functionality FSC

The functionality is executed with n players P1, . . . , Pn. It is parametrized by the
small sb and big bb blind bets amount, the initial stake t, the maximum bet m per
hand, the security deposit d, the compensation amount q, a protocol verification
mechanism pv and a timeout limit τ .
Players Check-in: Wait to receive from each player Pi a message
(checkin, Pi, coins(d + t), SIG.vki, hi,DLOG(g, hi)) containing the necessary coins,
its signature verification key, its share of the threshold ElGamal public-key and the
zero-knowledge proof of knowledge of the secret-key’s share. Record the values and
send (checkedin, Pi, SIG.vki, hi,DLOG(g, hi)) to all players. Allow the players to
dropout and reclaim their coins if a player fails to check-in within the timeout limit
τ . Once all check-ins are done, order the players by picking a random permutation
and announce the ordered sequence of players by (P1, . . . , Pn) to them. Mark all
players as active.
Player Check-out: Upon receiving (checkout, active, balance, σ) from Pi, verify
that σ contains valid signatures by all active players on active and balance and that
active[i] = 0. If everything is correct, for w = balance[i] + d, send (payout, coins(w))
to Pi and mark him as inactive. Send (checkedout, i, w) to the other players.
Recovery: Upon receiving a recovery request (report, Pi,Checkpointi,CurrPhasei)
from Pi containing some checkpoint witnesses and current phase witnesses, send to
each Pj �= Pi (request, Pi,Checkpointi,CurrPhasei). Upon getting (response, Pj ,
Checkpointj ,CurrPhasej) from some player Pj with checkpoint and phase witnesses
(which are not necessarily relative to the same checkpoint as received from other
players) or an acknowledgement of previous submitted witnesses, forward this infor-
mation to the other parties. Upon getting replies from all players or reaching the
timeout limit τ , determine the current phase by verifying the most recent checkpoint
that has valid witnesses. Verify the last valid point of the protocol execution using
the current phase witnesses and pv. If there exists some Pi who sent misbehaving
messages (together with a signature) in the current phase, then for each Pj �= Pi

who has not checked-out, send (compensation, coins(d+ q+balance[j]+bets[j])) to
him. Send any leftover coins after the compensation for Pi and halt. Otherwise, me-
diate the execution of the protocol until the next checkpoint. This is done by using
(nxt-stp, phase, round) to request an action from the next party that is supposed
to act and using pv to verify the answer (nxt-stp-rsp,msgphase,round). All messages
are delivered to all players. If during this mediated execution a player misbehaves or
does not answer within the timeout limit τ , penalize him and compensate the others
as above, and halt. Otherwise send (recovered, phase,Checkpoint) to the parties
once the next checkpoint is reached.

Fig. 1. The stateful contract functionality FSC.

model. We assume that the parties agree on a generator g of a group G of order
p for the (n, n)-Threshold ElGamal cryptosystem TEG and also on a EUF-CMA
secure digital signature scheme SIG. Moreover, a nonce unique to each protocol
execution and protocol round (e.g. a hash of the public protocol transcript up to
the current round) is implicitly attached to every signed message to avoid replay
attacks. The protocol proceeds in phases as described below:
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– Recovery Triggers: Whenever a signature or NIZK proof is received, its
validity is tested. If the test fails, the party proceeds to the recovery phase.
The same happens if a party does not receive an expected message until a
timeout limit τ . These triggers will be omitted henceforth.

– Players Check-in: For i = 1, . . . , n, player Pi proceeds as follows:
1. generates the keys of the signature scheme (SIG.vki,SIG.ski)

$←
SIG.Gen(1λ).

2. generates TEG’s key shares by sampling TEG.ski
$← Zp, setting hi =

gTEG.ski and generating a proof DLOG(g, hi).
3. sends (checkin, coins(d + t),SIG.vki, hi,DLOG(g, hi)) to FSC and waits

until getting from FSC the check-in confirmation (checkedin,Pj ,
SIG.vkj , hj ,DLOG(g, hj)) of each player and the parties’ order
(P1, . . . ,Pn) that is used henceforth in the protocol. If not received until
the timeout limit τ , contact FSC to dropout and reclaim the deposited
coins.

4. verifies each DLOG(g, hj) for j �= i, reconstructs the initial public key
TEG.pk =

∏n
j=1 hj , record all hj , and initializes a vector balance =

(t, . . . , t), a vector bets = (0, . . . , 0), a counter psb = 1 and a counter
pbb = 2.

– Hand Execution - Shuffle: As the first step in executing a hand, the parties
generate a randomly shuffled deck of closed cards c1, . . . , c52. For i = 1, . . . , n,
Pi proceeds as follows (w.l.o.g. we assume all parties are active, the adaptation
to the other cases is the straightforward one):
1. If Pi = P1, it sets c0 = (c01, . . . , c

0
52) where c0j = TEG.EncTEG.pk(j, 1).

Otherwise, Pi considers the cards ci−1 = (ci−1
1 , . . . , ci−1

52 ) received from
Pi−1. Notice that these initial ciphertexts just encrypt the number of each
card (in increasing order) under deterministic randomness 1, allowing P2

to locally compute the initial set of ciphertexts for verification.
2. Pi samples uniformly at random a permutation π ∈ Σ52 and r = (r1, . . . ,

r52) where rj
$← Zp, and sets ci

j = TEG.ReRandTEG.pk(ci−1
π(j), rj), obtain-

ing a new set ci = (ci
1, . . . , c

i
52). Notice that this new set of ciphertexts

representing cards simply contains rerandomized versions of the previous
ciphertexts in a random order.

3. Pi generates a zero-knowledge proof of correctness of shuffle ZKSH(π, r,
ci−1, ci) and broadcasts it with the shuffled deck ci. All other parties
verify this zero-knowledge proof.

After all parties have participated in the shuffling procedure, the shuffled
deck for the current hand is set to be D = cn. All parties sign it by computing
σi

D = SIG.SignSIG.sk(DECK − READY,D), broadcasts σi
D and verifies all signatures.

Checkpoint Witness: The previous checkpoint witness concatenated with the
deck D and corresponding signatures σi

D.

– Hand Execution - Small and Big Blinds: After the shuffle is done,
all parties wait for the small blind, i.e. for Ppsb to broadcast a signature
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σpsb
sb = SIG.SignSIG.skpsb

(SB) as well as signatures on vectors balance and bets,
where balance[psb] is decreased by sb coins, bets[psb] is increased by sb coins,
while all other coordinates remain the same. Upon receiving the signatures,
each party Pi broadcasts a signature σi

sb = SIG.SignSIG.ski
(SB) as well as sig-

natures on balance and bets. All signatures are verified. Proceed analogously
for the big blind. Checkpoint Witness: The previous checkpoint witness with
the updated balance and bets (and signatures on them) concatenated with all
signatures σi

sb and σi
bb.

– Hand Execution - Drawing Cards and Private Cards Distribution:
Two private cards pci,1, pci,2 for each active party Pi as well as the community
cards cc1, cc2, cc3, cc4, cc5 are drawn from D according to the rules of poker.
For i = 1, . . . , n , Pi proceeds as follows to open cards pcj,1, pcj,2 towards Pj

for j = 1, . . . , n and to obtain its own private cards (here all parties act in
parallel):
1. Pi computes its decryption shares for pcj,1, pcj,2 by parsing pcj,k

as (cj,k,1, cj,k,2) and computing dj,k,i = cTEG.ski

j,k,1 and a NIZK
DLEQ(g, hi, cj,k,1, dj,k,i) for k ∈ {1, 2}. Pi sends the decryption shares
dj,1,i, dj,2,i along with their corresponding proofs to Pj through a private
channel.

2. Once it has received all di,1,j , di,2,j and corresponding DLEQ proofs from
the other parties, Pi checks that the proofs are valid. Finally, Pi learns
its private cards by computing pc′

i,k = ci,k,2∏n
i=1 di,k,j

for k ∈ {1, 2}.
3. Pi broadcasts σi

pc = SIG.SignSIG.ski
(PRIVATE − CARDS) after retrieving its

private cards. Remember the signature implicitly includes a nonce unique
to this protocol execution and specific round. Once signatures σj

pc from
all parties have been received, verify them.

Checkpoint Witness: The previous checkpoint witness, except for the signa-
tures σi

sb and σi
bb, concatenated with all σi

pc.

– Hand Execution - Main Flow: After cards are drawn and private cards
are distributed, all parties proceed to the main flow of playing a hand, where
a number of community cards will be opened and a number of betting rounds
will be played, both according to the community card opening and betting
round procedures. All parties continue the main flow by proceeding as follows:

• Execute a betting round starting with the closest active successor of Ppbb.
• Execute a community card opening procedure for flop cards cc1, cc2, cc3.
• Execute a betting round starting with the closest active successor of

Ppsb−1.
• Execute a community card opening procedure for turn card cc4.
• Execute a betting round starting with the closest active successor of

Ppsb−1.
• Execute a community card opening procedure for river card cc5.
• Execute a betting round starting with the closest active successor of

Ppsb−1.
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• Proceed to showdown starting with the last player who increased the bet
in the last round, if there is one; otherwise, the closest active successor of
Ppsb−1.

– Community Card Opening: In the steps of πPoker where a community
card cc ∈ {cc1, cc2, cc3, cc4, cc5} has to be opened, party Pi, for i = 1, . . . , n,
proceeds as follows:
1. Pi parses cc = (cc1, cc2) and broadcasts its decryption shares di =

ccTEG.ski
1 along with a NIZK DLEQ(g, hi, cc1, di).

2. After all decryption shares dj and corresponding DLEQ NIZKs are
received from all parties, Pi verifies if all NIZKs are valid. Pi opens cc by
computing cc2∏n

i=1 dj
.

3. After opening cc, Pi broadcasts σi
cc = SIG.SignSIG.sk(COMMUNITY − OPEN,

cc) in order to communicate it has successfully opened cc. Once all signa-
tures σj

cc from other parties have been received, Pi verifies that they are
all valid.

Checkpoint Witness: The previous one together with all signatures σi
cc.

– Betting Round: In the steps of πPoker that require a betting round starting
from party Ps, each party Pi communicates its betting action actioni ∈
{fold,call, (raise, r),all-in,check} (as defined in Fpoker) in a round
robin manner starting from Ps and following the order (P1, . . . ,Pn) received
from FSC, proceeding as follows until the conditions specified in Fpoker for
finishing the betting round are met:

• When it is Pi’s turn to state its bet, Pi updates vectors bets and balance
according to its action actioni, i.e. it increases (resp. decreases) bets[i]
(resp. balance[i]) by the amount of coins required by actioni as defined
in Fpoker. Pi generates a signature σi

bet = SIG.SignSIG.ski
(actioni, bets[i],

balance[i]) and broadcasts (actioni, bets[i], balance[i], σi
bet).

• Upon receiving (actionj , bets[j], balance[j], σ
j
bet) from party Pj for j �= i,

Pi checks the validity of σj
bet. Next, Pi verifies that bets[j] and balance[j]

are consistent with actionj according to the rules defined in Fpoker. If not,
Pi proceeds to the recovery phase. If both checks succeed, Pi updates its
local copy of bets and balance with the new values of bets[j] and balance[j],
and proceeds in the betting round.

When the conditions for ending the betting round specified in Fpoker are met,
each party Pi broadcasts a signature σi

betstate = SIG.SignSIG.ski
(bets, balance) on

its local copy of vectors bets and balance. Pi waits until all signatures σj
betstate

are received from every other party Pj for j �= i and verifies that they are valid
signatures on their local vectors bets and balance (verifying that all parties agree
on the final bets and balance). Checkpoint Witness: The previous checkpoint
witness with the updated vectors bets and balance, along with all signatures
σi

betstate on the updated vectors.
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– Showdown: The parties proceed in a round-robin way. If a party Pi wishes
to open its private cards pci,1, pci,2 during showdown, Pi broadcasts the
decryption shares di,1,j , di,2,j along with their corresponding DLEQ proofs,
for j = 1, . . . , n. For every party Pi who opens its private cards during show-
down, the other parties Pj decrypt pci,1, pci,2 by following the same procedure
used for reconstructing their own private cards. If decryption fails, Pj pro-
ceed to the recovery phase. If a party Pi wishes to muck during showdown, it
broadcasts a signature σi

muck = SIG.SignSIG.ski
(MUCK), the other parties ver-

ify the signature. Once all parties have either opened or mucked, the parties
proceed to the pot distribution.

