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Abstract. Current era of digital data explosion calls for employment
of content-based similarity search techniques, since traditional search-
able metadata like annotations are not always available. In our work, we
focus on a scenario where the similarity search is used in the context
of stream processing, which is one of the suitable approaches to deal
with huge amounts of data. Our goal is to maximize the throughput of
processed queries while a slight delay is acceptable. We propose a tech-
nique that dynamically reorders the queries coming from the stream in
order to use our caching mechanism in huge data spaces more effectively.
We were able to achieve significantly higher throughput compared to
the baseline when no reordering and no caching were used. Moreover,
our proposal does not incur any additional precision loss of the similar-
ity search, as opposed to some other caching techniques. In addition to
the throughput maximization, we also study the potential of trading off
the throughput for low delays (waiting times). The proposed technique
allows to be parameterized by the amount of the throughput that can
be sacrificed.
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1 Introduction

Huge amounts of unstructured data are being produced nowadays resulting from
the current digital media explosion. Many tasks targeting at processing such
data involve, in some form, searching in the data. Traditional search techniques
based on exact match of data attributes cannot be often applied to such data
types. Instead, content-based search that treats the data by similarity can be
an appropriate option. Such search then usually uses k-nearest-neighbors (kNN)
queries, which retrieve the k objects that are the most similar to a given query
object. The level of similarity is measured by a metric distance function.

Due to the nature of the data and applications that use them, it can be
desired to deal with the data as with a potentially infinite stream that is con-
tinuously being created. For example, consider a text search-engine crawler that

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Hameurlain et al. (Eds.): TLDKS XXXVIII, LNCS 11250, pp. 61–88, 2018.
https://doi.org/10.1007/978-3-662-58384-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58384-5_3&domain=pdf
https://doi.org/10.1007/978-3-662-58384-5_3


62 F. Nalepa et al.

gathers images from the web and needs to continuously annotate them by tex-
tual descriptions according to the image content. As another example, a news
notification system needs to compare the newly published articles to the profiles
of all the subscribed users to find out who should be notified.

A subtask of these applications is processing the streamed data items by some
form of content-based searching. An important characteristic of the applications
is that the data do not need to be processed immediately as in interactive appli-
cations, but some delay is acceptable. The performance of these applications is
mostly determined by the number of processed data items in a given time inter-
val; that is, the throughput is the most important property. The individual query
search times can be improved by applying some similarity indexing techniques
that have efficient algorithms based on the metric model of similarity [20]. As
opposed to interactive applications focusing on the single query optimization, in
our scenario, we can afford to postpone processing of some queries if the overall
throughput of the system is improved.

I/O costs typically have a significant effect on the performance of similarity
search techniques. In our work, we exploit the fact that if a sequence of queries
is processed in an appropriate order, we can achieve considerably lower I/O
costs and overall processing times than if the order of the queries is random.
This is possible if two similar queries need to access similar data of the search
index, which is a common property of the indexes. By obtaining an appropriate
ordering of queries, the accessed data can be cached in the main memory and
reused for evaluation of similar queries lowering down the I/O costs.

The first contribution of the paper is a technique to dynamically reorder
the incoming queries, which allows to achieve a significant improvement of the
throughput according to our experiments. One of the features of the approach
is that it does not influence the quality of query results as other approximation
techniques do.

In the paper, we also present a way to trade off the throughput for the delays
of the processed queries. In other words, we balance the number of queries pro-
cessed per a time unit and the waiting times of individual queries. We show
how the proposed technique for the throughput maximization can be modified
to increase the number of queries processed until a given time limit while main-
taining sufficient throughput to be able to keep up with the rate of incoming
new query objects.

The presented approach is built upon our previous work [14]. In this paper, we
present more effective reordering technique, which allows to achieve even higher
throughput. We add formalization of the approach to the query reordering as a
problem of traversing a graph. The throughput-delay trade-off is another new
contribution of this paper.

The proposed technique is implemented as an extension of the M-Index [15]
used for indexing metric-space data, and its performance is compared to the
basic version of the M-Index. We used the Profimedia dataset of images [6] rep-
resented as high-dimensional vectors (4,096 and 256 dimensions) and measured
the throughput and other throughput-related properties of kNN queries. We
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were able to significantly improve the throughput compared to the basic version
of the M-Index. We also experimented with balancing the throughput and the
delays of the processed queries.

The rest of the paper is organized as follows. First, we formally define our
problem in Sect. 2. In Sect. 3, we present related work on caching and query
reordering in similarity search. A deep look into the proposed technique is pre-
sented in Sect. 4. It explains details of the caching system and the principles of
dynamic query reordering based on underlying graph model. The experimental
evaluation of our approach can be found in Sect. 5. We show modifications of
the proposed technique to tradeoff throughput for delays in Sect. 6. Our results
are summarized in Sect. 7.

2 Problem Definition and Objectives

Suppose there is a set of complex objects D (e.g., images represented as
high-dimensional vectors) and a large database X ⊆ D (|X| ≥ 106). Let
s = (d1, d2, . . .) be a stream, that is, a potentially infinite sequence of data
items. Each item of the stream is a pair di = (qi, ti) where qi ∈ D is a query
object and ti is the time when it was created (became available). We suppose
the data items of the stream are ordered from the oldest ones; that is, it holds
that ti ≤ ti+1 for each i and t1 = 0.

There is a defined metric space (D,md), which is a universal model of simi-
larity [20]. md is a total distance function md : D×D → R, where R is the set of
real numbers. The distance function satisfies these postulates for all o, p, q ∈ D:

– md(o, p) ≥ 0 (non-negativity),
– md(o, p) = 0 ⇐⇒ o = p (identity),
– md(o, p) = md(p, o) (symmetry),
– md(o, q) ≤ md(o, p) + md(p, q) (triangle inequality).

The distance between any two objects from D corresponds to the level of their
dissimilarity; the higher the distance, the higher the dissimilarity.

For each query object qi in the stream s, a k-nearest-neighbors query
NN (qi, k) is executed, which returns the k nearest objects from the database
X to the query object qi according to the distance function md . We consider
the scenario when X is stored on a disk and a subset of its data needs to be
accessed in order to evaluate a query. We also suppose I/O operations constitute
a significant cost considering all the needed data have to be read from the disk
during the query evaluation. Specifically, we target the situations when the time
to evaluate a query by this approach is higher than the average time gap between
two subsequent data items in the stream.

It is allowed to change the order of the processed query objects. More pre-
cisely, at the time t, any query object qi, where (qi, ti) is a data item of the
stream and ti ≤ t, can be processed.

The goal is to process the query objects of the stream so that the given
criteria are optimized. There can be various criteria that can be a subject to
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optimization depending on a specific application. The criterion we focus on in
this paper is throughput maximization. So the goal is to maximize the number
of processed query objects of a given stream until a given time T . Alternatively,
the criterion can be defined as the minimization of the number of unprocessed
query objects at the time T , that is, the number of (qi, ti) from the stream s
where ti ≤ T and qi is not processed.

