
7

Identity-Based Key Agreement

7.1 Introduction

Identity-based public key cryptography was first proposed by Shamir in 1984 [665].
The idea is to avoid the need for public key certificates by making the public key pub-
licly computable from the identification information of the owner. The identification
information can include any desired fields such as real name, physical description
or identification numbers. Identity-based cryptography avoids the difficulty of hav-
ing to distribute public keys and thus avoids the need for a public key infrastructure,
although parties still need to obtain and manage private keys.

In 1984 Shamir proposed an algorithm for identity-based signatures but was un-
able to obtain an identity-based encryption algorithm. In 1987 Okamoto [589, 590]
published the first identity-based key agreement protocol, using the same format of
key pairs as in Shamir’s original identity-based signatures. For over a decade there
was limited activity in the area of identity-based cryptography, until in 2000 the
first practical identity-based encryption schemes were proposed [123, 647]. These
schemes exploit the bilinearity property of elliptic curve pairings. Following this dis-
covery, there was an explosion of interest in identity-based cryptography based on
pairings. This included a variety of different cryptographic primitives and protocols,
including scores of key agreement protocols.

There are many similarities between identity-based key agreement and key agree-
ment using standard public key cryptography. Indeed, many key exchange protocols
use generic building blocks, such as encryption or signatures, and can be instanti-
ated with either identity-based or conventional public key versions of these building
blocks. Essentially, the aim in designing a good identity-based key agreement proto-
col is to achieve all the properties of the best conventional key agreement protocols
but without the need for certified public keys, and at the same time trying to max-
imise efficiency.

We continue to use the notation IDI to denote the identifying string of entity I. In
many identity-based protocols it is not acceptable for an arbitrary string, which may
be chosen by the adversary, to be used directly as input to the private key generation
process. This can allow construction of new private keys corresponding to algebraic

C. Boyd et al., Protocols for Authentication and Key Establishment, Information

Security and Cryptography, https://doi.org/10.1007/978-3-662-58146-9_7

289© Springer-Verlag GmbH Germany, part of Springer Nature 2020

https://doi.org/10.1007/978-3-662-58146-9_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58146-9_7&domain=pdf

290 7 Identity-Based Key Agreement

combinations of other identities. Therefore IDI is typically the output of a one-way
hash function applied to the identifying data.

7.1.1 Security Model for Identity-Based Cryptosystems

In an identity-based cryptosystem, the public key of any entity is determined by that
entity’s identity string and any public parameters of the system. This is a very at-
tractive way of obtaining keying material, but unfortunately there is a significant
drawback. No principal can be allowed to generate its own private key. If this were
possible then any entity could do the same; this would mean that any entity could
masquerade as any other. Therefore, in all identity-based schemes the private key of
each principal must be generated by a trusted third party. Such a degree of trust may
not always be reasonable, although it is probably acceptable in a corporate environ-
ment. This trusted party is usually known as the key generation centre (KGC).

In order to generate private keys, the KGC must have some secret information
that depends on the public parameters of the system. (All parties must obtain authen-
tic copies of the public parameters.) This secret information is known as the master
secret of the identity-based cryptosystem. We usually assume that the public system
parameters and the master secret are generated by the KGC when the system is ini-
tialised. The private keys for an entity I can be generated as needed by the KGC
as a function of the identity information IDI and the master secret. An interesting
property of identity-based cryptosystems is that the public key can be used before
the private key has even been generated. In identity-based key agreement this can
lead to the situation where one party A possesses a key that is implicitly shared with
a partner B who is unable to compute that shared key until B contacts the KGC to
obtain its private key.

Generation of private keys is often known as key extraction in the literature. In
formal security models, we normally expect the adversary to have the ability to ex-
tract private keys for any parties which are not the target of its attack. This may seem
a strong assumption but it reflects the reality that the adversary may be able to obtain
private keys for many different entities.

Desirable security properties of identity-based key agreement include all those
discussed earlier for key agreement based on certified public keys. An additional
property that is desirable is an extended version of forward secrecy with respect
to the KGC. Although knowledge of the master secret will allow the adversary to
masquerade as any entity, there is no reason that it should also allow previously
used session keys to become compromised. Since the KGC private key can be used
to obtain any user private key, this is arguably even more important than forward
secrecy for conventional key agreement.

Definition 34. An identity-based key agreement protocol provides KGC forward se-
crecy if compromise of the KGC’s master secret does not compromise the session
keys established in previous protocol runs.

The necessity of a KGC to generate user keys is a limitation of identity-based
cryptography. It is often referred to as the escrow problem, since the KGC can at

7.1 Introduction 291

any time generate a spare user private key. Ways to mitigate the escrow problem
have been suggested in the literature. These generally involve a compromise between
truly identity-based schemes and ordinary public key schemes using certificates. In
Sect. 7.5.2, we will look at Girault’s classification and scheme for dealing with the
problem. Another possibility, discussed in Sect. 7.5.3, is to use certificateless cryp-
tography, for which the KGC generates only a part of the user private key.

7.1.2 Elliptic Curve Pairings

Pairings are functions which take as input two elliptic curve points and pair them to
form an output in a subgroup of a finite field. Different pairing functions have been
used for pairing-based cryptography, but they all have the critical feature of being
bilinear, that is they are linear in both of the input components.

The first cryptographic application of elliptic curve pairings was in cryptanal-
ysis of elliptic curve cryptosystems. Menezes, Okamoto and Vanstone [544] used
the Weil pairing to map elliptic curve discrete logarithms into a finite field, which,
for certain curve types, results in a much easier way of solving the problem. This
is often called the MOV attack on elliptic curve cryptosystems. It was only later
that it was realised that pairings can be used constructively to design cryptosystems
with properties previously unavailable. The Weil pairing was modified by Boneh and
Franklin [123] as a concrete construction for their identity-based encryption scheme.
Later, other pairings have been proposed for cryptographic purposes, particularly the
Tate pairing and variants thereof.

A full explanation of the construction of elliptic curve pairings is beyond the
scope of this book and the reader is referred elsewhere for the mathematical details
[221]. In general, the two points that are paired come from different elliptic curve
groups, which we denote G1 and G2. The output of the pairing is a finite-field point
from a subgroup which we denote GT , sometimes called the target group. There is
potential for confusion about the notation because the early literature on identity-
based cryptography used additive notation in groups G1 and G2 as is traditional for
elliptic curve groups. However, more recently it has become normal to use multi-
plicative notation for all three groups so we adopt this convention in this chapter.

Using the multiplicative notation, we let G1 be a group of prime order q and
G2 be a group of the same order q. We assume the existence of the pairing map ê
from G1×G2 to GT . The mapping ê must be efficiently computable and have the
following properties.

Bilinear: for w,x ∈G1 and y,z ∈G2, both

ê(w,yz) = ê(w,y) · ê(w,z) and ê(wx,z) = ê(w,z) · ê(x,z).

Non-degenerate: for some elements g ∈G1 and h ∈G2, we have ê(g,h) 6= 1.

When a ∈ Zq and w ∈G1, we write wa for exponentiation in G2 (traditionally called
elliptic curve scalar multiplication). Owing to bilinearity, for any w∈G1, y∈G2 and
a,b ∈ Zq we have

292 7 Identity-Based Key Agreement

ê(wa,yb) = ê(w,y)ab = ê(wab,y) = ê(w,yab).

For some types of elliptic curves (specifically, supersingular curves), it is possible
to assume that the two groups G1 and G2 are the same. Such pairings are often called
symmetric pairings. However, such a choice restricts the efficiency of the resulting
protocols, so in general it is preferable to avoid this assumption. The details of the
properties of different pairings are complex for the non-specialist to appreciate, and
so Galbraith et al. [289] summarised the important properties and classified pairing
groups into three types. The relevant issues include:

• the availability of an efficient homomorphism from G2 to G1;
• the possibility to hash efficiently into G2;
• the efficiency of exponentiation in each group;
• the size of element representation in each group.

Chen et al. [192] have considered in detail the effect of different pairing types on
the efficiency of a wide variety of identity-based key agreement schemes. They also
introduced a fourth pairing type in addition to the three considered by Galbraith et
al. [289]. Table 7.1 summarises the defining properties of the different pairing types.
Note that although Type 1 looks the most favourable in this table, its efficiency is
limited, especially at higher security levels.

Table 7.1: Pairing types of Galbraith et al. [289] and Chen et al. [192]

Symmetric Homomorphism G2→G1 Hash to G2
Type 1 3 3 3

Type 2 8 3 8

Type 3 8 8 3

Type 4 8 3 3

A pairing-based key agreement scheme usually combines long-term identity-
based keys with ephemeral keys (both private and public). When setting up such
a scheme, a decision has to be made regarding which group each key will lie in. Ex-
traction of private keys from identities normally entails hashing, so this may not be
possible for certain pairing types if long-term keys are to lie in G2. However, pairings
require one input to be from G1 and the other from G2 so that, depending on the way
that the values are combined, it may be necessary to make use of a homomorphism
to take keys from G2 into corresponding values in G1. Again, this does not exist for
all pairing types.

Making a precise comparison between protocols turns out to be very difficult,
since it depends ultimately on the cost of operations on elliptic curves and finite
fields, whose optimisation may depend on the details of the specific computing plat-
form. Therefore, in this chapter we will limit ourselves to general observations about
the relative efficiency of protocols. We will also explain most protocols using sym-
metric pairings for ease of exposition, but will also remark on the possibility of using

7.1 Introduction 293

other pairing types. An exception is our treatment of the SOK protocol below, which
we use to illustrate the effect of using asymmetric pairings.

For security of key agreement protocols in finite fields we typically need to as-
sume that the Diffie–Hellman problem (and hence also the discrete logarithm prob-
lem) is hard in both G1 and G2. In pairing-based key exchange a natural problem to
base security upon is the bilinear version of the Diffie–Hellman problem.

Definition 35 (Bilinear Diffie–Hellman (BDH) problem). Given G1, G2 and ê as
above, the BDH problem is to compute ê(g1,g2)

xyz ∈GT given 〈g1,g2,gx
1,g

y
2,g

z
1,g

z
2〉

with g1 ∈G1, g2 ∈G2 and x,y,z ∈ Zq.

This computational assumption is just one of many which have been used in se-
curity proofs for different identity-based cryptographic primitives [144]. Sometimes
it is possible to relate such assumptions to each other or to existing accepted as-
sumptions. For example, the BDH problem is no harder to solve than solving the
Diffie–Hellman problem either in G1 or in G2. However, as usual, we do not have
any absolute guarantee of the difficulty of any of these problems.

7.1.3 Sakai–Ohgishi–Kasahara Protocol

The Sakai–Ohgishi–Kasahara (SOK) protocol [647] is a fundamental building block
in many identity-based key agreement protocols. It is a non-interactive protocol and
can be regarded as an identity-based analogue of static Diffie–Hellman using tradi-
tional public key certificates. In an identity-based infrastructure, it allows any two
parties to establish a shared secret without exchange of any messages. The security
of SOK relies on the difficulty of the BDH problem.

The SOK protocol makes use of a pairing ê : G1×G2→GT . The master secret
is a value s ∈ Zq chosen randomly by the KGC. In order to extract private keys we
need to hash identity strings onto points in G1 or G2, so we define two functions H1 :
{0,1}∗→ G1 and H2 : {0,1}∗→ G2. Note that defining such an H2 is not possible
for all pairing types so we need to be careful about how to make the protocol work.
We consider three variants.

