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Preface

The 27th International Conference on Database and Expert Systems Applications
(DEXA 2016), with proceedings published in volumes 9827 and 9828 of Springer’s
Lecture Notes in Computer Science (LNCS), showcased state-of-the-art research
activities in the intersection of data management, knowledge engineering, and artificial
intelligence. The conference and its associated workshops provided a premier forum for
scientists, developers, and users to present and discuss original research results,
exchange new ideas, share industry experiences, and explore future directions.

As is the tradition of the conference series, the authors of selected papers of the
DEXA 2016 conference were invited to submit original, revised, and substantially
extended versions of their conference papers to a special issue of the Springer journal
Transactions on Large-Scale Data- and Knowledge-Centered Systems (TLDKS).
Invitations were given to only the very best of the 68 papers in the conference pro-
ceedings. Following the invitation, eight articles were submitted, each of which was
carefully reviewed by three international experts in two reviewing rounds. In the end,
six of the eight articles were accepted for inclusion in this special issue. We commend
these articles to you and hope you find them useful.

The article “Bound-and-Filter Framework for Aggregate Reverse Rank Queries,”
authored by Yuyang Dong, Hanxiong Chen, Kazutaka Furuse, and Hiroyuki Kitagawa,
introduces a new class of preference queries and presents efficient algorithms for
computing their answers. Preference queries are an important technique for query
personalization in databases. Top-k preference queries ask for a ranked list of the best
k answers to a query. Usually, preferences are defined based on a consumer-view rank
model. When changing the perspective and assuming a manufacturer-view model, one
can ask for the top-k consumers who assign a product the highest ranking. Studying this
question may help manufacturers to discover target consumers for their products. While
previous research has addressed this question for single products only, this article
investigates this question for sets of products (so-called product bundles). Different
aggregation functions are considered to define aggregate reverse rank-k queries. The
proposed method first computes suitable bounds for the query products, and then
prunes them using R-trees. Experiments demonstrate the scalability of the approach and
compare two implementation options. The conference version of this article received
the Norman Revell Best Paper Award of DEXA 2016.

The article “Syntactic Anonymization of Shared Datasets in Resource Constrained
Environments,” authored by Anne V. D. M. Kayem, C. T. Vester, and Christoph
Meinel, is motivated by the interest in privacy-preserving data publishing schemes that
are tailored toward computationally constrained settings. A multi-objective approach to
data anonymization is presented that extends the common k-anonymization and
‘-diversity schemes to enable automatic classification and anonymization of data. In
order to reduce information loss and to achieve a good balance between privacy and
data utility, sensitive attributes are weighted in terms of the severity of privacy



disclosure. To provide additional protection against skewness and similarity attacks,
the approach is further extended to satisfy t-closeness. Common t-closeness schemes,
however, are known to be computationally expensive. In an effort to address the
resource constraints, a novel scheme based on t-clustering is proposed where classi-
fication is used to minimize the risk of privacy disclosure of records containing sen-
sitive attributes with high-severity weight. Extensive experiments with real-world data
demonstrate that the proposed scheme is promising.

The article “Toward Faster Similarity Search by Dynamic Reordering of Streamed
Queries,” authored by Filip Nalepa, Michal Batko, and Pavel Zezula, proposes a new
method for similarity search against a large database of complex objects. These objects
may, for example, be digital images that are represented as high-dimensional data
vectors. The task is, for each query object in an incoming query stream, to retrieve the
top-k most similar objects from the database. The proposed solution combines a
caching mechanism with a smart reordering scheme that dynamically modifies the
order in which the query objects from the stream are processed. To efficiently compute
a query order that maximizes the overall throughput, a query graph is constructed and
maintained as an auxiliary data structure. The proposed method has been implemented
and experimentally tested with positive outcomes. A particular strength of the approach
is that the increase of the throughput does not come at the expense of a precision loss
of the similarity search. Furthermore, the article investigates the trade-off between
maximizing the throughput and minimizing the overall waiting time.

The article “SjClust: A Framework for Incorporating Clustering into Set Similarity
Join Algorithms,” authored by Leonardo Andrade Ribeiro, Alfredo Cuzzocrea,
Karen Aline Alves Bezerra, and Ben Hur Bahia do Nascimento, is motivated by the
quest for computational methods for entity resolution and its applications in data
cleaning and data integration. Similarity join is a popular operator that aims to deter-
mine all sufficiently similar pairs between two collections of records representing
real-world entities. Similar records can then be grouped together to derive better rep-
resentations of real-world entities. While previous approaches in the literature use
similarity join and clustering as two separate steps in data processing, this paper
presents a new method that combines similarity join and clustering into a single
step. A particular advantage of the proposed approach is its flexibility as it can
incorporate different clustering techniques and merging strategies. The new method is
implemented, and its accuracy and efficiency are empirically verified with benchmark
data sets that have been used in the literature to evaluate duplicate identification
algorithms.

The article “A Query Processing Framework for Large-Scale Scientific Data
Analysis,” authored by Leonidas Fegaras, aims to provide effective high-level support
for array-based computations in big data analytics. The idea is to model basic matrix
operations like matrix multiplication or matrix transposition as generic algebraic
operators, so that programmers can take advantage of an SQL-like declarative query
language. The article presents an optimization scheme that translates the generic
operators into efficient distributed algorithms. In particular, inter-operator optimizations
are performed, for example, to efficiently fuse matrix multiplications and transposi-
tions. The approach uses group-by-join operations and the MRQL algebra, which is
part of Apache MRQL, an emerging query processing and optimization system for

VI Preface



large-scale, distributed data analysis. It is implemented and tested using state-of-the-art
big data platforms (Hadoop Map-Reduce, Apache Flink, Apache Spark). Experiments
are conducted to evaluate the performance even for more complex array-based com-
putations such as matrix factorization.

The article “Discovering Periodic-Correlated Patterns in Temporal Databases,”
authored by J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, and
Masaru Kitsuregawa, introduces a new measure for the interestingness of a
periodic-frequent pattern in a transactional database, and proposes a pattern-growth
algorithm for detecting interesting patterns. The research is motivated by the rare item
problem in pattern mining: When analyzing a temporal transactional database, one is
usually interested in patterns that have sufficiently high support and sufficiently low
periodicity. Even for experienced users it is challenging to define appropriate thresh-
olds for these two dimensions. If the chosen thresholds are too strict then one will miss
relevant periodic-frequent patterns that correspond to rare items. Relaxing the thresh-
olds, however, may produce far too many patterns due a combinatorial explosion. The
article addresses this problem by defining and exploring the notion of
periodic-correlated patterns. An extensive experimental evaluation with synthetic and
real-world databases demonstrates that the new algorithm outperforms existing baseline
approaches.

Major credit for the quality of this special issue goes to the authors, who carefully
revised and significantly extended their contributions. We are grateful to all reviewers
for their invaluable work in assessing the submissions and ensuring the high quality of
this collection of articles. We wish to express our deep appreciation to Gabriela
Wagner, whose excellent support and editorial assistance made this special issue
possible.

October 2018 Sven Hartmann
Hui Ma
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Bound-and-Filter Framework
for Aggregate Reverse Rank Queries

Yuyang Dong(B), Hanxiong Chen, Kazutaka Furuse, and Hiroyuki Kitagawa

Department of Computer Science, University of Tsukuba, Ibaraki, Japan
tou@dblab.is.tsukuba.ac.jp,{chx,furuse,kitagawa}@cs.tsukuba.ac.jp

Abstract. Finding top-rank products based on a given user’s preference
is a user-view rank model that helps users to find their desired products.
Recently, another query processing problem named reverse rank query
has attracted significant research interest. The reverse rank query is a
manufacturer-view model and can find users based on a given product.
It can help to target potential users or find the placement for a specific
product in marketing analysis.

Unfortunately, previous reverse rank queries only consider one prod-
uct, and they cannot identify the users for product bundling, which is
known as a common sales strategy. To address the limitation, we propose
a new query named aggregate reverse rank query to find matching users
for a set of products. Three different aggregate rank functions (SUM,
MIN, MAX) are proposed to evaluate a given product bundling in a
variety of ways and target different users. To resolve these queries more
efficiently, we propose a novel and sophisticated bound-and-filter frame-
work. In the bound phase, two points are found to bound the query
set for excluding candidates outside the bounds. In the filter phase, two
tree-based methods are implemented with the bounds; they are the tree
pruning method (TPM) and the double-tree method (DTM). The theo-
retical analysis and experimental results demonstrate the efficacy of the
proposed methods.

Keywords: Similarity search · Aggregate reverse rank queries
Bound-and-filter · Tree-based method

1 Introduction

Suppose that there are two types of datasets: user dataset and product dataset.
The top-k query and reverse k-rank query are two different kinds of view-models.
The top-k query is a user view-model that helps users by obtaining the best k
products matching a user’s preference. On the other hand, the reverse k-rank
query [23] supports manufacturers by discovering potential users by retrieving
the most appropriate user preferences. Therefore, it is a manufacturer view-
model, and can be used as a tool for analysis and estimating product marketing.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
A. Hameurlain et al. (Eds.): TLDKS XXXVIII, LNCS 11250, pp. 1–26, 2018.
https://doi.org/10.1007/978-3-662-58384-5_1
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2 Y. Dong et al.

Example 1. Figure 1 shows an example of a reverse 1-rank query. Five prod-
ucts, cell phones p1 to p5, are scored on two attributes: “smart” and “ratings” in
a table (Fig. 1(b)). The preferences of two users Tom and Jerry are presented in
another table (Fig. 1(a)) and consist of the weights for all attributes. The score
of a cell phone based on user preference is computed with the inner product of
the cell phone attributes vector and the user preference vector. Without loss of
generality, we assumed that minimum values are preferable. The reverse k-rank
query is to find the top-k users with the highest ranking value for a given prod-
uct. The results of the reverse 1-rank query are given in the last row of Fig. 1(b).
For example, Tom believes that p1 is the third-best phone (Fig. 1(a)), while Jerry
thinks that p1 is the fifth-best. To manufacturers, Tom is more likely to buy p1
than Jerry; hence, the reverse 1-rank query returns Tom as the result.

Fig. 1. An example of reverse 1-rank queries.

1.1 Motivation

Besides the case of the single-product selling in Fig. 1, manufacturers also use
“product bundling”1 for many marketing purposes. Product bundling offers sev-
eral products for sale as one combined product. It is a common feature in
many imperfectly competitive product markets. For example, Microsoft Co.,
Ltd. includes a word processor, spreadsheet, presentation program, and other
useful software into a single Office Suite. The cable television industry often

1 https://en.wikipedia.org/wiki/Product bundling.

https://en.wikipedia.org/wiki/Product_bundling
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bundles various channels into a single tier to expand the channel market. Man-
ufacturers of video games are also willing to group a popular game with other
games of the same theme in the hope of obtaining more benefits by selling them
together.

Fig. 2. An example of aggregate reverse 1-rank queries.

Because product bundling is a common business approach, helping manu-
facturers target users for their bundled products becomes an important issue.
Unfortunately, the previous work on reverse k-rank query and other kinds of
reverse rank queries [14,15] were all designed for just one product. To address
this limitation, we propose a new query definition named aggregate reverse rank
query (AR-k query) that finds k users with the smallest aggregate rank values.
In our previous work, we [5] evaluated the aggregate rank by only summing up
each rank (SUM function). In this work, we extend two more MAX and MIN
aggregate functions that can target the other kinds of users (Details are provided
in Sect. 3).

Example 2. Figure 2 shows an example of an AR-1 query with the SUM func-
tion. Assume that there are three bundled products: {p1, p2}, {p2, p3}, and
{p4, p5}. The aggregate rank of {p1, p2} is 5 according to Tom’s preferences and
6 according to Jerry’s. Thus, the AR-1 query returns Tom as the result because
Tom prefers this bundle the most.

Contribution. This paper makes the following contributions:

– To the best of our knowledge, we are the first to address the “one product”
limitation of the reverse rank query. We propose a new AR-k query that
returns k user preferences that best match a set of products.

– We propose a bound-and-filter framework. In the bounding phase, we prepro-
cess preferences to determine possible upper and lower bounds. In the filter-
ing phase, we develop and implement two methods: the tree-pruning method
(TPM) and the double-tree method (DTM). We also propose a method to
reduce unnecessary query points.

– Along with the theoretical analysis, we also perform experiments on both
real and synthetic data. The experimental results validate the efficiency of
the proposed methods.
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The rest of this paper is organized as follows: Sect. 2 summarizes related work.
Section 3 states the definitions. In Sect. 4, we present the method of bounding
the query set. Sections 5 and 6 propose two solutions (TPM and DTM) of AR-k.
Section 7 presents a method to reduce unnecessary query points for the MAX
and MIN functions. Section 8 discusses the cost of the proposed bound-and-filter
framework. Experimental results are shown in Sect. 9 and Sect. 10 concludes the
paper.

2 Related Work

Ranking is an important property used for evaluating the position of a product.
Many variants of rank-aware queries have been widely researched.

Ranking Query (top-k query). The most basic approach is the top-k query.
When given a user preference, the top-k query returns k products with minimal
ranking scores found by a score function. One possible approach to the top-k
problem is the onion technique [2]. This algorithm precomputes and stores convex
hulls of data points in layers like an onion. [6] is an important investigation that
describes and classifies top-k query processing techniques in relational databases.

Reverse Rank Query (RRQ). Reverse top-k queries [14,15] have been pro-
posed to evaluate the impact of a potential product on the market based on
the preferences of users who consider it as a top-k product. For an efficient
reverse top-k process, Vlachou et al. [18] proposed a branch-and-bound algo-
rithm (BBR) using boundary-based registration and a tree base. Vlachou et
al. [16,17] reported various applications of reverse top-k queries. To answer the
reverse query for some less-popular objects, [23] proposed the reverse k-rank
query to find the top-k user preferences with the highest rank for a given object
among all users. We proposed AR-k in our previous work [5], in which we concen-
trated on the aggregate function SUM. This paper extends the work to efficient
processing for aggregate functions MAX and MIN.

Other Reverse Queries. Other related research on reverse queries is listed
below. Given a data point, queries are performed to find result sets containing
this data point. In contrast to the nearest-neighbor search, Korn and Muthukr-
ishnan [7] proposed the reverse nearest-neighbor (RNN) query. Yao et al. [22]
proposed the reverse furthest neighbor (RFN) query to find points where the
query point is deemed as the furthest neighbor. Wang et al. [19] extended the
RFN to RkFN queries for an arbitrary value of k and proposed an efficient fil-
ter in the search space. Considering the reverse k-nearest neighbor (RKNN),
Yang et al. [20] analyzed and compared notable algorithms from [3,11–13,21].
RKNN differs from RRQ because it evaluates the relative Lp distance between
two points in one Euclidean space. However, RRQ focuses on the absolute rank-
ing among all objects, and scores are found via the inner product function. In
addition, RKNN treats the user preference and the product as the same kind of
point in the same space, whereas RRQ has two datasets of different data spaces.
The reverse skyline query uses the advantages of products to find potential users
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based on the dominance of competitors’ products [4,8]. The preference of each
user is described as a data point representing the desirable product; however,
the preference is described as a weight vector in RRQ. In [9,10], a group nearest
neighbor query that finds the point having the smallest aggregate Lp distance
for multiple query points.

Collaborative Filtering. Our research is related to the collaborative filter-
ing methods of recommendation systems [1]. Nevertheless, they are two differ-
ent strategies. Collaborative filtering only considers the similarity among users,
and recommends the product bought by a user to other similar users. However,
our research is on content-based recommendation that considers the similarity
between users and products.

3 Aggregate Reverse Rank Query

3.1 Preliminary Definitions

The assumption of the product data, preference data, and the score function are
the same as in the related research [5,14,18,23]. Let there be a product dataset P
and a preference dataset W . P and W in a d-dimensional Euclidean space. Each
product in the product dataset p ∈ P is a d-dimensional vector that contains d
nonnegative values. p is represented as a point p = (p[1], p[2], ... , p[d]) where
p[i] is the attribute value of p in the ith dimension. The preference w ∈ W is also
a d-dimensional weighting vector, and w[i] is a nonnegative weight that evaluates
the ith attribute of products, where

∑d
i=1 w[i] = 1. The score of a product p

based on a preference w is defined as the inner product of p and w expressed by
f(w, p) =

∑d
i=1 w[i] · p[i]. Given q as the query product, which is in the same

space of P , but not necessarily an element of P , the reverse k-rank query [23] is
defined as follows:

Definition 1 (rank(w, q)). Given a point set P , weighting vector w, and query
q, the rank of q by w is rank(w, q) = |A|, where A ⊆ P and ∀pi ∈ A, f(w, pi) <
f(w, q) ∧ ∀pj ∈ (P − A), f(w, pj) ≥ f(w, q).

Definition 2 (reverse k-rank query). Given a point set P , weighting vector set
W , positive integer k, and query q, the reverse k-rank query returns S, S ⊆ W ,
|S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S), rank(wi, q) ≤ rank(wj , q) holds.

3.2 The Proposed Aggregate Reverse Rank Query

As the above statement indicates, it is desirable for sellers to find potential users
of their product bundles by using the reverse rank technique. Such queries can
be dealt by extending the reverse rank query for more than one query point. We
propose the aggregate reverse rank query [5], which is formally defined as follows.
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Definition 3 (aggregate reverse rank query, AR-k). Given a point set P , weight-
ing vector set W , positive integer k, and a set of query points Q, the AR-k
query returns the set S, S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
ARank(wi, Q) ≤ ARank(wj , Q) holds. If multiple w’s have an equal ARank(.)
value around boundary (k-th rank) of S, S contains a part of them randomly for
the result.

ARank(w,Q) is the function used to evaluate the ranking of the query prod-
uct set Q, which is the bundled product for which we want to find the target
users.

• SUM : ARankS(w,Q) =
∑

qi∈Q

rank(w, qi)

• MAX : ARankM (w,Q) = Max
qi∈Q

(rank(w, qi))

• MIN : ARankm(w,Q) = Min
qi∈Q

(rank(w, qi)) (1)

Notice that in our previous work [5], we only define the SUM function. In this
paper, we propose two more aggregate functions MAX and MIN to ensure that
AR-k can deal with other situations in real applications. Specifically, suppose
that there is a set of products offered by a manufacturer, and we want to help
find the most likely potential users.

Then, the above three evaluating functions correspond to the following
requests:

– SUM: Find users who more strongly believe than other users that this prod-
uct set is better.

– MAX/MIN: Find users who more strongly believe than other users that
the worst/best product in this set is better.

Example 3. Figure 3 shows the geometric image of rank in a 2-dimensional
data space of P . One product data p ∈ P is represented as a point and a user
preference w is represented as a vector. The score of inner product f(w, p) is
equal to the distance from o to the projection of p on w. The line that crosses
the point p and is perpendicular to w is a borderline of the score f(w, p). Obvi-
ously, the rank of q on w is the number of points under this borderline. For
example, p2 and p3 are under the perpendicular line passing through q2; hence,
f(w, p2) < f(w, q2) and f(w, p3) < f(w, q2). By Definition 2, rank(w, q2) = 2.
For the aggregate rank of Q = {q1, q2, q3}: ARankS(w,Q) = rank(w, q1) +
rank(w, q2) + rank(w, q3) = 3 + 2 + 5 = 10; ARankM (w,Q) = rank(w, q3) = 5;
ARankm(w,Q) = rank(w, q2) = 2.
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Fig. 3. Geometric view of rank in 2-dimensional data, ARankS(w,Q) = 3+2+5 = 10,
ARankM (w,Q) = 5, ARankm(w,Q) = 2

4 Bounding Phase

The naive solution to the AR-k query is to sum up the ranks for q ∈ Q one
by one against each w ∈ W and p ∈ P . This is inefficient, especially when Q
is large. In this section, we introduce the bounding phase of our bound-and-
filter framework, in which a sophisticated method determines two points Q.up
and Q.low that bound Q. Our proposal is to bound the query point set Q with
respect to W to avoid checking each q ∈ Q.

An intuitive method for bounding Q is to bound with the left-low corner and
right-up corner points of Q’s minimum bounding rectangle (MBR), denoted as
MBR(Q).low and MBR(Q).up. In the general case, MBR(Q).low is dominated
by any q ∈ Q in all d dimensions, because the attribute values of MBR(Q).low
is always smaller than or equal to that of q. Moreover, all values are nonnegative
so that the score function f(w, q) is monotonically increasing; thus, it is obvious
that for an arbitrary w, the score of MBR(Q).low is smaller than or equal to
that of q ∈ Q:

f(w,MBR(Q).low) ≤ f(w, q), where q ∈ Q,w ∈ W. (2)

On the other hand, MBR(Q).up is the upper bound of Q in a similar way.

Example 4. Figure 4 shows the search space and filter space of data P with
MBR(Q). For computing the ARank(Q,u), the “search space” is the space in
which we need to compute the scores of the inside data. “Filter space” means that
we do not need to compute the data inside and just need to filter them since they
have a clear relationship with Q. The search space is the middle part between
the two perpendicular lines w.r.t MBR(Q).low and MBR(Q).up. Apparently, a
tighter bound (higher MBR(Q).low and/or lower MBR(Q).up) can make this
middle space smaller and filter more data in processing.
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Fig. 4. A 2-dimensional example of search space (gray) and filtering space (blue) with
basic MBR(Q) bounding. (Color figure online)

Motivated by the above observation, we propose a tighter bounding strategy.
To bound Q for an arbitrary w ∈ W , we first find out the top-weighting vector
in each dimension, denoted as w(i)

t , i = 1, 2, 3, .., d. w(i)
t is the closest vector (the

smallest angle) to the orthonormal basis vector of the ith dimension, as defined
in the following.

Definition 4 (top-weighting vector). Given a set of weighting vectors W , let ei
be the orthonormal basis vector for dimension i such that ei[i] = 1 and ei[j] =
0, i �= j and let cos(a, b) = a · b/(|a||b|) be the cosine similarity between vectors a
and b. The top-weighting vector for dimension i is defined by w

(i)
t where w(i)

t ∈ W

and ∀w ∈ W, cos(w(i)
t , ei) ≥ cos(w, ei).

A subset of W , denoted by Wt = {w(i)
t }d1, is the set of top-weighting vectors

for all dimensions. Because Wt contains the border of the weighting vector in all
dimensions, we can use it to find the upper bound and lower bound points set
of Q.

Definition 5 (upper and lower bound query sets Qu and Ql). Let Q be a set of
d-dimensional queries.

Qu = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)
t ∈ Wt, f(w(i)

t , qi) ≥ f(w(i)
t , qj)} and

Ql = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)
t ∈ Wt, f(w(i)

t , qi) ≤ f(w(i)
t , qj)}.

By definition, for each w
(i)
t , we can find a qi ∈ Qu (Ql) such that qi’s score

with respect to w
(i)
t is the largest (smallest) among Q. Different w(i)

t may apply
to the same qi. Generally, it is easy to find the MBR of a point set Qu, and its
upper-right and lower-left corners are the two bounding points required.

Q.up = MBR(Qu).up (3)

Q.low = MBR(Ql).low (4)
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Fig. 5. A 2-dimensional example. w
(1)
t = w5, w

(2)
t = w1, and Qu = {q1, q3}, Ql = {q2},

Q.low = MBR(Ql).low = q2, Q.up = MBR(Qu).up

Example 5. Figure 5 shows the example of Q.low and Q.up where Q =
{q1, q2, q3}. w(1)

t = w5 and w
(2)
t = w1 are the top-weighting vectors in dimen-

sions 1 and 2, respectively. Each w
(i)
t is also a normal vector of the hyperplanes

H(w(i)
t ). For Q.up, in 2-dimensional space, the hyperplanes H(w(1)

t ) are the
dashed lines l1, which are perpendicular to w

(1)
t . By sweeping l1 parallelly from

far infinity toward the original point (0, 0), q1 is the first point that is touched.
Hence, q1’s score with respect to w is equal to maxq∈Qf(w(1)

t , q), and q1 is
included in Qu. In the same manner, l2 touches q3 first; hence, q3 ∈ Qu. Q.up =
MBR(Qu).up upper-bounds the scores for Qu. Similarly, sweeping the perpen-
dicular dashed lines l3 and l4 from (0, 0) toward infinity, both touch q2; hence
Ql = {q2} and Q.low = q2. We show here that Q.up and Q.low bound the query
set Q for the AR-k query.

Theorem 1 (Correctness of Q.up and Q.low). Given a set of d-dimensional
query points Q, a set of weighting vectors W , and the bounds of Q: Q.up and
Q.low. For each w ∈ W and each q ∈ Q, f(w,Q.low) ≤ f(w, q) ≤ f(w,Q.up)
always holds.

Proof. By contradiction. For Q.up, assume that ∃q ∈ Q, q /∈ Qu holds so that
f(w, q) ≥ f(w,Q.up). Therefore, ∃q[i] > Q.up[i], i ∈ [1, d]; therefore, there must
exist a w

(j)
t ∈ Wt, j ∈ [1, d], where Wt is a set of top-weighting vectors that

makes f(w(j)
t , q) the maximum value, and q should be in Qu. This leads to the

contradiction (The geometric view is that there exists a hyperplane H(w(j)
t ) that

first touches q rather than others.). A similar contradiction occurs with Q.low.

We can use the rank of Q.low to infer the bounds of the aggregate rank of
Q for the three aggregate rank functions SUM, MIN, and MAX in Eq. (1).
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Corollary 1 (Aggregate rank bounds of Q for w, SUM): Given a set of query
points Q and a weighting vector w, the lower bound of ARankS(w,Q) is |Q| ×
rank(w,Q.low), and the upper bound of ARankS(w,Q) is |Q| × rank(w,Q.up).

Proof. ∀qi ∈ Q, ∀w ∈ W , it holds that f(w, qi) ≥ f(w,Q.low);
hence, rank(w, qi) ≥ rank(w, Q.low). By definition, ARankS(w, Q) =∑

rank(w, qi) ≥ |Q| × rank(w, Q.low); hence, |Q| × rank(w, Q.low) is the
lower bound of ARankS(w, Q). Similarly, |Q| × rank(w, Q.up) is the upper
bound.

Corollary 2 (Aggregate rank bounds of Q for w, MAX/MIN): Given a set of
query points Q and a weighting vector w, the lower bound of ARankM(m)(w,Q)
is rank(w,Q.low), and the upper bound of ARankM(m)(w,Q) is rank(w,Q.up).

We only prove the MIN function case since the MAX function case is similar.

Proof. ∀qi ∈ Q, ∀w ∈ W , it holds that Min(f(w, qi)) ≥ f(w,Q.low);
hence, Min(rank(w, qi)) ≥ rank(w,Q.low). By Eq. 1, ARankm(w,Q) =
Min(rank(w, qi)) ≥ rank(w,Q.low). Similarly, rank(w,Q.up) is the upper
bound of ARankm(w,Q).

5 Tree-Pruning Method (TPM)

Instead of comparing the product data p ∈ P one by one with the query bounds,
we use the index to compare similar data simultaneously, thus making the process
efficient. Tree-Pruning Method (TPM) indexes the dataset P in an R-tree to
group similar points, and compares the bounds of MBRs (the R-tree entries,
also denoted by e) with Q.up and Q.low to reduce computing costs.

Example 6. First, we introduce how TPM filters P with Q.low and Q.up.
Figure 6 shows the geometric view for an example of 2-dimensional data. The
two dashed lines across the bounds Q.low and Q.up respectively, and are perpen-
dicular to the weighting vector wi, and form the boundary values of the score.
The space is partitioned into three parts, which are marked as BelowQ, InQ, and
AboveQ in Fig. 6. For example, e2 is in BelowQ and e5 is in AboveQ. MBRs in
BelowQ or AboveQ can be filtered by checking the upper and lower boundaries;
otherwise, it needs further refinement.

Formally, the pruning rules are as follows. Notice that the filtering method-
ology of partitioned spaces can also apply to the multiple dimensional spaces.

– Rule 1(MBR e in BelowQ). If f(w, e.up) < f(w,Q.low), then count the
number of points in e because ∀p ∈ e,∀q ∈ Q, f(w, q) > f(w, p) holds.

– Rule 2(MBR e in AboveQ). If f(w, e.low) > f(w,Q.up), then discard e
because ∀p ∈ e,∀q ∈ Q, f(w, q) < f(w, p) holds.

– Rule 3(MBR e overlaps InQ). If f(w, e.low) > f(w,Q.low) and f(w, e.up) <
f(w,Q.up), then add e to the candidate list for further examination.
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Fig. 6. The sub-spaces of BelowQ, InQ, and AboveQ based on Q.low and Q.up with a
single wi in the 2-dimensional space of dataset P .

5.1 ARank-P algorithm

Given P , w, Q, Q.up, Q.low, and a positive integer minRank, the ARank-P
algorithm checks whether the aggregate rank of Q is smaller than the given
minRank. It also returns the value of the aggregate rank when ARank(w,Q) <
minRank. Algorithm 1 shows that the ARank-P function uses the R-tree to
prune similar points in a node of the R-tree. In this algorithm, the counter rnk
is used to count the aggregate rank of Q (Line 1). Then, the algorithm recursively
checks the MBRs in the R-tree of P from the root (Line 2). If ei is contained
in BelowQ, the counter rnk is increased by the return value from the counting
function in Eq. 5, which is based on Corollaries 1 and 2.

Counting(e,Q) =

{
e.size × |Q|, SUM
e.size, MAX or MIN

(5)

When rnk becomes larger than minRank, the algorithm returns −1 to ter-
minate (Lines 9–10). If ei overlaps the space of InQ, then it is added into the
candidate set Cand for refinement, and either it is an internal node (Lines 11–12)
or data point (Lines 14–15). Otherwise, ei is added to the queue (Line 17). After
the traversal of RtreeP, refinement is performed where the Cand set is compared
with each q ∈ Q and rnk is updated (Line 18). Note that Cand contains both
the MBR and data point p in InQ. The refinement also considers the upper and
lower bounds of the MBR to filter each q. As the results, rnk is returned as the
aggregate rank if rnk < minRank, or −1 is returned that indicates that the
current w is not a result.
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Algorithm 1. ARank-P
Input: P,w,Q,minRank,Q.up,Q.low
Output: return rnk when w should be included

return −1 when w should be discarded
1: rnk ⇐ 0, Cand ⇐ ∅
2: Initialize heapP as an empty queue structure.
3: heapP.enqueue(RtreeP.Root())
4: while heapP.isNotEmpty() do
5: ep ⇐ heapP.dequeue()
6: for each child ei ∈ ep do
7: if f(w, ei.low) < f(w,Q.up) then
8: if ei in BelowQ then
9: rnk ⇐ rnk + Counting(ei, Q) //Rule 1

10: if rnk ≥ minRank then
11: return -1
12: else if ei in InQ then
13: Cand ⇐ Cand ∪ ei //Rule 3
14: else
15: if ei is a data point then
16: Cand ⇐ Cand ∪ ei
17: else
18: heapP.enqueue(ei)
19: Refine Cand by processing the MBRs and points in Cand with each q ∈ Q.
20: if rnk ≤ minRank then
21: return rnk
22: else
23: return -1

5.2 Tree-Pruning Method (TPM)

Let us consider the proposed TPM in Algorithm2. Initially, the first k weighting
vectors are stored into heap as well as their aggregate ranks with Q (Line 1). The
last rank of heap stores the kth best ranked w, indicating that a worse ranked
weight vector cannot be the answer. Then, for the remaining weighting vectors,

Algorithm 2. Tree-Pruning Method (TPM)
Input: P,W,Q,Q.up,Q.low
Output: result set heap
1: initialize heap with the first k weighting vectors and aggregate ranks of Q
2: minRank ⇐ heap’s last rank.
3: for each w ∈ W− {first k element in W} do
4: rnk ⇐ ARank-P(P,w,Q,minRank,Q.up,Q.low)
5: if rnk �= −1 then
6: heap.insert(w, rnk)
7: minRank ⇐ last rank of heap.
8: return heap
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the ARank-P Algorithm is called to check the aggregate rank of the query set
Q (Line 4). If the current w can make the rank of Q better than the last rank
in heap, this w is inserted into heap with its rank. To ensure that the size of
the result is k, heap updates itself by removing the last element and inserting
the new w and aggregate rank while keeping the sorted order of rank (Line 6)
minRank also updated with the current last rank in heap (Line 7). Eventually,
the algorithm returns heap as the result of the AR-k query.

6 Double-Tree Method (DTM)

TPM is limited in that it evaluates each w one by one, and its efficiency declines
when the W set becomes large. This limitation inspired us to remove redundant
computing by grouping similar w. We propose the double-tree method (DTM)
that indexes the W set in an R-tree as well. The R-trees for P and W are denoted
as RtreeP and RtreeW , respectively.

Fig. 7. The sub-spaces of BelowQ, InQ, and AboveQ based on Q.low and Q.up with
an MBR ew in the 2-dimensional space of dataset P .

Example 7. Figure 7 shows the three parts of BelowQ, InQ, and AboveQ,
which are separated by the bounds of the MBR ew in RtreeW and Q.up (Q.low).
Based on the MBR features in RtreeP and RtreeW , we can obtain the score
bounds of a single data point on the MBR ew of RtreeW .

Lemma 3 (Score bound of p): Given an MBR with the weighting vector ew
in RtreeW and p ∈ P , the score f(w, p) is lower-bounded by f(ew.low, p) and
upper-bounded by f(ew.up, p).

Proof. For w ∈ ew, ∀i, w[i] ≥ ew.low[i] holds, hence
∑d

i=1 ew.low[i] · p[i] ≤
∑d

i=1 w[i] · p[i], that is f(w, p) ≥ f(ew.low, p). Similarly, f(w, p) ≤ f(ew.up, p).
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Algorithm 3. ARank-WP
Input: P, ew, Q,minRank,Q.up,Q.low
Output: return rnk when all w ∈ ew should be included

return −1 when all w ∈ ew should be discarded
return −1 when it is uncertain

1: rnk ⇐ 0, Cand ⇐ ∅
2: Initialize heapP as an empty queue structure.
3: heapP.enqueue(RtreeP.root())
4: while heapP.isNotEmpty() do
5: ep ⇐ heapP.dequeue()
6: for each child ei ∈ ep do
7: if f(ew.low, ei.low) < f(ew.up,Q.up) then
8: if ei in BelowQ then
9: rnk ⇐ rnk + Counting(ei, Q)

10: if rnk ≥ minRank then
11: return -1
12: else if ei in InQ then
13: Cand ⇐ Cand ∪ ei
14: else
15: if ei is a data point then
16: Cand ⇐ Cand ∪ ei
17: else
18: heapP.enqueue(ei)
19: Refine Cand and process the MBRs and points in Cand with each q.
20: if rnk ≤ minRank then
21: return 1
22: else
23: return 0

Algorithm 4. Double-tree method (DTM)
Input: P,W,Q,Q.up,Q.low
Output: result set heap
1: initialize heap with the first k weighting vectors and the aggregate ranks of Q
2: minRank ⇐ heap’s last rank.
3: heapW.enqueue(RtreeW.root())
4: while heapW.isNotEmpty() do
5: ew ⇐ heapW.dequeue()
6: if ew is a single weighting vector then
7: call the function ARank-P and update minRank.
8: else
9: flag ⇐ ARank-WP(P, ew, Q,minRank,Q.up,Q.low)

10: if flag = 0 then
11: heapW.enqueue(all children ∈ ew)
12: else
13: if flag = 1 then
14: for each w ∈ ew do
15: call the function ARank-P and update minRank.
16: return heap
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The score bounds of the MBR ep of RtreeP based on ew of RtreeW can also
be inferred from the following lemma.

Lemma 4 (Score bound of MBR): Given the MBR ew of RtreeW and the MBR
ep of RtreeP , the score of every p ∈ ep is lower-bounded by f(ew.low, ep.low)
and upper-bounded by f(ew.up, ep.up).

Proof. For p ∈ ep, ∀i, ep.low[i] ≤ p[i] holds based on the proof in Lemma 2;
hence,

∑d
i=1 ew.low[i] · ep.low[i] ≤ ∑d

i=1 ew[i].low · p[i] ≤ ∑d
i=1 w[i] · p[i]. Hence,

f(w, p) ≥ f(ew.low, ep.low). Similarly, f(w, p) ≤ f(ew.up, ep.up) holds.

By the above Lemmas, we can construct the bounds of the aggregate rank for Q
on MBR ew. Corollaries 1 and 2 lead to the following conclusion almost straightly.

Theorem 2 (Aggregate rank bounds of Qfor ew): Given the set of query
points Q and the MBR of the weighting vector ew. For the SUM function, the
lower bound of rank for every w ∈ ew is |Q| × rank(ew.low,Q.low), and the
upper bound of ARank(w,Q) is |Q| × rank(ew.up,Q.up). For the MAX/MIN
function, the lower bound of rank for every w ∈ ew is rank(ew.low,Q.low), and
the upper bound is rank(ew.up,Q.up).

The ARank-P algorithm computes the rank of Q with respect to a single w.
Instead, ARank-WP in the algorithm checks a node of the R-tree that contains
multiple similar w’s. Algorithm 3 helps check these w ∈ ew with Q and minRank.
The algorithm returns 1 if all w ∈ ew make the Q rank in minRank and returns
−1 if none of w ∈ ew makes the Q rank better than minRank. Otherwise, the
algorithm returns 0, indicating that ew cannot be filtered and its children entries
need to be checked.

Unlike the TPM algorithm in Algorithm2, DTM indexes both P and W in
two R-trees. Hence, it enables the pruning of both the weighting vectors and
points. Algorithm4 shows the detail of DTM. Different from TPM, DTM checks
the nodes in RtreeW , and calls Algorithm 3 to check the aggregate rank of Q
on a node ew (Line 9). If flag (the returned value from ARank-WP) is 0, all
children MBRs are added to heapW for further check (Lines 10–11). If flag is
1, this means that every w in ew makes Q rank better than minRank. Thus,
Algorithm 1 computes the rank of each w in ew and heap, which keeps the best k
answers so far, and minRank are updated (Lines 14–15). When the leaf node of
a single w is being checked, Algorithm 1 is called exactly as in TPM (Lines 6–7).
When the algorithm terminates, heap is returned as the result of the aggregate
reverse rank query.

7 Query Reducing For MAX/MIN AR-k

The MAX and MIN functions in the AR-k query enable to analyze the potential
users who are interested only in the worst or best product in a product bundle.
Different from the SUM function that requires summing up the ranks for all
q ∈ Q, it is sufficient to only check the necessary q’s instead of the whole Q.
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This means that we can make the proposed bound-and-filter framework more
efficient. In this section, we introduce a method of reducing Q for the MAX and
MIN functions.

It is natural to believe that such necessary query points are those located in
the up-right and low-left parts of Q for MAX and MIN functions, respectively.
Defined in the following, the left corner MBR and the right corner MBR try to
remove unnecessary query points of Q.

Definition 6 (Left-corners and right-corners, CM). Let Q be a point set. The
left-corners of Q is a subset of Q and is denoted as CM(Q).l. CM(Q).l contains
the points in the MBR formed by {h(i)}di=1, where h(i) ∈ Q satisfies: (1) h(i)[i] =
MBR(Q).low[i], and (2) h(i) is the nearest point to MBR(Q).low among all
points p satisfying h(i)[i] = MBR(Q).low[i]. The right-corners of Q, denoted as
CM(Q).r is defined in a similar manner.

Example 8. Figure 8a gives an example of left-corners and right-corners in 2-
dimensional data. There are q1 to q7 in a query points set Q. q4 is the nearest
point to MBR(Q).low and is on the left vertical edge of MBR(Q). On the down
horizontal edge, q2 is the nearest point to MBR(Q).low. Therefore, CM(Q).l =
{q1, q2, q3, q4} is formed by {q2, q4}. In the same way, CM(Q).r = {q5, q6} is
formed by {q5, q6}.

Obviously, the points in CM(Q).l have smaller values in all dimensions than
the other points of Q. Therefore, given an arbitrary w:

Min
q∈Q

rank(w, q) = Min
q∈CM(Q).l

rank(w, q). (6)

In other words, the q ∈ Q that minimizes rank(w, q) is always found from
CM(Q).l. Similarly, the q ∈ Q that maximizes rank(w, q) is always found from
CM(Q).r.

Lemma 5 (Reduce Q to CM(Q)): Given a set of query points Q, ARankm(w,
Q) = ARankm(w,CM(Q).l) and ARankM (w,Q) = ARankM (w,CM(Q).l).

Another way to reduce Q for MAX and MIN functions is to build the convex
hull of Q. The convex hull is the smallest convex set that contains all q ∈ Q, and
we denote the vertices set of the convex hull of Q by CH(Q).

Example 9. Figure 8b shows the convex hull of the given Q in the same exam-
ple, where CH(Q) = {q2, q4, q5, q6, q7}. Viewing a point as a vector, when q ∈ Q
are projected to an arbitrary vector w, both the shortest and the longest length
of projection are from CH(Q), because the vertices of the convex hull are the
boundary points. Recall that the inner product f(w, q) is equal to the length of
q’s projection on w, and CH(Q) contains such q’s that minimize and maximize
rank(w, q).

Lemma 6 (Reduce Q to CH(Q)): Given a set of query points Q, ARankm(w,
Q) = ARankm(w,CH(Q)) and ARankM (w,Q) = ARankM (w,CH(Q)).
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Fig. 8. Two ways to reduce Q.

Taking the advantages of both CM(Q) and CH(Q), we can only check the
query points at their intersection. Lemmas 5 and 6 help to conclude the following
Theorem.

Theorem 3 (Correctness of query reducing). Given a set of query points Q,
let Qm = CM(Q).l ∩ CH(Q) and QM = CM(Q).r ∩ CH(Q). Then
ARankm(w,Q) = ARankm(w,Qm) and ARankM (w,Q) = ARankM (w,QM ).

