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Transport Layer Security Protocol

6.1 Internet Security Protocols

Authenticated key exchange protocols are at the core of Internet security protocols:
they authenticate one or more of the parties communicating, and provide the estab-
lishment of a session key that is then used to encrypt application data. There are
several protocols in widespread use to secure various applications. The most promi-
nent are the following:

Transport Layer Security (TLS). Formerly known as the Secure Sockets Layer
(SSL) protocol. The TLS standards are developed and maintained by the In-
ternet Engineering Task Force (IETF) TLS working group. TLS operates over
the TCP/IP protocol stack and is used to protect web traffic (using HTTPS),
file transfers, email transport, and many other applications. To date there have
been two versions of SSL (SSL v2 and SSL v3) and three versions of TLS (TLS
1.0, TLS 1.1, and TLS 1.2); the next version, TLS 1.3, was submitted for stan-
dardisation in March 2018. A variant called Datagram TLS (DTLS) is used for
protection of datagrams transmitted over UDP. See Table 6.1 for a list of versions
of TLS and related protocols.

Secure Shell (SSH). SSH operates over the TCP/IP protocol stack and is primarily
for used for securing remote command-line logins, replacing the insecure Telnet
protocol. SSH can also be used for file transfer (secure copy (scp)), as well as a
rudimentary virtual private network. The current version, SSH v2, is incompati-
ble with the prior SSH v1.

Internet Protocol Security (IPsec). The IPsec protocol suite operates at the IP
layer of the IETF protocol stack, and is automatically applied to all applica-
tion data above it. It can be used in two modes: transport mode authenticates
and encrypts the contents of an IP packet, but leaves the headers unchanged;
and tunnel mode authenticates and encrypts an entire IP packet, including the
headers, and then encapsulates that as the payload of a new IP packet. IPsec is
typically run in one of three architectures: host-to-host (directly securing a con-
nection between two computers), host-to-gateway (for example, a remote user
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Table 6.1: Versions of SSL/TLS and Datagram TLS (DTLS)

SSL v2 1995 [355]
SSL v3 1996 [283]
TLS 1.0 1999 [249]
TLS 1.1 2006 [250]
TLS 1.2 2008 [251]

DTLS 1.0 2006 [627]
DTLS 1.2 2012 [628]

connecting to a corporate network via a virtual private network), and gateway-
to-gateway (for example, a gateway connecting all computers in a branch office
to the head office).

There are several other special-purpose Internet protocols that make use of au-
thenticated key exchange, including the Tor anonymity network and secure instant
messaging protocols such as Off-the-Record (OTR) messaging, and the Axolotl
ratchet/Signal protocol. Appendix A summarizes many of these.

In this chapter, we examine the Transport Layer Security protocol in detail. TLS
is interesting owing to its widespread use, the complexities in its design compared
with academic key exchange protocols, and the many weaknesses and flaws found in
the protocol and its implementations. TLS also differs from academic key exchange
protocols in the sense that it directly combines key exchange and authenticated en-
cryption to establish a secure channel.

6.2 Background on TLS

The Secure Sockets Layer protocol was developed by Netscape in the mid-1990s.
The first publicly released protocol was SSL v2 in February 1995 [355]. A redesign,
aiming to fix several security flaws, was published in November 1996 (and published
as a historical RFC in August 2011 [283]). In January 1999, the Internet Engineer-
ing Task Force published the TLS 1.0 protocol [249], which made minor changes to
SSL v3. In April 2006, the IETF published TLS 1.1 [250], primarily making changes
in how the CBC block cipher encryption mode worked. TLS 1.2 was published in
August 2008 [251], incorporating changes to the PRF, support for authenticated en-
cryption with additional data, and more precise negotiation of algorithms. There are
more than 45 additional RFCs that describe additional behaviour or functionality;
notable ones include the specification of elliptic curve cryptography [106] and pre-
shared keys [269], the addition of new ciphers such as AES [213], extensions to the
protocol specification [112], and deprecation of old algorithms [55, 619].

TLS is used to protect many applications. It is most familiar to many when
it is used to protect web traffic transmitted over the Hypertext Transport Protocol
(HTTP). In this context, called HTTPS, an SSL/TLS connection is established (typ-
ically on TCP port 443, different from port 80 for the unsecured website), and then
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HTTP data is transmitted across the secured connection. TLS can also be used to
protect email transport protocols (IMAP and POP, for clients to download messages
from mail servers, and SMTP, for delivery of outgoing messages), as well as file
transfer (FTP). In these contexts, the unsecured connection is ‘upgraded’ to a secure
connection: first, the normal unsecured connection is established, and then a special
command (such as ‘STARTTLS’) is used to activate TLS, at which point a TLS con-
nection will be established, and all subsequent data will be transmitted over the TLS
connection.

6.3 Protocol Structure

The TLS protocol consists of several subprotocols; for cryptographic purposes, the
two most important subprotocols are the handshake protocol and the record layer
protocol. In the handshake protocol, the client and server agree on a set of crypto-
graphic parameters, called a ciphersuite, exchange authentication credentials, estab-
lish a shared secret, perform explicit authentication, and derive keys for bulk encryp-
tion and message authentication. The record layer protocol provides delivery of all
messages in TLS, including handshake protocol messages and application data, but
in particular the record layer protocol optionally protects messages using authenti-
cation and encryption. There is an additional alert protocol, which is used to notify
peers about errors or to close the connection. The stacking of these layers is shown
in Fig. 6.1. The exact cryptographic algorithms used in both the handshake and the
record layer protocol depend on which ciphersuite the parties have negotiated.

TLS handshake protocol TLS alert protocol . . . Application-layer data
TLS record layer protocol

TCP
IP

Fig. 6.1: Layering of TLS subprotocols and the TCP/IP stack

TLS can provide entity authentication using long-term public keys using the
X.509 public key infrastructure [223]. Authentication can be either mutual or only
server-to-client. Parties generate long-term secret key/public key pairs, then sub-
mit their public key and a proof of possession (usually a signature using the key)
via a certificate-signing request to certification authority (CA). The CA verifies the
certificate-signing request and the identity of the requesting party, then issues a cer-
tificate containing the party’s identity (in the case of servers, this is the server’s fully
qualified domain name), and public key, as well as additional fields such as the pe-
riod of validity and the purposes for which the certificate can be used; the certificate
is signed by the CA using its long-term key. Web browsers typically have 150 or
more certificates for 80 or more commercial and governmental root CAs installed by
default; however, many root CAs allow independent subordinate CAs to also issue
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certificates, so the exact number of certificate issuers that are trusted by default by
browsers is unknown even to browser vendors. Taking into account these subordinate
issuers, over 650 certificate issuers trusted by default by major browsers have been
observed in Internet-wide surveys of TLS server certificates [266].

6.3.1 Handshake Protocol

To first establish a TLS connection, a client and a server run the full TLS handshake
protocol. As shown in Protocol 6.1, the TLS handshake protocol proceeds as follows.

1. The client initiates the connection by sending a ClientHello message, which
contains a nonce as well as the client’s list of preferred ciphersuites.

2. The server responds with several packets together:
• ServerHello message, containing a nonce and the chosen ciphersuite;
• Certificate message, if server authentication is being used;
• ServerKeyExchange message containing the server’s ephemeral Diffie–

Hellman value, if the ciphersuite calls for it;
• CertificateRequest message, if the server is asking for client authenti-

cation.
3. The client verifies the server’s certificate, then responds with:
• Certificate message, if client authentication is being used;
• ClientKeyExchange message, which the parties use to compute the session

key;
• CertificateVerify message, if client authentication is being used.
At this point, the client computes a premaster secret, which is the raw shared
secret. Using the premaster secret and the client and server nonces, the client
then computes the master secret, from which it derives four record-layer session
keys: two keys for bulk encryption (client-to-server and server-to-client), and
two keys for message authentication (client-to-server and server-to-client).

4. The client sends a ChangeCipherSpec message, which indicates that all further
messages will be sent encrypted using the record layer protocol. Finally, the
client sends (encrypted by the record layer) a Finished message, containing a
key confirmation value.

5. The server computes the premaster secret and master secret, then derives the ses-
sion keys. It verifies the client authentication, if any, then verifies the Finished
message it has received from the client.

6. The server sends a ChangeCipherSpec message, which similarly indicates that
all further messages will be sent encrypted using the record layer protocol. Fi-
nally, the server sends (encrypted by the record layer) its own Finished mes-
sage for key confirmation.

This concludes the handshake protocol, and application data can now be sent using
the record layer protocol.

If the client and server have previously established a session, they can perform
an abbreviated handshake for session resumption. In this case, the message flow is as
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Client Server

ClientHello

ServerHello

Certificate∗

DH: generate ephemeral keyServerKeyExchange∗

CertificateRequest∗

ServerHelloDone

Certificate∗

DH: generate ephemeral key
RSA: random premaster secret

ClientKeyExchange

CertificateVerify∗

DH: generate shared secret
RSA: decrypt pms

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application data
Secure session

∗ denotes messages that may not be present in all ciphersuites.
[. . . ] denotes messages that are sent over the TLS alert protocol.

Single arrows denote plaintext flows; double arrows denote encrypted flows.

Protocol 6.1: TLS ≤ 1.2 handshake protocol – full handshake

shown in Protocol 6.2. The abbreviated handshake allows re-establishment of a TLS
record layer in a single round trip, rather than two round trips as in the full handshake
protocol; it also avoids some expensive public key operations.

We now examine each message of the handshake protocol in detail.

ClientHello. With this message, the client initiates the connection. The primary
purpose of the message is to convey the client’s parameter preferences. The mes-
sage includes:
• a protocol version field, indicating the maximum supported version of SSL

or TLS;
• the client random value, a 32-byte nonce;
• the session id of a previous session, if session resumption is being used;
• a list of the client’s supported cryptographic parameters in order of prefer-

ence;
• a list of the client’s supported compression methods in order of preference;

and
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Client Server

ClientHello
includes session ID/ticket

ServerHello

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application data
Secure session

Protocol 6.2: TLS ≤ 1.2 handshake protocol – abbreviated handshake

• any optional extensions, indicating additional information.
TLS 1.0 and TLS 1.1 were updated to support extensions. Frequently used ex-
tensions include the server name indication extension, which helps a TLS server
hosting multiple domains to pick the appropriate certificate to send to the client;
the elliptic curves extension, indicating which elliptic curves the client supports;
and the renegotiation indication extension, which help protects against the rene-
gotiation attack (see Sect. 6.11.2).

ServerHello. With this message, the server indicates which parameters have been
chosen. The message includes:
• a protocol version field, indicating which protocol version will be used for

this connection;
• the server random value, a 32-byte nonce;
• the session id of this session, for the purposes of future session resump-

tion;
• the chosen ciphersuite;
• the chosen compression method; and
• any optional extensions.
The client random and server random nonces serve to provide freshness or
liveness guarantees and prevent replay attacks.

Certificate (server). For all server-authenticated ciphersuites which involve cer-
tificates, the server also sends a message containing its certificate. This message
is structured as a chain of X.509 certificates: the first certificate is the server’s
certificate, and each subsequent certificate in the chain is the certificate of the
certification authority that signed the preceding certificate. The last (root) cer-
tificate may be omitted, as the client must have that certificate installed already
in order to trust it. Upon receiving this message, the client validates the certifi-
cate chain by (a) checking that the subject of the server’s certificate matches the
domain name of the server with which it is communicating, (b) verifying the sig-
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nature of each certificate under the public key of the next certificate in the chain,
and (c) checking the validity period of the certificate. Optionally, the client may
check the revocation status of the certificate using either certificate revocation
lists (CRLs) or the online certificate status protocol (OCSP). Servers can include
a recent OCSP response in the handshake in a process known as OCSP stapling.

ServerKeyExchange. This message is sent if the chosen ciphersuite calls for the
server to send an ephemeral public key, which is the case for ephemeral Diffie–
Hellman ciphersuites, but not for static Diffie–Hellman or RSA key transport
ciphersuites. For signed-Diffie–Hellman ciphersuites, the structure of this mes-
sage is:
• the server Diffie–Hellman parameters and ephemeral public key:

– for finite-field Diffie–Hellman, this contains the prime modulus p, the
generator g, and the server’s ephemeral public key Y ≡ gy mod p;

– for elliptic curve Diffie–Hellman, this contains the chosen elliptic curve,
either as a named curve or as the explicit parameters (field, curve, gen-
erator, order, cofactor), and the server’s ephemeral public key Y = yP;
and

• the server’s signature over the client random, server random, and Diffie–
Hellman parameters.

In SSL v3, the ServerKeyExchange message would be sent for RSA key trans-
port ciphersuites if the server’s long-term key was solely a signature key. In TLS
1.0, this was removed, except for export ciphersuites where the server’s long-
term key was not sufficiently long, and as of TLS 1.1 was removed entirely.

CertificateRequest. The server sends this message if it requires the client to
authenticate itself using a certificate. The message includes:
• a list of supported client certificate types;
• a list of supported signature types supported for certificate verification; and
• a list of acceptable certificate authorities.

Certificate (client). If the server has sent a CertificateRequest message,
then the client responds with its certificate; this message has the same struc-
ture as the server’s Certificate message. Upon receipt of this message, the
server verifies the validity of the client’s certificate as above.

ClientKeyExchange. In the full handshake, this message is always sent by the
client to establish a premaster secret. The structure of the message depends on
the ciphersuite chosen.
• For RSA-key-transport-based ciphersuites, this message contains the en-

crypted premaster secret. In particular, the client chooses a random 46-byte
value, and, together with the two bytes of client version, these 48 bytes
comprise the premaster secret. The client encrypts the premaster secret under
the server’s RSA public key (from the server’s certificate) using PKCS#1v1.5
encryption. These ciphersuites do not provide forward secrecy.

• For finite-field or elliptic curve ephemeral Diffie–Hellman ciphersuites, this
message contains the client’s ephemeral public key. In this case the premas-
ter secret is the Diffie–Hellman shared secret. These ciphersuites provide
forward secrecy.
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• For static Diffie–Hellman ciphersuites, this message is empty.
Upon receipt of this message, the server derives the premaster secret. In the case
of RSA key transport, the server must carefully implement the PKCS#1v1.5
decryption process to avoid a side-channel leak (see Sect. 6.9.1). Both parties
derive the master secret from the premaster secret as specified in the subsequent
subsection. Finally, encryption and authentication keys are derived from the mas-
ter secret.

CertificateVerify. This message is sent if the client has sent a certificate. The
message is computed as the client’s RSA, DSA, or ECDSA signature on all
handshake messages it has sent and received up to, but not including, this mes-
sage. Upon receipt of this message, the server verifies the signature.

ChangeCipherSpec (client). The client sends this single-byte message to the server,
indicating that all future messages it sends will be encrypted and authenticated.
Note that, for networking reasons, this message is technically not part of the
handshake protocol but a separate subprotocol.