We propose a technique that can be used to improve the throughput of
similarity search processing. The technique is based on reordering of the query
objects in the stream combined with a caching of the data that were accessed
during the evaluation of previous queries.

3 Related Work

The usage of a caching mechanism in similarity search has been proposed in
several papers to reduce the time spent by I/O operations. Unlike traditional
caching, which is based on exact matches only (e.g., the one exploited by web
search engines [9]), the similarity caching also has to manage similar matches.

Existing caching techniques used to speed up processing of a stream of sim-
ilarity search queries assume that the queries are appropriately ordered. In par-
ticular, they assume that similar queries are placed nearby in the stream. This
ensures that the cached values can be actually used before they are overwritten
by different queries. However, such a characteristic applies to specific scenarios
only, e.g., when there exist some popular objects that are frequently searched.
In our approach, we do not consider any specific ordering of queries within a
stream. Instead, we reorder the queries so that we obtain the sequences that are
desired.

In [10], the authors deal with kNN queries to search for similar images in a
metric space. They build their approach on the assumption that there exists a
set of popular images, which are queried by users significantly more often than
the other images. They propose an approach where the result sets of individual
kNN queries are stored in a cache and they are reused to produce approximate
results of subsequent queries.

The concept of caching in similarity search is also used in [16], where it is
applied to contextual advertising systems. If there is a cache miss for a kNN
query q, then a larger set of objects than are actually needed is retrieved from
the disk and stored in the cache. When a similar query to the cached query q
comes to the system, the cached values of q are explored to obtain results for
the new query. In this way, an approximate answer is returned.

Static/Dynamic caching is presented in [19]. The cache consists of two parts.
The static part stores queries (along with their results) that remain popular over
time. The dynamic cache keeps queries that are popular for a short period of
time. A combination of both is used to speedup the evaluation of queries. Several
strategies are proposed to select the suitable queries to be stored in the cache
based on analysis of past queries.

The paper [5] presents an index structure that serves as a cache and as an
index at the same time. The index is built and reorganized dynamically as new
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queries are evaluated. The advantage of the proposed approach is that if the
cache is not able to provide an answer, the data computed up to that moment
are used by the index.

Caching of data partitions loaded from a disk during query evaluation is
presented in [8] complemented with caching previous answers, which serves to
set initial search radius for similar kNN queries.

The authors of the paper [18] target the situations when the distance compu-
tation itself is an expensive operation. They propose D-cache, which stores dis-
tances computed during previous queries to spare some distance computations
of subsequent queries. The Snake Table presented in [2] uses a cache of distances
to avoid some distance computations when processing streams of queries with
snake distribution (i.e., consecutive query objects are similar). Since the Snake
Table needs a space proportional to the size of the dataset, it is suitable for
medium-sized databases.

Another way to improve the throughput of a stream of kNN queries, is to
reorder the queries. In [17], the authors optimize nearest neighbor search for
videos when each video is represented by a sequence of high-dimensional vectors.
Given a query video containing n vectors, a search for each vector is performed
and the overall similarity is computed at last. The authors make use of the fact
that vectors of subsequent video frames are similar with respect to the Euclidean
distance and they propose dynamic query ordering for advanced optimization of
both I/O and CPU costs. They make an observation that the candidates of a
previous query may help to further reduce the candidates shared with a subse-
quent query. The algorithm aims at progressively finding a query order such that
the common candidates among queries are fully utilized to maximally reduce the
total number of candidates. Also, this approach builds on the assumption that
the subsequent kNN queries in the stream are similar to each other. Moreover,
the ordering technique is designed for low-dimensional vector spaces (tested on
32 dimensions) and for a short sequence of queries (tested on sequences of the
length of 60 queries). In our work, we target more complex metric spaces (e.g.,
high-dimensional vector spaces with thousands of dimensions), in which case it
is highly improbable that similar queries can be found in such short sequences.

4 Principles of the Proposed Approach

To speed up a similarity query evaluation, a metric index is often used. In our
approach, we consider a generic metric index that uses data partitioning P =
{p1, . . . , pn} where pi ⊆ X, pi∩pj = ∅ for any two partitions pi, pj , and

⋃n
i=1 pi =

X. When processing a query object q, a subset of the partitions I(q) ⊆ P needs
to be accessed. The partitions are typically stored on a disk [20]. A frequent
bottleneck of similarity search techniques is the reading of the partitions from
the disk during a query evaluation. Our solution aims to decrease the number
of disk accesses, which consequently decreases the time to process the queries.

The aim of data partitioning methods is to generate the partitions in such a
way that any two objects p, q of a partition are similar to each other; that is,
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md(p, q) is small. When a query is to be evaluated, a score is assigned to each
partition according to estimated distances of the query to the objects of the
partition. Based on the scores, only the objects of the most promising partitions
are directly examined. The definition of the score is dependent on a specific
metric index.

Let I(q) ⊆ P be the set of data partitions accessed during the evaluation
of the query object q. Taking into account the properties of data partitioning
methods, the following holds:

md(q1, q2) ≤ ε =⇒ |I(q1) � I(q2)| ≤ δ (1)

where ε is a small non-negative real number; δ is a small non-negative integer.
That means if two query objects are very similar to each other (their distance is
at most ε), the sets of accessed data partitions are also very similar (the number
of elements in their symmetric difference is at most δ). This property can be
used to speed up the processing of query objects q1 and q2. First, q1 is evaluated
and the accessed data partitions are kept in the main memory cache. When q2 is
being evaluated, the data partitions stored in the cache can be reused to avoid
expensive disk accesses.

However, the caching itself is not typically enough for the speedup. Suppose
there is a database of millions of objects indexed in a metric space. In practice,
the metric space is often defined as a vector space of a high number of dimen-
sions. Due to such a huge search space, there is very low probability that two
subsequent query objects in the stream are similar enough to access overlapping
sets of data partitions during their evaluation. For the cache to be sufficiently
utilized, the query objects in the stream need to be reordered so that sequences
of similar query objects are obtained.

To sum it up, our approach consists of two parts. The first one is the in-
memory caching of recently loaded data partitions and reusing them for eval-
uation of subsequent queries. The second one is the query object reordering
allowing to process sequences of similar query objects to maximize the cache
utilization.

In Sect. 4.1, we describe the architecture of the system used for processing a
stream of query objects. Details of the caching system are presented in Sect. 4.2.
In Sect. 4.3, we model the problem of query object ordering from the perspec-
tive of graphs and we define a query graph with query objects as the vertices.
Section 4.4 discusses ways to construct the query graph; we present principals of
traversing the graph in order to maximize the throughput in Sect. 4.3; a specific
algorithm is provided in Sect. 4.6.

4.1 Architecture

In this section, we describe the architecture of the whole system. The schema of
the architecture is depicted in Fig. 1.