Algorithm 5. Reduce Q
Input: Q
Output: reduced set QR

1: CH(Q) ⇐ ConvexHull(Q).getV ertex()
2: if MIN function then
3: CM(Q) ⇐ get CM(Q).l
4: if MAX function then
5: CM(Q) ⇐ get CM(Q).r
6: QR ⇐ CM ∩ CH(Q)
7: return QR

The above theorem guarantees that for MAX/MIN AR-k queries, we only
need to process the reduced QM/Qm instead of the original Q. Figure 9 shows an
example of reducing Q. CH(Q) = {q2, q4, q5, q6, q7}, CM(Q).l = {q1, q2, q3, q4}
and CM(Q).r = {q5, q6}. By Theorem 3, the reduced query set for the MAX
function is QM = CH(Q) ∩ CM.l = {q2, q4}, and the reduced query set for the
MIN function is Qm = CH(Q) ∩ CM.r = {q5, q6}.

Algorithm 5 gives a pseudocode of reducing Q for the MAX and MIN func-
tions. QR is the reduced set (QM or Qm) and is a subset of Q. Based on the
reducing method, we propose a CHDTM algorithm that calls Algorithm5 before
bounding and DTM, shown in Algorithm6.
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Fig. 9. Query points in convex hull vertices and corner MBRs. Necessary queries for
MAX function: {q2, q4}, for MIN function: {q5, q6}.

Algorithm 6. CHDTM
Input: P,W,Q
Output: result set for AR-k
1: QR ⇐ reduce Q with Algorithm 5
2: {Q.up,Q.low} ⇐ bound Q
3: Result ⇐ run DTM(P,W,Qf , Q.up,Q.low)
4: return Result

8 Cost Estimation

We make a rough analysis on the complexity of the methods here.

8.1 Computational Cost of Bounding Q

For the cost of bounding Q described in Sect. 4, because the set of top-weighting
vectors Wt can be found before the query set Q is issued, it can be considered
as an ignorable cost in terms of query processing. Having Wt, the time cost of
finding Q.low and Q.up is reduced from O(|Q| × |W |) to only O(|Q| × d), where
d is the dimensionality of data. Considering that |Q| × d is much smaller than
the size of the dataset P and W , the overhead of obtaining Q.low and Q.up is
negligible.

8.2 Computational Cost of Reducing Q in MAX/MIN Function

For reducing Q for AR-k processing with Max and Min functions, Sect. 7
explained that the final filtering result is the intersection set between CM(Q)
and CH(Q). The cost of obtaining either of CM(Q).l or CM(Q).r is O(|Q|),
and the worst case of building a convex hull for a given set of points Q costs
O(|Q|2). Therefore, the total cost of this phase is O(|Q|+ |Q|2) = O(|Q|2). With
the same reason that the query set Q is very small, the cost of filtering Q in
MAX/MIN function is also negligible.
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8.3 Summary of Bound-and-Filter Framework

Based on above conclusions, the cost of the proposed bound-and-filter framework
is dominated by the tree-based method in the filtering phase. Table 1 summarizes
the comparison of space and time complexities for Naive and the proposed TPM
and DTM. NA has the highest cost in terms of time complexity because O(|P | ·
|W |). However, it requires no extra index and only needs O(k) space complexity.
The proposed TPM and DTM algorithms need space to store the R-tree but
have lower computation costs.

Table 1. Time complexity and space complexity for algorithms NA, TPM, and DTM.

Algorithm Index CPU cost I/O cost Storage cost

Naive None O(|W | · |P |) |P | + |W | O(k)

TPM RtreeP O(|W | · log |P |) log |P | + |W | O(log |P |)
DTM RtreeP, RtreeW O(log |W | · log |P |) log |W | + log |P | O(log |P | + log |W |)

9 Experiment

We present the experimental evaluation of the NAIVE, TPM, and DTM algo-
rithms for AR-k with SUM, MIN, and MAX functions. All algorithms were
implemented in C++, and the experiments were run on a Mac with 2.6 GHz
Intel Core i7 and 16 GB RAM. The page size was 4K.

9.1 Experimental Settings

Dataset. Both synthetic and real data were employed for the dataset P . The
synthetic datasets were uniform (UN), clustered (CL), and anti-correlated (AC)
with an attribute value range of [0, 1). We used the same method as in related
work [14,18,23] to generate synthetic datasets:

– UN: All attribute values are generated independently and following a uniform
distribution.

– CL: The cluster centroids are selected randomly and follow a uniform distri-
bution. Then, each attribute is generated with the normal distribution.

– AC: Select a plane perpendicular to the diagonal of the data space. Then each
attribute is generated in this plane and follows a uniform distribution.

We also performed comparison experiments on two real datasets: HOUSE and
NBA2. HOUSE contains 201,760 6-dimensional tuples and represents the annual
payments of American families (gas, electricity, water, heating, insurance, and
property tax) in 2013. NBA is a 20,960-tuple dataset of box scores of players
in the NBA from 1949 to 2009. We extracted the NBA statistics for points,
2 NBA: http://www.databasebasketball.com/; HOUSE: https://usa.ipums.org/usa/.

http://www.databasebasketball.com/
https://usa.ipums.org/usa/
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rebounds, assists, blocks, and steals to form a 5-d vector that represents a player.
The UN and CL datasets for W were generated in the same manner as the
datasets of P . We generated Q by using clustered data.

Performance Evaluation. In all experiments, we used three measurements
to evaluate the performance of all algorithms: (a) The CPU cost that is the
executing time of queries. (b) The I/O cost that is estimated by the node accessed
in the R-tree. (c) The number of pairwise computations between P and W . We
report the above measurements with the average values over 100 times.

9.2 Experimental Results

UN Data on Varying d. Figure 10 shows the experimental results for the syn-
thetic datasets UN with varying dimensions d (2–5), where the ARank function
is SUM. Both datasets P and W contained 100K tuples. Q had five query points,
and the target is to find the five best preferences (k = 5) for this Q. According
to the CPU cost comparison results shown in Fig. 10a, it is easy to know that
TPM and DTM were at least ten times faster than NAIVE. DTM performed
the best because it avoids checking each p and w, and the performance is also
stable for various dimensional cases. Figure 10b and c show that DTM had less
I/O cost and less pairwise computations than TPM. This is because TPM can
only prune P but DTM can prune both P and W with its double R-trees.

The comparison results with regard to the MAX and MIN functions are
shown in Figs. 11 and 12. As stated in Sect. 7, CHDTM optimized DTM by reduc-
ing unnecessary q ∈ Q on the MAX/MIN function. The experimental results also
confirm that CHDTM was better than DTM in terms of CPU cost, I/O cost,
and pairwise computations on UN data.

CL and AC Data on Varying d. We also tested other synthetic data CL
and AC and the comparison results of AR − k query with the SUM function
are shown in Figs. 13 and 14. According to these results, DTM also has better
performance than other algorithms on both CL data and AC data. Tree-based
methods (TPM, DTM) require less querying time for CL data than other data
distributions because it is easier to index clustered data with the R-tree. This
also makes the proposed method have less I/O cost and pairwise computations.

UN Data on Varying |Q|. For the varying |Q| in Fig. 15, because the number
of products in a product bundle is not large, we test the Q from 5 to 25. The
CPU time of TPM and DTM had only a slight increase because they bounded
Q in advance. However, the efficiency of the Naive decreased with increasing |Q|
since it had to calculate every q ∈ Q for assembling ARank.

CL Data on Varying k. From the results provided in Fig. 16, we can see that
all algorithms are insensitive to k. This is because of the following two reasons:
(a) k is far smaller than the cardinality of W and P . (b) In our proposed bound-
and-filter framework, a k-element buffer in ascending order is kept to store the
top-k w′s and their ranking while processing, and the comparing only happens
with the last element (minRank) rather than all k candidates in the buffer.
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(c) Pairwise computations.

Fig. 10. Comparison results of varying d on UN data with AR-k query (SUM function),
|P | = |W | = 100K, all with |Q| = 5, k = 10.
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(c) Pairwise computations.

Fig. 11. Comparison results of varying d on UN data with AR-k query (MAX function),
|P | = |W | = 100K, all with |Q| = 5, k = 10.
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(c) Pairwise computations.

Fig. 12. Comparison results of varying d on UN data with AR-k query (MIN function),
|P | = |W | = 100K, all with |Q| = 5, k = 10.
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(c) Pairwise computations.

Fig. 13. Comparison results of varying d on CL data with AR-k query (SUM function),
|P | = |W | = 100K, all with |Q| = 5, k = 10.
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(c) Pairwise computations.

Fig. 14. Comparison results of varying d on AC data with AR-k query (SUM function),
|P | = |W | = 100K, all with |Q| = 5, k = 10.
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(c) Pairwise computations.

Fig. 15. Comparison results of varying |Q| on UN data with AR-k query (SUM func-
tion), |P | = |W | = 100K, all with d = 3, k = 10.
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(c) Pairwise computations.

Fig. 16. Comparison results of varying k on CL data with AR-k query (SUM function),
|P | = |W | = 100K, all with |Q| = 5, d = 3.
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(c) Pairwise computations.

Fig. 17. Comparison results of varying k on HOUSE data with AR-k query (SUM
function), W : UN data, |W | = 100K, all with |Q| = 5.
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Fig. 18. Comparison results of varying |Q| on NBA data with AR-k query (SUM,
MAX, MIN functions), W : UN data, |W | = 100K, all with k = 10.
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Fig. 19. Scalability on varying |P | and |W |, P: UN data, W: UN data, all with k = 10,
|Q| = 5, d = 3.
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(c) Pairwise computations.

Fig. 20. Comparison results of varying d on high-dimensional UN data with AR-k
query (SUM function), |P | = |W | = 100K, all with |Q| = 5, k = 10.

HOUSE Data. Figure 17 shows the comparison results of CPU time, I/O cost,
and pairwise computations for all algorithms with the HOUSE dataset and dif-
ferent k (10–50). DTM again performed the best. We also investigated the dis-
tribution of the HOUSE dataset and found that it is similar to an exponential
distribution.
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NBA Data. Using the NBA dataset, the AR-k query can answer such practical
questions as “who likes a team more than others?” We selected five, ten, and
fifteen players from the same team as Q and then generated the dataset W as
various user preferences. The three ARank functions represent different ways of
thinking: To find the people who care about all players of an NBA team (SUM) or
are just concerned about the most favorite/unlike player in a team (MAX/MIN).
Figure 18 shows the results of NBA data. As expected, DTM (CHDTM) found
the answer the fastest.

Scalability. Figure 19 shows the scalable property for varying |P | and |W |. We
show the results of |P | = |W | = 100K, 500K, 1M. The CPU cost of DTM
increased slightly with increasing |P | and |W | because the majority of pairwise
computations were filtered by the strategy of the two R-trees in DTM.

High-Dimensional Data. Figure 20 shows the comparison results on the
high-dimensional dataset. Although the DTM is still the best, outperformance
decreases with increasing dimensionality. This results in a limitation of the pro-
posed method using an R-tree (or any other spatial indexes) suffers from a
problem named “Curse of Dimensionality,” and subsequently leads to low per-
formance when processing high-dimensional data sets. The reason for that ineffi-
ciency is that tree-based algorithms cannot divide data correctly in high dimen-
sions, causing most of the nodes to intersect with each other. In conclusion,
finding a better solution with high-dimensional data is important.

10 Conclusion

Reverse rank queries have become important tools in marketing analysis. How-
ever, related research on reverse rank queries has focused on only single prod-
uct, which cannot deal with the common sale strategy, product bundling. We
proposed the aggregate reverse rank query (AR-k) to address the situation of
product bundling where multiple query products exist. Three different aggregate
rank functions (SUM, MIN, MAX) were defined to target potential users in three
normal views. To solve AR-k efficiently, we devise a novel way to bound query
products, and implement two methods (TPM and DTM) with this bounding.
TPM is a tree-based pruning method that prunes unnecessary products with the
help of an R-tree. DTM uses two R-trees to manage and prune products and user
preferences. We compared the methods through experiments on both synthetic
data and real data and the results show that DTM is the most efficient.

As future work, we first plan to extend approaches for other aggregate rank
functions, such as evaluating the aggregate rank by the harmonic average of each
rank. We also want to consider approximate solutions for AR-k queries.
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Abstract. Resource constrained environments (RCEs) describe remote
or rural developing world regions where missing specialised expertise,
and computational processing power hinders data analytics operations.
Outsourcing to third-party data analytics service providers offers a cost-
effective management solution. However, a necessary pre-processing step
is to anonymise the data before it is shared, to protect against pri-
vacy violations. Syntactic anonymisation algorithms (k-anonymisation,
l-diversity, and t-closeness) are an attractive solution for RCEs because
the generated data is not use case specific. These algorithms have how-
ever been shown to be NP-Hard, and as such need to be re-factored to
run efficiently with limited processing power. In previous work [23], we
presented a method of extending the standard k-anonymization and l-
diversity algorithms, to satisfy both data utility and privacy. We used
a multi-objective optimization scheme to minimise information loss and
maximize privacy. Our results showed that the extended l-diverse algo-
rithm incurs higher information losses than the extended k-anonymity
algorithm, but offers better privacy in terms of protection against inferen-
tial disclosure. The additional information loss (7%) was negligible, and
did not negatively affect data utility. As a further step, in this paper,
we extend this result with a modified t-closeness algorithm based on the
notion of clustering. The aim of this is to provide a performance-efficient
algorithm that maintains the low information loss levels of our extended
k-anonymisation and l-diversity algorithms, but also provides protection
against skewness and similarity attacks.

Keywords: Data anonymisation · k-anonymity · l-diversity
t-closeness · Clustering · Privacy · Information loss

1 Introduction

One of the challenges that emerges in resource constrained environments (RCEs)
is that of effectively, and efficiently analysing data. For instance, studies from
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-662-58384-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58384-5_2&domain=pdf
https://doi.org/10.1007/978-3-662-58384-5_2


28 A. V. D. M. Kayem et al.

the United Nations (UN) and World Bank (WB) [39] estimate that annually,
violent crime costs developing world countries about 10% of their Gross Domes-
tic Product (GDP). In the 2007 year alone, Guatemala lost 7.3% of her Gross
Domestic Product (GDP), and Mexico estimated the costs of violence in terms
of lost investment from local business and jobs at $9.6 billion. While corruption
is a major reason behind the failure to resolve reported crime cases, the lack of
crime data analytics also plays a key role [19,43].

In order to address this data analytics issue, Burke et al. [6] proposed out-
sourcing the data to third-party data analytics service providers as a cost effec-
tive management solution. The Burke et al. [6] anonymisation framework is based
on using low-cost mobile devices to collect the crime data, which is then trans-
ferred to a law enforcement agency where the data is anonymised before it is
outsourced. However, manual anonymisation is a time-consuming process that
is prone to error, and information disclosure. A further concern is protecting
subsequent anonymised datasets from being combined with historical data to
provoke linking and inferential attacks.

We addressed this issue by proposing an automated anonymisation scheme
that extends the standard k-anonymisation and l-diversity algorithms by using
multi-objective optimization to maximize information utility (minimize informa-
tion loss) [23]. Weighting based on information exposure severity was used to
ensure privacy by protecting against linking and inference attacks. Our results
indicated that l-diverse datasets incur worse information loss ( 7% on average)
than k-anonymised data, but offer better privacy (protection against linking
and inference attacks) with a diversity of between 9–14% in comparison to 10–
30% in k-anonymised datasets. Therefore, by augmenting k-anonymisation with
l-diversity, we improve privacy at a negligible cost to utility. Our approach how-
ever, remains vulnerable to similarity and skewness attacks which could become
an issue as the sizes of the datasets grow [29].

In this paper, we handle the potential for similarity and skewness attacks by
extending our automated anonymisation scheme to handle t-closeness anonymi-
sation. However, Liang and Yuan [30] have shown, the t-closeness problem is
NP-Hard, and as we show in Sect. 4.3, the average time complexity of t-closeness
anonymisation is in 2O(n2) · O(m) where n is the number of tuples and m, the
number attributes in the dataset. Therefore, to make t-closeness applicable to
RCEs, we propose a performance efficient alternative based on using the notion
of clustering to classify tuples. Each cluster of size k is centered around a tuple,
that is selected such that there exist at k−1 tuples with a similar quasi-identifier.
In order to satisfy the properties of t-closeness anonymisation, that is to prevent
skewness and similarity de-anonymisations of data, we ensure that the distance
between the cluster centroid and the classified tuples is no greater than a thresh-
old value of t. We determine the degree of similarity on the basis of the severity
ranking (cost to privacy due to attribute exposure) of the SA, and the distance
of the tuples’ quasi-identifiers from the cluster centroid’s quasi-identifier. The
Jaccard coefficient is used to evaluate categorical attributes, and the Euclidean
distance for numerical attributes in the quasi-identifier. A high degree of simi-
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larity, is expressed by a small distance from the cluster centroid, and the reverse
is true for a low similarity degree. Our proposed t-clustering algorithm has a
average time complexity of O(m2 log n) where n and m are the number of tuples
and attributes, respectively. Experimental results indicate that our proposed
scheme is practically feasible performance-wise for large datasets, and inherits
the privacy protection properties of the t-closeness anonymisation algorithm.

In addition to RCEs, other potential applications of our work emerge in the
Internet-of-things (e.g. opportunistic, and Fog computing networks). In this con-
text, personal data is sometimes collected unintentionally and so it makes sense
to have methods of anonymising data before it is transferred to a forwarding
device.

The outline of the paper is as follows. In Sect. 2 we provide an overview
of the literature on privacy preserving data publishing from the syntactic data
anonymisation perspective. We proceed in Sect. 3 with a summary of the Kayem
et al. [23] multi-objective scheme to support k-anonymisation and l-diversity in
automated data anonymisation. In Sect. 4, we present the t-clustering scheme
[22] and show that t-clustering has an average time complexity of O(m2 log n) in
comparison to 2O(n2) · O(m) for t-closeness. In Sect. 5, we present experimental
results based on data obtained from a prototype implementation platform [6,38],
and offer conclusions in Sect. 6.

2 Related Work

Privacy preserving data publishing is aimed at making data available for data
analytics tasks [5,17,21,29,34,44,48]. There are two general approaches to pri-
vacy preserving data publishing. The first is to anonymise and then mine the
data [2,3,5,17], while the second, is to mine and then anonymise the released
query results [1–3]. The first approach is better suited to RCEs where the data
is often shared with untrusted services providers who might be “honest-but-
curious”. As such, we focus our related work discussion on privacy preserving
data publishing schemes where the data is anonymised and then shared.

Following Sweeney’s k-anonymity model for protecting data privacy [40], sev-
eral solutions have been proposed to effectively anonymise data [1,5,21,29,34].
Existing anonymisation algorithms can generally be classified into two main
groups namely, syntactic and semantic models [9]. Syntactic models have a well
defined data output format, such that for small data sets privacy traits can often
be confirmed by visually inspecting the data. Examples of syntactic anonymisa-
tion models include k-anonymity [1,5,21], l-diversity [34], and t-closeness [29].
On the other hand, semantic privacy models employ data perturbations based
primarily on noise additions to distort the data [9,46]. Examples of semantic data
anonymisation models include differential privacy and its variants [9,14,46].

On the other hand, probabilistic privacy models employ data perturba-
tions based primarily on noise additions to distort the data [9,46]. Perturbation
approaches have been critiqued for being vulnerable to inferential attacks based
on adversarial knowledge of the true underlying distributions of the data [33].
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Dwork et al. [14] proposed addressing this caveat with the notion of differen-
tial privacy. Differential privacy basically requires that the adversary learns no
more from a published data set when one record (or individual) is present in,
or removed from, the data set [46]. Attempts have also been made to combine
attributes from both syntactic and probabilistic models to form hybrid anonymi-
sation approaches. Examples include probabilistic k-anonymity [2], and differen-
tial privacy with t-closeness [9]. Both syntactic and semantic data anonymisation
algorithms transform the data using a combination of generalisation, suppres-
sion, and perturbation. These data transformation methods fall into one of two
categories namely, randomisation and generalisation which we explain in some
detail below.

Randomization algorithms operate by altering the veracity of the data. This
is done by modifying attributes that strongly link the data to an individual. The
modifications are achieved either by noise injections, permutations, or statistical
shifting [20]. For instance, in differential privacy, this is done by determining at
the runtime of a query, how much noise injections to add to the resulting dataset
to ensure anonymity in each case [12]. Additionally, differential privacy uses
the exponential mechanisms to release statistical information about a dataset
without revealing private details of individual data entries [35]. Furthermore, the
Laplace mechanism for perturbation, supports statistical shifting in differential
privacy, by employing controlled random distribution sensitive noise additions
[13,24]. It is worth noting here that the discretized version [18,32] is known as
the matrix mechanism because both sensitive attributes and quasi-identifiers are
evaluated on a per-row basis during anonymisation [28,29].

By contrast, generalization describes a group of techniques that modify
dataset values according to a hierarchical model where each value progressively
loses uniqueness as one moves upwards in the hierarchy. Several generalisa-
tion algorithms have been used effectively in combination with k-anonymity,
l-diversity, as well as t-closeness. In k-anonymity the concept is to place each
person in the data set together with at least k−1 similar data records, such that
there is no possibility of distinguishing between them. This is done by assimi-
lating the k − 1 nearest neighbors based on their describing attributes through
generalization and suppression [40]. Generalisation is vulnerable to homogeneity
and background knowledge attacks [34], which l-diversity alleviates by consid-
ering the granularity of sensitive data representations to ensure a diversity of a
factor of l for each quasi-identifier within a given equivalence class (usually a size
of k) [10,11,25,31]. For instance, l-diversity considers that sensitive attribute dis-
tributions are the main reason behind disclosures of information used to provoke
inferential attacks [8,31,37]. Further extensions of t-closeness, handle skewness
and background knowledge attacks by considering the relative distributions of
sensitive values both in individual equivalence classes and in the entire dataset
[29]. In all three syntactic anonymisation algorithms, and their extensions [5,36],
generalisation and suppression are used to support transforming the data [16].

In k-anonymity and l-diversity, efficiently obtaining usable but privacy pre-
serving data sets is provably NP-Hard [47] and so, optimisation heuristics have
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been proposed to improve on the basic l-diversity scheme [10,11,37,47]. We note
that l-diversity has the drawback of being dependent on the distribution of sen-
sitive attributes in the data set and so, sensitive attribute values with high prob-
ability mass functions (that is some values have a very high frequency and others
a very low frequency of occurrence) are prone to provoking high information loss
in the anonymised data set. In addition l-diversity only considers the frequency
of specific values within independent ECs and not in the dataset as a whole
which can result in inadvertent inferential disclosure. t-closeness addresses this
caveat but requires a high degree of computational resources and so is not prac-
tical for use in low resource settings. Other issues are centred on the semantics of
generalisations and the effect these generalisations have on enabling information
disclosures [10,29,34].

Perturbation is conceptually similar to generalization but instead of building
groups or clusters of similar attributes without falsifying the data, perturbation
modifies the actual value to the closest similar value. This is done by intro-
ducing an aggregated value or using a similar value such that only one value
needs modification rather than multiple values. As such, finding such a value
can take longer, due to the effect of having to iteratively recheck the newly cre-
ated value(s), making such an approach - in terms of perfomance - unsuitable
for RCEs.

Further work on data transformation for anonymity appears in the data min-
ing field, where a variety of work exists on addressing privacy related constraints
in publishing anonymised datasets. Some of this work includes but is not lim-
ited to regression models [15], clustering [41], and naive Bayes classification [42].
These methods are strongly focused on data mining tasks in specific application
areas with well-defined privacy models and constraints. This is the case par-
ticularly when merging various distributed data sets to ensure privacy in each
partition [49].

Data anonymization inherently leads to a loss of information that has
an impact on query use cases [45]. While [27] leverage modern classification
and regression based algorithms in the anonymization procedure and [50] use
Bayesian networks for effective noise injection in the context of differential pri-
vacy applications, this work goes back to traditional methods of identifying and
transforming quasi-identifiers (Fig. 1). Anonymisation by clustering also stems
from the data mining field and has been studied as an approach to improving
the performance of k-anonymisation by alleviating the cost of information loss
[34,37]. The idea behind these clustering schemes is to cluster quasi-identifiers
in equivalence classes of size k, and to avoid using generalisation hierarchies
when this impacts negatively on information loss. This property of clustering
lends itself well to t-closeness anonymisation as an approach to alleviating the
performance demands of anonymising large datasets, particularly when this is
done on low-powered, low-processing devices. In the next section we describe our
proposed clustering algorithm.

In the following section, we consider the augmented k-anonymity and l-
diversity schemes to support automated data anonymisation in RCEs [23] as



32 A. V. D. M. Kayem et al.

Fig. 1. An anonymised crime dataset: example

a basis for the t-clustering algorithm that we present in Sect. 4. The idea is to
use the notion of Pareto optimality [4] that has the quality of considering that
no optimal solution exists for a given problem but rather that the solution space
consists of a set of optimal points [4]. This quality, is useful in designing an
automated anonymisation scheme for RCEs in that it allows the best optimal
with respect to data utility and privacy can be selected at some given instant
without having to wait for an overall optimal solution.

3 Multi-objective Data Anonymisation (MOA)

In this section we present a description of the multi-objective anonymisation
(MOA) scheme [23] as a basis for our proposed t-clustering algorithm. The MOA
scheme extends k-anonymization (CG-Kanon) and l-diversity (CG-Diverse), by
weighting sensitive attributes in terms of severity of privacy disclosure, and works
to find the optimal bucket size (value of k in terms of equivalence class size) to
minimize the rate of information loss (maximize data utility). We begin by pro-
viding some preliminary background information on k-anonymisation as a basis
for the CG-Kanon, CG-Diverse, and t-clustering anonymisation algorithms that
we study in this paper. For reference, a notation table containing the symbols
used is provided in Appendix 6.
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3.1 Preliminaries

Before we delve into the description of the CG-Kanon, CG-Diverse, and t-
clustering algorithms, it is important to provide some definition of what k-
anonymity is, because all three algorithms inherit the properties of k-anonymity.
Let D(A1, A2, ..., An) be a dataset with a finite number of tuples. The attribute
space A of D (columns of D) is such that {A1, A2, ..., An} where a ∈ A repre-
sents a specific attribute value in A. A tuple in D is denoted by d such that
d{v1, v2, ..., vn} denotes a projection of the sequence of values in d.

Definition 1. Quasi-identifier
Given a dataset D(A1, A2, ..., An), a quasi-identifier QT of D is a set of attributes
{Ai, ..., Aj} ⊂ {A1, A2, ..., An} such that ∀d ∈ D , d{vi, ..., vj} ⊂ d{v1, ...vn},
QT {t} is a set of attributes whose values can be mapped to at least one d ∈ D.

This definition describes quasi-identifiers as attributes which independently
or when combined can be used to uniquely identify an individual or entity. Most
often such identification is done by combining external data with the published
dataset. To prevent such de-identifications, the notion of k-anonymity can be
used to classify tuples. We define k-anonymity as follows:

Definition 2. k-anonymity
Let DT be a dataset DT (A1, A2, ..., An) ⊂ D(A1, A2, ..., An), with a quasi-
identifier QT {d} associated to DT . DT is said to satisfy k-anonymity if and
only if each QT {d} appears in at least k tuples in DT , where the size of DT is
bounded by k.

Definition 3. Equivalence Class
An equivalence class EC, is a set of tuples {di, ..., dj} such that ∀{dj , dj},
QT (di) = ... = QT (dj).

Finally, we define what disclosure and sensitive attributes are in this con-
text. Disclosure is the unintended loss or reduction of privacy for an individual
or entity resulting from a publication of anonymised data. In [29], Li et al.
note that two types of information disclosure can be identified namely, identity
disclosure and attribute disclosure. Identity disclosure occurs when an individ-
ual is linked to a particular record in the released table. Attribute disclosure
occurs when new information about some individual is revealed. The released
data then makes it possible to infer the characteristics of an individual more
accurately than it would be possible before the data release. On the other hand,
a sensitive attribute, is an attribute which contains a value that when combined
with a quasi-identifier, could result in disclosure. Example 1, provides some clar-
ifications of these concepts based on crime data.

Example 1. 2-Anonymity Dataset As shown in Fig. 2, the equivalence class
adheres to 5-anonymity (k = 5), and has a quasi-identifier QT =
{Age, Suburb,Reporter}. For the tuples contained in the equivalence class, the
values that comprise the quasi-identifier appear at five times. We note in this
case that the “Crime” attribute is sensitive.
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However, we note that a closer examination of the equivalence class in Fig. 2 indi-
cates that it is possible to provoke linking attacks on the data either by inference
or by combining the anonymised dataset with available data from other sources.
For instance, if an 18 year old happened to have been mentioned in the news for
involvement in a corruption scandal, it is easy to deduce from our equivalence
class that the individual at d4 (tuple 4), is likely to be the person mentioned in
the news. Likewise, an equivalence class in which all sensitive attributes equal
“Corruption or Embezzlement” could lead to inference that the members of this
equivalence class are infact all or most of those who were involved in the scan-
dal from the news. In order to address this issue Machanavajjhala et al. [34]
proposed l-diversity as an extension to k-anonymity. l-diversity requires that
the most frequently occurring sensitive attribute in any equivalence class should
not occur more frequently than 1

l . If we consider the equivalence class in Fig. 2
with 5 tuples with “Corruption or Embezzlement” as the most common crime,
to achieve 2-diversity “Corruption or Embezzlement” cannot occur more than
twice in this equivalence class. Note that another interpretation of this is that
there should be at least 2 distinct sensitive values per equivalence class, since any
given sensitive value cannot appear more than twice. This definition is referred
to as distinct l-diversity. Two other stronger forms of diversity, include entropy
l-diversity and recursive l-diversity. Entropy l-diversity is based on information
entropy, but Machanavajjhala et al. [34] show that this can be too restrictive as it
requires a minimum aggregate level of entropy across the whole dataset. Recur-
sive l-diversity on the other hand ensures that the most frequent sensitive value
occurs frequently enough but the most infrequent value not too infrequently.

Fig. 2. k-anonymisation: example
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Since, both of these versions of l-diversity are computationally expensive (in
terms of searching through the entire space of sensitive attributes to find suit-
able SA distributions or combinations), we opted to use a heuristic that focuses
on categorising SA in terms of exposure impact.

We now discuss the notions of generalisation and suppression to show how
CG-Kanon, CD-Diverse, and t-clustering employs these notions to transform the
data.

Fig. 3. Generalisation hierarchy: Reporter, Age, and Suburb Taxonomies

3.2 Generalisation and Suppression

We denote T (a) as the generalisation tree for numerical attributes and K(a)
is the generalisation tree for categorical attributes. Furthermore, T (a)max and
T (a)min denote the upper and lower limits respectively for numerical attribute
generalisations. While td,i(a)max and td,i(a)min represent the upper and lower
limits of the generalisation of an attribute a in tuple d during the ith iteration of
the anonymisation algorithm. This is because as we show in the CG-Kanon and
CG-Diverse schemes, each anonymised dataset obtained is evaluated to deter-
mine the cost-benefit tradeoff between information loss and privacy. Only when
a suitable dataset is obtained, is the anonymised dataset transferred to the third-
party service provider for analysis.
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K(a)total is the total number of leaf nodes generated for K(a) and P is the
number of nodes created by K(a). k(a)p is a sub-tree of K(a) rooted at a node
p ∈ P and k(a)p,total is the number of leaf nodes in k(a)p.

In anonymising data, we must determine a generalisation hierarchy for the
quasi-identifiers (QT ). This enables the anonymisation algorithm to achieve a
higher degree of classification accuracy whilst minimising the amount of infor-
mation loss. In order to facilitate classification, each quasi-identifier of a tuple
must match at leat k − 1 other tuples in any of the given clusters. Generalisa-
tion is used to replace attribute values with a more general values to facilitate
classification.

We represent generalisation hierarchies for each quasi-identifier as shown in
Fig. 3. In the generalisation hierarchy, the leaf nodes represent the attribute
values and the parent nodes possible generalisations. We handle NULL values
without any pre-processing by including a node with a NULL value at each level
of the hierarchy [7].

Fig. 4. Local versus global recoding: example

Generalisation is usually accompanied by suppression of portions or whole
parts of attribute values, or whole rows in order to prevent linking attacks. For
instance, we suppress explicit identifiers like “names” and “telephone numbers”
from the data. In suppression the previous attribute value is replaced by “*”. For
instance firstname = “John” is replaced by firstname = “*”; likewise to alter
portions of attribute values, and ZIPCODE = “47982” could be transformed to
ZIPCODE = “479**”.
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Attribute generalisation can be done either by using a global/full domain
generalisation model, or a local recoding generalisation model. In global gener-
alisation [26], the occurrence of a specific attribute value is always generalised
to the same level. For example, if age 18 is generalised to 18–87 for one tuple,
then all tuples with a value of 18 for the age attribute are generalised to 18–
87. In local recoding models [40] generalisations are contextualised to ECs. For
example, attribute age 18 might be recoded to 18–87 in one EC and to 18–23
in another EC. Once the data has been processed and generalised, the next step
is to find a suitable balance between information loss and privacy. Minimising
information loss is useful in ensuring data usability while maximising privacy
ensures adequate data protection from adversarial access. Since high levels of
information loss impact negatively on data utility, we need a method of minimis-
ing information loss in the CG-Kanon, CG-Diverse, and t-clustering algorithms.
We discuss our proposed information loss model in the following section.

3.3 Information Loss and Severity Weighting

Once the data has been pre-processed by generalisation and suppression, our
next step is to find a balance between the levels of information loss and privacy.
Minimising information loss is useful for data usability in terms of querying,
while maximising privacy ensures data protection. In line with our goal of multi-
objective optimisation, we employ a piece-wise function to handle information
loss on both categorical and numerical data.

ILd,i(a) =

{
k(a)p,total − 1

P−1 if categorical
td,i(a)max − td,i(a)min

T (a)max − T (a)min
if numerical

(1)

where the Information Loss Metric is given by:

LMi(a) =
∑
d∈D

∑
a∈A

ILd,i(a) (2)

To minimise information loss, we employ a weighting scheme for the loss met-
ric which enables authorised end users to prioritise specific attributes during
anonymisation. By this we mean that the data owner can decide to specify the
Quasi-Identifiers (QIDs) that should contain more information without nega-
tively impacting on data privacy. The weighting scheme acts as a sort of utility
function that can be adjusted dynamically to allow the data owner decide what
levels of privacy to sacrifice in favour of query result accuracy without nega-
tively impacting on the overall privacy of the data. The weighted information
loss metric (LMCG,i) at the ith iteration of the CG-Kanon algorithm (that is
we evaluate different attribute combinations for QT to determine which one pro-
duces the lowest information loss and highest privacy at some given point) is
computed as follows.

LMCG,i =
∑
d∈D

∑
a∈A

wa × ILd,i(a) = wa × LMi(a) (3)
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where wa is the weight assigned to attribute a ∈ A by the data owner. Finally, to
facilitate automated anonymisation we use a sensitive attribute severity weight-
ing S(c) where c ∈ SA. SA is the list of sensitive attributes and S(·) maps the
sensitive attribute category to its weight.

Example 2. In Table 3, SA denotes the list of offences (sensitive attribute) and
S(·) maps the crime category to its weight, which in this case is simply the
guideline sentence duration (in time - months, years...) for a given crime. So,
S(Theft) = 5 indicates a sentence of 5 years. We note that following this scale,
the risk of privacy loss for a tuple containing “Robbery” is higher than for a
tuple with “Disorderly Conduct”.

Table 1. Crime severity weightings

Crime Severity

Embezzlement 3

Disorderly conduct 3

Theft 5

Drunken driving 5

Robbery 7

We now describe our automated anonymisation algorithms, namely CG-
Kanon and CG-Diverse that are extensions of the k-anonymisation and l-
diversity algorithms respectively (Table 1).

3.4 CG-Kanon Algorithm

Our proposed CG-Kanon scheme uses the severity weighting and bucketisation
(as is the case in k-anonymisation, classifying tuples based on quasi-identifier
similarity), to hide tuples with highly sensitive values in larger equivalence classes
(ECs) while tuples of lower sensitivity are classified in smaller ECs. For instance,
a tuple concerning a “Robbery” is classified in a 20-anonymity EC while “theft”
could be placed in a lower level EC say, 5-anonymity. This idea of hiding more
sensitive values in larger ECs does not affect the absolute level of k-anonymity for
different sensitive attribute categories. It is instead a relative statement regard-
ing the level of k-anonymity required for different sensitive attributes in the
anonymised dataset.

The CG-Kanon algorithm begins by determining a set of quasi-identifiers
QT = {qT (1), ..., qT (y)} which are basically a series of different attribute com-
binations that when combined with SA, can be used to uniquely identify indi-
vidual tuples in the dataset. Based on these qT , generalisation and suppression
are applied as described in Sect. 3.2. Once generalisation is complete, we obtain
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a series of candidate datasets namely D′(qT ) for each quasi-identifier combina-
tion. We must now proceed to define the sizes of equivalence classes (ECs) in
order to classify the data for anonymity. To do this, we compute an absolute
required minimum level of k-anonymity (kmin) for the dataset and use kmin to
guarantee a global minimum level of k-anonymity that all ECs must adhere to
in the dataset. We compute kmin as follows:

kmin = max (kcons,min (SD(·))) (4)

where kcons is a fixed minimum level of k and SD(·) is the set of all severities for
the dataset D. The definition of kmin shows that the global minimum level of
k-anonymity is fixed at kcons or at the lowest level of attribute sensitivity in the
dataset when min (SD(·)) > kcons. If kcons = 5 and min (SD(·)) = 3 then kmin =
5. However if min (SD(·)) = 7 then kmin = 7 instead. The CG-Kanon scheme
uses kmin as the k-anonymity baseline when deciding on appropriate ECs for
tuples based on severity weighting. Once kmin has been computed, we compute

Algorithm 1. CG-Kanon
1: function Anonymise(D,D′, QT )
2: QT = {qT (1), ..., qT (y)} - set of quasi-identifier combinations
3: for i = 1 to y do
4: ∀qT (i) ∈ QT - Generalisation and suppression on D
5: Generate D′(qT (i)) - Candidate datasets for classification
6: kmin = max(kcons,min(S′

D(·)))
7: ∀D′(qT (i) - compute SPd,i = Sd(c)

ed,i
and SPtot,i =

∑
d∈D SPd,i

8: FFCG−Kanon
i = 1

max(SPtot,i,LMCG,i)

9: ∀qT (i) return most fit D′(qT (i)) - low information loss and high privacy

the severity penalty for each classification since the CG-Kanon scheme requires
this information to optimise the information loss and privacy cost-benefit trade-
off. The severity penalty determines the level of loss of privacy for a single tuple
d ∈ D(·) and is computed as follows.

SPd,i =
Sd(c)
|ed,i| (5)

where D(·) is the dataset, Sd(c) is the severity weight of sensitive attribute c ∈ d,
and E is the set of ECs such that |ed,i| is the size of the EC that a tuple d is
classified in during the ith iteration of the CG-Kanon scheme (that is when
CG-Kanon evaluates D′(qT (i))).

Example 3. From the severity penalty computation, highly sensitive attributes
in small ECs result in high penalties and vice versa. So, if a “murder” report with
a severity weighting of 25 were located in a 5-anonymity EC, a penalty of 25

5 = 5
is generated. An incident of “theft” with a severity weighting of 5 generates
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a severity penalty of 1, indicating that this information is comparatively less
sensitive. The CG-Kanon scheme uses the severity penalty as a criterion besides,
information utility, to determine tuple placement in ECs to minimise the overall
sensitive information exposure risk.

Finally, the CG-Kanon scheme must compute the aggregate severity penalty,
SPtot,i, for the entire dataset, to determine whether the obtained anonymised
dataset satisfies at least the threshold goals of privacy and utility. SPtot,i is
computed as follows:

SPtot,i =
∑
d∈D

SPd,i (6)

and expresses the total severity penalty for the dataset as the summation of the
severity penalties of the individual tuples. The SPtot,i is then feed into a fitness
function to decide whether each tuple in D satisfies both objectives. We express
the fitness function as follows:

FFCG−Kanon
i =

1
max (SPtot,i, LMCG,i)

(7)

So, the result for FFCG−Kanon
i at iteration i is the inverse of the maximum of

SPtot,i and LMCG,i. Recall that a high SPtot,i indicates a strong risk of pri-
vacy exposure, while a high LMCG,i indicates a high level of information loss.
Therefore, it is desirable that the fitness function generates results that itera-
tively converge towards a high value for FFCG−Kanon

i , expressed by low values
of SPtot,i and LMCG,i respectively. Algorithm 1, summaries our description of
how CG-Kanon works.

The main drawback of the CG-Kanon algorithm is that, depending on tuple
distribution, the diversity of the sensitive attributes in large ECs can be quite
low and this negatively impacts on privacy. As well, a large proportion of tuples
are suppressed to satisfy the minimum level of k-anonymity which results in high
information loss. We addressed this by limiting the size of ECs to a pre-defined
threshold size and as we discuss in Sect. 5, found that this reduces the number
of suppressions to satisfy kmin-anonymity. We still have the caveat of inferential
attacks and so augment our CG-Kanon scheme with the CG-Diverse scheme
(l-diversity algorithm inspired) to help circumvent these attacks.