– Pot Distribution: Each party Pi uses the opened cards, chronological order
of folded/mucked hands and current vectors balance and bets to locally com-
pute the updated balance for all parties according to the rules of poker. It also
zeros out bets. Pi broadcast signatures on balance and bets. Upon receiving
these values from each party Pj , Pi verifies that it is a valid signature on its
own local updated vectors balance and bets. A party Pi who wishes to continue
playing broadcasts a signature σi

cont = SIG.SignSIG.ski
(CONTINUE). A party Pi

who no longer wishes to play or who has balance[i] = 0 broadcasts a signa-
ture σi

chko = SIG.SignSIG.skj
(CHECKOUT). Each party Pi checks that all other

parties’ signatures are valid. For all parties Pj who choose to check-out, mark
party Pj as inactive. After determining which parties remain active and which
check out, each party Pi constructs a vector active such that active[j] = 1 if
party Pj is active in the next hand or active[j] = 0 if Pj is checking out.
Pi broadcasts a signature σi

act = SIG.SignSIG.ski
(active). Pi checks that sig-

natures σj
act by all other parties Pj are valid signatures on the same active

vector, otherwise it proceeds to the recovery phase. If there were check-outs,
update the public key as TEG.pk =

∏n
j=1 s.t. j is active hj . Increment psb and

pbb using the order among the active players. A signature on these values are
also generated by each party and checked by the others. Checkpoint Witness:
Vectors balance, bets and active, counters psb and pbb, as well as all signatures
on these values.

– Player Check-out: If Pi was marked as checking out in the pot distribu-
tion phase, it sends a message (checkout, active, balance, σ) to FSC, where
σ contains all signatures on active and balance, waits for confirmation from
FSC and stops execution.

– Recovery Request: If a party Pi enters the recovery phase at any step
of a given phase, it sends a message (report,Pi,Checkpointi,CurrPhasei) to
FSC, where Checkpointi is the checkpoint witness from the previous phase and
CurrPhasei is the transcript of the current phase so far (i.e. only the messages
that received and sent by Pi after the last checkpoint).

– Responding to a Recovery Request: Upon receiving a message
(request,Pi,Checkpointi,CurrPhasei) from FSC containing the checkpoint
witness and current phase transcript included in the report message of
Pi, every other party Pj sends a message (response,Pj ,Checkpointj ,
CurrPhasej) to FSC containing their own most recent checkpoint witness and
transcript of the current phase if they are different from the ones already
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submitted by other parties. Otherwise, it simply acknowledges the one that
is equal. Once all parties have responded to the recovery request, all par-
ties have learned each other checkpoint witnesses and the transcripts of the
current phase. For i = 1, . . . , n, party Pi proceeds as follows:

• Upon receiving the message (nxt-stp, phase, round) from FSC, Pi com-
putes its message msgphase,round for the round specified by round of the
phase specified by phase and sends (nxt-stp-rsp,msgphase,round) to FSC

following the protocol.
• Upon receiving (recovered, phase,Checkpoint) from FSC, Pi records the

checkpoint witness of the phase specified by phase and returns to the regu-
lar execution of next phase as described in the protocol by communicating
directly to the other parties.

The security of Protocol πPoker is captured in the following theorem whose
proof is presented in the full version of this work [12] due to space limitations.

Theorem 1. Assuming that the DDH problem is hard and that the digital signa-
ture scheme SIG is EUF-CMA secure, protocol πPoker securely computes Fpoker in
the FSC-hybrid, random oracle model in the presence of malicious static adver-
saries.

4 Concrete Complexity Analysis

In this section we analyze the concrete communication and computational com-
plexities of πPoker. We estimate (off-chain) communication and computational
complexities for the case where no user cheats (thus never triggering the recov-
ery phase). The exact cost of performing recovery will depend on the exact
point of the protocol where the recovery request happened, since the players are
required to post their protocol messages generated in each round after the latest
checkpoint witness. Nevertheless, we discuss why our on-chain space complexity
is generally low given that we explicitly define compact witnesses for intermedi-
ate step of the protocol (even inside poker rounds). On the other hand, previous
works in [20] and [7] only mention (but not define) intermediate witnesses for
each round of the poker game. Moreover, we exclude the cost of generating and
sending the messages between the parties and FSC, since these messages are basi-
cally transactions being posted in the blockchain and their size and generation
cost may vary depending on the concrete implementation.

Estimating Complexity: We estimate computational complexity in terms of
the number of exponentiations that each party has to perform in each phase
of the protocol. On the other hand, we estimate communication complexity in
terms of the total number of group (i.e. G) elements and ring (i.e. Zp) elements
transferred by all parties in each phase of the protocol. Most of the messages
exchanged in the protocol are broadcast to all parties2. However, during pri-
vate cards distribution, decryption shares for each card are sent directly to its
2 We remark that, in our scenario, broadcasts can achieved by having parties commu-

nicate directly with each other due to the low number of parties (typically n ≤ 10).



Kaleidoscope 515

owner through a private channel. We denote messages transmitted through pri-
vate channels by [private] and messages broadcast through public channels by
[broadcast]. Messages that are not explicitly marked are assumed to be broad-
cast by public channels. Both the Betting Round and Showdown phases have
complexities that fully depend on the behavior of each player in the game of
poker and other conditions such as the stake of the game. For example, a user
can choose to keep raising his bet in a Betting Round and users can choose
whether to show their cards or muck in Showdown. Those choices are perfectly
honest and permitted in the game but they result in different final complexities
for these phases of πPoker. In the case of the Betting Round phase, we estimate
the complexity for the case where all players speak once, which can be easily used
to compute the complexity in cases where each player speaks multiple times. In
the case of the Showdown phase, we estimate the complexity for the worst case
(in terms of complexity), where all players choose to show their cards.

Instantiating the Building Blocks: In this analysis we instantiate ZKSH
(NIZK of correctness of a shuffle) with parameters k = 4 and l = 13, which
results in 208 exponentiations for the prover and 208 exponentiations for the
verifier, with a proof size of 44 elements of G and 65 elements of Zp. Notice
that this estimation is actually an upper bound for concrete communication
complexity, since it pertains to the interactive version of ZKSH, which is signif-
icantly improved in terms of concrete communication complexity after applying
the Fiat-Shamir heuristic. We instantiate the signature scheme SIG with the
ECDSA scheme [19], where a public key consists of a elliptic curve point (that
we count as an element of G) and a signature consists of two scalars (we count
as elements of Zp). The ECDSA scheme requires one elliptic curve point mul-
tiplication by a scalar for generating a key pair, one for signing and two for
signature verification (without optimizations), which we count as group expo-
nentiations since πPoker is written in terms of groups with multiplicative notation.
The concrete communication and computational complexities of are presented
in Table 1.

On-Chain Space Complexity: Considering that players act honestly through-
out the protocol, information is only stored in the blockchain when a player
wishes to redeem its rewards. In this case, the player must post a witness show-
ing that all players agree that the protocol was correctly executed. This wit-
ness consists of a simple digital signature. In case a malicious player does cheat
and an honest player triggers the recovery mechanism, players are required to
post to the blockchain their latest checkpoint witness (if they disagree with the
witnesses posted by other players) and the protocol messages generated after
that witness. Notice that this checkpoint witness is also a simple digital signa-
ture and that the bulk of the data posted on the blockchain actually depends on
which phase of the protocol is currently being executed. For example, if recov-
ery is triggered during the Main Flow phase of Hand Execution, only the latest
checkpoint witness and short messages required in that phase would have to
be posted to the blockchain, excluding the long messages previously sent in the
Shuffle and Drawing Cards phase. On the other hand, previous protocols in [20]
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Table 1. Concrete communication and computational complexities of πPoker in terms
of number of exponentiations executed per player and number of elements of G and Zp

transmitted by all players in total for each phase with n players. During private cards
distribution, some messages are sent through a private channel, which we denote by
[private]. All the other messages in the protocol are broadcast through public channels,
which we denote by [broadcast]. Messages that are not explicitly marked are assumed
to be broadcast by public channels.

Phase Exponentiations (Per Player) Communication (Total)

G Zp

Players Check-in 2n + 1 2n 2n

Hand Execution - Shuffle 209n + 104 148n 67n

Hand Execution - Blinds 12n 0 24n

Hand Execution -
Drawing/Private Cards
Distribution

16n− 13 2(n2 − n)
[private]

4(n2 − n) [private],
2n [broadcast]

Hand Execution - Main
Flow

52n− 20 5n 28n

Showdown (Worst Case) 8(n− 1)2 2n2 4n2

Pot Distribution 2n 0 4n

Total 8n2 + 271n + 82 2n2 + 155n
[broad-
cast],
2(n2 − n)
[private]

4n2 + 127n
[broadcast],
4(n2 − n) [private]

and [7] only mention that intermediate witnesses could be generated after a full
round of poker, incurring in a much higher overhead in terms of blockchain stor-
age when recovery happens. Moreover, such witnesses are not explicitly defined
in [20] and [7].

Comparison with Previous Protocols: While we present estimated com-
putational and communication complexities for each phase of a complete poker
game, previous works only focus on individual card operations [3,9,25,28,29,32,
33], making it hard to provide direct comparisons to our results. In order to pro-
vide a meaningful comparison, we will focus on the card shuffling phase, which is
the main bottleneck of poker protocols. Considering a deck of 52 cards (necessary
for a poker game) and a security parameter k = 40 for the cut-and-choose step
(which is the lowest security parameter used for this kind of technique in mod-
ern cryptography), the protocol of [29] (used as a building block in [7]) requires
2120n exponentiations per player in the Shuffle phase where there are n players.
With the same parameters, the Shuffle phase of the protocol proposed in [3]
requires 6240(n − 1) + 8320 exponentiations, where n is the number of players.
On the other hand, our protocol only requires 209n + 104 exponentiations per
player as detailed in Table 1, resulting in improvements of an order of (at least)
10 times.
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5 Conclusion

We introduced the first specific purpose protocol for secure poker with payment
distribution and penalty enforcement with fully-simulatable security. In order to
argue about our protocol’s security, we introduced the first formal simulation
based security notions for such protocols, overlooked by previous works. More-
over, we identified concrete flaws in previously proposed protocols [3,9], show-
casing the need for formal security definitions and proofs. Our work improves
on previous heuristic approaches for constructing poker protocols and provides
a more efficient alternative to general results that provide payment distribution
and penalty enforcement for general MPC protocols, where generality comes at
the cost of efficiency.
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Abstract. The adoption of blockchain-based distributed computation
platforms is growing fast. Some of these platforms, such as Ethereum,
provide support for implementing smart contracts, which are envisioned
to have novel applications in a broad range of areas, including finance and
the Internet-of-Things. However, a significant number of smart contracts
deployed in practice suffer from security vulnerabilities, which enable
malicious users to steal assets from a contract or to cause damage. Vul-
nerabilities present a serious issue since contracts may handle financial
assets of considerable value, and contract bugs are non-fixable by design.
To help developers create more secure smart contracts, we introduce
FSolidM, a framework rooted in rigorous semantics for designing con-
tracts as Finite State Machines (FSM). We present a tool for creating
FSM on an easy-to-use graphical interface and for automatically gener-
ating Ethereum contracts. Further, we introduce a set of design patterns,
which we implement as plugins that developers can easily add to their
contracts to enhance security and functionality.

Keywords: Smart contract · Security · Finite state machine
Ethereum · Solidity · Automatic code generation · Design patterns

1 Introduction

The adoption and importance of blockchain based distributed ledgers are grow-
ing fast. For example, the market capitalization of Bitcoin, the most-popular
cryptocurrency, has exceeded $70 billion in 2017.1 While the first generation
of blockchain systems were designed to provide only cryptocurrencies, later
systems, such as Ethereum, can also function as distributed computing plat-
forms [1,2]. These distributed and trustworthy platforms enable the implemen-
tation smart contracts, which can automatically execute or enforce their con-
tractual terms [3]. Beyond financial applications, blockchains are envisioned to

1 https://coinmarketcap.com/currencies/bitcoin/.
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have a wide range of applications, such as asset tracking for the Internet-of-
Things [4]. Due to their unique advantages, blockchain based platforms and
smart contracts are embraced by an increasing number of organizations and
companies. For instance, the project HyperLedger2, which aims to develop open-
source blockchain tools, is backed by major technology companies and financial
firms, such as IBM, Cisco, J.P. Morgan, and Wells Fargo [5].

