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The Nature of Data

Clair Smith

18.1	 �List of Definitions

Data: A collection of data points organized into 
one or more variables of interest.

Example: The set of all responses to a survey 
given to a group of people, all measurements 
taken from the mice in an animal study, etc.

Variable: A measureable characteristic such 
as blood pressure, age, or gender.

Example: Treatment group, marital status, 
diabetes status, systolic blood pressure, blood 
glucose level, etc.

Observation: A single datum. In clinical data 
this will often be a measurement taken from a 
person or animal. Also called a data element or 
data point.

Example: The heart rate of mouse in an ani-
mal study, the cancer status of a cell from a per-
son in a cancer study, the range of motion of a 
knee from a cadaver in a meniscectomy study, 
and the BMI of one person in a study.

Statistic: A numerical summary of the data 
points that make up a variable. This can be calcu-
lated from a sample.

Example: Mean, variance, median, minimum, 
and maximum.

Sample: Data that is collected/observed. A 
small subset of the population of interest is 
presented.

Example: A random sample of residents of a 
certain neighborhood and all people hospitalized 
for a heart attack at one of three local hospitals 
during a certain period of time.

Population: The group of all subjects 
researchers are interested in studying.

Example: The set of all women currently liv-
ing in the USA, the set of all people experiencing 
lower back pain in the USA, and the set of all 
mice of a certain species.

18.2	 �Types of Data

There are two major types of data that research-
ers typically deal with in health science: continu-
ous and discrete data. The type of data drives 
which statistics are used in their analyses. 
Continuous data such as age, height, weight, and 
BMI have infinitely many possible values. For 
example, age in years can be any positive real 
number such as 42 or 37.25. Discrete (also known 
as categorical) data has a limited number of val-
ues it can take on such as race, treatment group, 
and study site. For example, if possible values of 
race on a self-reported survey are black, white, 
and other, then everyone taking the survey will 
have one of these three values for the variable 
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race. Other less common types of data are count 
data and censored data. Count data is made up of 
whole numbers that represent counts such as the 
number of falls in a year of follow-up or the num-
ber of heartbeats per minute. While there are 
analyses created specifically for count data, it is 
often treated as continuous data for simplicity. 
Censored data, such as number of years till death 
after having a certain procedure, occurs when the 
event researchers are interested in (such as death) 
may not occur during the study. Another type of 
data, longitudinal data, occurs when measure-
ments are taken repeatedly from subjects over a 
period of time.

A continuous variable is one whose values can 
be any real number. It is meaningful to measure 
the distance between values, and arithmetic oper-
ations such as addition and multiplication make 
sense for continuous variables but not for discrete 
variables. Technically, all continuous variables 
are measured discretely since we don’t have 
instruments that can be measured continuously. 
One can think of continuous data as discrete with 
lots of levels or categories. For example, blood 
pressure is typically measured to 2  mmHg 
because measuring with higher precision would 
be difficult with the instruments that are used. 
However, we still treat blood pressure as continu-
ous since there would be far too many levels to 
treat it as discrete. Sometimes discrete variables 
with many levels such as the visual analog scale 
(VAS) for measuring pain or variables measured 
with the Likert scale are treated as continuous for 
ease of analysis. When treating discrete variables 
as continuous, you are assuming that each level 
of the variable is equidistant apart. Another 
example of a continuous variable is the Lysholm 
scale for assessing ACL injuries which gives a 
score from 0 to 100 with higher scores indicating 
fewer symptoms.

There are two major types of discrete data: 
nominal and ordinal. Nominal data has no 
inherent ordering such as gender, race, and 
marital status. Ordinal data can be ordered from 
low to high such as injury severity, level of edu-
cation, and household income. The differences 
between the levels of ordinal variables are not 
necessarily equal. For example, the difference 

between the mild and moderate level of an 
injury severity variable may not be the same as 
the difference between the moderate and severe 
level. For both types of discrete data, each 
observation must belong to exactly one level of 
the discrete variable, and the levels should 
cover all possible values that exist in the data 
set. For example, if the discrete variable race 
has levels black, white, and other, then each 
observation in the data set must be categorized 
as black, white, or other. If a discrete variable 
has only two levels, then it is called a dichoto-
mous variable. Examples include gender and 
disease status (the disease is either present or 
not present).