3.5 CG-Diverse Scheme

In CG-Diverse we extend CG-Kanon by using SPtot,i instead, to classify tuples
into ECs. The CG-Diverse scheme computes the average severity, ASD, for D
as well as the EC average severity weighting ASe. The ASD is computed for D
and is used to start the anonymisation process to ensure that the target level of
l-diversity in D is such that l = ASD. We compute ASD as follows:

ASD =
∑

d∈D Sd(c)
|D| (8)
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A high ASD implies a higher level of diversity in the entire dataset. As a stop-
ping criterion for deciding when an acceptable level of kmin and ASD has been
satisfied by all the ECs, we bound the l-diversity range with the severity weight-
ing scale and use ASD to compute the fitness of the dataset with respect to
privacy and utility. We employ the following modified fitness function, expressed
as follows:

FFCG−Diverse
i =

1
max (ASD,i, LMCG,i)

(9)

However, as mentioned before suppressing the ECs that fail to meet the required

Algorithm 2. CG-Diverse
1: function Anonymise(D,D′, QT )
2: QT = {qT (1), ..., qT (y)} - set of quasi-identifier combinations
3: for i = 1 to y do
4: ∀qT (i) ∈ QT - Generalisation and suppression on D
5: Generate D′(qT (i)) - Candidate datasets for classification
6: kmin = max(kcons,min(S′

D(·)))
7: ∀D′(qT (i) - compute ASD′(qT (i)) =

∑
d∈D′(qT (i)) Sd(c)

D′(qT (i))

8: FFCG−Diverse
i = 1

max(ASD′(qT (i)),LMCG,i)

9: ∀qT (i) return most fit D′(qT (i)) - low information loss and high privacy

10: ∀e ∈ D′(qT (i)) compute ASe =
∑

d∈D′(qT (i)) Sd(c)

‖e‖ - Ensure diversity

levels of ASD and kmin would result in a high level of information loss. Therefore,
we alleviate this problem by identifying ECs with a lower average severity (but
adequate relative diversity) to avoid high suppression rates. This is achieved by
assessing the privacy of individual ECs that do not meet the global ASD-diversity
requirement. To this end the EC average severity weighting ASe is computed as
follows:

ASe =
∑

d∈D Sd(c)
|e| (10)

The ASe of an EC is compared to the relative diversity le, and if ASe > le the
tuples in the EC are generalised to the highest possible level to avoid suppression.
Alternatively, when the diversity is higher than ASe no changes are made. We
note that this procedure is computationally inexpensive since it simply requires
comparing ASe with the actual observed diversity of the EC. Algorithm 2, sum-
maries the operation of the CG-Diverse algorithm.

Example 4. Table 2 shows the average severity measures calculated for a given
sample dataset. The ASe = 5 is calculated as follows: 5+3+7+5+5

5 using the
crime severity weightings given in Table 3. By considering Table 3, and Eqs. 8
and 10, the l-diversity range can be restricted to between 3–25, depending on the
underlying dataset. Yet requiring ECs to satisfy the global level of ASD-diversity
might be too restrictive. We alleviate this issue by moving tuples between ECs
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to minimise the information loss due to suppression. For instance, in Table 2 we
observe that in the 5-anonymity EC, “Robbery” has a severity of 7 which implies
an inference risk. CG-diverse handles such cases by using the ASe to move the
tuple to the more appropriate 7-anonymity EC as highlighted in Table 2.

Table 2. Average severity versus diversity

Age Crime Diversity ASD ASe

(Equivalence Class) (Dataset) (Equivalence Class)
18 - 22 Theft 4 11 5.0
18 - 22 Embezzlement 4 11 5.0
18 - 22 Robbery 4 11 5.0
18 - 22 Drunken Driving 4 11 5.0
18 - 22 Theft 4 11 5.0

18 - 87 Rape 8 11 7.0
18 - 87 Vandalism 8 11 7.0
18 - 87 Robbery 8 11 7.0
18 - 87 Assault 8 11 7.0
18 - 87 Murder 8 11 7.0

We are now ready to discuss our proposed t-clustering algorithm, which draws
on t-closeness principles but uses clustering as the classification mechanism for
forming equivalence classes.

4 t-Closeness Anonymisation as a Clustering Problem

The t-closeness anonymisation approach provides data anonymity by ensuring
that the distance between the distribution of a sensitive attribute in an equiv-
alence class and the distribution of sensitive attributes in the dataset is no
greater than a threshold value of t. As mentioned before, this approach to pri-
vacy enforcement on shared micro-data is performance intensive. We address this
problem by using clustering to classify the data to ensure anonymity. This results
in an improved time complexity of O(m2 log n) in comparison to 2O(n2)O(m)

in the number of operations required for the average case standard t-closeness
algorithm.

t-closeness anonymisation builds on k-anonymisation [29] where the princi-
ple is to categorise tuples into equivalence classes of size k ≥ 2 such that every
combination of quasi-identifier values can be indistinctly matched to at least k
individuals. A high value of k makes it harder for the adversary to de-anonymise
the data but also results in a high level of information loss thereby negatively
impacting the utility of the dataset. So, a tradeoff between privacy and infor-
mation loss is needed to generate usable anonymised datasets. We begin by
providing some notations and definitions of the terminology we will be using to
support our algorithm.
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4.1 Notation for t-clustering

We extend CG-Kanon and CG-Diverse to adhere to t-closeness properties such
that all the ECs in D are formed by ensuring that the distance between the
distribution of sensitive attributes S (a) in each EC and the distribution of S (a)
in D is less than or equal to the threshold value t [29]. Building on this, we
describe t-closeness as a clustering problem as follows:

Definition 4 (t-Clustering). Given a micro-data set D, a distance measure
dist (ti, tj) that describes the similarity between the two tuples ti and tj , where tj
is the centroid of a cluster (equivalence class) el, S (ael) the entropy of the sever-
ity weighting of a sensitive attribute in el, and S (aD) the cross-entropy of the
severity weighting of a sensitive attribute in el and D. We define the t-clustering
as a mapping of ti to el, such that el∩ey = ∅, and ‖el‖ ≥ k, such that ∀ti, tj ∈ el,
Dist(ti, tj) ≤ Dist(ti, tl) and Dist(S(ael), S(aD))) ≤ Dist(S(aey ), S(aD)).

Based on the definition of the t-clustering problem, we express the optimal solu-
tion to the t-clustering problem as follows:

Definition 5 (Optimal t-Clustering). Given a micro-data set D, a distance mea-
sure dist(ti, tj), and a distance measure Dist(S(ae), S(aD)) we define optimal
t-clustering as a mapping of ti to e, such that in addition to satisfying t-clustering
(Definition 1), cluster sizes are maximised, while at the same time minimising
Dist(S(ae), S(aD)), and dist(ti, tj).

4.2 t-Clustering Anonymisation

We ensure t-closeness anonymity with clustering, by computing the minimum
cluster size required to guarantee a global minimum level of t-closeness for all
clusters. Drawing from CG-Kanon, the clustering algorithm uses a value kmin as
the minimum cluster size and moves tuples into appropriate clusters based on the
calculated severity weighting as well as the distance measure (distance between
a given tuple and the tuple representing the cluster centroid). This ensures that
a minimum cluster size will be adhered to by all the clusters created and in
addition a minimum level of anonymity for the tuples within each cluster is
guaranteed.

Based on the cluster size, we must determine which tuples to either include or
exclude from a cluster. As a first step from the definition a clusters, we evaluate
the relative distance between tuples to decide on which tuples to classify in
the same cluster. In order to compute the inter-tuple distance, we consider both
categorical and numerical attributes. The distance between categorical attributes
is measured using the Jaccard’s coefficient and is defined as follows:

simdx,dy
=

Qdx
∩ Qdy

Qdx
∪ Qdy

(11)

where dx, dy are two given tuples, Qdx
and Qdy

are the respective quasi-identifiers
for dx and dy, and dy represents the centroid of the cluster into which dx is clas-
sified. We note that the value of ∼ (dx, dy) varies between 0 and 1, with 1
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indicating a strong similarity (small) distance between the tuples, and 0 indi-
cating a strong dissimilarity (high distance) between the tuples, based on the
quasi-identifier attributes.

However, looking solely at attribute similarity to decide on classifications,
can result in a high number of outliers (information loss due to misclassifica-
tion/inability to classify) that get suppressed from the generated anonymised
dataset. Suppressions increase the rate of information loss, so we also look at
numerical values and compute the Euclidean distance to compare the difference
between attributes by using an n-dimensional space function which is represented
as follows:

Dist(dx, dy) =
√(

dx (a1) − dy (a1))2 + .... + (di (am) − dy (am))2
)

(12)

where ai represents an attribute in Q. Tuples separated by a small Euclidean
distance are classified in the same cluster. The next step requires us to consider
the sensitive attribute severity weightings. To this end, we compute the average
severity weighting ASD for D and the average severity weighting ASe for e
for a given cluster (equivalence class). We use both values in the same way
that t-closeness is used to decide on tuple classifications based on statistical
distributions of sensitive attributes, and also to prevent skewness as well as
similarity attacks.

We then evaluate the level of loss of privacy with respect to information
loss in forming the clusters. This is in line with using the t parameter in the
t-closeness scheme as a method of optimising the utility of the dataset, while
at the same time enforcing privacy. To this end, we use a fitness function to
decide on the value of t to use in the clustering algorithm and express the fitness
function as follows:

FF t−clustering
i =

1
Max (ASD,i, LMCG,it)

= t (13)

when t is low this implies a high degree of loss of either privacy or information,
while a high value is an indication of a reasonably good balance between privacy
and data utility. Finally, to evaluate the level of diversity of sensitive attributes
in e with respect to D, we compute the Kullback-Leibler distance between ASe

and ASD, to determine whether or not the variation of sensitive attributes in e
enforces enforces information utility and privacy. We use the Kullback-Leibler
distance (divergence) to provide a measure of entropy which is important in
determining the maximum likelihood of inference leading to privacy disclosures
due to skewness and similarity attacks. So the Kullback-Leibler distance pro-
vides a standard measure for assessing anonymised datasets from the statistical
perspective. An added advantage is that because it is not as cost intensive to
compute as the Earth mover’s distance measure used in the t-closeness scheme
[29,30], we are able to make performance gains in computing the anonymised
dataset. We note also at this stage that our added severity weighting metric for
the sensitive attributes, compensates for any weaknesses the Kullback-Leibler
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Algorithm 3. CG-Diverse
1: function Anonymise(D,D′, QT )
2: QT = {qT (1), ..., qT (y)} - set of quasi-identifier combinations
3: for i = 1 to y do
4: ∀qT (i) ∈ QT - Generalisation and suppression on D
5: Generate D′(qT (i)) - Candidate datasets for clustering
6: kmin = max(kcons,min(S′

D(·))) - minimum cluster size
7: ∀e ∈ D′(qT (i)) compute centroid(de)
8: ∀d ∈ e compute sim(d, de) and Dist(d, de)

9: ∀D′(qT (i) - compute ASD′(qT (i)) =
∑

d∈D′(qT (i)) Sd(c)

D′(qT (i))

10: FF t−clustering
i = 1

max(ASD′(qT (i)),LMCG,i)

11: ∀e ∈ D′(qT (i)) compute Dist(ASe, ASD′(qT (i)) =
∑

ASe log ASe
AS

D′(qT (i))

12: if Dist(ASe, ASD′(qT (i))) ≤ FF t−clustering
i then

13: Return D′(qT (i)) - low information loss and high privacy

divergence may represent in terms of accounting for the semantics of the dataset
in ensuring privacy. We compute this as follows:

Dist (ASe, ASD) =
∑

ASe log
ASe

ASD
≤ t (14)

where ∑
ASe log

ASe

ASD
= H(ASe) − H(ASe, ASD)

such that H(ASe) =
∑

ASe log ASe is the entropy of ASe and H(ASe, ASD) is
the cross entropy of ASe as well as ASD

When Dist (ASe, ASD) ≤ t the anonymised dataset mimics t-closeness by
ensuring that sensitive attributes are classified according to severity of exposure.
So for example, we would classify S (Cancer) in a larger equivalence class and
together with values that allow for a mixed distribution of sensitive attributes.
In this way the chance of identifying users based on similar chronic or serious
illnesses is reduced, in comparison to classifying S (Cancer) in a cluster that is
dominated by minor illnesses. When Dist (ASe, ASD) �≤ t, we rerun the algo-
rithm from the top (Generalisation Algorithm - Algorithm 1) to re-compute
cluster structures. Algorithm 2, provides a summarised version of our clustering
scheme.

In the next section we provide a complexity analysis of the average case run-
ning time for our proposed scheme and compare this to the t-closeness scheme.

4.3 t-Closeness and t-Clustering: Complexity Analysis

In terms of the complexity analysis of the t-closeness anonymisation algorithm,
we know from Liang and Yuan’s work [30] that the t-closeness anonymisation
problem is NP-Hard. In fact computing the number of operations required to
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search the dataset is on the O(n2) where n is the number of tuples in the dataset
D. This is due to the fact that we make the comparisons for each tuple with
respect to every other tuple in the dataset. So this essentially requires going
through the dataset on a power of 2. In addition, considering attributes we a
complexity of O(m) where m is the number of attributes. This happens because
the attributes are bound to the tuples and tuple comparisons involve attribute
comparisons. Finally because we compare both within equivalence classes and
within the dataset the overall time requires for the various operations involved
is 2O(n2)O(m).

With respect to t-clustering, we know that clustering problems are in general
NP-Hard. However, with our heuristics we are able to drop the performance cost
to O(n2 log m) where n and m represent the tuples and attributes in the dataset
D. We achieve this by dividing up D into at most n clusters, computations
required for classification are in O(n) and the fraction of attributes that are
critical for classification are in O(log m), which results in a total time complexity
of O(n2 log m). We are now ready to discuss our experimental platform, results
and analysis.

5 Results and Analysis

We demonstrate the feasibility of our proposed automated data anonymisation
scheme with results from experiments conducted on a prototype crime data col-
lection application [38]. A host server with an Ubuntu server 12.04 operating
system running on a 64 bit machine with 8GB RAM and a processor speed of
3.2GHz (Intel Xeon E3-1230 Quad Core) was used. The algorithms were imple-
mented in Java 1.7.0 65 while Python 2.7.3 was used to run the web server. A
PostgreSQL 9.1 database management system and a Postfix email server were
used to store the dataset, both plain and anonymised.

Fig. 5. Crime dataset: example

Our dataset consisted of 250000 records as an average of the number of crime
reports per police station in a month. This is considering the fact that the crime
data was generated with South Africa as an example scenario where crime report
rates are estimate at approximately 2–3 million per year [19]. The attributes
considered included “Age”, “Suburb”, “Reporter”, “Crime” and “Reporter”.
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Sensitive attributes such as “Names” and “Date of Birth” were removed during
pre-processing. Figure 5 provides an example of the composition of our crime
dataset.

Fig. 6. Average severity weighting distribution: example

Referring to Figs. 4, 5, and 6, quasi-identifiers which more closely match the
k-anonymity requirement for CG-Kanon were generated before the anonymisa-
tion process. This was done by generalising attributes to the highest node in the
generalisation hierarchy (tree) for ECs that do not meet the k-anonymity require-
ment. We qualitatively assessed the anonymised data produced by the CG-Kanon
and the CG-Diverse algorithms, by considering aspects such as information loss,
classification accuracy and the impact of the weighting scheme on linking and
inference attacks. In order to obtain the data shown in Fig. 7, we transformed
the data in Fig. 6 by using an adjustment factor to compensate for biases intro-
duced through the data reporting and collection process [6]. Bias is basically
what w consider to be the difference between the reported frequency distribu-
tion of crime reports and the true (real-life) frequency distribution. This idea is
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based on the fact that we are able to determine the true distribution of crime
and we assume that third party data analytics service providers are interested in
the true underlying statistics of crime in general not only that gathered through
our crime reporting framework. In practice, we may take the true underlying
distribution of crime to be historical data gathered by law enforcement agencies
over several years. Admittedly in the developing world, such data may have been
tampered or destroyed but we do not take this into consideration in this paper.

Fig. 7. Data distributions and adjustment factors: example

From hypothesis testing we know that the random variable Zc as defined
below, has a normal (N(0, 1)) distribution:

zc =
(Oc − Ec)2

Ec

where Ec is the expected frequency, and Oc is the observed frequency. The
summation across all crime categories then gives a χ2 random variable to be
used for goodness-of-fit. based on this we calculated the adjustment factor for
each crime category as adjc =

√
zc (see Fig. 7).

Throughout the discussion of the results we refer to an anonymisation based
on the weightings of the quasi-identifiers (QIDs) used during the anonymisa-
tion. This will be denoted as AwAge

: SwSuburb
: RwReporter

. Figure 8 provides
information on the classification accuracy of the CG-Kanon and CG-Diverse
anonymisation schemes to support the claims we make about the efficiency in
terms of low information loss for the modified k-anonymisation and l-diversity
schemes that we proposed.

For example where equal weights were assigned to the QIDs this will be
denoted as an A1 : S1 : R1 anonymisation, similarly where we use A10 : S5 :
R1 weights of 10, 5, and 1 were used for the Age, Suburb, Reporter attributes
respectively. kconstant was set to 5 for all results on CG-Kanon anonymisation.

Our minimum crime severity level for the data was set to 3 and in this
case, kmin = 5. For CG-Diverse, we set our lowest diversity level to 3 for all
anonymisation runs as a standard minimum privacy level. Since on average,
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Fig. 8. Classification accuracy of CG-Kanon and CG-Diverse

Fig. 9. Severity impact on dataset (No Severity Weighting)

the lower severity crimes were located in such ECs, this was acceptable. All
algorithms were allowed to run for 30 min after which the algorithm was stopped.

Pre-experiment sampling revealed that running for shorter periods, say
15 min resulted in high severity penalties and information loss for larger ECs,
while running for resulted in only between 3–6% of tuples meeting the minimum
anonymity level. Running for much longer resulted in better success rates, but
at the price of time.

Once stopped the anonymised data was checked for compliance with the
desired level of privacy. Tuples not satisfying the privacy criteria on termination
were processed further according to the respective CG-Kanon and CG-Diverse
algorithms. Figure 9 shows the CG-Kanon algorithm classifying data using ECs
only with no severity weighting support. We note that the crimes are clustered
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Fig. 10. Impact of severity weighting on privacy

Fig. 11. Sensitive attributes frequency for CG-Kanon using A1:S1:R1

around smaller sized ECs which is good for protection against inference attacks,
but bad for information loss. When the severity penalty is applied, we note as
shown in Fig. 10 that more severe crimes are classified in larger ECs but this has
the caveat of introducing inferential disclosure. For instance, from Fig. 10 one
can see directly that more severe crime has a higher frequency with “Murder”
being as high as 31%. We address this with the CG-Diverse scheme.

Furthermore, as shown in Figs. 11 and 12, based on the A1 : S1 : R1 weighting
and an average severity level of 11, the global diversity and average severity of
each EC is evaluated before suppressing the QIDs. When compared to Figs. 9
and 10, we note that the average diversity in CG-Kanon varies between 10% and
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30% while that of CG-Diverse is much lower at 9% to 14% and in t-clustering the
diversity is between 7% and 12%. This implies that risk of inferential disclosure
is lower in t-clustering than in the CG-Kanon and CG-Diverse schemes, because
by using the severity weightings we are able to distribute highly sensitive records
into equivalence classes that make distinguishing individual record lower.

Fig. 12. Sensitive attributes frequency for CG-Diverse using A1:S1:R1

The desired lower frequency (i.e. higher diversity) for more severe crimes is
evident in CG-diverse whereas in CG-Kanon there is no such correlation. More
severe crimes (Rape and Murder) in this case actually have lower average diver-
sity and consequently less risk of inferential exposure. In addition we see the
deviation from the mean frequency for more severe crimes is lower as sever-
ity increases. So not only does the average diversity increase as crime severity
increases but the variance decreases as well. This gives us more certainty that
more severe crimes will be less vulnerable to inference attacks.

Finally, we note that l-diversity guarantees at least k-anonymity where k = l.
We also consider the average diversity over all three schemes (CG-Kanon, CG-
Diverse, and t-clustering) and note as expected that t-clustering has a higher
diversity rate on average which is reflective of our expectations of protection
against background attacks in line with the t-closeness anonymisation principle.

The lowest diversity of 3 may appear weak from the privacy perspective when
compared to the global diversity of 11 but it is unlikely, practically speaking, that
severe crime (sensitive data) will be included in such lower diversity ECs. For
instance, if we revisit our earlier results for CG-Kanon where the most serious
crime (“Murder”) was in an EC of size 90 and still only achieved a 3-diversity.

Figures 13 and 14 show the aggregated information losses for different weight-
ing schemes after termination of the algorithm. We selected three weighting
schemes to monitor how the algorithms perform when attributes with varying
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Fig. 13. Sensitive attributes frequency: CG-Kanon, CG-Diverse, and t-clustering

Fig. 14. Information loss for CG-Kanon

granularity are weighted differently. For instance the A10 : S5 : R1 scheme over-
weights the Age attribute which is highly granular and under weighs the Reporter
attribute, while A1 : S5 : R10 test the opposite scenario and A1 : S1 : R1 is
equivalent to having no weighting scheme.

The marginal increase in information loss for CG-diverse relative to CG-
Kanon seems quite acceptable given the improved privacy provided by CG-
Diverse. For our results the information loss across the three weighting schemes



Syntactic Anonymisation of Shared Datasets 53

Fig. 15. Information loss for CG-Diverse

Fig. 16. Information loss reduction versus time (CG-Kanon)

was on average 7% higher for CG-diverse. However, this reduced data utility is
acceptable given our desire for better anonymised data privacy.

One further insight relates to the number of parameters that are used for the
fitness function in selecting QIDs. We see from Figs. 15 and 16 that information
loss for CG-diverse is a much lower proportion of its starting value than for
CG-Kanon. This is attributed to the fact that CG-Kanon searches for solutions
that minimise both the information loss and the severity penalty, in addition
to satisfying k-anonymity. While CG-diverse only minimises information loss
and endeavours to meet the diversity requirement. The additional parameter
(severity penalty) for CG-Kanon increases the search space and reduces the
efficiency of the algorithm. For instance, at termination the reduction in the
initial information loss for A10 : S5 : R1 in CG-diverse was 74% compared to
55% for CG-Kanon. In Fig. 17, we note that for an average cluster size (EC)
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Fig. 17. Information loss reduction versus time (CG-Diverse)

of 7, information loss was on average 14.6% mainly because our t-clustering
algorithm relies on the k-anonymisation principle to bucketise tuples and only
seeks to establish t-closeness if the observed diversity in an equivalence class
is less than t the threshold for diversity with respect to the entire dataset. As
well by borrowing from l-diversity, we are able to drop the costs of clustering as
shown in Fig. 18, where we note that the cost of anonymisation grows linearly
with the size of the dataset.

Fig. 18. t-Clustering time

We now present concluding statements and propose some ideas for future
work.
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6 Conclusions

We presented three algorithms namely, CG-Kanon, CG-diverse, and t-clustering
that augment the standard k-anonymity and l-diverse algorithms to facilitate
automatic classification and anonymisation of data. In particular, we considered
crime data because it contains a large volume of sensitive data and is vulnerable
to linking and inferential attacks. To match privacy with utility, we used a ran-
dom sampling approach without replacement so, historical released reports were
excluded from being selected in subsequent releases. The sampling approach also
offers the advantage of reduced computational complexity and therefore runtime
for our algorithms which is a plus for use in computationally constrained envi-
ronments. To reduce information loss, we also used a fitness function to improve
classification accuracy, and privacy. Our results demonstrate that CG-diverse
incurs an average information loss of 7% over CG-Kanon, but with a diversity of
between 9–14% in comparison to 10–30% CG-Kanon. So, we can conclude that,
since CG-Diverse offers anonymity levels that are at least equal to CG-Kanon’s,
the percentage of information loss incurred does not significantly affect query
response accuracy and in addition, provides stronger privacy guarantees than
CG-Kanon.

We also considered a t-clustering scheme as a method of alleviating the per-
formance cost of t-closeness anonymisation while at the same time offering better
privacy protection than CG-Kanon and CG-Diverse, which is an advantage for
low resource settings. Basically, what we did was build on the method of rank-
ing sensitive attributes by a severity weighting proposed for the CG-Kanon and
CG-Diverse scheme. The ranking system was used to classify tuples to enforce
diversity, so that we do not always have to compute statistical distributions to
satisfy t-closeness. The tuples are classified to minimise the risk of privacy dis-
closure of tuples containing high severity weight sensitive attributes. Clustering
has the advantage of reducing the need for extensive attribute generalisation in
order to classify tuples based on similarity. This is good, in addition, because it
reduces the cost of information loss. As we have mentioned earlier, high levels of
information loss make datasets unusable in practical situations. By considering
severity weightings both for individual clusters and the entire dataset, we mimic
the t-closeness principle, of seeking to distribute tuples in ways that ensure that
the difference in distributions both within the equivalence classes and the entire
dataset, does not surpass a threshold value of t. In this way, our proposed scheme
also offers protection against skewness and similarity attacks. Finally, a further
benefit of our scheme is that because it is not performance intensive, it can be
used on low-powered, low-processing networks for guaranteeing privacy of data
under data forwarding schemes.
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Appendix A Notations: Summary

see Table 3.

Table 3. Notation

Symbol Explanation

A Attribute Space (set of attributes)

a An attribute ∀a ∈ A

d A tuple in the dataset D

T (a) Generalisation hierarchy for numerical attributes

K(a) Generalisation hierarchy for categorical attributes

T (a)max Upper limit for numerical attribute generalisations in D

T (a)min Lower limit for numerical attributes generalisations in D

t(a)min Lower limit for numerical attributes generalisations in d

t(a)max Upper limit for numerical attribute generalisations in d

K(a)total Total number of leaf nodes generated for K(a)

P Number of parent nodes in K(a)

K(a)p sub-tree of K(a) rooted at node p ∈ P

K(a)p,total Total number of leaf nodes in K(a)p

D(A1, A2, ..., An) Dataset with attributes

QT Quasi-identifier

wa weighted attribute

LMCG,i weighted information loss for dataset at ith iteration

ILd,i(a) Information loss on categorical and numerical data

LMi(a) Information loss metric for attribute a

c sensitive attribute (crime value)

ASD Average severity weighting for a dataset D

ASe Average severity weighting for an equivalence class e

SPtot,i Aggregate severity penalty for the dataset D

SPd,i Severity penalty for each tuple classification in e

ed,i An equivalence class associated with tuple d at the ith iteration

Sd(c) Severity penalty for an attribute c, where c is a crime

Dist(ASe, ASD) Distance between ASe and ASD

H(ASe) Entropy of ASe

H(ASe, ASD) Cross-entropy of ASe and ASD
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In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014.
LNCS, vol. 8644, pp. 328–342. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10073-9 27

8. Ciriani, V., Vimercati, S.D.C., Foresti, S., Samarati, P.: k-Anonymous data mining:
a survey. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining:
Models and Algorithms, vol. 34, pp. 105–136. Springer, Boston (2008). https://
doi.org/10.1007/978-0-387-70992-5 5

9. Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. Trans. Data
Priv. 6(2), 161–183 (2013)

10. Dewri, R., Ray, I., Ray, I., Whitley, D.: Exploring privacy versus data quality trade-
offs in anonymization techniques using multi-objective optimization. J. Comput.
Secur. 19(5), 935–974 (2011)

11. Dewri, R., Whitley, D., Ray, I., Ray, I.: A multi-objective approach to data sharing
with privacy constraints and preference based objectives. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009,
pp. 1499–1506. ACM, New York (2009)

12. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

13. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

14. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

15. Fienberg, S.E., Jin, J.: Privacy-preserving data sharing in high dimensional regres-
sion and classification settings. J. Priv. Confid. 4(1), 10 (2012)

16. Fredj, F.B., Lammari, N., Comyn-Wattiau, I.: Abstracting anonymization tech-
niques: a prerequisite for selecting a generalization algorithm. Procedia Comput.
Sci. 60, 206–215 (2015)

https://doi.org/10.1007/978-0-387-70992-5
https://doi.org/10.1007/978-3-319-10073-9_27
https://doi.org/10.1007/978-3-319-10073-9_27
https://doi.org/10.1007/978-0-387-70992-5_5
https://doi.org/10.1007/978-0-387-70992-5_5
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14


58 A. V. D. M. Kayem et al.

17. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with
low information loss. In: Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB 2007, pp. 758–769. VLDB Endowment (2007)

18. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing
privacy mechanisms. SIAM J. Comput. 41(6), 1673–1693 (2012)

19. Gould, C., Burger, J., Newham, G.: The SAPS crime statistics: What they tell
us and what they don’t. S. Afr. Crime Quaterly, December 2012. https://www.
issafrica.org/uploads/1crimestats.pdf

20. Islam, M.Z., Brankovic, L.: Privacy preserving data mining: a noise addition frame-
work using a novel clustering technique. Knowl. Based Syst. 24(8), 1214–1223
(2011)

21. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2002, pp. 279–288. ACM, New York (2002)

22. Kayem, A.V.D.M., Meinel, C.: Clustering heuristics for efficient t-closeness
anonymisation. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A.,
Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10439, pp. 27–34. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64471-4 3

23. Kayem, A.V.D.M., Vester, C.T., Meinel, C.: Automated k -anonymization and l-
diversity for shared data privacy. In: Hartmann, S., Ma, H. (eds.) DEXA 2016.
LNCS, vol. 9827, pp. 105–120. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44403-1 7

24. Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the laplace mechanism in
differential privacy. arXiv preprint arXiv:1504.00065 (2015)

25. Last, M., Tassa, T., Zhmudyak, A., Shmueli, E.: Improving accuracy of classifi-
cation models induced from anonymized datasets. Inf. Sci. 256, 138–161 (2014).
Business Intelligence in Risk Management

26. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-
anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2005, pp. 49–60. ACM, New York (2005). http://
doi.acm.org/10.1145/1066157.1066164

27. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization
techniques for large-scale datasets. ACM Trans. Database Syst. (TODS) 33(3),
17 (2008)

28. Li, C., Miklau, G., Hay, M., McGregor, A., Rastogi, V.: The matrix mechanism:
optimizing linear counting queries under differential privacy. VLDB J. 24(6), 757–
781 (2015). http://dx.doi.org/10.1007/s00778-015-0398-x

29. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering,
pp. 106–115, April 2007

30. Liang, H., Yuan, H.: On the complexity of t-closeness anonymization and related
problems. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.)
DASFAA 2013. LNCS, vol. 7825, pp. 331–345. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37487-6 26

31. Lin, J.L., Wei, M.C.: Genetic algorithm-based clustering approach for k-
anonymization. Expert. Syst. Appl. 36(6), 9784–9792 (2009)

32. Liu, F.: Generalized Gaussian mechanism for differential privacy. arXiv preprint
arXiv:1602.06028 (2016)

https://www.issafrica.org/uploads/1crimestats.pdf
https://www.issafrica.org/uploads/1crimestats.pdf
https://doi.org/10.1007/978-3-319-64471-4_3
https://doi.org/10.1007/978-3-319-44403-1_7
https://doi.org/10.1007/978-3-319-44403-1_7
http://arxiv.org/abs/1504.00065
http://doi.acm.org/10.1145/1066157.1066164
http://doi.acm.org/10.1145/1066157.1066164
http://dx.doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.1007/978-3-642-37487-6_26
http://arxiv.org/abs/1602.06028


Syntactic Anonymisation of Shared Datasets 59

33. Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-
preserving data perturbation methods. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-
Preserving Data Mining: Models and Algorithms, vol. 34, pp. 359–381. Springer,
Boston (2008). https://doi.org/10.1007/978-0-387-70992-5 15

34. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), Article no.
3 (2007)

35. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp.
94–103. IEEE (2007)

36. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Pro-
ceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 223–228. ACM (2004)

37. Nergiz, M.E., Tamersoy, A., Saygin, Y.: Instant anonymization. ACM Trans.
Database Syst. 36(1), 2:1–2:33 (2011)

38. Sakpere, A.B., Kayem, A.V.D.M., Ndlovu, T.: A usable and secure crime reporting
system for technology resource constrained context. In: 29th IEEE International
Conference on Advanced Information Networking and Applications Workshops,
AINA 2015 Workshops, Gwangju, South Korea, 24–27 March 2015, pp. 424–429
(2015)

39. Seckan, B.: Violent crime in the developing world: research roundup. In: Jour-
nalist’s Resource: Research on today’s New topics, October 2012. http://
journalistsresource.org/studies/international/development/crime-violence-
developing-world-research-roundup

40. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

41. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 206–215. ACM (2003)
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Abstract. Current era of digital data explosion calls for employment
of content-based similarity search techniques, since traditional search-
able metadata like annotations are not always available. In our work, we
focus on a scenario where the similarity search is used in the context
of stream processing, which is one of the suitable approaches to deal
with huge amounts of data. Our goal is to maximize the throughput of
processed queries while a slight delay is acceptable. We propose a tech-
nique that dynamically reorders the queries coming from the stream in
order to use our caching mechanism in huge data spaces more effectively.
We were able to achieve significantly higher throughput compared to
the baseline when no reordering and no caching were used. Moreover,
our proposal does not incur any additional precision loss of the similar-
ity search, as opposed to some other caching techniques. In addition to
the throughput maximization, we also study the potential of trading off
the throughput for low delays (waiting times). The proposed technique
allows to be parameterized by the amount of the throughput that can
be sacrificed.

Keywords: Stream processing · Similarity search

1 Introduction

Huge amounts of unstructured data are being produced nowadays resulting from
the current digital media explosion. Many tasks targeting at processing such
data involve, in some form, searching in the data. Traditional search techniques
based on exact match of data attributes cannot be often applied to such data
types. Instead, content-based search that treats the data by similarity can be
an appropriate option. Such search then usually uses k-nearest-neighbors (kNN)
queries, which retrieve the k objects that are the most similar to a given query
object. The level of similarity is measured by a metric distance function.

Due to the nature of the data and applications that use them, it can be
desired to deal with the data as with a potentially infinite stream that is con-
tinuously being created. For example, consider a text search-engine crawler that
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gathers images from the web and needs to continuously annotate them by tex-
tual descriptions according to the image content. As another example, a news
notification system needs to compare the newly published articles to the profiles
of all the subscribed users to find out who should be notified.

A subtask of these applications is processing the streamed data items by some
form of content-based searching. An important characteristic of the applications
is that the data do not need to be processed immediately as in interactive appli-
cations, but some delay is acceptable. The performance of these applications is
mostly determined by the number of processed data items in a given time inter-
val; that is, the throughput is the most important property. The individual query
search times can be improved by applying some similarity indexing techniques
that have efficient algorithms based on the metric model of similarity [20]. As
opposed to interactive applications focusing on the single query optimization, in
our scenario, we can afford to postpone processing of some queries if the overall
throughput of the system is improved.

I/O costs typically have a significant effect on the performance of similarity
search techniques. In our work, we exploit the fact that if a sequence of queries
is processed in an appropriate order, we can achieve considerably lower I/O
costs and overall processing times than if the order of the queries is random.
This is possible if two similar queries need to access similar data of the search
index, which is a common property of the indexes. By obtaining an appropriate
ordering of queries, the accessed data can be cached in the main memory and
reused for evaluation of similar queries lowering down the I/O costs.

The first contribution of the paper is a technique to dynamically reorder
the incoming queries, which allows to achieve a significant improvement of the
throughput according to our experiments. One of the features of the approach
is that it does not influence the quality of query results as other approximation
techniques do.

In the paper, we also present a way to trade off the throughput for the delays
of the processed queries. In other words, we balance the number of queries pro-
cessed per a time unit and the waiting times of individual queries. We show
how the proposed technique for the throughput maximization can be modified
to increase the number of queries processed until a given time limit while main-
taining sufficient throughput to be able to keep up with the rate of incoming
new query objects.

The presented approach is built upon our previous work [14]. In this paper, we
present more effective reordering technique, which allows to achieve even higher
throughput. We add formalization of the approach to the query reordering as a
problem of traversing a graph. The throughput-delay trade-off is another new
contribution of this paper.

The proposed technique is implemented as an extension of the M-Index [15]
used for indexing metric-space data, and its performance is compared to the
basic version of the M-Index. We used the Profimedia dataset of images [6] rep-
resented as high-dimensional vectors (4,096 and 256 dimensions) and measured
the throughput and other throughput-related properties of kNN queries. We
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were able to significantly improve the throughput compared to the basic version
of the M-Index. We also experimented with balancing the throughput and the
delays of the processed queries.

The rest of the paper is organized as follows. First, we formally define our
problem in Sect. 2. In Sect. 3, we present related work on caching and query
reordering in similarity search. A deep look into the proposed technique is pre-
sented in Sect. 4. It explains details of the caching system and the principles of
dynamic query reordering based on underlying graph model. The experimental
evaluation of our approach can be found in Sect. 5. We show modifications of
the proposed technique to tradeoff throughput for delays in Sect. 6. Our results
are summarized in Sect. 7.

2 Problem Definition and Objectives

Suppose there is a set of complex objects D (e.g., images represented as
high-dimensional vectors) and a large database X ⊆ D (|X| ≥ 106). Let
s = (d1, d2, . . .) be a stream, that is, a potentially infinite sequence of data
items. Each item of the stream is a pair di = (qi, ti) where qi ∈ D is a query
object and ti is the time when it was created (became available). We suppose
the data items of the stream are ordered from the oldest ones; that is, it holds
that ti ≤ ti+1 for each i and t1 = 0.

There is a defined metric space (D,md), which is a universal model of simi-
larity [20]. md is a total distance function md : D×D → R, where R is the set of
real numbers. The distance function satisfies these postulates for all o, p, q ∈ D:

– md(o, p) ≥ 0 (non-negativity),
– md(o, p) = 0 ⇐⇒ o = p (identity),
– md(o, p) = md(p, o) (symmetry),
– md(o, q) ≤ md(o, p) + md(p, q) (triangle inequality).

The distance between any two objects from D corresponds to the level of their
dissimilarity; the higher the distance, the higher the dissimilarity.

For each query object qi in the stream s, a k-nearest-neighbors query
NN (qi, k) is executed, which returns the k nearest objects from the database
X to the query object qi according to the distance function md . We consider
the scenario when X is stored on a disk and a subset of its data needs to be
accessed in order to evaluate a query. We also suppose I/O operations constitute
a significant cost considering all the needed data have to be read from the disk
during the query evaluation. Specifically, we target the situations when the time
to evaluate a query by this approach is higher than the average time gap between
two subsequent data items in the stream.

It is allowed to change the order of the processed query objects. More pre-
cisely, at the time t, any query object qi, where (qi, ti) is a data item of the
stream and ti ≤ t, can be processed.

The goal is to process the query objects of the stream so that the given
criteria are optimized. There can be various criteria that can be a subject to
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optimization depending on a specific application. The criterion we focus on in
this paper is throughput maximization. So the goal is to maximize the number
of processed query objects of a given stream until a given time T . Alternatively,
the criterion can be defined as the minimization of the number of unprocessed
query objects at the time T , that is, the number of (qi, ti) from the stream s
where ti ≤ T and qi is not processed.

We propose a technique that can be used to improve the throughput of
similarity search processing. The technique is based on reordering of the query
objects in the stream combined with a caching of the data that were accessed
during the evaluation of previous queries.

3 Related Work

The usage of a caching mechanism in similarity search has been proposed in
several papers to reduce the time spent by I/O operations. Unlike traditional
caching, which is based on exact matches only (e.g., the one exploited by web
search engines [9]), the similarity caching also has to manage similar matches.

Existing caching techniques used to speed up processing of a stream of sim-
ilarity search queries assume that the queries are appropriately ordered. In par-
ticular, they assume that similar queries are placed nearby in the stream. This
ensures that the cached values can be actually used before they are overwritten
by different queries. However, such a characteristic applies to specific scenarios
only, e.g., when there exist some popular objects that are frequently searched.
In our approach, we do not consider any specific ordering of queries within a
stream. Instead, we reorder the queries so that we obtain the sequences that are
desired.

In [10], the authors deal with kNN queries to search for similar images in a
metric space. They build their approach on the assumption that there exists a
set of popular images, which are queried by users significantly more often than
the other images. They propose an approach where the result sets of individual
kNN queries are stored in a cache and they are reused to produce approximate
results of subsequent queries.

The concept of caching in similarity search is also used in [16], where it is
applied to contextual advertising systems. If there is a cache miss for a kNN
query q, then a larger set of objects than are actually needed is retrieved from
the disk and stored in the cache. When a similar query to the cached query q
comes to the system, the cached values of q are explored to obtain results for
the new query. In this way, an approximate answer is returned.

Static/Dynamic caching is presented in [19]. The cache consists of two parts.
The static part stores queries (along with their results) that remain popular over
time. The dynamic cache keeps queries that are popular for a short period of
time. A combination of both is used to speedup the evaluation of queries. Several
strategies are proposed to select the suitable queries to be stored in the cache
based on analysis of past queries.

The paper [5] presents an index structure that serves as a cache and as an
index at the same time. The index is built and reorganized dynamically as new
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queries are evaluated. The advantage of the proposed approach is that if the
cache is not able to provide an answer, the data computed up to that moment
are used by the index.

Caching of data partitions loaded from a disk during query evaluation is
presented in [8] complemented with caching previous answers, which serves to
set initial search radius for similar kNN queries.

The authors of the paper [18] target the situations when the distance compu-
tation itself is an expensive operation. They propose D-cache, which stores dis-
tances computed during previous queries to spare some distance computations
of subsequent queries. The Snake Table presented in [2] uses a cache of distances
to avoid some distance computations when processing streams of queries with
snake distribution (i.e., consecutive query objects are similar). Since the Snake
Table needs a space proportional to the size of the dataset, it is suitable for
medium-sized databases.