• First, suppose that we are going to use a Type 1 pairing. This means that we can
assume G1 = G2, and we only need to have one hash function, H1. We denote
the public keys of A and B as qA = H1(IDA) and qB = H1(IDB). The private keys
of parties A and B will then be the values dA = qs

A and dB = qs
B, each of which

can only be computed by the KGC, which is in possession of the master secret s.
With the above parameters, any two principals A and B with identities IDA, IDB
can efficiently calculate a shared secret as:

FAB = ê(qA,qB)
s = ê(dA,qB) = ê(qA,dB).

This variant of the SOK protocol only works with a Type 1 symmetric pairing,
since any principal’s public/private key pair needs to be defined in both G1 and
G2.

294 7 Identity-Based Key Agreement

• Assume now that G1 6=G2. In order to allow pairing between the keys of any pair
of users, we can define the keys of all users to lie in G2 and use the homomor-
phism ψ : G2→G1 to move one key into G1 when the protocol is run. Now we
denote the public keys of A and B as q′A =H2(IDA)∈G2 and q′B =H2(IDB)∈G2.
The corresponding private keys are the values d′A = (q′A)

s ∈G2 and d′B = (q′B)
s ∈

G2. We also need some way of deciding whether party A or party B’s key should
be moved into G1. One easy way of doing this is to use any natural ordering on
the strings q′A and q′B and say that A’s key will be moved into G1 if and only if
q′A < q′B. With the above parameters, any two principals A and B with identities
IDA, IDB can efficiently calculate a shared key as

FAB = ê(ψ(q′A),q
′
B)

s = ê(ψ(d′A),q
′
B) = ê(ψ(q′A),d

′
B).

This SOK variant requires pairings where the homomorphism ψ :G2→G1 exists
as well as the hash function H2. Therefore it can be seen from Table 7.1 that only
pairings of Type 1 and 4 are possible here.

• We can broaden the usable pairing types by making each party’s identity-based
key consist of two values. We now denote the public key of A as (qA,q′A) =
(H1(IDA),H2(IDA)) and similarly for party B. The private key of party A with
identity string IDA will then be the pair (dA,d′A) = (qs

A,q
′
A

s). With the above
parameters, any two principals A and B with identities IDA, IDB can efficiently
calculate the shared key as

FAB = ê(qA,q′B)
s · ê(qB,q′A)

s = ê(dA,q′B) · ê(qB,d′A) = ê(qA,d′B) · ê(dB,q′A).

This variant can be used with pairings of Type 1, 3, and 4, but Type 2 is still
ruled out owing to the need for hashing to G2. Dupont and Enge [261] analysed
the security of this variant.

These variants illustrate the typical problems that arise when one tries to apply
different pairing types to key agreement protocols. For Types 1 and 4, we can usu-
ally make any protocol work. Some protocols can use all pairing types by avoiding
pairing between user long-term keys. Chen et al. [192] illustrated how this works for
a number of protocols. In order to simplify the presentation, we will normally show
symmetric pairings in the rest of this chapter.

7.2 Identity-Based Protocols without Pairings

In recent years almost all research in identity-based key establishment has made use
of bilinear pairings. However, older protocols are worth studying too, and not just
because of their historical interest. For one thing, the older protocols are based on
better-established computational assumptions.

Several of the older protocols work in groups with a composite modulus. It is
worth emphasising that this does not mean that the parameter sizes for such proto-
cols need to be larger than those used in elliptic curve pairings. Although the discrete

7.2 Identity-Based Protocols without Pairings 295

logarithm problem in elliptic curve groups can remain hard with much smaller pa-
rameter sizes than those used in Z∗p, this does not apply to pairing groups. This is
because the possibility of the well-known MOV attack [544] requires that the tar-
get group GT in the pairing is large enough to resist finite-field discrete logarithm
attacks.

7.2.1 Okamoto’s Scheme

Okamoto’s scheme [589, 590] was the first published identity-based key agreement
protocol. It uses a composite modulus n = pq whose factorisation is known only
to the KGC. The KGC chooses values e and d as in the RSA algorithm, so that
ed mod φ(n) = 1, and an element g that is a primitive root in both the integers mod
p and the integers mod q. The values g and e are made public.

Before engaging in the key agreement protocol, each user must register with the
authority to obtain a private key. User I’s identification string, IDI , is treated as an
integer modulo n. The authority calculates the value sI = ID−d

I mod n and distributes
sI securely to user I.

Protocol 7.1 shows the key agreement message flows. The shared secret is defined
as Z = gerArB . On the assumption that it is necessary to know either sA or sB in order
to find Z, the scheme provides implicit key authentication.

Shared information: Public modulus n and exponent e. Element g of high order in Z∗n.
Information known to A: sA such that se

A = ID−1
A mod n.

Information known to B: sB such that se
B = ID−1

B mod n.

A B

rA ∈R Zn

tA = grA

sAtA−−−−−−−→ rB ∈R Zn

tB = grB

sBtB←−−−−−−−
Z = ((sBtB)eIDB)

rA Z = ((sAtA)eIDA)
rB

Protocol 7.1: Okamoto’s identity-based protocol

Mambo and Shizuya [514] conducted a computational proof of security of Proto-
col 7.1 against a passive eavesdropper. They showed that any efficient algorithm that
can find the shared secret can also break the Diffie–Hellman problem in Z∗n. Later,
this analysis was extended by Kim et al. [430] to show a security proof against active
attacks. These authors provided a reduction of attacks on the protocol to the Diffie–
Hellman problem or to the RSA problem. However, success of the adversary requires

296 7 Identity-Based Key Agreement

that the complete key is returned, rather than being defined in terms of any partial
information about the key being recovered. Later, Gennaro et al. [294, 295] provided
a security proof assuming only the difficulty of the RSA problem and in a model
that requires the adversary only to distinguish the session key from a random value.
In this model, ephemeral keys cannot be obtained by the adversary. Gennaro et al.
did, however, make two small modifications to the original Okamoto protocol. One
was that the identities needed to be hashed with a function which they modeled as a
random oracle. The other modification was that the computation of the key included
an additional squaring operation so that the shared key became Z = g2erArB . Gennaro
et al. further included a proof that Protocol 7.1 provides full forward secrecy (not
just weak forward secrecy) but only by making a stronger computational assumption
(the modified knowledge-of-exponent assumption).

In addition to full forward secrecy, Protocol 7.1 can also be shown to provide
KCI resistance (Gennaro et al. [294] stated that this can be formally proven).1 How-
ever, a significant weakness of the protocol is that it is very sensitive to compromise
of ephemeral keys. If a single ephemeral value, say rA, becomes available to the ad-
versary then A’s long-term secret is also known to the adversary. Thus, although the
protocol provides full forward secrecy, it is insecure when any ephemeral key of the
victim party is revealed. This means that the protocol is not secure in some models,
such as eCK.

Protocol 7.2 is a variant of Protocol 7.1, proposed by Okamoto and Tanaka [590],
which includes a hashed value to allow explicit authentication. Timestamps TA and
TB, are included inside the hashes cA and cB, respectively, to ensure freshness. The
shared secret is again Z = gerArB , but this value is calculated in a different way in this
variant.

There does not seem to have been any formal analysis carried out on Protocol 7.2.
It seems reasonable to assume that the properties of Protocol 7.1 would carry over to
Protocol 7.2 once the modifications of Gennaro et al. [294, 295] discussed above are
incorporated. In addition, mutual explicit authentication is claimed to be achieved as
long as synchronised timestamps are available. Using timestamps instead of nonces
allows mutual authentication to be completed with only two messages.

A similar variant was later published by Shieh et al. [667] with claimed compu-
tational advantages, but Yen [757] showed that explicit authentication fails. A further
variation is to provide one-pass key establishment (see also Sect. 7.5.5) suitable for
applications such as electronic mail. A scheme originally proposed by Okamoto and
Tanaka [590] was shown by Tsai and Hwang [714] to be vulnerable to attacks by in-
siders, and Tsai and Hwang proposed new schemes of their own. Later, Tanaka and
Okamoto [707] designed another scheme to prevent the KGC from obtaining session
keys (although the KGC can always masquerade as any user).

1 In the first edition of this book we erroneously stated that Protocol 7.1 is vulnerable to a
KCI attack.

7.2 Identity-Based Protocols without Pairings 297

Shared information: Public modulus n and exponent e. Element g of high order in Z∗n.
Information known to A: sA such that se

A = ID−1
A mod n.

Information known to B: sB such that se
B = ID−1

B mod n.

A B

rA ∈R Zn,uA = gerA

cA = H(uA, IDA, IDB,TA)

vA = sAgcArA
uA,vA−−−−−−−→ cA = H(uA, IDA, IDB,TA)

IDA
?
= ucA

A /ve
A

rB ∈R Zn,uB = gerB

cB = H(uB, IDB, IDA,TB)
uB,vB←−−−−−−− vB = sAgcBrB

cB = H(uB, IDB, IDA,TB)

IDB
?
= ucB

B /ve
B

Z = urA
B Z = urB

A

Protocol 7.2: Okamoto–Tanaka identity-based protocol

7.2.2 Günther’s Scheme

Günther [336] proposed an identity-based scheme in the familiar setting of Z∗p. The
KGC has private and public key pair xS and yS = gxS . In the registration phase, user I
obtains an ElGamal signature (ui,vi) generated by the KGC by choosing ki randomly
in Z∗p (but coprime to p−1) and setting ui = gki , vi = (IDI−xSui)/ki mod p−1. The
signature pair (ui,vi) is given to I. The verification equation of the ElGamal signature
scheme can be written as

uvi
i = gIDI y−ui

S .

Although any party can verify this equation, the idea is not to reveal vi, but rather
to reveal that I is the only party who is in possession of the discrete logarithm of
gIDI y−ui

S to the base ui. Protocol 7.3 shows a successful protocol run. The shared se-
cret is Z = urBvA

A uvBrA
B . In the description of Protocol 7.3 (and also for Protocol 7.4),

we have omitted the calculation of the value IDA by B and the value IDB by A from
the basic identifying information, which was explicitly included in the original de-
scription.

It can be seen that compromise of the long-term secrets vA and vB enables the
adversary to find old session keys, so that forward secrecy is not provided. There-
fore Günther also proposed Protocol 7.4 as an extension of the basic protocol that
provides forward secrecy at the cost of an extra exponentiation on each side. A and
B choose additional random values r′A and r′B, respectively. This time the shared se-
cret is the same as in the basic protocol but multiplied by the ephemeral Diffie–
Hellman key: Z = urBvA

A uvBrA
B gr′Ar′B . This idea of incorporating an unauthenticated

298 7 Identity-Based Key Agreement

Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: ElGamal signature of KGC on IDA, (uA,vA), so that gIDA = yuA

S uvA
A .

Information known to B: ElGamal signature of KGC on IDB, (uB,vB), so that gIDB = yuB
S uvB

B .

A B

IDA,uA−−−−−−−→
IDB,uB←−−−−−−− XB = gIDA y−uA

S
XA = gIDB y−uB

S
rA ∈R Zq

wA = urA
B

wA−−−−−−−→ rB ∈R Zq
wB←−−−−−−− wB = urB

A
Z = wvA

B X rA
A Z = wvB

A X rB
B

Protocol 7.3: Günther’s key agreement protocol

Diffie–Hellman value into the shared secret may seem strange at first but has often
been used in other protocol designs.

Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: ElGamal signature of KGC on IDA, (uA,vA), so that gIDA = yuA

S uvA
A .

Information known to B: ElGamal signature of KGC on IDB, (uB,vB), so that gIDB = yuB
S uvB

B .

A B

IDA,uA−−−−−−−→
IDB,uB←−−−−−−− XB = gIDA y−uA

S
XA = gIDB y−uB

S
rA,r′A ∈R Zq

wA = urA
B

tA = gr′A
wA, tA−−−−−−−→ rB,r′B ∈R Zq

wB = urB
A

wB, tB←−−−−−−− tB = gr′B

Z = wvA
B X rA

A tr′A
B Z = wvB

A X rB
B tr′B

A

Protocol 7.4: Günther’s extended key agreement protocol

7.2 Identity-Based Protocols without Pairings 299

There is no security proof, or even formal security property claimed, for the orig-
inal protocol of Günther, but later Fiore and Gennaro [277] did provide a proof for
the extended version (Protocol 7.4), with a slight modification to the signature algo-
rithm and where a key derivation function is applied. Informally, we may observe
a similarity with the MTI protocol A(0) and, consequently, it seems reasonable to
assume that one of vA or rB, and one of vB or rA, are required to find Z. With this
assumption, it follows that resistance to key compromise impersonation is provided.
Indeed, resistance to key compromise impersonation and weak forward secrecy were
later proven by Fiore and Gennaro [277] for their adapted version of Protocol 7.4.

Fiore and Gennaro [277] discovered a reflection attack, applicable to both Pro-
tocol 7.4 and Protocol 7.3, which allows an adversary to impersonate A to herself
and obtain the correct session key. The protocols should therefore not be used in a
scenario where A and B may be the same entity (such as where A shares the same key
across different devices). As with Okamoto’s protocol, if users cannot choose their
own identities then the unknown key-share attacks on the MTI protocols do not carry
over. Burmester [167] showed that his triangle attack is applicable to both versions
of the protocol.

A potential disadvantage of Protocols 7.4 and 7.3 is that four messages are re-
quired, although it is worth noting that messages 2 and 4 can be combined in both
protocol versions. Saeednia [640] proposed Protocol 7.5 as a variant of Günther’s
scheme that reduces the number of messages to only two. The idea is to replace the
equation for the user’s secret vi with vi = IDIki + xSui mod (p−1) while, as before,
the public key is ui = gki . Consequently, A can generate her random value tA = grA

for the protocol without waiting to receive B’s public value uB. The shared secret
becomes Z = gvArB+vBrA . The change effectively replaces the ElGamal signature in
Günther’s protocol with a variant signature (in fact, it is variant 3 in Table 11.5 in
the Handbook of Applied Cryptography [550]). Saeednia also showed how to add
forward secrecy to Protocol 7.5 without further message exchanges.

Fiore and Gennaro [277] provided a security proof for Protocol 7.5 after making
modifications to the signature algorithm and a modification where a key derivation
function is applied, similarly to how they obtained a proof for Protocol 7.4. Their
security analysis includes a proof of weak forward secrecy, and they also argued for
security against key compromise impersonation. Unlike Protocol 7.4, Protocol 7.5 is
also secure against reflections attacks, according to the analysis of Fiore and Gen-
naro.

7.2.3 Fiore–Gennaro Scheme

Fiore and Gennaro [277, 278] proposed a protocol which can be viewed as an im-
provement of Protocol 7.5. The major difference is that a Schnorr signature is used
to form the private keys of users. This allows for a more efficient protocol. Moreover,
Fiore and Gennaro provided a proof of security in the Canetti–Krawczyk model. The
proof covers (weak) forward secrecy and KCI resistance in addition to basic protocol
security. The messages exchanged are shown in Protocol 7.6.

300 7 Identity-Based Key Agreement

Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: Signature of KGC on IDA, (uA,vA), so that gvA = yuA

S uIDA
A .

Information known to B: Signature of KGC on IDB, (uB,vB), so that gvB = yuB
S uIDB

B .

A B

rA ∈R Zq

tA = grA

IDA,uA, tA−−−−−−−→ rB ∈R Zq

tB = grB

IDB,uB, tB←−−−−−−−
XA = uIDB

B yuB
S XB = gIDA yuA

S
Z = tvA

B X rA
A Z = tvB

A X rB
B

Protocol 7.5: Saeednia’s variant of Günther’s key agreement protocol

Shared information: Public key yS of KGC, where yS = gxS for KGC private key xS.
Information known to A: Signature of KGC on IDA, (uA,vA), so that gvA = uAyH1(IDA,uA)

S .

Information known to B: Signature of KGC on IDB, (uB,vB), so that gvB = uByH1(IDB,uB)
S .

A B

rA ∈R Zq

tA = grA

IDA,uA, tA−−−−−−−→ rB ∈R Zq

tB = grB

IDB,uB, tB←−−−−−−−
z1 = (tBuByH1(IDB,uB)

S)(rA+vA) z1 = (tAuAyH1(IDA,uA)
S)(rB+vB)

z2 = trA
B z2 = trB

A
Z = H2(z1,z2) Z = H2(z1,z2)

Protocol 7.6: Fiore–Gennaro key agreement protocol

7.2 Identity-Based Protocols without Pairings 301

The security proof for Protocol 7.6 relies on a computational assumption known
as the strong Diffie–Hellman assumption. It also models the hash functions H1 and H2
as random oracles. Cheng and Ma [198] pointed out that Protocol 7.6 is not secure
if ephemeral keys may be leaked, as assumed in the eCK model, but this was not
allowed in the model used by Fiore and Gennaro.

7.2.4 Comparison

Table 7.2 summarises the protocols we have examined in this section, comparing
their efficiency and security properties. Most of these protocols were originally pub-
lished a long while back when security properties and modelling of protocols had
not been extensively developed. It is therefore not surprising that originally many of
these protocols did not carry security proofs. Recent work has ‘modernised’ some
of these protocols, for example with the proof of Okamoto’s protocol by Gennaro et
al. [294, 295] and the Fiore–Gennaro version of Saeednia’s protocol. An asterisk in
the table indicates that a property may not hold for the original protocol; consult the
section about that protocol for details.

Table 7.2: Summary of ID-based protocols without pairings. FS: forward secrecy;
KCIR: key compromise impersonation resistance; ROM: random oracle model

Protocol Message Modulus FS KCIR Proof Exponentiations
passes type on/offline

Okamoto (7.1) 2 Composite Full* Yes* ROM* 1/1
OT (7.2) 2 Composite Yes Yes No 2/2

Günther (7.3) 4 Prime No Yes No 3/0
Günther (7.4) 4 Prime Weak Yes ROM* 4/0
Saeednia (7.5) 2 Prime Weak Yes ROM* 2/1

Fiore–Gennaro (7.6) 2 Prime Weak Yes ROM 2/1

Most of the protocols in this section provide some form of forward secrecy, but
usually this is only weak forward secrecy. An important feature of the Okamoto
protocol in its refinement by Gennaro et al. [294, 295] is that it provides full forward
secrecy. As noted in Sect. 7.2.1 this comes at the cost of fragile security in the face
of compromise of ephemeral keys.

Although their origins are from quite some time ago, the protocols in this section
are still competitive with the more modern pairing-based protocols examined in the
next section. The computational requirements shown in Table 7.2 are divided into
two parts, online and offline. The offline computations are those that can be com-
puted before the protocol run starts. We have counted as offline those computations
that require knowledge of the identity of the peer. Multi-exponentiations are counted
the same as a single exponentiation in Table 7.2, while simpler computations are ig-
nored altogether. Overall, the computational comparison should only be regarded as
indicative.

302 7 Identity-Based Key Agreement

7.3 Pairing-Based Key Agreement with Basic Message Format

We now turn to the popular case of identity-based key agreement using elliptic curve
pairings. It is reasonable to ask what advantage there is in identity-based key agree-
ment based on pairings in comparison with the older identity-based protocols con-
sidered in Section 7.2 above. Generally, the answer might be expected to be the same
advantages as that of using elliptic curves over older public key technology, namely
a saving in computation and key size. This may be true with regard to savings in
bandwidth since message exchanges can be considerably shorter. However, it is not
necessarily the case in terms of computation, because the pairing operation can be
quite costly. Research still continues into deciding how to implement pairings most
efficiently. In Sect. 7.3.9 we compare the efficiency of many pairing-based key agree-
ment protocols. Another possible reason for choosing pairing-based key agreement
is to exploit the infrastructure for identity-based cryptography, with its many other
benefits.

In this section we survey a number of protocols, focusing on those which have
two message passes, one in each direction between principals A and B, and which
do not provide explicit authentication. (Protocols which include explicit authentica-
tion are discussed in Sect. 7.4.) There are three ingredients defining most of these
protocols: the format of the key pair, the format of the exchanged messages, and the
construction of the session key. We consider each of these in turn.

Key pair. Most protocols use the key construction from the first protocol of Sakai et
al. [647], which was discussed in Sect. 7.1.3. We call this type of key the SOK
type. There also a few examples of protocols using an alternative key type first
suggested by Sakai and Kasahara [646], which we call the SK type.
• SOK-type keys make use of a hash function, H1, which outputs members of

the elliptic curve group G1. Boneh and Franklin [123] suggested an explicit
H1 function for a particular elliptic curve which costs one exponentiation
in the underlying field. Then the SOK-type public key for entity A is qA =
H1(IDA) ∈G1 and the private key is dA = qs

A.
• In contrast, SK-type private keys use a hash function Ĥ1 whose output is a

scalar in Zq. In this case any regular hash function can be used for Ĥ1; the
output bit string can be mapped to a number in Zq in the natural way. The
public key for entity A is then q′A = gs+Ĥ1(IDA), which can be calculated as
gs · gqA . so that it depends on the master public key, gs, as well as on IDA.
The SK-type private key is d′A = g1/(s+Ĥ1(IDA)). Note that this construction
implies that ê(d′A,q

′
A) = ê(g,g).

Message structure. In order to obtain the best efficiency, it is desirable to minimise
the length of messages. Many protocols send only one message element typically
consisting of an elliptic curve point, which can be viewed as an ephemeral key.
This section is limited to protocols with only two messages. In Sect. 7.4 we
look at protocols which include an authentication value, which is checked by the
recipient before the session key is accepted.

7.3 Pairing-Based Key Agreement with Basic Message Format 303

Session key construction. There are many different ways in which the exchanged
messages can be combined in order to derive the session key. Each party uses
the received message together with its private long-term key and its short-term
random input.

In the following protocol descriptions, we will assume that all users have access
to the public parameters for the identity-based system. A random value s ∈ Zq plays
the role of the master secret of the KGC. The published values include descriptions
of the groups G1, G2 and GT and the pairing ê, a point g that generates G1, and
a master public key h = gs. The KGC distributes to each party Pi with identity IDi
a long-term key pair of either SOK or SK type. We will usually assume that the
pairing is a symmetric (Type 1) pairing so that G1 =G2. As with the key agreement
protocols examined in Chap. 5 using public key certificates, we assume here that
parties agree on a shared secret Z from which the session key will be derived using an
appropriate key derivation function. Usually we do not mention the KDF explicitly
but sometimes protocol designers have had a specific KDF in mind, which may have
an effect on the security properties. For example, including the protocol messages in
the KDF can prevent some kinds of attack. Table 7.3 summarises the notation.