At the same time, smart contracts deployed in practice are riddled with
bugs and security vulnerabilities. A recent automated analysis of 19,336 smart
contracts deployed on the public Ethereum blockchain found that 8,333 contracts
suffer from at least one security issue [6]. While not all of these issues lead to
security vulnerabilities, many of them enable cyber-criminals to steal digital
assets, such as cryptocurrencies. For example, the perpetrator(s) of the infamous
2016 “The DAO” attack exploited a combination of vulnerabilities to steal 3.6
million Ethers, which was worth around $50 million at the time of the attack [7].
More recently, $31 million worth of Ether was stolen due to a critical security
flaw in a digital wallet contract [8]. Furthermore, malicious attackers might be
able to cause damage even without stealing any assets, e.g., by leading a smart
contract into a deadlocked state, which does not allow the rightful owners to
spend or withdraw their assets.

Security vulnerabilities in smart contracts present a serious issue for multiple
reasons. Firstly, smart contracts deployed in practice handle financial assets of
significant value. For example, at the time of writing, the combined value held
by Ethereum contracts deployed on the public blockchain is 12,205,760 Ethers,
which is worth more than $3 billion.3 Secondly, smart-contract bugs cannot
be patched. By design, once a contract is deployed, its functionality cannot be
altered even by its creator. Finally, once a faulty or malicious transaction is
recorded, it cannot be removed from the blockchain (“code is law” principle [9]).
The only way to roll back a transaction is by performing a hard fork of the
blockchain, which requires consensus among the stakeholders and undermines
the trustworthiness of the platform [10].

In practice, these vulnerabilities often arise due to the semantic gap between
the assumptions contract writers make about the underlying execution semantics
and the actual semantics of smart contracts [6]. Prior work focused on addressing
these issues in existing contracts by providing tools for verifying correctness [9]
and for identifying common vulnerabilities [6]. In this paper, we explore a dif-
ferent avenue by proposing and implementing FSolidM, a novel framework for
creating secure smart contracts:

– We introduce a formal, finite-state machine (FSM) based model for smart
contracts. We designed our model primarily to support Ethereum smart con-
tracts, but it may be applied on other platforms as well.

– We provide an easy-to-use graphical editor that enables developers to design
smart contracts as FSMs.

2 https://www.hyperledger.org/.
3 https://etherscan.io/accounts/c.

https://www.hyperledger.org/
https://etherscan.io/accounts/c
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– We provide a tool for translating FSMs into Solidity code.4

– We provide a set of plugins that implement security features and design pat-
terns, which developers can easily add to their model.

Our tool is open-source and available online (see Sect. 6 for details).
The advantages of our approach, which aims to help developers create secure

contracts rather than to fix existing ones, are threefold. First, we provide a
formal model with clear semantics and an easy-to-use graphical editor, thereby
decreasing the semantic gap and eliminating the issues arising from it. Second,
rooting the whole process in rigorous semantics allows the connection of our
framework to formal analysis tools [11,12]. Finally, our code generator—coupled
with the plugins provided in our tool—enables developers to implement smart
contracts with minimal amount of error-prone manual coding.

The remainder of this paper is organized as follows. In Sect. 2, we give a brief
overview of related work on smart contracts and common vulnerabilities. In
Sect. 3, we first present blind auction as a motivating example problem, which
can be implemented as a smart contract, and then introduce our finite-state
machine based contract model. In Sect. 4, we describe our FSM-to-Solidity code
transformation. In Sect. 5, we introduce plugins that extend the contract model
with additional functionality and security features. In Sect. 6, we describe our
FSolidM tool and provide numerical results on computational cost. Finally, in
Sect. 7, we offer concluding remarks and outline future work.

2 Related Work

2.1 Common Vulnerabilities and Design Patterns

Multiple studies investigate and provide taxonomies for common security vul-
nerabilities and design patterns in Ethereum smart contracts. In Table 1, we list
the vulnerabilities that we address and the patterns that we implement in our
framework using plugins.

Table 1. Common smart-contract vulnerabilities and design patterns

Type Common name FSolidM plugin

Vulnerabilities Reentrancy [6,13] Locking (Sect. 5.1)

Transaction ordering [6]
a.k.a. unpredictable state [13]

Transition counter (Sect. 5.2)

Patterns Time constraint [14] Timed transitions (Sect. 5.3)

Authorization [14] Access control (Sect. 5.4)

4 Solidity is the most widely used high-level language for developing Ethereum con-
tracts. Solidity code can be translated into Ethereum Virtual Machine bytecode,
which can be deployed and executed on the platform.



526 A. Mavridou and A. Laszka

Atzei et al. provide a detailed taxonomy of security vulnerabilities in
Ethereum smart contracts, identifying twelve distinct types [13]. For nine vulner-
ability types, they show how an attacker could exploit the vulnerability to steal
assets or to cause damage. Luu et al. discuss four of these vulnerability types in
more detail, proposing various techniques for mitigating them (see Sect. 2.2) [6].
In this paper, we focus on two types of these common vulnerabilities:

– Reentrancy Vulnerability: Reentrancy is one of the most well-known vulner-
abilities, which was also exploited in the infamous “The DAO” attack. In
Ethereum, when a contract calls a function in another contract, the caller
has to wait for the call to finish. This allows the callee, who may be mali-
cious, to take advantage of the intermediate state in which the caller is, e.g.,
by invoking a function in the caller.

– Transaction-Ordering Dependence: If multiple users invoke functions in the
same contract, the order in which these calls are executed cannot be predicted.
Consequently, the users have uncertain knowledge of the state in which the
contract will be when their individual calls are executed.

Bartoletti and Pompianu identify nine common design patterns in Ethereum
smart contracts, and measure how many contracts use these patterns in prac-
tice [14]. Their results show that the two most common patterns are autho-
rization and time constraint, which are used in 61% and 33% of all contracts,
respectively. The also provide a taxonomy of Bitcoin and Ethereum contracts,
dividing them into five categories based on their application domain. Based
on their categorization, they find that the most common Ethereum contracts
deployed in practice are financial, notary, and games.

2.2 Verification and Automated Vulnerability Discovery

Multiple research efforts attempt to identify and fix these vulnerabilities through
verification and vulnerability discovery. For example, Hirai first performs a for-
mal verification of a smart contract that is used by the Ethereum Name Ser-
vice [15].5 However, this verification proves only one particular property and it
involves relatively large amount of manual analysis. In later work, Hirai defines
the complete instruction set of the Ethereum Virtual Machine in Lem, a language
that can be compiled for interactive theorem provers [16]. Using this definition,
certain safety properties can be proven for existing contracts.

Bhargavan et al. outline a framework for analyzing and verifying the safety
and correctness of Ethereum smart contracts [9]. The framework is built on
tools for translating Solidity and Ethereum Virtual Machine bytecode contracts
into F ∗, a functional programming language aimed at program verification.
Using the F ∗ representations, the framework can verify the correctness of the
Solidity-to-bytecode compilation as well as detect certain vulnerable patterns.

5 The Ethereum Name Service is a decentralized service, built on smart contracts, for
addressing resources using human-readable names.
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Luu et al. propose two approaches for mitigating common vulnerabilities in
smart contracts [6]. First, they recommend changes to the execution semantics
of Ethereum, which eliminate vulnerabilities from the four classes that they
identify in their paper. However, these changes would need to be adopted by all
Ethereum clients. As a solution that does not require changing Ethereum, they
provide a tool called Oyente, which can analyze smart contracts and detect
certain security vulnerabilities.

Fröwis and Böhme define a heuristic indicator of control flow immutability to
quantify the prevalence of contractual loopholes based on modifying the control
flow of Ethereum contracts [17]. Based on an evaluation of all the contracts
deployed on Ethereum, they find that two out of five contracts require trust in
at least one third party.

3 Defining Smart Contracts as FSMs

Let us consider a blind auction (similar to the one presented in [18]), in which a
bidder does not send her actual bid but only a hashed version of it. The bidder is
also required to make a deposit—which does not need to be equal to her actual
bid—to prevent the bidder from not sending the money after she has won the
auction. A deposit is considered valid if its value is higher than or equal to the
actual bid. We consider that a blind auction has four main states:

1. AcceptingBlindedBids, in which blind bids and deposits are accepted by
the contract;

2. RevealingBids, in which bidders reveal their bids, i.e., they send their actual
bids and the contract checks whether the hash value is the same as the one pro-
vided during the AcceptingBlindedBids state and whether sufficient deposit
has been provided;

3. Finished, in which the highest bid wins the auction. Bidders can withdraw
their deposits except for the winner, who can withdraw only the difference
between her deposit and bid;

4. Canceled, in which bidders can retract bids and withdraw their deposits.

Our approach relies on the following observations. Smart contracts have
states (e.g., AcceptingBlindedBids, RevealingBids). Furthermore, contracts
provide functions that allow other entities (e.g., contracts or users) to invoke
actions and change the state of the smart contracts. Thus, smart contracts can
be naturally represented by FSMs [19]. An FSM has a finite set of states and
a finite set of transitions between these states. A transition forces a contract to
take a set of actions if the associated conditions, which are called the guards
of the transition, are satisfied. Since such states and transitions have intuitive
meaning for developers, representing contracts as FSMs provides an adequate
level of abstraction for reasoning about their behavior.

Figure 1 presents the blind auction example in the form of an FSM.
For simplicity, we have abbreviated AcceptingBlindedBids, RevealingBids,
Finished, and Canceled to ABB, RB, F, and C, respectively. ABB is the initial
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cancelABB

withdraw

bid

reveal
[values.length == secret.length]

cancelRB

close
[now > creationTime + 5 days]

unbid

finish
[now >= creationTime + 10 days]

C F

RBABB

Fig. 1. Example FSM for blinded auctions.

state of the FSM. Each transition (e.g., bid, reveal, cancel) is associated to a
set of actions that a user can perform during the blind auction. For instance, a
bidder can execute the bid transition at the ABB state to send a blind bid and a
deposit value. Similarly, a user can execute the close transition, which signals
the end of the bidding period, if the associated guard now >= creationTime
+ 5 days evaluates to true. To differentiate transition names from guards, we
use square brackets for the latter. A bidder can reveal her bids by executing
the reveal transition. The finish transition signals the completion of the auc-
tion, while the cancelABB and cancelRB transitions signal the cancellation of
the auction. Finally, the unbid and withdraw transitions can be executed by
the bidders to withdraw their deposits. For ease of presentation, we omit from
Fig. 1 the actions that correspond to each transition. For instance, during the
execution of the withdraw transition, the following action is performed amount
= pendingReturns[msg.sender].

Guards are based on a set of variables, e.g., creationTime, values, and
actions are also based on a set of variables, e.g., amount. These variable sets
store data, that can be of type:

– contract data, which is stored within the contract;
– input data, which is received as transition input;
– output data, which is returned as transition output.

We denote by C, I, and O the three sets of the contract, input, and output
variables of a smart contract. We additionally denote:

B[C, I], the set of Boolean predicates on contract and input variables;
E[C, I,O], the set of statements that can be defined by the full Solidity syntax.

Notice that E[C, I,O] represents the set of actions of all transitions. Next, we
formally define a contract as an FSM.

Definition 1. A Smart Contract is a tuple (S, s0, C, I,O,→), where:

– S is a finite set of states;
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– s0 ∈ S is the initial state;
– C, I, and O are disjoint finite sets of, respectively, contract, input, and output

variables;
– → ⊆ S × G × F × S is a transition relation, where:

• G = B[C, I] is a set of guards;
• F is a set of action sets, i.e., a set of all ordered powersets of E[C, I,O].

4 FSM-to-Solidity Transformation

To automatically generate a contract using our framework, developers can pro-
vide the corresponding FSM in a graphical form. Each transition of the FSM is
implemented as a Solidity function, where an element of G and a list of state-
ments from F form the body. The input I and output C variables correspond
to the arguments and the return values, respectively, of these functions. In
this section, we describe the basic transformation formally, while in Sect. 5, we
present a set of extensions, which we call plugins.

First, let us list the input that must be provided by the developer:

– name: name of the FSM;
– S: set of states;
– s0 ∈ S: initial state;
– C: set of contract variables;
– for each contract variable c ∈ C, access(c) ∈ {public, private}: visibility of

the variable;
– →: set of transitions;
– for each transition t ∈→:

• tname: name of the transition;
• tguards ∈ G: guard conditions of the transition;
• tinput ⊆ I: input variables (i.e., parameters) of the transition;
• tstatements ∈ F : statements of the transition;
• toutput ⊆ O: output (i.e., return values) of the transition;
• tfrom ∈ S: previous state;
• tto ∈ S: next state;
• ttags ⊆ {payable, admin, event}: set of transition properties specified by

the developer (note that without plugins, only payable is supported);
– T custom: set of complex types defined by the developer in the form of structs.