Let us have a stream ((q1, t1), (q2, t2), . . .).Aquery object qi arrives at the appli-
cation at the time ti and it is inserted into a component called a buffer. The buffer
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Fig. 1. Architecture

is used to temporarily store the incoming query objects that are waiting for pro-
cessing. This is the component where the query reordering takes place.

Another part of the architecture is the metric index, which takes care of the
query object evaluation. It contains a disk where the database of objects is stored
and a main memory cache is used to store the recently loaded data partitions
from the disk.

When the metric index is ready for processing another query, a query object
is picked from the buffer according to a strategy described in following parts of
this paper. During processing of the query, the metric index looks into the cache
to possibly use any data partitions obtained while evaluating recent queries. If
the data are not in the cache, they are loaded from the disk.

4.2 Cache

The cache is defined as a set of partitions cache = {p1, . . . , pm} ⊆ P . The size
of the cache is limited by the number of objects within the cached partitions:∑

p∈cache

|p| ≤ cacheLimit .

To measure the utility of the cache during evaluation of a given query object
q, we define the following function.

cacheUtility(q, cache) =
|I(q) ∩ cache|

|I(q)| (2)

where cache represents the content of the cache and I(q) ⊆ P is the set of
partitions accessed during the evaluation of q. We suppose I(q) is a non-empty
set.

To keep track of the content of the cache, we define the function
updateCache(q, cache) returning the content of the cache after processing the
query object q where cache represents the content of the cache before executing
q. In our implementation, we use the least recently used policy [12]. In particular,
the partitions with the oldest last access time are discarded and replaced with
the new partitions of the last query while obeying the cacheLimit .

The queryTime(q, cacheUtility) represents the time to process the given
query object q using the given cache utility. The desired property of the function
is that the time should be decreasing with increasing cache utility due to a lower
I/O cost.

cu1 ≤ cu2 ⇐⇒ queryTime(q, cu1) ≥ queryTime(q, cu2) (3)

where cu1, cu2 are cache utilities.
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4.3 Query Ordering

As it was stated before, a key to a high cache utilization is to process the query
objects in an appropriate order.

The problem of query object ordering can be modeled from the perspective of
graphs. Let s = ((q1, t1), (q2, t2), . . .) be the stream to be processed. Let us con-
sider just the portion of the stream available at the time t: ((q1, t1), . . . , (qk, tk))
so that tk ≤ t and tk+1 > t. We define the undirected query graph Gt = (V,E)
at the time t in the following way. The set of vertices is comprised of the subse-
quence items V = {(q1, t1), . . . , (qk, tk))}. In other words, each query object of
the stream subsequence represents a vertex in the query graph.

The graph is complete; that is, there is an edge between every pair of vertices
(qi, ti) and (qj , tj) where i �= j. A value is associated with each edge denoting
an upper bound of the query time to process qi right after qj or qj right after qi.
We denote the value assigned to the edge (referred to as the edge value in the
rest of the paper) between the vertices (qi, ti) and (qj , tj) as e((qi, ti), (qj , tj)).

The edge value between the vertices (qi, ti) and (qj , tj) is determined as
follows:

e((qi, ti), (qj , tj)) = max{queryTime(qi, cui), queryTime(qj , cuj)} (4)

where cui = cacheUtility(qi, I(qj)) and cuj = cacheUtility(qj , I(qi)). That is,
the upper bound of the query time is the maximum of the query times when
qi is processed right after qj or qj right after qi, while the cache contains only
the partitions needed by one previous query. If the cache contains more parti-
tions rather than those needed by the previous query, the cache utility does not
decrease and therefore, the query time does not increase according to Formula 3.

The query graph Gt is defined at each time t where t is a non-negative integer.
The graph continuously grows by adding new vertices and edges as new query
objects become available in the stream. Gt is a subgraph of Gk where k > t;
Gt+1 = Gt if and only if there does not exist an item (qi, t + 1) in the stream;
that is, no new item becomes available at the time t + 1. An example of the
graph evolution can be seen in Fig. 2.

Our objective is to find such an ordering in which the query objects are
processed so that the throughput is maximized. Regarding the query graph, we
want to find an acyclic path (i.e., a sequence of the vertices) that determines

Fig. 2. Query graph evolution example
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the ordering of the query objects. Formally, given the time limit T , the task is
to find the longest path ((qi1 , ti1), . . . , (qik , tik)) in GT so that startk < T where
startk is the time when the last query object qik starts to be evaluated. The
length of the path is measured as the number of vertices, that is, the number of
processed query objects.

A query object is processed as soon as the preceding query object is processed
or as soon as it becomes available in the stream, whichever occurs later. This
strategy is applied in order to improve the throughput.

Algorithm 1 describes the generic processing of a stream of query objects.
The input is the stream of query objects arriving continuously to the application
and the time limit T . The algorithm repeatedly calls the addNewQueryObjects
function to add newly arrived query objects to the query graph and the
getQueryToProcess function that returns a query object that is to be processed
next according to the query graph and according to the path of query objects
generated so far. The returned query object is processed and added to the path.
The loop finishes when the time limit T is exceeded.

Algorithm 1. Generic algorithm
Input: stream of query objects stream = (q1, q2, . . .) and the time limit T
Output: path: the order in which the stream objects are processed

function processStream(stream, T )
path ← ()
G ← empty graph
while T ≤ now do

G.addNewQueryObjects(stream)
q ←getQueryToProcess(G, path)
if q �= null then

process(q)
path.add(q)

return path

4.4 Query Graph Construction

To process the stream in the described manner, the query graphs have to be
generated from the raw stream of query objects. In particular, the edge values
have to be assigned. According to the definition, they should denote an upper
bound of the time to process a query object at one side of the edge right after
processing the query object on the other side. The question is how to predict
the query times. Usually, it is not possible to obtain the precise query times in
advance. In practice, we are likely to end up with a method for computing the
expected times to execute the queries.

The query time greatly depends on the cache utility (see Formula 3), that is,
on the number of data partitions loaded from the disk during query evaluation.
The problem is that it is not typically possible to precisely determine the set
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of needed data partitions without the actual query evaluation. The underlying
metric index usually works with a priority queue of data partitions, which is
being updated dynamically as the individual data partitions are examined [20].
Therefore, the approach based on precise computation of the cache utility is not
usable in practice.

Data partitions that are needed during the processing of a query are generally
determined by their distance to the query object in the metric space. So the size
of the intersection of data partitions needed during processing of two query
objects is influenced by the metric distance of the query objects. Pairs of close
query objects are assumed to share more data partitions than pairs of distant
ones.

Therefore, a straightforward way to approximate edge values of the query
graph can be based on the metric distances between query objects. When a new
query object arrives, the distances to all the other query objects of the graph
are computed. From the practical point of view, it is actually not necessary to
assign the edge values to already processed query objects (except for the last
one) because they are not used to generate the path (the details are described
later). Despite this practical consequence, the edge value assignment can be very
time consuming if there are a lot of query objects (e.g., tens of thousands as in
our experiments) that are still waiting for their processing. This is because the
metric distance computation can be a computationally intensive operation. If the
computational complexity of adding a new query object to the graph is measured
by the number of metric distance computations, the complexity is linear with
respect to the number of unprocessed query objects already in the graph.