Table 7.3: Notation and terminology for pairing-based schemes

IDI Identity string for entity I
KGC Key generation centre

s KGC master secret
h KGC master public key: h = gs.
ê Elliptic curve pairing: ê : G1×G2→GT
g Generator of group G1

qA Public key of user A for SOK type: qA = H1(IDA)

q′A Public key of user A for SK type: q′A = gs+Ĥ1(IDA)

dA Private key of user A for SOK type: dA = qs
A

d′A Private key of user A for SK type: d′A = g1/(s+Ĥ1(IDA))

Z Shared secret

7.3.1 Smart’s Protocol

Smart [679] seems to have been the first to propose, in 2002, an identity-based au-
thenticated key agreement protocol based on pairings. The exchanged messages are
no different from ordinary ephemeral Diffie–Hellman keys on elliptic curves. The
pairing is used to combine identity-specific information about the parties so that only
the participants should be able to obtain the shared secret Z. Smart’s protocol and its
variants all use SOK-type keys, so dA = qs

A.
The messages and key computation are shown in Protocol 7.7. When both prin-

cipals follow the protocol without interference, the shared secret is

304 7 Identity-Based Key Agreement

Shared information: Master public key h = gs for KGC private key s. qA = H1(IDA) and
qB = H1(IDB).

Information known to A: Private key dA = qs
A.

Information known to B: Private key dB = qs
B.

A B

rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
Z = ê(qrA

B ,h) · ê(dA, tB) Z = ê(qrB
A ,h) · ê(dB, tA)

Protocol 7.7: Smart’s identity-based key agreement protocol

Z = ê(qrA
B ,h) · ê(qrB

A ,h) = ê(qrA
B qrB

A ,h).

Smart’s protocol comes with no proof of security but it has been the basis of a number
of later protocols which have been proven secure, and this can give confidence in the
basic security properties of the protocol. However, the protocol does not provide
forward secrecy. An adversary who obtains the two long-term private keys dA and dB
can compute the shared key of an observed protocol run as Z = ê(dB, tA) · ê(dA, tB).
Since the KGC can generate dA and dB from knowledge of s, this also means that
KGC forward secrecy is not provided either.

In order to provide a high level of security, it is essential that A and B check that
the received values tB and tA lie in the group generated by g. The cost of this check is
relatively cheap in the case that the protocol is implemented using a Type 1 pairing
or, in general, that g lies in G1 when G1 and G2 are different. Chen et al. [192]
pointed out a simple certificational attack in which the adversary simply multiplies
one of the exchanged messages by a low-order value outside the group. Since this
low-order element will disappear during the exponentiation with a reasonably high
probability, A and B will not have matching conversations, so the protocol is broken
in a strong security model.

In the original paper [679], Smart’s protocol was defined only for Type 1 sym-
metric pairings. As pointed out by Chen et al. [192], it can be run using any pairing
type as long as the long-term private keys are generated in G1.

7.3.2 Variants of Smart’s Protocol

Noticing the lack of forward secrecy in Smart’s protocol, Chen and Kudla [194] pro-
posed a simple change in 2003. In addition to computing the original shared secret,
they proposed to compute a straightforward ephemeral Diffie–Hellman key using the

7.3 Pairing-Based Key Agreement with Basic Message Format 305

exchanged values tA and tB. The messages in Smart’s protocol remain unchanged, but
the Diffie–Hellman key grArB is included in the shared secret value. The secret value
therefore becomes

Z = ê(qrA
B qrB

A ,h),grArB .

Subsequently, Chen et al. [192] provided a security proof for this extended proto-
col using a key derivation function which combines Z, the protocol messages, and
the identities of the participants. This proof shows that the protocol provides KGC
forward secrecy as well as resistance to key compromise impersonation, on the as-
sumption that the BDH problem is hard.

Later, Choie et al. [207] in 2005 proposed another variant of Smart’s protocol
which has the same basic idea of incorporating the ephemeral Diffie–Hellman value
using the exchanged values. The difference in their protocol is that a hash value
f = H(grArB) is computed by both parties, where H : G1 → Zq is a hash function.
The value f is then included as an exponent and the shared secret becomes

Z = ê(qrA
B qrB

A ,h) f ,

which is computed by A as Z = ê(q f rA
B ,h) · ê(dA, t

f
B) and by B in a symmetrical fash-

ion. Choie et al. [207] provided no security proof but claimed that the protocol pro-
vides KGC forward secrecy as well as key compromise impersonation resistance.
Boyd and Choo [133] pointed out an attack on the protocol in which an adversary
can obtain the session key by querying a non-matching session. However, this attack
is not due to the basic structure of the protocol but due to the lack of session-specific
information in the key derivation function. The attack can be avoided by including a
session identifier consisting of the concatenation of the protocol messages inside the
key derivation function.

7.3.3 Ryu–Yoon–Yoo Protocol

The protocol due to Ryu, Yoon and Yoo [639] has a simple and elegant structure.
Again this protocol uses SOK-type keys, so dA = qs

A. Protocol 7.8 describes the pro-
tocol.

At the end of the protocol execution, both A and B will compute the shared se-
cret Z = grBrA , ê(qA,qB)

s. This is simply the concatenation of the ephemeral Diffie–
Hellman key using the exchanged values and the SOK non-interactive key examined
in Sect. 7.1.3. Since the SOK protocol can be regarded as analogous to static Diffie–
Hellman, we can say that there is an analogy between Protocol 7.8 and the Unified
Model protocol (Protocol 5.12). It is therefore not surprising that the properties of
these two protocols are similar.

Ryu et al. [639] claimed that the protocol provides KCI resistance, but this is not
the case [133, 727]. It is easy to see that computing the key for the SOK protocol re-
quires knowledge of only one of dA and dB. Therefore, in a KCI attack, an adversary
who knows dA can compute the SOK key for any party claiming to share a key with
A. Boyd and Choo [133] also described a ‘key replicating attack’ on Protocol 7.8.
However, like the similar attack on the protocol of Choie et al. [207] mentioned in

306 7 Identity-Based Key Agreement

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

tB←−−−−−−−
Z = trA

B , ê(dA,qB) Z = trB
A , ê(dB,qA)

Protocol 7.8: Ryu–Yoon–Yoo protocol

Sect. 7.3.2, this can be avoided by including a suitably defined session identifier in
the key derivation function.

Wang et al. [728] provided a security proof for Protocol 7.8 when used together
with a specific key derivation function. Specifically, the session key K is defined as

K = H(IDA, IDB,Z, tA, tB),

where H is a hash function modelled as a random oracle. The computational assump-
tion is that the BDH problem is hard. A proof was also provided for KGC forward
secrecy. Because the identity-based keys are used on both sides of the pairing, Pro-
tocol 7.8 can only be implemented on Type 1 and Type 4 pairings.

7.3.4 Shim’s Protocol

Another early proposal for identity-based key agreement was Shim’s protocol, pub-
lished in 2003 [668]. This protocol uses SOK-type keys, so dA = qs

A. The original
version had some serious problems, but it has later formed the basis of other proto-
cols which have been proven secure.

The messages and key computation are shown in Protocol 7.9. When both prin-
cipals follow the protocol without interference, the shared secret is

Z = ê(tAdA, tBqB)
s = ê(g,g)srArB · ê(qA,g)srB · ê(g,qB)

srA · ê(qA,qB)
s.

Since Z contains the SOK key ê(qA,qB)
s as well as the bilinear Diffie–Hellman

key ê(g,g)srArB , it might intuitively be expected to be secure. However, Sun and
Hsieh [701] found that the protocol is completely insecure, as shown in Attack 7.1.

The adversary plays in the middle between A and B and alters the messages sent
between them. Once A and B complete the protocol, they have agreed on keys which
can be computed by the adversary C. Note that because C chooses both u and v, C
can compute Z = ê(tAqA,hv) and Z′ = ê(tBqB,hu).

7.3 Pairing-Based Key Agreement with Basic Message Format 307

Shared information: Master public key h = gs for KGC private key s. qA = H1(IDA) and
qB = H1(IDB).

Information known to A: Private key dA = qs
A.

Information known to B: Private key dB = qs
B.

A B
rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

Z = ê(hrA dA, tBqB)
tB←−−−−−−− Z = ê(hrB dB, tAqA)

Protocol 7.9: Shim’s protocol

A C B

rA ∈R Zq

tA = grA

tA−−−−−−−→ u ∈R Zq

t ′A = gu/qA
t ′A−−−−−−−→ rB ∈R Zq

v ∈R Zq
tB←−−−−−−− tB = grB

t ′B = gv/qB

t ′B←−−−−−−−
Z = ê(hrA dA, t ′BqB) Z′ = ê(hrB dB, t ′AqA)

= ê(hrA dA,gv) = ê(hrB dB,gu)

= ê(grA qA,hv) = ê(grB qB,hu)

Attack 7.1: Sun and Hsieh’s attack on Shim’s protocol

Later, in 2005, Yuan and Li [769] proposed a simple variation of Shim’s protocol
in order to avoid Attack 7.1. As in the Chen and Kudla variant of Smart’s protocol,
the change is simply to add the ephemeral Diffie–Hellman value to the definition of
the shared secret, which therefore becomes

Z = ê(tAdA, tBdB),grArB .

Yuan and Li did not provide any formal security analysis, but Chen et al. [192] later
provided a proof of security under the BDH assumption. The proof shows that this

308 7 Identity-Based Key Agreement

protocol provides all the desirable properties, including KGC forward secrecy and
KCI resistance.

Huang and Cao [368] proposed another variant, which is very similar to the Yuan
and Li protocol. They make use of the twin Diffie–Hellman construction of Cash et
al. [184]. The only difference from Yuan and Li’s protocol is that twin public keys
are constructed and used in a duplicate way in the protocol. The consequence of this
is to make the proof of security simpler and more complete.

Because the identity-based keys are used on both sides of the pairing, Proto-
col 7.9 can only be implemented on Type 1 and Type 4 pairings.

7.3.5 Scott’s Protocol

Scott [660] published an early pairing-based protocol in which the user’s private key
is stored as a combination of a user password and a secret stored on a physical device.
In the following description, we ignore the implementation details and use the same
assumptions as usual with regard to the ways that keys are constructed.

In contrast to the previous protocols in this section, Scott’s protocol uses mes-
sages which are dependent on the identity of the recipient. This results in the pairing
operation being used before the message is sent, but it is not needed to compute the
final shared secret. Protocol 7.10 describes the message exchange.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

pA = ê(dA,qB)
rA

pA−−−−−−−→ rB ∈R Zq

pB = ê(dB,qA)
rB

Z = prA
B

pB←−−−−−−− Z = prB
A

Protocol 7.10: Scott’s protocol

At the end of the protocol execution, both A and B will compute the shared secret
Z = ê(qA,qB)

srArB which is equal to the SOK key raised to the power rArB. The
message exchange can be regarded as analogous to the MTI C(0) protocol and the
key computation and protocol properties are rather similar.

Scott [660] presented an argument that the security of Protocol 7.10 can be re-
duced to the BDH problem, but he did not consider a full formal model. He also
argued that the protocol provides forward secrecy, and this also appears to extend
to KGC forward secrecy. However, the protocol does not provide resistance to KCI
attacks since either of the long-term private keys is sufficient to compute the SOK
key that forms part of the basis of the protocol.