Another way to improve the throughput of a stream of kNN queries, is to
reorder the queries. In [17], the authors optimize nearest neighbor search for
videos when each video is represented by a sequence of high-dimensional vectors.
Given a query video containing n vectors, a search for each vector is performed
and the overall similarity is computed at last. The authors make use of the fact
that vectors of subsequent video frames are similar with respect to the Euclidean
distance and they propose dynamic query ordering for advanced optimization of
both I/O and CPU costs. They make an observation that the candidates of a
previous query may help to further reduce the candidates shared with a subse-
quent query. The algorithm aims at progressively finding a query order such that
the common candidates among queries are fully utilized to maximally reduce the
total number of candidates. Also, this approach builds on the assumption that
the subsequent kNN queries in the stream are similar to each other. Moreover,
the ordering technique is designed for low-dimensional vector spaces (tested on
32 dimensions) and for a short sequence of queries (tested on sequences of the
length of 60 queries). In our work, we target more complex metric spaces (e.g.,
high-dimensional vector spaces with thousands of dimensions), in which case it
is highly improbable that similar queries can be found in such short sequences.

4 Principles of the Proposed Approach

To speed up a similarity query evaluation, a metric index is often used. In our
approach, we consider a generic metric index that uses data partitioning P =
{p1, . . . , pn} where pi ⊆ X, pi∩pj = ∅ for any two partitions pi, pj , and

⋃n
i=1 pi =

X. When processing a query object q, a subset of the partitions I(q) ⊆ P needs
to be accessed. The partitions are typically stored on a disk [20]. A frequent
bottleneck of similarity search techniques is the reading of the partitions from
the disk during a query evaluation. Our solution aims to decrease the number
of disk accesses, which consequently decreases the time to process the queries.

The aim of data partitioning methods is to generate the partitions in such a
way that any two objects p, q of a partition are similar to each other; that is,
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md(p, q) is small. When a query is to be evaluated, a score is assigned to each
partition according to estimated distances of the query to the objects of the
partition. Based on the scores, only the objects of the most promising partitions
are directly examined. The definition of the score is dependent on a specific
metric index.

Let I(q) ⊆ P be the set of data partitions accessed during the evaluation
of the query object q. Taking into account the properties of data partitioning
methods, the following holds:

md(q1, q2) ≤ ε =⇒ |I(q1) � I(q2)| ≤ δ (1)

where ε is a small non-negative real number; δ is a small non-negative integer.
That means if two query objects are very similar to each other (their distance is
at most ε), the sets of accessed data partitions are also very similar (the number
of elements in their symmetric difference is at most δ). This property can be
used to speed up the processing of query objects q1 and q2. First, q1 is evaluated
and the accessed data partitions are kept in the main memory cache. When q2 is
being evaluated, the data partitions stored in the cache can be reused to avoid
expensive disk accesses.

However, the caching itself is not typically enough for the speedup. Suppose
there is a database of millions of objects indexed in a metric space. In practice,
the metric space is often defined as a vector space of a high number of dimen-
sions. Due to such a huge search space, there is very low probability that two
subsequent query objects in the stream are similar enough to access overlapping
sets of data partitions during their evaluation. For the cache to be sufficiently
utilized, the query objects in the stream need to be reordered so that sequences
of similar query objects are obtained.

To sum it up, our approach consists of two parts. The first one is the in-
memory caching of recently loaded data partitions and reusing them for eval-
uation of subsequent queries. The second one is the query object reordering
allowing to process sequences of similar query objects to maximize the cache
utilization.

In Sect. 4.1, we describe the architecture of the system used for processing a
stream of query objects. Details of the caching system are presented in Sect. 4.2.
In Sect. 4.3, we model the problem of query object ordering from the perspec-
tive of graphs and we define a query graph with query objects as the vertices.
Section 4.4 discusses ways to construct the query graph; we present principals of
traversing the graph in order to maximize the throughput in Sect. 4.3; a specific
algorithm is provided in Sect. 4.6.

4.1 Architecture

In this section, we describe the architecture of the whole system. The schema of
the architecture is depicted in Fig. 1.

Let us have a stream ((q1, t1), (q2, t2), . . .).Aquery object qi arrives at the appli-
cation at the time ti and it is inserted into a component called a buffer. The buffer
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Fig. 1. Architecture

is used to temporarily store the incoming query objects that are waiting for pro-
cessing. This is the component where the query reordering takes place.

Another part of the architecture is the metric index, which takes care of the
query object evaluation. It contains a disk where the database of objects is stored
and a main memory cache is used to store the recently loaded data partitions
from the disk.

When the metric index is ready for processing another query, a query object
is picked from the buffer according to a strategy described in following parts of
this paper. During processing of the query, the metric index looks into the cache
to possibly use any data partitions obtained while evaluating recent queries. If
the data are not in the cache, they are loaded from the disk.

4.2 Cache

The cache is defined as a set of partitions cache = {p1, . . . , pm} ⊆ P . The size
of the cache is limited by the number of objects within the cached partitions:∑

p∈cache

|p| ≤ cacheLimit .

To measure the utility of the cache during evaluation of a given query object
q, we define the following function.

cacheUtility(q, cache) =
|I(q) ∩ cache|

|I(q)| (2)

where cache represents the content of the cache and I(q) ⊆ P is the set of
partitions accessed during the evaluation of q. We suppose I(q) is a non-empty
set.

To keep track of the content of the cache, we define the function
updateCache(q, cache) returning the content of the cache after processing the
query object q where cache represents the content of the cache before executing
q. In our implementation, we use the least recently used policy [12]. In particular,
the partitions with the oldest last access time are discarded and replaced with
the new partitions of the last query while obeying the cacheLimit .

The queryTime(q, cacheUtility) represents the time to process the given
query object q using the given cache utility. The desired property of the function
is that the time should be decreasing with increasing cache utility due to a lower
I/O cost.

cu1 ≤ cu2 ⇐⇒ queryTime(q, cu1) ≥ queryTime(q, cu2) (3)

where cu1, cu2 are cache utilities.
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4.3 Query Ordering

As it was stated before, a key to a high cache utilization is to process the query
objects in an appropriate order.

The problem of query object ordering can be modeled from the perspective of
graphs. Let s = ((q1, t1), (q2, t2), . . .) be the stream to be processed. Let us con-
sider just the portion of the stream available at the time t: ((q1, t1), . . . , (qk, tk))
so that tk ≤ t and tk+1 > t. We define the undirected query graph Gt = (V,E)
at the time t in the following way. The set of vertices is comprised of the subse-
quence items V = {(q1, t1), . . . , (qk, tk))}. In other words, each query object of
the stream subsequence represents a vertex in the query graph.

The graph is complete; that is, there is an edge between every pair of vertices
(qi, ti) and (qj , tj) where i �= j. A value is associated with each edge denoting
an upper bound of the query time to process qi right after qj or qj right after qi.
We denote the value assigned to the edge (referred to as the edge value in the
rest of the paper) between the vertices (qi, ti) and (qj , tj) as e((qi, ti), (qj , tj)).

The edge value between the vertices (qi, ti) and (qj , tj) is determined as
follows:

e((qi, ti), (qj , tj)) = max{queryTime(qi, cui), queryTime(qj , cuj)} (4)

where cui = cacheUtility(qi, I(qj)) and cuj = cacheUtility(qj , I(qi)). That is,
the upper bound of the query time is the maximum of the query times when
qi is processed right after qj or qj right after qi, while the cache contains only
the partitions needed by one previous query. If the cache contains more parti-
tions rather than those needed by the previous query, the cache utility does not
decrease and therefore, the query time does not increase according to Formula 3.

The query graph Gt is defined at each time t where t is a non-negative integer.
The graph continuously grows by adding new vertices and edges as new query
objects become available in the stream. Gt is a subgraph of Gk where k > t;
Gt+1 = Gt if and only if there does not exist an item (qi, t + 1) in the stream;
that is, no new item becomes available at the time t + 1. An example of the
graph evolution can be seen in Fig. 2.

Our objective is to find such an ordering in which the query objects are
processed so that the throughput is maximized. Regarding the query graph, we
want to find an acyclic path (i.e., a sequence of the vertices) that determines

Fig. 2. Query graph evolution example
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the ordering of the query objects. Formally, given the time limit T , the task is
to find the longest path ((qi1 , ti1), . . . , (qik , tik)) in GT so that startk < T where
startk is the time when the last query object qik starts to be evaluated. The
length of the path is measured as the number of vertices, that is, the number of
processed query objects.

A query object is processed as soon as the preceding query object is processed
or as soon as it becomes available in the stream, whichever occurs later. This
strategy is applied in order to improve the throughput.

Algorithm 1 describes the generic processing of a stream of query objects.
The input is the stream of query objects arriving continuously to the application
and the time limit T . The algorithm repeatedly calls the addNewQueryObjects
function to add newly arrived query objects to the query graph and the
getQueryToProcess function that returns a query object that is to be processed
next according to the query graph and according to the path of query objects
generated so far. The returned query object is processed and added to the path.
The loop finishes when the time limit T is exceeded.

Algorithm 1. Generic algorithm
Input: stream of query objects stream = (q1, q2, . . .) and the time limit T
Output: path: the order in which the stream objects are processed

function processStream(stream, T )
path ← ()
G ← empty graph
while T ≤ now do

G.addNewQueryObjects(stream)
q ←getQueryToProcess(G, path)
if q �= null then

process(q)
path.add(q)

return path

4.4 Query Graph Construction

To process the stream in the described manner, the query graphs have to be
generated from the raw stream of query objects. In particular, the edge values
have to be assigned. According to the definition, they should denote an upper
bound of the time to process a query object at one side of the edge right after
processing the query object on the other side. The question is how to predict
the query times. Usually, it is not possible to obtain the precise query times in
advance. In practice, we are likely to end up with a method for computing the
expected times to execute the queries.

The query time greatly depends on the cache utility (see Formula 3), that is,
on the number of data partitions loaded from the disk during query evaluation.
The problem is that it is not typically possible to precisely determine the set
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of needed data partitions without the actual query evaluation. The underlying
metric index usually works with a priority queue of data partitions, which is
being updated dynamically as the individual data partitions are examined [20].
Therefore, the approach based on precise computation of the cache utility is not
usable in practice.

Data partitions that are needed during the processing of a query are generally
determined by their distance to the query object in the metric space. So the size
of the intersection of data partitions needed during processing of two query
objects is influenced by the metric distance of the query objects. Pairs of close
query objects are assumed to share more data partitions than pairs of distant
ones.

Therefore, a straightforward way to approximate edge values of the query
graph can be based on the metric distances between query objects. When a new
query object arrives, the distances to all the other query objects of the graph
are computed. From the practical point of view, it is actually not necessary to
assign the edge values to already processed query objects (except for the last
one) because they are not used to generate the path (the details are described
later). Despite this practical consequence, the edge value assignment can be very
time consuming if there are a lot of query objects (e.g., tens of thousands as in
our experiments) that are still waiting for their processing. This is because the
metric distance computation can be a computationally intensive operation. If the
computational complexity of adding a new query object to the graph is measured
by the number of metric distance computations, the complexity is linear with
respect to the number of unprocessed query objects already in the graph.

Instead, we use a pivot based technique to estimate the metric distances
and the query times [7]. In particular, let there be a fixed set of objects in the
metric space; we will denote them as pivots. When a new query object q is to be
added to the graph, distances between the query object q and all the pivots are
computed. The pivots are ordered from the nearest to the farthest one, which
defines a permutation of the pivots. This pivot permutation is stored for each
query object. The edge value between two query objects is determined according
to the length of the common prefix of their pivot permutations, the longer the
common prefix, the lower the edge value. The length of the common prefix of
two permutations (pi1 , pi2 , . . . , pim) and (pj1 , pj2 , . . . , pjm) is determined as the
maximum number k (≤ m) such that ir = jr for all 1 ≤ r ≤ k. The pivot based
technique was also shown to work well in high-dimensional vector spaces [15],
which is essential for our scenario.

We can either stay with such relative edge values, or absolute edge values
can be assigned based on empirical measurements. Specifically, we can construct
a function that for a length of a common prefix of two query objects assigns
an average query time estimatedQueryTime(prefLength) = qtpl . Since there is a
fixed set of pivots, the cost to insert a new query object in the query graph is
constant. As we consider the scenarios when the rate of incoming query objects
is high, the number of pivots is typically much lower than the number of query
objects waiting for their processing.
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Many strategies for pivot selection have been proposed [1]. According to
the comparison of pivot selection techniques for permutation-based indexing
provided in [1], there is no universally best pivot selection technique, but rather
different techniques are optimal for different purposes. The authors also state
that “the random chosen pivots is never a bad idea even if it is also never the
smartest decision”. In our experiments, we use the M-Index [15] to evaluate
the similarity search queries, which is also a permutation-based access method.
From the efficiency point of view, it is beneficial to use the same set of pivots for
building the query graph and for indexing the dataset, since it helps to save some
distance computations. The authors of the M-Index claim that the random pivot
selection results in similar performance of query evaluations as other selection
methods. Due to these statements, we use a random selection of the pivots to
build the query graph.

4.5 Query Path Search

As we are now able to efficiently construct the query graphs, let us focus on
the throughput maximization criterion. The goal is to generate an appropriate
path in the graph. The path is generated whenever a next query object can be
processed. The query object that is to be processed needs to be chosen very
efficiently so that it does not impose much overhead. To be able to do that, we
apply a greedy approach trying to find a path with minimal average edge values.

Let us first define the term of the density of a subgraph SG = (VS , ES),
where |VS | > 1: Let (vi1 , vi2 , . . . , vi|VS |) be the shortest path going through all
the vertices VS ; vij ∈ VS for 1 ≤ j ≤ |VS | where the length of the path is
computed as the sum of the edge values between the subsequent vertices in the
path. Then density(SG) = |VS |

∑|VS |−1
j=1 e(vij

,vij+1 )
; that is, the density is determined

by the average edge value in the corresponding shortest path.
The proposed greedy approach relies on finding subgraphs of high density.

Such a dense subgraph is determined by the existence of a path through all
the vertices of the subgraph with a low average edge value. Since new vertices
are continuously added to the graph, the density of the subgraphs changes. The
search for dense subgraphs is intended to identify the parts of the query graph
that are at the current time possible to be processed with high cache utility.
The dense subgraph strategy is combined with the nearest-neighbor strategy [4],
which is a simple heuristic technique for the traveling salesman problem: Start at
an arbitrary vertex. The next vertex to visit is the one that has the lowest-value
edge to the current vertex among the unvisited vertices. This step is repeated
until all the vertices of the given subgraph are visited. In summary, the greedy
approach repeatedly finds a dense subgraph and processes all the query objects
in the subgraph in the nearest-neighbor manner.

This gets us to another problem to solve: how to efficiently identify dense
subgraphs. First, we construct a hierarchical clustering of the vertices. Dense
subgraphs are then found by exploring individual clusters rather than the whole
graph.
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Let Gt = (V,E) be the query graph at the time t. The set of clusters Ct =
{cL1 , cL2 , . . . , cLk

} is a decomposition of the set of vertices V so that Li =
max{e(va, vb) | va, vb ∈ cLi

} for 1 ≤ i ≤ k. It means that all the vertices are
decomposed into disjoint groups (clusters). Each cluster cLi

defines an upper
limit Li on the edge value between any two vertices, that is, a query time limit.
Note that there can be multiple valid decompositions given a set of clusters with
their distance limits. This forms the lowest level of the hierarchical clustering.
Another level of clusters is constructed by a decomposition of the set of clusters
on a lower level and by assigning query time limits to the new clusters so that the
limits are obeyed. Eventually, the tree of clusters Tt is generated. The vertices
of the original query graph (i.e., the query objects) are added as leaf nodes to
the corresponding bottom clusters.

For the decomposition of a set of vertices and subsequently clusters, we
reuse the pivot based technique that is applied for the query graph construc-
tion in Sect. 4.4. Each internal node on the level k of the tree is of the form
n = ((pi1 , . . . , pik−1), Ln) where (pi1 , . . . , pik−1) is the pivot permutation prefix
shared by all the descending nodes; Ln is the upper limit on the edge value
between any two descending leaf nodes. Each leaf node is of the form (q, t),
where q denotes the query object; t denotes its time of arrival.

An example can be seen in Fig. 3. Suppose there is the stream
((q1, 1), (q2, 3), (q3, 4), (q4, 7), (q5, 11), . . .). Let p1, p2, p3 be the pivots. Let
the pivot permutations for the first four items of the stream be (p1, p2, p3),
(p3, p1, p2), (p1, p3, p2) and (p1, p2, p3) in the respective order. Let the estimated
query times for individual common prefix lengths be 8, 2, 1 for the prefix lengths
0, 1, 2, respectively (see the function estimatedQueryTime in Sect. 4.4). On the
left side of the figure, there is the query graph G7 with the query times on the
edges. On the right side, there is the generated tree. Individual levels of the
tree correspond to the length of the common pivot permutation prefix of the
descending leaf nodes. The upper bound of the query time of qi processed right
after qj is determined by the query time limit of their lowest common parent
node. For example, the maximum query time limit of q3 when processed right
after q4 is determined by the lowest common parent ((p1), 2).

Contrary to the generic Algorithm 1, we actually work with the tree of clusters
in the implementation of the proposed approach. However, the structure of the
algorithm does not change; that is, there is a loop in which new query objects are
added to the tree and a next-to-process query object is selected and processed.

Fig. 3. Query graph and corresponding tree of clusters



Towards Faster Similarity Search 73

A pseudo code of the function inserting a new query object into the tree of
clusters is shown in Algorithm 2, which applies the pivot based technique. In the
next section, we will describe details of the function that traverses the tree and
selects a next query object to be processed.

Algorithm 2. Query object insertion algorithm
Input: tree of clusters tree, a query object q to insert and a set of pivots P

function addNewQueryObject(tree, q)
pp ← computePivotPermutation(q, P )
tree.addQueryObject(q, pp)

4.6 Tree Traversal

Let us describe how the tree of clusters Tt is traversed in accordance with
the dense subgraph and nearest-neighbor heuristics. The depth-first search is
applied. Suppose q is the last processed query object so far. First, we look for
a set of near neighbors by finding the lowest nonempty parent p of q. A node
is considered nonempty if and only if it has descending unprocessed leaf nodes
(query objects). After that, a child of p is selected based on some given strat-
egy. Recursively, a grandchild and other descendants are selected until a leaf is
reached and processed. This is captured in the pseudo code in Algorithm 3.

Algorithm 3. Tree traversal algorithm
Input: tree of clusters tree and path path representing the order of already processed

query objects
Output: the next query object to be processed

function getQueryToProcess(tree, path)
lastQO ← path.lastQueryObject
node ← tree.findLowestNonEmptyParent(lastQO)
while node �= null and node is not a leaf do

node ← tree.selectChild(node)
return node

A general strategy for selecting a particular child c (i.e., the subtree with
the root c) is to identify dense subtrees (dense clusters) in order to achieve high
throughput. A possible way is to select the subtree that minimizes the average
query time of processing all its leaf nodes. This way we select the subtree with
the largest immediate contribution to the throughput.

Let us illustrate the algorithm with an example. Consider the tree in Fig. 3.
Suppose that the currently processed query object is q2; the other query objects
have not been processed yet. Let us find the lowest nonempty parent of (q2, 3),
which is the root ((), 8). There is only one possible child to select, which is
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((p1), 2). Now, there are two possible children of ((p1), 2). In order to select
one child or the other, the average query time is estimated for each of the two
subtrees as follows. The subtree of ((p1, p3), 1) contains just one leaf node (q3, 4)
and the maximum query time is 8, since the lowest common parent of the last
query q2 and q3 is ((), 8). The maximum time to process the first leaf of the
subtree ((p1, p2), 1) is 8. The second leaf needs at most 1 time unit for processing,
since the lowest common parent of (q1, 1) and (q4, 7) is ((p1, p2), 1). Therefore,
the ((p1, p2), 1) subtree is selected, since it minimizes the average query time.
Subsequently both its leaves are processed.

Let us formalize the estimation of the average query time. Let n =
(pref n, qtn) be a nonempty internal node of the tree and m = (prefm, qtm) be
the lowest common parent of n and of the last processed leaf node. We suppose
the leaf node is not a descendant of n.

The maximum time to process all the leaf nodes of the subtree n equals

qtm + childrenQueryTime(n)

where qtm is the maximum query time of the first query object q of n.
childrenQueryTime(n) is the maximum time to process all the other descending
leaf nodes:

childrenQueryTime(n) =

= max{|n.children| − 1, 0} · qtn +
∑

c∈n.children

childrenQueryTime(c)

where n.children is the set of nonempty direct children of n; qtn is the maximum
time to process a leaf node of n when the lowest common parent of the last
and the next processed leaf is n. childrenQueryTime is applied recursively for
individual children of n.

The described strategy when the subtree minimizing the average query time
is selected possesses two possible caveats. It takes only the current state of the
tree to make the decision without considering evolution of the tree. The other
caveat is the possibility of starvation because some subtrees may never be chosen
for processing.

Let us explain the evolution of the tree of clusters caveat. Let p be a subtree
that at a time t contains a set of leaf nodes Ct that are all unprocessed and
at a time u it contains a set of leaf nodes Cu such that t < u and Ct ⊂ Cu.
Let us consider two scenarios. In the first one, p is selected as the subtree to be
processed at the time t and again at the time u. In the second one, p is selected
just at the time u. The set of processed leaf nodes is the same for both the
scenarios (Cu), but the query time is lower in the second one, since all the leaves
of p are processed in a row achieving higher cache utility. It implies that it pays
off to process p as few times as possible to achieve low query times, since the
subtree “switches” introduce processing overhead.

For illustration purposes, see the Fig. 3 again and let us consider the subtree
((p1, p2), 1). If both the children are processed in a row, the maximum query time
to process the second one is one, since their lowest common parent is ((p1, p2), 1).
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However, if just (q1, 1) is processed, then another subtree is processed and (q4, 7)
is processed later. The maximum overall time to process (q1, 1) and (q4, 7) is then
higher than in the first scenario, since ((p1, p2), 1) is not the lowest common
parent of (q4, 7) and of the previous leaf node. Thus the cost of processing (q4, 7)
is higher than one.

When also considering the starvation problem, a suitable strategy is to choose
the subtree that contains the oldest unprocessed leaf node among the considered
subtrees. This way the starvation problem is diminished and also the number of
times a subtree is chosen for processing is limited.

In fact, the starvation is not really eliminated. There can be a situation when
the processing gets stuck in a single subtree if there are always query objects
to be processed in this subtree and it cannot be completely emptied. Such a
situation can be solved by setting a time limit during which a single subtree of
the root node can be continuously processed. When the time limit is reached,
the tree traversal is reset to the root node.

The two presented implementations of the selectChild function (minimal
average query time and oldest leaf) are experimentally compared later in this
paper.

5 Experiments

In this section, we experimentally evaluate the proposed techniques for the
throughput maximization. We start by describing the setup of the experiments
in Sect. 5.1. The impact of the cache utility on the query time is explored in
Sect. 5.2. We show how the buffer size influences the throughput in Sect. 5.3.
In Sect. 5.4, we experiment with different rates of incoming query objects in
the stream. The cache size impact is evaluated in Sect. 5.5. Different ways of
constructing the query graph are experimentally compared in Sect. 5.6.

5.1 Setup of Experiments

We use the M-Index [15] structure to index the metric-space data. It employs
practically all known principles of metric space partitioning, pruning, and filter-
ing, thus reaching high search performance. The actual data are separated into
partitions, which are stored as separate files on a disk and read into the main
memory during query evaluations. To partition the data, M-Index uses a set of
pivots. To insert an object into the index, the pivots are sorted based on the
distance to the object. In this way, a pivot permutation is obtained, which iden-
tifies the data partition to insert the object. During a similarity search, mutual
distances between the query object and the pivots are used to reduce the set
of data partitions that need to be accessed. The M-Index supports executing
approximate kNN queries among other operations. One of the stop conditions
of a query evaluation is given by the maximum number of accessed objects (the
size of a candidate set). Such a stop condition is used in our experiments.
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One of the reasons why we chose to use the M-Index is that it can use the
same set of pivots as are used for the query graph construction in Sect. 4.4. This
is beneficial for the effectiveness of the query ordering. It also improves efficiency
because the distances from a query object to the pivots can be computed just
once and used both in the query graph and in the M-Index. Another reason
for selecting the M-Index is that it also achieves high search performance in
high-dimensional vector spaces.

For the experiments, we use the Profimedia dataset of images [6], which is a
freely-available large-scale dataset for evaluation of content-based image retrieval
systems. We created two different subsets of the images and extracted their
visual-feature descriptors. The generated datasets are: 1 million Caffe descriptors
[11] (4096 dimensional vectors) and 10 million MPEG-7 descriptors. Separately,
we created streams of images represented by corresponding descriptors. During
each experiment, images from the respective collection are continuously streamed
and stored in the buffer from which they are processed by approximate 10-NN
queries. For the approximate kNN queries, we used candidate sets of size 1,000
for the Caffe dataset and size 2,000 for the MPEG-7 dataset. We applied the
Euclidean distance and the weighted Euclidean distance as the distance functions
for the metric space with Caffe and MPEG-7 descriptors, respectively. For both
datasets, we use 160 randomly selected objects as pivots. In the M-Index, this
pivot selection strategy was observed to provide similar search performance as
other more sophisticated strategies [15].

If not said otherwise, the maximum size of the cache is set to 40,000 descrip-
tors for the Caffe dataset (i.e., 4% of the database); up to 90,000 descriptors are
stored for the MPEG-7 dataset (i.e., 0.9% of the database). The least recently
used policy is used when inserting to the full cache. In particular, the data par-
titions with the oldest last access time are discarded and replaced with the new
partitions of the current query so that the maximum size of the cache is main-
tained. To traverse the tree of clusters, the oldest leaf approach is used (see
Sect. 4.6) if not stated otherwise.

The tested applications are implemented using Java programming language
with the use of the MESSIF library [3] providing an implementation of the M-
Index. The experiments were run on Intel Xeon 2.00 GHz with 8 GB RAM. The
datasets are stored on a HDD (access time 5 ms, transfer rate 90 MBps). We
have run each of the experiments multiple times (at least three) and we have
taken the median values where appropriate.

5.2 Cache Utility vs. Query Time

At first, the impact of the cache utility on the query time is explored to val-
idate Formula 3. We ran approximate 10-NN queries for each dataset and we
were continuously changing the percentage of the data partitions that could be
obtained from the cache. The results are shown in Fig. 4a. The x-axis shows
the percentage of the cached values of all the data needed for processing of a
particular query; the y-axis represents the percentage of the time to process the
query compared to the situation when the cache is not used. It can be observed
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Fig. 4. Cache utility experiments

that the processing time can be improved dramatically (below 10% of the orig-
inal time) if the cache is filled with appropriate values, thus the assumption in
Formula 3 is valid.

5.3 Buffer Size Impact

In the next group of experiments, we explore the impact of the size of the buffer on
the cache utility and the throughput. The buffer size denotes the number of query
objects that are waiting for their processing and thus are a subject to reordering.
The size of the buffer was fixed during the experiments. At the beginning, the buffer
was filled with the query objects from the stream up to the given size; then another
query object was loaded whenever a query has been processed to keep the size of the
buffer constant. Exactly 100,000 query objects were processed during each experi-
ment. We can observe that with a growing size of the buffer, both the cache utility
and the throughput grow because the processed subgraphs (clusters) are denser
and the cached values are reused more often, see Figs. 4b and 5. The throughput
speedup was computed as the ratio of the processing time using a given buffer size
and the processing time when the query objects were processed in their original
order without the caching mechanism.

The results when the query objects were processed in their original order
(i.e., there is no reordering) are captured by Table 1. Average query times were
measured with and without use of the cache. The cache utility was very low,
which means the reordering of query objects significantly influences the efficiency.

5.4 Input Frequency Experiments

In the following experiments, we set a fixed frequency f of the incom-
ing query objects of the stream. It means the stream follows the pattern
((q1, 0), (q2, f), . . . , (qi, (i − 1) · f), . . .). We measured the throughput by observ-
ing the size of the buffer (i.e., the number of unprocessed query objects).
Each experiment was run with a different frequency of streamed query objects.
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Table 1. Processing query objects in their original order

Dataset Cache Cache utility Avg. query time [ms]

10 mil. MPEG-7 Yes 0.01 103

10 mil. MPEG-7 No - 113

1 mil. Caffe Yes 0.03 65

1 mil. Caffe No - 69

The processing was run for two hours for the Caffe dataset and for four hours
for the MPEG-7 dataset. The two approaches presented in Sect. 4.6 are com-
pared. In particular, these are the strategies for ordering the subtrees during the
depth-first traversal of the tree of clusters, namely, the oldest leaf (OL) approach
and the minimal average query time (MAQT ) approach. The oldest leaf strat-
egy selects the subtree containing the oldest unprocessed query object, while the
minimal average query time strategy selects the subtree minimizing the average
query time to process all the unprocessed query objects of the subtree.

The results are shown in Fig. 6. For the oldest leaf approach, we show the
results for input frequencies of 5 ms, 10 ms, 20 ms, 30 ms, and 60 ms. For the
MAQT approach, the results are shown just for the 30 ms frequency. It can be
observed that the size of the buffer grows at the beginning because the query
graph does not contain dense subgraphs, which are essential for the processing
speedup. As soon as the subgraphs are dense enough, the processing is more effi-
cient and eventually the buffer size stabilizes once the average query time equals
the input frequency. The results are in compliance with the results regarding
the buffer size: as the input rate of the streamed items increases, the buffer size
also increases to keep up with the incoming query objects. It can be seen the OL
approach gives a little better results than the MAQT one. Moreover OL does
not have the disadvantage of the starvation.

In all the cases except for the 5 ms and 10 ms frequencies, it was possible
to achieve sufficient throughput so that the buffer size was practically stable. It
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means that, for example, the average query time was 20 ms for the 20 ms input
frequency after the initial phase. The experiments with 5 ms were stopped after
reaching the size of the buffer of 200,000 or 700,000 for the Caffe or MPEG-7
dataset, respectively.

Tables 2 and 3 show comparison of delays for individual input frequencies.
The delay is the time since a query object enters the buffer until it is processed by
the metric index. As expected, the median and the maximum delays are greater
for more rapid streams because the buffer sizes are higher and it takes a longer
time until a particular query object can be processed. The maximum delay for
the MAQT approach is very high because it has no starvation prevention. The
tables also present the overall cache utility computed as the ratio of the number
of data partitions loaded from the cache and of all the data partitions needed
during the processing. The cache utility correlates with the size of the buffer as
was already seen in Fig. 4b.

Exact distribution of the delays for the experiment with the MPEG-7 dataset
and 30 ms input frequency can be observed in Fig. 7. The graph shows the per-
centage of queries that were processed until a given delay. So for example, we
can see that 50% of queries were delayed maximally by 13 min, while about 10%
of queries were kept in the buffer for more than 25 min.
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Fig. 6. The buffer size evolution in time during fixed input frequency experiments

Table 2. Fixed input frequency statistics for Caffe dataset

Input frequency [ms] 10 20 30 30 60

OL OL OL MAQT OL

Max delay [s] 2721 309 169 7036 59

Median delay [s] 740 117 47 38 7

Cache utility 0.87 0.65 0.44 0.48 0.08
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Table 3. Fixed input frequency statistics for MPEG-7 dataset

Input frequency [ms] 10 20 30 30 60

OL OL OL MAQT OL

Max delay [s] 6409 4031 2988 6557 1565

Median delay [s] 2599 1525 894 1050 234

Cache utility 0.92 0.78 0.59 0.64 0.30
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Fig. 7. Delay cumulative function; MPEG-7 dataset; 30 ms input frequency; OL app-
roach; 4 h run time

5.5 Cache Size Experiments

The cache utility is likely to increase with an increasing amount of the cached
data, since a query can reuse data of multiple previous queries. This expectation
is validated by the following experiments. A set of 50,000 queries was processed
using a fixed-sized buffer containing 20,000 query objects. The graphs in Fig. 8
depict the results. The cache utility increases with growing cache size; the pro-
cessing time decreases as the cache size gets larger. We can observe that caching
very large amount of data does not bring much improvement in the cache util-
ity and the processing time so for the other experiments, we selected 40,000
and 90,000 objects for the Caffe and the MPEG-7 datasets, respectively, as an
appropriate trade-off between the processing time and the storage space.

5.6 Query Graph Construction Experiments

In this section, we compare three approaches to the query graph construction
(described in Sect. 4.4). The first one is the pivot based technique we use in the
other experiments; that is, the edge values (maximum query times) of the query
graph are estimated according to common pivot permutation prefix lengths of
query objects. Another approach we consider is the one when the metric distances
to all the query objects of the query graph are explicitly computed and the edge
values correspond to the distances. The last one uses the knowledge of data
partitions needed during evaluation of individual queries and the edge values
are determined according to the number of common partitions.

In the experiments, we used the MPEG-7 dataset and a finite stream of
10,000 query objects ((q1, 1), . . . , (q10000, 1)); that is, all the query objects were
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Fig. 8. Cache size experiments; fixed-sized buffer of 20,000 query objects; 50,000 pro-
cessed queries

available at once. For each approach, a path in the query graph was found going
through all the 10,000 query objects. The query objects were processed in that
order and the overall cache utility was acquired.

We considered two cache policies for each approach. In one case, the cache
was used to keep only the data partitions that were needed to evaluate one
previous query (OPP policy). This is the strategy that is used to set the upper
bound of the query time in Sect. 4.3. The other policy is the one that is used for
the other experiments; that is, the cache size is limited by 90,000 objects and
the least recently used replacement strategy is applied (LRU policy).

For the explicit distance computations technique, the query graph was con-
structed so that the edge values were set to the metric distances between the
query objects. Subsequently a path in the query graph was found using the 2-
approximate minimum spanning tree heuristics designed for the traveling sales-
man problem [13]. Note that the definition of the query graph requires query
times to be assigned to the edges. However, for the purposes of the experiments,
we worked directly with the metric distances assigned to the edges.

The sum of the edges of the constructed minimum spanning tree was 12,816,
which sets the minimal bound on the shortest path. The actual length of the
path obtained from the minimum spanning tree was 15,583. We also took the
path generated using the pivot based technique and computed its length in terms
of the metric distances between query objects, which resulted in the length of
18,059. However, the achieved cache utility for the OPP policy using the pivot
based technique was 9% compared to only 3% using the minimum spanning tree
path. For the LRU policy, the cache utility using the pivot based technique was
32% compared to only 10% using the minimum spanning tree path. It means the
metric distance is not strictly correlated with the cache utility (and the query
time). The choice of the query graph construction approach should consider
the properties of the used metric index so that the query times are estimated
correctly and the query ordering is effective.
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For the next approach, the data partitions needed for the evaluation of indi-
vidual queries were obtained beforehand. The value of the query graph edge qiqj
was assigned according to the difference of the data partitions needed for pro-
cessing qi and qj ; specifically we took max{|I(qi) − I(qj)|, |I(qj) − I(qi)|} where
I(q) is the set of the data partitions needed for processing q. The path was found
using the minimum spanning tree heuristics, which resulted in the cache utility
of 15% for the OPP policy and 29% for LRU. As for OPP, this approach achieves
better cache utility than the pivot based approach. If LRU is used, the achieved
results are similar to those obtained for the pivot based technique. However,
the precise set of needed data partitions is not generally known prior to actual
evaluation of the query so this approach is not usable in practice.

A summary of the results is captured by Table 4. We can conclude that from
the practical point of view, the pivot based strategy is the most suitable.

Table 4. Query graph construction experiments

Constr. strat. Cache policy Cache util.

Pivot based OPP 0.09

Pivot based LRU 0.32

Metric dist. OPP 0.03

Metric dist. LRU 0.10

Data parts. OPP 0.15

Data parts. LRU 0.29

6 Delay Improvement

The proposed approaches so far were focused on the throughput maximization
of the query processing and the delays of individual query objects were not
targeted for optimization. To recall, the delay is the time since a query object
was added into the stream until it was processed. In this section, we show how
the throughput can be traded off for improving the delays.

In Fig. 7, which shows the delay cumulative function for the experiment with
the MPEG-7 dataset and a fixed input frequency of 30 ms, we can observe that
just 5% of the queries were processed with maximally 1 min delay. In this section,
we explore the scenario when we want to process more queries until a given delay
limit while maintaining sufficient throughput.

Formally, the problem is defined as follows. Given the time limit T , the task is
to find a path ((qi1 , ti1), . . . , (qik , tik)) in the query graph GT so that startk < T
where startj is the time when the query object qij starts to be evaluated (for
more details see Sect. 4.3). Given the delay limit DL, the optimal path maximizes
the expression

w · |beforeLimit | + |afterLimit |
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where beforeLimit is the set of processed query objects with the delay of maxi-
mally DL; afterLimit is the set of the other processed query objects; w ≥ 1 is a
parameter determining the weight of the query objects processed until the given
delay limit.

Such a criterion can also be imagined as weighted throughput. A certain
number of points is received for each processed query object. If a query object
is processed before the given delay limit, more points are obtained. The goal is
to maximize the number of received points in a given time interval.

Let us define beforeLimit and afterLimit sets formally. We start with the
definition of the delay as the time since a query object was added into the
stream until it was processed:

delay((qij , tij )) = startj + qt ij − tij for j ≥ 1

where qt ij is the time to process qij .

beforeLimit = {(qij , tij ) — delay((qij , tij )) ≤ DL}
afterLimit = {(qij , tij ) — delay((qij , tij )) > DL}

To address the specified criterion, we modify the strategy for ordering the
children subtrees in the depth-first traversal of the tree of clusters (presented in
Sect. 4.6). Instead of choosing the subtree containing the oldest query object, a
score for each subtree candidate is computed:

a · oldestItemDelay + b · beforeLimitCount

where oldestItemDelay is the time since the oldest unprocessed query object of
the subtree entered the stream; beforeLimitCount is the number of unprocessed
query objects of the subtree that have been in the stream for at most DL time; a
and b are the weights influencing the trade-off of the delays and the throughput.
When b = 0, we get the original oldest leaf approach. As b grows, the subtrees
possessing newest query objects are more and more prioritized over the ones
containing the oldest leaves. The optimal value of b correlates with the value of
the weight w. The influence of the parameters is studied experimentally.

6.1 Delay Improvement Experiments

The following experiments were conducted for different values of b to see how
the throughput and the number of queries processed before the given delay limit
change. The value of a was fixed to 1. The 10 mil. MPEG-7 dataset was used;
the delay limit DL was set to 1 min; a new query object entered the buffer every
30 ms. Every experiment was run for 4 h.

The results are depicted in Fig. 9. By increasing the weight of the newest
query objects, it is possible to increase the number of query objects with the
delay below 1 min. On the other hand, the overall throughput decreases, since
subtrees with lower densities are prioritized (see Fig. 9a). The graph in Fig. 9b
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Fig. 9. Throughput delay trade-off for various b values; DL = 1 min; MPEG-7 dataset;
30 ms input frequency

depicts the percentage of queries processed until a corresponding delay. The
percentage of low delayed queries gets higher with the growing weight b; on the
other hand, the percentage of high delayed queries also increases because of the
lower throughput. Figure 9c shows the evolution of the buffer size for individual
weights. The larger the weight is, the larger the buffer size has to be in order
to keep up with the rate of the incoming query objects. When the weight is too
high, the buffer grows to very large sizes, since the average query time is very
high.

Figure 9d captures the numbers of query objects processed within the delay
limit throughout the time. The runs with nonzero b reach approximately the
same value after the first 20 min. After that, we can observe the influence of b,
since some of the oldest query objects become prioritized.

As can be seen from the experiments, choosing inappropriate values of the
parameters a and b can lead to unwanted results as the throughput drops to
very low values. In the following, we present a modification of the approach for
dynamical setting of the parameters according to the size of the buffer.
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The application can be in one of two states. When the first state is active,
the throughput maximization is aimed for (THRMAX state). When the other
state is active, the number of query objects processed until the given delay limit
is maximized (DELLIM state).

The behavior of the application in individual states differs in the setting of
the weighting parameters. In the THRMAX state, the oldest leaf approach is
applied, that is, a = 1, b = 0. For the DELLIM state, the subtree containing the
largest number of unprocessed query objects that have spent at most DL (the
delay limit) in the buffer is selected, that is, a = 0, b = 1.

The application switches from one state to the other according to the buffer
size. In particular, there is a lower and an upper buffer size limit. When the
upper limit is exceeded, the system goes to the THRMAX state to maximize the
throughput so that the buffer size can be lowered down. When the size of the
buffer drops below the lower limit, the DELLIM state is entered to maximize
the number of query objects processed before the given delay limit.

Experiments addressing the state switch approach were run with the same
settings as the first approach: that is, the MPEG-7 dataset, 1 min delay limit,
30 ms input frequency and four hour run time. Each experiment was run with dif-
ferent limits of the buffer size; the initial state was the DELLIM state. Figure 10
shows how the buffer size evolves in time. We can see that it oscillates between
the upper and the lower limit. When the upper limit is hit, the throughput is
enhanced by switching to the THRMAX state and the buffer size decreases.
When the lower limit is reached, the DELLIM state is entered to increase the
number of query objects processed until the given delay limit. However, the
throughput is decreased and the buffer enlarges.