Instead, we use a pivot based technique to estimate the metric distances
and the query times [7]. In particular, let there be a fixed set of objects in the
metric space; we will denote them as pivots. When a new query object q is to be
added to the graph, distances between the query object q and all the pivots are
computed. The pivots are ordered from the nearest to the farthest one, which
defines a permutation of the pivots. This pivot permutation is stored for each
query object. The edge value between two query objects is determined according
to the length of the common prefix of their pivot permutations, the longer the
common prefix, the lower the edge value. The length of the common prefix of
two permutations (pi1 , pi2 , . . . , pim) and (pj1 , pj2 , . . . , pjm) is determined as the
maximum number k (≤ m) such that ir = jr for all 1 ≤ r ≤ k. The pivot based
technique was also shown to work well in high-dimensional vector spaces [15],
which is essential for our scenario.

We can either stay with such relative edge values, or absolute edge values
can be assigned based on empirical measurements. Specifically, we can construct
a function that for a length of a common prefix of two query objects assigns
an average query time estimatedQueryTime(prefLength) = qtpl . Since there is a
fixed set of pivots, the cost to insert a new query object in the query graph is
constant. As we consider the scenarios when the rate of incoming query objects
is high, the number of pivots is typically much lower than the number of query
objects waiting for their processing.
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Many strategies for pivot selection have been proposed [1]. According to
the comparison of pivot selection techniques for permutation-based indexing
provided in [1], there is no universally best pivot selection technique, but rather
different techniques are optimal for different purposes. The authors also state
that “the random chosen pivots is never a bad idea even if it is also never the
smartest decision”. In our experiments, we use the M-Index [15] to evaluate
the similarity search queries, which is also a permutation-based access method.
From the efficiency point of view, it is beneficial to use the same set of pivots for
building the query graph and for indexing the dataset, since it helps to save some
distance computations. The authors of the M-Index claim that the random pivot
selection results in similar performance of query evaluations as other selection
methods. Due to these statements, we use a random selection of the pivots to
build the query graph.

4.5 Query Path Search

As we are now able to efficiently construct the query graphs, let us focus on
the throughput maximization criterion. The goal is to generate an appropriate
path in the graph. The path is generated whenever a next query object can be
processed. The query object that is to be processed needs to be chosen very
efficiently so that it does not impose much overhead. To be able to do that, we
apply a greedy approach trying to find a path with minimal average edge values.

Let us first define the term of the density of a subgraph SG = (VS , ES),
where |VS | > 1: Let (vi1 , vi2 , . . . , vi|VS |) be the shortest path going through all
the vertices VS ; vij ∈ VS for 1 ≤ j ≤ |VS | where the length of the path is
computed as the sum of the edge values between the subsequent vertices in the
path. Then density(SG) = |VS |

∑|VS |−1
j=1 e(vij

,vij+1 )
; that is, the density is determined

by the average edge value in the corresponding shortest path.
The proposed greedy approach relies on finding subgraphs of high density.

Such a dense subgraph is determined by the existence of a path through all
the vertices of the subgraph with a low average edge value. Since new vertices
are continuously added to the graph, the density of the subgraphs changes. The
search for dense subgraphs is intended to identify the parts of the query graph
that are at the current time possible to be processed with high cache utility.
The dense subgraph strategy is combined with the nearest-neighbor strategy [4],
which is a simple heuristic technique for the traveling salesman problem: Start at
an arbitrary vertex. The next vertex to visit is the one that has the lowest-value
edge to the current vertex among the unvisited vertices. This step is repeated
until all the vertices of the given subgraph are visited. In summary, the greedy
approach repeatedly finds a dense subgraph and processes all the query objects
in the subgraph in the nearest-neighbor manner.

This gets us to another problem to solve: how to efficiently identify dense
subgraphs. First, we construct a hierarchical clustering of the vertices. Dense
subgraphs are then found by exploring individual clusters rather than the whole
graph.
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Let Gt = (V,E) be the query graph at the time t. The set of clusters Ct =
{cL1 , cL2 , . . . , cLk

} is a decomposition of the set of vertices V so that Li =
max{e(va, vb) | va, vb ∈ cLi

} for 1 ≤ i ≤ k. It means that all the vertices are
decomposed into disjoint groups (clusters). Each cluster cLi

defines an upper
limit Li on the edge value between any two vertices, that is, a query time limit.
Note that there can be multiple valid decompositions given a set of clusters with
their distance limits. This forms the lowest level of the hierarchical clustering.
Another level of clusters is constructed by a decomposition of the set of clusters
on a lower level and by assigning query time limits to the new clusters so that the
limits are obeyed. Eventually, the tree of clusters Tt is generated. The vertices
of the original query graph (i.e., the query objects) are added as leaf nodes to
the corresponding bottom clusters.

For the decomposition of a set of vertices and subsequently clusters, we
reuse the pivot based technique that is applied for the query graph construc-
tion in Sect. 4.4. Each internal node on the level k of the tree is of the form
n = ((pi1 , . . . , pik−1), Ln) where (pi1 , . . . , pik−1) is the pivot permutation prefix
shared by all the descending nodes; Ln is the upper limit on the edge value
between any two descending leaf nodes. Each leaf node is of the form (q, t),
where q denotes the query object; t denotes its time of arrival.

An example can be seen in Fig. 3. Suppose there is the stream
((q1, 1), (q2, 3), (q3, 4), (q4, 7), (q5, 11), . . .). Let p1, p2, p3 be the pivots. Let
the pivot permutations for the first four items of the stream be (p1, p2, p3),
(p3, p1, p2), (p1, p3, p2) and (p1, p2, p3) in the respective order. Let the estimated
query times for individual common prefix lengths be 8, 2, 1 for the prefix lengths
0, 1, 2, respectively (see the function estimatedQueryTime in Sect. 4.4). On the
left side of the figure, there is the query graph G7 with the query times on the
edges. On the right side, there is the generated tree. Individual levels of the
tree correspond to the length of the common pivot permutation prefix of the
descending leaf nodes. The upper bound of the query time of qi processed right
after qj is determined by the query time limit of their lowest common parent
node. For example, the maximum query time limit of q3 when processed right
after q4 is determined by the lowest common parent ((p1), 2).

Contrary to the generic Algorithm 1, we actually work with the tree of clusters
in the implementation of the proposed approach. However, the structure of the
algorithm does not change; that is, there is a loop in which new query objects are
added to the tree and a next-to-process query object is selected and processed.

Fig. 3. Query graph and corresponding tree of clusters
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A pseudo code of the function inserting a new query object into the tree of
clusters is shown in Algorithm 2, which applies the pivot based technique. In the
next section, we will describe details of the function that traverses the tree and
selects a next query object to be processed.