7.3 Pairing-Based Key Agreement with Basic Message Format 309

Because the identity-based keys are used on both sides of the pairing, Proto-
col 7.10 can only be implemented on Type 1 and Type 4 pairings.

7.3.6 Chen–Kudla Protocol

Chen and Kudla [194] designed a number of protocols aimed at improving the effi-
ciency and security of Smart’s protocol. One of these has already been discussed in
Sect. 7.3.2. The protocol described below reduces the number of pairing computa-
tions for each party from two to one in comparison with Protocol 7.7. Notice that the
messages exchanged are also different. This protocol uses SOK-type public keys.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→ rB ∈R Zq
wB←−−−−−−− wB = qrB

B
Z = ê(dA,wBqrA

B) Z = ê(dB,wAqrB
A)

Protocol 7.11: Chen–Kudla protocol

The messages and key computation are shown in Protocol 7.11. When both prin-
cipals follow the protocol without interference, the shared secret is

Z = ê(qs
A,q

rB+rA
B) = ê(qs

B,q
rA+rB
A) = ê(qA,qB)

s(rA+rB).

In the original published paper [194], Chen and Kudla claimed a complete secu-
rity proof for this protocol. However, subsequently [195] they pointed out a flaw in
their argument (finding this flaw is attributed to Zhaohui Cheng) and only claimed
security when the adversary is prevented from obtaining old session keys via reveal
queries.

Protocol 7.11 does not provide forward secrecy, except for partial forward se-
crecy when only one of the private keys is revealed. It does, however, provide KCI
resistance as proven by Chen and Kudla under the BDH assumption [194, Theorem
2], but again only when the adversary is prevented from obtaining old session keys.
Chen and Kudla proposed a modification of Protocol 7.11 which adds in a separate
unauthenticated Diffie–Hellman exchange, in the same manner as in their modifica-
tion of Protocol 7.7. Because the identity-based keys are used on both sides of the
pairing, Protocol 7.11 can only be implemented on Type 1 and Type 4 pairings.

310 7 Identity-Based Key Agreement

7.3.7 Wang’s Protocol (IDAK)

Wang [731, 732] designed a protocol with the same message exchange as inProto-
col 7.11 but with a more complex computation of the shared secret. In compensation
for this extra work a higher level of security is achieved – specifically, there is a
security proof which allows reveal queries and proves forward secrecy. Wang called
this protocol IDAK, to indicate identity-based and authenticated key agreement. This
protocol uses SOK-type public keys.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→ rB ∈R Zq

wB = qrB
B

sA = H2(wA,wB)
wB←−−−−−−− sA = H2(wA,wB)

sB = H2(wB,wA) sB = H2(wB,wA)

Z = ê(drA+sA
A ,wBqsB

B) Z = ê(drB+sB
B ,wAqsA

A)

Protocol 7.12: Wang’s protocol

The messages and key computation are shown in Protocol 7.12. The protocol
makes use of an additional hash function H2 : G1×G1→ Z∗q. When both principals
follow the protocol without interference, the shared secret is

Z = ê(qrA+sA
A ,qrB+sB

B)s = ê(qA,qB)
s(rA+sA)(rB+sB).

Wang [731, 732] proved the security of Protocol 7.12 based on the decisional
BDH problem. The proof is in the random oracle model, assuming that both H1 and
H2 act as random oracles. The security proof includes forward secrecy and key com-
promise impersonation resilience, but the protocol does not provide KGC forward
secrecy. KGC forward secrecy can be achieved by adding a separate unauthenticated
Diffie–Hellman exchange.

Wang made some concrete suggestions for how to implement the function H2
efficiently. One is to use a hash function with range Z∗q/2. Although this invalidates
the full proof, Wang claimed that there was formal evidence that the protocol was
still secure. This choice of H2 allows the protocol to save half an exponentiation,
since the size of sA and sB will be half the size of q.

Because the identity-based keys are used on both sides of the pairing, Proto-
col 7.11 can only be implemented on Type 1 and Type 4 pairings.

7.3 Pairing-Based Key Agreement with Basic Message Format 311

Protocol 7.13 is a refinement of Protocol 7.12 due to Chow and Choo [212]. The
values sA and sB in Protocol 7.12 are replaced by values hA and hB in Protocol 7.13.
The main effect of this change seems to be that it reduces the amount of online com-
putation required by each party: A can compute hA and drA+hA

A before the protocol
run starts.

Shared information: qA = H1(IDA) and qB = H1(IDB).
Information known to A: Private key dA = qs

A.
Information known to B: Private key dB = qs

B.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→ rB ∈R Zq

wB = qrB
B

hA = H2(wB, IDA)
wB←−−−−−−− hA = H2(wB, IDA)

hB = H2(wA, IDB) hB = H2(wA, IDB)

Z = ê(drA+hA
A ,wBqhB

B) Z = ê(drB+hB
B ,wAqhA

A)

Protocol 7.13: Chow and Choo’s protocol

Chow and Choo provided a proof of security for Protocol 7.13 in the Canetti–
Krawczyk model. They also formally defined a protocol variant which includes a
separate Diffie–Hellman exchange, and showed that this variant provides weak KGC
forward secrecy. In addition to considering the usual protocol properties, Chow and
Choo also defined a protocol extension designed to provide anonymous key agree-
ment. This extension uses a ring signature so that the peer of a party involved in the
protocol can only know that the party is one out of a set (ring) of parties.

7.3.8 McCullagh–Barreto Protocol

McCullagh and Barreto [531] were the first to propose usage of SK-type keys for
identity-based key agreement. One advantage of this type of key is that the hash
function used, Ĥ1, does not have to map to an elliptic curve point as in SOK-type
keys. Recall that the SK-type public key is q′A = hgĤ1(IDA) = gs+Ĥ1(IDA), with corre-
sponding private key d′A = g1/(s+Ĥ1(IDA)).

The messages and key computation are shown in Protocol 7.14. When both prin-
cipals follow the protocol without interference, the shared secret is

Z = ê(g,g)rArB .

McCullagh and Barreto pointed out that Protocol 7.14 does not provide KGC

forward secrecy. To see this note that the KGC can compute z(s+Ĥ1(IDB))
−1

A = grA

312 7 Identity-Based Key Agreement

Shared information: q′A = gs+Ĥ1(IDA) and q′B = gs+Ĥ1(IDB).
Information known to A: Private key d′A = g1/(s+Ĥ1(IDA)).
Information known to B: Private key d′B = g1/(s+Ĥ1(IDB)).

A B
rA ∈R Zq

zA = (q′B)
rA

zA−−−−−−−→ rB ∈R Zq

zB = (q′A)
rB

Z = ê(zB,d′A)
rA

zB←−−−−−−− Z = ê(zA,d′B)
rB

Protocol 7.14: McCullagh–Barreto protocol

and z(s+Ĥ1(IDA))
−1

B = grB from its knowledge of s and the exchanged messages, and
then obtain Z = ê(grA ,grB). They therefore also proposed a second protocol aimed
at providing KGC forward secrecy using an asymmetric pairing ê : G1×G2→ GT
where G1 and G2 are different and are generated by unrelated elements g1 and g2.
Private keys of users are generated in G2; for example, A’s private key becomes
d′A = g1/(s+Ĥ1(IDA))

2 but public keys remain in G1 as before. The protocol messages
and key computation can then be identical to Protocol 7.14. Note that user keys are
applied only on the right-hand side of the pairing, which means that there is no need
for a homomorphism between the pairing groups. Also, the SOK-type private key
does not require hashing to the pairing group. Therefore any pairing type can be
used to implement Protocol 7.14.

Protocol 7.14 was found to be subject to some weaknesses. Firstly, Xie [744]
pointed out that the protocol is not resistant to KCI attacks. As a result of this
attack, McCullagh and Barreto proposed a protocol variant (included only in the
extended version of their paper [531] on the IACR ePrint Archive). This variant
avoids the KCI attack but no longer provides forward secrecy, as subsequently
pointed out by Xie [744].2 Xie [745] also proposed a new version of the protocol
with the same exchanged messages but a different key computation and shared key
Z = ê(g,g)rArB+rA+rB . Xie claimed that this change ensured forward secrecy and re-
sistance to KCI attacks, but this variant was itself broken by Shim [670] and by Li
et al. [486]. The latter also provided their own variant of Protocol 7.14, designed to
avoid the known attacks but without any formal analysis provided.

Meanwhile, Choo [210] had shown another attack on the original version of Pro-
tocol 7.14. This attack enables an adversary to recover the session key, given the
usual adversary capabilities assumed in the Bellare–Rogaway model. In order to pre-
vent this attack, it is necessary to forbid the adversary from obtaining session keys

2 Note that there are multiple versions of both the paper of McCullagh and Barreto [531] and
the paper of Xie [744], which were updated as understanding developed. These different
versions can all be obtained from the IACR ePrint Archive.

7.3 Pairing-Based Key Agreement with Basic Message Format 313

from other sessions between the same participants. In the specification of Proto-
col 7.14, the session key is defined to be a hash of the secret value Z. The final IACR
ePrint Archive version of the McCullagh and Barreto paper [531] claims security
only when the adversary is restricted from making any reveal queries.

Later, Cheng and Chen [199] showed that all of the existing proofs of Proto-
col 7.14 and its variants could not be correct, owing to a technical problem. They
also provided their own proof of a modified protocol which consists of McCullagh
and Barreto’s own variant but with an explicit key derivation function, as shown in
Protocol 7.15.

Shared information: q′A = gs+Ĥ1(IDA) and q′B = gs+Ĥ1(IDB).
Information known to A: Private key d′A = g1/(s+Ĥ1(IDA)).
Information known to B: Private key d′B = g1/(s+Ĥ1(IDB)).

A B
rA ∈R Zq

zA = (q′B)
rA

zA−−−−−−−→ rB ∈R Zq

zB = (q′A)
rB

Z = ê(zB,d′A)ê(g,g)
rA

zB←−−−−−−− Z = ê(zA,d′B)ê(g,g)
rB

K = H2(IDA, IDB,zA,zB,Z)

Protocol 7.15: Modified McCullagh–Barreto protocol of Cheng and Chen

Protocol 7.15 shows the modified protocol. The messages exchanged are the
same as in Protocol 7.14 but the shared secret is computed differently, to obtain
Z = ê(g,g)rA+rB . Cheng and Chen provided a proof of security for Protocol 7.15
based on a rather complex computational assumption. However, this protocol still
does not provide forward secrecy.

7.3.9 Comparison

Table 7.4 summarises the properties of the protocols which have been described
in this section. Earlier surveys by Chen, Cheng and Smart [192] and by Boyd and
Choo [133] have their own tables of comparison. The present table includes only the
protocols which we have explicitly listed – many other protocols are known, some of
which have been mentioned in the text. Recall that the protocols in this section use
unauthenticated messages, and private keys are not used in their construction. The
asterisks next to the properties for the Shim protocol indicate that these properties
refer to the modified version discussed in Sect. 7.3.4.