Table 5 provides an insight into the approach. Each row corresponds to one
experiment with the given lower and upper switch limits of the buffer size. Indi-
vidual statistics are computed from the second switch when the behavior of the
buffer size evolution stabilizes (see Fig. 10) and relevant results can be obtained.
In particular, the statistics are computed between the second time the applica-
tion enters the DELLIM state and the last time the THRMAX state is exited.
This ensures that the application was in each state the same number of times.
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Fig. 10. Buffer size evolution in time for the state switch approach with various switch
limits; DL = 1 min; 10 mil. MPEG-7 dataset; 30 ms input frequency; the legend is in
the format “lower limit; upper limit” in thousands
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Table 5. State switch approach statistics

Lower limit Upper limit Time in DS [%] q in DS [%] q < DL [%] q < DL in DS [%]

30,000 40,000 26.4 10.6 13.4 78.4

70,000 80,000 43.9 17.2 18.4 92.1

100,000 110,000 47.5 18.0 18.8 94.3

65,000 85,000 43.6 17.3 18.6 91.5

75,000 80,000 42.6 16.7 17.9 91.8

79,000 80,000 39.8 16.5 17.9 91.0

The column time in DS contains the percentage of the time the application
spent in the DELLIM state. When a larger buffer size is used, the percentage
increases. This is because the average query time is low for large buffer sizes
and so the buffer size grows slowly in the DELLIM state and falls fast in the
THRMAX state.

The column q in DS contains the percentage of queries processed when the
application was in the DELLIM state. It correlates with the time spent in the
DELLIM state, but it is lower than the percentage of the time spent in the
DELLIM state, since the average query time is higher in the DELLIM state
than in the THRMAX state.

The column q < DL shows the percentage of queries that were processed until
the given delay limit (1 min). Again, this correlates with the time spent in the
DELLIM state. To compare the numbers with the oldest leaf approach, which is
used for the throughput maximization, only 5% of queries were processed with
the delay at most 1 min.

The last column q < DL in DS contains the percentage of the “before-limit”
queries that were processed while the DELLIM state was active. In other words,
all the queries that were processed within the delay limit form the whole (100%);
the displayed value in the column is the percentage of those that were processed
in the DELLIM state. It can be observed that most of the queries that were
processed until the delay limit were in fact processed while the DELLIM state
was active.

As it can be seen from the experiments, the presented approach can be suc-
cessfully used for the throughput delay trade-off.

7 Conclusion

We have presented a novel approach to enhance the throughput of similarity
search query processing. The technique is based on dynamic reordering of the
incoming query objects combined with in-memory caching of the data partitions
used to evaluate previous queries. The representation of the query reordering
problem is simplified using a query graph thus allowing a theoretical analysis of
the proposed techniques. An appropriate ordering of the queries is continuously
created by generating a path in the query graph. The introduced methods are
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verified experimentally with positive results. The presented approach allows to
achieve significantly better throughput than the baseline approach when the
query objects are evaluated in their original order.

In addition to the throughput maximization, we also targeted optimization
criterion trading off the throughput for low delays. The presented technique is
based on modification of the query ordering strategy proposed for the throughput
maximization. It is parameterized according to the amount of the throughput
that can be sacrificed.

Acknowledgement. This work was supported by the Czech national research project
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Abstract. A critical task in data cleaning and integration is the identifi-
cation of duplicate records representing the same real-world entity. Simi-
larity join is largely used in order to detect pairs of similar records in com-
bination with a subsequent clustering algorithm for grouping together
records referring to the same entity. Unfortunately, the clustering algo-
rithm is strictly used as a post-processing step, which slows down the
overall performance, and final results are produced at the end of the
whole process only. Inspired by this critical evidence, in this article we
propose and experimentally evaluate SjClust, a framework to integrate
similarity join and clustering into a single operation. The basic idea of
our proposal consists in introducing a variety of cluster representations
that are smoothly merged during the set similarity task carried out by
the join algorithm. An optimization task is further applied on top of such
framework. Experimental results derived from an extensive experimental
campaign show that we outperform previous approaches by an order of
magnitude in most settings.

1 Introduction

A critical task in data cleaning and integration is the identification of duplicate
records representing the same real-world entity [14]. This topic is becoming more
and more relevant in emerging big data research (e.g., [23,34,37]), as a plethora
of real-life applications are characterized by the presence of multiple records rep-
resenting the same real-world entity, which practically plagues every database in
this context. Such records are often referred to as fuzzy duplicates [9] (duplicates,
for short), because they might not be exact copies of one another. Duplicates
arise due to a variety of reasons, such as typographical errors and misspellings,
different naming conventions, and as a result of the integration of data sources
storing overlapping information.
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Duplicates degrade the quality of the data delivered to application programs,
thereby leading to a myriad of problems. Some examples are misleading data
mining models owing to erroneously inflated statistics, inability of correlating
information related to a same entity, and unnecessarily repeated operations,
e.g., mailing, billing, and leasing of equipment. Duplicate identification is thus
of crucial importance in data cleaning and integration.

Duplicate identification is computationally very expensive and, therefore,
typically done offline. However, there exist important application scenarios that
demand (near) real-time identification of duplicates. Prominent examples are
data exploration [18] and data integration [13]. In data exploration, new knowl-
edge has to be efficiently extracted from databases without a clear definition
of the information need; users need to get a quick sense about the results of
each query and, thus, fast response time is essential. In virtual data integration,
integrated data is not materialized and duplicates in the query result assembled
from multiple data sources have to be identified—and eliminated—on-the-fly.
Such scenarios have fueled the desire to integrate duplicate identification with
processing of complex queries [2] or even as a general-purpose physical operator
within a DBMS [10].

An approach to speed up duplicate identification is to employ similarity join
in concert with a clustering algorithm [15]. Specifically, similarity join is used to
find all pairs of records whose similarity is not less than a specified threshold;
the similarity between two records is determined by a similarity function. In a
post-processing step, the clustering algorithm groups together records using the
similarity join results as input.

For data of string type, set similarity join is an appealing choice for compos-
ing a duplicate identification operator [10]. Set similarity join views its operands
as sets—strings can be easily mapped to sets. The corresponding similarity func-
tion assesses the similarity between two sets in terms of their overlap and a
rich variety of similarity notions can be expressed in this way [31]. Further-
more, a number of optimization techniques have been proposed over the years
[5,10,30,31,36] yielding highly efficient and scalable similarity join algorithms.

However, the strategy of using a clustering algorithm strictly for post-
processing the results of set similarity join has two serious drawbacks. First,
given a group of n, sufficiently similar, duplicates, the set similarity join performs(
n
2

)
similarity calculations to return the same number of set pairs. While this is

the expected behavior considering similarity join in isolation, it also means that
repeated computations are being performed over identical subsets. Even worse,
we may have to perform much more additional similarity calculations between
non-duplicates because low threshold values are typically required for clustering
algorithms to produce accurate results [15]. Existing filtering techniques are not
effective at low threshold values and, thus, there is an explosion of the number
of the comparisons at such values. Second, the clustering is a blocking opera-
tor in our context, i.e., it has to consume all the similarity join output before
producing any cluster of duplicates as result element. This fact is particularly
undesirable when duplicate identification is part of more complex data process-
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ing logic, possibly even with human interaction, because it prevents pipelined
execution.

In this article, we propose and experimentally assess SjClust, a framework
to integrate set similarity join and clustering into a single operation, which
addresses the above issues. The main idea behind our framework is to represent
groups of similar sets by a cluster representative, which is incrementally updated
during the set similarity join processing. Besides effectively reducing the num-
ber similarity calculations needed to produce a cluster of n sets to O (n), we are
able to fully leverage state-of-the-art optimization techniques at high thresh-
old values, while still performing well at low threshold values where such tech-
niques are much less effective. Indeed, the resulting composed algorithm is even
up to an order of magnitude faster than the original set similarity join algorithm
for low threshold values. Moreover, we exploit set size information to identify
when no new set can be added to a cluster; therefore, we can then immediately
output this cluster and, thus, avoid the blocking behavior. Furthermore, there
exists a plethora of clustering algorithms suitable for duplicate identification and
no single algorithm is overall the best across all scenarios [15]. Thus, versatil-
ity in supporting a variety of clustering methods is essential. Our framework
smoothly accommodates various cluster representation and merging strategies,
thereby yielding different clustering methods for each combination thereof. We
report extensive experiments on various datasets with different characteristics
that confirm the accuracy and efficiency of our approach.

This article is a significantly and revised version of a previous conference
paper [29]. As part of the new material, we discuss the state of the art in more
depth and provide several application scenarios for our proposal. Furthermore,
we include a comprehensive set of new experiments covering several aspects not
discussed in [29]. In particular, we have evaluated our algorithms on unweighted
sets. Note that an overview of SjClust appeared earlier in [28].

The remainder of this article is organized as follows. We discuss relevant
related work in Sect. 2 and provide necessary background material in Sect. 3. The
SjClust framework is presented in Sect. 4 and details of its main components are
described in Sect. 5. Experimental results are reported and analyzed in Sect. 6.
Finally, we wrap up with the conclusions and future work proposals in Sect. 7.

2 Related Work

The duplicate identification problem has a long history of investigation con-
ducted by various research communities spanning databases, machine learning,
and statistics, frequently under different names, including record linkage, de-
duplication, and near-duplicate identification. As a result, there is a plethora of
proposals addressing many aspects of this problem from different perspectives,
which has been covered in surveys, tutorials, and books [11,14,21]; an experi-
mental evaluation of several techniques can be found in [20].

A simple and efficient approach to duplicate identification employs similarity
join followed by clustering. SjClust encompasses both operations and, thus, can
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be straightforwardly used in this setting. On the other hand, obtaining high
accuracy may require a quite complicated process, typically involving multiple
steps. Our framework is related and can be integrated into a variety of duplicate
identification approaches in different ways. We discuss some examples below.

– Blocking: A naive approach compares every pair of records, i.e., it requires a
quadratic number of comparisons. Obviously, such approach is prohibitively
expensive for large databases. Blocking methods aim at reducing the com-
parison space by dividing the input data into (possibly overlapping) blocks
and comparing only records within the same block. Popular blocking methods
are sorted neighborhood [17] and canopies [26]. SjClust can be employed to
efficiently produce an initial set of non-overlapping blocks; afterwards, more
accurate (and expensive) operations can be performed within each block to
identify duplicates.

– Crowdsourcing: Human-based approaches employ crowdsourcing platforms
(e.g., Amazon’s Mechanical Turk) to improve accuracy [35]. In such plat-
forms, people with little or no domain expertise get paid to execute a set of
“microtasks” called Human Intelligence Tasks (HITs). For duplicate identifi-
cation, the task is to classify records as duplicates or non-duplicates. In the
variant known as cluster-based HIT, workers find duplicates among groups
of records rather than pairs. SjClust can be used in this context to generate
variable-sized, cluster-based HITs.

– Probabilistic databases: After having identified all duplicates, a typical next
step is to produce a clean database by merging each set of duplicates into a
single representation. This strategy may result in loss of information, espe-
cially if some records are erroneously classified as duplicates. An alternative
is to keep all duplicates and interpret them as alternative representations of
a real-world entity. A probabilistic database is then constructed with proba-
bilities associated to each record. Andritsos et al. [3] modeled dirty databases
as disjoint clusters of duplicates. For each cluster, record probabilities are
calculated by first building a cluster representative and then measuring the
similarity between each record and the cluster representative. This work was
later extended by modeling the results obtained by different parametrization
of the clustering algorithm [7]. SjClust is well-suited for these techniques:
besides supporting multiple clustering methods, SjClust also maintains a rep-
resentative for each cluster.

Furthermore, over the last years, there is growing interest in realizing dupli-
cate identification on-the-fly. A query-driven approach is proposed in [1] to
reduce the number of cleaning steps in simple selections queries over dirty data.
The same authors presented a framework to answer complex Select-Project-Join
queries [2]. Our work is complementary to these proposals as our algorithms can
be encapsulated into physical operators to compose query evaluation plans.

There is long line of research on (exact) set similarity joins [5,10,24,30,31,36].
Aspects most relevant to our work are discussed at length in Sect. 3. To the best
of our knowledge, integration of clustering into set similarity joins has not been
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previously investigated in the literature. In [25], the authors employ the concept
of proximity graph to cluster strings without requiring a predefined threshold
value. The algorithm to automatically detected cluster borders was improved
later in [19]. However, it is not clear how to leverage state-of-the-art set similarity
joins in these approaches to improve efficiency and deal with large datasets. In
[15], a large number of clustering algorithms are evaluated in the context of
duplicate identification. These algorithms use similarity join to produce their
input, but can start only after the complete similarity join execution.

By looking at the innovative context of duplicate detection over big data
repositories, which is really emerging at now, some relevant state-of-the-art pro-
posals are the following ones. The work in [37] proposes a data cleaning algorithm
based on MapReduce that extracts relations from nodes in the target Cloud envi-
ronment and, then, cleans data based on an innovative weighted-based knowledge
model. The work in [23] evidences the relevance of data cleaning methodologies
in big data scenarios, and harnesses both context and usage patterns of data
entities to determine relationships among objects that are recognized as similar.
Finally, reference [34] focuses the attention on the specific case of big RDF data
cleaning, by also considering semi-automatic methods.

3 Fundamental Concepts and Background Knowledge

In this section, we first present important concepts and definitions related to
set similarity joins before discuss important optimization techniques. Then, we
describe a general set similarity join algorithm, which provides the basis for our
framework.

3.1 Basic Concepts and Definitions

We determine the similarity between two strings by measuring the overlap of
their set representations. Strings are first mapped to sets of elements referred
to as tokens. We can optionally use a weighting scheme to quantify the rela-
tive importance of tokens for similarity assessment. Finally, set overlap can be
measured in various ways to obtain different notions of similarity.

There are several methods of mapping strings to sets of tokens. A string can
be split into a set of word tokens using delimiters such as white space charac-
ters. For example, the set of work tokens of the string “set similarity” is {‘set’,
‘similarity’}. Another well-known method is based on the concept of q-grams,
i.e., sub-strings of length q obtained by “sliding” a window over the characters
of a given string. To this end, the string is (conceptually) extended by prefixing
and suffixing it with q − 1 occurrences of a special character “$”, so all its char-
acters participate in exact q q-grams. For example, the string “token” can be
mapped to the set of 2 -gram tokens {‘$t’, ‘to’, ‘ok’, ‘ke’, ‘en’, ‘n$’}. Note that
the result of both mapping methods can be a multi-set. Thus, we append the
symbol of a sequential ordinal number to each occurrence of a token to convert
multi-sets into sets, e.g, the multi-set {a, b, b} is converted to {a◦1, b◦1, b◦2}.
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In the following, we assume that all strings in the database have already been
mapped to sets.

A widely adopted weighting scheme is the Inverse Document Frequency
(IDF ) [4], which associates a weight idf (t) to a token t as follows:
idf (t) = ln (1 + N/df (t)), where df (t) is the document frequency, i.e., the num-
ber of strings a token t appears in a database of N strings. The intuition behind
using IDF is that rare tokens are more discriminative and, therefore, matches on
such tokens would have greater contribution to similarity. We refer to the sets
obtained after applying a weighting scheme such as IDF as weighted sets. We
can also reduce to the unweighted case by trivially associating the value of 1 to
each token; we refer to sets weighted in this way as unweighted sets. The weight
of a token t is denoted by w (t). The size of a set r, denoted by |r|, is given by
the number of tokens in r, whereas the weight of r, denoted by w (r), is given by
the summation of the weights of its tokens, i.e., w (r) =

∑
t∈r w (t); note that

we have |r| = w (r) for unweighted sets.
We consider a general class of set similarity functions. Given two sets r and

s, a set similarity function sim (r, s) returns a value in [0, 1] to represent their
similarity; larger value indicates that r and s have higher similarity. We assume
that sim (r, s) is commutative, i.e., sim (r, s) = sim (s, r). Popular set similarity
functions are defined as follows [10,30,36].

Definition 1 (Set Similarity Functions). Let r and s be two sets. We have:

– Jaccard similarity: J (r, s) = w(r∩s)
w(r∪s) .

– Dice similarity: D (r, s) = 2·w(r∩s)
w(r)+w(s) .

– Cosine similarity: C (r, s) = w(r∩s)√
w(r)·w(s)

.

Example 1. Consider the sets r and s below

r = {A,B, C,D,E}
s = {A,B,D,E, F}

and the following token-IDF association table:
Considering r and s as unweighted sets, we havew (r) = w (s) = 5 and

w (r ∩ s) = 4; thus sim (r, s) = 4
5+5−4 ≈ 0.66. Considering the IDF weights and,

therefore, r and s as weighted sets, we have w (r) = w (s) = 10 and w (r ∩ s) = 8;
thus sim (r, s) = 8

10+10−8 ≈ 0.66.

We now formally define the set similarity join operation.

tk A B C D E F

idf (tk) 1.5 2.5 2 3.5 0.5 2
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Definition 2 (Set Similarity Join). Given two set collections R and S, a set
similarity function sim, and a threshold τ , the set similarity join between R and
S returns all scored set pairs 〈(r, s), τ ′〉 s.t. (r, s) ∈ R×S and sim (r, s) = τ ′ ≥ τ .

In this article, we focus on self-join, i.e., R = S; we discuss the extension for
binary inputs in Sect. 3.3. We also focus on the Jaccard similarity, i.e., unless
stated otherwise, sim (r, s) denotes J (r, s). For brevity, we use henceforth the
term similarity function (join) to mean set similarity function (join).

3.2 Optimization Techniques

Similarity functions can be equivalently represented in terms of an overlap bound
[10]. Formally, the overlap bound between two sets r and s, denoted by O (r, s),
is a function that maps a threshold τ and the set weights to a real value, s.t.
sim (r, s) ≥ τ iff w (r ∩ s) ≥ O (r, s)1. The similarity join can then be reduced
to the problem of identifying all pairs r and s whose overlap is not less than
O (r, s). For the Jaccard similarity, we have O (r, s) = τ

1+τ × (w (r) + w (s)).
Further, similar sets have, in general, roughly similar weights. We can derive

bounds for immediate pruning of candidate pairs whose weights differ enough.
Formally, the weight bounds of r, denoted by min (r) and max (r), are functions
that map τ and w (r) to a real value s.t. ∀s, if sim (r, s) ≥ τ , then min (r) ≤
w (s) ≤ max (r) [31]. Thus, given a set r, we can safely ignore all other sets
whose weights do not fall within the interval [min (r) ,max (r)]. For the Jaccard
similarity, we have [min (r) ,max (r)] =

[
τ × w (r) , w(r)

τ

]
. We refer the reader

to [32] for definitions of overlap and weight bounds of several other similarity
functions, including Dice and Cosine.

We can prune a large share of the comparison space by exploiting the prefix
filtering principle [10,31], which allows discarding candidate pairs by examining
only a fraction of the input sets. We first fix a global order O on the universe U
from which all tokens are drawn. A set r′ ⊆ r is a prefix of r if r′ contains the
first |r′| tokens of r. Further, prefβ (r) is the shortest prefix of r, the weights of
whose tokens add up to more than β. The prefix filtering principle is defined as
follows. It can be shown that if w (r ∩ s) ≥ α, then prefβr

(r) ∩ prefβs
(r) = ∅,

where βr = w (r) − α and βs = w (s) − α, respectively.
We can identify all candidate matches of a given set r using the prefix

prefβ (r), where β = w (r) − min (r). We denote this prefix simply by pref (r).
It is possible to derive smaller prefixes for r, and thus obtain more pruning
power, when we have information about the set weight of the candidate sets,
i.e., if w (s) ≥ w (r) [5] or w (s) > w (r) [30]. Note that prefix overlap is a con-
dition necessary, but not sufficient to satisfy the original overlap constraint: an
additional verification must be performed on the candidate pairs. Finally, the
number of candidates can be significantly reduced by using the inverse docu-
ment frequency ordering, Oidf , as global token order to obtain sets ordered by

1 For ease of notation, the parameter τ is omitted.
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Algorithm 1. Similarity join algorithm
Input: A set collection R sorted in increasing order of the set weight; each set

is sorted according to Oidf ; a threshold τ
Output: A set S containing all pairs (r, s) s.t. Sim (r, s) ≥ τ

1 I1, I2, . . . I|U| ← ∅, S ← ∅

2 foreach r ∈ R do
3 M ← empty map from set id to overlap score (os)
4 foreach t ∈ pref (r) do // can. gen. phase

5 foreach s ∈ It do
6 if w (s) < min (r)
7 Remove s from It
8 if filter (r, s,M (s))
9 M (s) .os ← −∞ // invalidate s

10 else M (s) .os = M (s) .os + w (t)

11 S ← S ∪ Verify (r, M, τ) // verif. phase

12 foreach t ∈ pref (r) do // index. phase

13 It ← It ∪ {r}
14 return S

decreasing IDF weight2. The idea is to minimize the number of sets agreeing on
prefix elements and, in turn, candidate pairs by shifting lower frequency tokens
to the prefix positions. Note that an equivalent ordering is the document fre-
quency ordering, which can be used to obtain sets ordered by increasing token
frequency in the collection—recall that IDF weights and document frequency
are inversely proportional.

Example 2. Consider the sets r and s in Example 1 and τ = 0.6. For
the unweighted case, we have O (r, s) = 3.75; [min (r) ,max (r)] and
[min (s) ,max (s)] are both [3, 8.3].For the weighted case, we have O (r, s) = 7.5;
[min (r) ,max (r)] and [min (s) ,max (s)] are both [6, 16.7]. By ordering r and s
according to Oidf based on the IDF weights in Example 1, we obtain:

r = {D,B,C,A,E}
s = {D,B,F,A,E}.

For unweighted sets, we have pref (r) = pref (s) = {D,B}; for weighted sets,
we have pref (r) = pref (s) = {D}.

3.3 Similarity Join Algorithm

Algorithm 1 formalizes the general steps of a similarity join algorithm based
on inverted lists, which exploits all the previous optimizations [5,24,30,31,36].
2 A secondary ordering is used to break ties consistently (e.g., the lexicographic order-

ing).
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It has a typical high-level structure following a filter-and-refine approach. The
algorithm receives as input a set collection sorted in increasing order of set
weights, where each set is sorted according to Oidf . An inverted list It stores all
sets containing a token t in their prefix; inverted lists together with the output
set are constructed at beginning of the algorithm (line 1). The input collection
R is scanned and, for each probe set r ∈ R, its prefix tokens are used to find
candidate sets, denoted in the algorithm by s, in the corresponding inverted lists
(lines 4–10); this is the candidate generation phase, where the map M is used to
associate candidates to its accumulated overlap score os (line 3). Each candidate
s is dynamically removed from the inverted list if its weight is less than min (r)
(lines 6–7). Further filters, e.g., filter based on an overlap bound, are used to
check whether s can be a true match for r (i.e., whether r and S can satisfy
the overlap constraint), and then the overlap score is accumulated, or not, and s
can be safely ignored in the following processing (lines 8–10). In the verification
phase, r and its matching candidates, which are stored in M, are checked against
the similarity predicate and those pairs satisfying the predicate are added to the
result set. To this end, the Verify procedure (not shown) employs a merge-join-
based algorithm exploiting the token order and the overlap bound to define
break conditions (line 11) [30]. Finally, in the indexing phase, a pointer to set
r is appended to each inverted list It associated with its prefix tokens (lines 12
and 13).

Algorithm 1 is actually a self-join on a single set collection. Its extension to
binary joins is trivial: we first index the smaller collection and then go through
the larger collection to identify matching pairs. For simplicity, several filtering
strategies such positional filtering [36] and min-prefixes [30], as well as inverted
list reduction techniques [5,30] were omitted in the remainder of this article. Nev-
ertheless, these optimizations are based on tighter bounds and shorter prefixes.
While they allow discarding candidate pairs that cannot be similar earlier, there
are no false negatives, i.e., no pair satisfying the overlap constraint is missed in
the result. Therefore, our discussion in the following remains valid.

4 Our Proposal: The Innovative SjClust Framework

We now present an overview of SjClust, a general framework to integrate clus-
tering methods into similarity joins algorithms; we delve into details of its main
components in Sect. 5. The goals of our framework are threefold: (1) flexibility
and extensibility by accommodating different clustering methods; (2) efficiency
by fully leveraging existing optimization techniques and by reducing the num-
ber of similarity computations to form clusters; (3) non-blocking behavior by
producing results before having consumed all the input, preferably much earlier.

The backbone of SjClust is the similarity join algorithm presented in Sect. 3.
In particular, SjClust operates over the same input of sorted sets, without
requiring any pre-processing, and has the three execution phases present in
Algorithm 1, namely, candidate generation, verification, and indexing phases.
Nevertheless, there are, of course, major differences between SjClust and
Algorithm 1 as we discuss in the following.
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Fig. 1. Cluster representation.

The main objects are now cluster of sets, or simply clusters. Figure 1 illus-
trates the strategy adopted for cluster representation. The internal representa-
tion contains a list of its set element’s ids, an (optional) auxiliary structure,
and the cluster’s complete representation, a set containing all tokens from all set
elements. A cluster exports its external representation as the so-called cluster
representative (or simply representative) (Fig. 1(a)). Representatives are com-
parable to input sets and similarity evaluations are always performed on the
representatives, either between a probe set and a cluster or between two clus-
ters (Fig. 1(b)). In the following, we use the terms cluster and representative
interchangeably whenever the distinction is unimportant for the discussion.

Figure 2 depicts more details on the SjClust framework. In the candidate
generation phase, prefix tokens of the current probe set are used to find cluster
candidates in the inverted lists (Fig. 2(a)). Also, there is a merging phase between
verification and indexing phases (Fig. 2(b)). The verification phase reduces the
number of candidates by removing false positives, i.e., clusters whose similarity
to the probe set is less than the specified threshold. In the merging phase, a new
cluster is generated from the probing set and the clusters that passed through the
verification are considered for merging with it according to a merging strategy.
In the indexing phase, references to the newly generated cluster are stored in
the inverted lists associated with its prefix tokens. Finally, there is the so-called
Output Manager, which is responsible for maintaining references to all clusters—
a reference to a cluster is added to the Output Manager right after its generation
in the merging phase (Fig. 2(b)). Further, the Output Manager sends a cluster
to the output as soon as it is identified that no new probing set can be similar to
this cluster. Clusters in such situation can be found in the inverted lists during
the candidate generation (Fig. 2(a)) as well as identified using the weight of the
probe set (not shown in Fig. 2).

Note that SjClust can be smoothly integrated into similarity join algorithms
following the high-level structure of Algorithm1. Basically, one just needs to
plug the merging component and the Output Manager into an existing algo-
rithm. Because, clusters are represented as ordinary sets, any technique can be
transparently applied during candidate generation, verification, and indexing
phases.
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Fig. 2. SjClust framework components.

The aforementioned goals of SjClust are met as follows: flexibility and exten-
sibility are provided by different combinations of cluster representation and
merging strategies, which can be independently and transparently plugged into
the main algorithm; efficiency is obtained by the general strategy to cluster rep-
resentation and indexing; and non-blocking behavior is ensured by the Output
Manager. Next, we provide details of each SjClust component.

5 SjClust Main Components

In this section, we present details of the main conceptual SjClust components,
namely cluster representation, merging strategies, and the Output Manager.

5.1 Cluster Representation

Cluster representatives are used to compactly represent a cluster, while capturing
the most significant features of its elements. In our context, there is the additional
requirement that cluster representatives must be comparable with the original
sets. Also, we want flexibility in obtaining different representation strategies.

We start by defining the complete representation of a cluster of sets, from
which we extract the corresponding representative. Intuitively, the complete rep-
resentation of a cluster is given by the union of its sets. We then order all tokens
according to a cluster ordering, denoted by Ocl. While Oidf is used to increase
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prefix filtering effectiveness (recall Sect. 3), Ocl is used to improve quality by
sorting the tokens in the complete representation in decreasing order of impor-
tance. We formally define the concept of the complete representation of a cluster
in the following.

Definition 3 (Complete Representation). Let C = {r1, r2, . . . , rn} be a
cluster of sets. The complete representation of C, denoted by CompRC, is the
union of its elements, i.e., CompRC = r1 ∪ r2 ∪ . . . ∪ rn, sorted in decreasing
order according to Ocl.

Given that the tokens in CompRC are sorted according to some notion of
importance, we can use the prefix concept to derive the representative containing
the most important tokens in C. To this end, we need to first define the weight
of the prefix. A natural choice is to use average weight of sets in C. Then, we
define a slight variation of the prefix concept: given a sorted set r, pref ′

α (r) is
the shortest prefix of r, the weights of whose tokens add up to not less than α.
Finally, to be comparable with probe sets, we need to further sort the tokens in
the representative according to Oidf . We are now ready to formally define the
concept of cluster representative in our context.

Definition 4 (Cluster Representative). Let C = {r1, r2, . . . , rn} be a cluster
of sets and CompRC its complete representation according to Definition 3. The
cluster representative of C, denoted by CRC, is the following prefix of CompRC:

CRC = pref ′
α (CompRC) , where α =

n∑

i=1

w (ri)
n

,

ordered according to Oidf .

Given a cluster C, the (conceptual) steps for the construction of its rep-
resentative is summarized as follows: the complete representation CompRC is
obtained by (1) unioning all sets in C and (2) sorting the tokens in the result
in decreasing order according to Ocl; the cluster representative CompRC is then
obtained by (3) extracting a prefix from CompRC whose weight is not less than
the average weight of the original sets and (4) sorting its tokens in decreasing
order according to Oidf .

We can now derive cluster different representation strategies by instantiating
Ocl. Specifically, Ocl can be defined by associating weights to tokens using a
weighting scheme in the same fashion as Oidf . A suitable weighting scheme to
our context is the TF (Term Frequency), where the weight tf (tk) of a token tk
in a cluster C is directly given by the frequency of tk in C. The intuition behind
using TF-based ordering is to represent a cluster by its most frequent tokens.
Such strategy requires the maintenance of a token-tf table for each cluster. Two
sorting operations are needed after a merging between a probe set and one or
more clusters: the first on the complete representation using the updated token-
TF table and the second on the representative using IDF weights. Note that
merging always occurs on the complete representation and the new representative
is generated afterward.
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Furthermore, except for Oidf and the more general definition in terms of
weighted sets, this cluster representation is the same as the one used in [25]. A
clear drawback of using TF is that frequent tokens in the collection, consequently
with low IDF weights, tend to be also frequent within clusters. As opposed to
rare tokens, such highly frequent tokens are often unimportant for similarity
assessment, but can nevertheless appear in the representative owing to the TF-
based ordering.

An alternative is to simply make Ocl = Oidf , i.e., the complete representation
follows the same ordering of the input sets. A representative now is composed
by tokens with the highest IDF values. This approach has a lower computational
cost as compared to the previous representation: it does not require maintenance
of an extra data structure such as the token-TF table, nor further sorting after
merging clusters to probe sets. However, we now have the drawback that the
representative may contain tokens that appear in only a few sets in the cluster.

Finally, we can avoid the issues of the previous strategies, while keeping their
advantages, by using the TF-IDF weighting scheme: the weight tf -idf (tk) of a
token tk is given by tf -idf (tk) = (1 + ln (tf (tk))) · idf (tk). Henceforth, we refer
to the proposed representation strategies by their adopted weighting scheme,
i.e., as TF, IDF, and TF-IDF representations.

Example 3. Consider the sets (or cluster representatives) r and s in Example 1.
After the union of r and s, the resulting token-TF and token-TF-IDF association
tables are as follows (for simplicity, we have not taken the logarithm of TF in
the latter table).

The complete representation and the corresponding cluster representative for
strategies TF, IDF, and TF-IDF are shown in Table 1—for the complete repre-
sentation using TF and TF-IDF, ties are broken using the IDF-based ordering.

tk A B C D E F

tf (tk) 2 2 1 2 2 1

tf -idf (tk) 3 5 2 7 1 2

5.2 Merging Strategies

We now discuss strategies for the merging phase. The output of the verification
phase is the current probe set r and a set of clusters S, where each cluster in S
is similar to r. After generating a new (singleton) cluster Cr from the probe set,
and before sending it to the indexing phase, there are three cases to consider in
the merging phase.

(1) S is empty: the probe set is not similar to any previously generated cluster
and Cr goes directly to the indexing phase.
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Table 1. Cluster representations from Example 3 for strategies TF, IDF, and TF-IDF.

TF Complete representation

D B A E C F

Representative

D B C A E —

IDF Complete representation

D B C F A E

Representative

D B C F — —

TF-IDF Complete representation

D B A C F A

Representative

D B A C F —

(a) Closure strategy (b) Top-k strategy. (c) Iterative strategy.

Fig. 3. Cluster merging strategies.

(2) S contains a single cluster: this single cluster is merged into Cr.
(3) S contains more than one cluster: we apply a merging strategy, considering

that the elements in S were not identified as similar to one another in
previous SjClust iterations.

The new cluster Cr is also sent to the Output Manager in cases (2) and (3),
and in case (1) if singleton clusters are allowed to appear in the result.

Now, we present three strategies for case (3) as depicted in Fig. 3.

– Closure: the simplest strategy is to merge all clusters in S into Cr (Fig. 3(a)).
This strategy corresponds to calculating the transitive closure of the similarity
graph induced by input sets. The main problem of this strategy is that it
tends to produce bigger clusters with several sets representing non-duplicates,
thereby leading to poor precision in the results.

– Top-K: in this strategy, we first sort the elements in S according to their
similarity to the probe set. Then, we take the K closest clusters and merge
them into Cr (Fig. 3(b)). An issue with this strategy is choosing the value of
K: we can have the same issue of poor precision as Closure if K is too large;
conversely, we can face the opposite problem if K is too small, i.e., smaller
clusters are formed with duplicates in different clusters, thereby leading to
poor recall.
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– Iterative: this strategy is a specialization of Top-K, which aims at allowing the
use of a small K value to maintain precision, while avoiding a drop in recall.
First, the K closest clusters are merged into Cr; afterward the algorithm
proceeds iteratively, evaluating the similarity between Cr and the following
K + 1,K + 2, . . . , |S| clusters, in decreasing order of similarity to the original
probe set. If the similarity between the current cluster CK+i and Cr is greater
than the original threshold τ , then CK+i is merged into Cr and the algorithm
proceeds to the next representative; otherwise it stops. This strategy is similar
in spirit to the merge-and-refine strategy to duplicate identification [6], which
exploits the insight that a merging operation can lead to new matches.

A cluster C is called an invalid cluster after having been merged into another
cluster. Invalid clusters have to be ignored in the subsequent processing. Since
there are several references to clusters in the inverted lists and the Output Man-
ager, we need some garbage collection mechanism to remove references to invalid
clusters. We use a simple attribute in the cluster object to indicate whether it is
valid or not. This attribute is checked every time a reference to a cluster is found
in the candidate evaluation phase (see line 5 in Algorithm1) and references to
invalid clusters are promptly discarded.

5.3 The Output Manager

At each SjClust iteration, a probe set is converted into a new cluster and indexed.
Afterward, this cluster may progressively become part of bigger clusters, up to a
point when no new element can be added to the current cluster; we say then that
this cluster is closed. A cluster is trivially closed when the input is exhausted or
when the weight of the current probe set is too large to be similar to this cluster.
In the latter situation, we know that no following probe set can be similar either,
because the input is sorted in increasing order of set weights. We now define the
concept of closed cluster, before presenting the details of the Output Manager
component.

Definition 5 (Closed Cluster). Let R = (ri)
n+1
i=1 be a set collection, where

w (r1) > 0, w (ri) ≤ w (ri+1), and w (rn+1) = ∞. Let C be a cluster and CRC
its representative; let ri ∈ R be the current probe set. C is a closed cluster if
w (CRC) < min (ri).

In the above definition, note that we have conceptually extended R with set
rn+1 to ensure that all sets ri, i ≤ n, can belong to a closed cluster.

The Output Manager is the SjClust component in charge of sending closed
clusters to the output. The Output Manager is illustrated in Fig. 4. It contains
two data structures: a temporary repository and an output buffer. Clusters gen-
erated in the merging phase are first stored in the temporary repository. It is
a kind of priority queue, which maintains clusters sorted in increasing order of
their representative weights. We use a simple but highly efficient implementation
based on linked lists. The weight of incoming clusters is usually larger than the
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Fig. 4. The Output Manager.

weight of most of the stored ones, and, thus, we typically only need to scan a
few positions from the tail to the head of the list to find the point of insertion –
the worst case, when a full scan has to be performed, is quite rare for long lists.

We search the temporary repository for closed clusters at the end of each
SjClust iteration using the min (r) value of the current probe cluster. The search
is performed from the head to the tail of the list. Closed clusters are sent to
the output buffer as they are found and the search is stopped when the first
non-closed cluster is met. Note that the temporary repository may also contain
invalid clusters, e.g, clusters that were merged into other clusters. Entries to
invalid clusters are removed both during insertion and search time and, thus,
the size of the temporary repository is kept to a minimum.

The output buffer is a queue, which can be used to deliver clusters in a
pipelined execution either in pull- or push-model. Besides from the temporary
repository, the output buffer can also receive closed clusters from candidate
evaluation phase. This occurs when references to closed clusters are found in the
inverted lists (see line 6 in Algorithm 1; in this part, the algorithm is extended
with a call to the Output Manager to send the closed cluster to the output
buffer). References to closed clusters also need to be garbage collected. They are
set as invalid after being sent to the output buffer, so their references can be
removed afterwards from inverted lists or the temporary repository.

6 Experimental Assessment and Analysis

We now present an experimental study of our SjClust framework. The goal of
the empirical experiments is to evaluate and compare quality and performance
of the algorithms proposed.

6.1 Datasets

We evaluated our algorithms on publicly available datasets from the Stringer
Project3, which have already been used to evaluate clustering algorithms for
duplicate identification [15,16]. These datasets were generated using the UIS

3 http://dblab.cs.toronto.edu/project/stringer/clustering/.

http://dblab.cs.toronto.edu/project/stringer/clustering/
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database generator4. Starting with a clean dataset as source, UIS generates
duplicates by performing controlled textual transformations, such as character-
level modifications (insertions, deletions, and substitutions), word swapping,
and domain specific abbreviations, such replacing “Incorporated” with“Inc.”.
Two datasets were used as source: DBLP containing information about titles of
computer science publications (dblp.uni-trier.de/xml) and Company, containing
company names.

Table 2. Information about duplicate datasets.

Group Name Percentage of

Erroneous duplicates Errors in duplicates

High error H1 90 30

H2 50 30

Average error M1 30 30

M2 10 30

M3 90 10

M4 50 10

Low error L1 30 10

L2 10 10

We used all 58 datasets made available by the Stringer Project in our eval-
uation. In the rest, we concentrate on a representative subset of 16 datasets, 8
datasets for each source. Results for the other datasets followed similar trends.
The parameters used in the generation processes are reproduced in Table 2. The
“dirtiness level” of a generated dataset is determined by the percentage of dupli-
cates to which transformations are applied (erroneous duplicates) and the extent
of transformations applied to each erroneous duplicate (errors in duplicates). The
percentage of token swap and abbreviations for all datasets were 20% and 50%,
respectively. The datasets are grouped according to their “dirtiness level”, i.e.,
high, medium, and low error. The number of clusters in each dataset, as pro-
vided by the Stringer Project, is 500. Samples of the datasets are also publicly
available5.

We converted strings to upper-case letters, eliminated repeated white spaces,
and generated the corresponding token sets using q-grams of size 3; for weighted
sets, we used the IDF weighting scheme. No further data pre-processing were
performed, such as removal of stop words. We then sorted the tokens in each
set using Oidf and the set collections in ascending size order. Some important
statistics about the resulting medium-error datasets are listed in Table 3; the
statistics of the other datasets are similar. Average set size of DBLP is about

4 http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz.
5 http://dblab.cs.toronto.edu/project/stringer/datasets/sample.htm.

http://dblp.uni-trier.de/xml
http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz
http://dblab.cs.toronto.edu/project/stringer/datasets/sample.htm
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Table 3. Dataset statistics: average values over medium-error datasets.

Dataset # sets Set size Set
weight

# unique
tokens

% rare
tokens

%
frequent
tokens

% stop
tokens

DBLP 5050 61.3 223.4 11519 58 2.1 0.12

Company 4980 25.7 95.5 6565 61.6 1 0.25

Fig. 5. Token frequency and set size distributions.

2.3x greater than of Company, which is reflected in the corresponding average
set weight accordingly. DBLP contains more unique tokens than Company. The
percentage of rare tokens (i.e., tokens appearing in 0.1% or less of the set collec-
tion) is greater in Company, whereas DBLP has a greater percentage of frequent
tokens (i.e., tokens appearing in 5% or more of the set collection). On the other
hand, Company has proportionally more extremely frequent tokens, which we
call stop tokens (i.e., tokens appearing in 25% or more of the set collection).
Distributions of token frequency and set size are plotted in Fig. 5. Only the
token frequency distribution of a single medium-error DBLP dataset is shown
because the distributions of all the other datasets follow approximately a similar
Zipf distribution. We also observe that the set size distributions of DBLP and
Company have similar shapes.
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6.2 Evaluation Metrics

We evaluate the quality of the results using two metrics: the pairwise F1 measure,
denoted by pF1, and the closest cluster F1 measure, denoted by ccF1. The
first metric is based on counting the number of pairs of duplicates correctly
identified and is defined as follows [27]. Let G be set of ground truth clusters,
i.e., the clusters whose duplicates have been all correctly identified, and D be
the set of clusters returned by some cluster algorithm. Further, given a set of
clusters P , let pairs (P ) be a function that returns the set of distinct pairs of
elements that are in the same cluster. For example, if P = {〈a, b〉, 〈d, e, f〉}, then
pairs (P ) = {(a, b), (d, e), (d, f), (e, f)}. Thus, the pairwise precision and recall
are defined as

pPr (G, D) =
|pairs (G) ∩ pairs (D) |

pairs (D)
, and pRe (G, D) =

|pairs (G) ∩ pairs (D) |
pairs (G)

.

Therefore:

pF1 (G,D) =
2 · pPr (G,D) · pRe (G,D)
pPr (G,D) + pRe (G,D)

.

