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Abstract The nutrient compositions of cultured Thalassiosira rotula and Skele-
tonema costatum from Jiaozhou Bay were measured. Carbon (C), nitrogen (N),
phosphorus (P), and silicon (Si) contents in cell were obvious higher in T. rotula
than in S. costatum, but the percents of N, P, Si contents in cell dry mass in T. rotula
were lower than those in S. costatum. The dry mass concentrations of N, P, Si in
S. costatum were much higher than those in T. rotula, particularly Si, the former
was 6.4 times of the latter, showing that S. costatum could more assimilate these
elements. Especially, S. costatum had competitive dominance for assimilation Si,
which is beneficial to its becoming a major dominant species in relative short Si of
Jiaozhow Bay. There were some differences in numerical value of nutrient ratios
both laboratory-cultured phytoplankton and different-sized suspended particulates
(mainly phytoplankton) in Jiaozhou Bay, which was caused by the changes of envi-
ronment. High contents of C, N and relative low P, Si, high N/P ratio (far higher than
Redfield value) and low Si/P and Si/N ratios (far lower than Redfield values) in the
two diatoms and different-sized suspended particulates were consistent with those
in the seawater. Relative short Si in the seawater and phytoplankton showed that Si
was possibly affecting phytoplankton growth in Jiaozhou Bay.
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Biological and chemical processes of marine phytoplankton are related to their size
to a considerable degree (Ray et al. 2001; Suttle et al. 1991). At present, the ecolog-
ical study of phytoplankton has advanced into the aspect of particle size distribution
and its effects, and element composition of phytoplankton in different-sized fractions
is an important study field. Measuring the chemical composition (carbon, nitrogen,
Phosphorus, silicon, etc.) of phytoplankton is of important senses to estimate pri-
mary production of phytoplankton (Strickland 1960; Conley et al. 1989; Geider and
La Roche 2002; Heldal et al. 2003), judgement nutrients limitation (Harrison et al.
1977; Sakshaug and Holm-Hansen 1977; Rhee and Gotham 1980; Brzezinski et al.
1990; Beardall et al. 2001; Claquin et al. 2002; Shen et al. 2006; De La Rocha et al.
2010; Hagstrom et al. 2011), discussion stoichiometric balance between nutrient
structure of seawater and nutrient composition of phytoplankton and biogeochem-
istry of nutrient (Fraga et al. 1998; Heldal et al. 2003; Shen et al. 2006; Hoffmann
et al. 2007; Baines et al. 2011). However, so far scientists cannot always separate
phytoplankton directly by particulate size from seawater.Measurements of elemental
ratios or chemical composition of natural populations of phytoplankton are prone to
interference from debris and other microorganisms such as bacteria and microzoo-
plankton that can be collected on the filters used to ample the phytoplankton (Beardall
et al. 2001). Therefore, correlative studies in the international concentrated mainly
on laboratory- cultured phytoplankton strains (Heldal et al. 2003; Ho et al. 2003;
Burkhardt andRiebesell 1997; Verity et al. 1992).Major nutrients studied are carbon,
nitrogen, Phosphorus (Menzel and Ryther 1964; Sakshaug and Holm-Hansen 1977;
Nøst-Hegseth 1982; Sakshaug et al. 1983; Lirdwitayaprasit et al. 1990;Burkhardt and
Riebesell 1997; Geider and La Roche 2002; Vrede et al. 2002; Loebl et al. 2010), less
for silicon (Lewin and Guillard 1963; Harrison et al. 1977; Leynaert et al. 1991; Ríos
et al. 1998; Marchetti and Harrison 2007; Baines et al. 2011). Researches have been
reported in the elemental composition of Skeletonema costatum, such as the changes
in chemical composition of S. costatum under the conditions of nitrate-, phosphate-
, and iron-limited growth (Sakshaug and Holm-Hansen 1977) and CO2 affecting
elemental composition (C:N:P) of S. costatum (Burkhardt and Riebesell 1997).