As discussed in the text, many protocols have evolved over time and sometimes
variants have been proposed by others. In the table an asterisk indicates that a prop-

314 7 Identity-Based Key Agreement

Table 7.4: Summary of implicitly authenticated two-message ID-based protocols.
FS: forward secrecy; KCIR: key compromise impersonation resistance; ROM: ran-
dom oracle model

Protocol Private Message FS KCIR Proof Computation Pairing
key type on/offline types

Smart [679] (7.7) SOK grA No Yes No 1P/2E +1P All
RYY [639] (7.8) SOK grA No No ROM [728] 1E/1E +1P 1,4
Shim [668] (7.9) SOK grA Yes* Yes* ROM [192] 1P/2E 1,4

Scott (7.10) SOK ê(dA,qB)
rA KGC No No 1E/1E +1P 1,4

CK [194] (7.11) SOK qrA
A No Yes Restricted 1P/2E 1,4

Wang [731] (7.12) SOK qrA
A Yes Yes ROM 2E +1P/1E 1,4

CC [212] (7.13) SOK qrA
A KGC Yes ROM 1E +1P/2E 1,4

MB [531] (7.14) SK (q′B)
rA Yes No Restricted 1E +1P/1E All

MBCC [199] (7.15) SK (q′B)
rA No Yes ROM 1E +1P/1E All

erty may not hold for the original protocol – consult the section about that protocol
for details.

There are some interesting comparisons possible between the protocols seen in
Table 7.4 and various protocols using conventional Diffie–Hellman in finite fields.
For example, the RYY protocol has strong similarities to the Unified Model protocol.
Also, the CK protocol is closely related to the MTI A(0) protocol. Table 7.4 notes
whether each protocol provides forward secrecy and key compromise impersonation
resistance and has a security proof. In all cases which have forward secrecy, only
weak forward secrecy is provided for these two-message protocols.

Table 7.4 also summarises the computation done by each party. We only record
pairings (P) from group G1 to G2, and exponentiations (E) in either G1 or G2. For
simplicity, we do not differentiate between exponentiations in G1 and exponentia-
tions in G2. Computational requirements are divided into two parts, online and of-
fline. The offline computations are those that can be done before the protocol run
starts. We have counted as offline those computations that require knowledge of the
identity of the peer. This may not always be realistic. Some computations are also
independent of the peer’s identity.

The amount of communication required by each protocol can be estimated by
looking at the message type sent, as listed in Table 7.4. (Only the message sent from
A to B is shown, but all protocols in Table 7.4 are symmetrical in their messages.)
Well-known techniques for elliptic curve point compression allow points to be ex-
pressed as an element in the underlying field plus a single bit. The message length
used is considerably less than for an RSA-based protocol such as Protocol 7.1 if
only one point is sent. Protocols that require online pairing computation may be
rather inefficient, since a pairing requires several times the computation of an elliptic
curve multiplication. However, the exact computation required varies considerably
depending on the choice of curve and various implementation details.

Most protocol descriptions ignore the cofactor check that may be required to
ensure that the point sent is a member of the prime-order subgroup. Such a check

7.4 Pairing-Based Key Agreement with Explicit Authentication 315

may be important for security reasons (to avoid small subgroup attacks such as those
by Lim and Lee [492]). However, when the received point is used in a pairing, the
effort required to check that the point is in G1 is only a small part of the overall
computation required.

7.4 Pairing-Based Key Agreement with Explicit Authentication

All of the protocols which we have considered in Sect. 7.3 could be extended to
include explicit authentication. This is typically achieved by using a key, generated
from the shared secret independently from the session key, to form an explicit au-
thentication tag in each direction. This would usually extend the number of message
flows from two to three. In this section we consider some protocols which include
explicit authentication.

7.4.1 Boyd–Mao–Paterson Protocol

Boyd, Mao and Paterson [139] proposed a protocol which uses pairings only to
authenticate a Diffie–Hellman exchange. The protocol uses the SOK protocol, de-
scribed in Sect. 7.1.3, to derive a static shared secret, which is then used to authen-
ticate the exchanged messages. Protocol 7.16 shows the message exchange and the
computation of the shared secret.

Shared information: Static key FAB, derived from SOK key: FAB = H1(ê(qA,qB)
s).

A B
rA ∈R Zq

tA = grA

tA−−−−−−−→ rB ∈R Zq

tB = grB

Verify hash
tB,H(FAB, IDB, tA, tB)←−−−−−−−

H(FAB, IDA, tB, tA)−−−−−−−→ Verify hash
Z = H2(t

rA
B) Z = H2(t

rB
A)

Protocol 7.16: Boyd–Mao–Paterson protocol

The authenticator used to define the protocol was proven by Boyd et al. to sat-
isfy the definition of a secure authenticator in the sense of Canetti and Krawczyk
[178] using the random oracle model and assuming that the bilinear Diffie–Hellman
problem is hard. Therefore the protocol inherits a proof of security in the Canetti–
Krawczyk model, including the forward secrecy property. However, as noted by the

316 7 Identity-Based Key Agreement

original authors, the protocol does not provide resistance to key compromise imper-
sonation, since the long-term key of either party is sufficient to compute the static
secret FAB.

7.4.2 Asymmetric Protocol of Choi et al.

Choi et al. [206] designed a protocol for use between a low-power client A and a
server B. A distinctive feature of their protocol is that A performs no pairings, even
though it is a pairing-based protocol. Despite many recent advances, pairing compu-
tations are still more expensive than exponentiations, so it is desirable to reduce the
number of pairings; by eliminating pairing computation altogether on the client side,
there is a corresponding saving in implementation cost too. Protocol 7.17 shows the
structure; three hash functions are used, Ĥ1 is the usual function for SK keys from
identity strings to Zq, and H2 and H3 output bit strings.

Shared information: q′A = gs+Ĥ1(IDA) and q′B = gs+Ĥ1(IDB).
Information known to A: Private key d′A = g1/(s+Ĥ1(IDA)).
Information known to B: Private key d′B = g1/(s+Ĥ1(IDB)).

A B
rA ∈R Zq

tA = ê(g,g)rA

zA,1 = (q′B)
rA

zA,2 = (d′A)
rA+Ĥ1(tA)

IDA,zA,1,zA,2−−−−−−−→ tA = ê(zA,1,d′B)

ê(zA,2,q′A)
?
= tA · ê(g,g)Ĥ1(tA)

rB ∈R Zq

zB = H2(tA,rB,zA,1,zA,2, IDA, IDB)
zB,rB←−−−−−−−

zB
?
= H2(tA,rB,zA,1,zA,2, IDA, IDB)

K = H3(tA,rB,zB,zA,1,zA,2, IDA, IDB)

Protocol 7.17: Protocol of Choi, Hwang, Lee and Seo

Part of Protocol 7.17 is similar to Protocols 7.14 and 7.15 in that the value zA,1
can be used by B to recompute the value tA = ê(g,g)rA . However, the other part of
the message from A, zA,2, is intended as a kind of signature to allow B to authenticate
the message. We note, however, that B has no way to check if the message from A
has been replayed, so it does not provide explicit entity authentication. The server

7.4 Pairing-Based Key Agreement with Explicit Authentication 317

sends its input rB in cleartext and both parties can then compute the session key as
a hash of ê(g,g)rA , rB and other public values. B also includes a value zB, which can
be recomputed by A to authenticate the message and to explicitly authenticate B.

Protocol 7.17 provides only partial forward secrecy; compromise of the long-
term key of the client, A, does not reveal expired session keys, but compromise of the
long-term key of B does. Owing to the authentication of each message, the protocol
appears to achieve key compromise impersonation resistance, although this has not
been proven. Choi et al. [206] provided a proof of security of Protocol 7.17 on the
assumption that the hash functions are random oracles and using two computational
assumptions known as the ‘k-value modified bilinear inverse Diffie–Hellman’ and
the ‘k-value collusion attack algorithm’ assumptions.

Later, Wu and Tseng [743] proposed a protocol related to Protocol 7.17, intended
for the same application scenario. The Wu and Tseng protocol uses SOK-type private
keys instead of the SK-type keys used in Protocol 7.17. Both protocols avoid the use
of pairings on the client side and have the same online computational requirements
for the client A. A comparison of the two given by Wu and Tseng [743] indicates that
they can save one exponentiation overall for the server compared with Protocol 7.17.

7.4.3 Identity-Based Key Agreement without Random Oracles

In all of the ID-based protocols which we have looked at so far, it has been neces-
sary for the identity string to be hashed before being used in the protocol. In order
for the security proof to work, this hash function is usually modelled as a random
oracle. Such a requirement is typical of the ID-based encryption algorithms which
were developed in the first decade of the explosion in research on pairings which
started around the year 2000. Later, it was seen as an important research goal to re-
move random oracle assumptions wherever possible and some different solutions to
that problem were found. It seems a natural goal to do the same for ID-based key
exchange, but there has not been a lot of focus on this goal.

One protocol which achieves this goal is due to Tian et al. [711]. It is based
on the ID-based encryption scheme of Gentry [297] and uses the same parameters
and private keys. In Gentry’s scheme, the public parameters consist of three values
(g,g1,h) for randomly chosen g,h ∈ G and g1 = gα , where α is the master secret
key. The private key of entity A is a pair (eA,hA), with hA = (hg−eA)1/(α−IDA). The
protocol also makes use of a secure MAC. The protocol message exchange is shown
in Protocol 7.18.

Through the first two messages of Protocol 7.18, A and B exchange what are ci-
phertexts of empty messages with Gentry’s scheme. This allows them to obtain two
shared secrets: KA = ê(g,h)rA , generated implicitly by A, and KB = ê(g,h)rB , gen-
erated implicitly by B. These keys are used firstly as keys for MACs which provide
explicit authentication, and secondly to form the shared secret Z = ê(g,h)rArB . The
protocol is relatively expensive, requiring two pairings and five exponentiations on
each side.

Tian et al. [711] provided a security proof in a Bellare–Rogaway-style model.
Like Gentry’s scheme, their security proof relies on a rather complex computa-

318 7 Identity-Based Key Agreement

Shared information: Public parameters (g,g1,h) with g,h ∈R G and g1 = gα where α is the
master secret key

Information known to A: Private key (eA,hA) with hA = (hg−eA)1/(α−IDA).
Information known to B: Private key (eB,hB) with hB = (hg−eB)1/(α−IDB).

A B
rA ∈R Zq

zA,1 = (g1g−IDB)rA

zA,2 = ê(g,g)rA

IDA,zA,1,zA,2−−−−−−−−−−−−−−−−→ rB ∈R Zq

KA = ê(g,h)rA zB,1 = (g1g−IDA)rB

zB,2 = ê(g,g)rB

KA = ê(zA,1,hB)z
eB
A,2

IDB,zB,1,zB,2,MACKA(IDA,zA,1,zA,2, IDB,zB,1,zB,2)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Verify MAC
KB = ê(zB,1,hA)z

eA
B,2

MACKB(IDB,zB,1,zB,2, IDA,zA,1,zA,2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = ê(g,h)rB

Z = KrA
B Verify MAC

Z = KrB
A

Protocol 7.18: Protocol of Tian, Susilo, Ming and Wang

tional assumption known as the truncated decisional ABDHE assumption. They also
claimed, without formal proof, that their protocol also achieves KCI resilience and
forward secrecy.

We can divide Gentry’s encryption scheme [297] into a key encapsulation method
component and a data encapsulation method. This construction is therefore strongly
related to the generic KEM-based construction examined in Sect. 5.8. Indeed, by
using any identity-based KEM that is secure in the standard model, the construction
in Sect. 5.8 can be used to construct alternative ID-based key agreement protocols
without random oracles.

7.4.4 Comparison

Table 7.5 summarises the properties of the protocols which have been described in
this section. Recall that the protocols in Table 7.5 include direct authentication infor-
mation as a signature of some sort.