Finished (client). This message is sent by the client to verify that the key exchange
and entity authentication were successful. Since it includes authentication of the
handshake messages, from a cryptographic perspective the Finished message
allows the other party to verify that its peer had the same view of the handshake
and that no downgrade attacks occurred. The message contains

PRF (ms, label‖H(handshake)) ,

where label = “client finished” and handshake is the transcript of all handshake
messages sent and received by the party; H is the hash function specified by
the ciphersuite. Upon receipt of this message, the server compares the received
value with its own computed value. If the values match, the server accepts.

ChangeCipherSpec (server). The server sends this single-byte message to the client
indicating that all future messages it sends will be encrypted and authenticated.

Finished (server). The server sends a Finished message similar to the client’s
one above, but computed with label = “server finished”. Upon receipt of this
message, the client compares the received value with its own computed value. If
the values match, the client accepts.

Cryptographic Computations in the Handshake Protocol

PRF. In TLS 1.0 and 1.1, the pseudo-random function PRF is computed as

PRF(secret, label,seed) = PMD5(S1, label‖seed)⊕PSHA-1(S2, label‖seed),

where S1 and S2 are the first and last |secret|/2 bytes of secret (possibly with a
shared middle byte), and

PH(secret,seed) = HMACH(secret,A(1)‖seed)

‖ HMACH(secret,A(2)‖seed) ‖ . . .
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for A(0) = seed, A(i) = HMACH(secret,A(i−1)). In TLS 1.2, the PRF is com-
puted as

PRF(secret, label,seed) = PH(secret, label‖seed)

where H is a hash function defined by the ciphersuite; for most ciphersuites
defined by TLS 1.2, H is SHA-256.

Master secret. In SSL v3, the 48-byte master secret ms is computed from the pre-
master secret pms as

ms← f (“A”)‖ f (“BB”)‖ f (“CCC”),

where

f (`)←MD5(pms‖SHA-1(`‖pms‖client random‖server random)).

In TLS 1.0 and onward, the 48-byte master secret ms is computed from the
premaster secret pms as

ms← PRF(pms,“master secret”,client random‖server random),

where PRF is defined as above.
Encryption and authentication keys. In TLS 1.0 and higher, the parties derive en-

cryption and authentication keys from the master secret as follows. First, they
compute a sufficiently long value

k← PRF(ms,“key expansion”‖server random‖client random)

and then partition k into the client-to-server MAC write key, the server-to-client
MAC write key, the client-to-server encryption key, the server-to-client encryp-
tion key, and, if required, the client-to-server and server-to-client encryption ini-
tialisation vectors (IVs). Note that keys are derived slightly different in SSL v3,
and also for weakened export ciphersuites.

6.3.2 Record Layer Protocol

A plaintext packet in the record layer protocol consists of:

• a content type, which specifies what type of data the payload contains; this may
be a handshake message, a ChangeCipherSpec message, an alert (error) mes-
sage, or application data;

• the version of TLS used;
• the length of the payload, not more than 214;
• the payload data.

Once the plaintext packet is assembled, its payload is compressed using whichever
compression algorithm was negotiated during the handshake. Supported compres-
sion algorithms include the null algorithm (i.e. no compression) and the DEFLATE

algorithm.
The compressed payload is finally encrypted and authenticated based on the ci-

phersuite in use. There are three different approaches.
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Stream-cipher-based ciphersuites. First, an authentication tag is computed using
a message authentication code as

MAC(msg write key,sn‖content type‖version‖len‖m),

where msg write key is the client-to-server or server-to-client MAC write key
as appropriate, sn is the sequence number of the packet, m is the (optionally
compressed) payload, and len is the length of the payload. The payload is con-
catenated with the MAC tag and then that plaintext is encrypted using the stream
cipher in question. RC4 was the most widely used stream cipher in TLS; since it
does not use an initialisation vector, the internal RC4 state persists across pack-
ets.

Block-cipher-based ciphersuites. TLS specifies the use of the cipher-block chain-
ing (CBC) mode of operation for block ciphers. First, an initialisation vector
(IV) is chosen for the packet. The computation of the IV depends on the TLS
version: for SSL v3 and TLS 1.0, the IV of the first packet is the IV derived
in the handshake protocol, while the IV of each subsequent packet is the last
ciphertext block of the previous packet. For TLS 1.1 and higher, the IV is cho-
sen at random. Next, a MAC is computed as described in the stream-cipher item
above. The (optionally compressed) payload and MAC are concatenated, then
padded with sufficient bytes to bring the length up to a multiple of the block
length; all padding bytes should be the same and should be the padding length
value (for example, if 12 bytes of padding are needed, then every byte of padding
contains the value 0x0C= 12). This data is then encrypted using the block cipher
in question in CBC mode. This sequence of operations is sometimes referred to
as ‘MAC-then-encode-then-encrypt’ (MEE). The most widely supported block
cipher is AES; the use of DES is deprecated, and the use of Triple-DES is no
longer recommended.

Authenticated-encryption-based ciphersuites. TLS 1.2 added support for authen-
ticated encryption with associated data (AEAD). In these modes, a single algo-
rithm is used for encryption and authentication of packets. The ‘additional data’
field is used to convey unencrypted data unauthentically; in the case of TLS, the
additional data is the same as the non-message data in the MAC computation in
stream-cipher-based ciphersuites: the sequence number, content type, version,
and plaintext length. There are two supported block cipher modes of operation
that provide AEAD: counter mode with CBC-MAC (CCM) and Galois/counter
mode (GCM), both generally implemented using AES. Since these modes pro-
vide encryption and authentication using a single algorithm, only the encryption
keys, not the MAC keys, are required.

6.4 Additional Functionality

In addition to the core cryptography task of mutual entity authentication and estab-
lishment of a secure channel, the TLS protocol performs several other operations,
which are described in this section.
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6.4.1 Compression

The TLS record layer protocol allows application data to be compressed. In the
ClientHello and ServerHello messages, the parties negotiate whether or not to
enable the DEFLATE compression algorithm [246, 362] (a combination of the LZ77
algorithm and Huffman coding, widely used in the ZIP and gzip formats).

The record layer protocol splits application data up into fragments of at most 214

bytes. If compression is enabled, then each plaintext fragment is independently com-
pressed using the DEFLATE algorithm before being encrypted. The receiver reverses
the process, decrypting and then decompressing.

Because the amount of compression on a plaintext yields information about the
amount of redundancy in the plaintext, TLS compression acts as a side channel, leak-
ing some information about the plaintext content. This leads to a successful adaptive
chosen plaintext attack against TLS that allows an attacker to recover a secret value
(such as an HTTP cookie) by exploiting differences in the amount of compression.
Details of the CRIME attack and related attacks appear in Sect. 6.11.3.

6.4.2 Session Resumption

Session resumption allows a client and server to use an abbreviated handshake to
resume a previously established session. This saves both communication—using 1.5
round trips instead of 2.5—and computation, as generally no expensive public key
operations are needed in session resumption.

There are two distinct mechanisms for session resumption.

• Session IDs [251, Sect. F.1.4]. When the initial session is established, the server
includes in its ServerHello message a session identifier. The server stores the
session’s parameters and master secret in its cache. To resume a session, the client
replays that session identifier in its ClientHello message. The server looks up
the session in its cache. If the session is found, the server immediately sends the
Finished message calculated using the stored master secret.

• Session tickets [649]. When the initial session is established, the server in-
cludes an additional handshake message just prior to ChangeCipherSpec: the
NewSessionTicket message contains the server’s state (including its mas-
ter secret), encrypted and authenticated under a symmetric key known only
to the server. To resume a sesion, the client replays that session ticket in its
ClientHello message. The server decrypts the encrypted state and verifies its
integrity; if it passes, the server immediately sends the Finished message, cal-
culated using the master secret from the session ticket.

The main difference between session IDs and session tickets is about who stores
state: with session IDs, the server stores state for each connection; with session tick-
ets, the client stores the server’s state for it. Session tickets reduce storage require-
ments for the server; as well, a collection of load-balancing servers can easily resume
each others’ sessions simply by sharing session ticket encryption keys, rather than
needing to pool session ID states.
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In 2014, Bhargavan et al. [96] discovered the triple handshake attack, in which an
attacker performs a man-in-the-middle attack over three successive handshakes (with
various combinations of session resumption and renegotiation), eventually leading to
a successful client impersonation attack. Among the causes of the attack is the fact
that TLS session resumption does not cryptographically bind the previous session’s
handshake to the new session’s handshake. Details of the attack and countermeasures
appear in Sect. 6.11.5.

6.4.3 Renegotiation

Renegotiation allows two parties who are using an existing TLS session to run a new
handshake; upon completion of the new handshake, the session uses the newly estab-
lished encryption and authentication keys for communication. Renegotiation allows
parties to either (a) obtain a fresh session key, (b) change cryptographic parameters
(such as to negotiate a new ciphersuite), or (c) change authentication credentials. The
renegotiated handshake is run inside the existing encrypted record layer.

A principal use case of TLS renegotiation is client identity privacy. In the hand-
shake protocol, the client sends its certificate in plaintext. If the client does not wish
to reveal its identity over a public channel, it can instead run the first handshake
anonymously, then renegotiate using its long-term credential; since the handshake
messages for the renegotiation are transmitted within the existing record layer, the
transmission of the client certificate is encrypted and the client has privacy of its
identity.

Either the client or the server can initiate renegotiation at any time after a
session is established. The client triggers renegotiation simply by sending a new
ClientHello message. The server triggers renegotiation by sending a Hello-
Request message which asks the client to send a new ClientHello message. Rene-
gotiation is supported in SSL v3 and higher.

In 2009, Ray and Dispensa [623] described an attack against some applications
supporting TLS renegotiation. As a consequence of the attack, two countermeasures
were standardised. Details of the attack and countermeasures appear in Sect. 6.11.2.

6.5 Variants

Versions. There are currently six distinct versions of SSL/TLS. The Secure Sockets
Layer (SSL) protocol version 2 was published by Hickman at Netscape in Febru-
ary 1995 (version 1.0 was never released publicly). Owing to security flaws in
SSL v2, the protocol was completely reworked, and Netscape released SSL v3
in 1996 [283]. The Internet Engineering Task Force (IETF) made minor changes
to SSL v3 and standardised it as the Transport Layer Security (TLS) protocol
1.0 in 1999. This protocol was revised in 2006 to TLS 1.1, particularly with
changes in the use of initialisation vectors and padding in CBC mode encryp-
tion to protect against attacks identified by Möller [564] and Bard [53]. TLS 1.2
was published in 2008, and replaced the ad hoc MD-5 + SHA-1 pseudo-random
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function with a ciphersuite-negotiated hash function, usually SHA-256, added
new encryption modes for AES, namely Galois/counter mode (GCM) and CBC
in counter mode (CCM), and incorporated functionality from various additional
RFCs into the core standard. From 2014-2018, the next version of TLS was un-
der development by the IETF, and was standardised at TLS 1.3 in August 2018.
TLS 1.3 constitutes a major revision of the TLS protocol; see Sect. 6.14 for more
information.

Ciphersuites. The IETF has standardised more than 320 ciphersuites,1 each of
which specifies a valid combination of the following cryptographic algorithms.
Note that up to and including TLS 1.2, cryptographic algorithms cannot be ne-
gotiated independently, so not all combinations of the following algorithms are
possible. (TLS 1.3 provides à la carte negotiation of each component individu-
ally.)
• Key exchange:

– RSA key transport;
– ephemeral finite-field or elliptic curve Diffie–Hellman;
– none (null).

• Entity authentication:
– RSA key transport;
– RSA digital signatures;
– finite-field (DSA) or elliptic curve (ECDSA) digital signatures;
– static finite-field or elliptic curve Diffie–Hellman key exchange;
– pre-shared keys;
– password authentication using Secure Remote Password (SRP) protocol;
– none (null).

• Bulk encryption:
– RC4 or ChaCha20;
– RC2, DES, Triple-DES, IDEA, or SEED in CBC mode;
– AES-128 or AES-256 in CBC, CCM, or GCM mode;
– ARIA or CAMELLIA in CBC or GCM mode;
– none (null).

• Message authentication:
– HMAC-MD5, HMAC-SHA1, HMAC-SHA256, or HMAC-SHA384;
– AES-128, AES-256, ARIA, or CAMELLIA in GCM mode;
– Poly1305;
– none (null).

SSL v2 and v3, and TLS 1.0 also contained export ciphersuites: US export regu-
lations in the 1990s restricted the export of cryptographic software or hardware
with keys larger than 40 bits (for symmetric cryptography) or 512 bits (for RSA
and finite-field Diffie–Hellman). As a result, ‘export’ ciphersuites were stan-
dardised in which the final encryption keys were derived from subkeys that were

1 https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
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only 40 (or 512) bits long. Regulations were relaxed starting in 1996, simpli-
fying the export of commercial and open-source cryptography software. Export
ciphersuites were removed from TLS in version 1.1, although some software still
supports operations involving export-sized keys either directly or indirectly; see
Sect. 6.9.5 for resulting attacks.

Datagram TLS. SSL/TLS are designed to work over a stream-oriented network
protocol, namely the Transmission Control Protocol (TCP) which provides reli-
able, in-order delivery of packets. Datagram TLS (DTLS) is designed to work
over datagram protcools, such as the User Datagram Protocol (UDP) and oth-
ers which do not guarantee delivery or ordering of packets, and are used in a
variety of applications, including simple query–response protocols such as do-
main name lookups (DNS) and media-streaming protocols such as the Real-time
Transport Protocol (RTP). DTLS provides confidentiality and protection against
message tampering and forgery for such applications. One notable distinction
between TLS and DTLS is that DTLS generally does not terminate the session
upon an error. There are currently two versions of DTLS: DTLS 1.0 [627] (based
on TLS 1.1) and DTLS 1.2 [628] (based on TLS 1.2), as well as several standards
which specify how to use DTLS to protect various higher-level protocols.

Extensions. After the publication of TLS 1.0 in 1999, the TLS extension mechanism
was published [111, 264] which allows the client and server to send extensions
on the ClientHello and ServerHello messages for various purposes. Exten-
sions were incorporated into the main specification in TLS 1.2. Some of the
functionality provided by extensions includes the client telling the server which
of several domains it is trying to connect to, using the server name indication
(SNI) extension; negotiation of elliptic curves and point formats; a list of certifi-
cate authorities trusted by the client; and a heartbeat extension which provides
a keep-alive functionality.

Keying-material exporters. RFC 5705 [624] provides a mechanism to obtain key-
ing material derived from the master secret that can be used for any purpose by
an application. (Here the term ‘exporters’ is not related to ‘export’-grade cipher-
suites.) This mechanism uses the TLS PRF with distinct labels to derive export
keys that are computationally independent from the TLS record-layer encryp-
tion and MAC keys. Among other purposes, this formalises how the Extensible
Authentication Protocol (EAP) obtains keying material from TLS.

Implementation-specific behaviour. Various implementations have bugs that are
exhibited in certain configurations. As a result, many TLS implementations have
optional code that tries to work around bugs in other implementations.

6.6 Implementations

There are several important SSL/TLS implementations.