For any variable v ∈ C ∪ I ∪ O, we let type(v) ∈ T denote the domain of the
variable, where T denotes the set of all built-in Solidity types and developer-
defined struct types.

We use fixed-width font for the output generated by the transformation,
and italic font for elements that are replaced with input or specified later. An
FSM is transformed into a Solidity contract as follows:
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Contract ::= contract name {
StatesDefinition
uint private creationTime = now;

VariablesDefinition
Plugins
Transition(t1)
. . .

Transition(t|→|)
}

where {t1, . . . , t|→|} = →. Without any security extensions or design patterns
added (see Sect. 5), Plugins is empty. The complete generated code for the blind-
auction example presented in Fig. 1 can be found in [20] (with the locking and
transition-counter security-extension plugins added).

StatesDefinition ::= enum States {s0, . . . ,s|S|−1}
States private state = States.s0;

where {s0, . . . , s|S|−1} = S.

Example 1. The following snippet of Solidity code presents the StatesDefinition
code generated for the blind auction example (see Fig. 1).

enum States {
ABB ,
RB,
F,
C

}
States private state = States.ABB;

VariablesDefinition ::= T custom

type(c1) access(c1) c1;

. . .

type(c|C|) access(c|C|) c|C|;

where {c1, . . . , c|C|} = C.

Example 2. The following snippet of Solidity code presents the
VariablesDefinition code of the blind auction example (see Fig. 1).

struct Bid {
bytes32 blindedBid;
uint deposit;

}
mapping(address => Bid[]) private bids;
mapping(address => uint) private pendingReturns;
address private highestBidder;
uint private highestBid;
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Transition(t) ::= function tname(type(i1) i1, . . . , type(i|tinput|) i|tinput|)

TransitionPlugins(t)
Payable(t) Returns(t) {

require(state == States.tfrom);

Guards(t)
Statements(t)

state = States.tto;

}

where
{
i1, . . . , i|tinput|

}
= tinput. Without any security extensions or design pat-

terns (see Sect. 5), TransitionPlugins(t) is empty, similar to Plugins. If payable ∈
ttags, then Payable(t) = payable; otherwise, it is empty. If tto = tfrom then the
line state = States.tto; is not generated.

If toutput = ∅, then Returns(t) is empty. Otherwise, it is as follows:

Returns(t) ::= returns (type(o1) o1, . . . , type(o|toutput|) o|toutput|)

where
{
o1, . . . , o|toutput|

}
= toutput.

Further,

Guards(t) ::= require( (g1) && (g2) && . . . && (g|tguards|) );

Statements(t) ::= a1

. . .

a|tstatements|

where {g1, . . . , g|tguards|} = tguards and {a1, . . . , a|tstatements|} = tstatements.

Example 3. The following snippet of Solidity code shows the generated bid tran-
sition (see Fig. 1). The bid transition does not have any guards and the state of
the FSM does not change, i.e., it remains ABB after the execution of the transi-
tion.

// Transition bid
function bid(bytes32 blindedBid)

payable
{

require(state == States.ABB);
// Actions
bids[msg.sender].push(Bid({

blindedBid: blindedBid ,
deposit: msg.value

}));
}

Example 4. The following snippet of Solidity code shows the generated close
transition (see Fig. 1). The close transition does not have any associated actions
but the state of the FSM changes from ABB to RB after the execution of the
transition.
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// Transition close
function close()
{

require(state == States.ABB);
// Guards
require(now >= creationTime + 5 days);
//State change
state = States.RB;

}

5 Security Extensions and Patterns

Building on the FSM model and the FSM-to-Solidity transformation intro-
duced in the previous sections, we next provide extensions and patterns for
enhancing the security and functionality of contracts. These extensions and
patterns are implemented as plugins, which are appended to the Plugins and
TransitionPlugins elements. Developers can easily add plugins to a contract (or
some of its transitions) using our tool, without writing code manually.6

5.1 Locking

To prevent reentrancy vulnerabilities, we provide a security plugin for locking
the smart contract.7 The locking feature eliminates reentrancy vulnerabilities
in a “foolproof” manner: functions within the contract cannot be nested within
each other in any way.

Implementation. If the locking plugin is enabled, then

Plugins += bool private locked = false;

modifier locking {
require(!locked);

locked = true;

_;

locked = false;

}
and for every transition t,

TransitionPlugins(t) += locking

Before a transition is executed, the locking modifier first checks if the contract is
locked. If it is not locked, then the modifier locks it, executes the transition, and
unlocks it after the transition has finished. Note that the locking plugin must be
applied before the other plugins so that it can prevent reentrancy vulnerabilities
in the other plugins. Our tool always applies plugins in the correct order.
6 Please note that we introduce an additional plugin in Appendix A.
7 http://solidity.readthedocs.io/en/develop/contracts.html?highlight=mutex#

function-modifiers.

http://solidity.readthedocs.io/en/develop/contracts.html?highlight=mutex#function-modifiers
http://solidity.readthedocs.io/en/develop/contracts.html?highlight=mutex#function-modifiers
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5.2 Transition Counter

Recall from Sect. 2.1 that the state and the values of the variables stored in an
Ethereum contract may be unpredictable: when a user invokes a function (i.e.,
transition in an FSM), she cannot be sure that the contract does not change in
some way before the function is actually executed. This issue has been referred
to as “transaction-ordering dependence” [6] and “unpredictable state” [13], and
it can lead to various security issues. Furthermore, it is rather difficult to prevent
since multiple users may invoke functions at the same time, and these function
invocations might be executed in any order.

We provide a plugin that can prevent unpredictable-state vulnerabilities by
enforcing a strict ordering on function executions. The plugin expects a transition
number in every function as a parameter (i.e., as a transition input variable) and
ensures that the number is incremented by one for each function execution. As
a result, when a user invokes a function with the next transition number in
sequence, she can be sure that the function is executed before any other state
changes can take place (or that the function is not executed).

Implementation. If the transition counter plugin is enabled, then

Plugins += uint private transitionCounter = 0;

modifier transitionCounting(uint nextTransitionNumber) {
require(nextTransitionNumber == transitionCounter);

transitionCounter += 1;

_;

}

and for every transition t,

TransitionPlugins(t) += transitionCounting(nextTransitionNumber)

Note that due to the inclusion of the above modifier, tinput—and hence the
parameter list of every function implementing a transition— includes the param-
eter nextTransitionNumber of type uint.

5.3 Automatic Timed Transitions

Next, we provide a plugin for implementing time-constraint patterns. We first
need to extend our FSM model: a Smart Contract with Timed Transitions is a
tuple C = (S, s0, C, I,O,→,

T→), where T→⊆ S × GT × N × FT × S is a timed
transition relation such that:

– GT = B[C] is a set of guards (without any input data);
– N is the set of natural numbers, which is used to specify the time of the

transition in seconds;
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– FT is a set of action sets, i.e., a set of all ordered powerset of E[C].

Notice that timed transitions are similar to non-timed transitions, but (1) their
guards and assignments do not use input or output data and (2) they include a
number specifying the transition time.

We implement timed transitions as a modifier that is applied to every func-
tion. When a transition is invoked, the modifier checks whether any timed tran-
sitions must be executed before the invoked transition is executed. If so, the
modifier executes the timed transitions before the invoked transition.

Writing such modifiers for automatic timed transitions manually may lead
to vulnerabilities. For example, a developer might forget to add a modifier to a
function, which enables malicious users to invoke functions without the contract
progressing to the correct state (e.g., place bids in an auction even though the
auction should have already been closed due to a time limit).

Implementation. For every timed transition tt ∈ T→, the developer specifies a
time tttime ∈ N at which the transition will automatically happen (given that
the guard condition is met). This time is measured in the number of seconds
elapsed since the creation (i.e., instantiation) of the contract. We let tt1, tt2, . . .
denote the list of timed transitions in ascending order based on their specified
times. When the plugin is enabled,

Plugins += modifier timedTransitions {
TimedTransition(tt1)
TimedTransition(tt2)
. . .

_;

}

where

TimedTransition(t) ::= if ((state == States.tfrom)

&& (now >= creationTime + ttime)

&& (Guard(t))) {
Statements(t)

state = States.tto;

}

Finally, for every non-timed transition t ∈→, let

TransitionPlugins(t) += timedTransitions
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5.4 Access Control

In many contracts, access to certain transitions (i.e., functions) needs to be
controlled and restricted.8 For example, any user can participate in a typical
blind auction by submitting a bid, but only the creator should be able to can-
cel the auction. To facilitate the enforcement of such constraints, we provide a
plugin that (1) manages a list of administrators at runtime (identified by their
addresses) and (2) enables developers to forbid non-administrators from access-
ing certain functions. This plugin implements management functions (addAdmin,
removeAdmin) for only one privileged group, but it could easily be extended to
support more fine-grained access control.

Implementation. If the access control plugin is enabled, then

Plugins += mapping(address => bool) private isAdmin;

uint private numAdmins = 1;

function name() {
isAdmin[msg.sender] = true;

}

modifier onlyAdmin {
require(isAdmin[msg.sender]);

_;

}

function addAdmin(address admin) onlyAdmin {
require(!isAdmin[admin]);

isAdmin[admin] = true;

numAdmins += 1;

}

function removeAdmin(address admin) onlyAdmin {
require(isAdmin[admin]);

require(numAdmins > 1);

isAdmin[admin] = false;

numAdmins -= 1;

}
8 http://solidity.readthedocs.io/en/develop/common-patterns.html#restricting-

access.

http://solidity.readthedocs.io/en/develop/common-patterns.html#restricting-access
http://solidity.readthedocs.io/en/develop/common-patterns.html#restricting-access
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For transitions t such that admin ∈ ttags (i.e., transitions that are tagged “only
admin” by the developer),

TransitionPlugins(t) += onlyAdmin

6 The FSolidM Tool

We present the FSolidM tool, which is build on top of WebGME [21], a web-
based, collaborative, versioned, model editing framework. FSolidM enables col-
laboration between multiple users during the development of smart contracts.
Changes in FSolidM are committed and versioned, which enables branching,
merging, and viewing the history of a contract. FSolidM is open-source9 and
available online10.

To use FSolidM, a developer must provide some input (see Sect. 4). To do
so, the developer can use the graphical editor of FSolidM to specify the states,
transitions, guards, etc. of a contract. The full input of the smart-contract code
generator can be defined entirely through the FSolidM graphical editor. For the
convenience of the developers, we have also implemented a Solidity code editor,
since part of the input e.g., variable definitions and function statements, might
be easier to directly write in a code editor. Figure 2 shows the two editors of the
tool. We have integrated a Solidity parser11 to check the syntax of the Solidity
code that is given as input by the developers.

The FSolidM code editor cannot be used to completely specify the required
input. Notice that in Fig. 2, parts of the code shown in the code editor are darker
(lines 1–10) than other parts (lines 12–15). The darker lines of code include code
that was generated from the FSM model defined in the graphical editor and are
locked—cannot be altered in the code editor. The non-dark parts indicate code
that was directly specified in the code editor.

FSolidM provides mechanisms for checking if the FSM is correctly specified
(e.g., whether an initial state exists or not). FSolidM notifies developers of errors
and provides links to the erroneous nodes of the model (e.g., a transition or a
guard). Additionally, FSolidM provides an FSM-to-Solidity code generator and
mechanisms for easily integrating the plugins introduced in Sect. 5. We present
the FSolidM tool in greater detail in [20].

6.1 Numerical Results on Computational Cost

Plugins not only enhance security but also increase the computational cost of
transitions. Since users must pay a relatively high price for computation per-
formed on the public Ethereum platform, the computational cost of plugins is a
critical question. Here, we measure and compare the computational cost of tran-
sitions in our blind-auction contract without and with the locking and transition
9 https://github.com/anmavrid/smart-contracts.

10 https://cps-vo.org/group/SmartContracts.
11 https://github.com/ConsenSys/solidity-parser.

https://github.com/anmavrid/smart-contracts
https://cps-vo.org/group/SmartContracts
https://github.com/ConsenSys/solidity-parser
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Fig. 2. The graphical and code editors provided by FSolidM.
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Fig. 3. Transaction costs in gas without plugins (blue), with locking plugin (red),
with transition counter plugin (brown), and with both plugins (dark gray). (Color
figure online)

counter plugins. We focus on these security feature plugins because they intro-
duce overhead, while the design pattern plugins introduce useful functionality.