Algorithm 2. Query object insertion algorithm
Input: tree of clusters tree, a query object q to insert and a set of pivots P

function addNewQueryObject(tree, q)
pp ← computePivotPermutation(q, P )
tree.addQueryObject(q, pp)

4.6 Tree Traversal

Let us describe how the tree of clusters Tt is traversed in accordance with
the dense subgraph and nearest-neighbor heuristics. The depth-first search is
applied. Suppose q is the last processed query object so far. First, we look for
a set of near neighbors by finding the lowest nonempty parent p of q. A node
is considered nonempty if and only if it has descending unprocessed leaf nodes
(query objects). After that, a child of p is selected based on some given strat-
egy. Recursively, a grandchild and other descendants are selected until a leaf is
reached and processed. This is captured in the pseudo code in Algorithm 3.

Algorithm 3. Tree traversal algorithm
Input: tree of clusters tree and path path representing the order of already processed

query objects
Output: the next query object to be processed

function getQueryToProcess(tree, path)
lastQO ← path.lastQueryObject
node ← tree.findLowestNonEmptyParent(lastQO)
while node �= null and node is not a leaf do

node ← tree.selectChild(node)
return node

A general strategy for selecting a particular child c (i.e., the subtree with
the root c) is to identify dense subtrees (dense clusters) in order to achieve high
throughput. A possible way is to select the subtree that minimizes the average
query time of processing all its leaf nodes. This way we select the subtree with
the largest immediate contribution to the throughput.

Let us illustrate the algorithm with an example. Consider the tree in Fig. 3.
Suppose that the currently processed query object is q2; the other query objects
have not been processed yet. Let us find the lowest nonempty parent of (q2, 3),
which is the root ((), 8). There is only one possible child to select, which is
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((p1), 2). Now, there are two possible children of ((p1), 2). In order to select
one child or the other, the average query time is estimated for each of the two
subtrees as follows. The subtree of ((p1, p3), 1) contains just one leaf node (q3, 4)
and the maximum query time is 8, since the lowest common parent of the last
query q2 and q3 is ((), 8). The maximum time to process the first leaf of the
subtree ((p1, p2), 1) is 8. The second leaf needs at most 1 time unit for processing,
since the lowest common parent of (q1, 1) and (q4, 7) is ((p1, p2), 1). Therefore,
the ((p1, p2), 1) subtree is selected, since it minimizes the average query time.
Subsequently both its leaves are processed.

Let us formalize the estimation of the average query time. Let n =
(pref n, qtn) be a nonempty internal node of the tree and m = (prefm, qtm) be
the lowest common parent of n and of the last processed leaf node. We suppose
the leaf node is not a descendant of n.

The maximum time to process all the leaf nodes of the subtree n equals

qtm + childrenQueryTime(n)

where qtm is the maximum query time of the first query object q of n.
childrenQueryTime(n) is the maximum time to process all the other descending
leaf nodes:

childrenQueryTime(n) =

= max{|n.children| − 1, 0} · qtn +
∑

c∈n.children

childrenQueryTime(c)

where n.children is the set of nonempty direct children of n; qtn is the maximum
time to process a leaf node of n when the lowest common parent of the last
and the next processed leaf is n. childrenQueryTime is applied recursively for
individual children of n.

The described strategy when the subtree minimizing the average query time
is selected possesses two possible caveats. It takes only the current state of the
tree to make the decision without considering evolution of the tree. The other
caveat is the possibility of starvation because some subtrees may never be chosen
for processing.

Let us explain the evolution of the tree of clusters caveat. Let p be a subtree
that at a time t contains a set of leaf nodes Ct that are all unprocessed and
at a time u it contains a set of leaf nodes Cu such that t < u and Ct ⊂ Cu.
Let us consider two scenarios. In the first one, p is selected as the subtree to be
processed at the time t and again at the time u. In the second one, p is selected
just at the time u. The set of processed leaf nodes is the same for both the
scenarios (Cu), but the query time is lower in the second one, since all the leaves
of p are processed in a row achieving higher cache utility. It implies that it pays
off to process p as few times as possible to achieve low query times, since the
subtree “switches” introduce processing overhead.

For illustration purposes, see the Fig. 3 again and let us consider the subtree
((p1, p2), 1). If both the children are processed in a row, the maximum query time
to process the second one is one, since their lowest common parent is ((p1, p2), 1).
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However, if just (q1, 1) is processed, then another subtree is processed and (q4, 7)
is processed later. The maximum overall time to process (q1, 1) and (q4, 7) is then
higher than in the first scenario, since ((p1, p2), 1) is not the lowest common
parent of (q4, 7) and of the previous leaf node. Thus the cost of processing (q4, 7)
is higher than one.

When also considering the starvation problem, a suitable strategy is to choose
the subtree that contains the oldest unprocessed leaf node among the considered
subtrees. This way the starvation problem is diminished and also the number of
times a subtree is chosen for processing is limited.

In fact, the starvation is not really eliminated. There can be a situation when
the processing gets stuck in a single subtree if there are always query objects
to be processed in this subtree and it cannot be completely emptied. Such a
situation can be solved by setting a time limit during which a single subtree of
the root node can be continuously processed. When the time limit is reached,
the tree traversal is reset to the root node.

The two presented implementations of the selectChild function (minimal
average query time and oldest leaf) are experimentally compared later in this
paper.

5 Experiments

In this section, we experimentally evaluate the proposed techniques for the
throughput maximization. We start by describing the setup of the experiments
in Sect. 5.1. The impact of the cache utility on the query time is explored in
Sect. 5.2. We show how the buffer size influences the throughput in Sect. 5.3.
In Sect. 5.4, we experiment with different rates of incoming query objects in
the stream. The cache size impact is evaluated in Sect. 5.5. Different ways of
constructing the query graph are experimentally compared in Sect. 5.6.

5.1 Setup of Experiments

We use the M-Index [15] structure to index the metric-space data. It employs
practically all known principles of metric space partitioning, pruning, and filter-
ing, thus reaching high search performance. The actual data are separated into
partitions, which are stored as separate files on a disk and read into the main
memory during query evaluations. To partition the data, M-Index uses a set of
pivots. To insert an object into the index, the pivots are sorted based on the
distance to the object. In this way, a pivot permutation is obtained, which iden-
tifies the data partition to insert the object. During a similarity search, mutual
distances between the query object and the pivots are used to reduce the set
of data partitions that need to be accessed. The M-Index supports executing
approximate kNN queries among other operations. One of the stop conditions
of a query evaluation is given by the maximum number of accessed objects (the
size of a candidate set). Such a stop condition is used in our experiments.
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One of the reasons why we chose to use the M-Index is that it can use the
same set of pivots as are used for the query graph construction in Sect. 4.4. This
is beneficial for the effectiveness of the query ordering. It also improves efficiency
because the distances from a query object to the pivots can be computed just
once and used both in the query graph and in the M-Index. Another reason
for selecting the M-Index is that it also achieves high search performance in
high-dimensional vector spaces.