The protocols in this section have differing structures, so we have not tried to
compare their message format except for noting the private key type. Each of them

7.5 Identity-Based Protocols with Additional Properties 319

Table 7.5: Summary of two-party ID-based protocols with explicit authentication.
FS: forward secrecy; KCIR: key compromise impersonation resistance; ROM: ran-
dom oracle model; Std: standard model

Protocol Private FS KCIR Proof Computation
key on/offline

BMP [139] (7.16) SOK KGC No ROM 1E/1P+1E
CHLS [206] (7.17) SK No Yes ROM −/3E (client), 3P+1E/− (server)
TSMW [711] (7.18) Gentry Yes Yes Std 2P+3E/2E

has a proof of security, with the TSMW protocol being the only explicit protocol we
have listed which has a proof in the standard model.

As in Table 7.4, we have also summarised the computation of each party in Ta-
ble 7.5. Again, we only record pairings (P) and exponentiations (E), and compu-
tational requirements are again divided into two parts, online and offline. For the
CHLM protocol, the computation is different for the client (all can be done offline)
and for the server (all online).

As mentioned at the start of this section, any of the protocols in Sect. 7.3 could be
converted into a protocol with explicit authentication. This would make little differ-
ence to the computation on each side shown in Table 7.4, and in many cases would
allow full strong forward secrecy to be achieved.

7.5 Identity-Based Protocols with Additional Properties

All of the protocols which we have examined in this chapter so far have the same
basic infrastructure, namely a KGC which issues private keys to principals based on
their identity information. There are a number of ways that this infrastructure can be
extended, both for reasons of practicality and in order to provide new properties. In
this section we consider a few of these ways, namely how to accommodate domains
with different KGCs, how to incorporate user-generated keys, and how to allow more
flexible ways to define which principals can participate. Finally, in this section we
include a discussion of one-pass key establishment, which has a special significance
for the identity-based case.

7.5.1 Using Multiple KGCs

In our descriptions of ID-based protocols we have assumed that all users rely on the
same KGC to generate their private keys. In a large-scale system this is not practi-
cal. This issue has been noticed for ID-based cryptography in general since it was
first described. There have been proposals for a hierarchical structure of KGCs to
operate with identity-based encryption. Such structures spread the load on KGCs by
allowing entities high in the hierarchy to issue keys for entities that act as KGCs for
lower layers. There appears to have been little work on investigating the inclusion of

320 7 Identity-Based Key Agreement

hierarchies for ID-based key exchange in a generic fashion. However, some schemes
have extensions allowing for multiple KGCs.

Chen and Kudla [194] presented a variant of Protocol 7.7 designed to accommo-
date the situation where two KGCs operate using the same public parameters (i.e.
the same groups and generators) but different KGC master secrets. McCullagh and
Baretto [531, Section 5] claimed a more efficient protocol. However, as pointed out
before (see Sects. 7.3.1 and 7.3.8), both of these papers have limitations in their se-
curity proofs. Fujioka et al. [287] proposed a specific ID-based protocol using the
key hierarchy of Gentry and Silverberg [300]. Guo and Zhang [338] considered a
different but related setting in which ID-based and traditional PKI-based settings are
combined.

One notable example of usage of multiple KGCs is the protocol of Schridde et
al. [658], designed as a variant of Protocol 7.1 which allows users with different
KGCs to agree on a secret. Although extra computation is required, it is not neces-
sary for the two KGCs to communicate to set up their separate system parameters.
Protocol 7.19 shows the protocol messages. The users need to employ the Chinese
Remainder Theorem to compute new secret values s′A and s′B so that the session key
derivation equation still works. The shared secret is a value in the integers modulo
n1n2, where n1 is the modulus used by A’s KGC and n2 is the modulus used by B’s
KGC.

To see that both A and B compute the same value Z = (g1g2)
e1e2rArB mod n1n2 in

Protocol 7.19, note that the value computed by A is

Z = ((s′Bt ′B)
e1e2 ID′B)

rA mod n1n2

= ((s′B)
e1e2 ID′B)

rA · ((t ′B)e1e2)rA mod n1n2

= ((s′B)
e1e2 ID′B)

rA · ((grB)e1e2)rA mod n1n2

= ((s′B)
e1e2 ID′B)

rA mod n1n2 ·Z.

However,

(s′B)
e1e2 ID′B mod n2 = se1e2

B IDe1
B mod n2

= (ID−1
B)e1(IDB)

e1 mod n2

= 1.

Similarly, (s′B)
e1e2 ID′B mod n1 = 1, so that (s′B)

e1e2 ID′B)
rA mod n1n2 = 1.

Gennaro et al. [294] presented a security proof for Protocol 7.19. They made
a few adjustments to the protocol to ensure that the security proof holds. As for
Protocol 7.1, it is necessary that the ID values are hashed and that the session
key is obtained using a key derivation function which includes the exchanged mes-
sages as a session identifier. Moreover, Gennaro et al. noted that where the expo-
nent e1e2 is used in the derivation of Z in Protocol 7.19, it can be replaced by
E = lcm(e1,e2) – this gives the same result and can be significantly more efficient.
Another change is that the value of Z must be squared so that the shared secret be-
comes Z = g2ErArB mod n1n2. Finally, they defined g using the Chinese Remainder
theorem so that g≡ g1 (mod n1) and g≡ g2 (mod n2).

7.5 Identity-Based Protocols with Additional Properties 321

Shared information: Public moduli n1,n2 and exponents e1,e2. Elements g1,g2 of high order
in Z∗n1

and Z∗n2
. Let g = g1g2.

Using the Chinese Remainder Theorem, both parties compute ID′A and ID′B such that

ID′A ≡ IDe2
A mod n1,

ID′A ≡ 1 mod n2,

ID′B ≡ IDe1
B mod n2,

ID′B ≡ 1 mod n1.

Information known to A: sA such that se1
A = ID−1

A mod n1. Using the Chinese Remainder The-
orem, A computes s′A such that

s′A ≡ sA mod n1,

s′A ≡ 1 mod n2.

Information known to B: sB such that se2
B = ID−1

B mod n2. Using the Chinese Remainder The-
orem, B computes s′B such that

s′B ≡ sB mod n2,

s′B ≡ 1 mod n1.

A B

rA ∈R Zn1n2

t ′A = grA mod n1n2
s′At ′A−−−−−−−→ rB ∈R Zn1n2

s′Bt ′B←−−−−−−− t ′B = grB mod n1n2

Z =
((s′Bt ′B)

e1e2 ID′B)
rA mod n1n2

Z =
((s′At ′A)

e1e2 ID′A)
rB mod n1n2

Both parties compute the secret
Z = (g1g2)

e1e2rArB mod n1n2

Protocol 7.19: Schridde et al. cross-domain identity-based protocol

7.5.2 Girault’s Three Levels

Girault [305] introduced a three-level categorisation of key agreement based on a
generalisation of identity-based schemes. In the schemes at level 1, the public key
of the entity is the identity string IDI , so these are exactly the normal identity-based
schemes. At the higher levels, a value obtained from the KGC is used in combination
with the partner’s identity to derive a key that can only be calculated by a principal
with the correct private key. We call such a value an implicit certificate. This allows
the private keys to be kept secret from the KGC and can be regarded as a compromise
between the basic identity-based scheme and conventional PKI-based schemes. The

322 7 Identity-Based Key Agreement

difference between levels 2 and 3 in Girault’s classification depends on whether or
not the owner of the public key can alone compute a valid public key (see Table 7.6).

Table 7.6: Girault’s levels of extended identity-based schemes

Level Properties Example

1 KGC chooses, or can compute, private key. Okamoto [589, 590], Protocol 7.1

2 KGC cannot find private key. Principal can
generate contradictory public key.

Girault and Paillès [306]

3 Only KGC can generate valid public key. Girault [305], Protocol 7.20

In order to understand the motivation behind the level 3 schemes, recall that a
certificate of a public key is a signature by a third party on certain information that
includes the value of the public key. A principal who receives such a certificate, in-
cluding the owner of the private key, cannot use it to form another contradictory cer-
tificate (for example, one that shows a different public key). This is simply because
only the third party can form new signatures. A malicious certification authority can
generate its own private key and produce a certificate that shows that this private key
belongs to any victim principal. This would allow the authority to masquerade as the
principal. However, this certificate will contradict the real certificate of the princi-
pal. Because only the authority is able to produce a certificate, the two contradictory
certificates can be used to show that the authority has cheated. In Girault’s level 2
schemes, principals can choose their own private key and also use their private infor-
mation to form new implicit certificates. Since both the authority and the principal
can form contradictory certificates, it is impossible to tell which of them has cheated
when two certificates appear. This situation is arguably little better than when the
authority has access to the private key, since it is able to masquerade as any principal
without being caught.

Girault and Paillès’ protocol [306] was classified by Girault as level 2. There is a
strong connection with Okamoto’s Protocol 7.1. In Girault and Paillès’ protocol the
public key, yA, of A satisfies ye

AIDA = g−exA mod n, where gxA is given to the server
but xA is kept secret by A. But if we rearrange this we find that yAgxA = ID−d

A , so
that A could calculate yA herself when given the same private key from Okamoto’s
scheme. In the Girault and Paillès protocol A sends the message yAgxA−rA to B. But
when we rearrange this message it becomes ID−d

A g−rA , which is the same as the
corresponding message sent in Protocol 7.1 except for a change of sign. Similarly, the
shared secrets are identical in the two protocols. We conclude that there is essentially
no benefit in A choosing the extra secret xA, even though the Okamoto scheme is at
level 1 while the Girault and Paillès protocol is at level 2.

In 1991 Girault, [305] introduced self-certified public keys in order to avoid the
limitations of level 2 schemes. These are keys that have an implicit certificate that can
only be generated by the KGC, and consequently can be used in protocols to reach
level 3 of Girault’s classification. Girault’s level 3 key agreement scheme [305] using

7.5 Identity-Based Protocols with Additional Properties 323

self-certified keys has the same algebraic setting as that used for Okamoto’s protocol
(Protocol 7.1). An RSA modulus n and key pair e,d are chosen by the server, together
with an element g of high order in Z∗n. When A registers to use the scheme, she
chooses her private key xA and provides gxA to the KGC, which calculates the self-
certified public key yA = (gxA− IDA)

d mod n. (We have changed the sign of xA from
Girault’s original in order to maintain our usual notation.) In order for the scheme
to achieve level 3, it is essential that the KGC is unable to find xA. Saeednia [641]
has pointed out that a malicious server that chooses n may be able to find discrete
logarithms relatively easily, and for this reason the size of n should preferably be
2048 bits. In addition the KGC should provide a proof that n is the product of two
safe primes; Camenisch and Michels [175] provided a method to achieve such a
proof.

In Girault’s original paper [305], he only suggested using the self-certified keys
to produce an authenticated static shared key. If the public keys are already available,
this can be achieved with no message exchanges: A calculates (ye

B + IDB)
xA in order

to produce Z= gxAxB and B calculates the analogous value. However, since the public
key is simply a way to find an implicitly certified key for each party, any of the MTI
protocols (see Sect. 5.3) can be modified to provide a dynamic protocol. For example,
Protocol 7.20 shows a version modified from MTI A(0), as suggested by Rueppel and
van Oorschot [637]. The shared key is Z = grAxB+rBxA . The usual extra checks should
be made in order to avoid potential attacks, as discussed in Sect. 5.3. Analogues of
the other MTI protocols can be made similarly, replacing yA in the MTI original with
ye

A + IDA in the Girault version, and similarly for yB.