18.3	 �Data Description

Summarizing discrete data is simpler than sum-
marizing continuous data. Discrete data is often 
described by reporting the frequency and propor-
tion (or percent) of people belonging to each 
level of the discrete variable. For example, say 
you were reporting on disease severity in a study 
of 50 people. Your description of the variable 
“disease severity” could be 23 (46%) mild, 12 
(24%) moderate, and 15 (30%) severe if 23 peo-
ple in the study had mild disease, 12 had moder-
ate, and 15 had severe. If the variable is 
dichotomous, then it is acceptable to report only 
the frequency and proportion in one level of that 
variable. For example, if researchers were sum-
marizing the dichotomous variable “gender” and 
putting it in a table of demographic information 
for a study, then they could simply report the fre-
quency and proportion of women in the study 
sample. Researchers would not need to include 
the number of men in the study since this can be 
deduced by subtracting the number of women in 
the study from the sample size. Some researchers 
depict the proportions of subjects in each level of 
a discrete variable in a bar graph. This may be 
appropriate if the publication has no other fig-
ures. However, when other figures are present, 
graphing proportions is superfluous as they are 
described adequately by frequencies and propor-
tions alone.
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The relationship between two categorical vari-
ables is best captured by a 2 × 2 table. In such a 
table, the rows are levels of one categorical vari-
able, and the columns are levels of the other cat-
egorical variable. The cells of the table contain 
the number of people in the study belonging to 
the corresponding levels of the row and column 
variables. The last row and last column are typi-
cally reserved for totals (also known as 
margins).

Continuous data contains more information, 
has more properties, and requires more statistics 
to describe it than discrete data. There are differ-
ent statistics to measure the location (or center), 
spread (or dispersion), and shape of the distribu-
tion of values from a continuous variable.

Measures of location seek to describe the cen-
tral tendency of the data with a representative 
value from it. Examples are the mean (or aver-
age), median, and mode. The mean of a continu-
ous variable is the sum of all the values divided 
by the number of values present in that sum. Put 

into symbols the mean is i
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says to sum all the values from 1 to n. The letter i 
is called an index. The median is the middle value 
of the ordered data. If the values are ordered from 
smallest to largest (or largest to smallest), then 
the median is the value that has an equal number 
of observations on either side of it. If the sample 
size is even, then the median is found by averag-
ing the two middle values of the ordered data. 
Instead of listing out the ordered values by hand 
and visually finding the middle value, there is a 
simple formula that can be used to find the posi-
tion of the median. Say there are n people in the 
study and the age of each person is listed from 
smallest to largest. If n is odd, then the position of 

the median age is 
n +1
2

. Note that this equation 

will produce the position of the median, not the 
value of the median itself. If n is even, then the 

median is the average of the numbers in the 
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and 
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1+  positions of the ordered list of values 

[1]. The median and mean can only be used to 
describe continuous data. The mode of a variable 
is the most frequently occurring value and can be 
used to describe the central tendency of continu-
ous or discrete data.

Another name for the median is the second 
quartile. The quartiles split the list of ordered val-
ues into fourths. The first quartile is also called 
the 25th percentile and is often denoted Q1. If the 
data is listed in order, then 25% of the values will 
be below or equal to the first quartile. The median 
is the 50th percentile (or second quartile) since 
half of the values are less than or equal to it and it 
is denoted Q2. The third quartile, Q3, is also called 
the 75th percentile, and 75% of the values are 
less than or equal to it.

Measures of spread describe how tightly clus-
tered the values are around the mean of continu-
ous data. Examples are the variance, standard 
deviation, range, and interquartile range. The 
variance is the average squared distance from the 
mean. It is calculated by adding up all of the 
squared differences between the mean and each 
data point then dividing this sum by the number 
of data points minus one. If n is the sample size 

and x  is the mean of the sample, then the follow-

ing is an  equation for finding the variance of the 

sample: 
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Note that Σ is a symbol 

meaning “the sum of” and xi represents the ith 
value in the sample. When put together as in 
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2 , this means take each value from the 

first (i = 1) to the last (i = n), subtract the mean 
from it, then square it, then add all these squares 
together. This equation is similar to the equation 
for the mean except that it is divided by n −  1 
instead of n. Dividing by n −  1 leads to a less 
biased statistic than dividing by n. The standard 
deviation is the square root of the variance and 
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thus the average distance from the mean. The 
range is simply the maximum (largest) value 
minus the minimum (smallest) value. The inter-
quartile range (IQR) is the third quartile minus 
the first quartile. The IQR describes the spread of 
the central 50% of the data. For all measures of 
spread, a higher value indicates that observations 
are more spread around the mean and smaller 
values indicate they are more tightly clustered 
about the mean.