OpenSSL (http://www.openssl.org) is a leading open source implemen-
tation, licensed under a BSD-like licence. OpenSSL is split into two libraries:

http://www.openssl.org
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libcrypto, which contains the core cryptographic algorithms, and libssl,
which contains an implementation of SSL versions 2 and 3, TLS versions
1.0 to 1.3, and DTLS 1.0 and 1.2. OpenSSL is generally included as a stan-
dard library on most Unix-based operating systems. It is used by the Apache
(via the mod ssl module) and nginx web servers, and many command-line
Unix tools, such as curl and wget. In 2014, several forks of OpenSSL ap-
peared in response to software vulnerabilities in OpenSSL; prominent forks in-
cluded LibReSSL (http://www.libressl.org) and Google’s BoringSSL
(https://boringssl.googlesource.com/).

GnuTLS (http://www.gnutls.org) is an open source implementation of
SSL and TLS, licensed under the GNU Lesser General Public License v2.1.
GnuTLS depends on the Nettle library (http://www.lysator.liu.se/
˜nisse/nettle) for its cryptographic algorithms. GnuTLS is used by a va-
riety of GNU-licensed software.

Network Security Services (NSS) (https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/NSS) is an open source implementa-
tion of SSL/TLS, licensed under the Mozilla Public License. Originally part of
the Netscape Navigator web browser, NSS is used in the Mozilla Firefox browser
and other Mozilla software, Google’s Chrome browser, the Opera browser, and
commercial software from RedHat, Oracle, and AOL, among others. NSS can
be used with Apache via the mod nss module.

Bouncy Castle (http://www.bouncycastle.org) and Java Secure Socket
Extension (JSSE) are prominent open source Java implementations of SSL/TLS.

Microsoft and Apple each have their own implementation of SSL/TLS, named
SChannel and SecureTransport, respectively, which ship with their desktop and mo-
bile operating systems, and are, in particular, used by their web browsers Internet
Explorer/Edge and Safari, respectively.

6.7 Security Analyses

The earliest work on the security of SSL, by Wagner and Schneier [724], examined
various characteristics of SSL v3 and identified certain weaknesses. Since then, a
systematic study of the security of TLS has been carried out in two lines of work:
using provable security and using formal methods.

6.7.1 Provable Security

Historically, the TLS handshake and record layer protocols have been analysed sep-
arately in the provable-security setting.

As demonstrated throughout this book, there is a vast literature on authenticated
key exchange protocols and their security. Chapter 2 details security models for
AKE protocols, starting with the Bellare–Rogaway model and continuing with the
Canetti–Krawczyk and eCK models. Central to all of those models is that a session

http://www.libressl.org
https://boringssl.googlesource.com/
http://www.gnutls.org
http://www.lysator.liu.se/~nisse/nettle
http://www.lysator.liu.se/~nisse/nettle
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
http://www.bouncycastle.org
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key should be indistinguishable from random: in the security definitions, the task of
the adversary is to determine whether it has been given the real session key from
a target session, or a random string of the same length. Unfortunately, a technical-
ity of TLS prevents it from being proven secure in standard AKE models: the final
messages of the TLS handshake protocol (the Finished messages) are sent over the
encrypted record layer; an adversary who is given a challenge real-or-random ses-
sion key can try to decrypt the ciphertexts to see if they decrypt correctly, thereby
distinguishing real session keys from random ones.

Initial work on the provable security of the TLS handshake protocol looked at
a truncated handshake protocol in which the Finished messages were either omit-
ted or transmitted unencrypted. Jonsson and Kaliski [401] showed that a truncated
version of the TLS handshake using RSA key transport is secure under an RSA-
based assumption. Subsequently, Morrissey, Smart, and Warinschi [568] showed that
a truncated version of the TLS handshake using either RSA key-transport or signed
Diffie–Hellman is secure in the random oracle model; their approach was modular,
in the sense that they first showed that the premaster secret agreement is secure in
a weaker, one-way sense, then that this implied that the master secret is secure in
the traditional AKE sense. Gajek et al. [288] showed that TLS is a secure, unau-
thenticated channels protocol in the universal composability setting, but this analysis
provided only confidentiality of messages, not authentication of endpoints.

The record layer protocol was also investigated. Krawczyk [451] analysed a vari-
ant of the MAC-then-encode-then-encrypt approach using CBC mode encryption
in the TLS record layer and showed that it achieved ciphertext indistinguishabil-
ity (IND-CPA) as well as a certain form of ciphertext unforgeability, weaker than
ciphertext integrity. Paterson, Ristenpart, and Shrimpton [605] identified a distin-
guishing attack against TLS when variable-length padding and short MACs were
used, defined a stronger security notion, called length-hiding authenticated encryp-
tion (LHAE), and showed that the record layer protocol for TLS 1.1 and TLS 1.2, in
CBC mode, satisfies this property.

In 2012, the first provable security analysis of a full, unaltered TLS ciphersuite
was presented by Jager, Kohlar, Schäge, and Schwenk [392]. They defined a new se-
curity model for authenticated and confidential channel establishment (ACCE) pro-
tocols. Instead of simply establishing a key, an ACCE protocol establishes a secure
channel which can then be used for communication. Formally, the model effectively
combines the Bellare–Rogaway model for authenticated key exchange with the Pa-
terson et al. model for length-hiding authenticated encryption; this overcomes the
aforementioned problem involving the encrypted Finished messages that prevented
TLS from being proven a secure authenticated key exchange protocol. Originally the
model only addressed mutual authentication, but it has subsequently been extended
to include the server-only authentication mode that is more widely used in practice.

The original ACCE paper of Jager et al. [392] showed that signed finite-field
Diffie–Hellman TLS ciphersuites are secure ACCE protocols, assuming that the
signature scheme is existentially unforgeable under chosen message attack, cer-
tain Diffie–Hellman problems are hard, and the bulk encryption scheme is a secure
stateful length-hiding authenticated encryption scheme. Subsequently, several works
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have analysed a variety of other ciphersuites, including RSA key transport and static
Diffie–Hellman [442, 456], and pre-shared keys [489].

The ACCE model has also been extended to consider additional functional-
ity. Giesen, Kohlar, and Stebila [304] extended the ACCE model to formalise the
notion of renegotiation security in light of the renegotiation attack (described in
Sect. 6.11.2). Bergsma et al. [89] considered multi-ciphersuite ACCE security as
a result of the cross-protocol attack (described in Sect. 6.10.2).

There are also several alternative approaches to the ACCE model for proving
security of TLS. Brzuska et al. [164] used a modular approach in which the key
exchange is composed with the authenticated encryption scheme, under an additional
constraint where the key from the key exchange has been shown to be ‘suitable for’
this type of composition.

Bhargavan et al. [98] implemented several TLS ciphersuites using a program-
ming language that allows for formal verification that the code of the implementation
meets provable security properties, and were thus able to derive security results for
ciphersuites based on RSA key transport, signed Diffie–Hellman, and static Diffie–
Hellman. Related work by several of the same authors [99] examined the TLS hand-
shake in detail, deriving provable security results (supported by formal verification
using the F# functional programming language and the EasyCrypt proof verification
tool) for handshakes involving RSA key transport, signed Diffie–Hellman, and static
Diffie–Hellman using a compositional approach that provides for security even with
limited agility of long-term signing keys, i.e. when the same long-term keys are used
in several ciphersuites.

A modular analysis of TLS using the recent constructive cryptography formalism
[528] (related to abstract cryptography) has also been given [443].

6.7.2 Formal Methods

SSL and TLS have also been evaluated using formal methods, which use a variety of
approaches in logic and theoretical computer science to give precise specifications of
desirable protocol behaviour, and either demonstrate that the protocol achieves these
goals or demonstrate a flaw. This approach often, but not always, involves automated
tools. Three main classes of automated tools are model checkers (a.k.a. finite state
analysis), which enumerate all reachable states in an execution to see if an undesir-
able state is reached; verifiers, which check some human-specified argument (e.g. a
proof) against a formal specification; and theorem provers, which construct and ver-
ify a proof of a certain property, or alternatively sometimes find a counterexample.

Model Checking. Mitchell et al. [562] performed finite state analysis (model check-
ing) using the Murϕ tool. They applied the tool to a sequence of protocols, start-
ing from an approximation of the SSL v2 handshake, and culminating in an
approximation of the SSL v3 handshake; they simplified, among other things,
the derivation of keys from the premaster secret. The tool successfully identified
the main weaknesses in SSL v2 that motivated SSL v3. For (the approximation
to) SSL v3, the tool found two downgrade attacks and a weakness in resumption,
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but no other flaws. The model checking was run with some constraints, namely
that it involved two clients, one server, no more than two simultaneous open
sessions per server, and no more than one resumption per session.

Theorem Provers. Paulson [606] gave machine-checked proofs of TLS handshake
authentication and session key security in both full and abbreviated handshakes
using the Isabelle theorem prover, assuming idealised cryptographic functions;
this ‘inductive’ approach reasons about an inductively defined set of protocol
traces built from the protocol specification and adversary actions. Ogata and Fu-
tatsugi [588] gave an analysis of the TLS handshake using the OTS/CafeOBJ
tool for equation reasoning, showing in the Dolev–Yao model (which assumes
perfect cryptography and abstracts away the details of cryptographic operations)
that the premaster secret is secure and that TLS handshake messages are authen-
ticated.

Logic-Based Proofs. In 2005, He et al. [353] gave an analysis of the IEEE 802.11i
protocol (including an analysis of TLS as a subprotocol) using a protocol com-
position logic (PCL). For TLS, their arguments showed that the TLS handshake
messages are authenticated and that the premaster secret is secure in the face of
a symbolic adversary. Kamil and Lowe [410] analysed the TLS handshake and
record layer protocols in the strand spaces model, which uses the Dolev–Yao
model. Their results included findings that the premaster secret key is secure, the
handshake is authenticated, the record layer provides two authenticated streams,
and those streams also have confidentiality.

Formal Methods Applied to Concrete Implementations. Formal verification tools
have also been applied to concrete implementations of SSL/TLS. Jürjens [405]
verified a Java implementation of SSL using an automated theorem prover for
first-order logic, showing authentication of the handshake and secrecy of the ses-
sion key in the Dolev–Yao model; the analysis works on the control-flow graph
of the protocol execution. Chaki and Datta [186] applied the Aspier framework
to perform a symbolic evaluation of the handshake authentication and session
key secrecy of the TLS handshake as implemented in the OpenSSL library, in
configurations of up to three clients and servers. Bhargavan et al. [97] gave an
implementation of a simple yet compatible subset of TLS in the F# programming
language, and used the CryptoVerif tool to provide symbolic and computational
cryptographic security results. This was the first in a series of results by this
set of authors; their later results implement additional levels of complexity and
move from symbolic to computational results, and are noted in the section on
provable security of TLS above. These results are part of the miTLS project
(http://www.mitls.org/).

6.8 Attacks: Overview

Because of its importance, TLS has been subject to much study and analysis, and
many attacks have been found on the protocol and on TLS implementations. A few

http://www.mitls.org/
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attacks date from the early days of SSL/TLS in the late 1990s (such as Bleichen-
bacher’s attack and version downgrade attacks). In the early 2000s, some theoretical
weaknesses were identified, but no realised attacks were publicised. Starting in 2009,
many major attacks on various aspects of TLS were revealed, necessitating revisions
to standards and coordinated release of patches. Many of these recent practical at-
tacks are actually realisations of ideas from Wagner and Schneier’s seminal analysis
of SSL v3 [724], or other theoretical work from the same era.

Table 6.2 lists attacks against various aspects of SSL/TLS since its inception. The
table is organised into several sections, depending on what aspect of SSL/TLS the
attack is against. These include weaknesses in core cryptographic algorithms, attacks
arising from how cryptographic components are used in TLS ciphersuites, attacks
on non-cryptographic functionality in TLS, attacks on libraries implementing TLS,
attacks on HTTP-based applications using TLS, and attacks on protocols using TLS.

RFC 7457 [666] summarises some of these attacks, as do Wikipedia’s page
on TLS and surveys by Meyer and Schwenk [552] and Clark and van Oorschot
[218]. The Trustworthy Internet Movement’s monthly SSL Pulse survey [621] re-
ports statistics on the TLS configuration of popular websites, such as ciphersuite
usage and vulnerability to known attacks.

The remainder of this chapter describes many of these attacks in more detail.

6.9 Attacks: Core Cryptography

The first class of attacks that we look at exploit properties of the cryptographic al-
gorithms used in TLS. This includes both public-key primitives used in the TLS
handshake and symmetric-key primitives used in the record layer.

6.9.1 Bleichenbacher’s Attack on PKCS#1v1.5 RSA Key Transport

TLS ciphersuites using RSA key transport do not use ‘schoolbook’ RSA encryption;
instead, they rely on the PKCS#1v1.5 standard for RSA encryption [408]. Bleichen-
bacher [118] discovered an attack in which access to a certain type of error informa-
tion in PKCS#1 decryption can enable recovery of the secret key. It should be noted
that Bleichenbacher’s attack applies only to PKCS#1v1.5, not later versions of the
PKCS#1 standard. However, RSA key transport in SSL/TLS from SSL v3 to TLS
1.2 uses PKCS#1v1.5.

For RSA encryption, the receiver generates a public key/secret key pair by pick-
ing two large, distinct secret primes p and q, computing the RSA modulus n← pq,
and picking values e,d such that ed ≡ 1 mod φ(n), where φ(n) = (p− 1)(q− 1);
the receiver’s public key is (n,e) and the private key is d.

In ‘schoolbook’ RSA encryption, the sender represents a message M as an in-
teger m mod n, then computes the ciphertext as c← me mod n. The receiver can
decrypt this by computing m← cd mod n and converting the integer m back into
the message M. While this does indeed provide confidentiality, it does not protect
against malleability. For example, c2 mod n is the ciphertext corresponding to the
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Table 6.2: Known attacks on SSL/TLS. ∗ denotes a theoretical basis for a later prac-
tical attack

Target Attack name Year References

Core cryptography
RSA PKCS#1v1.5 decryption Side channel – Bleichen-

bacher
1998∗, 2014 [118]∗, [553]

DES Weakness – brute force 1998 [265]
MD5 Weakness – collisions 2005 [482]
RC4 Weakness – biases 2000*, 2013 [280, 515]∗,

[28]
RSA export keys FREAK 2015 [92]
Diffie–Hellman export keys Logjam 2015 [21]
RSA-MD5 signatures SLOTH 2016 [101]
Triple-DES Sweet32 2011*, 2016 [635]∗, [100]

Crypto usage in ciphersuites
CBC mode encryption BEAST 2002∗, 2011 [564]∗, [260]
Diffie–Hellman parameters Cross-protocol attack 1996∗, 2012 [724]∗, [529]
MAC–encode–encrypt padding Lucky 13 2013 [29]
CBC mode encryption +
padding

POODLE 2014 [565]

TLS protocol functionality
Support for old versions Jager et al., DROWN 2015, 2016 [46, 393]
Negotiation Downgrade to weak crypto 1996, 2015 [21, 92, 724]
Termination Truncation attack 2007, 2013 [88, 684]
Renegotiation Renegotiation attack 2009 [623]
Compression CRIME, BREACH, HEIST 2002∗, 2012,16 [422]∗,

[620, 632, 720]
Session resumption Triple-handshake attack 2014 [96]

Implementation – libraries
OpenSSL – RSA Side channel 2005, 2007 [20, 608]
Debian OpenSSL Weak RNG 2008 [710]
OpenSSL – elliptic curve Side channel 2011–14 [161, 162, 756]
Apple – certificate validation goto fail; 2014 [476]
OpenSSL – Heartbeat exten-
sion

Heartbleed 2014 [220]

Multiple – certificate validation Frankencerts 2014 [160]
NSS – RSA PKCS#1v1.5 sig-
natures

BERserk (Bleichenbacher) 2006∗, 2014 [276]∗, [473]

Multiple – state machine CCS injection, SMACK 2014, 2015 [92, 483]

Implementation – HTTP-based applications
Netscape Weak RNG 1996 [309]
Multiple – certificate validation ‘The most dangerous

code. . . ’
2012 [302]

Application-level protocols
HTTP SSL stripping 2009 [524]
HTTP server virtual hosts Virtual host confusion 2014 [239]
IMAP/POP/FTP STARTTLS command in-

jection
2011 [722]
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message m2. One mechanism for preventing ciphertext malleability is to impose for-
matting and padding requirements on the message; the homomorphic property of
RSA encryption would not a priori preserve that formatting requirement.