Shared information: Public modulus n and exponent e. Element g of high order in Z∗n.
Information known to A: xA with ye

A + IDA = gxA mod n, yB.
Information known to B: xB with ye

B + IDB = gxB mod n, yA.

A B

rA ∈R Zn

tA = grA

tA−−−−−−−→ rB ∈R Zn
tB←−−−−−−− tB = grB

Z = txA
B (ye

B + IDB)
rA Z = txB

A (ye
A + IDA)

rB

Protocol 7.20: Girault’s identity-based protocol, adapted by Rueppel and van
Oorschot

Just like the MTI A(0) protocol, Protocol 7.20 does not provide forward secrecy:
knowledge of xA and xB allows an adversary to compute Z. However, KCI resistance

324 7 Identity-Based Key Agreement

does seem to be provided, but there is currently no proof of that, nor indeed that the
protocol is secure at all.

Nyberg and Rueppel [585] suggested using their signature with message recov-
ery, previously discussed in Sect. 5.2.2, as the basis of identity-based key agreement.
The idea is to make the public key of each principal A equal to the signature of
gxA ID−1

A . After recovery of the message from the signature, the implicitly certified
public key can be recovered by multiplying by IDA. With this basis, any of the MTI-
style protocols can be applied, in the same manner as in Protocol 7.20. Sakazaki et
al. [648] explored use of elliptic curves and other variations in order to make the
basic idea more efficient.

7.5.3 Certificateless Key Agreement

Despite the efficiency advantages of identity-based key exchange, it has the signif-
icant drawback that it has the so-called ‘escrow’ property: the KGC can obtain the
private key of any party. If the protocol has KGC forward secrecy, this may not be
as serious a problem as it would otherwise be, because the KGC will be unable to
recover session keys from sessions in which it was not active. But the KGC can still
masquerade freely as any user. Furthermore, if a malicious KGC is able to obtain
ephemeral keys used in the session then it will be able to obtain the agreed session
key (since it will know all the secrets).

For the above reasons there is value in considering the certificateless setting. Cer-
tificateless cryptography was introduced by Al-Riyami and Paterson [24] to provide
some of the benefits of identity-based cryptography without allowing the KGC to
know the secrets of users. To achieve this, users have two parts to their private key:
one is issued by the KGC and the other chosen by the user. A user’s public key must
be known to communication partners but is not certified. This can be seen as a similar
idea to Girault’s level 3 scheme discussed in Sect. 7.5.2.

Since the idea of Al-Riyami and Paterson [24] was introduced in 2003, many cer-
tificateless cryptographic primitives have been designed, including encryption and
signatures. There have also been several certificateless key agreement protocols; in-
deed, the first was in the original Al-Riyami–Paterson paper. However, it was not
until 2009 that a formal model for security was defined [497, 702]. In such a model,
we expect the adversary to obtain the KGC private key as well as the ephemeral pri-
vate keys of the parties and still be unable to obtain the session key. This shows that
the model is stronger than what can be achieved in the identity-based setting.

Swanson and Jao [702] showed that all of the protocols published before 2009
are insecure in a strong model of security. Lippold et al. [497] seem to have been
the first to propose a certificateless key agreement protocol that is secure in a strong
security model. Their protocol remains secure even if any two of the three keys (the
identity-based private key, the user-selected private key, and the ephemeral private
key) become compromised. The security proof is in the random oracle model and re-
lies on the computational Diffie–Hellman assumption. However, the protocol is rel-
atively expensive, requiring 10 elliptic curve pairings for each party. Slightly later,
Lippold et al. [496] proposed another certificateless key exchange protocol which

7.5 Identity-Based Protocols with Additional Properties 325

is secure in the standard model and is more efficient than their previous proposal.
It is essentially the same as Protocol 5.43, where the key encapsulation mechanism
used is a certificateless one. Yang and Tan [750] have proposed an even more effi-
cient protocol without relying on pairings; it relies instead on the gap Diffie–Hellman
problem.

7.5.4 Protocols with Generalised Policies

In the past few years, identity-based cryptography has been generalised in a few
different ways to allow more flexible and expressive properties to be specified. For
example, identity-based encryption can be generalised so that ciphertexts can be de-
crypted by any user who possesses certain properties, such as being a member of
a group or being above a certain age. Identity-based encryption is then a special
case of this, where the specific property required for decryption is having an iden-
tity equal to a specific value. Various flavours of generalisation have been defined,
including attribute-based cryptography, predicate cryptography, and, more generally,
functional cryptography [124]. At the time of writing, this is still a developing re-
search area where many new results can be expected in the coming years. Here we
just mention some early contributions to applying these generalisation to key ex-
change protocols.

At the same conference in 2010, papers were published on predicate-based
key exchange by Birkett and Stebila [104] and on attribute-based key exchange by
Gorantla et al. [327]. These two papers are related in that their intent is to gener-
alise the access policy to the shared secret, but they also have significant differences.
The first is concerned with two-party key exchange, and one main requirement is to
hide the properties (attributes) held by the participants. The second presents a group
key exchange protocol in which any user can participate by holding the necessary
properties, while keeping the user identity secret. Either of these approaches may
be useful, depending on the application scenario. Other papers have built on these
ideas [694, 765]. A related notion is credential-based key exchange, introduced by
Camenisch et al. [174].

7.5.5 One-Pass Identity-Based Protocols

One of the major benefits of identity-based cryptography is that users do not need to
access keying material for communication partners before applying cryptographic
processing based on the partner’s identity. When using conventional (certificate-
based) public keys, a user who wishes to encrypt information for a chosen recipient
must know the correct public key of the recipient. In contrast, identity-based encryp-
tion requires only the recipient’s identity (and the public parameters) to be known. In
this sense, identity-based encryption is more useful than identity-based signatures. A
signer can append a certificate to a conventional public signature to make it identity-
based in the sense that only the public parameters (which can include the certifier’s
public key) and the identity are required to verify the signature.

326 7 Identity-Based Key Agreement

We can develop this argument in the context of key exchange protocols to arrive
at the conclusion that many key exchange protocols with two (or more) messages
can be made identity-based simply by adding certificates to each of the (first two)
messages. This will always work as long as the first message from the initiator does
not depend on the public key of the responder. Of course, this does not mean that
such protocols will be efficient or have other desirable properties. Also, it may be
desirable to share public keys and parameters from an identity-based infrastructure
used for encryption and reuse them for key exchange. Thus we certainly do not claim
that the two- and three-message protocols explored in this chapter are not interesting.
However, we can say that the relationship of one-pass key exchange to two-pass key
exchange is similar to the relationship of identity-based encryption to identity-based
signatures. The latter can always be obtained from conventional primitives, while the
former cannot.

It is reasonable to expect that protocols with only one message will not achieve as
high a level of security as those with more messages. Noticing that an adversary who
obtains the recipient’s private key has the same information as the recipient during
the protocol, we can see that one-pass protocols cannot achieve full forward secrecy.
The best that can be achieved is sender forward secrecy so that compromise of the
sender’s private key will not compromise the session key. Similarly, an adversary
who can obtain the recipient’s private key can impersonate the sender unless the
single message is explicitly authenticated (and the adversary can always replay a
message), so that key compromise impersonation to the recipient cannot generally
be prevented.

Okamoto et al. [592] described two protocols and argued that their protocols
provide sender forward secrecy and security against key compromise impersonation
to the sender. Around the same time, Wang’s protocol [731, 732], which we saw in
Sect. 7.3.7, was published. Wang pointed out that Protocol 7.12 can be adapted to a
one-pass protocol by setting rB = 1 and wB = qB so that the message wB sent from
B to A can be removed. However, none of these earlier protocols carries any proof
of security. Gorantla et al. [325] seem to have been the first to provide a design for
one-pass identity-based key exchange with a security proof. Their protocol is shown
as Protocol 7.21.

A B
rA ∈R Zq

wA = qrA
A

wA−−−−−−−→
s = H2(wA, IDA, IDB) s = H2(wA, IDA, IDB)

Z = ê(drA+s
A ,qB) Z = ê(sB,wAqs

A)

Protocol 7.21: Protocol of Gorantla, Boyd, and González-Nieto

7.6 Conclusion 327

There is a strong similarity between Protocol 7.21 and Protocol 7.12 by Wang.
Indeed, Protocol 7.21 is a simplified version of Wang’s one-pass version of Proto-
col 7.12 mentioned above. Gorantla et al. [325] provided a security proof of Proto-
col 7.21 in the random oracle model, assuming hardness of the BDH problem.

It is a reasonable question to ask whether there is any real difference between
a one-pass key exchange protocol and a hybrid encryption scheme. In both cases, a
key is set up which is then used to protect other exchanged data, and this key can
depend on both the sender’s and the recipient’s long-term keys. This question was
investigated by Gorantla et al. [324] who concluded that there is a duality between
one-pass key exchange and a primitive known as a signcryption KEM. With suitable
assumptions, it is possible to transform a one-pass key exchange protocol into a
signcryption KEM and vice versa.

7.6 Conclusion

There has been a huge amount of research on identity-based cryptography, mostly
since the year 2000. Identity-based key exchange has been a significant part of this
and it may be fair to say that the area is reasonably mature, at least with regard to
pairing-based solutions. We have a number of well-understood protocols which are
practically efficient and with security proofs based on widely accepted computational
assumptions.

One direction where we may see future developments is in lattice-based solu-
tions. Lattices appear to be a more promising long-term foundation for identity-
based cryptography. One reason for this is the likelihood that lattice-based algo-
rithms will be able to withstand attacks from quantum computers, which threaten to
undermine many current cryptographic technologies, including pairings. The other
direction where we anticipate new results is in protocols whose principals are defined
by something more flexible than identity. These can be expected to emerge from re-
search into generalised forms of cryptographic primitives, particularly in the area of
functional cryptography.

	7 Identity-Based Key Agreement
	7.1 Introduction
	7.1.1Security Model for Identity-Based Cryptosystems
	7.1.2 Elliptic Curve Pairings
	7.1.3 Sakai–Ohgishi–Kasahara Protocol

	7.2 Identity-Based Protocols without Pairings
	7.2.1 Okamoto's Scheme
	7.2.2 Günther's Scheme
	7.2.3 Fiore–Gennaro Scheme
	7.2.4 Comparison

	7.3 Pairing-Based Key Agreement with Basic Message Format
	7.3.1 Smart's Protocol
	7.3.2 Variants of Smart's Protocol
	7.3.3 Ryu–Yoon–Yoo Protocol
	7.3.4 Shim's Protocol
	7.3.5 Scott's Protocol
	7.3.6 Chen–Kudla Protocol
	7.3.7 Wang's Protocol (IDAK)
	7.3.8 McCullagh–Barreto Protocol
	7.3.9 Comparison

	7.4 Pairing-Based Key Agreement with Explicit Authentication
	7.4.1 Boyd–Mao–Paterson Protocol
	7.4.2 Asymmetric Protocol of Choi et al.
	7.4.3 Identity-Based Key Agreement without Random Oracles
	7.4.4 Comparison

	7.5 Identity-Based Protocols with Additional Properties
	7.5.1Using Multiple KGCs
	7.5.2 Girault's Three Levels
	7.5.3 Certificateless Key Agreement
	7.5.4 Protocols with Generalised Policies
	7.5.5 One-Pass Identity-Based Protocols

	7.6 Conclusion