Measures of the shape of a distribution 
describe the overall trend of the data. As an 
example, a distribution could have mostly 
large values with a few extreme outliers, or it 
could have values evenly distributed across the 
range. Some examples of distribution shapes 
are symmetric, normal, bimodal, and left or 
right skewed. The mean, median, and mode of 
a continuous variable are equal if the distribu-
tion of its values is symmetric. In terms of 
symmetric data, the relative position of obser-
vations is the same on either side of the 
median. Right skewed (or positively skewed) 
data occurs when observations above the 
median are farther in absolute value than 
observations below the median. Another way 
of saying this is that the distribution has a long 
tail to the right. In right skewed data, the 
majority of the values are relatively small and 
close together, and a minority of the values are 
extreme or much larger in value than the rest. 
Left skewed (or negatively skewed) data 
occurs when observations below the median 

are farther in absolute value than observations 
above the median. Left skewed data has a long 
tail to the left since most of the values are 
large and there are a few extreme observations 
that are much smaller than the rest. The mean 
is greater than the median in right skewed data 
and less than the median in left skewed data. 
There is a skewness index that measures the 
degree of skewness in the data. The index is 
zero if the data is symmetric, greater than zero 
if the data is right skewed, and less than zero if 
the data is left skewed [3]. A normal distribu-
tion is a symmetrical hill or bell shape with the 
majority of the values close to the central 
value (the mean) and a few extreme observa-
tions on either side of the mean (i.e., in the 
tails of the distribution). A bimodal distribu-
tion looks like the two humps of a camel; it 
has two central values. When the data is sym-
metric, the best numerical summaries are the 
mean and standard deviation. When the data is 
skewed, it is best to use the median and inter-
quartile range or interquartile deviation (half 
of the interquartile range).

Kurtosis is another measure of shape that 
describes how flat or steep the distribution of val-
ues is compared to a bell-shaped (or normal) dis-
tribution. If there are a lot more observations in 
the tails of a distribution compared with a normal 
distribution, then the graph appears flatter than a 
bell shape. If there are many fewer observations 
in the tails of a distribution compared with a nor-
mal distribution, then the graph appears more 
peaked than a bell shape [2].
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All of the descriptive measures discussed 
thus far are statistics. Statistics are calculated 
from a sample that is drawn from the population 
of interest. Suppose the goal of a study is to 
determine whether a new surgical technique for 
repairing a joint leads to a better clinical out-
come than the standard procedure. The popula-
tion of interest in this case would be the set of 
all people with the joint injury who would be 
eligible for this surgery. In order to determine 
whether the new technique is an improvement 
over the old technique, researchers must look at 
the outcomes from a sample of people with the 
joint injury. It is not possible to observe all peo-
ple with this injury (the population of interest), 
so a sample must be taken. Typically, the sample 
is chosen in such a way that every member of 
the population has an equal opportunity of being 
picked for the sample. A sample that is created 
in this way is called a random sample because 
each member is chosen at random. This helps to 
ensure that the sample is representative of the 
population, e.g., if half of the population is 
women, then roughly half of the random sample 
drawn from the population should be women. 
The researchers would then use statistics such 
as means and standard deviations calculated 
from this sample to summarize outcomes of the 
two surgery techniques. Such an outcome may 
be the range of motion of the repaired joint after 
it has healed. Since range of motion is a contin-
uous measure, researchers would use a mean or 
median and standard deviation or interquartile 
range to summarize it. This example illustrates 
using a sample to make inference about a popu-
lation, the main goal of statistics.