PKCS#1v1.5 encryption pads the message M as follows. Let k be the length in
bytes of the RSA modulus n. The padded format of M is

m = 00‖02‖PS‖00‖M,

where 00 and 02 are single bytes, and PS is a padding string composed of k− 3−
|M| ≥ 8 non-zero bytes. Once M is converted into m as above, the ciphertext is me

mod n. During decryption of a ciphertext c, the receiver again computes m← cd

mod n, then checks to see if m is PKCS-conforming, meaning that (a) the first byte
m1 = 00, (b) the second byte m2 = 02, (c) bytes m3 to m10 are all non-zero, and (d)
at least one of the bytes from m11 to mk is 00. If m is PKCS-conforming, then M is
extracted. A ciphertext is said to be PKCS-conforming if its decryption is.

In Bleichenbacher’s attack [118], we assume that an attacker has access to an ora-
cle which indicates whether a given ciphertext is PKCS-conforming. An attacker can
use such an oracle to decrypt a target ciphertext in a relatively small number of oracle
queries; for a 1024-bit RSA modulus, around 220 queries to the oracle suffice. The
attack proceeds as follows. Let c0 be the challenge ciphertext, which corresponds to
PKCS#1v1.5 plaintext m0 (and message M0). The attacker chooses a small value s
and computes c′← c0se mod n, then submits c′ to the PKCS-conformance-checking
oracle. If the ciphertext is PKCS-conforming, then the attacker knows that the first
two bytes of m0s mod n are 00 and 02. Mathematically, this means that 2B ≤ m0s
mod n < 3B, where B = 28(k−2). The attacker repeats this many times with different s
values, recording each s such that m0s mod n is in the required range. The adversary
can then use this information to narrow the range of values for m0. For a detailed de-
scription of the range-narrowing process and an evaluation of the success probability,
see [118], and improvements by Bardou et al. [54].

Straightforward implementations of SSL v3 enabled the attacker to obtain a
PKCS-conformance-checking oracle using a timing attack. In particular, the pseu-
docode of early implementations was as follows.

1. Compute m← cd mod n.
2. If m is not PKCS-conforming, then reject.
3. Otherwise, do additional cryptographic processing based on m (e.g. strong au-

thentication).
4. If authentication fails, then reject; otherwise accept.

Since the strong-authentication operations in step 3 above require some non-trivial
amount of time to perform, there is a timing mismatch between a reject in step 2
and a reject in step 4, allowing an adversary to learn whether the ciphertext was
PKCS-conforming or not.

SSL v3 actually imposes some additional padding constraints of its own, with
the effect that the 46-byte premaster secret PMS is padded to

m = 00‖02‖PS‖00‖03‖00‖PMS,
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and hence the padding string PS is always of the same length (for the same RSA
key size k). Imposing this additional ‘SSL-conformance’ check that the bytes 03‖00
always appear in the correct place increases the number of oracle queries to around
240, making the attack harder but still feasible. Klı́ma et al. [434] proposed a variant
of the attack and tested the attack in the wild, finding that nearly two-thirds of tested
web servers were vulnerable at the time.

TLS versions 1.0–1.2 still use PKCS#1v1.5 encryption for RSA key transport,
but impose additional requirements on implementations [251, Sect. 7.4.7.1]. In par-
ticular, before RSA decryption, implementations generate a random 48-byte string.
If the decryption does not conform to the PKCS and SSL formatting and version
requirements, processing continues, but using the randomly generated 48-byte string
as the premaster secret rather than the decrypted value. In other words, the hand-
shake protocol continues regardless of whether the ciphertext was PKCS- and SSL-
conforming or not. Rejection only happens when authentication fails in the process-
ing of the Finished message; since the attacker has forged a ciphertext, it expects
that authentication will fail, and thus learns nothing about the PKCS conformance of
the forged ciphertext.

Bleichenbacher’s attack continues to plague TLS (and other) implementations.
Specifically related to TLS implementations, Meyer et al. [553] successfully applied
Bleichenbacher’s attack against timing side channels in OpenSSL, JSSE, and Cav-
ium, as well as an error message side channel in JSSE. Jager et al. [393] showed that
even though TLS 1.3 (draft 10) does not include RSA key transport, and thus does
not rely on PKCS#1v1.5 encryption, Bleichenbacher’s attack on older versions of
TLS at servers which use the same RSA certificate for TLS 1.3 can potentially lead
to impersonation attacks on TLS 1.3 servers.

In 2016, Aviram et al. [46] presented the DROWN (Decrypting RSA using Ob-
solete and Weakened eNcryption) attack, which works against servers that use the
same RSA key with SSL 2 and modern versions of TLS, up to TLS 1.2. They identi-
fied a Bleichenbacher RSA padding oracle in the SSL 2 protocol, which can then be
used to decrypt TLS 1.2 ciphertexts. To decrypt at 2048-bit RSA TLS 1.2 ciphertext,
their attack requires an attacker to observe 1,000 TLS handshakes, initiate 40,000
SSL 2 connections, and do 250 offline work. They found that some 33% of publicly
accessible HTTPS servers were vulnerable to this attack.

6.9.2 Bleichenbacher’s Attack on PKCS#1v1.5 RSA Signature Verification

In 2006, Bleichenbacher [276] identified another vulnerability involving PKCS#
v1.5, this time in how implementations parse data during signature verification. Ble-
ichenbacher observed that the OpenPGP implementation of signature verification did
not correctly parse the padding of the hash value after exponentiation with the public
exponent. Bleichenbacher’s 2006 attack required that the RSA public exponent be 3
and that the RSA modulus be quite large (e.g. 3072 bits); a subsequent improvement
by Kühn et al. [460] allowed for smaller moduli and demonstrated how to use the
attack against CA, intermediate, or server certificates used by TLS web browsers,
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including a specific attack against the NSS library. This technique was again appli-
cable in a 2014 attack, called the ‘BERserk’ attack, on the ASN.1 parsing of padding
in PKCS#1v1.5 RSA signature verification in the NSS library, independently discov-
ered by Delignat-Lavaud and Intel Security [473].

6.9.3 Weaknesses in DES, Triple-DES, MD5, and SHA-1

DES. The Data Encryption Standard (DES) was supported for encryption in CBC
mode in SSL v2, SSL v3, TLS 1.0, and TLS 1.1. DES has an effective key size
of 56 bits, far below the level needed for security against attackers today. Indeed,
in 1998, the Electronic Frontier Foundation (EFF) built a DES cracker for under
US$250,000 that could perform an exhaustive key search in less than 3 days
[265], and in 2006 Kumar et al. [461] built an FPGA-based machine for under
US$10,000 that performs an exhaustive key search in less than 9 days. DES
ciphersuites were not included in TLS 1.2, and their use in earlier versions was
recommended to be discontinued [268].

Triple-DES. TLS versions up to 1.2 still support Triple-DES (three-key encrypt–
decrypt–encrypt) in CBC mode, which has an effective security of 112 bits. No
significant weaknesses are known in the core Triple-DES function, and, in guid-
ance dated January 2012, NIST continued to allow the use of Triple-DES for
encryption of ‘sensitive unclassified’ data. However, CBC mode is known to
suffer from collision attacks [635] which require a number of ciphertext blocks
up to the birthday bound on the block size, so block ciphers with small block
sizes are at risk. Triple-DES has the same block size as DES: 64 bits. Bharga-
van and Leurent [100] observed that the amount of ciphertext required to carry
out such an attack against Triple-DES is only 32 GB, and showed how to use
the attack to recover secret session cookies from HTTPS traffic encrypted using
Triple-DES; this was called the ‘Sweet32’ attack. The guidance following the
attack was to disable Triple-DES ciphersuites.

MD5. The MD5 hash function is used in several places in various versions of TLS.
In TLS 1.0 and TLS 1.1, the following apply.
1. Ciphersuites using RSA signatures sign the concatenation of the MD5 and

SHA-1 hashes of the ServerKeyExchange message.
2. The TLS PRF combines outputs from HMAC-MD5 and HMAC-SHA-1.
3. The message authentication code can be HMAC-MD5 or HMAC-SHA-1.
4. X.509 certificates can be signed using RSA with MD5 hashes or SHA-1

hashes.
In TLS 1.2, the following apply.
1. The MAC can be HMAC-MD5 or HMAC-SHA-1.
2. X.509 certificates can be signed using RSA with MD5 hashes or SHA-1

hashes.
The collision resistance of MD5 is completely broken. Following Wang et al.’s
initial discovery of a collision in MD5 [730], Lenstra and de Weger [482] con-
structed two different X.509 certificates containing identical signatures using a
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‘meaningful’ MD5 collision; Stevens, Lenstra, and de Weger [696] later con-
structed colliding X.509 certificates, one of which was a normal certificate (that
they got signed by a commercial CA) and one of which included flags for acting
as a certificate authority, thus giving them the ability to issue fraudulent certifi-
cates that would be browser-trusted. This means that use of 4 in the list above in
TLS 1.0 and TLS 1.1 and use of 2 for TLS 1.2 are insecure.
Conventional wisdom would be that the other uses of MD5 in TLS mentioned
above do not immediately become insecure owing to the failure of collision re-
sistance: signatures involving the concatenation of the MD5 and SHA-1 hashes
remain secure if SHA-1 is collision resistant (theoretical attacks are known, but
no collision has been published to date); and HMAC can remain secure both for
message authentication and as a PRF under weaker conditions than collision re-
sistance [68]. Despite this, these particular uses of MD5 in TLS are still problem-
atic. In 2016, Bhargavan and Leurent [101] identified a class of “transcript colli-
sion” attacks (which they called the SLOTH attack). Their immediately practical
attacks (48 core hours of parallelisable computation) included impersonation of
clients or servers using RSA-MD5 certificates for authentication, and the break-
ing of tls-unique channel binding (which relies on HMAC-MD5 truncated
to 96 bits); they also projected the complexity of finding a collision in the con-
catenated MD5 and SHA-1 hashes of the handshake transcript. At the time of
the SLOTH disclosure, many software packages, and 32% of TLS servers, ac-
cepted RSA-MD5 signatures, although commercial CAs have not been issuing
for RSA-MD5 certificates for many years.

SHA-1. The SHA-1 hash algorithm is also used in various places in TLS. The pro-
jected complexity of finding a SHA-1 hash collision is between 260.3 and 265.3

operations [695], no collisions were publicly known as of October 2015. Ma-
jor browser vendors (including Google, Microsoft, and Mozilla) and CAs are
transitioning to SHA-256; CAs have been required to not issue SHA-1 certifi-
cates since January 2016, and browsers have been treating SHA-1 certificates as
insecure since January 2017.

6.9.4 RC4 Biases

In many TLS ciphersuites, the RC4 stream cipher is used for bulk encryption. RC4
was for many years viewed as preferred compared with DES (RC4 having larger
keys), Triple-DES (RC4 being faster and easier to implement) and initial implemen-
tations of AES (RC4 again being faster than early software-only implementations of
AES). In December 2018, Qualys SSL Labs’ SSL Pulse [621] reported that 15.6%
of popular web servers had RC4 support enabled, and 1.6% would negotiate an RC4-
based ciphersuite even with modern browsers.

It has long been known that the RC4 stream cipher is less than ideal in a variety
of ways. Sen Gupta et al. [662] provided an excellent survey of the history of RC4
cryptanalysis over the years, including the existence of weak keys, the partial recov-
ery of the initial key from the internal state and from the keystream, and observed
biases in the keystream.
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In 2013, AlFardan et al. [28] demonstrated two nearly practical plaintext recov-
ery attacks on RC4 as used in TLS based on prior known biases and some novel im-
provements. In their attack scenario, a fixed plaintext is encrypted using RC4 many
times in succession, using the same or independent RC4 keystreams.

Their first attack, based on single-byte bias, is against the initial 256 bytes of the
RC4 keystream: if the same plaintext is encrypted many times under distinct RC4
keys, then plaintext bytes can be recovered. In TLS, the keystream is used to encrypt
the last handshake message (the 36-byte Finished message) which changes each
session, but the next 220 bytes are application plaintext: a careful attacker may be
able to cause a client to send the same request many times. In HTTP, cookies may
appear in the first 220 bytes (though browsers often send more HTTP headers before
the cookies); in the IMAP protocol for email collection, the user’s password typically
appears in the first 220 bytes. The attack works based on statistically averaging many
ciphertexts, considering known biases in the first 256 bytes of RC4 keystreams. In
AlFardan et al.’s experiments, the first 40 bytes of TLS application data were each
recovered with a success rate of over 50% per byte using 226 sessions, and all 220
bytes of application data with a success rate of over 96% per byte using 232 sessions.

These attacks on RC4 have subsequently been improved. In March 2015, Gar-
man et al. [292] demonstrated proof-of-concept password recovery attacks on certain
application-layer protocols (BasicAuth and IMAP) when using RC4 ciphersuites in
TLS. Their attacks achieved a significant success rate using 226 ciphertexts. The main
advantage comes from assuming the secret password is not distributed uniformly,
instead using knowledge of typical password distributions, for example based on
leaked corpuses of passwords [126].