The pPr measure is the fraction of duplicate pairs within the result, whereas
the pRe measure is the fraction of identified duplicate pairs over the total amount
of duplicate pairs. The pF1 measure is the weighted harmonic mean of pPr and
pRe.

The closest cluster F1 measure is based on summing up the pairwise Jaccard
similarity of (unweighted) clusters. The corresponding precision and recall are
defined as follows [6].

ccPr (G, D) =

∑
d∈D maxg∈G J (d, g)

|D| , and ccRe (G, D) =

∑
g∈G maxd∈D J (g, d)

|G| .

Therefore:

ccF1 (G,D) =
2 · ccPr (G,D) · ccRe (G,D)
ccPr (G,D) + ccRe (G,D)

.

The closest cluster measures take into account similarity between the clusters
returned in the result and the ground truth clusters. The ccPr measure is the
sum of the maximum Jaccard similarity for all r’s divided by |D|, whereas the
ccRe measure is the sum of the maximum Jaccard similarity for all g’s divided
by |G|. The ccF1 measure is the weighted harmonic mean of ccPr and ccRe.

Regarding the performance experiments, the processing cost of the algorithms
is measured in average wall-clock time over repeated runs.
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6.3 Experimental Environment and Setup Details

We ran our experiments on an Intel Xeon E5-26200 six-core, 2 GHz, 15 MB CPU
cache, and 16 GB of main memory. All algorithms were implemented using Java
JDK 8 (Oracle). We implemented the set similarity join described in [30]; this
implementation provided the basis for the own SjClust implementation as well
as was used directly in the performance experiments. SjClust was set to not pro-
duce singletons. We used Jaccard as similarity function in all evaluations, which
is arguably the most popular set similarity function. While other set similarity
functions such as Dice and Cosine could lead to different accuracy results, com-
parison of similarity functions for duplicate detection is beyond the scope of this
article. Nevertheless, it is well-known that no single similarity function is the
best for all scenarios (e.g., see [12]).

6.4 Accuracy Results

We now report and analyze accuracy results. In the experimental charts, the
representation strategy TF-IDF is abbreviated to TI and the merging strategies
Closure, Top-K, and Iterative are abbreviated to C, T, and I, respectively. The
combination of representation and merging strategies is represented by their
abbreviated form connected by a hyphen, i.e., TI-T represents the combination
of TF-IDF and Top-K.

First, we show the average of the best accuracy values for each group of
datasets, i.e., high-, medium-, and low-error datasets. We evaluated each algo-
rithm with threshold value varying from 0.2 to 0.8; for methods employing the
merging strategies Top-K and Iterative, we further varied the K value from 1 to
5. The best result value obtained for each metric is reported.

Figure 6 shows the results on unweighted datasets. Our first observation is
that all algorithms achieved high accuracy on low-error DBLP datasets, with
values above 0.85 for both pF1 and ccF1 metrics (Fig. 6(a)). In particular, strate-
gies based on TF and TF-IDF representations obtained nearly perfect accuracy.
Results degrade as the error level increases in the DBLP datasets (Figs. 6(b)
and (c)). Nevertheless, such degradation is moderate for TF and TF-IDF, which
show good robustness to quality decrease of the underlying datasets: pF1 (ccF1)
values are above 0.95 (0.9) and 0.77 (0.65) on medium and high-error datasets,
respectively. Strategies based on TF representation is clearly the best on high-
error datasets.

IDF-based strategies achieved the worst results in general due to low
recall values. The IDF-based ordering on the complete representation shifts
low-frequency tokens to the cluster representative (recall to the discussion in
Sect. 5.1). In this context, representatives contain tokens that appear in a few
set elements in the corresponding cluster. As a result, objects representing dupli-
cates, i.e., probe sets and representatives, cannot be easily identified because they
have fewer tokens in common and, thus, lower similarity.

Figures 6(d)–(f) show the results on Company datasets. Results are worse
as compared to those obtained on DBLP datasets. The explanation is that the
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Fig. 6. Best accuracy results for all clustering methods on unweighted datasets.

Company dataset is characterized by the presence of extremely high-frequency
words. For example, the word “Corporation” appears in more than 20% of the
company names, whereas “Inc.” appears in more than 50%. As a result, the sep-
aration between duplicates and non-duplicates is much more challenging because
there are many similar string representing distinct company names. In the same
vein, the results of TF are worse than those of TF-IDF. Such high-frequency
words lead to stop tokens, which are then shifted to the cluster representative in
the TF strategy. As a result, clusters representing distinct strings can be eval-
uated as similar and erroneously merged due to the presence of stop tokens in
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their representatives, thereby hurting precision. In fact, on high-error datasets,
TF produces results even worse than IDF.

Strategies based on TF-IDF are clearly the best-performing on Company
datasets. Similarly to DBLP datasets, TF-IDF did not experience dramatic accu-
racy degradation as we move from low-error (Fig. 6(d)) to medium-error datasets
(Fig. 6(e)). On the other hand, F1 values are less than 0.45 for all algorithms
on high error datasets (Fig. 6(f)). Correctly identifying duplicates on such low-
quality datasets is a challenge as some generated duplicates are hardly identified
even by manual inspection.

Differences in accuracy are less pronounced when comparing merging strate-
gies. Closure exhibits the worst results because it tends to merge more clusters
than the other strategies, thereby hurting precision. Top-K has a slight advan-
tage when combined with TF, whereas Iterative shows the best results when
combined with TF-IDF.

Figure 7 show the results on weighted datasets. All major trends remain about
the same: almost perfect results on low-error datasets; clustering methods based
on IDF representation are the worst-performing overall; methods based on TF
are the best on DBLP, whereas those based on TF-IDF are the best on Company;
better accuracy on DBLP for all methods, including greater resilience to dirtier
datasets; little accuracy variation across different merging strategies. Results on
DBLP are slight better for the unweighted variant, while the weighted variant
was superior on Company. In the latter, the association of weights to tokens was
useful to reduce the negative effect of stop tokens on the similarity values.

We now analyze the sensitivity of the algorithms to the threshold and K
parameter values. We focus on the methods based on TF and TF-IDF repre-
sentation, which were achieved the best results in the previous experiment. We
further exclude the Closure merging method because it does not use the param-
eter K. We report average pF1 values over medium-error datasets; ccF1 values
followed similar trends. We used K = 1 in the results with varying threshold
and the best threshold for given clustering method was used in the results with
varying K value. Finally, we also report the difference between the correct num-
ber of clusters (500 in all datasets) and the number of cluster in the results:
negative and positive values indicate that the method created fewer and greater
cluster than the ground truth, respectively.

Figure 8 show the results for unweighted datasets. On DBLP, the best thresh-
old value for all methods is 0.3 and accuracy steadily drops for greater values
(Fig. 8(a)). Despite the increase in precision, the drastic drop in recall leads to
smaller pF1 values.

Looking at Fig. 8(b), we see that the TF representation produces fewer clus-
ters than TF-IDF in almost all cases. As already mentioned, TF tends to produce
representatives containing tokens with higher frequency, which leads to greater
similarity between those representatives and input sets. As a result, more clus-
ters are consolidated in the merging phase. We also observe that the number
of cluster produced by all algorithms increases with the threshold value up to
0.5 and then decreases afterwards. At first, higher thresholds cause cluster splits
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Fig. 7. Best accuracy results for all clustering methods on weighted datasets.

without substantially changing the total number of set elements appearing in
the result. For threshold values greater than 0.5, an increasing number of splits
results in singleton clusters, which are not sent to the output in the SjClust
setting used in the experiments (recall Sect. 6.3).

Regarding the results with varying K values (Fig. 8(c)), the accuracy of TI-T
substantially increases with K = 2. Further increments in K values do not lead
to better results for any algorithm; actually, there is even an accuracy drop for
TF-T with K = 4.

Figure 8(d) shows the results with varying threshold on the Company dataset.
Methods based on the TF-IDF representation exhibit similar behavior as com-
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Fig. 8. Average accuracy with varying parameter values on unweighted, medium-error
datasets.

pared to the results on DBLP: the best accuracy is obtained at threshold 0.3
followed by a steady drop at greater values. On the other hand, methods based
on TF peak only at threshold 0.6. As already mentioned, Company contains
more stop tokens, which may be placed at cluster representatives by the TF
strategy. As a result, clusters of non-duplicates can be erroneously merged at
low threshold values. Figure 8(e) illustrates this behavior: for lower threshold
values, TF-based methods produce much fewer clusters than the ground truth.
The results with varying K values are shown in Fig. 8(f). The best K values are
1 and 2 for methods based on TF-IDF and TF, respectively; no further accuracy
increase is obtained for greater values.
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Fig. 9. Average accuracy with varying parameter values on weighted, medium-error
datasets.

Finally, Fig. 9 show the results with varying threshold and K values on
weighted datasets. The trends are very similar to those observed on unweighted
sets. The main difference is that best accuracy is typically achieved at threshold
values: the best threshold value for all methods is 0.2 on DBLP, and methods
based on TF peak at threshold 0.4.

6.5 Performance Results

We now report and analyze performance results. For this experiment, we gen-
erated a dataset from DBLP containing 20k groups of 5 duplicates (totaling
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100k strings). Besides using a larger dataset, we also appended the correspond-
ing author names to each publication title. As a result, the average set size and
weight are increased accordingly.

Fig. 10. Performance results.

The results are show in Fig. 10. We first compare the three proposed rep-
resentation strategies using Top-K as merging strategy. Figure 10(a) shows the
results on unweighted sets. While there is relatively little difference between IDF
and TF-IDF, TF is about 2.5x slower than them in average at low threshold val-
ues. Because TF uses more frequent tokens in the cluster representatives, the
corresponding prefixes have more incidences of such tokens even with the poste-
rior IDF-based ordering. As a result, token collisions in the prefixes of dissimilar
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objects (i.e., sets and representatives) are more frequent, reducing pruning power
because those objects need to be verified. The results are similar for weighted
sets (Fig. 10(d)). TF-based methods are now about 2.9x slower in average at
low threshold values. All algorithms run faster on weighted sets because pre-
fixes based on unweighted sets normally exhibit worse filtering effectiveness as
compared to weighted ones [30].

We now compare the performance of the merging strategies; we fixed the
cluster representation to TF-IDF. There is no noticeable performance differ-
ence among them, as shown in Figs. 10(b) and (e) for unweighted and weighted
datasets, respectively. Even with the tendency to performing more merging, Clo-
sure exhibits nearly the same performance as compared to Top-K and Iterative.
The underlying algorithm exploits token ordering to optimize the merging pro-
cess and, therefore, the negative impact on performance is reduced. Also, most
merging operations involve no more than 2 clusters.

Our next experiment compared SjClust with similarity join. Recall that for
duplicate identification, similarity join is followed by clustering algorithm, which
only starts after the similarity join has completed. Hence, the results showed here
for similarity join are only a (loose) lower bound for the scenario of sequential
composition of similarity join and clustering. For SjClust, we used TF-IDF and
Top-K as representation and merging strategies, respectively. Figures 10(c) and
(f) show the results for unweighted and weighted datasets, respectively. Remark-
ably, SjClust is dramatically faster than similarity join. For the threshold value of
0.2, SjClust is 17x and 12x times faster on unweighted and weighted sets, respec-
tively. The reason is that prefix filtering is ineffective for low threshold values,
which causes an explosion in the number of candidates and, consequently, in the
number of similarity calculations. This limitation may prevent the use of sim-
ilarity joins in duplicate identification in large datasets, because low threshold
values are often required to obtain accurate results. In contrast, SjClust drasti-
cally reduces the number of similarity calculations by restricting them to cluster
representatives, which are much fewer than the original sets.

Table 4. Percentage of the input consumed before starting producing results.

Threshold 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Unweighted DBLP 88.5% 33.8% 14.5% 7.1% 5.8% 5.3% 8.1%

Weighted DBLP 97.2% 68.8% 29.5% 12.5% 7.9% 6.9% 11.2%

Finally, we illustrate the non-blocking behavior of SjClust. Table 4 shows the
number of input sets processed before SjClust starts producing cluster results.
For threshold of 0.8, the first cluster is produced before processing less than 8.1%
of the input on unweighted datasets and 11.2% on weighted datasets. Even at
threshold 0.2, the first result is produced before consuming the whole input on
both unweighted and weighted datasets.
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7 Conclusions and Future Work

In this article, we presented SjClust, a framework to integrate clustering into set
similarity join algorithms. We demonstrated the flexibility of SjClust in incorpo-
rating different clustering methods by proposing several cluster representation
and merging strategies. SjClust is an order of magnitude faster than the orig-
inal set similarity join algorithm for lower thresholds, which are often needed
in practice to obtain accurate results in duplicate identification. Furthermore,
our proposal produces results earlier, thereby avoiding blocking behavior. We
described SjClust and its main components in detail and experimentally evalu-
ated its accuracy and efficiency using different datasets. Future work is mainly
oriented towards enriching our framework with advanced features such as uncer-
tain data management (e.g., [22]), adaptiveness (e.g., [8]), and execution time
prediction (e.g, [33]).
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CNPq and CAPES.
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Abstract. Current scientific applications must analyze enormous
amounts of array data using complex mathematical data processing
methods. This paper describes a distributed query processing framework
for large-scale scientific data analysis that captures array-based compu-
tations using SQL-like queries and optimizes and evaluates these com-
putations using state-of-the-art parallel processing algorithms. Instead
of providing a library of concrete distributed algorithms that implement
certain matrix operations efficiently, we generalize these algorithms by
making them parametric in such a way that the same efficient imple-
mentations that apply to the concrete algorithms can also apply to their
generic counterparts. By specifying matrix operations as generic alge-
braic operators, we are able to perform inter-operator optimizations,
such as fusing matrix transpose with matrix multiplication, resulting
to new instantiations of the generic algebraic operators, without having
to introduce new efficient algorithms on the fly. We report on a pro-
totype implementation of our framework on three Big Data platforms:
Hadoop Map-Reduce, Apache Spark, and Apache Flink, using Apache
MRQL, which is a query processing and optimization system for large-
scale, distributed data analysis. Finally, we evaluate the effectiveness of
our framework through experiments on three queries: a matrix multipli-
cation query, a simple query that combines matrix multiplication with
matrix transpose, and a complex iterative query for matrix factorization.

Keywords: Big data · Scientific data analysis · Query processing

1 Introduction

In recent years, it has become easier and cheaper than ever to collect data but
harder to turn these data into value. In computational science, the explosion in
scientific data generated by experiments and simulations has created a major
challenge for many scientific projects. For data scientists who need to analyze
vast volumes of data, data-intensive processing is fast becoming a necessity. They
need algorithms capable of scaling to petabytes and faster tools that are more
sophisticated, more reliable, and easier to use.
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As datasets grow larger, new frameworks in distributed Big Data analytics
have become essential tools to large-scale machine learning and scientific discov-
eries. Among these frameworks, the Map-Reduce programming model [14] has
emerged as a generic, scalable, and cost effective solution for Big Data processing
on clusters of commodity hardware. The Map-Reduce paradigm is a scale-out
solution that brings computations to the data, rather than data to the compu-
tations. This is a drastic departure from high-performance computing models,
which make a clear distinction between processing and storage nodes. Very soon,
though, it became apparent that the Map-Reduce model has many limitations.
To address these limitations, new alternative frameworks have been introduced
recently that perform better than Map-Reduce for a wider spectrum of work-
loads, such as Google’s Pregel [33], Apache Spark [9], and Apache Flink [2],
which are in-memory distributed computing systems.

Currently, many programmers prefer to use a higher-level declarative lan-
guage to code their data-centric applications, such as Apache Hive [5] and
PigLatin [36], instead of coding them directly in an algorithmic language, such as
Java. For instance, Hive is used for over 90% of Facebook Map-Reduce jobs. Most
Map-Reduce query languages though provide a limited syntax for operating on
data collections, in the form of simple relational joins and group-bys. They can-
not express complex data analysis tasks, such as PageRank, data clustering, and
matrix factorization, using SQL-like syntax exclusively. Because of these limita-
tions, these languages enable users to plug-in custom scripts into their queries
for those jobs that cannot be declaratively coded in their query language. This
nullifies the benefits of using a declarative query language and may result in
platform-dependent, suboptimal, error-prone, and hard-to-maintain code. Fur-
thermore, some of these languages are inappropriate for complex scientific and
graph analysis applications, because they do not directly support iteration in
declarative form and are not able to handle complex scientific data. But there
are some recent query systems, such as Apache MRQL [8], which are powerful
enough to express complex data analysis tasks.

In the past, large-scale data processing was mainly done in the realm of
scientific computing. In recent years, the volume of data generated by scientists
through experiments and simulations has been steadily increasing at an unprece-
dented rate. For example, the Large Hadron Collider at CERN and astronomy’s
Pan-STARRS5 array of celestial telescopes are capable of generating several
petabytes of data per day, which need to be made available and analyzed by
scientists on worldwide grids of computers. Data-intensive scientific comput-
ing shares some of the key ingredients of cloud computing. Just like in cloud
computing, scientific computing is driven to use the most efficient computing
techniques available, including high-performance computing and low-level data
management. Many scientific data generated by scientific experiments and simu-
lations come in the form of arrays, such as the results from high-energy physics,
cosmology, and climate modeling. In addition, many algorithms for scientific data
analysis and simulation are frequently expressed in terms of array operations.
Furthermore, most scientific file formats used by scientists to store data, such
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as HDF5 [22] and NetCDF [35], are based on array structures. Since most of
the data generated by scientists are in array form, current scientific applications
must analyze enormous amounts of array data using complex mathematical data
processing methods. Scientists are typically comfortable with numerical analy-
sis tools, such as MatLab, but are not familiar with the intricacies of Big Data
analysis and distributed computing. A declarative distributive query language
capable of expressing complex mathematical operations on arrays could help
them develop their data analysis applications without any prior knowledge of
distributed computing.

The goal of this paper is to support large-scale scientific data analysis by (1)
extending an existing distributed query language, namely Apache MRQL [8],
with array operations that can capture most array-based computations in declar-
ative form and (2) by developing a query processing framework that can optimize
and evaluate these computations using state-of-the-art parallel processing algo-
rithms. Other proposed systems [11,27,38,41] focus on storage structures and
indexing techniques for arrays, such as chunking and tiling, to achieve better
performance on certain parallel array computations. Although such storage lay-
outs may speed up the processing of individual array operations, they produce
results in a certain layout that may need to be restructured before they are used
by the subsequent matrix operations. Furthermore, such schemes do not address
inter-operation optimization, which is the focus of our work. Our approach is
to accept any kind of array representation and storage but at the same time
be able to recognize certain array operations in a query and translate them into
efficient parallel array processing algorithms. For example, matrix multiplication
X × Y between two sparse matrices X and Y can be implemented efficiently in
a distributed environment using a 2D mesh of processors [24,44] by distributing
the data to worker nodes in the form of a grid of partitions, where each par-
tition contains only those rows from X and those columns from Y needed to
compute a single grid partition of the resulting matrix. If a query language were
to adopt a certain matrix representation and provide a fixed number of matrix
operations in the form of predefined operators or library functions, then the task
of recognizing these operations and mapping them to efficient algorithms would
have become easy. Such an approach though does not leave many opportuni-
ties of inter-operator optimization, such as fusing matrix transpose with matrix
multiplication, because the resulting fused operation would have to be a new
operation that requires the introduction of a new efficient algorithm on the fly.
Instead of looking at concrete algorithms that implement specific mathematical
operations, our objective is to generalize these algorithms by making them para-
metric in such a way that the same efficient implementations that apply to the
concrete algorithms can also apply to their generic counterparts.

The most effective method of making an algorithm parametric is to make it
higher-order by abstracting parts of its computations into its functional param-
eters. Such a higher-order operation must capture the essence of the concrete
algorithm it generalizes by facilitating an equivalent data distribution and by
supporting a similar parallel processing method. To generate such a higher-order



122 L. Fegaras

operation from a query, a query evaluator must be able to recognize certain syn-
tactic patterns in the query, in their most generic form, that can be mapped to
this operation. This task can become more feasible if it is done at the algebraic
operation level, rather than at the syntactic level. That is, instead of introducing
source-to-source transformations to match parts of a query with certain generic
syntactic patterns that correspond to a generic operation, our approach is to
translate queries to algebraic forms and then normalize and rewrite these forms
into these algorithms using algebraic rewrite rules. We believe that this approach
is very effective when applied, not only to matrix operations, but also to a wide
spectrum of queries whose functionality is in essence equivalent to these matrix
operations.

The contribution of this work can be summarized as follows:

– We define a higher-order operator, called GroupByJoin, that generalizes many
algorithms that correlate two data sources using an equi-join followed by a
group-by with aggregation.

– We provide an efficient implementation of GroupByJoin based on an algo-
rithm that generalizes the SUMMA parallel algorithm for matrix multiplica-
tion on two Big Data frameworks: Map-Reduce and Spark.

– We provide an extension to the query optimization framework for MRQL to
generate physical plans that use the GroupByJoin operator. This is accom-
plished with algebraic rewrite rules that recognize certain patterns in the alge-
braic terms derived from MRQL queries that are equivalent to a GroupByJoin
operation. We show how these rewrite rules can be used, in conjunction with
the existing algebraic optimization rules in MRQL, to minimize the amount
of data shuffling in queries that contain consecutive matrix operations.

– We report on a prototype implementation of our framework using Apache
MRQL running on top of three different Big Data platforms: Hadoop Map-
Reduce, Apache Spark, and Apache Flink. We show the effectiveness of our
methods through experiments on three queries, a matrix multiplication query,
a simple query that combines matrix multiplication with matrix transpose,
and a very complex query for matrix factorization, which not only is iterative
but it also contains many matrix operations at every iteration step.

The rest of this paper is organized as follows. We compare our approach with
related work in Sect. 2. We summarize our earlier work on query optimization for
MRQL in Sect. 3. We highlight the basic ideas behind our approach in Sect. 4.
We introduce the higher-order operator GroupByJoin in Sect. 5). We provide an
efficient implementation of GroupByJoin based on the SUMMA algorithm on
two Big Data frameworks: Map-Reduce (Sect. 6) and Spark (Sect. 7). We present
our framework for translating and optimizing MRQL queries to GroupByJoin
operations in Sect. 8. Finally, we evaluate our framework through experiments
on three MRQL queries in Sect. 9.
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2 Related Work

One of the major drawbacks of the Map-Reduce model is that, to simplify reli-
ability and fault tolerance, it does not preserve data in memory between the
map and reduce tasks of a Map-Reduce job or across consecutive jobs, which
imposes a high overhead to complex workflows and graph algorithms, such as
PageRank and matrix factorization, that require repetitive Map-Reduce jobs. To
achieve better performance for such complex workflows, it is crucial to minimize
the required number of Map-Reduce jobs, mostly because of the high overhead
of dumping the intermediate results between consecutive Map-Reduce jobs to
the HDFS. As an alternative solution, some recent systems for cloud computing
go beyond Map-Reduce by maintaining dataset partitions in the memory of the
compute nodes. These systems include the main memory Map-Reduce M3R [40],
Apache Spark [9], Apache Flink [2], and distributed GraphLab [32].

There are also a number of higher-level languages that make Map-Reduce
programming easier, such as HiveQL [42], PigLatin [36], SCOPE [12], and
Dryad/Linq [28]. Apache Hive [42,43] provides a logical RDBMS environment
on top of the Map-Reduce engine, well-suited for data warehousing. Using its
high-level query language, HiveQL, users can write declarative queries, which are
optimized and translated into Map-Reduce jobs that are executed using Hadoop.
HiveQL does not handle nested collections uniformly: it uses SQL-like syntax for
querying data sets but uses vector indexing for nested collections. Unlike MRQL,
HiveQL has many limitations. It does not allow query nesting in predicates and
select expressions, but allows a table reference in the from-part of a query to
be the result of a select-query. Apache Pig [23] resembles Hive as it provides
a user-friendly scripting language, called PigLatin [36], on top of Map-Reduce,
which allows explicit filtering, map, join, and group-by operations. Like Hive,
PigLatin performs very few optimizations based on simple rule transformations.
PACT/Nephele [10] is a Map-Reduce programming framework based on work-
flows, which consist of high-order operators, such as map and reduce. These work-
flows are converted to logical execution plans for Nephele, a general distributed
program execution engine. Even though PACT/Nephele workflow programs are
very flexible and are not limited to rigid Map-Reduce pairs, they are hard to pro-
gram, since programmers have to construct low-level workflows. SCOPE [12], an
SQL-like scripting language for large-scale analysis, does not support sub-queries
but provides syntax to simulate sub-queries using outer-joins. Like Hive, because
of its limitations, SCOPE provides syntax for user-defined process/reduce/com-
bine operations to capture explicit Map-Reduce computations. DryadLINQ [46]
is a programming model for large scale data-parallel computing that translates
programs expressed in the LINQ programming model to Dryad, which is a dis-
tributed execution engine for data-parallel applications. Unlike MRQL, the LINQ
query syntax is very limited and has limited support for query nesting.

Vertex-centric graph-parallel programming is a new popular framework for
large-scale graph processing. It was introduced by Google’s Pregel [33] but is
now available by many open-source projects, such as Apache Giraph [6], Apache
Hama [4], and Spark’s GraphX [7]. Most of these frameworks are based on the
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Bulk Synchronous Parallelism (BSP) programming model [44]. Vertexica [26]
and Grail [15] provide the same vertex-centric interface as Pregel but, instead
of a distributed file system, they use a relational database to store the graph
and the exchanged messages across the BSP supersteps. Unlike Grail, which can
run on a single server only, Vertexica can run on multiple parallel machines
connected to the same database server. Such configuration may not scale out
very well because the centralized database may become the bottleneck of all
the data traffic across the machines. Although MRQL is a general-purpose Big
Data query system, graph queries in MRQL are expressed using SQL-like syntax
since graphs are captured as regular distributed collections. These queries are
translated to distributed self-joins over the graph data.

Many scientific data generated by scientific experiments and simulations
come in the form of arrays, such as the results from high-energy physics, cosmol-
ogy, and climate modeling. Many of these arrays are stored in scientific file for-
mats that are based on array structures, such as, CDF (Common Data Format),
FITS (Flexible Image Transport System), GRIB (GRid In Binary), NetCDF
(Network Common Data Format), and various extensions to HDF (Hierarchi-
cal Data Format), such as HDF5 and HDF-EOS (Earth Observing System).
HDF5 [22] is a data model and file format that enables the data to be organized
into hierarchical structures, called groups and datasets. NetCDF [35] is a self-
describing data format that supports the creation, access, and sharing of scien-
tific data. It is commonly used in climatology, meteorology, and GIS applications.
Many array-processing systems use special storage techniques, such as regular
tiling, to achieve better performance on certain array computations. TileDB [37]
is an array data storage management system that performs complex analytics on
scientific data. It organizes array elements into ordered collections called frag-
ments, where each fragment is dense or sparse, and groups contiguous array
elements into data tiles of fixed capacity. Unlike our work, the focus of TileDB is
the I/O optimization of array operations by using small block updates to update
the array stores. SciDB [39,41] is a large-scale data management system for sci-
entific analysis based on an array data model with implicit ordering. The SciDB
storage manager decomposes arrays into a number of equal sized and potentially
overlapping chunks, in a way that allows parallel and pipeline processing of array
data. Like SciDB, ArrayStore [38] stores arrays into chunks, which are typically
the size of a storage block. One of their most effective storage method is a two-
level chunking strategy with regular chunks and regular tiles. SystemML [27]
is an array-based declarative language to express large-scale machine learning
algorithms, implemented on top of Hadoop. It supports many array operations,
such as matrix multiplication, and provides alternative implementations to each
of them. SciHadoop [11] is a Hadoop plugin that allows scientists to specify log-
ical queries over arrays stored in the NetCDF file format [35]. Their chunking
strategy, which is called the Baseline partitioning strategy, subdivides the logi-
cal input into a set of partitions (sub-arrays), one for each physical block of the
input file. SciHive [25] is a scalable array-based query system that enables sci-
entists to process raw array datasets in parallel with a SQL-like query language.
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SciHive maps array datasets in NetCDF files to Hive tables and executes queries
via MapReduce. Based on the mapping of array variables to Hive tables, SQL-like
queries on arrays are translated to HiveQL queries on tables and then optimized
by the Hive query optimizer. Unlike MRQL, SciHive implements matrix multipli-
cation operations using relational joins, instead of group-by-joins. SciMATE [45]
extends the Map-Reduce API to support the processing of the NetCDF and
HDF5 scientific formats, in addition to flat-files. SciMATE supports various
optimizations specific to scientific applications by selecting a small number of
attributes used by an application and perform data partition based on these
attributes. Finally, MLlib [34], which is part of MLbase [30], is a machine learn-
ing library built on top of Spark and includes algorithms for fast matrix manip-
ulation based on native (C++ based) linear algebra libraries. Unlike MRQL,
which supports ad-hoc data analysis based on arbitrary vector and matrix rep-
resentations, MLlib provides a uniform rigid set of high-level APIs that consists
of several statistical, optimization, and linear algebra primitives that can be used
as building blocks for data analysis applications. Like all API-based frameworks,
MLlib does not support inter-operation optimizations, which is the focus of our
approach.

The monoid algebra described in Sect. 8.1 has been introduced in our pre-
vious work on algebras for distributed big data analysis [17,18], which in turn
was based on our early work on monoid algebras and calculi for object-oriented
databases [20,21]. The work reported in this paper extends our previous work
on array-based computations for Map-Reduce [16] by providing an evaluation
framework for Spark and implementations and performance results for both the
Spark and Flink platforms.

3 Background: The MRQL Query Language

Apache MRQL [8] is a query processing and optimization system for large-scale,
distributed data analysis. MRQL was originally developed by the author [18,
19], but is now an Apache incubating project with many developers and users
worldwide. MRQL (the Map-Reduce Query Language) is an SQL-like query
language for large-scale data analysis on computer clusters. The MRQL query
processing system can evaluate MRQL queries in four modes: in Map-Reduce
mode using Apache Hadoop [3], in BSP mode (Bulk Synchronous Parallel model)
using Apache Hama [4], in Spark mode using Apache Spark [9], and in Flink
mode using Apache Flink (previously known as Stratosphere) [2]. The MRQL
query language is powerful enough to express most common data analysis tasks
over many forms of raw in-situ data, such as XML and JSON documents, binary
files, and CSV documents. MRQL is more powerful than other current high-
level Map-Reduce languages, such as Hive [5] and PigLatin [36], since it can
operate on more complex data and supports more powerful query constructs,
thus eliminating the need for using explicit procedural code. With MRQL, users
are able to express complex data analysis tasks, such as PageRank, k-means
clustering, matrix factorization, etc, using SQL-like queries exclusively, while



126 L. Fegaras

the MRQL query processing system is able to compile these queries to efficient
Java code.

For example, the following MRQL query that calculates the k-means clus-
tering algorithm (Lloyd’s algorithm), by deriving k new centroids from the old
(the stopping condition has been omitted):

1 repeat centroids = ...
2 step select < X: avg(s.X), Y: avg(s.Y) >
3 from s in Points
4 group by k: (select c from c in centroids
5 order by distance (c, s ))[0]

Query 1. k-Means Clustering

where Points is a dataset of points on the X-Y plane, centroids is the current set of
centroids (k cluster centers), and distance is a function that calculates the Euclidean
distance between two points. The repeat query syntax ‘repeat R = i step s’ defines the
dataset R as the fixpoint of the step s by starting with R = i and reassigning R to s at
each iteration step, where s is a query that depends on R. (For brevity, the stopping
condition of the repeat query has been omitted.) Here, the initial value of centroids
(the ... value) is a bag of k random points. The inner select-query in the group-by
assigns the closest centroid to a point s (where [0] returns the first tuple of an ordered
list). The outer select-query in the repeat step clusters the data points by their closest
centroid, and, for each cluster, a new centroid is calculated from the average values of
its points.

4 Our Framework

One of the objectives of our work is to accept any kind of array representation but at
the same time be able to recognize certain array operations in a query and translate
them into efficient parallel array processing algorithms. Sparse vectors and matrices
can be captured as regular collections in MRQL. For example, a sparse matrix M
can be represented as a collection of triples, (v, i, j), for v = Mij . Then, the matrix
multiplication between two sparse matrices X and Y can be expressed as follows in
MRQL:

1 select ( sum(z), i , j )
2 from (x, i ,k) in X, (y,k, j ) in Y, z = x∗y
3 group by i , j

Query 2. Matrix multiplication query

that is, we retrieve the values Xik ∈ X and Ykj ∈ Y for all i, j, k, and we set z =
Xik ∗Ykj . The group-by operation in MRQL lifts each non-group-by variable defined in
the from-part of the query from some type T to a bag of T , indicating that each such
variable must now contain multiple values, one for each group. Consequently, after we
group by the indexes i and j, the variable z will be lifted to a bag of numerical values
Xik ∗ Ykj , for all k. Hence, sum(z) in the query header will sum up all these values,
deriving

∑
k Xik ∗ Ykj for the ij element of the resulting matrix.

Matrix multiplication is an important operation, used frequently in scientific com-
putations and machine learning. Suppose that X is an N ∗K matrix and Y is an K ∗M
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Fig. 1. Matrix multiplication: each partition P requires N/n rows from X and M/m
columns from Y

matrix. If the previous matrix multiplication query for X×Y is evaluated naively using
an equi-join followed by a group-by, the intermediate result of the join would have been
of size N ∗K ∗M , which would have to be shuffled to the compute nodes of the cluster
for the group-by operation. Instead, one may use the SUMMA algorithm for matrix
multiplication [24], which has been adapted for the BSP distributed model [44] and
later for Map-Reduce [13]. This algorithm distributes the data as a grid of m ∗ n par-
titions, so that each partition contains N/n full rows from X and M/m full columns
from Y (Fig. 1). That is, the X elements are replicated m times and the Y elements
are replicated n times. Then, each partition is assigned to a single node in a cluster,
which must have enough free memory to multiply the associated submatrices of size
N/n ∗ K and K ∗ M/m. The goal of this method is to minimize replication (m and n)
so that the memory of each worker node in the cluster is fully utilized by performing
the submatrix multiplication in memory. When implemented using Map-Reduce, this
algorithm requires only one Map-Reduce job: the map task replicates and distributes
the data to reducers, while each reducer multiplies its submatrices in memory using a
hash join.

How can such algorithm be incorporated into the evaluation engine of a query
language? One solution is to provide a library of predefined functions for various matrix
operations, using their most efficient implementation. But such an approach does not
leave any opportunities for inter-operation optimization. Consider, for example, Matrix
Factorization using Gradient Descent [29], used in machine learning applications, such
as for recommender systems. The goal of this computation is to split a matrix R of
dimension n × m into two low-rank matrices P and Q of dimensions n × k and k × m,
for small k, such that the error between the predicted and the original rating matrix
R − P × QT is below some threshold, where P × QT is the matrix multiplication of P
with the transpose of Q and ‘−’ is cell-wise matrix subtraction. Matrix factorization
can be implemented using an iterative algorithm that repeatedly applies the following
rules to minimize the error matrix E:

E ← R − P × QT (1)
P ← P + γ(2E × QT − λP ) (2)
Q ← Q + γ(2E × PT − λQ) (3)

where γ is the learning rate and λ is the normalization factor used in avoiding overfit-
ting. But matrix transpose and cell-wise operations can be fused with matrix multipli-
cation, because they both correspond to a map operation, which can be incorporated
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into the map stage of the Map-Reduce operation that implements matrix multiplica-
tion, thus avoiding the extra map stage all together. That is, instead of defining matrix
operations as opaque library functions, we can express them using sufficiently generic
algebraic operations (i.e., higher-order functions) and use algebraic rewrite rules to
fuse them, thus minimizing the number of processing stages and eliminating interme-
diate results. That way, in addition to offering more opportunities for optimization,
application developers will not be forced to represent their data matrices in the sin-
gle fixed representation used by the underlying implementation of the concrete matrix
algorithms. Instead, they will be free to use any representation, thus focusing only on
the computation logic.

In addition to array operations, by generalizing these algorithms, one can optimize
a wider spectrum of queries that resemble matrix multiplication, such as calculating
the shortest path distances of all node pairs in a graph. If we represent a graph G as a
dataset of edges (i, j, d), where d is the distance between the graph nodes i and j, then
this dataset is equivalent to a matrix G such that the distance d is the matrix value
Gij . Then, the shortest distance Dij between i and j can be calculated by initially
setting Dij = Gij and Dii = 0 and by repeatedly improving Dij as follows:

Dij ← min(Dij , min
k

(Dik + Gkj))

which indicates that the shortest distance between a pair of nodes i and j in a graph
G is the minimum Dik + Gkj among all graph nodes k, where Dik is the shortest
distance between i and k and Gkj is the distance between k and j. The operation
mink(Dik + Gkj) is similar to the matrix multiplication D × G, but with addition
instead of multiplication and minimum instead of addition. The MRQL query that
expresses the shortest path distance algorithm is as follows:

1 repeat D = G union ( select ( i , i ,0)
2 from (i , j ,d) in G
3 group by i )
4 step select ( i , j ,min(d))
5 from (i ,k,d1) in D, (k, j ,d2) in G, d = d1+d2
6 group by i , j

Query 3. Shortest distance query

As explained in Sect. 3, the repeat query syntax ‘repeat D = i step s’ starts with
D = i and reassigns D with the result of s at each iteration step. The initial value of
D (lines 1 through 3) contains, in addition to the edges in G, the edges (i, i, 0) (that is,
Dii = 0) so that the minimum calculation in line 4 includes the case for k = i, giving d
= Gij . The select query in the repeat step (lines 4–6) looks very similar to the matrix
multiplication query (Query 2).

5 The GroupByJoin Operation

In this section, we generalize matrix multiplication using an algebraic operation, called
a Group-By Join. Given two arbitrary bags X and Y, the following generic MRQL
query:

1 select h( k, reduce(acc,zero ,z) )
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2 from x in X, y in Y, z = (x,y)
3 where jx(x) = jy(y)
4 group by k: ( gx(x), gy(y) )

Query 4. Generic GroupByJoin Query

generalizes matrix multiplication, where

– the function jx is the left join key function,
– the function jy is the right join key function,
– the function gx is the left group-by function,
– the function gy is the right group-by function,
– the function h is the result function, and
– reduce(acc,zero,s) reduces the elements of a bag s using an accumulator acc,

such that reduce(acc, zero, {z1, z2, . . . , zn}) = acc(z1, acc(z2, . . . , acc(zn, zero))) and
reduce(acc, zero, { }) = zero.

This query joins the bags X and Y using the join keys jx and jy, then groups the join
result by the group-by keys gx and gy, then aggregates the pairs z=(x,y) in each group
using the reduce function, and finally transforms each result tuple using the function
h. Note that, although the zero value in reduce(acc,zero,s) is not needed for a group-
by aggregation since it is not possible for a group to be empty, it is needed for total
aggregations on datasets that may be empty. To preserve bag semantics, function acc in
reduce(acc,zero,s) must satisfy acc(x, acc(y, z)) = acc(y, acc(x, z)) and acc(x, zero) = x,
for all x, y, and z.

The previous generic MRQL query is captured by the higher-order operation:

GroupByJoin( jx, jy, gx, gy, acc, zero, h, X, Y )

which generalizes the SUMMA algorithm by distributing X and Y into a grid of n ∗ m
partitions based on their group-by and join key functions.

For example, the matrix multiplication in Query 2 is captured by the
operation:

GroupByJoin( λ(x,i,k). k, // the join key jx
λ(y,k,j). k, // the join key jy
λ(x,i,k). i, // the group-by key gx
λ(y,k,j). j, // the group-by key gy
λ((x,y),c). c+x*y, // the accumulator acc
0, // the zero element
λ((i,j),c). (c,i,j), // the header h
X, Y ) // the input datasets

where λp. e is an anonymous function such that, if f = λp. e, then f(p) = e. For
example, for f = λ((i,j),c). (c,i,j), we have f((i,j),c) = (c,i,j).

Another example, is the select query in the repeat step of Query 3:

select ( i , j ,min(d))
from (i ,k,d1) in D, (k, j ,d2) in G, d = d1+d2
group by i , j
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which is captured by the operation:

GroupByJoin( λ(i,k,d1). k, // the join key jx
λ(k,j,d2). k, // the join key jy
λ(i,k,d1). i, // the group-by key gx
λ(k,j,d2). j, // the group-by key gy
λ((d1,d2),d).min(d,d1+d2), // the accumulator acc
0, // the zero element
λ((i,j),d). (i,j,d), // the header h
D, G ) // the input datasets

6 The Implementation of GroupByJoin in Map-Reduce

A straightforward implementation of the GroupByJoin operation is a join followed by a
group-by with aggregation. In this section, we implement the GroupByJoin operation in
the Map-Reduce framework using the SUMMA algorithm for matrix multiplication [24],
which is, as we will see, more efficient than the straightforward implementation. Our
implementation is based on the reduce-side join algorithm for Map-Reduce (described
below) but it uses special partition, grouping, and sorting functions to capture and
optimize the SUMMA algorithm. Before we describe the GroupByJoin implementation,
let’s see how the following join query between two datasets R and S:

select r .C, s .D
from r in R, s in S
where r.A = s.B

can be implemented in Map-Reduce. If one of the two datasets, such as R, is small
enough to fit in the memory of every worker node in the cluster, then we can broadcast
R to all worker nodes. This algorithm, called the map-backed join, is a Map-Reduce
job that consists of a map stage only, without a reduce stage. Before the Map-Reduce
job, the dataset R is broadcast to all worker nodes and each worker node creates a
built hash table from R. Then the map stage of each worker node joins its input split
of S with the hash table by R by probing the hash table. This join is very efficient but
it requires that one of the datasets can fit in memory. If neither R nor S can fit in the
memory of a worker node, then the join can be implemented using the reduce-side join
algorithm [31], shown in Fig. 2.