Since a sample does not include all members 
of a population, there are multiple ways to draw a 
sample from a given population. The number of 
people in the population of interest is typically 
denoted by N, and the number of people in a given 
sample drawn from the population is denoted by 
n. Figure 18.1 depicts three different samples of 
size n drawn from a population of size N.

Suppose the three samples in the figure 
were drawn in a sequence: n individuals were 
selected at random from the population to 

form the first sample, measurements were 
taken on them, and then they were returned to 
the population pool. This way of sampling is 
called sampling with replacement. This pro-
cess was then repeated for the second and third 
samples of size n. If we calculated the mean of 
the measurements taken on each of the three 
samples, we would get three different means 
even though the samples are the same size and 
are taken from the same population. This 
occurs because the three samples consist of 
different individuals. It is possible that there is 
overlap between the three samples, that is, 
some individuals may occur in two or more of 
them. This is possible because the samples 
were drawn from the population with replace-
ment: they were selected, their measurements 
taken, and then they were returned to the pop-
ulation pool. Thus, every time a sample is 
drawn from the population, a different sample 
mean is calculated, but each of these means 
will be a good estimate of the true mean of the 
entire population (given that the sample size, 
n, is sufficiently large). The mean calculated 
from the sample of size n is an example of a 
sample statistic, and the mean calculated from 
the population of size N is an example of a 
population parameter. Sample statistics are 
estimates of population parameters. Population 
parameters are usually unknown since we can-
not measure an entire population but we esti-
mate these parameters by taking a random 
sample of the population and calculating sam-
ple statistics. The larger the sample size, the 
more confident researchers are that the sample 
statistics are good approximations of the pop-
ulation parameters.

N

n

n

n

Fig. 18.1  Samples of size n drawn from a population of 
size N
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18.4	 �Visual Displays

It is good practice to plot the data before sum-
marizing and performing statistical tests on it. 
This will give the researcher a sense of the type 
of data available. There are various methods for 
describing and analyzing data, and which method 
to be used depends on the nature of the data.

A stem-and-leaf plot is a simple visual display 
of data points that shows the distribution or shape 
of the values of a continuous variable. An advan-
tage of this plot is that it includes the value of 
each individual observation. This plot is appro-
priate when there are a small number of observa-
tions. As an example, suppose there is a small 
sample of 15 subject’s BMI measurements that 
have been rounded to the nearest integer. BMI is 
a continuous variable and its units are kg/m2. The 
first step of making a stem-and-leaf plot of these 
values would be to list them in order:

	
18 19 23 24 24 24 25 25 26 26 27 28 30 32 37, , , , , , , , , , , , , , 	

The stem of the plot is made up of the leading 
number, and the leaves are made up of the trailing 
number. Both the numbers in the stem and in the 
leaves are ordered smallest to largest.

	

1 89
2 3444556678
3 027

|

|

|
	

It can be seen from this plot that the BMI mea-
surements are distributed in roughly a hill shape: 
most of the values are in the middle and there are 
a few in either tail. If there are more observations, 
more than one line can be added for each digit in 
the stem.

A histogram is a graph that shows the shape of 
the distribution of values of a continuous vari-
able. The horizontal (or x) axis has the values of 
the variable, and the vertical (or y) axis has the 
frequency or proportion of observations. The 
height of each rectangle represents the proportion 
or frequency of observations whose values fall 
within the range specified by the width of the 
rectangle. If the distribution of values of a vari-
able is symmetric, then cutting the histogram 

along the median will result in each half being a 
mirror image of the other. A common example of 
a symmetric distribution is a hill or bell-shaped 
distribution. Figure  18.2 shows a histogram for 
the 15 BMI measurements in the last example.

The width of the rectangles in this histogram 
is five observations, and the vertical axis is the 
frequency of occurrences. The x-axis shows the 
range of values for each rectangle. The histogram 
shows the general hill-shaped trend of the data: 
most of the data (9 observations) fall within the 
range of 23–28  kg/m2. This histogram shows a 
similar shape as the stem-and-leaf plot turned on 
its side. If the width of the rectangles is too large, 
important information about the shape of the dis-
tribution can be lost. The smaller the width of the 
rectangles, the more detail about the shape of the 
distribution will be shown. Most statistical pro-
grams will automatically choose a width that is 
appropriate for the data.