For this experiment, we use Solidity compiler version 0.4.17 with optimiza-
tions enabled. In all cases, we quantify computational cost of a transition as the
gas cost of an Ethereum transaction that invokes the function implementing the
transition.12 The cost of deploying our smart contract was 504,672 gas without

12 Gas measures the cost of executing computation on the Ethereum platform.
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any plugins, 577,514 gas with locking plugin, 562,800 gas with transition counter
plugin, and 637,518 gas with both plugins.13

Figure 3 shows the gas cost of each transition for all four combinations of
the two plugins. We make two key observations. First, computational overhead
is almost constant for both plugins and also for their combination. For example,
the computational overhead introduced by locking varies between 10,668 and
10,686 gas. For the simplest transition, unbid, this constitutes a 54% increase in
computational cost, while for the most complex transition, reveal, the increase
is 16%. Second, the computational overhead of the two plugins is additive. The
increase in computational cost for enabling locking, transition counter, and both
are around 10,672 gas, 5,648 gas, and 16,319 gas, respectively.

7 Conclusion and Future Work

Distributed computing platforms with smart-contract functionality are envi-
sioned to have a significant technological and economic impact in the future.
However, if we are to avoid an equally significant risk of security incidents, we
must ensure that smart contracts are secure. While previous research efforts
focused on identifying vulnerabilities in existing contracts, we explored a differ-
ent avenue by proposing and implementing a novel framework for creating secure
smart contracts. We introduced a formal, FSM based model of smart contracts.
Based on this model, we implemented a graphical editor for designing contracts
as FSMs and an automatic code generator. We also provided a set of plugins
that developers can add to their contracts. Two of these plugins, locking and
transition counter, implement security features for preventing common vulnera-
bilities (i.e., reentrancy and unpredictable state). The other two plugins, auto-
matic timed transitions and access control, implement common design patterns
to facilitate the development of correct contracts with complex functionality.

We plan to extend our framework in multiple directions. First, we will intro-
duce a number of plugins, implementing various security features and design
patterns. We will provide security plugins for all the vulnerability types iden-
tified in [13] that can be addressed on the level of Solidity code. We will also
provide plugins implementing the most popular design patterns surveyed in [14].

Second, we will integrate verification tools [11,12] and correctness-by-design
techniques [22] into our framework. This will enable developers to easily verify
the security and safety properties of their contracts. For example, developers
will be able to verify if a malicious user could lead a contract into a deadlocked
state. Recall that deadlocks present a serious issue since it may be impossible to
recover the functionality or assets of a deadlocked contract.

Third, we will enable developers to model and verify multiple interacting
contracts as a set of interacting FSMs. By verifying multiple contracts together,
developers will be able to identify a wider range of issues. For example, a set of
interacting contracts may get stuck in a deadlock even if the individual contracts
are deadlock free.

13 At the time of writing, this cost of deployment was well below $1 (if the deployment
does not need to be prioritized).
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A Event Plugin

In this section, we introduce an additional plugin, which developers can use to
notify users of transition executions. The event plugin uses the event feature of
Solidity, which provides a convenient interface to the Ethereum logging facilities.
If this plugin is enabled, transitions tagged with event emit a Solidity event after
they are executed. Ethereum clients can listen to these events, allowing them to
be notified when a tagged transition is executed on the platform.

Implementation. If the event plugin is enabled, then

Plugins += TransitionEvent(t1)
TransitionEvent(t2)
. . .

where {t1, t2, . . .} is the set of transitions with the tag event.

TransitionEvent(t) ::= event Eventtname;

modifier eventtname {
_;

Eventtname();

}

For every transition t such that event ∈ ttags (i.e., transitions that are tagged to
emit an event),

TransitionPlugins(t) += eventtname
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2 Università degli Studi di Trento, Trento, Italy

Abstract. We propose a formal model of Bitcoin transactions, which
is sufficiently abstract to enable formal reasoning, and at the same time
is concrete enough to serve as an alternative documentation to Bitcoin.
We use our model to formally prove some well-formedness properties of
the Bitcoin blockchain, for instance that each transaction can only be
spent once. We release an open-source tool through which programmers
can write transactions in our abstract model, and compile them into
standard Bitcoin transactions.

1 Introduction

In recent years we have observed a growing interest around cryptocurrencies.
Bitcoin [13], the first decentralized cryptocurrency, was introduced in 2009, and
through the years it has consolidated its position as the most popular one. Bitcoin
and other cryptocurrencies have pushed forward the concept of decentralization,
providing means for reliable interactions between mutually distrusting parties
on an open network.

The nodes of the Bitcoin network maintain a public and immutable data
structure, called blockchain. The blockchain stores the historical record of all
transfers of bitcoins, which are referred to as transactions. When a node updates
the blockchain, the other nodes verify if the appended transactions are valid,
e.g. by checking if the conditions specified in scripts are satisfied. Scripts are
programmable boolean functions: in their standard (and mostly used) form they
verify a digital signature against a public key. Since the blockchain is immutable,
tampering with a stored transaction would result in the invalidation of all the
subsequent ones. Updating the state of the blockchain, i.e. appending new trans-
actions, requires solving a moderately difficult cryptographic puzzle. In case of
conflicting updates, the chain that required the largest computational effort is
considered the valid one. Hence, the immutability and the consistency of the
blockchain is bounded by the total computational power of honest nodes. An
adversary with enough resources can append invalid transactions, e.g. with incor-
rect digital signatures, or rewrite a part of the blockchain, e.g. to perform a
double-spending attack. The attack consists in paying someone by publishing a
transaction on the blockchain, and then removing it (making the funds unspent).

Besides the intended monetary application, the Bitcoin blockchain can be
seen as a way to consistently maintain the state of a system over a peer-to-peer
c© International Financial Cryptography Association 2018
S. Meiklejohn and K. Sako (Eds.): FC 2018, LNCS 10957, pp. 541–560, 2018.
https://doi.org/10.1007/978-3-662-58387-6_29
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network, without the need of a trusted authority. If the system is a currency, its
state is the amount of funds in each account. This concept can be generalised to
the case where the system is a smart contract [15], namely an executable com-
puter protocol which can also handle transfers of currency. The idea of exploiting
the Bitcoin blockchain to build smart contracts has recently been explored by
several works. Lotteries [2,5,6,11], gambling games [10], contingent payments [4],
covenants [12,14], and other kinds of fair computations [1,9] are some examples
of the capabilities of Bitcoin as a platform for smart contracts.

Smart contracts often rely on features of Bitcoin that go beyond the standard
transfers of currency. For instance, while the vast majority of Bitcoin transactions
uses scripts only to verify signatures, smart contracts like the above-mentioned
ones exploit more complex scripts, e.g. to determine the winner of a lottery, or to
check if a secret has been revealed. Smart contracts may also exploit other (infre-
quently used) features of Bitcoin, e.g. various signature modifiers, and temporal
constraints on transactions.

As a matter of fact, using these advanced features to design a new smart con-
tract is not a trivial matter, for two reasons. First, while the overall behaviour
of Bitcoin is clear, the details of many of its crucial aspects are poorly docu-
mented. To understand the details of how a mechanism actually works, one has
to explore various web pages (often inaccurate, or inconsistent, or overly techni-
cal), and eventually resort to the source code of the Bitcoin client1 to have the
correct answer. Second, the description of advanced features is often too concrete
to be effectively used in the design and analysis of a smart contract (indeed, in
many cases the only available description coincides with the implementation).

Contributions. We propose a formal model of Bitcoin transactions. This model
is abstract enough to allow for formal reasoning on the behaviour of Bitcoin
transactions. For instance, we use our model to formally prove some properties of
the Bitcoin blockchain, e.g. that transactions cannot be spent twice (Theorem1),
and that the overall value contained in the blockchains (excluding the coinbase
transactions) is decreasing (Theorem 2).

Our model formally specifies some poorly documented features of Bitcoin,
e.g. transaction signatures and signature modifiers (Definition 4), output scripts
(Definitions 1 and 7), multi-signature verification (Definition 6), Segregated Wit-
nesses (Definitions 2 and 9), paving the way towards automatic verification.

We make available an open-source tool2 which translates transactions speci-
fied in our model to standard Bitcoin transactions.

Structure of the Paper. Section. 2 briefly recaps Bitcoin transactions, which
we formalise in Sect. 3. Besides transactions, we also provide an high-level model
of the blockchain, and we study its basic properties. In Sect. 4 we illustrate,
through a basic case study, the impact of the Segregated Witness feature on the
expressiveness of Bitcoin smart contracts. In Sect. 5 we show how to translate

1 https://github.com/bitcoin/bitcoin.
2 https://github.com/bitcoin-transaction-model/bitcoin-transaction-model.

https://github.com/bitcoin/bitcoin
https://github.com/bitcoin-transaction-model/bitcoin-transaction-model
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transactions from our model to standard Bitcoin transactions. We discuss the
differences between our model and the actual Bitcoin in Sect. 6.

2 Bitcoin Transactions in a Nutshell

We now give a minimalistic introduction to the behaviour of Bitcoin transactions
(see [7] for a general survey on the other aspects of Bitcoin).

T0

in: · · ·
wit: · · ·
out: (λx.versigk(x), v0B)

T1

in: T0

wit: σ
out: (λy.e, v1B)

Fig. 1. Two Bitcoin transactions.

Users interact with Bitcoin through addresses, which they can freely generate.
Transactions describe transfers of bitcoins ( B) between addresses. The log of all
transactions is recorded on a public, immutable and decentralised data structure
called blockchain. To explain how the blockchain works, consider the transactions
T0 and T1 displayed in Fig. 1. The transaction T0 contains v0 B, which can be
redeemed by putting on the blockchain a transaction (e.g., T1), whose in field is
a reference to T0. To redeem T0, the witness of the redeeming transaction (the
value in its wit field) must make the output script of T0 (the first element of
the pair in the out field) evaluate to true. When this happens, the value of T0 is
transferred to the new transaction, and T0 is no longer redeemable.

In the example displayed before, the output script of T0 evaluates to true
when receiving a digital signature on the redeeming transaction T1, with a given
key pair k. We denote with versigk(x) the verification of the signature x on
the redeeming transaction: of course, since the signature must be included in
the witness of the redeeming transaction, it will consider all the parts of that
transaction except its wit field. We assume that σ is the signature of T1.

Now, assume that the blockchain contains T0, not yet redeemed, and some-
one tries to append T1. To validate this operation, the nodes of the Bitcoin
network check that v1 ≤ v0, and then they evaluate the output script of T0, by
instantiating its formal parameter x to the signature σ in the witness of T1. The
function versigk(σ) verifies that σ is actually the signature of T1: therefore, the
output script succeeds, and T1 redeems T0. Subsequently, a new transaction can
redeem T1 by satisfying its output script λy.e (not specified in the figure).

Bitcoin transactions may be more general than the ones illustrated by the pre-
vious example. First, there can be multiple inputs and outputs. Each output has
an associated output script and value, and can be redeemed independently from
the others. Consequently, in fields must specify which output they are redeeming.
A transaction with multiple inputs associates a witness to each of them. The sum
of the values of all the inputs must be greater or equal to the sum of the values
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of all the outputs, otherwise the transaction is considered invalid. In its general
form, the output script is a program in a (non Turing-complete) scripting lan-
guage, featuring a limited set of logic, arithmetic, and cryptographic operators.
Finally, a transaction can specify time constraints (absolute, or relative to its
input transactions) about when it can appear on the blockchain.

3 A Formal Model of Bitcoin Transactions

In this section we introduce a formal model of Bitcoin transactions. We start
in Sect. 3.1 by defining the scripts that can be used in transaction outputs. Then,
in Sect. 3.2 we formalise transactions, and in Sect. 3.3 we define a signature
scheme for them. Sections 3.4 and 3.5 give semantics, respectively, to scripts and
transactions. In Sect. 3.6 we model the Bitcoin blockchain, and in particular we
define the crucial notion of consistency, which corresponds to the one enforced
by the Bitcoin consensus protocol. We then state a few results about consistent
blockchains (their proofs are in AppendixA).

We start by introducing some auxiliary notation. We assume several sets,
ranged over by meta-variables as shown in the left column of Table 1. We use
the bold notation to denote finite sequences of elements. We denote with xi the
i-th element of a sequence x, i.e. xi = xi if x = x1 . . . xn, and with xi..j the
subsequence of x starting from the i-th element and ending to the j-th element.
We denote with |x| the number of elements of x , and with [] the empty sequence.
We denote with f : A ⇀ B a partial function f from A to B, with dom f the
domain of f , i.e. the subset of A where f is defined, and with ran f the range of
f , i.e. ran f = {f(x) | x ∈ dom f}. We use ⊥ to represent an “undefined” element;
in particular, when the element is a partial function, ⊥ denotes the function with
empty domain. For a pair (x, y), we define fst(x, y) = x and snd(x, y) = y.