For the experiments, we use the Profimedia dataset of images [6], which is a
freely-available large-scale dataset for evaluation of content-based image retrieval
systems. We created two different subsets of the images and extracted their
visual-feature descriptors. The generated datasets are: 1 million Caffe descriptors
[11] (4096 dimensional vectors) and 10 million MPEG-7 descriptors. Separately,
we created streams of images represented by corresponding descriptors. During
each experiment, images from the respective collection are continuously streamed
and stored in the buffer from which they are processed by approximate 10-NN
queries. For the approximate kNN queries, we used candidate sets of size 1,000
for the Caffe dataset and size 2,000 for the MPEG-7 dataset. We applied the
Euclidean distance and the weighted Euclidean distance as the distance functions
for the metric space with Caffe and MPEG-7 descriptors, respectively. For both
datasets, we use 160 randomly selected objects as pivots. In the M-Index, this
pivot selection strategy was observed to provide similar search performance as
other more sophisticated strategies [15].

If not said otherwise, the maximum size of the cache is set to 40,000 descrip-
tors for the Caffe dataset (i.e., 4% of the database); up to 90,000 descriptors are
stored for the MPEG-7 dataset (i.e., 0.9% of the database). The least recently
used policy is used when inserting to the full cache. In particular, the data par-
titions with the oldest last access time are discarded and replaced with the new
partitions of the current query so that the maximum size of the cache is main-
tained. To traverse the tree of clusters, the oldest leaf approach is used (see
Sect. 4.6) if not stated otherwise.

The tested applications are implemented using Java programming language
with the use of the MESSIF library [3] providing an implementation of the M-
Index. The experiments were run on Intel Xeon 2.00 GHz with 8 GB RAM. The
datasets are stored on a HDD (access time 5 ms, transfer rate 90 MBps). We
have run each of the experiments multiple times (at least three) and we have
taken the median values where appropriate.

5.2 Cache Utility vs. Query Time

At first, the impact of the cache utility on the query time is explored to val-
idate Formula 3. We ran approximate 10-NN queries for each dataset and we
were continuously changing the percentage of the data partitions that could be
obtained from the cache. The results are shown in Fig. 4a. The x-axis shows
the percentage of the cached values of all the data needed for processing of a
particular query; the y-axis represents the percentage of the time to process the
query compared to the situation when the cache is not used. It can be observed
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Fig. 4. Cache utility experiments

that the processing time can be improved dramatically (below 10% of the orig-
inal time) if the cache is filled with appropriate values, thus the assumption in
Formula 3 is valid.

5.3 Buffer Size Impact

In the next group of experiments, we explore the impact of the size of the buffer on
the cache utility and the throughput. The buffer size denotes the number of query
objects that are waiting for their processing and thus are a subject to reordering.
The size of the buffer was fixed during the experiments. At the beginning, the buffer
was filled with the query objects from the stream up to the given size; then another
query object was loaded whenever a query has been processed to keep the size of the
buffer constant. Exactly 100,000 query objects were processed during each experi-
ment. We can observe that with a growing size of the buffer, both the cache utility
and the throughput grow because the processed subgraphs (clusters) are denser
and the cached values are reused more often, see Figs. 4b and 5. The throughput
speedup was computed as the ratio of the processing time using a given buffer size
and the processing time when the query objects were processed in their original
order without the caching mechanism.

The results when the query objects were processed in their original order
(i.e., there is no reordering) are captured by Table 1. Average query times were
measured with and without use of the cache. The cache utility was very low,
which means the reordering of query objects significantly influences the efficiency.

5.4 Input Frequency Experiments

In the following experiments, we set a fixed frequency f of the incom-
ing query objects of the stream. It means the stream follows the pattern
((q1, 0), (q2, f), . . . , (qi, (i − 1) · f), . . .). We measured the throughput by observ-
ing the size of the buffer (i.e., the number of unprocessed query objects).
Each experiment was run with a different frequency of streamed query objects.
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Table 1. Processing query objects in their original order

Dataset Cache Cache utility Avg. query time [ms]

10 mil. MPEG-7 Yes 0.01 103

10 mil. MPEG-7 No - 113

1 mil. Caffe Yes 0.03 65

1 mil. Caffe No - 69

The processing was run for two hours for the Caffe dataset and for four hours
for the MPEG-7 dataset. The two approaches presented in Sect. 4.6 are com-
pared. In particular, these are the strategies for ordering the subtrees during the
depth-first traversal of the tree of clusters, namely, the oldest leaf (OL) approach
and the minimal average query time (MAQT ) approach. The oldest leaf strat-
egy selects the subtree containing the oldest unprocessed query object, while the
minimal average query time strategy selects the subtree minimizing the average
query time to process all the unprocessed query objects of the subtree.

The results are shown in Fig. 6. For the oldest leaf approach, we show the
results for input frequencies of 5 ms, 10 ms, 20 ms, 30 ms, and 60 ms. For the
MAQT approach, the results are shown just for the 30 ms frequency. It can be
observed that the size of the buffer grows at the beginning because the query
graph does not contain dense subgraphs, which are essential for the processing
speedup. As soon as the subgraphs are dense enough, the processing is more effi-
cient and eventually the buffer size stabilizes once the average query time equals
the input frequency. The results are in compliance with the results regarding
the buffer size: as the input rate of the streamed items increases, the buffer size
also increases to keep up with the incoming query objects. It can be seen the OL
approach gives a little better results than the MAQT one. Moreover OL does
not have the disadvantage of the starvation.

In all the cases except for the 5 ms and 10 ms frequencies, it was possible
to achieve sufficient throughput so that the buffer size was practically stable. It
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means that, for example, the average query time was 20 ms for the 20 ms input
frequency after the initial phase. The experiments with 5 ms were stopped after
reaching the size of the buffer of 200,000 or 700,000 for the Caffe or MPEG-7
dataset, respectively.

Tables 2 and 3 show comparison of delays for individual input frequencies.
The delay is the time since a query object enters the buffer until it is processed by
the metric index. As expected, the median and the maximum delays are greater
for more rapid streams because the buffer sizes are higher and it takes a longer
time until a particular query object can be processed. The maximum delay for
the MAQT approach is very high because it has no starvation prevention. The
tables also present the overall cache utility computed as the ratio of the number
of data partitions loaded from the cache and of all the data partitions needed
during the processing. The cache utility correlates with the size of the buffer as
was already seen in Fig. 4b.