The Map-Reduce job shown in Fig. 2 has two mappers, one for each dataset:

– mapLeft: a mapper for the dataset R that generates key-value pairs where the key
is the join key R.A

– mapRight: a mapper for the dataset S that generates key-value pairs where the
key is the join key S.B

The two mappers send the R and S values associated with the same keys R.A=S.B to
the same reducer, where they are reduced together. The mapLeft mapper tags the R
tuples with 1 and the mapRight mapper tags the S tuples with 2 so that the reducer
can tell them apart. Since the reduce method is evaluated for each different key, the
values are all the tuples from R and S that correspond to the same key, which is equal
to R.A and S.B. The nested loop in the reduce method separates the R from the S
tuples by looking at the tag of the value: a value with tag 1 is an R tuple and a value
with tag 2 is an S tuple. Finally, the R tuples are combined with the S tuples using a
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1 mapLeft ( r ):
2 emit(r .A,(1, r ))
3
4 mapRight ( s ):
5 emit(s.B,(2,s))
6
7 reduce ( key, values ):
8 for each (1,r) in values
9 for each (2,s) in values

10 emit(key,( r .C,s.D))

Fig. 2. Map-Reduce pseudo-code for the reduce-side join between the datasets R and S

Fig. 3. Map-Reduce pseudo-code for GroupByJoin( jx, jy, gx, gy, acc, zero, h, X, Y)

nested loop, since these are the tuples that correspond to the same join key and must
be joined together.

The GroupByJoin operation is based on the reduce-side join but it uses special
replication and partitioning techniques, as required by the SUMMA algorithm. It dis-
tributes the data to the worker nodes in the form of a n ∗ m grid of partitions, where
each partition contains only those rows from X and those columns from Y needed to
compute a single partition of the resulting matrix.
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Figure 3 shows the pseudo-code for the implementation of GroupByJoin in Map-
Reduce. The rest of this section explains the code in detail. Each of the n∗m partitions
is ideally assigned to a single worker node (a reducer), but in general each reducer may
receive multiple partitions, and each partition may contain multiple groupings. Each
grouping is handled separately by the reduce method. Similar to a regular reduce-side
join on Map-Reduce, our GroupByJoin uses two mappers, mapLeft and mapRight, one
for each input dataset, X and Y. Unlike a regular reduce-side join though, the mapLeft
replicates each tuple m times while the mapRight mapper replicates each tuple n times,
all under different join keys (lines 1–3 and 5–7 in Fig. 3). Both mappers emit (key,value)
pairs. A mapper value takes the form (tag,data), where data is the input data and tag
is the source number 1 or 2, to specify the input source (X or Y). A mapper key on the
other hand is a triple (partition,joinkey,tag), where partition is one of the n∗m partitions,
and joinkey is the join key value, jx(x) for the left mapper and jy(y) for the right mapper.
More specifically, the partition number of a partition (i, j) in the grid of n∗m partitions
is equal to i ∗ m + j (based on row-major numbering in the partition grid). The two
mappers replicate the X and Y values under different partition numbers. A value x ∈ X
is sent to all the row partitions (gx(x) mod n, ∗) (n partitions) while a value y ∈ Y
is sent to all the column partitions (∗, gy(y) mod m) (m partitions). Hadoop Map-
Reduce supports custom partitioning, grouping, and sorting functions that control the
shuffling of the map results to the reducers. These custom functions are adjusted in such
a way that this Map-Reduce job implements the SUMMA algorithm efficiently. They
are directly derived from the partition, joinkey, and tag components of the mapper key.
In our Hadoop Map-Reduce implementation,

– the partition function returns the partition value of the mapper key,
– the grouping function returns the pair (partition,joinkey), and
– the sorting is based on partition (major order), joinkey (minor order), and tag (sub-

minor order).

Each call to the reduce method is associated with a certain partition number and a
certain joinkey, by means of the grouping function. Consequently, the values parameter
of the reduce method contains all tuples from both X and Y whose join key is equal to
joinkey. For matrix multiplication, when X is an N∗K matrix and Y is an K∗M matrix,
the size of values will be N/n + M/m, one column from the X horizontal partition and
one row from the Y vertical partition (Fig. 4).

Fig. 4. Each reducer receives N/n + M/m tuples per call and stores (N ∗ M)/(n ∗ m)
tuples

In Map-Reduce, the values argument of the reduce method can only be accessed once
in a stream-like fashion, because these values are directly read from the merged runs
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stored on the reducer’s local disk. But if we sort the values so that the X tuples appear
before the Y tuples, then it would not be necessary to store the values in a vector to
do the nested-loop join between the matched X and Y tuples. The reduce method in
Fig. 3 stores the X tuples in a vector xs (lines 13–16) and then does a cross product
between xs and the Y tuples (lines 17–22), followed by a group-by with aggregation.
This is possible because the X tuples come before the Y tuples, by means of the sorting
function, and all results in a group are guaranteed to occur within the same partition.
The reduce method uses a key-value map H (implemented as a hash table) that holds
the partial results of the aggregation after the join and group-by. Each reducer must
have its own copy of H (a static variable in Java). It has to be maintained across
multiple calls to the reduce method within the same partition. The body of the nested-
loop join (lines 19–22) makes partial contributions to the group-by with aggregation by
using the group-by key (gx(x),gy(y)) to accumulate the new pair (x,y) to the existing
value associated with this key using the accumulator acc.

The code in lines 10–12 in Fig. 3 checks whether the reducer has seen the end of
a partition. Function flush(H) applies the function h to each key-value pair in H and
emits the results to the output file:

flush ( H ):
for each (key,value) in H

emit h(key, value)
clear H

Given that a reducer may be assigned multiple partitions, the results of processing
each partition are emitted by flush(H) at the end of each partition (when the partition
number changes). This is possible because the input pairs arrive to a reducer sorted by
a partition number (major order). The hash table H needs to be maintained across a
partition only since each partition contains all the required data to complete the join.
Thus, when the current partition is finished, the hash table H is flushed and the next
partition is ready to be processed with an empty H. Thus, H should be large enough to
fit the largest resulting partition. Ideally, if there is no data skew, the size of H should
be the total size of the resulting dataset divided by n ∗m. In our matrix multiplication
case, when X is an N ∗ K matrix and Y is an K ∗ M matrix, the size of the hash
table H should be (N ∗ M)/(n ∗ m) (see Fig. 4). Larger n and m requires more data
replication and thus more network traffic, while smaller n and m may require a hash
table that is too large to fit in memory. Thus, we must select the smallest n and m so
that H can fit in memory. If there is available memory at each reducer to fit T tuples,
then (N ∗ M)/(n ∗ m) = T . Our goal is to minimize data replication, which is equal to
N ∗K ∗m+K ∗M ∗n, which is equivalent to minimizing N/n+M/m (if we divide by
the constant K ∗n ∗m). Given that (N/n) ∗ (M/m) = T , the minimum N/n+M/m is
derived when N/n = M/m =

√
T . That is, given the amount of available memory at

each reducer (T tuples), the optimal grid size that minimizes the amount of shuffling
is n = N/

√
T and m = M/

√
T .

7 The Implementation of GroupByJoin in Spark and
Flink

In addition to Map-Reduce, the GroupByJoin operation has been implemented on
Apache Spark [9] and Apache Flink [2] since these frameworks too are supported by
the MRQL evaluation engine. These frameworks provide a similar API, although they



134 L. Fegaras

have different performance characteristics. Hence, we describe the GroupByJoin imple-
mentation in Spark only but we evaluate GroupByJoin on both Spark and Flink.

The central Spark data abstraction is the Resilient Distributed Dataset (RDD),
which is an immutable collection of values partitioned across multiple machines in a
cluster. These RDD partitions are typically stored in the memory of the compute nodes.
An RDD is resilient to failures; a lost RDD partition can be reconstructed from its input
RDD partitions (from the RDDs that were used to compute this RDD). The evalua-
tion of RDD transformations in Spark is deferred until an action is encountered that
brings data to the master node or stores the data into a file. Spark collects the deferred
transformations into a DAG and divides them into subsequences, called stages. Data
shuffling occurs between stages, while transformations within a stage are combined into
a single RDD transformation. Despite this inter-stage optimization, Spark cannot per-
form non-trivial optimizations, such as moving a filter operation before a join, because
the functional arguments of the RDD operations are written in the host language and
cannot be analyzed for code patterns at run-time. Spark has addressed this shortcom-
ing by providing two additional APIs, called DataFrames and Datasets [1]. A Dataset
combines the benefits of RDD (strong typing and powerful higher-order operations)
with Spark SQL’s optimized execution engine. A DataFrame is a Dataset organized
into named columns as in a relational table. SQL queries in DataFrames are translated
and optimized to RDD workflows at run-time using the Catalyst architecture.

Fig. 5. Spark scala code for GroupByJoin

Figure 5 shows the code of the GroupByJoin method. The Scala types have been
omitted for brevity. As it was done in the mapLeft and mapRight methods in Fig. 3,
the code in lines 2–5 in Fig. 5 creates the RDDs XS and YS that replicate the elements
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of X m times and the elements of Y n times into a grid of n ∗ m partitions. (In Scala,
X.flatmap(f) applies the function f to every element of the sequence X and concatenates
the resulting lists into one list; while (0 until m) creates a new list [0, . . . , m − 1].)
Unlike mapLeft and mapRight though, Spark does not need to use a tag to separate
the X from the Y values because it provides a special operation for reduce-side join,
called cogroup. The n*m argument of cogroup indicates the number of reducers, which
is also the number of the output partitions. Furthermore, the keys in XS and YS do not
depend on the join keys jx and jy. This means that the join performed by cogroup is
over the partition number only. But, as in Map-Reduce, each partition is self-sufficient
to create its join result. That is, after the cogroup, there will be n ∗m pairs (p,(xs,ys)),
for each different partition p, ideally one pair for each reducer. This is not problematic
because Spark keeps each RDD partition in memory in most cases. The flatMap in
lines 7–20 performs a hash join between xs and ys. The partial results of the group-by
aggregation are maintained in the hash table H, in the same way it was done in the
reducer in Fig. 3. The flatMap functional constructs the built hash table hx for the
input xs using a MultiMap (line 9), which is a hash table that maps a key to a set of
values. Then, the foreach expression in lines 11–18 performs a loop over ys and probes
the hash table hx using the join key jy(y), and in general returns a set of x values.
Finally, the probed x is used along with y to add a new entry to the aggregation table
with key (gx(x),gy(y)) (lines 14–16). After all values are aggregated, the result of the
groupByJoin is calculated by applying the header function h to every value in the hash
table H (line 19).

Fig. 6. Spark scala code for the SUMMA algorithm for X × Y

To illustrate the GroupByJoin functionality better, the Spark code in Fig. 6 com-
putes the matrix multiplication X × Y using the SUMMA algorithm. It is an instance
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of the GroupByJoin algorithm in Fig. 3. Every tuple (v,i,j) in X is replicated m times
across all columns k in the row i of the n ∗ m grid, which corresponds to the partition
(i % n)*m+k (lines 1–2). On the other hand, every tuple (v,i,j) in Y is replicated n
times across all rows k in the column j of the grid, which corresponds to the partition
(j % m)+m*k (lines 3–4). The XS.cogroup(YS,n*m) operation in line 5 performs a dis-
tributed join over n∗m partitions using the join keys (partition numbers) computed in
lines 1–4. That is, the number of pairs returned by this join is n ∗ m, one for each par-
tition. Given that an RDD is in the distributed memory across the worker notes, each
pair (k,(xs,ys)) corresponds to a different reducer, which ideally is a different worker
node. The xs and ys collections have all the required data to derive the join result that
corresponds to this partition. This computation is done in the hash join with group-by
and aggregation in lines 7–19. The hash table H contains a partition of the resulting
matrix and is populated during the final aggregation. The hash table hx is the built
table from xs and is populated before the join (lines 9–10) using the key k for a tuple
(x,i,k) in xs. The actual hash join is done in lines 11–18 by scanning ys (line 11) and
probing the built hash table hx (line 12) using the hash key k from the tuple (y,k,j).
The code in lines 13–16 updates the result table H by adding the product x*y to the
exiting value. Finally, the code in line 19 converts the entries in the result table H into
matrix values for the resulting matrix.

8 Translating Queries to GroupByJoin Operations

Based on the discussion in the Introduction, it would be hard to use source-to-source
transformations to translate queries, such as matrix multiplication and shortest dis-
tance, to an algebraic form that contains GroupByJoin operations, because query syn-
tax may take many different equivalent forms, which have to be recognized by these
source-to-source transformations. Instead, our approach is to translate queries to their
default algebraic forms and then normalize and rewrite these forms using algebraic
rules.

8.1 The MRQL Algebra

The MRQL algebra used in this section has already been described in our previous
work [17,18]. The most important algebraic operation in the MRQL algebra is cMap
(also known as concat-map or flatten-map in functional programming languages), which
generalizes the select, project, join, and unnest operators of the nested relational alge-
bra. Given two arbitrary types α and β, the operation cMap(f, X) maps a bag X of
type {α} to a bag of type {β} by applying the function f of type α → {β} to each
element of X, yielding one bag for each element, and then by merging these bags to
form a single bag of type {β}. Using a set former notation on bags, it is expressed as
follows:

cMap(f, X) = { z | x ∈ X, z ∈ f(x) } (4)
Given an arbitrary type κ that supports value equality (=), an arbitrary type α, and a
bag X of type {(κ, α)}, the operation groupBy(X) groups the elements of the bag X by
their first component and returns a bag of type {(κ, {α})}, where the first component
of each tuple is a unique group-by key and the second is the group (a bag) that con-
tains all values that correspond to this key. For example, groupBy({(1,“A”), (2,“B”),
(1,“C”)}) returns {(1,{“A”,“C”}), (2,{“B”})}. Although any join X ��jx(x)=jy(y) Y
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can be expressed as a nested cMap, to facilitate the creation of physical plans for joins,
the MRQL algebra provides a special join operator:

join(jx, jy, h, X, Y )
= { h(x, y) | x ∈ X, y ∈ Y, jx(x) = jy(y) }
= cMap(λx. cMap(λy. if jx(x) = jy(y) then {h(x, y)} else { }, Y ), X)

where an anonymous function λx. e specifies a unary function (a lambda abstraction)
f such that f(x) = e. This operation joins two bags, X of type {α} and Y of type
{β}, using the join functions, jx of type α → κ and jy of type β → κ, and combines
the joining values using the function h of type (α, β) → γ, deriving a bag of type {γ}.
Finally, aggregations are captured by the operation reduce(acc, zero, X), which reduces
the elements of a bag X of type {α} into a value of type β, using an accumulator acc
of type (α, β) → β and a zero value zero of type β. For example, reduce( λ(x, s). x +
s, 0, {1, 2, 3} ) = 6.

The algebraic terms derived from MRQL queries can be normalized using rewrite
rules, such as:

cMap(f, cMap(g, S)) → cMap(λx. cMap(f, g(x)), S) (5)

which fuses two cascaded cMaps into a nested cMap, thus avoiding the construction
of the intermediate bag. This rule can be proven directly from the cMap definition in
Eq. (4):

cMap(f, cMap(g, S)) = { z | w ∈ { y | x ∈ S, y ∈ g(x) }, z ∈ f(w) }
= { z | x ∈ S, y ∈ g(x), z ∈ f(y) }
= { z | x ∈ S, z ∈ { w | y ∈ g(x), w ∈ f(y) } }
= cMap(λx. cMap(f, g(x)), S)

In addition, a cMap can be fused with a join resulting to a new join:

join( jx, jy, h, X, cMap(λy. {f(y)}, Y ) )

→ join( jx, λy. jy(f(y)), λ(x, y). h(x, f(y)), X, Y ) (6)
cMap(λv. {f(v)}, join( jx, jy, h, X, Y ))

→ join( jx, jy, λ(x, y). f(h(x, y)), X, Y )) (7)

8.2 Translating Algebraic Terms to GroupByJoin Operations

In an earlier work [18], we have presented a general framework for translating MRQL
queries to algebraic terms. This framework uses novel optimization techniques to map
these algebraic forms to efficient workflows of physical plan operations that are specific
to the underlying distributed platform.

The framework described in this paper extends our earlier work [18] by introducing
a new algebraic operation, GroupByJoin, and by providing rules for deriving Group-
ByJoin operations from algebraic forms. By default, the generic MRQL query, Query 4:

select h( k, reduce(acc,zero ,z) )
from x in X, y in Y, z = (x,y)
where jx(x) = jy(y)
group by k: ( gx(x), gy(y) )
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is translated to the following algebraic form:

cMap( λ(k,s). { h(k,reduce(acc,zero,s)) },
groupBy( join( jx, jy,

λ(x,y). ( (gx(x),gy(y)), (x,y) ),
X, Y ) ) )

which joins X and Y via the join keys jx and jy (i.e., a value x in X is joined with a value
y in Y if jx(x)=jy(y)), and produces pairs (key, (x,y)), where key is the group-by key
(gx(x),gy(y)). The group-by operation collects all (x,y) pairs that are associated with
the same key into a group and the outer operation, cMap, accumulates each group s
to a single value by reducing this group using reduce(acc,zero,s) and then applying the
result function h. These algebraic forms can be derived from queries that may look very
different from the previous query, since algebraic forms are normalized to a canonical
form and, thus, queries that correspond to a GroupByJoin will always be translated
to the same canonical algebraic form. The GroupByJoin operation is derived with the
help of the following rule:

cMap( λ(k,s). { h(k,reduce(acc,zero,s)) },
groupBy( join( jx, jy,

λ(x,y). ( (gx(x),gy(y)), (x,y) ),
X, Y ) ) )

→ GroupByJoin( jx, jy, gx, gy, acc, zero, h, X, Y )

which rewrites the previously derived equi-join/group-by algebraic form to a Group-
ByJoin. Note that the variables in this rule, such as x, can be matched with any term,
while term functions, such as gx(x), are terms that contain their arguments as subterms.
For example, the term function gx(x) matches any term that depends on the variable
x. The pattern that represents a join followed by the groupBy in the previous rule
matches most terms with a groupBy after join. The cMap functional argument that
evaluates the aggregation reduce(acc,zero,s) though is more restrictive as it requires
that each group s formed after groupBy be reduced by an aggregation that matches
reduce(acc,zero,s), for some acc and zero.

For example, consider the MRQL query, Query 2, that captures matrix multiplica-
tion X × Y :

select ( sum(z), i , j )
from (x, i ,k) in X, (y,k, j ) in Y, z = x∗y
group by i , j

This query is translated into the following algebraic form:

cMap( λ((i,j),s). {( reduce(λ(v,c). c+v, 0, s), i, j )},
groupBy( join( λ(x,i,k). k, λ(y,k,j). k,

λ((x,i,k),(y,l,j)). ( (i,j), x*y ),
X, Y ) ) )

which joins the matrices X and Y so that a matrix element (x,i,k) in X is joined with
a matrix element (y,k’,j) if k=k’. These joined values contribute the key-value pair (
(i,j), x*y ) to the join result, where the key (i,j) is used as the group-by key by the
groupBy operation. Then, all x*y values that correspond to the same group key (i,j)
form a group s, which is reduced by the outer cMap by calculating the sum of all these
values using reduce(λ(v,c). c+v, 0, s) (i.e., it reduces s using the accumulator + and an
initial value 0). This algebraic form matches the left-hand side of our translation rule,
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which rewrites the algebraic form to the term:

GroupByJoin( λ(x,i,k). k, λ(y,k,j). k, λ(x,i,k). i, λ(y,l,j). j, λ(v,c). c+v, 0, λ((i,j),c). {(c,i,j)}, X, Y )

which is equivalent to the term derived in Sect. 5.

8.3 Optimization of GroupByJoin Operations

Optimization of matrix operations in our framework is done before algebraic terms are
transformed to GroupByJoin operations using the existing MRQL optimizer. That is,
join, groupBy, and cMap operations are fused together using the rewrite rules presented
in Sect. 8.1, and then the resulting terms are transformed to GroupByJoin operations
using the rewrite rule presented in Sect. 8.2.

For example, consider the composition of matrix multiplication with matrix trans-
pose X × Y T , where matrix transpose Y T is expressed as follows in MRQL:

select (y, j , i ) from (y, i , j ) in Y

which flips the two indexes, thus transposing the matrix Y. This query is translated to
the following algebraic form:

cMap( λ(y,i,j). { (y,j,i) }, Y )

Therefore, from Sect. 8.2, the composition X × Y T is:

cMap( λ((i,j),s). {( reduce(λ(v,c). c+v, 0, s), i, j )},
groupBy( join( λ(x,i,k). k, λ(y,k,j). k,

λ((x,i,k),(y,l,j)). ( (i,j), x*y ),
X,
cMap( λ(y,i,j). {(y,j,i)}, Y ) ) ) )

(The only difference from the matrix multiplication algebraic form in Sect. 8.2 is the
last line that transposes the matrix Y.) Using Eq. 6, the join is fused with the inner
cMap giving:

cMap( λ((i,j),s). {( reduce(λ(v,c). c+v, 0, s), i, j )},
groupBy( join( λ(x,i,k). k,

λ(y,j,k). k,
λ((x,i,k),(y,j,l)). ( (i,j), x*y ),
X, Y ) ) )

This term is translated to the following algebraic operation:

GroupByJoin( λ(x,i,k). k, λ(y,j,k). k, λ(x,i,k). i, λ(y,j,l). j, λ((x,y),c). c+x*y, 0,
λ((i,j),c). (c,i,j), X, Y )

which combines matrix multiplication with matrix transpose into a single GroupByJoin
operation.

9 Performance Evaluation

The platform used for our evaluations is a small cluster of 9 nodes, built on the
Chameleon cloud computing infrastructure, www.chameleoncloud.org. This cluster
consists of nine m1.medium instances running Linux, each one with 4 GB RAM and

www.chameleoncloud.org
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Fig. 7. Matrix factorization using gradient descent in MRQL

two VCPUs at 2.3 GHz. For our experiments, we used Hadoop 2.6.0 (Yarn), Spark
2.1.0, Flink 1.0.3, and MRQL 0.9.8. The cluster frontend was used exclusively as a
Name-Node and ResourceManager, while the remaining 8 compute nodes were used as
DataNodes and NodeManagers. There was a total of 16 VCPUs and a total of 28.5 GB
of RAM available for compute tasks. The HDFS file system was formatted with the
block size set to 128 MB and the replication factor set to 3. Each dataset used in our
experiments was stored in a single HDFS file. Our experiments were run using MRQL
on three evaluation modes: Hadoop Map-Reduce mode, Spark mode, and Flink mode.
Each experiment was evaluated 5 times under the same data and configuration param-
eters. Each data point in the plots in Figs. 8, 9 and 10 represents the mean value of
5 experiments while the vertical error bar at each line point represents the minimum
and maximum values among these 5 experiments.

We have experimentally validated the effectiveness of our methods for
three MRQL queries, based on operations that are defined in Fig. 7: (1) a
matrix multiplication query, multiply(X,Y), (2) a simple query multiply-transpose,
multiply(X,transpose(Y)), and (3) a matrix factorization query using gradient descent,
factorize(R,P,Q).
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Fig. 8. Evaluation of matrix multiplication on (A) Map-Reduce, (B) Spark, and (C)
Flink

 0

 20

 40

 60

 80

 100

 120

 140

 0  1  2  3  4  5  6  7  8

To
ta

l T
im

e 
(s

ec
s)

A) Transpose-Multiply on Map-Reduce,   Data Size (MB)

with opt
without opt

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8

To
ta

l T
im

e 
(s

ec
s)

B) Transpose-Multiply on Spark,   Data Size (MB)

with opt
without opt

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  1  2  3  4  5  6  7  8

To
ta

l T
im

e 
(s

ec
s)

C) Transpose-Multiply on Flink,   Data Size (MB)

with opt
without opt

Fig. 9. Evaluation of multiply-transpose on (A) Map-Reduce, (B) Spark, and (C) Flink

The matrices X and Y used in the evaluation of the first two queries (matrix multi-
plication and multiply-transpose) were square matrices with dimensions (i∗40)∗(i∗40)
and size i ∗ 0.38 MB, for i ∈ [1, 0]. Consequently, the largest matrix used has dimen-
sions 400 * 400 while the maximum total input size is 3.8 * 2 = 7.2 MB. The type
of the matrix elements is (float, int, int), where the two integers are the row and col-
umn indexes, and the float is the value. Each matrix used in our experiments was
dense (i.e, all matrix elements were provided) and filled with random values between
0.0 and 10.0, and the matrix elements were placed in random order. Figure 8 shows
the results of evaluating the matrix multiplication query on Map-Reduce, Spark, and
Flink, with and without using our optimization framework. That is, the “with opt”
line is from evaluating the matrix multiplication query using a GroupByJoin operation
and the “without opt” line is from the straightforward evaluation plan that consists of
a join followed by a group-by with aggregation. In the latter case, the join is a simple
reduce-side join. We can see that the performance improvement for Map-Reduce is
more pronounced than that for Spark and Flink, especially for matrices larger than
280 * 280 (which corresponds to a total size of 5.32 MB). We get similar performance
results for the multiply-transpose query in Fig. 9. The results for multiply-transpose
are very similar to those for matrix multiplication because, the optimized version of
the former is exactly the same as the optimized version of the latter query, while the
non-optimized versions differ only in the extra map needed for the transpose operation,
which can be performed efficiently by all three frameworks since it does not require
any data shuffling. We also believe that, in the case Map-Reduce, the reason for the
peak at MB is that the size of the intermediate data between the reduce-side join and
the group-by with aggregation has reached a critical point where sorting and merging
must be external (on the mappers local disk), rather than in-memory. More specifically,
since the intermediate data produced by the join between two matrices of size N2 is of
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Fig. 10. Evaluation of matrix factorization on (A) Map-Reduce, (B) Spark, and (C)
Flink

size N3, the group-by workload after the join will be very high. The group-by though is
implemented by partitioning the data and sorting the partitions at the mappers, before
the data are shuffled and merged at the reducers. When the data are larger than the
amount of memory allocated for sorting at a mapper, the mapper will necessarily use
external sorting, which may explain the peak in the diagram.

Figure 10 shows the results of evaluating matrix factorization. Given a matrix R,
our matrix factorization query in Fig. 7 calculates the error matrix E = R − P × QT

and the factor matrices P and Q, so that R is approximately equal to P ×QT . For our
experiments, we set this query to iterate 10 times and used the learning rate a = 0.002
and the normalization factor b = 0.02. The matrix to be factorized, R, was an n × m
sparse matrix with random integer values between 1 and 5 in which only the 10% of
the elements were provided (the rest were implicitly zero). The size of m was always
kept equal to 10 ∗ n, while n ∗ m was set to 100000 + i ∗ 50000 elements, for i ∈ [0, 9].
That is, n ∗ m took the following values: 100 * 1000, 122 * 1220, 141 * 1410, 158 *
1580, 173 * 1730, 187 * 1870, 200* 2000, 212 * 2120, 223 * 2230, 234 * 2340. The
initial factor matrices, Pinit and Qinit, had sizes n ∗ k and m ∗ k, respectively, where
k = 10 for all experiments (which is a low rank), and all their elements were initialized
to 2.5. Figure 10 shows the results of evaluating the matrix factorization query on
Map-Reduce, Spark, and Flink, with and without optimization. We can see that the
improvement for the Map-Reduce evaluation is substantial (the optimized query is
about 27% faster than the non-optimized one) mostly because the benefits of all the
optimizations used in MRQL are accumulated and repeated at each iteration step. The
results from the Map-Reduce evaluation look very similar for different data sizes (100 K
through 550 K tuples) because all matrices (including the intermediate results) are split
into 16 partitions in the HDFS (one for each compute node) and each partition can fit
into one HDFS block (128 MBs) regardless of its size.

10 Conclusion and Future Work

We have presented a general framework for optimizing SQL-like queries that capture
array-based computations on sparse arrays. In contrast to related work, we do not
provide a library of predefined array operations. Instead, we are letting programmers
express their array operations using normal SQL-like syntax, but, at the same time,
we provide an optimization framework that translates these queries into efficient dis-
tributed array operations. That way, we are able to achieve inter-operation optimiza-
tion that would be infeasible if these operations were expressed as black boxes. Our
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framework has been tested on three popular Big Data platforms that exhibit differ-
ent functionality and performance characteristics. As a future work, we will apply
our framework to more Big Data platforms, such as Apache Storm. In addition, we
are planning to capture more data-parallel algorithms that have already been used in
high-performance computing to implement matrix operations or other general linear
algebra parallel algorithms. Furthermore, we are planning to experiment with a gener-
alization of the group-by-join algorithm to capture n-way matrix multiplications. That
is, instead of using chains of binary matrix operations, complex terms that involve mul-
tiple matrix operations would be translated into a single n-way group-by-join operation
thus avoiding creating the intermediate matrices between the binary matrix operations.
To accomplish this, the grid of partitions will have to be multi-dimensional, where each
dimension corresponds to a different matrix. Then, the replication of the elements of
a matrix will be done across the rest of the n − 1 grid dimensions. That way, any com-
plex term that consists of multiple matrix multiplications and other operations (such
as, cell-wise operations and transpose), such as the body of matrix factorization, will
be fused to a single n-ary group-by-join, thus achieving optimal performance.

Acknowledgments. Our performance evaluations were performed at the Chameleon
cloud computing infrastructure, www.chameleoncloud.org, supported by NSF.
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Abstract. The support and periodicity are two important dimensions
to determine the interestingness of a pattern in a dataset. Periodic-
frequent patterns are an important class of regularities that exist in a
dataset with respect to these two dimensions. Most previous models on
periodic-frequent pattern mining have focused on finding all patterns in
a transactional database that satisfy the user-specified minimum support
(minSup) and maximum periodicity (maxPer) constraints. These mod-
els suffer from the following two obstacles: (i) Current periodic-frequent
pattern models cannot handle datasets in which multiple transactions
can share a common time stamp and/or transactions occur at irreg-
ular time intervals (ii) The usage of single minSup and maxPer for
finding the patterns leads to the rare item problem. This paper tries
to address these two obstacles by proposing a novel model to discover
periodic-correlated patterns in a temporal database. Considering the
input data as a temporal database addresses the first obstacle, while
finding periodic-correlated patterns address the second obstacle. The
proposed model employs all-confidence measure to prune the uninter-
esting patterns in support dimension. A new measure, called periodic-
all-confidence, is being proposed to filter out uninteresting patterns in
periodicity dimension. A pattern-growth algorithm has also been dis-
cussed to find periodic-correlated patterns. Experimental results show
that the proposed model is efficient.

Keywords: Data mining · Pattern mining · Periodic patterns
Rare item problem · Pattern-growth technique

1 Introduction

Periodic-frequent pattern1 mining is an important model in data mining. It
involves discovering all patterns in a transactional database that satisfy the
1 A set of items represents a pattern (or an itemset).
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user-specified minimum support (minSup) and maximum periodicity (maxPer)
constraints [35]. The minSup controls the minimum number of transactions
that a pattern must cover, and the maxPer controls the maximum interval
within which a pattern must reoccur in the entire database. Finding periodic-
frequent patterns is a significant task with many business applications. A classic
application is market-basket analytics. It analyzes how regularly the itemsets are
being purchased by the customers. An example of a periodic-frequent pattern is
as follows:

{Bat,Ball} [support = 5%, periodicity = 1 h].

The above pattern says that 5% of the customers have purchased the items ‘Bat’
and ‘Ball,’ and the maximum duration between any two consecutive purchases
containing both of these items is no more than an hour. This predictive behavior
of the customers’ purchases may facilitate the users in product recommendation
and inventory management.

Fournier-Viger et al. [11] extended the periodic-frequent pattern model to
find periodic-utility patterns in a transactional database. Amphawan et al.
[2] extended the model to find top-k periodic-frequent patterns in a transac-
tional database. Uday et al. [24] extended the periodic-frequent pattern model
to find partial periodic-frequent patterns in a transactional database. Nofong
[27] extended the periodic-frequent pattern model to find productive periodic-
frequent patterns. In this model, a periodic-frequent pattern is considered pro-
ductive if its support is greater than the product of its subsets. The popular
adoption and successful industrial application of this model suffers from the fol-
lowing obstacles: (i) Since the model accepts the transactional database as an
input, the model implicitly assumes that all transactions in a database occur
at a fixed time-interval. This assumption limits the applicability of the model
as transactions in a database may occur at irregular time intervals. (ii) The
minSup and maxPer play a key role in periodic-frequent pattern mining. They
are used to prune the search space and limit the number of patterns being gen-
erated. Since only a single minSup and maxPer are used for the whole data,
the model implicitly assumes that all items in the data have uniform support
and periodicity. However, this is seldom the case in many real-world appli-
cations. In many applications, some items appear very frequently in the data,
while others rarely2 appear. Moreover, rare items typically have high periodicity
(i.e., inter-arrival times) as compared against the frequent items. If the support
and periodicity of items vary a great deal, we will encounter the following two
problems:

– If the maxPer is set too low and/or the minSup is set too high, we will miss
the periodic patterns involving rare items.

– To find the periodic patterns involving both frequent and rare items, we
have to set a high maxPer and a low minSup. However, this may result

2 Classifying the items into either frequent or rare is a subjective issue that depends
upon the user and/or application requirements.
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in combinatorial explosion, producing too many patterns, because frequent
items can combine with one another in all possible ways and many of them
may be meaningless.

This dilemma is known as the “rare item problem.” This paper tries to address
both of these problems.

Prior to our study, researchers have tried to address the rare item prob-
lem using the concept of multiple minSup and maxPer constraints [20,33]. In
this concept, each item in the database is specified with a minimum item sup-
port (minIS) and maximum item periodicity (maxIP ). Next, the minSup and
maxPer of a pattern are specified depending on its items minIS and maxIP
values, respectively. Although this concept facilitates every pattern to satisfy a
different minSup and maxPer values, it still suffers from an open problem of
determining the items’ minIS and maxIP values.

In this paper, we propose a model to discover periodic-correlated patterns in a
temporal database. A temporal database is a collection of transactions ordered by
their timestamps. A temporal database facilitates multiple transactions to share
a common timestamp and time gaps in-between consecutive transactions. Thus,
considering the input data as a temporal database addresses the first obstacle in
periodic-frequent pattern model. In the literature, correlated pattern model was
discussed to address the rare item problem in frequent pattern mining [28]. We
extend this model to find periodic-correlated patterns in a temporal database.
Thus, addressing the second obstacle of periodic-frequent pattern model. The
proposed model considers a pattern as interesting if it satisfies the following two
conditions: (i) if the support of a pattern is close to the support of its individual
items, and (ii) if the periodicity of a pattern is close to the periodicity of its
individual items. The renowned all-confidence [28] measure is used to determine
how close is the support of a pattern with respect to the support of its individ-
ual items. To the best of our knowledge, there exists no measure to determine
how close is the periodicity of a pattern with respect to the periodicity of its
items. So forth, we introduce a new measure, called periodic-all-confidence, to
determine the interestingness of a pattern. The periodic-all-confidence measure
is used to determine how close is the periodicity of a pattern with respect to the
periodicity of its individual items. These two measures facilitate us to achieve the
objective of generating periodic-correlated patterns containing both frequent and
rare items yet without causing frequent items to generate too many uninterest-
ing patterns. A pattern-growth algorithm, called Extended Periodic-Correlated
pattern-growth (EPCP-growth), has also been described to find all periodic-
correlated patterns. Experimental results demonstrate that the proposed model
can discover useful information and EPCP-growth is runtime efficient and highly
scalable as well.

In [38], we have studied the problem of finding periodic-correlated patterns
in transactional databases. In this paper, we first extend this study to temporal
databases and provide theoretical correctness for EPCP-growth algorithm. We
also evaluate the performance of EPCP-growth by conducting extensive experi-
ments on both synthetic and real-world databases.
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The rest of the paper is organized as follows. Section 2 describes related work
on frequent pattern mining, periodic pattern mining and periodic-frequent pat-
tern mining. Section 3 extends the (full) periodic-frequent pattern model to han-
dle the temporal databases. Section 4 introduces the proposed model of finding
periodic-correlated patterns in a temporal database. Section 5 describes EPCP-
growth algorithm. Section 6 reports on experimental results. Finally, Sect. 7 con-
cludes the paper with future research directions.

2 Related Work

2.1 Frequent Pattern Mining

Agrawal et al. [1] introduced the problem of finding frequent patterns in a trans-
actional database. Since then, the problem of finding these patterns has received
a great deal of attention [9,10,12,13,30,36,42]. The basic model used in most
of these studies remained the same. It involves discovering all frequent pat-
terns in a transactional database that satisfy the user-specified minimum sup-
port (minSup) constraint. The usage of single minSup for the entire database
leads to the rare item problem (discussed in previous section). When confronted
with this problem in real-world applications, researchers have tried to address
it using the concept of multiple minSups [16,21,26]. In this concept, each item
in the database is specified with a support-constraint known as minimum item
support (minIS). Next, the minSup of a pattern is represented with the lowest
minIS value of its items. Thus, every pattern can satisfy a different minSup
depending upon its items. A major limitation of this concept is that it suffers
from an open problem of determining the items’ minIS values.

Brin et al. [6] introduced correlated pattern mining to address the rare item
problem. The statistical measure, χ2, was used to discover correlated patterns.
Since then, several interestingness measures have been discussed based on the
theories in probability, statistics, or information theory. Examples include all-
confidence, any-confidence, bond [28] and kulc [5]. Each measure has its own
selection bias that justifies the rationale for preferring one pattern over another.
As a result, there exists no universally acceptable best measure to discover
correlated patterns in any given database. Researchers are making efforts to
suggest an appropriate measure based on user and/or application requirements
[28,32,34,37,39].

Recently, all-confidence is emerging as a popular measure to discover corre-
lated patterns [17,18,25,40,44,45]. It is because this measure satisfies both the
anti-monotonic (see Definition 1) and null-invariance (see Definition 2) proper-
ties. The former property says that all non-empty subsets of a correlated pattern
must also be correlated. This property plays a key role in reducing the search
space, which in turn decreases the computational cost of mining the patterns.
In other words, this property makes the correlated pattern mining practicable
in real-world applications. The latter property discloses genuine correlation rela-
tionships without being influenced by the object co-absence in a database. In
other words, this property facilitates the user to discover interesting patterns
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involving both frequent and rare items without generating a huge number of
uninteresting patterns. In this paper, we use this measure to address the rare
item problem in support dimension.

Definition 1. (Anti-monotonic property [1]). A measure C is anti-
monotone if and only if whenever a pattern (or an itemset) X violates C, so
does any superset of X.

Definition 2. (Null-invariance property [34]). Let us consider a 2 x 2 con-
tingency table (shown in Table 1) as a contingency matrix, M = [f11 f10; f01 f00].
Let an interestingness measure be a matrix operator, O, that maps the matrix
M into a scalar value, k, i.e., OM = k. A binary measure of association is
null-invariant if O(M + C) = O(M), where C = [00; 0k] and k is a positive
constant.

Table 1. A 2 × 2 contingency table for variables A and B

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

Table 1 is an example of a contingency table for rule A => B, where A
and B are the frequent itemsets and N denotes the total number of records. The
number of records in which A and B occurs together is denoted by f11. Similarly,
f10 denotes the number of records in which A doesn’t occur with B, f01 denotes
the number of records in which B doesn’t occurs with A and f00 denotes the
number of records in which neither A nor B occurs.

2.2 Periodic Pattern Mining

Han et al. [14] introduced (partial) periodic pattern3 model to find temporal
regularities in time series data. The model involves the following two steps:
(i) segment the given time series into multiple period-segments such that the
length of each period-segment is equal to the user-specified period (per), and
(ii) discover all patterns that satisfy the user-specified minSup.

Example 1. Let I = {abcde} be the set of items and S = a{bc}baebacea{ed}d be
a time series data generated from I. If the user-defined period is 3, S is segmented
into four period-segments such that each period-segment contains only 3 events
(or itemsets). That is, PS1 = a{bc}b, PS2 = aeb, PS3 = ace and PS4 = a{ed}d.
Let a ∗ b be a pattern, where ‘�’ denotes a wild (or do not care) character that
can represent any itemset. This pattern appears in the period-segments of PS1

3 The term ‘pattern’ in a time series represents a set of itemsets (or sets of items).
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and PS2. Therefore, its support is 2. If the user-specified minSup is 2, then
a � b represents a periodic pattern as its support is no less than minSup. In this
example, braces for singleton itemsets have been eliminated for brevity.

Han et al. [13] have discussed Max-sub-pattern hitset algorithm to find peri-
odic patterns. Chen et al. [8] developed a pattern-growth algorithm, and showed
that it outperforms the Max-sub-pattern hitset algorithm. Aref et al. [4] extended
Han’s model for the incremental mining of partial periodic patterns. Yang et al.
[41] studied the change in periodic behavior of a pattern due to noise, and
enhanced the basic model to discover a class of periodic patterns known as asyn-
chronous periodic patterns. Zhang et al. [43] enhanced the basic model of partial
periodic patterns to discover periodic patterns in character sequences like pro-
tein data. Cao et al. [7] discussed a methodology to determine the period using
auto-correlation. The popular adoption and successful industrial application of
partial periodic pattern model suffers from the following two issues:

– Rare item problem: The usage of single minSup for the entire time series
leads to the rare item problem.

– Inability to consider temporal occurrence information of the items
within a series: The basic model of periodic patterns implicitly considers
the data as an evenly spaced time series (i.e., all events within a series occur at
a fixed time interval). This assumption limits the applicability of the model
as events in many real-world time series datasets occur at irregular time
intervals.