Table 1. Summary of notation.

3.1 Scripts

Each output in a Bitcoin transaction contains a script, which is used to establish
when the output can be redeemed by another transaction. Intuitively, a script
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is a first-order function (written in a non Turing-equivalent language), which is
applied to the witness provided by the redeeming transaction. The output can
be redeemed only if such function application evaluates to true.

In our model, we abstract from the actual stack-based scripting language
implemented in Bitcoin3, by using instead a minimalistic language of expressions.

Definition 1 (Scripts). We define the set Exp of script expressions (ranged
over by e, e′, . . . ) as follows:

e ::= x | k | e + e | e − e | e = e | e < e | if e then e else e | |e| |
H(e) | versigk (e) | absAfter t : e | relAfter t : e

We denote with Script the set of terms of the form λz.e such that all the variables
in e occur in z.

Besides some basic arithmetic and logical operators, script expressions
include a few operators inspired from the actual Bitcoin scripting language. The
expression |e| denotes the size, in bytes, of the evaluation of e. The expression
H(e) evaluates to the hash of e. The expression versigk (e) takes as arguments a
sequence of m script expressions, representing signatures of the enclosing trans-
actions, and a sequence of n public keys. Intuitively, it evaluates to true when-
ever the provided signatures are verified by using m out of the n provided keys.
The expressions absAfter t : e and relAfter t : e define temporal constraints
(see Sect. 3.4). They evaluate as e if the constraints are satisfied, otherwise they
fail.

Notation 1. We use the following syntactic sugar for expressions: (i) false to
denote 1 = 0 (ii) true to denote 1 = 1 (iii) e∧e′ to denote if e then e′ else false (iv)
e ∨ e′ to denote if e then true else e′ (v) not e to denote if e then false else true.

3.2 Transactions

The following definition formalises Bitcoin transactions.

Definition 2 (Transactions). We inductively define the set Tx of transac-
tions as follows. A transaction T is a tuple (in,wit, out, absLock, relLock), where:

– in : N ⇀ Tx × N

– wit : N ⇀ Z
∗, where dom wit = dom in

– out : N ⇀ Script × N

– absLock : N
– relLock : N ⇀ N, where dom relLock = dom in

where, for all i, j ∈ dom in, fst(in(i)).wit = ⊥ and i �= j =⇒ in(i) �= in(j).
We denote with T.f the value of field f of T, for f ∈ {in,wit, out, absLock,
relLock}.
We say that T is initial when T.in = T.relLock = ⊥ and T.absLock = 0.
3 https://en.bitcoin.it/wiki/Script.

https://en.bitcoin.it/wiki/Script
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The fields in and out represent, respectively, the inputs and the outputs of
a transaction. There is an input for each i ∈ dom in, and an output for each
j ∈ dom out. When T.in(i) = (T′, j), it means that the i-th input of T wants to
redeem the j-th output of T′. The side condition i �= j ⇒ in(i) �= in(j) ensures
that inputs are pairwise distinct. The side condition fst(in(i)).wit = ⊥ is related
to the Segregated Witness (SegWit) feature4, and it requires that the witness of
the input transaction is left unspecified. The output T′.out(j) is a pair (λz.e, v),
meaning that v Satoshis (1 B = 108 Satoshis) can be redeemed by whoever can
provide a witness which satisfies λz .e. Such witness is defined by T.wit(i). The
fields T.absLock and T.relLock(i) specify a constraint on when T can be put on
the blockchain: the first in absolute terms, whereas the second is relative to the
transaction in the input T.in(i). More specifically, T.absLock = t means that T
can appear on the blockchain only after time t. If T.relLock(i) = t, then T can
appear only after time t since the transaction in T.in(i) appeared.

To improve readability, we use the following conventions: (i) if T has exactly
one input, we denote it by T.in (omitting the index, which we assume to be 1);
We act similarly for T.wit, T.out, and T.relLock; (ii) if T.absLock = 0, we omit it
(similarly for T.relLock when it is ⊥); (iii) we denote with script(T.out(i)) and
val(T.out(i)), respectively, the first and the second element of the pair T.out(i).

3.3 Transaction Signatures

We extend to transactions the signing and verification functions of the signature
schemes, denoted respectively as sigk(·) and verk(·, ·). For simplicity, although
we will always use k = (kp, ks) for key pairs, we implicitly assume that sigk(·)
only uses the private part ks, while verk(·, ·) only uses the public part kp.

In Bitcoin, transaction signatures never apply to the whole transaction: users
can specify which parts of a transaction are signed (with the exception of the wit
field, which is never signed). However, not all possible combinations of transac-
tion parts are possible; the legit ones are listed in Definition 4. In order to specify
which parts of a transaction are signed, we first introduce the auxiliary notion
of transaction substitution.

Definition 3 (Transaction substitutions). A transaction substitution Σ is
a function from Tx to Tx. For a transaction field f , we denote with {f 	→ d} the
substitution which replaces the value of f with d. For f �= absLock and i ∈ N, we
denote with {f (i) 	→ d} the substitution which replaces f (i) with d. Further, for
◦ ∈ {<,>, �=}, we denote with {f (◦ i) 	→ d} the substitution which replaces f (j)
with d, for all j ◦ i ∈ dom f .

Definition 4 (Signature modifiers). We define signature modifiers μi (with
i ∈ N) in Fig. 2. We associate to each modifier a substitution, and we denote
with μi(T) the result of applying it to the transaction T.

4 This feature, specified in the BIP 141 and activated on August 24th 2017, implies
that witnesses are not used in the computation of transaction hashes.
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aai(T) = T{wit(1) �→ i}{wit(�= 1) }⊥→�
ani(T) = aai(T{out }⊥→� )

asi(T) = aai(T{out(< i) �→ (false, 0)}{out(> i) }⊥→� )

sai(T) = aa1(T{in(1) �→ T.in(i)}{in(�= 1) }⊥→�
{relLock(1) �→ T.relLock(i)}{relLock(�= 1) }⊥→� )

sni(T) = sai(ani(T))

ssi(T) = sai(asi(T))

Fig. 2. Signature modifiers.

Each modifier is represented by a pair of symbols, describing, respectively,
the set of inputs and of outputs being signed (a= all, s= single, n= none), and
an index i ∈ N. The index has different meanings, depending on the modifier.
Regarding the first symbol of the modifier, if it is a, then i is the index of
the witness where the signature will be included, so to ensure that a signature
computed for being included in the witness at index i can not be used in any
witness with index j �= i (see Example 4). If the first symbol of the modifier is s,
then only the i-th input is signed, while all the other inputs are removed from
the transaction. With respect to the second symbol of the modifier, if it is s,
then i is the index of the signed output; otherwise, i has no effect on the outputs
to be signed. Note that a single index is used for both inputs and outputs: in
any case, the index refers to the witness where the signature will be included.

Definition 5 (Transaction signatures). We define the transaction signature
(under modifier μ and index i) and verification functions as follows:

sigμ,i
k (T) = (sigk(μi(T), μ), μ) verk(σ,T, i) = verk(w, (μi(T), μ)) if σ = (w, μ)

Hereafter, we use σ, σ′, . . . to range over transaction signatures.

Note that a signature σ = (sigk((μi(T), μ)), μ) does not contain the index i.
Consequently, the verification function requires i to be passed as parameter,
i.e. we write verk(σ,T, i). The parameter i will be instantiated by the script
verification function (see Definition 8). Besides the modified transaction μi(T),
the signature also applies to the modifier μ. In this way, signing a single-input
transaction T with modifier aa1 and with modifier sa1 results in two different
signatures, even though aa1(T) = sa1(T).

Notation 2. Note that sigμ,i
k (T) can meaningfully appear within T.wit(i), since

such signature does not depend on the wit field of transactions (as all signature
modifiers overwrite all the witnesses). When a signature of T appears within
T.wit(i), as a shorthand we denote it with sigμ

k (so, neglecting the enclosing
transaction T and the index i), or just sigk when μ = aa.

We now extend the signature verification verk(σ,T, i) to the case where,
instead of providing a single key k and a single signature σ, one has many keys
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and signatures, i.e. verk (σ,T, i). Intuitively, if |σ| = m and |k| = n, the function
verk (σ,T, i) implements a m-of-n multi-signature scheme, i.e. it evaluates to true
if all the m signatures match (some of) the keys in k. The actual definition is a
bit more complex, to be coherent with the one implemented in Bitcoin.

Definition 6 (Multi-signature verification). Let k and σ be sequences of
(public) keys and signatures such that |k| ≥ |σ|, and let i ∈ N. For all m,n ∈ N,
we define the function:

vern,m
k (σ,T, i) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true if m = 0
false if m �= 0 and n = 0
vern−1,m−1

k (σ,T, i) if m,n �= 0 and verkn
(σm,T, i)

vern−1,m
k (σ,T, i) otherwise

Then, we define verk (σ,T, i) = ver
|k |,|σ |
k (σ,T, i).

Our formalisation of multi-signature verification (Definition 6) follows closely
the implementation of Bitcoin, whose stack-based scripting language imposes
that the sequence σ is read in reverse order. Accordingly, the function ver tries
to verify the last signature in σ with the last key in k . If they match, the function
ver proceeds to verify the previous signature in the sequence, otherwise it tries
to verify the signature with the previous key.

Example 1 (2-of-3 multi-signature). Let k = kakbkc, and let σ = σpσq be such
that verka

(σp,T, 1) = verkb
(σq,T, 1) = true, and false otherwise. We have that:

verk (σ,T, 1) = ver3,2
k (σ,T, 1) (as |k| = 3 and |σ| = 2)

= ver2,2
k (σ,T, 1) (as verkc

(σq,T, 1) = false)

= ver1,1
k (σ,T, 1) (as verkb

(σq,T, 1) = true)

= ver0,0
k (σ,T, 1) (as verka

(σp,T, 1) = true)

= true (as m = 0)

Note that, if we let σ′ = σqσp, the resulting evaluation will be:

verk (σ′,T, 1) = ver3,2
k (σ′,T, 1) (as |k| = 3 and |σ′| = 2)

= ver2,2
k (σ′,T, 1) (as verkc

(σp,T, 1) = false)

= ver1,2
k (σ′,T, 1) (as verkb

(σp,T, 1) = false)

= ver0,1
k (σ′,T, 1) (as verka

(σp,T, 1) = true)

= false (as m �= 0 and n = 0) ��

3.4 Semantics of Scripts

Definition 7 gives the semantics of script expressions. This semantics will be
used in Sect. 3.5 to define when a transaction can redeem another one. We use
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an environment ρ : Var ⇀ Z which associates a denotation to each variable
occurring in it. Further, we use a transaction T ∈ Tx and an index i ∈ N to
indicate the witness redeeming the script, both used to evaluate the timelock
expressions. We use the denotation ⊥ to represent “failure” of the evaluation.
This is the case e.g. of timelock expressions, when the temporal constraint is
not satisfied. All the semantic operators used in Definition 7 are strict, i.e. they
evaluate to ⊥ if some of their operands is ⊥.

Fig. 3. Semantics of script expressions.

Definition 7 (Expression evaluation). Let ρ : Var ⇀ Z, let T ∈ Tx and
i ∈ N. We define the function �·�T,i,ρ : Exp → Den in Fig. 3, where we use the
following operators on denotations:

if ν0 then ν1 else ν2 ≡

⎧
⎪⎨

⎪⎩

ν1 if ν0 = true
ν2 if ν0 = false
⊥ otherwise

size(ν) ≡

⎧
⎪⎪⎨

⎪⎪⎩

⊥ if ν �∈ Z

0 if ν = 0
⌈
log2 |ν|

7

⌉
otherwise

ν0 ◦⊥ ν1 ≡ if ν0, ν1 ∈ Z then ν0 ◦ ν1 else ⊥ (◦ ∈ {+,−,=, <})

Definition 8 (Script verification). We say that the input i of T verifies λx.e
(in symbols: T, i |= λx.e) when x = x1 . . . xn, T.wit(i) = k1 . . . kn, and:

�e�T,i,{xj �→kj | j∈1...n} = true

Example 2. Let H be a hash function, let s, h ∈ Z be such that h = H(s), and
let T be such that T.wit(1) = (σ, s), with σ = sigaak (T). We prove that:

T, 1 |= λ(ς, x).
(
versigk(ς) and H(x) = h

)

To do this, let ρ = {ς 	→ σ, x 	→ s}. We have that:

�versigk(ς) and H(x) = h�T,1,ρ = �versigk(ς)�T,1,ρ and �H(x) = h�T,1,ρ

= verk(�ς�T,1,ρ,T, 1) and (�H(x)�T,1,ρ =⊥ �h�T,1,ρ)
= verk(ρ(ς),T, 1) and (H(�x�T,1,ρ) =⊥ h) = verk(σ,T, 1) and (H(ρ(x)) =⊥ h)
= true ��
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3.5 Semantics of Transactions

Definition 9 describes when the j-th input of a transaction T′ (put on the
blockchain at time t′) can redeem v Satoshis from the i-th output of the transac-
tion T (put on the blockchain at time t). We denote this by (T, i, t) v� (T′, j, t′).