Jiaozhou Bay is seriously affected by human activities. During the last 40 years,
nitrogen and Phosphorus concentrations have largely increased in Jiaozhou Bay sea-
water, especially nitrogen, and silicate concentrationmay has remained at a relatively
lower level. The molar ratio of nitrogen to phosphorus was obviously higher than
Redfield value (Redfield et al. 1963) and eutrophication has become increasingly
serious, resulting in changes of phytoplankton community structure (Shen 2001;
Sun et al. 2002). In order to explore the change rule of phytoplankton community
under eutrophication condition, carbon, nitrogen, Phosphorus, silicon compositions,
and molar ratios of laboratory-cultured two different-sized phytoplankton common
species of Thalassiosira rotula and S. costatum from Jiaozhou Bay were measured
and compared with the nutrient structures of seawater and different-sized suspended
particulates in this section.
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1 Sampling and Experimental Methods

1.1 Sampling

Investigation was carried out, and nine stations were set up in Jiaozhou Bay in
February 2002 (Fig. 1). Surface water samples were collected using a Niskin sam-
pler. Unfiltered water samples were preserved (with 0.3% chloroform) in polyethene
bottles and stored in a low temperature ice box (−30 °C) for analyzing nutrients
(taking clear superstratumwater sample) at the laboratory later. Phytoplankton water
samples were collected from surface layer seawater and preserved with neutralized
formalin. Phytoplankton were identified and counted under a microscope using a
workshop-made Sadgwick-Rafter-like chamber at the laboratory later.

1.2 Laboratory Cultures

T. rotula and S. costatum were separated from phytoplankton samples collected in
Jiaozhou Bay under a microscope and transferred to 200 mL triangle bottles with
100 mL f/2 medium for culture, respectively. The cultures were carried out at a
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temperature of 18 ± 1 °C, an illumination of 4000LX, and a ratio of light time to
dark time equaling 12 h: 12 h. After repeat separations and purifications, extending
cultures were lasted 30 days for T. rotula and 45 days for S. costatum, and then
they were counted. Their cell abundances were 35.2 × 103 cells mL−1 for T. rotula
and 480 × 103 cells mL−1 for S. costatum. Six samples with 2 mL each were
taken from every medium. The medium samples for determining phytoplankton
carbon and nitrogen were filtered with preignited (450 °C, for 6 h) Whatman GF/D
(2.7 µm), and the medium samples for determining phosphorus and silicon were
filtered with 2 µm Millipore filter. Four millilitres medium with two shares each
were taken and filtered with 0.45 µm Millipore filter for determining the dry mass
of the culture cells. All filters were 25 mm in diameter. All filtered membranes and
blank membranes immersed filtrates were rinsed with deionized water and stored in
a low-temperature icebox for further analysis.

1.3 Analysis and Calculation

Nutrients concentrationswere determinedbycolorimetricmethods (Shen et al. 2008).
Dissolved inorganic nitrogen (DIN) is equal to the sum of NO3–N, NO2–N, and
NH4–N. The sample of phytoplankton P was digested referring to Koroleff’s (1976)
method and measured with the potassium peroxodisulphate oxidation- colorimetry.
Sample membrane or blank membrane, 2 mL of 5% H2SO4–K2S2O8 solution and
10mL of distilled water were put into polyfluortetraethylene digestion bottle in order
and digested for 1 h at 115 °C in a pressure cooker, thenmeasured by colorimetry. The
sample of phytoplanktonSiwasmeasured referring toTreguer andGueneley’s (1988)
method, putting sample membrane or blank membrane, 10 mL of 5%Na2CO3 diges-
tion solution into polyfluortetraethylene digestion bottle in order, then was digested
and measured by colorimetry. The samples were determined using a SKALAR Flow
Analyzermade inNetherlands. Phytoplankton C andNweremeasured using amodel
240C Element Analyzer. The dry mass of diatom cell was measured using the weight
method.