It has been previously suggested [555] that the first few hundred bytes of the RC4
keystream should be dropped owing to known biases; however, the TLS standards
do not provide a mechanism for doing so. AlFardan et al. gave a second attack,
based on double-byte biases, that allows recovery of plaintext bytes anywhere in
the ciphertext, not just the first 256 bytes. It is based on biases in pairs of bytes in
the RC4 keystream. In their experiments, 16 consecutive bytes could be recovered
with a 100% success rate using statistical analysis of 13× 230 ciphertexts. Vanhoef
and Piessens [721] identified new biases and exploited them to be able to recover a
16-byte cookie with a 94% success rate using a novel statistical analysis of 9× 227

ciphertexts.
After the BEAST attack [260] against CBC mode in TLS in 2011, it was rec-

ommended that RC4 be adopted as the preferred ciphersuite. After the attacks by
AlFardan et al., it was recommended that RC4 be avoided, and that CBC mode with
a certain countermeasure be used or, preferably, that the Galois/counter mode of au-
thenticated encryption in TLS 1.2 be used where supported. In February 2015, the
IETF TLS working group approved an RFC to prohibit the use of RC4 in all versions
of TLS [619].
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6.9.5 Weak RSA and Diffie–Hellman: FREAK and Logjam Attacks

As noted above, early versions of SSL included support for export ciphersuites which
used shorter keys, as required by US export regulations. For RSA encryption and
finite-field Diffie–Hellman key exchange, this meant the use of 512-bit (or shorter)
keys. This key size would not be considered secure by modern standards, as RSA
keys of this size could be factored in 1999. With the lapsing of these particular ex-
port regulations, modern TLS clients do not offer export ciphersuites. Nonetheless,
many TLS implementations still include code supporting either export ciphersuites
directly, or smaller keys indirectly. This old code led to the discovery of two major
vulnerabilities in 2015.

Beurdouche et al. [92] discovered the so-called FREAK (“Factoring RSA Export
Keys”) attack, which exploits a state machine vulnerability in OpenSSL, Microsoft’s
SChannel library, and Apple’s Secure Transport library, to trick a client and server
into using an export-grade RSA key as long as the server supports RSA export ci-
phersuites, even if the client does not.

The FREAK attack works as follows. It requires a vulnerable client and a server
that supports export-grade RSA key transport ciphersuites. First, the client sends a
ClientHello message with a (non-export) RSA ciphersuite supported. The man-in-
the-middle (MITM) replaces the supported ciphersuites with an export RSA cipher-
suite and forwards it to the server. When the server responds with a ServerHello

message for the RSA export ciphersuite, the MITM replaces it with a standard RSA
ciphersuite and forwards it to the client. The server will also send its RSA certificate
(which may be, for example, 2048 bits) as well as a ServerKeyExchange message
containing an export-grade (e.g. 512-bit) ephemeral RSA public key. The MITM for-
wards these along to the client. The client should reject at this point, since no honest
server running a non-export RSA ciphersuite would send a ServerKeyExchange

message, but, owing to state machine bugs, several client implementations did not
reject, and instead proceeded to use the ephemeral RSA public key for key trans-
port. In particular, these clients would respond with a ClientKeyExchange mes-
sage which contained the random premaster secret encrypted under the export-grade
ephemeral RSA public key. The MITM needs to factor the RSA public key, derive all
secrets, and then use these secrets to forge Finished message MAC tags to trick the
client and server into accepting the altered transcripts. While factoring a 512-bit RSA
key is possible, it would still take weeks with 2015 technology; however, many im-
plementations will cache ephemeral RSA public keys, since RSA key generation is
costly, so it may be possible to carry out the attack using sufficient pre-computation.
Affected implementations were patched prior to the release of the paper.

Later in 2015, Adrian et al. [21] discovered the Logjam attack, which similarly
allows a MITM attacker to downgrade the cryptography used in TLS, this time
downgrading ciphersuites using finite-field Diffie–Hellman for forward secrecy to
export-grade (or lower!) keys. The attack applied against all major browsers (Inter-
net Explorer, Chrome, Firefox, Opera, and Safari). (Interestingly, Safari accepted
finite-field Diffie–Hellman groups as small as 16 bits.) Using Internet-wide scan-
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ning tools, the researchers identified that 8.4% of the Alexa Top 1 Million HTTPS
domains allowed export-grade ephemeral Diffie–Hellman key exchange.

The Logjam attack works as follows. It requires a vulnerable client and a server
which supports export-grade finite-field ephemeral Diffie–Hellman (‘DHE EXPORT’)
ciphersuites. First, the client sends a ClientHello message with a (non-export)
finite-field Diffie–Hellman ciphersuite supported. The MITM replaces the supported
ciphersuites with an export-grade finite-field Diffie–Hellman ciphersuite and for-
wards it to the server. When the server responds with a ServerHellomessage for the
export DH ciphersuite, the MITM replaces it with a standard Diffie–Hellman cipher-
suite and forwards it to the client. The server also sends its export-grade ephemeral
Diffie–Hellman key in a ServerKeyExchange message, which the MITM forwards
to the client. A vulnerable client implementation will accept the server’s export-
grade ephemeral Diffie–Hellman public key even though the client and server did
not explicitly negotiate an export ciphersuite, and respond with its ephemeral Diffie–
Hellman public key. The MITM needs to compute the shared Diffie–Hellman secret,
derive all secrets, and then use these secrets to forge Finished message MAC tags
to trick the client and server into accepting the altered transcripts.

Two implementation details make it feasible for the attacker to complete the
attack. First, 92% of web servers supporting DHE EXPORT ciphersuites use one of
two standardised 512-bit finite-field groups. While each server will use a distinct
ephemeral public key from this group, the number field sieve discrete logarithm algo-
rithm can be structured to make use of pre-computation for the group that is indepen-
dent of the specific discrete logarithm being computed. Second, many web servers,
including Apache, nginx, and Microsoft’s SChannel, reuse server ephemeral Diffie–
Hellman keys. On Adrian et al.’s computing cluster, with 1 week of pre-computation
for each group, computing individual 512-bit discrete logarithms took on average 70
seconds. The paper includes a discussion about the potential of state-level attack-
ers using greater computing power for 768-bit and even 1024-bit finite-field Diffie–
Hellman key exchange, and suggests that, based on the Snowden documents, the Na-
tional Security Agency may be employing this technique to decrypt some TLS con-
nections as well as virtual private networking connections established using IPsec’s
Internet Key Exchange (IKE) protocol with a specific 1024-bit finite-field Diffie–
Hellman group.

One notable characteristic of both the FREAK and the Logjam attacks is that
they exploit the fact that in SSL and TLS up to version 1.2, authentication of the
transcript is done using a MAC rather than a signature, and the MAC is com-
puted using (a key derived from) the master secret, the security of which is it-
self negotiated inside the protocol. (Note that the server’s signature is only over
the nonces and the raw ephemeral public key, and excludes the negotiation in the
ClientHello/ServerHello messages.) In other words, the key used to authenti-
cate the transcript and show that a downgrade attack has not occurred (i.e. that the
parties agree on the ClientHello/ServerHello messages) is being downgraded
prior to authentication. TLS 1.3 aims to avoid this type of attack by using the long-
term public key to sign the entire transcript.
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6.10 Attacks: Crypto Usage in Ciphersuites

We next examine attacks in which the cryptographic algorithms in the TLS cipher-
suite interact in an unfortunate way with the other protocol components.

6.10.1 BEAST Adaptive Chosen Plaintext Attack and POODLE

The use of block ciphers (DES, Triple-DES, AES) in cipher block chaining (CBC)
mode in SSL v3 and TLS 1.0 is vulnerable to an adaptive chosen plaintext at-
tack owing to the manner in which initialisation vectors for different requests in
the same SSL/TLS connection are set. This vulnerability was observed by Möller
in 2002 [564] and Bard in 2004 [53], but neither was able to demonstrate an ac-
tual attack. In 2011, Rizzo and Duong demonstrated a working attack, which they
called the BEAST attack (a ‘backronym’ for ‘Browser Exploit Against SSL/TLS’)
that allowed them to recover short secret strings in known locations in HTTP plain-
texts [260, 625, 650].

CBC mode is one of several block cipher modes that allow an arbitrary-length
message m to be split into blocks m1‖m2‖m3‖ . . .‖mn and encrypted by a fixed-length
cipher. In CBC mode, the first block of plaintext, m1, is XORed with an initialisation
vector iv, then encrypted using the key k:

c1←{m1⊕ iv}k.

Subsequent plaintext blocks are encrypted in a similar way, except that the initialisa-
tion vector is replaced with the previous ciphertext block:

ci←{mi⊕ ci−1}k.

In SSL and TLS, the initialisation vector is derived from the master secret using
the PRF. In many applications, including HTTPS, the same SSL/TLS connection is
used for multiple requests. For example, in a web browser, the SSL/TLS connection
will be established for the first request to a server, and then subsequent requests (in-
cluding page resources such as images, JavaScript, applets, and later HTML pages)
may all be sent over the same connection. SSL v3 and TLS 1.0 do not choose a new
initialisation vector for each subsequent request within the same TLS connection:
instead, they simply continue cipher-block chaining, using the last ciphertext block
of the previous request as the initialisation vector for the next request.

The attack allows an adversary to test whether a particular guess at a plaintext
block has a particular value. Suppose the adversary has observed the transmission of
ciphertext c1‖c2‖ . . .‖cn and wishes to determine whether plaintext block m j equals
some guessed plaintext m∗. Now, the adversary knows that the next plaintext block
sent will be encrypted with initialisation vector cn. The adversary directs the user
to send the next plaintext, block mn+1 = c j−1⊕ cn⊕m∗; the user will compute the
ciphertext

cn+1 = {mn+1⊕ cn}k = {c j−1⊕ cn⊕m∗⊕ cn}k = {c j−1⊕m∗}k.
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If m j = m∗, then cn+1 = c j, allowing the adversary to verify whether or not its guess
of m∗ for plaintext block j was correct.

The above attack allows the adversary to verify guesses of a single block one at
a time. In AES, for example, a single block is 128 bits long; an adversary trying to
guess a whole secret block could require up to 2128 operations, as much work as a
brute force key recovery attack. However, Rizzo and Duong showed how an attacker
who can inject plaintext near the beginning of a request can adjust how the plaintext
is broken across block boundaries, isolating just a single unknown byte at a time.
For example, suppose the attacker can cause the victim to make an HTTP request
to a given URL, and that the cookie (which contains the secret value the attacker is
targeting) comes immediately after, in a request like this:

GET /←↩Cookie: s=︸ ︷︷ ︸
16

1234567890123456︸ ︷︷ ︸
16

If the plaintext is encrypted in blocks of 16 bytes (128 bits), notice that the first block
of 16 bytes is entirely known to the adversary, but the second block of 16 bytes is
entirely unknown. If the adversary can change the URL that the victim requests, it
can control where the block boundary falls. For example, if the adversary causes the
victim to request a 15-character URL such as abcdeabcdeabcde, then the block
boundaries fall like this:

GET /abcdeabcdea︸ ︷︷ ︸
16

bcde←↩Cookie: s=1︸ ︷︷ ︸
16

234567890123456︸ ︷︷ ︸
15

The second block (bcde←↩Cookie: s=1) now contains only a single unknown
byte, and thus can be found by carrying out the above attack using only 256 plaintext
guesses. Once that byte is found, the adversary can shift the boundary again for the
next unknown byte:

GET /abcdeabcdea︸ ︷︷ ︸
16

bcd←↩Cookie: s=12︸ ︷︷ ︸
16

34567890123456︸ ︷︷ ︸
14

and so on, allowing it to recover a k-byte secret with just 256k guesses.
To carry out this attack, the adversary needs to be able to observe ciphertexts,

know the format of requests from the victim and be able to cause the victim to
make multiple requests with the same secret, while being able to inject plaintext
to control where the block boundary falls and to test guesses. Modern web browsers
have a variety of communication technologies that have the potential to allow the
adversary such powers, such as asynchronous Javascript requests and HTML5 Web-
Sockets, as well as APIs in plugin technologies such as Java’s URLConnection API
and Silverlight’s WebClient API. In most cases, the browser enforces a same-origin
policy—preventing scripts from one domain sending data to another domain—that
make it difficult to carry out the attack. Rizzo and Duong made use of a zero-day
exploit in Java that bypassed the same-origin policy restrictions; this exploit has sub-
sequently been patched, and to date no other means of carrying out the BEAST attack
has been exhibited.
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One of the major changes introduced in TLS 1.1 was the use of explicit IVs in
CBC mode ciphers to prevent this attack. This suffices as a countermeasure to the
BEAST attack. However, deployment of web browsers and servers supporting TLS
1.1 was slow; in early 2012, just after the BEAST attack, less than 1% of SSL-
enabled websites surveyed by SSL Pulse supported TLS 1.1 or TLS 1.2. As a result,
the immediate recommendation at the time of the BEAST attack was to switch to
ciphersuites using the RC4 stream cipher; this recommendation has since been re-
scinded owing to subsequent attacks on RC4 described below. Browsers have since
been updated to do so-called 1/n− 1 record splitting: the first block in each new
message contains only a single byte of plaintext, the second block contains the next
n−1 bytes (here n is the block size in bytes), and then the remaining blocks are full
size. This has the effect of randomizing the IV in a (relatively) backward-compatible
way [475].

In 2014, Möller, Duong, and Kotowicz [565] described a more powerful form
of the BEAST attack against CBC-mode encryption SSL v3 in an attack which they
called the POODLE (Padding Oracle On Downgraded Legacy Encryption) attack. In
CBC-mode encryption in SSL v3, plaintext is concatenated with the MAC over the
plaintext, then padding is applied to pad it out to a multiple of the block length L.
The padding must be between 1 and L bytes, and the last byte of the last block is the
length of the padding. There are no requirements on the content of the padding, and
it is not covered by the MAC, so the integrity of the padding is not verified when
decrypting.

The POODLE attack allows an attacker to decrypt a secret value inside the plain-
text as follows. The attack is simpler if we assume the full last block is padding,
which can be achieved easily by an attacker who has partial control over the plain-
text. The attacker takes the ciphertext block it is trying to decrypt and uses it as the
final ciphertext block. The decryption algorithm then XORs this with the previous
block of ciphertext, which is known to the adversary. If the last byte of the result is
the same as the expected padding length, then the block will decrypt successfully,
otherwise an error will occur. Thus, with a 1-in-256 chance, the attacker can learn
the last byte of one block of plaintext. Once one byte of the plaintext has been learnt,
an attacker with partial chosen plaintext abilities can request ciphertexts with an ad-
ditional byte, shifting the next byte of the target secret into the last byte of a block,
and repeat.

While the POODLE attack can be defeated with a clever record-splitting tech-
nique similar to the 1/n− 1 record-splitting technique as described for the BEAST
attack above, the preferred technique is to simply avoid use of SSL v3. Since some
servers still support only SSL v3, some clients continue to offer SSL v3 support, to
which an attacker could try to cause clients to downgrade. A recent new feature of
TLS, the TLS FALLBACK SCSV signalling-ciphersuite value, can prevent downgrade
attacks and thus protect clients from the POODLE attack [474].
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6.10.2 Cross-Protocol Attack on Diffie–Hellman Parameters

As previously identified, TLS supports many different ciphersuites, and most deploy-
ments also support several ciphersuites. For example, a standard server might sup-
port ciphersuites using RSA key transport, RSA-signed finite-field ephemeral Diffie–
Hellman, and RSA-signed elliptic curve ephemeral Diffie–Hellman, using AES en-
cryption in CBC or Galois/counter mode, and with either SHA-1 or SHA-256 hash
functions. However, in almost all installations, each server has only a single RSA
long-term key, which is reused across all supported ciphersuites. In fact, popular
web servers such as Apache only allow the server administrator to install a single
key for each long-term key algorithm. Reuse of keying material—also known as key
agility—can sometimes result in a vulnerability, either because secrets used in one
algorithm may leak information when used in another algorithm, or because data
encrypted/authenticated by one protocol may be unintentionally useful in another
protocol.