Yang et al. [41] used “information gain” as an alternative interestingness
measure to address the problem. Chen et al. [8] extended Liu’s model [26] to
find periodic patterns in time series using multiple minSups. It has to be noted
that these studies have focused on finding periodically occurring sets of itemsets
in time series data, while the proposed study focuses on finding periodically
occurring correlated itemsets in temporal databases.

2.3 Periodic-Frequent Pattern Mining

Ozden et al. [29] enhanced the transactional database by a time attribute that
describes the time when a transaction has appeared, investigated the periodic
behavior of the patterns to discover cyclic association rules. In this study, a
database is fragmented into non-overlapping subsets with respect to time. The
association rules that are appearing in at least a certain number of subsets are
discovered as cyclic association rules. By fragmenting the data and counting the
number of subsets in which a pattern occurs greatly simplifies the design of the
mining algorithm. However, the drawback is that patterns (or association rules)
that span multiple windows cannot be discovered.

Tanbeer et al. [35] discussed a model to find periodic-frequent patterns in
a transactional database. This model eliminates the need of data fragmenta-
tion, and discovers all patterns in a transactional database that satisfy the
user-specified minSup and maxPer constraints. A pattern-growth algorithm,
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called Periodic-Frequent Pattern-growth (PFP-growth), was also discussed to
find these patterns. Uday et al. [19] have discussed a greedy search technique to
efficiently compute the periodicity of a pattern. Anirudh et al. [3] have proposed
an efficient pattern-growth algorithm based on the concept of period summary.
In this concept, the tid-list of the patterns are compressed into partial periodic
summaries, and later aggregated to find periodic-frequent patterns efficiently.
The popular adoption and successful industrial application of periodic-frequent
pattern model suffers from the following two issues: (i) cannot handle databases
in which transactions are occurring at irregular time intervals and (ii) the rare
item problem (both issues are discussed in Sect. 1). This paper tries to address
both of these issues.

Uday et al. [20] extended Liu’s model [26] to address the rare item problem
in periodic-frequent pattern mining. In this model, every item ij ∈ I in the
database is specified with minIS and maxIP values. The minSup and maxPer
for a pattern X ⊆ I are specified as follows:

minSup(X) = min(minIS(ij)|∀ij ∈ X)
and (1)

maxPer(X) = max(maxIP (ij)|∀ij ∈ X)

where, minSup(X) represents the minimum support of X, maxPer(X) rep-
resents the maximum periodicity of X, minIS(ij) denotes the minimum item
support of an item ij ∈ X and maxIP (ij) denotes the maximum item periodicity
of an item ij ∈ X.

The usage of item-specific minIS and maxIP values facilitates every pattern
to satisfy a different minSup and maxPer depending on its items. However, the
major limitation of this model is the computational cost because the generated
periodic-frequent patterns do not satisfy the anti-monotonic property. Akshat
et al. [33] proposed an alternative periodic-frequent pattern model using the
item-specific minIS and maxIP values. In this model, the minSup and maxPer
for a pattern X are specified as follows:

minSup(X) = max(minIS(ij)|∀ij ∈ X)
and (2)

maxPer(X) = min(maxIP (ij)|∀ij ∈ X)

Theperiodic-frequent patterns discoveredby thismodel satisfy the anti-monotonic
property. Henceforth, this model is practicable in real-world applications.

An open problem that is common to above two studies [20,33] is the method-
ology to specify items’ minIS and maxIP values. Uday et al. [20] have described
the following methodology to address this problem:

minIS(ij) = max(γ × S(ij), LS)
and (3)

maxIP (ij) = max(β × S(ij) + Permax, P ermin)
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where i ∈ I and S(i) is the support of the item i. In Eq. 3, LS is the user-specified
lowest minimum item support allowed and γ ∈ [0, 1] is a parameter that controls
how the minIS values for items should be related to their supports. In Eq. 3,
Permax and Permin are the user-specified maximum and minimum periodicities
such that Permax ≥ Permin and β ∈ [−1, 0] is a user-specified constant.

Although Eq. 3 facilitates every item to have different minIS and maxIP
values, it suffers from the following limitations: (i) This methodology requires
several input parameters from the user. (ii) Equation 3 determines the maxIP
of an item by taking into account only its support. As a result, this equation
implicitly assumes that all items having the same support will also have similar
periodicities in a temporal database. However, this is seldom the case as items
with similar support can have different periodicities. We have observed that
employing this methodology to specify items’ maxIP values in the temporal
databases, where items can have similar support but different periodicities can
still lead to the rare item problem.

Example 2. Consider a hypothetical transactional database containing 100
transactions. Let ‘x’ and ‘y’ be two items in the database having the same
support (say, sup(x) = sup(y) = 40), but different periodicities (say, per(x) =
11 and per(y) = 30). Since Eq. 3 determines the maxIP values by taking into
account only the support of the items, both ‘x’ and ‘y’ will be assigned a com-
mon maxIP value although their actual periodicity is different from one another.
This can result either in missing interesting patterns or generating too many pat-
terns. For instance, if we set β = −0.5, Permin = 10 and Permax = 50, then
maxIP (x) = maxIP (y) = 20. In this case, we miss the periodic-frequent pat-
terns containing ‘y’ because per(y) �≤ maxIP (y). In order to find the periodic-
frequent patterns containing both ‘x’ and ‘y’ items, we have to set a high β value.
When β is set at −0.375, we derive maxIP (x) = maxIP (y) = 35. In this case,
we find periodic-frequent patterns containing ‘y’ because per(y) ≤ maxIP (y).
However, we may also witness too many patterns containing the item ‘x’ because
its maxIP value is three times higher than its periodicity.

Rashid et al. [31] introduced standard deviation as an alternative measure
of maxPrd. Nofong [27] employed mean as an alternative measure to deter-
mine the periodic interestingness of a pattern. Unfortunately, these alternative
interestingness measures are impracticable on very large databases because the
discovered patterns do not satisfy the downward closure property.

Recently, Uday et al. [22,23] have studied the problem of finding (partial)
periodic patterns in temporal databases. In this paper, we extended the (full)
periodic-frequent pattern model to handle the temporal databases.

3 Periodic-Frequent Pattern Model

In this section, we redefine the periodic-frequent pattern model [35] by taking
into account the temporal databases. Care has been taken such that the nomen-
clature of redefined model is consistent with the nomenclature of the basic model
of periodic-frequent patterns.
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Let I be the set of items. Let X ⊆ I be a pattern (or an itemset). A
pattern containing β number of items is called a β-pattern. A transaction,
tk = (tid, ts, Y ) is a tuple, where tid ∈ R represents transactional-identifier,
ts ∈ R represents the timestamp at which the pattern Y has occurred. A tem-
poral database TDB over I is a set of transactions, TDB = {t1, · · · , tm},
m = |TDB|, where |TDB| can be defined as the number of transactions in
TDB. Let tsmin and tsmax denote the minimum and maximum timestamps
in TDB, respectively. For a transaction tk = (tid, ts, Y ), k ≥ 1, such that
X ⊆ Y , it is said that X occurs in tk and such timestamp is denoted as tsX .
Let TSX = {tsXj , · · · , tsXk }, j, k ∈ [1,m] and j ≤ k, be an ordered set of
timestamps where X has occurred in TDB. In this paper, we call this list
of timestamps of X as ts-list of X. The number of transactions containing
X in TDB is defined as the support of X and denoted as sup(X). That is,
sup(X) = |TSX |. Let tsXq and tsXr , j ≤ q < r ≤ k, be the two consecutive
timestamps in TSX . The time difference (or an inter-arrival time) between tsXr
and tsXq is defined as a period of X, say pXa . That is, pXa = tsXr − tsXq . Let
PX = (pX1 , pX2 , · · · , pXr ) be the set of all periods for pattern X. The period-
icity of X, denoted as per(X) = max(pX1 , pX2 , · · · , pXr ). The pattern X is a
frequent pattern if sup(X) ≥ minSup, where minSup refers to the user-
specified minimum support constraint. The frequent pattern X is said to be
periodic-frequent if per(X) ≤ maxPer, where maxPer refers to the user-
specified maximum periodicity constraint. The redefined problem definition
of periodic-frequent pattern mining involves discovering all patterns in TDB
that satisfy the user-specified minSup and maxPer constraints. The support of
a pattern can be expressed in percentage of |TDB|. Similarly, the period and
periodicity of a pattern can be expressed in percentage of (tsmax − tsmin).

Example 3. Table 2 shows the temporal database with the set of items I =
{a, b, c, d, e, f, g, h}. The set of items ‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This
pattern contains only two items. Therefore, this is a 2-pattern. In the first
transaction, t1 = (101, 1, ab), 101 (from the left hand side) represents the
transaction identifier of the transaction, 1 denotes the timestamp at which
the transaction has occurred and ‘ab’ represents the itemset occurring in this
transaction. In the entire database, this pattern appears at the timestamps
of 1, 2, 5, 7 and 10. Therefore, TSab = {1, 2, 5, 7, 10}. The support of ‘ab,’ i.e.,
sup(ab) = |TSab| = |1, 2, 5, 7, 10| = 5. If the user-specified minSup = 5, then
‘ab’ is a frequent pattern because sup(ab) ≥ minSup. The minimum and max-
imum timestamps of all transactions in this database are 1 and 12, respec-
tively. Therefore, tsmin = 1 and tsmax = 12. All periods for this pattern are:
pab1 = 0 (= 1 − tsmin), pab2 = 1 (= 2 − 1), pab3 = 3 (= 5 − 2), pab4 = 2 (= 7 − 5),
pab5 = 3 (10 − 7) and pab6 = 2 (= tsmax − 10). Therefore, P ab = (0, 1, 3, 2, 3, 2).
The periodicity of ‘ab,’ i.e., per(ab) = max(0, 1, 3, 2, 3, 2) = 3. If the user-
defined maxPer = 3, then the frequent pattern ‘ab’ is a periodic-frequent pattern
because per(ab) ≤ maxPer.

The two key differences between the Tanbeer’s model [35] and the above
model of periodic-frequent patterns are as follows: (i) In the above model, the
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first period of a pattern is calculated using tsmin, where as the first period of
a pattern in Tanbeer’s model is calculated with reference to initial time, which
is zero. (ii) Since the Tanbeer model considers input data as a transactional
database with transactions occurring at a fixed time interval, the periodicity of
a pattern is expressed in percentage of |TDB|, whereas in the above model the
periodicity of a pattern is expressed in percentage of (tsmax − tsmin).

Table 2. Running example: A temporal database

The above redefined model of periodic-frequent patterns still suffers from the
rare item problem (refer Example 4). In the next section, we describe periodic-
correlated pattern model to address this problem.

Example 4. Consider the rare items ‘e’ and ‘f ’ in Table 2. If we set a high
minSup and a short maxPer, say minSup = 5 and maxPer = 3, we will miss
the periodic-frequent patterns containing these rare items. In order to discover
the periodic-frequent patterns containing these rare items, we have to set a low
minSup and a long maxPer, say minSup = 2 and maxPer = 6. All periodic-
frequent patterns discovered at these threshold values are shown in the column
titled I in Table 3. It can be observed from this table that setting a low minSup
and a long maxPer has not only resulted in finding ‘ef ’ as a periodic-frequent
pattern, but also resulted in generating the uninteresting patterns ‘ce’ and ‘cd’
as periodic-frequent patterns. The pattern ‘ce’ is uninteresting (with respect to
support dimension), because the rare item ‘e’ is randomly occurring with a fre-
quent item ‘c’ in very few transactions. The pattern ‘cd’ is uninteresting (with
respect to periodicity dimension), because it contains the frequent items ‘c’ and
‘d’ appearing together at very long inter-arrival times (or periodicity).

4 Periodic-Correlated Pattern Model

To address the rare item problem in periodic-frequent pattern mining, we need a
model that extracts interesting patterns involving both frequent and rare items
yet filtering out uninteresting patterns. After conducting the initial investigation
on the nature of interesting patterns found in various databases, we have made
a key observation that most of the interesting periodic patterns discovered in a
database have their support and periodicity close to that of its individual items.
The following example illustrates our observation.
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Table 3. Periodic-frequent patterns discovered from Table 2. The terms Pat, sup,
allConf, per and perAllConf refer to pattern, support, all-confidence, periodicity
and periodic-all-confidence, respectively. The columns titled I, II and III represent
the periodic-frequent patterns generated using basic model, extending all-confidence
to the basic model and the proposed model, respectively.

Pat sup allConf per perAllConf I II III

a 6 1 3 1 � � �
b 5 1 3 1 � � �
c 6 1 3 1 � � �
d 5 1 5 1 � � �
e 4 1 4 1 � � �
f 3 1 6 1 � � �
ab 5 0.833 3 1 � � �
ef 3 0.75 6 1.5 � � �
ce 2 0.4 5 1.67 � × ×
cd 4 0.8 5 1.67 � � ×

Example 5. In a supermarket, cheap and perishable goods (e.g., bread and but-
ter) are purchased more frequently and periodically than the costly and durable
goods (e.g., bed and pillow). Among all the possible combinations of the above
four items, we normally consider {bread, butter} and {bed, pillow} as interesting
patterns, because only these two patterns generally have support and periodicity
close to the support and periodicity of its individual items. All other uninterest-
ing patterns, {bread, bed}, {bread, pillow}, {butter, bed} and {butter, pillow},
generally have support and periodicity relatively far away from the support and
periodicity of its individual items as compared against the above two patterns.

Henceforth, in this paper we consider a pattern as interesting if its support
and periodicity are close to the support and periodicity of its individual items. In
this context, we need two measures to determine the interestingness of a pattern
with respect to both support and periodicity dimensions.

In the literature, researchers have discussed several measures to address
the rare item problem in support dimension [34,39]. In this paper, we use all-
confidence to address the rare item problem in support dimension. (The rea-
son for choosing this measure for finding periodic-correlated patterns has been
described in Sect. 2).

Continuing with the model of periodic-frequent patterns (discussed in the
previous section), the proposed model of periodic-correlated patterns is as fol-
lows.

Definition 3. (All-confidence of X). The all-confidence of X, denoted as
allConf(X), is the ratio of support of X to the maximal support of an item
ij ∈ X. That is, allConf(X) = sup(X)

max(sup(ij)|∀ij∈X) .
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For a pattern X, allConf(X) ∈ (0, 1]. As per the all-confidence measure, a
pattern is interesting in support dimension if its support is close to the support of
all of its items. The parameter minAllConf indicates the user-specified minimum
all-confidence threshold value. Based on minSup and minAllConf thresholds, all
the interesting patterns involving rare items in support dimension are extracted.

Definition 4. (Correlated pattern X). The pattern X is said to be corre-
lated if sup(X) ≥ minSup and allConf(X) ≥ minAllConf . The terms minSup
and minAllConf, respectively represent the user-specified minimum support and
minimum all-confidence.

Example 6. In Table 2, the support of the patterns a, b and ab are 6, 5
and 5, respectively. Therefore, the all-confidence of ab, i.e., allConf(ab) =

sup(ab)
max(sup(a),sup(b)) = 5

max(6,5) = 0.833. If the user-specified minSup = 2 and
minAllConf = 0.6, then ab is a correlated pattern because sup(ab) ≥ minSup
and allConf(ab) ≥ minAllConf .

The usage of all-confidence alone is insufficient to completely address the
rare item problem. The reason is that this measure does not take into account
the periodicity dimension of a pattern.

Example 7. The column titled II in Table 3 shows the periodic-frequent pat-
terns discovered when all-confidence is used along with support and periodicity
measures. The minSup, minAllConf and maxPer values used to find
these patterns are 2, 0.6 and 6, respectively. It can be observed from
the discovered periodic-frequent patterns that though all-confidence is able to
prune the uninteresting pattern ‘ce,’ it has failed to prune another uninteresting
pattern ‘cd’ from the list of periodic-frequent patterns generated by the basic
model. Henceforth, the rare item problem has to be addressed with respect to
both support and periodicity dimensions.

As there exists no measure in the literature that determines the interesting-
ness of a pattern with respect to the periodicities of all of its items, we propose a
new measure, periodic-all-confidence , to extract interesting patterns in peri-
odicity dimension involving rare items, which is defined as follows.

Definition 5. (Periodic-all-confidence of X). The periodic-all-confidence of
X, denoted as perAllConf(X), is the ratio of periodicity of X to the minimal
periodicity of an item ij ∈ X. That is, perAllConf(X) = per(X)

min(per(ij)|∀ij∈X) .

Example 8. In Table 2, the periodicity of the patterns a, b and ab are 3, 3 and 3,
respectively. Therefore, the periodic-all-confidence of ab, i.e., perAllConf(ab) =

per(ab)
min(per(a),per(b)) = 3

min(3,3) = 1.

For a pattern X, perConf(X) ∈ [1,∞). As per the periodic-all-confidence
measure, a pattern is interesting in periodicity dimension, if the periodicity of
a pattern is close to the periodicity of all of its items. The parameter max-
PerAllConf indicates the maximum periodic-all-confidence threshold set by the
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user. Based on maxPer and maxPerAllConf thresholds, the interesting patterns
involving rare items in periodicity dimension can be extracted.

Henceforth, the periodic-correlated pattern is defined as follows.

Definition 6. (Periodic-correlated pattern X). The pattern X is said to
be periodic-correlated if sup(X) ≥ minSup, allConf(X) ≥ minAllConf ,
per(X) ≤ maxPer and perAllConf(X) ≤ maxPerAllConf . The terms min-
Sup, minAllConf, maxPer and maxPerAllConf, respectively represent the user-
specified minimum support, minimum all-confidence, maximum periodicity and
maximum periodic-all-confidence.

Example 9. If the user-specified minSup = 2, minAllConf = 0.6, maxPer = 6
and maxPerAllConf = 1.5, then the pattern ‘ab’ is said to be a periodic-
correlated pattern, because sup(ab) ≥ minSup, allConf(ab) ≥ minAllConf ,
per(ab) ≤ maxPer and perAllConf(ab) ≤ maxPerAllConf .

Example 10. The column titled III in Table 3 shows the complete set of periodic-
correlated patterns discovered from Table 2. It can be observed that the pro-
posed model has not only discovered the periodic-correlated patterns containing
rare items but also pruned the uninteresting patterns ‘cd’ and ‘ce.’ This clearly
demonstrates that the proposed model discovers periodic-correlated patterns con-
taining rare items without generating too many uninteresting patterns.

The discovered periodic-correlated patterns satisfy the anti-monotonic prop-
erty (see Lemma 1). The correctness is straightforward to prove from Properties
1 and 2.

Property 1. If X ⊂ Y , then TSX ⊇ TSY . Therefore, sup(X) ≥ sup(Y ) and
allConf(X) ≥ allConf(Y ).

Property 2. If X ⊂ Y , then per(X) ≤ per(Y ). Therefore, perAllConf(X) ≤
perAllConf(Y ) as per(X)

min(per(ij)∀ij∈X) ≤ per(Y )
min(per(ij)∀ij∈Y ) .

Lemma 1. If X ⊂ Y , then TSX ⊇ TSY . Therefore, sup(X) ≥ sup(Y ),
allConf(X) ≥ allConf(Y ), per(X) ≤ per(Y ) and perAllConf(X) ≤ perAll-
Conf(Y ).

Definition 7. Problem Definition: Given the temporal database (TDB) and
the user-specified minimum support (minSup), minimum all-confidence (minAll-
Conf), maximum periodicity (maxPer) and maximum periodic-all-confidence
(maxPerAllConf), the problem of finding periodic-correlated patterns involves
discovering all patterns that satisfy the minSup, minAllConf, maxPer and max-
PerAllConf thresholds. The support of a pattern can be expressed in percent-
age of |TDB|. The periodicity of a pattern can be expressed in percentage of
(tsmax − tsmin).
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5 Proposed Algorithm

Tanbeer et al. [35] have proposed Periodic-Frequent pattern-growth (PF-growth)
to discover periodic-frequent patterns using support and periodicity measures.
Unfortunately, this algorithm cannot be directly used for finding the periodic-
correlated patterns with our model. The reason is that PF-growth does not
determine the interestingness of a pattern using all-confidence and periodic-
all-confidence measures. In this paper, we extend PF-growth to determine the
interestingness of a pattern using these two measures. We call the proposed
algorithm as Extended Periodic-Correlated pattern-growth (EPCP-growth). The
proposed algorithm involves two steps: (i) construction of Extended Periodic-
Correlated pattern-tree (EPCP-tree), (ii) recursively mining EPCP-tree to dis-
cover periodic-correlated patterns. Before we describe these two steps, we explain
the structure of EPCP-tree.

5.1 Structure of EPCP-tree

The structure of EPCP-tree consists of a prefix-tree and a EPCP-list. The EPCP-
list consists of three fields: item name (i), support (s) and periodicity (p). The
structure of prefix-tree in EPCP-tree is similar to that of the prefix-tree in FP-tree
[15]. However, to obtain both support and periodicity of the patterns, the nodes
in EPCP-tree explicitly maintain the occurrence information for each transaction
by maintaining an occurrence timestamp list, called ts-list, only at the tail node
of every transaction. Complete details on prefix-tree are available in [35].

One can assume that the structure of the prefix-tree in an EPCP-tree may not
be memory efficient since it explicitly maintains timestamps of each transaction.
However, it has been argued that such a tree can achieve memory efficiency by
keeping transaction information only at the tail nodes and avoiding the support
count field at each node [35].

5.2 Construction of EPCP-tree

Since the periodic-correlated patterns generated by the proposed model satisfy
the anti-monotonic property, periodic-correlated items (or 1-patterns) play a
key role in efficient discovery of higher order periodic-correlated patterns. These
items are discovered by populating the EPCP-list (lines 1 to 18 in Algorithm 1).
Figures 1(a), (b), (c), (d) and (e) show the steps involved in finding periodic-
correlated items from EPCP-list. The user-specified minSup, minAllConf ,
maxPer and maxPerAllConf values are 2, 0.6, 6 and 1.5, respectively.

After finding periodic-correlated items, prefix-tree is constructed by perform-
ing another scan on the database (lines 19 to 23 in Algorithm 1). A EPCP-tree
is constructed as follows. First, create the root node of the tree and labeled it
as “null.” Scan the database a second time. The items in each transaction are
processed in EPCP order (i.e., sorted according to descending support count),
and a branch is created for each transaction such that only the tail-nodes record
the timestamps of transactions. For example, the scan of the first transaction,
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Algorithm 1. Construction of EPCP-tree (TDB: Temporal database, minSup:
minimum support, minAllConf : minimum all-confidence, maxPer: maximum
periodicity, maxPerAllConf : maximum periodic-all-confidence)
1: Let idl be a temporary array that records the ts of the last appearance of each

item in the TDB. Let t = {tid, tscur, X} denote the current transaction with
tid, tscur and X representing the transanction identifier, timestamp of the current
transaction and pattern, respectively.

2: for each transaction t ∈ TDB do
3: if an item i occurs for the first time then
4: Insert i into the EPCP-list with supi = 1, peri = tsmin − tscur and idi

l = 1.
5: else
6: supi = supi + 1.
7: if (tscur − idi

l) > peri then
8: peri = tscur − idi

l.
9: end if

10: end if
11: end for
12: for each item i in EPCP-list do
13: if (tsmax − idi

l) > peri then
14: peri = tsmax − idi

l.
15: end if
16: end for
17: Remove items from the EPCP-list that do not satisfy minSup and maxPer.
18: Sort the remaining items in EPCP-list in descending order of their support. Let

this sorted list of items be EPCP .
19: Create a root node in EPCP-tree, T , and label it “null.”
20: for each transaction t ∈ TDB do
21: Sort the items in t in EPCP order. Let this list of sorted periodic-frequent items

in t be [p|P ], where p is the first item and P is the remaining list.
22: Call insert tree([p|P ], tscur, T ).
23: end for

“101 : 1 : ab,” which contains two items (a, b in EPCP order), leads to the
construction of the first branch of the tree with two nodes, 〈a〉 and 〈b : 1〉, where
a is linked as a child of the root and b : 1 is linked to a. The EPCP-tree gener-
ated after scanning the first transaction is shown in Fig. 2(a). The scan on the
second transaction, “102 : 3 : abd,” containing the items a, b and d in CI order,
would result in a branch where a is linked to the root, b is linked to a and d : 3
is linked to b. However, this branch would share a common prefix, ab, with the
existing path for first transaction. Therefore, we create a single new node 〈d : 3〉,
and link d : 3 to b as shown in Fig. 2(b). A similar process is repeated for the
remaining transactions and the tree is updated accordingly. Figure 2(c) shows
the EPCP-tree constructed after scanning the entire database. In EPCP-tree,
an item header table is built so that each item points to its occurrences in the
tree via a chain of node-links, to facilitate tree traversal. For simplicity, we do
not show these node-links in trees, however, they are maintained as in FP-tree.
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The EPCP-tree maintains the complete information of all periodic-correlated
patterns in a database. The correctness is based on Property 3 and shown in
Lemmas 2 and 3. For each transaction t ∈ TDB, EPCP(t) is the set of all can-
didate items in t, i.e., EPCP (t) = item(t)∩EPCP , and is called the candidate
item projection of t.

Property 3. An EPCP-tree maintains a complete set of candidate item projec-
tions for each transaction in a database only once.

Lemma 2. Given a TDB and user-defined minSup, minAllConf , maxPer,
and maxPerAllConf thresholds, the complete set of all periodic-correlated item
projections of all transactions in the TDB can be derived from the EPCP-tree.

Proof. Based on Property 3, each transaction t ∈ TDB is mapped to only one
path in the tree, and any path from the root up to a tail node maintains the
complete projection for exactly n transactions (where n is the total number of
entries in the ts-list of the tail node).
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Algorithm 2. Insert tree([p|P ], tscur, T )
1: if T does not have a child N satisfying p.itemName = N.itemName then
2: Create a new node N and set its parent as T . Let its node-link be linked to the

nodes with the same item via the node-link structure.
3: end if
4: Remove p from P .
5: if P is non-empty then
6: Call Insert tree([P ], tscur, N)
7: else
8: Add tscur to T (i.e., leaf node).
9: end if

Lemma 3. The size of the EPCP-tree (without the root node) on a TDB for
user-defined minSup, minAllConf , maxPer, and maxPerAllConf thresholds,
is bounded by

∑
t∈TDB |EPCP (t)|.

Proof. According to the EPCP-tree construction process and Lemma 2, each
transaction t contributes at most one path of size |EPCP (t)| to an
EPCP-tree. Therefore, the total size contribution of all transactions can be∑

t∈TDB |EPCP (t)| at best. However, since there are usually many common
prefix patterns among the transactions, the size of an EPCP-tree is normally
much smaller than

∑
t∈TDB |EPCP (t)|.

Before we discuss the mining of EPCP-tree, we explore the following impor-
tant property and lemma of an EPCP-tree.

Property 4. A tail node in an EPCP-tree maintains the occurrence information
for all the nodes in the path (from the tail node to the root) at least in the
transactions in its ts-list.

Lemma 4. Let Z = {a1, a2, · · · , an} be a path in an EPCP-tree where node an is
the tail node carrying the ts-list of the path. If the ts-list is pushed-up to node an1,
then an1 maintains the occurrence information of the path Z ′ = {a1, a2, · · · , an1}
for the same set of transactions in the ts-list without any loss.

Proof. Based on Property 4, an maintains the occurrence information of path
Z ′ at least in the transactions in its ts-list. Therefore, the same ts-list at node
an1 maintains the same transaction information for Z ′ without any loss.

5.3 Mining EPCP-tree

Algorithm 3 describes the procedure for mining periodic-correlated patterns from
EPCP-tree. The EPCP-tree is mined by calling EPCP-growth as (EPCP-tree,
null). This algorithm resembles FP-growth. However, the key difference is that
once the pattern-growth is achieved for a suffix 1-pattern (or item), it is com-
pletely pruned from the EPCP-tree by pushing its ts-list to respective parent
nodes.
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The working of this algorithm is as follows. We proceed to construct the
prefix tree for each candidate item in the EPCP-list, starting from the bottom
most item, say i. To construct the prefix-tree for i, the prefix sub-paths of node
i are accumulated in a tree-structure, PTi. Since i is the bottom-most item in
the EPCP-list, each node labeled i in the EPCP-tree must be a tail node. While
constructing PTi, based on Property 4, we map the ts-list of every node of i to
all items in the respective path explicitly in the temporary array (one for each
item). This temporary array facilitates the calculation of sup, allConf , per,
perAllConf of each item in PTi (line 2 in Algorithm 3). If an item j in PTi has
sup ≥ minSup, allConf ≥ minAllConf , per ≤ maxPer and perAllConf ≤
maxPerAllConf , then we construct its conditional tree and mine it recursively
to discover the recurring patterns (lines 3 to 9 in Algorithm 3). Moreover, to
enable the construction of the prefix-tree for the next item in the EPCP-list,
based on Lemma 4, the ts-lists are pushed-up to the respective parent nodes in
the original EPCP-tree and in PTi as well. All nodes of i in the original EPCP-
tree and is entry in the EPCP-list are deleted thereafter (line 10 in Algorithm3).

Using Properties 3 and 4, the conditional tree CTi for PTi is constructed
by removing all those items from PTi that have sup ≤ minSup, or allConf ≤
minAllConf , or per ≥ maxPer or perAllConf ≥ maxPerAllConf . If the
deleted node is a tail node, its ts-list is pushed-up to its parent node. The contents
of the temporary array for the bottom item j in the EPCP-list of CTi represent
TSij (i.e., the set of all timestamps where items i and j have appeared together
in the database). The same process of creating a prefix-tree and its corresponding
conditional tree is repeated for further extensions of “ij”. The whole process of
mining for each item is repeated until EPCP-list �= ∅.

Table 4 summarizes the working of this algorithm. First, we consider item ‘f ,’
which is the bottom-most item in the EPCP-list, as a suffix pattern. This item
appears in three branches of the EPCP-tree (refer Fig. 2(c)). The paths formed
by these branches are {cef : 4}, {abef : 10} and {aef : 12} (format of these
branches is {nodes : timestamps}). Therefore, considering ‘f ’ as a suffix item,
its corresponding three prefix paths are {ce : 4}, {abe : 10} and {ae : 12}, which
form its conditional pattern base (refer Fig. 3(a)). Its conditional EPCP-tree con-
tains only a single path, 〈e : 4, 10, 12〉; ‘a,’ ‘b’ and ‘c’ are not included because
their all-confidence and periodic-all-confidence do not satisfy the minAllConf
and maxPerAllConf respectively. Figure 3(b) shows the conditional EPCP-
tree of ‘f .’ The single path generates the pattern {ef : 3, 0.75, 6, 1.5} (format
is {pattern: support, all-confidence, periodicity, periodic-all-confidence}). The
same process of creating prefix-tree and its corresponding conditional tree is
repeated for further extensions of ‘ef .’ Next, ‘f ’ is pruned from the original
EPCP-tree and its ts-lists are pushed to its parent nodes, as shown in Fig. 3(c).
All the above processes are once again repeated until EPCP-list �= ∅.
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Algorithm 3. EPCP-growth(Tree, α)
1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪ α. Construct an array TSβ , which represents the

set of timestamps at which β has appeared in TDB. Next, compute from
TSβ , sup(β), allConf(β), per(β) and perAllConf(β) and compare them with
minSup, minAllConf , maxPer and maxPerAllConf , respectively.

3: if sup(β) ≥ minSup, allConf(β) ≥ minAllConf , per(β) ≤ maxPer and
perAllConf(β) ≤ maxPerAllConf then

4: Output β as a periodic-correlated pattern as {β: sup, allConf, per, perAll-
Conf}.

5: Traverse Tree using the node-links of β, and construct β’s conditional pattern
base and β’s conditional EPCP-tree Treeβ .

6: if Treeβ �= ∅ then
7: call EPCP-growth(Treeβ , β);
8: end if
9: end if

10: Remove ai from the Tree and push ai’s ts-list to its parent nodes.
11: end for

Table 4. Mining EPCP-tree by creating conditional (sub -) pattern bases

Item sup per Cond. Pattern Base Cond. EPCP-tree Per. Freq. Patterns

f 3 6 {ce : 4}, {abe : 10},
{ae : 12}

〈e : 4, 10, 12〉 {ef : 3, 0.75, 6, 1.5}

e 4 4 {c : 4}, {abc : 7},
{ab : 10}, {a : 12}

− −

d 5 5 {ab : 3}, {c : 3, 8, 9, 11} − −
b 5 3 {a : 1, 2, 5, 10}, {ac : 7} 〈a : 1, 2, 5, 7, 10〉 {ab : 5, 0.833, 3, 1}
c 6 3 {a : 7} − −

6 Experimental Results

In this section, we show that the proposed model discovers interesting patterns
pertaining to both frequent and rare items by pruning uninteresting patterns.
We also evaluate the proposed model against the existing models of periodic-
correlated patterns [20,33,35].

The algorithms, PF-growth, MCPF-growth, MaxCPF-growth and EPCP-
growth are written in C++ and run with Fedora 22 on a 2.66 GHz machine
with 8 GB of memory. We have conducted experiments using both synthetic
(T10I4D100K) and real-world (Retail and FAA-Accidents) databases. The
T10I4D100K data-base is generated using the IBM data generator [1]. This
database contains 878 items with 100,000 transactions. The Retail database
contains the market basket data from a Belgian retail store. This database con-
tains 16,471 items with 88,162 transactions. The FAA-Accidents database is



Discovering Periodic-Frequent Patterns in Transactional Databases 165

{}null

a

b

e:10

e:12

c

e:4

(a)

i s p

e

a

b

3

2

1

6

10

10

{}null

e:4,
  10,
  12

i s p

e 3 6

(b)

i s p
a 6 3

e 4 4

(c)

c 1 8

{}null

a

b:1,5

d:3

e:12 e:4

c

d:3,8,
   9,11

c

b

e:7

e:10

d 5 5

b 5 3

c 6 3

Fig. 3. Mining of EPCP-tree for Table 2. (a) Prefix-tree of suffix item ‘f,’ i.e., PTf (b)
Conditional tree of suffix item ‘f,’ i.e., CTf (c) EPCP-tree after pruning item ‘f.’

constructed from the accidents data recorded by FAA from 1-January-1978 to
31-December-2014. This database contains 9,290 items with 98,864 transactions.

6.1 Patterns Generated by the Proposed Model

Figure 4(a)–(c) shows the number of patterns generated at different minAll-
Conf and maxPerAllConf values in T10I4D100K, Retail and FAA-Accidents
databases. The minSup and maxPer are set at 0.01% and 40%. The fol-
lowing observations can be drawn: (i) The increase in minAllConf results
in decrease of periodic-correlated patterns. The reason is that as minAllConf
increases, the support threshold value of a pattern increases. (ii) The increase
in maxPerAllConf results in increase of patterns. The reason is that as max-
PerAllConf increases, the periodicity threshold value of a pattern increases.
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Figure 5 show the runtime requirements of EPCP-growth at different max-
PerAllConf and minAllConf values in T10I4D100K, Retail and FAA-Accidents
databases. The following observations can be drawn: (i) The increase in
minAllConf decreases the runtime of EPCP-growth. The reason is that increase
in minAllConf decreases the number of periodic-correlated patterns. (ii) The
increase in maxPerAllConf results in increase of runtime of EPCP-growth.



166 J. N. Venkatesh et al.

)ces(
e

mit nu
R

)ces (
e

mit nu
R

)ces(
e

mitnu
R

 30

 34

 38

 42

 46
 48

maxPerAllConf (%)

(a) T10I4D100K

 2  4  6  8  10

minAllConf=0.01
minAllConf=0.06
minAllConf=0.11

minAllConf=0.01
minAllConf=0.06
minAllConf=0.11

 52

 54

 56

 58

 60
 61

 30

 31

 32

 33

 34
 34.5

maxPerAllConf (%) maxPerAllConf (%)

(b) Retail (c) FAA-Accidents

 2  4  6  8  10  2  4  6  8  10

minAllConf=0.01
minAllConf=0.06
minAllConf=0.11

Fig. 5. Runtime requirements of EPCP-growth at different maxAllConf and maxPer-
AllConf values

Table 5 shows some of the interesting patterns discovered in FAA database.
The minSup, minAllConf , maxPer and maxPerAllConf values used are
0.01%, 0.01, 40% and 9, respectively. It can be observed from their support val-
ues that our model has discovered interesting patterns involving both frequent and
rare items effectively. Please note that the periodicity (per) is expressed in days.

Table 5. Some of the interesting patterns discovered in FAA-Accidents database

S. No. Patterns sup allConf per perAllConf

1 {Pilot Not Certificated, Destroyed} 13 0.06 4756 7.77

2 {Student, Substantial} 136 0.02 893 29.77

3 {Boeing, Substantial} 214 0.02 214 26.35

4 {Private-Pilot, Cessna, CE-172,
Minor}

1,661 0.03 117 23.4

5 {General Operating Rules,
Commercial Pilot, Minor}

10,399 0.15 32 6.4

The first pattern in this table reveals interesting information that 13 aircrafts
have been ‘destroyed’ when piloted by a non-certified pilot. The periodicity of
this event is 4756 days (≈13 years). The second pattern indicates 136 aircrafts
driven by student pilots have suffered substantial damages at least once in every
≈2.5 years. The third pattern indicates that Boeing aircrafts have suffered sub-
stantial damages at least once in every ≈7 months. The fourth pattern reveals the
information that Cessna airlines CE-172 driven by private pilots have encoun-
tered minor damages at least once in every ≈4 months. The last pattern reveals
the information that at least once in every 32 days, an aircraft driven by commer-
cial pilots has witnessed minor damages during general operating rules. It can
be observed that the first three patterns have low support and high periodicity.
These patterns are often difficult to find with existing approaches due to com-
binatorial explosion. Thus, the proposed model can efficiently discover useful
information pertaining to both frequent and rare items.
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6.2 Comparison of Proposed Model Against the Existing Models

For MCPF-growth and MaxCPF-growth, we use Eq. 3 to specify items’ minIS
and maxIP values. Setting the α and β values in this equation has been a
non-trivial task as the patterns discovered by these algorithms can be differ-
ent from the patterns discovered by EPCP-growth. After conducting several
experiments, we have empirically set the following values for MCPF-growth
and MaxCPF-growth algorithms, such that both algorithms discover almost all
periodic-frequent patterns discovered by EPCP-growth.

Figure 6 shows the number of periodic-frequent patterns generated at differ-
ent minSup values (Y -axis is plotted on logscale). For EPCP-growth, we have
fixed minAllConf = 0.01, maxPer = 40% and maxPerAllConf = 9 and vary
minSup values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = minSup, β = −0.4, Permax = 40% and Permin = 10%. For PF-growth,
we have set maxPer = 40% and vary minSup values. It can be observed that the
proposed model has generated less of number of patterns because all-confidence
has pruned the uninteresting patterns having support much less than the support
of individual items.
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Fig. 6. Periodic-Correlated patterns generated at different minSup values

Figure 7 shows the number of periodic-frequent patterns generated at differ-
ent maxPer values (Y -axis is plotted on logscale). For EPCP-growth, we have
fixed minSup = 0.01%, minAllConf = 0.01 and maxPerAllConf = 9 and vary
maxPer values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = 0.01%, β = −0.4, Permax = maxPer and Permin = 10%. For PF-growth,
we have set minSup = 0.01% and vary maxPer values. It can be observed that
the proposed model has generated less number of patterns at different maxPer
values. It is because periodic all-confidence has pruned out those uninteresting
patterns whose periodicity was much higher than the periodicity of its individual
items.

From Figs. 6 and 7, it can be observed that the proposed model has generated
lesser number of periodic-frequent patterns than the other models, because the
existing models have suffered from the rare item problem.

Figures 8 show the runtime taken by various models at different minSup val-
ues (Y -axis is plotted on logscale). It can be observed that, in all the databases
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the proposed model takes lesser runtime to find periodic-frequent patterns than
PF-growth and MCPF-growth. But the proposed model takes slightly more run-
time than MaxCPF-growth. So the proposed model is not adding any significant
overhead in mining periodic-correlated patterns.
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Figure 9 shows the runtime taken by various models at different maxPer
values (Y -axis is plotted on logscale). Similar observations to that of varying
minSup can be drawn.
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6.3 Scalability

We studied the scalability of EPCP-growth on execution time by varying
the number of transactions in a database. We used Kosarak, T10I4D1000K
and T25I6D1000K datasets for this experiment. We divided the database into
five equal parts, i.e., 20% transactions in each part. Then we investigated
the performance of EPCP-growth by accumulating each part with previous
parts and running EPCP-growth each time. Figure 10(a), (b) and (c) show the
graph of runtime requirements of EPCP-growth in Kosarak, T10I4D1000K and
T25I6D1000K databases, respectively. It is clear from the graphs that as the
database size increases, overall tree construction and mining time increase. How-
ever, the figure shows stable performance of about linear increase in runtime with
respect to the database size.

Figure 11(a), (b) and (c) show the graph of memory requirements of EPCP-
growth in Kosarak, T10I4D1000K and T25I6D1000K databases, respectively.
Similar observations to that of runtime requirements can be drawn. Therefore,
it can be observed from the scalability test that EPCP-growth scales linearly
with the increase in database size.
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7 Conclusions and Future Work

This paper introduces a model to address the rare item problem in both sup-
port and periodicity dimensions. A new interestingness measure, periodic-all-
confidence, is proposed to address the problem in periodicity dimension. An
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efficient pattern-growth algorithm has been proposed to discover all periodic-
correlated patterns in a database. Experimental results demonstrate that the
proposed model is efficient. As a part of future work, we would like to study the
change in periodic behavior of rare items due to noise.
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