The content of element in cell was calculated as:

Q � C · F/D

where,Q is content of element in cell (pg cell−1),C is molar concentration of element
(µmol L−1), F is conversion coefficient of unit, D is cell density in cultured medium
(cell mL−1). The dry mass concentration of element is calculated as:

M1 � C · F/M2

where, M1 is dry mass concentration of element (mg g−1) and M2 is dry mass
concentration of diatom in cultured medium (mg L−1).
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2 Nutrient Concentrations and Structure in Jiaozhou Bay
Seawater

Nutrient concentrations and molar ratios in surface seawater in Jiaozhou Bay in
February 2002 (Table 1) show that there were high concentration of N and low
SiO3–Si in Jiaozhou Bay and SiO3–Si concentrations were lower than or equal to the
threshold value of diatom growth (2.0 µmol L−1) (Brown and Button 1979; Perry
and Eppley 1981; Goldman and Glibert 1983; Nelson and Brzezinski 1990) at station
1 or 2, respectively. Among three forms of inorganic N, NH4–N was main existent
form being 72.4% of DIN and NO3–N was only 23.6% of DIN, which showed that
three forms of inorganic N were not in thermodynamics equilibrium. The ratios of
nutrients in average were 27.8 ± 13.6 for DIN/PO4–P ratio far higher than Redfield
value (16) and 7.4± 2.6 and 0.32±0.16 for SiO3-Si/PO4-P and SiO3-Si/DIN ratios,
respectively, far lower than Redfield value (16 and 1, respectively) (Brzezinski 1985;
Redfield et al. 1963), which showed that SiO3-Si and PO4–P possibly were potential
limiting factor to phytoplankton growth, especially SiO3–Si (Shen et al. 2006).

3 Distributions of T. rotula and S. costatum in Jiaozhou Bay

S. costatum was the predominant phytoplankton in Jiaozhou Bay, particularly in
winter and summer.T. rotulawas a phytoplankton common species, but its abundance
had not orderliness in seasonal variation and quantity was far lower than S. costatum.
Aphytoplankton peak in quantitywas often found inwinter (Wu et al. 2004). Twenty-
eight species of phytoplankton including 27 species of diatoms and 1 species of
Dictyocha sp.were identified in February, 2002. The cell abundance of phytoplankton
in average was 651.0 cell mL−1, and the dominant species were S. costatum and
Thalassiosira nordenskiöldii. Thereinto, the cell abundance of S. costatum, ranged
between 185.0 and 822.0 cells mL−1 with an average of 427.8 cells mL−1 in seawater.
The cell abundance of T. rotula was between 6.8 and 61.6 cells mL−1 with an average
of 23.2 cells mL−1. Their ratios in total cell abundance of phytoplankton were as
high as 65.7% for S. costatum and only 3.6% for T. rotula.