Recall from Sect. 6.3.1 that, in ciphersuites where authentication is based on
digital signatures, the server signs the ServerKeyExchange message. The contents
of the ServerKeyExchange message depend on the type of key exchange method
and are shown in Fig. 6.2. For ephemeral Diffie–Hellman key exchange (either finite-
field or elliptic curve), the ServerKeyExchange message includes the description
of the group as well as the server’s ephemeral public key. In RSA key transport
ciphersuites in SSL v3 and the export ciphersuites of TLS 1.0, the server may also
send an RSA public key for encryption.

Wagner and Schneier [724] identified potential cross-protocol attacks in SSL v3
in 1996. They observed that the data structure to be signed—either ServerRSA-
Params or ServerDHParams—does not explicitly indicate what the type of the data
structure is; instead, the data type is inferred by each party based on the negotiated
ciphersuite. Wagner and Schneier hypothesised that it may be possible for an attacker
to convince a client to misinterpret one type of data structure as another.

In 2012, Mavrogiannopoulos et al. [529] noted that, while the exact attack of
Wagner and Schneier would not work owing to a subtlety in how TLS packets
were processed, a similar attack could be executed. In 2006, support for elliptic
curve Diffie–Hellman key exchange had been added to TLS [106]; in the relevant
ciphersuites, the ServerKeyExchange message contains the description of the el-
liptic curve parameters and the server’s ephemeral public key point. The specifica-
tion allows curves to be specified either as one of several predefined named curves
using a single index value, or as an explicit curve by specifying the prime or irre-
ducible polynomial, curve equation coefficients, base point, and group order. When
explicit curves are used, Mavrogiannopoulos et al. observed that it is possible to
construct a ServerECDHParams data structure that is also a valid ServerDHParams

data structure. Moreover, with careful choices of the curve parameters, a non-trival
proportion (around 1 in 240) of elliptic curve ephemeral public keys will, when the
ServerECDHParams data structure is interpreted as a ServerDHParams structure,
result in a modulus that is sufficiently smooth to allow efficient factoring, enabling
the attacker to compute the premaster secret and impersonate the server in the con-
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struct {
select (KeyExchangeAlgorithm):

case rsa:
ServerRSAParams params;
Signature signed_params;

case dhe_dss, dhe_rsa:
ServerDHParams params;
Signature signed_params;

case ec_diffie_hellman:
ServerECDHParams params;
Signature signed_params;

} ServerKeyExchange

Note that case rsa only applies in some scenarios of
SSL v3 and TLS 1.0.

struct {
opaque rsa_modulus;
opaque rsa_exponent;

} ServerRSAParams;

struct {
opaque dh_p<1..2ˆ16-1>;
opaque dh_g<1..2ˆ16-1>;
opaque dh_Ys<1..2ˆ16-1>;

} ServerDHParams;

struct {
ECCurveType curve_type = 1;
opaque prime_p <1..2ˆ8-1>;
ECCurve curve;
ECPoint base;
opaque order <1..2ˆ8-1>;
opaque cofactor <1..2ˆ8-1>;
opaque point <1..2ˆ8-1>;

} ServerECDHParams;

Fig. 6.2: ServerKeyExchange data structures for signed ciphersuites in TLS

nection. Fortunately, as of this writing no major TLS server implementations sup-
port explicit elliptic curve parameters, so the attack remains theoretical. Motivated
by this attack, Bergsma et al. [89] extended the ACCE security notion to consider
multi-ciphersuite security and characterised the security of certain subsets of TLS
ciphersuites with long-term key reuse across ciphersuites.

6.10.3 Lucky 13 Attack on MAC-Then-Encode-Then-Encrypt

The use of CBC mode for block ciphers in the TLS record layer follows a MAC-
then-encode-then-encrypt pattern: a MAC is computed over the plaintext, then the
plaintext and MAC tag are padded to a multiple of the block length, then the plain-
text+MAC+padding is encrypted. The padding must have a specified format. In order
to prevent one type of timing attack, the TLS standards require that a MAC check
still be performed even if the padding is invalid. However, it becomes unclear as to
which data the MAC should be computed over, so the RFC recommends processing
as if there was a zero-length pad. In contrast, no processing of a validly padded and
encrypted message would ever be performed with a zero-length pad. This difference
opens up the possibility of a small timing side channel in the form of a padding oracle
attack. The RFCs indicated it was “not believed to be large enough to be exploitable,
due to the large block size of existing MACs and the small size of the timing signal”
[251, Sect. 6.2.3.2].

AlFardan and Paterson [29] demonstrated how to exploit this small timing side
channel, including practical attacks on open source implementations. The name
‘Lucky 13’ comes from what they describe as a “fortuitous alignment of various
factors such as the size of MAC tags, the block cipher’s block size, and the number
of header bytes”. Ciphertexts with invalid padding will result in an error message
appearing at a slightly different time than for ciphertexts with valid padding but an
invalid MAC tag.
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In their most general attack on TLS in OpenSSL, an attacker on the same LAN
segment is able to recover a full plaintext block using roughly 223 sessions, provided
that the same plaintext is sent in multiple sessions. More specific variants are more
effective. It is possible to use the attack technique to distinguish the encryptions of
two chosen messages in just a few sessions. Partial plaintext recovery attacks against
TLS and DTLS are possible using fewer sessions. Attacks against DTLS are more
effective: since DTLS is non-reliable, errors in DTLS are not fatal to the session, so
it is much more practical to carry out repeated queries against the session. All major
open source TLS implementations were vulnerable to attack.

One countermeasure proposed was to remove the timing side channel using a
careful implementation, although the authors of the attack cautioned that it would be
difficult to remove all related timing side channels, especially in DTLS implemen-
tations. Adding random timing delays was noted to be relatively ineffective, adding
only a small increase in statistical uncertainty that could be averaged out with ad-
ditional samples. The alternatives proposed were to switch away from CBC mode,
either to RC4 or to authenticated encryption modes. The recommendation to switch
to RC4 was with the caveat that RC4 was known to have some statistical weaknesses,
and the same authors (plus a few new co-authors) subsequently demonstrated prac-
tical attacks against RC4-based ciphersuites, invalidating that recommendation (see
Sect. 6.9). Authenticated encryption modes are only supported in TLS 1.2, leav-
ing lower versions stuck with a difficult choice. An option to switch to pad-then-
encrypt-then-MAC was standardised in 2014 [339] but does not seem to be widely
implemented as of the time of writing.

6.11 Attacks: Protocol Functionality

This section examines attacks which arise owing to the extensive range of function-
ality provided in TLS. Unfortunately, flexibility which can be useful to applications
can sometimes also open up opportunities for attackers.

6.11.1 Downgrade Attacks

All existing versions of SSL and TLS have compatible packet formats and in most
applications run over the same network ports, but have different security properties,
so there is the risk that devices which support multiple versions of SSL/TLS may be
subject to a downgrade attack in which they are tricked into using a lower version
than they both support.

Let us briefly recall the version negotiation mechanism. In the ClientHello

message, the client sends the highest version it supports. In the ServerHello mes-
sage, the server responds with the highest version it supports that the client also
supports.

The risk of downgrade attacks in SSL/TLS was identified as early as Wagner
and Schneier’s 1996 paper [724]. SSL v2 was vulnerable to a ciphersuite rollback
attack: since the ciphersuite negotiation was not authenticated in SSL v2, an active
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attacker could replace one party’s list of supported ciphersuites with the weakest
mutually supported ciphersuite (for example, an export ciphersuite or one with a
weak algorithm).

SSL v3 introduced a countermeasure to this attack: the complete handshake tran-
script was authenticated using a MAC with (a key derived from) the shared session
key. This was designed to protect both version negotiation and ciphersuite negotia-
tion. While this provides immediate protection against the naive downgrade attack
on SSL v2 noted above, it is still flawed: the security of the version and ciphersuite
negotiation mechanism comes from mutual authentication of the transcript, the tran-
script is authenticated using the shared session key, and the algorithm for computing
this is determined by the ciphersuite and version being authenticated. This cyclic de-
pendency places negotiation security at risk: a man-in-the-middle attacker who can
compute the shared session key in real time can potentially disrupt negotiation un-
detectably. The FREAK and Logjam attacks, discussed in detail in Sect. 6.9.5, are
examples of downgrade attacks that depend on this cyclic dependency of authentica-
tion negotiation using a key derived from the negotiated ciphersuite.

If strong ciphersuites are used, defeating attacks like FREAK and Logjam, then
authentication of the transcript (which includes the version negotiation) theoretically
ensures the parties are not subject to a version downgrade attack. Unfortunately, this
is not the case in practice. Many implementations implement a further version ne-
gotiation mechanism called fallback, sometimes called the downgrade dance. Since
some flawed TLS server implementations respond with a failure message when con-
fronted with a ClientHello containing versions higher than they support, TLS
clients will retry the handshake with the next lower version, sidestepping the in-
protocol version negotiation mechanism. Unfortunately, this downgrade is easy for
an attacker to trigger: the failure message is not authenticated, so a man-in-the-
middle attacker can spoof the failure message and trigger a downgrade. Originally,
there was no link between the original request and the fallback request. In particular,
there was no mechanism for the client to indicate to the server that it was attempt-
ing a downgraded handshake owing to a failure message, and thus the client and
server would not detect the downgrade attack. In April 2015, the IETF standardised
the TLS Fallback Signalling Ciphersuite Value (SCSV) [563]: when trying a lower
version during a fallback, the client can send a flag indicating it is doing so (for en-
gineering reasons, this flag is implemented as a special ‘dummy’ ciphersuite in the
list of supported ciphersuites, hence the term ‘signalling ciphersuite value’). A server
that also supports SCSV can thus detect when a downgrade attack is occurring.

Cryptographic modelling of negotiation and downgrade resistance has been pre-
sented by Dowling and Stebila [258] and Bhargavan et al. [94].

6.11.2 Renegotiation Attack

Recall from Sect. 6.4.3 that renegotiation allows two parties who are using an ex-
isting TLS session to run a new handshake; upon completion of the new handshake,
the session switches to the newly established encryption and authentication keys for
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Attack 6.1: Ray and Dispensa’s attack on TLS renegotiation

communication. In November 2009, Ray and Dispensa [623] described a man-in-
the-middle attack that exploits how certain TLS-reliant applications—such as HTTP
over TLS—process data across renegotiations. The attack is as shown in Attack 6.1.

The attacker Eve observes Alice attempting to establish a TLS session with Bob.
Eve delays Alice’s initial ClientHello and instead establishes her own TLS session
with Bob, then transmits a message m0 over that record layer. Then Eve passes Al-
ice’s initial ClientHello to Bob over the Eve–Bob record layer. Bob views this as
a valid renegotiation and responds accordingly; Eve relays the handshake messages
between Alice and Bob, which serve to establish a new record layer between Alice
and Bob to which Eve has no access. Alice then transmits a message m1 over the
Alice–Bob record layer.

This is not, strictly speaking, an attack on TLS but on how some applications
process TLS-protected data. It results from some applications, including many im-
plementations of HTTPS [623] and SMTPS, concatenating m0 and m1 and treating
them as coming from the same party in the same context. For example, if Eve sends
the HTTP request

m0 = “GET /orderPizza?deliverTo=123-Fake-St←↩ X-Ignore-This: ”

and Alice sends the HTTP request

m1 = “GET /orderPizza?deliverTo=456-Real-St←↩ Cookie: Account=111A2B”

(where←↩ denotes a new-line character), then the concatenated request (across mul-
tiple lines for readability) is

m0‖m1 = “GET /orderPizza?deliverTo=123-Fake-St←↩
X-Ignore-This: GET /orderPizza?deliverTo=456-Real-St←↩
Cookie: Account=111A2B”
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The ‘X-Ignore-This:’ prefix is an invalid HTTP header. Since this header, without
a new-line character, is concatenated with the first line of Alice’s request, Bob’s
application receives a full HTTP header with an unknown header name, so this line
is ignored. However, the following line, Alice’s account cookie, is still processed.
Eve is able to have the pizza delivered to herself but paid for by Alice’s account.

It should be noted that Ray and Dispensa’s attack works for both the server-
only authentication and the mutual authentication modes of TLS: the use of client
certificates does not in general prevent the attack.

The immediate recommendation due to this attack was to disable renegotiation
except in cases where it was essential. The IETF TLS working group developed RFC
5746 [629] to provide countermeasures to this attack, with the goal of applicability
to all versions of TLS and SSL v3. Two countermeasures were standardised:

Renegotiation Information Extension (RIE). This countermeasure essentially pro-
vides handshake recognition, confirming that both parties have the same view
of the previous handshake when renegotiating. With this countermeasure, each
client or server always includes a renegotiation information extension in its re-
spective ClientHello or ServerHello message. This extension contains one
of three values. If the party is not renegotiating, then it includes a fixed ‘empty’
string, which denotes that the party supports and understands the renegotiation
extension, but that party is in fact not renegotiating. If the party is renegotiat-
ing, then it includes the handshake/key confirmation value from the previous
handshake: the client sends the previous client verification data value while the
server sends the concatenation of the previous client verification data and server
verification data values. Intuitively, by including the verification data from the
previous handshake, the parties can be assured that they have the same view of
the previous handshake, and thus the attack in Fig. 6.1 is avoided.

Signalling Ciphersuite Value (SCSV). This countermeasure was designed to avoid
interoperability problems with TLS 1.0 and SSL v3 implementations that did not
gracefully ignore extension data at the end of ClientHello and ServerHello

messages. Here, the client puts an additional value in its initial handshake—an
extra, fixed, distinguished ciphersuite value (byte codes 0x00,0xFF) included in
its ciphersuite list—to indicate that it knows how to securely renegotiate. Old
servers will ignore this extra value; new servers will recognise that the client
supports secure renegotiation, and the server will use the RIE in the remainder
of the session. In other words, the only difference between SCSV and RIE is in
the ClientHello message of the initial handshake: with RIE, the client sends
an empty extension, whereas with SCSV the client sends a distinguished value
in the list of supported ciphersuites.

These countermeasures were quickly implemented in most TLS libraries, web
browsers, and web servers. Giesen et al. [304] extended the ACCE model presented
in Sect. 2.8.3 to formalise the notion of renegotiation security, and proved that these
countermeasures provided renegotiation security for TLS.
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6.11.3 Compression-Related Attacks: CRIME, BREACH

As described in Sect. 6.4.1, the TLS record layer can optionally perform compression
of all application data. The Compression Ratio Info-leak Made Easy (CRIME) attack,
presented by Rizzo and Duong in 2012 [632] makes use of a side channel based on
the length of the compressed plaintext, first identified by Kelsey in 2002 [422], to
extract secret values such as HTTP cookies from encrypted application data.