Another visual display for continuous data is 
the box plot. The box plot shows the interquartile 
range, the median, and any extreme observations 
(i.e., observations that have values that are much 
larger or much smaller than the rest of the data). 
If there is a lot of variability in the data, then the 
box and whiskers will be elongated. If there is not 
a lot of variability, then the box and whiskers will 
appear squatter. Figure 18.3 shows a box plot of 
the BMI example data.

The first quartile of the BMI data is the bottom 
line of the box, the median is the middle line in the 
box, and the third quartile is the top line of the box. 
When the third quartile is farther from the median 
than the first quartile, the data is right skewed, and 

10
9
8
7
6
5
4
3
2
1
0

[18, 23] [23, 28] [28, 33] [33, 38]

Fig. 18.2  Histogram of a sample of 15 BMI 
measurements
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when the first quartile is farther from the median, 
the data is left skewed. The histogram and box plot 
of the BMI data in Fig.  18.3 show a slight right 
skew in the shape of the distribution. The whiskers 
of the box plot are drawn to the smallest and largest 
observations in the sample that are not outliers. 
Outliers are defined as values that are greater than 
Q3 + 1.5*(IQR) or less than Q1 – 1.5*(IQR). The 
dots in the box plot are extreme outliers, which are 
defined to be larger than Q3 + 3*(IQR) or smaller 
than Q1 – 3*(IQR) [3].

The box plot is a good visual display to use 
when comparing a continuous variable between 
different groups of a categorical variable since 
they can be plotted side-by-side on the same set 

of axes. This allows direct comparison of the 
distributions of the continuous variable across 
various levels of the categorical variable. As an 
example, consider the BMI data again, but sup-
pose there is information on whether the subjects 
were over 25  years old or under 25  years old. 
Figure 18.4 is an example of a way to visualize 
the relationship between a continuous variable 
(BMI) and a categorical variable (age category).

From Fig.  18.4 it can be seen that subjects 
who are over 25 years old have a higher BMI than 
people who are 25 years old or younger.

A scatter plot is useful for understanding the 
relationship between two continuous variables 
and revealing potential outliers. Values of one 
variable are plotted on the horizontal axis, and 
values of the other variable are on the vertical 
axis. A scatter plot is a quick way to discover 
potential trends in the data. For example, if higher 
values of one variable tend to occur with higher 
values of the other, then the scatter plot will show 
this positive relationship. If there is no relation-
ship between the two variables, then the scatter 
plot will show a random scattering of points that 
don’t indicate any specific pattern. If most of the 
points are clustered tightly together, while one or 
two points are clearly outside of this cluster, then 
these points are potential outliers and should be 
checked for accuracy. Figure 18.5 is an example 
of a scatter plot using the BMI data. A second 
variable, age, has been added to the vertical axis.

Figure 18.5 shows that as age increases so 
does BMI. In other words, there is a positive 
relationship between age and BMI. An example 
of an outlier for this data is the point (32, 20), 
i.e., the point with BMI = 32 and age = 20. While 
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Fig. 18.3  Box plot of 15 BMI measurements
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Fig. 18.4  Side-by-side box plots of 15 BMI 
measurements
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Fig. 18.5  Scatter plot of 15 subjects’ age and BMI

18  The Nature of Data



170

the point is medically feasible, if it were in the 
plot in Fig. 18.5, we would want to check on its 
accuracy, because it is so far away from the 
increasing trend of the rest of the points. Two 
continuous variables could also have a negative 
relationship if it were the case that as one 
increased the other decreased. If the scatter plot 
appears to show a positive relationship for some 
values and a negative relationship for others, we 
would say the relationship appears to change 
direction. A statistic called a correlation coeffi-
cient classifies the strength of the association 
between two continuous variables.

18.5	 �Conclusion

The first steps of data analysis should be to 
determine what types of variables are present 
and to describe them with appropriate summary 

statistics and visual displays. Different types of 
data have different properties, and these proper-
ties determine which statistical tests are appro-
priate for answering the questions of interest. 
Statistical tests are based on probability theory 
and allow the researchers to draw conclusions 
about a population based on a sample from that 
particular population. This is called statistical 
inference and is the overarching goal of statisti-
cal analysis.
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