Exact distribution of the delays for the experiment with the MPEG-7 dataset
and 30 ms input frequency can be observed in Fig. 7. The graph shows the per-
centage of queries that were processed until a given delay. So for example, we
can see that 50% of queries were delayed maximally by 13 min, while about 10%
of queries were kept in the buffer for more than 25 min.
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Fig. 6. The buffer size evolution in time during fixed input frequency experiments

Table 2. Fixed input frequency statistics for Caffe dataset

Input frequency [ms] 10 20 30 30 60

OL OL OL MAQT OL

Max delay [s] 2721 309 169 7036 59

Median delay [s] 740 117 47 38 7

Cache utility 0.87 0.65 0.44 0.48 0.08
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Table 3. Fixed input frequency statistics for MPEG-7 dataset

Input frequency [ms] 10 20 30 30 60

OL OL OL MAQT OL

Max delay [s] 6409 4031 2988 6557 1565

Median delay [s] 2599 1525 894 1050 234

Cache utility 0.92 0.78 0.59 0.64 0.30
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Fig. 7. Delay cumulative function; MPEG-7 dataset; 30 ms input frequency; OL app-
roach; 4 h run time

5.5 Cache Size Experiments

The cache utility is likely to increase with an increasing amount of the cached
data, since a query can reuse data of multiple previous queries. This expectation
is validated by the following experiments. A set of 50,000 queries was processed
using a fixed-sized buffer containing 20,000 query objects. The graphs in Fig. 8
depict the results. The cache utility increases with growing cache size; the pro-
cessing time decreases as the cache size gets larger. We can observe that caching
very large amount of data does not bring much improvement in the cache util-
ity and the processing time so for the other experiments, we selected 40,000
and 90,000 objects for the Caffe and the MPEG-7 datasets, respectively, as an
appropriate trade-off between the processing time and the storage space.

5.6 Query Graph Construction Experiments

In this section, we compare three approaches to the query graph construction
(described in Sect. 4.4). The first one is the pivot based technique we use in the
other experiments; that is, the edge values (maximum query times) of the query
graph are estimated according to common pivot permutation prefix lengths of
query objects. Another approach we consider is the one when the metric distances
to all the query objects of the query graph are explicitly computed and the edge
values correspond to the distances. The last one uses the knowledge of data
partitions needed during evaluation of individual queries and the edge values
are determined according to the number of common partitions.

In the experiments, we used the MPEG-7 dataset and a finite stream of
10,000 query objects ((q1, 1), . . . , (q10000, 1)); that is, all the query objects were
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available at once. For each approach, a path in the query graph was found going
through all the 10,000 query objects. The query objects were processed in that
order and the overall cache utility was acquired.

We considered two cache policies for each approach. In one case, the cache
was used to keep only the data partitions that were needed to evaluate one
previous query (OPP policy). This is the strategy that is used to set the upper
bound of the query time in Sect. 4.3. The other policy is the one that is used for
the other experiments; that is, the cache size is limited by 90,000 objects and
the least recently used replacement strategy is applied (LRU policy).

For the explicit distance computations technique, the query graph was con-
structed so that the edge values were set to the metric distances between the
query objects. Subsequently a path in the query graph was found using the 2-
approximate minimum spanning tree heuristics designed for the traveling sales-
man problem [13]. Note that the definition of the query graph requires query
times to be assigned to the edges. However, for the purposes of the experiments,
we worked directly with the metric distances assigned to the edges.

The sum of the edges of the constructed minimum spanning tree was 12,816,
which sets the minimal bound on the shortest path. The actual length of the
path obtained from the minimum spanning tree was 15,583. We also took the
path generated using the pivot based technique and computed its length in terms
of the metric distances between query objects, which resulted in the length of
18,059. However, the achieved cache utility for the OPP policy using the pivot
based technique was 9% compared to only 3% using the minimum spanning tree
path. For the LRU policy, the cache utility using the pivot based technique was
32% compared to only 10% using the minimum spanning tree path. It means the
metric distance is not strictly correlated with the cache utility (and the query
time). The choice of the query graph construction approach should consider
the properties of the used metric index so that the query times are estimated
correctly and the query ordering is effective.
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For the next approach, the data partitions needed for the evaluation of indi-
vidual queries were obtained beforehand. The value of the query graph edge qiqj
was assigned according to the difference of the data partitions needed for pro-
cessing qi and qj ; specifically we took max{|I(qi) − I(qj)|, |I(qj) − I(qi)|} where
I(q) is the set of the data partitions needed for processing q. The path was found
using the minimum spanning tree heuristics, which resulted in the cache utility
of 15% for the OPP policy and 29% for LRU. As for OPP, this approach achieves
better cache utility than the pivot based approach. If LRU is used, the achieved
results are similar to those obtained for the pivot based technique. However,
the precise set of needed data partitions is not generally known prior to actual
evaluation of the query so this approach is not usable in practice.

A summary of the results is captured by Table 4. We can conclude that from
the practical point of view, the pivot based strategy is the most suitable.

Table 4. Query graph construction experiments

Constr. strat. Cache policy Cache util.

Pivot based OPP 0.09

Pivot based LRU 0.32

Metric dist. OPP 0.03

Metric dist. LRU 0.10

Data parts. OPP 0.15

Data parts. LRU 0.29

6 Delay Improvement

The proposed approaches so far were focused on the throughput maximization
of the query processing and the delays of individual query objects were not
targeted for optimization. To recall, the delay is the time since a query object
was added into the stream until it was processed. In this section, we show how
the throughput can be traded off for improving the delays.

In Fig. 7, which shows the delay cumulative function for the experiment with
the MPEG-7 dataset and a fixed input frequency of 30 ms, we can observe that
just 5% of the queries were processed with maximally 1 min delay. In this section,
we explore the scenario when we want to process more queries until a given delay
limit while maintaining sufficient throughput.

Formally, the problem is defined as follows. Given the time limit T , the task is
to find a path ((qi1 , ti1), . . . , (qik , tik)) in the query graph GT so that startk < T
where startj is the time when the query object qij starts to be evaluated (for
more details see Sect. 4.3). Given the delay limit DL, the optimal path maximizes
the expression

w · |beforeLimit | + |afterLimit |
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where beforeLimit is the set of processed query objects with the delay of maxi-
mally DL; afterLimit is the set of the other processed query objects; w ≥ 1 is a
parameter determining the weight of the query objects processed until the given
delay limit.

Such a criterion can also be imagined as weighted throughput. A certain
number of points is received for each processed query object. If a query object
is processed before the given delay limit, more points are obtained. The goal is
to maximize the number of received points in a given time interval.

Let us define beforeLimit and afterLimit sets formally. We start with the
definition of the delay as the time since a query object was added into the
stream until it was processed:

delay((qij , tij )) = startj + qt ij − tij for j ≥ 1

where qt ij is the time to process qij .

beforeLimit = {(qij , tij ) — delay((qij , tij )) ≤ DL}
afterLimit = {(qij , tij ) — delay((qij , tij )) > DL}

To address the specified criterion, we modify the strategy for ordering the
children subtrees in the depth-first traversal of the tree of clusters (presented in
Sect. 4.6). Instead of choosing the subtree containing the oldest query object, a
score for each subtree candidate is computed:

a · oldestItemDelay + b · beforeLimitCount

where oldestItemDelay is the time since the oldest unprocessed query object of
the subtree entered the stream; beforeLimitCount is the number of unprocessed
query objects of the subtree that have been in the stream for at most DL time; a
and b are the weights influencing the trade-off of the delays and the throughput.
When b = 0, we get the original oldest leaf approach. As b grows, the subtrees
possessing newest query objects are more and more prioritized over the ones
containing the oldest leaves. The optimal value of b correlates with the value of
the weight w. The influence of the parameters is studied experimentally.