In 2002, Kelsey [422] described at a general level the various side channels that
exist when plaintext is compressed prior to encryption; in particular, the length of
the compressed plaintext compared with the original plaintext acts as a side channel,
leaking some information about the amount of redundancy in the plaintext. One of
the most powerful attacks described by Kelsey was an adaptive chosen input attack.
Suppose the adversary is given access to an oracle that behaves as follows. When the
adversary inputs a message x, the oracle outputs

Oa,b,S(x) = Enc(Comp(a‖x‖b‖S)),

where Enc denotes encryption, Comp denotes compression, a and b are fixed public
strings, and S is the secret the adversary is trying to recover. The basic idea of the
attack is that, when the attacker’s input x overlaps with S, the compressed string
will be slightly shorter than when x does not overlap with S. The attacker works
adaptively character by character.

Rizzo and Duong [632] showed how to use Kelsey’s attack against TLS com-
pression in the context of HTTP. On the web, we have a web browser making HTTP
GET requests to an HTTPS website. In addition to the URL, the browser will send
a header containing the authentication cookie; all of this is encrypted using TLS.
For example, to visit https://server.com/index.html, the browser might
send

Enc(Comp(“GET /index.html←↩Cookie: secret=31415926”)).

If the attacker can cause the user to visit arbitrary URLs on the target website
server.com, then the browser acts as an oracle in Kelsey’s adaptive chosen in-
put attack above. In particular, if the attacker can cause the browser to visit the URL
https://server.com/url, then the browser will send

Enc(Comp(“GET /url←↩Cookie: secret=31415926”)).

The attacker now iterates through different values of url (secret=1, secret=2,
. . . ):

Enc(Comp(“GET /secret=1←↩Cookie: secret=31415926”)),
Enc(Comp(“GET /secret=2←↩Cookie: secret=31415926”)),
Enc(Comp(“GET /secret=3←↩Cookie: secret=31415926”)).

The third value will compress slightly more than the others, because of the greater
overlap between secret=3 and the cookie secret=31415926. The attacker
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now knows that the first character of the secret is 3. The attacker now adaptively
queries for the next character:

Enc(Comp(“GET /secret=31←↩Cookie: secret=31415926”))
Enc(Comp(“GET /secret=32←↩Cookie: secret=31415926”))

and so on. The attacker can rapidly recover the secret. In particular, assuming no
noise in the repeated requests, for a secret of n characters chosen from a c-character
alphabet, the attacker can recover the secret with at most nc adaptive queries. Since
the compressed plaintext is encrypted, some care is required when block encryp-
tion schemes are used to ensure that different-length compressed plaintexts lead to
different-length ciphertexts, but this is possible using padding like in the BEAST
attack.

The CRIME attack was quite effective: it worked regardless of the cipher used
(AES or RC4) and only required the victim to visit once a URL controlled by the
attacker, although it required the attacker be able to observe the size of the responses
transmitted over the network. Both the Chrome and the Firefox browsers were vul-
nerable (since they supported TLS compression), but Internet Explorer was not (since
it did not support compression). The attack was also effective against the SPDY pro-
tocol [86, 323], a modification of the HTTP protocol to improve performance. The
only effective countermeasure against CRIME is to disable TLS compression. The
TIME attack [67] extends the CRIME attack by using a timing side channel via
JavaScript, relieving the attacker from the need to observe the responses as they are
transmitted over the network. The HEIST attack [720] is another variant that removes
the need for a man-in-the-middle network observer.

In 2013, Prado et al. [620] announced the BREACH (Browser Reconnaissance
and Exfiltration via Aadaptive Compression of Hypertext) attack, which used a sim-
ilar adaptive chosen input attack, this time against HTTP compression, allowing an
attacker to recover secrets in the HTTP body (such as anti-cross-site-request-forgery
tokens). The BREACH attack works independently of TLS compression. Despite the
attack, HTTP compression remains widespread.

6.11.4 Termination Attack

TLS includes an alert protocol which allows a party to signal a communication error
to its peer, or to signal that it is terminating the connection. Each party is required
to send a close notify alert immediately before closing the write side of its con-
nection, and the receiving party should respond with a close notify alert and then
terminate the connection. This functionality was introduced in SSL v3. Originally,
a connection that had been terminated using close notify could not be resumed
using session resumption, but this behaviour was permitted starting in TLS 1.1.

The purpose of the close notify alert is to ensure that each party’s application
agrees on the data sent and received, and in particular to avoid truncation attacks, in
which an attacker drops some data as well as the close notify alert. Unfortunately,
several attacks have been identified involving how data is passed from SSL/TLS
implementations to relying applications in the context of termination/truncation.
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Berbecaru and Lioy [88] showed how various SSL v3 and TLS 1.0 implementa-
tions deal inconsistently with truncated data. For example, consider a web server that
is transmitting an image using HTTPS to a web browser (Mozilla Firefox v1.5.0.7
in their tests), and a man-in-the-middle who cancels various parts of the transmis-
sion. They observed that if the MITM cancelled part of the data record encrypting
the image, but allowed subsequent records including the close notify to be trans-
mitted, the browser would report it could not display the image because of errors,
the expected behaviour. However, if the MITM cancelled part of the data record en-
crypting the image and all subsequent records, including the close notify alert,
the web browser would display the truncated image to the user. The SSL library did
not transmit a warning to the application data that the received data was incomplete,
and correspondingly the web browser did not abort in error, despite receiving an
HTTP response that was shorter than indicated in the HTTP Content-Length
header.

Smyth and Pironti [684] showed how to exploit this type of flaw in more complex
modern web applications. For example, a user browsing a variety of Google prop-
erties (Gmail, Search, etc.) has sessions established with each service, even though
a single sign-on is used. When the user clicks ‘Log out’, the user’s session must
be logged out with each service. Smyth and Pironti observed that this is sometimes
achieved using parallel logout requests to each service, followed by display of a
success page. In their study, Smyth and Pironti showed how an attacker who can
truncate/drop selected TLS packets can cause some sessions to remain active even
after the user has clicked log out and received the success page.

6.11.5 Triple Handshake Attack

As noted in Sect. 6.4, TLS allows parties to create new sessions from existing ones.
Session resumption uses an abbreviated handshake to start a new session from a prior
session. Renegotiation performs a new, full handshake inside an existing session,
allowing parties to change ciphersuites or authentication credentials, or obtain fresh
keying material.

Bhargavan et al. [96] discovered a triple handshake attack, which allows an at-
tacker to confuse a client into thinking it is connected to a different server; the attack
takes advantage of flaws in session resumption and renegotiation. The attack pro-
ceeds in three steps. In the first step of the attack, the client establishes a TLS session
using RSA key transport with the attacker; the attacker establishes a session with
the target server using the same nonces and premaster secret. In the second step, the
client uses session resumption with the attacker to resume its session; the attacker
relays the session resumption handshake messages to the target server. Since the
relevant cryptographic values are the same (specifically, the premaster secret), the
session resumption succeeds, and the client now has a (resumed) session, but with
the target server. The attacker injects a message to the target server, which it can
do because it still knows the session key of the resumed session. In the final step, a
renegotiation takes place between the client and the server, the result of which is a
renegotiated session between the client and the target server which the adversary is
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not able to access. However, some applications concatenate the data sent by the at-
tacker before the final step and the data sent by the client after the final step as coming
from the same party (this is similar to the renegotiation attack in Sect. 6.11.2).

The primary reason that the triple handshake attack is successful is that session
resumption depends only on the previous session’s master secret, rather than the
whole handshake. The principal proposed countermeasure is to bind the master se-
cret to the full handshake, rather than just the nonces and premaster secret, and was
standardised in RFC 7627 [102].

6.12 Attacks: Implementations

Software libraries implementing TLS, like other pieces of software, unfortunately
contain bugs which often result in vulnerabilities. While we do not aim to provide an
extensive overview of software-related TLS vulnerabilities, we will briefly mention
a few notable ones. These subsections examine attacks resulting from bad random
number generators and bad certificate validation code in software libraries.

Software vulnerabilities, by their nature, usually affect only a particular imple-
mentation. OpenSSL, being a widely used open source TLS implementation, is a fre-
quent target of vulnerability research, but all TLS implementations have had flaws.

6.12.1 Side Channel Attacks

Several flaws in OpenSSL have been identified related to side channels in processor
microarchitectures. Percival [608] successfully recovered an RSA private key from
OpenSSL owing to a cache-timing side channel in its implementation of the Chinese
Remainder Theorem. Acıiçmez et al. [20] identified a further vulnerability in RSA
private key operations in OpenSSL due to a simple branch prediction analysis attack.
Yarom and Benger [756] subsequently identified a cache-timing side channel that
also allowed for recovery of signing keys when ECDSA over binary fields was used.

Brumley and Tuveri [162] discovered a timing side channel in OpenSSL’s im-
plementation of elliptic curve arithmetic over binary fields. The exploit allows an
attacker to recover the ECDSA private key from a TLS server; the authors demon-
strated the exploit over a loopback network interface.

Brumley et al. [161] discovered how to exploit a fault/error side-channel in
OpenSSL’s implementation of elliptic curve point multiplication for prime fields.
Using an adaptive attack against repeated use of a NIST-P256 prime field elliptic
curve private key, the attack recovers the private key in just 663 queries. The attack
requires reuse of the private key, which is the case with static ECDH TLS ciphersuites
and with ephemeral ECDH TLS ciphersuites where the server re-uses the ephemeral
key as an optimisation technique. While reuse of ephemeral keys is optional, it is
apparently the default behaviour of OpenSSL.

Most of the above attacks led to updated versions of OpenSSL and reports in
the Common Vulnerabilities and Exposures (CVE) database. Although supported by
OpenSSL, few applications actually make use of elliptic curves over binary fields,
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and, in particular, no commercial certificate authority to date has issued X.509 cer-
tificates for ECDSA public keys over binary fields, so the practical impact of the
binary ECDSA vulnerabilities was minimal.

6.12.2 TLS-Specific Implementation Flaws

Researchers at Google and Codenomicon [220] independently identified a buffer
over-read vulnerability in OpenSSL’s implementation of the TLS heartbeat exten-
sion [661], allowing an attacker to read up to 64 KB of additional memory from the
server, memory which could potentially contain private keys, passwords, or other
sensitive information. The bug was given the moniker ‘Heartbleed’ and even got
its own website and logo (http://heartbleed.com). Unlike the other attacks
above, this bug requires no cryptographic expertise to discover or exploit. Turnkey
exploits were readily developed and deployed, and researchers were successfully
able to remotely recover signing private keys from test servers. Using the Zmap
tool [262], researchers identified that approximately 17% (around half a million)
of TLS-enabled websites were vulnerable at the time of discovery; 2 months later,
1.5% of the 800,000 most popular TLS-enabled websites remained vulnerable [484].
The Heartbleed vulnerability attracted widespread public attention.

Another specific class of implementation errors is related to processing messages
in the correct order. Kikuchi [483] discovered a flaw in OpenSSL where it would
accept ChangeCipherSpec messages at any point in time, rather than only immedi-
ately prior to the transmission of the Finishedmessages. If the ChangeCipherSpec
message is accepted earlier, the server will use an empty master secret to compute
the session keys. It is unclear how to exploit this weakness to defeat cryptographic
protections, but it is still an implementation flaw. In the same vein, Beurdouche et al.
[92] identified several more state machine attacks (which they named ‘SMACK’).
They discovered that many TLS implementations do not correctly implement the
TLS state machine: the various TLS versions, extensions, authentication modes, and
key exchange methods may lead to different sequences of messages and processing,
and failure to use the correct sequence in every context can lead to vulnerabilities.

6.12.3 Certificate Validation

A notable class of implementation errors is related to certificate validation, either in
TLS implementations directly or in applications or higher-level libraries that make
use of TLS implementations.

OpenSSL releases prior to 0.9.8j failed to correctly validate some types of mal-
formed signatures in a certificate chain, allowing an attacker to bypass validation
[595]. Apple’s implementation of SSL/TLS in its Secure Transport library for Mac
OS X and iOS had a bug in which certificate validation always succeeded owing to a
spurious goto fail statement in the code, giving the bug its name [476].

Georgiev et al. [302] reported SSL certificate validation errors in a variety
of non-browser applications and libraries, typically related to incorrect parameters
used in libraries. For example, Amazon provided third-party PHP developers with

http://heartbleed.com
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a Flexible Payments Service library allowing them to receive payments. The li-
brary made use of the command-line program cURL for HTTPS connections. The
library attempted to enable hostname verification in cURL by setting an option
CURLOPT SSL VERIFYHOST = true. However, the correct value should have been
2 rather than true, and the effect was that certificate validation was disabled, al-
lowing an attacker to carry out an impersonation attack. Similar mistakes involving
hostname verification, certificate revocation, and certificate chain validation were
observed by these authors in a variety of libraries using a variety of programming
languages and applications.

In 2014, Brubaker et al. [160] reported on the results of testing the certificate val-
idation logic of a variety of client and server TLS implementation using frankencerts,
described as “synthetic certificates that randomly mutated from parts of real certifi-
cates and thus include unusual combinations of extensions and constraints”. When
one implementation accepted a frankencert while another did not, this identified
a discrepancy in certificate validation logic meriting further investigation. Overall,
Brubaker et al. found 208 discrepancies between popular implementations, many of
which led to significant vulnerabilities, such as the ability to act as a rogue CA, to
create certificates not signed by a trusted CA, to accept certificates not intended for
authentication, or to trigger user interface indicators that provide inaccurate warn-
ings.

6.12.4 Bad Random Number Generators

The security of any TLS implementation depends crucially on the quality of the
random number generator and seed used for the picking of long-term private keys
and per-session private keys. Several prominent SSL/TLS implementations have had
flaws in how their random number generators are seeded, leading to exploitable at-
tacks.

In 1996, Goldberg and Wagner [309] determined, by reverse engineering, that
the pseudo-random number generator (PRNG) in one of the earliest web browsers,
Netscape Navigator v1, was poorly seeded. They found that the seed to the PRNG in
Netscape was constructed from the process ID (pid), parent process ID (ppid), and
the time in seconds and microseconds. The pid and ppid can be easily determined
by another user running on the same system; for a remote attacker, there are at most
227 possible pid/ppid value pairs, and often the pid and ppid values are considerably
smaller. A local or network attacker can determine the time in seconds based on
network observations, leaving at most 1,000,000 (approximately 220) values to test
for the microseconds. Thus, for an attacker, there are at most 47 bits of entropy in
the seed of the PRNG and hence at most 47 bits of randomness in the secret keys.
Netscape Navigator version 1.22 and higher improved the seeding of the PRNG to
avoid this problem, but the flaw still serves as a significant real-world example of the
challenges of random number generation.

In 2008, Bello [710] discovered a flaw in the random number generator used by
the OpenSSL library package distributed on the Debian operating system. The flaw
was introduced in 2006 when Debian maintainers commented out a couple of lines
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of code in OpenSSL when updating the package for Debian; the flaw was not present
in the original OpenSSL source code. The effect of the code change was to remove
almost all of the entropy added to the PRNG seed, leaving the sole randomness as the
process ID. Taking into account the effects of different processor architectures, there
are just 294,912 keys that can possibly be generated by the vulnerable versions of
Debian OpenSSL [761]. Because the OpenSSL library is used in many applications,
this flaw affected not only TLS, but also SSH and OpenVPN (for virtual private
networking). In a survey of 50,000 SSL servers [761] on the day of vulnerability
disclosure in 2009, approximately 700 (1.4%) were using a weak key; 6 months
later, 30% of those Debian weak keys were still in use. In a later, large-scale survey
of 12.8 million TLS servers and 10.2 million SSH servers published in 2012 [354],
Heninger et al. found a very small percentage (0.03%) of TLS servers using Debian
weak keys, though a non-trivial percentage (0.52%) of SSH servers were still using
Debian weak keys.