4 C, N, P, Si Compositions of T. rotula and S. costatum

Drymass and contents of C, N, P, Si in cells of T. rotula and S. costatum are indicated
in Table 2. The dry mass of each cells of T. rotula and S. costatum were 3125.0 and
300.0 pg, respectively, and the former was one order of magnitude higher than the
latter which was obviously related to their volumes. T. rotula belong to microphy-
toplankton and S. costatum was nanophytoplankton and their diameters are 20–50
and 6–20 µm commonly in Jiaozhou Bay, respectively. C, N, P, Si contents of each
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cell of T. rotula were 1812.5, 170.5, 12.00, and 4.81 pg, respectively and were 58.0,
5.5, 0.4, 0.2% of the dry mass of cell, respectively. Thereinto, C content exceeds half
of the dry weight of cell and was one order of magnitude higher than N content, N
content was one order of magnitude higher than P content, and Si content was the
lowest. C, N, P, Si contents of each S. costatum cell were 97.0, 27.9, 1.63, and 2.95 pg,
respectively and were 32.3, 9.3, 0.5, and 1.0% of the dry mass of cell, respectively.
Comparing the compositions of C, N, P, and Si of two diatom cells, the various ele-
mental contents in T. rotula were notably higher than those in S. costatum which was
consistent with the high dry mass of the former. There were greater differences in
the percent of elemental contents of two diatom cells in the dry mass of cells. The
percent of C content in T. rotula was much higher than that in S. costatum, but the
percents of N, P, Si contents in T. rotula lower than those in S. costatum, particularly
Si. Element compositions of two diatom cells showed that the N and P contents in
T. rotula cell were much higher than those in S. costatum cell and the former were
6.1 and 7.4 times the latter, respectively, but C content of the former was 18.7 times
that of the latter (the dry mass of the former was only 10.4 times that of the latter).
On the basis of cell volume, Sun et al. (1999) estimated the C contents in each cell
of T. rotula and S. costatum in Jiaozhou Bay using the formulas suggested by Mullin
et al. (1966), Strathmann (1967), Eppley et al. (1970) and Taguchi (1976), they were
736.2, 579.1, 693.7, and 338.2 pg, respectively for T. rotula and 16.9, 15.0, 17.8,
and 9.6 pg, respectively for S. costatum. N contents in each cells of T. rotula and
S. costatum were estimated using the formulas suggested by Taguchi (1976) being
78.0 and 3.4 pg, respectively (Sun et al. 1999). It showed that considerable differ-
ences in C and N contents were found in the two diatom cells which were consistent
with the results of this section. However, C and N contents of the two diatom cells
determined by the authors were much higher than the results estimated by Sun et al.
(1999), which were possibly showed that there was a larger difference between the
data measured using chemical method and those calculated by the models. The Si
content in each cell of S. costatum determined by the authors was a little higher than
that previously observed by Harrison et al. (1977) and Paasche (1980) being 2.1 and
2.67 pg, respectively, at 18 °C and under constant light. Brzezinski (1985) showed
that there were considerable differences in the elemental compositions for two clones
of S. costatum. In light-to- dark cycle experiments, the contents of C, N, Si in each
cell of the two clones of S. costatum were 7.32, 0.91, 1.18 pg, and 66.0, 9.1, 17.08 pg,
respectively, and the differences of both were as high as one order of magnitude. The
changes of various environmental conditions including light intensity, photoperiod,
temperature, nutrient limitation, and species differences can influence significantly
nutrient composition of diatoms (Brzezinski 1985).

The dry mass concentrations of C, N, P, Si in T. rotula and S. costatum listed in
Table 3 show that their dry mass concentrations were 580.0, 54.55, 3.85, 1.54 and
323.3, 93.05, 5.43, 9.84 mg g−1, respectively. Similar to C, N, P, Si contents in the
cells, there were very high mass concentration of C, higher of N and low P, Si in
the two diatoms. But, comparing the two diatoms, considerable difference between
the difference in the dry mass concentrations of C, N, P, Si and the difference in
C, N, P, Si contents of cells was found. The dry mass concentration of C in T.
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Table 3 Dry mass concentrations (mg g−1) and molar ratios of C, N, P, Si in T. rotula and S.
costatum

Diatoms C N P Si C/N N/P Si/P Si/N

T. rotula 580.0 54.55 3.85 1.54 12.4 31.4 0.38 0.01

S. costatum 323.3 93.05 5.43 12.70 4.1 38.0 2.6 0.07

rotula was obviously higher than that in S. costatum, however, the difference of
both was much less than the difference in C contents in cells. As opposed to C,
the dry mass concentrations of N, P, Si in S. costatum were higher than those in T.
rotula, which was consistent with the percentage of their contents in cells (Table 3).
In considerable degree, the higher N, P, Si concentrations in S. costatum reflected
that these elements in the seawater could be more assimilated by S. costatum, and
was favorable for its growth, which was probably related to their small cell size
associatedwith small diffusionboundary layers and large surface area per unit volume
(Raven 1986). Particularly for Si, its dry mass concentrations in S. costatum were
6.4 times that in T. rotula showing that S. costatum had competitive dominance
for assimilating Si. Previous studies showed that diatoms do not store sufficient Si
for new valve formation (Azam 1974; Sullivan 1977; Binder and Chisholm 1980)
and must accumulate most of the requisite amount immediately before cell division
(Brzezinski 1985). Therefore, small unit of S. costatum with competitive dominance
for assimilating Si could become a major dominant species under the condition of
relatively low concentration of Si in Jiaozhou Bay. The ecological significance of
dry mass concentrations of C, N, P, Si is that produce 1 g dry diatom, for T. rotula, it
would assimilate 54.55mgN, 3.85mgP, and 1.54mgSi (drymass) from the seawater
and simultaneously yield 580.0 mg organic C, but, for S. costatum, it would need
more N, P, Si, however, organic C yielded was only 55.7% of the T. rotula (Table 3).