6.1 Delay Improvement Experiments

The following experiments were conducted for different values of b to see how
the throughput and the number of queries processed before the given delay limit
change. The value of a was fixed to 1. The 10 mil. MPEG-7 dataset was used;
the delay limit DL was set to 1 min; a new query object entered the buffer every
30 ms. Every experiment was run for 4 h.

The results are depicted in Fig. 9. By increasing the weight of the newest
query objects, it is possible to increase the number of query objects with the
delay below 1 min. On the other hand, the overall throughput decreases, since
subtrees with lower densities are prioritized (see Fig. 9a). The graph in Fig. 9b
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Fig. 9. Throughput delay trade-off for various b values; DL = 1 min; MPEG-7 dataset;
30 ms input frequency

depicts the percentage of queries processed until a corresponding delay. The
percentage of low delayed queries gets higher with the growing weight b; on the
other hand, the percentage of high delayed queries also increases because of the
lower throughput. Figure 9c shows the evolution of the buffer size for individual
weights. The larger the weight is, the larger the buffer size has to be in order
to keep up with the rate of the incoming query objects. When the weight is too
high, the buffer grows to very large sizes, since the average query time is very
high.

Figure 9d captures the numbers of query objects processed within the delay
limit throughout the time. The runs with nonzero b reach approximately the
same value after the first 20 min. After that, we can observe the influence of b,
since some of the oldest query objects become prioritized.

As can be seen from the experiments, choosing inappropriate values of the
parameters a and b can lead to unwanted results as the throughput drops to
very low values. In the following, we present a modification of the approach for
dynamical setting of the parameters according to the size of the buffer.
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The application can be in one of two states. When the first state is active,
the throughput maximization is aimed for (THRMAX state). When the other
state is active, the number of query objects processed until the given delay limit
is maximized (DELLIM state).

The behavior of the application in individual states differs in the setting of
the weighting parameters. In the THRMAX state, the oldest leaf approach is
applied, that is, a = 1, b = 0. For the DELLIM state, the subtree containing the
largest number of unprocessed query objects that have spent at most DL (the
delay limit) in the buffer is selected, that is, a = 0, b = 1.

The application switches from one state to the other according to the buffer
size. In particular, there is a lower and an upper buffer size limit. When the
upper limit is exceeded, the system goes to the THRMAX state to maximize the
throughput so that the buffer size can be lowered down. When the size of the
buffer drops below the lower limit, the DELLIM state is entered to maximize
the number of query objects processed before the given delay limit.

Experiments addressing the state switch approach were run with the same
settings as the first approach: that is, the MPEG-7 dataset, 1 min delay limit,
30 ms input frequency and four hour run time. Each experiment was run with dif-
ferent limits of the buffer size; the initial state was the DELLIM state. Figure 10
shows how the buffer size evolves in time. We can see that it oscillates between
the upper and the lower limit. When the upper limit is hit, the throughput is
enhanced by switching to the THRMAX state and the buffer size decreases.
When the lower limit is reached, the DELLIM state is entered to increase the
number of query objects processed until the given delay limit. However, the
throughput is decreased and the buffer enlarges.

Table 5 provides an insight into the approach. Each row corresponds to one
experiment with the given lower and upper switch limits of the buffer size. Indi-
vidual statistics are computed from the second switch when the behavior of the
buffer size evolution stabilizes (see Fig. 10) and relevant results can be obtained.
In particular, the statistics are computed between the second time the applica-
tion enters the DELLIM state and the last time the THRMAX state is exited.
This ensures that the application was in each state the same number of times.
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Fig. 10. Buffer size evolution in time for the state switch approach with various switch
limits; DL = 1 min; 10 mil. MPEG-7 dataset; 30 ms input frequency; the legend is in
the format “lower limit; upper limit” in thousands
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Table 5. State switch approach statistics

Lower limit Upper limit Time in DS [%] q in DS [%] q < DL [%] q < DL in DS [%]

30,000 40,000 26.4 10.6 13.4 78.4

70,000 80,000 43.9 17.2 18.4 92.1

100,000 110,000 47.5 18.0 18.8 94.3

65,000 85,000 43.6 17.3 18.6 91.5

75,000 80,000 42.6 16.7 17.9 91.8

79,000 80,000 39.8 16.5 17.9 91.0

The column time in DS contains the percentage of the time the application
spent in the DELLIM state. When a larger buffer size is used, the percentage
increases. This is because the average query time is low for large buffer sizes
and so the buffer size grows slowly in the DELLIM state and falls fast in the
THRMAX state.

The column q in DS contains the percentage of queries processed when the
application was in the DELLIM state. It correlates with the time spent in the
DELLIM state, but it is lower than the percentage of the time spent in the
DELLIM state, since the average query time is higher in the DELLIM state
than in the THRMAX state.

The column q < DL shows the percentage of queries that were processed until
the given delay limit (1 min). Again, this correlates with the time spent in the
DELLIM state. To compare the numbers with the oldest leaf approach, which is
used for the throughput maximization, only 5% of queries were processed with
the delay at most 1 min.

The last column q < DL in DS contains the percentage of the “before-limit”
queries that were processed while the DELLIM state was active. In other words,
all the queries that were processed within the delay limit form the whole (100%);
the displayed value in the column is the percentage of those that were processed
in the DELLIM state. It can be observed that most of the queries that were
processed until the delay limit were in fact processed while the DELLIM state
was active.

As it can be seen from the experiments, the presented approach can be suc-
cessfully used for the throughput delay trade-off.

7 Conclusion

We have presented a novel approach to enhance the throughput of similarity
search query processing. The technique is based on dynamic reordering of the
incoming query objects combined with in-memory caching of the data partitions
used to evaluate previous queries. The representation of the query reordering
problem is simplified using a query graph thus allowing a theoretical analysis of
the proposed techniques. An appropriate ordering of the queries is continuously
created by generating a path in the query graph. The introduced methods are
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verified experimentally with positive results. The presented approach allows to
achieve significantly better throughput than the baseline approach when the
query objects are evaluated in their original order.

In addition to the throughput maximization, we also targeted optimization
criterion trading off the throughput for low delays. The presented technique is
based on modification of the query ordering strategy proposed for the throughput
maximization. It is parameterized according to the amount of the throughput
that can be sacrificed.

Acknowledgement. This work was supported by the Czech national research project
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