6.13 Attacks: Other

Finally, there are a few other attacks which do not fit into the categories explored
above.

6.13.1 Application-Level Protocols

The most common use of TLS is in combination with the Hypertext Transport Pro-
tocol (HTTP). Because much web traffic still runs over HTTP, rather than HTTPS,
security vulnerabilities can arise owing to how HTTP and HTTPS interact.

One common flow on the web is for users to initially browse a website using
plaintext (HTTP) communication. At some point, such as when they click ‘login’
or try to purchase something, they are redirected to a secure site, using an HTTPS
address specified in the web page’s source code. In 2009, Marlinspike [524] demon-
strated an HTTPS ‘stripping’ attack using a new tool called ‘sslstrip’. A man-in-the-
middle attacker observing an unencrypted HTTP connection alters the source code
of responses from the server to replace HTTPS URLs with HTTP URLs: thus, when
the user clicks the ‘login’ button and enters her password, the password is transmitted
unencrypted.

To prevent SSL stripping, the HTTP Strict Transport Security (HSTS) mecha-
nism was created [360]. HSTS allows a web server to tell a client to automatically
use HTTPS for all pages on a certain domain for a certain period of time, even if the
URL is given as HTTP. This is a trust-on-first-use mechanism, so it requires that the
client make at least one non-adversary-controlled connection to the server. Despite
HSTS, HTTPS stripping can still be achieved by an attacker who rewrites links in
plaintext pages to alternative domain names that are not covered by an HSTS pol-
icy [523].

HTTP servers that serve multiple sites—such as content distribution networks—
have also been vulnerable to ‘virtual host confusion’ attacks [239]. These attacks
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depend on a complex interaction between TLS and application characteristics, so
we omit the details; the root cause of the attacks is that servers have many different
‘identities’ at different levels of the network stack (IP, TCP, TLS, HTTP), and they
do not always match the identity that is cryptographically authenticated by TLS.

Other application-level protocols also use TLS, but in a different way from
HTTPS. Whereas HTTPS runs on a separate TCP port from HTTP and immedi-
ately begins with a TLS handshake, other applications, such as IMAP, POP3, XMPP,
NNTP, IRC, and FTP, run the secure and plaintext versions on the same port: the
parties start with a plaintext communication, then use a protocol-specific command,
often called ‘STARTTLS’, to initiate a TLS handshake for secure communication.
Venema and Orlando [722] discovered vulnerabilities in many applications’ use of
STARTTLS that allowed an attacker to inject commands in the plaintext portion of
the protocol that would be executed during the encrypted portion of the protocol.

6.13.2 Certificate Authority Breaches and Related Flaws

Since authentication in TLS uses certificates, users’ security can be undermined by
mistakes or by attacks on certificate authorities. In some applications, TLS clients
may be configured to accept certificates from a single CA or a very small number of
CAs (see Sect. 6.12.3 for cases when this should—but does not—happen).

In many settings, however, TLS clients are configured to accept certificates from
many CAs. On the public web, mainstream web browsers ship with 150–200 root
CA certificates that are trusted by default, issued by some 80+ organizations. Some
of these root CAs issue web server certificates directly or via an intermediate CA
run by the same company, but many root CAs also issue certificates for subordinate
CAs run by other organizations, who then also issue web server certificates directly
or via intermediate CAs. For example, at the time of writing, an HTTPS connection
to eprint.iacr.org returned a certificate issued by ‘RapidSSL SHA256 CA -
G3’, whose certificate was issued by ‘GeoTrust Global CA’. The subordinate CA,
RapidSSL, is a separate organization from the root CA, GeoTrust.

An Internet-wide scan by the Electronic Frontier Foundation’s SSL Observatory
project in 2010 found more than 650 organizations that were trusted by default by
major browsers as CAs [266]. In general, any one of these organizations has the
ability to issue a browser-trusted certificate for any domain name, without geographic
or other restrictions. As a result, there are many potential points of failure in the CA
ecosystem. The CA/Browser Forum is a consortium of CAs and browser vendors
who work together to agree on guidelines for the operation of CAs and the criteria
for root CA inclusion in browsers and operating systems.

There have been several incidents involving CAs mistakenly issuing certificates.
Among the most dramatic was the DigiNotar breach of 2011 [282]. DigiNotar was
a Dutch CA that issued certificates under two main CAs, one for public websites
(‘DigiNotar Root CA’) and one for the Dutch government. The certificate for ‘Dig-
iNotar Root CA’ was built in to all major browsers. In July 2011, DigiNotar mistak-
enly issued a wildcard certificate for *.google.com. This certificate was used in
Iran in August 2011 to conduct man-in-the-middle attacks against users of Google
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services. Subsequently, it was discovered that DigiNotar had issued more than 500
other fraudulent certificates, including ones for Yahoo!, Mozilla, WordPress, and
the Tor project. All major browser vendors issued updates that removed ‘DigiNotar
Root CA’ from their browser’s list of trusted CAs. DigiNotar declared bankruptcy in
September 2011.

The DigiNotar breach was detected owing to Google Chrome’s use of certificate
pinning. At the time, Google Chrome had hard-coded the fact that Google services
would use only certificates from certain CAs, so Chrome users were in fact protected
against the man-in-the-middle attack on Google services, while other users would
not have been. This ad hoc approach has been standardised as HTTP Public Key
Pinning [272], which allows web servers to specify that future connections to that
same domain will be secured using a certain certificate or CA. This limits the ability
of an attacker to make use of a fraudulently issued certificate in the event of a CA
breach, though HTTP Public Key Pinning is a trust-on-first-use mechanism, meaning
it only provides security if the initial connection between the client and the server
does not involve a fraudulently issued certificate.

System administrators and local software can also modify the browser or oper-
ating system’s list of trusted root CAs. This can be done for legitimate reasons, to
support a company’s internal PKI or to enable an HTTPS proxy to inspect down-
loads for viruses, but can also be done maliciously. Some malware is known to do
this to enable further attacks. In 2015, it was discovered that Lenovo computers were
shipping with a piece of advertising software called Superfish which added a root
CA certificate to computers so that it could act as an HTTP/HTTPS proxy and in-
ject advertising into web pages. Unfortunately, the software used the same root CA
certificate on all computers, and, moreover, the corresponding private key was also
included in the software, so anyone who could reverse engineer the software could
recover the root CA key and impersonate any web server to any user with the Su-
perfish software installed [40]. Interestingly, public key pinning would not protect
against this attack, as browsers are configured to allow locally installed certificates
to override pins.

6.14 TLS Version 1.3

In 2014, the Internet Engineering Task Force began a multi-year process to develop
the next version of TLS, now called TLS version 1.3. In August 2018, TLS 1.3 was
standardised in RFC 8446 [626]. There were several motivations for the development
of TLS 1.3:

1. to deprecate old cryptographic algorithms and switch to modern algorithms and
modes of operation;

2. to encrypt parts of the handshake to enhance privacy, in part as a response to
concerns about mass surveillance;

3. to reduce the latency of connection establishment by providing modes with fewer
round trips;
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4. and to make general changes to cryptographic and other operations of the proto-
col, including simplifying protocol logic.

To achieve the first goal, many cryptographic algorithms that had been in use in
TLS 1.2 and earlier versions were removed from TLS 1.3. The symmetric encryption
and integrity algorithms in the record layer protocol had been the cause of several
vulnerabilities; TLS 1.3 removed the MAC-then-encode-then-encrypt mode of oper-
ation, and focused on provably secure authenticated encryption schemes, mandating
AES in Galois/counter mode, and optionally ChaCha20 with Poly1305. In terms of
public key cryptography, static Diffie–Hellman ciphersuites were removed, as was
key exchange based on RSA key transport; RSA-based digital signatures within TLS
must use the PSS algorithm, rather than PKCS #1 v1.5 (although certificates may
still be signed using PKCS #1 v1.5). All asymmetric key exchange algorithms in
TLS 1.3 are based on ephemeral Diffie–Hellman to provide forward secrecy. New
elliptic curve algorithms are available, including the use of Curve25519 in key ex-
change (X25519) and signatures (Ed25519), and some finite-field and elliptic curve
groups have been removed.

To achieve the second goal of enhancing privacy, the flow of messages in
the handshake algorithm was substantially altered. Most notably, unauthenticated
ephemeral key exchange happens in the first two flows of the protocol, after which
the parties establish a temporary ‘handshake traffic key’ which is used to encrypt the
remainder of the handshake, including the transmission of certificates, before finally
switching to the ‘application traffic key’ which is used to encrypt application data in
the record layer protocol. Protocol 6.3 shows the handshake protocol for a full hand-
shake in TLS 1.3. The client sends one or more ephemeral keys in the key share

extension of the ClientHello message. Since the parties have at this point not yet
negotiated algorithms, the client is simply guessing which ephemeral key exchange
algorithms might be acceptable to the server; if the server does not support any of the
algorithms offered by the client, the server can send a HelloRetryRequest message
with a list of algorithms to ask the client to retry.

To reduce latency of connection establishment, a new zero-round-trip (0-RTT)
mode of operation is available when pre-shared keys are being used for session es-
tablishment (which includes session resumption). This allows the client to send ap-
plication data immediately on its first flow to the server, rather than having to wait
until receiving a response from the server. In 0-RTT mode, the client derives an early
application traffic key from the pre-shared key, and uses this to encrypt its first appli-
cation flow, which it sends along with the ClientHello. The client and server can
still optionally negotiate a forward secure ephemeral shared secret in this mode, but
that ephemeral secret will only apply to subsequent application data flows, not the
first one from the client to the server. Protocol 6.4 shows the 0-RTT handshake mode.
One concern regarding 0-RTT mode is that the first client-to-server flow can be re-
played; the TLS 1.3 document discusses some potential mitigations for servers to
prevent replay attacks, such as keeping state and using application-level protections.
TLS 1.3 has no explicit session resumption mode; instead, a ‘resumption master se-
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Client Server

ClientHello
key share, pre shared key, . . .

Generate handshake traffic keyServerHello
key share, pre shared key, . . .

Generate handshake traffic key
EncryptedExtensions

CertificateRequest∗

Certificate∗

CertificateVerify∗

Finished

Generate application traffic key Generate application traffic key
Application data∗

Certificate∗

CertificateVerify∗

Finished

application data

∗ denotes messages that may not be present in all ciphersuites.
Single lines denote plaintext flows; double lines denote encrypted flows using the handshake

traffic key; triple lines denote encrypted flows using the application traffic key.

Protocol 6.3: TLS 1.3 handshake protocol – full handshake

cret’ can be exported from any session, and this value can be used as a pre-shared
key in a subsequent PSK or 0-RTT handshake.

Finally, many other changes have been made throughout the protocol, some cryp-
tographic, some not. The key derivation function is now HKDF [454], and there is
a new key derivation schedule that incorporates each new piece of keying material
and generates all necessary traffic keys. The handshake state machine has been re-
organized, and the ChangeCipherSpec messages have been removed. Digital sig-
natures in the CertificateVerify message now cover the entire handshake tran-
script. Ciphersuite negotiation has been made modular: each cryptographic compo-
nent (authenticated encryption algorithm, digital signature algorithm, key exchange
algorithm) is negotiated separately.

All major browser and library vendors have committed to support TLS 1.3, and
as of December 2018, support is available in the Chrome and Firefox browsers, and
the OpenSSL and NSS libraries.

One notable aspect of the development of TLS 1.3 has been the early and ongoing
involvement of the academic community. The core cryptographic design of TLS 1.3
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Client Server

ClientHello
key share, pre shared key, . . .

Generate early application traffic
key from pre-shared key

Generate early application traffic
key from pre-shared key

ApplicationData∗

Generate handshake traffic keyServerHello
key share, pre shared key, . . .

Generate handshake traffic key
EncryptedExtensions

Finished

Generate application traffic key Generate application traffic key
Application data∗

Finished

Application data

∗ denotes messages that may not be present in all ciphersuites.
Single lines denote plaintext flows; double lines denote encrypted flows using the handshake

traffic key; triple lines denote encrypted flows using the early or regular application traffic
key.

Protocol 6.4: TLS 1.3 handshake protocol – pre-shared key handshake with early
application data (‘zero-round-trip’)

was heavily influenced by the OPTLS protocol of Krawczyk and Wee [457]. There
were a variety of academic papers published analyzing and commenting on various
aspects of drafts of TLS 1.3, including results using provable security [257, 457,
487], constructive cryptography [444], and formal methods [230], and the miTLS
team’s efforts of using formal methods combined with a verified implementation [92,
95]. A workshop called ‘TLS 1.3: Ready or Not? (TRON)’ was held in February 2016
that brought together academic researchers, industry professionals, and members of
the IETF TLS working group to exchange knowledge. In late 2016, Paterson and van
der Merwe [604] published an account of the TLS 1.3 standardization effort.


	6 Transport Layer Security Protocol
	6.1 Internet Security Protocols
	6.2 Background on TLS
	6.3 Protocol Structure
	6.3.1 Handshake Protocol
	6.3.2 Record Layer Protocol

	6.4 Additional Functionality
	6.4.1 Compression
	6.4.2 Session Resumption
	6.4.3 Renegotiation

	6.5 Variants
	6.6 Implementations
	6.7 Security Analyses
	6.7.1 Provable Security
	6.7.2 Formal Methods

	6.8 Attacks: Overview
	6.9 Attacks: Core Cryptography
	6.9.1 Bleichenbacher's Attack on PKCS#1v1.5 RSA Key Transport
	6.9.2 Bleichenbacher's Attack on PKCS#1v1.5 RSA Signature Verification
	6.9.3 Weaknesses in DES, Triple-DES, MD5, and SHA-1
	6.9.4 RC4 Biases
	6.9.5 Weak RSA and Diffie–Hellman: FREAK and Logjam Attacks

	6.10 Attacks: Crypto Usage in Ciphersuites
	6.10.1 BEAST Adaptive Chosen Plaintext Attack and POODLE
	6.10.2 Cross-Protocol Attack on Diffie–Hellman Parameters
	6.10.3 Lucky 13 Attack on MAC-Then-Encode-Then-Encrypt

	6.11 Attacks: Protocol Functionality
	6.11.1 Downgrade Attacks
	6.11.2 Renegotiation Attack
	6.11.3 Compression-Related Attacks: CRIME, BREACH
	6.11.4 Termination Attack
	6.11.5 Triple Handshake Attack

	6.12 Attacks: Implementations
	6.12.1 Side Channel Attacks
	6.12.2 TLS-Specific Implementation Flaws
	6.12.3 Certificate Validation
	6.12.4 Bad Random Number Generators

	6.13 Attacks: Other
	6.13.1 Application-Level Protocols
	6.13.2 Certificate Authority Breaches and Related Flaws

	6.14 TLS Version 1.3