5 Comparing Nutrient Compositions of T. rotula and S.
costatum with Nutrient Structures of Seawater
and Particulates

Nutrient concentrations and their molar ratios in the seawater and different-sized
particulates (Shen et al. 2006) are compared with those in laboratory-cultured phy-
toplankton common species (Table 4), showing that except for N/P ratio close, C/N,
Si/P and Si/N ratios in laboratory- cultured T. rotula and S. costatum were much
lower than those in the seawater, and that the C/N ratio in different-sized particu-
lates were between two phytoplankton common species and the Si/P and Si/N ratios
were much higher than those in phytoplankton common species, and their N/P ratio
was also close. Comparing the particulates with seawater, however, besides C, the
contents of N, P, Si and their molar ratios were more close. Because different-sized
particulates were mainly composed of phytoplankton, similar nutrient contents and
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Table 4 Nutrient concentrations and molar ratios in phytoplankton common species (mg g−1),
different-sized particulates (µmol L−1) and seawater (µmol L−1)

Element
ratios

Seawater Particulates (µm)b Particulatesb Phytoplankton
common species

20–200 2–20 <2 Total T. rotula S.
costatum

C 2200a 21.54 26.93 17.36 65.83 580.0 323.3

N 12.70 2.27 3.63 3.02 8.92 54.55 93.05

P 0.47 0.06 0.11 0.03 0.20 3.85 5.43

Si 3.40 0.61 0.53 0.20 1.34 1.32 12.70

N/P 27.8 37.8 33.0 100.7 44.6 31.4 38.0

Si/P 7.4 10.2 4.8 6.7 6.7 0.38 2.6

Si/N 0.32 0.27 0.15 0.07 0.15 0.01 0.07

C/N 173.2a 9.5 7.4 5.7 7.4 12.4 4.1

aInorganic C content in the seawater from Shen et al. (1997)
bAverage values of stations 3, 5, 7, mainly phytoplankton in different sized particulates (Shen et al.
2006)

their ratios both the particulates and seawater reflected an ecological response of
phytoplankton to the nutrient structure of seawater to a certain extent (Shen et al.
2006). The difference in numerical value of nutrient ratios both laboratory-cultured
phytoplankton and the particulates in Jiaozhou Bay reflected the difference between
laboratory-cultured phytoplankton and the phytoplankton in natural seawater, which
was obviously caused by natural phytoplankton cultured in the laboratory, show-
ing the importance of environment to phytoplankton growing. However, high C, N
contents and low P, Si in the two laboratory-cultured diatoms and different-sized par-
ticulateswere consistentwith those in the seawater. Therewas also obvious similitude
in the molar ratios of elements. Those ratios have large deviation from the mean ratio
(DIN/PO4–P/SiO3–Si � 16/16/1) of nutrients contained in marine diatom (Brzezin-
ski 1985; Redfield et al. 1963). High N/P ratios were far higher than Redfield values,
and lowSi/P andSi/N ratioswere far lower thanRedfield values. It could be suggested
that laboratory-cultured phytoplankton were bred under better nutritional condition,
however, its nutrient structure characteristics formed long-term in Jiaozhou Bay had
been not completely changed. Since the seminal work of Redfield, the elemental
composition of phytoplankton, and even the composition of the water in which the
organisms are growing, has been used as a potential index of nutrient limitation
(Beardall et al. 2001). High contents of C, N and relative low contents P, Si, high N/P
ratio and low Si/P and Si/N ratios in phytoplankton showed that P and Si were possi-
bly potential influence on affecting phytoplankton growth, especially Si. In Jiaozhou
Bay where Si was relative short, once SiO3–Si concentration increases in the sea-
water, it would probably lead to abnormal breeding of diatoms (Yao and Shen 2007;
Zhang et al. 2002).
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