Definition 9 (Output redeeming). We write (T, i, t) v� (T′, j, t′) iff all the
following conditions hold:

(a) T′.in(j) = (T{wit 	→ ⊥}, i)
(b) T′, j |= script(T.out(i))
(c) v = val(T.out(i))
(d) t′ ≥ T′.absLock
(e) t′ − t ≥ T′.relLock(j)

We write (T, i, t) �� (T′, j, t′) when for no v it holds that (T, i, t) v� (T′, j, t′).

Item (a) links the j-th input of T′ to the i-th output of T. Note that, since we
are modelling SegWit, the witness in the transaction T′.in(j) is left unspecified:
this is why we set to ⊥ also the witness of T. Item (b) requires that the j-th
witness of T′ verifies the i-th output script of T. Item (c) just defines v as the
value in the i-th output of T. Items (d) and (e) check the absolute and relative
timelocks, respectively. The first constraint states that T′ cannot appear on the
blockchain before T′.absLock; the second one states that T′ cannot appear until
at least T′.relLock(j) time units have elapsed since T was put on the blockchain.

T0

in: · · ·
wit: · · ·
out: (λς.versigk(ς), v0)

T1

in: (T0, 1)
wit: sigk
out: (λς.versigk′(ς), v1)

T′
1

in: (T0, 1)
wit: sigk
out: (λς.versigk′(ς), v1)
absLock: 5.1.2017
relLock: 2 days

Fig. 4. Three transactions. For notational conciseness, when displaying transactions
we omit the substitution {wit �→ ⊥} for the transaction within the in field (e.g., we just
write T0 within T1.in). Also, we use dates in time constraints.

Example 3. With the transactions in Fig. 4, we have (T0, 1, t0)
v0� (T1, 1, t1).

Indeed, for item (a) we have that T1.in(1) = (T0{wit 	→ ⊥}, 1); for item (b),
T1, 1 |= λς.versigk(ς); for item (c), v0 = val(T0.out(1)). The other two items
trivially hold, as there are no time constraints. We also have (T0, 1, 2.1.2017) v0�
(T′

1, 1, 6.1.2017). To show that, we have to check also items (d) and (e). For item
(d), we have that 6.1.2017 ≥ T′

1.absLock = 5.1.2017. For item (e), we have that
6.1.2017 − 2.1.2017 ≥ T′

1.relLock(1) = 2 days. ��
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T′
1

in: . . .
wit: . . .
out: (λς.versigk(ς), 1)

T′
2

in: . . .
wit: . . .
out: (λς.versigk(ς), 2)

T′
3

in: 1 �→ (T′
1, 1), 2 �→ (T′

2, 1)
wit: 1 �→ sigk , 2 �→ sigk
out: (λς.versigk2

(ς), 3)

Fig. 5. Three transactions for Example 4. Note that, by Notation 2, the first witness of
T′

3 is sigaa,1k (T′
3), while the second is sigaa,2k (T′

3).

Example 4. Consider the transactions in Fig. 5. The signature in T′
3.wit(1) is

computed as follows:

sigaa,1
k (T′

3) = (sigk(aa1(T′
3, aa)), aa) by Definition 5

= (sigk(T′
3{wit(1) 	→ 1}{wit(�= 1) 	→ ⊥}, aa), aa) by Definition 4

We prove that, when verifying (T′
1, 1, t) 1� (T′

3, 1, t′), item (b) of Definition 9
holds, i.e. T′

3, 1 |= script(T′
1.out(1)). To this purpose, let ρ = {ς 	→ (w, aa)},

where w = sigk(T′
3{wit(1) 	→ 1}{wit(�= 1) 	→ ⊥}, aa). We have that:

�versigk(ς)�T′
3,1,ρ = verk(�ς�T′

3,1,ρ,T
′
3, 1) by Def. 7

= verk((w, aa),T′
3, 1) ρ(ς)=(w, aa)

= verk(w, (aa1(T′
3), aa)) by Def. 5

= verk(w, (T′
3{wit(1) 	→ 1}{wit(�= 1) 	→ ⊥}, aa)) by Def. 4

= true by Def. of w

We now show that w is not valid for the other witness, i.e. (T′
2, 1, t) � 2� (T′′

3 , 2, t′),
where T′′

3 = T′
3{wit(2) 	→ sigaa,1

k (T′
3)}. Let ρ = {ς 	→ (w, aa)}. Item (b) of

Definition 9 does not hold:

�versigk(ς)�T′′
3 ,2,ρ = verk((w, aa),T′′

3 , 2) as above

= verk(w, (aa2(T′′
3), aa)) by Def. 5

= verk(w, (T′′
3{wit(1) 	→ 2}{wit(�= 1) 	→ ⊥}, aa)) by Def. 4

= false

In the last equation, w is not a valid signature for T′′
3{wit(1) 	→ 2}{wit(�= 1) 	→

⊥} because it is computed on T′
3{wit(1) 	→ 1}{wit(�= 1) 	→ ⊥}, and the two

transactions differ on wit(1). ��

3.6 Blockchain and Consistency

In Definition 10 we model blockchains as sequences of timed transactions (T, t),
where t represents the time when the transaction T has been added. Note that
our definition is very permissive: for instance, it allows a blockchain to contain
transactions which do not redeem any transactions, or double-spent transactions.
We will rule out such inconsistent blockchains later on in Definition 13.
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Definition 10 (Blockchain). A blockchain B is a sequence (T1, t1) · · ·
(Tn, tn), where T1 is the only transaction with in = ⊥, and ti ≤ tj for all
1 ≤ i ≤ j ≤ n.

We denote with transB the set of transactions occurring in B, and with
timeB(Ti) the time ti of transaction Ti in B. Given a transaction T, we define
matchB(T) as the set of transactions Ti such that T{wit 	→ ⊥} = Ti{wit 	→ ⊥}.
Definition 11 (Unspent output). Let B = (T1, t1) · · · (Tn, tn) be a
blockchain. We say that the output j of transaction Ti is unspent in B whenever:

∀i′ ≤ n, j′ ∈ N : (Ti, j, ti) �� (Ti′ , j′, ti′)

Given a blockchain B, we define:

– UTXOB , the Unspent Transaction Output of B, as the set of pairs (Ti, j)
such that output j of Ti is unspent in B.

– val(B), the value of B, as the sum of the values of all outputs in its UTXO.

T1

in: ⊥
wit: ⊥

out:
1 �→ (λς.versigk1

(ς), 3)
2 �→ (λς.versigk2

(ς), 5)
3 �→ (λς.versigk3

(ς), 7)

T2

in: 1 �→ (T1, 2), 2 �→ (T1, 3)
wit: 1 �→ sigk2 , 2 �→ sigk3

out: (λς.versigk2
(ς), 10)

T3

in: (T1, 2)
wit: sigk2

out: (λς.versigk2
(ς), 5)

Fig. 6. Three transactions for Examples 5 to 7.

Example 5. Consider the transactions in Fig. 6, and let B = (T1, 0)(T2, t2). We
have that (T1, 2, 0) 5� (T2, 1, t2) and (T1, 3, 0) 7� (T2, 2, t2), while the other
outputs are unspent. Hence, the UTXO of B is {(T1, 1), (T2, 1)}. ��

The following definition establishes when (T, t) is a consistent update of B.

Definition 12 (Consistent update). We write B � (T, t) iff either B = [],
T is initial and t = 0, or, given, for all i ∈ dom (T.in):

{T′
i} = matchB(fst(T.in(i))) (redeemed transaction)

oi = snd(T.in(i)) (redeemed output index)
t′i = timeB(T′

i) (time when T′
i was added to B)

vi = val(T′
i .out(oi)) (value of the redeemed output)
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the following conditions hold:

(1) ∀i ∈ dom T.in : (T′
i , oi) ∈ UTXOB

(2) ∀i ∈ dom T.in : (T′
i , oi, t

′
i)

vi� (T, i, t)
(3)

∑ {vi | i ∈ dom T.in} ≥ ∑ {val(T.out(j)) | j ∈ dom T.out}
(4) B = B′(T′, t′) =⇒ t ≥ t′

Firstly, for each T.in(i) we obtain the singleton {T′
i} from the blockchain,

using matchB , such that fst(T.in(i)){wit 	→ ⊥} = T′
i{wit 	→ ⊥}. The update is

inconsistent if matchB(fst(T.in(i))) is not a singleton for some i. Condition (1)
requires that the redeemed outputs are currently unspent in B. Condition (2)
asks that each input of T redeems an output of a transaction in B. Condition (3)
requires that the sum of the values of the outputs of T is not greater than the
total value it redeems. Finally, (4) requires that the time of T is greater than or
equal to the time of the last transaction in B.

Example 6. Consider again the transactions in Fig. 6, and let B = (T1, 0). We
prove that B � (T2, t2). Let o1 = 2, o2 = 3, t′1 = t′2 = 0, v1 = 5, v2 = 7. We
now prove that the conditions of Definition 12 are satisfied. For condition (1),
note that both (T1, 2) and (T1, 3) are unspent, according to Definition 11. For
condition (2), note that:

(T1, 2, 0) v1� (T2, 1, t2) (T1, 3, 0) v2� (T2, 2, t2)

hold, according to Definition 9. Finally, for condition (3), we have that:
∑

{vi | i ∈ {1, 2}} = 5 + 7 ≥
∑

{val(T2.out(j)) | j ∈ dom T2.out} = 10

Therefore, (T2, t2) is a consistent update of B. ��
Example 7 (Double spending). Consider again the transactions in Fig. 6, and
let B = (T1, 0)(T2, t2).

We prove that (T3, t3) is not a consistent update of B. Although condition (2)
of Definition 12 holds:

(T1, 2, 0) 5� (T3, 1, t3)

we have that condition (1) is not satisfied. In fact, according to Definition 11,
(T1, 2) is already spent in B because

(T1, 2, 0) 5� (T2, 1, t2)

holds and both T1 and T2 are in B. Since T3 is trying to spend an output already
spent, this transaction should not be appended to B. ��

We now define when a blockchain is consistent. Intuitively, consistency holds
when the blockchain has been constructed, started from the empty one, by
appending consistent updates, only. The actual definition is given by induction.
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Definition 13 (Consistency). We say that a blockchain B is consistent if
either B = [], or B = B′(T, t) with B′ consistent and B′ � (T, t).

Note that the empty blockchain is consistent; the blockchain with a single
transaction (T1, t1) is consistent iff T1 is initial and t1 = 0. The transaction T1

models the first transaction in the genesis block (as discussed in Sect. 6, we are
abstracting away the coinbase transactions, which forge new bitcoins).

We now establish some basic properties of consistent blockchains. Lemma 1
states that, in a consistent blockchain, the inputs of a transaction point back-
wards to the output of some transaction in the blockchain.

Lemma 1. If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i∈2 . . . n : ∀(T, h)∈ran (Ti.in) : ∃j < i : Tj{wit 	→ ⊥}=T ∧ h ∈ dom (Tj .out)

The following theorem establishes that a transaction output cannot be
redeemed twice in a consistent blockchain.

Theorem 1 (No double spending). If (T1, t1) · · · (Tn, tn) is consistent,
then:

∀i �= j ∈ 1 . . . n : ran (Ti.in) ∩ ran (Tj .in) = ∅
The following lemma states that there can be at most a single match of an

arbitrary transaction within a consistent blockchain. This implies that the in
field of an arbitrary transaction points at most to one transaction output within
the blockchain.

Lemma 2. If B is consistent, then for all transactions T, matchB(T) contains
at most one element.

Lemma 3 ensures that all the transactions on a consistent blockchain are
pairwise distinct, even when neglecting their witnesses.

Lemma 3. If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i �= j ∈ 1 . . . n : Ti{wit 	→ ⊥} �= Tj{wit 	→ ⊥}
The following theorem states that the overall value of a blockchain decreases

as the blockchain grows. This is because our model does not keep track of the
coinbase transactions, which in Bitcoin allow miners to collect transaction fees
(the difference between inputs and outputs of a transaction), and block rewards.

Theorem 2 (Non-increasing value). Let B be a consistent blockchain, and
let B′ be a non-empty prefix of B. Then, val(B′) ≥ val(B).

Note that the scripting language and its semantics are immaterial in all
the statements above. Actually, proving these results never involves checking
condition (b) of Definition 9. Of course, the choice of the scripting language
affects the expressiveness of the smart contracts built upon Bitcoin.
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4 Example: Static Chains of Transactions

We now formally specify in our model a simple smart contract5, which illustrates
the impact of SegWit on the expressiveness of Bitcoin contracts.

A participant A wants to send an indirect payment of 1 B to C, routing it
through B. To authorize the payment, B wants to keep a fee of 0.1 B. However, A
is afraid that B will keep all the money for himself, so she exploits the following
contract. She creates a chain of transactions, as shown in Fig. 7. The transaction
TAB transfers 1.1 B from A to B (but it is not signed by A, yet), while TBC

transfers 1 B from B to C. We assume that (TA , 1) is a transaction output
redeemable by A through her key kA , and that kB is the key of B.

TAB

in: (TA , 1)
wit: ⊥
out: (λςAςB .versigkAkB

(ςAςB), 1.1B)

TBC

in: (TAB , 1)
wit: ⊥
out:

1 �→ (λςB .versigkB
(ςB), 0.1B)

2 �→ (λςC .versigkC
(ςC), 1B)

Fig. 7. Transactions of the chain contract.

The protocol of A is the following: A starts by asking B for his signature on
TBC , ensuring that C will be paid. After receiving and verifying the signature,
A puts TAB on the blockchain, adding her signature on the wit field. Then, she
also appends TBC , replacing the wit field with her signature and B’s one. Since
A takes care of publishing the transactions, the behaviour of B consists just in
sending his signature on TBC .

Remarkably, this contract relies on the SegWit feature: indeed, without Seg-
Wit it no longer works. We can disable SegWit by changing our model as follows:

– in Definition 2, we no longer require that ∀i ∈ dom in : fst(in(i)).wit = ⊥
– in Definition 9, we replace item (a) with the condition: T′.in(j) = (T, i)
– in Definition 10, we let matchB(T) = {T} if T occurs in B, empty otherwise.

To see why disabling SegWit breaks the contract, assume that the transaction
T = TAB{wit 	→ sigaakA

(TAB)} is unspent on the blockchain, when participant
A attempts to append also T′ = TBC{wit 	→ sigaakA

(TBC) sigaakB
(TBC)}. To be a

consistent update, by item (2) of Definition 12 we must have (for some t1 ≤ t2):

(T, 1, t1)
1 B� (T′, 1, t2) (1)

For this, all the conditions in Definition 9 must hold. However, since we have
disabled SegWit, for item (a) we no longer check that:

T′.in(1) = (T{wit 	→ ⊥}, 1)
5 https://www.bitcoinhk.org/media/presentations/2016-03-16/2016-03-16-

Segregated Witness.pdf.

https://www.bitcoinhk.org/media/presentations/2016-03-16/2016-03-16-Segregated_Witness.pdf
https://www.bitcoinhk.org/media/presentations/2016-03-16/2016-03-16-Segregated_Witness.pdf
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but instead we need to check the condition:

T̃′.in(1) = (T̃, 1) (2)

where the transactions T̃, T̃′ correspond to the non-SegWit versions of T,T′, i.e.
their in fields point to their actual parents, according to the new Definition 2.

Hence, condition (2) checks the equality between T̃AB (the transaction in
the input of T̃′) and T̃AB{wit 	→ sigaakA

(T̃AB)} (the transaction T̃). Note that all
the fields of the second transaction—but the wit field—are equal to those of the
first transaction. Instead, the witness of T̃AB is ⊥, while the one of T̃ contains
the signature of A. This difference in the wit field is ignored with the SegWit
semantics, while it is discriminating for the older version of Bitcoin.

A näıve attempt to amend the contract would be to set the input field of T̃′

to T̃. However, this would invalidate the signature of A on T̃′.

5 Compiling to Standard Bitcoin Transactions

We now sketch how to compile the transactions of our abstract model into con-
crete Bitcoin transactions. In particular, we aim at producing standard Bitcoin
transactions, which respect further constraints on their fields6. This is crucial,
because non-standard transactions are mostly discarded by the Bitcoin network.

Our compiler produces output scripts of the following kinds, which are all
allowed in standard transactions:

Pay to Public Key Hash (P2PKH) takes as parameters a public key and a
signature, and checks that (i) the hash of the public key matches the hash
hardcoded in the script; (ii) the signature is verified against the public key.

Pay to Script Hash (P2SH) contains only a hash (say, h). The actual script
λx.e—which is not required to be standard—is contained instead in the wit
field of the redeeming transaction, alongside with the actual parameters k .
The evaluation succeeds if H(λx.e) = h and (λx.e)k evaluates to true. The
only constraint imposed by P2SH is on the size of the script, which is limited
to the size of a stack element (520 bytes).

OP RETURN allows to put up to 80 bytes of data in an output script, making
the output unredeemable.

We compile the scripts of the form λς.versigk(ς) to P2PKH, and those of the
form λ.k to OP RETURN. All other scripts are compiled to P2SH when they
comply with the size constraint, otherwise compilation fails. In this way, our
compiler always produces standard transactions.

Our compiler exploits the alternative stack as temporary storage of the vari-
able values. In this way we cope with the stack-based nature of the Bitcoin
scripting language. For instance, for the script λx.H(x) = H(x + 1), the variable
x is pushed on the alternative stack beforehand, then duplicated and copied in
the main stack before each operation involving x.
6 https://bitcoin.org/en/developer-guide#standard-transactions.

https://bitcoin.org/en/developer-guide#standard-transactions
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6 Conclusions

We have proposed a formal model for Bitcoin transactions. Our model abstractly
describes their essential aspects, at the same time enabling formal reasoning, and
providing a formal specification to some of Bitcoin’s less documented features.

An alternative model of transactions in blockchain systems has been proposed
in [8]. Roughly, blockchains are represented as directed acyclic graphs, where
edges denote transfers of assets. This model is quite abstract, so that it can be
instantiated to different blockchains (e.g., Bitcoin, Ethereum, and Hyperledger
Fabric). Differently from ours, the model in [8] does not capture some pecu-
liar features of Bitcoin, like e.g. transaction signatures and signature modifiers,
output scripts, multi-signature verification, and Segregated Witnesses.

Our work provides the theoretical foundations to model Bitcoin smart con-
tracts, reducing the gap between cryptography and programming languages com-
munities. A formal description of smart contracts enables their automated veri-
fication and analysis, which are of crucial importance in a context where design
flaws may result in loss of money. For instance, our model has been exploited
in [3] to present a comprehensive survey of Bitcoin smart contracts.

Differences Between Our Model and Bitcoin. There are some differences
between our model and the actual Bitcoin, which we outline below.

In Definition 2, we stipulate that the in field of a transaction points to another
transaction. Instead, in Bitcoin the in field contains the identifier of the input
transaction. More specifically, this identifier is defined as H(μ(T)), where: (i) μ =
{wit 	→ ⊥} since the activation of the SegWit feature; (ii) μ = ⊥, beforehand.
Consequently, the condition (T, i, t) v� (T′, j, t′) item (a) of Definition 9 would be
translated in Bitcoin as: T′.in(j) = (H(μ(T′′)), i), where H(μ(T′′)) = H(μ(T)).
Intuitively, the in field specifies the transaction (and the output index) to redeem.
Since the activation of SegWit, the computation of the transaction identifier does
not take in account the wit field.

The scripting language in Definition 1 is a bit more expressive than Bitcoin’s.
For instance, the script λx.H(x) < k is admissible in our model, while it is not in
Bitcoin. Indeed, the Bitcoin scripting language only admits the comparison (via
the OP LESSTHANOREQUAL opcode) on 32-bit integers, while two arbitrary values
can only be tested for equality (via the OP EQUAL opcode). Similar restrictions
apply to arithmetic operations. It is straightforward to adapt our model to apply
the same restrictions on Bitcoin scripts. Indeed, our compiler already implements
a simple type system which rules away scripts not admissible in Bitcoin.

Definition 10 models blockchains as sequences of transactions, while in Bit-
coin they are sequences of blocks of transactions. In this way, we are abstracting
both from the cryptographic puzzle that miners have to solve to append new
blocks to the blockchain, and from the coinbase transactions, which (like our
initial transaction) do not redeem other transactions, and mint new bitcoins
(the block rewards). Coinbase transactions are also used in Bitcoin to collect
transaction fees, which are just discarded in our model. Extending our model
with coinbase transactions would falsify Theorem2, since the overall value in the
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blockchain would no longer be decreasing. Definition 10 requires the timestamp
of each transaction to increase monotonically. Instead, in Bitcoin a timestamp
is valid if it is greater than the median timestamp of previous 11 blocks.

In Definitions 2 and 9, the absLock and relLock fields specify the time when a
transaction can be appended to the blockchain. In Bitcoin transactions, besides
the time we can also use the block height, i.e. the distance between any given block
and the genesis block. Setting the block height to h implies that the transaction
can be mined from the block h onward.
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A Proofs

Proof of Lemma 1
By Definition 13, (Ti, ti) is a consistent update of (T1, t1) · · · (Ti−1, ti−1). The
thesis follows from condition (2) of Definition 12. ��
Proof of Theorem 1
Let B = (T1, t1) · · · (Tn, tn) be consistent. By contradiction, assume that there
exist i < j and i′, j′ such that Ti.in(i′) = Tj .in(j′). By consistency, there exist
h, h′ such that (Th{wit 	→ ⊥}, h′) = Ti.in(i′). Since B1..i−1 � (Ti, ti), then by
item (2) of Definition 12 it must be (Th, h′, th) � (Ti, i

′, ti). Hence, by Defini-
tion 11 it follows that (Th, h′) is already spent in B. Since B1..j−1 � (Tj , tj), by
item (1) of Definition 12, (Th, h′) must be unspent—contradiction. ��
Proof of Lemma 2
Let B = (T1, t1) · · · (Tn, tn) be consistent. By contradiction, assume that
Ti,Tj ∈ matchB(T), with Ti �= Tj (and so, i �= j). By Definition 10 it must be
Ti{wit 	→ ⊥} = T{wit 	→ ⊥} = Tj{wit 	→ ⊥}, hence in particular Ti.in = Tj .in.
There are two cases. If Ti.in = Tj .in = ⊥, then by Definition 10 B is not a
blockchain, since i �= j. Hence, ran (Ti.in)∩ran (Tj .in) = ran (Ti.in) �= ∅. By The-
orem 1, this cannot happen because B is consistent—contradiction. ��
Proof of Lemma 3
Straightforward from Lemma2, taking T = Tj . ��
Proof of Theorem 2
Let B = (T1, t1) · · · (Tn, tn). By contradiction, there exists some i < n such that,
given Bi = (T1, t1) · · · (Ti, ti):

val(Bi) < val(Bi(Ti+1, ti+1))

Let Ui and Ui+1 be the UTXOs of Bi and of Bi(Ti+1, ti+1), respectively, and
let U = Ui ∩ Ui+1. Since val(Ui) < val(Ui+1), then it must be val(Ui \ U) <
val(Ui+1 \ U). The set Ui \ U contains the outputs redeemed by Ti+1, while the
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set Ui+1 \ U contains exactly the outputs in Ti+1. Since B is consistent, then
Bi � (Ti+1, ti+1). Then, by Definition 12, for each k ∈ dom Ti+1.in, there exists
a unique j ≤ i such that, given ok = snd(Ti+1.in(k)) and vk = val(Tj .out(ok)):

(Tj , ok, tj)
vk� (Ti+1, k, ti+1)

Then, by item (3) of Definition 12:

val(Ui \ U) =
∑ {vk | k ∈ dom Ti+1.in}

≥ ∑ {val(Ti+1.out(h)) |h ∈ dom Ti+1.out} = val(Ui+1 \ U)

while we assumed val(Ui \ U) < val(Ui+1 \ U)—contradiction. ��
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